1 /*
2  * CAN bus driver for Bosch C_CAN controller
3  *
4  * Copyright (C) 2010 ST Microelectronics
5  * Bhupesh Sharma <bhupesh.sharma@st.com>
6  *
7  * Borrowed heavily from the C_CAN driver originally written by:
8  * Copyright (C) 2007
9  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10  * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11  *
12  * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13  * written by:
14  * Copyright
15  * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16  * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17  *
18  * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19  * Bosch C_CAN user manual can be obtained from:
20  * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21  * users_manual_c_can.pdf
22  *
23  * This file is licensed under the terms of the GNU General Public
24  * License version 2. This program is licensed "as is" without any
25  * warranty of any kind, whether express or implied.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39 
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
44 
45 #include "c_can.h"
46 
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN		11
49 #define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50 
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR		BIT(8)
53 
54 /* control register */
55 #define CONTROL_SWR		BIT(15)
56 #define CONTROL_TEST		BIT(7)
57 #define CONTROL_CCE		BIT(6)
58 #define CONTROL_DISABLE_AR	BIT(5)
59 #define CONTROL_ENABLE_AR	(0 << 5)
60 #define CONTROL_EIE		BIT(3)
61 #define CONTROL_SIE		BIT(2)
62 #define CONTROL_IE		BIT(1)
63 #define CONTROL_INIT		BIT(0)
64 
65 #define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
66 
67 /* test register */
68 #define TEST_RX			BIT(7)
69 #define TEST_TX1		BIT(6)
70 #define TEST_TX2		BIT(5)
71 #define TEST_LBACK		BIT(4)
72 #define TEST_SILENT		BIT(3)
73 #define TEST_BASIC		BIT(2)
74 
75 /* status register */
76 #define STATUS_PDA		BIT(10)
77 #define STATUS_BOFF		BIT(7)
78 #define STATUS_EWARN		BIT(6)
79 #define STATUS_EPASS		BIT(5)
80 #define STATUS_RXOK		BIT(4)
81 #define STATUS_TXOK		BIT(3)
82 
83 /* error counter register */
84 #define ERR_CNT_TEC_MASK	0xff
85 #define ERR_CNT_TEC_SHIFT	0
86 #define ERR_CNT_REC_SHIFT	8
87 #define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
88 #define ERR_CNT_RP_SHIFT	15
89 #define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
90 
91 /* bit-timing register */
92 #define BTR_BRP_MASK		0x3f
93 #define BTR_BRP_SHIFT		0
94 #define BTR_SJW_SHIFT		6
95 #define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
96 #define BTR_TSEG1_SHIFT		8
97 #define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
98 #define BTR_TSEG2_SHIFT		12
99 #define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
100 
101 /* interrupt register */
102 #define INT_STS_PENDING		0x8000
103 
104 /* brp extension register */
105 #define BRP_EXT_BRPE_MASK	0x0f
106 #define BRP_EXT_BRPE_SHIFT	0
107 
108 /* IFx command request */
109 #define IF_COMR_BUSY		BIT(15)
110 
111 /* IFx command mask */
112 #define IF_COMM_WR		BIT(7)
113 #define IF_COMM_MASK		BIT(6)
114 #define IF_COMM_ARB		BIT(5)
115 #define IF_COMM_CONTROL		BIT(4)
116 #define IF_COMM_CLR_INT_PND	BIT(3)
117 #define IF_COMM_TXRQST		BIT(2)
118 #define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
119 #define IF_COMM_DATAA		BIT(1)
120 #define IF_COMM_DATAB		BIT(0)
121 
122 /* TX buffer setup */
123 #define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
124 				 IF_COMM_TXRQST |		 \
125 				 IF_COMM_DATAA | IF_COMM_DATAB)
126 
127 /* For the low buffers we clear the interrupt bit, but keep newdat */
128 #define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
129 				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
130 				 IF_COMM_DATAA | IF_COMM_DATAB)
131 
132 /* For the high buffers we clear the interrupt bit and newdat */
133 #define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
134 
135 
136 /* Receive setup of message objects */
137 #define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
138 
139 /* Invalidation of message objects */
140 #define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
141 
142 /* IFx arbitration */
143 #define IF_ARB_MSGVAL		BIT(31)
144 #define IF_ARB_MSGXTD		BIT(30)
145 #define IF_ARB_TRANSMIT		BIT(29)
146 
147 /* IFx message control */
148 #define IF_MCONT_NEWDAT		BIT(15)
149 #define IF_MCONT_MSGLST		BIT(14)
150 #define IF_MCONT_INTPND		BIT(13)
151 #define IF_MCONT_UMASK		BIT(12)
152 #define IF_MCONT_TXIE		BIT(11)
153 #define IF_MCONT_RXIE		BIT(10)
154 #define IF_MCONT_RMTEN		BIT(9)
155 #define IF_MCONT_TXRQST		BIT(8)
156 #define IF_MCONT_EOB		BIT(7)
157 #define IF_MCONT_DLC_MASK	0xf
158 
159 #define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
160 #define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
161 
162 #define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
163 
164 /*
165  * Use IF1 for RX and IF2 for TX
166  */
167 #define IF_RX			0
168 #define IF_TX			1
169 
170 /* minimum timeout for checking BUSY status */
