1 /*
2  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the version 2 of the GNU General Public License
8  * as published by the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <linux/of.h>
31 #include <net/rtnetlink.h>
32 
33 #define MOD_DESC "CAN device driver interface"
34 
35 MODULE_DESCRIPTION(MOD_DESC);
36 MODULE_LICENSE("GPL v2");
37 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
38 
39 /* CAN DLC to real data length conversion helpers */
40 
41 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
42 			     8, 12, 16, 20, 24, 32, 48, 64};
43 
44 /* get data length from can_dlc with sanitized can_dlc */
can_dlc2len(u8 can_dlc)45 u8 can_dlc2len(u8 can_dlc)
46 {
47 	return dlc2len[can_dlc & 0x0F];
48 }
49 EXPORT_SYMBOL_GPL(can_dlc2len);
50 
51 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
52 			     9, 9, 9, 9,			/* 9 - 12 */
53 			     10, 10, 10, 10,			/* 13 - 16 */
54 			     11, 11, 11, 11,			/* 17 - 20 */
55 			     12, 12, 12, 12,			/* 21 - 24 */
56 			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
57 			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
58 			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
59 			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
60 			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
61 
62 /* map the sanitized data length to an appropriate data length code */
can_len2dlc(u8 len)63 u8 can_len2dlc(u8 len)
64 {
65 	if (unlikely(len > 64))
66 		return 0xF;
67 
68 	return len2dlc[len];
69 }
70 EXPORT_SYMBOL_GPL(can_len2dlc);
71 
72 #ifdef CONFIG_CAN_CALC_BITTIMING
73 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
74 #define CAN_CALC_SYNC_SEG 1
75 
76 /*
77  * Bit-timing calculation derived from:
78  *
79  * Code based on LinCAN sources and H8S2638 project
80  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
81  * Copyright 2005      Stanislav Marek
82  * email: pisa@cmp.felk.cvut.cz
83  *
84  * Calculates proper bit-timing parameters for a specified bit-rate
85  * and sample-point, which can then be used to set the bit-timing
86  * registers of the CAN controller. You can find more information
87  * in the header file linux/can/netlink.h.
88  */
can_update_sample_point(const struct can_bittiming_const * btc,unsigned int sample_point_nominal,unsigned int tseg,unsigned int * tseg1_ptr,unsigned int * tseg2_ptr,unsigned int * sample_point_error_ptr)89 static int can_update_sample_point(const struct can_bittiming_const *btc,
90 			  unsigned int sample_point_nominal, unsigned int tseg,
91 			  unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
92 			  unsigned int *sample_point_error_ptr)
93 {
94 	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
95 	unsigned int sample_point, best_sample_point = 0;
96 	unsigned int tseg1, tseg2;
97 	int i;
98 
99 	for (i = 0; i <= 1; i++) {
100 		tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
101 		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
102 		tseg1 = tseg - tseg2;
103 		if (tseg1 > btc->tseg1_max) {
104 			tseg1 = btc->tseg1_max;
105 			tseg2 = tseg - tseg1;
106 		}
107 
108 		sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
109 		sample_point_error = abs(sample_point_nominal - sample_point);
110 
111 		if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
112 			best_sample_point = sample_point;
113 			best_sample_point_error = sample_point_error;
114 			*tseg1_ptr = tseg1;
115 			*tseg2_ptr = tseg2;
116 		}
117 	}
118 
119 	if (sample_point_error_ptr)
120 		*sample_point_error_ptr = best_sample_point_error;
121 
122 	return best_sample_point;
123 }
124 
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)125 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
126 			      const struct can_bittiming_const *btc)
127 {
128 	struct can_priv *priv = netdev_priv(dev);
129 	unsigned int bitrate;			/* current bitrate */
130 	unsigned int bitrate_error;		/* difference between current and nominal value */
131 	unsigned int best_bitrate_error = UINT_MAX;
132 	unsigned int sample_point_error;	/* difference between current and nominal value */
133 	unsigned int best_sample_point_error = UINT_MAX;
134 	unsigned int sample_point_nominal;	/* nominal sample point */
135 	unsigned int best_tseg = 0;		/* current best value for tseg */
136 	unsigned int best_brp = 0;		/* current best value for brp */
137 	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
138 	u64 v64;
139 
140 	/* Use CiA recommended sample points */
141 	if (bt->sample_point) {
142 		sample_point_nominal = bt->sample_point;
143 	} else {
144 		if (bt->bitrate > 800000)
145 			sample_point_nominal = 750;
146 		else if (bt->bitrate > 500000)
147 			sample_point_nominal = 800;
148 		else
149 			sample_point_nominal = 875;
150 	}
151 
152 	/* tseg even = round down, odd = round up */
153 	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
154 	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
155 		tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
156 
157 		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
158 		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
159 
160 		/* choose brp step which is possible in system */
161 		brp = (brp / btc->brp_inc) * btc->brp_inc;
