1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	Forwarding Information Database
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  *
9  *	Changes:
10  *	Yuji SEKIYA @USAGI:	Support default route on router node;
11  *				remove ip6_null_entry from the top of
12  *				routing table.
13  *	Ville Nuorvala:		Fixed routing subtrees.
14  */
15 
16 #define pr_fmt(fmt) "IPv6: " fmt
17 
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
35 
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
41 
42 struct fib6_cleaner {
43 	struct fib6_walker w;
44 	struct net *net;
45 	int (*func)(struct fib6_info *, void *arg);
46 	int sernum;
47 	void *arg;
48 	bool skip_notify;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
fib6_walker_link(struct net * net,struct fib6_walker * w)78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
fib6_walker_unlink(struct net * net,struct fib6_walker * w)85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
fib6_new_sernum(struct net * net)92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old = atomic_read(&net->ipv6.fib6_sernum);
95 
96 	do {
97 		new = old < INT_MAX ? old + 1 : 1;
98 	} while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99 
100 	return new;
101 }
102 
103 enum {
104 	FIB6_NO_SERNUM_CHANGE = 0,
105 };
106 
fib6_update_sernum(struct net * net,struct fib6_info * f6i)107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108 {
109 	struct fib6_node *fn;
110 
111 	fn = rcu_dereference_protected(f6i->fib6_node,
112 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 	if (fn)
114 		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115 }
116 
117 /*
118  *	Auxiliary address test functions for the radix tree.
119  *
120  *	These assume a 32bit processor (although it will work on
121  *	64bit processors)
122  */
123 
124 /*
125  *	test bit
126  */
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE	0
131 #endif
132 
addr_bit_set(const void * token,int fn_bit)133 static __be32 addr_bit_set(const void *token, int fn_bit)
134 {
135 	const __be32 *addr = token;
136 	/*
137 	 * Here,
138 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 	 * is optimized version of
140 	 *	htonl(1 << ((~fn_bit)&0x1F))
141 	 * See include/asm-generic/bitops/le.h.
142 	 */
143 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 	       addr[fn_bit >> 5];
145 }
146 
fib6_info_alloc(gfp_t gfp_flags,bool with_fib6_nh)147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148 {
149 	struct fib6_info *f6i;
150 	size_t sz = sizeof(*f6i);
151 
152 	if (with_fib6_nh)
153 		sz += sizeof(struct fib6_nh);
154 
155 	f6i = kzalloc(sz, gfp_flags);
156 	if (!f6i)
157 		return NULL;
158 
159 	/* fib6_siblings is a union with nh_list, so this initializes both */
160 	INIT_LIST_HEAD(&f6i->fib6_siblings);
161 	refcount_set(&f6i->fib6_ref, 1);
162 
163 	INIT_HLIST_NODE(&f6i->gc_link);
164 
165 	return f6i;
166 }
167 
fib6_info_destroy_rcu(struct rcu_head * head)168 void fib6_info_destroy_rcu(struct rcu_head *head)
169 {
170 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
171 
172 	WARN_ON(f6i->fib6_node);
173 
174 	if (f6i->nh)
175 		nexthop_put(f6i->nh);
176 	else
177 		fib6_nh_release(f6i->fib6_nh);
178 
179 	ip_fib_metrics_put(f6i->fib6_metrics);
180 	kfree(f6i);
181 }
182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
183 
node_alloc(struct net * net)184 static struct fib6_node *node_alloc(struct net *net)
185 {
186 	struct fib6_node *fn;
187 
188 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189 	if (fn)
190 		net->ipv6.rt6_stats->fib_nodes++;
191 
192 	return fn;
193 }
194 
node_free_immediate(struct net * net,struct fib6_node * fn)195 static void node_free_immediate(struct net *net, struct fib6_node *fn)
196 {
197 	kmem_cache_free(fib6_node_kmem, fn);
198 	net->ipv6.rt6_stats->fib_nodes--;
199 }
200 
node_free_rcu(struct rcu_head * head)201 static void node_free_rcu(struct rcu_head *head)
202 {
203 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
204 
205 	kmem_cache_free(fib6_node_kmem, fn);
206 }
207 
node_free(struct net * net,struct fib6_node * fn)208 static void node_free(struct net *net, struct fib6_node *fn)
209 {
210 	call_rcu(&fn->rcu, node_free_rcu);
211 	net->ipv6.rt6_stats->fib_nodes--;
212 }
213 
fib6_free_table(struct fib6_table * table)214 static void fib6_free_table(struct fib6_table *table)
215 {
216 	inetpeer_invalidate_tree(&table->tb6_peers);
217 	kfree(table);
218 }
219 
fib6_link_table(struct net * net,struct fib6_table * tb)220 static void fib6_link_table(struct net *net, struct fib6_table *tb)
221 {
222 	unsigned int h;
223 
224 	/*
225 	 * Initialize table lock at a single place to give lockdep a key,
226 	 * tables aren't visible prior to being linked to the list.
227 	 */
228 	spin_lock_init(&tb->tb6_lock);
229 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
230 
231 	/*
232 	 * No protection necessary, this is the only list mutatation
233 	 * operation, tables never disappear once they exist.
234 	 */
235 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
236 }
237 
238 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
239 
fib6_alloc_table(struct net * net,u32 id)240 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
241 {
242 	struct fib6_table *table;
243 
244 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
245 	if (table) {
246 		table->tb6_id = id;
247 		rcu_assign_pointer(table->tb6_root.leaf,
248 				   net->ipv6.fib6_null_entry);
249 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
250 		inet_peer_base_init(&table->tb6_peers);
251 		INIT_HLIST_HEAD(&table->tb6_gc_hlist);
252 	}
253 
254 	return table;
255 }
256 
fib6_new_table(struct net * net,u32 id)257 struct fib6_table *fib6_new_table(struct net *net, u32 id)
258 {
259 	struct fib6_table *tb;
260 
261 	if (id == 0)
262 		id = RT6_TABLE_MAIN;
263 	tb = fib6_get_table(net, id);
264 	if (tb)
265 		return tb;
266 
267 	tb = fib6_alloc_table(net, id);
268 	if (tb)
269 		fib6_link_table(net, tb);
270 
271 	return tb;
272 }
273 EXPORT_SYMBOL_GPL(fib6_new_table);
274 
fib6_get_table(struct net * net,u32 id)275 struct fib6_table *fib6_get_table(struct net *net, u32 id)
276 {
277 	struct fib6_table *tb;
278 	struct hlist_head *head;
279 	unsigned int h;
280 
281 	if (id == 0)
282 		id = RT6_TABLE_MAIN;
283 	h = id & (FIB6_TABLE_HASHSZ - 1);
284 	rcu_read_lock();
285 	head = &net->ipv6.fib_table_hash[h];
286 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
287 		if (tb->tb6_id == id) {
288 			rcu_read_unlock();
289 			return tb;
290 		}
291 	}
292 	rcu_read_unlock();
293 
294 	return NULL;
295 }
296 EXPORT_SYMBOL_GPL(fib6_get_table);
297 
fib6_tables_init(struct net * net)298 static void __net_init fib6_tables_init(struct net *net)
299 {
300 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
301 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
302 }
303 #else
304 
fib6_new_table(struct net * net,u32 id)305 struct fib6_table *fib6_new_table(struct net *net, u32 id)
306 {
307 	return fib6_get_table(net, id);
308 }
309 
fib6_get_table(struct net * net,u32 id)310 struct fib6_table *fib6_get_table(struct net *net, u32 id)
311 {
312 	  return net->ipv6.fib6_main_tbl;
313 }
314 
fib6_rule_lookup(struct net * net,struct flowi6 * fl6,const struct sk_buff * skb,int flags,pol_lookup_t lookup)315 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
316 				   const struct sk_buff *skb,
317 				   int flags, pol_lookup_t lookup)
318 {
319 	struct rt6_info *rt;
320 
321 	rt = pol_lookup_func(lookup,
322 			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
323 	if (rt->dst.error == -EAGAIN) {
324 		ip6_rt_put_flags(rt, flags);
325 		rt = net->ipv6.ip6_null_entry;
326 		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
327 			dst_hold(&rt->dst);
328 	}
329 
330 	return &rt->dst;
331 }
332 
333 /* called with rcu lock held; no reference taken on fib6_info */
fib6_lookup(struct net * net,int oif,struct flowi6 * fl6,struct fib6_result * res,int flags)334 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
335 		struct fib6_result *res, int flags)
336 {
337 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
338 				 res, flags);
339 }
340 
fib6_tables_init(struct net * net)341 static void __net_init fib6_tables_init(struct net *net)
342 {
343 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
344 }
345 
346 #endif
347 
fib6_tables_seq_read(struct net * net)348 unsigned int fib6_tables_seq_read(struct net *net)
349 {
350 	unsigned int h, fib_seq = 0;
351 
352 	rcu_read_lock();
353 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
354 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
355 		struct fib6_table *tb;
356 
357 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
358 			fib_seq += tb->fib_seq;
359 	}
360 	rcu_read_unlock();
361 
362 	return fib_seq;
363 }
364 
call_fib6_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)365 static int call_fib6_entry_notifier(struct notifier_block *nb,
366 				    enum fib_event_type event_type,
367 				    struct fib6_info *rt,
368 				    struct netlink_ext_ack *extack)
369 {
370 	struct fib6_entry_notifier_info info = {
371 		.info.extack = extack,
372 		.rt = rt,
373 	};
374 
375 	return call_fib6_notifier(nb, event_type, &info.info);
376 }
377 
call_fib6_multipath_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)378 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
379 					      enum fib_event_type event_type,
380 					      struct fib6_info *rt,
381 					      unsigned int nsiblings,
382 					      struct netlink_ext_ack *extack)
383 {
384 	struct fib6_entry_notifier_info info = {
385 		.info.extack = extack,
386 		.rt = rt,
387 		.nsiblings = nsiblings,
388 	};
389 
390 	return call_fib6_notifier(nb, event_type, &info.info);
391 }
392 
call_fib6_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,struct netlink_ext_ack * extack)393 int call_fib6_entry_notifiers(struct net *net,
394 			      enum fib_event_type event_type,
395 			      struct fib6_info *rt,
396 			      struct netlink_ext_ack *extack)
397 {
398 	struct fib6_entry_notifier_info info = {
399 		.info.extack = extack,
400 		.rt = rt,
401 	};
402 
403 	rt->fib6_table->fib_seq++;
404 	return call_fib6_notifiers(net, event_type, &info.info);
405 }
406 
