1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26
27 #include "pelt.h"
28 #include "smp.h"
29
30 /*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 0;
60 #undef SCHED_FEAT
61
62 /*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72
73 /*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77 const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
79 /*
80 * period over which we measure -rt task CPU usage in us.
81 * default: 1s
82 */
83 unsigned int sysctl_sched_rt_period = 1000000;
84
85 __read_mostly int scheduler_running;
86
87 #ifdef CONFIG_SCHED_CORE
88
89 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
91 /* kernel prio, less is more */
__task_prio(struct task_struct * p)92 static inline int __task_prio(struct task_struct *p)
93 {
94 if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 return -2;
96
97 if (rt_prio(p->prio)) /* includes deadline */
98 return p->prio; /* [-1, 99] */
99
100 if (p->sched_class == &idle_sched_class)
101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104 }
105
106 /*
107 * l(a,b)
108 * le(a,b) := !l(b,a)
109 * g(a,b) := l(b,a)
110 * ge(a,b) := !l(a,b)
111 */
112
113 /* real prio, less is less */
prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)114 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
115 {
116
117 int pa = __task_prio(a), pb = __task_prio(b);
118
119 if (-pa < -pb)
120 return true;
121
122 if (-pb < -pa)
123 return false;
124
125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
129 return cfs_prio_less(a, b, in_fi);
130
131 return false;
132 }
133
__sched_core_less(struct task_struct * a,struct task_struct * b)134 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135 {
136 if (a->core_cookie < b->core_cookie)
137 return true;
138
139 if (a->core_cookie > b->core_cookie)
140 return false;
141
142 /* flip prio, so high prio is leftmost */
143 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
144 return true;
145
146 return false;
147 }
148
149 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)151 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152 {
153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154 }
155
rb_sched_core_cmp(const void * key,const struct rb_node * node)156 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157 {
158 const struct task_struct *p = __node_2_sc(node);
159 unsigned long cookie = (unsigned long)key;
160
161 if (cookie < p->core_cookie)
162 return -1;
163
164 if (cookie > p->core_cookie)
165 return 1;
166
167 return 0;
168 }
169
sched_core_enqueue(struct rq * rq,struct task_struct * p)170 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
171 {
172 rq->core->core_task_seq++;
173
174 if (!p->core_cookie)
175 return;
176
177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178 }
179
sched_core_dequeue(struct rq * rq,struct task_struct * p)180 void sched_core_dequeue(struct rq *rq, struct task_struct *p)
181 {
182 rq->core->core_task_seq++;
183
184 if (!sched_core_enqueued(p))
185 return;
186
187 rb_erase(&p->core_node, &rq->core_tree);
188 RB_CLEAR_NODE(&p->core_node);
189 }
190
191 /*
192 * Find left-most (aka, highest priority) task matching @cookie.
193 */
sched_core_find(struct rq * rq,unsigned long cookie)194 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195 {
196 struct rb_node *node;
197
198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 /*
200 * The idle task always matches any cookie!
201 */
202 if (!node)
203 return idle_sched_class.pick_task(rq);
204
205 return __node_2_sc(node);
206 }
207
sched_core_next(struct task_struct * p,unsigned long cookie)208 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209 {
210 struct rb_node *node = &p->core_node;
211
212 node = rb_next(node);
213 if (!node)
214 return NULL;
215
216 p = container_of(node, struct task_struct, core_node);
217 if (p->core_cookie != cookie)
218 return NULL;
219
220 return p;
221 }
222
223 /*
224 * Magic required such that:
225 *
226 * raw_spin_rq_lock(rq);
227 * ...
228 * raw_spin_rq_unlock(rq);
229 *
230 * ends up locking and unlocking the _same_ lock, and all CPUs
231 * always agree on what rq has what lock.
232 *
233 * XXX entirely possible to selectively enable cores, don't bother for now.
234 */
235
236 static DEFINE_MUTEX(sched_core_mutex);
237 static atomic_t sched_core_count;
238 static struct cpumask sched_core_mask;
239
sched_core_lock(int cpu,unsigned long * flags)240 static void sched_core_lock(int cpu, unsigned long *flags)
241 {
242 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
243 int t, i = 0;
244
245 local_irq_save(*flags);
246 for_each_cpu(t, smt_mask)
247 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
248 }
249
sched_core_unlock(int cpu,unsigned long * flags)250 static void sched_core_unlock(int cpu, unsigned long *flags)
251 {
252 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
253 int t;
254
255 for_each_cpu(t, smt_mask)
256 raw_spin_unlock(&cpu_rq(t)->__lock);
257 local_irq_restore(*flags);
258 }
259
__sched_core_flip(bool enabled)260 static void __sched_core_flip(bool enabled)
261 {
262 unsigned long flags;
263 int cpu, t;
264
265 cpus_read_lock();
266
267 /*
268 * Toggle the online cores, one by one.
269 */
270 cpumask_copy(&sched_core_mask, cpu_online_mask);
271 for_each_cpu(cpu, &sched_core_mask) {
272 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
273
274 sched_core_lock(cpu, &flags);
275
276 for_each_cpu(t, smt_mask)
277 cpu_rq(t)->core_enabled = enabled;
278
279 sched_core_unlock(cpu, &flags);
280
281 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
282 }
283
284 /*
285 * Toggle the offline CPUs.
286 */
287 cpumask_copy(&sched_core_mask, cpu_possible_mask);
288 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
289
290 for_each_cpu(cpu, &sched_core_mask)
291 cpu_rq(cpu)->core_enabled = enabled;
292
293 cpus_read_unlock();
294 }
295
sched_core_assert_empty(void)296 static void sched_core_assert_empty(void)
297 {
298 int cpu;
299
300 for_each_possible_cpu(cpu)
301 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
302 }
303
__sched_core_enable(void)304 static void __sched_core_enable(void)
305 {
306 static_branch_enable(&__sched_core_enabled);
307 /*
308 * Ensure all previous instances of raw_spin_rq_*lock() have finished
309 * and future ones will observe !sched_core_disabled().
310 */
311 synchronize_rcu();
312 __sched_core_flip(true);
313 sched_core_assert_empty();
314 }
315
__sched_core_disable(void)316 static void __sched_core_disable(void)
317 {
318 sched_core_assert_empty();
319 __sched_core_flip(false);
320 static_branch_disable(&__sched_core_enabled);
321 }
322
sched_core_get(void)323 void sched_core_get(void)
324 {
325 if (atomic_inc_not_zero(&sched_core_count))
326 return;
327
328 mutex_lock(&sched_core_mutex);
329 if (!atomic_read(&sched_core_count))
330 __sched_core_enable();
331
332 smp_mb__before_atomic();
333 atomic_inc(&sched_core_count);
334 mutex_unlock(&sched_core_mutex);
335 }
336
__sched_core_put(struct work_struct * work)337 static void __sched_core_put(struct work_struct *work)
338 {
339 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
340 __sched_core_disable();
341 mutex_unlock(&sched_core_mutex);
342 }
343 }
344
sched_core_put(void)345 void sched_core_put(void)
346 {
347 static DECLARE_WORK(_work, __sched_core_put);
348
349 /*
350 * "There can be only one"
351 *
352 * Either this is the last one, or we don't actually need to do any
353 * 'work'. If it is the last *again*, we rely on
354 * WORK_STRUCT_PENDING_BIT.
355 */
356 if (!atomic_add_unless(&sched_core_count, -1, 1))
357 schedule_work(&_work);
358 }
359
360 #else /* !CONFIG_SCHED_CORE */
361
sched_core_enqueue(struct rq * rq,struct task_struct * p)362 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
sched_core_dequeue(struct rq * rq,struct task_struct * p)363 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
364
365 #endif /* CONFIG_SCHED_CORE */
366
367 /*
368 * part of the period that we allow rt tasks to run in us.
369 * default: 0.95s
370 */
371 int sysctl_sched_rt_runtime = 950000;
372
373
374 /*
375 * Serialization rules:
376 *
377 * Lock order:
378 *
379 * p->pi_lock
380 * rq->lock
381 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
382 *
383 * rq1->lock
384 * rq2->lock where: rq1 < rq2
385 *
386 * Regular state:
387 *
388 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
389 * local CPU's rq->lock, it optionally removes the task from the runqueue and
390 * always looks at the local rq data structures to find the most eligible task
391 * to run next.
392 *
393 * Task enqueue is also under rq->lock, possibly taken from another CPU.
394 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
395 * the local CPU to avoid bouncing the runqueue state around [ see
396 * ttwu_queue_wakelist() ]
397 *
398 * Task wakeup, specifically wakeups that involve migration, are horribly
399 * complicated to avoid having to take two rq->locks.
400 *
401 * Special state:
402 *
403 * System-calls and anything external will use task_rq_lock() which acquires
404 * both p->pi_lock and rq->lock. As a consequence the state they change is
405 * stable while holding either lock:
406 *
407 * - sched_setaffinity()/
408 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
409 * - set_user_nice(): p->se.load, p->*prio
410 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
411 * p->se.load, p->rt_priority,
412 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
413 * - sched_setnuma(): p->numa_preferred_nid
414 * - sched_move_task()/
415 * cpu_cgroup_fork(): p->sched_task_group
416 * - uclamp_update_active() p->uclamp*
417 *
418 * p->state <- TASK_*:
419 *
420 * is changed locklessly using set_current_state(), __set_current_state() or
421 * set_special_state(), see their respective comments, or by
422 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
423 * concurrent self.
424 *
425 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
426 *
427 * is set by activate_task() and cleared by deactivate_task(), under
428 * rq->lock. Non-zero indicates the task is runnable, the special
429 * ON_RQ_MIGRATING state is used for migration without holding both
430 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
431 *
432 * p->on_cpu <- { 0, 1 }:
433 *
434 * is set by prepare_task() and cleared by finish_task() such that it will be
435 * set before p is scheduled-in and cleared after p is scheduled-out, both
436 * under rq->lock. Non-zero indicates the task is running on its CPU.
437 *
438 * [ The astute reader will observe that it is possible for two tasks on one
439 * CPU to have ->on_cpu = 1 at the same time. ]
440 *
441 * task_cpu(p): is changed by set_task_cpu(), the rules are:
442 *
443 * - Don't call set_task_cpu() on a blocked task:
444 *
445 * We don't care what CPU we're not running on, this simplifies hotplug,
446 * the CPU assignment of blocked tasks isn't required to be valid.
447 *
448 * - for try_to_wake_up(), called under p->pi_lock:
449 *
450 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
451 *
452 * - for migration called under rq->lock:
453 * [ see task_on_rq_migrating() in task_rq_lock() ]
454 *
455 * o move_queued_task()
456 * o detach_task()
457 *
458 * - for migration called under double_rq_lock():
459 *
460 * o __migrate_swap_task()
461 * o push_rt_task() / pull_rt_task()
462 * o push_dl_task() / pull_dl_task()
463 * o dl_task_offline_migration()
464 *
465 */
466
raw_spin_rq_lock_nested(struct rq * rq,int subclass)467 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
468 {
469 raw_spinlock_t *lock;
470
471 /* Matches synchronize_rcu() in __sched_core_enable() */
472 preempt_disable();
473 if (sched_core_disabled()) {
474 raw_spin_lock_nested(&rq->__lock, subclass);
475 /* preempt_count *MUST* be > 1 */
476 preempt_enable_no_resched();
477 return;
478 }
479
480 for (;;) {
481 lock = __rq_lockp(rq);
482 raw_spin_lock_nested(lock, subclass);
483 if (likely(lock == __rq_lockp(rq))) {
484 /* preempt_count *MUST* be > 1 */
485 preempt_enable_no_resched();
486 return;
487 }
488 raw_spin_unlock(lock);
489 }
490 }
491
raw_spin_rq_trylock(struct rq * rq)492 bool raw_spin_rq_trylock(struct rq *rq)
493 {
494 raw_spinlock_t *lock;
495 bool ret;
496
497 /* Matches synchronize_rcu() in __sched_core_enable() */
498 preempt_disable();
499 if (sched_core_disabled()) {
500 ret = raw_spin_trylock(&rq->__lock);
501 preempt_enable();
502 return ret;
503 }
504
505 for (;;) {
506 lock = __rq_lockp(rq);
507 ret = raw_spin_trylock(lock);
508 if (!ret || (likely(lock == __rq_lockp(rq)))) {
509 preempt_enable();
510 return ret;
511 }
512 raw_spin_unlock(lock);
513 }
514 }
515
raw_spin_rq_unlock(struct rq * rq)516 void raw_spin_rq_unlock(struct rq *rq)
517 {
518 raw_spin_unlock(rq_lockp(rq));
519 }
520
521 #ifdef CONFIG_SMP
522 /*
523 * double_rq_lock - safely lock two runqueues
524 */
double_rq_lock(struct rq * rq1,struct rq * rq2)525 void double_rq_lock(struct rq *rq1, struct rq *rq2)
526 {
527 lockdep_assert_irqs_disabled();
528
529 if (rq_order_less(rq2, rq1))
530 swap(rq1, rq2);
531
532 raw_spin_rq_lock(rq1);
533 if (__rq_lockp(rq1) == __rq_lockp(rq2))
534 return;
535
536 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
537 }
538 #endif
539
540 /*
541 * __task_rq_lock - lock the rq @p resides on.
542 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)543 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
544 __acquires(rq->lock)
545 {
546 struct rq *rq;
547
548 lockdep_assert_held(&p->pi_lock);
549
550 for (;;) {
551 rq = task_rq(p);
552 raw_spin_rq_lock(rq);
553 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
554 rq_pin_lock(rq, rf);
555 return rq;
556 }
557 raw_spin_rq_unlock(rq);
558
559 while (unlikely(task_on_rq_migrating(p)))
560 cpu_relax();
561 }
562 }
563
564 /*
565 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
566 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)567 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
568 __acquires(p->pi_lock)
569 __acquires(rq->lock)
570 {
571 struct rq *rq;
572
573 for (;;) {
574 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
575 rq = task_rq(p);
576 raw_spin_rq_lock(rq);
577 /*
578 * move_queued_task() task_rq_lock()
579 *
580 * ACQUIRE (rq->lock)
581 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
582 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
583 * [S] ->cpu = new_cpu [L] task_rq()
584 * [L] ->on_rq
585 * RELEASE (rq->lock)
586 *
587 * If we observe the old CPU in task_rq_lock(), the acquire of
588 * the old rq->lock will fully serialize against the stores.
589 *
590 * If we observe the new CPU in task_rq_lock(), the address
591 * dependency headed by '[L] rq = task_rq()' and the acquire
592 * will pair with the WMB to ensure we then also see migrating.
593 */
594 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
595 rq_pin_lock(rq, rf);
596 return rq;
597 }
598 raw_spin_rq_unlock(rq);
599 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
600
601 while (unlikely(task_on_rq_migrating(p)))
602 cpu_relax();
603 }
604 }
605
606 /*
607 * RQ-clock updating methods:
608 */
609
update_rq_clock_task(struct rq * rq,s64 delta)610 static void update_rq_clock_task(struct rq *rq, s64 delta)
611 {
612 /*
613 * In theory, the compile should just see 0 here, and optimize out the call
614 * to sched_rt_avg_update. But I don't trust it...
615 */
616 s64 __maybe_unused steal = 0, irq_delta = 0;
617
618 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
619 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
620
621 /*
622 * Since irq_time is only updated on {soft,}irq_exit, we might run into
623 * this case when a previous update_rq_clock() happened inside a
624 * {soft,}irq region.
625 *
626 * When this happens, we stop ->clock_task and only update the
627 * prev_irq_time stamp to account for the part that fit, so that a next
628 * update will consume the rest. This ensures ->clock_task is
629 * monotonic.
630 *
631 * It does however cause some slight miss-attribution of {soft,}irq
632 * time, a more accurate solution would be to update the irq_time using
633 * the current rq->clock timestamp, except that would require using
634 * atomic ops.
635 */
636 if (irq_delta > delta)
637 irq_delta = delta;
638
639 rq->prev_irq_time += irq_delta;
640 delta -= irq_delta;
641 #endif
642 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
643 if (static_key_false((¶virt_steal_rq_enabled))) {
644 steal = paravirt_steal_clock(cpu_of(rq));
645 steal -= rq->prev_steal_time_rq;
646
647 if (unlikely(steal > delta))
648 steal = delta;
649
650 rq->prev_steal_time_rq += steal;
651 delta -= steal;
652 }
653 #endif
654
655 rq->clock_task += delta;
656
657 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
658 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
659 update_irq_load_avg(rq, irq_delta + steal);
660 #endif
661 update_rq_clock_pelt(rq, delta);
662 }
663
update_rq_clock(struct rq * rq)664 void update_rq_clock(struct rq *rq)
665 {
666 s64 delta;
667
668 lockdep_assert_rq_held(rq);
669
670 if (rq->clock_update_flags & RQCF_ACT_SKIP)
671 return;
672
673 #ifdef CONFIG_SCHED_DEBUG
674 if (sched_feat(WARN_DOUBLE_CLOCK))
675 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
676 rq->clock_update_flags |= RQCF_UPDATED;
677 #endif
678
679 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
680 if (delta < 0)
681 return;
682 rq->clock += delta;
683 update_rq_clock_task(rq, delta);
684 }
685
686 #ifdef CONFIG_SCHED_HRTICK
687 /*
688 * Use HR-timers to deliver accurate preemption points.
689 */
690
hrtick_clear(struct rq * rq)691 static void hrtick_clear(struct rq *rq)
692 {
693 if (hrtimer_active(&rq->hrtick_timer))
694 hrtimer_cancel(&rq->hrtick_timer);
695 }
696
697 /*
698 * High-resolution timer tick.
699 * Runs from hardirq context with interrupts disabled.
700 */
hrtick(struct hrtimer * timer)701 static enum hrtimer_restart hrtick(struct hrtimer *timer)
702 {
703 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
704 struct rq_flags rf;
705
706 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
707
708 rq_lock(rq, &rf);
709 update_rq_clock(rq);
710 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
711 rq_unlock(rq, &rf);
712
713 return HRTIMER_NORESTART;
714 }
715
716 #ifdef CONFIG_SMP
717
__hrtick_restart(struct rq * rq)718 static void __hrtick_restart(struct rq *rq)
719 {
720 struct hrtimer *timer = &rq->hrtick_timer;
721 ktime_t time = rq->hrtick_time;
722
723 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
724 }
725
726 /*
727 * called from hardirq (IPI) context
728 */
__hrtick_start(void * arg)729 static void __hrtick_start(void *arg)
730 {
731 struct rq *rq = arg;
732 struct rq_flags rf;
733
734 rq_lock(rq, &rf);
735 __hrtick_restart(rq);
736 rq_unlock(rq, &rf);
737 }
738
739 /*
740 * Called to set the hrtick timer state.
741 *
742 * called with rq->lock held and irqs disabled
743 */
hrtick_start(struct rq * rq,u64 delay)744 void hrtick_start(struct rq *rq, u64 delay)
745 {
746 struct hrtimer *timer = &rq->hrtick_timer;
747 s64 delta;
748
749 /*
750 * Don't schedule slices shorter than 10000ns, that just
751 * doesn't make sense and can cause timer DoS.
752 */
753 delta = max_t(s64, delay, 10000LL);
754 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
755
756 if (rq == this_rq())
757 __hrtick_restart(rq);
758 else
759 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
760 }
761
762 #else
763 /*
764 * Called to set the hrtick timer state.
765 *
766 * called with rq->lock held and irqs disabled
767 */
hrtick_start(struct rq * rq,u64 delay)768 void hrtick_start(struct rq *rq, u64 delay)
769 {
770 /*
771 * Don't schedule slices shorter than 10000ns, that just
772 * doesn't make sense. Rely on vruntime for fairness.
773 */
774 delay = max_t(u64, delay, 10000LL);
775 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
776 HRTIMER_MODE_REL_PINNED_HARD);
777 }
778
779 #endif /* CONFIG_SMP */
780
hrtick_rq_init(struct rq * rq)781 static void hrtick_rq_init(struct rq *rq)
782 {
783 #ifdef CONFIG_SMP
784 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
785 #endif
786 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
787 rq->hrtick_timer.function = hrtick;
788 }
789 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)790 static inline void hrtick_clear(struct rq *rq)
791 {
792 }
793
hrtick_rq_init(struct rq * rq)794 static inline void hrtick_rq_init(struct rq *rq)
795 {
796 }
797 #endif /* CONFIG_SCHED_HRTICK */
798
799 /*
800 * cmpxchg based fetch_or, macro so it works for different integer types
801 */
802 #define fetch_or(ptr, mask) \
803 ({ \
804 typeof(ptr) _ptr = (ptr); \
805 typeof(mask) _mask = (mask); \
806 typeof(*_ptr) _old, _val = *_ptr; \
807 \
808 for (;;) { \
809 _old = cmpxchg(_ptr, _val, _val | _mask); \
810 if (_old == _val) \
811 break; \
812 _val = _old; \
813 } \
814 _old; \
815 })
816
817 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
818 /*
819 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
820 * this avoids any races wrt polling state changes and thereby avoids
821 * spurious IPIs.
822 */
set_nr_and_not_polling(struct task_struct * p)823 static bool set_nr_and_not_polling(struct task_struct *p)
824 {
825 struct thread_info *ti = task_thread_info(p);
826 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
827 }
828
829 /*
830 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
831 *
832 * If this returns true, then the idle task promises to call
833 * sched_ttwu_pending() and reschedule soon.
834 */
set_nr_if_polling(struct task_struct * p)835 static bool set_nr_if_polling(struct task_struct *p)
836 {
837 struct thread_info *ti = task_thread_info(p);
838 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
839
840 for (;;) {
841 if (!(val & _TIF_POLLING_NRFLAG))
842 return false;
843 if (val & _TIF_NEED_RESCHED)
844 return true;
845 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
846 if (old == val)
847 break;
848 val = old;
849 }
850 return true;
851 }
852
853 #else
set_nr_and_not_polling(struct task_struct * p)854 static bool set_nr_and_not_polling(struct task_struct *p)
855 {
856 set_tsk_need_resched(p);
857 return true;
858 }
859
860 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)861 static bool set_nr_if_polling(struct task_struct *p)
862 {
863 return false;
864 }
865 #endif
866 #endif
867
__wake_q_add(struct wake_q_head * head,struct task_struct * task)868 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
869 {
870 struct wake_q_node *node = &task->wake_q;
871
872 /*
873 * Atomically grab the task, if ->wake_q is !nil already it means
874 * it's already queued (either by us or someone else) and will get the
875 * wakeup due to that.
876 *
877 * In order to ensure that a pending wakeup will observe our pending
878 * state, even in the failed case, an explicit smp_mb() must be used.
879 */
880 smp_mb__before_atomic();
881 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
882 return false;
883
884 /*
885 * The head is context local, there can be no concurrency.
886 */
887 *head->lastp = node;
888 head->lastp = &node->next;
889 return true;
890 }
891
892 /**
893 * wake_q_add() - queue a wakeup for 'later' waking.
894 * @head: the wake_q_head to add @task to
895 * @task: the task to queue for 'later' wakeup
896 *
897 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
898 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
899 * instantly.
900 *
901 * This function must be used as-if it were wake_up_process(); IOW the task
902 * must be ready to be woken at this location.
903 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)904 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
905 {
906 if (__wake_q_add(head, task))
907 get_task_struct(task);
908 }
909
910 /**
911 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
912 * @head: the wake_q_head to add @task to
913 * @task: the task to queue for 'later' wakeup
914 *
915 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
916 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
917 * instantly.
918 *
919 * This function must be used as-if it were wake_up_process(); IOW the task
920 * must be ready to be woken at this location.
921 *
922 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
923 * that already hold reference to @task can call the 'safe' version and trust
924 * wake_q to do the right thing depending whether or not the @task is already
925 * queued for wakeup.
926 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)927 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
928 {
929 if (!__wake_q_add(head, task))
930 put_task_struct(task);
931 }
932
wake_up_q(struct wake_q_head * head)933 void wake_up_q(struct wake_q_head *head)
934 {
935 struct wake_q_node *node = head->first;
936
937 while (node != WAKE_Q_TAIL) {
938 struct task_struct *task;
939
940 task = container_of(node, struct task_struct, wake_q);
941 /* Task can safely be re-inserted now: */
942 node = node->next;
943 task->wake_q.next = NULL;
944
945 /*
946 * wake_up_process() executes a full barrier, which pairs with
947 * the queueing in wake_q_add() so as not to miss wakeups.
948 */
949 wake_up_process(task);
950 put_task_struct(task);
951 }
952 }
953
954 /*
955 * resched_curr - mark rq's current task 'to be rescheduled now'.
956 *
957 * On UP this means the setting of the need_resched flag, on SMP it
958 * might also involve a cross-CPU call to trigger the scheduler on
959 * the target CPU.
960 */
resched_curr(struct rq * rq)961 void resched_curr(struct rq *rq)
962 {
963 struct task_struct *curr = rq->curr;
964 int cpu;
965
966 lockdep_assert_rq_held(rq);
967
968 if (test_tsk_need_resched(curr))
969 return;
970
971 cpu = cpu_of(rq);
972
973 if (cpu == smp_processor_id()) {
974 set_tsk_need_resched(curr);
975 set_preempt_need_resched();
976 return;
977 }
978
979 if (set_nr_and_not_polling(curr))
980 smp_send_reschedule(cpu);
981 else
982 trace_sched_wake_idle_without_ipi(cpu);
983 }
984
resched_cpu(int cpu)985 void resched_cpu(int cpu)
986 {
987 struct rq *rq = cpu_rq(cpu);
988 unsigned long flags;
989
990 raw_spin_rq_lock_irqsave(rq, flags);
991 if (cpu_online(cpu) || cpu == smp_processor_id())
992 resched_curr(rq);
993 raw_spin_rq_unlock_irqrestore(rq, flags);
994 }
995
996 #ifdef CONFIG_SMP
997 #ifdef CONFIG_NO_HZ_COMMON
998 /*
999 * In the semi idle case, use the nearest busy CPU for migrating timers
1000 * from an idle CPU. This is good for power-savings.
1001 *
1002 * We don't do similar optimization for completely idle system, as
1003 * selecting an idle CPU will add more delays to the timers than intended
1004 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1005 */
get_nohz_timer_target(void)1006 int get_nohz_timer_target(void)
1007 {
1008 int i, cpu = smp_processor_id(), default_cpu = -1;
1009 struct sched_domain *sd;
1010 const struct cpumask *hk_mask;
1011
1012 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1013 if (!idle_cpu(cpu))
1014 return cpu;
1015 default_cpu = cpu;
1016 }
1017
1018 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1019
1020 rcu_read_lock();
1021 for_each_domain(cpu, sd) {
1022 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1023 if (cpu == i)
1024 continue;
1025
1026 if (!idle_cpu(i)) {
1027 cpu = i;
1028 goto unlock;
1029 }
1030 }
1031 }
1032
1033 if (default_cpu == -1)
1034 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1035 cpu = default_cpu;
1036 unlock:
1037 rcu_read_unlock();
1038 return cpu;
1039 }
1040
1041 /*
1042 * When add_timer_on() enqueues a timer into the timer wheel of an
1043 * idle CPU then this timer might expire before the next timer event
1044 * which is scheduled to wake up that CPU. In case of a completely
1045 * idle system the next event might even be infinite time into the
1046 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1047 * leaves the inner idle loop so the newly added timer is taken into
1048 * account when the CPU goes back to idle and evaluates the timer
1049 * wheel for the next timer event.
1050 */
wake_up_idle_cpu(int cpu)1051 static void wake_up_idle_cpu(int cpu)
1052 {
1053 struct rq *rq = cpu_rq(cpu);
1054
1055 if (cpu == smp_processor_id())
1056 return;
1057
1058 if (set_nr_and_not_polling(rq->idle))
1059 smp_send_reschedule(cpu);
1060 else
1061 trace_sched_wake_idle_without_ipi(cpu);
1062 }
1063
wake_up_full_nohz_cpu(int cpu)1064 static bool wake_up_full_nohz_cpu(int cpu)
1065 {
1066 /*
1067 * We just need the target to call irq_exit() and re-evaluate
1068 * the next tick. The nohz full kick at least implies that.
1069 * If needed we can still optimize that later with an
1070 * empty IRQ.
1071 */
1072 if (cpu_is_offline(cpu))
1073 return true; /* Don't try to wake offline CPUs. */
1074 if (tick_nohz_full_cpu(cpu)) {
1075 if (cpu != smp_processor_id() ||
1076 tick_nohz_tick_stopped())
1077 tick_nohz_full_kick_cpu(cpu);
1078 return true;
1079 }
1080
1081 return false;
1082 }
1083
1084 /*
1085 * Wake up the specified CPU. If the CPU is going offline, it is the
1086 * caller's responsibility to deal with the lost wakeup, for example,
1087 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1088 */
wake_up_nohz_cpu(int cpu)1089 void wake_up_nohz_cpu(int cpu)
1090 {
1091 if (!wake_up_full_nohz_cpu(cpu))
1092 wake_up_idle_cpu(cpu);
1093 }
1094
nohz_csd_func(void * info)1095 static void nohz_csd_func(void *info)
1096 {
1097 struct rq *rq = info;
1098 int cpu = cpu_of(rq);
1099 unsigned int flags;
1100
1101 /*
1102 * Release the rq::nohz_csd.
1103 */
1104 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1105 WARN_ON(!(flags & NOHZ_KICK_MASK));
1106
1107 rq->idle_balance = idle_cpu(cpu);
1108 if (rq->idle_balance && !need_resched()) {
1109 rq->nohz_idle_balance = flags;
1110 raise_softirq_irqoff(SCHED_SOFTIRQ);
1111 }
1112 }
1113
1114 #endif /* CONFIG_NO_HZ_COMMON */
1115
1116 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)1117 bool sched_can_stop_tick(struct rq *rq)
1118 {
1119 int fifo_nr_running;
1120
1121 /* Deadline tasks, even if single, need the tick */
1122 if (rq->dl.dl_nr_running)
1123 return false;
1124
1125 /*
1126 * If there are more than one RR tasks, we need the tick to affect the
1127 * actual RR behaviour.
1128 */
1129 if (rq->rt.rr_nr_running) {
1130 if (rq->rt.rr_nr_running == 1)
1131 return true;
1132 else
1133 return false;
1134 }
1135
1136 /*
1137 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1138 * forced preemption between FIFO tasks.
1139 */
1140 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1141 if (fifo_nr_running)
1142 return true;
1143
1144 /*
1145 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1146 * if there's more than one we need the tick for involuntary
1147 * preemption.
1148 */
1149 if (rq->nr_running > 1)
1150 return false;
1151
1152 return true;
1153 }
1154 #endif /* CONFIG_NO_HZ_FULL */
1155 #endif /* CONFIG_SMP */
1156
1157 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1158 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1159 /*
1160 * Iterate task_group tree rooted at *from, calling @down when first entering a
1161 * node and @up when leaving it for the final time.
1162 *
1163 * Caller must hold rcu_lock or sufficient equivalent.
1164 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1165 int walk_tg_tree_from(struct task_group *from,
1166 tg_visitor down, tg_visitor up, void *data)
1167 {
1168 struct task_group *parent, *child;
1169 int ret;
1170
1171 parent = from;
1172
1173 down:
1174 ret = (*down)(parent, data);
1175 if (ret)
1176 goto out;
1177 list_for_each_entry_rcu(child, &parent->children, siblings) {
1178 parent = child;
1179 goto down;
1180
1181 up:
1182 continue;
1183 }
1184 ret = (*up)(parent, data);
1185 if (ret || parent == from)
1186 goto out;
1187
1188 child = parent;
1189 parent = parent->parent;
1190 if (parent)
1191 goto up;
1192 out:
1193 return ret;
1194 }
1195
tg_nop(struct task_group * tg,void * data)1196 int tg_nop(struct task_group *tg, void *data)
1197 {
1198 return 0;
1199 }
1200 #endif
1201
set_load_weight(struct task_struct * p,bool update_load)1202 static void set_load_weight(struct task_struct *p, bool update_load)
1203 {
1204 int prio = p->static_prio - MAX_RT_PRIO;
1205 struct load_weight *load = &p->se.load;
1206
1207 /*
1208 * SCHED_IDLE tasks get minimal weight:
1209 */
1210 if (task_has_idle_policy(p)) {
1211 load->weight = scale_load(WEIGHT_IDLEPRIO);
1212 load->inv_weight = WMULT_IDLEPRIO;
1213 return;
1214 }
1215
1216 /*
1217 * SCHED_OTHER tasks have to update their load when changing their
1218 * weight
1219 */
1220 if (update_load && p->sched_class == &fair_sched_class) {
1221 reweight_task(p, prio);
1222 } else {
1223 load->weight = scale_load(sched_prio_to_weight[prio]);
1224 load->inv_weight = sched_prio_to_wmult[prio];
1225 }
1226 }
1227
1228 #ifdef CONFIG_UCLAMP_TASK
1229 /*
1230 * Serializes updates of utilization clamp values
1231 *
1232 * The (slow-path) user-space triggers utilization clamp value updates which
1233 * can require updates on (fast-path) scheduler's data structures used to
1234 * support enqueue/dequeue operations.
1235 * While the per-CPU rq lock protects fast-path update operations, user-space
1236 * requests are serialized using a mutex to reduce the risk of conflicting
1237 * updates or API abuses.
1238 */
1239 static DEFINE_MUTEX(uclamp_mutex);
1240
1241 /* Max allowed minimum utilization */
1242 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1243
1244 /* Max allowed maximum utilization */
1245 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1246
1247 /*
1248 * By default RT tasks run at the maximum performance point/capacity of the
1249 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1250 * SCHED_CAPACITY_SCALE.
1251 *
1252 * This knob allows admins to change the default behavior when uclamp is being
1253 * used. In battery powered devices, particularly, running at the maximum
1254 * capacity and frequency will increase energy consumption and shorten the
1255 * battery life.
1256 *
1257 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1258 *
1259 * This knob will not override the system default sched_util_clamp_min defined
1260 * above.
1261 */
1262 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1263
1264 /* All clamps are required to be less or equal than these values */
1265 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1266
1267 /*
1268 * This static key is used to reduce the uclamp overhead in the fast path. It
1269 * primarily disables the call to uclamp_rq_{inc, dec}() in
1270 * enqueue/dequeue_task().
1271 *
1272 * This allows users to continue to enable uclamp in their kernel config with
1273 * minimum uclamp overhead in the fast path.
1274 *
1275 * As soon as userspace modifies any of the uclamp knobs, the static key is
1276 * enabled, since we have an actual users that make use of uclamp
1277 * functionality.
1278 *
1279 * The knobs that would enable this static key are:
1280 *
1281 * * A task modifying its uclamp value with sched_setattr().
1282 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1283 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1284 */
1285 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1286
1287 /* Integer rounded range for each bucket */
1288 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1289
1290 #define for_each_clamp_id(clamp_id) \
1291 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1292
uclamp_bucket_id(unsigned int clamp_value)1293 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1294 {
1295 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1296 }
1297
uclamp_none(enum uclamp_id clamp_id)1298 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1299 {
1300 if (clamp_id == UCLAMP_MIN)
1301 return 0;
1302 return SCHED_CAPACITY_SCALE;
1303 }
1304
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1305 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1306 unsigned int value, bool user_defined)
1307 {
1308 uc_se->value = value;
1309 uc_se->bucket_id = uclamp_bucket_id(value);
1310 uc_se->user_defined = user_defined;
1311 }
1312
1313 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1314 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1315 unsigned int clamp_value)
1316 {
1317 /*
1318 * Avoid blocked utilization pushing up the frequency when we go
1319 * idle (which drops the max-clamp) by retaining the last known
1320 * max-clamp.
1321 */
1322 if (clamp_id == UCLAMP_MAX) {
1323 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1324 return clamp_value;
1325 }
1326
1327 return uclamp_none(UCLAMP_MIN);
1328 }
1329
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1330 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1331 unsigned int clamp_value)
1332 {
1333 /* Reset max-clamp retention only on idle exit */
1334 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1335 return;
1336
1337 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1338 }
1339
1340 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1341 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1342 unsigned int clamp_value)
1343 {
1344 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1345 int bucket_id = UCLAMP_BUCKETS - 1;
1346
1347 /*
1348 * Since both min and max clamps are max aggregated, find the
1349 * top most bucket with tasks in.
1350 */
1351 for ( ; bucket_id >= 0; bucket_id--) {
1352 if (!bucket[bucket_id].tasks)
1353 continue;
1354 return bucket[bucket_id].value;
1355 }
1356
1357 /* No tasks -- default clamp values */
1358 return uclamp_idle_value(rq, clamp_id, clamp_value);
1359 }
1360
__uclamp_update_util_min_rt_default(struct task_struct * p)1361 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1362 {
1363 unsigned int default_util_min;
1364 struct uclamp_se *uc_se;
1365
1366 lockdep_assert_held(&p->pi_lock);
1367
1368 uc_se = &p->uclamp_req[UCLAMP_MIN];
1369
1370 /* Only sync if user didn't override the default */
1371 if (uc_se->user_defined)
1372 return;
1373
1374 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1375 uclamp_se_set(uc_se, default_util_min, false);
1376 }
1377
uclamp_update_util_min_rt_default(struct task_struct * p)1378 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1379 {
1380 struct rq_flags rf;
1381 struct rq *rq;
1382
1383 if (!rt_task(p))
1384 return;
1385
1386 /* Protect updates to p->uclamp_* */
1387 rq = task_rq_lock(p, &rf);
1388 __uclamp_update_util_min_rt_default(p);
1389 task_rq_unlock(rq, p, &rf);
1390 }
1391
uclamp_sync_util_min_rt_default(void)1392 static void uclamp_sync_util_min_rt_default(void)
1393 {
1394 struct task_struct *g, *p;
1395
1396 /*
1397 * copy_process() sysctl_uclamp
1398 * uclamp_min_rt = X;
1399 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1400 * // link thread smp_mb__after_spinlock()
1401 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1402 * sched_post_fork() for_each_process_thread()
1403 * __uclamp_sync_rt() __uclamp_sync_rt()
1404 *
1405 * Ensures that either sched_post_fork() will observe the new
1406 * uclamp_min_rt or for_each_process_thread() will observe the new
1407 * task.
1408 */
1409 read_lock(&tasklist_lock);
1410 smp_mb__after_spinlock();
1411 read_unlock(&tasklist_lock);
1412
1413 rcu_read_lock();
1414 for_each_process_thread(g, p)
1415 uclamp_update_util_min_rt_default(p);
1416 rcu_read_unlock();
1417 }
1418
1419 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1420 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1421 {
1422 /* Copy by value as we could modify it */
1423 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1424 #ifdef CONFIG_UCLAMP_TASK_GROUP
1425 unsigned int tg_min, tg_max, value;
1426
1427 /*
1428 * Tasks in autogroups or root task group will be
1429 * restricted by system defaults.
1430 */
1431 if (task_group_is_autogroup(task_group(p)))
1432 return uc_req;
1433 if (task_group(p) == &root_task_group)
1434 return uc_req;
1435
1436 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1437 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1438 value = uc_req.value;
1439 value = clamp(value, tg_min, tg_max);
1440 uclamp_se_set(&uc_req, value, false);
1441 #endif
1442
1443 return uc_req;
1444 }
1445
1446 /*
1447 * The effective clamp bucket index of a task depends on, by increasing
1448 * priority:
1449 * - the task specific clamp value, when explicitly requested from userspace
1450 * - the task group effective clamp value, for tasks not either in the root
1451 * group or in an autogroup
1452 * - the system default clamp value, defined by the sysadmin
1453 */
1454 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1455 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1456 {
1457 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1458 struct uclamp_se uc_max = uclamp_default[clamp_id];
1459
1460 /* System default restrictions always apply */
1461 if (unlikely(uc_req.value > uc_max.value))
1462 return uc_max;
1463
1464 return uc_req;
1465 }
1466
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1467 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1468 {
1469 struct uclamp_se uc_eff;
1470
1471 /* Task currently refcounted: use back-annotated (effective) value */
1472 if (p->uclamp[clamp_id].active)
1473 return (unsigned long)p->uclamp[clamp_id].value;
1474
1475 uc_eff = uclamp_eff_get(p, clamp_id);
1476
1477 return (unsigned long)uc_eff.value;
1478 }
1479
1480 /*
1481 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1482 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1483 * updates the rq's clamp value if required.
1484 *
1485 * Tasks can have a task-specific value requested from user-space, track
1486 * within each bucket the maximum value for tasks refcounted in it.
1487 * This "local max aggregation" allows to track the exact "requested" value
1488 * for each bucket when all its RUNNABLE tasks require the same clamp.