162 		if ((brp < btc->brp_min) || (brp > btc->brp_max))
163 			continue;
164 
165 		bitrate = priv->clock.freq / (brp * tsegall);
166 		bitrate_error = abs(bt->bitrate - bitrate);
167 
168 		/* tseg brp biterror */
169 		if (bitrate_error > best_bitrate_error)
170 			continue;
171 
172 		/* reset sample point error if we have a better bitrate */
173 		if (bitrate_error < best_bitrate_error)
174 			best_sample_point_error = UINT_MAX;
175 
176 		can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
177 		if (sample_point_error > best_sample_point_error)
178 			continue;
179 
180 		best_sample_point_error = sample_point_error;
181 		best_bitrate_error = bitrate_error;
182 		best_tseg = tseg / 2;
183 		best_brp = brp;
184 
185 		if (bitrate_error == 0 && sample_point_error == 0)
186 			break;
187 	}
188 
189 	if (best_bitrate_error) {
190 		/* Error in one-tenth of a percent */
191 		v64 = (u64)best_bitrate_error * 1000;
192 		do_div(v64, bt->bitrate);
193 		bitrate_error = (u32)v64;
194 		if (bitrate_error > CAN_CALC_MAX_ERROR) {
195 			netdev_err(dev,
196 				   "bitrate error %d.%d%% too high\n",
197 				   bitrate_error / 10, bitrate_error % 10);
198 			return -EDOM;
199 		}
200 		netdev_warn(dev, "bitrate error %d.%d%%\n",
201 			    bitrate_error / 10, bitrate_error % 10);
202 	}
203 
204 	/* real sample point */
205 	bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
206 					  &tseg1, &tseg2, NULL);
207 
208 	v64 = (u64)best_brp * 1000 * 1000 * 1000;
209 	do_div(v64, priv->clock.freq);
210 	bt->tq = (u32)v64;
211 	bt->prop_seg = tseg1 / 2;
212 	bt->phase_seg1 = tseg1 - bt->prop_seg;
213 	bt->phase_seg2 = tseg2;
214 
215 	/* check for sjw user settings */
216 	if (!bt->sjw || !btc->sjw_max) {
217 		bt->sjw = 1;
218 	} else {
219 		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
220 		if (bt->sjw > btc->sjw_max)
221 			bt->sjw = btc->sjw_max;
222 		/* bt->sjw must not be higher than tseg2 */
223 		if (tseg2 < bt->sjw)
224 			bt->sjw = tseg2;
225 	}
226 
227 	bt->brp = best_brp;
228 
229 	/* real bitrate */
230 	bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
231 
232 	return 0;
233 }
234 #else /* !CONFIG_CAN_CALC_BITTIMING */
can_calc_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)235 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
236 			      const struct can_bittiming_const *btc)
237 {
238 	netdev_err(dev, "bit-timing calculation not available\n");
239 	return -EINVAL;
240 }
241 #endif /* CONFIG_CAN_CALC_BITTIMING */
242 
243 /*
244  * Checks the validity of the specified bit-timing parameters prop_seg,
245  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
246  * prescaler value brp. You can find more information in the header
247  * file linux/can/netlink.h.
248  */
can_fixup_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc)249 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
250 			       const struct can_bittiming_const *btc)
251 {
252 	struct can_priv *priv = netdev_priv(dev);
253 	int tseg1, alltseg;
254 	u64 brp64;
255 
256 	tseg1 = bt->prop_seg + bt->phase_seg1;
257 	if (!bt->sjw)
258 		bt->sjw = 1;
259 	if (bt->sjw > btc->sjw_max ||
260 	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
261 	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
262 		return -ERANGE;
263 
264 	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
265 	if (btc->brp_inc > 1)
266 		do_div(brp64, btc->brp_inc);
267 	brp64 += 500000000UL - 1;
268 	do_div(brp64, 1000000000UL); /* the practicable BRP */
269 	if (btc->brp_inc > 1)
270 		brp64 *= btc->brp_inc;
271 	bt->brp = (u32)brp64;
272 
273 	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
274 		return -EINVAL;
275 
276 	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
277 	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
278 	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
279 
280 	return 0;
281 }
282 
283 /* Checks the validity of predefined bitrate settings */
can_validate_bitrate(struct net_device * dev,struct can_bittiming * bt,const u32 * bitrate_const,const unsigned int bitrate_const_cnt)284 static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
285 				const u32 *bitrate_const,
286 				const unsigned int bitrate_const_cnt)
287 {
288 	struct can_priv *priv = netdev_priv(dev);
289 	unsigned int i;
290 
291 	for (i = 0; i < bitrate_const_cnt; i++) {
292 		if (bt->bitrate == bitrate_const[i])
293 			break;
294 	}
295 
296 	if (i >= priv->bitrate_const_cnt)
297 		return -EINVAL;
298 
299 	return 0;
300 }
301 
can_get_bittiming(struct net_device * dev,struct can_bittiming * bt,const struct can_bittiming_const * btc,const u32 * bitrate_const,const unsigned int bitrate_const_cnt)302 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
303 			     const struct can_bittiming_const *btc,
304 			     const u32 *bitrate_const,
305 			     const unsigned int bitrate_const_cnt)
306 {
307 	int err;
308 
309 	/*
310 	 * Depending on the given can_bittiming parameter structure the CAN
311 	 * timing parameters are calculated based on the provided bitrate OR
312 	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
313 	 * provided directly which are then checked and fixed up.