call_fib6_multipath_entry_notifiers(struct net * net,enum fib_event_type event_type,struct fib6_info * rt,unsigned int nsiblings,struct netlink_ext_ack * extack)407 int call_fib6_multipath_entry_notifiers(struct net *net,
408 					enum fib_event_type event_type,
409 					struct fib6_info *rt,
410 					unsigned int nsiblings,
411 					struct netlink_ext_ack *extack)
412 {
413 	struct fib6_entry_notifier_info info = {
414 		.info.extack = extack,
415 		.rt = rt,
416 		.nsiblings = nsiblings,
417 	};
418 
419 	rt->fib6_table->fib_seq++;
420 	return call_fib6_notifiers(net, event_type, &info.info);
421 }
422 
call_fib6_entry_notifiers_replace(struct net * net,struct fib6_info * rt)423 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
424 {
425 	struct fib6_entry_notifier_info info = {
426 		.rt = rt,
427 		.nsiblings = rt->fib6_nsiblings,
428 	};
429 
430 	rt->fib6_table->fib_seq++;
431 	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
432 }
433 
434 struct fib6_dump_arg {
435 	struct net *net;
436 	struct notifier_block *nb;
437 	struct netlink_ext_ack *extack;
438 };
439 
fib6_rt_dump(struct fib6_info * rt,struct fib6_dump_arg * arg)440 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
441 {
442 	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
443 	int err;
444 
445 	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
446 		return 0;
447 
448 	if (rt->fib6_nsiblings)
449 		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
450 							 rt,
451 							 rt->fib6_nsiblings,
452 							 arg->extack);
453 	else
454 		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
455 					       arg->extack);
456 
457 	return err;
458 }
459 
fib6_node_dump(struct fib6_walker * w)460 static int fib6_node_dump(struct fib6_walker *w)
461 {
462 	int err;
463 
464 	err = fib6_rt_dump(w->leaf, w->args);
465 	w->leaf = NULL;
466 	return err;
467 }
468 
fib6_table_dump(struct net * net,struct fib6_table * tb,struct fib6_walker * w)469 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
470 			   struct fib6_walker *w)
471 {
472 	int err;
473 
474 	w->root = &tb->tb6_root;
475 	spin_lock_bh(&tb->tb6_lock);
476 	err = fib6_walk(net, w);
477 	spin_unlock_bh(&tb->tb6_lock);
478 	return err;
479 }
480 
481 /* Called with rcu_read_lock() */
fib6_tables_dump(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)482 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
483 		     struct netlink_ext_ack *extack)
484 {
485 	struct fib6_dump_arg arg;
486 	struct fib6_walker *w;
487 	unsigned int h;
488 	int err = 0;
489 
490 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
491 	if (!w)
492 		return -ENOMEM;
493 
494 	w->func = fib6_node_dump;
495 	arg.net = net;
496 	arg.nb = nb;
497 	arg.extack = extack;
498 	w->args = &arg;
499 
500 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
501 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
502 		struct fib6_table *tb;
503 
504 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
505 			err = fib6_table_dump(net, tb, w);
506 			if (err)
507 				goto out;
508 		}
509 	}
510 
511 out:
512 	kfree(w);
513 
514 	/* The tree traversal function should never return a positive value. */
515 	return err > 0 ? -EINVAL : err;
516 }
517 
fib6_dump_node(struct fib6_walker * w)518 static int fib6_dump_node(struct fib6_walker *w)
519 {
520 	int res;
521 	struct fib6_info *rt;
522 
523 	for_each_fib6_walker_rt(w) {
524 		res = rt6_dump_route(rt, w->args, w->skip_in_node);
525 		if (res >= 0) {
526 			/* Frame is full, suspend walking */
527 			w->leaf = rt;
528 
529 			/* We'll restart from this node, so if some routes were
530 			 * already dumped, skip them next time.
531 			 */
532 			w->skip_in_node += res;
533 
534 			return 1;
535 		}
536 		w->skip_in_node = 0;
537 
538 		/* Multipath routes are dumped in one route with the
539 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
540 		 * last sibling of this route (no need to dump the
541 		 * sibling routes again)
542 		 */
543 		if (rt->fib6_nsiblings)
544 			rt = list_last_entry(&rt->fib6_siblings,
545 					     struct fib6_info,
546 					     fib6_siblings);
547 	}
548 	w->leaf = NULL;
549 	return 0;
550 }
551 
fib6_dump_end(struct netlink_callback * cb)552 static void fib6_dump_end(struct netlink_callback *cb)
553 {
554 	struct net *net = sock_net(cb->skb->sk);
555 	struct fib6_walker *w = (void *)cb->args[2];
556 
557 	if (w) {
558 		if (cb->args[4]) {
559 			cb->args[4] = 0;
560 			fib6_walker_unlink(net, w);
561 		}
562 		cb->args[2] = 0;
563 		kfree(w);
564 	}
565 	cb->done = (void *)cb->args[3];
566 	cb->args[1] = 3;
567 }
568 
fib6_dump_done(struct netlink_callback * cb)569 static int fib6_dump_done(struct netlink_callback *cb)
570 {
571 	fib6_dump_end(cb);
572 	return cb->done ? cb->done(cb) : 0;
573 }
574 
fib6_dump_table(struct fib6_table * table,struct sk_buff * skb,struct netlink_callback * cb)575 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
576 			   struct netlink_callback *cb)
577 {
578 	struct net *net = sock_net(skb->sk);
579 	struct fib6_walker *w;
580 	int res;
581 
582 	w = (void *)cb->args[2];
583 	w->root = &table->tb6_root;
584 
585 	if (cb->args[4] == 0) {
586 		w->count = 0;
587 		w->skip = 0;
588 		w->skip_in_node = 0;
589 
590 		spin_lock_bh(&table->tb6_lock);
591 		res = fib6_walk(net, w);
592 		spin_unlock_bh(&table->tb6_lock);
593 		if (res > 0) {
594 			cb->args[4] = 1;
595 			cb->args[5] = READ_ONCE(w->root->fn_sernum);
596 		}
597 	} else {
598 		int sernum = READ_ONCE(w->root->fn_sernum);
599 		if (cb->args[5] != sernum) {
600 			/* Begin at the root if the tree changed */
601 			cb->args[5] = sernum;
602 			w->state = FWS_INIT;
603 			w->node = w->root;
604 			w->skip = w->count;
605 			w->skip_in_node = 0;
606 		} else
607 			w->skip = 0;
608 
609 		spin_lock_bh(&table->tb6_lock);
610 		res = fib6_walk_continue(w);
611 		spin_unlock_bh(&table->tb6_lock);
612 		if (res <= 0) {
613 			fib6_walker_unlink(net, w);
614 			cb->args[4] = 0;
615 		}
616 	}
617 
618 	return res;
619 }
620 
inet6_dump_fib(struct sk_buff * skb,struct netlink_callback * cb)621 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
622 {
623 	struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
624 					 .filter.dump_routes = true };
625 	const struct nlmsghdr *nlh = cb->nlh;
626 	struct net *net = sock_net(skb->sk);
627 	unsigned int h, s_h;
628 	unsigned int e = 0, s_e;
629 	struct fib6_walker *w;
630 	struct fib6_table *tb;
631 	struct hlist_head *head;
632 	int res = 0;
633 
634 	if (cb->strict_check) {
635 		int err;
636 
637 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
638 		if (err < 0)
639 			return err;
640 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
641 		struct rtmsg *rtm = nlmsg_data(nlh);
642 
643 		if (rtm->rtm_flags & RTM_F_PREFIX)
644 			arg.filter.flags = RTM_F_PREFIX;
645 	}
646 
647 	w = (void *)cb->args[2];
648 	if (!w) {
649 		/* New dump:
650 		 *
651 		 * 1. hook callback destructor.
652 		 */
653 		cb->args[3] = (long)cb->done;
654 		cb->done = fib6_dump_done;
655 
656 		/*
657 		 * 2. allocate and initialize walker.
658 		 */
659 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
660 		if (!w)
661 			return -ENOMEM;
662 		w->func = fib6_dump_node;
663 		cb->args[2] = (long)w;
664 	}
665 
666 	arg.skb = skb;
667 	arg.cb = cb;
668 	arg.net = net;
669 	w->args = &arg;
670 
671 	if (arg.filter.table_id) {
672 		tb = fib6_get_table(net, arg.filter.table_id);
673 		if (!tb) {
674 			if (rtnl_msg_family(cb->nlh) != PF_INET6)
675 				goto out;
676 
677 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
678 			return -ENOENT;
679 		}
680 
681 		if (!cb->args[0]) {
682 			res = fib6_dump_table(tb, skb, cb);
683 			if (!res)
684 				cb->args[0] = 1;
685 		}
686 		goto out;
687 	}
688 
689 	s_h = cb->args[0];
690 	s_e = cb->args[1];
691 
692 	rcu_read_lock();
693 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
694 		e = 0;
695 		head = &net->ipv6.fib_table_hash[h];
696 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
697 			if (e < s_e)
698 				goto next;
699 			res = fib6_dump_table(tb, skb, cb);
700 			if (res != 0)
701 				goto out_unlock;
702 next:
703 			e++;
704 		}
705 	}
706 out_unlock:
707 	rcu_read_unlock();
708 	cb->args[1] = e;
709 	cb->args[0] = h;
710 out:
711 	res = res < 0 ? res : skb->len;
712 	if (res <= 0)
713 		fib6_dump_end(cb);
714 	return res;
715 }
716 
fib6_metric_set(struct fib6_info * f6i,int metric,u32 val)717 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
718 {
719 	if (!f6i)
720 		return;
721 
722 	if (f6i->fib6_metrics == &dst_default_metrics) {
723 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
724 
725 		if (!p)
726 			return;
727 
728 		refcount_set(&p->refcnt, 1);
729 		f6i->fib6_metrics = p;
730 	}
731 
732 	f6i->fib6_metrics->metrics[metric - 1] = val;
733 }
734 
735 /*
736  *	Routing Table
737  *
738  *	return the appropriate node for a routing tree "add" operation
739  *	by either creating and inserting or by returning an existing
740  *	node.
741  */
742 
fib6_add_1(struct net * net,struct fib6_table * table,struct fib6_node * root,struct in6_addr * addr,int plen,int offset,int allow_create,int replace_required,struct netlink_ext_ack * extack)743 static struct fib6_node *fib6_add_1(struct net *net,
744 				    struct fib6_table *table,
745 				    struct fib6_node *root,
746 				    struct in6_addr *addr, int plen,
747 				    int offset, int allow_create,
748 				    int replace_required,
749 				    struct netlink_ext_ack *extack)
750 {
751 	struct fib6_node *fn, *in, *ln;
752 	struct fib6_node *pn = NULL;
753 	struct rt6key *key;
754 	int	bit;
755 	__be32	dir = 0;
756 
757 	RT6_TRACE("fib6_add_1\n");
758 
759 	/* insert node in tree */
760 
761 	fn = root;
762 
763 	do {
764 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
765 					    lockdep_is_held(&table->tb6_lock));
766 		key = (struct rt6key *)((u8 *)leaf + offset);
767 
768 		/*
769 		 *	Prefix match
770 		 */
771 		if (plen < fn->fn_bit ||
772 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
773 			if (!allow_create) {
774 				if (replace_required) {
775 					NL_SET_ERR_MSG(extack,
776 						       "Can not replace route - no match found");
777 					pr_warn("Can't replace route, no match found\n");
778 					return ERR_PTR(-ENOENT);
779 				}
780 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
781 			}
782 			goto insert_above;
783 		}
784 
785 		/*
786 		 *	Exact match ?