1489 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1490 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1491 enum uclamp_id clamp_id)
1492 {
1493 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1494 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1495 struct uclamp_bucket *bucket;
1496
1497 lockdep_assert_rq_held(rq);
1498
1499 /* Update task effective clamp */
1500 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1501
1502 bucket = &uc_rq->bucket[uc_se->bucket_id];
1503 bucket->tasks++;
1504 uc_se->active = true;
1505
1506 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1507
1508 /*
1509 * Local max aggregation: rq buckets always track the max
1510 * "requested" clamp value of its RUNNABLE tasks.
1511 */
1512 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1513 bucket->value = uc_se->value;
1514
1515 if (uc_se->value > READ_ONCE(uc_rq->value))
1516 WRITE_ONCE(uc_rq->value, uc_se->value);
1517 }
1518
1519 /*
1520 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1521 * is released. If this is the last task reference counting the rq's max
1522 * active clamp value, then the rq's clamp value is updated.
1523 *
1524 * Both refcounted tasks and rq's cached clamp values are expected to be
1525 * always valid. If it's detected they are not, as defensive programming,
1526 * enforce the expected state and warn.
1527 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1528 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1529 enum uclamp_id clamp_id)
1530 {
1531 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1532 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1533 struct uclamp_bucket *bucket;
1534 unsigned int bkt_clamp;
1535 unsigned int rq_clamp;
1536
1537 lockdep_assert_rq_held(rq);
1538
1539 /*
1540 * If sched_uclamp_used was enabled after task @p was enqueued,
1541 * we could end up with unbalanced call to uclamp_rq_dec_id().
1542 *
1543 * In this case the uc_se->active flag should be false since no uclamp
1544 * accounting was performed at enqueue time and we can just return
1545 * here.
1546 *
1547 * Need to be careful of the following enqueue/dequeue ordering
1548 * problem too
1549 *
1550 * enqueue(taskA)
1551 * // sched_uclamp_used gets enabled
1552 * enqueue(taskB)
1553 * dequeue(taskA)
1554 * // Must not decrement bucket->tasks here
1555 * dequeue(taskB)
1556 *
1557 * where we could end up with stale data in uc_se and
1558 * bucket[uc_se->bucket_id].
1559 *
1560 * The following check here eliminates the possibility of such race.
1561 */
1562 if (unlikely(!uc_se->active))
1563 return;
1564
1565 bucket = &uc_rq->bucket[uc_se->bucket_id];
1566
1567 SCHED_WARN_ON(!bucket->tasks);
1568 if (likely(bucket->tasks))
1569 bucket->tasks--;
1570
1571 uc_se->active = false;
1572
1573 /*
1574 * Keep "local max aggregation" simple and accept to (possibly)
1575 * overboost some RUNNABLE tasks in the same bucket.
1576 * The rq clamp bucket value is reset to its base value whenever
1577 * there are no more RUNNABLE tasks refcounting it.
1578 */
1579 if (likely(bucket->tasks))
1580 return;
1581
1582 rq_clamp = READ_ONCE(uc_rq->value);
1583 /*
1584 * Defensive programming: this should never happen. If it happens,
1585 * e.g. due to future modification, warn and fixup the expected value.
1586 */
1587 SCHED_WARN_ON(bucket->value > rq_clamp);
1588 if (bucket->value >= rq_clamp) {
1589 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1590 WRITE_ONCE(uc_rq->value, bkt_clamp);
1591 }
1592 }
1593
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1594 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1595 {
1596 enum uclamp_id clamp_id;
1597
1598 /*
1599 * Avoid any overhead until uclamp is actually used by the userspace.
1600 *
1601 * The condition is constructed such that a NOP is generated when
1602 * sched_uclamp_used is disabled.
1603 */
1604 if (!static_branch_unlikely(&sched_uclamp_used))
1605 return;
1606
1607 if (unlikely(!p->sched_class->uclamp_enabled))
1608 return;
1609
1610 for_each_clamp_id(clamp_id)
1611 uclamp_rq_inc_id(rq, p, clamp_id);
1612
1613 /* Reset clamp idle holding when there is one RUNNABLE task */
1614 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1615 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1616 }
1617
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1618 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1619 {
1620 enum uclamp_id clamp_id;
1621
1622 /*
1623 * Avoid any overhead until uclamp is actually used by the userspace.
1624 *
1625 * The condition is constructed such that a NOP is generated when
1626 * sched_uclamp_used is disabled.
1627 */
1628 if (!static_branch_unlikely(&sched_uclamp_used))
1629 return;
1630
1631 if (unlikely(!p->sched_class->uclamp_enabled))
1632 return;
1633
1634 for_each_clamp_id(clamp_id)
1635 uclamp_rq_dec_id(rq, p, clamp_id);
1636 }
1637
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1638 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1639 enum uclamp_id clamp_id)
1640 {
1641 if (!p->uclamp[clamp_id].active)
1642 return;
1643
1644 uclamp_rq_dec_id(rq, p, clamp_id);
1645 uclamp_rq_inc_id(rq, p, clamp_id);
1646
1647 /*
1648 * Make sure to clear the idle flag if we've transiently reached 0
1649 * active tasks on rq.
1650 */
1651 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1652 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1653 }
1654
1655 static inline void
uclamp_update_active(struct task_struct * p)1656 uclamp_update_active(struct task_struct *p)
1657 {
1658 enum uclamp_id clamp_id;
1659 struct rq_flags rf;
1660 struct rq *rq;
1661
1662 /*
1663 * Lock the task and the rq where the task is (or was) queued.
1664 *
1665 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1666 * price to pay to safely serialize util_{min,max} updates with
1667 * enqueues, dequeues and migration operations.
1668 * This is the same locking schema used by __set_cpus_allowed_ptr().
1669 */
1670 rq = task_rq_lock(p, &rf);
1671
1672 /*
1673 * Setting the clamp bucket is serialized by task_rq_lock().
1674 * If the task is not yet RUNNABLE and its task_struct is not
1675 * affecting a valid clamp bucket, the next time it's enqueued,
1676 * it will already see the updated clamp bucket value.
1677 */
1678 for_each_clamp_id(clamp_id)
1679 uclamp_rq_reinc_id(rq, p, clamp_id);
1680
1681 task_rq_unlock(rq, p, &rf);
1682 }
1683
1684 #ifdef CONFIG_UCLAMP_TASK_GROUP
1685 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1686 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1687 {
1688 struct css_task_iter it;
1689 struct task_struct *p;
1690
1691 css_task_iter_start(css, 0, &it);
1692 while ((p = css_task_iter_next(&it)))
1693 uclamp_update_active(p);
1694 css_task_iter_end(&it);
1695 }
1696
1697 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1698 static void uclamp_update_root_tg(void)
1699 {
1700 struct task_group *tg = &root_task_group;
1701
1702 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1703 sysctl_sched_uclamp_util_min, false);
1704 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1705 sysctl_sched_uclamp_util_max, false);
1706
1707 rcu_read_lock();
1708 cpu_util_update_eff(&root_task_group.css);
1709 rcu_read_unlock();
1710 }
1711 #else
uclamp_update_root_tg(void)1712 static void uclamp_update_root_tg(void) { }
1713 #endif
1714
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1715 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1716 void *buffer, size_t *lenp, loff_t *ppos)
1717 {
1718 bool update_root_tg = false;
1719 int old_min, old_max, old_min_rt;
1720 int result;
1721
1722 mutex_lock(&uclamp_mutex);
1723 old_min = sysctl_sched_uclamp_util_min;
1724 old_max = sysctl_sched_uclamp_util_max;
1725 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1726
1727 result = proc_dointvec(table, write, buffer, lenp, ppos);
1728 if (result)
1729 goto undo;
1730 if (!write)
1731 goto done;
1732
1733 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1734 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1735 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1736
1737 result = -EINVAL;
1738 goto undo;
1739 }
1740
1741 if (old_min != sysctl_sched_uclamp_util_min) {
1742 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1743 sysctl_sched_uclamp_util_min, false);
1744 update_root_tg = true;
1745 }
1746 if (old_max != sysctl_sched_uclamp_util_max) {
1747 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1748 sysctl_sched_uclamp_util_max, false);
1749 update_root_tg = true;
1750 }
1751
1752 if (update_root_tg) {
1753 static_branch_enable(&sched_uclamp_used);
1754 uclamp_update_root_tg();
1755 }
1756
1757 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1758 static_branch_enable(&sched_uclamp_used);
1759 uclamp_sync_util_min_rt_default();
1760 }
1761
1762 /*
1763 * We update all RUNNABLE tasks only when task groups are in use.
1764 * Otherwise, keep it simple and do just a lazy update at each next
1765 * task enqueue time.
1766 */
1767
1768 goto done;
1769
1770 undo:
1771 sysctl_sched_uclamp_util_min = old_min;
1772 sysctl_sched_uclamp_util_max = old_max;
1773 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1774 done:
1775 mutex_unlock(&uclamp_mutex);
1776
1777 return result;
1778 }
1779
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1780 static int uclamp_validate(struct task_struct *p,
1781 const struct sched_attr *attr)
1782 {
1783 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1784 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1785
1786 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1787 util_min = attr->sched_util_min;
1788
1789 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1790 return -EINVAL;
1791 }
1792
1793 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1794 util_max = attr->sched_util_max;
1795
1796 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1797 return -EINVAL;
1798 }
1799
1800 if (util_min != -1 && util_max != -1 && util_min > util_max)
1801 return -EINVAL;
1802
1803 /*
1804 * We have valid uclamp attributes; make sure uclamp is enabled.
1805 *
1806 * We need to do that here, because enabling static branches is a
1807 * blocking operation which obviously cannot be done while holding
1808 * scheduler locks.
1809 */
1810 static_branch_enable(&sched_uclamp_used);
1811
1812 return 0;
1813 }
1814
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1815 static bool uclamp_reset(const struct sched_attr *attr,
1816 enum uclamp_id clamp_id,
1817 struct uclamp_se *uc_se)
1818 {
1819 /* Reset on sched class change for a non user-defined clamp value. */
1820 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1821 !uc_se->user_defined)
1822 return true;
1823
1824 /* Reset on sched_util_{min,max} == -1. */
1825 if (clamp_id == UCLAMP_MIN &&
1826 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1827 attr->sched_util_min == -1) {
1828 return true;
1829 }
1830
1831 if (clamp_id == UCLAMP_MAX &&
1832 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1833 attr->sched_util_max == -1) {
1834 return true;
1835 }
1836
1837 return false;
1838 }
1839
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1840 static void __setscheduler_uclamp(struct task_struct *p,
1841 const struct sched_attr *attr)
1842 {
1843 enum uclamp_id clamp_id;
1844
1845 for_each_clamp_id(clamp_id) {
1846 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1847 unsigned int value;
1848
1849 if (!uclamp_reset(attr, clamp_id, uc_se))
1850 continue;
1851
1852 /*
1853 * RT by default have a 100% boost value that could be modified
1854 * at runtime.
1855 */
1856 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1857 value = sysctl_sched_uclamp_util_min_rt_default;
1858 else
1859 value = uclamp_none(clamp_id);
1860
1861 uclamp_se_set(uc_se, value, false);
1862
1863 }
1864
1865 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1866 return;
1867
1868 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1869 attr->sched_util_min != -1) {
1870 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1871 attr->sched_util_min, true);
1872 }
1873
1874 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1875 attr->sched_util_max != -1) {
1876 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1877 attr->sched_util_max, true);
1878 }
1879 }
1880
uclamp_fork(struct task_struct * p)1881 static void uclamp_fork(struct task_struct *p)
1882 {
1883 enum uclamp_id clamp_id;
1884
1885 /*
1886 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1887 * as the task is still at its early fork stages.
1888 */
1889 for_each_clamp_id(clamp_id)
1890 p->uclamp[clamp_id].active = false;
1891
1892 if (likely(!p->sched_reset_on_fork))
1893 return;
1894
1895 for_each_clamp_id(clamp_id) {
1896 uclamp_se_set(&p->uclamp_req[clamp_id],
1897 uclamp_none(clamp_id), false);
1898 }
1899 }
1900
uclamp_post_fork(struct task_struct * p)1901 static void uclamp_post_fork(struct task_struct *p)
1902 {
1903 uclamp_update_util_min_rt_default(p);
1904 }
1905
init_uclamp_rq(struct rq * rq)1906 static void __init init_uclamp_rq(struct rq *rq)
1907 {
1908 enum uclamp_id clamp_id;
1909 struct uclamp_rq *uc_rq = rq->uclamp;
1910
1911 for_each_clamp_id(clamp_id) {
1912 uc_rq[clamp_id] = (struct uclamp_rq) {
1913 .value = uclamp_none(clamp_id)
1914 };
1915 }
1916
1917 rq->uclamp_flags = 0;
1918 }
1919
init_uclamp(void)1920 static void __init init_uclamp(void)
1921 {
1922 struct uclamp_se uc_max = {};
1923 enum uclamp_id clamp_id;
1924 int cpu;
1925
1926 for_each_possible_cpu(cpu)
1927 init_uclamp_rq(cpu_rq(cpu));
1928
1929 for_each_clamp_id(clamp_id) {
1930 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1931 uclamp_none(clamp_id), false);
1932 }
1933
1934 /* System defaults allow max clamp values for both indexes */
1935 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1936 for_each_clamp_id(clamp_id) {
1937 uclamp_default[clamp_id] = uc_max;
1938 #ifdef CONFIG_UCLAMP_TASK_GROUP
1939 root_task_group.uclamp_req[clamp_id] = uc_max;
1940 root_task_group.uclamp[clamp_id] = uc_max;
1941 #endif
1942 }
1943 }
1944
1945 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1946 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1947 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1948 static inline int uclamp_validate(struct task_struct *p,
1949 const struct sched_attr *attr)
1950 {
1951 return -EOPNOTSUPP;
1952 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1953 static void __setscheduler_uclamp(struct task_struct *p,
1954 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1955 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)1956 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)1957 static inline void init_uclamp(void) { }
1958 #endif /* CONFIG_UCLAMP_TASK */
1959
sched_task_on_rq(struct task_struct * p)1960 bool sched_task_on_rq(struct task_struct *p)
1961 {
1962 return task_on_rq_queued(p);
1963 }
1964
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1965 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1966 {
1967 if (!(flags & ENQUEUE_NOCLOCK))
1968 update_rq_clock(rq);
1969
1970 if (!(flags & ENQUEUE_RESTORE)) {
1971 sched_info_enqueue(rq, p);
1972 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1973 }
1974
1975 uclamp_rq_inc(rq, p);
1976 p->sched_class->enqueue_task(rq, p, flags);
1977
1978 if (sched_core_enabled(rq))
1979 sched_core_enqueue(rq, p);
1980 }
1981
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1982 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1983 {
1984 if (sched_core_enabled(rq))
1985 sched_core_dequeue(rq, p);
1986
1987 if (!(flags & DEQUEUE_NOCLOCK))
1988 update_rq_clock(rq);
1989
1990 if (!(flags & DEQUEUE_SAVE)) {
1991 sched_info_dequeue(rq, p);
1992 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1993 }
1994
1995 uclamp_rq_dec(rq, p);
1996 p->sched_class->dequeue_task(rq, p, flags);
1997 }
1998
activate_task(struct rq * rq,struct task_struct * p,int flags)1999 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2000 {
2001 enqueue_task(rq, p, flags);
2002
2003 p->on_rq = TASK_ON_RQ_QUEUED;
2004 }
2005
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2006 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2007 {
2008 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2009
2010 dequeue_task(rq, p, flags);
2011 }
2012
__normal_prio(int policy,int rt_prio,int nice)2013 static inline int __normal_prio(int policy, int rt_prio, int nice)
2014 {
2015 int prio;
2016
2017 if (dl_policy(policy))
2018 prio = MAX_DL_PRIO - 1;
2019 else if (rt_policy(policy))
2020 prio = MAX_RT_PRIO - 1 - rt_prio;
2021 else
2022 prio = NICE_TO_PRIO(nice);
2023
2024 return prio;
2025 }
2026
2027 /*
2028 * Calculate the expected normal priority: i.e. priority
2029 * without taking RT-inheritance into account. Might be
2030 * boosted by interactivity modifiers. Changes upon fork,
2031 * setprio syscalls, and whenever the interactivity
2032 * estimator recalculates.
2033 */
normal_prio(struct task_struct * p)2034 static inline int normal_prio(struct task_struct *p)
2035 {
2036 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2037 }
2038
2039 /*
2040 * Calculate the current priority, i.e. the priority
2041 * taken into account by the scheduler. This value might
2042 * be boosted by RT tasks, or might be boosted by
2043 * interactivity modifiers. Will be RT if the task got
2044 * RT-boosted. If not then it returns p->normal_prio.
2045 */
effective_prio(struct task_struct * p)2046 static int effective_prio(struct task_struct *p)
2047 {
2048 p->normal_prio = normal_prio(p);
2049 /*
2050 * If we are RT tasks or we were boosted to RT priority,
2051 * keep the priority unchanged. Otherwise, update priority
2052 * to the normal priority:
2053 */
2054 if (!rt_prio(p->prio))
2055 return p->normal_prio;
2056 return p->prio;
2057 }
2058
2059 /**
2060 * task_curr - is this task currently executing on a CPU?
2061 * @p: the task in question.
2062 *
2063 * Return: 1 if the task is currently executing. 0 otherwise.
2064 */
task_curr(const struct task_struct * p)2065 inline int task_curr(const struct task_struct *p)
2066 {
2067 return cpu_curr(task_cpu(p)) == p;
2068 }
2069
2070 /*
2071 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2072 * use the balance_callback list if you want balancing.
2073 *
2074 * this means any call to check_class_changed() must be followed by a call to
2075 * balance_callback().
2076 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2077 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2078 const struct sched_class *prev_class,
2079 int oldprio)
2080 {
2081 if (prev_class != p->sched_class) {
2082 if (prev_class->switched_from)
2083 prev_class->switched_from(rq, p);
2084
2085 p->sched_class->switched_to(rq, p);
2086 } else if (oldprio != p->prio || dl_task(p))
2087 p->sched_class->prio_changed(rq, p, oldprio);
2088 }
2089
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2090 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 if (p->sched_class == rq->curr->sched_class)
2093 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2094 else if (p->sched_class > rq->curr->sched_class)
2095 resched_curr(rq);
2096
2097 /*
2098 * A queue event has occurred, and we're going to schedule. In
2099 * this case, we can save a useless back to back clock update.
2100 */
2101 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2102 rq_clock_skip_update(rq);
2103 }
2104
2105 #ifdef CONFIG_SMP
2106
2107 static void
2108 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2109
2110 static int __set_cpus_allowed_ptr(struct task_struct *p,
2111 const struct cpumask *new_mask,
2112 u32 flags);
2113
migrate_disable_switch(struct rq * rq,struct task_struct * p)2114 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2115 {
2116 if (likely(!p->migration_disabled))
2117 return;
2118
2119 if (p->cpus_ptr != &p->cpus_mask)
2120 return;
2121
2122 /*
2123 * Violates locking rules! see comment in __do_set_cpus_allowed().
2124 */
2125 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2126 }
2127
migrate_disable(void)2128 void migrate_disable(void)
2129 {
2130 struct task_struct *p = current;
2131
2132 if (p->migration_disabled) {
2133 p->migration_disabled++;
2134 return;
2135 }
2136
2137 preempt_disable();
2138 this_rq()->nr_pinned++;
2139 p->migration_disabled = 1;
2140 preempt_enable();
2141 }
2142 EXPORT_SYMBOL_GPL(migrate_disable);
2143
migrate_enable(void)2144 void migrate_enable(void)
2145 {
2146 struct task_struct *p = current;
2147
2148 if (p->migration_disabled > 1) {
2149 p->migration_disabled--;
2150 return;
2151 }
2152
2153 /*
2154 * Ensure stop_task runs either before or after this, and that
2155 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2156 */
2157 preempt_disable();
2158 if (p->cpus_ptr != &p->cpus_mask)
2159 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2160 /*
2161 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2162 * regular cpus_mask, otherwise things that race (eg.
2163 * select_fallback_rq) get confused.
2164 */
2165 barrier();
2166 p->migration_disabled = 0;
2167 this_rq()->nr_pinned--;
2168 preempt_enable();
2169 }
2170 EXPORT_SYMBOL_GPL(migrate_enable);
2171
rq_has_pinned_tasks(struct rq * rq)2172 static inline bool rq_has_pinned_tasks(struct rq *rq)
2173 {
2174 return rq->nr_pinned;
2175 }
2176
2177 /*
2178 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2179 * __set_cpus_allowed_ptr() and select_fallback_rq().
2180 */
is_cpu_allowed(struct task_struct * p,int cpu)2181 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2182 {
2183 /* When not in the task's cpumask, no point in looking further. */
2184 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2185 return false;
2186
2187 /* migrate_disabled() must be allowed to finish. */
2188 if (is_migration_disabled(p))
2189 return cpu_online(cpu);
2190
2191 /* Non kernel threads are not allowed during either online or offline. */
2192 if (!(p->flags & PF_KTHREAD))
2193 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2194
2195 /* KTHREAD_IS_PER_CPU is always allowed. */
2196 if (kthread_is_per_cpu(p))
2197 return cpu_online(cpu);
2198
2199 /* Regular kernel threads don't get to stay during offline. */
2200 if (cpu_dying(cpu))
2201 return false;
2202
2203 /* But are allowed during online. */
2204 return cpu_online(cpu);
2205 }
2206
2207 /*
2208 * This is how migration works:
2209 *
2210 * 1) we invoke migration_cpu_stop() on the target CPU using
2211 * stop_one_cpu().
2212 * 2) stopper starts to run (implicitly forcing the migrated thread
2213 * off the CPU)
2214 * 3) it checks whether the migrated task is still in the wrong runqueue.
2215 * 4) if it's in the wrong runqueue then the migration thread removes
2216 * it and puts it into the right queue.
2217 * 5) stopper completes and stop_one_cpu() returns and the migration
2218 * is done.
2219 */
2220
2221 /*
2222 * move_queued_task - move a queued task to new rq.
2223 *
2224 * Returns (locked) new rq. Old rq's lock is released.
2225 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2226 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2227 struct task_struct *p, int new_cpu)
2228 {
2229 lockdep_assert_rq_held(rq);
2230
2231 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2232 set_task_cpu(p, new_cpu);
2233 rq_unlock(rq, rf);
2234
2235 rq = cpu_rq(new_cpu);
2236
2237 rq_lock(rq, rf);
2238 BUG_ON(task_cpu(p) != new_cpu);
2239 activate_task(rq, p, 0);
2240 check_preempt_curr(rq, p, 0);
2241
2242 return rq;
2243 }
2244
2245 struct migration_arg {
2246 struct task_struct *task;
2247 int dest_cpu;
2248 struct set_affinity_pending *pending;
2249 };
2250
2251 /*
2252 * @refs: number of wait_for_completion()
2253 * @stop_pending: is @stop_work in use
2254 */
2255 struct set_affinity_pending {
2256 refcount_t refs;
2257 unsigned int stop_pending;
2258 struct completion done;
2259 struct cpu_stop_work stop_work;
2260 struct migration_arg arg;
2261 };
2262
2263 /*
2264 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2265 * this because either it can't run here any more (set_cpus_allowed()
2266 * away from this CPU, or CPU going down), or because we're
2267 * attempting to rebalance this task on exec (sched_exec).
2268 *
2269 * So we race with normal scheduler movements, but that's OK, as long
2270 * as the task is no longer on this CPU.
2271 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2272 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2273 struct task_struct *p, int dest_cpu)
2274 {
2275 /* Affinity changed (again). */
2276 if (!is_cpu_allowed(p, dest_cpu))
2277 return rq;
2278
2279 update_rq_clock(rq);
2280 rq = move_queued_task(rq, rf, p, dest_cpu);
2281
2282 return rq;
2283 }
2284
2285 /*
2286 * migration_cpu_stop - this will be executed by a highprio stopper thread
2287 * and performs thread migration by bumping thread off CPU then
2288 * 'pushing' onto another runqueue.
2289 */
migration_cpu_stop(void * data)2290 static int migration_cpu_stop(void *data)
2291 {
2292 struct migration_arg *arg = data;
2293 struct set_affinity_pending *pending = arg->pending;
2294 struct task_struct *p = arg->task;
2295 struct rq *rq = this_rq();
2296 bool complete = false;
2297 struct rq_flags rf;
2298
2299 /*
2300 * The original target CPU might have gone down and we might
2301 * be on another CPU but it doesn't matter.
2302 */
2303 local_irq_save(rf.flags);
2304 /*
2305 * We need to explicitly wake pending tasks before running
2306 * __migrate_task() such that we will not miss enforcing cpus_ptr
2307 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2308 */
2309 flush_smp_call_function_from_idle();
2310
2311 raw_spin_lock(&p->pi_lock);
2312 rq_lock(rq, &rf);
2313
2314 /*
2315 * If we were passed a pending, then ->stop_pending was set, thus
2316 * p->migration_pending must have remained stable.
2317 */
2318 WARN_ON_ONCE(pending && pending != p->migration_pending);
2319
2320 /*
2321 * If task_rq(p) != rq, it cannot be migrated here, because we're
2322 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2323 * we're holding p->pi_lock.
2324 */
2325 if (task_rq(p) == rq) {
2326 if (is_migration_disabled(p))
2327 goto out;
2328
2329 if (pending) {
2330 p->migration_pending = NULL;
2331 complete = true;
2332
2333 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2334 goto out;
2335 }
2336
2337 if (task_on_rq_queued(p))
2338 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2339 else
2340 p->wake_cpu = arg->dest_cpu;
2341
2342 /*
2343 * XXX __migrate_task() can fail, at which point we might end
2344 * up running on a dodgy CPU, AFAICT this can only happen
2345 * during CPU hotplug, at which point we'll get pushed out
2346 * anyway, so it's probably not a big deal.
2347 */
2348
2349 } else if (pending) {
2350 /*
2351 * This happens when we get migrated between migrate_enable()'s
2352 * preempt_enable() and scheduling the stopper task. At that
2353 * point we're a regular task again and not current anymore.
2354 *
2355 * A !PREEMPT kernel has a giant hole here, which makes it far
2356 * more likely.
2357 */
2358
2359 /*
2360 * The task moved before the stopper got to run. We're holding
2361 * ->pi_lock, so the allowed mask is stable - if it got
2362 * somewhere allowed, we're done.
2363 */
2364 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2365 p->migration_pending = NULL;
2366 complete = true;
2367 goto out;
2368 }
2369
2370 /*
2371 * When migrate_enable() hits a rq mis-match we can't reliably
2372 * determine is_migration_disabled() and so have to chase after
2373 * it.
2374 */
2375 WARN_ON_ONCE(!pending->stop_pending);
2376 task_rq_unlock(rq, p, &rf);
2377 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2378 &pending->arg, &pending->stop_work);
2379 return 0;
2380 }
2381 out:
2382 if (pending)
2383 pending->stop_pending = false;
2384 task_rq_unlock(rq, p, &rf);
2385
2386 if (complete)
2387 complete_all(&pending->done);
2388
2389 return 0;
2390 }
2391
push_cpu_stop(void * arg)2392 int push_cpu_stop(void *arg)
2393 {
2394 struct rq *lowest_rq = NULL, *rq = this_rq();
2395 struct task_struct *p = arg;
2396
2397 raw_spin_lock_irq(&p->pi_lock);
2398 raw_spin_rq_lock(rq);
2399
2400 if (task_rq(p) != rq)
2401 goto out_unlock;
2402
2403 if (is_migration_disabled(p)) {
2404 p->migration_flags |= MDF_PUSH;
2405 goto out_unlock;
2406 }
2407
2408 p->migration_flags &= ~MDF_PUSH;
2409
2410 if (p->sched_class->find_lock_rq)
2411 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2412
2413 if (!lowest_rq)
2414 goto out_unlock;
2415
2416 // XXX validate p is still the highest prio task
2417 if (task_rq(p) == rq) {
2418 deactivate_task(rq, p, 0);
2419 set_task_cpu(p, lowest_rq->cpu);
2420 activate_task(lowest_rq, p, 0);
2421 resched_curr(lowest_rq);
2422 }
2423
2424 double_unlock_balance(rq, lowest_rq);
2425
2426 out_unlock:
2427 rq->push_busy = false;
2428 raw_spin_rq_unlock(rq);
2429 raw_spin_unlock_irq(&p->pi_lock);
2430
2431 put_task_struct(p);
2432 return 0;
2433 }
2434
2435 /*
2436 * sched_class::set_cpus_allowed must do the below, but is not required to
2437 * actually call this function.
2438 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2439 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2440 {
2441 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2442 p->cpus_ptr = new_mask;
2443 return;
2444 }
2445
2446 cpumask_copy(&p->cpus_mask, new_mask);
2447 p->nr_cpus_allowed = cpumask_weight(new_mask);
2448 }
2449
2450 static void
__do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2451 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2452 {
2453 struct rq *rq = task_rq(p);
2454 bool queued, running;
2455
2456 /*
2457 * This here violates the locking rules for affinity, since we're only
2458 * supposed to change these variables while holding both rq->lock and
2459 * p->pi_lock.
2460 *
2461 * HOWEVER, it magically works, because ttwu() is the only code that
2462 * accesses these variables under p->pi_lock and only does so after
2463 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2464 * before finish_task().
2465 *
2466 * XXX do further audits, this smells like something putrid.
2467 */
2468 if (flags & SCA_MIGRATE_DISABLE)
2469 SCHED_WARN_ON(!p->on_cpu);
2470 else
2471 lockdep_assert_held(&p->pi_lock);
2472
2473 queued = task_on_rq_queued(p);
2474 running = task_current(rq, p);
2475
2476 if (queued) {
2477 /*
2478 * Because __kthread_bind() calls this on blocked tasks without
2479 * holding rq->lock.
2480 */
2481 lockdep_assert_rq_held(rq);
2482 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2483 }
2484 if (running)
2485 put_prev_task(rq, p);
2486
2487 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2488
2489 if (queued)
2490 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2491 if (running)
2492 set_next_task(rq, p);
2493 }
2494
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2495 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2496 {
2497 __do_set_cpus_allowed(p, new_mask, 0);
2498 }
2499
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2500 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2501 int node)
2502 {
2503 if (!src->user_cpus_ptr)
2504 return 0;
2505
2506 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2507 if (!dst->user_cpus_ptr)
2508 return -ENOMEM;
2509
2510 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2511 return 0;
2512 }
2513
clear_user_cpus_ptr(struct task_struct * p)2514 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2515 {
2516 struct cpumask *user_mask = NULL;
2517
2518 swap(p->user_cpus_ptr, user_mask);
2519
2520 return user_mask;
2521 }
2522
release_user_cpus_ptr(struct task_struct * p)2523 void release_user_cpus_ptr(struct task_struct *p)
2524 {
2525 kfree(clear_user_cpus_ptr(p));
2526 }
2527
2528 /*
2529 * This function is wildly self concurrent; here be dragons.
2530 *
2531 *
2532 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2533 * designated task is enqueued on an allowed CPU. If that task is currently
2534 * running, we have to kick it out using the CPU stopper.
2535 *
2536 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2537 * Consider:
2538 *
2539 * Initial conditions: P0->cpus_mask = [0, 1]
2540 *
2541 * P0@CPU0 P1
2542 *
2543 * migrate_disable();
2544 * <preempted>
2545 * set_cpus_allowed_ptr(P0, [1]);
2546 *
2547 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2548 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2549 * This means we need the following scheme:
2550 *
2551 * P0@CPU0 P1
2552 *
2553 * migrate_disable();
2554 * <preempted>
2555 * set_cpus_allowed_ptr(P0, [1]);
2556 * <blocks>
2557 * <resumes>
2558 * migrate_enable();
2559 * __set_cpus_allowed_ptr();
2560 * <wakes local stopper>
2561 * `--> <woken on migration completion>
2562 *
2563 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2564 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2565 * task p are serialized by p->pi_lock, which we can leverage: the one that
2566 * should come into effect at the end of the Migrate-Disable region is the last
2567 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2568 * but we still need to properly signal those waiting tasks at the appropriate
2569 * moment.
2570 *
2571 * This is implemented using struct set_affinity_pending. The first
2572 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2573 * setup an instance of that struct and install it on the targeted task_struct.
2574 * Any and all further callers will reuse that instance. Those then wait for
2575 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2576 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2577 *
2578 *
2579 * (1) In the cases covered above. There is one more where the completion is
2580 * signaled within affine_move_task() itself: when a subsequent affinity request
2581 * occurs after the stopper bailed out due to the targeted task still being
2582 * Migrate-Disable. Consider:
2583 *
2584 * Initial conditions: P0->cpus_mask = [0, 1]
2585 *
2586 * CPU0 P1 P2
2587 * <P0>
2588 * migrate_disable();
2589 * <preempted>
2590 * set_cpus_allowed_ptr(P0, [1]);
2591 * <blocks>
2592 * <migration/0>
2593 * migration_cpu_stop()
2594 * is_migration_disabled()
2595 * <bails>
2596 * set_cpus_allowed_ptr(P0, [0, 1]);
2597 * <signal completion>
2598 * <awakes>
2599 *
2600 * Note that the above is safe vs a concurrent migrate_enable(), as any
2601 * pending affinity completion is preceded by an uninstallation of
2602 * p->migration_pending done with p->pi_lock held.
2603 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2604 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2605 int dest_cpu, unsigned int flags)
2606 {
2607 struct set_affinity_pending my_pending = { }, *pending = NULL;
2608 bool stop_pending, complete = false;
2609
2610 /* Can the task run on the task's current CPU? If so, we're done */
2611 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2612 struct task_struct *push_task = NULL;
2613
2614 if ((flags & SCA_MIGRATE_ENABLE) &&
2615 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2616 rq->push_busy = true;
2617 push_task = get_task_struct(p);
2618 }
2619
2620 /*
2621 * If there are pending waiters, but no pending stop_work,
2622 * then complete now.
2623 */
2624 pending = p->migration_pending;
2625 if (pending && !pending->stop_pending) {
2626 p->migration_pending = NULL;
2627 complete = true;
2628 }
2629
2630 task_rq_unlock(rq, p, rf);
2631
2632 if (push_task) {
2633 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2634 p, &rq->push_work);
2635 }
2636
2637 if (complete)
2638 complete_all(&pending->done);
2639
2640 return 0;
2641 }
2642
2643 if (!(flags & SCA_MIGRATE_ENABLE)) {
2644 /* serialized by p->pi_lock */
2645 if (!p->migration_pending) {
2646 /* Install the request */
2647 refcount_set(&my_pending.refs, 1);
2648 init_completion(&my_pending.done);
2649 my_pending.arg = (struct migration_arg) {
2650 .task = p,
2651 .dest_cpu = dest_cpu,
2652 .pending = &my_pending,
2653 };
2654
2655 p->migration_pending = &my_pending;
2656 } else {
2657 pending = p->migration_pending;
2658 refcount_inc(&pending->refs);
2659 /*
2660 * Affinity has changed, but we've already installed a
2661 * pending. migration_cpu_stop() *must* see this, else
2662 * we risk a completion of the pending despite having a
2663 * task on a disallowed CPU.
2664 *
2665 * Serialized by p->pi_lock, so this is safe.
2666 */
2667 pending->arg.dest_cpu = dest_cpu;
2668 }
2669 }
2670 pending = p->migration_pending;
2671 /*
2672 * - !MIGRATE_ENABLE:
2673 * we'll have installed a pending if there wasn't one already.
2674 *
2675 * - MIGRATE_ENABLE:
2676 * we're here because the current CPU isn't matching anymore,
2677 * the only way that can happen is because of a concurrent
2678 * set_cpus_allowed_ptr() call, which should then still be
2679 * pending completion.
2680 *
2681 * Either way, we really should have a @pending here.
2682 */
2683 if (WARN_ON_ONCE(!pending)) {
2684 task_rq_unlock(rq, p, rf);
2685 return -EINVAL;
2686 }
2687
2688 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2689 /*
2690 * MIGRATE_ENABLE gets here because 'p == current', but for
2691 * anything else we cannot do is_migration_disabled(), punt
2692 * and have the stopper function handle it all race-free.
2693 */
2694 stop_pending = pending->stop_pending;
2695 if (!stop_pending)
2696 pending->stop_pending = true;
2697
2698 if (flags & SCA_MIGRATE_ENABLE)
2699 p->migration_flags &= ~MDF_PUSH;
2700
2701 task_rq_unlock(rq, p, rf);
2702
2703 if (!stop_pending) {
2704 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2705 &pending->arg, &pending->stop_work);
2706 }
2707
2708 if (flags & SCA_MIGRATE_ENABLE)
2709 return 0;
2710 } else {
2711
2712 if (!is_migration_disabled(p)) {
2713 if (task_on_rq_queued(p))
2714 rq = move_queued_task(rq, rf, p, dest_cpu);
2715
2716 if (!pending->stop_pending) {
2717 p->migration_pending = NULL;
2718 complete = true;
2719 }
2720 }
2721 task_rq_unlock(rq, p, rf);
2722
2723 if (complete)
2724 complete_all(&pending->done);
2725 }
2726
2727 wait_for_completion(&pending->done);
2728
2729 if (refcount_dec_and_test(&pending->refs))
2730 wake_up_var(&pending->refs); /* No UaF, just an address */
2731
2732 /*
2733 * Block the original owner of &pending until all subsequent callers
2734 * have seen the completion and decremented the refcount
2735 */
2736 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2737
2738 /* ARGH */
2739 WARN_ON_ONCE(my_pending.stop_pending);
2740
2741 return 0;
2742 }
2743
2744 /*
2745 * Called with both p->pi_lock and rq->lock held; drops both before returning.
2746 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,const struct cpumask * new_mask,u32 flags,struct rq * rq,struct rq_flags * rf)2747 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2748 const struct cpumask *new_mask,
2749 u32 flags,
2750 struct rq *rq,
2751 struct rq_flags *rf)
2752 __releases(rq->lock)
2753 __releases(p->pi_lock)
2754 {
2755 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2756 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2757 bool kthread = p->flags & PF_KTHREAD;
2758 struct cpumask *user_mask = NULL;
2759 unsigned int dest_cpu;
2760 int ret = 0;
2761
2762 update_rq_clock(rq);
2763
2764 if (kthread || is_migration_disabled(p)) {
2765 /*
2766 * Kernel threads are allowed on online && !active CPUs,
2767 * however, during cpu-hot-unplug, even these might get pushed
2768 * away if not KTHREAD_IS_PER_CPU.
2769 *
2770 * Specifically, migration_disabled() tasks must not fail the
2771 * cpumask_any_and_distribute() pick below, esp. so on
2772 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2773 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2774 */
2775 cpu_valid_mask = cpu_online_mask;
2776 }
2777
2778 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2779 ret = -EINVAL;
2780 goto out;
2781 }
2782
2783 /*
2784 * Must re-check here, to close a race against __kthread_bind(),
2785 * sched_setaffinity() is not guaranteed to observe the flag.
2786 */
2787 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2788 ret = -EINVAL;
2789 goto out;
2790 }
2791
2792 if (!(flags & SCA_MIGRATE_ENABLE)) {
2793 if (cpumask_equal(&p->cpus_mask, new_mask))
2794 goto out;
2795
2796 if (WARN_ON_ONCE(p == current &&
2797 is_migration_disabled(p) &&
2798 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2799 ret = -EBUSY;
2800 goto out;
2801 }
2802 }
2803
2804 /*
2805 * Picking a ~random cpu helps in cases where we are changing affinity
2806 * for groups of tasks (ie. cpuset), so that load balancing is not
2807 * immediately required to distribute the tasks within their new mask.
2808 */
2809 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2810 if (dest_cpu >= nr_cpu_ids) {
2811 ret = -EINVAL;
2812 goto out;
2813 }
2814
2815 __do_set_cpus_allowed(p, new_mask, flags);
2816
2817 if (flags & SCA_USER)
2818 user_mask = clear_user_cpus_ptr(p);
2819
2820 ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2821
2822 kfree(user_mask);
2823
2824 return ret;
2825
2826 out:
2827 task_rq_unlock(rq, p, rf);
2828
2829 return ret;
2830 }
2831
2832 /*
2833 * Change a given task's CPU affinity. Migrate the thread to a
2834 * proper CPU and schedule it away if the CPU it's executing on
2835 * is removed from the allowed bitmask.
2836 *
2837 * NOTE: the caller must have a valid reference to the task, the
2838 * task must not exit() & deallocate itself prematurely. The
2839 * call is not atomic; no spinlocks may be held.