314 	 */
315 	if (!bt->tq && bt->bitrate && btc)
316 		err = can_calc_bittiming(dev, bt, btc);
317 	else if (bt->tq && !bt->bitrate && btc)
318 		err = can_fixup_bittiming(dev, bt, btc);
319 	else if (!bt->tq && bt->bitrate && bitrate_const)
320 		err = can_validate_bitrate(dev, bt, bitrate_const,
321 					   bitrate_const_cnt);
322 	else
323 		err = -EINVAL;
324 
325 	return err;
326 }
327 
can_update_state_error_stats(struct net_device * dev,enum can_state new_state)328 static void can_update_state_error_stats(struct net_device *dev,
329 					 enum can_state new_state)
330 {
331 	struct can_priv *priv = netdev_priv(dev);
332 
333 	if (new_state <= priv->state)
334 		return;
335 
336 	switch (new_state) {
337 	case CAN_STATE_ERROR_WARNING:
338 		priv->can_stats.error_warning++;
339 		break;
340 	case CAN_STATE_ERROR_PASSIVE:
341 		priv->can_stats.error_passive++;
342 		break;
343 	case CAN_STATE_BUS_OFF:
344 		priv->can_stats.bus_off++;
345 		break;
346 	default:
347 		break;
348 	}
349 }
350 
can_tx_state_to_frame(struct net_device * dev,enum can_state state)351 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
352 {
353 	switch (state) {
354 	case CAN_STATE_ERROR_ACTIVE:
355 		return CAN_ERR_CRTL_ACTIVE;
356 	case CAN_STATE_ERROR_WARNING:
357 		return CAN_ERR_CRTL_TX_WARNING;
358 	case CAN_STATE_ERROR_PASSIVE:
359 		return CAN_ERR_CRTL_TX_PASSIVE;
360 	default:
361 		return 0;
362 	}
363 }
364 
can_rx_state_to_frame(struct net_device * dev,enum can_state state)365 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
366 {
367 	switch (state) {
368 	case CAN_STATE_ERROR_ACTIVE:
369 		return CAN_ERR_CRTL_ACTIVE;
370 	case CAN_STATE_ERROR_WARNING:
371 		return CAN_ERR_CRTL_RX_WARNING;
372 	case CAN_STATE_ERROR_PASSIVE:
373 		return CAN_ERR_CRTL_RX_PASSIVE;
374 	default:
375 		return 0;
376 	}
377 }
378 
can_change_state(struct net_device * dev,struct can_frame * cf,enum can_state tx_state,enum can_state rx_state)379 void can_change_state(struct net_device *dev, struct can_frame *cf,
380 		      enum can_state tx_state, enum can_state rx_state)
381 {
382 	struct can_priv *priv = netdev_priv(dev);
383 	enum can_state new_state = max(tx_state, rx_state);
384 
385 	if (unlikely(new_state == priv->state)) {
386 		netdev_warn(dev, "%s: oops, state did not change", __func__);
387 		return;
388 	}
389 
390 	netdev_dbg(dev, "New error state: %d\n", new_state);
391 
392 	can_update_state_error_stats(dev, new_state);
393 	priv->state = new_state;
394 
395 	if (!cf)
396 		return;
397 
398 	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
399 		cf->can_id |= CAN_ERR_BUSOFF;
400 		return;
401 	}
402 
403 	cf->can_id |= CAN_ERR_CRTL;
404 	cf->data[1] |= tx_state >= rx_state ?
405 		       can_tx_state_to_frame(dev, tx_state) : 0;
406 	cf->data[1] |= tx_state <= rx_state ?
407 		       can_rx_state_to_frame(dev, rx_state) : 0;
408 }
409 EXPORT_SYMBOL_GPL(can_change_state);
410 
411 /*
412  * Local echo of CAN messages
413  *
414  * CAN network devices *should* support a local echo functionality
415  * (see Documentation/networking/can.rst). To test the handling of CAN
416  * interfaces that do not support the local echo both driver types are
417  * implemented. In the case that the driver does not support the echo
418  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
419  * to perform the echo as a fallback solution.
420  */
can_flush_echo_skb(struct net_device * dev)421 static void can_flush_echo_skb(struct net_device *dev)
422 {
423 	struct can_priv *priv = netdev_priv(dev);
424 	struct net_device_stats *stats = &dev->stats;
425 	int i;
426 
427 	for (i = 0; i < priv->echo_skb_max; i++) {
428 		if (priv->echo_skb[i]) {
429 			kfree_skb(priv->echo_skb[i]);
430 			priv->echo_skb[i] = NULL;
431 			stats->tx_dropped++;
432 			stats->tx_aborted_errors++;
433 		}
434 	}
435 }
436 
437 /*
438  * Put the skb on the stack to be looped backed locally lateron
439  *
440  * The function is typically called in the start_xmit function
441  * of the device driver. The driver must protect access to
442  * priv->echo_skb, if necessary.
443  */
can_put_echo_skb(struct sk_buff * skb,struct net_device * dev,unsigned int idx)444 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
445 		      unsigned int idx)
446 {
447 	struct can_priv *priv = netdev_priv(dev);
448 
449 	BUG_ON(idx >= priv->echo_skb_max);
450 
451 	/* check flag whether this packet has to be looped back */
452 	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
453 	    (skb->protocol != htons(ETH_P_CAN) &&
454 	     skb->protocol != htons(ETH_P_CANFD))) {
455 		kfree_skb(skb);
456 		return;
457 	}
458 
459 	if (!priv->echo_skb[idx]) {
460 
461 		skb = can_create_echo_skb(skb);
462 		if (!skb)
463 			return;
464 
465 		/* make settings for echo to reduce code in irq context */
466 		skb->pkt_type = PACKET_BROADCAST;
467 		skb->ip_summed = CHECKSUM_UNNECESSARY;
468 		skb->dev = dev;
469 
470 		/* save this skb for tx interrupt echo handling */
471 		priv->echo_skb[idx] = skb;
472 	} else {
473 		/* locking problem with netif_stop_queue() ?? */
474 		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
475 		kfree_skb(skb);
476 	}
477 }
478 EXPORT_SYMBOL_GPL(can_put_echo_skb);
479 
480 /*
481  * Get the skb from the stack and loop it back locally
482  *
483  * The function is typically called when the TX done interrupt
484  * is handled in the device driver. The driver must protect
485  * access to priv->echo_skb, if necessary.