787 		 */
788 
789 		if (plen == fn->fn_bit) {
790 			/* clean up an intermediate node */
791 			if (!(fn->fn_flags & RTN_RTINFO)) {
792 				RCU_INIT_POINTER(fn->leaf, NULL);
793 				fib6_info_release(leaf);
794 			/* remove null_entry in the root node */
795 			} else if (fn->fn_flags & RTN_TL_ROOT &&
796 				   rcu_access_pointer(fn->leaf) ==
797 				   net->ipv6.fib6_null_entry) {
798 				RCU_INIT_POINTER(fn->leaf, NULL);
799 			}
800 
801 			return fn;
802 		}
803 
804 		/*
805 		 *	We have more bits to go
806 		 */
807 
808 		/* Try to walk down on tree. */
809 		dir = addr_bit_set(addr, fn->fn_bit);
810 		pn = fn;
811 		fn = dir ?
812 		     rcu_dereference_protected(fn->right,
813 					lockdep_is_held(&table->tb6_lock)) :
814 		     rcu_dereference_protected(fn->left,
815 					lockdep_is_held(&table->tb6_lock));
816 	} while (fn);
817 
818 	if (!allow_create) {
819 		/* We should not create new node because
820 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
821 		 * I assume it is safe to require NLM_F_CREATE when
822 		 * REPLACE flag is used! Later we may want to remove the
823 		 * check for replace_required, because according
824 		 * to netlink specification, NLM_F_CREATE
825 		 * MUST be specified if new route is created.
826 		 * That would keep IPv6 consistent with IPv4
827 		 */
828 		if (replace_required) {
829 			NL_SET_ERR_MSG(extack,
830 				       "Can not replace route - no match found");
831 			pr_warn("Can't replace route, no match found\n");
832 			return ERR_PTR(-ENOENT);
833 		}
834 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
835 	}
836 	/*
837 	 *	We walked to the bottom of tree.
838 	 *	Create new leaf node without children.
839 	 */
840 
841 	ln = node_alloc(net);
842 
843 	if (!ln)
844 		return ERR_PTR(-ENOMEM);
845 	ln->fn_bit = plen;
846 	RCU_INIT_POINTER(ln->parent, pn);
847 
848 	if (dir)
849 		rcu_assign_pointer(pn->right, ln);
850 	else
851 		rcu_assign_pointer(pn->left, ln);
852 
853 	return ln;
854 
855 
856 insert_above:
857 	/*
858 	 * split since we don't have a common prefix anymore or
859 	 * we have a less significant route.
860 	 * we've to insert an intermediate node on the list
861 	 * this new node will point to the one we need to create
862 	 * and the current
863 	 */
864 
865 	pn = rcu_dereference_protected(fn->parent,
866 				       lockdep_is_held(&table->tb6_lock));
867 
868 	/* find 1st bit in difference between the 2 addrs.
869 
870 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
871 	   but if it is >= plen, the value is ignored in any case.
872 	 */
873 
874 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
875 
876 	/*
877 	 *		(intermediate)[in]
878 	 *	          /	   \
879 	 *	(new leaf node)[ln] (old node)[fn]
880 	 */
881 	if (plen > bit) {
882 		in = node_alloc(net);
883 		ln = node_alloc(net);
884 
885 		if (!in || !ln) {
886 			if (in)
887 				node_free_immediate(net, in);
888 			if (ln)
889 				node_free_immediate(net, ln);
890 			return ERR_PTR(-ENOMEM);
891 		}
892 
893 		/*
894 		 * new intermediate node.
895 		 * RTN_RTINFO will
896 		 * be off since that an address that chooses one of
897 		 * the branches would not match less specific routes
898 		 * in the other branch
899 		 */
900 
901 		in->fn_bit = bit;
902 
903 		RCU_INIT_POINTER(in->parent, pn);
904 		in->leaf = fn->leaf;
905 		fib6_info_hold(rcu_dereference_protected(in->leaf,
906 				lockdep_is_held(&table->tb6_lock)));
907 
908 		/* update parent pointer */
909 		if (dir)
910 			rcu_assign_pointer(pn->right, in);
911 		else
912 			rcu_assign_pointer(pn->left, in);
913 
914 		ln->fn_bit = plen;
915 
916 		RCU_INIT_POINTER(ln->parent, in);
917 		rcu_assign_pointer(fn->parent, in);
918 
919 		if (addr_bit_set(addr, bit)) {
920 			rcu_assign_pointer(in->right, ln);
921 			rcu_assign_pointer(in->left, fn);
922 		} else {
923 			rcu_assign_pointer(in->left, ln);
924 			rcu_assign_pointer(in->right, fn);
925 		}
926 	} else { /* plen <= bit */
927 
928 		/*
929 		 *		(new leaf node)[ln]
930 		 *	          /	   \
931 		 *	     (old node)[fn] NULL
932 		 */
933 
934 		ln = node_alloc(net);
935 
936 		if (!ln)
937 			return ERR_PTR(-ENOMEM);
938 
939 		ln->fn_bit = plen;
940 
941 		RCU_INIT_POINTER(ln->parent, pn);
942 
943 		if (addr_bit_set(&key->addr, plen))
944 			RCU_INIT_POINTER(ln->right, fn);
945 		else
946 			RCU_INIT_POINTER(ln->left, fn);
947 
948 		rcu_assign_pointer(fn->parent, ln);
949 
950 		if (dir)
951 			rcu_assign_pointer(pn->right, ln);
952 		else
953 			rcu_assign_pointer(pn->left, ln);
954 	}
955 	return ln;
956 }
957 
__fib6_drop_pcpu_from(struct fib6_nh * fib6_nh,const struct fib6_info * match,const struct fib6_table * table)958 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
959 				  const struct fib6_info *match,
960 				  const struct fib6_table *table)
961 {
962 	int cpu;
963 
964 	if (!fib6_nh->rt6i_pcpu)
965 		return;
966 
967 	/* release the reference to this fib entry from
968 	 * all of its cached pcpu routes
969 	 */
970 	for_each_possible_cpu(cpu) {
971 		struct rt6_info **ppcpu_rt;
972 		struct rt6_info *pcpu_rt;
973 
974 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
975 		pcpu_rt = *ppcpu_rt;
976 
977 		/* only dropping the 'from' reference if the cached route
978 		 * is using 'match'. The cached pcpu_rt->from only changes
979 		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
980 		 * change from one fib6_info reference to another
981 		 */
982 		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
983 			struct fib6_info *from;
984 
985 			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
986 			fib6_info_release(from);
987 		}
988 	}
989 }
990 
991 struct fib6_nh_pcpu_arg {
992 	struct fib6_info	*from;
993 	const struct fib6_table *table;
994 };
995 
fib6_nh_drop_pcpu_from(struct fib6_nh * nh,void * _arg)996 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
997 {
998 	struct fib6_nh_pcpu_arg *arg = _arg;
999 
1000 	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
1001 	return 0;
1002 }
1003 
fib6_drop_pcpu_from(struct fib6_info * f6i,const struct fib6_table * table)1004 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1005 				const struct fib6_table *table)
1006 {
1007 	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1008 	 * while we are cleaning them here.
1009 	 */
1010 	f6i->fib6_destroying = 1;
1011 	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1012 
1013 	if (f6i->nh) {
1014 		struct fib6_nh_pcpu_arg arg = {
1015 			.from = f6i,
1016 			.table = table
1017 		};
1018 
1019 		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1020 					 &arg);
1021 	} else {
1022 		struct fib6_nh *fib6_nh;
1023 
1024 		fib6_nh = f6i->fib6_nh;
1025 		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1026 	}
1027 }
1028 
fib6_purge_rt(struct fib6_info * rt,struct fib6_node * fn,struct net * net)1029 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1030 			  struct net *net)
1031 {
1032 	struct fib6_table *table = rt->fib6_table;
1033 
1034 	/* Flush all cached dst in exception table */
1035 	rt6_flush_exceptions(rt);
1036 	fib6_drop_pcpu_from(rt, table);
1037 
1038 	if (rt->nh && !list_empty(&rt->nh_list))
1039 		list_del_init(&rt->nh_list);
1040 
1041 	if (refcount_read(&rt->fib6_ref) != 1) {
1042 		/* This route is used as dummy address holder in some split
1043 		 * nodes. It is not leaked, but it still holds other resources,
1044 		 * which must be released in time. So, scan ascendant nodes
1045 		 * and replace dummy references to this route with references
1046 		 * to still alive ones.
1047 		 */
1048 		while (fn) {
1049 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1050 					    lockdep_is_held(&table->tb6_lock));
1051 			struct fib6_info *new_leaf;
1052 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1053 				new_leaf = fib6_find_prefix(net, table, fn);
1054 				fib6_info_hold(new_leaf);
1055 
1056 				rcu_assign_pointer(fn->leaf, new_leaf);
1057 				fib6_info_release(rt);
1058 			}
1059 			fn = rcu_dereference_protected(fn->parent,
1060 				    lockdep_is_held(&table->tb6_lock));
1061 		}
1062 	}
1063 
1064 	fib6_clean_expires_locked(rt);
1065 }
1066 
1067 /*
1068  *	Insert routing information in a node.
1069  */
1070 
fib6_add_rt2node(struct fib6_node * fn,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1071 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1072 			    struct nl_info *info,
1073 			    struct netlink_ext_ack *extack)
1074 {
1075 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1076 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1077 	struct fib6_info *iter = NULL;
1078 	struct fib6_info __rcu **ins;
1079 	struct fib6_info __rcu **fallback_ins = NULL;
1080 	int replace = (info->nlh &&
1081 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1082 	int add = (!info->nlh ||
1083 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1084 	int found = 0;
1085 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1086 	bool notify_sibling_rt = false;
1087 	u16 nlflags = NLM_F_EXCL;
1088 	int err;
1089 
1090 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1091 		nlflags |= NLM_F_APPEND;
1092 
1093 	ins = &fn->leaf;
1094 
1095 	for (iter = leaf; iter;
1096 	     iter = rcu_dereference_protected(iter->fib6_next,
1097 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1098 		/*
1099 		 *	Search for duplicates
1100 		 */
1101 
1102 		if (iter->fib6_metric == rt->fib6_metric) {
1103 			/*
1104 			 *	Same priority level
1105 			 */
1106 			if (info->nlh &&
1107 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1108 				return -EEXIST;
1109 
1110 			nlflags &= ~NLM_F_EXCL;
1111 			if (replace) {
1112 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1113 					found++;
1114 					break;
1115 				}
1116 				fallback_ins = fallback_ins ?: ins;
1117 				goto next_iter;
1118 			}
1119 
1120 			if (rt6_duplicate_nexthop(iter, rt)) {
1121 				if (rt->fib6_nsiblings)
1122 					rt->fib6_nsiblings = 0;
1123 				if (!(iter->fib6_flags & RTF_EXPIRES))
1124 					return -EEXIST;
1125 				if (!(rt->fib6_flags & RTF_EXPIRES))
1126 					fib6_clean_expires_locked(iter);
1127 				else
1128 					fib6_set_expires_locked(iter,
1129 								rt->expires);
1130 
1131 				if (rt->fib6_pmtu)
1132 					fib6_metric_set(iter, RTAX_MTU,
1133 							rt->fib6_pmtu);
1134 				return -EEXIST;
1135 			}
1136 			/* If we have the same destination and the same metric,
1137 			 * but not the same gateway, then the route we try to
1138 			 * add is sibling to this route, increment our counter
1139 			 * of siblings, and later we will add our route to the
1140 			 * list.
