1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
3
4 Copyright 1994, 1995 Digital Equipment Corporation.
5
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
8
9 The author may be reached at davies@maniac.ultranet.com.
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
15
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
30
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
33
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
39
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
43
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
49
50 So far the driver is known to work with the following cards:
51
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
59
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
63
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
70
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
74
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
81
82 Up to 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
86
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
91
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
98
99 To utilise this ability, you have to do 8 things:
100
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
107
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
110
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
113
114 insmod de4x5
115
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
126
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
129
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
134
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
139
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
146
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
149
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
153
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
158
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
169
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
182
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
190
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
198
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
205
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
210
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
213
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
215
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
218
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
227
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
237
238 TO DO:
239 ------
240
241 Revision History
242 ----------------
243
244 Version Date Description
245
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
444 */
445
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/pci.h>
454 #include <linux/eisa.h>
455 #include <linux/delay.h>
456 #include <linux/init.h>
457 #include <linux/spinlock.h>
458 #include <linux/crc32.h>
459 #include <linux/netdevice.h>
460 #include <linux/etherdevice.h>
461 #include <linux/skbuff.h>
462 #include <linux/time.h>
463 #include <linux/types.h>
464 #include <linux/unistd.h>
465 #include <linux/ctype.h>
466 #include <linux/dma-mapping.h>
467 #include <linux/moduleparam.h>
468 #include <linux/bitops.h>
469 #include <linux/gfp.h>
470
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <linux/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
479
480 #include "de4x5.h"
481
482 static const char version[] =
483 KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484
485 #define c_char const char
486
487 /*
488 ** MII Information
489 */
490 struct phy_table {
491 int reset; /* Hard reset required? */
492 int id; /* IEEE OUI */
493 int ta; /* One cycle TA time - 802.3u is confusing here */
494 struct { /* Non autonegotiation (parallel) speed det. */
495 int reg;
496 int mask;
497 int value;
498 } spd;
499 };
500
501 struct mii_phy {
502 int reset; /* Hard reset required? */
503 int id; /* IEEE OUI */
504 int ta; /* One cycle TA time */
505 struct { /* Non autonegotiation (parallel) speed det. */
506 int reg;
507 int mask;
508 int value;
509 } spd;
510 int addr; /* MII address for the PHY */
511 u_char *gep; /* Start of GEP sequence block in SROM */
512 u_char *rst; /* Start of reset sequence in SROM */
513 u_int mc; /* Media Capabilities */
514 u_int ana; /* NWay Advertisement */
515 u_int fdx; /* Full DupleX capabilities for each media */
516 u_int ttm; /* Transmit Threshold Mode for each media */
517 u_int mci; /* 21142 MII Connector Interrupt info */
518 };
519
520 #define DE4X5_MAX_PHY 8 /* Allow up to 8 attached PHY devices per board */
521
522 struct sia_phy {
523 u_char mc; /* Media Code */
524 u_char ext; /* csr13-15 valid when set */
525 int csr13; /* SIA Connectivity Register */
526 int csr14; /* SIA TX/RX Register */
527 int csr15; /* SIA General Register */
528 int gepc; /* SIA GEP Control Information */
529 int gep; /* SIA GEP Data */
530 };
531
532 /*
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
535 */
536 static struct phy_table phy_info[] = {
537 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
538 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
539 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
540 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
541 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
542 };
543
544 /*
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548 */
549 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
552
553 /*
554 ** Define special SROM detection cases
555 */
556 static c_char enet_det[][ETH_ALEN] = {
557 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
559 };
560
561 #define SMC 1
562 #define ACCTON 2
563
564 /*
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
568 */
569 static c_char srom_repair_info[][100] = {
570 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
571 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573 0x00,0x18,}
574 };
575
576
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
583
584 /*
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588 **
589 ** For a compiled in driver, place e.g.
590 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
592 */
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
598
599 struct parameters {
600 bool fdx;
601 int autosense;
602 };
603
604 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
605
606 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
607
608 /*
609 ** Ethernet PROM defines
610 */
611 #define PROBE_LENGTH 32
612 #define ETH_PROM_SIG 0xAA5500FFUL
613
614 /*
615 ** Ethernet Info
616 */
617 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ 1518 /* Packet + CRC */
619 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
621 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
622 #define PKT_HDR_LEN 14 /* Addresses and data length info */
623 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
625
626
627 /*
628 ** EISA bus defines
629 */
630 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
632
633 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
634
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
637
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
639
640 /*
641 ** Ethernet PROM defines for DC21040
642 */
643 #define PROBE_LENGTH 32
644 #define ETH_PROM_SIG 0xAA5500FFUL
645
646 /*
647 ** PCI Bus defines
648 */
649 #define PCI_MAX_BUS_NUM 8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
651 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
652
653 /*
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
658 */
659 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
660 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
661 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
662 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
663 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
664 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
665
666 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
671
672 #ifndef DEC_ONLY /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
677
678 /*
679 ** DE4X5 IRQ ENABLE/DISABLE
680 */
681 #define ENABLE_IRQs { \
682 imr |= lp->irq_en;\
683 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
684 }
685
686 #define DISABLE_IRQs {\
687 imr = inl(DE4X5_IMR);\
688 imr &= ~lp->irq_en;\
689 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
690 }
691
692 #define UNMASK_IRQs {\
693 imr |= lp->irq_mask;\
694 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
695 }
696
697 #define MASK_IRQs {\
698 imr = inl(DE4X5_IMR);\
699 imr &= ~lp->irq_mask;\
700 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
701 }
702
703 /*
704 ** DE4X5 START/STOP
705 */
706 #define START_DE4X5 {\
707 omr = inl(DE4X5_OMR);\
708 omr |= OMR_ST | OMR_SR;\
709 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
710 }
711
712 #define STOP_DE4X5 {\
713 omr = inl(DE4X5_OMR);\
714 omr &= ~(OMR_ST|OMR_SR);\
715 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
716 }
717
718 /*
719 ** DE4X5 SIA RESET
720 */
721 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
722
723 /*
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725 */
726 #define DE4X5_AUTOSENSE_MS 250
727
728 /*
729 ** SROM Structure
730 */
731 struct de4x5_srom {
732 char sub_vendor_id[2];
733 char sub_system_id[2];
734 char reserved[12];
735 char id_block_crc;
736 char reserved2;
737 char version;
738 char num_controllers;
739 char ieee_addr[6];
740 char info[100];
741 short chksum;
742 };
743 #define SUB_VENDOR_ID 0x500a
744
745 /*
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
752 */
753 #define NUM_RX_DESC 8 /* Number of RX descriptors */
754 #define NUM_TX_DESC 32 /* Number of TX descriptors */
755 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
756 /* Multiple of 4 for DC21040 */
757 /* Allows 512 byte alignment */
758 struct de4x5_desc {
759 volatile __le32 status;
760 __le32 des1;
761 __le32 buf;
762 __le32 next;
763 DESC_ALIGN
764 };
765
766 /*
767 ** The DE4X5 private structure
768 */
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
771 increase DE4X5_PKT_STAT_SZ */
772
773 struct pkt_stats {
774 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
775 u_int unicast;
776 u_int multicast;
777 u_int broadcast;
778 u_int excessive_collisions;
779 u_int tx_underruns;
780 u_int excessive_underruns;
781 u_int rx_runt_frames;
782 u_int rx_collision;
783 u_int rx_dribble;
784 u_int rx_overflow;
785 };
786
787 struct de4x5_private {
788 char adapter_name[80]; /* Adapter name */
789 u_long interrupt; /* Aligned ISR flag */
790 struct de4x5_desc *rx_ring; /* RX descriptor ring */
791 struct de4x5_desc *tx_ring; /* TX descriptor ring */
792 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
793 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
794 int rx_new, rx_old; /* RX descriptor ring pointers */
795 int tx_new, tx_old; /* TX descriptor ring pointers */
796 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
797 char frame[64]; /* Min sized packet for loopback*/
798 spinlock_t lock; /* Adapter specific spinlock */
799 struct net_device_stats stats; /* Public stats */
800 struct pkt_stats pktStats; /* Private stats counters */
801 char rxRingSize;
802 char txRingSize;
803 int bus; /* EISA or PCI */
804 int bus_num; /* PCI Bus number */
805 int device; /* Device number on PCI bus */
806 int state; /* Adapter OPENED or CLOSED */
807 int chipset; /* DC21040, DC21041 or DC21140 */
808 s32 irq_mask; /* Interrupt Mask (Enable) bits */
809 s32 irq_en; /* Summary interrupt bits */
810 int media; /* Media (eg TP), mode (eg 100B)*/
811 int c_media; /* Remember the last media conn */
812 bool fdx; /* media full duplex flag */
813 int linkOK; /* Link is OK */
814 int autosense; /* Allow/disallow autosensing */
815 bool tx_enable; /* Enable descriptor polling */
816 int setup_f; /* Setup frame filtering type */
817 int local_state; /* State within a 'media' state */
818 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
819 struct sia_phy sia; /* SIA PHY Information */
820 int active; /* Index to active PHY device */
821 int mii_cnt; /* Number of attached PHY's */
822 int timeout; /* Scheduling counter */
823 struct timer_list timer; /* Timer info for kernel */
824 int tmp; /* Temporary global per card */
825 struct {
826 u_long lock; /* Lock the cache accesses */
827 s32 csr0; /* Saved Bus Mode Register */
828 s32 csr6; /* Saved Operating Mode Reg. */
829 s32 csr7; /* Saved IRQ Mask Register */
830 s32 gep; /* Saved General Purpose Reg. */
831 s32 gepc; /* Control info for GEP */
832 s32 csr13; /* Saved SIA Connectivity Reg. */
833 s32 csr14; /* Saved SIA TX/RX Register */
834 s32 csr15; /* Saved SIA General Register */
835 int save_cnt; /* Flag if state already saved */
836 struct sk_buff_head queue; /* Save the (re-ordered) skb's */
837 } cache;
838 struct de4x5_srom srom; /* A copy of the SROM */
839 int cfrv; /* Card CFRV copy */
840 int rx_ovf; /* Check for 'RX overflow' tag */
841 bool useSROM; /* For non-DEC card use SROM */
842 bool useMII; /* Infoblock using the MII */
843 int asBitValid; /* Autosense bits in GEP? */
844 int asPolarity; /* 0 => asserted high */
845 int asBit; /* Autosense bit number in GEP */
846 int defMedium; /* SROM default medium */
847 int tcount; /* Last infoblock number */
848 int infoblock_init; /* Initialised this infoblock? */
849 int infoleaf_offset; /* SROM infoleaf for controller */
850 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
851 int infoblock_media; /* infoblock media */
852 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
853 u_char *rst; /* Pointer to Type 5 reset info */
854 u_char ibn; /* Infoblock number */
855 struct parameters params; /* Command line/ #defined params */
856 struct device *gendev; /* Generic device */
857 dma_addr_t dma_rings; /* DMA handle for rings */
858 int dma_size; /* Size of the DMA area */
859 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
860 };
861
862 /*
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
866 **
867 ** o the chipset is the same
868 ** o the bus number is the same and > 0
869 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
870 **
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
873 */
874 static struct {
875 int chipset;
876 int bus;
877 int irq;
878 u_char addr[ETH_ALEN];
879 } last = {0,};
880
881 /*
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 ** tx_old = tx_new Empty ring
885 ** tx_old = tx_new+1 Full ring
886 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
887 */
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 lp->tx_old -lp->tx_new-1)
891
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
893
894 /*
895 ** Public Functions
896 */
897 static int de4x5_open(struct net_device *dev);
898 static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899 struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901 static int de4x5_close(struct net_device *dev);
902 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void set_multicast_list(struct net_device *dev);
905 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906
907 /*
908 ** Private functions
909 */
910 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int de4x5_init(struct net_device *dev);
912 static int de4x5_sw_reset(struct net_device *dev);
913 static int de4x5_rx(struct net_device *dev);
914 static int de4x5_tx(struct net_device *dev);
915 static void de4x5_ast(struct timer_list *t);
916 static int de4x5_txur(struct net_device *dev);
917 static int de4x5_rx_ovfc(struct net_device *dev);
918
919 static int autoconf_media(struct net_device *dev);
920 static void create_packet(struct net_device *dev, char *frame, int len);
921 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int dc21040_autoconf(struct net_device *dev);
923 static int dc21041_autoconf(struct net_device *dev);
924 static int dc21140m_autoconf(struct net_device *dev);
925 static int dc2114x_autoconf(struct net_device *dev);
926 static int srom_autoconf(struct net_device *dev);
927 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int test_for_100Mb(struct net_device *dev, int msec);
931 static int wait_for_link(struct net_device *dev);
932 static int test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933 static int is_spd_100(struct net_device *dev);
934 static int is_100_up(struct net_device *dev);
935 static int is_10_up(struct net_device *dev);
936 static int is_anc_capable(struct net_device *dev);
937 static int ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void de4x5_free_rx_buffs(struct net_device *dev);
940 static void de4x5_free_tx_buffs(struct net_device *dev);
941 static void de4x5_save_skbs(struct net_device *dev);
942 static void de4x5_rst_desc_ring(struct net_device *dev);
943 static void de4x5_cache_state(struct net_device *dev, int flag);
944 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void de4x5_setup_intr(struct net_device *dev);
948 static void de4x5_init_connection(struct net_device *dev);
949 static int de4x5_reset_phy(struct net_device *dev);
950 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int test_tp(struct net_device *dev, s32 msec);
953 static int EISA_signature(char *name, struct device *device);
954 static void PCI_signature(char *name, struct de4x5_private *lp);
955 static void DevicePresent(struct net_device *dev, u_long iobase);
956 static void enet_addr_rst(u_long aprom_addr);
957 static int de4x5_bad_srom(struct de4x5_private *lp);
958 static short srom_rd(u_long address, u_char offset);
959 static void srom_latch(u_int command, u_long address);
960 static void srom_command(u_int command, u_long address);
961 static void srom_address(u_int command, u_long address, u_char offset);
962 static short srom_data(u_int command, u_long address);
963 /*static void srom_busy(u_int command, u_long address);*/
964 static void sendto_srom(u_int command, u_long addr);
965 static int getfrom_srom(u_long addr);
966 static int srom_map_media(struct net_device *dev);
967 static int srom_infoleaf_info(struct net_device *dev);
968 static void srom_init(struct net_device *dev);
969 static void srom_exec(struct net_device *dev, u_char *p);
970 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int mii_rdata(u_long ioaddr);
973 static void mii_wdata(int data, int len, u_long ioaddr);
974 static void mii_ta(u_long rw, u_long ioaddr);
975 static int mii_swap(int data, int len);
976 static void mii_address(u_char addr, u_long ioaddr);
977 static void sendto_mii(u32 command, int data, u_long ioaddr);
978 static int getfrom_mii(u32 command, u_long ioaddr);
979 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int mii_get_phy(struct net_device *dev);
981 static void SetMulticastFilter(struct net_device *dev);
982 static int get_hw_addr(struct net_device *dev);
983 static void srom_repair(struct net_device *dev, int card);
984 static int test_bad_enet(struct net_device *dev, int status);
985 static int an_exception(struct de4x5_private *lp);
986 static char *build_setup_frame(struct net_device *dev, int mode);
987 static void disable_ast(struct net_device *dev);
988 static long de4x5_switch_mac_port(struct net_device *dev);
989 static int gep_rd(struct net_device *dev);
990 static void gep_wr(s32 data, struct net_device *dev);
991 static void yawn(struct net_device *dev, int state);
992 static void de4x5_parse_params(struct net_device *dev);
993 static void de4x5_dbg_open(struct net_device *dev);
994 static void de4x5_dbg_mii(struct net_device *dev, int k);
995 static void de4x5_dbg_media(struct net_device *dev);
996 static void de4x5_dbg_srom(struct de4x5_srom *p);
997 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
998 static int dc21041_infoleaf(struct net_device *dev);
999 static int dc21140_infoleaf(struct net_device *dev);
1000 static int dc21142_infoleaf(struct net_device *dev);
1001 static int dc21143_infoleaf(struct net_device *dev);
1002 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1003 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1009
1010 /*
1011 ** Note now that module autoprobing is allowed under EISA and PCI. The
1012 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1013 ** to "do the right thing".
1014 */
1015
1016 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1017
1018 module_param_hw(io, int, ioport, 0);
1019 module_param(de4x5_debug, int, 0);
1020 module_param(dec_only, int, 0);
1021 module_param(args, charp, 0);
1022
1023 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1024 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1025 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1026 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1027 MODULE_LICENSE("GPL");
1028
1029 /*
1030 ** List the SROM infoleaf functions and chipsets
1031 */
1032 struct InfoLeaf {
1033 int chipset;
1034 int (*fn)(struct net_device *);
1035 };
1036 static struct InfoLeaf infoleaf_array[] = {
1037 {DC21041, dc21041_infoleaf},
1038 {DC21140, dc21140_infoleaf},
1039 {DC21142, dc21142_infoleaf},
1040 {DC21143, dc21143_infoleaf}
1041 };
1042 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1043
1044 /*
1045 ** List the SROM info block functions
1046 */
1047 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1048 type0_infoblock,
1049 type1_infoblock,
1050 type2_infoblock,
1051 type3_infoblock,
1052 type4_infoblock,
1053 type5_infoblock,
1054 compact_infoblock
1055 };
1056
1057 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1058
1059 /*
1060 ** Miscellaneous defines...