2840 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2841 static int __set_cpus_allowed_ptr(struct task_struct *p,
2842 const struct cpumask *new_mask, u32 flags)
2843 {
2844 struct rq_flags rf;
2845 struct rq *rq;
2846
2847 rq = task_rq_lock(p, &rf);
2848 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2849 }
2850
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2851 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2852 {
2853 return __set_cpus_allowed_ptr(p, new_mask, 0);
2854 }
2855 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2856
2857 /*
2858 * Change a given task's CPU affinity to the intersection of its current
2859 * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2860 * and pointing @p->user_cpus_ptr to a copy of the old mask.
2861 * If the resulting mask is empty, leave the affinity unchanged and return
2862 * -EINVAL.
2863 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)2864 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2865 struct cpumask *new_mask,
2866 const struct cpumask *subset_mask)
2867 {
2868 struct cpumask *user_mask = NULL;
2869 struct rq_flags rf;
2870 struct rq *rq;
2871 int err;
2872
2873 if (!p->user_cpus_ptr) {
2874 user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2875 if (!user_mask)
2876 return -ENOMEM;
2877 }
2878
2879 rq = task_rq_lock(p, &rf);
2880
2881 /*
2882 * Forcefully restricting the affinity of a deadline task is
2883 * likely to cause problems, so fail and noisily override the
2884 * mask entirely.
2885 */
2886 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2887 err = -EPERM;
2888 goto err_unlock;
2889 }
2890
2891 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2892 err = -EINVAL;
2893 goto err_unlock;
2894 }
2895
2896 /*
2897 * We're about to butcher the task affinity, so keep track of what
2898 * the user asked for in case we're able to restore it later on.
2899 */
2900 if (user_mask) {
2901 cpumask_copy(user_mask, p->cpus_ptr);
2902 p->user_cpus_ptr = user_mask;
2903 }
2904
2905 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2906
2907 err_unlock:
2908 task_rq_unlock(rq, p, &rf);
2909 kfree(user_mask);
2910 return err;
2911 }
2912
2913 /*
2914 * Restrict the CPU affinity of task @p so that it is a subset of
2915 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
2916 * old affinity mask. If the resulting mask is empty, we warn and walk
2917 * up the cpuset hierarchy until we find a suitable mask.
2918 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)2919 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2920 {
2921 cpumask_var_t new_mask;
2922 const struct cpumask *override_mask = task_cpu_possible_mask(p);
2923
2924 alloc_cpumask_var(&new_mask, GFP_KERNEL);
2925
2926 /*
2927 * __migrate_task() can fail silently in the face of concurrent
2928 * offlining of the chosen destination CPU, so take the hotplug
2929 * lock to ensure that the migration succeeds.
2930 */
2931 cpus_read_lock();
2932 if (!cpumask_available(new_mask))
2933 goto out_set_mask;
2934
2935 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2936 goto out_free_mask;
2937
2938 /*
2939 * We failed to find a valid subset of the affinity mask for the
2940 * task, so override it based on its cpuset hierarchy.
2941 */
2942 cpuset_cpus_allowed(p, new_mask);
2943 override_mask = new_mask;
2944
2945 out_set_mask:
2946 if (printk_ratelimit()) {
2947 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2948 task_pid_nr(p), p->comm,
2949 cpumask_pr_args(override_mask));
2950 }
2951
2952 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2953 out_free_mask:
2954 cpus_read_unlock();
2955 free_cpumask_var(new_mask);
2956 }
2957
2958 static int
2959 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
2960
2961 /*
2962 * Restore the affinity of a task @p which was previously restricted by a
2963 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
2964 * @p->user_cpus_ptr.
2965 *
2966 * It is the caller's responsibility to serialise this with any calls to
2967 * force_compatible_cpus_allowed_ptr(@p).
2968 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)2969 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
2970 {
2971 struct cpumask *user_mask = p->user_cpus_ptr;
2972 unsigned long flags;
2973
2974 /*
2975 * Try to restore the old affinity mask. If this fails, then
2976 * we free the mask explicitly to avoid it being inherited across
2977 * a subsequent fork().
2978 */
2979 if (!user_mask || !__sched_setaffinity(p, user_mask))
2980 return;
2981
2982 raw_spin_lock_irqsave(&p->pi_lock, flags);
2983 user_mask = clear_user_cpus_ptr(p);
2984 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2985
2986 kfree(user_mask);
2987 }
2988
set_task_cpu(struct task_struct * p,unsigned int new_cpu)2989 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2990 {
2991 #ifdef CONFIG_SCHED_DEBUG
2992 unsigned int state = READ_ONCE(p->__state);
2993
2994 /*
2995 * We should never call set_task_cpu() on a blocked task,
2996 * ttwu() will sort out the placement.
2997 */
2998 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
2999
3000 /*
3001 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3002 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3003 * time relying on p->on_rq.
3004 */
3005 WARN_ON_ONCE(state == TASK_RUNNING &&
3006 p->sched_class == &fair_sched_class &&
3007 (p->on_rq && !task_on_rq_migrating(p)));
3008
3009 #ifdef CONFIG_LOCKDEP
3010 /*
3011 * The caller should hold either p->pi_lock or rq->lock, when changing
3012 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3013 *
3014 * sched_move_task() holds both and thus holding either pins the cgroup,
3015 * see task_group().
3016 *
3017 * Furthermore, all task_rq users should acquire both locks, see
3018 * task_rq_lock().
3019 */
3020 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3021 lockdep_is_held(__rq_lockp(task_rq(p)))));
3022 #endif
3023 /*
3024 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3025 */
3026 WARN_ON_ONCE(!cpu_online(new_cpu));
3027
3028 WARN_ON_ONCE(is_migration_disabled(p));
3029 #endif
3030
3031 trace_sched_migrate_task(p, new_cpu);
3032
3033 if (task_cpu(p) != new_cpu) {
3034 if (p->sched_class->migrate_task_rq)
3035 p->sched_class->migrate_task_rq(p, new_cpu);
3036 p->se.nr_migrations++;
3037 rseq_migrate(p);
3038 perf_event_task_migrate(p);
3039 }
3040
3041 __set_task_cpu(p, new_cpu);
3042 }
3043
3044 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3045 static void __migrate_swap_task(struct task_struct *p, int cpu)
3046 {
3047 if (task_on_rq_queued(p)) {
3048 struct rq *src_rq, *dst_rq;
3049 struct rq_flags srf, drf;
3050
3051 src_rq = task_rq(p);
3052 dst_rq = cpu_rq(cpu);
3053
3054 rq_pin_lock(src_rq, &srf);
3055 rq_pin_lock(dst_rq, &drf);
3056
3057 deactivate_task(src_rq, p, 0);
3058 set_task_cpu(p, cpu);
3059 activate_task(dst_rq, p, 0);
3060 check_preempt_curr(dst_rq, p, 0);
3061
3062 rq_unpin_lock(dst_rq, &drf);
3063 rq_unpin_lock(src_rq, &srf);
3064
3065 } else {
3066 /*
3067 * Task isn't running anymore; make it appear like we migrated
3068 * it before it went to sleep. This means on wakeup we make the
3069 * previous CPU our target instead of where it really is.
3070 */
3071 p->wake_cpu = cpu;
3072 }
3073 }
3074
3075 struct migration_swap_arg {
3076 struct task_struct *src_task, *dst_task;
3077 int src_cpu, dst_cpu;
3078 };
3079
migrate_swap_stop(void * data)3080 static int migrate_swap_stop(void *data)
3081 {
3082 struct migration_swap_arg *arg = data;
3083 struct rq *src_rq, *dst_rq;
3084 int ret = -EAGAIN;
3085
3086 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3087 return -EAGAIN;
3088
3089 src_rq = cpu_rq(arg->src_cpu);
3090 dst_rq = cpu_rq(arg->dst_cpu);
3091
3092 double_raw_lock(&arg->src_task->pi_lock,
3093 &arg->dst_task->pi_lock);
3094 double_rq_lock(src_rq, dst_rq);
3095
3096 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3097 goto unlock;
3098
3099 if (task_cpu(arg->src_task) != arg->src_cpu)
3100 goto unlock;
3101
3102 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3103 goto unlock;
3104
3105 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3106 goto unlock;
3107
3108 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3109 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3110
3111 ret = 0;
3112
3113 unlock:
3114 double_rq_unlock(src_rq, dst_rq);
3115 raw_spin_unlock(&arg->dst_task->pi_lock);
3116 raw_spin_unlock(&arg->src_task->pi_lock);
3117
3118 return ret;
3119 }
3120
3121 /*
3122 * Cross migrate two tasks
3123 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3124 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3125 int target_cpu, int curr_cpu)
3126 {
3127 struct migration_swap_arg arg;
3128 int ret = -EINVAL;
3129
3130 arg = (struct migration_swap_arg){
3131 .src_task = cur,
3132 .src_cpu = curr_cpu,
3133 .dst_task = p,
3134 .dst_cpu = target_cpu,
3135 };
3136
3137 if (arg.src_cpu == arg.dst_cpu)
3138 goto out;
3139
3140 /*
3141 * These three tests are all lockless; this is OK since all of them
3142 * will be re-checked with proper locks held further down the line.
3143 */
3144 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3145 goto out;
3146
3147 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3148 goto out;
3149
3150 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3151 goto out;
3152
3153 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3154 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3155
3156 out:
3157 return ret;
3158 }
3159 #endif /* CONFIG_NUMA_BALANCING */
3160
3161 /*
3162 * wait_task_inactive - wait for a thread to unschedule.
3163 *
3164 * If @match_state is nonzero, it's the @p->state value just checked and
3165 * not expected to change. If it changes, i.e. @p might have woken up,
3166 * then return zero. When we succeed in waiting for @p to be off its CPU,
3167 * we return a positive number (its total switch count). If a second call
3168 * a short while later returns the same number, the caller can be sure that
3169 * @p has remained unscheduled the whole time.
3170 *
3171 * The caller must ensure that the task *will* unschedule sometime soon,
3172 * else this function might spin for a *long* time. This function can't
3173 * be called with interrupts off, or it may introduce deadlock with
3174 * smp_call_function() if an IPI is sent by the same process we are
3175 * waiting to become inactive.
3176 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)3177 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3178 {
3179 int running, queued;
3180 struct rq_flags rf;
3181 unsigned long ncsw;
3182 struct rq *rq;
3183
3184 for (;;) {
3185 /*
3186 * We do the initial early heuristics without holding
3187 * any task-queue locks at all. We'll only try to get
3188 * the runqueue lock when things look like they will
3189 * work out!
3190 */
3191 rq = task_rq(p);
3192
3193 /*
3194 * If the task is actively running on another CPU
3195 * still, just relax and busy-wait without holding
3196 * any locks.
3197 *
3198 * NOTE! Since we don't hold any locks, it's not
3199 * even sure that "rq" stays as the right runqueue!
3200 * But we don't care, since "task_running()" will
3201 * return false if the runqueue has changed and p
3202 * is actually now running somewhere else!
3203 */
3204 while (task_running(rq, p)) {
3205 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3206 return 0;
3207 cpu_relax();
3208 }
3209
3210 /*
3211 * Ok, time to look more closely! We need the rq
3212 * lock now, to be *sure*. If we're wrong, we'll
3213 * just go back and repeat.
3214 */
3215 rq = task_rq_lock(p, &rf);
3216 trace_sched_wait_task(p);
3217 running = task_running(rq, p);
3218 queued = task_on_rq_queued(p);
3219 ncsw = 0;
3220 if (!match_state || READ_ONCE(p->__state) == match_state)
3221 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3222 task_rq_unlock(rq, p, &rf);
3223
3224 /*
3225 * If it changed from the expected state, bail out now.
3226 */
3227 if (unlikely(!ncsw))
3228 break;
3229
3230 /*
3231 * Was it really running after all now that we
3232 * checked with the proper locks actually held?
3233 *
3234 * Oops. Go back and try again..
3235 */
3236 if (unlikely(running)) {
3237 cpu_relax();
3238 continue;
3239 }
3240
3241 /*
3242 * It's not enough that it's not actively running,
3243 * it must be off the runqueue _entirely_, and not
3244 * preempted!
3245 *
3246 * So if it was still runnable (but just not actively
3247 * running right now), it's preempted, and we should
3248 * yield - it could be a while.
3249 */
3250 if (unlikely(queued)) {
3251 ktime_t to = NSEC_PER_SEC / HZ;
3252
3253 set_current_state(TASK_UNINTERRUPTIBLE);
3254 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3255 continue;
3256 }
3257
3258 /*
3259 * Ahh, all good. It wasn't running, and it wasn't
3260 * runnable, which means that it will never become
3261 * running in the future either. We're all done!
3262 */
3263 break;
3264 }
3265
3266 return ncsw;
3267 }
3268
3269 /***
3270 * kick_process - kick a running thread to enter/exit the kernel
3271 * @p: the to-be-kicked thread
3272 *
3273 * Cause a process which is running on another CPU to enter
3274 * kernel-mode, without any delay. (to get signals handled.)
3275 *
3276 * NOTE: this function doesn't have to take the runqueue lock,
3277 * because all it wants to ensure is that the remote task enters
3278 * the kernel. If the IPI races and the task has been migrated
3279 * to another CPU then no harm is done and the purpose has been
3280 * achieved as well.
3281 */
kick_process(struct task_struct * p)3282 void kick_process(struct task_struct *p)
3283 {
3284 int cpu;
3285
3286 preempt_disable();
3287 cpu = task_cpu(p);
3288 if ((cpu != smp_processor_id()) && task_curr(p))
3289 smp_send_reschedule(cpu);
3290 preempt_enable();
3291 }
3292 EXPORT_SYMBOL_GPL(kick_process);
3293
3294 /*
3295 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3296 *
3297 * A few notes on cpu_active vs cpu_online:
3298 *
3299 * - cpu_active must be a subset of cpu_online
3300 *
3301 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3302 * see __set_cpus_allowed_ptr(). At this point the newly online
3303 * CPU isn't yet part of the sched domains, and balancing will not
3304 * see it.
3305 *
3306 * - on CPU-down we clear cpu_active() to mask the sched domains and
3307 * avoid the load balancer to place new tasks on the to be removed
3308 * CPU. Existing tasks will remain running there and will be taken
3309 * off.
3310 *
3311 * This means that fallback selection must not select !active CPUs.
3312 * And can assume that any active CPU must be online. Conversely
3313 * select_task_rq() below may allow selection of !active CPUs in order
3314 * to satisfy the above rules.
3315 */
select_fallback_rq(int cpu,struct task_struct * p)3316 static int select_fallback_rq(int cpu, struct task_struct *p)
3317 {
3318 int nid = cpu_to_node(cpu);
3319 const struct cpumask *nodemask = NULL;
3320 enum { cpuset, possible, fail } state = cpuset;
3321 int dest_cpu;
3322
3323 /*
3324 * If the node that the CPU is on has been offlined, cpu_to_node()
3325 * will return -1. There is no CPU on the node, and we should
3326 * select the CPU on the other node.
3327 */
3328 if (nid != -1) {
3329 nodemask = cpumask_of_node(nid);
3330
3331 /* Look for allowed, online CPU in same node. */
3332 for_each_cpu(dest_cpu, nodemask) {
3333 if (is_cpu_allowed(p, dest_cpu))
3334 return dest_cpu;
3335 }
3336 }
3337
3338 for (;;) {
3339 /* Any allowed, online CPU? */
3340 for_each_cpu(dest_cpu, p->cpus_ptr) {
3341 if (!is_cpu_allowed(p, dest_cpu))
3342 continue;
3343
3344 goto out;
3345 }
3346
3347 /* No more Mr. Nice Guy. */
3348 switch (state) {
3349 case cpuset:
3350 if (cpuset_cpus_allowed_fallback(p)) {
3351 state = possible;
3352 break;
3353 }
3354 fallthrough;
3355 case possible:
3356 /*
3357 * XXX When called from select_task_rq() we only
3358 * hold p->pi_lock and again violate locking order.
3359 *
3360 * More yuck to audit.
3361 */
3362 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3363 state = fail;
3364 break;
3365 case fail:
3366 BUG();
3367 break;
3368 }
3369 }
3370
3371 out:
3372 if (state != cpuset) {
3373 /*
3374 * Don't tell them about moving exiting tasks or
3375 * kernel threads (both mm NULL), since they never
3376 * leave kernel.
3377 */
3378 if (p->mm && printk_ratelimit()) {
3379 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3380 task_pid_nr(p), p->comm, cpu);
3381 }
3382 }
3383
3384 return dest_cpu;
3385 }
3386
3387 /*
3388 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3389 */
3390 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3391 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3392 {
3393 lockdep_assert_held(&p->pi_lock);
3394
3395 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3396 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3397 else
3398 cpu = cpumask_any(p->cpus_ptr);
3399
3400 /*
3401 * In order not to call set_task_cpu() on a blocking task we need
3402 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3403 * CPU.
3404 *
3405 * Since this is common to all placement strategies, this lives here.
3406 *
3407 * [ this allows ->select_task() to simply return task_cpu(p) and
3408 * not worry about this generic constraint ]
3409 */
3410 if (unlikely(!is_cpu_allowed(p, cpu)))
3411 cpu = select_fallback_rq(task_cpu(p), p);
3412
3413 return cpu;
3414 }
3415
sched_set_stop_task(int cpu,struct task_struct * stop)3416 void sched_set_stop_task(int cpu, struct task_struct *stop)
3417 {
3418 static struct lock_class_key stop_pi_lock;
3419 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3420 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3421
3422 if (stop) {
3423 /*
3424 * Make it appear like a SCHED_FIFO task, its something
3425 * userspace knows about and won't get confused about.
3426 *
3427 * Also, it will make PI more or less work without too
3428 * much confusion -- but then, stop work should not
3429 * rely on PI working anyway.
3430 */
3431 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3432
3433 stop->sched_class = &stop_sched_class;
3434
3435 /*
3436 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3437 * adjust the effective priority of a task. As a result,
3438 * rt_mutex_setprio() can trigger (RT) balancing operations,
3439 * which can then trigger wakeups of the stop thread to push
3440 * around the current task.
3441 *
3442 * The stop task itself will never be part of the PI-chain, it
3443 * never blocks, therefore that ->pi_lock recursion is safe.
3444 * Tell lockdep about this by placing the stop->pi_lock in its
3445 * own class.
3446 */
3447 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3448 }
3449
3450 cpu_rq(cpu)->stop = stop;
3451
3452 if (old_stop) {
3453 /*
3454 * Reset it back to a normal scheduling class so that
3455 * it can die in pieces.
3456 */
3457 old_stop->sched_class = &rt_sched_class;
3458 }
3459 }
3460
3461 #else /* CONFIG_SMP */
3462
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)3463 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3464 const struct cpumask *new_mask,
3465 u32 flags)
3466 {
3467 return set_cpus_allowed_ptr(p, new_mask);
3468 }
3469
migrate_disable_switch(struct rq * rq,struct task_struct * p)3470 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3471
rq_has_pinned_tasks(struct rq * rq)3472 static inline bool rq_has_pinned_tasks(struct rq *rq)
3473 {
3474 return false;
3475 }
3476
3477 #endif /* !CONFIG_SMP */
3478
3479 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3480 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3481 {
3482 struct rq *rq;
3483
3484 if (!schedstat_enabled())
3485 return;
3486
3487 rq = this_rq();
3488
3489 #ifdef CONFIG_SMP
3490 if (cpu == rq->cpu) {
3491 __schedstat_inc(rq->ttwu_local);
3492 __schedstat_inc(p->se.statistics.nr_wakeups_local);
3493 } else {
3494 struct sched_domain *sd;
3495
3496 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
3497 rcu_read_lock();
3498 for_each_domain(rq->cpu, sd) {
3499 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3500 __schedstat_inc(sd->ttwu_wake_remote);
3501 break;
3502 }
3503 }
3504 rcu_read_unlock();
3505 }
3506
3507 if (wake_flags & WF_MIGRATED)
3508 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
3509 #endif /* CONFIG_SMP */
3510
3511 __schedstat_inc(rq->ttwu_count);
3512 __schedstat_inc(p->se.statistics.nr_wakeups);
3513
3514 if (wake_flags & WF_SYNC)
3515 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
3516 }
3517
3518 /*
3519 * Mark the task runnable and perform wakeup-preemption.
3520 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3521 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3522 struct rq_flags *rf)
3523 {
3524 check_preempt_curr(rq, p, wake_flags);
3525 WRITE_ONCE(p->__state, TASK_RUNNING);
3526 trace_sched_wakeup(p);
3527
3528 #ifdef CONFIG_SMP
3529 if (p->sched_class->task_woken) {
3530 /*
3531 * Our task @p is fully woken up and running; so it's safe to
3532 * drop the rq->lock, hereafter rq is only used for statistics.
3533 */
3534 rq_unpin_lock(rq, rf);
3535 p->sched_class->task_woken(rq, p);
3536 rq_repin_lock(rq, rf);
3537 }
3538
3539 if (rq->idle_stamp) {
3540 u64 delta = rq_clock(rq) - rq->idle_stamp;
3541 u64 max = 2*rq->max_idle_balance_cost;
3542
3543 update_avg(&rq->avg_idle, delta);
3544
3545 if (rq->avg_idle > max)
3546 rq->avg_idle = max;
3547
3548 rq->wake_stamp = jiffies;
3549 rq->wake_avg_idle = rq->avg_idle / 2;
3550
3551 rq->idle_stamp = 0;
3552 }
3553 #endif
3554 }
3555
3556 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3557 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3558 struct rq_flags *rf)
3559 {
3560 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3561
3562 lockdep_assert_rq_held(rq);
3563
3564 if (p->sched_contributes_to_load)
3565 rq->nr_uninterruptible--;
3566
3567 #ifdef CONFIG_SMP
3568 if (wake_flags & WF_MIGRATED)
3569 en_flags |= ENQUEUE_MIGRATED;
3570 else
3571 #endif
3572 if (p->in_iowait) {
3573 delayacct_blkio_end(p);
3574 atomic_dec(&task_rq(p)->nr_iowait);
3575 }
3576
3577 activate_task(rq, p, en_flags);
3578 ttwu_do_wakeup(rq, p, wake_flags, rf);
3579 }
3580
3581 /*
3582 * Consider @p being inside a wait loop:
3583 *
3584 * for (;;) {
3585 * set_current_state(TASK_UNINTERRUPTIBLE);
3586 *
3587 * if (CONDITION)
3588 * break;
3589 *
3590 * schedule();
3591 * }
3592 * __set_current_state(TASK_RUNNING);
3593 *
3594 * between set_current_state() and schedule(). In this case @p is still
3595 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3596 * an atomic manner.
3597 *
3598 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3599 * then schedule() must still happen and p->state can be changed to
3600 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3601 * need to do a full wakeup with enqueue.
3602 *
3603 * Returns: %true when the wakeup is done,
3604 * %false otherwise.
3605 */
ttwu_runnable(struct task_struct * p,int wake_flags)3606 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3607 {
3608 struct rq_flags rf;
3609 struct rq *rq;
3610 int ret = 0;
3611
3612 rq = __task_rq_lock(p, &rf);
3613 if (task_on_rq_queued(p)) {
3614 /* check_preempt_curr() may use rq clock */
3615 update_rq_clock(rq);
3616 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3617 ret = 1;
3618 }
3619 __task_rq_unlock(rq, &rf);
3620
3621 return ret;
3622 }
3623
3624 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3625 void sched_ttwu_pending(void *arg)
3626 {
3627 struct llist_node *llist = arg;
3628 struct rq *rq = this_rq();
3629 struct task_struct *p, *t;
3630 struct rq_flags rf;
3631
3632 if (!llist)
3633 return;
3634
3635 /*
3636 * rq::ttwu_pending racy indication of out-standing wakeups.
3637 * Races such that false-negatives are possible, since they
3638 * are shorter lived that false-positives would be.
3639 */
3640 WRITE_ONCE(rq->ttwu_pending, 0);
3641
3642 rq_lock_irqsave(rq, &rf);
3643 update_rq_clock(rq);
3644
3645 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3646 if (WARN_ON_ONCE(p->on_cpu))
3647 smp_cond_load_acquire(&p->on_cpu, !VAL);
3648
3649 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3650 set_task_cpu(p, cpu_of(rq));
3651
3652 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3653 }
3654
3655 rq_unlock_irqrestore(rq, &rf);
3656 }
3657
send_call_function_single_ipi(int cpu)3658 void send_call_function_single_ipi(int cpu)
3659 {
3660 struct rq *rq = cpu_rq(cpu);
3661
3662 if (!set_nr_if_polling(rq->idle))
3663 arch_send_call_function_single_ipi(cpu);
3664 else
3665 trace_sched_wake_idle_without_ipi(cpu);
3666 }
3667
3668 /*
3669 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3670 * necessary. The wakee CPU on receipt of the IPI will queue the task
3671 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3672 * of the wakeup instead of the waker.
3673 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3674 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3675 {
3676 struct rq *rq = cpu_rq(cpu);
3677
3678 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3679
3680 WRITE_ONCE(rq->ttwu_pending, 1);
3681 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3682 }
3683
wake_up_if_idle(int cpu)3684 void wake_up_if_idle(int cpu)
3685 {
3686 struct rq *rq = cpu_rq(cpu);
3687 struct rq_flags rf;
3688
3689 rcu_read_lock();
3690
3691 if (!is_idle_task(rcu_dereference(rq->curr)))
3692 goto out;
3693
3694 if (set_nr_if_polling(rq->idle)) {
3695 trace_sched_wake_idle_without_ipi(cpu);
3696 } else {
3697 rq_lock_irqsave(rq, &rf);
3698 if (is_idle_task(rq->curr))
3699 smp_send_reschedule(cpu);
3700 /* Else CPU is not idle, do nothing here: */
3701 rq_unlock_irqrestore(rq, &rf);
3702 }
3703
3704 out:
3705 rcu_read_unlock();
3706 }
3707
cpus_share_cache(int this_cpu,int that_cpu)3708 bool cpus_share_cache(int this_cpu, int that_cpu)
3709 {
3710 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3711 }
3712
ttwu_queue_cond(int cpu,int wake_flags)3713 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3714 {
3715 /*
3716 * Do not complicate things with the async wake_list while the CPU is
3717 * in hotplug state.
3718 */
3719 if (!cpu_active(cpu))
3720 return false;
3721
3722 /*
3723 * If the CPU does not share cache, then queue the task on the
3724 * remote rqs wakelist to avoid accessing remote data.
3725 */
3726 if (!cpus_share_cache(smp_processor_id(), cpu))
3727 return true;
3728
3729 /*
3730 * If the task is descheduling and the only running task on the
3731 * CPU then use the wakelist to offload the task activation to
3732 * the soon-to-be-idle CPU as the current CPU is likely busy.
3733 * nr_running is checked to avoid unnecessary task stacking.
3734 */
3735 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3736 return true;
3737
3738 return false;
3739 }
3740
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3741 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3742 {
3743 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3744 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3745 return false;
3746
3747 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3748 __ttwu_queue_wakelist(p, cpu, wake_flags);
3749 return true;
3750 }
3751
3752 return false;
3753 }
3754
3755 #else /* !CONFIG_SMP */
3756
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3757 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3758 {
3759 return false;
3760 }
3761
3762 #endif /* CONFIG_SMP */
3763
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)3764 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3765 {
3766 struct rq *rq = cpu_rq(cpu);
3767 struct rq_flags rf;
3768
3769 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3770 return;
3771
3772 rq_lock(rq, &rf);
3773 update_rq_clock(rq);
3774 ttwu_do_activate(rq, p, wake_flags, &rf);
3775 rq_unlock(rq, &rf);
3776 }
3777
3778 /*
3779 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3780 *
3781 * The caller holds p::pi_lock if p != current or has preemption
3782 * disabled when p == current.
3783 *
3784 * The rules of PREEMPT_RT saved_state:
3785 *
3786 * The related locking code always holds p::pi_lock when updating
3787 * p::saved_state, which means the code is fully serialized in both cases.
3788 *
3789 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3790 * bits set. This allows to distinguish all wakeup scenarios.
3791 */
3792 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)3793 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3794 {
3795 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3796 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3797 state != TASK_RTLOCK_WAIT);
3798 }
3799
3800 if (READ_ONCE(p->__state) & state) {
3801 *success = 1;
3802 return true;
3803 }
3804
3805 #ifdef CONFIG_PREEMPT_RT
3806 /*
3807 * Saved state preserves the task state across blocking on
3808 * an RT lock. If the state matches, set p::saved_state to
3809 * TASK_RUNNING, but do not wake the task because it waits
3810 * for a lock wakeup. Also indicate success because from
3811 * the regular waker's point of view this has succeeded.
3812 *
3813 * After acquiring the lock the task will restore p::__state
3814 * from p::saved_state which ensures that the regular
3815 * wakeup is not lost. The restore will also set
3816 * p::saved_state to TASK_RUNNING so any further tests will
3817 * not result in false positives vs. @success
3818 */
3819 if (p->saved_state & state) {
3820 p->saved_state = TASK_RUNNING;
3821 *success = 1;
3822 }
3823 #endif
3824 return false;
3825 }
3826
3827 /*
3828 * Notes on Program-Order guarantees on SMP systems.
3829 *
3830 * MIGRATION
3831 *
3832 * The basic program-order guarantee on SMP systems is that when a task [t]
3833 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3834 * execution on its new CPU [c1].
3835 *
3836 * For migration (of runnable tasks) this is provided by the following means:
3837 *
3838 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3839 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3840 * rq(c1)->lock (if not at the same time, then in that order).
3841 * C) LOCK of the rq(c1)->lock scheduling in task
3842 *
3843 * Release/acquire chaining guarantees that B happens after A and C after B.
3844 * Note: the CPU doing B need not be c0 or c1
3845 *
3846 * Example:
3847 *
3848 * CPU0 CPU1 CPU2
3849 *
3850 * LOCK rq(0)->lock
3851 * sched-out X
3852 * sched-in Y
3853 * UNLOCK rq(0)->lock
3854 *
3855 * LOCK rq(0)->lock // orders against CPU0
3856 * dequeue X
3857 * UNLOCK rq(0)->lock
3858 *
3859 * LOCK rq(1)->lock
3860 * enqueue X
3861 * UNLOCK rq(1)->lock
3862 *
3863 * LOCK rq(1)->lock // orders against CPU2
3864 * sched-out Z
3865 * sched-in X
3866 * UNLOCK rq(1)->lock
3867 *
3868 *
3869 * BLOCKING -- aka. SLEEP + WAKEUP
3870 *
3871 * For blocking we (obviously) need to provide the same guarantee as for
3872 * migration. However the means are completely different as there is no lock
3873 * chain to provide order. Instead we do:
3874 *
3875 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3876 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3877 *
3878 * Example:
3879 *
3880 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3881 *
3882 * LOCK rq(0)->lock LOCK X->pi_lock
3883 * dequeue X
3884 * sched-out X
3885 * smp_store_release(X->on_cpu, 0);
3886 *
3887 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3888 * X->state = WAKING
3889 * set_task_cpu(X,2)
3890 *
3891 * LOCK rq(2)->lock
3892 * enqueue X
3893 * X->state = RUNNING
3894 * UNLOCK rq(2)->lock
3895 *
3896 * LOCK rq(2)->lock // orders against CPU1
3897 * sched-out Z
3898 * sched-in X
3899 * UNLOCK rq(2)->lock
3900 *
3901 * UNLOCK X->pi_lock
3902 * UNLOCK rq(0)->lock
3903 *
3904 *
3905 * However, for wakeups there is a second guarantee we must provide, namely we
3906 * must ensure that CONDITION=1 done by the caller can not be reordered with
3907 * accesses to the task state; see try_to_wake_up() and set_current_state().
3908 */
3909
3910 /**
3911 * try_to_wake_up - wake up a thread
3912 * @p: the thread to be awakened
3913 * @state: the mask of task states that can be woken
3914 * @wake_flags: wake modifier flags (WF_*)
3915 *
3916 * Conceptually does:
3917 *
3918 * If (@state & @p->state) @p->state = TASK_RUNNING.
3919 *
3920 * If the task was not queued/runnable, also place it back on a runqueue.
3921 *
3922 * This function is atomic against schedule() which would dequeue the task.
3923 *
3924 * It issues a full memory barrier before accessing @p->state, see the comment
3925 * with set_current_state().
3926 *
3927 * Uses p->pi_lock to serialize against concurrent wake-ups.
3928 *
3929 * Relies on p->pi_lock stabilizing:
3930 * - p->sched_class
3931 * - p->cpus_ptr
3932 * - p->sched_task_group
3933 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3934 *
3935 * Tries really hard to only take one task_rq(p)->lock for performance.
3936 * Takes rq->lock in:
3937 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3938 * - ttwu_queue() -- new rq, for enqueue of the task;
3939 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3940 *
3941 * As a consequence we race really badly with just about everything. See the
3942 * many memory barriers and their comments for details.
3943 *
3944 * Return: %true if @p->state changes (an actual wakeup was done),
3945 * %false otherwise.
3946 */
3947 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)3948 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3949 {
3950 unsigned long flags;
3951 int cpu, success = 0;
3952
3953 preempt_disable();
3954 if (p == current) {
3955 /*
3956 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3957 * == smp_processor_id()'. Together this means we can special
3958 * case the whole 'p->on_rq && ttwu_runnable()' case below
3959 * without taking any locks.
3960 *
3961 * In particular:
3962 * - we rely on Program-Order guarantees for all the ordering,
3963 * - we're serialized against set_special_state() by virtue of
3964 * it disabling IRQs (this allows not taking ->pi_lock).
3965 */
3966 if (!ttwu_state_match(p, state, &success))
3967 goto out;
3968
3969 trace_sched_waking(p);
3970 WRITE_ONCE(p->__state, TASK_RUNNING);
3971 trace_sched_wakeup(p);
3972 goto out;
3973 }
3974
3975 /*
3976 * If we are going to wake up a thread waiting for CONDITION we
3977 * need to ensure that CONDITION=1 done by the caller can not be
3978 * reordered with p->state check below. This pairs with smp_store_mb()
3979 * in set_current_state() that the waiting thread does.
3980 */
3981 raw_spin_lock_irqsave(&p->pi_lock, flags);
3982 smp_mb__after_spinlock();
3983 if (!ttwu_state_match(p, state, &success))
3984 goto unlock;
3985
3986 trace_sched_waking(p);
3987
3988 /*
3989 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3990 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3991 * in smp_cond_load_acquire() below.
3992 *
3993 * sched_ttwu_pending() try_to_wake_up()
3994 * STORE p->on_rq = 1 LOAD p->state
3995 * UNLOCK rq->lock
3996 *
3997 * __schedule() (switch to task 'p')
3998 * LOCK rq->lock smp_rmb();
3999 * smp_mb__after_spinlock();
4000 * UNLOCK rq->lock
4001 *
4002 * [task p]
4003 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4004 *
4005 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4006 * __schedule(). See the comment for smp_mb__after_spinlock().
4007 *
4008 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4009 */
4010 smp_rmb();
4011 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4012 goto unlock;
4013
4014 #ifdef CONFIG_SMP
4015 /*
4016 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4017 * possible to, falsely, observe p->on_cpu == 0.
4018 *
4019 * One must be running (->on_cpu == 1) in order to remove oneself
4020 * from the runqueue.
4021 *
4022 * __schedule() (switch to task 'p') try_to_wake_up()
4023 * STORE p->on_cpu = 1 LOAD p->on_rq
4024 * UNLOCK rq->lock
4025 *
4026 * __schedule() (put 'p' to sleep)
4027 * LOCK rq->lock smp_rmb();
4028 * smp_mb__after_spinlock();
4029 * STORE p->on_rq = 0 LOAD p->on_cpu
4030 *
4031 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4032 * __schedule(). See the comment for smp_mb__after_spinlock().
4033 *
4034 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4035 * schedule()'s deactivate_task() has 'happened' and p will no longer
4036 * care about it's own p->state. See the comment in __schedule().
4037 */
4038 smp_acquire__after_ctrl_dep();
4039
4040 /*
4041 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4042 * == 0), which means we need to do an enqueue, change p->state to
4043 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4044 * enqueue, such as ttwu_queue_wakelist().
4045 */
4046 WRITE_ONCE(p->__state, TASK_WAKING);
4047
4048 /*
4049 * If the owning (remote) CPU is still in the middle of schedule() with
4050 * this task as prev, considering queueing p on the remote CPUs wake_list
4051 * which potentially sends an IPI instead of spinning on p->on_cpu to
4052 * let the waker make forward progress. This is safe because IRQs are
4053 * disabled and the IPI will deliver after on_cpu is cleared.
4054 *
4055 * Ensure we load task_cpu(p) after p->on_cpu:
4056 *
4057 * set_task_cpu(p, cpu);
4058 * STORE p->cpu = @cpu
4059 * __schedule() (switch to task 'p')
4060 * LOCK rq->lock
4061 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4062 * STORE p->on_cpu = 1 LOAD p->cpu
4063 *
4064 * to ensure we observe the correct CPU on which the task is currently
4065 * scheduling.
4066 */
4067 if (smp_load_acquire(&p->on_cpu) &&
4068 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4069 goto unlock;
4070
4071 /*
4072 * If the owning (remote) CPU is still in the middle of schedule() with
4073 * this task as prev, wait until it's done referencing the task.
4074 *
4075 * Pairs with the smp_store_release() in finish_task().
4076 *
4077 * This ensures that tasks getting woken will be fully ordered against
4078 * their previous state and preserve Program Order.
4079 */
4080 smp_cond_load_acquire(&p->on_cpu, !VAL);
4081
4082 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4083 if (task_cpu(p) != cpu) {
4084 if (p->in_iowait) {
4085 delayacct_blkio_end(p);
4086 atomic_dec(&task_rq(p)->nr_iowait);
4087 }
4088
4089 wake_flags |= WF_MIGRATED;
4090 psi_ttwu_dequeue(p);
4091 set_task_cpu(p, cpu);
4092 }
4093 #else
4094 cpu = task_cpu(p);
4095 #endif /* CONFIG_SMP */
4096
4097 ttwu_queue(p, cpu, wake_flags);
4098 unlock:
4099 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4100 out:
4101 if (success)
4102 ttwu_stat(p, task_cpu(p), wake_flags);
4103 preempt_enable();
4104
4105 return success;
4106 }
4107
4108 /**
4109 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
4110 * @p: Process for which the function is to be invoked, can be @current.
4111 * @func: Function to invoke.
4112 * @arg: Argument to function.
4113 *
4114 * If the specified task can be quickly locked into a definite state
4115 * (either sleeping or on a given runqueue), arrange to keep it in that
4116 * state while invoking @func(@arg). This function can use ->on_rq and
4117 * task_curr() to work out what the state is, if required. Given that
4118 * @func can be invoked with a runqueue lock held, it had better be quite
4119 * lightweight.
4120 *
4121 * Returns:
4122 * @false if the task slipped out from under the locks.
4123 * @true if the task was locked onto a runqueue or is sleeping.
4124 * However, @func can override this by returning @false.
4125 */
try_invoke_on_locked_down_task(struct task_struct * p,bool (* func)(struct task_struct * t,void * arg),void * arg)4126 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
4127 {
4128 struct rq_flags rf;
4129 bool ret = false;
4130 struct rq *rq;
4131
4132 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4133 if (p->on_rq) {
4134 rq = __task_rq_lock(p, &rf);
4135 if (task_rq(p) == rq)
4136 ret = func(p, arg);
4137 rq_unlock(rq, &rf);
4138 } else {
4139 switch (READ_ONCE(p->__state)) {
4140 case TASK_RUNNING:
4141 case TASK_WAKING:
4142 break;
4143 default:
4144 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
4145 if (!p->on_rq)
4146 ret = func(p, arg);
4147 }
4148 }
4149 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4150 return ret;
4151 }
4152
4153 /**
4154 * wake_up_process - Wake up a specific process
4155 * @p: The process to be woken up.
4156 *
4157 * Attempt to wake up the nominated process and move it to the set of runnable
4158 * processes.
4159 *
4160 * Return: 1 if the process was woken up, 0 if it was already running.
4161 *
4162 * This function executes a full memory barrier before accessing the task state.
4163 */
wake_up_process(struct task_struct * p)4164 int wake_up_process(struct task_struct *p)
4165 {
4166 return try_to_wake_up(p, TASK_NORMAL, 0);
4167 }
4168 EXPORT_SYMBOL(wake_up_process);
4169
wake_up_state(struct task_struct * p,unsigned int state)4170 int wake_up_state(struct task_struct *p, unsigned int state)
4171 {
4172 return try_to_wake_up(p, state, 0);
4173 }
4174
4175 /*
4176 * Perform scheduler related setup for a newly forked process p.