486  */
can_get_echo_skb(struct net_device * dev,unsigned int idx)487 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
488 {
489 	struct can_priv *priv = netdev_priv(dev);
490 
491 	BUG_ON(idx >= priv->echo_skb_max);
492 
493 	if (priv->echo_skb[idx]) {
494 		struct sk_buff *skb = priv->echo_skb[idx];
495 		struct can_frame *cf = (struct can_frame *)skb->data;
496 		u8 dlc = cf->can_dlc;
497 
498 		netif_rx(priv->echo_skb[idx]);
499 		priv->echo_skb[idx] = NULL;
500 
501 		return dlc;
502 	}
503 
504 	return 0;
505 }
506 EXPORT_SYMBOL_GPL(can_get_echo_skb);
507 
508 /*
509   * Remove the skb from the stack and free it.
510   *
511   * The function is typically called when TX failed.
512   */
can_free_echo_skb(struct net_device * dev,unsigned int idx)513 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
514 {
515 	struct can_priv *priv = netdev_priv(dev);
516 
517 	BUG_ON(idx >= priv->echo_skb_max);
518 
519 	if (priv->echo_skb[idx]) {
520 		dev_kfree_skb_any(priv->echo_skb[idx]);
521 		priv->echo_skb[idx] = NULL;
522 	}
523 }
524 EXPORT_SYMBOL_GPL(can_free_echo_skb);
525 
526 /*
527  * CAN device restart for bus-off recovery
528  */
can_restart(struct net_device * dev)529 static void can_restart(struct net_device *dev)
530 {
531 	struct can_priv *priv = netdev_priv(dev);
532 	struct net_device_stats *stats = &dev->stats;
533 	struct sk_buff *skb;
534 	struct can_frame *cf;
535 	int err;
536 
537 	BUG_ON(netif_carrier_ok(dev));
538 
539 	/*
540 	 * No synchronization needed because the device is bus-off and
541 	 * no messages can come in or go out.
542 	 */
543 	can_flush_echo_skb(dev);
544 
545 	/* send restart message upstream */
546 	skb = alloc_can_err_skb(dev, &cf);
547 	if (skb == NULL) {
548 		err = -ENOMEM;
549 		goto restart;
550 	}
551 	cf->can_id |= CAN_ERR_RESTARTED;
552 
553 	netif_rx(skb);
554 
555 	stats->rx_packets++;
556 	stats->rx_bytes += cf->can_dlc;
557 
558 restart:
559 	netdev_dbg(dev, "restarted\n");
560 	priv->can_stats.restarts++;
561 
562 	/* Now restart the device */
563 	err = priv->do_set_mode(dev, CAN_MODE_START);
564 
565 	netif_carrier_on(dev);
566 	if (err)
567 		netdev_err(dev, "Error %d during restart", err);
568 }
569 
can_restart_work(struct work_struct * work)570 static void can_restart_work(struct work_struct *work)
571 {
572 	struct delayed_work *dwork = to_delayed_work(work);
573 	struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
574 
575 	can_restart(priv->dev);
576 }
577 
can_restart_now(struct net_device * dev)578 int can_restart_now(struct net_device *dev)
579 {
580 	struct can_priv *priv = netdev_priv(dev);
581 
582 	/*
583 	 * A manual restart is only permitted if automatic restart is
584 	 * disabled and the device is in the bus-off state
585 	 */
586 	if (priv->restart_ms)
587 		return -EINVAL;
588 	if (priv->state != CAN_STATE_BUS_OFF)
589 		return -EBUSY;
590 
591 	cancel_delayed_work_sync(&priv->restart_work);
592 	can_restart(dev);
593 
594 	return 0;
595 }
596 
597 /*
598  * CAN bus-off
599  *
600  * This functions should be called when the device goes bus-off to
601  * tell the netif layer that no more packets can be sent or received.
602  * If enabled, a timer is started to trigger bus-off recovery.