1061 */
1062 #define RESET_DE4X5 {\
1063 int i;\
1064 i=inl(DE4X5_BMR);\
1065 mdelay(1);\
1066 outl(i | BMR_SWR, DE4X5_BMR);\
1067 mdelay(1);\
1068 outl(i, DE4X5_BMR);\
1069 mdelay(1);\
1070 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1071 mdelay(1);\
1072 }
1073
1074 #define PHY_HARD_RESET {\
1075 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1076 mdelay(1); /* Assert for 1ms */\
1077 outl(0x00, DE4X5_GEP);\
1078 mdelay(2); /* Wait for 2ms */\
1079 }
1080
1081 static const struct net_device_ops de4x5_netdev_ops = {
1082 .ndo_open = de4x5_open,
1083 .ndo_stop = de4x5_close,
1084 .ndo_start_xmit = de4x5_queue_pkt,
1085 .ndo_get_stats = de4x5_get_stats,
1086 .ndo_set_rx_mode = set_multicast_list,
1087 .ndo_do_ioctl = de4x5_ioctl,
1088 .ndo_set_mac_address= eth_mac_addr,
1089 .ndo_validate_addr = eth_validate_addr,
1090 };
1091
1092
1093 static int
de4x5_hw_init(struct net_device * dev,u_long iobase,struct device * gendev)1094 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1095 {
1096 char name[DE4X5_NAME_LENGTH + 1];
1097 struct de4x5_private *lp = netdev_priv(dev);
1098 struct pci_dev *pdev = NULL;
1099 int i, status=0;
1100
1101 dev_set_drvdata(gendev, dev);
1102
1103 /* Ensure we're not sleeping */
1104 if (lp->bus == EISA) {
1105 outb(WAKEUP, PCI_CFPM);
1106 } else {
1107 pdev = to_pci_dev (gendev);
1108 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1109 }
1110 mdelay(10);
1111
1112 RESET_DE4X5;
1113
1114 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1115 return -ENXIO; /* Hardware could not reset */
1116 }
1117
1118 /*
1119 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1120 */
1121 lp->useSROM = false;
1122 if (lp->bus == PCI) {
1123 PCI_signature(name, lp);
1124 } else {
1125 EISA_signature(name, gendev);
1126 }
1127
1128 if (*name == '\0') { /* Not found a board signature */
1129 return -ENXIO;
1130 }
1131
1132 dev->base_addr = iobase;
1133 printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1134
1135 status = get_hw_addr(dev);
1136 printk(", h/w address %pM\n", dev->dev_addr);
1137
1138 if (status != 0) {
1139 printk(" which has an Ethernet PROM CRC error.\n");
1140 return -ENXIO;
1141 } else {
1142 skb_queue_head_init(&lp->cache.queue);
1143 lp->cache.gepc = GEP_INIT;
1144 lp->asBit = GEP_SLNK;
1145 lp->asPolarity = GEP_SLNK;
1146 lp->asBitValid = ~0;
1147 lp->timeout = -1;
1148 lp->gendev = gendev;
1149 spin_lock_init(&lp->lock);
1150 timer_setup(&lp->timer, de4x5_ast, 0);
1151 de4x5_parse_params(dev);
1152
1153 /*
1154 ** Choose correct autosensing in case someone messed up
1155 */
1156 lp->autosense = lp->params.autosense;
1157 if (lp->chipset != DC21140) {
1158 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1159 lp->params.autosense = TP;
1160 }
1161 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1162 lp->params.autosense = BNC;
1163 }
1164 }
1165 lp->fdx = lp->params.fdx;
1166 sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1167
1168 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1169 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1170 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1171 #endif
1172 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1173 &lp->dma_rings, GFP_ATOMIC);
1174 if (lp->rx_ring == NULL) {
1175 return -ENOMEM;
1176 }
1177
1178 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1179
1180 /*
1181 ** Set up the RX descriptor ring (Intels)
1182 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1183 */
1184 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1185 for (i=0; i<NUM_RX_DESC; i++) {
1186 lp->rx_ring[i].status = 0;
1187 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1188 lp->rx_ring[i].buf = 0;
1189 lp->rx_ring[i].next = 0;
1190 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1191 }
1192
1193 #else
1194 {
1195 dma_addr_t dma_rx_bufs;
1196
1197 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1198 * sizeof(struct de4x5_desc);
1199 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1200 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1201 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1202 for (i=0; i<NUM_RX_DESC; i++) {
1203 lp->rx_ring[i].status = 0;
1204 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1205 lp->rx_ring[i].buf =
1206 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1207 lp->rx_ring[i].next = 0;
1208 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1209 }
1210
1211 }
1212 #endif
1213
1214 barrier();
1215
1216 lp->rxRingSize = NUM_RX_DESC;
1217 lp->txRingSize = NUM_TX_DESC;
1218
1219 /* Write the end of list marker to the descriptor lists */
1220 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1221 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1222
1223 /* Tell the adapter where the TX/RX rings are located. */
1224 outl(lp->dma_rings, DE4X5_RRBA);
1225 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1226 DE4X5_TRBA);
1227
1228 /* Initialise the IRQ mask and Enable/Disable */
1229 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1230 lp->irq_en = IMR_NIM | IMR_AIM;
1231
1232 /* Create a loopback packet frame for later media probing */
1233 create_packet(dev, lp->frame, sizeof(lp->frame));
1234
1235 /* Check if the RX overflow bug needs testing for */
1236 i = lp->cfrv & 0x000000fe;
1237 if ((lp->chipset == DC21140) && (i == 0x20)) {
1238 lp->rx_ovf = 1;
1239 }
1240
1241 /* Initialise the SROM pointers if possible */
1242 if (lp->useSROM) {
1243 lp->state = INITIALISED;
1244 if (srom_infoleaf_info(dev)) {
1245 dma_free_coherent (gendev, lp->dma_size,
1246 lp->rx_ring, lp->dma_rings);
1247 return -ENXIO;
1248 }
1249 srom_init(dev);
1250 }
1251
1252 lp->state = CLOSED;
1253
1254 /*
1255 ** Check for an MII interface
1256 */
1257 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1258 mii_get_phy(dev);
1259 }
1260
1261 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1262 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1263 }
1264
1265 if (de4x5_debug & DEBUG_VERSION) {
1266 printk(version);
1267 }
1268
1269 /* The DE4X5-specific entries in the device structure. */
1270 SET_NETDEV_DEV(dev, gendev);
1271 dev->netdev_ops = &de4x5_netdev_ops;
1272 dev->mem_start = 0;
1273
1274 /* Fill in the generic fields of the device structure. */
1275 if ((status = register_netdev (dev))) {
1276 dma_free_coherent (gendev, lp->dma_size,
1277 lp->rx_ring, lp->dma_rings);
1278 return status;
1279 }
1280
1281 /* Let the adapter sleep to save power */
1282 yawn(dev, SLEEP);
1283
1284 return status;
1285 }
1286
1287
1288 static int
de4x5_open(struct net_device * dev)1289 de4x5_open(struct net_device *dev)
1290 {
1291 struct de4x5_private *lp = netdev_priv(dev);
1292 u_long iobase = dev->base_addr;
1293 int i, status = 0;
1294 s32 omr;
1295
1296 /* Allocate the RX buffers */
1297 for (i=0; i<lp->rxRingSize; i++) {
1298 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1299 de4x5_free_rx_buffs(dev);
1300 return -EAGAIN;
1301 }
1302 }
1303
1304 /*
1305 ** Wake up the adapter
1306 */
1307 yawn(dev, WAKEUP);
1308
1309 /*
1310 ** Re-initialize the DE4X5...
1311 */
1312 status = de4x5_init(dev);
1313 spin_lock_init(&lp->lock);
1314 lp->state = OPEN;
1315 de4x5_dbg_open(dev);
1316
1317 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1318 lp->adapter_name, dev)) {
1319 printk("de4x5_open(): Requested IRQ%d is busy - attempting FAST/SHARE...", dev->irq);
1320 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1321 lp->adapter_name, dev)) {
1322 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1323 disable_ast(dev);
1324 de4x5_free_rx_buffs(dev);
1325 de4x5_free_tx_buffs(dev);
1326 yawn(dev, SLEEP);
1327 lp->state = CLOSED;
1328 return -EAGAIN;
1329 } else {
1330 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1331 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1332 }
1333 }
1334
1335 lp->interrupt = UNMASK_INTERRUPTS;
1336 netif_trans_update(dev); /* prevent tx timeout */
1337
1338 START_DE4X5;
1339
1340 de4x5_setup_intr(dev);
1341
1342 if (de4x5_debug & DEBUG_OPEN) {
1343 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1344 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1345 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1346 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1347 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1348 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1349 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1350 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1351 }
1352
1353 return status;
1354 }
1355
1356 /*
1357 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1358 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1359 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1360 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1361 ** to be data corruption problems if it is larger (UDP errors seen from a
1362 ** ttcp source).
1363 */
1364 static int
de4x5_init(struct net_device * dev)1365 de4x5_init(struct net_device *dev)
1366 {
1367 /* Lock out other processes whilst setting up the hardware */
1368 netif_stop_queue(dev);
1369
1370 de4x5_sw_reset(dev);
1371
1372 /* Autoconfigure the connected port */
1373 autoconf_media(dev);
1374
1375 return 0;
1376 }
1377
1378 static int
de4x5_sw_reset(struct net_device * dev)1379 de4x5_sw_reset(struct net_device *dev)
1380 {
1381 struct de4x5_private *lp = netdev_priv(dev);
1382 u_long iobase = dev->base_addr;
1383 int i, j, status = 0;
1384 s32 bmr, omr;
1385
1386 /* Select the MII or SRL port now and RESET the MAC */
1387 if (!lp->useSROM) {
1388 if (lp->phy[lp->active].id != 0) {
1389 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1390 } else {
1391 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1392 }
1393 de4x5_switch_mac_port(dev);
1394 }
1395
1396 /*
1397 ** Set the programmable burst length to 8 longwords for all the DC21140
1398 ** Fasternet chips and 4 longwords for all others: DMA errors result
1399 ** without these values. Cache align 16 long.
1400 */
1401 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1402 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1403 outl(bmr, DE4X5_BMR);
1404
1405 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1406 if (lp->chipset == DC21140) {
1407 omr |= (OMR_SDP | OMR_SB);
1408 }
1409 lp->setup_f = PERFECT;
1410 outl(lp->dma_rings, DE4X5_RRBA);
1411 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1412 DE4X5_TRBA);
1413
1414 lp->rx_new = lp->rx_old = 0;
1415 lp->tx_new = lp->tx_old = 0;
1416
1417 for (i = 0; i < lp->rxRingSize; i++) {
1418 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1419 }
1420
1421 for (i = 0; i < lp->txRingSize; i++) {
1422 lp->tx_ring[i].status = cpu_to_le32(0);
1423 }
1424
1425 barrier();
1426
1427 /* Build the setup frame depending on filtering mode */
1428 SetMulticastFilter(dev);
1429
1430 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1431 outl(omr|OMR_ST, DE4X5_OMR);
1432
1433 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1434
1435 for (j=0, i=0;(i<500) && (j==0);i++) { /* Up to 500ms delay */
1436 mdelay(1);
1437 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1438 }
1439 outl(omr, DE4X5_OMR); /* Stop everything! */
1440
1441 if (j == 0) {
1442 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1443 inl(DE4X5_STS));
1444 status = -EIO;
1445 }
1446
1447 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1448 lp->tx_old = lp->tx_new;
1449
1450 return status;
1451 }
1452
1453 /*
1454 ** Writes a socket buffer address to the next available transmit descriptor.
1455 */
1456 static netdev_tx_t
de4x5_queue_pkt(struct sk_buff * skb,struct net_device * dev)1457 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1458 {
1459 struct de4x5_private *lp = netdev_priv(dev);
1460 u_long iobase = dev->base_addr;
1461 u_long flags = 0;
1462
1463 netif_stop_queue(dev);
1464 if (!lp->tx_enable) /* Cannot send for now */
1465 goto tx_err;
1466
1467 /*
1468 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1469 ** interrupts are lost by delayed descriptor status updates relative to
1470 ** the irq assertion, especially with a busy PCI bus.
1471 */
1472 spin_lock_irqsave(&lp->lock, flags);
1473 de4x5_tx(dev);
1474 spin_unlock_irqrestore(&lp->lock, flags);
1475
1476 /* Test if cache is already locked - requeue skb if so */
1477 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1478 goto tx_err;
1479
1480 /* Transmit descriptor ring full or stale skb */
1481 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1482 if (lp->interrupt) {
1483 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1484 } else {
1485 de4x5_put_cache(dev, skb);
1486 }
1487 if (de4x5_debug & DEBUG_TX) {
1488 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1489 }
1490 } else if (skb->len > 0) {
1491 /* If we already have stuff queued locally, use that first */
1492 if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1493 de4x5_put_cache(dev, skb);
1494 skb = de4x5_get_cache(dev);
1495 }
1496
1497 while (skb && !netif_queue_stopped(dev) &&
1498 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1499 spin_lock_irqsave(&lp->lock, flags);
1500 netif_stop_queue(dev);
1501 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1502 lp->stats.tx_bytes += skb->len;
1503 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1504
1505 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1506
1507 if (TX_BUFFS_AVAIL) {
1508 netif_start_queue(dev); /* Another pkt may be queued */
1509 }
1510 skb = de4x5_get_cache(dev);
1511 spin_unlock_irqrestore(&lp->lock, flags);
1512 }
1513 if (skb) de4x5_putb_cache(dev, skb);
1514 }
1515
1516 lp->cache.lock = 0;
1517
1518 return NETDEV_TX_OK;
1519 tx_err:
1520 dev_kfree_skb_any(skb);
1521 return NETDEV_TX_OK;
1522 }
1523
1524 /*
1525 ** The DE4X5 interrupt handler.
1526 **
1527 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1528 ** so that the asserted interrupt always has some real data to work with -
1529 ** if these I/O accesses are ever changed to memory accesses, ensure the
1530 ** STS write is read immediately to complete the transaction if the adapter
1531 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1532 ** is high and descriptor status bits cannot be set before the associated
1533 ** interrupt is asserted and this routine entered.
1534 */
1535 static irqreturn_t
de4x5_interrupt(int irq,void * dev_id)1536 de4x5_interrupt(int irq, void *dev_id)
1537 {
1538 struct net_device *dev = dev_id;
1539 struct de4x5_private *lp;
1540 s32 imr, omr, sts, limit;
1541 u_long iobase;
1542 unsigned int handled = 0;
1543
1544 lp = netdev_priv(dev);
1545 spin_lock(&lp->lock);
1546 iobase = dev->base_addr;
1547
1548 DISABLE_IRQs; /* Ensure non re-entrancy */
1549
1550 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1551 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1552
1553 synchronize_irq(dev->irq);
1554
1555 for (limit=0; limit<8; limit++) {
1556 sts = inl(DE4X5_STS); /* Read IRQ status */
1557 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1558
1559 if (!(sts & lp->irq_mask)) break;/* All done */
1560 handled = 1;
1561
1562 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1563 de4x5_rx(dev);
1564
1565 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1566 de4x5_tx(dev);
1567
1568 if (sts & STS_LNF) { /* TP Link has failed */
1569 lp->irq_mask &= ~IMR_LFM;
1570 }
1571
1572 if (sts & STS_UNF) { /* Transmit underrun */
1573 de4x5_txur(dev);
1574 }
1575
1576 if (sts & STS_SE) { /* Bus Error */
1577 STOP_DE4X5;
1578 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1579 dev->name, sts);
1580 spin_unlock(&lp->lock);
1581 return IRQ_HANDLED;
1582 }
1583 }
1584
1585 /* Load the TX ring with any locally stored packets */
1586 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1587 while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1588 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1589 }
1590 lp->cache.lock = 0;
1591 }
1592
1593 lp->interrupt = UNMASK_INTERRUPTS;
1594 ENABLE_IRQs;
1595 spin_unlock(&lp->lock);
1596
1597 return IRQ_RETVAL(handled);
1598 }
1599
1600 static int
de4x5_rx(struct net_device * dev)1601 de4x5_rx(struct net_device *dev)
1602 {
1603 struct de4x5_private *lp = netdev_priv(dev);
1604 u_long iobase = dev->base_addr;
1605 int entry;
1606 s32 status;
1607
1608 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1609 entry=lp->rx_new) {
1610 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1611
1612 if (lp->rx_ovf) {
1613 if (inl(DE4X5_MFC) & MFC_FOCM) {
1614 de4x5_rx_ovfc(dev);
1615 break;
1616 }
1617 }
1618
1619 if (status & RD_FS) { /* Remember the start of frame */
1620 lp->rx_old = entry;
1621 }
1622
1623 if (status & RD_LS) { /* Valid frame status */
1624 if (lp->tx_enable) lp->linkOK++;
1625 if (status & RD_ES) { /* There was an error. */
1626 lp->stats.rx_errors++; /* Update the error stats. */
1627 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1628 if (status & RD_CE) lp->stats.rx_crc_errors++;
1629 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1630 if (status & RD_TL) lp->stats.rx_length_errors++;
1631 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1632 if (status & RD_CS) lp->pktStats.rx_collision++;
1633 if (status & RD_DB) lp->pktStats.rx_dribble++;
1634 if (status & RD_OF) lp->pktStats.rx_overflow++;
1635 } else { /* A valid frame received */
1636 struct sk_buff *skb;
1637 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1638 >> 16) - 4;
1639
1640 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1641 printk("%s: Insufficient memory; nuking packet.\n",
1642 dev->name);
1643 lp->stats.rx_dropped++;
1644 } else {
1645 de4x5_dbg_rx(skb, pkt_len);
1646
1647 /* Push up the protocol stack */
1648 skb->protocol=eth_type_trans(skb,dev);
1649 de4x5_local_stats(dev, skb->data, pkt_len);
1650 netif_rx(skb);
1651
1652 /* Update stats */
1653 lp->stats.rx_packets++;
1654 lp->stats.rx_bytes += pkt_len;
1655 }
1656 }
1657
1658 /* Change buffer ownership for this frame, back to the adapter */
1659 for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1660 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1661 barrier();
1662 }
1663 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1664 barrier();
1665 }
1666
1667 /*
1668 ** Update entry information
1669 */
1670 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1671 }
1672
1673 return 0;
1674 }
1675
1676 static inline void
de4x5_free_tx_buff(struct de4x5_private * lp,int entry)1677 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1678 {
1679 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1680 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1681 DMA_TO_DEVICE);
1682 if ((u_long) lp->tx_skb[entry] > 1)
1683 dev_kfree_skb_irq(lp->tx_skb[entry]);
1684 lp->tx_skb[entry] = NULL;
1685 }
1686
1687 /*
1688 ** Buffer sent - check for TX buffer errors.