4177 * p is forked by current.
4178 *
4179 * __sched_fork() is basic setup used by init_idle() too:
4180 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4181 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4182 {
4183 p->on_rq = 0;
4184
4185 p->se.on_rq = 0;
4186 p->se.exec_start = 0;
4187 p->se.sum_exec_runtime = 0;
4188 p->se.prev_sum_exec_runtime = 0;
4189 p->se.nr_migrations = 0;
4190 p->se.vruntime = 0;
4191 INIT_LIST_HEAD(&p->se.group_node);
4192
4193 #ifdef CONFIG_FAIR_GROUP_SCHED
4194 p->se.cfs_rq = NULL;
4195 #endif
4196
4197 #ifdef CONFIG_SCHEDSTATS
4198 /* Even if schedstat is disabled, there should not be garbage */
4199 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
4200 #endif
4201
4202 RB_CLEAR_NODE(&p->dl.rb_node);
4203 init_dl_task_timer(&p->dl);
4204 init_dl_inactive_task_timer(&p->dl);
4205 __dl_clear_params(p);
4206
4207 INIT_LIST_HEAD(&p->rt.run_list);
4208 p->rt.timeout = 0;
4209 p->rt.time_slice = sched_rr_timeslice;
4210 p->rt.on_rq = 0;
4211 p->rt.on_list = 0;
4212
4213 #ifdef CONFIG_PREEMPT_NOTIFIERS
4214 INIT_HLIST_HEAD(&p->preempt_notifiers);
4215 #endif
4216
4217 #ifdef CONFIG_COMPACTION
4218 p->capture_control = NULL;
4219 #endif
4220 init_numa_balancing(clone_flags, p);
4221 #ifdef CONFIG_SMP
4222 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4223 p->migration_pending = NULL;
4224 #endif
4225 }
4226
4227 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4228
4229 #ifdef CONFIG_NUMA_BALANCING
4230
set_numabalancing_state(bool enabled)4231 void set_numabalancing_state(bool enabled)
4232 {
4233 if (enabled)
4234 static_branch_enable(&sched_numa_balancing);
4235 else
4236 static_branch_disable(&sched_numa_balancing);
4237 }
4238
4239 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4240 int sysctl_numa_balancing(struct ctl_table *table, int write,
4241 void *buffer, size_t *lenp, loff_t *ppos)
4242 {
4243 struct ctl_table t;
4244 int err;
4245 int state = static_branch_likely(&sched_numa_balancing);
4246
4247 if (write && !capable(CAP_SYS_ADMIN))
4248 return -EPERM;
4249
4250 t = *table;
4251 t.data = &state;
4252 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4253 if (err < 0)
4254 return err;
4255 if (write)
4256 set_numabalancing_state(state);
4257 return err;
4258 }
4259 #endif
4260 #endif
4261
4262 #ifdef CONFIG_SCHEDSTATS
4263
4264 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4265
set_schedstats(bool enabled)4266 static void set_schedstats(bool enabled)
4267 {
4268 if (enabled)
4269 static_branch_enable(&sched_schedstats);
4270 else
4271 static_branch_disable(&sched_schedstats);
4272 }
4273
force_schedstat_enabled(void)4274 void force_schedstat_enabled(void)
4275 {
4276 if (!schedstat_enabled()) {
4277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4278 static_branch_enable(&sched_schedstats);
4279 }
4280 }
4281
setup_schedstats(char * str)4282 static int __init setup_schedstats(char *str)
4283 {
4284 int ret = 0;
4285 if (!str)
4286 goto out;
4287
4288 if (!strcmp(str, "enable")) {
4289 set_schedstats(true);
4290 ret = 1;
4291 } else if (!strcmp(str, "disable")) {
4292 set_schedstats(false);
4293 ret = 1;
4294 }
4295 out:
4296 if (!ret)
4297 pr_warn("Unable to parse schedstats=\n");
4298
4299 return ret;
4300 }
4301 __setup("schedstats=", setup_schedstats);
4302
4303 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4304 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4305 size_t *lenp, loff_t *ppos)
4306 {
4307 struct ctl_table t;
4308 int err;
4309 int state = static_branch_likely(&sched_schedstats);
4310
4311 if (write && !capable(CAP_SYS_ADMIN))
4312 return -EPERM;
4313
4314 t = *table;
4315 t.data = &state;
4316 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4317 if (err < 0)
4318 return err;
4319 if (write)
4320 set_schedstats(state);
4321 return err;
4322 }
4323 #endif /* CONFIG_PROC_SYSCTL */
4324 #endif /* CONFIG_SCHEDSTATS */
4325
4326 /*
4327 * fork()/clone()-time setup:
4328 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4329 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4330 {
4331 unsigned long flags;
4332
4333 __sched_fork(clone_flags, p);
4334 /*
4335 * We mark the process as NEW here. This guarantees that
4336 * nobody will actually run it, and a signal or other external
4337 * event cannot wake it up and insert it on the runqueue either.
4338 */
4339 p->__state = TASK_NEW;
4340
4341 /*
4342 * Make sure we do not leak PI boosting priority to the child.
4343 */
4344 p->prio = current->normal_prio;
4345
4346 uclamp_fork(p);
4347
4348 /*
4349 * Revert to default priority/policy on fork if requested.
4350 */
4351 if (unlikely(p->sched_reset_on_fork)) {
4352 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4353 p->policy = SCHED_NORMAL;
4354 p->static_prio = NICE_TO_PRIO(0);
4355 p->rt_priority = 0;
4356 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4357 p->static_prio = NICE_TO_PRIO(0);
4358
4359 p->prio = p->normal_prio = p->static_prio;
4360 set_load_weight(p, false);
4361
4362 /*
4363 * We don't need the reset flag anymore after the fork. It has
4364 * fulfilled its duty:
4365 */
4366 p->sched_reset_on_fork = 0;
4367 }
4368
4369 if (dl_prio(p->prio))
4370 return -EAGAIN;
4371 else if (rt_prio(p->prio))
4372 p->sched_class = &rt_sched_class;
4373 else
4374 p->sched_class = &fair_sched_class;
4375
4376 init_entity_runnable_average(&p->se);
4377
4378 /*
4379 * The child is not yet in the pid-hash so no cgroup attach races,
4380 * and the cgroup is pinned to this child due to cgroup_fork()
4381 * is ran before sched_fork().
4382 *
4383 * Silence PROVE_RCU.
4384 */
4385 raw_spin_lock_irqsave(&p->pi_lock, flags);
4386 rseq_migrate(p);
4387 /*
4388 * We're setting the CPU for the first time, we don't migrate,
4389 * so use __set_task_cpu().
4390 */
4391 __set_task_cpu(p, smp_processor_id());
4392 if (p->sched_class->task_fork)
4393 p->sched_class->task_fork(p);
4394 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4395
4396 #ifdef CONFIG_SCHED_INFO
4397 if (likely(sched_info_on()))
4398 memset(&p->sched_info, 0, sizeof(p->sched_info));
4399 #endif
4400 #if defined(CONFIG_SMP)
4401 p->on_cpu = 0;
4402 #endif
4403 init_task_preempt_count(p);
4404 #ifdef CONFIG_SMP
4405 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4406 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4407 #endif
4408 return 0;
4409 }
4410
sched_post_fork(struct task_struct * p)4411 void sched_post_fork(struct task_struct *p)
4412 {
4413 uclamp_post_fork(p);
4414 }
4415
to_ratio(u64 period,u64 runtime)4416 unsigned long to_ratio(u64 period, u64 runtime)
4417 {
4418 if (runtime == RUNTIME_INF)
4419 return BW_UNIT;
4420
4421 /*
4422 * Doing this here saves a lot of checks in all
4423 * the calling paths, and returning zero seems
4424 * safe for them anyway.
4425 */
4426 if (period == 0)
4427 return 0;
4428
4429 return div64_u64(runtime << BW_SHIFT, period);
4430 }
4431
4432 /*
4433 * wake_up_new_task - wake up a newly created task for the first time.
4434 *
4435 * This function will do some initial scheduler statistics housekeeping
4436 * that must be done for every newly created context, then puts the task
4437 * on the runqueue and wakes it.
4438 */
wake_up_new_task(struct task_struct * p)4439 void wake_up_new_task(struct task_struct *p)
4440 {
4441 struct rq_flags rf;
4442 struct rq *rq;
4443
4444 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4445 WRITE_ONCE(p->__state, TASK_RUNNING);
4446 #ifdef CONFIG_SMP
4447 /*
4448 * Fork balancing, do it here and not earlier because:
4449 * - cpus_ptr can change in the fork path
4450 * - any previously selected CPU might disappear through hotplug
4451 *
4452 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4453 * as we're not fully set-up yet.
4454 */
4455 p->recent_used_cpu = task_cpu(p);
4456 rseq_migrate(p);
4457 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4458 #endif
4459 rq = __task_rq_lock(p, &rf);
4460 update_rq_clock(rq);
4461 post_init_entity_util_avg(p);
4462
4463 activate_task(rq, p, ENQUEUE_NOCLOCK);
4464 trace_sched_wakeup_new(p);
4465 check_preempt_curr(rq, p, WF_FORK);
4466 #ifdef CONFIG_SMP
4467 if (p->sched_class->task_woken) {
4468 /*
4469 * Nothing relies on rq->lock after this, so it's fine to
4470 * drop it.
4471 */
4472 rq_unpin_lock(rq, &rf);
4473 p->sched_class->task_woken(rq, p);
4474 rq_repin_lock(rq, &rf);
4475 }
4476 #endif
4477 task_rq_unlock(rq, p, &rf);
4478 }
4479
4480 #ifdef CONFIG_PREEMPT_NOTIFIERS
4481
4482 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4483
preempt_notifier_inc(void)4484 void preempt_notifier_inc(void)
4485 {
4486 static_branch_inc(&preempt_notifier_key);
4487 }
4488 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4489
preempt_notifier_dec(void)4490 void preempt_notifier_dec(void)
4491 {
4492 static_branch_dec(&preempt_notifier_key);
4493 }
4494 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4495
4496 /**
4497 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4498 * @notifier: notifier struct to register
4499 */
preempt_notifier_register(struct preempt_notifier * notifier)4500 void preempt_notifier_register(struct preempt_notifier *notifier)
4501 {
4502 if (!static_branch_unlikely(&preempt_notifier_key))
4503 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4504
4505 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4506 }
4507 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4508
4509 /**
4510 * preempt_notifier_unregister - no longer interested in preemption notifications
4511 * @notifier: notifier struct to unregister
4512 *
4513 * This is *not* safe to call from within a preemption notifier.
4514 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4515 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4516 {
4517 hlist_del(¬ifier->link);
4518 }
4519 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4520
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4521 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4522 {
4523 struct preempt_notifier *notifier;
4524
4525 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4526 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4527 }
4528
fire_sched_in_preempt_notifiers(struct task_struct * curr)4529 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4530 {
4531 if (static_branch_unlikely(&preempt_notifier_key))
4532 __fire_sched_in_preempt_notifiers(curr);
4533 }
4534
4535 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4536 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4537 struct task_struct *next)
4538 {
4539 struct preempt_notifier *notifier;
4540
4541 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4542 notifier->ops->sched_out(notifier, next);
4543 }
4544
4545 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4546 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4547 struct task_struct *next)
4548 {
4549 if (static_branch_unlikely(&preempt_notifier_key))
4550 __fire_sched_out_preempt_notifiers(curr, next);
4551 }
4552
4553 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4554
fire_sched_in_preempt_notifiers(struct task_struct * curr)4555 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4556 {
4557 }
4558
4559 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4560 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4561 struct task_struct *next)
4562 {
4563 }
4564
4565 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4566
prepare_task(struct task_struct * next)4567 static inline void prepare_task(struct task_struct *next)
4568 {
4569 #ifdef CONFIG_SMP
4570 /*
4571 * Claim the task as running, we do this before switching to it
4572 * such that any running task will have this set.
4573 *
4574 * See the ttwu() WF_ON_CPU case and its ordering comment.
4575 */
4576 WRITE_ONCE(next->on_cpu, 1);
4577 #endif
4578 }
4579
finish_task(struct task_struct * prev)4580 static inline void finish_task(struct task_struct *prev)
4581 {
4582 #ifdef CONFIG_SMP
4583 /*
4584 * This must be the very last reference to @prev from this CPU. After
4585 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4586 * must ensure this doesn't happen until the switch is completely
4587 * finished.
4588 *
4589 * In particular, the load of prev->state in finish_task_switch() must
4590 * happen before this.
4591 *
4592 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4593 */
4594 smp_store_release(&prev->on_cpu, 0);
4595 #endif
4596 }
4597
4598 #ifdef CONFIG_SMP
4599
do_balance_callbacks(struct rq * rq,struct callback_head * head)4600 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4601 {
4602 void (*func)(struct rq *rq);
4603 struct callback_head *next;
4604
4605 lockdep_assert_rq_held(rq);
4606
4607 while (head) {
4608 func = (void (*)(struct rq *))head->func;
4609 next = head->next;
4610 head->next = NULL;
4611 head = next;
4612
4613 func(rq);
4614 }
4615 }
4616
4617 static void balance_push(struct rq *rq);
4618
4619 struct callback_head balance_push_callback = {
4620 .next = NULL,
4621 .func = (void (*)(struct callback_head *))balance_push,
4622 };
4623
splice_balance_callbacks(struct rq * rq)4624 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4625 {
4626 struct callback_head *head = rq->balance_callback;
4627
4628 lockdep_assert_rq_held(rq);
4629 if (head)
4630 rq->balance_callback = NULL;
4631
4632 return head;
4633 }
4634
__balance_callbacks(struct rq * rq)4635 static void __balance_callbacks(struct rq *rq)
4636 {
4637 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4638 }
4639
balance_callbacks(struct rq * rq,struct callback_head * head)4640 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4641 {
4642 unsigned long flags;
4643
4644 if (unlikely(head)) {
4645 raw_spin_rq_lock_irqsave(rq, flags);
4646 do_balance_callbacks(rq, head);
4647 raw_spin_rq_unlock_irqrestore(rq, flags);
4648 }
4649 }
4650
4651 #else
4652
__balance_callbacks(struct rq * rq)4653 static inline void __balance_callbacks(struct rq *rq)
4654 {
4655 }
4656
splice_balance_callbacks(struct rq * rq)4657 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4658 {
4659 return NULL;
4660 }
4661
balance_callbacks(struct rq * rq,struct callback_head * head)4662 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4663 {
4664 }
4665
4666 #endif
4667
4668 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)4669 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4670 {
4671 /*
4672 * Since the runqueue lock will be released by the next
4673 * task (which is an invalid locking op but in the case
4674 * of the scheduler it's an obvious special-case), so we
4675 * do an early lockdep release here:
4676 */
4677 rq_unpin_lock(rq, rf);
4678 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4679 #ifdef CONFIG_DEBUG_SPINLOCK
4680 /* this is a valid case when another task releases the spinlock */
4681 rq_lockp(rq)->owner = next;
4682 #endif
4683 }
4684
finish_lock_switch(struct rq * rq)4685 static inline void finish_lock_switch(struct rq *rq)
4686 {
4687 /*
4688 * If we are tracking spinlock dependencies then we have to
4689 * fix up the runqueue lock - which gets 'carried over' from
4690 * prev into current:
4691 */
4692 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4693 __balance_callbacks(rq);
4694 raw_spin_rq_unlock_irq(rq);
4695 }
4696
4697 /*
4698 * NOP if the arch has not defined these:
4699 */
4700
4701 #ifndef prepare_arch_switch
4702 # define prepare_arch_switch(next) do { } while (0)
4703 #endif
4704
4705 #ifndef finish_arch_post_lock_switch
4706 # define finish_arch_post_lock_switch() do { } while (0)
4707 #endif
4708
kmap_local_sched_out(void)4709 static inline void kmap_local_sched_out(void)
4710 {
4711 #ifdef CONFIG_KMAP_LOCAL
4712 if (unlikely(current->kmap_ctrl.idx))
4713 __kmap_local_sched_out();
4714 #endif
4715 }
4716
kmap_local_sched_in(void)4717 static inline void kmap_local_sched_in(void)
4718 {
4719 #ifdef CONFIG_KMAP_LOCAL
4720 if (unlikely(current->kmap_ctrl.idx))
4721 __kmap_local_sched_in();
4722 #endif
4723 }
4724
4725 /**
4726 * prepare_task_switch - prepare to switch tasks
4727 * @rq: the runqueue preparing to switch
4728 * @prev: the current task that is being switched out
4729 * @next: the task we are going to switch to.
4730 *
4731 * This is called with the rq lock held and interrupts off. It must
4732 * be paired with a subsequent finish_task_switch after the context
4733 * switch.
4734 *
4735 * prepare_task_switch sets up locking and calls architecture specific
4736 * hooks.
4737 */
4738 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)4739 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4740 struct task_struct *next)
4741 {
4742 kcov_prepare_switch(prev);
4743 sched_info_switch(rq, prev, next);
4744 perf_event_task_sched_out(prev, next);
4745 rseq_preempt(prev);
4746 fire_sched_out_preempt_notifiers(prev, next);
4747 kmap_local_sched_out();
4748 prepare_task(next);
4749 prepare_arch_switch(next);
4750 }
4751
4752 /**
4753 * finish_task_switch - clean up after a task-switch
4754 * @prev: the thread we just switched away from.
4755 *
4756 * finish_task_switch must be called after the context switch, paired
4757 * with a prepare_task_switch call before the context switch.
4758 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4759 * and do any other architecture-specific cleanup actions.
4760 *
4761 * Note that we may have delayed dropping an mm in context_switch(). If
4762 * so, we finish that here outside of the runqueue lock. (Doing it
4763 * with the lock held can cause deadlocks; see schedule() for
4764 * details.)
4765 *
4766 * The context switch have flipped the stack from under us and restored the
4767 * local variables which were saved when this task called schedule() in the
4768 * past. prev == current is still correct but we need to recalculate this_rq
4769 * because prev may have moved to another CPU.
4770 */
finish_task_switch(struct task_struct * prev)4771 static struct rq *finish_task_switch(struct task_struct *prev)
4772 __releases(rq->lock)
4773 {
4774 struct rq *rq = this_rq();
4775 struct mm_struct *mm = rq->prev_mm;
4776 long prev_state;
4777
4778 /*
4779 * The previous task will have left us with a preempt_count of 2
4780 * because it left us after:
4781 *
4782 * schedule()
4783 * preempt_disable(); // 1
4784 * __schedule()
4785 * raw_spin_lock_irq(&rq->lock) // 2
4786 *
4787 * Also, see FORK_PREEMPT_COUNT.
4788 */
4789 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4790 "corrupted preempt_count: %s/%d/0x%x\n",
4791 current->comm, current->pid, preempt_count()))
4792 preempt_count_set(FORK_PREEMPT_COUNT);
4793
4794 rq->prev_mm = NULL;
4795
4796 /*
4797 * A task struct has one reference for the use as "current".
4798 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4799 * schedule one last time. The schedule call will never return, and
4800 * the scheduled task must drop that reference.
4801 *
4802 * We must observe prev->state before clearing prev->on_cpu (in
4803 * finish_task), otherwise a concurrent wakeup can get prev
4804 * running on another CPU and we could rave with its RUNNING -> DEAD
4805 * transition, resulting in a double drop.
4806 */
4807 prev_state = READ_ONCE(prev->__state);
4808 vtime_task_switch(prev);
4809 perf_event_task_sched_in(prev, current);
4810 finish_task(prev);
4811 tick_nohz_task_switch();
4812 finish_lock_switch(rq);
4813 finish_arch_post_lock_switch();
4814 kcov_finish_switch(current);
4815 /*
4816 * kmap_local_sched_out() is invoked with rq::lock held and
4817 * interrupts disabled. There is no requirement for that, but the
4818 * sched out code does not have an interrupt enabled section.
4819 * Restoring the maps on sched in does not require interrupts being
4820 * disabled either.
4821 */
4822 kmap_local_sched_in();
4823
4824 fire_sched_in_preempt_notifiers(current);
4825 /*
4826 * When switching through a kernel thread, the loop in
4827 * membarrier_{private,global}_expedited() may have observed that
4828 * kernel thread and not issued an IPI. It is therefore possible to
4829 * schedule between user->kernel->user threads without passing though
4830 * switch_mm(). Membarrier requires a barrier after storing to
4831 * rq->curr, before returning to userspace, so provide them here:
4832 *
4833 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4834 * provided by mmdrop(),
4835 * - a sync_core for SYNC_CORE.
4836 */
4837 if (mm) {
4838 membarrier_mm_sync_core_before_usermode(mm);
4839 mmdrop(mm);
4840 }
4841 if (unlikely(prev_state == TASK_DEAD)) {
4842 if (prev->sched_class->task_dead)
4843 prev->sched_class->task_dead(prev);
4844
4845 /*
4846 * Remove function-return probe instances associated with this
4847 * task and put them back on the free list.
4848 */
4849 kprobe_flush_task(prev);
4850
4851 /* Task is done with its stack. */
4852 put_task_stack(prev);
4853
4854 put_task_struct_rcu_user(prev);
4855 }
4856
4857 return rq;
4858 }
4859
4860 /**
4861 * schedule_tail - first thing a freshly forked thread must call.
4862 * @prev: the thread we just switched away from.
4863 */
schedule_tail(struct task_struct * prev)4864 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4865 __releases(rq->lock)
4866 {
4867 /*
4868 * New tasks start with FORK_PREEMPT_COUNT, see there and
4869 * finish_task_switch() for details.
4870 *
4871 * finish_task_switch() will drop rq->lock() and lower preempt_count
4872 * and the preempt_enable() will end up enabling preemption (on
4873 * PREEMPT_COUNT kernels).
4874 */
4875
4876 finish_task_switch(prev);
4877 preempt_enable();
4878
4879 if (current->set_child_tid)
4880 put_user(task_pid_vnr(current), current->set_child_tid);
4881
4882 calculate_sigpending();
4883 }
4884
4885 /*
4886 * context_switch - switch to the new MM and the new thread's register state.
4887 */
4888 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)4889 context_switch(struct rq *rq, struct task_struct *prev,
4890 struct task_struct *next, struct rq_flags *rf)
4891 {
4892 prepare_task_switch(rq, prev, next);
4893
4894 /*
4895 * For paravirt, this is coupled with an exit in switch_to to
4896 * combine the page table reload and the switch backend into
4897 * one hypercall.
4898 */
4899 arch_start_context_switch(prev);
4900
4901 /*
4902 * kernel -> kernel lazy + transfer active
4903 * user -> kernel lazy + mmgrab() active
4904 *
4905 * kernel -> user switch + mmdrop() active
4906 * user -> user switch
4907 */
4908 if (!next->mm) { // to kernel
4909 enter_lazy_tlb(prev->active_mm, next);
4910
4911 next->active_mm = prev->active_mm;
4912 if (prev->mm) // from user
4913 mmgrab(prev->active_mm);
4914 else
4915 prev->active_mm = NULL;
4916 } else { // to user
4917 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4918 /*
4919 * sys_membarrier() requires an smp_mb() between setting
4920 * rq->curr / membarrier_switch_mm() and returning to userspace.
4921 *
4922 * The below provides this either through switch_mm(), or in
4923 * case 'prev->active_mm == next->mm' through
4924 * finish_task_switch()'s mmdrop().
4925 */
4926 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4927
4928 if (!prev->mm) { // from kernel
4929 /* will mmdrop() in finish_task_switch(). */
4930 rq->prev_mm = prev->active_mm;
4931 prev->active_mm = NULL;
4932 }
4933 }
4934
4935 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4936
4937 prepare_lock_switch(rq, next, rf);
4938
4939 /* Here we just switch the register state and the stack. */
4940 switch_to(prev, next, prev);
4941 barrier();
4942
4943 return finish_task_switch(prev);
4944 }
4945
4946 /*
4947 * nr_running and nr_context_switches:
4948 *
4949 * externally visible scheduler statistics: current number of runnable
4950 * threads, total number of context switches performed since bootup.
4951 */
nr_running(void)4952 unsigned int nr_running(void)
4953 {
4954 unsigned int i, sum = 0;
4955
4956 for_each_online_cpu(i)
4957 sum += cpu_rq(i)->nr_running;
4958
4959 return sum;
4960 }
4961
4962 /*
4963 * Check if only the current task is running on the CPU.
4964 *
4965 * Caution: this function does not check that the caller has disabled
4966 * preemption, thus the result might have a time-of-check-to-time-of-use
4967 * race. The caller is responsible to use it correctly, for example:
4968 *
4969 * - from a non-preemptible section (of course)
4970 *
4971 * - from a thread that is bound to a single CPU
4972 *
4973 * - in a loop with very short iterations (e.g. a polling loop)
4974 */
single_task_running(void)4975 bool single_task_running(void)
4976 {
4977 return raw_rq()->nr_running == 1;
4978 }
4979 EXPORT_SYMBOL(single_task_running);
4980
nr_context_switches(void)4981 unsigned long long nr_context_switches(void)
4982 {
4983 int i;
4984 unsigned long long sum = 0;
4985
4986 for_each_possible_cpu(i)
4987 sum += cpu_rq(i)->nr_switches;
4988
4989 return sum;
4990 }
4991
4992 /*
4993 * Consumers of these two interfaces, like for example the cpuidle menu
4994 * governor, are using nonsensical data. Preferring shallow idle state selection
4995 * for a CPU that has IO-wait which might not even end up running the task when
4996 * it does become runnable.
4997 */
4998
nr_iowait_cpu(int cpu)4999 unsigned int nr_iowait_cpu(int cpu)
5000 {
5001 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5002 }
5003
5004 /*
5005 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5006 *
5007 * The idea behind IO-wait account is to account the idle time that we could
5008 * have spend running if it were not for IO. That is, if we were to improve the
5009 * storage performance, we'd have a proportional reduction in IO-wait time.
5010 *
5011 * This all works nicely on UP, where, when a task blocks on IO, we account
5012 * idle time as IO-wait, because if the storage were faster, it could've been
5013 * running and we'd not be idle.
5014 *
5015 * This has been extended to SMP, by doing the same for each CPU. This however
5016 * is broken.
5017 *
5018 * Imagine for instance the case where two tasks block on one CPU, only the one
5019 * CPU will have IO-wait accounted, while the other has regular idle. Even
5020 * though, if the storage were faster, both could've ran at the same time,
5021 * utilising both CPUs.
5022 *
5023 * This means, that when looking globally, the current IO-wait accounting on
5024 * SMP is a lower bound, by reason of under accounting.
5025 *
5026 * Worse, since the numbers are provided per CPU, they are sometimes
5027 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5028 * associated with any one particular CPU, it can wake to another CPU than it
5029 * blocked on. This means the per CPU IO-wait number is meaningless.
5030 *
5031 * Task CPU affinities can make all that even more 'interesting'.
5032 */
5033
nr_iowait(void)5034 unsigned int nr_iowait(void)
5035 {
5036 unsigned int i, sum = 0;
5037
5038 for_each_possible_cpu(i)
5039 sum += nr_iowait_cpu(i);
5040
5041 return sum;
5042 }
5043
5044 #ifdef CONFIG_SMP
5045
5046 /*
5047 * sched_exec - execve() is a valuable balancing opportunity, because at
5048 * this point the task has the smallest effective memory and cache footprint.
5049 */
sched_exec(void)5050 void sched_exec(void)
5051 {
5052 struct task_struct *p = current;
5053 unsigned long flags;
5054 int dest_cpu;
5055
5056 raw_spin_lock_irqsave(&p->pi_lock, flags);
5057 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5058 if (dest_cpu == smp_processor_id())
5059 goto unlock;
5060
5061 if (likely(cpu_active(dest_cpu))) {
5062 struct migration_arg arg = { p, dest_cpu };
5063
5064 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5065 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5066 return;
5067 }
5068 unlock:
5069 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5070 }
5071
5072 #endif
5073
5074 DEFINE_PER_CPU(struct kernel_stat, kstat);
5075 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5076
5077 EXPORT_PER_CPU_SYMBOL(kstat);
5078 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5079
5080 /*
5081 * The function fair_sched_class.update_curr accesses the struct curr
5082 * and its field curr->exec_start; when called from task_sched_runtime(),
5083 * we observe a high rate of cache misses in practice.
5084 * Prefetching this data results in improved performance.
5085 */
prefetch_curr_exec_start(struct task_struct * p)5086 static inline void prefetch_curr_exec_start(struct task_struct *p)
5087 {
5088 #ifdef CONFIG_FAIR_GROUP_SCHED
5089 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5090 #else
5091 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5092 #endif
5093 prefetch(curr);
5094 prefetch(&curr->exec_start);
5095 }
5096
5097 /*
5098 * Return accounted runtime for the task.
5099 * In case the task is currently running, return the runtime plus current's
5100 * pending runtime that have not been accounted yet.
5101 */
task_sched_runtime(struct task_struct * p)5102 unsigned long long task_sched_runtime(struct task_struct *p)
5103 {
5104 struct rq_flags rf;
5105 struct rq *rq;
5106 u64 ns;
5107
5108 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5109 /*
5110 * 64-bit doesn't need locks to atomically read a 64-bit value.
5111 * So we have a optimization chance when the task's delta_exec is 0.
5112 * Reading ->on_cpu is racy, but this is ok.
5113 *
5114 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5115 * If we race with it entering CPU, unaccounted time is 0. This is
5116 * indistinguishable from the read occurring a few cycles earlier.
5117 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5118 * been accounted, so we're correct here as well.
5119 */
5120 if (!p->on_cpu || !task_on_rq_queued(p))
5121 return p->se.sum_exec_runtime;
5122 #endif
5123
5124 rq = task_rq_lock(p, &rf);
5125 /*
5126 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5127 * project cycles that may never be accounted to this
5128 * thread, breaking clock_gettime().
5129 */
5130 if (task_current(rq, p) && task_on_rq_queued(p)) {
5131 prefetch_curr_exec_start(p);
5132 update_rq_clock(rq);
5133 p->sched_class->update_curr(rq);
5134 }
5135 ns = p->se.sum_exec_runtime;
5136 task_rq_unlock(rq, p, &rf);
5137
5138 return ns;
5139 }
5140
5141 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5142 static u64 cpu_resched_latency(struct rq *rq)
5143 {
5144 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5145 u64 resched_latency, now = rq_clock(rq);
5146 static bool warned_once;
5147
5148 if (sysctl_resched_latency_warn_once && warned_once)
5149 return 0;
5150
5151 if (!need_resched() || !latency_warn_ms)
5152 return 0;
5153
5154 if (system_state == SYSTEM_BOOTING)
5155 return 0;
5156
5157 if (!rq->last_seen_need_resched_ns) {
5158 rq->last_seen_need_resched_ns = now;
5159 rq->ticks_without_resched = 0;
5160 return 0;
5161 }
5162
5163 rq->ticks_without_resched++;
5164 resched_latency = now - rq->last_seen_need_resched_ns;
5165 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5166 return 0;
5167
5168 warned_once = true;
5169
5170 return resched_latency;
5171 }
5172
setup_resched_latency_warn_ms(char * str)5173 static int __init setup_resched_latency_warn_ms(char *str)
5174 {
5175 long val;
5176
5177 if ((kstrtol(str, 0, &val))) {
5178 pr_warn("Unable to set resched_latency_warn_ms\n");
5179 return 1;
5180 }
5181
5182 sysctl_resched_latency_warn_ms = val;
5183 return 1;
5184 }
5185 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5186 #else
cpu_resched_latency(struct rq * rq)5187 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5188 #endif /* CONFIG_SCHED_DEBUG */
5189
5190 /*
5191 * This function gets called by the timer code, with HZ frequency.
5192 * We call it with interrupts disabled.
5193 */
scheduler_tick(void)5194 void scheduler_tick(void)
5195 {
5196 int cpu = smp_processor_id();
5197 struct rq *rq = cpu_rq(cpu);
5198 struct task_struct *curr = rq->curr;
5199 struct rq_flags rf;
5200 unsigned long thermal_pressure;
5201 u64 resched_latency;
5202
5203 arch_scale_freq_tick();
5204 sched_clock_tick();
5205
5206 rq_lock(rq, &rf);
5207
5208 update_rq_clock(rq);
5209 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5210 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5211 curr->sched_class->task_tick(rq, curr, 0);
5212 if (sched_feat(LATENCY_WARN))
5213 resched_latency = cpu_resched_latency(rq);
5214 calc_global_load_tick(rq);
5215
5216 rq_unlock(rq, &rf);
5217
5218 if (sched_feat(LATENCY_WARN) && resched_latency)
5219 resched_latency_warn(cpu, resched_latency);
5220
5221 perf_event_task_tick();
5222
5223 #ifdef CONFIG_SMP
5224 rq->idle_balance = idle_cpu(cpu);
5225 trigger_load_balance(rq);
5226 #endif
5227 }
5228
5229 #ifdef CONFIG_NO_HZ_FULL
5230
5231 struct tick_work {
5232 int cpu;
5233 atomic_t state;
5234 struct delayed_work work;
5235 };
5236 /* Values for ->state, see diagram below. */
5237 #define TICK_SCHED_REMOTE_OFFLINE 0
5238 #define TICK_SCHED_REMOTE_OFFLINING 1
5239 #define TICK_SCHED_REMOTE_RUNNING 2
5240
5241 /*
5242 * State diagram for ->state:
5243 *
5244 *
5245 * TICK_SCHED_REMOTE_OFFLINE
5246 * | ^
5247 * | |
5248 * | | sched_tick_remote()
5249 * | |
5250 * | |
5251 * +--TICK_SCHED_REMOTE_OFFLINING
5252 * | ^
5253 * | |
5254 * sched_tick_start() | | sched_tick_stop()
5255 * | |
5256 * V |
5257 * TICK_SCHED_REMOTE_RUNNING
5258 *
5259 *
5260 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5261 * and sched_tick_start() are happy to leave the state in RUNNING.
5262 */
5263
5264 static struct tick_work __percpu *tick_work_cpu;
5265
sched_tick_remote(struct work_struct * work)5266 static void sched_tick_remote(struct work_struct *work)
5267 {
5268 struct delayed_work *dwork = to_delayed_work(work);
5269 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5270 int cpu = twork->cpu;
5271 struct rq *rq = cpu_rq(cpu);
5272 struct task_struct *curr;
5273 struct rq_flags rf;
5274 u64 delta;
5275 int os;
5276
5277 /*
5278 * Handle the tick only if it appears the remote CPU is running in full
5279 * dynticks mode. The check is racy by nature, but missing a tick or
5280 * having one too much is no big deal because the scheduler tick updates
5281 * statistics and checks timeslices in a time-independent way, regardless
5282 * of when exactly it is running.
5283 */
5284 if (!tick_nohz_tick_stopped_cpu(cpu))
5285 goto out_requeue;
5286
5287 rq_lock_irq(rq, &rf);
5288 curr = rq->curr;
5289 if (cpu_is_offline(cpu))
5290 goto out_unlock;
5291
5292 update_rq_clock(rq);
5293
5294 if (!is_idle_task(curr)) {
5295 /*
5296 * Make sure the next tick runs within a reasonable
5297 * amount of time.
5298 */
5299 delta = rq_clock_task(rq) - curr->se.exec_start;
5300 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5301 }
5302 curr->sched_class->task_tick(rq, curr, 0);
5303
5304 calc_load_nohz_remote(rq);
5305 out_unlock:
5306 rq_unlock_irq(rq, &rf);
5307 out_requeue:
5308
5309 /*
5310 * Run the remote tick once per second (1Hz). This arbitrary
5311 * frequency is large enough to avoid overload but short enough
5312 * to keep scheduler internal stats reasonably up to date. But
5313 * first update state to reflect hotplug activity if required.
5314 */
5315 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5316 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5317 if (os == TICK_SCHED_REMOTE_RUNNING)
5318 queue_delayed_work(system_unbound_wq, dwork, HZ);
5319 }
5320
sched_tick_start(int cpu)5321 static void sched_tick_start(int cpu)
5322 {
5323 int os;
5324 struct tick_work *twork;
5325
5326 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5327 return;
5328
5329 WARN_ON_ONCE(!tick_work_cpu);
5330
5331 twork = per_cpu_ptr(tick_work_cpu, cpu);
5332 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5333 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5334 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5335 twork->cpu = cpu;
5336 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5337 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5338 }
5339 }
5340
5341 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5342 static void sched_tick_stop(int cpu)
5343 {
5344 struct tick_work *twork;
5345 int os;
5346
5347 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5348 return;
5349
5350 WARN_ON_ONCE(!tick_work_cpu);
5351
5352 twork = per_cpu_ptr(tick_work_cpu, cpu);
5353 /* There cannot be competing actions, but don't rely on stop-machine. */
5354 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5355 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5356 /* Don't cancel, as this would mess up the state machine. */
5357 }
5358 #endif /* CONFIG_HOTPLUG_CPU */
5359
sched_tick_offload_init(void)5360 int __init sched_tick_offload_init(void)
5361 {
5362 tick_work_cpu = alloc_percpu(struct tick_work);
5363 BUG_ON(!tick_work_cpu);
5364 return 0;
5365 }
5366
5367 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5368 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5369 static inline void sched_tick_stop(int cpu) { }
5370 #endif
5371
5372 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5373 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5374 /*
5375 * If the value passed in is equal to the current preempt count
5376 * then we just disabled preemption. Start timing the latency.
5377 */
preempt_latency_start(int val)5378 static inline void preempt_latency_start(int val)
5379 {
5380 if (preempt_count() == val) {
5381 unsigned long ip = get_lock_parent_ip();
5382 #ifdef CONFIG_DEBUG_PREEMPT
5383 current->preempt_disable_ip = ip;
5384 #endif
5385 trace_preempt_off(CALLER_ADDR0, ip);
5386 }
5387 }
5388
preempt_count_add(int val)5389 void preempt_count_add(int val)
5390 {
5391 #ifdef CONFIG_DEBUG_PREEMPT
5392 /*
5393 * Underflow?
5394 */
5395 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5396 return;
5397 #endif
5398 __preempt_count_add(val);
5399 #ifdef CONFIG_DEBUG_PREEMPT
5400 /*
5401 * Spinlock count overflowing soon?
5402 */
5403 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5404 PREEMPT_MASK - 10);
5405 #endif
5406 preempt_latency_start(val);
5407 }
5408 EXPORT_SYMBOL(preempt_count_add);
5409 NOKPROBE_SYMBOL(preempt_count_add);
5410
5411 /*
5412 * If the value passed in equals to the current preempt count
5413 * then we just enabled preemption. Stop timing the latency.
5414 */
preempt_latency_stop(int val)5415 static inline void preempt_latency_stop(int val)
5416 {
5417 if (preempt_count() == val)
5418 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5419 }
5420
preempt_count_sub(int val)5421 void preempt_count_sub(int val)
5422 {
5423 #ifdef CONFIG_DEBUG_PREEMPT
5424 /*
5425 * Underflow?
5426 */
5427 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5428 return;
5429 /*
5430 * Is the spinlock portion underflowing?
5431 */
5432 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5433 !(preempt_count() & PREEMPT_MASK)))
5434 return;
5435 #endif
5436
5437 preempt_latency_stop(val);
5438 __preempt_count_sub(val);
5439 }
5440 EXPORT_SYMBOL(preempt_count_sub);
5441 NOKPROBE_SYMBOL(preempt_count_sub);
5442
5443 #else
preempt_latency_start(int val)5444 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5445 static inline void preempt_latency_stop(int val) { }
5446 #endif
5447
get_preempt_disable_ip(struct task_struct * p)5448 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5449 {
5450 #ifdef CONFIG_DEBUG_PREEMPT
5451 return p->preempt_disable_ip;
5452 #else
5453 return 0;
5454 #endif
5455 }
5456
5457 /*
5458 * Print scheduling while atomic bug:
5459 */
__schedule_bug(struct task_struct * prev)5460 static noinline void __schedule_bug(struct task_struct *prev)
5461 {
5462 /* Save this before calling printk(), since that will clobber it */
5463 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5464
5465 if (oops_in_progress)
5466 return;
5467
5468 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5469 prev->comm, prev->pid, preempt_count());
5470
5471 debug_show_held_locks(prev);
5472 print_modules();
5473 if (irqs_disabled())
5474 print_irqtrace_events(prev);
5475 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5476 && in_atomic_preempt_off()) {
5477 pr_err("Preemption disabled at:");
5478 print_ip_sym(KERN_ERR, preempt_disable_ip);
5479 }
5480 if (panic_on_warn)
5481 panic("scheduling while atomic\n");
5482
5483 dump_stack();
5484 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5485 }
5486
5487 /*
5488 * Various schedule()-time debugging checks and statistics:
5489 */
schedule_debug(struct task_struct * prev,bool preempt)5490 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5491 {
5492 #ifdef CONFIG_SCHED_STACK_END_CHECK
5493 if (task_stack_end_corrupted(prev))
5494 panic("corrupted stack end detected inside scheduler\n");
5495
5496 if (task_scs_end_corrupted(prev))
5497 panic("corrupted shadow stack detected inside scheduler\n");
5498 #endif
5499
5500 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5501 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5502 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5503 prev->comm, prev->pid, prev->non_block_count);
5504 dump_stack();
5505 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5506 }
5507 #endif
5508
5509 if (unlikely(in_atomic_preempt_off())) {
5510 __schedule_bug(prev);
5511 preempt_count_set(PREEMPT_DISABLED);
5512 }
5513 rcu_sleep_check();
5514 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5515
5516 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5517
5518 schedstat_inc(this_rq()->sched_count);
5519 }
5520
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5521 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5522 struct rq_flags *rf)
5523 {
5524 #ifdef CONFIG_SMP
5525 const struct sched_class *class;
5526 /*
5527 * We must do the balancing pass before put_prev_task(), such
5528 * that when we release the rq->lock the task is in the same
5529 * state as before we took rq->lock.