603  */
can_bus_off(struct net_device * dev)604 void can_bus_off(struct net_device *dev)
605 {
606 	struct can_priv *priv = netdev_priv(dev);
607 
608 	netdev_info(dev, "bus-off\n");
609 
610 	netif_carrier_off(dev);
611 
612 	if (priv->restart_ms)
613 		schedule_delayed_work(&priv->restart_work,
614 				      msecs_to_jiffies(priv->restart_ms));
615 }
616 EXPORT_SYMBOL_GPL(can_bus_off);
617 
can_setup(struct net_device * dev)618 static void can_setup(struct net_device *dev)
619 {
620 	dev->type = ARPHRD_CAN;
621 	dev->mtu = CAN_MTU;
622 	dev->hard_header_len = 0;
623 	dev->addr_len = 0;
624 	dev->tx_queue_len = 10;
625 
626 	/* New-style flags. */
627 	dev->flags = IFF_NOARP;
628 	dev->features = NETIF_F_HW_CSUM;
629 }
630 
alloc_can_skb(struct net_device * dev,struct can_frame ** cf)631 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
632 {
633 	struct sk_buff *skb;
634 
635 	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
636 			       sizeof(struct can_frame));
637 	if (unlikely(!skb))
638 		return NULL;
639 
640 	skb->protocol = htons(ETH_P_CAN);
641 	skb->pkt_type = PACKET_BROADCAST;
642 	skb->ip_summed = CHECKSUM_UNNECESSARY;
643 
644 	skb_reset_mac_header(skb);
645 	skb_reset_network_header(skb);
646 	skb_reset_transport_header(skb);
647 
648 	can_skb_reserve(skb);
649 	can_skb_prv(skb)->ifindex = dev->ifindex;
650 	can_skb_prv(skb)->skbcnt = 0;
651 
652 	*cf = skb_put_zero(skb, sizeof(struct can_frame));
653 
654 	return skb;
655 }
656 EXPORT_SYMBOL_GPL(alloc_can_skb);
657 
alloc_canfd_skb(struct net_device * dev,struct canfd_frame ** cfd)658 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
659 				struct canfd_frame **cfd)
660 {
661 	struct sk_buff *skb;
662 
663 	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
664 			       sizeof(struct canfd_frame));
665 	if (unlikely(!skb))
666 		return NULL;
667 
668 	skb->protocol = htons(ETH_P_CANFD);
669 	skb->pkt_type = PACKET_BROADCAST;
670 	skb->ip_summed = CHECKSUM_UNNECESSARY;
671 
672 	skb_reset_mac_header(skb);
673 	skb_reset_network_header(skb);
674 	skb_reset_transport_header(skb);
675 
676 	can_skb_reserve(skb);
677 	can_skb_prv(skb)->ifindex = dev->ifindex;
678 	can_skb_prv(skb)->skbcnt = 0;
679 
680 	*cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
681 
682 	return skb;
683 }
684 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
685 
alloc_can_err_skb(struct net_device * dev,struct can_frame ** cf)686 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
687 {
688 	struct sk_buff *skb;
689 
690 	skb = alloc_can_skb(dev, cf);
691 	if (unlikely(!skb))
692 		return NULL;
693 
694 	(*cf)->can_id = CAN_ERR_FLAG;
695 	(*cf)->can_dlc = CAN_ERR_DLC;
696 
697 	return skb;
698 }
699 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
700 
701 /*
702  * Allocate and setup space for the CAN network device
703  */
alloc_candev_mqs(int sizeof_priv,unsigned int echo_skb_max,unsigned int txqs,unsigned int rxqs)704 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
705 				    unsigned int txqs, unsigned int rxqs)
706 {
707 	struct net_device *dev;
708 	struct can_priv *priv;
709 	int size;
710 
711 	if (echo_skb_max)
712 		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
713 			echo_skb_max * sizeof(struct sk_buff *);
714 	else
715 		size = sizeof_priv;
716 
717 	dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
718 			       txqs, rxqs);
719 	if (!dev)
720 		return NULL;
721 
722 	priv = netdev_priv(dev);
723 	priv->dev = dev;
724 
725 	if (echo_skb_max) {
726 		priv->echo_skb_max = echo_skb_max;
727 		priv->echo_skb = (void *)priv +
728 			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
729 	}
730 
731 	priv->state = CAN_STATE_STOPPED;
732 
733 	INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
734 
735 	return dev;
736 }
737 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
738 
739 /*
740  * Free space of the CAN network device
741  */
free_candev(struct net_device * dev)742 void free_candev(struct net_device *dev)
743 {
744 	free_netdev(dev);
745 }
746 EXPORT_SYMBOL_GPL(free_candev);
747 
748 /*
749  * changing MTU and control mode for CAN/CANFD devices
750  */
can_change_mtu(struct net_device * dev,int new_mtu)751 int can_change_mtu(struct net_device *dev, int new_mtu)
752 {
753 	struct can_priv *priv = netdev_priv(dev);
754 
755 	/* Do not allow changing the MTU while running */
756 	if (dev->flags & IFF_UP)
757 		return -EBUSY;
758 
759 	/* allow change of MTU according to the CANFD ability of the device */
760 	switch (new_mtu) {
761 	case CAN_MTU:
762 		/* 'CANFD-only' controllers can not switch to CAN_MTU */
763 		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
764 			return -EINVAL;
765 
766 		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
767 		break;
768 
769 	case CANFD_MTU:
770 		/* check for potential CANFD ability */
771 		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
772 		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
773 			return -EINVAL;
774 
775 		priv->ctrlmode |= CAN_CTRLMODE_FD;
776 		break;
777 
778 	default:
779 		return -EINVAL;
780 	}
781 
782 	dev->mtu = new_mtu;
783 	return 0;
784 }
785 EXPORT_SYMBOL_GPL(can_change_mtu);
786 
787 /*
788  * Common open function when the device gets opened.
789  *
790  * This function should be called in the open function of the device
791  * driver.