1689 */
1690 static int
de4x5_tx(struct net_device * dev)1691 de4x5_tx(struct net_device *dev)
1692 {
1693 struct de4x5_private *lp = netdev_priv(dev);
1694 u_long iobase = dev->base_addr;
1695 int entry;
1696 s32 status;
1697
1698 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1699 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1700 if (status < 0) { /* Buffer not sent yet */
1701 break;
1702 } else if (status != 0x7fffffff) { /* Not setup frame */
1703 if (status & TD_ES) { /* An error happened */
1704 lp->stats.tx_errors++;
1705 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1706 if (status & TD_LC) lp->stats.tx_window_errors++;
1707 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1708 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1709 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1710
1711 if (TX_PKT_PENDING) {
1712 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1713 }
1714 } else { /* Packet sent */
1715 lp->stats.tx_packets++;
1716 if (lp->tx_enable) lp->linkOK++;
1717 }
1718 /* Update the collision counter */
1719 lp->stats.collisions += ((status & TD_EC) ? 16 :
1720 ((status & TD_CC) >> 3));
1721
1722 /* Free the buffer. */
1723 if (lp->tx_skb[entry] != NULL)
1724 de4x5_free_tx_buff(lp, entry);
1725 }
1726
1727 /* Update all the pointers */
1728 lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1729 }
1730
1731 /* Any resources available? */
1732 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1733 if (lp->interrupt)
1734 netif_wake_queue(dev);
1735 else
1736 netif_start_queue(dev);
1737 }
1738
1739 return 0;
1740 }
1741
1742 static void
de4x5_ast(struct timer_list * t)1743 de4x5_ast(struct timer_list *t)
1744 {
1745 struct de4x5_private *lp = from_timer(lp, t, timer);
1746 struct net_device *dev = dev_get_drvdata(lp->gendev);
1747 int next_tick = DE4X5_AUTOSENSE_MS;
1748 int dt;
1749
1750 if (lp->useSROM)
1751 next_tick = srom_autoconf(dev);
1752 else if (lp->chipset == DC21140)
1753 next_tick = dc21140m_autoconf(dev);
1754 else if (lp->chipset == DC21041)
1755 next_tick = dc21041_autoconf(dev);
1756 else if (lp->chipset == DC21040)
1757 next_tick = dc21040_autoconf(dev);
1758 lp->linkOK = 0;
1759
1760 dt = (next_tick * HZ) / 1000;
1761
1762 if (!dt)
1763 dt = 1;
1764
1765 mod_timer(&lp->timer, jiffies + dt);
1766 }
1767
1768 static int
de4x5_txur(struct net_device * dev)1769 de4x5_txur(struct net_device *dev)
1770 {
1771 struct de4x5_private *lp = netdev_priv(dev);
1772 u_long iobase = dev->base_addr;
1773 int omr;
1774
1775 omr = inl(DE4X5_OMR);
1776 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1777 omr &= ~(OMR_ST|OMR_SR);
1778 outl(omr, DE4X5_OMR);
1779 while (inl(DE4X5_STS) & STS_TS);
1780 if ((omr & OMR_TR) < OMR_TR) {
1781 omr += 0x4000;
1782 } else {
1783 omr |= OMR_SF;
1784 }
1785 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1786 }
1787
1788 return 0;
1789 }
1790
1791 static int
de4x5_rx_ovfc(struct net_device * dev)1792 de4x5_rx_ovfc(struct net_device *dev)
1793 {
1794 struct de4x5_private *lp = netdev_priv(dev);
1795 u_long iobase = dev->base_addr;
1796 int omr;
1797
1798 omr = inl(DE4X5_OMR);
1799 outl(omr & ~OMR_SR, DE4X5_OMR);
1800 while (inl(DE4X5_STS) & STS_RS);
1801
1802 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1803 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1804 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1805 }
1806
1807 outl(omr, DE4X5_OMR);
1808
1809 return 0;
1810 }
1811
1812 static int
de4x5_close(struct net_device * dev)1813 de4x5_close(struct net_device *dev)
1814 {
1815 struct de4x5_private *lp = netdev_priv(dev);
1816 u_long iobase = dev->base_addr;
1817 s32 imr, omr;
1818
1819 disable_ast(dev);
1820
1821 netif_stop_queue(dev);
1822
1823 if (de4x5_debug & DEBUG_CLOSE) {
1824 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1825 dev->name, inl(DE4X5_STS));
1826 }
1827
1828 /*
1829 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1830 */
1831 DISABLE_IRQs;
1832 STOP_DE4X5;
1833
1834 /* Free the associated irq */
1835 free_irq(dev->irq, dev);
1836 lp->state = CLOSED;
1837
1838 /* Free any socket buffers */
1839 de4x5_free_rx_buffs(dev);
1840 de4x5_free_tx_buffs(dev);
1841
1842 /* Put the adapter to sleep to save power */
1843 yawn(dev, SLEEP);
1844
1845 return 0;
1846 }
1847
1848 static struct net_device_stats *
de4x5_get_stats(struct net_device * dev)1849 de4x5_get_stats(struct net_device *dev)
1850 {
1851 struct de4x5_private *lp = netdev_priv(dev);
1852 u_long iobase = dev->base_addr;
1853
1854 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1855
1856 return &lp->stats;
1857 }
1858
1859 static void
de4x5_local_stats(struct net_device * dev,char * buf,int pkt_len)1860 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1861 {
1862 struct de4x5_private *lp = netdev_priv(dev);
1863 int i;
1864
1865 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1866 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1867 lp->pktStats.bins[i]++;
1868 i = DE4X5_PKT_STAT_SZ;
1869 }
1870 }
1871 if (is_multicast_ether_addr(buf)) {
1872 if (is_broadcast_ether_addr(buf)) {
1873 lp->pktStats.broadcast++;
1874 } else {
1875 lp->pktStats.multicast++;
1876 }
1877 } else if (ether_addr_equal(buf, dev->dev_addr)) {
1878 lp->pktStats.unicast++;
1879 }
1880
1881 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1882 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1883 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1884 }
1885 }
1886
1887 /*
1888 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1889 ** If the flag is changed on a descriptor that is being read by the hardware,
1890 ** I assume PCI transaction ordering will mean you are either successful or
1891 ** just miss asserting the change to the hardware. Anyway you're messing with
1892 ** a descriptor you don't own, but this shouldn't kill the chip provided
1893 ** the descriptor register is read only to the hardware.
1894 */
1895 static void
load_packet(struct net_device * dev,char * buf,u32 flags,struct sk_buff * skb)1896 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1897 {
1898 struct de4x5_private *lp = netdev_priv(dev);
1899 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1900 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1901
1902 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1903 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1904 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1905 lp->tx_skb[lp->tx_new] = skb;
1906 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1907 barrier();
1908
1909 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1910 barrier();
1911 }
1912
1913 /*
1914 ** Set or clear the multicast filter for this adaptor.
1915 */
1916 static void
set_multicast_list(struct net_device * dev)1917 set_multicast_list(struct net_device *dev)
1918 {
1919 struct de4x5_private *lp = netdev_priv(dev);
1920 u_long iobase = dev->base_addr;
1921
1922 /* First, double check that the adapter is open */
1923 if (lp->state == OPEN) {
1924 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1925 u32 omr;
1926 omr = inl(DE4X5_OMR);
1927 omr |= OMR_PR;
1928 outl(omr, DE4X5_OMR);
1929 } else {
1930 SetMulticastFilter(dev);
1931 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1932 SETUP_FRAME_LEN, (struct sk_buff *)1);
1933
1934 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1935 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1936 netif_trans_update(dev); /* prevent tx timeout */
1937 }
1938 }
1939 }
1940
1941 /*
1942 ** Calculate the hash code and update the logical address filter
1943 ** from a list of ethernet multicast addresses.
1944 ** Little endian crc one liner from Matt Thomas, DEC.
1945 */
1946 static void
SetMulticastFilter(struct net_device * dev)1947 SetMulticastFilter(struct net_device *dev)
1948 {
1949 struct de4x5_private *lp = netdev_priv(dev);
1950 struct netdev_hw_addr *ha;
1951 u_long iobase = dev->base_addr;
1952 int i, bit, byte;
1953 u16 hashcode;
1954 u32 omr, crc;
1955 char *pa;
1956 unsigned char *addrs;
1957
1958 omr = inl(DE4X5_OMR);
1959 omr &= ~(OMR_PR | OMR_PM);
1960 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1961
1962 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1963 omr |= OMR_PM; /* Pass all multicasts */
1964 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1965 netdev_for_each_mc_addr(ha, dev) {
1966 crc = ether_crc_le(ETH_ALEN, ha->addr);
1967 hashcode = crc & DE4X5_HASH_BITS; /* hashcode is 9 LSb of CRC */
1968
1969 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1970 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1971
1972 byte <<= 1; /* calc offset into setup frame */
1973 if (byte & 0x02) {
1974 byte -= 1;
1975 }
1976 lp->setup_frame[byte] |= bit;
1977 }
1978 } else { /* Perfect filtering */
1979 netdev_for_each_mc_addr(ha, dev) {
1980 addrs = ha->addr;
1981 for (i=0; i<ETH_ALEN; i++) {
1982 *(pa + (i&1)) = *addrs++;
1983 if (i & 0x01) pa += 4;
1984 }
1985 }
1986 }
1987 outl(omr, DE4X5_OMR);
1988 }
1989
1990 #ifdef CONFIG_EISA
1991
1992 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1993
de4x5_eisa_probe(struct device * gendev)1994 static int de4x5_eisa_probe(struct device *gendev)
1995 {
1996 struct eisa_device *edev;
1997 u_long iobase;
1998 u_char irq, regval;
1999 u_short vendor;
2000 u32 cfid;
2001 int status, device;
2002 struct net_device *dev;
2003 struct de4x5_private *lp;
2004
2005 edev = to_eisa_device (gendev);
2006 iobase = edev->base_addr;
2007
2008 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2009 return -EBUSY;
2010
2011 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2012 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2013 status = -EBUSY;
2014 goto release_reg_1;
2015 }
2016
2017 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2018 status = -ENOMEM;
2019 goto release_reg_2;
2020 }
2021 lp = netdev_priv(dev);
2022
2023 cfid = (u32) inl(PCI_CFID);
2024 lp->cfrv = (u_short) inl(PCI_CFRV);
2025 device = (cfid >> 8) & 0x00ffff00;
2026 vendor = (u_short) cfid;
2027
2028 /* Read the EISA Configuration Registers */
2029 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2030 #ifdef CONFIG_ALPHA
2031 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2032 * care about the EISA configuration, and thus doesn't
2033 * configure the PLX bridge properly. Oh well... Simply mimic
2034 * the EISA config file to sort it out. */
2035
2036 /* EISA REG1: Assert DecChip 21040 HW Reset */
2037 outb (ER1_IAM | 1, EISA_REG1);
2038 mdelay (1);
2039
2040 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2041 outb (ER1_IAM, EISA_REG1);
2042 mdelay (1);
2043
2044 /* EISA REG3: R/W Burst Transfer Enable */
2045 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2046
2047 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2048 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2049 #endif
2050 irq = de4x5_irq[(regval >> 1) & 0x03];
2051
2052 if (is_DC2114x) {
2053 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2054 }
2055 lp->chipset = device;
2056 lp->bus = EISA;
2057
2058 /* Write the PCI Configuration Registers */
2059 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2060 outl(0x00006000, PCI_CFLT);
2061 outl(iobase, PCI_CBIO);
2062
2063 DevicePresent(dev, EISA_APROM);
2064
2065 dev->irq = irq;
2066
2067 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2068 return 0;
2069 }
2070
2071 free_netdev (dev);
2072 release_reg_2:
2073 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2074 release_reg_1:
2075 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2076
2077 return status;
2078 }
2079
de4x5_eisa_remove(struct device * device)2080 static int de4x5_eisa_remove(struct device *device)
2081 {
2082 struct net_device *dev;
2083 u_long iobase;
2084
2085 dev = dev_get_drvdata(device);
2086 iobase = dev->base_addr;
2087
2088 unregister_netdev (dev);
2089 free_netdev (dev);
2090 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2091 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2092
2093 return 0;
2094 }
2095
2096 static const struct eisa_device_id de4x5_eisa_ids[] = {
2097 { "DEC4250", 0 }, /* 0 is the board name index... */
2098 { "" }
2099 };
2100 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2101
2102 static struct eisa_driver de4x5_eisa_driver = {
2103 .id_table = de4x5_eisa_ids,
2104 .driver = {
2105 .name = "de4x5",
2106 .probe = de4x5_eisa_probe,
2107 .remove = de4x5_eisa_remove,
2108 }
2109 };
2110 #endif
2111
2112 #ifdef CONFIG_PCI
2113
2114 /*
2115 ** This function searches the current bus (which is >0) for a DECchip with an
2116 ** SROM, so that in multiport cards that have one SROM shared between multiple
2117 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2118 ** For single port cards this is a time waster...
2119 */
2120 static void
srom_search(struct net_device * dev,struct pci_dev * pdev)2121 srom_search(struct net_device *dev, struct pci_dev *pdev)
2122 {
2123 u_char pb;
2124 u_short vendor, status;
2125 u_int irq = 0, device;
2126 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2127 int i, j;
2128 struct de4x5_private *lp = netdev_priv(dev);
2129 struct pci_dev *this_dev;
2130
2131 list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2132 vendor = this_dev->vendor;
2133 device = this_dev->device << 8;
2134 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2135
2136 /* Get the chip configuration revision register */
2137 pb = this_dev->bus->number;
2138
2139 /* Set the device number information */
2140 lp->device = PCI_SLOT(this_dev->devfn);
2141 lp->bus_num = pb;
2142
2143 /* Set the chipset information */
2144 if (is_DC2114x) {
2145 device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2146 ? DC21142 : DC21143);
2147 }
2148 lp->chipset = device;
2149
2150 /* Get the board I/O address (64 bits on sparc64) */
2151 iobase = pci_resource_start(this_dev, 0);
2152
2153 /* Fetch the IRQ to be used */
2154 irq = this_dev->irq;
2155 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2156
2157 /* Check if I/O accesses are enabled */
2158 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2159 if (!(status & PCI_COMMAND_IO)) continue;
2160
2161 /* Search for a valid SROM attached to this DECchip */
2162 DevicePresent(dev, DE4X5_APROM);
2163 for (j=0, i=0; i<ETH_ALEN; i++) {
2164 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2165 }
2166 if (j != 0 && j != 6 * 0xff) {
2167 last.chipset = device;
2168 last.bus = pb;
2169 last.irq = irq;
2170 for (i=0; i<ETH_ALEN; i++) {
2171 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2172 }
2173 return;
2174 }
2175 }
2176 }
2177
2178 /*
2179 ** PCI bus I/O device probe
2180 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2181 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2182 ** enabled by the user first in the set up utility. Hence we just check for
2183 ** enabled features and silently ignore the card if they're not.
2184 **
2185 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2186 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2187 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2188 ** PC doesn't conform to the PCI standard)!
2189 **
2190 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2191 ** kernels use the V0.535[n] drivers.
2192 */
2193
de4x5_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2194 static int de4x5_pci_probe(struct pci_dev *pdev,
2195 const struct pci_device_id *ent)
2196 {
2197 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2198 u_short vendor, status;
2199 u_int irq = 0, device;
2200 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2201 int error;
2202 struct net_device *dev;
2203 struct de4x5_private *lp;
2204
2205 dev_num = PCI_SLOT(pdev->devfn);
2206 pb = pdev->bus->number;
2207
2208 if (io) { /* probe a single PCI device */
2209 pbus = (u_short)(io >> 8);
2210 dnum = (u_short)(io & 0xff);
2211 if ((pbus != pb) || (dnum != dev_num))
2212 return -ENODEV;
2213 }
2214
2215 vendor = pdev->vendor;
2216 device = pdev->device << 8;
2217 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2218 return -ENODEV;
2219
2220 /* Ok, the device seems to be for us. */
2221 if ((error = pci_enable_device (pdev)))
2222 return error;
2223
2224 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2225 error = -ENOMEM;
2226 goto disable_dev;
2227 }
2228
2229 lp = netdev_priv(dev);
2230 lp->bus = PCI;
2231 lp->bus_num = 0;
2232
2233 /* Search for an SROM on this bus */
2234 if (lp->bus_num != pb) {
2235 lp->bus_num = pb;
2236 srom_search(dev, pdev);
2237 }
2238
2239 /* Get the chip configuration revision register */
2240 lp->cfrv = pdev->revision;
2241
2242 /* Set the device number information */
2243 lp->device = dev_num;
2244 lp->bus_num = pb;
2245
2246 /* Set the chipset information */
2247 if (is_DC2114x) {
2248 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2249 }
2250 lp->chipset = device;
2251
2252 /* Get the board I/O address (64 bits on sparc64) */
2253 iobase = pci_resource_start(pdev, 0);
2254
2255 /* Fetch the IRQ to be used */
2256 irq = pdev->irq;
2257 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2258 error = -ENODEV;
2259 goto free_dev;
2260 }
2261
2262 /* Check if I/O accesses and Bus Mastering are enabled */
2263 pci_read_config_word(pdev, PCI_COMMAND, &status);
2264 #ifdef __powerpc__
2265 if (!(status & PCI_COMMAND_IO)) {
2266 status |= PCI_COMMAND_IO;
2267 pci_write_config_word(pdev, PCI_COMMAND, status);
2268 pci_read_config_word(pdev, PCI_COMMAND, &status);
2269 }
2270 #endif /* __powerpc__ */
2271 if (!(status & PCI_COMMAND_IO)) {
2272 error = -ENODEV;
2273 goto free_dev;
2274 }
2275
2276 if (!(status & PCI_COMMAND_MASTER)) {
2277 status |= PCI_COMMAND_MASTER;
2278 pci_write_config_word(pdev, PCI_COMMAND, status);
2279 pci_read_config_word(pdev, PCI_COMMAND, &status);
2280 }
2281 if (!(status & PCI_COMMAND_MASTER)) {
2282 error = -ENODEV;
2283 goto free_dev;
2284 }
2285
2286 /* Check the latency timer for values >= 0x60 */
2287 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2288 if (timer < 0x60) {
2289 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2290 }
2291
2292 DevicePresent(dev, DE4X5_APROM);
2293
2294 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2295 error = -EBUSY;
2296 goto free_dev;
2297 }
2298
2299 dev->irq = irq;
2300
2301 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2302 goto release;
2303 }
2304
2305 return 0;
2306
2307 release:
2308 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2309 free_dev:
2310 free_netdev (dev);
2311 disable_dev:
2312 pci_disable_device (pdev);
2313 return error;
2314 }
2315
de4x5_pci_remove(struct pci_dev * pdev)2316 static void de4x5_pci_remove(struct pci_dev *pdev)
2317 {
2318 struct net_device *dev;
2319 u_long iobase;
2320
2321 dev = pci_get_drvdata(pdev);
2322 iobase = dev->base_addr;
2323
2324 unregister_netdev (dev);
2325 free_netdev (dev);
2326 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2327 pci_disable_device (pdev);
2328 }
2329
2330 static const struct pci_device_id de4x5_pci_tbl[] = {
2331 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2332 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2333 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2334 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2335 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2336 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2337 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2338 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2339 { },
2340 };
2341
2342 static struct pci_driver de4x5_pci_driver = {
2343 .name = "de4x5",
2344 .id_table = de4x5_pci_tbl,
2345 .probe = de4x5_pci_probe,
2346 .remove = de4x5_pci_remove,
2347 };
2348
2349 #endif
2350
2351 /*
2352 ** Auto configure the media here rather than setting the port at compile
2353 ** time. This routine is called by de4x5_init() and when a loss of media is
2354 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2355 ** [TP] or no recent receive activity) to check whether the user has been
2356 ** sneaky and changed the port on us.
2357 */
2358 static int
autoconf_media(struct net_device * dev)2359 autoconf_media(struct net_device *dev)
2360 {
2361 struct de4x5_private *lp = netdev_priv(dev);
2362 u_long iobase = dev->base_addr;
2363
2364 disable_ast(dev);
2365
2366 lp->c_media = AUTO; /* Bogus last media */
2367 inl(DE4X5_MFC); /* Zero the lost frames counter */
2368 lp->media = INIT;
2369 lp->tcount = 0;
2370
2371 de4x5_ast(&lp->timer);
2372
2373 return lp->media;
2374 }
2375
2376 /*
2377 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2378 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2379 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2380 ** The only way to test for that is to place a loopback packet onto the
2381 ** network and watch for errors. Since we're messing with the interrupt mask
2382 ** register, disable the board interrupts and do not allow any more packets to
2383 ** be queued to the hardware. Re-enable everything only when the media is
2384 ** found.
2385 ** I may have to "age out" locally queued packets so that the higher layer
2386 ** timeouts don't effectively duplicate packets on the network.