5530 *
5531 * We can terminate the balance pass as soon as we know there is
5532 * a runnable task of @class priority or higher.
5533 */
5534 for_class_range(class, prev->sched_class, &idle_sched_class) {
5535 if (class->balance(rq, prev, rf))
5536 break;
5537 }
5538 #endif
5539
5540 put_prev_task(rq, prev);
5541 }
5542
5543 /*
5544 * Pick up the highest-prio task:
5545 */
5546 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5547 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5548 {
5549 const struct sched_class *class;
5550 struct task_struct *p;
5551
5552 /*
5553 * Optimization: we know that if all tasks are in the fair class we can
5554 * call that function directly, but only if the @prev task wasn't of a
5555 * higher scheduling class, because otherwise those lose the
5556 * opportunity to pull in more work from other CPUs.
5557 */
5558 if (likely(prev->sched_class <= &fair_sched_class &&
5559 rq->nr_running == rq->cfs.h_nr_running)) {
5560
5561 p = pick_next_task_fair(rq, prev, rf);
5562 if (unlikely(p == RETRY_TASK))
5563 goto restart;
5564
5565 /* Assume the next prioritized class is idle_sched_class */
5566 if (!p) {
5567 put_prev_task(rq, prev);
5568 p = pick_next_task_idle(rq);
5569 }
5570
5571 return p;
5572 }
5573
5574 restart:
5575 put_prev_task_balance(rq, prev, rf);
5576
5577 for_each_class(class) {
5578 p = class->pick_next_task(rq);
5579 if (p)
5580 return p;
5581 }
5582
5583 /* The idle class should always have a runnable task: */
5584 BUG();
5585 }
5586
5587 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)5588 static inline bool is_task_rq_idle(struct task_struct *t)
5589 {
5590 return (task_rq(t)->idle == t);
5591 }
5592
cookie_equals(struct task_struct * a,unsigned long cookie)5593 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5594 {
5595 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5596 }
5597
cookie_match(struct task_struct * a,struct task_struct * b)5598 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5599 {
5600 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5601 return true;
5602
5603 return a->core_cookie == b->core_cookie;
5604 }
5605
5606 // XXX fairness/fwd progress conditions
5607 /*
5608 * Returns
5609 * - NULL if there is no runnable task for this class.
5610 * - the highest priority task for this runqueue if it matches
5611 * rq->core->core_cookie or its priority is greater than max.
5612 * - Else returns idle_task.
5613 */
5614 static struct task_struct *
pick_task(struct rq * rq,const struct sched_class * class,struct task_struct * max,bool in_fi)5615 pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5616 {
5617 struct task_struct *class_pick, *cookie_pick;
5618 unsigned long cookie = rq->core->core_cookie;
5619
5620 class_pick = class->pick_task(rq);
5621 if (!class_pick)
5622 return NULL;
5623
5624 if (!cookie) {
5625 /*
5626 * If class_pick is tagged, return it only if it has
5627 * higher priority than max.
5628 */
5629 if (max && class_pick->core_cookie &&
5630 prio_less(class_pick, max, in_fi))
5631 return idle_sched_class.pick_task(rq);
5632
5633 return class_pick;
5634 }
5635
5636 /*
5637 * If class_pick is idle or matches cookie, return early.
5638 */
5639 if (cookie_equals(class_pick, cookie))
5640 return class_pick;
5641
5642 cookie_pick = sched_core_find(rq, cookie);
5643
5644 /*
5645 * If class > max && class > cookie, it is the highest priority task on
5646 * the core (so far) and it must be selected, otherwise we must go with
5647 * the cookie pick in order to satisfy the constraint.
5648 */
5649 if (prio_less(cookie_pick, class_pick, in_fi) &&
5650 (!max || prio_less(max, class_pick, in_fi)))
5651 return class_pick;
5652
5653 return cookie_pick;
5654 }
5655
5656 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5657
5658 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5659 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5660 {
5661 struct task_struct *next, *max = NULL;
5662 const struct sched_class *class;
5663 const struct cpumask *smt_mask;
5664 bool fi_before = false;
5665 int i, j, cpu, occ = 0;
5666 bool need_sync;
5667
5668 if (!sched_core_enabled(rq))
5669 return __pick_next_task(rq, prev, rf);
5670
5671 cpu = cpu_of(rq);
5672
5673 /* Stopper task is switching into idle, no need core-wide selection. */
5674 if (cpu_is_offline(cpu)) {
5675 /*
5676 * Reset core_pick so that we don't enter the fastpath when
5677 * coming online. core_pick would already be migrated to
5678 * another cpu during offline.
5679 */
5680 rq->core_pick = NULL;
5681 return __pick_next_task(rq, prev, rf);
5682 }
5683
5684 /*
5685 * If there were no {en,de}queues since we picked (IOW, the task
5686 * pointers are all still valid), and we haven't scheduled the last
5687 * pick yet, do so now.
5688 *
5689 * rq->core_pick can be NULL if no selection was made for a CPU because
5690 * it was either offline or went offline during a sibling's core-wide
5691 * selection. In this case, do a core-wide selection.
5692 */
5693 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5694 rq->core->core_pick_seq != rq->core_sched_seq &&
5695 rq->core_pick) {
5696 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5697
5698 next = rq->core_pick;
5699 if (next != prev) {
5700 put_prev_task(rq, prev);
5701 set_next_task(rq, next);
5702 }
5703
5704 rq->core_pick = NULL;
5705 return next;
5706 }
5707
5708 put_prev_task_balance(rq, prev, rf);
5709
5710 smt_mask = cpu_smt_mask(cpu);
5711 need_sync = !!rq->core->core_cookie;
5712
5713 /* reset state */
5714 rq->core->core_cookie = 0UL;
5715 if (rq->core->core_forceidle) {
5716 need_sync = true;
5717 fi_before = true;
5718 rq->core->core_forceidle = false;
5719 }
5720
5721 /*
5722 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5723 *
5724 * @task_seq guards the task state ({en,de}queues)
5725 * @pick_seq is the @task_seq we did a selection on
5726 * @sched_seq is the @pick_seq we scheduled
5727 *
5728 * However, preemptions can cause multiple picks on the same task set.
5729 * 'Fix' this by also increasing @task_seq for every pick.
5730 */
5731 rq->core->core_task_seq++;
5732
5733 /*
5734 * Optimize for common case where this CPU has no cookies
5735 * and there are no cookied tasks running on siblings.
5736 */
5737 if (!need_sync) {
5738 for_each_class(class) {
5739 next = class->pick_task(rq);
5740 if (next)
5741 break;
5742 }
5743
5744 if (!next->core_cookie) {
5745 rq->core_pick = NULL;
5746 /*
5747 * For robustness, update the min_vruntime_fi for
5748 * unconstrained picks as well.
5749 */
5750 WARN_ON_ONCE(fi_before);
5751 task_vruntime_update(rq, next, false);
5752 goto done;
5753 }
5754 }
5755
5756 for_each_cpu(i, smt_mask) {
5757 struct rq *rq_i = cpu_rq(i);
5758
5759 rq_i->core_pick = NULL;
5760
5761 if (i != cpu)
5762 update_rq_clock(rq_i);
5763 }
5764
5765 /*
5766 * Try and select tasks for each sibling in descending sched_class
5767 * order.
5768 */
5769 for_each_class(class) {
5770 again:
5771 for_each_cpu_wrap(i, smt_mask, cpu) {
5772 struct rq *rq_i = cpu_rq(i);
5773 struct task_struct *p;
5774
5775 if (rq_i->core_pick)
5776 continue;
5777
5778 /*
5779 * If this sibling doesn't yet have a suitable task to
5780 * run; ask for the most eligible task, given the
5781 * highest priority task already selected for this
5782 * core.
5783 */
5784 p = pick_task(rq_i, class, max, fi_before);
5785 if (!p)
5786 continue;
5787
5788 if (!is_task_rq_idle(p))
5789 occ++;
5790
5791 rq_i->core_pick = p;
5792 if (rq_i->idle == p && rq_i->nr_running) {
5793 rq->core->core_forceidle = true;
5794 if (!fi_before)
5795 rq->core->core_forceidle_seq++;
5796 }
5797
5798 /*
5799 * If this new candidate is of higher priority than the
5800 * previous; and they're incompatible; we need to wipe
5801 * the slate and start over. pick_task makes sure that
5802 * p's priority is more than max if it doesn't match
5803 * max's cookie.
5804 *
5805 * NOTE: this is a linear max-filter and is thus bounded
5806 * in execution time.
5807 */
5808 if (!max || !cookie_match(max, p)) {
5809 struct task_struct *old_max = max;
5810
5811 rq->core->core_cookie = p->core_cookie;
5812 max = p;
5813
5814 if (old_max) {
5815 rq->core->core_forceidle = false;
5816 for_each_cpu(j, smt_mask) {
5817 if (j == i)
5818 continue;
5819
5820 cpu_rq(j)->core_pick = NULL;
5821 }
5822 occ = 1;
5823 goto again;
5824 }
5825 }
5826 }
5827 }
5828
5829 rq->core->core_pick_seq = rq->core->core_task_seq;
5830 next = rq->core_pick;
5831 rq->core_sched_seq = rq->core->core_pick_seq;
5832
5833 /* Something should have been selected for current CPU */
5834 WARN_ON_ONCE(!next);
5835
5836 /*
5837 * Reschedule siblings
5838 *
5839 * NOTE: L1TF -- at this point we're no longer running the old task and
5840 * sending an IPI (below) ensures the sibling will no longer be running
5841 * their task. This ensures there is no inter-sibling overlap between
5842 * non-matching user state.
5843 */
5844 for_each_cpu(i, smt_mask) {
5845 struct rq *rq_i = cpu_rq(i);
5846
5847 /*
5848 * An online sibling might have gone offline before a task
5849 * could be picked for it, or it might be offline but later
5850 * happen to come online, but its too late and nothing was
5851 * picked for it. That's Ok - it will pick tasks for itself,
5852 * so ignore it.
5853 */
5854 if (!rq_i->core_pick)
5855 continue;
5856
5857 /*
5858 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5859 * fi_before fi update?
5860 * 0 0 1
5861 * 0 1 1
5862 * 1 0 1
5863 * 1 1 0
5864 */
5865 if (!(fi_before && rq->core->core_forceidle))
5866 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5867
5868 rq_i->core_pick->core_occupation = occ;
5869
5870 if (i == cpu) {
5871 rq_i->core_pick = NULL;
5872 continue;
5873 }
5874
5875 /* Did we break L1TF mitigation requirements? */
5876 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5877
5878 if (rq_i->curr == rq_i->core_pick) {
5879 rq_i->core_pick = NULL;
5880 continue;
5881 }
5882
5883 resched_curr(rq_i);
5884 }
5885
5886 done:
5887 set_next_task(rq, next);
5888 return next;
5889 }
5890
try_steal_cookie(int this,int that)5891 static bool try_steal_cookie(int this, int that)
5892 {
5893 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5894 struct task_struct *p;
5895 unsigned long cookie;
5896 bool success = false;
5897
5898 local_irq_disable();
5899 double_rq_lock(dst, src);
5900
5901 cookie = dst->core->core_cookie;
5902 if (!cookie)
5903 goto unlock;
5904
5905 if (dst->curr != dst->idle)
5906 goto unlock;
5907
5908 p = sched_core_find(src, cookie);
5909 if (p == src->idle)
5910 goto unlock;
5911
5912 do {
5913 if (p == src->core_pick || p == src->curr)
5914 goto next;
5915
5916 if (!cpumask_test_cpu(this, &p->cpus_mask))
5917 goto next;
5918
5919 if (p->core_occupation > dst->idle->core_occupation)
5920 goto next;
5921
5922 deactivate_task(src, p, 0);
5923 set_task_cpu(p, this);
5924 activate_task(dst, p, 0);
5925
5926 resched_curr(dst);
5927
5928 success = true;
5929 break;
5930
5931 next:
5932 p = sched_core_next(p, cookie);
5933 } while (p);
5934
5935 unlock:
5936 double_rq_unlock(dst, src);
5937 local_irq_enable();
5938
5939 return success;
5940 }
5941
steal_cookie_task(int cpu,struct sched_domain * sd)5942 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5943 {
5944 int i;
5945
5946 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5947 if (i == cpu)
5948 continue;
5949
5950 if (need_resched())
5951 break;
5952
5953 if (try_steal_cookie(cpu, i))
5954 return true;
5955 }
5956
5957 return false;
5958 }
5959
sched_core_balance(struct rq * rq)5960 static void sched_core_balance(struct rq *rq)
5961 {
5962 struct sched_domain *sd;
5963 int cpu = cpu_of(rq);
5964
5965 preempt_disable();
5966 rcu_read_lock();
5967 raw_spin_rq_unlock_irq(rq);
5968 for_each_domain(cpu, sd) {
5969 if (need_resched())
5970 break;
5971
5972 if (steal_cookie_task(cpu, sd))
5973 break;
5974 }
5975 raw_spin_rq_lock_irq(rq);
5976 rcu_read_unlock();
5977 preempt_enable();
5978 }
5979
5980 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5981
queue_core_balance(struct rq * rq)5982 void queue_core_balance(struct rq *rq)
5983 {
5984 if (!sched_core_enabled(rq))
5985 return;
5986
5987 if (!rq->core->core_cookie)
5988 return;
5989
5990 if (!rq->nr_running) /* not forced idle */
5991 return;
5992
5993 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5994 }
5995
sched_core_cpu_starting(unsigned int cpu)5996 static void sched_core_cpu_starting(unsigned int cpu)
5997 {
5998 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5999 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6000 unsigned long flags;
6001 int t;
6002
6003 sched_core_lock(cpu, &flags);
6004
6005 WARN_ON_ONCE(rq->core != rq);
6006
6007 /* if we're the first, we'll be our own leader */
6008 if (cpumask_weight(smt_mask) == 1)
6009 goto unlock;
6010
6011 /* find the leader */
6012 for_each_cpu(t, smt_mask) {
6013 if (t == cpu)
6014 continue;
6015 rq = cpu_rq(t);
6016 if (rq->core == rq) {
6017 core_rq = rq;
6018 break;
6019 }
6020 }
6021
6022 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6023 goto unlock;
6024
6025 /* install and validate core_rq */
6026 for_each_cpu(t, smt_mask) {
6027 rq = cpu_rq(t);
6028
6029 if (t == cpu)
6030 rq->core = core_rq;
6031
6032 WARN_ON_ONCE(rq->core != core_rq);
6033 }
6034
6035 unlock:
6036 sched_core_unlock(cpu, &flags);
6037 }
6038
sched_core_cpu_deactivate(unsigned int cpu)6039 static void sched_core_cpu_deactivate(unsigned int cpu)
6040 {
6041 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6042 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6043 unsigned long flags;
6044 int t;
6045
6046 sched_core_lock(cpu, &flags);
6047
6048 /* if we're the last man standing, nothing to do */
6049 if (cpumask_weight(smt_mask) == 1) {
6050 WARN_ON_ONCE(rq->core != rq);
6051 goto unlock;
6052 }
6053
6054 /* if we're not the leader, nothing to do */
6055 if (rq->core != rq)
6056 goto unlock;
6057
6058 /* find a new leader */
6059 for_each_cpu(t, smt_mask) {
6060 if (t == cpu)
6061 continue;
6062 core_rq = cpu_rq(t);
6063 break;
6064 }
6065
6066 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6067 goto unlock;
6068
6069 /* copy the shared state to the new leader */
6070 core_rq->core_task_seq = rq->core_task_seq;
6071 core_rq->core_pick_seq = rq->core_pick_seq;
6072 core_rq->core_cookie = rq->core_cookie;
6073 core_rq->core_forceidle = rq->core_forceidle;
6074 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6075
6076 /* install new leader */
6077 for_each_cpu(t, smt_mask) {
6078 rq = cpu_rq(t);
6079 rq->core = core_rq;
6080 }
6081
6082 unlock:
6083 sched_core_unlock(cpu, &flags);
6084 }
6085
sched_core_cpu_dying(unsigned int cpu)6086 static inline void sched_core_cpu_dying(unsigned int cpu)
6087 {
6088 struct rq *rq = cpu_rq(cpu);
6089
6090 if (rq->core != rq)
6091 rq->core = rq;
6092 }
6093
6094 #else /* !CONFIG_SCHED_CORE */
6095
sched_core_cpu_starting(unsigned int cpu)6096 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6097 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6098 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6099
6100 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6101 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6102 {
6103 return __pick_next_task(rq, prev, rf);
6104 }
6105
6106 #endif /* CONFIG_SCHED_CORE */
6107
6108 /*
6109 * Constants for the sched_mode argument of __schedule().
6110 *
6111 * The mode argument allows RT enabled kernels to differentiate a
6112 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6113 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6114 * optimize the AND operation out and just check for zero.
6115 */
6116 #define SM_NONE 0x0
6117 #define SM_PREEMPT 0x1
6118 #define SM_RTLOCK_WAIT 0x2
6119
6120 #ifndef CONFIG_PREEMPT_RT
6121 # define SM_MASK_PREEMPT (~0U)
6122 #else
6123 # define SM_MASK_PREEMPT SM_PREEMPT
6124 #endif
6125
6126 /*
6127 * __schedule() is the main scheduler function.
6128 *
6129 * The main means of driving the scheduler and thus entering this function are:
6130 *
6131 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6132 *
6133 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6134 * paths. For example, see arch/x86/entry_64.S.
6135 *
6136 * To drive preemption between tasks, the scheduler sets the flag in timer
6137 * interrupt handler scheduler_tick().
6138 *
6139 * 3. Wakeups don't really cause entry into schedule(). They add a
6140 * task to the run-queue and that's it.
6141 *
6142 * Now, if the new task added to the run-queue preempts the current
6143 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6144 * called on the nearest possible occasion:
6145 *
6146 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6147 *
6148 * - in syscall or exception context, at the next outmost
6149 * preempt_enable(). (this might be as soon as the wake_up()'s
6150 * spin_unlock()!)
6151 *
6152 * - in IRQ context, return from interrupt-handler to
6153 * preemptible context
6154 *
6155 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6156 * then at the next:
6157 *
6158 * - cond_resched() call
6159 * - explicit schedule() call
6160 * - return from syscall or exception to user-space
6161 * - return from interrupt-handler to user-space
6162 *
6163 * WARNING: must be called with preemption disabled!
6164 */
__schedule(unsigned int sched_mode)6165 static void __sched notrace __schedule(unsigned int sched_mode)
6166 {
6167 struct task_struct *prev, *next;
6168 unsigned long *switch_count;
6169 unsigned long prev_state;
6170 struct rq_flags rf;
6171 struct rq *rq;
6172 int cpu;
6173
6174 cpu = smp_processor_id();
6175 rq = cpu_rq(cpu);
6176 prev = rq->curr;
6177
6178 schedule_debug(prev, !!sched_mode);
6179
6180 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6181 hrtick_clear(rq);
6182
6183 local_irq_disable();
6184 rcu_note_context_switch(!!sched_mode);
6185
6186 /*
6187 * Make sure that signal_pending_state()->signal_pending() below
6188 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6189 * done by the caller to avoid the race with signal_wake_up():
6190 *
6191 * __set_current_state(@state) signal_wake_up()
6192 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6193 * wake_up_state(p, state)
6194 * LOCK rq->lock LOCK p->pi_state
6195 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6196 * if (signal_pending_state()) if (p->state & @state)
6197 *
6198 * Also, the membarrier system call requires a full memory barrier
6199 * after coming from user-space, before storing to rq->curr.
6200 */
6201 rq_lock(rq, &rf);
6202 smp_mb__after_spinlock();
6203
6204 /* Promote REQ to ACT */
6205 rq->clock_update_flags <<= 1;
6206 update_rq_clock(rq);
6207
6208 switch_count = &prev->nivcsw;
6209
6210 /*
6211 * We must load prev->state once (task_struct::state is volatile), such
6212 * that:
6213 *
6214 * - we form a control dependency vs deactivate_task() below.
6215 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
6216 */
6217 prev_state = READ_ONCE(prev->__state);
6218 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6219 if (signal_pending_state(prev_state, prev)) {
6220 WRITE_ONCE(prev->__state, TASK_RUNNING);
6221 } else {
6222 prev->sched_contributes_to_load =
6223 (prev_state & TASK_UNINTERRUPTIBLE) &&
6224 !(prev_state & TASK_NOLOAD) &&
6225 !(prev->flags & PF_FROZEN);
6226
6227 if (prev->sched_contributes_to_load)
6228 rq->nr_uninterruptible++;
6229
6230 /*
6231 * __schedule() ttwu()
6232 * prev_state = prev->state; if (p->on_rq && ...)
6233 * if (prev_state) goto out;
6234 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6235 * p->state = TASK_WAKING
6236 *
6237 * Where __schedule() and ttwu() have matching control dependencies.
6238 *
6239 * After this, schedule() must not care about p->state any more.
6240 */
6241 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6242
6243 if (prev->in_iowait) {
6244 atomic_inc(&rq->nr_iowait);
6245 delayacct_blkio_start();
6246 }
6247 }
6248 switch_count = &prev->nvcsw;
6249 }
6250
6251 next = pick_next_task(rq, prev, &rf);
6252 clear_tsk_need_resched(prev);
6253 clear_preempt_need_resched();
6254 #ifdef CONFIG_SCHED_DEBUG
6255 rq->last_seen_need_resched_ns = 0;
6256 #endif
6257
6258 if (likely(prev != next)) {
6259 rq->nr_switches++;
6260 /*
6261 * RCU users of rcu_dereference(rq->curr) may not see
6262 * changes to task_struct made by pick_next_task().
6263 */
6264 RCU_INIT_POINTER(rq->curr, next);
6265 /*
6266 * The membarrier system call requires each architecture
6267 * to have a full memory barrier after updating
6268 * rq->curr, before returning to user-space.
6269 *
6270 * Here are the schemes providing that barrier on the
6271 * various architectures:
6272 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6273 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6274 * - finish_lock_switch() for weakly-ordered
6275 * architectures where spin_unlock is a full barrier,
6276 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6277 * is a RELEASE barrier),
6278 */
6279 ++*switch_count;
6280
6281 migrate_disable_switch(rq, prev);
6282 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6283
6284 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
6285
6286 /* Also unlocks the rq: */
6287 rq = context_switch(rq, prev, next, &rf);
6288 } else {
6289 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6290
6291 rq_unpin_lock(rq, &rf);
6292 __balance_callbacks(rq);
6293 raw_spin_rq_unlock_irq(rq);
6294 }
6295 }
6296
do_task_dead(void)6297 void __noreturn do_task_dead(void)
6298 {
6299 /* Causes final put_task_struct in finish_task_switch(): */
6300 set_special_state(TASK_DEAD);
6301
6302 /* Tell freezer to ignore us: */
6303 current->flags |= PF_NOFREEZE;
6304
6305 __schedule(SM_NONE);
6306 BUG();
6307
6308 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6309 for (;;)
6310 cpu_relax();
6311 }
6312
sched_submit_work(struct task_struct * tsk)6313 static inline void sched_submit_work(struct task_struct *tsk)
6314 {
6315 unsigned int task_flags;
6316
6317 if (task_is_running(tsk))
6318 return;
6319
6320 task_flags = tsk->flags;
6321 /*
6322 * If a worker went to sleep, notify and ask workqueue whether
6323 * it wants to wake up a task to maintain concurrency.
6324 * As this function is called inside the schedule() context,
6325 * we disable preemption to avoid it calling schedule() again
6326 * in the possible wakeup of a kworker and because wq_worker_sleeping()
6327 * requires it.
6328 */
6329 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6330 preempt_disable();
6331 if (task_flags & PF_WQ_WORKER)
6332 wq_worker_sleeping(tsk);
6333 else
6334 io_wq_worker_sleeping(tsk);
6335 preempt_enable_no_resched();
6336 }
6337
6338 if (tsk_is_pi_blocked(tsk))
6339 return;
6340
6341 /*
6342 * If we are going to sleep and we have plugged IO queued,
6343 * make sure to submit it to avoid deadlocks.
6344 */
6345 if (blk_needs_flush_plug(tsk))
6346 blk_schedule_flush_plug(tsk);
6347 }
6348
sched_update_worker(struct task_struct * tsk)6349 static void sched_update_worker(struct task_struct *tsk)
6350 {
6351 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6352 if (tsk->flags & PF_WQ_WORKER)
6353 wq_worker_running(tsk);
6354 else
6355 io_wq_worker_running(tsk);
6356 }
6357 }
6358
schedule(void)6359 asmlinkage __visible void __sched schedule(void)
6360 {
6361 struct task_struct *tsk = current;
6362
6363 sched_submit_work(tsk);
6364 do {
6365 preempt_disable();
6366 __schedule(SM_NONE);
6367 sched_preempt_enable_no_resched();
6368 } while (need_resched());
6369 sched_update_worker(tsk);
6370 }
6371 EXPORT_SYMBOL(schedule);
6372
6373 /*
6374 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6375 * state (have scheduled out non-voluntarily) by making sure that all
6376 * tasks have either left the run queue or have gone into user space.
6377 * As idle tasks do not do either, they must not ever be preempted
6378 * (schedule out non-voluntarily).
6379 *
6380 * schedule_idle() is similar to schedule_preempt_disable() except that it
6381 * never enables preemption because it does not call sched_submit_work().
6382 */
schedule_idle(void)6383 void __sched schedule_idle(void)
6384 {
6385 /*
6386 * As this skips calling sched_submit_work(), which the idle task does
6387 * regardless because that function is a nop when the task is in a
6388 * TASK_RUNNING state, make sure this isn't used someplace that the
6389 * current task can be in any other state. Note, idle is always in the
6390 * TASK_RUNNING state.
6391 */
6392 WARN_ON_ONCE(current->__state);
6393 do {
6394 __schedule(SM_NONE);
6395 } while (need_resched());
6396 }
6397
6398 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
schedule_user(void)6399 asmlinkage __visible void __sched schedule_user(void)
6400 {
6401 /*
6402 * If we come here after a random call to set_need_resched(),
6403 * or we have been woken up remotely but the IPI has not yet arrived,
6404 * we haven't yet exited the RCU idle mode. Do it here manually until
6405 * we find a better solution.
6406 *
6407 * NB: There are buggy callers of this function. Ideally we
6408 * should warn if prev_state != CONTEXT_USER, but that will trigger
6409 * too frequently to make sense yet.
6410 */
6411 enum ctx_state prev_state = exception_enter();
6412 schedule();
6413 exception_exit(prev_state);
6414 }
6415 #endif
6416
6417 /**
6418 * schedule_preempt_disabled - called with preemption disabled
6419 *
6420 * Returns with preemption disabled. Note: preempt_count must be 1
6421 */
schedule_preempt_disabled(void)6422 void __sched schedule_preempt_disabled(void)
6423 {
6424 sched_preempt_enable_no_resched();
6425 schedule();
6426 preempt_disable();
6427 }
6428
6429 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6430 void __sched notrace schedule_rtlock(void)
6431 {
6432 do {
6433 preempt_disable();
6434 __schedule(SM_RTLOCK_WAIT);
6435 sched_preempt_enable_no_resched();
6436 } while (need_resched());
6437 }
6438 NOKPROBE_SYMBOL(schedule_rtlock);
6439 #endif
6440
preempt_schedule_common(void)6441 static void __sched notrace preempt_schedule_common(void)
6442 {
6443 do {
6444 /*
6445 * Because the function tracer can trace preempt_count_sub()
6446 * and it also uses preempt_enable/disable_notrace(), if
6447 * NEED_RESCHED is set, the preempt_enable_notrace() called
6448 * by the function tracer will call this function again and
6449 * cause infinite recursion.
6450 *
6451 * Preemption must be disabled here before the function
6452 * tracer can trace. Break up preempt_disable() into two
6453 * calls. One to disable preemption without fear of being
6454 * traced. The other to still record the preemption latency,
6455 * which can also be traced by the function tracer.
6456 */
6457 preempt_disable_notrace();
6458 preempt_latency_start(1);
6459 __schedule(SM_PREEMPT);
6460 preempt_latency_stop(1);
6461 preempt_enable_no_resched_notrace();
6462
6463 /*
6464 * Check again in case we missed a preemption opportunity
6465 * between schedule and now.
6466 */
6467 } while (need_resched());
6468 }
6469
6470 #ifdef CONFIG_PREEMPTION
6471 /*
6472 * This is the entry point to schedule() from in-kernel preemption
6473 * off of preempt_enable.
6474 */
preempt_schedule(void)6475 asmlinkage __visible void __sched notrace preempt_schedule(void)
6476 {
6477 /*
6478 * If there is a non-zero preempt_count or interrupts are disabled,
6479 * we do not want to preempt the current task. Just return..
6480 */
6481 if (likely(!preemptible()))
6482 return;
6483
6484 preempt_schedule_common();
6485 }
6486 NOKPROBE_SYMBOL(preempt_schedule);
6487 EXPORT_SYMBOL(preempt_schedule);
6488
6489 #ifdef CONFIG_PREEMPT_DYNAMIC
6490 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6491 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6492 #endif
6493
6494
6495 /**
6496 * preempt_schedule_notrace - preempt_schedule called by tracing
6497 *
6498 * The tracing infrastructure uses preempt_enable_notrace to prevent
6499 * recursion and tracing preempt enabling caused by the tracing
6500 * infrastructure itself. But as tracing can happen in areas coming
6501 * from userspace or just about to enter userspace, a preempt enable
6502 * can occur before user_exit() is called. This will cause the scheduler
6503 * to be called when the system is still in usermode.
6504 *
6505 * To prevent this, the preempt_enable_notrace will use this function
6506 * instead of preempt_schedule() to exit user context if needed before
6507 * calling the scheduler.
6508 */
preempt_schedule_notrace(void)6509 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6510 {
6511 enum ctx_state prev_ctx;
6512
6513 if (likely(!preemptible()))
6514 return;
6515
6516 do {
6517 /*
6518 * Because the function tracer can trace preempt_count_sub()
6519 * and it also uses preempt_enable/disable_notrace(), if
6520 * NEED_RESCHED is set, the preempt_enable_notrace() called
6521 * by the function tracer will call this function again and
6522 * cause infinite recursion.
6523 *
6524 * Preemption must be disabled here before the function
6525 * tracer can trace. Break up preempt_disable() into two
6526 * calls. One to disable preemption without fear of being
6527 * traced. The other to still record the preemption latency,
6528 * which can also be traced by the function tracer.
6529 */
6530 preempt_disable_notrace();
6531 preempt_latency_start(1);
6532 /*
6533 * Needs preempt disabled in case user_exit() is traced
6534 * and the tracer calls preempt_enable_notrace() causing
6535 * an infinite recursion.
6536 */
6537 prev_ctx = exception_enter();
6538 __schedule(SM_PREEMPT);
6539 exception_exit(prev_ctx);
6540
6541 preempt_latency_stop(1);
6542 preempt_enable_no_resched_notrace();
6543 } while (need_resched());
6544 }
6545 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6546
6547 #ifdef CONFIG_PREEMPT_DYNAMIC
6548 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6549 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6550 #endif
6551
6552 #endif /* CONFIG_PREEMPTION */
6553
6554 #ifdef CONFIG_PREEMPT_DYNAMIC
6555
6556 #include <linux/entry-common.h>
6557
6558 /*
6559 * SC:cond_resched
6560 * SC:might_resched
6561 * SC:preempt_schedule
6562 * SC:preempt_schedule_notrace
6563 * SC:irqentry_exit_cond_resched
6564 *
6565 *
6566 * NONE:
6567 * cond_resched <- __cond_resched
6568 * might_resched <- RET0
6569 * preempt_schedule <- NOP
6570 * preempt_schedule_notrace <- NOP
6571 * irqentry_exit_cond_resched <- NOP
6572 *
6573 * VOLUNTARY:
6574 * cond_resched <- __cond_resched
6575 * might_resched <- __cond_resched
6576 * preempt_schedule <- NOP
6577 * preempt_schedule_notrace <- NOP
6578 * irqentry_exit_cond_resched <- NOP
6579 *
6580 * FULL:
6581 * cond_resched <- RET0
6582 * might_resched <- RET0
6583 * preempt_schedule <- preempt_schedule
6584 * preempt_schedule_notrace <- preempt_schedule_notrace
6585 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6586 */
6587
6588 enum {
6589 preempt_dynamic_none = 0,
6590 preempt_dynamic_voluntary,
6591 preempt_dynamic_full,
6592 };
6593
6594 int preempt_dynamic_mode = preempt_dynamic_full;
6595
sched_dynamic_mode(const char * str)6596 int sched_dynamic_mode(const char *str)
6597 {
6598 if (!strcmp(str, "none"))
6599 return preempt_dynamic_none;
6600
6601 if (!strcmp(str, "voluntary"))
6602 return preempt_dynamic_voluntary;
6603
6604 if (!strcmp(str, "full"))
6605 return preempt_dynamic_full;
6606
6607 return -EINVAL;
6608 }
6609
sched_dynamic_update(int mode)6610 void sched_dynamic_update(int mode)
6611 {
6612 /*
6613 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6614 * the ZERO state, which is invalid.
6615 */
6616 static_call_update(cond_resched, __cond_resched);
6617 static_call_update(might_resched, __cond_resched);
6618 static_call_update(preempt_schedule, __preempt_schedule_func);
6619 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6620 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6621
6622 switch (mode) {
6623 case preempt_dynamic_none:
6624 static_call_update(cond_resched, __cond_resched);
6625 static_call_update(might_resched, (void *)&__static_call_return0);
6626 static_call_update(preempt_schedule, NULL);
6627 static_call_update(preempt_schedule_notrace, NULL);
6628 static_call_update(irqentry_exit_cond_resched, NULL);
6629 pr_info("Dynamic Preempt: none\n");
6630 break;
6631
6632 case preempt_dynamic_voluntary:
6633 static_call_update(cond_resched, __cond_resched);
6634 static_call_update(might_resched, __cond_resched);
6635 static_call_update(preempt_schedule, NULL);
6636 static_call_update(preempt_schedule_notrace, NULL);
6637 static_call_update(irqentry_exit_cond_resched, NULL);
6638 pr_info("Dynamic Preempt: voluntary\n");
6639 break;
6640
6641 case preempt_dynamic_full:
6642 static_call_update(cond_resched, (void *)&__static_call_return0);
6643 static_call_update(might_resched, (void *)&__static_call_return0);
6644 static_call_update(preempt_schedule, __preempt_schedule_func);
6645 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6646 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6647 pr_info("Dynamic Preempt: full\n");
6648 break;
6649 }
6650
6651 preempt_dynamic_mode = mode;
6652 }
6653
setup_preempt_mode(char * str)6654 static int __init setup_preempt_mode(char *str)
6655 {
6656 int mode = sched_dynamic_mode(str);
6657 if (mode < 0) {
6658 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6659 return 1;
6660 }
6661
6662 sched_dynamic_update(mode);
6663 return 0;
6664 }
6665 __setup("preempt=", setup_preempt_mode);
6666
6667 #endif /* CONFIG_PREEMPT_DYNAMIC */
6668
6669 /*
6670 * This is the entry point to schedule() from kernel preemption
6671 * off of irq context.
6672 * Note, that this is called and return with irqs disabled. This will
6673 * protect us against recursive calling from irq.
6674 */
preempt_schedule_irq(void)6675 asmlinkage __visible void __sched preempt_schedule_irq(void)
6676 {
6677 enum ctx_state prev_state;
6678
6679 /* Catch callers which need to be fixed */
6680 BUG_ON(preempt_count() || !irqs_disabled());
6681
6682 prev_state = exception_enter();
6683
6684 do {
6685 preempt_disable();
6686 local_irq_enable();
6687 __schedule(SM_PREEMPT);
6688 local_irq_disable();
6689 sched_preempt_enable_no_resched();
6690 } while (need_resched());
6691
6692 exception_exit(prev_state);
6693 }
6694
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)6695 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6696 void *key)
6697 {
6698 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6699 return try_to_wake_up(curr->private, mode, wake_flags);
6700 }
6701 EXPORT_SYMBOL(default_wake_function);
6702
__setscheduler_prio(struct task_struct * p,int prio)6703 static void __setscheduler_prio(struct task_struct *p, int prio)
6704 {
6705 if (dl_prio(prio))
6706 p->sched_class = &dl_sched_class;
6707 else if (rt_prio(prio))
6708 p->sched_class = &rt_sched_class;
6709 else
6710 p->sched_class = &fair_sched_class;
6711
6712 p->prio = prio;
6713 }
6714
6715 #ifdef CONFIG_RT_MUTEXES
6716
__rt_effective_prio(struct task_struct * pi_task,int prio)6717 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6718 {
6719 if (pi_task)
6720 prio = min(prio, pi_task->prio);
6721
6722 return prio;
6723 }
6724
rt_effective_prio(struct task_struct * p,int prio)6725 static inline int rt_effective_prio(struct task_struct *p, int prio)
6726 {
6727 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6728
6729 return __rt_effective_prio(pi_task, prio);
6730 }
6731
6732 /*
6733 * rt_mutex_setprio - set the current priority of a task
6734 * @p: task to boost
6735 * @pi_task: donor task
6736 *
6737 * This function changes the 'effective' priority of a task. It does
6738 * not touch ->normal_prio like __setscheduler().
6739 *
6740 * Used by the rt_mutex code to implement priority inheritance
6741 * logic. Call site only calls if the priority of the task changed.
6742 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)6743 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6744 {
6745 int prio, oldprio, queued, running, queue_flag =
6746 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6747 const struct sched_class *prev_class;
6748 struct rq_flags rf;
6749 struct rq *rq;
6750
6751 /* XXX used to be waiter->prio, not waiter->task->prio */
6752 prio = __rt_effective_prio(pi_task, p->normal_prio);
6753
6754 /*
6755 * If nothing changed; bail early.
6756 */
6757 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6758 return;
6759
6760 rq = __task_rq_lock(p, &rf);
6761 update_rq_clock(rq);
6762 /*
6763 * Set under pi_lock && rq->lock, such that the value can be used under
6764 * either lock.
6765 *
6766 * Note that there is loads of tricky to make this pointer cache work
6767 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6768 * ensure a task is de-boosted (pi_task is set to NULL) before the
6769 * task is allowed to run again (and can exit). This ensures the pointer
6770 * points to a blocked task -- which guarantees the task is present.
6771 */
6772 p->pi_top_task = pi_task;
6773
6774 /*
6775 * For FIFO/RR we only need to set prio, if that matches we're done.
6776 */
6777 if (prio == p->prio && !dl_prio(prio))
6778 goto out_unlock;
6779
6780 /*
6781 * Idle task boosting is a nono in general. There is one
6782 * exception, when PREEMPT_RT and NOHZ is active:
6783 *
6784 * The idle task calls get_next_timer_interrupt() and holds
6785 * the timer wheel base->lock on the CPU and another CPU wants
6786 * to access the timer (probably to cancel it). We can safely
6787 * ignore the boosting request, as the idle CPU runs this code
6788 * with interrupts disabled and will complete the lock
6789 * protected section without being interrupted. So there is no
6790 * real need to boost.