792  */
open_candev(struct net_device * dev)793 int open_candev(struct net_device *dev)
794 {
795 	struct can_priv *priv = netdev_priv(dev);
796 
797 	if (!priv->bittiming.bitrate) {
798 		netdev_err(dev, "bit-timing not yet defined\n");
799 		return -EINVAL;
800 	}
801 
802 	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
803 	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
804 	    (!priv->data_bittiming.bitrate ||
805 	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
806 		netdev_err(dev, "incorrect/missing data bit-timing\n");
807 		return -EINVAL;
808 	}
809 
810 	/* Switch carrier on if device was stopped while in bus-off state */
811 	if (!netif_carrier_ok(dev))
812 		netif_carrier_on(dev);
813 
814 	return 0;
815 }
816 EXPORT_SYMBOL_GPL(open_candev);
817 
818 #ifdef CONFIG_OF
819 /* Common function that can be used to understand the limitation of
820  * a transceiver when it provides no means to determine these limitations
821  * at runtime.
822  */
of_can_transceiver(struct net_device * dev)823 void of_can_transceiver(struct net_device *dev)
824 {
825 	struct device_node *dn;
826 	struct can_priv *priv = netdev_priv(dev);
827 	struct device_node *np = dev->dev.parent->of_node;
828 	int ret;
829 
830 	dn = of_get_child_by_name(np, "can-transceiver");
831 	if (!dn)
832 		return;
833 
834 	ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
835 	if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
836 		netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
837 }
838 EXPORT_SYMBOL_GPL(of_can_transceiver);
839 #endif
840 
841 /*
842  * Common close function for cleanup before the device gets closed.
843  *
844  * This function should be called in the close function of the device
845  * driver.
846  */
close_candev(struct net_device * dev)847 void close_candev(struct net_device *dev)
848 {
849 	struct can_priv *priv = netdev_priv(dev);
850 
851 	cancel_delayed_work_sync(&priv->restart_work);
852 	can_flush_echo_skb(dev);
853 }
854 EXPORT_SYMBOL_GPL(close_candev);
855 
856 /*
857  * CAN netlink interface
858  */
859 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
860 	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
861 	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
862 	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
863 	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
864 	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
865 	[IFLA_CAN_BITTIMING_CONST]
866 				= { .len = sizeof(struct can_bittiming_const) },
867 	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
868 	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
869 	[IFLA_CAN_DATA_BITTIMING]
870 				= { .len = sizeof(struct can_bittiming) },
871 	[IFLA_CAN_DATA_BITTIMING_CONST]
872 				= { .len = sizeof(struct can_bittiming_const) },
873 };
874 
can_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)875 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
876 			struct netlink_ext_ack *extack)
877 {
878 	bool is_can_fd = false;
879 
880 	/* Make sure that valid CAN FD configurations always consist of
881 	 * - nominal/arbitration bittiming
882 	 * - data bittiming
883 	 * - control mode with CAN_CTRLMODE_FD set
884 	 */
885 
886 	if (!data)
887 		return 0;
888 
889 	if (data[IFLA_CAN_CTRLMODE]) {
890 		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
891 
892 		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
893 	}
894 
895 	if (is_can_fd) {
896 		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
897 			return -EOPNOTSUPP;
898 	}
899 
900 	if (data[IFLA_CAN_DATA_BITTIMING]) {
901 		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
902 			return -EOPNOTSUPP;
903 	}
904 
905 	return 0;
906 }
907 
can_changelink(struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)908 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
909 			  struct nlattr *data[],
910 			  struct netlink_ext_ack *extack)
911 {
912 	struct can_priv *priv = netdev_priv(dev);
913 	int err;
914 
915 	/* We need synchronization with dev->stop() */
916 	ASSERT_RTNL();
917 
918 	if (data[IFLA_CAN_BITTIMING]) {
919 		struct can_bittiming bt;
920 
921 		/* Do not allow changing bittiming while running */
922 		if (dev->flags & IFF_UP)
923 			return -EBUSY;
924 
925 		/* Calculate bittiming parameters based on
926 		 * bittiming_const if set, otherwise pass bitrate
927 		 * directly via do_set_bitrate(). Bail out if neither
928 		 * is given.
929 		 */
930 		if (!priv->bittiming_const && !priv->do_set_bittiming)
931 			return -EOPNOTSUPP;
932 
933 		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
934 		err = can_get_bittiming(dev, &bt,
935 					priv->bittiming_const,
936 					priv->bitrate_const,
937 					priv->bitrate_const_cnt);
938 		if (err)
939 			return err;
940 
941 		if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
942 			netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
943 				   priv->bitrate_max);
944 			return -EINVAL;
945 		}
946 
947 		memcpy(&priv->bittiming, &bt, sizeof(bt));
948 
949 		if (priv->do_set_bittiming) {
950 			/* Finally, set the bit-timing registers */
951 			err = priv->do_set_bittiming(dev);
952 			if (err)
953 				return err;
954 		}
955 	}
956 
957 	if (data[IFLA_CAN_CTRLMODE]) {
958 		struct can_ctrlmode *cm;
959 		u32 ctrlstatic;
960 		u32 maskedflags;
961 
962 		/* Do not allow changing controller mode while running */
963 		if (dev->flags & IFF_UP)
964 			return -EBUSY;
965 		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
966 		ctrlstatic = priv->ctrlmode_static;
967 		maskedflags = cm->flags & cm->mask;
968 
969 		/* check whether provided bits are allowed to be passed */
970 		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
971 			return -EOPNOTSUPP;
972 
973 		/* do not check for static fd-non-iso if 'fd' is disabled */
974 		if (!(maskedflags & CAN_CTRLMODE_FD))
975 			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
976 
977 		/* make sure static options are provided by configuration */
978 		if ((maskedflags & ctrlstatic) != ctrlstatic)
979 			return -EOPNOTSUPP;
980 
981 		/* clear bits to be modified and copy the flag values */
982 		priv->ctrlmode &= ~cm->mask;
983 		priv->ctrlmode |= maskedflags;
984 
985 		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
986 		if (priv->ctrlmode & CAN_CTRLMODE_FD)
987 			dev->mtu = CANFD_MTU;
988 		else
989 			dev->mtu = CAN_MTU;
990 	}
991 
992 	if (data[IFLA_CAN_RESTART_MS]) {
993 		/* Do not allow changing restart delay while running */
994 		if (dev->flags & IFF_UP)
995 			return -EBUSY;
996 		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
997 	}
998 
999 	if (data[IFLA_CAN_RESTART]) {
1000 		/* Do not allow a restart while not running */
1001 		if (!(dev->flags & IFF_UP))
1002 			return -EINVAL;
1003 		err = can_restart_now(dev);
1004 		if (err)
1005 			return err;
1006 	}
1007 
1008 	if (data[IFLA_CAN_DATA_BITTIMING]) {
1009 		struct can_bittiming dbt;
1010 
1011 		/* Do not allow changing bittiming while running */
1012 		if (dev->flags & IFF_UP)
1013 			return -EBUSY;
1014 
1015 		/* Calculate bittiming parameters based on
1016 		 * data_bittiming_const if set, otherwise pass bitrate
1017 		 * directly via do_set_bitrate(). Bail out if neither
1018 		 * is given.