171 #define MIN_TIMEOUT_VALUE	6
172 
173 /* Wait for ~1 sec for INIT bit */
174 #define INIT_WAIT_MS		1000
175 
176 /* napi related */
177 #define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
178 
179 /* c_can lec values */
180 enum c_can_lec_type {
181 	LEC_NO_ERROR = 0,
182 	LEC_STUFF_ERROR,
183 	LEC_FORM_ERROR,
184 	LEC_ACK_ERROR,
185 	LEC_BIT1_ERROR,
186 	LEC_BIT0_ERROR,
187 	LEC_CRC_ERROR,
188 	LEC_UNUSED,
189 	LEC_MASK = LEC_UNUSED,
190 };
191 
192 /*
193  * c_can error types:
194  * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
195  */
196 enum c_can_bus_error_types {
197 	C_CAN_NO_ERROR = 0,
198 	C_CAN_BUS_OFF,
199 	C_CAN_ERROR_WARNING,
200 	C_CAN_ERROR_PASSIVE,
201 };
202 
203 static const struct can_bittiming_const c_can_bittiming_const = {
204 	.name = KBUILD_MODNAME,
205 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
206 	.tseg1_max = 16,
207 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
208 	.tseg2_max = 8,
209 	.sjw_max = 4,
210 	.brp_min = 1,
211 	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
212 	.brp_inc = 1,
213 };
214 
c_can_pm_runtime_enable(const struct c_can_priv * priv)215 static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
216 {
217 	if (priv->device)
218 		pm_runtime_enable(priv->device);
219 }
220 
c_can_pm_runtime_disable(const struct c_can_priv * priv)221 static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
222 {
223 	if (priv->device)
224 		pm_runtime_disable(priv->device);
225 }
226 
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)227 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
228 {
229 	if (priv->device)
230 		pm_runtime_get_sync(priv->device);
231 }
232 
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)233 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
234 {
235 	if (priv->device)
236 		pm_runtime_put_sync(priv->device);
237 }
238 
c_can_reset_ram(const struct c_can_priv * priv,bool enable)239 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
240 {
241 	if (priv->raminit)
242 		priv->raminit(priv, enable);
243 }
244 
c_can_irq_control(struct c_can_priv * priv,bool enable)245 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
246 {
247 	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
248 
249 	if (enable)
250 		ctrl |= CONTROL_IRQMSK;
251 
252 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
253 }
254 
c_can_obj_update(struct net_device * dev,int iface,u32 cmd,u32 obj)255 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
256 {
257 	struct c_can_priv *priv = netdev_priv(dev);
258 	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
259 
260 	priv->write_reg32(priv, reg, (cmd << 16) | obj);
261 
262 	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
263 		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
264 			return;
265 		udelay(1);
266 	}
267 	netdev_err(dev, "Updating object timed out\n");
268 
269 }
270 
c_can_object_get(struct net_device * dev,int iface,u32 obj,u32 cmd)271 static inline void c_can_object_get(struct net_device *dev, int iface,
272 				    u32 obj, u32 cmd)
273 {
274 	c_can_obj_update(dev, iface, cmd, obj);
275 }
276 
c_can_object_put(struct net_device * dev,int iface,u32 obj,u32 cmd)277 static inline void c_can_object_put(struct net_device *dev, int iface,
278 				    u32 obj, u32 cmd)
279 {
280 	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
281 }
282 
283 /*
284  * Note: According to documentation clearing TXIE while MSGVAL is set
285  * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
286  * load significantly.
287  */
c_can_inval_tx_object(struct net_device * dev,int iface,int obj)288 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
289 {
290 	struct c_can_priv *priv = netdev_priv(dev);
291 
292 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
293 	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
294 }
295 
c_can_inval_msg_object(struct net_device * dev,int iface,int obj)296 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
297 {
298 	struct c_can_priv *priv = netdev_priv(dev);
299 
300 	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
301 	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
302 	c_can_inval_tx_object(dev, iface, obj);
303 }
304 
c_can_setup_tx_object(struct net_device * dev,int iface,struct can_frame * frame,int idx)305 static void c_can_setup_tx_object(struct net_device *dev, int iface,
306 				  struct can_frame *frame, int idx)
307 {
308 	struct c_can_priv *priv = netdev_priv(dev);
309 	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
310 	bool rtr = frame->can_id & CAN_RTR_FLAG;
311 	u32 arb = IF_ARB_MSGVAL;
312 	int i;
313 
314 	if (frame->can_id & CAN_EFF_FLAG) {
315 		arb |= frame->can_id & CAN_EFF_MASK;
316 		arb |= IF_ARB_MSGXTD;
317 	} else {
318 		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
319 	}
320 
321 	if (!rtr)
322 		arb |= IF_ARB_TRANSMIT;
323 
324 	/*
325 	 * If we change the DIR bit, we need to invalidate the buffer
326 	 * first, i.e. clear the MSGVAL flag in the arbiter.