1141 			 * Only static routes (which don't have flag
1142 			 * RTF_EXPIRES) are used for ECMPv6.
1143 			 *
1144 			 * To avoid long list, we only had siblings if the
1145 			 * route have a gateway.
1146 			 */
1147 			if (rt_can_ecmp &&
1148 			    rt6_qualify_for_ecmp(iter))
1149 				rt->fib6_nsiblings++;
1150 		}
1151 
1152 		if (iter->fib6_metric > rt->fib6_metric)
1153 			break;
1154 
1155 next_iter:
1156 		ins = &iter->fib6_next;
1157 	}
1158 
1159 	if (fallback_ins && !found) {
1160 		/* No matching route with same ecmp-able-ness found, replace
1161 		 * first matching route
1162 		 */
1163 		ins = fallback_ins;
1164 		iter = rcu_dereference_protected(*ins,
1165 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1166 		found++;
1167 	}
1168 
1169 	/* Reset round-robin state, if necessary */
1170 	if (ins == &fn->leaf)
1171 		fn->rr_ptr = NULL;
1172 
1173 	/* Link this route to others same route. */
1174 	if (rt->fib6_nsiblings) {
1175 		unsigned int fib6_nsiblings;
1176 		struct fib6_info *sibling, *temp_sibling;
1177 
1178 		/* Find the first route that have the same metric */
1179 		sibling = leaf;
1180 		notify_sibling_rt = true;
1181 		while (sibling) {
1182 			if (sibling->fib6_metric == rt->fib6_metric &&
1183 			    rt6_qualify_for_ecmp(sibling)) {
1184 				list_add_tail(&rt->fib6_siblings,
1185 					      &sibling->fib6_siblings);
1186 				break;
1187 			}
1188 			sibling = rcu_dereference_protected(sibling->fib6_next,
1189 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1190 			notify_sibling_rt = false;
1191 		}
1192 		/* For each sibling in the list, increment the counter of
1193 		 * siblings. BUG() if counters does not match, list of siblings
1194 		 * is broken!
1195 		 */
1196 		fib6_nsiblings = 0;
1197 		list_for_each_entry_safe(sibling, temp_sibling,
1198 					 &rt->fib6_siblings, fib6_siblings) {
1199 			sibling->fib6_nsiblings++;
1200 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1201 			fib6_nsiblings++;
1202 		}
1203 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1204 		rt6_multipath_rebalance(temp_sibling);
1205 	}
1206 
1207 	/*
1208 	 *	insert node
1209 	 */
1210 	if (!replace) {
1211 		if (!add)
1212 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1213 
1214 add:
1215 		nlflags |= NLM_F_CREATE;
1216 
1217 		/* The route should only be notified if it is the first
1218 		 * route in the node or if it is added as a sibling
1219 		 * route to the first route in the node.
1220 		 */
1221 		if (!info->skip_notify_kernel &&
1222 		    (notify_sibling_rt || ins == &fn->leaf)) {
1223 			enum fib_event_type fib_event;
1224 
1225 			if (notify_sibling_rt)
1226 				fib_event = FIB_EVENT_ENTRY_APPEND;
1227 			else
1228 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1229 			err = call_fib6_entry_notifiers(info->nl_net,
1230 							fib_event, rt,
1231 							extack);
1232 			if (err) {
1233 				struct fib6_info *sibling, *next_sibling;
1234 
1235 				/* If the route has siblings, then it first
1236 				 * needs to be unlinked from them.
1237 				 */
1238 				if (!rt->fib6_nsiblings)
1239 					return err;
1240 
1241 				list_for_each_entry_safe(sibling, next_sibling,
1242 							 &rt->fib6_siblings,
1243 							 fib6_siblings)
1244 					sibling->fib6_nsiblings--;
1245 				rt->fib6_nsiblings = 0;
1246 				list_del_init(&rt->fib6_siblings);
1247 				rt6_multipath_rebalance(next_sibling);
1248 				return err;
1249 			}
1250 		}
1251 
1252 		rcu_assign_pointer(rt->fib6_next, iter);
1253 		fib6_info_hold(rt);
1254 		rcu_assign_pointer(rt->fib6_node, fn);
1255 		rcu_assign_pointer(*ins, rt);
1256 		if (!info->skip_notify)
1257 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1258 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1259 
1260 		if (!(fn->fn_flags & RTN_RTINFO)) {
1261 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1262 			fn->fn_flags |= RTN_RTINFO;
1263 		}
1264 
1265 	} else {
1266 		int nsiblings;
1267 
1268 		if (!found) {
1269 			if (add)
1270 				goto add;
1271 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1272 			return -ENOENT;
1273 		}
1274 
1275 		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1276 			err = call_fib6_entry_notifiers(info->nl_net,
1277 							FIB_EVENT_ENTRY_REPLACE,
1278 							rt, extack);
1279 			if (err)
1280 				return err;
1281 		}
1282 
1283 		fib6_info_hold(rt);
1284 		rcu_assign_pointer(rt->fib6_node, fn);
1285 		rt->fib6_next = iter->fib6_next;
1286 		rcu_assign_pointer(*ins, rt);
1287 		if (!info->skip_notify)
1288 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1289 		if (!(fn->fn_flags & RTN_RTINFO)) {
1290 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1291 			fn->fn_flags |= RTN_RTINFO;
1292 		}
1293 		nsiblings = iter->fib6_nsiblings;
1294 		iter->fib6_node = NULL;
1295 		fib6_purge_rt(iter, fn, info->nl_net);
1296 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1297 			fn->rr_ptr = NULL;
1298 		fib6_info_release(iter);
1299 
1300 		if (nsiblings) {
1301 			/* Replacing an ECMP route, remove all siblings */
1302 			ins = &rt->fib6_next;
1303 			iter = rcu_dereference_protected(*ins,
1304 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1305 			while (iter) {
1306 				if (iter->fib6_metric > rt->fib6_metric)
1307 					break;
1308 				if (rt6_qualify_for_ecmp(iter)) {
1309 					*ins = iter->fib6_next;
1310 					iter->fib6_node = NULL;
1311 					fib6_purge_rt(iter, fn, info->nl_net);
1312 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1313 						fn->rr_ptr = NULL;
1314 					fib6_info_release(iter);
1315 					nsiblings--;
1316 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1317 				} else {
1318 					ins = &iter->fib6_next;
1319 				}
1320 				iter = rcu_dereference_protected(*ins,
1321 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1322 			}
1323 			WARN_ON(nsiblings != 0);
1324 		}
1325 	}
1326 
1327 	return 0;
1328 }
1329 
fib6_start_gc(struct net * net,struct fib6_info * rt)1330 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1331 {
1332 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1333 	    (rt->fib6_flags & RTF_EXPIRES))
1334 		mod_timer(&net->ipv6.ip6_fib_timer,
1335 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1336 }
1337 
fib6_force_start_gc(struct net * net)1338 void fib6_force_start_gc(struct net *net)
1339 {
1340 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1341 		mod_timer(&net->ipv6.ip6_fib_timer,
1342 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1343 }
1344 
__fib6_update_sernum_upto_root(struct fib6_info * rt,int sernum)1345 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1346 					   int sernum)
1347 {
1348 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1349 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1350 
1351 	/* paired with smp_rmb() in fib6_get_cookie_safe() */
1352 	smp_wmb();
1353 	while (fn) {
1354 		WRITE_ONCE(fn->fn_sernum, sernum);
1355 		fn = rcu_dereference_protected(fn->parent,
1356 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1357 	}
1358 }
1359 
fib6_update_sernum_upto_root(struct net * net,struct fib6_info * rt)1360 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1361 {
1362 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1363 }
1364 
1365 /* allow ipv4 to update sernum via ipv6_stub */
fib6_update_sernum_stub(struct net * net,struct fib6_info * f6i)1366 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1367 {
1368 	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1369 	fib6_update_sernum_upto_root(net, f6i);
1370 	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1371 }
1372 
1373 /*
1374  *	Add routing information to the routing tree.
1375  *	<destination addr>/<source addr>
1376  *	with source addr info in sub-trees
1377  *	Need to own table->tb6_lock
1378  */
1379 
fib6_add(struct fib6_node * root,struct fib6_info * rt,struct nl_info * info,struct netlink_ext_ack * extack)1380 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1381 	     struct nl_info *info, struct netlink_ext_ack *extack)
1382 {
1383 	struct fib6_table *table = rt->fib6_table;
1384 	struct fib6_node *fn, *pn = NULL;
1385 	int err = -ENOMEM;
1386 	int allow_create = 1;
1387 	int replace_required = 0;
1388 
1389 	if (info->nlh) {
1390 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1391 			allow_create = 0;
1392 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1393 			replace_required = 1;
1394 	}
1395 	if (!allow_create && !replace_required)
1396 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1397 
1398 	fn = fib6_add_1(info->nl_net, table, root,
1399 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1400 			offsetof(struct fib6_info, fib6_dst), allow_create,
1401 			replace_required, extack);
1402 	if (IS_ERR(fn)) {
1403 		err = PTR_ERR(fn);
1404 		fn = NULL;
1405 		goto out;
1406 	}
1407 
1408 	pn = fn;
1409 
1410 #ifdef CONFIG_IPV6_SUBTREES
1411 	if (rt->fib6_src.plen) {
1412 		struct fib6_node *sn;
1413 
1414 		if (!rcu_access_pointer(fn->subtree)) {
1415 			struct fib6_node *sfn;
1416 
1417 			/*
1418 			 * Create subtree.