1019 		 */
1020 		if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1021 			return -EOPNOTSUPP;
1022 
1023 		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1024 		       sizeof(dbt));
1025 		err = can_get_bittiming(dev, &dbt,
1026 					priv->data_bittiming_const,
1027 					priv->data_bitrate_const,
1028 					priv->data_bitrate_const_cnt);
1029 		if (err)
1030 			return err;
1031 
1032 		if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1033 			netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1034 				   priv->bitrate_max);
1035 			return -EINVAL;
1036 		}
1037 
1038 		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1039 
1040 		if (priv->do_set_data_bittiming) {
1041 			/* Finally, set the bit-timing registers */
1042 			err = priv->do_set_data_bittiming(dev);
1043 			if (err)
1044 				return err;
1045 		}
1046 	}
1047 
1048 	if (data[IFLA_CAN_TERMINATION]) {
1049 		const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1050 		const unsigned int num_term = priv->termination_const_cnt;
1051 		unsigned int i;
1052 
1053 		if (!priv->do_set_termination)
1054 			return -EOPNOTSUPP;
1055 
1056 		/* check whether given value is supported by the interface */
1057 		for (i = 0; i < num_term; i++) {
1058 			if (termval == priv->termination_const[i])
1059 				break;
1060 		}
1061 		if (i >= num_term)
1062 			return -EINVAL;
1063 
1064 		/* Finally, set the termination value */
1065 		err = priv->do_set_termination(dev, termval);
1066 		if (err)
1067 			return err;
1068 
1069 		priv->termination = termval;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
can_get_size(const struct net_device * dev)1075 static size_t can_get_size(const struct net_device *dev)
1076 {
1077 	struct can_priv *priv = netdev_priv(dev);
1078 	size_t size = 0;
1079 
1080 	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
1081 		size += nla_total_size(sizeof(struct can_bittiming));
1082 	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
1083 		size += nla_total_size(sizeof(struct can_bittiming_const));
1084 	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
1085 	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
1086 	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
1087 	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
1088 	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
1089 		size += nla_total_size(sizeof(struct can_berr_counter));
1090 	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
1091 		size += nla_total_size(sizeof(struct can_bittiming));
1092 	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
1093 		size += nla_total_size(sizeof(struct can_bittiming_const));
1094 	if (priv->termination_const) {
1095 		size += nla_total_size(sizeof(priv->termination));		/* IFLA_CAN_TERMINATION */
1096 		size += nla_total_size(sizeof(*priv->termination_const) *	/* IFLA_CAN_TERMINATION_CONST */
1097 				       priv->termination_const_cnt);
1098 	}
1099 	if (priv->bitrate_const)				/* IFLA_CAN_BITRATE_CONST */
1100 		size += nla_total_size(sizeof(*priv->bitrate_const) *
1101 				       priv->bitrate_const_cnt);
1102 	if (priv->data_bitrate_const)				/* IFLA_CAN_DATA_BITRATE_CONST */
1103 		size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1104 				       priv->data_bitrate_const_cnt);
1105 	size += sizeof(priv->bitrate_max);			/* IFLA_CAN_BITRATE_MAX */
1106 
1107 	return size;
1108 }
1109 
can_fill_info(struct sk_buff * skb,const struct net_device * dev)1110 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1111 {
1112 	struct can_priv *priv = netdev_priv(dev);
1113 	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1114 	struct can_berr_counter bec;
1115 	enum can_state state = priv->state;
1116 
1117 	if (priv->do_get_state)
1118 		priv->do_get_state(dev, &state);
1119 
1120 	if ((priv->bittiming.bitrate &&
1121 	     nla_put(skb, IFLA_CAN_BITTIMING,
1122 		     sizeof(priv->bittiming), &priv->bittiming)) ||
1123 
1124 	    (priv->bittiming_const &&
1125 	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1126 		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1127 
1128 	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1129 	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1130 	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1131 	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1132 
1133 	    (priv->do_get_berr_counter &&
1134 	     !priv->do_get_berr_counter(dev, &bec) &&
1135 	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1136 
1137 	    (priv->data_bittiming.bitrate &&
1138 	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1139 		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1140 