327 	 */
328 	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
329 		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
330 
331 		c_can_inval_msg_object(dev, iface, obj);
332 		change_bit(idx, &priv->tx_dir);
333 	}
334 
335 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
336 
337 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
338 
339 	if (priv->type == BOSCH_D_CAN) {
340 		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
341 
342 		for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
343 			data = (u32)frame->data[i];
344 			data |= (u32)frame->data[i + 1] << 8;
345 			data |= (u32)frame->data[i + 2] << 16;
346 			data |= (u32)frame->data[i + 3] << 24;
347 			priv->write_reg32(priv, dreg, data);
348 		}
349 	} else {
350 		for (i = 0; i < frame->can_dlc; i += 2) {
351 			priv->write_reg(priv,
352 					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
353 					frame->data[i] |
354 					(frame->data[i + 1] << 8));
355 		}
356 	}
357 }
358 
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno,u32 ctrl)359 static int c_can_handle_lost_msg_obj(struct net_device *dev,
360 				     int iface, int objno, u32 ctrl)
361 {
362 	struct net_device_stats *stats = &dev->stats;
363 	struct c_can_priv *priv = netdev_priv(dev);
364 	struct can_frame *frame;
365 	struct sk_buff *skb;
366 
367 	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
368 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
369 	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
370 
371 	stats->rx_errors++;
372 	stats->rx_over_errors++;
373 
374 	/* create an error msg */
375 	skb = alloc_can_err_skb(dev, &frame);
376 	if (unlikely(!skb))
377 		return 0;
378 
379 	frame->can_id |= CAN_ERR_CRTL;
380 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
381 
382 	netif_receive_skb(skb);
383 	return 1;
384 }
385 
c_can_read_msg_object(struct net_device * dev,int iface,u32 ctrl)386 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
387 {
388 	struct net_device_stats *stats = &dev->stats;
389 	struct c_can_priv *priv = netdev_priv(dev);
390 	struct can_frame *frame;
391 	struct sk_buff *skb;
392 	u32 arb, data;
393 
394 	skb = alloc_can_skb(dev, &frame);
395 	if (!skb) {
396 		stats->rx_dropped++;
397 		return -ENOMEM;
398 	}
399 
400 	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
401 
402 	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
403 
404 	if (arb & IF_ARB_MSGXTD)
405 		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
406 	else
407 		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
408 
409 	if (arb & IF_ARB_TRANSMIT) {
410 		frame->can_id |= CAN_RTR_FLAG;
411 	} else {
412 		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
413 
414 		if (priv->type == BOSCH_D_CAN) {
415 			for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
416 				data = priv->read_reg32(priv, dreg);
417 				frame->data[i] = data;
418 				frame->data[i + 1] = data >> 8;
419 				frame->data[i + 2] = data >> 16;
420 				frame->data[i + 3] = data >> 24;
421 			}
422 		} else {
423 			for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
424 				data = priv->read_reg(priv, dreg);
425 				frame->data[i] = data;
426 				frame->data[i + 1] = data >> 8;
427 			}
428 		}
429 	}
430 
431 	stats->rx_packets++;
432 	stats->rx_bytes += frame->can_dlc;
433 
434 	netif_receive_skb(skb);
435 	return 0;
436 }
437 
c_can_setup_receive_object(struct net_device * dev,int iface,u32 obj,u32 mask,u32 id,u32 mcont)438 static void c_can_setup_receive_object(struct net_device *dev, int iface,
439 				       u32 obj, u32 mask, u32 id, u32 mcont)
440 {
441 	struct c_can_priv *priv = netdev_priv(dev);
442 
443 	mask |= BIT(29);
444 	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
445 
446 	id |= IF_ARB_MSGVAL;
447 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
448 
449 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
450 	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
451 }
452 
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)453 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
454 				    struct net_device *dev)
455 {
456 	struct can_frame *frame = (struct can_frame *)skb->data;
457 	struct c_can_priv *priv = netdev_priv(dev);
458 	u32 idx, obj;
459 
460 	if (can_dropped_invalid_skb(dev, skb))
461 		return NETDEV_TX_OK;
462 	/*
463 	 * This is not a FIFO. C/D_CAN sends out the buffers
464 	 * prioritized. The lowest buffer number wins.
465 	 */
466 	idx = fls(atomic_read(&priv->tx_active));
467 	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
468 
469 	/* If this is the last buffer, stop the xmit queue */
470 	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
471 		netif_stop_queue(dev);
472 	/*
473 	 * Store the message in the interface so we can call
474 	 * can_put_echo_skb(). We must do this before we enable
475 	 * transmit as we might race against do_tx().