6791 */
6792 if (unlikely(p == rq->idle)) {
6793 WARN_ON(p != rq->curr);
6794 WARN_ON(p->pi_blocked_on);
6795 goto out_unlock;
6796 }
6797
6798 trace_sched_pi_setprio(p, pi_task);
6799 oldprio = p->prio;
6800
6801 if (oldprio == prio)
6802 queue_flag &= ~DEQUEUE_MOVE;
6803
6804 prev_class = p->sched_class;
6805 queued = task_on_rq_queued(p);
6806 running = task_current(rq, p);
6807 if (queued)
6808 dequeue_task(rq, p, queue_flag);
6809 if (running)
6810 put_prev_task(rq, p);
6811
6812 /*
6813 * Boosting condition are:
6814 * 1. -rt task is running and holds mutex A
6815 * --> -dl task blocks on mutex A
6816 *
6817 * 2. -dl task is running and holds mutex A
6818 * --> -dl task blocks on mutex A and could preempt the
6819 * running task
6820 */
6821 if (dl_prio(prio)) {
6822 if (!dl_prio(p->normal_prio) ||
6823 (pi_task && dl_prio(pi_task->prio) &&
6824 dl_entity_preempt(&pi_task->dl, &p->dl))) {
6825 p->dl.pi_se = pi_task->dl.pi_se;
6826 queue_flag |= ENQUEUE_REPLENISH;
6827 } else {
6828 p->dl.pi_se = &p->dl;
6829 }
6830 } else if (rt_prio(prio)) {
6831 if (dl_prio(oldprio))
6832 p->dl.pi_se = &p->dl;
6833 if (oldprio < prio)
6834 queue_flag |= ENQUEUE_HEAD;
6835 } else {
6836 if (dl_prio(oldprio))
6837 p->dl.pi_se = &p->dl;
6838 if (rt_prio(oldprio))
6839 p->rt.timeout = 0;
6840 }
6841
6842 __setscheduler_prio(p, prio);
6843
6844 if (queued)
6845 enqueue_task(rq, p, queue_flag);
6846 if (running)
6847 set_next_task(rq, p);
6848
6849 check_class_changed(rq, p, prev_class, oldprio);
6850 out_unlock:
6851 /* Avoid rq from going away on us: */
6852 preempt_disable();
6853
6854 rq_unpin_lock(rq, &rf);
6855 __balance_callbacks(rq);
6856 raw_spin_rq_unlock(rq);
6857
6858 preempt_enable();
6859 }
6860 #else
rt_effective_prio(struct task_struct * p,int prio)6861 static inline int rt_effective_prio(struct task_struct *p, int prio)
6862 {
6863 return prio;
6864 }
6865 #endif
6866
set_user_nice(struct task_struct * p,long nice)6867 void set_user_nice(struct task_struct *p, long nice)
6868 {
6869 bool queued, running;
6870 int old_prio;
6871 struct rq_flags rf;
6872 struct rq *rq;
6873
6874 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6875 return;
6876 /*
6877 * We have to be careful, if called from sys_setpriority(),
6878 * the task might be in the middle of scheduling on another CPU.
6879 */
6880 rq = task_rq_lock(p, &rf);
6881 update_rq_clock(rq);
6882
6883 /*
6884 * The RT priorities are set via sched_setscheduler(), but we still
6885 * allow the 'normal' nice value to be set - but as expected
6886 * it won't have any effect on scheduling until the task is
6887 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6888 */
6889 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6890 p->static_prio = NICE_TO_PRIO(nice);
6891 goto out_unlock;
6892 }
6893 queued = task_on_rq_queued(p);
6894 running = task_current(rq, p);
6895 if (queued)
6896 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6897 if (running)
6898 put_prev_task(rq, p);
6899
6900 p->static_prio = NICE_TO_PRIO(nice);
6901 set_load_weight(p, true);
6902 old_prio = p->prio;
6903 p->prio = effective_prio(p);
6904
6905 if (queued)
6906 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6907 if (running)
6908 set_next_task(rq, p);
6909
6910 /*
6911 * If the task increased its priority or is running and
6912 * lowered its priority, then reschedule its CPU:
6913 */
6914 p->sched_class->prio_changed(rq, p, old_prio);
6915
6916 out_unlock:
6917 task_rq_unlock(rq, p, &rf);
6918 }
6919 EXPORT_SYMBOL(set_user_nice);
6920
6921 /*
6922 * can_nice - check if a task can reduce its nice value
6923 * @p: task
6924 * @nice: nice value
6925 */
can_nice(const struct task_struct * p,const int nice)6926 int can_nice(const struct task_struct *p, const int nice)
6927 {
6928 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
6929 int nice_rlim = nice_to_rlimit(nice);
6930
6931 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6932 capable(CAP_SYS_NICE));
6933 }
6934
6935 #ifdef __ARCH_WANT_SYS_NICE
6936
6937 /*
6938 * sys_nice - change the priority of the current process.
6939 * @increment: priority increment
6940 *
6941 * sys_setpriority is a more generic, but much slower function that
6942 * does similar things.
6943 */
SYSCALL_DEFINE1(nice,int,increment)6944 SYSCALL_DEFINE1(nice, int, increment)
6945 {
6946 long nice, retval;
6947
6948 /*
6949 * Setpriority might change our priority at the same moment.
6950 * We don't have to worry. Conceptually one call occurs first
6951 * and we have a single winner.
6952 */
6953 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6954 nice = task_nice(current) + increment;
6955
6956 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6957 if (increment < 0 && !can_nice(current, nice))
6958 return -EPERM;
6959
6960 retval = security_task_setnice(current, nice);
6961 if (retval)
6962 return retval;
6963
6964 set_user_nice(current, nice);
6965 return 0;
6966 }
6967
6968 #endif
6969
6970 /**
6971 * task_prio - return the priority value of a given task.
6972 * @p: the task in question.
6973 *
6974 * Return: The priority value as seen by users in /proc.
6975 *
6976 * sched policy return value kernel prio user prio/nice
6977 *
6978 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6979 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6980 * deadline -101 -1 0
6981 */
task_prio(const struct task_struct * p)6982 int task_prio(const struct task_struct *p)
6983 {
6984 return p->prio - MAX_RT_PRIO;
6985 }
6986
6987 /**
6988 * idle_cpu - is a given CPU idle currently?
6989 * @cpu: the processor in question.
6990 *
6991 * Return: 1 if the CPU is currently idle. 0 otherwise.
6992 */
idle_cpu(int cpu)6993 int idle_cpu(int cpu)
6994 {
6995 struct rq *rq = cpu_rq(cpu);
6996
6997 if (rq->curr != rq->idle)
6998 return 0;
6999
7000 if (rq->nr_running)
7001 return 0;
7002
7003 #ifdef CONFIG_SMP
7004 if (rq->ttwu_pending)
7005 return 0;
7006 #endif
7007
7008 return 1;
7009 }
7010
7011 /**
7012 * available_idle_cpu - is a given CPU idle for enqueuing work.
7013 * @cpu: the CPU in question.
7014 *
7015 * Return: 1 if the CPU is currently idle. 0 otherwise.
7016 */
available_idle_cpu(int cpu)7017 int available_idle_cpu(int cpu)
7018 {
7019 if (!idle_cpu(cpu))
7020 return 0;
7021
7022 if (vcpu_is_preempted(cpu))
7023 return 0;
7024
7025 return 1;
7026 }
7027
7028 /**
7029 * idle_task - return the idle task for a given CPU.
7030 * @cpu: the processor in question.
7031 *
7032 * Return: The idle task for the CPU @cpu.
7033 */
idle_task(int cpu)7034 struct task_struct *idle_task(int cpu)
7035 {
7036 return cpu_rq(cpu)->idle;
7037 }
7038
7039 #ifdef CONFIG_SMP
7040 /*
7041 * This function computes an effective utilization for the given CPU, to be
7042 * used for frequency selection given the linear relation: f = u * f_max.
7043 *
7044 * The scheduler tracks the following metrics:
7045 *
7046 * cpu_util_{cfs,rt,dl,irq}()
7047 * cpu_bw_dl()
7048 *
7049 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7050 * synchronized windows and are thus directly comparable.
7051 *
7052 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7053 * which excludes things like IRQ and steal-time. These latter are then accrued
7054 * in the irq utilization.
7055 *
7056 * The DL bandwidth number otoh is not a measured metric but a value computed
7057 * based on the task model parameters and gives the minimal utilization
7058 * required to meet deadlines.
7059 */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum cpu_util_type type,struct task_struct * p)7060 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7061 unsigned long max, enum cpu_util_type type,
7062 struct task_struct *p)
7063 {
7064 unsigned long dl_util, util, irq;
7065 struct rq *rq = cpu_rq(cpu);
7066
7067 if (!uclamp_is_used() &&
7068 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7069 return max;
7070 }
7071
7072 /*
7073 * Early check to see if IRQ/steal time saturates the CPU, can be
7074 * because of inaccuracies in how we track these -- see
7075 * update_irq_load_avg().
7076 */
7077 irq = cpu_util_irq(rq);
7078 if (unlikely(irq >= max))
7079 return max;
7080
7081 /*
7082 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7083 * CFS tasks and we use the same metric to track the effective
7084 * utilization (PELT windows are synchronized) we can directly add them
7085 * to obtain the CPU's actual utilization.
7086 *
7087 * CFS and RT utilization can be boosted or capped, depending on
7088 * utilization clamp constraints requested by currently RUNNABLE
7089 * tasks.
7090 * When there are no CFS RUNNABLE tasks, clamps are released and
7091 * frequency will be gracefully reduced with the utilization decay.
7092 */
7093 util = util_cfs + cpu_util_rt(rq);
7094 if (type == FREQUENCY_UTIL)
7095 util = uclamp_rq_util_with(rq, util, p);
7096
7097 dl_util = cpu_util_dl(rq);
7098
7099 /*
7100 * For frequency selection we do not make cpu_util_dl() a permanent part
7101 * of this sum because we want to use cpu_bw_dl() later on, but we need
7102 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7103 * that we select f_max when there is no idle time.
7104 *
7105 * NOTE: numerical errors or stop class might cause us to not quite hit
7106 * saturation when we should -- something for later.
7107 */
7108 if (util + dl_util >= max)
7109 return max;
7110
7111 /*
7112 * OTOH, for energy computation we need the estimated running time, so
7113 * include util_dl and ignore dl_bw.
7114 */
7115 if (type == ENERGY_UTIL)
7116 util += dl_util;
7117
7118 /*
7119 * There is still idle time; further improve the number by using the
7120 * irq metric. Because IRQ/steal time is hidden from the task clock we
7121 * need to scale the task numbers:
7122 *
7123 * max - irq
7124 * U' = irq + --------- * U
7125 * max
7126 */
7127 util = scale_irq_capacity(util, irq, max);
7128 util += irq;
7129
7130 /*
7131 * Bandwidth required by DEADLINE must always be granted while, for
7132 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7133 * to gracefully reduce the frequency when no tasks show up for longer
7134 * periods of time.
7135 *
7136 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7137 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7138 * an interface. So, we only do the latter for now.
7139 */
7140 if (type == FREQUENCY_UTIL)
7141 util += cpu_bw_dl(rq);
7142
7143 return min(max, util);
7144 }
7145
sched_cpu_util(int cpu,unsigned long max)7146 unsigned long sched_cpu_util(int cpu, unsigned long max)
7147 {
7148 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
7149 ENERGY_UTIL, NULL);
7150 }
7151 #endif /* CONFIG_SMP */
7152
7153 /**
7154 * find_process_by_pid - find a process with a matching PID value.
7155 * @pid: the pid in question.
7156 *
7157 * The task of @pid, if found. %NULL otherwise.
7158 */
find_process_by_pid(pid_t pid)7159 static struct task_struct *find_process_by_pid(pid_t pid)
7160 {
7161 return pid ? find_task_by_vpid(pid) : current;
7162 }
7163
7164 /*
7165 * sched_setparam() passes in -1 for its policy, to let the functions
7166 * it calls know not to change it.
7167 */
7168 #define SETPARAM_POLICY -1
7169
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7170 static void __setscheduler_params(struct task_struct *p,
7171 const struct sched_attr *attr)
7172 {
7173 int policy = attr->sched_policy;
7174
7175 if (policy == SETPARAM_POLICY)
7176 policy = p->policy;
7177
7178 p->policy = policy;
7179
7180 if (dl_policy(policy))
7181 __setparam_dl(p, attr);
7182 else if (fair_policy(policy))
7183 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7184
7185 /*
7186 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7187 * !rt_policy. Always setting this ensures that things like
7188 * getparam()/getattr() don't report silly values for !rt tasks.
7189 */
7190 p->rt_priority = attr->sched_priority;
7191 p->normal_prio = normal_prio(p);
7192 set_load_weight(p, true);
7193 }
7194
7195 /*
7196 * Check the target process has a UID that matches the current process's:
7197 */
check_same_owner(struct task_struct * p)7198 static bool check_same_owner(struct task_struct *p)
7199 {
7200 const struct cred *cred = current_cred(), *pcred;
7201 bool match;
7202
7203 rcu_read_lock();
7204 pcred = __task_cred(p);
7205 match = (uid_eq(cred->euid, pcred->euid) ||
7206 uid_eq(cred->euid, pcred->uid));
7207 rcu_read_unlock();
7208 return match;
7209 }
7210
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7211 static int __sched_setscheduler(struct task_struct *p,
7212 const struct sched_attr *attr,
7213 bool user, bool pi)
7214 {
7215 int oldpolicy = -1, policy = attr->sched_policy;
7216 int retval, oldprio, newprio, queued, running;
7217 const struct sched_class *prev_class;
7218 struct callback_head *head;
7219 struct rq_flags rf;
7220 int reset_on_fork;
7221 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7222 struct rq *rq;
7223
7224 /* The pi code expects interrupts enabled */
7225 BUG_ON(pi && in_interrupt());
7226 recheck:
7227 /* Double check policy once rq lock held: */
7228 if (policy < 0) {
7229 reset_on_fork = p->sched_reset_on_fork;
7230 policy = oldpolicy = p->policy;
7231 } else {
7232 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7233
7234 if (!valid_policy(policy))
7235 return -EINVAL;
7236 }
7237
7238 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7239 return -EINVAL;
7240
7241 /*
7242 * Valid priorities for SCHED_FIFO and SCHED_RR are
7243 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7244 * SCHED_BATCH and SCHED_IDLE is 0.
7245 */
7246 if (attr->sched_priority > MAX_RT_PRIO-1)
7247 return -EINVAL;
7248 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7249 (rt_policy(policy) != (attr->sched_priority != 0)))
7250 return -EINVAL;
7251
7252 /*
7253 * Allow unprivileged RT tasks to decrease priority:
7254 */
7255 if (user && !capable(CAP_SYS_NICE)) {
7256 if (fair_policy(policy)) {
7257 if (attr->sched_nice < task_nice(p) &&
7258 !can_nice(p, attr->sched_nice))
7259 return -EPERM;
7260 }
7261
7262 if (rt_policy(policy)) {
7263 unsigned long rlim_rtprio =
7264 task_rlimit(p, RLIMIT_RTPRIO);
7265
7266 /* Can't set/change the rt policy: */
7267 if (policy != p->policy && !rlim_rtprio)
7268 return -EPERM;
7269
7270 /* Can't increase priority: */
7271 if (attr->sched_priority > p->rt_priority &&
7272 attr->sched_priority > rlim_rtprio)
7273 return -EPERM;
7274 }
7275
7276 /*
7277 * Can't set/change SCHED_DEADLINE policy at all for now
7278 * (safest behavior); in the future we would like to allow
7279 * unprivileged DL tasks to increase their relative deadline
7280 * or reduce their runtime (both ways reducing utilization)
7281 */
7282 if (dl_policy(policy))
7283 return -EPERM;
7284
7285 /*
7286 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7287 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7288 */
7289 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7290 if (!can_nice(p, task_nice(p)))
7291 return -EPERM;
7292 }
7293
7294 /* Can't change other user's priorities: */
7295 if (!check_same_owner(p))
7296 return -EPERM;
7297
7298 /* Normal users shall not reset the sched_reset_on_fork flag: */
7299 if (p->sched_reset_on_fork && !reset_on_fork)
7300 return -EPERM;
7301 }
7302
7303 if (user) {
7304 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7305 return -EINVAL;
7306
7307 retval = security_task_setscheduler(p);
7308 if (retval)
7309 return retval;
7310 }
7311
7312 /* Update task specific "requested" clamps */
7313 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7314 retval = uclamp_validate(p, attr);
7315 if (retval)
7316 return retval;
7317 }
7318
7319 if (pi)
7320 cpuset_read_lock();
7321
7322 /*
7323 * Make sure no PI-waiters arrive (or leave) while we are
7324 * changing the priority of the task:
7325 *
7326 * To be able to change p->policy safely, the appropriate
7327 * runqueue lock must be held.
7328 */
7329 rq = task_rq_lock(p, &rf);
7330 update_rq_clock(rq);
7331
7332 /*
7333 * Changing the policy of the stop threads its a very bad idea:
7334 */
7335 if (p == rq->stop) {
7336 retval = -EINVAL;
7337 goto unlock;
7338 }
7339
7340 /*
7341 * If not changing anything there's no need to proceed further,
7342 * but store a possible modification of reset_on_fork.
7343 */
7344 if (unlikely(policy == p->policy)) {
7345 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7346 goto change;
7347 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7348 goto change;
7349 if (dl_policy(policy) && dl_param_changed(p, attr))
7350 goto change;
7351 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7352 goto change;
7353
7354 p->sched_reset_on_fork = reset_on_fork;
7355 retval = 0;
7356 goto unlock;
7357 }
7358 change:
7359
7360 if (user) {
7361 #ifdef CONFIG_RT_GROUP_SCHED
7362 /*
7363 * Do not allow realtime tasks into groups that have no runtime
7364 * assigned.
7365 */
7366 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7367 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7368 !task_group_is_autogroup(task_group(p))) {
7369 retval = -EPERM;
7370 goto unlock;
7371 }
7372 #endif
7373 #ifdef CONFIG_SMP
7374 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7375 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7376 cpumask_t *span = rq->rd->span;
7377
7378 /*
7379 * Don't allow tasks with an affinity mask smaller than
7380 * the entire root_domain to become SCHED_DEADLINE. We
7381 * will also fail if there's no bandwidth available.
7382 */
7383 if (!cpumask_subset(span, p->cpus_ptr) ||
7384 rq->rd->dl_bw.bw == 0) {
7385 retval = -EPERM;
7386 goto unlock;
7387 }
7388 }
7389 #endif
7390 }
7391
7392 /* Re-check policy now with rq lock held: */
7393 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7394 policy = oldpolicy = -1;
7395 task_rq_unlock(rq, p, &rf);
7396 if (pi)
7397 cpuset_read_unlock();
7398 goto recheck;
7399 }
7400
7401 /*
7402 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7403 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7404 * is available.
7405 */
7406 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7407 retval = -EBUSY;
7408 goto unlock;
7409 }
7410
7411 p->sched_reset_on_fork = reset_on_fork;
7412 oldprio = p->prio;
7413
7414 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7415 if (pi) {
7416 /*
7417 * Take priority boosted tasks into account. If the new
7418 * effective priority is unchanged, we just store the new
7419 * normal parameters and do not touch the scheduler class and
7420 * the runqueue. This will be done when the task deboost
7421 * itself.
7422 */
7423 newprio = rt_effective_prio(p, newprio);
7424 if (newprio == oldprio)
7425 queue_flags &= ~DEQUEUE_MOVE;
7426 }
7427
7428 queued = task_on_rq_queued(p);
7429 running = task_current(rq, p);
7430 if (queued)
7431 dequeue_task(rq, p, queue_flags);
7432 if (running)
7433 put_prev_task(rq, p);
7434
7435 prev_class = p->sched_class;
7436
7437 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7438 __setscheduler_params(p, attr);
7439 __setscheduler_prio(p, newprio);
7440 }
7441 __setscheduler_uclamp(p, attr);
7442
7443 if (queued) {
7444 /*
7445 * We enqueue to tail when the priority of a task is
7446 * increased (user space view).
7447 */
7448 if (oldprio < p->prio)
7449 queue_flags |= ENQUEUE_HEAD;
7450
7451 enqueue_task(rq, p, queue_flags);
7452 }
7453 if (running)
7454 set_next_task(rq, p);
7455
7456 check_class_changed(rq, p, prev_class, oldprio);
7457
7458 /* Avoid rq from going away on us: */
7459 preempt_disable();
7460 head = splice_balance_callbacks(rq);
7461 task_rq_unlock(rq, p, &rf);
7462
7463 if (pi) {
7464 cpuset_read_unlock();
7465 rt_mutex_adjust_pi(p);
7466 }
7467
7468 /* Run balance callbacks after we've adjusted the PI chain: */
7469 balance_callbacks(rq, head);
7470 preempt_enable();
7471
7472 return 0;
7473
7474 unlock:
7475 task_rq_unlock(rq, p, &rf);
7476 if (pi)
7477 cpuset_read_unlock();
7478 return retval;
7479 }
7480
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7481 static int _sched_setscheduler(struct task_struct *p, int policy,
7482 const struct sched_param *param, bool check)
7483 {
7484 struct sched_attr attr = {
7485 .sched_policy = policy,
7486 .sched_priority = param->sched_priority,
7487 .sched_nice = PRIO_TO_NICE(p->static_prio),
7488 };
7489
7490 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7491 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7492 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7493 policy &= ~SCHED_RESET_ON_FORK;
7494 attr.sched_policy = policy;
7495 }
7496
7497 return __sched_setscheduler(p, &attr, check, true);
7498 }
7499 /**
7500 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7501 * @p: the task in question.
7502 * @policy: new policy.
7503 * @param: structure containing the new RT priority.
7504 *
7505 * Use sched_set_fifo(), read its comment.
7506 *
7507 * Return: 0 on success. An error code otherwise.
7508 *
7509 * NOTE that the task may be already dead.
7510 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7511 int sched_setscheduler(struct task_struct *p, int policy,
7512 const struct sched_param *param)
7513 {
7514 return _sched_setscheduler(p, policy, param, true);
7515 }
7516
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7517 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7518 {
7519 return __sched_setscheduler(p, attr, true, true);
7520 }
7521
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7522 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7523 {
7524 return __sched_setscheduler(p, attr, false, true);
7525 }
7526 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7527
7528 /**
7529 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7530 * @p: the task in question.
7531 * @policy: new policy.
7532 * @param: structure containing the new RT priority.
7533 *
7534 * Just like sched_setscheduler, only don't bother checking if the
7535 * current context has permission. For example, this is needed in
7536 * stop_machine(): we create temporary high priority worker threads,
7537 * but our caller might not have that capability.
7538 *
7539 * Return: 0 on success. An error code otherwise.
7540 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7541 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7542 const struct sched_param *param)
7543 {
7544 return _sched_setscheduler(p, policy, param, false);
7545 }
7546
7547 /*
7548 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7549 * incapable of resource management, which is the one thing an OS really should
7550 * be doing.
7551 *
7552 * This is of course the reason it is limited to privileged users only.
7553 *
7554 * Worse still; it is fundamentally impossible to compose static priority
7555 * workloads. You cannot take two correctly working static prio workloads
7556 * and smash them together and still expect them to work.
7557 *
7558 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7559 *
7560 * MAX_RT_PRIO / 2
7561 *
7562 * The administrator _MUST_ configure the system, the kernel simply doesn't
7563 * know enough information to make a sensible choice.
7564 */
sched_set_fifo(struct task_struct * p)7565 void sched_set_fifo(struct task_struct *p)
7566 {
7567 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7568 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7569 }
7570 EXPORT_SYMBOL_GPL(sched_set_fifo);
7571
7572 /*
7573 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7574 */
sched_set_fifo_low(struct task_struct * p)7575 void sched_set_fifo_low(struct task_struct *p)
7576 {
7577 struct sched_param sp = { .sched_priority = 1 };
7578 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7579 }
7580 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7581
sched_set_normal(struct task_struct * p,int nice)7582 void sched_set_normal(struct task_struct *p, int nice)
7583 {
7584 struct sched_attr attr = {
7585 .sched_policy = SCHED_NORMAL,
7586 .sched_nice = nice,
7587 };
7588 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7589 }
7590 EXPORT_SYMBOL_GPL(sched_set_normal);
7591
7592 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)7593 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7594 {
7595 struct sched_param lparam;
7596 struct task_struct *p;
7597 int retval;
7598
7599 if (!param || pid < 0)
7600 return -EINVAL;
7601 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7602 return -EFAULT;
7603
7604 rcu_read_lock();
7605 retval = -ESRCH;
7606 p = find_process_by_pid(pid);
7607 if (likely(p))
7608 get_task_struct(p);
7609 rcu_read_unlock();
7610
7611 if (likely(p)) {
7612 retval = sched_setscheduler(p, policy, &lparam);
7613 put_task_struct(p);
7614 }
7615
7616 return retval;
7617 }
7618
7619 /*
7620 * Mimics kernel/events/core.c perf_copy_attr().
7621 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)7622 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7623 {
7624 u32 size;
7625 int ret;
7626
7627 /* Zero the full structure, so that a short copy will be nice: */
7628 memset(attr, 0, sizeof(*attr));
7629
7630 ret = get_user(size, &uattr->size);
7631 if (ret)
7632 return ret;
7633
7634 /* ABI compatibility quirk: */
7635 if (!size)
7636 size = SCHED_ATTR_SIZE_VER0;
7637 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7638 goto err_size;
7639
7640 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7641 if (ret) {
7642 if (ret == -E2BIG)
7643 goto err_size;
7644 return ret;
7645 }
7646
7647 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7648 size < SCHED_ATTR_SIZE_VER1)
7649 return -EINVAL;
7650
7651 /*
7652 * XXX: Do we want to be lenient like existing syscalls; or do we want
7653 * to be strict and return an error on out-of-bounds values?
7654 */
7655 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7656
7657 return 0;
7658
7659 err_size:
7660 put_user(sizeof(*attr), &uattr->size);
7661 return -E2BIG;
7662 }
7663
get_params(struct task_struct * p,struct sched_attr * attr)7664 static void get_params(struct task_struct *p, struct sched_attr *attr)
7665 {
7666 if (task_has_dl_policy(p))
7667 __getparam_dl(p, attr);
7668 else if (task_has_rt_policy(p))
7669 attr->sched_priority = p->rt_priority;
7670 else
7671 attr->sched_nice = task_nice(p);
7672 }
7673
7674 /**
7675 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7676 * @pid: the pid in question.
7677 * @policy: new policy.
7678 * @param: structure containing the new RT priority.
7679 *
7680 * Return: 0 on success. An error code otherwise.
7681 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)7682 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7683 {
7684 if (policy < 0)
7685 return -EINVAL;
7686
7687 return do_sched_setscheduler(pid, policy, param);
7688 }
7689
7690 /**
7691 * sys_sched_setparam - set/change the RT priority of a thread
7692 * @pid: the pid in question.
7693 * @param: structure containing the new RT priority.
7694 *
7695 * Return: 0 on success. An error code otherwise.
7696 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)7697 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7698 {
7699 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7700 }
7701
7702 /**
7703 * sys_sched_setattr - same as above, but with extended sched_attr
7704 * @pid: the pid in question.
7705 * @uattr: structure containing the extended parameters.
7706 * @flags: for future extension.
7707 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)7708 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7709 unsigned int, flags)
7710 {
7711 struct sched_attr attr;
7712 struct task_struct *p;
7713 int retval;
7714
7715 if (!uattr || pid < 0 || flags)
7716 return -EINVAL;
7717
7718 retval = sched_copy_attr(uattr, &attr);
7719 if (retval)
7720 return retval;
7721
7722 if ((int)attr.sched_policy < 0)
7723 return -EINVAL;
7724 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7725 attr.sched_policy = SETPARAM_POLICY;
7726
7727 rcu_read_lock();
7728 retval = -ESRCH;
7729 p = find_process_by_pid(pid);
7730 if (likely(p))
7731 get_task_struct(p);
7732 rcu_read_unlock();
7733
7734 if (likely(p)) {
7735 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7736 get_params(p, &attr);
7737 retval = sched_setattr(p, &attr);
7738 put_task_struct(p);
7739 }
7740
7741 return retval;
7742 }
7743
7744 /**
7745 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7746 * @pid: the pid in question.
7747 *
7748 * Return: On success, the policy of the thread. Otherwise, a negative error
7749 * code.
7750 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)7751 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7752 {
7753 struct task_struct *p;
7754 int retval;
7755
7756 if (pid < 0)
7757 return -EINVAL;
7758
7759 retval = -ESRCH;
7760 rcu_read_lock();
7761 p = find_process_by_pid(pid);
7762 if (p) {
7763 retval = security_task_getscheduler(p);
7764 if (!retval)
7765 retval = p->policy
7766 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7767 }
7768 rcu_read_unlock();
7769 return retval;
7770 }
7771
7772 /**
7773 * sys_sched_getparam - get the RT priority of a thread
7774 * @pid: the pid in question.
7775 * @param: structure containing the RT priority.
7776 *
7777 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7778 * code.
7779 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)7780 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7781 {
7782 struct sched_param lp = { .sched_priority = 0 };
7783 struct task_struct *p;
7784 int retval;
7785
7786 if (!param || pid < 0)
7787 return -EINVAL;
7788
7789 rcu_read_lock();
7790 p = find_process_by_pid(pid);
7791 retval = -ESRCH;
7792 if (!p)
7793 goto out_unlock;
7794
7795 retval = security_task_getscheduler(p);
7796 if (retval)
7797 goto out_unlock;
7798
7799 if (task_has_rt_policy(p))
7800 lp.sched_priority = p->rt_priority;
7801 rcu_read_unlock();
7802
7803 /*
7804 * This one might sleep, we cannot do it with a spinlock held ...
7805 */
7806 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7807
7808 return retval;
7809
7810 out_unlock:
7811 rcu_read_unlock();
7812 return retval;
7813 }
7814
7815 /*
7816 * Copy the kernel size attribute structure (which might be larger
7817 * than what user-space knows about) to user-space.
7818 *
7819 * Note that all cases are valid: user-space buffer can be larger or
7820 * smaller than the kernel-space buffer. The usual case is that both
7821 * have the same size.
7822 */
7823 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)7824 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7825 struct sched_attr *kattr,
7826 unsigned int usize)
7827 {
7828 unsigned int ksize = sizeof(*kattr);
7829
7830 if (!access_ok(uattr, usize))
7831 return -EFAULT;
7832
7833 /*
7834 * sched_getattr() ABI forwards and backwards compatibility:
7835 *
7836 * If usize == ksize then we just copy everything to user-space and all is good.
7837 *
7838 * If usize < ksize then we only copy as much as user-space has space for,
7839 * this keeps ABI compatibility as well. We skip the rest.
7840 *
7841 * If usize > ksize then user-space is using a newer version of the ABI,
7842 * which part the kernel doesn't know about. Just ignore it - tooling can
7843 * detect the kernel's knowledge of attributes from the attr->size value
7844 * which is set to ksize in this case.
7845 */
7846 kattr->size = min(usize, ksize);
7847
7848 if (copy_to_user(uattr, kattr, kattr->size))
7849 return -EFAULT;
7850
7851 return 0;
7852 }
7853
7854 /**
7855 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7856 * @pid: the pid in question.
7857 * @uattr: structure containing the extended parameters.
7858 * @usize: sizeof(attr) for fwd/bwd comp.
7859 * @flags: for future extension.
7860 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)7861 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7862 unsigned int, usize, unsigned int, flags)
7863 {
7864 struct sched_attr kattr = { };
7865 struct task_struct *p;
7866 int retval;
7867
7868 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7869 usize < SCHED_ATTR_SIZE_VER0 || flags)
7870 return -EINVAL;
7871
7872 rcu_read_lock();
7873 p = find_process_by_pid(pid);
7874 retval = -ESRCH;
7875 if (!p)
7876 goto out_unlock;
7877
7878 retval = security_task_getscheduler(p);
7879 if (retval)
7880 goto out_unlock;
7881
7882 kattr.sched_policy = p->policy;
7883 if (p->sched_reset_on_fork)
7884 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7885 get_params(p, &kattr);
7886 kattr.sched_flags &= SCHED_FLAG_ALL;
7887
7888 #ifdef CONFIG_UCLAMP_TASK
7889 /*
7890 * This could race with another potential updater, but this is fine
7891 * because it'll correctly read the old or the new value. We don't need
7892 * to guarantee who wins the race as long as it doesn't return garbage.
7893 */
7894 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7895 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7896 #endif
7897
7898 rcu_read_unlock();
7899
7900 return sched_attr_copy_to_user(uattr, &kattr, usize);
7901
7902 out_unlock:
7903 rcu_read_unlock();
7904 return retval;
7905 }
7906
7907 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)7908 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7909 {
7910 int ret = 0;
7911
7912 /*
7913 * If the task isn't a deadline task or admission control is
7914 * disabled then we don't care about affinity changes.
7915 */
7916 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7917 return 0;
7918
7919 /*
7920 * Since bandwidth control happens on root_domain basis,
7921 * if admission test is enabled, we only admit -deadline
7922 * tasks allowed to run on all the CPUs in the task's
7923 * root_domain.
7924 */
7925 rcu_read_lock();
7926 if (!cpumask_subset(task_rq(p)->rd->span, mask))
7927 ret = -EBUSY;
7928 rcu_read_unlock();
7929 return ret;
7930 }
7931 #endif
7932
7933 static int
__sched_setaffinity(struct task_struct * p,const struct cpumask * mask)7934 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7935 {
7936 int retval;
7937 cpumask_var_t cpus_allowed, new_mask;
7938
7939 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7940 return -ENOMEM;
7941
7942 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7943 retval = -ENOMEM;
7944 goto out_free_cpus_allowed;
7945 }
7946
7947 cpuset_cpus_allowed(p, cpus_allowed);
7948 cpumask_and(new_mask, mask, cpus_allowed);
7949
7950 retval = dl_task_check_affinity(p, new_mask);
7951 if (retval)
7952 goto out_free_new_mask;
7953 again:
7954 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
7955 if (retval)
7956 goto out_free_new_mask;
7957
7958 cpuset_cpus_allowed(p, cpus_allowed);
7959 if (!cpumask_subset(new_mask, cpus_allowed)) {
7960 /*
7961 * We must have raced with a concurrent cpuset update.
7962 * Just reset the cpumask to the cpuset's cpus_allowed.
7963 */
7964 cpumask_copy(new_mask, cpus_allowed);
7965 goto again;
7966 }
7967
7968 out_free_new_mask:
7969 free_cpumask_var(new_mask);
7970 out_free_cpus_allowed:
7971 free_cpumask_var(cpus_allowed);
7972 return retval;
7973 }
7974
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)7975 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7976 {
7977 struct task_struct *p;
7978 int retval;
7979
7980 rcu_read_lock();
7981
7982 p = find_process_by_pid(pid);
7983 if (!p) {
7984 rcu_read_unlock();
7985 return -ESRCH;
7986 }
7987
7988 /* Prevent p going away */
7989 get_task_struct(p);
7990 rcu_read_unlock();
7991
7992 if (p->flags & PF_NO_SETAFFINITY) {
7993 retval = -EINVAL;
7994 goto out_put_task;
7995 }
7996
7997 if (!check_same_owner(p)) {
7998 rcu_read_lock();
7999 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8000 rcu_read_unlock();
8001 retval = -EPERM;
8002 goto out_put_task;
8003 }
8004 rcu_read_unlock();
8005 }
8006
8007 retval = security_task_setscheduler(p);
8008 if (retval)
8009 goto out_put_task;
8010
8011 retval = __sched_setaffinity(p, in_mask);
8012 out_put_task:
8013 put_task_struct(p);
8014 return retval;
8015 }
8016
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8017 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8018 struct cpumask *new_mask)
8019 {
8020 if (len < cpumask_size())
8021 cpumask_clear(new_mask);
8022 else if (len > cpumask_size())
8023 len = cpumask_size();
8024
8025 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8026 }
8027
8028 /**
8029 * sys_sched_setaffinity - set the CPU affinity of a process
8030 * @pid: pid of the process
8031 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8032 * @user_mask_ptr: user-space pointer to the new CPU mask
8033 *
8034 * Return: 0 on success. An error code otherwise.
8035 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8036 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8037 unsigned long __user *, user_mask_ptr)
8038 {
8039 cpumask_var_t new_mask;
8040 int retval;
8041
8042 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8043 return -ENOMEM;
8044
8045 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8046 if (retval == 0)
8047 retval = sched_setaffinity(pid, new_mask);
8048 free_cpumask_var(new_mask);
8049 return retval;
8050 }
8051
sched_getaffinity(pid_t pid,struct cpumask * mask)8052 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8053 {
8054 struct task_struct *p;
8055 unsigned long flags;
8056 int retval;
8057
8058 rcu_read_lock();
8059
8060 retval = -ESRCH;
8061 p = find_process_by_pid(pid);
8062 if (!p)
8063 goto out_unlock;
8064
8065 retval = security_task_getscheduler(p);
8066 if (retval)
8067 goto out_unlock;
8068
8069 raw_spin_lock_irqsave(&p->pi_lock, flags);
8070 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8071 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8072
8073 out_unlock:
8074 rcu_read_unlock();
8075
8076 return retval;
8077 }
8078
8079 /**
8080 * sys_sched_getaffinity - get the CPU affinity of a process
8081 * @pid: pid of the process
8082 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8083 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8084 *
8085 * Return: size of CPU mask copied to user_mask_ptr on success. An
8086 * error code otherwise.
8087 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8088 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8089 unsigned long __user *, user_mask_ptr)
8090 {
8091 int ret;
8092 cpumask_var_t mask;
8093
8094 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8095 return -EINVAL;
8096 if (len & (sizeof(unsigned long)-1))
8097 return -EINVAL;
8098
8099 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8100 return -ENOMEM;
8101
8102 ret = sched_getaffinity(pid, mask);
8103 if (ret == 0) {
8104 unsigned int retlen = min(len, cpumask_size());
8105
8106 if (copy_to_user(user_mask_ptr, mask, retlen))
8107 ret = -EFAULT;
8108 else
8109 ret = retlen;
8110 }
8111 free_cpumask_var(mask);
8112
8113 return ret;
8114 }
8115
do_sched_yield(void)8116 static void do_sched_yield(void)
8117 {
8118 struct rq_flags rf;
8119 struct rq *rq;
8120
8121 rq = this_rq_lock_irq(&rf);
8122
8123 schedstat_inc(rq->yld_count);
8124 current->sched_class->yield_task(rq);
8125
8126 preempt_disable();
8127 rq_unlock_irq(rq, &rf);
8128 sched_preempt_enable_no_resched();
8129
8130 schedule();
8131 }
8132
8133 /**
8134 * sys_sched_yield - yield the current processor to other threads.
8135 *
8136 * This function yields the current CPU to other tasks. If there are no
8137 * other threads running on this CPU then this function will return.
8138 *
8139 * Return: 0.
8140 */
SYSCALL_DEFINE0(sched_yield)8141 SYSCALL_DEFINE0(sched_yield)
8142 {
8143 do_sched_yield();
8144 return 0;
8145 }
8146
8147 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8148 int __sched __cond_resched(void)
8149 {
8150 if (should_resched(0)) {
8151 preempt_schedule_common();
8152 return 1;
8153 }
8154 /*
8155 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8156 * whether the current CPU is in an RCU read-side critical section,
8157 * so the tick can report quiescent states even for CPUs looping
8158 * in kernel context. In contrast, in non-preemptible kernels,
8159 * RCU readers leave no in-memory hints, which means that CPU-bound
8160 * processes executing in kernel context might never report an
8161 * RCU quiescent state. Therefore, the following code causes
8162 * cond_resched() to report a quiescent state, but only when RCU
8163 * is in urgent need of one.
8164 */
8165 #ifndef CONFIG_PREEMPT_RCU
8166 rcu_all_qs();
8167 #endif
8168 return 0;
8169 }
8170 EXPORT_SYMBOL(__cond_resched);
8171 #endif
8172
8173 #ifdef CONFIG_PREEMPT_DYNAMIC
8174 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8175 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8176
8177 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8178 EXPORT_STATIC_CALL_TRAMP(might_resched);
8179 #endif
8180
8181 /*
8182 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8183 * call schedule, and on return reacquire the lock.
8184 *
8185 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8186 * operations here to prevent schedule() from being called twice (once via
8187 * spin_unlock(), once by hand).