2387 */
2388 static int
dc21040_autoconf(struct net_device * dev)2389 dc21040_autoconf(struct net_device *dev)
2390 {
2391 struct de4x5_private *lp = netdev_priv(dev);
2392 u_long iobase = dev->base_addr;
2393 int next_tick = DE4X5_AUTOSENSE_MS;
2394 s32 imr;
2395
2396 switch (lp->media) {
2397 case INIT:
2398 DISABLE_IRQs;
2399 lp->tx_enable = false;
2400 lp->timeout = -1;
2401 de4x5_save_skbs(dev);
2402 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2403 lp->media = TP;
2404 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2405 lp->media = BNC_AUI;
2406 } else if (lp->autosense == EXT_SIA) {
2407 lp->media = EXT_SIA;
2408 } else {
2409 lp->media = NC;
2410 }
2411 lp->local_state = 0;
2412 next_tick = dc21040_autoconf(dev);
2413 break;
2414
2415 case TP:
2416 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2417 TP_SUSPECT, test_tp);
2418 break;
2419
2420 case TP_SUSPECT:
2421 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2422 break;
2423
2424 case BNC:
2425 case AUI:
2426 case BNC_AUI:
2427 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2428 BNC_AUI_SUSPECT, ping_media);
2429 break;
2430
2431 case BNC_AUI_SUSPECT:
2432 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2433 break;
2434
2435 case EXT_SIA:
2436 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2437 NC, EXT_SIA_SUSPECT, ping_media);
2438 break;
2439
2440 case EXT_SIA_SUSPECT:
2441 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2442 break;
2443
2444 case NC:
2445 /* default to TP for all */
2446 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2447 if (lp->media != lp->c_media) {
2448 de4x5_dbg_media(dev);
2449 lp->c_media = lp->media;
2450 }
2451 lp->media = INIT;
2452 lp->tx_enable = false;
2453 break;
2454 }
2455
2456 return next_tick;
2457 }
2458
2459 static int
dc21040_state(struct net_device * dev,int csr13,int csr14,int csr15,int timeout,int next_state,int suspect_state,int (* fn)(struct net_device *,int))2460 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2461 int next_state, int suspect_state,
2462 int (*fn)(struct net_device *, int))
2463 {
2464 struct de4x5_private *lp = netdev_priv(dev);
2465 int next_tick = DE4X5_AUTOSENSE_MS;
2466 int linkBad;
2467
2468 switch (lp->local_state) {
2469 case 0:
2470 reset_init_sia(dev, csr13, csr14, csr15);
2471 lp->local_state++;
2472 next_tick = 500;
2473 break;
2474
2475 case 1:
2476 if (!lp->tx_enable) {
2477 linkBad = fn(dev, timeout);
2478 if (linkBad < 0) {
2479 next_tick = linkBad & ~TIMER_CB;
2480 } else {
2481 if (linkBad && (lp->autosense == AUTO)) {
2482 lp->local_state = 0;
2483 lp->media = next_state;
2484 } else {
2485 de4x5_init_connection(dev);
2486 }
2487 }
2488 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2489 lp->media = suspect_state;
2490 next_tick = 3000;
2491 }
2492 break;
2493 }
2494
2495 return next_tick;
2496 }
2497
2498 static int
de4x5_suspect_state(struct net_device * dev,int timeout,int prev_state,int (* fn)(struct net_device *,int),int (* asfn)(struct net_device *))2499 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2500 int (*fn)(struct net_device *, int),
2501 int (*asfn)(struct net_device *))
2502 {
2503 struct de4x5_private *lp = netdev_priv(dev);
2504 int next_tick = DE4X5_AUTOSENSE_MS;
2505 int linkBad;
2506
2507 switch (lp->local_state) {
2508 case 1:
2509 if (lp->linkOK) {
2510 lp->media = prev_state;
2511 } else {
2512 lp->local_state++;
2513 next_tick = asfn(dev);
2514 }
2515 break;
2516
2517 case 2:
2518 linkBad = fn(dev, timeout);
2519 if (linkBad < 0) {
2520 next_tick = linkBad & ~TIMER_CB;
2521 } else if (!linkBad) {
2522 lp->local_state--;
2523 lp->media = prev_state;
2524 } else {
2525 lp->media = INIT;
2526 lp->tcount++;
2527 }
2528 }
2529
2530 return next_tick;
2531 }
2532
2533 /*
2534 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2535 ** before BNC, because the BNC port will indicate activity if it's not
2536 ** terminated correctly. The only way to test for that is to place a loopback
2537 ** packet onto the network and watch for errors. Since we're messing with
2538 ** the interrupt mask register, disable the board interrupts and do not allow
2539 ** any more packets to be queued to the hardware. Re-enable everything only
2540 ** when the media is found.
2541 */
2542 static int
dc21041_autoconf(struct net_device * dev)2543 dc21041_autoconf(struct net_device *dev)
2544 {
2545 struct de4x5_private *lp = netdev_priv(dev);
2546 u_long iobase = dev->base_addr;
2547 s32 sts, irqs, irq_mask, imr, omr;
2548 int next_tick = DE4X5_AUTOSENSE_MS;
2549
2550 switch (lp->media) {
2551 case INIT:
2552 DISABLE_IRQs;
2553 lp->tx_enable = false;
2554 lp->timeout = -1;
2555 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2556 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2557 lp->media = TP; /* On chip auto negotiation is broken */
2558 } else if (lp->autosense == TP) {
2559 lp->media = TP;
2560 } else if (lp->autosense == BNC) {
2561 lp->media = BNC;
2562 } else if (lp->autosense == AUI) {
2563 lp->media = AUI;
2564 } else {
2565 lp->media = NC;
2566 }
2567 lp->local_state = 0;
2568 next_tick = dc21041_autoconf(dev);
2569 break;
2570
2571 case TP_NW:
2572 if (lp->timeout < 0) {
2573 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2574 outl(omr | OMR_FDX, DE4X5_OMR);
2575 }
2576 irqs = STS_LNF | STS_LNP;
2577 irq_mask = IMR_LFM | IMR_LPM;
2578 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2579 if (sts < 0) {
2580 next_tick = sts & ~TIMER_CB;
2581 } else {
2582 if (sts & STS_LNP) {
2583 lp->media = ANS;
2584 } else {
2585 lp->media = AUI;
2586 }
2587 next_tick = dc21041_autoconf(dev);
2588 }
2589 break;
2590
2591 case ANS:
2592 if (!lp->tx_enable) {
2593 irqs = STS_LNP;
2594 irq_mask = IMR_LPM;
2595 sts = test_ans(dev, irqs, irq_mask, 3000);
2596 if (sts < 0) {
2597 next_tick = sts & ~TIMER_CB;
2598 } else {
2599 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2600 lp->media = TP;
2601 next_tick = dc21041_autoconf(dev);
2602 } else {
2603 lp->local_state = 1;
2604 de4x5_init_connection(dev);
2605 }
2606 }
2607 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2608 lp->media = ANS_SUSPECT;
2609 next_tick = 3000;
2610 }
2611 break;
2612
2613 case ANS_SUSPECT:
2614 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2615 break;
2616
2617 case TP:
2618 if (!lp->tx_enable) {
2619 if (lp->timeout < 0) {
2620 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2621 outl(omr & ~OMR_FDX, DE4X5_OMR);
2622 }
2623 irqs = STS_LNF | STS_LNP;
2624 irq_mask = IMR_LFM | IMR_LPM;
2625 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2626 if (sts < 0) {
2627 next_tick = sts & ~TIMER_CB;
2628 } else {
2629 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2630 if (inl(DE4X5_SISR) & SISR_NRA) {
2631 lp->media = AUI; /* Non selected port activity */
2632 } else {
2633 lp->media = BNC;
2634 }
2635 next_tick = dc21041_autoconf(dev);
2636 } else {
2637 lp->local_state = 1;
2638 de4x5_init_connection(dev);
2639 }
2640 }
2641 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2642 lp->media = TP_SUSPECT;
2643 next_tick = 3000;
2644 }
2645 break;
2646
2647 case TP_SUSPECT:
2648 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2649 break;
2650
2651 case AUI:
2652 if (!lp->tx_enable) {
2653 if (lp->timeout < 0) {
2654 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2655 outl(omr & ~OMR_FDX, DE4X5_OMR);
2656 }
2657 irqs = 0;
2658 irq_mask = 0;
2659 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2660 if (sts < 0) {
2661 next_tick = sts & ~TIMER_CB;
2662 } else {
2663 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2664 lp->media = BNC;
2665 next_tick = dc21041_autoconf(dev);
2666 } else {
2667 lp->local_state = 1;
2668 de4x5_init_connection(dev);
2669 }
2670 }
2671 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2672 lp->media = AUI_SUSPECT;
2673 next_tick = 3000;
2674 }
2675 break;
2676
2677 case AUI_SUSPECT:
2678 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2679 break;
2680
2681 case BNC:
2682 switch (lp->local_state) {
2683 case 0:
2684 if (lp->timeout < 0) {
2685 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2686 outl(omr & ~OMR_FDX, DE4X5_OMR);
2687 }
2688 irqs = 0;
2689 irq_mask = 0;
2690 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2691 if (sts < 0) {
2692 next_tick = sts & ~TIMER_CB;
2693 } else {
2694 lp->local_state++; /* Ensure media connected */
2695 next_tick = dc21041_autoconf(dev);
2696 }
2697 break;
2698
2699 case 1:
2700 if (!lp->tx_enable) {
2701 if ((sts = ping_media(dev, 3000)) < 0) {
2702 next_tick = sts & ~TIMER_CB;
2703 } else {
2704 if (sts) {
2705 lp->local_state = 0;
2706 lp->media = NC;
2707 } else {
2708 de4x5_init_connection(dev);
2709 }
2710 }
2711 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2712 lp->media = BNC_SUSPECT;
2713 next_tick = 3000;
2714 }
2715 break;
2716 }
2717 break;
2718
2719 case BNC_SUSPECT:
2720 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2721 break;
2722
2723 case NC:
2724 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2725 outl(omr | OMR_FDX, DE4X5_OMR);
2726 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2727 if (lp->media != lp->c_media) {
2728 de4x5_dbg_media(dev);
2729 lp->c_media = lp->media;
2730 }
2731 lp->media = INIT;
2732 lp->tx_enable = false;
2733 break;
2734 }
2735
2736 return next_tick;
2737 }
2738
2739 /*
2740 ** Some autonegotiation chips are broken in that they do not return the
2741 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2742 ** register, except at the first power up negotiation.
2743 */
2744 static int
dc21140m_autoconf(struct net_device * dev)2745 dc21140m_autoconf(struct net_device *dev)
2746 {
2747 struct de4x5_private *lp = netdev_priv(dev);
2748 int ana, anlpa, cap, cr, slnk, sr;
2749 int next_tick = DE4X5_AUTOSENSE_MS;
2750 u_long imr, omr, iobase = dev->base_addr;
2751
2752 switch(lp->media) {
2753 case INIT:
2754 if (lp->timeout < 0) {
2755 DISABLE_IRQs;
2756 lp->tx_enable = false;
2757 lp->linkOK = 0;
2758 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2759 }
2760 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2761 next_tick &= ~TIMER_CB;
2762 } else {
2763 if (lp->useSROM) {
2764 if (srom_map_media(dev) < 0) {
2765 lp->tcount++;
2766 return next_tick;
2767 }
2768 srom_exec(dev, lp->phy[lp->active].gep);
2769 if (lp->infoblock_media == ANS) {
2770 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2771 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2772 }
2773 } else {
2774 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2775 SET_10Mb;
2776 if (lp->autosense == _100Mb) {
2777 lp->media = _100Mb;
2778 } else if (lp->autosense == _10Mb) {
2779 lp->media = _10Mb;
2780 } else if ((lp->autosense == AUTO) &&
2781 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2782 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2783 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2784 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2785 lp->media = ANS;
2786 } else if (lp->autosense == AUTO) {
2787 lp->media = SPD_DET;
2788 } else if (is_spd_100(dev) && is_100_up(dev)) {
2789 lp->media = _100Mb;
2790 } else {
2791 lp->media = NC;
2792 }
2793 }
2794 lp->local_state = 0;
2795 next_tick = dc21140m_autoconf(dev);
2796 }
2797 break;
2798
2799 case ANS:
2800 switch (lp->local_state) {
2801 case 0:
2802 if (lp->timeout < 0) {
2803 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2804 }
2805 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2806 if (cr < 0) {
2807 next_tick = cr & ~TIMER_CB;
2808 } else {
2809 if (cr) {
2810 lp->local_state = 0;
2811 lp->media = SPD_DET;
2812 } else {
2813 lp->local_state++;
2814 }
2815 next_tick = dc21140m_autoconf(dev);
2816 }
2817 break;
2818
2819 case 1:
2820 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2821 next_tick = sr & ~TIMER_CB;
2822 } else {
2823 lp->media = SPD_DET;
2824 lp->local_state = 0;
2825 if (sr) { /* Success! */
2826 lp->tmp = MII_SR_ASSC;
2827 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2828 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2829 if (!(anlpa & MII_ANLPA_RF) &&
2830 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2831 if (cap & MII_ANA_100M) {
2832 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2833 lp->media = _100Mb;
2834 } else if (cap & MII_ANA_10M) {
2835 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2836
2837 lp->media = _10Mb;
2838 }
2839 }
2840 } /* Auto Negotiation failed to finish */
2841 next_tick = dc21140m_autoconf(dev);
2842 } /* Auto Negotiation failed to start */
2843 break;
2844 }
2845 break;
2846
2847 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2848 if (lp->timeout < 0) {
2849 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2850 (~gep_rd(dev) & GEP_LNP));
2851 SET_100Mb_PDET;
2852 }
2853 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2854 next_tick = slnk & ~TIMER_CB;
2855 } else {
2856 if (is_spd_100(dev) && is_100_up(dev)) {
2857 lp->media = _100Mb;
2858 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2859 lp->media = _10Mb;
2860 } else {
2861 lp->media = NC;
2862 }
2863 next_tick = dc21140m_autoconf(dev);
2864 }
2865 break;
2866
2867 case _100Mb: /* Set 100Mb/s */
2868 next_tick = 3000;
2869 if (!lp->tx_enable) {
2870 SET_100Mb;
2871 de4x5_init_connection(dev);
2872 } else {
2873 if (!lp->linkOK && (lp->autosense == AUTO)) {
2874 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2875 lp->media = INIT;
2876 lp->tcount++;
2877 next_tick = DE4X5_AUTOSENSE_MS;
2878 }
2879 }
2880 }
2881 break;
2882
2883 case BNC:
2884 case AUI:
2885 case _10Mb: /* Set 10Mb/s */
2886 next_tick = 3000;
2887 if (!lp->tx_enable) {
2888 SET_10Mb;
2889 de4x5_init_connection(dev);
2890 } else {
2891 if (!lp->linkOK && (lp->autosense == AUTO)) {
2892 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2893 lp->media = INIT;
2894 lp->tcount++;
2895 next_tick = DE4X5_AUTOSENSE_MS;
2896 }
2897 }
2898 }
2899 break;
2900
2901 case NC:
2902 if (lp->media != lp->c_media) {
2903 de4x5_dbg_media(dev);
2904 lp->c_media = lp->media;
2905 }
2906 lp->media = INIT;
2907 lp->tx_enable = false;
2908 break;
2909 }
2910
2911 return next_tick;
2912 }
2913
2914 /*
2915 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2916 ** changing how I figure out the media - but trying to keep it backwards
2917 ** compatible with the de500-xa and de500-aa.
2918 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2919 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2920 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2921 ** active.
2922 ** When autonegotiation is working, the ANS part searches the SROM for
2923 ** the highest common speed (TP) link that both can run and if that can
2924 ** be full duplex. That infoblock is executed and then the link speed set.
2925 **
2926 ** Only _10Mb and _100Mb are tested here.