1419 			 *
1420 			 *		fn[main tree]
1421 			 *		|
1422 			 *		sfn[subtree root]
1423 			 *		   \
1424 			 *		    sn[new leaf node]
1425 			 */
1426 
1427 			/* Create subtree root node */
1428 			sfn = node_alloc(info->nl_net);
1429 			if (!sfn)
1430 				goto failure;
1431 
1432 			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1433 			rcu_assign_pointer(sfn->leaf,
1434 					   info->nl_net->ipv6.fib6_null_entry);
1435 			sfn->fn_flags = RTN_ROOT;
1436 
1437 			/* Now add the first leaf node to new subtree */
1438 
1439 			sn = fib6_add_1(info->nl_net, table, sfn,
1440 					&rt->fib6_src.addr, rt->fib6_src.plen,
1441 					offsetof(struct fib6_info, fib6_src),
1442 					allow_create, replace_required, extack);
1443 
1444 			if (IS_ERR(sn)) {
1445 				/* If it is failed, discard just allocated
1446 				   root, and then (in failure) stale node
1447 				   in main tree.
1448 				 */
1449 				node_free_immediate(info->nl_net, sfn);
1450 				err = PTR_ERR(sn);
1451 				goto failure;
1452 			}
1453 
1454 			/* Now link new subtree to main tree */
1455 			rcu_assign_pointer(sfn->parent, fn);
1456 			rcu_assign_pointer(fn->subtree, sfn);
1457 		} else {
1458 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1459 					&rt->fib6_src.addr, rt->fib6_src.plen,
1460 					offsetof(struct fib6_info, fib6_src),
1461 					allow_create, replace_required, extack);
1462 
1463 			if (IS_ERR(sn)) {
1464 				err = PTR_ERR(sn);
1465 				goto failure;
1466 			}
1467 		}
1468 
1469 		if (!rcu_access_pointer(fn->leaf)) {
1470 			if (fn->fn_flags & RTN_TL_ROOT) {
1471 				/* put back null_entry for root node */
1472 				rcu_assign_pointer(fn->leaf,
1473 					    info->nl_net->ipv6.fib6_null_entry);
1474 			} else {
1475 				fib6_info_hold(rt);
1476 				rcu_assign_pointer(fn->leaf, rt);
1477 			}
1478 		}
1479 		fn = sn;
1480 	}
1481 #endif
1482 
1483 	err = fib6_add_rt2node(fn, rt, info, extack);
1484 	if (!err) {
1485 		if (rt->nh)
1486 			list_add(&rt->nh_list, &rt->nh->f6i_list);
1487 		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1488 
1489 		if (fib6_has_expires(rt))
1490 			hlist_add_head(&rt->gc_link, &table->tb6_gc_hlist);
1491 
1492 		fib6_start_gc(info->nl_net, rt);
1493 	}
1494 
1495 out:
1496 	if (err) {
1497 #ifdef CONFIG_IPV6_SUBTREES
1498 		/*
1499 		 * If fib6_add_1 has cleared the old leaf pointer in the
1500 		 * super-tree leaf node we have to find a new one for it.
1501 		 */
1502 		if (pn != fn) {
1503 			struct fib6_info *pn_leaf =
1504 				rcu_dereference_protected(pn->leaf,
1505 				    lockdep_is_held(&table->tb6_lock));
1506 			if (pn_leaf == rt) {
1507 				pn_leaf = NULL;
1508 				RCU_INIT_POINTER(pn->leaf, NULL);
1509 				fib6_info_release(rt);
1510 			}
1511 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1512 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1513 							   pn);
1514 #if RT6_DEBUG >= 2
1515 				if (!pn_leaf) {
1516 					WARN_ON(!pn_leaf);
1517 					pn_leaf =
1518 					    info->nl_net->ipv6.fib6_null_entry;
1519 				}
1520 #endif
1521 				fib6_info_hold(pn_leaf);
1522 				rcu_assign_pointer(pn->leaf, pn_leaf);
1523 			}
1524 		}
1525 #endif
1526 		goto failure;
1527 	} else if (fib6_requires_src(rt)) {
1528 		fib6_routes_require_src_inc(info->nl_net);
1529 	}
1530 	return err;
1531 
1532 failure:
1533 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1534 	 * 1. fn is an intermediate node and we failed to add the new
1535 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1536 	 * failure case.
1537 	 * 2. fn is the root node in the table and we fail to add the first
1538 	 * default route to it.
1539 	 */
1540 	if (fn &&
1541 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1542 	     (fn->fn_flags & RTN_TL_ROOT &&
1543 	      !rcu_access_pointer(fn->leaf))))
1544 		fib6_repair_tree(info->nl_net, table, fn);
1545 	return err;
1546 }
1547 
1548 /*
1549  *	Routing tree lookup
1550  *
1551  */
1552 
1553 struct lookup_args {
1554 	int			offset;		/* key offset on fib6_info */
1555 	const struct in6_addr	*addr;		/* search key			*/
1556 };
1557 
fib6_node_lookup_1(struct fib6_node * root,struct lookup_args * args)1558 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1559 					    struct lookup_args *args)
1560 {
1561 	struct fib6_node *fn;
1562 	__be32 dir;
1563 
1564 	if (unlikely(args->offset == 0))
1565 		return NULL;
1566 
1567 	/*
1568 	 *	Descend on a tree
1569 	 */
1570 
1571 	fn = root;
1572 
1573 	for (;;) {
1574 		struct fib6_node *next;
1575 
1576 		dir = addr_bit_set(args->addr, fn->fn_bit);
1577 
1578 		next = dir ? rcu_dereference(fn->right) :
1579 			     rcu_dereference(fn->left);
1580 
1581 		if (next) {
1582 			fn = next;
1583 			continue;
1584 		}
1585 		break;
1586 	}
1587 
1588 	while (fn) {
1589 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1590 
1591 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1592 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1593 			struct rt6key *key;
1594 
1595 			if (!leaf)
1596 				goto backtrack;
1597 
1598 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1599 
1600 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1601 #ifdef CONFIG_IPV6_SUBTREES
1602 				if (subtree) {
1603 					struct fib6_node *sfn;
1604 					sfn = fib6_node_lookup_1(subtree,
1605 								 args + 1);
1606 					if (!sfn)
1607 						goto backtrack;
1608 					fn = sfn;
1609 				}
1610 #endif
1611 				if (fn->fn_flags & RTN_RTINFO)
1612 					return fn;
1613 			}
1614 		}
1615 backtrack:
1616 		if (fn->fn_flags & RTN_ROOT)
1617 			break;
1618 
1619 		fn = rcu_dereference(fn->parent);
1620 	}
1621 
1622 	return NULL;
1623 }
1624 
1625 /* called with rcu_read_lock() held
1626  */
fib6_node_lookup(struct fib6_node * root,const struct in6_addr * daddr,const struct in6_addr * saddr)1627 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1628 				   const struct in6_addr *daddr,
1629 				   const struct in6_addr *saddr)
1630 {
1631 	struct fib6_node *fn;
1632 	struct lookup_args args[] = {
1633 		{
1634 			.offset = offsetof(struct fib6_info, fib6_dst),
1635 			.addr = daddr,
1636 		},
1637 #ifdef CONFIG_IPV6_SUBTREES
1638 		{
1639 			.offset = offsetof(struct fib6_info, fib6_src),
1640 			.addr = saddr,
1641 		},
1642 #endif
1643 		{
1644 			.offset = 0,	/* sentinel */
1645 		}
1646 	};
1647 
1648 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1649 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1650 		fn = root;
1651 
1652 	return fn;
1653 }
1654 
1655 /*
1656  *	Get node with specified destination prefix (and source prefix,
1657  *	if subtrees are used)
1658  *	exact_match == true means we try to find fn with exact match of
1659  *	the passed in prefix addr
1660  *	exact_match == false means we try to find fn with longest prefix
1661  *	match of the passed in prefix addr. This is useful for finding fn
1662  *	for cached route as it will be stored in the exception table under
1663  *	the node with longest prefix length.
1664  */
1665 
1666 
fib6_locate_1(struct fib6_node * root,const struct in6_addr * addr,int plen,int offset,bool exact_match)1667 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1668 				       const struct in6_addr *addr,
1669 				       int plen, int offset,
1670 				       bool exact_match)
1671 {
1672 	struct fib6_node *fn, *prev = NULL;
1673 
1674 	for (fn = root; fn ; ) {
1675 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1676 		struct rt6key *key;
1677 
1678 		/* This node is being deleted */
1679 		if (!leaf) {
1680 			if (plen <= fn->fn_bit)
1681 				goto out;
1682 			else
1683 				goto next;
1684 		}
1685 
1686 		key = (struct rt6key *)((u8 *)leaf + offset);
1687 
1688 		/*
1689 		 *	Prefix match
1690 		 */
1691 		if (plen < fn->fn_bit ||
1692 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1693 			goto out;
1694 
1695 		if (plen == fn->fn_bit)
1696 			return fn;
1697 
1698 		if (fn->fn_flags & RTN_RTINFO)
1699 			prev = fn;
1700 
1701 next:
1702 		/*
1703 		 *	We have more bits to go
1704 		 */
1705 		if (addr_bit_set(addr, fn->fn_bit))
1706 			fn = rcu_dereference(fn->right);
1707 		else
1708 			fn = rcu_dereference(fn->left);
1709 	}
1710 out:
1711 	if (exact_match)
1712 		return NULL;
1713 	else
1714 		return prev;
1715 }
1716 
fib6_locate(struct fib6_node * root,const struct in6_addr * daddr,int dst_len,const struct in6_addr * saddr,int src_len,bool exact_match)1717 struct fib6_node *fib6_locate(struct fib6_node *root,
1718 			      const struct in6_addr *daddr, int dst_len,
1719 			      const struct in6_addr *saddr, int src_len,
1720 			      bool exact_match)
1721 {
1722 	struct fib6_node *fn;
1723 
1724 	fn = fib6_locate_1(root, daddr, dst_len,
1725 			   offsetof(struct fib6_info, fib6_dst),
1726 			   exact_match);
1727 
1728 #ifdef CONFIG_IPV6_SUBTREES
1729 	if (src_len) {
1730 		WARN_ON(saddr == NULL);
1731 		if (fn) {
1732 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1733 
1734 			if (subtree) {
1735 				fn = fib6_locate_1(subtree, saddr, src_len,
1736 					   offsetof(struct fib6_info, fib6_src),
1737 					   exact_match);
1738 			}
1739 		}
1740 	}
1741 #endif
1742 
1743 	if (fn && fn->fn_flags & RTN_RTINFO)
1744 		return fn;
1745 
1746 	return NULL;
1747 }
1748 
1749 
1750 /*
1751  *	Deletion
1752  *
1753  */
1754 
fib6_find_prefix(struct net * net,struct fib6_table * table,struct fib6_node * fn)1755 static struct fib6_info *fib6_find_prefix(struct net *net,
1756 					 struct fib6_table *table,
1757 					 struct fib6_node *fn)
1758 {
1759 	struct fib6_node *child_left, *child_right;
1760 
1761 	if (fn->fn_flags & RTN_ROOT)
1762 		return net->ipv6.fib6_null_entry;
1763 
1764 	while (fn) {
1765 		child_left = rcu_dereference_protected(fn->left,
1766 				    lockdep_is_held(&table->tb6_lock));
1767 		child_right = rcu_dereference_protected(fn->right,
1768 				    lockdep_is_held(&table->tb6_lock));
1769 		if (child_left)
1770 			return rcu_dereference_protected(child_left->leaf,
1771 					lockdep_is_held(&table->tb6_lock));
1772 		if (child_right)
1773 			return rcu_dereference_protected(child_right->leaf,
1774 					lockdep_is_held(&table->tb6_lock));
1775 
1776 		fn = FIB6_SUBTREE(fn);
1777 	}
1778 	return NULL;
1779 }
1780 
1781 /*
1782  *	Called to trim the tree of intermediate nodes when possible. "fn"
1783  *	is the node we want to try and remove.