8188 */
__cond_resched_lock(spinlock_t * lock)8189 int __cond_resched_lock(spinlock_t *lock)
8190 {
8191 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8192 int ret = 0;
8193
8194 lockdep_assert_held(lock);
8195
8196 if (spin_needbreak(lock) || resched) {
8197 spin_unlock(lock);
8198 if (resched)
8199 preempt_schedule_common();
8200 else
8201 cpu_relax();
8202 ret = 1;
8203 spin_lock(lock);
8204 }
8205 return ret;
8206 }
8207 EXPORT_SYMBOL(__cond_resched_lock);
8208
__cond_resched_rwlock_read(rwlock_t * lock)8209 int __cond_resched_rwlock_read(rwlock_t *lock)
8210 {
8211 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8212 int ret = 0;
8213
8214 lockdep_assert_held_read(lock);
8215
8216 if (rwlock_needbreak(lock) || resched) {
8217 read_unlock(lock);
8218 if (resched)
8219 preempt_schedule_common();
8220 else
8221 cpu_relax();
8222 ret = 1;
8223 read_lock(lock);
8224 }
8225 return ret;
8226 }
8227 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8228
__cond_resched_rwlock_write(rwlock_t * lock)8229 int __cond_resched_rwlock_write(rwlock_t *lock)
8230 {
8231 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8232 int ret = 0;
8233
8234 lockdep_assert_held_write(lock);
8235
8236 if (rwlock_needbreak(lock) || resched) {
8237 write_unlock(lock);
8238 if (resched)
8239 preempt_schedule_common();
8240 else
8241 cpu_relax();
8242 ret = 1;
8243 write_lock(lock);
8244 }
8245 return ret;
8246 }
8247 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8248
8249 /**
8250 * yield - yield the current processor to other threads.
8251 *
8252 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8253 *
8254 * The scheduler is at all times free to pick the calling task as the most
8255 * eligible task to run, if removing the yield() call from your code breaks
8256 * it, it's already broken.
8257 *
8258 * Typical broken usage is:
8259 *
8260 * while (!event)
8261 * yield();
8262 *
8263 * where one assumes that yield() will let 'the other' process run that will
8264 * make event true. If the current task is a SCHED_FIFO task that will never
8265 * happen. Never use yield() as a progress guarantee!!
8266 *
8267 * If you want to use yield() to wait for something, use wait_event().
8268 * If you want to use yield() to be 'nice' for others, use cond_resched().
8269 * If you still want to use yield(), do not!
8270 */
yield(void)8271 void __sched yield(void)
8272 {
8273 set_current_state(TASK_RUNNING);
8274 do_sched_yield();
8275 }
8276 EXPORT_SYMBOL(yield);
8277
8278 /**
8279 * yield_to - yield the current processor to another thread in
8280 * your thread group, or accelerate that thread toward the
8281 * processor it's on.
8282 * @p: target task
8283 * @preempt: whether task preemption is allowed or not
8284 *
8285 * It's the caller's job to ensure that the target task struct
8286 * can't go away on us before we can do any checks.
8287 *
8288 * Return:
8289 * true (>0) if we indeed boosted the target task.
8290 * false (0) if we failed to boost the target.
8291 * -ESRCH if there's no task to yield to.
8292 */
yield_to(struct task_struct * p,bool preempt)8293 int __sched yield_to(struct task_struct *p, bool preempt)
8294 {
8295 struct task_struct *curr = current;
8296 struct rq *rq, *p_rq;
8297 unsigned long flags;
8298 int yielded = 0;
8299
8300 local_irq_save(flags);
8301 rq = this_rq();
8302
8303 again:
8304 p_rq = task_rq(p);
8305 /*
8306 * If we're the only runnable task on the rq and target rq also
8307 * has only one task, there's absolutely no point in yielding.
8308 */
8309 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8310 yielded = -ESRCH;
8311 goto out_irq;
8312 }
8313
8314 double_rq_lock(rq, p_rq);
8315 if (task_rq(p) != p_rq) {
8316 double_rq_unlock(rq, p_rq);
8317 goto again;
8318 }
8319
8320 if (!curr->sched_class->yield_to_task)
8321 goto out_unlock;
8322
8323 if (curr->sched_class != p->sched_class)
8324 goto out_unlock;
8325
8326 if (task_running(p_rq, p) || !task_is_running(p))
8327 goto out_unlock;
8328
8329 yielded = curr->sched_class->yield_to_task(rq, p);
8330 if (yielded) {
8331 schedstat_inc(rq->yld_count);
8332 /*
8333 * Make p's CPU reschedule; pick_next_entity takes care of
8334 * fairness.
8335 */
8336 if (preempt && rq != p_rq)
8337 resched_curr(p_rq);
8338 }
8339
8340 out_unlock:
8341 double_rq_unlock(rq, p_rq);
8342 out_irq:
8343 local_irq_restore(flags);
8344
8345 if (yielded > 0)
8346 schedule();
8347
8348 return yielded;
8349 }
8350 EXPORT_SYMBOL_GPL(yield_to);
8351
io_schedule_prepare(void)8352 int io_schedule_prepare(void)
8353 {
8354 int old_iowait = current->in_iowait;
8355
8356 current->in_iowait = 1;
8357 blk_schedule_flush_plug(current);
8358
8359 return old_iowait;
8360 }
8361
io_schedule_finish(int token)8362 void io_schedule_finish(int token)
8363 {
8364 current->in_iowait = token;
8365 }
8366
8367 /*
8368 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8369 * that process accounting knows that this is a task in IO wait state.
8370 */
io_schedule_timeout(long timeout)8371 long __sched io_schedule_timeout(long timeout)
8372 {
8373 int token;
8374 long ret;
8375
8376 token = io_schedule_prepare();
8377 ret = schedule_timeout(timeout);
8378 io_schedule_finish(token);
8379
8380 return ret;
8381 }
8382 EXPORT_SYMBOL(io_schedule_timeout);
8383
io_schedule(void)8384 void __sched io_schedule(void)
8385 {
8386 int token;
8387
8388 token = io_schedule_prepare();
8389 schedule();
8390 io_schedule_finish(token);
8391 }
8392 EXPORT_SYMBOL(io_schedule);
8393
8394 /**
8395 * sys_sched_get_priority_max - return maximum RT priority.
8396 * @policy: scheduling class.
8397 *
8398 * Return: On success, this syscall returns the maximum
8399 * rt_priority that can be used by a given scheduling class.
8400 * On failure, a negative error code is returned.
8401 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)8402 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8403 {
8404 int ret = -EINVAL;
8405
8406 switch (policy) {
8407 case SCHED_FIFO:
8408 case SCHED_RR:
8409 ret = MAX_RT_PRIO-1;
8410 break;
8411 case SCHED_DEADLINE:
8412 case SCHED_NORMAL:
8413 case SCHED_BATCH:
8414 case SCHED_IDLE:
8415 ret = 0;
8416 break;
8417 }
8418 return ret;
8419 }
8420
8421 /**
8422 * sys_sched_get_priority_min - return minimum RT priority.
8423 * @policy: scheduling class.
8424 *
8425 * Return: On success, this syscall returns the minimum
8426 * rt_priority that can be used by a given scheduling class.
8427 * On failure, a negative error code is returned.
8428 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)8429 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8430 {
8431 int ret = -EINVAL;
8432
8433 switch (policy) {
8434 case SCHED_FIFO:
8435 case SCHED_RR:
8436 ret = 1;
8437 break;
8438 case SCHED_DEADLINE:
8439 case SCHED_NORMAL:
8440 case SCHED_BATCH:
8441 case SCHED_IDLE:
8442 ret = 0;
8443 }
8444 return ret;
8445 }
8446
sched_rr_get_interval(pid_t pid,struct timespec64 * t)8447 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8448 {
8449 struct task_struct *p;
8450 unsigned int time_slice;
8451 struct rq_flags rf;
8452 struct rq *rq;
8453 int retval;
8454
8455 if (pid < 0)
8456 return -EINVAL;
8457
8458 retval = -ESRCH;
8459 rcu_read_lock();
8460 p = find_process_by_pid(pid);
8461 if (!p)
8462 goto out_unlock;
8463
8464 retval = security_task_getscheduler(p);
8465 if (retval)
8466 goto out_unlock;
8467
8468 rq = task_rq_lock(p, &rf);
8469 time_slice = 0;
8470 if (p->sched_class->get_rr_interval)
8471 time_slice = p->sched_class->get_rr_interval(rq, p);
8472 task_rq_unlock(rq, p, &rf);
8473
8474 rcu_read_unlock();
8475 jiffies_to_timespec64(time_slice, t);
8476 return 0;
8477
8478 out_unlock:
8479 rcu_read_unlock();
8480 return retval;
8481 }
8482
8483 /**
8484 * sys_sched_rr_get_interval - return the default timeslice of a process.
8485 * @pid: pid of the process.
8486 * @interval: userspace pointer to the timeslice value.
8487 *
8488 * this syscall writes the default timeslice value of a given process
8489 * into the user-space timespec buffer. A value of '0' means infinity.
8490 *
8491 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8492 * an error code.
8493 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)8494 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8495 struct __kernel_timespec __user *, interval)
8496 {
8497 struct timespec64 t;
8498 int retval = sched_rr_get_interval(pid, &t);
8499
8500 if (retval == 0)
8501 retval = put_timespec64(&t, interval);
8502
8503 return retval;
8504 }
8505
8506 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)8507 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8508 struct old_timespec32 __user *, interval)
8509 {
8510 struct timespec64 t;
8511 int retval = sched_rr_get_interval(pid, &t);
8512
8513 if (retval == 0)
8514 retval = put_old_timespec32(&t, interval);
8515 return retval;
8516 }
8517 #endif
8518
sched_show_task(struct task_struct * p)8519 void sched_show_task(struct task_struct *p)
8520 {
8521 unsigned long free = 0;
8522 int ppid;
8523
8524 if (!try_get_task_stack(p))
8525 return;
8526
8527 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8528
8529 if (task_is_running(p))
8530 pr_cont(" running task ");
8531 #ifdef CONFIG_DEBUG_STACK_USAGE
8532 free = stack_not_used(p);
8533 #endif
8534 ppid = 0;
8535 rcu_read_lock();
8536 if (pid_alive(p))
8537 ppid = task_pid_nr(rcu_dereference(p->real_parent));
8538 rcu_read_unlock();
8539 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8540 free, task_pid_nr(p), ppid,
8541 (unsigned long)task_thread_info(p)->flags);
8542
8543 print_worker_info(KERN_INFO, p);
8544 print_stop_info(KERN_INFO, p);
8545 show_stack(p, NULL, KERN_INFO);
8546 put_task_stack(p);
8547 }
8548 EXPORT_SYMBOL_GPL(sched_show_task);
8549
8550 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)8551 state_filter_match(unsigned long state_filter, struct task_struct *p)
8552 {
8553 unsigned int state = READ_ONCE(p->__state);
8554
8555 /* no filter, everything matches */
8556 if (!state_filter)
8557 return true;
8558
8559 /* filter, but doesn't match */
8560 if (!(state & state_filter))
8561 return false;
8562
8563 /*
8564 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8565 * TASK_KILLABLE).
8566 */
8567 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8568 return false;
8569
8570 return true;
8571 }
8572
8573
show_state_filter(unsigned int state_filter)8574 void show_state_filter(unsigned int state_filter)
8575 {
8576 struct task_struct *g, *p;
8577
8578 rcu_read_lock();
8579 for_each_process_thread(g, p) {
8580 /*
8581 * reset the NMI-timeout, listing all files on a slow
8582 * console might take a lot of time:
8583 * Also, reset softlockup watchdogs on all CPUs, because
8584 * another CPU might be blocked waiting for us to process
8585 * an IPI.
8586 */
8587 touch_nmi_watchdog();
8588 touch_all_softlockup_watchdogs();
8589 if (state_filter_match(state_filter, p))
8590 sched_show_task(p);
8591 }
8592
8593 #ifdef CONFIG_SCHED_DEBUG
8594 if (!state_filter)
8595 sysrq_sched_debug_show();
8596 #endif
8597 rcu_read_unlock();
8598 /*
8599 * Only show locks if all tasks are dumped:
8600 */
8601 if (!state_filter)
8602 debug_show_all_locks();
8603 }
8604
8605 /**
8606 * init_idle - set up an idle thread for a given CPU
8607 * @idle: task in question
8608 * @cpu: CPU the idle task belongs to
8609 *
8610 * NOTE: this function does not set the idle thread's NEED_RESCHED
8611 * flag, to make booting more robust.
8612 */
init_idle(struct task_struct * idle,int cpu)8613 void __init init_idle(struct task_struct *idle, int cpu)
8614 {
8615 struct rq *rq = cpu_rq(cpu);
8616 unsigned long flags;
8617
8618 __sched_fork(0, idle);
8619
8620 /*
8621 * The idle task doesn't need the kthread struct to function, but it
8622 * is dressed up as a per-CPU kthread and thus needs to play the part
8623 * if we want to avoid special-casing it in code that deals with per-CPU
8624 * kthreads.
8625 */
8626 set_kthread_struct(idle);
8627
8628 raw_spin_lock_irqsave(&idle->pi_lock, flags);
8629 raw_spin_rq_lock(rq);
8630
8631 idle->__state = TASK_RUNNING;
8632 idle->se.exec_start = sched_clock();
8633 /*
8634 * PF_KTHREAD should already be set at this point; regardless, make it
8635 * look like a proper per-CPU kthread.
8636 */
8637 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8638 kthread_set_per_cpu(idle, cpu);
8639
8640 scs_task_reset(idle);
8641 kasan_unpoison_task_stack(idle);
8642
8643 #ifdef CONFIG_SMP
8644 /*
8645 * It's possible that init_idle() gets called multiple times on a task,
8646 * in that case do_set_cpus_allowed() will not do the right thing.
8647 *
8648 * And since this is boot we can forgo the serialization.
8649 */
8650 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8651 #endif
8652 /*
8653 * We're having a chicken and egg problem, even though we are
8654 * holding rq->lock, the CPU isn't yet set to this CPU so the
8655 * lockdep check in task_group() will fail.
8656 *
8657 * Similar case to sched_fork(). / Alternatively we could
8658 * use task_rq_lock() here and obtain the other rq->lock.
8659 *
8660 * Silence PROVE_RCU
8661 */
8662 rcu_read_lock();
8663 __set_task_cpu(idle, cpu);
8664 rcu_read_unlock();
8665
8666 rq->idle = idle;
8667 rcu_assign_pointer(rq->curr, idle);
8668 idle->on_rq = TASK_ON_RQ_QUEUED;
8669 #ifdef CONFIG_SMP
8670 idle->on_cpu = 1;
8671 #endif
8672 raw_spin_rq_unlock(rq);
8673 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8674
8675 /* Set the preempt count _outside_ the spinlocks! */
8676 init_idle_preempt_count(idle, cpu);
8677
8678 /*
8679 * The idle tasks have their own, simple scheduling class:
8680 */
8681 idle->sched_class = &idle_sched_class;
8682 ftrace_graph_init_idle_task(idle, cpu);
8683 vtime_init_idle(idle, cpu);
8684 #ifdef CONFIG_SMP
8685 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8686 #endif
8687 }
8688
8689 #ifdef CONFIG_SMP
8690
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)8691 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8692 const struct cpumask *trial)
8693 {
8694 int ret = 1;
8695
8696 if (!cpumask_weight(cur))
8697 return ret;
8698
8699 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8700
8701 return ret;
8702 }
8703
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)8704 int task_can_attach(struct task_struct *p,
8705 const struct cpumask *cs_cpus_allowed)
8706 {
8707 int ret = 0;
8708
8709 /*
8710 * Kthreads which disallow setaffinity shouldn't be moved
8711 * to a new cpuset; we don't want to change their CPU
8712 * affinity and isolating such threads by their set of
8713 * allowed nodes is unnecessary. Thus, cpusets are not
8714 * applicable for such threads. This prevents checking for
8715 * success of set_cpus_allowed_ptr() on all attached tasks
8716 * before cpus_mask may be changed.
8717 */
8718 if (p->flags & PF_NO_SETAFFINITY) {
8719 ret = -EINVAL;
8720 goto out;
8721 }
8722
8723 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8724 cs_cpus_allowed))
8725 ret = dl_task_can_attach(p, cs_cpus_allowed);
8726
8727 out:
8728 return ret;
8729 }
8730
8731 bool sched_smp_initialized __read_mostly;
8732
8733 #ifdef CONFIG_NUMA_BALANCING
8734 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)8735 int migrate_task_to(struct task_struct *p, int target_cpu)
8736 {
8737 struct migration_arg arg = { p, target_cpu };
8738 int curr_cpu = task_cpu(p);
8739
8740 if (curr_cpu == target_cpu)
8741 return 0;
8742
8743 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8744 return -EINVAL;
8745
8746 /* TODO: This is not properly updating schedstats */
8747
8748 trace_sched_move_numa(p, curr_cpu, target_cpu);
8749 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8750 }
8751
8752 /*
8753 * Requeue a task on a given node and accurately track the number of NUMA
8754 * tasks on the runqueues
8755 */
sched_setnuma(struct task_struct * p,int nid)8756 void sched_setnuma(struct task_struct *p, int nid)
8757 {
8758 bool queued, running;
8759 struct rq_flags rf;
8760 struct rq *rq;
8761
8762 rq = task_rq_lock(p, &rf);
8763 queued = task_on_rq_queued(p);
8764 running = task_current(rq, p);
8765
8766 if (queued)
8767 dequeue_task(rq, p, DEQUEUE_SAVE);
8768 if (running)
8769 put_prev_task(rq, p);
8770
8771 p->numa_preferred_nid = nid;
8772
8773 if (queued)
8774 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8775 if (running)
8776 set_next_task(rq, p);
8777 task_rq_unlock(rq, p, &rf);
8778 }
8779 #endif /* CONFIG_NUMA_BALANCING */
8780
8781 #ifdef CONFIG_HOTPLUG_CPU
8782 /*
8783 * Ensure that the idle task is using init_mm right before its CPU goes
8784 * offline.
8785 */
idle_task_exit(void)8786 void idle_task_exit(void)
8787 {
8788 struct mm_struct *mm = current->active_mm;
8789
8790 BUG_ON(cpu_online(smp_processor_id()));
8791 BUG_ON(current != this_rq()->idle);
8792
8793 if (mm != &init_mm) {
8794 switch_mm(mm, &init_mm, current);
8795 finish_arch_post_lock_switch();
8796 }
8797
8798 scs_task_reset(current);
8799 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8800 }
8801
__balance_push_cpu_stop(void * arg)8802 static int __balance_push_cpu_stop(void *arg)
8803 {
8804 struct task_struct *p = arg;
8805 struct rq *rq = this_rq();
8806 struct rq_flags rf;
8807 int cpu;
8808
8809 raw_spin_lock_irq(&p->pi_lock);
8810 rq_lock(rq, &rf);
8811
8812 update_rq_clock(rq);
8813
8814 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8815 cpu = select_fallback_rq(rq->cpu, p);
8816 rq = __migrate_task(rq, &rf, p, cpu);
8817 }
8818
8819 rq_unlock(rq, &rf);
8820 raw_spin_unlock_irq(&p->pi_lock);
8821
8822 put_task_struct(p);
8823
8824 return 0;
8825 }
8826
8827 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8828
8829 /*
8830 * Ensure we only run per-cpu kthreads once the CPU goes !active.
8831 *
8832 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8833 * effective when the hotplug motion is down.
8834 */
balance_push(struct rq * rq)8835 static void balance_push(struct rq *rq)
8836 {
8837 struct task_struct *push_task = rq->curr;
8838
8839 lockdep_assert_rq_held(rq);
8840
8841 /*
8842 * Ensure the thing is persistent until balance_push_set(.on = false);
8843 */
8844 rq->balance_callback = &balance_push_callback;
8845
8846 /*
8847 * Only active while going offline and when invoked on the outgoing
8848 * CPU.
8849 */
8850 if (!cpu_dying(rq->cpu) || rq != this_rq())
8851 return;
8852
8853 /*
8854 * Both the cpu-hotplug and stop task are in this case and are
8855 * required to complete the hotplug process.
8856 */
8857 if (kthread_is_per_cpu(push_task) ||
8858 is_migration_disabled(push_task)) {
8859
8860 /*
8861 * If this is the idle task on the outgoing CPU try to wake
8862 * up the hotplug control thread which might wait for the
8863 * last task to vanish. The rcuwait_active() check is
8864 * accurate here because the waiter is pinned on this CPU
8865 * and can't obviously be running in parallel.
8866 *
8867 * On RT kernels this also has to check whether there are
8868 * pinned and scheduled out tasks on the runqueue. They
8869 * need to leave the migrate disabled section first.
8870 */
8871 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8872 rcuwait_active(&rq->hotplug_wait)) {
8873 raw_spin_rq_unlock(rq);
8874 rcuwait_wake_up(&rq->hotplug_wait);
8875 raw_spin_rq_lock(rq);
8876 }
8877 return;
8878 }
8879
8880 get_task_struct(push_task);
8881 /*
8882 * Temporarily drop rq->lock such that we can wake-up the stop task.
8883 * Both preemption and IRQs are still disabled.
8884 */
8885 raw_spin_rq_unlock(rq);
8886 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8887 this_cpu_ptr(&push_work));
8888 /*
8889 * At this point need_resched() is true and we'll take the loop in
8890 * schedule(). The next pick is obviously going to be the stop task
8891 * which kthread_is_per_cpu() and will push this task away.
8892 */
8893 raw_spin_rq_lock(rq);
8894 }
8895
balance_push_set(int cpu,bool on)8896 static void balance_push_set(int cpu, bool on)
8897 {
8898 struct rq *rq = cpu_rq(cpu);
8899 struct rq_flags rf;
8900
8901 rq_lock_irqsave(rq, &rf);
8902 if (on) {
8903 WARN_ON_ONCE(rq->balance_callback);
8904 rq->balance_callback = &balance_push_callback;
8905 } else if (rq->balance_callback == &balance_push_callback) {
8906 rq->balance_callback = NULL;
8907 }
8908 rq_unlock_irqrestore(rq, &rf);
8909 }
8910
8911 /*
8912 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8913 * inactive. All tasks which are not per CPU kernel threads are either
8914 * pushed off this CPU now via balance_push() or placed on a different CPU
8915 * during wakeup. Wait until the CPU is quiescent.
8916 */
balance_hotplug_wait(void)8917 static void balance_hotplug_wait(void)
8918 {
8919 struct rq *rq = this_rq();
8920
8921 rcuwait_wait_event(&rq->hotplug_wait,
8922 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8923 TASK_UNINTERRUPTIBLE);
8924 }
8925
8926 #else
8927
balance_push(struct rq * rq)8928 static inline void balance_push(struct rq *rq)
8929 {
8930 }
8931
balance_push_set(int cpu,bool on)8932 static inline void balance_push_set(int cpu, bool on)
8933 {
8934 }
8935
balance_hotplug_wait(void)8936 static inline void balance_hotplug_wait(void)
8937 {
8938 }
8939
8940 #endif /* CONFIG_HOTPLUG_CPU */
8941
set_rq_online(struct rq * rq)8942 void set_rq_online(struct rq *rq)
8943 {
8944 if (!rq->online) {
8945 const struct sched_class *class;
8946
8947 cpumask_set_cpu(rq->cpu, rq->rd->online);
8948 rq->online = 1;
8949
8950 for_each_class(class) {
8951 if (class->rq_online)
8952 class->rq_online(rq);
8953 }
8954 }
8955 }
8956
set_rq_offline(struct rq * rq)8957 void set_rq_offline(struct rq *rq)
8958 {
8959 if (rq->online) {
8960 const struct sched_class *class;
8961
8962 for_each_class(class) {
8963 if (class->rq_offline)
8964 class->rq_offline(rq);
8965 }
8966
8967 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8968 rq->online = 0;
8969 }
8970 }
8971
8972 /*
8973 * used to mark begin/end of suspend/resume:
8974 */
8975 static int num_cpus_frozen;
8976
8977 /*
8978 * Update cpusets according to cpu_active mask. If cpusets are
8979 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8980 * around partition_sched_domains().
8981 *
8982 * If we come here as part of a suspend/resume, don't touch cpusets because we
8983 * want to restore it back to its original state upon resume anyway.
8984 */
cpuset_cpu_active(void)8985 static void cpuset_cpu_active(void)
8986 {
8987 if (cpuhp_tasks_frozen) {
8988 /*
8989 * num_cpus_frozen tracks how many CPUs are involved in suspend
8990 * resume sequence. As long as this is not the last online
8991 * operation in the resume sequence, just build a single sched
8992 * domain, ignoring cpusets.
8993 */
8994 partition_sched_domains(1, NULL, NULL);
8995 if (--num_cpus_frozen)
8996 return;
8997 /*
8998 * This is the last CPU online operation. So fall through and
8999 * restore the original sched domains by considering the
9000 * cpuset configurations.
9001 */
9002 cpuset_force_rebuild();
9003 }
9004 cpuset_update_active_cpus();
9005 }
9006
cpuset_cpu_inactive(unsigned int cpu)9007 static int cpuset_cpu_inactive(unsigned int cpu)
9008 {
9009 if (!cpuhp_tasks_frozen) {
9010 if (dl_cpu_busy(cpu))
9011 return -EBUSY;
9012 cpuset_update_active_cpus();
9013 } else {
9014 num_cpus_frozen++;
9015 partition_sched_domains(1, NULL, NULL);
9016 }
9017 return 0;
9018 }
9019
sched_cpu_activate(unsigned int cpu)9020 int sched_cpu_activate(unsigned int cpu)
9021 {
9022 struct rq *rq = cpu_rq(cpu);
9023 struct rq_flags rf;
9024
9025 /*
9026 * Clear the balance_push callback and prepare to schedule
9027 * regular tasks.
9028 */
9029 balance_push_set(cpu, false);
9030
9031 #ifdef CONFIG_SCHED_SMT
9032 /*
9033 * When going up, increment the number of cores with SMT present.
9034 */
9035 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9036 static_branch_inc_cpuslocked(&sched_smt_present);
9037 #endif
9038 set_cpu_active(cpu, true);
9039
9040 if (sched_smp_initialized) {
9041 sched_domains_numa_masks_set(cpu);
9042 cpuset_cpu_active();
9043 }
9044
9045 /*
9046 * Put the rq online, if not already. This happens:
9047 *
9048 * 1) In the early boot process, because we build the real domains
9049 * after all CPUs have been brought up.
9050 *
9051 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9052 * domains.
9053 */
9054 rq_lock_irqsave(rq, &rf);
9055 if (rq->rd) {
9056 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9057 set_rq_online(rq);
9058 }
9059 rq_unlock_irqrestore(rq, &rf);
9060
9061 return 0;
9062 }
9063
sched_cpu_deactivate(unsigned int cpu)9064 int sched_cpu_deactivate(unsigned int cpu)
9065 {
9066 struct rq *rq = cpu_rq(cpu);
9067 struct rq_flags rf;
9068 int ret;
9069
9070 /*
9071 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9072 * load balancing when not active
9073 */
9074 nohz_balance_exit_idle(rq);
9075
9076 set_cpu_active(cpu, false);
9077
9078 /*
9079 * From this point forward, this CPU will refuse to run any task that
9080 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9081 * push those tasks away until this gets cleared, see
9082 * sched_cpu_dying().
9083 */
9084 balance_push_set(cpu, true);
9085
9086 /*
9087 * We've cleared cpu_active_mask / set balance_push, wait for all
9088 * preempt-disabled and RCU users of this state to go away such that
9089 * all new such users will observe it.
9090 *
9091 * Specifically, we rely on ttwu to no longer target this CPU, see
9092 * ttwu_queue_cond() and is_cpu_allowed().
9093 *
9094 * Do sync before park smpboot threads to take care the rcu boost case.
9095 */
9096 synchronize_rcu();
9097
9098 rq_lock_irqsave(rq, &rf);
9099 if (rq->rd) {
9100 update_rq_clock(rq);
9101 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9102 set_rq_offline(rq);
9103 }
9104 rq_unlock_irqrestore(rq, &rf);
9105
9106 #ifdef CONFIG_SCHED_SMT
9107 /*
9108 * When going down, decrement the number of cores with SMT present.
9109 */
9110 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9111 static_branch_dec_cpuslocked(&sched_smt_present);
9112
9113 sched_core_cpu_deactivate(cpu);
9114 #endif
9115
9116 if (!sched_smp_initialized)
9117 return 0;
9118
9119 ret = cpuset_cpu_inactive(cpu);
9120 if (ret) {
9121 balance_push_set(cpu, false);
9122 set_cpu_active(cpu, true);
9123 return ret;
9124 }
9125 sched_domains_numa_masks_clear(cpu);
9126 return 0;
9127 }
9128
sched_rq_cpu_starting(unsigned int cpu)9129 static void sched_rq_cpu_starting(unsigned int cpu)
9130 {
9131 struct rq *rq = cpu_rq(cpu);
9132
9133 rq->calc_load_update = calc_load_update;
9134 update_max_interval();
9135 }
9136
sched_cpu_starting(unsigned int cpu)9137 int sched_cpu_starting(unsigned int cpu)
9138 {
9139 sched_core_cpu_starting(cpu);
9140 sched_rq_cpu_starting(cpu);
9141 sched_tick_start(cpu);
9142 return 0;
9143 }
9144
9145 #ifdef CONFIG_HOTPLUG_CPU
9146
9147 /*
9148 * Invoked immediately before the stopper thread is invoked to bring the
9149 * CPU down completely. At this point all per CPU kthreads except the
9150 * hotplug thread (current) and the stopper thread (inactive) have been
9151 * either parked or have been unbound from the outgoing CPU. Ensure that
9152 * any of those which might be on the way out are gone.
9153 *
9154 * If after this point a bound task is being woken on this CPU then the
9155 * responsible hotplug callback has failed to do it's job.
9156 * sched_cpu_dying() will catch it with the appropriate fireworks.
9157 */
sched_cpu_wait_empty(unsigned int cpu)9158 int sched_cpu_wait_empty(unsigned int cpu)
9159 {
9160 balance_hotplug_wait();
9161 return 0;
9162 }
9163
9164 /*
9165 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9166 * might have. Called from the CPU stopper task after ensuring that the
9167 * stopper is the last running task on the CPU, so nr_active count is
9168 * stable. We need to take the teardown thread which is calling this into
9169 * account, so we hand in adjust = 1 to the load calculation.
9170 *
9171 * Also see the comment "Global load-average calculations".
9172 */
calc_load_migrate(struct rq * rq)9173 static void calc_load_migrate(struct rq *rq)
9174 {
9175 long delta = calc_load_fold_active(rq, 1);
9176
9177 if (delta)
9178 atomic_long_add(delta, &calc_load_tasks);
9179 }
9180
dump_rq_tasks(struct rq * rq,const char * loglvl)9181 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9182 {
9183 struct task_struct *g, *p;
9184 int cpu = cpu_of(rq);
9185
9186 lockdep_assert_rq_held(rq);
9187
9188 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9189 for_each_process_thread(g, p) {
9190 if (task_cpu(p) != cpu)
9191 continue;
9192
9193 if (!task_on_rq_queued(p))
9194 continue;
9195
9196 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9197 }
9198 }
9199
sched_cpu_dying(unsigned int cpu)9200 int sched_cpu_dying(unsigned int cpu)
9201 {
9202 struct rq *rq = cpu_rq(cpu);
9203 struct rq_flags rf;
9204
9205 /* Handle pending wakeups and then migrate everything off */
9206 sched_tick_stop(cpu);
9207
9208 rq_lock_irqsave(rq, &rf);
9209 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9210 WARN(true, "Dying CPU not properly vacated!");
9211 dump_rq_tasks(rq, KERN_WARNING);
9212 }
9213 rq_unlock_irqrestore(rq, &rf);
9214
9215 calc_load_migrate(rq);
9216 update_max_interval();
9217 hrtick_clear(rq);
9218 sched_core_cpu_dying(cpu);
9219 return 0;
9220 }
9221 #endif
9222
sched_init_smp(void)9223 void __init sched_init_smp(void)
9224 {
9225 sched_init_numa();
9226
9227 /*
9228 * There's no userspace yet to cause hotplug operations; hence all the
9229 * CPU masks are stable and all blatant races in the below code cannot
9230 * happen.
9231 */
9232 mutex_lock(&sched_domains_mutex);
9233 sched_init_domains(cpu_active_mask);
9234 mutex_unlock(&sched_domains_mutex);
9235
9236 /* Move init over to a non-isolated CPU */
9237 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
9238 BUG();
9239 current->flags &= ~PF_NO_SETAFFINITY;
9240 sched_init_granularity();
9241
9242 init_sched_rt_class();
9243 init_sched_dl_class();
9244
9245 sched_smp_initialized = true;
9246 }
9247
migration_init(void)9248 static int __init migration_init(void)
9249 {
9250 sched_cpu_starting(smp_processor_id());
9251 return 0;
9252 }
9253 early_initcall(migration_init);
9254
9255 #else
sched_init_smp(void)9256 void __init sched_init_smp(void)
9257 {
9258 sched_init_granularity();
9259 }
9260 #endif /* CONFIG_SMP */
9261
in_sched_functions(unsigned long addr)9262 int in_sched_functions(unsigned long addr)
9263 {
9264 return in_lock_functions(addr) ||
9265 (addr >= (unsigned long)__sched_text_start
9266 && addr < (unsigned long)__sched_text_end);
9267 }
9268
9269 #ifdef CONFIG_CGROUP_SCHED
9270 /*
9271 * Default task group.
9272 * Every task in system belongs to this group at bootup.
9273 */
9274 struct task_group root_task_group;
9275 LIST_HEAD(task_groups);
9276
9277 /* Cacheline aligned slab cache for task_group */
9278 static struct kmem_cache *task_group_cache __read_mostly;
9279 #endif
9280
9281 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9282 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9283
sched_init(void)9284 void __init sched_init(void)
9285 {
9286 unsigned long ptr = 0;
9287 int i;
9288
9289 /* Make sure the linker didn't screw up */
9290 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9291 &fair_sched_class + 1 != &rt_sched_class ||
9292 &rt_sched_class + 1 != &dl_sched_class);
9293 #ifdef CONFIG_SMP
9294 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9295 #endif
9296
9297 wait_bit_init();
9298
9299 #ifdef CONFIG_FAIR_GROUP_SCHED
9300 ptr += 2 * nr_cpu_ids * sizeof(void **);
9301 #endif
9302 #ifdef CONFIG_RT_GROUP_SCHED
9303 ptr += 2 * nr_cpu_ids * sizeof(void **);
9304 #endif
9305 if (ptr) {
9306 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9307
9308 #ifdef CONFIG_FAIR_GROUP_SCHED
9309 root_task_group.se = (struct sched_entity **)ptr;
9310 ptr += nr_cpu_ids * sizeof(void **);
9311
9312 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9313 ptr += nr_cpu_ids * sizeof(void **);
9314
9315 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9316 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9317 #endif /* CONFIG_FAIR_GROUP_SCHED */
9318 #ifdef CONFIG_RT_GROUP_SCHED
9319 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9320 ptr += nr_cpu_ids * sizeof(void **);
9321
9322 root_task_group.rt_rq = (struct rt_rq **)ptr;
9323 ptr += nr_cpu_ids * sizeof(void **);
9324
9325 #endif /* CONFIG_RT_GROUP_SCHED */
9326 }
9327 #ifdef CONFIG_CPUMASK_OFFSTACK
9328 for_each_possible_cpu(i) {
9329 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9330 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9331 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9332 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9333 }
9334 #endif /* CONFIG_CPUMASK_OFFSTACK */
9335
9336 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9337 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9338
9339 #ifdef CONFIG_SMP
9340 init_defrootdomain();
9341 #endif
9342
9343 #ifdef CONFIG_RT_GROUP_SCHED
9344 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9345 global_rt_period(), global_rt_runtime());
9346 #endif /* CONFIG_RT_GROUP_SCHED */
9347
9348 #ifdef CONFIG_CGROUP_SCHED
9349 task_group_cache = KMEM_CACHE(task_group, 0);
9350
9351 list_add(&root_task_group.list, &task_groups);
9352 INIT_LIST_HEAD(&root_task_group.children);
9353 INIT_LIST_HEAD(&root_task_group.siblings);
9354 autogroup_init(&init_task);
9355 #endif /* CONFIG_CGROUP_SCHED */
9356
9357 for_each_possible_cpu(i) {
9358 struct rq *rq;
9359
9360 rq = cpu_rq(i);
9361 raw_spin_lock_init(&rq->__lock);
9362 rq->nr_running = 0;
9363 rq->calc_load_active = 0;
9364 rq->calc_load_update = jiffies + LOAD_FREQ;
9365 init_cfs_rq(&rq->cfs);
9366 init_rt_rq(&rq->rt);
9367 init_dl_rq(&rq->dl);
9368 #ifdef CONFIG_FAIR_GROUP_SCHED
9369 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9370 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9371 /*
9372 * How much CPU bandwidth does root_task_group get?
9373 *
9374 * In case of task-groups formed thr' the cgroup filesystem, it
9375 * gets 100% of the CPU resources in the system. This overall
9376 * system CPU resource is divided among the tasks of
9377 * root_task_group and its child task-groups in a fair manner,
9378 * based on each entity's (task or task-group's) weight
9379 * (se->load.weight).
9380 *
9381 * In other words, if root_task_group has 10 tasks of weight
9382 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9383 * then A0's share of the CPU resource is:
9384 *
9385 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9386 *
9387 * We achieve this by letting root_task_group's tasks sit
9388 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9389 */
9390 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9391 #endif /* CONFIG_FAIR_GROUP_SCHED */
9392
9393 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9394 #ifdef CONFIG_RT_GROUP_SCHED
9395 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9396 #endif
9397 #ifdef CONFIG_SMP
9398 rq->sd = NULL;
9399 rq->rd = NULL;
9400 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9401 rq->balance_callback = &balance_push_callback;
9402 rq->active_balance = 0;
9403 rq->next_balance = jiffies;
9404 rq->push_cpu = 0;
9405 rq->cpu = i;
9406 rq->online = 0;
9407 rq->idle_stamp = 0;
9408 rq->avg_idle = 2*sysctl_sched_migration_cost;
9409 rq->wake_stamp = jiffies;
9410 rq->wake_avg_idle = rq->avg_idle;
9411 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9412
9413 INIT_LIST_HEAD(&rq->cfs_tasks);
9414
9415 rq_attach_root(rq, &def_root_domain);
9416 #ifdef CONFIG_NO_HZ_COMMON
9417 rq->last_blocked_load_update_tick = jiffies;
9418 atomic_set(&rq->nohz_flags, 0);
9419
9420 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9421 #endif
9422 #ifdef CONFIG_HOTPLUG_CPU
9423 rcuwait_init(&rq->hotplug_wait);
9424 #endif
9425 #endif /* CONFIG_SMP */
9426 hrtick_rq_init(rq);
9427 atomic_set(&rq->nr_iowait, 0);
9428
9429 #ifdef CONFIG_SCHED_CORE
9430 rq->core = rq;
9431 rq->core_pick = NULL;
9432 rq->core_enabled = 0;
9433 rq->core_tree = RB_ROOT;
9434 rq->core_forceidle = false;
9435
9436 rq->core_cookie = 0UL;
9437 #endif
9438 }
9439
9440 set_load_weight(&init_task, false);
9441
9442 /*
9443 * The boot idle thread does lazy MMU switching as well:
9444 */
9445 mmgrab(&init_mm);
9446 enter_lazy_tlb(&init_mm, current);
9447
9448 /*
9449 * Make us the idle thread. Technically, schedule() should not be
9450 * called from this thread, however somewhere below it might be,
9451 * but because we are the idle thread, we just pick up running again
9452 * when this runqueue becomes "idle".
9453 */
9454 init_idle(current, smp_processor_id());
9455
9456 calc_load_update = jiffies + LOAD_FREQ;
9457
9458 #ifdef CONFIG_SMP
9459 idle_thread_set_boot_cpu();
9460 balance_push_set(smp_processor_id(), false);
9461 #endif
9462 init_sched_fair_class();
9463
9464 psi_init();
9465
9466 init_uclamp();
9467
9468 scheduler_running = 1;
9469 }
9470
9471 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)9472 static inline int preempt_count_equals(int preempt_offset)
9473 {
9474 int nested = preempt_count() + rcu_preempt_depth();
9475
9476 return (nested == preempt_offset);
9477 }
9478
__might_sleep(const char * file,int line,int preempt_offset)9479 void __might_sleep(const char *file, int line, int preempt_offset)
9480 {
9481 unsigned int state = get_current_state();
9482 /*
9483 * Blocking primitives will set (and therefore destroy) current->state,
9484 * since we will exit with TASK_RUNNING make sure we enter with it,
9485 * otherwise we will destroy state.