2927 */
2928 static int
dc2114x_autoconf(struct net_device * dev)2929 dc2114x_autoconf(struct net_device *dev)
2930 {
2931 struct de4x5_private *lp = netdev_priv(dev);
2932 u_long iobase = dev->base_addr;
2933 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2934 int next_tick = DE4X5_AUTOSENSE_MS;
2935
2936 switch (lp->media) {
2937 case INIT:
2938 if (lp->timeout < 0) {
2939 DISABLE_IRQs;
2940 lp->tx_enable = false;
2941 lp->linkOK = 0;
2942 lp->timeout = -1;
2943 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2944 if (lp->params.autosense & ~AUTO) {
2945 srom_map_media(dev); /* Fixed media requested */
2946 if (lp->media != lp->params.autosense) {
2947 lp->tcount++;
2948 lp->media = INIT;
2949 return next_tick;
2950 }
2951 lp->media = INIT;
2952 }
2953 }
2954 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2955 next_tick &= ~TIMER_CB;
2956 } else {
2957 if (lp->autosense == _100Mb) {
2958 lp->media = _100Mb;
2959 } else if (lp->autosense == _10Mb) {
2960 lp->media = _10Mb;
2961 } else if (lp->autosense == TP) {
2962 lp->media = TP;
2963 } else if (lp->autosense == BNC) {
2964 lp->media = BNC;
2965 } else if (lp->autosense == AUI) {
2966 lp->media = AUI;
2967 } else {
2968 lp->media = SPD_DET;
2969 if ((lp->infoblock_media == ANS) &&
2970 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2971 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2972 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2973 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2974 lp->media = ANS;
2975 }
2976 }
2977 lp->local_state = 0;
2978 next_tick = dc2114x_autoconf(dev);
2979 }
2980 break;
2981
2982 case ANS:
2983 switch (lp->local_state) {
2984 case 0:
2985 if (lp->timeout < 0) {
2986 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2987 }
2988 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2989 if (cr < 0) {
2990 next_tick = cr & ~TIMER_CB;
2991 } else {
2992 if (cr) {
2993 lp->local_state = 0;
2994 lp->media = SPD_DET;
2995 } else {
2996 lp->local_state++;
2997 }
2998 next_tick = dc2114x_autoconf(dev);
2999 }
3000 break;
3001
3002 case 1:
3003 sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3004 if (sr < 0) {
3005 next_tick = sr & ~TIMER_CB;
3006 } else {
3007 lp->media = SPD_DET;
3008 lp->local_state = 0;
3009 if (sr) { /* Success! */
3010 lp->tmp = MII_SR_ASSC;
3011 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3012 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3013 if (!(anlpa & MII_ANLPA_RF) &&
3014 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3015 if (cap & MII_ANA_100M) {
3016 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3017 lp->media = _100Mb;
3018 } else if (cap & MII_ANA_10M) {
3019 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3020 lp->media = _10Mb;
3021 }
3022 }
3023 } /* Auto Negotiation failed to finish */
3024 next_tick = dc2114x_autoconf(dev);
3025 } /* Auto Negotiation failed to start */
3026 break;
3027 }
3028 break;
3029
3030 case AUI:
3031 if (!lp->tx_enable) {
3032 if (lp->timeout < 0) {
3033 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3034 outl(omr & ~OMR_FDX, DE4X5_OMR);
3035 }
3036 irqs = 0;
3037 irq_mask = 0;
3038 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3039 if (sts < 0) {
3040 next_tick = sts & ~TIMER_CB;
3041 } else {
3042 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3043 lp->media = BNC;
3044 next_tick = dc2114x_autoconf(dev);
3045 } else {
3046 lp->local_state = 1;
3047 de4x5_init_connection(dev);
3048 }
3049 }
3050 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3051 lp->media = AUI_SUSPECT;
3052 next_tick = 3000;
3053 }
3054 break;
3055
3056 case AUI_SUSPECT:
3057 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3058 break;
3059
3060 case BNC:
3061 switch (lp->local_state) {
3062 case 0:
3063 if (lp->timeout < 0) {
3064 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3065 outl(omr & ~OMR_FDX, DE4X5_OMR);
3066 }
3067 irqs = 0;
3068 irq_mask = 0;
3069 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3070 if (sts < 0) {
3071 next_tick = sts & ~TIMER_CB;
3072 } else {
3073 lp->local_state++; /* Ensure media connected */
3074 next_tick = dc2114x_autoconf(dev);
3075 }
3076 break;
3077
3078 case 1:
3079 if (!lp->tx_enable) {
3080 if ((sts = ping_media(dev, 3000)) < 0) {
3081 next_tick = sts & ~TIMER_CB;
3082 } else {
3083 if (sts) {
3084 lp->local_state = 0;
3085 lp->tcount++;
3086 lp->media = INIT;
3087 } else {
3088 de4x5_init_connection(dev);
3089 }
3090 }
3091 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3092 lp->media = BNC_SUSPECT;
3093 next_tick = 3000;
3094 }
3095 break;
3096 }
3097 break;
3098
3099 case BNC_SUSPECT:
3100 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3101 break;
3102
3103 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3104 if (srom_map_media(dev) < 0) {
3105 lp->tcount++;
3106 lp->media = INIT;
3107 return next_tick;
3108 }
3109 if (lp->media == _100Mb) {
3110 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3111 lp->media = SPD_DET;
3112 return slnk & ~TIMER_CB;
3113 }
3114 } else {
3115 if (wait_for_link(dev) < 0) {
3116 lp->media = SPD_DET;
3117 return PDET_LINK_WAIT;
3118 }
3119 }
3120 if (lp->media == ANS) { /* Do MII parallel detection */
3121 if (is_spd_100(dev)) {
3122 lp->media = _100Mb;
3123 } else {
3124 lp->media = _10Mb;
3125 }
3126 next_tick = dc2114x_autoconf(dev);
3127 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3128 (((lp->media == _10Mb) || (lp->media == TP) ||
3129 (lp->media == BNC) || (lp->media == AUI)) &&
3130 is_10_up(dev))) {
3131 next_tick = dc2114x_autoconf(dev);
3132 } else {
3133 lp->tcount++;
3134 lp->media = INIT;
3135 }
3136 break;
3137
3138 case _10Mb:
3139 next_tick = 3000;
3140 if (!lp->tx_enable) {
3141 SET_10Mb;
3142 de4x5_init_connection(dev);
3143 } else {
3144 if (!lp->linkOK && (lp->autosense == AUTO)) {
3145 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3146 lp->media = INIT;
3147 lp->tcount++;
3148 next_tick = DE4X5_AUTOSENSE_MS;
3149 }
3150 }
3151 }
3152 break;
3153
3154 case _100Mb:
3155 next_tick = 3000;
3156 if (!lp->tx_enable) {
3157 SET_100Mb;
3158 de4x5_init_connection(dev);
3159 } else {
3160 if (!lp->linkOK && (lp->autosense == AUTO)) {
3161 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3162 lp->media = INIT;
3163 lp->tcount++;
3164 next_tick = DE4X5_AUTOSENSE_MS;
3165 }
3166 }
3167 }
3168 break;
3169
3170 default:
3171 lp->tcount++;
3172 printk("Huh?: media:%02x\n", lp->media);
3173 lp->media = INIT;
3174 break;
3175 }
3176
3177 return next_tick;
3178 }
3179
3180 static int
srom_autoconf(struct net_device * dev)3181 srom_autoconf(struct net_device *dev)
3182 {
3183 struct de4x5_private *lp = netdev_priv(dev);
3184
3185 return lp->infoleaf_fn(dev);
3186 }
3187
3188 /*
3189 ** This mapping keeps the original media codes and FDX flag unchanged.
3190 ** While it isn't strictly necessary, it helps me for the moment...
3191 ** The early return avoids a media state / SROM media space clash.
3192 */
3193 static int
srom_map_media(struct net_device * dev)3194 srom_map_media(struct net_device *dev)
3195 {
3196 struct de4x5_private *lp = netdev_priv(dev);
3197
3198 lp->fdx = false;
3199 if (lp->infoblock_media == lp->media)
3200 return 0;
3201
3202 switch(lp->infoblock_media) {
3203 case SROM_10BASETF:
3204 if (!lp->params.fdx) return -1;
3205 lp->fdx = true;
3206 fallthrough;
3207
3208 case SROM_10BASET:
3209 if (lp->params.fdx && !lp->fdx) return -1;
3210 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3211 lp->media = _10Mb;
3212 } else {
3213 lp->media = TP;
3214 }
3215 break;
3216
3217 case SROM_10BASE2:
3218 lp->media = BNC;
3219 break;
3220
3221 case SROM_10BASE5:
3222 lp->media = AUI;
3223 break;
3224
3225 case SROM_100BASETF:
3226 if (!lp->params.fdx) return -1;
3227 lp->fdx = true;
3228 fallthrough;
3229
3230 case SROM_100BASET:
3231 if (lp->params.fdx && !lp->fdx) return -1;
3232 lp->media = _100Mb;
3233 break;
3234
3235 case SROM_100BASET4:
3236 lp->media = _100Mb;
3237 break;
3238
3239 case SROM_100BASEFF:
3240 if (!lp->params.fdx) return -1;
3241 lp->fdx = true;
3242 fallthrough;
3243
3244 case SROM_100BASEF:
3245 if (lp->params.fdx && !lp->fdx) return -1;
3246 lp->media = _100Mb;
3247 break;
3248
3249 case ANS:
3250 lp->media = ANS;
3251 lp->fdx = lp->params.fdx;
3252 break;
3253
3254 default:
3255 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3256 lp->infoblock_media);
3257 return -1;
3258 }
3259
3260 return 0;
3261 }
3262
3263 static void
de4x5_init_connection(struct net_device * dev)3264 de4x5_init_connection(struct net_device *dev)
3265 {
3266 struct de4x5_private *lp = netdev_priv(dev);
3267 u_long iobase = dev->base_addr;
3268 u_long flags = 0;
3269
3270 if (lp->media != lp->c_media) {
3271 de4x5_dbg_media(dev);
3272 lp->c_media = lp->media; /* Stop scrolling media messages */
3273 }
3274
3275 spin_lock_irqsave(&lp->lock, flags);
3276 de4x5_rst_desc_ring(dev);
3277 de4x5_setup_intr(dev);
3278 lp->tx_enable = true;
3279 spin_unlock_irqrestore(&lp->lock, flags);
3280 outl(POLL_DEMAND, DE4X5_TPD);
3281
3282 netif_wake_queue(dev);
3283 }
3284
3285 /*
3286 ** General PHY reset function. Some MII devices don't reset correctly
3287 ** since their MII address pins can float at voltages that are dependent
3288 ** on the signal pin use. Do a double reset to ensure a reset.
3289 */
3290 static int
de4x5_reset_phy(struct net_device * dev)3291 de4x5_reset_phy(struct net_device *dev)
3292 {
3293 struct de4x5_private *lp = netdev_priv(dev);
3294 u_long iobase = dev->base_addr;
3295 int next_tick = 0;
3296
3297 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3298 if (lp->timeout < 0) {
3299 if (lp->useSROM) {
3300 if (lp->phy[lp->active].rst) {
3301 srom_exec(dev, lp->phy[lp->active].rst);
3302 srom_exec(dev, lp->phy[lp->active].rst);
3303 } else if (lp->rst) { /* Type 5 infoblock reset */
3304 srom_exec(dev, lp->rst);
3305 srom_exec(dev, lp->rst);
3306 }
3307 } else {
3308 PHY_HARD_RESET;
3309 }
3310 if (lp->useMII) {
3311 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3312 }
3313 }
3314 if (lp->useMII) {
3315 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3316 }
3317 } else if (lp->chipset == DC21140) {
3318 PHY_HARD_RESET;
3319 }
3320
3321 return next_tick;
3322 }
3323
3324 static int
test_media(struct net_device * dev,s32 irqs,s32 irq_mask,s32 csr13,s32 csr14,s32 csr15,s32 msec)3325 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3326 {
3327 struct de4x5_private *lp = netdev_priv(dev);
3328 u_long iobase = dev->base_addr;
3329 s32 sts, csr12;
3330
3331 if (lp->timeout < 0) {
3332 lp->timeout = msec/100;
3333 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3334 reset_init_sia(dev, csr13, csr14, csr15);
3335 }
3336
3337 /* set up the interrupt mask */
3338 outl(irq_mask, DE4X5_IMR);
3339
3340 /* clear all pending interrupts */
3341 sts = inl(DE4X5_STS);
3342 outl(sts, DE4X5_STS);
3343
3344 /* clear csr12 NRA and SRA bits */
3345 if ((lp->chipset == DC21041) || lp->useSROM) {
3346 csr12 = inl(DE4X5_SISR);
3347 outl(csr12, DE4X5_SISR);
3348 }
3349 }
3350
3351 sts = inl(DE4X5_STS) & ~TIMER_CB;
3352
3353 if (!(sts & irqs) && --lp->timeout) {
3354 sts = 100 | TIMER_CB;
3355 } else {
3356 lp->timeout = -1;
3357 }
3358
3359 return sts;
3360 }
3361
3362 static int
test_tp(struct net_device * dev,s32 msec)3363 test_tp(struct net_device *dev, s32 msec)
3364 {
3365 struct de4x5_private *lp = netdev_priv(dev);
3366 u_long iobase = dev->base_addr;
3367 int sisr;
3368
3369 if (lp->timeout < 0) {
3370 lp->timeout = msec/100;
3371 }
3372
3373 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3374
3375 if (sisr && --lp->timeout) {
3376 sisr = 100 | TIMER_CB;
3377 } else {
3378 lp->timeout = -1;
3379 }
3380
3381 return sisr;
3382 }
3383
3384 /*
3385 ** Samples the 100Mb Link State Signal. The sample interval is important
3386 ** because too fast a rate can give erroneous results and confuse the
3387 ** speed sense algorithm.
3388 */
3389 #define SAMPLE_INTERVAL 500 /* ms */
3390 #define SAMPLE_DELAY 2000 /* ms */
3391 static int
test_for_100Mb(struct net_device * dev,int msec)3392 test_for_100Mb(struct net_device *dev, int msec)
3393 {
3394 struct de4x5_private *lp = netdev_priv(dev);
3395 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3396
3397 if (lp->timeout < 0) {
3398 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3399 if (msec > SAMPLE_DELAY) {
3400 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3401 gep = SAMPLE_DELAY | TIMER_CB;
3402 return gep;
3403 } else {
3404 lp->timeout = msec/SAMPLE_INTERVAL;
3405 }
3406 }
3407
3408 if (lp->phy[lp->active].id || lp->useSROM) {
3409 gep = is_100_up(dev) | is_spd_100(dev);
3410 } else {
3411 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3412 }
3413 if (!(gep & ret) && --lp->timeout) {
3414 gep = SAMPLE_INTERVAL | TIMER_CB;
3415 } else {
3416 lp->timeout = -1;
3417 }
3418
3419 return gep;
3420 }
3421
3422 static int
wait_for_link(struct net_device * dev)3423 wait_for_link(struct net_device *dev)
3424 {
3425 struct de4x5_private *lp = netdev_priv(dev);
3426
3427 if (lp->timeout < 0) {
3428 lp->timeout = 1;
3429 }
3430
3431 if (lp->timeout--) {
3432 return TIMER_CB;
3433 } else {
3434 lp->timeout = -1;
3435 }
3436
3437 return 0;
3438 }
3439
3440 /*
3441 **
3442 **
3443 */
3444 static int
test_mii_reg(struct net_device * dev,int reg,int mask,bool pol,long msec)3445 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3446 {
3447 struct de4x5_private *lp = netdev_priv(dev);
3448 int test;
3449 u_long iobase = dev->base_addr;
3450
3451 if (lp->timeout < 0) {
3452 lp->timeout = msec/100;
3453 }
3454
3455 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3456 test = (reg ^ (pol ? ~0 : 0)) & mask;
3457
3458 if (test && --lp->timeout) {
3459 reg = 100 | TIMER_CB;
3460 } else {
3461 lp->timeout = -1;
3462 }
3463
3464 return reg;
3465 }
3466
3467 static int
is_spd_100(struct net_device * dev)3468 is_spd_100(struct net_device *dev)
3469 {
3470 struct de4x5_private *lp = netdev_priv(dev);
3471 u_long iobase = dev->base_addr;
3472 int spd;
3473
3474 if (lp->useMII) {
3475 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3476 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3477 spd &= lp->phy[lp->active].spd.mask;
3478 } else if (!lp->useSROM) { /* de500-xa */
3479 spd = ((~gep_rd(dev)) & GEP_SLNK);
3480 } else {
3481 if ((lp->ibn == 2) || !lp->asBitValid)
3482 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3483
3484 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3485 (lp->linkOK & ~lp->asBitValid);
3486 }
3487
3488 return spd;
3489 }
3490
3491 static int
is_100_up(struct net_device * dev)3492 is_100_up(struct net_device *dev)
3493 {
3494 struct de4x5_private *lp = netdev_priv(dev);
3495 u_long iobase = dev->base_addr;
3496
3497 if (lp->useMII) {
3498 /* Double read for sticky bits & temporary drops */
3499 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3500 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3501 } else if (!lp->useSROM) { /* de500-xa */
3502 return (~gep_rd(dev)) & GEP_SLNK;
3503 } else {
3504 if ((lp->ibn == 2) || !lp->asBitValid)
3505 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3506
3507 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3508 (lp->linkOK & ~lp->asBitValid);
3509 }
3510 }
3511
3512 static int
is_10_up(struct net_device * dev)3513 is_10_up(struct net_device *dev)
3514 {
3515 struct de4x5_private *lp = netdev_priv(dev);
3516 u_long iobase = dev->base_addr;
3517
3518 if (lp->useMII) {
3519 /* Double read for sticky bits & temporary drops */
3520 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3521 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3522 } else if (!lp->useSROM) { /* de500-xa */
3523 return (~gep_rd(dev)) & GEP_LNP;
3524 } else {
3525 if ((lp->ibn == 2) || !lp->asBitValid)
3526 return ((lp->chipset & ~0x00ff) == DC2114x) ?
3527 (~inl(DE4X5_SISR)&SISR_LS10):
3528 0;
3529
3530 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3531 (lp->linkOK & ~lp->asBitValid);
3532 }
3533 }
3534
3535 static int
is_anc_capable(struct net_device * dev)3536 is_anc_capable(struct net_device *dev)
3537 {
3538 struct de4x5_private *lp = netdev_priv(dev);
3539 u_long iobase = dev->base_addr;
3540
3541 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3542 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3543 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3544 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3545 } else {
3546 return 0;
3547 }
3548 }
3549
3550 /*
3551 ** Send a packet onto the media and watch for send errors that indicate the
3552 ** media is bad or unconnected.
3553 */
3554 static int
ping_media(struct net_device * dev,int msec)3555 ping_media(struct net_device *dev, int msec)
3556 {
3557 struct de4x5_private *lp = netdev_priv(dev);
3558 u_long iobase = dev->base_addr;
3559 int sisr;
3560
3561 if (lp->timeout < 0) {
3562 lp->timeout = msec/100;
3563
3564 lp->tmp = lp->tx_new; /* Remember the ring position */
3565 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3566 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3567 outl(POLL_DEMAND, DE4X5_TPD);
3568 }
3569
3570 sisr = inl(DE4X5_SISR);
3571
3572 if ((!(sisr & SISR_NCR)) &&
3573 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3574 (--lp->timeout)) {
3575 sisr = 100 | TIMER_CB;
3576 } else {
3577 if ((!(sisr & SISR_NCR)) &&
3578 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3579 lp->timeout) {
3580 sisr = 0;
3581 } else {
3582 sisr = 1;
3583 }
3584 lp->timeout = -1;
3585 }
3586
3587 return sisr;
3588 }
3589
3590 /*
3591 ** This function does 2 things: on Intels it kmalloc's another buffer to
3592 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3593 ** into which the packet is copied.
3594 */
3595 static struct sk_buff *
de4x5_alloc_rx_buff(struct net_device * dev,int index,int len)3596 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3597 {
3598 struct de4x5_private *lp = netdev_priv(dev);
3599 struct sk_buff *p;
3600
3601 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3602 struct sk_buff *ret;
3603 u_long i=0, tmp;
3604
3605 p = netdev_alloc_skb(dev, IEEE802_3_SZ + DE4X5_ALIGN + 2);
3606 if (!p) return NULL;
3607
3608 tmp = virt_to_bus(p->data);
3609 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3610 skb_reserve(p, i);
3611 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3612
3613 ret = lp->rx_skb[index];
3614 lp->rx_skb[index] = p;
3615
3616 if ((u_long) ret > 1) {
3617 skb_put(ret, len);
3618 }
3619
3620 return ret;
3621
3622 #else
3623 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3624
3625 p = netdev_alloc_skb(dev, len + 2);
3626 if (!p) return NULL;
3627
3628 skb_reserve(p, 2); /* Align */
3629 if (index < lp->rx_old) { /* Wrapped buffer */
3630 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3631 skb_put_data(p, lp->rx_bufs + lp->rx_old * RX_BUFF_SZ, tlen);
3632 skb_put_data(p, lp->rx_bufs, len - tlen);
3633 } else { /* Linear buffer */
3634 skb_put_data(p, lp->rx_bufs + lp->rx_old * RX_BUFF_SZ, len);
3635 }
3636
3637 return p;
3638 #endif
3639 }
3640
3641 static void
de4x5_free_rx_buffs(struct net_device * dev)3642 de4x5_free_rx_buffs(struct net_device *dev)
3643 {
3644 struct de4x5_private *lp = netdev_priv(dev);
3645 int i;
3646
3647 for (i=0; i<lp->rxRingSize; i++) {
3648 if ((u_long) lp->rx_skb[i] > 1) {
3649 dev_kfree_skb(lp->rx_skb[i]);
3650 }
3651 lp->rx_ring[i].status = 0;
3652 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3653 }
3654 }
3655
3656 static void
de4x5_free_tx_buffs(struct net_device * dev)3657 de4x5_free_tx_buffs(struct net_device *dev)
3658 {
3659 struct de4x5_private *lp = netdev_priv(dev);
3660 int i;
3661
3662 for (i=0; i<lp->txRingSize; i++) {
3663 if (lp->tx_skb[i])
3664 de4x5_free_tx_buff(lp, i);
3665 lp->tx_ring[i].status = 0;
3666 }
3667
3668 /* Unload the locally queued packets */
3669 __skb_queue_purge(&lp->cache.queue);
3670 }
3671
3672 /*
3673 ** When a user pulls a connection, the DECchip can end up in a
3674 ** 'running - waiting for end of transmission' state. This means that we
3675 ** have to perform a chip soft reset to ensure that we can synchronize
3676 ** the hardware and software and make any media probes using a loopback
3677 ** packet meaningful.