476 	 */
477 	c_can_setup_tx_object(dev, IF_TX, frame, idx);
478 	priv->dlc[idx] = frame->can_dlc;
479 	can_put_echo_skb(skb, dev, idx);
480 
481 	/* Update the active bits */
482 	atomic_add((1 << idx), &priv->tx_active);
483 	/* Start transmission */
484 	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
485 
486 	return NETDEV_TX_OK;
487 }
488 
c_can_wait_for_ctrl_init(struct net_device * dev,struct c_can_priv * priv,u32 init)489 static int c_can_wait_for_ctrl_init(struct net_device *dev,
490 				    struct c_can_priv *priv, u32 init)
491 {
492 	int retry = 0;
493 
494 	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
495 		udelay(10);
496 		if (retry++ > 1000) {
497 			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
498 			return -EIO;
499 		}
500 	}
501 	return 0;
502 }
503 
c_can_set_bittiming(struct net_device * dev)504 static int c_can_set_bittiming(struct net_device *dev)
505 {
506 	unsigned int reg_btr, reg_brpe, ctrl_save;
507 	u8 brp, brpe, sjw, tseg1, tseg2;
508 	u32 ten_bit_brp;
509 	struct c_can_priv *priv = netdev_priv(dev);
510 	const struct can_bittiming *bt = &priv->can.bittiming;
511 	int res;
512 
513 	/* c_can provides a 6-bit brp and 4-bit brpe fields */
514 	ten_bit_brp = bt->brp - 1;
515 	brp = ten_bit_brp & BTR_BRP_MASK;
516 	brpe = ten_bit_brp >> 6;
517 
518 	sjw = bt->sjw - 1;
519 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
520 	tseg2 = bt->phase_seg2 - 1;
521 	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
522 			(tseg2 << BTR_TSEG2_SHIFT);
523 	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
524 
525 	netdev_info(dev,
526 		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
527 
528 	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
529 	ctrl_save &= ~CONTROL_INIT;
530 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
531 	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
532 	if (res)
533 		return res;
534 
535 	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
536 	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
537 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
538 
539 	return c_can_wait_for_ctrl_init(dev, priv, 0);
540 }
541 
542 /*
543  * Configure C_CAN message objects for Tx and Rx purposes:
544  * C_CAN provides a total of 32 message objects that can be configured
545  * either for Tx or Rx purposes. Here the first 16 message objects are used as
546  * a reception FIFO. The end of reception FIFO is signified by the EoB bit
547  * being SET. The remaining 16 message objects are kept aside for Tx purposes.
548  * See user guide document for further details on configuring message
549  * objects.
550  */
c_can_configure_msg_objects(struct net_device * dev)551 static void c_can_configure_msg_objects(struct net_device *dev)
552 {
553 	int i;
554 
555 	/* first invalidate all message objects */
556 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
557 		c_can_inval_msg_object(dev, IF_RX, i);
558 
559 	/* setup receive message objects */
560 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
561 		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
562 
563 	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
564 				   IF_MCONT_RCV_EOB);
565 }
566 
c_can_software_reset(struct net_device * dev)567 static int c_can_software_reset(struct net_device *dev)
568 {
569 	struct c_can_priv *priv = netdev_priv(dev);
570 	int retry = 0;
571 
572 	if (priv->type != BOSCH_D_CAN)
573 		return 0;
574 
575 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
576 	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
577 		msleep(20);
578 		if (retry++ > 100) {
579 			netdev_err(dev, "CCTRL: software reset failed\n");
580 			return -EIO;
581 		}
582 	}
583 
584 	return 0;
585 }
586 
587 /*
588  * Configure C_CAN chip:
589  * - enable/disable auto-retransmission
590  * - set operating mode
591  * - configure message objects
592  */
c_can_chip_config(struct net_device * dev)593 static int c_can_chip_config(struct net_device *dev)
594 {
595 	struct c_can_priv *priv = netdev_priv(dev);
596 	int err;
597 
598 	err = c_can_software_reset(dev);
599 	if (err)
600 		return err;
601 
602 	/* enable automatic retransmission */
603 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
604 
605 	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
606 	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
607 		/* loopback + silent mode : useful for hot self-test */
608 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
609 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
610 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
611 		/* loopback mode : useful for self-test function */
612 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
613 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
614 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
615 		/* silent mode : bus-monitoring mode */
616 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
617 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
618 	}
619 
620 	/* configure message objects */
621 	c_can_configure_msg_objects(dev);
622 
623 	/* set a `lec` value so that we can check for updates later */
624 	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
625 
626 	/* Clear all internal status */
627 	atomic_set(&priv->tx_active, 0);
628 	priv->rxmasked = 0;
629 	priv->tx_dir = 0;
630 
631 	/* set bittiming params */
632 	return c_can_set_bittiming(dev);
633 }
634 
c_can_start(struct net_device * dev)635 static int c_can_start(struct net_device *dev)
636 {
637 	struct c_can_priv *priv = netdev_priv(dev);