1141 	    (priv->data_bittiming_const &&
1142 	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1143 		     sizeof(*priv->data_bittiming_const),
1144 		     priv->data_bittiming_const)) ||
1145 
1146 	    (priv->termination_const &&
1147 	     (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1148 	      nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1149 		      sizeof(*priv->termination_const) *
1150 		      priv->termination_const_cnt,
1151 		      priv->termination_const))) ||
1152 
1153 	    (priv->bitrate_const &&
1154 	     nla_put(skb, IFLA_CAN_BITRATE_CONST,
1155 		     sizeof(*priv->bitrate_const) *
1156 		     priv->bitrate_const_cnt,
1157 		     priv->bitrate_const)) ||
1158 
1159 	    (priv->data_bitrate_const &&
1160 	     nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1161 		     sizeof(*priv->data_bitrate_const) *
1162 		     priv->data_bitrate_const_cnt,
1163 		     priv->data_bitrate_const)) ||
1164 
1165 	    (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1166 		     sizeof(priv->bitrate_max),
1167 		     &priv->bitrate_max))
1168 	    )
1169 
1170 		return -EMSGSIZE;
1171 
1172 	return 0;
1173 }
1174 
can_get_xstats_size(const struct net_device * dev)1175 static size_t can_get_xstats_size(const struct net_device *dev)
1176 {
1177 	return sizeof(struct can_device_stats);
1178 }
1179 
can_fill_xstats(struct sk_buff * skb,const struct net_device * dev)1180 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1181 {
1182 	struct can_priv *priv = netdev_priv(dev);
1183 
1184 	if (nla_put(skb, IFLA_INFO_XSTATS,
1185 		    sizeof(priv->can_stats), &priv->can_stats))
1186 		goto nla_put_failure;
1187 	return 0;
1188 
1189 nla_put_failure:
1190 	return -EMSGSIZE;
1191 }
1192 
can_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1193 static int can_newlink(struct net *src_net, struct net_device *dev,
1194 		       struct nlattr *tb[], struct nlattr *data[],
1195 		       struct netlink_ext_ack *extack)
1196 {
1197 	return -EOPNOTSUPP;
1198 }
1199 
can_dellink(struct net_device * dev,struct list_head * head)1200 static void can_dellink(struct net_device *dev, struct list_head *head)
1201 {
1202 	return;
1203 }
1204 
1205 static struct rtnl_link_ops can_link_ops __read_mostly = {
1206 	.kind		= "can",
1207 	.maxtype	= IFLA_CAN_MAX,
1208 	.policy		= can_policy,
1209 	.setup		= can_setup,
1210 	.validate	= can_validate,
1211 	.newlink	= can_newlink,
1212 	.changelink	= can_changelink,
1213 	.dellink	= can_dellink,
1214 	.get_size	= can_get_size,
1215 	.fill_info	= can_fill_info,
1216 	.get_xstats_size = can_get_xstats_size,
1217 	.fill_xstats	= can_fill_xstats,
1218 };
1219 
1220 /*
1221  * Register the CAN network device
1222  */
register_candev(struct net_device * dev)1223 int register_candev(struct net_device *dev)
1224 {
1225 	struct can_priv *priv = netdev_priv(dev);
1226 
1227 	/* Ensure termination_const, termination_const_cnt and
1228 	 * do_set_termination consistency. All must be either set or
1229 	 * unset.
1230 	 */
1231 	if ((!priv->termination_const != !priv->termination_const_cnt) ||
1232 	    (!priv->termination_const != !priv->do_set_termination))
1233 		return -EINVAL;
1234 
1235 	if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1236 		return -EINVAL;
1237 
1238 	if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1239 		return -EINVAL;
1240 
1241 	dev->rtnl_link_ops = &can_link_ops;
1242 	return register_netdev(dev);
1243 }
1244 EXPORT_SYMBOL_GPL(register_candev);
1245 
1246 /*
1247  * Unregister the CAN network device
1248  */
unregister_candev(struct net_device * dev)1249 void unregister_candev(struct net_device *dev)
1250 {
1251 	unregister_netdev(dev);
1252 }
1253 EXPORT_SYMBOL_GPL(unregister_candev);
1254 
1255 /*
1256  * Test if a network device is a candev based device
1257  * and return the can_priv* if so.
1258  */
safe_candev_priv(struct net_device * dev)1259 struct can_priv *safe_candev_priv(struct net_device *dev)
1260 {
1261 	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1262 		return NULL;
1263 
1264 	return netdev_priv(dev);
1265 }
1266 EXPORT_SYMBOL_GPL(safe_candev_priv);
1267 
can_dev_init(void)1268 static __init int can_dev_init(void)
1269 {
1270 	int err;
1271 
1272 	can_led_notifier_init();
1273 
1274 	err = rtnl_link_register(&can_link_ops);
1275 	if (!err)
1276 		printk(KERN_INFO MOD_DESC "\n");
1277 
1278 	return err;
1279 }
1280 module_init(can_dev_init);
1281 
can_dev_exit(void)1282 static __exit void can_dev_exit(void)
1283 {
1284 	rtnl_link_unregister(&can_link_ops);
1285 
1286 	can_led_notifier_exit();
1287 }
1288 module_exit(can_dev_exit);
1289 
1290 MODULE_ALIAS_RTNL_LINK("can");
1291