3678 */
3679 static void
de4x5_save_skbs(struct net_device * dev)3680 de4x5_save_skbs(struct net_device *dev)
3681 {
3682 struct de4x5_private *lp = netdev_priv(dev);
3683 u_long iobase = dev->base_addr;
3684 s32 omr;
3685
3686 if (!lp->cache.save_cnt) {
3687 STOP_DE4X5;
3688 de4x5_tx(dev); /* Flush any sent skb's */
3689 de4x5_free_tx_buffs(dev);
3690 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3691 de4x5_sw_reset(dev);
3692 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3693 lp->cache.save_cnt++;
3694 START_DE4X5;
3695 }
3696 }
3697
3698 static void
de4x5_rst_desc_ring(struct net_device * dev)3699 de4x5_rst_desc_ring(struct net_device *dev)
3700 {
3701 struct de4x5_private *lp = netdev_priv(dev);
3702 u_long iobase = dev->base_addr;
3703 int i;
3704 s32 omr;
3705
3706 if (lp->cache.save_cnt) {
3707 STOP_DE4X5;
3708 outl(lp->dma_rings, DE4X5_RRBA);
3709 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3710 DE4X5_TRBA);
3711
3712 lp->rx_new = lp->rx_old = 0;
3713 lp->tx_new = lp->tx_old = 0;
3714
3715 for (i = 0; i < lp->rxRingSize; i++) {
3716 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3717 }
3718
3719 for (i = 0; i < lp->txRingSize; i++) {
3720 lp->tx_ring[i].status = cpu_to_le32(0);
3721 }
3722
3723 barrier();
3724 lp->cache.save_cnt--;
3725 START_DE4X5;
3726 }
3727 }
3728
3729 static void
de4x5_cache_state(struct net_device * dev,int flag)3730 de4x5_cache_state(struct net_device *dev, int flag)
3731 {
3732 struct de4x5_private *lp = netdev_priv(dev);
3733 u_long iobase = dev->base_addr;
3734
3735 switch(flag) {
3736 case DE4X5_SAVE_STATE:
3737 lp->cache.csr0 = inl(DE4X5_BMR);
3738 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3739 lp->cache.csr7 = inl(DE4X5_IMR);
3740 break;
3741
3742 case DE4X5_RESTORE_STATE:
3743 outl(lp->cache.csr0, DE4X5_BMR);
3744 outl(lp->cache.csr6, DE4X5_OMR);
3745 outl(lp->cache.csr7, DE4X5_IMR);
3746 if (lp->chipset == DC21140) {
3747 gep_wr(lp->cache.gepc, dev);
3748 gep_wr(lp->cache.gep, dev);
3749 } else {
3750 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3751 lp->cache.csr15);
3752 }
3753 break;
3754 }
3755 }
3756
3757 static void
de4x5_put_cache(struct net_device * dev,struct sk_buff * skb)3758 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3759 {
3760 struct de4x5_private *lp = netdev_priv(dev);
3761
3762 __skb_queue_tail(&lp->cache.queue, skb);
3763 }
3764
3765 static void
de4x5_putb_cache(struct net_device * dev,struct sk_buff * skb)3766 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3767 {
3768 struct de4x5_private *lp = netdev_priv(dev);
3769
3770 __skb_queue_head(&lp->cache.queue, skb);
3771 }
3772
3773 static struct sk_buff *
de4x5_get_cache(struct net_device * dev)3774 de4x5_get_cache(struct net_device *dev)
3775 {
3776 struct de4x5_private *lp = netdev_priv(dev);
3777
3778 return __skb_dequeue(&lp->cache.queue);
3779 }
3780
3781 /*
3782 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3783 ** is received and the auto-negotiation status is NWAY OK.
3784 */
3785 static int
test_ans(struct net_device * dev,s32 irqs,s32 irq_mask,s32 msec)3786 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3787 {
3788 struct de4x5_private *lp = netdev_priv(dev);
3789 u_long iobase = dev->base_addr;
3790 s32 sts, ans;
3791
3792 if (lp->timeout < 0) {
3793 lp->timeout = msec/100;
3794 outl(irq_mask, DE4X5_IMR);
3795
3796 /* clear all pending interrupts */
3797 sts = inl(DE4X5_STS);
3798 outl(sts, DE4X5_STS);
3799 }
3800
3801 ans = inl(DE4X5_SISR) & SISR_ANS;
3802 sts = inl(DE4X5_STS) & ~TIMER_CB;
3803
3804 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3805 sts = 100 | TIMER_CB;
3806 } else {
3807 lp->timeout = -1;
3808 }
3809
3810 return sts;
3811 }
3812
3813 static void
de4x5_setup_intr(struct net_device * dev)3814 de4x5_setup_intr(struct net_device *dev)
3815 {
3816 struct de4x5_private *lp = netdev_priv(dev);
3817 u_long iobase = dev->base_addr;
3818 s32 imr, sts;
3819
3820 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3821 imr = 0;
3822 UNMASK_IRQs;
3823 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3824 outl(sts, DE4X5_STS);
3825 ENABLE_IRQs;
3826 }
3827 }
3828
3829 /*
3830 **
3831 */
3832 static void
reset_init_sia(struct net_device * dev,s32 csr13,s32 csr14,s32 csr15)3833 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3834 {
3835 struct de4x5_private *lp = netdev_priv(dev);
3836 u_long iobase = dev->base_addr;
3837
3838 RESET_SIA;
3839 if (lp->useSROM) {
3840 if (lp->ibn == 3) {
3841 srom_exec(dev, lp->phy[lp->active].rst);
3842 srom_exec(dev, lp->phy[lp->active].gep);
3843 outl(1, DE4X5_SICR);
3844 return;
3845 } else {
3846 csr15 = lp->cache.csr15;
3847 csr14 = lp->cache.csr14;
3848 csr13 = lp->cache.csr13;
3849 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3850 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3851 }
3852 } else {
3853 outl(csr15, DE4X5_SIGR);
3854 }
3855 outl(csr14, DE4X5_STRR);
3856 outl(csr13, DE4X5_SICR);
3857
3858 mdelay(10);
3859 }
3860
3861 /*
3862 ** Create a loopback ethernet packet
3863 */
3864 static void
create_packet(struct net_device * dev,char * frame,int len)3865 create_packet(struct net_device *dev, char *frame, int len)
3866 {
3867 int i;
3868 char *buf = frame;
3869
3870 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3871 *buf++ = dev->dev_addr[i];
3872 }
3873 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3874 *buf++ = dev->dev_addr[i];
3875 }
3876
3877 *buf++ = 0; /* Packet length (2 bytes) */
3878 *buf++ = 1;
3879 }
3880
3881 /*
3882 ** Look for a particular board name in the EISA configuration space
3883 */
3884 static int
EISA_signature(char * name,struct device * device)3885 EISA_signature(char *name, struct device *device)
3886 {
3887 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3888 struct eisa_device *edev;
3889
3890 *name = '\0';
3891 edev = to_eisa_device (device);
3892 i = edev->id.driver_data;
3893
3894 if (i >= 0 && i < siglen) {
3895 strcpy (name, de4x5_signatures[i]);
3896 status = 1;
3897 }
3898
3899 return status; /* return the device name string */
3900 }
3901
3902 /*
3903 ** Look for a particular board name in the PCI configuration space
3904 */
3905 static void
PCI_signature(char * name,struct de4x5_private * lp)3906 PCI_signature(char *name, struct de4x5_private *lp)
3907 {
3908 int i, siglen = ARRAY_SIZE(de4x5_signatures);
3909
3910 if (lp->chipset == DC21040) {
3911 strcpy(name, "DE434/5");
3912 return;
3913 } else { /* Search for a DEC name in the SROM */
3914 int tmp = *((char *)&lp->srom + 19) * 3;
3915 strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3916 }
3917 name[8] = '\0';
3918 for (i=0; i<siglen; i++) {
3919 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3920 }
3921 if (i == siglen) {
3922 if (dec_only) {
3923 *name = '\0';
3924 } else { /* Use chip name to avoid confusion */
3925 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3926 ((lp->chipset == DC21041) ? "DC21041" :
3927 ((lp->chipset == DC21140) ? "DC21140" :
3928 ((lp->chipset == DC21142) ? "DC21142" :
3929 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3930 )))))));
3931 }
3932 if (lp->chipset != DC21041) {
3933 lp->useSROM = true; /* card is not recognisably DEC */
3934 }
3935 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3936 lp->useSROM = true;
3937 }
3938 }
3939
3940 /*
3941 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3942 ** the DC21040, else read the SROM for the other chips.
3943 ** The SROM may not be present in a multi-MAC card, so first read the
3944 ** MAC address and check for a bad address. If there is a bad one then exit
3945 ** immediately with the prior srom contents intact (the h/w address will
3946 ** be fixed up later).
3947 */
3948 static void
DevicePresent(struct net_device * dev,u_long aprom_addr)3949 DevicePresent(struct net_device *dev, u_long aprom_addr)
3950 {
3951 int i, j=0;
3952 struct de4x5_private *lp = netdev_priv(dev);
3953
3954 if (lp->chipset == DC21040) {
3955 if (lp->bus == EISA) {
3956 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3957 } else {
3958 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
3959 }
3960 } else { /* Read new srom */
3961 u_short tmp;
3962 __le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3963 for (i=0; i<(ETH_ALEN>>1); i++) {
3964 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3965 j += tmp; /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3966 *p = cpu_to_le16(tmp);
3967 }
3968 if (j == 0 || j == 3 * 0xffff) {
3969 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3970 return;
3971 }
3972
3973 p = (__le16 *)&lp->srom;
3974 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3975 tmp = srom_rd(aprom_addr, i);
3976 *p++ = cpu_to_le16(tmp);
3977 }
3978 de4x5_dbg_srom(&lp->srom);
3979 }
3980 }
3981
3982 /*
3983 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
3984 ** pointer correctly (at least on my DE425 EISA card), this routine should do
3985 ** it...from depca.c.
3986 */
3987 static void
enet_addr_rst(u_long aprom_addr)3988 enet_addr_rst(u_long aprom_addr)
3989 {
3990 union {
3991 struct {
3992 u32 a;
3993 u32 b;
3994 } llsig;
3995 char Sig[sizeof(u32) << 1];
3996 } dev;
3997 short sigLength=0;
3998 s8 data;
3999 int i, j;
4000
4001 dev.llsig.a = ETH_PROM_SIG;
4002 dev.llsig.b = ETH_PROM_SIG;
4003 sigLength = sizeof(u32) << 1;
4004
4005 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4006 data = inb(aprom_addr);
4007 if (dev.Sig[j] == data) { /* track signature */
4008 j++;
4009 } else { /* lost signature; begin search again */
4010 if (data == dev.Sig[0]) { /* rare case.... */
4011 j=1;
4012 } else {
4013 j=0;
4014 }
4015 }
4016 }
4017 }
4018
4019 /*
4020 ** For the bad status case and no SROM, then add one to the previous
4021 ** address. However, need to add one backwards in case we have 0xff
4022 ** as one or more of the bytes. Only the last 3 bytes should be checked
4023 ** as the first three are invariant - assigned to an organisation.
4024 */
4025 static int
get_hw_addr(struct net_device * dev)4026 get_hw_addr(struct net_device *dev)
4027 {
4028 u_long iobase = dev->base_addr;
4029 int broken, i, k, tmp, status = 0;
4030 u_short j,chksum;
4031 struct de4x5_private *lp = netdev_priv(dev);
4032
4033 broken = de4x5_bad_srom(lp);
4034
4035 for (i=0,k=0,j=0;j<3;j++) {
4036 k <<= 1;
4037 if (k > 0xffff) k-=0xffff;
4038
4039 if (lp->bus == PCI) {
4040 if (lp->chipset == DC21040) {
4041 while ((tmp = inl(DE4X5_APROM)) < 0);
4042 k += (u_char) tmp;
4043 dev->dev_addr[i++] = (u_char) tmp;
4044 while ((tmp = inl(DE4X5_APROM)) < 0);
4045 k += (u_short) (tmp << 8);
4046 dev->dev_addr[i++] = (u_char) tmp;
4047 } else if (!broken) {
4048 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4049 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4050 } else if ((broken == SMC) || (broken == ACCTON)) {
4051 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4052 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4053 }
4054 } else {
4055 k += (u_char) (tmp = inb(EISA_APROM));
4056 dev->dev_addr[i++] = (u_char) tmp;
4057 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4058 dev->dev_addr[i++] = (u_char) tmp;
4059 }
4060
4061 if (k > 0xffff) k-=0xffff;
4062 }
4063 if (k == 0xffff) k=0;
4064
4065 if (lp->bus == PCI) {
4066 if (lp->chipset == DC21040) {
4067 while ((tmp = inl(DE4X5_APROM)) < 0);
4068 chksum = (u_char) tmp;
4069 while ((tmp = inl(DE4X5_APROM)) < 0);
4070 chksum |= (u_short) (tmp << 8);
4071 if ((k != chksum) && (dec_only)) status = -1;
4072 }
4073 } else {
4074 chksum = (u_char) inb(EISA_APROM);
4075 chksum |= (u_short) (inb(EISA_APROM) << 8);
4076 if ((k != chksum) && (dec_only)) status = -1;
4077 }
4078
4079 /* If possible, try to fix a broken card - SMC only so far */
4080 srom_repair(dev, broken);
4081
4082 #ifdef CONFIG_PPC_PMAC
4083 /*
4084 ** If the address starts with 00 a0, we have to bit-reverse
4085 ** each byte of the address.
4086 */
4087 if ( machine_is(powermac) &&
4088 (dev->dev_addr[0] == 0) &&
4089 (dev->dev_addr[1] == 0xa0) )
4090 {
4091 for (i = 0; i < ETH_ALEN; ++i)
4092 {
4093 int x = dev->dev_addr[i];
4094 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4095 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4096 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4097 }
4098 }
4099 #endif /* CONFIG_PPC_PMAC */
4100
4101 /* Test for a bad enet address */
4102 status = test_bad_enet(dev, status);
4103
4104 return status;
4105 }
4106
4107 /*
4108 ** Test for enet addresses in the first 32 bytes.
4109 */
4110 static int
de4x5_bad_srom(struct de4x5_private * lp)4111 de4x5_bad_srom(struct de4x5_private *lp)
4112 {
4113 int i, status = 0;
4114
4115 for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4116 if (!memcmp(&lp->srom, &enet_det[i], 3) &&
4117 !memcmp((char *)&lp->srom+0x10, &enet_det[i], 3)) {
4118 if (i == 0) {
4119 status = SMC;
4120 } else if (i == 1) {
4121 status = ACCTON;
4122 }
4123 break;
4124 }
4125 }
4126
4127 return status;
4128 }
4129
4130 static void
srom_repair(struct net_device * dev,int card)4131 srom_repair(struct net_device *dev, int card)
4132 {
4133 struct de4x5_private *lp = netdev_priv(dev);
4134
4135 switch(card) {
4136 case SMC:
4137 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4138 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4139 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4140 lp->useSROM = true;
4141 break;
4142 }
4143 }
4144
4145 /*
4146 ** Assume that the irq's do not follow the PCI spec - this is seems
4147 ** to be true so far (2 for 2).
4148 */
4149 static int
test_bad_enet(struct net_device * dev,int status)4150 test_bad_enet(struct net_device *dev, int status)
4151 {
4152 struct de4x5_private *lp = netdev_priv(dev);
4153 int i, tmp;
4154
4155 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4156 if ((tmp == 0) || (tmp == 0x5fa)) {
4157 if ((lp->chipset == last.chipset) &&
4158 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4159 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4160 for (i=ETH_ALEN-1; i>2; --i) {
4161 dev->dev_addr[i] += 1;
4162 if (dev->dev_addr[i] != 0) break;
4163 }
4164 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4165 if (!an_exception(lp)) {
4166 dev->irq = last.irq;
4167 }
4168
4169 status = 0;
4170 }
4171 } else if (!status) {
4172 last.chipset = lp->chipset;
4173 last.bus = lp->bus_num;
4174 last.irq = dev->irq;
4175 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4176 }
4177
4178 return status;
4179 }
4180
4181 /*
4182 ** List of board exceptions with correctly wired IRQs
4183 */
4184 static int
an_exception(struct de4x5_private * lp)4185 an_exception(struct de4x5_private *lp)
4186 {
4187 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4188 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4189 return -1;
4190 }
4191
4192 return 0;
4193 }
4194
4195 /*
4196 ** SROM Read
4197 */
4198 static short
srom_rd(u_long addr,u_char offset)4199 srom_rd(u_long addr, u_char offset)
4200 {
4201 sendto_srom(SROM_RD | SROM_SR, addr);
4202
4203 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4204 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4205 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4206
4207 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4208 }
4209
4210 static void
srom_latch(u_int command,u_long addr)4211 srom_latch(u_int command, u_long addr)
4212 {
4213 sendto_srom(command, addr);
4214 sendto_srom(command | DT_CLK, addr);
4215 sendto_srom(command, addr);
4216 }
4217
4218 static void
srom_command(u_int command,u_long addr)4219 srom_command(u_int command, u_long addr)
4220 {
4221 srom_latch(command, addr);
4222 srom_latch(command, addr);
4223 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4224 }
4225
4226 static void
srom_address(u_int command,u_long addr,u_char offset)4227 srom_address(u_int command, u_long addr, u_char offset)
4228 {
4229 int i, a;
4230
4231 a = offset << 2;
4232 for (i=0; i<6; i++, a <<= 1) {
4233 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4234 }
4235 udelay(1);
4236
4237 i = (getfrom_srom(addr) >> 3) & 0x01;
4238 }
4239
4240 static short
srom_data(u_int command,u_long addr)4241 srom_data(u_int command, u_long addr)
4242 {
4243 int i;
4244 short word = 0;
4245 s32 tmp;
4246
4247 for (i=0; i<16; i++) {
4248 sendto_srom(command | DT_CLK, addr);
4249 tmp = getfrom_srom(addr);
4250 sendto_srom(command, addr);
4251
4252 word = (word << 1) | ((tmp >> 3) & 0x01);
4253 }
4254
4255 sendto_srom(command & 0x0000ff00, addr);
4256
4257 return word;
4258 }
4259
4260 /*
4261 static void
4262 srom_busy(u_int command, u_long addr)
4263 {
4264 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4265
4266 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4267 mdelay(1);
4268 }
4269
4270 sendto_srom(command & 0x0000ff00, addr);
4271 }
4272 */
4273
4274 static void
sendto_srom(u_int command,u_long addr)4275 sendto_srom(u_int command, u_long addr)
4276 {
4277 outl(command, addr);
4278 udelay(1);
4279 }
4280
4281 static int
getfrom_srom(u_long addr)4282 getfrom_srom(u_long addr)
4283 {
4284 s32 tmp;
4285
4286 tmp = inl(addr);
4287 udelay(1);
4288
4289 return tmp;
4290 }
4291
4292 static int
srom_infoleaf_info(struct net_device * dev)4293 srom_infoleaf_info(struct net_device *dev)
4294 {
4295 struct de4x5_private *lp = netdev_priv(dev);
4296 int i, count;
4297 u_char *p;
4298
4299 /* Find the infoleaf decoder function that matches this chipset */
4300 for (i=0; i<INFOLEAF_SIZE; i++) {
4301 if (lp->chipset == infoleaf_array[i].chipset) break;
4302 }
4303 if (i == INFOLEAF_SIZE) {
4304 lp->useSROM = false;
4305 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4306 dev->name);
4307 return -ENXIO;
4308 }
4309
4310 lp->infoleaf_fn = infoleaf_array[i].fn;
4311
4312 /* Find the information offset that this function should use */
4313 count = *((u_char *)&lp->srom + 19);
4314 p = (u_char *)&lp->srom + 26;
4315
4316 if (count > 1) {
4317 for (i=count; i; --i, p+=3) {
4318 if (lp->device == *p) break;
4319 }
4320 if (i == 0) {
4321 lp->useSROM = false;
4322 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4323 dev->name, lp->device);
4324 return -ENXIO;
4325 }
4326 }
4327
4328 lp->infoleaf_offset = get_unaligned_le16(p + 1);
4329
4330 return 0;
4331 }
4332
4333 /*
4334 ** This routine loads any type 1 or 3 MII info into the mii device
4335 ** struct and executes any type 5 code to reset PHY devices for this
4336 ** controller.