9486 */
9487 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9488 "do not call blocking ops when !TASK_RUNNING; "
9489 "state=%x set at [<%p>] %pS\n", state,
9490 (void *)current->task_state_change,
9491 (void *)current->task_state_change);
9492
9493 ___might_sleep(file, line, preempt_offset);
9494 }
9495 EXPORT_SYMBOL(__might_sleep);
9496
___might_sleep(const char * file,int line,int preempt_offset)9497 void ___might_sleep(const char *file, int line, int preempt_offset)
9498 {
9499 /* Ratelimiting timestamp: */
9500 static unsigned long prev_jiffy;
9501
9502 unsigned long preempt_disable_ip;
9503
9504 /* WARN_ON_ONCE() by default, no rate limit required: */
9505 rcu_sleep_check();
9506
9507 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9508 !is_idle_task(current) && !current->non_block_count) ||
9509 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9510 oops_in_progress)
9511 return;
9512
9513 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9514 return;
9515 prev_jiffy = jiffies;
9516
9517 /* Save this before calling printk(), since that will clobber it: */
9518 preempt_disable_ip = get_preempt_disable_ip(current);
9519
9520 printk(KERN_ERR
9521 "BUG: sleeping function called from invalid context at %s:%d\n",
9522 file, line);
9523 printk(KERN_ERR
9524 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9525 in_atomic(), irqs_disabled(), current->non_block_count,
9526 current->pid, current->comm);
9527
9528 if (task_stack_end_corrupted(current))
9529 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9530
9531 debug_show_held_locks(current);
9532 if (irqs_disabled())
9533 print_irqtrace_events(current);
9534 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9535 && !preempt_count_equals(preempt_offset)) {
9536 pr_err("Preemption disabled at:");
9537 print_ip_sym(KERN_ERR, preempt_disable_ip);
9538 }
9539 dump_stack();
9540 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9541 }
9542 EXPORT_SYMBOL(___might_sleep);
9543
__cant_sleep(const char * file,int line,int preempt_offset)9544 void __cant_sleep(const char *file, int line, int preempt_offset)
9545 {
9546 static unsigned long prev_jiffy;
9547
9548 if (irqs_disabled())
9549 return;
9550
9551 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9552 return;
9553
9554 if (preempt_count() > preempt_offset)
9555 return;
9556
9557 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9558 return;
9559 prev_jiffy = jiffies;
9560
9561 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9562 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9563 in_atomic(), irqs_disabled(),
9564 current->pid, current->comm);
9565
9566 debug_show_held_locks(current);
9567 dump_stack();
9568 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9569 }
9570 EXPORT_SYMBOL_GPL(__cant_sleep);
9571
9572 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)9573 void __cant_migrate(const char *file, int line)
9574 {
9575 static unsigned long prev_jiffy;
9576
9577 if (irqs_disabled())
9578 return;
9579
9580 if (is_migration_disabled(current))
9581 return;
9582
9583 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9584 return;
9585
9586 if (preempt_count() > 0)
9587 return;
9588
9589 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9590 return;
9591 prev_jiffy = jiffies;
9592
9593 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9594 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9595 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9596 current->pid, current->comm);
9597
9598 debug_show_held_locks(current);
9599 dump_stack();
9600 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9601 }
9602 EXPORT_SYMBOL_GPL(__cant_migrate);
9603 #endif
9604 #endif
9605
9606 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)9607 void normalize_rt_tasks(void)
9608 {
9609 struct task_struct *g, *p;
9610 struct sched_attr attr = {
9611 .sched_policy = SCHED_NORMAL,
9612 };
9613
9614 read_lock(&tasklist_lock);
9615 for_each_process_thread(g, p) {
9616 /*
9617 * Only normalize user tasks:
9618 */
9619 if (p->flags & PF_KTHREAD)
9620 continue;
9621
9622 p->se.exec_start = 0;
9623 schedstat_set(p->se.statistics.wait_start, 0);
9624 schedstat_set(p->se.statistics.sleep_start, 0);
9625 schedstat_set(p->se.statistics.block_start, 0);
9626
9627 if (!dl_task(p) && !rt_task(p)) {
9628 /*
9629 * Renice negative nice level userspace
9630 * tasks back to 0:
9631 */
9632 if (task_nice(p) < 0)
9633 set_user_nice(p, 0);
9634 continue;
9635 }
9636
9637 __sched_setscheduler(p, &attr, false, false);
9638 }
9639 read_unlock(&tasklist_lock);
9640 }
9641
9642 #endif /* CONFIG_MAGIC_SYSRQ */
9643
9644 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9645 /*
9646 * These functions are only useful for the IA64 MCA handling, or kdb.
9647 *
9648 * They can only be called when the whole system has been
9649 * stopped - every CPU needs to be quiescent, and no scheduling
9650 * activity can take place. Using them for anything else would
9651 * be a serious bug, and as a result, they aren't even visible
9652 * under any other configuration.
9653 */
9654
9655 /**
9656 * curr_task - return the current task for a given CPU.
9657 * @cpu: the processor in question.
9658 *
9659 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9660 *
9661 * Return: The current task for @cpu.
9662 */
curr_task(int cpu)9663 struct task_struct *curr_task(int cpu)
9664 {
9665 return cpu_curr(cpu);
9666 }
9667
9668 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9669
9670 #ifdef CONFIG_IA64
9671 /**
9672 * ia64_set_curr_task - set the current task for a given CPU.
9673 * @cpu: the processor in question.
9674 * @p: the task pointer to set.
9675 *
9676 * Description: This function must only be used when non-maskable interrupts
9677 * are serviced on a separate stack. It allows the architecture to switch the
9678 * notion of the current task on a CPU in a non-blocking manner. This function
9679 * must be called with all CPU's synchronized, and interrupts disabled, the
9680 * and caller must save the original value of the current task (see
9681 * curr_task() above) and restore that value before reenabling interrupts and
9682 * re-starting the system.
9683 *
9684 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9685 */
ia64_set_curr_task(int cpu,struct task_struct * p)9686 void ia64_set_curr_task(int cpu, struct task_struct *p)
9687 {
9688 cpu_curr(cpu) = p;
9689 }
9690
9691 #endif
9692
9693 #ifdef CONFIG_CGROUP_SCHED
9694 /* task_group_lock serializes the addition/removal of task groups */
9695 static DEFINE_SPINLOCK(task_group_lock);
9696
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)9697 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9698 struct task_group *parent)
9699 {
9700 #ifdef CONFIG_UCLAMP_TASK_GROUP
9701 enum uclamp_id clamp_id;
9702
9703 for_each_clamp_id(clamp_id) {
9704 uclamp_se_set(&tg->uclamp_req[clamp_id],
9705 uclamp_none(clamp_id), false);
9706 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9707 }
9708 #endif
9709 }
9710
sched_free_group(struct task_group * tg)9711 static void sched_free_group(struct task_group *tg)
9712 {
9713 free_fair_sched_group(tg);
9714 free_rt_sched_group(tg);
9715 autogroup_free(tg);
9716 kmem_cache_free(task_group_cache, tg);
9717 }
9718
9719 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)9720 struct task_group *sched_create_group(struct task_group *parent)
9721 {
9722 struct task_group *tg;
9723
9724 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9725 if (!tg)
9726 return ERR_PTR(-ENOMEM);
9727
9728 if (!alloc_fair_sched_group(tg, parent))
9729 goto err;
9730
9731 if (!alloc_rt_sched_group(tg, parent))
9732 goto err;
9733
9734 alloc_uclamp_sched_group(tg, parent);
9735
9736 return tg;
9737
9738 err:
9739 sched_free_group(tg);
9740 return ERR_PTR(-ENOMEM);
9741 }
9742
sched_online_group(struct task_group * tg,struct task_group * parent)9743 void sched_online_group(struct task_group *tg, struct task_group *parent)
9744 {
9745 unsigned long flags;
9746
9747 spin_lock_irqsave(&task_group_lock, flags);
9748 list_add_rcu(&tg->list, &task_groups);
9749
9750 /* Root should already exist: */
9751 WARN_ON(!parent);
9752
9753 tg->parent = parent;
9754 INIT_LIST_HEAD(&tg->children);
9755 list_add_rcu(&tg->siblings, &parent->children);
9756 spin_unlock_irqrestore(&task_group_lock, flags);
9757
9758 online_fair_sched_group(tg);
9759 }
9760
9761 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)9762 static void sched_free_group_rcu(struct rcu_head *rhp)
9763 {
9764 /* Now it should be safe to free those cfs_rqs: */
9765 sched_free_group(container_of(rhp, struct task_group, rcu));
9766 }
9767
sched_destroy_group(struct task_group * tg)9768 void sched_destroy_group(struct task_group *tg)
9769 {
9770 /* Wait for possible concurrent references to cfs_rqs complete: */
9771 call_rcu(&tg->rcu, sched_free_group_rcu);
9772 }
9773
sched_offline_group(struct task_group * tg)9774 void sched_offline_group(struct task_group *tg)
9775 {
9776 unsigned long flags;
9777
9778 /* End participation in shares distribution: */
9779 unregister_fair_sched_group(tg);
9780
9781 spin_lock_irqsave(&task_group_lock, flags);
9782 list_del_rcu(&tg->list);
9783 list_del_rcu(&tg->siblings);
9784 spin_unlock_irqrestore(&task_group_lock, flags);
9785 }
9786
sched_change_group(struct task_struct * tsk,int type)9787 static void sched_change_group(struct task_struct *tsk, int type)
9788 {
9789 struct task_group *tg;
9790
9791 /*
9792 * All callers are synchronized by task_rq_lock(); we do not use RCU
9793 * which is pointless here. Thus, we pass "true" to task_css_check()
9794 * to prevent lockdep warnings.
9795 */
9796 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9797 struct task_group, css);
9798 tg = autogroup_task_group(tsk, tg);
9799 tsk->sched_task_group = tg;
9800
9801 #ifdef CONFIG_FAIR_GROUP_SCHED
9802 if (tsk->sched_class->task_change_group)
9803 tsk->sched_class->task_change_group(tsk, type);
9804 else
9805 #endif
9806 set_task_rq(tsk, task_cpu(tsk));
9807 }
9808
9809 /*
9810 * Change task's runqueue when it moves between groups.
9811 *
9812 * The caller of this function should have put the task in its new group by
9813 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9814 * its new group.
9815 */
sched_move_task(struct task_struct * tsk)9816 void sched_move_task(struct task_struct *tsk)
9817 {
9818 int queued, running, queue_flags =
9819 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9820 struct rq_flags rf;
9821 struct rq *rq;
9822
9823 rq = task_rq_lock(tsk, &rf);
9824 update_rq_clock(rq);
9825
9826 running = task_current(rq, tsk);
9827 queued = task_on_rq_queued(tsk);
9828
9829 if (queued)
9830 dequeue_task(rq, tsk, queue_flags);
9831 if (running)
9832 put_prev_task(rq, tsk);
9833
9834 sched_change_group(tsk, TASK_MOVE_GROUP);
9835
9836 if (queued)
9837 enqueue_task(rq, tsk, queue_flags);
9838 if (running) {
9839 set_next_task(rq, tsk);
9840 /*
9841 * After changing group, the running task may have joined a
9842 * throttled one but it's still the running task. Trigger a
9843 * resched to make sure that task can still run.
9844 */
9845 resched_curr(rq);
9846 }
9847
9848 task_rq_unlock(rq, tsk, &rf);
9849 }
9850
css_tg(struct cgroup_subsys_state * css)9851 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9852 {
9853 return css ? container_of(css, struct task_group, css) : NULL;
9854 }
9855
9856 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)9857 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9858 {
9859 struct task_group *parent = css_tg(parent_css);
9860 struct task_group *tg;
9861
9862 if (!parent) {
9863 /* This is early initialization for the top cgroup */
9864 return &root_task_group.css;
9865 }
9866
9867 tg = sched_create_group(parent);
9868 if (IS_ERR(tg))
9869 return ERR_PTR(-ENOMEM);
9870
9871 return &tg->css;
9872 }
9873
9874 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)9875 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9876 {
9877 struct task_group *tg = css_tg(css);
9878 struct task_group *parent = css_tg(css->parent);
9879
9880 if (parent)
9881 sched_online_group(tg, parent);
9882
9883 #ifdef CONFIG_UCLAMP_TASK_GROUP
9884 /* Propagate the effective uclamp value for the new group */
9885 mutex_lock(&uclamp_mutex);
9886 rcu_read_lock();
9887 cpu_util_update_eff(css);
9888 rcu_read_unlock();
9889 mutex_unlock(&uclamp_mutex);
9890 #endif
9891
9892 return 0;
9893 }
9894
cpu_cgroup_css_released(struct cgroup_subsys_state * css)9895 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9896 {
9897 struct task_group *tg = css_tg(css);
9898
9899 sched_offline_group(tg);
9900 }
9901
cpu_cgroup_css_free(struct cgroup_subsys_state * css)9902 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9903 {
9904 struct task_group *tg = css_tg(css);
9905
9906 /*
9907 * Relies on the RCU grace period between css_released() and this.
9908 */
9909 sched_free_group(tg);
9910 }
9911
9912 /*
9913 * This is called before wake_up_new_task(), therefore we really only
9914 * have to set its group bits, all the other stuff does not apply.
9915 */
cpu_cgroup_fork(struct task_struct * task)9916 static void cpu_cgroup_fork(struct task_struct *task)
9917 {
9918 struct rq_flags rf;
9919 struct rq *rq;
9920
9921 rq = task_rq_lock(task, &rf);
9922
9923 update_rq_clock(rq);
9924 sched_change_group(task, TASK_SET_GROUP);
9925
9926 task_rq_unlock(rq, task, &rf);
9927 }
9928
cpu_cgroup_can_attach(struct cgroup_taskset * tset)9929 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9930 {
9931 struct task_struct *task;
9932 struct cgroup_subsys_state *css;
9933 int ret = 0;
9934
9935 cgroup_taskset_for_each(task, css, tset) {
9936 #ifdef CONFIG_RT_GROUP_SCHED
9937 if (!sched_rt_can_attach(css_tg(css), task))
9938 return -EINVAL;
9939 #endif
9940 /*
9941 * Serialize against wake_up_new_task() such that if it's
9942 * running, we're sure to observe its full state.
9943 */
9944 raw_spin_lock_irq(&task->pi_lock);
9945 /*
9946 * Avoid calling sched_move_task() before wake_up_new_task()
9947 * has happened. This would lead to problems with PELT, due to
9948 * move wanting to detach+attach while we're not attached yet.
9949 */
9950 if (READ_ONCE(task->__state) == TASK_NEW)
9951 ret = -EINVAL;
9952 raw_spin_unlock_irq(&task->pi_lock);
9953
9954 if (ret)
9955 break;
9956 }
9957 return ret;
9958 }
9959
cpu_cgroup_attach(struct cgroup_taskset * tset)9960 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9961 {
9962 struct task_struct *task;
9963 struct cgroup_subsys_state *css;
9964
9965 cgroup_taskset_for_each(task, css, tset)
9966 sched_move_task(task);
9967 }
9968
9969 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)9970 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9971 {
9972 struct cgroup_subsys_state *top_css = css;
9973 struct uclamp_se *uc_parent = NULL;
9974 struct uclamp_se *uc_se = NULL;
9975 unsigned int eff[UCLAMP_CNT];
9976 enum uclamp_id clamp_id;
9977 unsigned int clamps;
9978
9979 lockdep_assert_held(&uclamp_mutex);
9980 SCHED_WARN_ON(!rcu_read_lock_held());
9981
9982 css_for_each_descendant_pre(css, top_css) {
9983 uc_parent = css_tg(css)->parent
9984 ? css_tg(css)->parent->uclamp : NULL;
9985
9986 for_each_clamp_id(clamp_id) {
9987 /* Assume effective clamps matches requested clamps */
9988 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9989 /* Cap effective clamps with parent's effective clamps */
9990 if (uc_parent &&
9991 eff[clamp_id] > uc_parent[clamp_id].value) {
9992 eff[clamp_id] = uc_parent[clamp_id].value;
9993 }
9994 }
9995 /* Ensure protection is always capped by limit */
9996 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9997
9998 /* Propagate most restrictive effective clamps */
9999 clamps = 0x0;
10000 uc_se = css_tg(css)->uclamp;
10001 for_each_clamp_id(clamp_id) {
10002 if (eff[clamp_id] == uc_se[clamp_id].value)
10003 continue;
10004 uc_se[clamp_id].value = eff[clamp_id];
10005 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10006 clamps |= (0x1 << clamp_id);
10007 }
10008 if (!clamps) {
10009 css = css_rightmost_descendant(css);
10010 continue;
10011 }
10012
10013 /* Immediately update descendants RUNNABLE tasks */
10014 uclamp_update_active_tasks(css);
10015 }
10016 }
10017
10018 /*
10019 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10020 * C expression. Since there is no way to convert a macro argument (N) into a
10021 * character constant, use two levels of macros.
10022 */
10023 #define _POW10(exp) ((unsigned int)1e##exp)
10024 #define POW10(exp) _POW10(exp)
10025
10026 struct uclamp_request {
10027 #define UCLAMP_PERCENT_SHIFT 2
10028 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10029 s64 percent;
10030 u64 util;
10031 int ret;
10032 };
10033
10034 static inline struct uclamp_request
capacity_from_percent(char * buf)10035 capacity_from_percent(char *buf)
10036 {
10037 struct uclamp_request req = {
10038 .percent = UCLAMP_PERCENT_SCALE,
10039 .util = SCHED_CAPACITY_SCALE,
10040 .ret = 0,
10041 };
10042
10043 buf = strim(buf);
10044 if (strcmp(buf, "max")) {
10045 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10046 &req.percent);
10047 if (req.ret)
10048 return req;
10049 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10050 req.ret = -ERANGE;
10051 return req;
10052 }
10053
10054 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10055 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10056 }
10057
10058 return req;
10059 }
10060
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10061 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10062 size_t nbytes, loff_t off,
10063 enum uclamp_id clamp_id)
10064 {
10065 struct uclamp_request req;
10066 struct task_group *tg;
10067
10068 req = capacity_from_percent(buf);
10069 if (req.ret)
10070 return req.ret;
10071
10072 static_branch_enable(&sched_uclamp_used);
10073
10074 mutex_lock(&uclamp_mutex);
10075 rcu_read_lock();
10076
10077 tg = css_tg(of_css(of));
10078 if (tg->uclamp_req[clamp_id].value != req.util)
10079 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10080
10081 /*
10082 * Because of not recoverable conversion rounding we keep track of the
10083 * exact requested value
10084 */
10085 tg->uclamp_pct[clamp_id] = req.percent;
10086
10087 /* Update effective clamps to track the most restrictive value */
10088 cpu_util_update_eff(of_css(of));
10089
10090 rcu_read_unlock();
10091 mutex_unlock(&uclamp_mutex);
10092
10093 return nbytes;
10094 }
10095
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10096 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10097 char *buf, size_t nbytes,
10098 loff_t off)
10099 {
10100 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10101 }
10102
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10103 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10104 char *buf, size_t nbytes,
10105 loff_t off)
10106 {
10107 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10108 }
10109
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10110 static inline void cpu_uclamp_print(struct seq_file *sf,
10111 enum uclamp_id clamp_id)
10112 {
10113 struct task_group *tg;
10114 u64 util_clamp;
10115 u64 percent;
10116 u32 rem;
10117
10118 rcu_read_lock();
10119 tg = css_tg(seq_css(sf));
10120 util_clamp = tg->uclamp_req[clamp_id].value;
10121 rcu_read_unlock();
10122
10123 if (util_clamp == SCHED_CAPACITY_SCALE) {
10124 seq_puts(sf, "max\n");
10125 return;
10126 }
10127
10128 percent = tg->uclamp_pct[clamp_id];
10129 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10130 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10131 }
10132
cpu_uclamp_min_show(struct seq_file * sf,void * v)10133 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10134 {
10135 cpu_uclamp_print(sf, UCLAMP_MIN);
10136 return 0;
10137 }
10138
cpu_uclamp_max_show(struct seq_file * sf,void * v)10139 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10140 {
10141 cpu_uclamp_print(sf, UCLAMP_MAX);
10142 return 0;
10143 }
10144 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10145
10146 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10147 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10148 struct cftype *cftype, u64 shareval)
10149 {
10150 if (shareval > scale_load_down(ULONG_MAX))
10151 shareval = MAX_SHARES;
10152 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10153 }
10154
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10155 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10156 struct cftype *cft)
10157 {
10158 struct task_group *tg = css_tg(css);
10159
10160 return (u64) scale_load_down(tg->shares);
10161 }
10162
10163 #ifdef CONFIG_CFS_BANDWIDTH
10164 static DEFINE_MUTEX(cfs_constraints_mutex);
10165
10166 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10167 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10168 /* More than 203 days if BW_SHIFT equals 20. */
10169 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10170
10171 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10172
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10173 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10174 u64 burst)
10175 {
10176 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10177 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10178
10179 if (tg == &root_task_group)
10180 return -EINVAL;
10181
10182 /*
10183 * Ensure we have at some amount of bandwidth every period. This is
10184 * to prevent reaching a state of large arrears when throttled via
10185 * entity_tick() resulting in prolonged exit starvation.
10186 */
10187 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10188 return -EINVAL;
10189
10190 /*
10191 * Likewise, bound things on the other side by preventing insane quota
10192 * periods. This also allows us to normalize in computing quota
10193 * feasibility.
10194 */
10195 if (period > max_cfs_quota_period)
10196 return -EINVAL;
10197
10198 /*
10199 * Bound quota to defend quota against overflow during bandwidth shift.
10200 */
10201 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10202 return -EINVAL;
10203
10204 if (quota != RUNTIME_INF && (burst > quota ||
10205 burst + quota > max_cfs_runtime))
10206 return -EINVAL;
10207
10208 /*
10209 * Prevent race between setting of cfs_rq->runtime_enabled and
10210 * unthrottle_offline_cfs_rqs().
10211 */
10212 cpus_read_lock();
10213 mutex_lock(&cfs_constraints_mutex);
10214 ret = __cfs_schedulable(tg, period, quota);
10215 if (ret)
10216 goto out_unlock;
10217
10218 runtime_enabled = quota != RUNTIME_INF;
10219 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10220 /*
10221 * If we need to toggle cfs_bandwidth_used, off->on must occur
10222 * before making related changes, and on->off must occur afterwards
10223 */
10224 if (runtime_enabled && !runtime_was_enabled)
10225 cfs_bandwidth_usage_inc();
10226 raw_spin_lock_irq(&cfs_b->lock);
10227 cfs_b->period = ns_to_ktime(period);
10228 cfs_b->quota = quota;
10229 cfs_b->burst = burst;
10230
10231 __refill_cfs_bandwidth_runtime(cfs_b);
10232
10233 /* Restart the period timer (if active) to handle new period expiry: */
10234 if (runtime_enabled)
10235 start_cfs_bandwidth(cfs_b);
10236
10237 raw_spin_unlock_irq(&cfs_b->lock);
10238
10239 for_each_online_cpu(i) {
10240 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10241 struct rq *rq = cfs_rq->rq;
10242 struct rq_flags rf;
10243
10244 rq_lock_irq(rq, &rf);
10245 cfs_rq->runtime_enabled = runtime_enabled;
10246 cfs_rq->runtime_remaining = 0;
10247
10248 if (cfs_rq->throttled)
10249 unthrottle_cfs_rq(cfs_rq);
10250 rq_unlock_irq(rq, &rf);
10251 }
10252 if (runtime_was_enabled && !runtime_enabled)
10253 cfs_bandwidth_usage_dec();
10254 out_unlock:
10255 mutex_unlock(&cfs_constraints_mutex);
10256 cpus_read_unlock();
10257
10258 return ret;
10259 }
10260
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10261 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10262 {
10263 u64 quota, period, burst;
10264
10265 period = ktime_to_ns(tg->cfs_bandwidth.period);
10266 burst = tg->cfs_bandwidth.burst;
10267 if (cfs_quota_us < 0)
10268 quota = RUNTIME_INF;
10269 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10270 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10271 else
10272 return -EINVAL;
10273
10274 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10275 }
10276
tg_get_cfs_quota(struct task_group * tg)10277 static long tg_get_cfs_quota(struct task_group *tg)
10278 {
10279 u64 quota_us;
10280
10281 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10282 return -1;
10283
10284 quota_us = tg->cfs_bandwidth.quota;
10285 do_div(quota_us, NSEC_PER_USEC);
10286
10287 return quota_us;
10288 }
10289
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10290 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10291 {
10292 u64 quota, period, burst;
10293
10294 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10295 return -EINVAL;
10296
10297 period = (u64)cfs_period_us * NSEC_PER_USEC;
10298 quota = tg->cfs_bandwidth.quota;
10299 burst = tg->cfs_bandwidth.burst;
10300
10301 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10302 }
10303
tg_get_cfs_period(struct task_group * tg)10304 static long tg_get_cfs_period(struct task_group *tg)
10305 {
10306 u64 cfs_period_us;
10307
10308 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10309 do_div(cfs_period_us, NSEC_PER_USEC);
10310
10311 return cfs_period_us;
10312 }
10313
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10314 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10315 {
10316 u64 quota, period, burst;
10317
10318 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10319 return -EINVAL;
10320
10321 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10322 period = ktime_to_ns(tg->cfs_bandwidth.period);
10323 quota = tg->cfs_bandwidth.quota;
10324
10325 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10326 }
10327
tg_get_cfs_burst(struct task_group * tg)10328 static long tg_get_cfs_burst(struct task_group *tg)
10329 {
10330 u64 burst_us;
10331
10332 burst_us = tg->cfs_bandwidth.burst;
10333 do_div(burst_us, NSEC_PER_USEC);
10334
10335 return burst_us;
10336 }
10337
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10338 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10339 struct cftype *cft)
10340 {
10341 return tg_get_cfs_quota(css_tg(css));
10342 }
10343
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)10344 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10345 struct cftype *cftype, s64 cfs_quota_us)
10346 {
10347 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10348 }
10349
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10350 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10351 struct cftype *cft)
10352 {
10353 return tg_get_cfs_period(css_tg(css));
10354 }
10355
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)10356 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10357 struct cftype *cftype, u64 cfs_period_us)
10358 {
10359 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10360 }
10361
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10362 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10363 struct cftype *cft)
10364 {
10365 return tg_get_cfs_burst(css_tg(css));
10366 }
10367
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)10368 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10369 struct cftype *cftype, u64 cfs_burst_us)
10370 {
10371 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10372 }
10373
10374 struct cfs_schedulable_data {
10375 struct task_group *tg;
10376 u64 period, quota;
10377 };
10378
10379 /*
10380 * normalize group quota/period to be quota/max_period
10381 * note: units are usecs
10382 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)10383 static u64 normalize_cfs_quota(struct task_group *tg,
10384 struct cfs_schedulable_data *d)
10385 {
10386 u64 quota, period;
10387
10388 if (tg == d->tg) {
10389 period = d->period;
10390 quota = d->quota;
10391 } else {
10392 period = tg_get_cfs_period(tg);
10393 quota = tg_get_cfs_quota(tg);
10394 }
10395
10396 /* note: these should typically be equivalent */
10397 if (quota == RUNTIME_INF || quota == -1)
10398 return RUNTIME_INF;
10399
10400 return to_ratio(period, quota);
10401 }
10402
tg_cfs_schedulable_down(struct task_group * tg,void * data)10403 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10404 {
10405 struct cfs_schedulable_data *d = data;
10406 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10407 s64 quota = 0, parent_quota = -1;
10408
10409 if (!tg->parent) {
10410 quota = RUNTIME_INF;
10411 } else {
10412 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10413
10414 quota = normalize_cfs_quota(tg, d);
10415 parent_quota = parent_b->hierarchical_quota;
10416
10417 /*
10418 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10419 * always take the min. On cgroup1, only inherit when no
10420 * limit is set:
10421 */
10422 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10423 quota = min(quota, parent_quota);
10424 } else {
10425 if (quota == RUNTIME_INF)
10426 quota = parent_quota;
10427 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10428 return -EINVAL;
10429 }
10430 }
10431 cfs_b->hierarchical_quota = quota;
10432
10433 return 0;
10434 }
10435
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)10436 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10437 {
10438 int ret;
10439 struct cfs_schedulable_data data = {
10440 .tg = tg,
10441 .period = period,
10442 .quota = quota,
10443 };
10444
10445 if (quota != RUNTIME_INF) {
10446 do_div(data.period, NSEC_PER_USEC);
10447 do_div(data.quota, NSEC_PER_USEC);
10448 }
10449
10450 rcu_read_lock();
10451 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10452 rcu_read_unlock();
10453
10454 return ret;
10455 }
10456
cpu_cfs_stat_show(struct seq_file * sf,void * v)10457 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10458 {
10459 struct task_group *tg = css_tg(seq_css(sf));
10460 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10461
10462 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10463 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10464 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10465
10466 if (schedstat_enabled() && tg != &root_task_group) {
10467 u64 ws = 0;
10468 int i;
10469
10470 for_each_possible_cpu(i)
10471 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10472
10473 seq_printf(sf, "wait_sum %llu\n", ws);
10474 }
10475
10476 return 0;
10477 }
10478 #endif /* CONFIG_CFS_BANDWIDTH */
10479 #endif /* CONFIG_FAIR_GROUP_SCHED */
10480
10481 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)10482 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10483 struct cftype *cft, s64 val)
10484 {
10485 return sched_group_set_rt_runtime(css_tg(css), val);
10486 }
10487
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)10488 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10489 struct cftype *cft)
10490 {
10491 return sched_group_rt_runtime(css_tg(css));
10492 }
10493
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)10494 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10495 struct cftype *cftype, u64 rt_period_us)
10496 {
10497 return sched_group_set_rt_period(css_tg(css), rt_period_us);
10498 }
10499
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)10500 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10501 struct cftype *cft)
10502 {
10503 return sched_group_rt_period(css_tg(css));
10504 }
10505 #endif /* CONFIG_RT_GROUP_SCHED */
10506
10507 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10508 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10509 struct cftype *cft)
10510 {
10511 return css_tg(css)->idle;
10512 }
10513
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)10514 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10515 struct cftype *cft, s64 idle)
10516 {
10517 return sched_group_set_idle(css_tg(css), idle);
10518 }
10519 #endif
10520
10521 static struct cftype cpu_legacy_files[] = {
10522 #ifdef CONFIG_FAIR_GROUP_SCHED
10523 {
10524 .name = "shares",
10525 .read_u64 = cpu_shares_read_u64,
10526 .write_u64 = cpu_shares_write_u64,
10527 },
10528 {
10529 .name = "idle",
10530 .read_s64 = cpu_idle_read_s64,
10531 .write_s64 = cpu_idle_write_s64,
10532 },
10533 #endif
10534 #ifdef CONFIG_CFS_BANDWIDTH
10535 {
10536 .name = "cfs_quota_us",
10537 .read_s64 = cpu_cfs_quota_read_s64,
10538 .write_s64 = cpu_cfs_quota_write_s64,
10539 },
10540 {
10541 .name = "cfs_period_us",
10542 .read_u64 = cpu_cfs_period_read_u64,
10543 .write_u64 = cpu_cfs_period_write_u64,
10544 },
10545 {
10546 .name = "cfs_burst_us",
10547 .read_u64 = cpu_cfs_burst_read_u64,
10548 .write_u64 = cpu_cfs_burst_write_u64,
10549 },
10550 {
10551 .name = "stat",
10552 .seq_show = cpu_cfs_stat_show,
10553 },
10554 #endif
10555 #ifdef CONFIG_RT_GROUP_SCHED
10556 {
10557 .name = "rt_runtime_us",
10558 .read_s64 = cpu_rt_runtime_read,
10559 .write_s64 = cpu_rt_runtime_write,
10560 },
10561 {
10562 .name = "rt_period_us",
10563 .read_u64 = cpu_rt_period_read_uint,
10564 .write_u64 = cpu_rt_period_write_uint,
10565 },
10566 #endif
10567 #ifdef CONFIG_UCLAMP_TASK_GROUP
10568 {
10569 .name = "uclamp.min",
10570 .flags = CFTYPE_NOT_ON_ROOT,
10571 .seq_show = cpu_uclamp_min_show,
10572 .write = cpu_uclamp_min_write,
10573 },
10574 {
10575 .name = "uclamp.max",
10576 .flags = CFTYPE_NOT_ON_ROOT,
10577 .seq_show = cpu_uclamp_max_show,
10578 .write = cpu_uclamp_max_write,
10579 },
10580 #endif
10581 { } /* Terminate */
10582 };
10583
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)10584 static int cpu_extra_stat_show(struct seq_file *sf,
10585 struct cgroup_subsys_state *css)
10586 {
10587 #ifdef CONFIG_CFS_BANDWIDTH
10588 {
10589 struct task_group *tg = css_tg(css);
10590 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10591 u64 throttled_usec;
10592
10593 throttled_usec = cfs_b->throttled_time;
10594 do_div(throttled_usec, NSEC_PER_USEC);
10595
10596 seq_printf(sf, "nr_periods %d\n"
10597 "nr_throttled %d\n"
10598 "throttled_usec %llu\n",
10599 cfs_b->nr_periods, cfs_b->nr_throttled,
10600 throttled_usec);
10601 }
10602 #endif
10603 return 0;
10604 }
10605
10606 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10607 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10608 struct cftype *cft)
10609 {
10610 struct task_group *tg = css_tg(css);
10611 u64 weight = scale_load_down(tg->shares);
10612
10613 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10614 }
10615
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)10616 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10617 struct cftype *cft, u64 weight)
10618 {
10619 /*
10620 * cgroup weight knobs should use the common MIN, DFL and MAX
10621 * values which are 1, 100 and 10000 respectively. While it loses
10622 * a bit of range on both ends, it maps pretty well onto the shares
10623 * value used by scheduler and the round-trip conversions preserve
10624 * the original value over the entire range.
10625 */
10626 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10627 return -ERANGE;
10628
10629 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10630
10631 return sched_group_set_shares(css_tg(css), scale_load(weight));
10632 }
10633
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10634 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10635 struct cftype *cft)
10636 {
10637 unsigned long weight = scale_load_down(css_tg(css)->shares);
10638 int last_delta = INT_MAX;
10639 int prio, delta;
10640
10641 /* find the closest nice value to the current weight */
10642 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10643 delta = abs(sched_prio_to_weight[prio] - weight);
10644 if (delta >= last_delta)
10645 break;
10646 last_delta = delta;
10647 }
10648
10649 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10650 }
10651
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)10652 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10653 struct cftype *cft, s64 nice)
10654 {
10655 unsigned long weight;
10656 int idx;
10657
10658 if (nice < MIN_NICE || nice > MAX_NICE)
10659 return -ERANGE;
10660
10661 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10662 idx = array_index_nospec(idx, 40);
10663 weight = sched_prio_to_weight[idx];
10664
10665 return sched_group_set_shares(css_tg(css), scale_load(weight));
10666 }
10667 #endif
10668
cpu_period_quota_print(struct seq_file * sf,long period,long quota)10669 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10670 long period, long quota)
10671 {
10672 if (quota < 0)
10673 seq_puts(sf, "max");
10674 else
10675 seq_printf(sf, "%ld", quota);
10676
10677 seq_printf(sf, " %ld\n", period);
10678 }
10679
10680 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)10681 static int __maybe_unused cpu_period_quota_parse(char *buf,
10682 u64 *periodp, u64 *quotap)
10683 {
10684 char tok[21]; /* U64_MAX */
10685
10686 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10687 return -EINVAL;
10688
10689 *periodp *= NSEC_PER_USEC;
10690
10691 if (sscanf(tok, "%llu", quotap))
10692 *quotap *= NSEC_PER_USEC;
10693 else if (!strcmp(tok, "max"))
10694 *quotap = RUNTIME_INF;
10695 else
10696 return -EINVAL;
10697
10698 return 0;
10699 }
10700
10701 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)10702 static int cpu_max_show(struct seq_file *sf, void *v)
10703 {
10704 struct task_group *tg = css_tg(seq_css(sf));
10705
10706 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10707 return 0;
10708 }
10709
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10710 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10711 char *buf, size_t nbytes, loff_t off)
10712 {
10713 struct task_group *tg = css_tg(of_css(of));
10714 u64 period = tg_get_cfs_period(tg);
10715 u64 burst = tg_get_cfs_burst(tg);
10716 u64 quota;
10717 int ret;
10718
10719 ret = cpu_period_quota_parse(buf, &period, "a);
10720 if (!ret)
10721 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10722 return ret ?: nbytes;
10723 }
10724 #endif
10725
10726 static struct cftype cpu_files[] = {
10727 #ifdef CONFIG_FAIR_GROUP_SCHED
10728 {
10729 .name = "weight",
10730 .flags = CFTYPE_NOT_ON_ROOT,
10731 .read_u64 = cpu_weight_read_u64,
10732 .write_u64 = cpu_weight_write_u64,
10733 },
10734 {
10735 .name = "weight.nice",
10736 .flags = CFTYPE_NOT_ON_ROOT,
10737 .read_s64 = cpu_weight_nice_read_s64,
10738 .write_s64 = cpu_weight_nice_write_s64,
10739 },
10740 {
10741 .name = "idle",
10742 .flags = CFTYPE_NOT_ON_ROOT,
10743 .read_s64 = cpu_idle_read_s64,
10744 .write_s64 = cpu_idle_write_s64,
10745 },
10746 #endif
10747 #ifdef CONFIG_CFS_BANDWIDTH
10748 {
10749 .name = "max",
10750 .flags = CFTYPE_NOT_ON_ROOT,
10751 .seq_show = cpu_max_show,
10752 .write = cpu_max_write,
10753 },
10754 {
10755 .name = "max.burst",
10756 .flags = CFTYPE_NOT_ON_ROOT,
10757 .read_u64 = cpu_cfs_burst_read_u64,
10758 .write_u64 = cpu_cfs_burst_write_u64,
10759 },
10760 #endif
10761 #ifdef CONFIG_UCLAMP_TASK_GROUP
10762 {
10763 .name = "uclamp.min",
10764 .flags = CFTYPE_NOT_ON_ROOT,
10765 .seq_show = cpu_uclamp_min_show,
10766 .write = cpu_uclamp_min_write,
10767 },
10768 {
10769 .name = "uclamp.max",
10770 .flags = CFTYPE_NOT_ON_ROOT,
10771 .seq_show = cpu_uclamp_max_show,
10772 .write = cpu_uclamp_max_write,
10773 },
10774 #endif
10775 { } /* terminate */
10776 };
10777
10778 struct cgroup_subsys cpu_cgrp_subsys = {
10779 .css_alloc = cpu_cgroup_css_alloc,
10780 .css_online = cpu_cgroup_css_online,
10781 .css_released = cpu_cgroup_css_released,
10782 .css_free = cpu_cgroup_css_free,
10783 .css_extra_stat_show = cpu_extra_stat_show,
10784 .fork = cpu_cgroup_fork,
10785 .can_attach = cpu_cgroup_can_attach,
10786 .attach = cpu_cgroup_attach,
10787 .legacy_cftypes = cpu_legacy_files,
10788 .dfl_cftypes = cpu_files,
10789 .early_init = true,
10790 .threaded = true,
10791 };
10792
10793 #endif /* CONFIG_CGROUP_SCHED */
10794
dump_cpu_task(int cpu)10795 void dump_cpu_task(int cpu)
10796 {
10797 pr_info("Task dump for CPU %d:\n", cpu);
10798 sched_show_task(cpu_curr(cpu));
10799 }
10800
10801 /*
10802 * Nice levels are multiplicative, with a gentle 10% change for every
10803 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10804 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10805 * that remained on nice 0.
10806 *
10807 * The "10% effect" is relative and cumulative: from _any_ nice level,
10808 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10809 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10810 * If a task goes up by ~10% and another task goes down by ~10% then
10811 * the relative distance between them is ~25%.)
10812 */
10813 const int sched_prio_to_weight[40] = {
10814 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10815 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10816 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10817 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10818 /* 0 */ 1024, 820, 655, 526, 423,
10819 /* 5 */ 335, 272, 215, 172, 137,
10820 /* 10 */ 110, 87, 70, 56, 45,
10821 /* 15 */ 36, 29, 23, 18, 15,
10822 };
10823
10824 /*
10825 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10826 *
10827 * In cases where the weight does not change often, we can use the
10828 * precalculated inverse to speed up arithmetics by turning divisions
10829 * into multiplications:
10830 */
10831 const u32 sched_prio_to_wmult[40] = {
10832 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10833 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10834 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10835 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10836 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10837 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10838 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10839 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10840 };
10841
call_trace_sched_update_nr_running(struct rq * rq,int count)10842 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10843 {
10844 trace_sched_update_nr_running_tp(rq, count);
10845 }
10846