638 	int err;
639 	struct pinctrl *p;
640 
641 	/* basic c_can configuration */
642 	err = c_can_chip_config(dev);
643 	if (err)
644 		return err;
645 
646 	/* Setup the command for new messages */
647 	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
648 		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
649 
650 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
651 
652 	/* Attempt to use "active" if available else use "default" */
653 	p = pinctrl_get_select(priv->device, "active");
654 	if (!IS_ERR(p))
655 		pinctrl_put(p);
656 	else
657 		pinctrl_pm_select_default_state(priv->device);
658 
659 	return 0;
660 }
661 
c_can_stop(struct net_device * dev)662 static void c_can_stop(struct net_device *dev)
663 {
664 	struct c_can_priv *priv = netdev_priv(dev);
665 
666 	c_can_irq_control(priv, false);
667 
668 	/* put ctrl to init on stop to end ongoing transmission */
669 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
670 
671 	/* deactivate pins */
672 	pinctrl_pm_select_sleep_state(dev->dev.parent);
673 	priv->can.state = CAN_STATE_STOPPED;
674 }
675 
c_can_set_mode(struct net_device * dev,enum can_mode mode)676 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
677 {
678 	struct c_can_priv *priv = netdev_priv(dev);
679 	int err;
680 
681 	switch (mode) {
682 	case CAN_MODE_START:
683 		err = c_can_start(dev);
684 		if (err)
685 			return err;
686 		netif_wake_queue(dev);
687 		c_can_irq_control(priv, true);
688 		break;
689 	default:
690 		return -EOPNOTSUPP;
691 	}
692 
693 	return 0;
694 }
695 
__c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)696 static int __c_can_get_berr_counter(const struct net_device *dev,
697 				    struct can_berr_counter *bec)
698 {
699 	unsigned int reg_err_counter;
700 	struct c_can_priv *priv = netdev_priv(dev);
701 
702 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
703 	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
704 				ERR_CNT_REC_SHIFT;
705 	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
706 
707 	return 0;
708 }
709 
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)710 static int c_can_get_berr_counter(const struct net_device *dev,
711 				  struct can_berr_counter *bec)
712 {
713 	struct c_can_priv *priv = netdev_priv(dev);
714 	int err;
715 
716 	c_can_pm_runtime_get_sync(priv);
717 	err = __c_can_get_berr_counter(dev, bec);
718 	c_can_pm_runtime_put_sync(priv);
719 
720 	return err;
721 }
722 
c_can_do_tx(struct net_device * dev)723 static void c_can_do_tx(struct net_device *dev)
724 {
725 	struct c_can_priv *priv = netdev_priv(dev);
726 	struct net_device_stats *stats = &dev->stats;
727 	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
728 
729 	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
730 
731 	while ((idx = ffs(pend))) {
732 		idx--;
733 		pend &= ~(1 << idx);
734 		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
735 		c_can_inval_tx_object(dev, IF_RX, obj);
736 		can_get_echo_skb(dev, idx);
737 		bytes += priv->dlc[idx];
738 		pkts++;
739 	}
740 
741 	/* Clear the bits in the tx_active mask */
742 	atomic_sub(clr, &priv->tx_active);
743 
744 	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
745 		netif_wake_queue(dev);
746 
747 	if (pkts) {
748 		stats->tx_bytes += bytes;
749 		stats->tx_packets += pkts;
750 		can_led_event(dev, CAN_LED_EVENT_TX);
751 	}
752 }
753 
754 /*
755  * If we have a gap in the pending bits, that means we either
756  * raced with the hardware or failed to readout all upper
757  * objects in the last run due to quota limit.
758  */
c_can_adjust_pending(u32 pend)759 static u32 c_can_adjust_pending(u32 pend)
760 {
761 	u32 weight, lasts;
762 
763 	if (pend == RECEIVE_OBJECT_BITS)
764 		return pend;
765 
766 	/*
767 	 * If the last set bit is larger than the number of pending
768 	 * bits we have a gap.
769 	 */
770 	weight = hweight32(pend);
771 	lasts = fls(pend);
772 
773 	/* If the bits are linear, nothing to do */
774 	if (lasts == weight)
775 		return pend;
776 
777 	/*
778 	 * Find the first set bit after the gap. We walk backwards
779 	 * from the last set bit.
780 	 */
781 	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
782 
783 	return pend & ~((1 << lasts) - 1);
784 }
785 
c_can_rx_object_get(struct net_device * dev,struct c_can_priv * priv,u32 obj)786 static inline void c_can_rx_object_get(struct net_device *dev,
787 				       struct c_can_priv *priv, u32 obj)
788 {
789 		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
790 }
791 
c_can_rx_finalize(struct net_device * dev,struct c_can_priv * priv,u32 obj)792 static inline void c_can_rx_finalize(struct net_device *dev,
793 				     struct c_can_priv *priv, u32 obj)
794 {
795 	if (priv->type != BOSCH_D_CAN)
796 		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
797 }
798 
c_can_read_objects(struct net_device * dev,struct c_can_priv * priv,u32 pend,int quota)799 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
800 			      u32 pend, int quota)
801 {
802 	u32 pkts = 0, ctrl, obj;
803 
804 	while ((obj = ffs(pend)) && quota > 0) {
805 		pend &= ~BIT(obj - 1);
806 
807 		c_can_rx_object_get(dev, priv, obj);
808 		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
809 
810 		if (ctrl & IF_MCONT_MSGLST) {
811 			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
812 
813 			pkts += n;
814 			quota -= n;
815 			continue;
816 		}
817 
818 		/*
819 		 * This really should not happen, but this covers some
820 		 * odd HW behaviour. Do not remove that unless you
821 		 * want to brick your machine.