1784  *	Need to own table->tb6_lock
1785  */
1786 
fib6_repair_tree(struct net * net,struct fib6_table * table,struct fib6_node * fn)1787 static struct fib6_node *fib6_repair_tree(struct net *net,
1788 					  struct fib6_table *table,
1789 					  struct fib6_node *fn)
1790 {
1791 	int children;
1792 	int nstate;
1793 	struct fib6_node *child;
1794 	struct fib6_walker *w;
1795 	int iter = 0;
1796 
1797 	/* Set fn->leaf to null_entry for root node. */
1798 	if (fn->fn_flags & RTN_TL_ROOT) {
1799 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1800 		return fn;
1801 	}
1802 
1803 	for (;;) {
1804 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1805 					    lockdep_is_held(&table->tb6_lock));
1806 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1807 					    lockdep_is_held(&table->tb6_lock));
1808 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1809 					    lockdep_is_held(&table->tb6_lock));
1810 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1811 					    lockdep_is_held(&table->tb6_lock));
1812 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1813 					    lockdep_is_held(&table->tb6_lock));
1814 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1815 					    lockdep_is_held(&table->tb6_lock));
1816 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1817 					    lockdep_is_held(&table->tb6_lock));
1818 		struct fib6_info *new_fn_leaf;
1819 
1820 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1821 		iter++;
1822 
1823 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1824 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1825 		WARN_ON(fn_leaf);
1826 
1827 		children = 0;
1828 		child = NULL;
1829 		if (fn_r) {
1830 			child = fn_r;
1831 			children |= 1;
1832 		}
1833 		if (fn_l) {
1834 			child = fn_l;
1835 			children |= 2;
1836 		}
1837 
1838 		if (children == 3 || FIB6_SUBTREE(fn)
1839 #ifdef CONFIG_IPV6_SUBTREES
1840 		    /* Subtree root (i.e. fn) may have one child */
1841 		    || (children && fn->fn_flags & RTN_ROOT)
1842 #endif
1843 		    ) {
1844 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1845 #if RT6_DEBUG >= 2
1846 			if (!new_fn_leaf) {
1847 				WARN_ON(!new_fn_leaf);
1848 				new_fn_leaf = net->ipv6.fib6_null_entry;
1849 			}
1850 #endif
1851 			fib6_info_hold(new_fn_leaf);
1852 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1853 			return pn;
1854 		}
1855 
1856 #ifdef CONFIG_IPV6_SUBTREES
1857 		if (FIB6_SUBTREE(pn) == fn) {
1858 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1859 			RCU_INIT_POINTER(pn->subtree, NULL);
1860 			nstate = FWS_L;
1861 		} else {
1862 			WARN_ON(fn->fn_flags & RTN_ROOT);
1863 #endif
1864 			if (pn_r == fn)
1865 				rcu_assign_pointer(pn->right, child);
1866 			else if (pn_l == fn)
1867 				rcu_assign_pointer(pn->left, child);
1868 #if RT6_DEBUG >= 2
1869 			else
1870 				WARN_ON(1);
1871 #endif
1872 			if (child)
1873 				rcu_assign_pointer(child->parent, pn);
1874 			nstate = FWS_R;
1875 #ifdef CONFIG_IPV6_SUBTREES
1876 		}
1877 #endif
1878 
1879 		read_lock(&net->ipv6.fib6_walker_lock);
1880 		FOR_WALKERS(net, w) {
1881 			if (!child) {
1882 				if (w->node == fn) {
1883 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1884 					w->node = pn;
1885 					w->state = nstate;
1886 				}
1887 			} else {
1888 				if (w->node == fn) {
1889 					w->node = child;
1890 					if (children&2) {
1891 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1892 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1893 					} else {
1894 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1895 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1896 					}
1897 				}
1898 			}
1899 		}
1900 		read_unlock(&net->ipv6.fib6_walker_lock);
1901 
1902 		node_free(net, fn);
1903 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1904 			return pn;
1905 
1906 		RCU_INIT_POINTER(pn->leaf, NULL);
1907 		fib6_info_release(pn_leaf);
1908 		fn = pn;
1909 	}
1910 }
1911 
fib6_del_route(struct fib6_table * table,struct fib6_node * fn,struct fib6_info __rcu ** rtp,struct nl_info * info)1912 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1913 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1914 {
1915 	struct fib6_info *leaf, *replace_rt = NULL;
1916 	struct fib6_walker *w;
1917 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1918 				    lockdep_is_held(&table->tb6_lock));
1919 	struct net *net = info->nl_net;
1920 	bool notify_del = false;
1921 
1922 	RT6_TRACE("fib6_del_route\n");
1923 
1924 	/* If the deleted route is the first in the node and it is not part of
1925 	 * a multipath route, then we need to replace it with the next route
1926 	 * in the node, if exists.
1927 	 */
1928 	leaf = rcu_dereference_protected(fn->leaf,
1929 					 lockdep_is_held(&table->tb6_lock));
1930 	if (leaf == rt && !rt->fib6_nsiblings) {
1931 		if (rcu_access_pointer(rt->fib6_next))
1932 			replace_rt = rcu_dereference_protected(rt->fib6_next,
1933 					    lockdep_is_held(&table->tb6_lock));
1934 		else
1935 			notify_del = true;
1936 	}
1937 
1938 	/* Unlink it */
1939 	*rtp = rt->fib6_next;
1940 	rt->fib6_node = NULL;
1941 	net->ipv6.rt6_stats->fib_rt_entries--;
1942 	net->ipv6.rt6_stats->fib_discarded_routes++;
1943 
1944 	/* Reset round-robin state, if necessary */
1945 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1946 		fn->rr_ptr = NULL;
1947 
1948 	/* Remove this entry from other siblings */
1949 	if (rt->fib6_nsiblings) {
1950 		struct fib6_info *sibling, *next_sibling;
1951 
1952 		/* The route is deleted from a multipath route. If this
1953 		 * multipath route is the first route in the node, then we need
1954 		 * to emit a delete notification. Otherwise, we need to skip
1955 		 * the notification.
1956 		 */
1957 		if (rt->fib6_metric == leaf->fib6_metric &&
1958 		    rt6_qualify_for_ecmp(leaf))
1959 			notify_del = true;
1960 		list_for_each_entry_safe(sibling, next_sibling,
1961 					 &rt->fib6_siblings, fib6_siblings)
1962 			sibling->fib6_nsiblings--;
1963 		rt->fib6_nsiblings = 0;
1964 		list_del_init(&rt->fib6_siblings);
1965 		rt6_multipath_rebalance(next_sibling);
1966 	}
1967 
1968 	/* Adjust walkers */
1969 	read_lock(&net->ipv6.fib6_walker_lock);
1970 	FOR_WALKERS(net, w) {
1971 		if (w->state == FWS_C && w->leaf == rt) {
1972 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1973 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1974 					    lockdep_is_held(&table->tb6_lock));
1975 			if (!w->leaf)
1976 				w->state = FWS_U;
1977 		}
1978 	}
1979 	read_unlock(&net->ipv6.fib6_walker_lock);
1980 
1981 	/* If it was last route, call fib6_repair_tree() to:
1982 	 * 1. For root node, put back null_entry as how the table was created.
1983 	 * 2. For other nodes, expunge its radix tree node.
1984 	 */
1985 	if (!rcu_access_pointer(fn->leaf)) {
1986 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1987 			fn->fn_flags &= ~RTN_RTINFO;
1988 			net->ipv6.rt6_stats->fib_route_nodes--;
1989 		}
1990 		fn = fib6_repair_tree(net, table, fn);
1991 	}
1992 
1993 	fib6_purge_rt(rt, fn, net);
1994 
1995 	if (!info->skip_notify_kernel) {
1996 		if (notify_del)
1997 			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1998 						  rt, NULL);
1999 		else if (replace_rt)
2000 			call_fib6_entry_notifiers_replace(net, replace_rt);
2001 	}
2002 	if (!info->skip_notify)
2003 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2004 
2005 	fib6_info_release(rt);
2006 }
2007 
2008 /* Need to own table->tb6_lock */
fib6_del(struct fib6_info * rt,struct nl_info * info)2009 int fib6_del(struct fib6_info *rt, struct nl_info *info)
2010 {
2011 	struct net *net = info->nl_net;
2012 	struct fib6_info __rcu **rtp;
2013 	struct fib6_info __rcu **rtp_next;
2014 	struct fib6_table *table;
2015 	struct fib6_node *fn;
2016 
2017 	if (rt == net->ipv6.fib6_null_entry)
2018 		return -ENOENT;
2019 
2020 	table = rt->fib6_table;
2021 	fn = rcu_dereference_protected(rt->fib6_node,
2022 				       lockdep_is_held(&table->tb6_lock));
2023 	if (!fn)
2024 		return -ENOENT;
2025 
2026 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2027 
2028 	/*
2029 	 *	Walk the leaf entries looking for ourself
2030 	 */
2031 
2032 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2033 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2034 					lockdep_is_held(&table->tb6_lock));
2035 		if (rt == cur) {
2036 			if (fib6_requires_src(cur))
2037 				fib6_routes_require_src_dec(info->nl_net);
2038 			fib6_del_route(table, fn, rtp, info);
2039 			return 0;
2040 		}
2041 		rtp_next = &cur->fib6_next;
2042 	}
2043 	return -ENOENT;
2044 }
2045 
2046 /*
2047  *	Tree traversal function.
2048  *
2049  *	Certainly, it is not interrupt safe.
2050  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2051  *	It means, that we can modify tree during walking
2052  *	and use this function for garbage collection, clone pruning,
2053  *	cleaning tree when a device goes down etc. etc.
2054  *
2055  *	It guarantees that every node will be traversed,
2056  *	and that it will be traversed only once.
2057  *
2058  *	Callback function w->func may return:
2059  *	0 -> continue walking.
2060  *	positive value -> walking is suspended (used by tree dumps,
2061  *	and probably by gc, if it will be split to several slices)
2062  *	negative value -> terminate walking.
2063  *
2064  *	The function itself returns:
2065  *	0   -> walk is complete.
2066  *	>0  -> walk is incomplete (i.e. suspended)
2067  *	<0  -> walk is terminated by an error.
2068  *
2069  *	This function is called with tb6_lock held.