4337 ** The info for the MII devices will be valid since the index used
4338 ** will follow the discovery process from MII address 1-31 then 0.
4339 */
4340 static void
srom_init(struct net_device * dev)4341 srom_init(struct net_device *dev)
4342 {
4343 struct de4x5_private *lp = netdev_priv(dev);
4344 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4345 u_char count;
4346
4347 p+=2;
4348 if (lp->chipset == DC21140) {
4349 lp->cache.gepc = (*p++ | GEP_CTRL);
4350 gep_wr(lp->cache.gepc, dev);
4351 }
4352
4353 /* Block count */
4354 count = *p++;
4355
4356 /* Jump the infoblocks to find types */
4357 for (;count; --count) {
4358 if (*p < 128) {
4359 p += COMPACT_LEN;
4360 } else if (*(p+1) == 5) {
4361 type5_infoblock(dev, 1, p);
4362 p += ((*p & BLOCK_LEN) + 1);
4363 } else if (*(p+1) == 4) {
4364 p += ((*p & BLOCK_LEN) + 1);
4365 } else if (*(p+1) == 3) {
4366 type3_infoblock(dev, 1, p);
4367 p += ((*p & BLOCK_LEN) + 1);
4368 } else if (*(p+1) == 2) {
4369 p += ((*p & BLOCK_LEN) + 1);
4370 } else if (*(p+1) == 1) {
4371 type1_infoblock(dev, 1, p);
4372 p += ((*p & BLOCK_LEN) + 1);
4373 } else {
4374 p += ((*p & BLOCK_LEN) + 1);
4375 }
4376 }
4377 }
4378
4379 /*
4380 ** A generic routine that writes GEP control, data and reset information
4381 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4382 */
4383 static void
srom_exec(struct net_device * dev,u_char * p)4384 srom_exec(struct net_device *dev, u_char *p)
4385 {
4386 struct de4x5_private *lp = netdev_priv(dev);
4387 u_long iobase = dev->base_addr;
4388 u_char count = (p ? *p++ : 0);
4389 u_short *w = (u_short *)p;
4390
4391 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4392
4393 if (lp->chipset != DC21140) RESET_SIA;
4394
4395 while (count--) {
4396 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4397 *p++ : get_unaligned_le16(w++)), dev);
4398 mdelay(2); /* 2ms per action */
4399 }
4400
4401 if (lp->chipset != DC21140) {
4402 outl(lp->cache.csr14, DE4X5_STRR);
4403 outl(lp->cache.csr13, DE4X5_SICR);
4404 }
4405 }
4406
4407 /*
4408 ** Basically this function is a NOP since it will never be called,
4409 ** unless I implement the DC21041 SROM functions. There's no need
4410 ** since the existing code will be satisfactory for all boards.
4411 */
4412 static int
dc21041_infoleaf(struct net_device * dev)4413 dc21041_infoleaf(struct net_device *dev)
4414 {
4415 return DE4X5_AUTOSENSE_MS;
4416 }
4417
4418 static int
dc21140_infoleaf(struct net_device * dev)4419 dc21140_infoleaf(struct net_device *dev)
4420 {
4421 struct de4x5_private *lp = netdev_priv(dev);
4422 u_char count = 0;
4423 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4424 int next_tick = DE4X5_AUTOSENSE_MS;
4425
4426 /* Read the connection type */
4427 p+=2;
4428
4429 /* GEP control */
4430 lp->cache.gepc = (*p++ | GEP_CTRL);
4431
4432 /* Block count */
4433 count = *p++;
4434
4435 /* Recursively figure out the info blocks */
4436 if (*p < 128) {
4437 next_tick = dc_infoblock[COMPACT](dev, count, p);
4438 } else {
4439 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4440 }
4441
4442 if (lp->tcount == count) {
4443 lp->media = NC;
4444 if (lp->media != lp->c_media) {
4445 de4x5_dbg_media(dev);
4446 lp->c_media = lp->media;
4447 }
4448 lp->media = INIT;
4449 lp->tcount = 0;
4450 lp->tx_enable = false;
4451 }
4452
4453 return next_tick & ~TIMER_CB;
4454 }
4455
4456 static int
dc21142_infoleaf(struct net_device * dev)4457 dc21142_infoleaf(struct net_device *dev)
4458 {
4459 struct de4x5_private *lp = netdev_priv(dev);
4460 u_char count = 0;
4461 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4462 int next_tick = DE4X5_AUTOSENSE_MS;
4463
4464 /* Read the connection type */
4465 p+=2;
4466
4467 /* Block count */
4468 count = *p++;
4469
4470 /* Recursively figure out the info blocks */
4471 if (*p < 128) {
4472 next_tick = dc_infoblock[COMPACT](dev, count, p);
4473 } else {
4474 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4475 }
4476
4477 if (lp->tcount == count) {
4478 lp->media = NC;
4479 if (lp->media != lp->c_media) {
4480 de4x5_dbg_media(dev);
4481 lp->c_media = lp->media;
4482 }
4483 lp->media = INIT;
4484 lp->tcount = 0;
4485 lp->tx_enable = false;
4486 }
4487
4488 return next_tick & ~TIMER_CB;
4489 }
4490
4491 static int
dc21143_infoleaf(struct net_device * dev)4492 dc21143_infoleaf(struct net_device *dev)
4493 {
4494 struct de4x5_private *lp = netdev_priv(dev);
4495 u_char count = 0;
4496 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4497 int next_tick = DE4X5_AUTOSENSE_MS;
4498
4499 /* Read the connection type */
4500 p+=2;
4501
4502 /* Block count */
4503 count = *p++;
4504
4505 /* Recursively figure out the info blocks */
4506 if (*p < 128) {
4507 next_tick = dc_infoblock[COMPACT](dev, count, p);
4508 } else {
4509 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4510 }
4511 if (lp->tcount == count) {
4512 lp->media = NC;
4513 if (lp->media != lp->c_media) {
4514 de4x5_dbg_media(dev);
4515 lp->c_media = lp->media;
4516 }
4517 lp->media = INIT;
4518 lp->tcount = 0;
4519 lp->tx_enable = false;
4520 }
4521
4522 return next_tick & ~TIMER_CB;
4523 }
4524
4525 /*
4526 ** The compact infoblock is only designed for DC21140[A] chips, so
4527 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4528 */
4529 static int
compact_infoblock(struct net_device * dev,u_char count,u_char * p)4530 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4531 {
4532 struct de4x5_private *lp = netdev_priv(dev);
4533 u_char flags, csr6;
4534
4535 /* Recursively figure out the info blocks */
4536 if (--count > lp->tcount) {
4537 if (*(p+COMPACT_LEN) < 128) {
4538 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4539 } else {
4540 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4541 }
4542 }
4543
4544 if ((lp->media == INIT) && (lp->timeout < 0)) {
4545 lp->ibn = COMPACT;
4546 lp->active = 0;
4547 gep_wr(lp->cache.gepc, dev);
4548 lp->infoblock_media = (*p++) & COMPACT_MC;
4549 lp->cache.gep = *p++;
4550 csr6 = *p++;
4551 flags = *p++;
4552
4553 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4554 lp->defMedium = (flags & 0x40) ? -1 : 0;
4555 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4556 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4557 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4558 lp->useMII = false;
4559
4560 de4x5_switch_mac_port(dev);
4561 }
4562
4563 return dc21140m_autoconf(dev);
4564 }
4565
4566 /*
4567 ** This block describes non MII media for the DC21140[A] only.
4568 */
4569 static int
type0_infoblock(struct net_device * dev,u_char count,u_char * p)4570 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4571 {
4572 struct de4x5_private *lp = netdev_priv(dev);
4573 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4574
4575 /* Recursively figure out the info blocks */
4576 if (--count > lp->tcount) {
4577 if (*(p+len) < 128) {
4578 return dc_infoblock[COMPACT](dev, count, p+len);
4579 } else {
4580 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4581 }
4582 }
4583
4584 if ((lp->media == INIT) && (lp->timeout < 0)) {
4585 lp->ibn = 0;
4586 lp->active = 0;
4587 gep_wr(lp->cache.gepc, dev);
4588 p+=2;
4589 lp->infoblock_media = (*p++) & BLOCK0_MC;
4590 lp->cache.gep = *p++;
4591 csr6 = *p++;
4592 flags = *p++;
4593
4594 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4595 lp->defMedium = (flags & 0x40) ? -1 : 0;
4596 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4597 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4598 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4599 lp->useMII = false;
4600
4601 de4x5_switch_mac_port(dev);
4602 }
4603
4604 return dc21140m_autoconf(dev);
4605 }
4606
4607 /* These functions are under construction! */
4608
4609 static int
type1_infoblock(struct net_device * dev,u_char count,u_char * p)4610 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4611 {
4612 struct de4x5_private *lp = netdev_priv(dev);
4613 u_char len = (*p & BLOCK_LEN)+1;
4614
4615 /* Recursively figure out the info blocks */
4616 if (--count > lp->tcount) {
4617 if (*(p+len) < 128) {
4618 return dc_infoblock[COMPACT](dev, count, p+len);
4619 } else {
4620 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4621 }
4622 }
4623
4624 p += 2;
4625 if (lp->state == INITIALISED) {
4626 lp->ibn = 1;
4627 lp->active = *p++;
4628 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4629 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4630 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4631 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4632 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4633 lp->phy[lp->active].ttm = get_unaligned_le16(p);
4634 return 0;
4635 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4636 lp->ibn = 1;
4637 lp->active = *p;
4638 lp->infoblock_csr6 = OMR_MII_100;
4639 lp->useMII = true;
4640 lp->infoblock_media = ANS;
4641
4642 de4x5_switch_mac_port(dev);
4643 }
4644
4645 return dc21140m_autoconf(dev);
4646 }
4647
4648 static int
type2_infoblock(struct net_device * dev,u_char count,u_char * p)4649 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4650 {
4651 struct de4x5_private *lp = netdev_priv(dev);
4652 u_char len = (*p & BLOCK_LEN)+1;
4653
4654 /* Recursively figure out the info blocks */
4655 if (--count > lp->tcount) {
4656 if (*(p+len) < 128) {
4657 return dc_infoblock[COMPACT](dev, count, p+len);
4658 } else {
4659 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4660 }
4661 }
4662
4663 if ((lp->media == INIT) && (lp->timeout < 0)) {
4664 lp->ibn = 2;
4665 lp->active = 0;
4666 p += 2;
4667 lp->infoblock_media = (*p) & MEDIA_CODE;
4668
4669 if ((*p++) & EXT_FIELD) {
4670 lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4671 lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4672 lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4673 } else {
4674 lp->cache.csr13 = CSR13;
4675 lp->cache.csr14 = CSR14;
4676 lp->cache.csr15 = CSR15;
4677 }
4678 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4679 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16);
4680 lp->infoblock_csr6 = OMR_SIA;
4681 lp->useMII = false;
4682
4683 de4x5_switch_mac_port(dev);
4684 }
4685
4686 return dc2114x_autoconf(dev);
4687 }
4688
4689 static int
type3_infoblock(struct net_device * dev,u_char count,u_char * p)4690 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4691 {
4692 struct de4x5_private *lp = netdev_priv(dev);
4693 u_char len = (*p & BLOCK_LEN)+1;
4694
4695 /* Recursively figure out the info blocks */
4696 if (--count > lp->tcount) {
4697 if (*(p+len) < 128) {
4698 return dc_infoblock[COMPACT](dev, count, p+len);
4699 } else {
4700 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4701 }
4702 }
4703
4704 p += 2;
4705 if (lp->state == INITIALISED) {
4706 lp->ibn = 3;
4707 lp->active = *p++;
4708 if (MOTO_SROM_BUG) lp->active = 0;
4709 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4710 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4711 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4712 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4713 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4714 lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4715 lp->phy[lp->active].mci = *p;
4716 return 0;
4717 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4718 lp->ibn = 3;
4719 lp->active = *p;
4720 if (MOTO_SROM_BUG) lp->active = 0;
4721 lp->infoblock_csr6 = OMR_MII_100;
4722 lp->useMII = true;
4723 lp->infoblock_media = ANS;
4724
4725 de4x5_switch_mac_port(dev);
4726 }
4727
4728 return dc2114x_autoconf(dev);
4729 }
4730
4731 static int
type4_infoblock(struct net_device * dev,u_char count,u_char * p)4732 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4733 {
4734 struct de4x5_private *lp = netdev_priv(dev);
4735 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4736
4737 /* Recursively figure out the info blocks */
4738 if (--count > lp->tcount) {
4739 if (*(p+len) < 128) {
4740 return dc_infoblock[COMPACT](dev, count, p+len);
4741 } else {
4742 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4743 }
4744 }
4745
4746 if ((lp->media == INIT) && (lp->timeout < 0)) {
4747 lp->ibn = 4;
4748 lp->active = 0;
4749 p+=2;
4750 lp->infoblock_media = (*p++) & MEDIA_CODE;
4751 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4752 lp->cache.csr14 = CSR14;
4753 lp->cache.csr15 = CSR15;
4754 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4755 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4756 csr6 = *p++;
4757 flags = *p++;
4758
4759 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4760 lp->defMedium = (flags & 0x40) ? -1 : 0;
4761 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4762 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4763 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4764 lp->useMII = false;
4765
4766 de4x5_switch_mac_port(dev);
4767 }
4768
4769 return dc2114x_autoconf(dev);
4770 }
4771
4772 /*
4773 ** This block type provides information for resetting external devices
4774 ** (chips) through the General Purpose Register.
4775 */
4776 static int
type5_infoblock(struct net_device * dev,u_char count,u_char * p)4777 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4778 {
4779 struct de4x5_private *lp = netdev_priv(dev);
4780 u_char len = (*p & BLOCK_LEN)+1;
4781
4782 /* Recursively figure out the info blocks */
4783 if (--count > lp->tcount) {
4784 if (*(p+len) < 128) {
4785 return dc_infoblock[COMPACT](dev, count, p+len);
4786 } else {
4787 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4788 }
4789 }
4790
4791 /* Must be initializing to run this code */
4792 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4793 p+=2;
4794 lp->rst = p;
4795 srom_exec(dev, lp->rst);
4796 }
4797
4798 return DE4X5_AUTOSENSE_MS;
4799 }
4800
4801 /*
4802 ** MII Read/Write
4803 */
4804
4805 static int
mii_rd(u_char phyreg,u_char phyaddr,u_long ioaddr)4806 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4807 {
4808 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4809 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4810 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4811 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4812 mii_address(phyreg, ioaddr); /* PHY Register to read */
4813 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4814
4815 return mii_rdata(ioaddr); /* Read data */
4816 }
4817
4818 static void
mii_wr(int data,u_char phyreg,u_char phyaddr,u_long ioaddr)4819 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4820 {
4821 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4822 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4823 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4824 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4825 mii_address(phyreg, ioaddr); /* PHY Register to write */
4826 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4827 data = mii_swap(data, 16); /* Swap data bit ordering */
4828 mii_wdata(data, 16, ioaddr); /* Write data */
4829 }
4830
4831 static int
mii_rdata(u_long ioaddr)4832 mii_rdata(u_long ioaddr)
4833 {
4834 int i;
4835 s32 tmp = 0;
4836
4837 for (i=0; i<16; i++) {
4838 tmp <<= 1;
4839 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4840 }
4841
4842 return tmp;
4843 }
4844
4845 static void
mii_wdata(int data,int len,u_long ioaddr)4846 mii_wdata(int data, int len, u_long ioaddr)
4847 {
4848 int i;
4849
4850 for (i=0; i<len; i++) {
4851 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4852 data >>= 1;
4853 }
4854 }
4855
4856 static void
mii_address(u_char addr,u_long ioaddr)4857 mii_address(u_char addr, u_long ioaddr)
4858 {
4859 int i;
4860
4861 addr = mii_swap(addr, 5);
4862 for (i=0; i<5; i++) {
4863 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4864 addr >>= 1;
4865 }
4866 }
4867
4868 static void
mii_ta(u_long rw,u_long ioaddr)4869 mii_ta(u_long rw, u_long ioaddr)
4870 {
4871 if (rw == MII_STWR) {
4872 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4873 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4874 } else {
4875 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4876 }
4877 }
4878
4879 static int
mii_swap(int data,int len)4880 mii_swap(int data, int len)
4881 {
4882 int i, tmp = 0;
4883
4884 for (i=0; i<len; i++) {
4885 tmp <<= 1;
4886 tmp |= (data & 1);
4887 data >>= 1;
4888 }
4889
4890 return tmp;
4891 }
4892
4893 static void
sendto_mii(u32 command,int data,u_long ioaddr)4894 sendto_mii(u32 command, int data, u_long ioaddr)
4895 {
4896 u32 j;
4897
4898 j = (data & 1) << 17;
4899 outl(command | j, ioaddr);
4900 udelay(1);
4901 outl(command | MII_MDC | j, ioaddr);
4902 udelay(1);
4903 }
4904
4905 static int
getfrom_mii(u32 command,u_long ioaddr)4906 getfrom_mii(u32 command, u_long ioaddr)
4907 {
4908 outl(command, ioaddr);
4909 udelay(1);
4910 outl(command | MII_MDC, ioaddr);
4911 udelay(1);
4912
4913 return (inl(ioaddr) >> 19) & 1;
4914 }
4915
4916 /*
4917 ** Here's 3 ways to calculate the OUI from the ID registers.