822 		 */
823 		if (!(ctrl & IF_MCONT_NEWDAT))
824 			continue;
825 
826 		/* read the data from the message object */
827 		c_can_read_msg_object(dev, IF_RX, ctrl);
828 
829 		c_can_rx_finalize(dev, priv, obj);
830 
831 		pkts++;
832 		quota--;
833 	}
834 
835 	return pkts;
836 }
837 
c_can_get_pending(struct c_can_priv * priv)838 static inline u32 c_can_get_pending(struct c_can_priv *priv)
839 {
840 	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
841 
842 	return pend;
843 }
844 
845 /*
846  * theory of operation:
847  *
848  * c_can core saves a received CAN message into the first free message
849  * object it finds free (starting with the lowest). Bits NEWDAT and
850  * INTPND are set for this message object indicating that a new message
851  * has arrived. To work-around this issue, we keep two groups of message
852  * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
853  *
854  * We clear the newdat bit right away.
855  *
856  * This can result in packet reordering when the readout is slow.
857  */
c_can_do_rx_poll(struct net_device * dev,int quota)858 static int c_can_do_rx_poll(struct net_device *dev, int quota)
859 {
860 	struct c_can_priv *priv = netdev_priv(dev);
861 	u32 pkts = 0, pend = 0, toread, n;
862 
863 	/*
864 	 * It is faster to read only one 16bit register. This is only possible
865 	 * for a maximum number of 16 objects.
866 	 */
867 	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
868 			"Implementation does not support more message objects than 16");
869 
870 	while (quota > 0) {
871 		if (!pend) {
872 			pend = c_can_get_pending(priv);
873 			if (!pend)
874 				break;
875 			/*
876 			 * If the pending field has a gap, handle the
877 			 * bits above the gap first.
878 			 */
879 			toread = c_can_adjust_pending(pend);
880 		} else {
881 			toread = pend;
882 		}
883 		/* Remove the bits from pend */
884 		pend &= ~toread;
885 		/* Read the objects */
886 		n = c_can_read_objects(dev, priv, toread, quota);
887 		pkts += n;
888 		quota -= n;
889 	}
890 
891 	if (pkts)
892 		can_led_event(dev, CAN_LED_EVENT_RX);
893 
894 	return pkts;
895 }
896 
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)897 static int c_can_handle_state_change(struct net_device *dev,
898 				enum c_can_bus_error_types error_type)
899 {
900 	unsigned int reg_err_counter;
901 	unsigned int rx_err_passive;
902 	struct c_can_priv *priv = netdev_priv(dev);
903 	struct net_device_stats *stats = &dev->stats;
904 	struct can_frame *cf;
905 	struct sk_buff *skb;
906 	struct can_berr_counter bec;
907 
908 	switch (error_type) {
909 	case C_CAN_NO_ERROR:
910 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
911 		break;
912 	case C_CAN_ERROR_WARNING:
913 		/* error warning state */
914 		priv->can.can_stats.error_warning++;
915 		priv->can.state = CAN_STATE_ERROR_WARNING;
916 		break;
917 	case C_CAN_ERROR_PASSIVE:
918 		/* error passive state */
919 		priv->can.can_stats.error_passive++;
920 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
921 		break;
922 	case C_CAN_BUS_OFF:
923 		/* bus-off state */
924 		priv->can.state = CAN_STATE_BUS_OFF;
925 		priv->can.can_stats.bus_off++;
926 		break;
927 	default:
928 		break;
929 	}
930 
931 	/* propagate the error condition to the CAN stack */
932 	skb = alloc_can_err_skb(dev, &cf);
933 	if (unlikely(!skb))
934 		return 0;
935 
936 	__c_can_get_berr_counter(dev, &bec);
937 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
938 	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
939 				ERR_CNT_RP_SHIFT;
940 
941 	switch (error_type) {
942 	case C_CAN_NO_ERROR:
943 		/* error warning state */
944 		cf->can_id |= CAN_ERR_CRTL;
945 		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
946 		cf->data[6] = bec.txerr;
947 		cf->data[7] = bec.rxerr;
948 		break;
949 	case C_CAN_ERROR_WARNING:
950 		/* error warning state */
951 		cf->can_id |= CAN_ERR_CRTL;
952 		cf->data[1] = (bec.txerr > bec.rxerr) ?