2070  */
2071 
fib6_walk_continue(struct fib6_walker * w)2072 static int fib6_walk_continue(struct fib6_walker *w)
2073 {
2074 	struct fib6_node *fn, *pn, *left, *right;
2075 
2076 	/* w->root should always be table->tb6_root */
2077 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2078 
2079 	for (;;) {
2080 		fn = w->node;
2081 		if (!fn)
2082 			return 0;
2083 
2084 		switch (w->state) {
2085 #ifdef CONFIG_IPV6_SUBTREES
2086 		case FWS_S:
2087 			if (FIB6_SUBTREE(fn)) {
2088 				w->node = FIB6_SUBTREE(fn);
2089 				continue;
2090 			}
2091 			w->state = FWS_L;
2092 			fallthrough;
2093 #endif
2094 		case FWS_L:
2095 			left = rcu_dereference_protected(fn->left, 1);
2096 			if (left) {
2097 				w->node = left;
2098 				w->state = FWS_INIT;
2099 				continue;
2100 			}
2101 			w->state = FWS_R;
2102 			fallthrough;
2103 		case FWS_R:
2104 			right = rcu_dereference_protected(fn->right, 1);
2105 			if (right) {
2106 				w->node = right;
2107 				w->state = FWS_INIT;
2108 				continue;
2109 			}
2110 			w->state = FWS_C;
2111 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2112 			fallthrough;
2113 		case FWS_C:
2114 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2115 				int err;
2116 
2117 				if (w->skip) {
2118 					w->skip--;
2119 					goto skip;
2120 				}
2121 
2122 				err = w->func(w);
2123 				if (err)
2124 					return err;
2125 
2126 				w->count++;
2127 				continue;
2128 			}
2129 skip:
2130 			w->state = FWS_U;
2131 			fallthrough;
2132 		case FWS_U:
2133 			if (fn == w->root)
2134 				return 0;
2135 			pn = rcu_dereference_protected(fn->parent, 1);
2136 			left = rcu_dereference_protected(pn->left, 1);
2137 			right = rcu_dereference_protected(pn->right, 1);
2138 			w->node = pn;
2139 #ifdef CONFIG_IPV6_SUBTREES
2140 			if (FIB6_SUBTREE(pn) == fn) {
2141 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2142 				w->state = FWS_L;
2143 				continue;
2144 			}
2145 #endif
2146 			if (left == fn) {
2147 				w->state = FWS_R;
2148 				continue;
2149 			}
2150 			if (right == fn) {
2151 				w->state = FWS_C;
2152 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2153 				continue;
2154 			}
2155 #if RT6_DEBUG >= 2
2156 			WARN_ON(1);
2157 #endif
2158 		}
2159 	}
2160 }
2161 
fib6_walk(struct net * net,struct fib6_walker * w)2162 static int fib6_walk(struct net *net, struct fib6_walker *w)
2163 {
2164 	int res;
2165 
2166 	w->state = FWS_INIT;
2167 	w->node = w->root;
2168 
2169 	fib6_walker_link(net, w);
2170 	res = fib6_walk_continue(w);
2171 	if (res <= 0)
2172 		fib6_walker_unlink(net, w);
2173 	return res;
2174 }
2175 
fib6_clean_node(struct fib6_walker * w)2176 static int fib6_clean_node(struct fib6_walker *w)
2177 {
2178 	int res;
2179 	struct fib6_info *rt;
2180 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2181 	struct nl_info info = {
2182 		.nl_net = c->net,
2183 		.skip_notify = c->skip_notify,
2184 	};
2185 
2186 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2187 	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2188 		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2189 
2190 	if (!c->func) {
2191 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2192 		w->leaf = NULL;
2193 		return 0;
2194 	}
2195 
2196 	for_each_fib6_walker_rt(w) {
2197 		res = c->func(rt, c->arg);
2198 		if (res == -1) {
2199 			w->leaf = rt;
2200 			res = fib6_del(rt, &info);
2201 			if (res) {
2202 #if RT6_DEBUG >= 2
2203 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2204 					 __func__, rt,
2205 					 rcu_access_pointer(rt->fib6_node),
2206 					 res);
2207 #endif
2208 				continue;
2209 			}
2210 			return 0;
2211 		} else if (res == -2) {
2212 			if (WARN_ON(!rt->fib6_nsiblings))
2213 				continue;
2214 			rt = list_last_entry(&rt->fib6_siblings,
2215 					     struct fib6_info, fib6_siblings);
2216 			continue;
2217 		}
2218 		WARN_ON(res != 0);
2219 	}
2220 	w->leaf = rt;
2221 	return 0;
2222 }
2223 
2224 /*
2225  *	Convenient frontend to tree walker.
2226  *
2227  *	func is called on each route.
2228  *		It may return -2 -> skip multipath route.
2229  *			      -1 -> delete this route.
2230  *		              0  -> continue walking
2231  */
2232 
fib6_clean_tree(struct net * net,struct fib6_node * root,int (* func)(struct fib6_info *,void * arg),int sernum,void * arg,bool skip_notify)2233 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2234 			    int (*func)(struct fib6_info *, void *arg),
2235 			    int sernum, void *arg, bool skip_notify)
2236 {
2237 	struct fib6_cleaner c;
2238 
2239 	c.w.root = root;
2240 	c.w.func = fib6_clean_node;
2241 	c.w.count = 0;
2242 	c.w.skip = 0;
2243 	c.w.skip_in_node = 0;
2244 	c.func = func;
2245 	c.sernum = sernum;
2246 	c.arg = arg;
2247 	c.net = net;
2248 	c.skip_notify = skip_notify;
2249 
2250 	fib6_walk(net, &c.w);
2251 }
2252 
__fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),int sernum,void * arg,bool skip_notify)2253 static void __fib6_clean_all(struct net *net,
2254 			     int (*func)(struct fib6_info *, void *),
2255 			     int sernum, void *arg, bool skip_notify)
2256 {
2257 	struct fib6_table *table;
2258 	struct hlist_head *head;
2259 	unsigned int h;
2260 
2261 	rcu_read_lock();
2262 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2263 		head = &net->ipv6.fib_table_hash[h];
2264 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2265 			spin_lock_bh(&table->tb6_lock);
2266 			fib6_clean_tree(net, &table->tb6_root,
2267 					func, sernum, arg, skip_notify);
2268 			spin_unlock_bh(&table->tb6_lock);
2269 		}
2270 	}
2271 	rcu_read_unlock();
2272 }
2273 
fib6_clean_all(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2274 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2275 		    void *arg)
2276 {
2277 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2278 }
2279 
fib6_clean_all_skip_notify(struct net * net,int (* func)(struct fib6_info *,void *),void * arg)2280 void fib6_clean_all_skip_notify(struct net *net,
2281 				int (*func)(struct fib6_info *, void *),
2282 				void *arg)
2283 {
2284 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2285 }
2286 
fib6_flush_trees(struct net * net)2287 static void fib6_flush_trees(struct net *net)
2288 {
2289 	int new_sernum = fib6_new_sernum(net);
2290 
2291 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2292 }
2293 
2294 /*
2295  *	Garbage collection
2296  */
2297 
fib6_age(struct fib6_info * rt,struct fib6_gc_args * gc_args)2298 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2299 {
2300 	unsigned long now = jiffies;
2301 
2302 	/*
2303 	 *	check addrconf expiration here.
2304 	 *	Routes are expired even if they are in use.
2305 	 */
2306 
2307 	if (fib6_has_expires(rt) && rt->expires) {
2308 		if (time_after(now, rt->expires)) {
2309 			RT6_TRACE("expiring %p\n", rt);
2310 			return -1;
2311 		}
2312 		gc_args->more++;
2313 	}
2314 
2315 	/*	Also age clones in the exception table.
2316 	 *	Note, that clones are aged out
2317 	 *	only if they are not in use now.