4918 */
4919 static int
mii_get_oui(u_char phyaddr,u_long ioaddr)4920 mii_get_oui(u_char phyaddr, u_long ioaddr)
4921 {
4922 /*
4923 union {
4924 u_short reg;
4925 u_char breg[2];
4926 } a;
4927 int i, r2, r3, ret=0;*/
4928 int r2;
4929
4930 /* Read r2 and r3 */
4931 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4932 mii_rd(MII_ID1, phyaddr, ioaddr);
4933 /* SEEQ and Cypress way * /
4934 / * Shuffle r2 and r3 * /
4935 a.reg=0;
4936 r3 = ((r3>>10)|(r2<<6))&0x0ff;
4937 r2 = ((r2>>2)&0x3fff);
4938
4939 / * Bit reverse r3 * /
4940 for (i=0;i<8;i++) {
4941 ret<<=1;
4942 ret |= (r3&1);
4943 r3>>=1;
4944 }
4945
4946 / * Bit reverse r2 * /
4947 for (i=0;i<16;i++) {
4948 a.reg<<=1;
4949 a.reg |= (r2&1);
4950 r2>>=1;
4951 }
4952
4953 / * Swap r2 bytes * /
4954 i=a.breg[0];
4955 a.breg[0]=a.breg[1];
4956 a.breg[1]=i;
4957
4958 return (a.reg<<8)|ret; */ /* SEEQ and Cypress way */
4959 /* return (r2<<6)|(u_int)(r3>>10); */ /* NATIONAL and BROADCOM way */
4960 return r2; /* (I did it) My way */
4961 }
4962
4963 /*
4964 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4965 */
4966 static int
mii_get_phy(struct net_device * dev)4967 mii_get_phy(struct net_device *dev)
4968 {
4969 struct de4x5_private *lp = netdev_priv(dev);
4970 u_long iobase = dev->base_addr;
4971 int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4972 int id;
4973
4974 lp->active = 0;
4975 lp->useMII = true;
4976
4977 /* Search the MII address space for possible PHY devices */
4978 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4979 lp->phy[lp->active].addr = i;
4980 if (i==0) n++; /* Count cycles */
4981 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4982 id = mii_get_oui(i, DE4X5_MII);
4983 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
4984 for (j=0; j<limit; j++) { /* Search PHY table */
4985 if (id != phy_info[j].id) continue; /* ID match? */
4986 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4987 if (k < DE4X5_MAX_PHY) {
4988 memcpy((char *)&lp->phy[k],
4989 (char *)&phy_info[j], sizeof(struct phy_table));
4990 lp->phy[k].addr = i;
4991 lp->mii_cnt++;
4992 lp->active++;
4993 } else {
4994 goto purgatory; /* Stop the search */
4995 }
4996 break;
4997 }
4998 if ((j == limit) && (i < DE4X5_MAX_MII)) {
4999 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5000 lp->phy[k].addr = i;
5001 lp->phy[k].id = id;
5002 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
5003 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5004 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5005 lp->mii_cnt++;
5006 lp->active++;
5007 printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5008 j = de4x5_debug;
5009 de4x5_debug |= DEBUG_MII;
5010 de4x5_dbg_mii(dev, k);
5011 de4x5_debug = j;
5012 printk("\n");
5013 }
5014 }
5015 purgatory:
5016 lp->active = 0;
5017 if (lp->phy[0].id) { /* Reset the PHY devices */
5018 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5019 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5020 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5021
5022 de4x5_dbg_mii(dev, k);
5023 }
5024 }
5025 if (!lp->mii_cnt) lp->useMII = false;
5026
5027 return lp->mii_cnt;
5028 }
5029
5030 static char *
build_setup_frame(struct net_device * dev,int mode)5031 build_setup_frame(struct net_device *dev, int mode)
5032 {
5033 struct de4x5_private *lp = netdev_priv(dev);
5034 int i;
5035 char *pa = lp->setup_frame;
5036
5037 /* Initialise the setup frame */
5038 if (mode == ALL) {
5039 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5040 }
5041
5042 if (lp->setup_f == HASH_PERF) {
5043 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5044 *(pa + i) = dev->dev_addr[i]; /* Host address */
5045 if (i & 0x01) pa += 2;
5046 }
5047 *(lp->setup_frame + (DE4X5_HASH_TABLE_LEN >> 3) - 3) = 0x80;
5048 } else {
5049 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5050 *(pa + (i&1)) = dev->dev_addr[i];
5051 if (i & 0x01) pa += 4;
5052 }
5053 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5054 *(pa + (i&1)) = (char) 0xff;
5055 if (i & 0x01) pa += 4;
5056 }
5057 }
5058
5059 return pa; /* Points to the next entry */
5060 }
5061
5062 static void
disable_ast(struct net_device * dev)5063 disable_ast(struct net_device *dev)
5064 {
5065 struct de4x5_private *lp = netdev_priv(dev);
5066 del_timer_sync(&lp->timer);
5067 }
5068
5069 static long
de4x5_switch_mac_port(struct net_device * dev)5070 de4x5_switch_mac_port(struct net_device *dev)
5071 {
5072 struct de4x5_private *lp = netdev_priv(dev);
5073 u_long iobase = dev->base_addr;
5074 s32 omr;
5075
5076 STOP_DE4X5;
5077
5078 /* Assert the OMR_PS bit in CSR6 */
5079 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5080 OMR_FDX));
5081 omr |= lp->infoblock_csr6;
5082 if (omr & OMR_PS) omr |= OMR_HBD;
5083 outl(omr, DE4X5_OMR);
5084
5085 /* Soft Reset */
5086 RESET_DE4X5;
5087
5088 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5089 if (lp->chipset == DC21140) {
5090 gep_wr(lp->cache.gepc, dev);
5091 gep_wr(lp->cache.gep, dev);
5092 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5093 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5094 }
5095
5096 /* Restore CSR6 */
5097 outl(omr, DE4X5_OMR);
5098
5099 /* Reset CSR8 */
5100 inl(DE4X5_MFC);
5101
5102 return omr;
5103 }
5104
5105 static void
gep_wr(s32 data,struct net_device * dev)5106 gep_wr(s32 data, struct net_device *dev)
5107 {
5108 struct de4x5_private *lp = netdev_priv(dev);
5109 u_long iobase = dev->base_addr;
5110
5111 if (lp->chipset == DC21140) {
5112 outl(data, DE4X5_GEP);
5113 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5114 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5115 }
5116 }
5117
5118 static int
gep_rd(struct net_device * dev)5119 gep_rd(struct net_device *dev)
5120 {
5121 struct de4x5_private *lp = netdev_priv(dev);
5122 u_long iobase = dev->base_addr;
5123
5124 if (lp->chipset == DC21140) {
5125 return inl(DE4X5_GEP);
5126 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5127 return inl(DE4X5_SIGR) & 0x000fffff;
5128 }
5129
5130 return 0;
5131 }
5132
5133 static void
yawn(struct net_device * dev,int state)5134 yawn(struct net_device *dev, int state)
5135 {
5136 struct de4x5_private *lp = netdev_priv(dev);
5137 u_long iobase = dev->base_addr;
5138
5139 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5140
5141 if(lp->bus == EISA) {
5142 switch(state) {
5143 case WAKEUP:
5144 outb(WAKEUP, PCI_CFPM);
5145 mdelay(10);
5146 break;
5147
5148 case SNOOZE:
5149 outb(SNOOZE, PCI_CFPM);
5150 break;
5151
5152 case SLEEP:
5153 outl(0, DE4X5_SICR);
5154 outb(SLEEP, PCI_CFPM);
5155 break;
5156 }
5157 } else {
5158 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5159 switch(state) {
5160 case WAKEUP:
5161 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5162 mdelay(10);
5163 break;
5164
5165 case SNOOZE:
5166 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5167 break;
5168
5169 case SLEEP:
5170 outl(0, DE4X5_SICR);
5171 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5172 break;
5173 }
5174 }
5175 }
5176
5177 static void
de4x5_parse_params(struct net_device * dev)5178 de4x5_parse_params(struct net_device *dev)
5179 {
5180 struct de4x5_private *lp = netdev_priv(dev);
5181 char *p, *q, t;
5182
5183 lp->params.fdx = false;
5184 lp->params.autosense = AUTO;
5185
5186 if (args == NULL) return;
5187
5188 if ((p = strstr(args, dev->name))) {
5189 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5190 t = *q;
5191 *q = '\0';
5192
5193 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5194
5195 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5196 if (strstr(p, "TP_NW")) {
5197 lp->params.autosense = TP_NW;
5198 } else if (strstr(p, "TP")) {
5199 lp->params.autosense = TP;
5200 } else if (strstr(p, "BNC_AUI")) {
5201 lp->params.autosense = BNC;
5202 } else if (strstr(p, "BNC")) {
5203 lp->params.autosense = BNC;
5204 } else if (strstr(p, "AUI")) {
5205 lp->params.autosense = AUI;
5206 } else if (strstr(p, "10Mb")) {
5207 lp->params.autosense = _10Mb;
5208 } else if (strstr(p, "100Mb")) {
5209 lp->params.autosense = _100Mb;
5210 } else if (strstr(p, "AUTO")) {
5211 lp->params.autosense = AUTO;
5212 }
5213 }
5214 *q = t;
5215 }
5216 }
5217
5218 static void
de4x5_dbg_open(struct net_device * dev)5219 de4x5_dbg_open(struct net_device *dev)
5220 {
5221 struct de4x5_private *lp = netdev_priv(dev);
5222 int i;
5223
5224 if (de4x5_debug & DEBUG_OPEN) {
5225 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5226 printk("\tphysical address: %pM\n", dev->dev_addr);
5227 printk("Descriptor head addresses:\n");
5228 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5229 printk("Descriptor addresses:\nRX: ");
5230 for (i=0;i<lp->rxRingSize-1;i++){
5231 if (i < 3) {
5232 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5233 }
5234 }
5235 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5236 printk("TX: ");
5237 for (i=0;i<lp->txRingSize-1;i++){
5238 if (i < 3) {
5239 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5240 }
5241 }
5242 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5243 printk("Descriptor buffers:\nRX: ");
5244 for (i=0;i<lp->rxRingSize-1;i++){
5245 if (i < 3) {
5246 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5247 }
5248 }
5249 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5250 printk("TX: ");
5251 for (i=0;i<lp->txRingSize-1;i++){
5252 if (i < 3) {
5253 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5254 }
5255 }
5256 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5257 printk("Ring size:\nRX: %d\nTX: %d\n",
5258 (short)lp->rxRingSize,
5259 (short)lp->txRingSize);
5260 }
5261 }
5262
5263 static void
de4x5_dbg_mii(struct net_device * dev,int k)5264 de4x5_dbg_mii(struct net_device *dev, int k)
5265 {
5266 struct de4x5_private *lp = netdev_priv(dev);
5267 u_long iobase = dev->base_addr;
5268
5269 if (de4x5_debug & DEBUG_MII) {
5270 printk("\nMII device address: %d\n", lp->phy[k].addr);
5271 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5272 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5273 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5274 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5275 if (lp->phy[k].id != BROADCOM_T4) {
5276 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5277 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5278 }
5279 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5280 if (lp->phy[k].id != BROADCOM_T4) {
5281 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5282 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5283 } else {
5284 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5285 }
5286 }
5287 }
5288
5289 static void
de4x5_dbg_media(struct net_device * dev)5290 de4x5_dbg_media(struct net_device *dev)
5291 {
5292 struct de4x5_private *lp = netdev_priv(dev);
5293
5294 if (lp->media != lp->c_media) {
5295 if (de4x5_debug & DEBUG_MEDIA) {
5296 printk("%s: media is %s%s\n", dev->name,
5297 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5298 (lp->media == TP ? "TP" :
5299 (lp->media == ANS ? "TP/Nway" :
5300 (lp->media == BNC ? "BNC" :
5301 (lp->media == AUI ? "AUI" :
5302 (lp->media == BNC_AUI ? "BNC/AUI" :
5303 (lp->media == EXT_SIA ? "EXT SIA" :
5304 (lp->media == _100Mb ? "100Mb/s" :
5305 (lp->media == _10Mb ? "10Mb/s" :
5306 "???"
5307 ))))))))), (lp->fdx?" full duplex.":"."));
5308 }
5309 lp->c_media = lp->media;
5310 }
5311 }
5312
5313 static void
de4x5_dbg_srom(struct de4x5_srom * p)5314 de4x5_dbg_srom(struct de4x5_srom *p)
5315 {
5316 int i;
5317
5318 if (de4x5_debug & DEBUG_SROM) {
5319 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5320 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5321 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5322 printk("SROM version: %02x\n", (u_char)(p->version));
5323 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5324
5325 printk("Hardware Address: %pM\n", p->ieee_addr);
5326 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5327 for (i=0; i<64; i++) {
5328 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5329 }
5330 }
5331 }
5332
5333 static void
de4x5_dbg_rx(struct sk_buff * skb,int len)5334 de4x5_dbg_rx(struct sk_buff *skb, int len)
5335 {
5336 int i, j;
5337
5338 if (de4x5_debug & DEBUG_RX) {
5339 printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5340 skb->data, &skb->data[6],
5341 (u_char)skb->data[12],
5342 (u_char)skb->data[13],
5343 len);
5344 for (j=0; len>0;j+=16, len-=16) {
5345 printk(" %03x: ",j);
5346 for (i=0; i<16 && i<len; i++) {
5347 printk("%02x ",(u_char)skb->data[i+j]);
5348 }
5349 printk("\n");
5350 }
5351 }
5352 }
5353
5354 /*
5355 ** Perform IOCTL call functions here. Some are privileged operations and the
5356 ** effective uid is checked in those cases. In the normal course of events
5357 ** this function is only used for my testing.
5358 */
5359 static int
de4x5_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)5360 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5361 {
5362 struct de4x5_private *lp = netdev_priv(dev);
5363 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5364 u_long iobase = dev->base_addr;
5365 int i, j, status = 0;
5366 s32 omr;
5367 union {
5368 u8 addr[144];
5369 u16 sval[72];
5370 u32 lval[36];
5371 } tmp;
5372 u_long flags = 0;
5373
5374 switch(ioc->cmd) {
5375 case DE4X5_GET_HWADDR: /* Get the hardware address */
5376 ioc->len = ETH_ALEN;
5377 for (i=0; i<ETH_ALEN; i++) {
5378 tmp.addr[i] = dev->dev_addr[i];
5379 }
5380 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5381 break;
5382
5383 case DE4X5_SET_HWADDR: /* Set the hardware address */
5384 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5385 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5386 if (netif_queue_stopped(dev))
5387 return -EBUSY;
5388 netif_stop_queue(dev);
5389 for (i=0; i<ETH_ALEN; i++) {
5390 dev->dev_addr[i] = tmp.addr[i];
5391 }
5392 build_setup_frame(dev, PHYS_ADDR_ONLY);
5393 /* Set up the descriptor and give ownership to the card */
5394 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5395 SETUP_FRAME_LEN, (struct sk_buff *)1);
5396 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5397 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5398 netif_wake_queue(dev); /* Unlock the TX ring */
5399 break;
5400
5401 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5402 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5403 printk("%s: Boo!\n", dev->name);
5404 break;
5405
5406 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5407 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5408 omr = inl(DE4X5_OMR);
5409 omr |= OMR_PM;
5410 outl(omr, DE4X5_OMR);
5411 break;
5412
5413 case DE4X5_GET_STATS: /* Get the driver statistics */
5414 {
5415 struct pkt_stats statbuf;
5416 ioc->len = sizeof(statbuf);
5417 spin_lock_irqsave(&lp->lock, flags);
5418 memcpy(&statbuf, &lp->pktStats, ioc->len);
5419 spin_unlock_irqrestore(&lp->lock, flags);
5420 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5421 return -EFAULT;
5422 break;
5423 }
5424 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5425 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5426 spin_lock_irqsave(&lp->lock, flags);
5427 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5428 spin_unlock_irqrestore(&lp->lock, flags);
5429 break;
5430
5431 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5432 tmp.addr[0] = inl(DE4X5_OMR);
5433 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5434 break;
5435
5436 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5437 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5438 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5439 outl(tmp.addr[0], DE4X5_OMR);
5440 break;
5441
5442 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5443 j = 0;
5444 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5445 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5446 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5447 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5448 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5449 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5450 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5451 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5452 ioc->len = j;
5453 if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5454 return -EFAULT;
5455 break;
5456
5457 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5458 /*
5459 case DE4X5_DUMP:
5460 j = 0;
5461 tmp.addr[j++] = dev->irq;
5462 for (i=0; i<ETH_ALEN; i++) {
5463 tmp.addr[j++] = dev->dev_addr[i];
5464 }
5465 tmp.addr[j++] = lp->rxRingSize;
5466 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5467 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5468
5469 for (i=0;i<lp->rxRingSize-1;i++){
5470 if (i < 3) {
5471 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5472 }
5473 }
5474 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5475 for (i=0;i<lp->txRingSize-1;i++){
5476 if (i < 3) {
5477 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5478 }
5479 }
5480 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5481
5482 for (i=0;i<lp->rxRingSize-1;i++){
5483 if (i < 3) {
5484 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5485 }
5486 }
5487 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5488 for (i=0;i<lp->txRingSize-1;i++){
5489 if (i < 3) {
5490 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5491 }
5492 }
5493 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5494
5495 for (i=0;i<lp->rxRingSize;i++){
5496 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5497 }
5498 for (i=0;i<lp->txRingSize;i++){
5499 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5500 }
5501
5502 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5503 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5504 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5505 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5506 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5507 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5508 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5509 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5510 tmp.lval[j>>2] = lp->chipset; j+=4;
5511 if (lp->chipset == DC21140) {
5512 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5513 } else {
5514 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5515 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5516 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5517 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5518 }
5519 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5520 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5521 tmp.lval[j>>2] = lp->active; j+=4;
5522 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5523 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5524 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5525 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5526 if (lp->phy[lp->active].id != BROADCOM_T4) {
5527 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5528 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5529 }
5530 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5531 if (lp->phy[lp->active].id != BROADCOM_T4) {
5532 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5533 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5534 } else {
5535 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5536 }
5537 }
5538
5539 tmp.addr[j++] = lp->txRingSize;
5540 tmp.addr[j++] = netif_queue_stopped(dev);
5541
5542 ioc->len = j;
5543 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5544 break;
5545
5546 */
5547 default:
5548 return -EOPNOTSUPP;
5549 }
5550
5551 return status;
5552 }
5553
de4x5_module_init(void)5554 static int __init de4x5_module_init (void)
5555 {
5556 int err = 0;
5557
5558 #ifdef CONFIG_PCI
5559 err = pci_register_driver(&de4x5_pci_driver);
5560 #endif
5561 #ifdef CONFIG_EISA
5562 err |= eisa_driver_register (&de4x5_eisa_driver);
5563 #endif
5564
5565 return err;
5566 }
5567
de4x5_module_exit(void)5568 static void __exit de4x5_module_exit (void)
5569 {
5570 #ifdef CONFIG_PCI
5571 pci_unregister_driver (&de4x5_pci_driver);
5572 #endif
5573 #ifdef CONFIG_EISA
5574 eisa_driver_unregister (&de4x5_eisa_driver);
5575 #endif
5576 }
5577
5578 module_init (de4x5_module_init);
5579 module_exit (de4x5_module_exit);
5580