953 			CAN_ERR_CRTL_TX_WARNING :
954 			CAN_ERR_CRTL_RX_WARNING;
955 		cf->data[6] = bec.txerr;
956 		cf->data[7] = bec.rxerr;
957 
958 		break;
959 	case C_CAN_ERROR_PASSIVE:
960 		/* error passive state */
961 		cf->can_id |= CAN_ERR_CRTL;
962 		if (rx_err_passive)
963 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
964 		if (bec.txerr > 127)
965 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
966 
967 		cf->data[6] = bec.txerr;
968 		cf->data[7] = bec.rxerr;
969 		break;
970 	case C_CAN_BUS_OFF:
971 		/* bus-off state */
972 		cf->can_id |= CAN_ERR_BUSOFF;
973 		can_bus_off(dev);
974 		break;
975 	default:
976 		break;
977 	}
978 
979 	stats->rx_packets++;
980 	stats->rx_bytes += cf->can_dlc;
981 	netif_receive_skb(skb);
982 
983 	return 1;
984 }
985 
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)986 static int c_can_handle_bus_err(struct net_device *dev,
987 				enum c_can_lec_type lec_type)
988 {
989 	struct c_can_priv *priv = netdev_priv(dev);
990 	struct net_device_stats *stats = &dev->stats;
991 	struct can_frame *cf;
992 	struct sk_buff *skb;
993 
994 	/*
995 	 * early exit if no lec update or no error.
996 	 * no lec update means that no CAN bus event has been detected
997 	 * since CPU wrote 0x7 value to status reg.
998 	 */
999 	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1000 		return 0;
1001 
1002 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1003 		return 0;
1004 
1005 	/* common for all type of bus errors */
1006 	priv->can.can_stats.bus_error++;
1007 	stats->rx_errors++;
1008 
1009 	/* propagate the error condition to the CAN stack */
1010 	skb = alloc_can_err_skb(dev, &cf);
1011 	if (unlikely(!skb))
1012 		return 0;
1013 
1014 	/*
1015 	 * check for 'last error code' which tells us the
1016 	 * type of the last error to occur on the CAN bus
1017 	 */
1018 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1019 
1020 	switch (lec_type) {
1021 	case LEC_STUFF_ERROR:
1022 		netdev_dbg(dev, "stuff error\n");
1023 		cf->data[2] |= CAN_ERR_PROT_STUFF;
1024 		break;
1025 	case LEC_FORM_ERROR:
1026 		netdev_dbg(dev, "form error\n");
1027 		cf->data[2] |= CAN_ERR_PROT_FORM;
1028 		break;
1029 	case LEC_ACK_ERROR:
1030 		netdev_dbg(dev, "ack error\n");
1031 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1032 		break;
1033 	case LEC_BIT1_ERROR:
1034 		netdev_dbg(dev, "bit1 error\n");
1035 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1036 		break;
1037 	case LEC_BIT0_ERROR:
1038 		netdev_dbg(dev, "bit0 error\n");
1039 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1040 		break;
1041 	case LEC_CRC_ERROR:
1042 		netdev_dbg(dev, "CRC error\n");
1043 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1044 		break;
1045 	default:
1046 		break;
1047 	}
1048 
1049 	stats->rx_packets++;
1050 	stats->rx_bytes += cf->can_dlc;
1051 	netif_receive_skb(skb);
1052 	return 1;
1053 }
1054 
c_can_poll(struct napi_struct * napi,int quota)1055 static int c_can_poll(struct napi_struct *napi, int quota)
1056 {
1057 	struct net_device *dev = napi->dev;
1058 	struct c_can_priv *priv = netdev_priv(dev);
1059 	u16 curr, last = priv->last_status;
1060 	int work_done = 0;
1061 
1062 	/* Only read the status register if a status interrupt was pending */
1063 	if (atomic_xchg(&priv->sie_pending, 0)) {
1064 		priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1065 		/* Ack status on C_CAN. D_CAN is self clearing */
1066 		if (priv->type != BOSCH_D_CAN)
1067 			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1068 	} else {
1069 		/* no change detected ... */
1070 		curr = last;
1071 	}
1072 
1073 	/* handle state changes */
1074 	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1075 		netdev_dbg(dev, "entered error warning state\n");
1076 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1077 	}
1078 
1079 	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1080 		netdev_dbg(dev, "entered error passive state\n");
1081 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1082 	}
1083 
1084 	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1085 		netdev_dbg(dev, "entered bus off state\n");
1086 		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1087 		goto end;
1088 	}
1089 
1090 	/* handle bus recovery events */
1091 	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1092 		netdev_dbg(dev, "left bus off state\n");
1093 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1094 	}
1095 
1096 	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1097 		netdev_dbg(dev, "left error passive state\n");
1098 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1099 	}
1100 
1101 	if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1102 		netdev_dbg(dev, "left error warning state\n");
1103 		work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1104 	}
1105 