2318 	 */
2319 	rt6_age_exceptions(rt, gc_args, now);
2320 
2321 	return 0;
2322 }
2323 
fib6_gc_table(struct net * net,struct fib6_table * tb6,struct fib6_gc_args * gc_args)2324 static void fib6_gc_table(struct net *net,
2325 			  struct fib6_table *tb6,
2326 			  struct fib6_gc_args *gc_args)
2327 {
2328 	struct fib6_info *rt;
2329 	struct hlist_node *n;
2330 	struct nl_info info = {
2331 		.nl_net = net,
2332 		.skip_notify = false,
2333 	};
2334 
2335 	hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2336 		if (fib6_age(rt, gc_args) == -1)
2337 			fib6_del(rt, &info);
2338 }
2339 
fib6_gc_all(struct net * net,struct fib6_gc_args * gc_args)2340 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2341 {
2342 	struct fib6_table *table;
2343 	struct hlist_head *head;
2344 	unsigned int h;
2345 
2346 	rcu_read_lock();
2347 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2348 		head = &net->ipv6.fib_table_hash[h];
2349 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2350 			spin_lock_bh(&table->tb6_lock);
2351 			fib6_gc_table(net, table, gc_args);
2352 			spin_unlock_bh(&table->tb6_lock);
2353 		}
2354 	}
2355 	rcu_read_unlock();
2356 }
2357 
fib6_run_gc(unsigned long expires,struct net * net,bool force)2358 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2359 {
2360 	struct fib6_gc_args gc_args;
2361 	unsigned long now;
2362 
2363 	if (force) {
2364 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2365 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2366 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2367 		return;
2368 	}
2369 	gc_args.timeout = expires ? (int)expires :
2370 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2371 	gc_args.more = 0;
2372 
2373 	fib6_gc_all(net, &gc_args);
2374 	now = jiffies;
2375 	net->ipv6.ip6_rt_last_gc = now;
2376 
2377 	if (gc_args.more)
2378 		mod_timer(&net->ipv6.ip6_fib_timer,
2379 			  round_jiffies(now
2380 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2381 	else
2382 		del_timer(&net->ipv6.ip6_fib_timer);
2383 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2384 }
2385 
fib6_gc_timer_cb(struct timer_list * t)2386 static void fib6_gc_timer_cb(struct timer_list *t)
2387 {
2388 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2389 
2390 	fib6_run_gc(0, arg, true);
2391 }
2392 
fib6_net_init(struct net * net)2393 static int __net_init fib6_net_init(struct net *net)
2394 {
2395 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2396 	int err;
2397 
2398 	err = fib6_notifier_init(net);
2399 	if (err)
2400 		return err;
2401 
2402 	/* Default to 3-tuple */
2403 	net->ipv6.sysctl.multipath_hash_fields =
2404 		FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2405 
2406 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2407 	rwlock_init(&net->ipv6.fib6_walker_lock);
2408 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2409 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2410 
2411 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2412 	if (!net->ipv6.rt6_stats)
2413 		goto out_notifier;
2414 
2415 	/* Avoid false sharing : Use at least a full cache line */
2416 	size = max_t(size_t, size, L1_CACHE_BYTES);
2417 
2418 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2419 	if (!net->ipv6.fib_table_hash)
2420 		goto out_rt6_stats;
2421 
2422 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2423 					  GFP_KERNEL);
2424 	if (!net->ipv6.fib6_main_tbl)
2425 		goto out_fib_table_hash;
2426 
2427 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2428 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2429 			   net->ipv6.fib6_null_entry);
2430 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2431 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2432 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2433 
2434 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2435 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2436 					   GFP_KERNEL);
2437 	if (!net->ipv6.fib6_local_tbl)
2438 		goto out_fib6_main_tbl;
2439 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2440 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2441 			   net->ipv6.fib6_null_entry);
2442 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2443 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2444 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2445 #endif
2446 	fib6_tables_init(net);
2447 
2448 	return 0;
2449 
2450 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2451 out_fib6_main_tbl:
2452 	kfree(net->ipv6.fib6_main_tbl);
2453 #endif
2454 out_fib_table_hash:
2455 	kfree(net->ipv6.fib_table_hash);
2456 out_rt6_stats:
2457 	kfree(net->ipv6.rt6_stats);
2458 out_notifier:
2459 	fib6_notifier_exit(net);
2460 	return -ENOMEM;
2461 }
2462 
fib6_net_exit(struct net * net)2463 static void fib6_net_exit(struct net *net)
2464 {
2465 	unsigned int i;
2466 
2467 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2468 
2469 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2470 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2471 		struct hlist_node *tmp;
2472 		struct fib6_table *tb;
2473 
2474 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2475 			hlist_del(&tb->tb6_hlist);
2476 			fib6_free_table(tb);
2477 		}
2478 	}
2479 
2480 	kfree(net->ipv6.fib_table_hash);
2481 	kfree(net->ipv6.rt6_stats);
2482 	fib6_notifier_exit(net);
2483 }
2484 
2485 static struct pernet_operations fib6_net_ops = {
2486 	.init = fib6_net_init,
2487 	.exit = fib6_net_exit,
2488 };
2489 
fib6_init(void)2490 int __init fib6_init(void)
2491 {
2492 	int ret = -ENOMEM;
2493 
2494 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2495 					   sizeof(struct fib6_node), 0,
2496 					   SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT,
2497 					   NULL);
2498 	if (!fib6_node_kmem)
2499 		goto out;
2500 
2501 	ret = register_pernet_subsys(&fib6_net_ops);
2502 	if (ret)
2503 		goto out_kmem_cache_create;
2504 
2505 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2506 				   inet6_dump_fib, 0);
2507 	if (ret)
2508 		goto out_unregister_subsys;
2509 
2510 	__fib6_flush_trees = fib6_flush_trees;
2511 out:
2512 	return ret;
2513 
2514 out_unregister_subsys:
2515 	unregister_pernet_subsys(&fib6_net_ops);
2516 out_kmem_cache_create:
2517 	kmem_cache_destroy(fib6_node_kmem);
2518 	goto out;
2519 }
2520 
fib6_gc_cleanup(void)2521 void fib6_gc_cleanup(void)
2522 {
2523 	unregister_pernet_subsys(&fib6_net_ops);
2524 	kmem_cache_destroy(fib6_node_kmem);
2525 }
2526 
2527 #ifdef CONFIG_PROC_FS
ipv6_route_native_seq_show(struct seq_file * seq,void * v)2528 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2529 {
2530 	struct fib6_info *rt = v;
2531 	struct ipv6_route_iter *iter = seq->private;
2532 	struct fib6_nh *fib6_nh = rt->fib6_nh;
2533 	unsigned int flags = rt->fib6_flags;
2534 	const struct net_device *dev;
2535 
2536 	if (rt->nh)
2537 		fib6_nh = nexthop_fib6_nh(rt->nh);
2538 
2539 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2540 
2541 #ifdef CONFIG_IPV6_SUBTREES
2542 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2543 #else
2544 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2545 #endif
2546 	if (fib6_nh->fib_nh_gw_family) {
2547 		flags |= RTF_GATEWAY;
2548 		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2549 	} else {
2550 		seq_puts(seq, "00000000000000000000000000000000");
2551 	}
2552 
2553 	dev = fib6_nh->fib_nh_dev;
2554 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2555 		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2556 		   flags, dev ? dev->name : "");
2557 	iter->w.leaf = NULL;
2558 	return 0;
2559 }
2560 
ipv6_route_yield(struct fib6_walker * w)2561 static int ipv6_route_yield(struct fib6_walker *w)
2562 {
2563 	struct ipv6_route_iter *iter = w->args;
2564 
2565 	if (!iter->skip)
2566 		return 1;
2567 
2568 	do {
2569 		iter->w.leaf = rcu_dereference_protected(
2570 				iter->w.leaf->fib6_next,
2571 				lockdep_is_held(&iter->tbl->tb6_lock));
2572 		iter->skip--;
2573 		if (!iter->skip && iter->w.leaf)
2574 			return 1;
2575 	} while (iter->w.leaf);
2576 
2577 	return 0;
2578 }
2579 
ipv6_route_seq_setup_walk(struct ipv6_route_iter * iter,struct net * net)2580 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2581 				      struct net *net)
2582 {
2583 	memset(&iter->w, 0, sizeof(iter->w));
2584 	iter->w.func = ipv6_route_yield;
2585 	iter->w.root = &iter->tbl->tb6_root;
2586 	iter->w.state = FWS_INIT;
2587 	iter->w.node = iter->w.root;
2588 	iter->w.args = iter;
2589 	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2590 	INIT_LIST_HEAD(&iter->w.lh);
2591 	fib6_walker_link(net, &iter->w);
2592 }
2593 
ipv6_route_seq_next_table(struct fib6_table * tbl,struct net * net)2594 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2595 						    struct net *net)
2596 {
2597 	unsigned int h;
2598 	struct hlist_node *node;
2599 
2600 	if (tbl) {
2601 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2602 		node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2603 	} else {
2604 		h = 0;
2605 		node = NULL;
2606 	}
2607 
2608 	while (!node && h < FIB6_TABLE_HASHSZ) {
2609 		node = rcu_dereference(
2610 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2611 	}
2612 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2613 }
2614 
ipv6_route_check_sernum(struct ipv6_route_iter * iter)2615 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2616 {
2617 	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2618 
2619 	if (iter->sernum != sernum) {
2620 		iter->sernum = sernum;
2621 		iter->w.state = FWS_INIT;
2622 		iter->w.node = iter->w.root;
2623 		WARN_ON(iter->w.skip);
2624 		iter->w.skip = iter->w.count;
2625 	}
2626 }
2627 
ipv6_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2628 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2629 {
2630 	int r;
2631 	struct fib6_info *n;
2632 	struct net *net = seq_file_net(seq);
2633 	struct ipv6_route_iter *iter = seq->private;
2634 
2635 	++(*pos);
2636 	if (!v)
2637 		goto iter_table;
2638 
2639 	n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2640 	if (n)
2641 		return n;
2642 
2643 iter_table:
2644 	ipv6_route_check_sernum(iter);
2645 	spin_lock_bh(&iter->tbl->tb6_lock);
2646 	r = fib6_walk_continue(&iter->w);
2647 	spin_unlock_bh(&iter->tbl->tb6_lock);
2648 	if (r > 0) {
2649 		return iter->w.leaf;
2650 	} else if (r < 0) {
2651 		fib6_walker_unlink(net, &iter->w);
2652 		return NULL;
2653 	}
2654 	fib6_walker_unlink(net, &iter->w);
2655 
2656 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2657 	if (!iter->tbl)
2658 		return NULL;
2659 
2660 	ipv6_route_seq_setup_walk(iter, net);
2661 	goto iter_table;
2662 }
2663 
ipv6_route_seq_start(struct seq_file * seq,loff_t * pos)2664 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2665 	__acquires(RCU)
2666 {
2667 	struct net *net = seq_file_net(seq);
2668 	struct ipv6_route_iter *iter = seq->private;
2669 
2670 	rcu_read_lock();
2671 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2672 	iter->skip = *pos;
2673 
2674 	if (iter->tbl) {
2675 		loff_t p = 0;
2676 
2677 		ipv6_route_seq_setup_walk(iter, net);
2678 		return ipv6_route_seq_next(seq, NULL, &p);
2679 	} else {
2680 		return NULL;
2681 	}
2682 }
2683 
ipv6_route_iter_active(struct ipv6_route_iter * iter)2684 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2685 {
2686 	struct fib6_walker *w = &iter->w;
2687 	return w->node && !(w->state == FWS_U && w->node == w->root);
2688 }
2689 
ipv6_route_native_seq_stop(struct seq_file * seq,void * v)2690 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2691 	__releases(RCU)
2692 {
2693 	struct net *net = seq_file_net(seq);
2694 	struct ipv6_route_iter *iter = seq->private;
2695 
2696 	if (ipv6_route_iter_active(iter))
2697 		fib6_walker_unlink(net, &iter->w);
2698 
2699 	rcu_read_unlock();
2700 }
2701 
2702 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
ipv6_route_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,void * v)2703 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2704 				    struct bpf_iter_meta *meta,
2705 				    void *v)
2706 {
2707 	struct bpf_iter__ipv6_route ctx;
2708 
2709 	ctx.meta = meta;
2710 	ctx.rt = v;
2711 	return bpf_iter_run_prog(prog, &ctx);
2712 }
2713 
ipv6_route_seq_show(struct seq_file * seq,void * v)2714 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2715 {
2716 	struct ipv6_route_iter *iter = seq->private;
2717 	struct bpf_iter_meta meta;
2718 	struct bpf_prog *prog;
2719 	int ret;
2720 
2721 	meta.seq = seq;
2722 	prog = bpf_iter_get_info(&meta, false);
2723 	if (!prog)
2724 		return ipv6_route_native_seq_show(seq, v);
2725 
2726 	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2727 	iter->w.leaf = NULL;
2728 
2729 	return ret;
2730 }
2731 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2732 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2733 {
2734 	struct bpf_iter_meta meta;
2735 	struct bpf_prog *prog;
2736 
2737 	if (!v) {
2738 		meta.seq = seq;
2739 		prog = bpf_iter_get_info(&meta, true);
2740 		if (prog)
2741 			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2742 	}
2743 
2744 	ipv6_route_native_seq_stop(seq, v);
2745 }
2746 #else
ipv6_route_seq_show(struct seq_file * seq,void * v)2747 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2748 {
2749 	return ipv6_route_native_seq_show(seq, v);
2750 }
2751 
ipv6_route_seq_stop(struct seq_file * seq,void * v)2752 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2753 {
2754 	ipv6_route_native_seq_stop(seq, v);
2755 }
2756 #endif
2757 
2758 const struct seq_operations ipv6_route_seq_ops = {
2759 	.start	= ipv6_route_seq_start,
2760 	.next	= ipv6_route_seq_next,
2761 	.stop	= ipv6_route_seq_stop,
2762 	.show	= ipv6_route_seq_show
2763 };
2764 #endif /* CONFIG_PROC_FS */
2765