1106 	/* handle lec errors on the bus */
1107 	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1108 
1109 	/* Handle Tx/Rx events. We do this unconditionally */
1110 	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1111 	c_can_do_tx(dev);
1112 
1113 end:
1114 	if (work_done < quota) {
1115 		napi_complete_done(napi, work_done);
1116 		/* enable all IRQs if we are not in bus off state */
1117 		if (priv->can.state != CAN_STATE_BUS_OFF)
1118 			c_can_irq_control(priv, true);
1119 	}
1120 
1121 	return work_done;
1122 }
1123 
c_can_isr(int irq,void * dev_id)1124 static irqreturn_t c_can_isr(int irq, void *dev_id)
1125 {
1126 	struct net_device *dev = (struct net_device *)dev_id;
1127 	struct c_can_priv *priv = netdev_priv(dev);
1128 	int reg_int;
1129 
1130 	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1131 	if (!reg_int)
1132 		return IRQ_NONE;
1133 
1134 	/* save for later use */
1135 	if (reg_int & INT_STS_PENDING)
1136 		atomic_set(&priv->sie_pending, 1);
1137 
1138 	/* disable all interrupts and schedule the NAPI */
1139 	c_can_irq_control(priv, false);
1140 	napi_schedule(&priv->napi);
1141 
1142 	return IRQ_HANDLED;
1143 }
1144 
c_can_open(struct net_device * dev)1145 static int c_can_open(struct net_device *dev)
1146 {
1147 	int err;
1148 	struct c_can_priv *priv = netdev_priv(dev);
1149 
1150 	c_can_pm_runtime_get_sync(priv);
1151 	c_can_reset_ram(priv, true);
1152 
1153 	/* open the can device */
1154 	err = open_candev(dev);
1155 	if (err) {
1156 		netdev_err(dev, "failed to open can device\n");
1157 		goto exit_open_fail;
1158 	}
1159 
1160 	/* register interrupt handler */
1161 	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1162 				dev);
1163 	if (err < 0) {
1164 		netdev_err(dev, "failed to request interrupt\n");
1165 		goto exit_irq_fail;
1166 	}
1167 
1168 	/* start the c_can controller */
1169 	err = c_can_start(dev);
1170 	if (err)
1171 		goto exit_start_fail;
1172 
1173 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1174 
1175 	napi_enable(&priv->napi);
1176 	/* enable status change, error and module interrupts */
1177 	c_can_irq_control(priv, true);
1178 	netif_start_queue(dev);
1179 
1180 	return 0;
1181 
1182 exit_start_fail:
1183 	free_irq(dev->irq, dev);
1184 exit_irq_fail:
1185 	close_candev(dev);
1186 exit_open_fail:
1187 	c_can_reset_ram(priv, false);
1188 	c_can_pm_runtime_put_sync(priv);
1189 	return err;
1190 }
1191 
c_can_close(struct net_device * dev)1192 static int c_can_close(struct net_device *dev)
1193 {
1194 	struct c_can_priv *priv = netdev_priv(dev);
1195 
1196 	netif_stop_queue(dev);
1197 	napi_disable(&priv->napi);
1198 	c_can_stop(dev);
1199 	free_irq(dev->irq, dev);
1200 	close_candev(dev);
1201 
1202 	c_can_reset_ram(priv, false);
1203 	c_can_pm_runtime_put_sync(priv);
1204 
1205 	can_led_event(dev, CAN_LED_EVENT_STOP);
1206 
1207 	return 0;
1208 }
1209 
alloc_c_can_dev(void)1210 struct net_device *alloc_c_can_dev(void)
1211 {
1212 	struct net_device *dev;
1213 	struct c_can_priv *priv;
1214 
1215 	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1216 	if (!dev)
1217 		return NULL;
1218 
1219 	priv = netdev_priv(dev);
1220 	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1221 
1222 	priv->dev = dev;
1223 	priv->can.bittiming_const = &c_can_bittiming_const;
1224 	priv->can.do_set_mode = c_can_set_mode;
1225 	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1226 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1227 					CAN_CTRLMODE_LISTENONLY |
1228 					CAN_CTRLMODE_BERR_REPORTING;
1229 
1230 	return dev;
1231 }
1232 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1233 
1234 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1235 int c_can_power_down(struct net_device *dev)
1236 {
1237 	u32 val;
1238 	unsigned long time_out;
1239 	struct c_can_priv *priv = netdev_priv(dev);
1240 
1241 	if (!(dev->flags & IFF_UP))
1242 		return 0;
1243 
1244 	WARN_ON(priv->type != BOSCH_D_CAN);
1245 
1246 	/* set PDR value so the device goes to power down mode */
1247 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1248 	val |= CONTROL_EX_PDR;
1249 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1250 
1251 	/* Wait for the PDA bit to get set */
1252 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1253 	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1254 				time_after(time_out, jiffies))
1255 		cpu_relax();
1256 
1257 	if (time_after(jiffies, time_out))
1258 		return -ETIMEDOUT;
1259 
1260 	c_can_stop(dev);
1261 
1262 	c_can_reset_ram(priv, false);
1263 	c_can_pm_runtime_put_sync(priv);
1264 
1265 	return 0;
1266 }
1267 EXPORT_SYMBOL_GPL(c_can_power_down);
1268 
c_can_power_up(struct net_device * dev)1269 int c_can_power_up(struct net_device *dev)
1270 {
1271 	u32 val;
1272 	unsigned long time_out;
1273 	struct c_can_priv *priv = netdev_priv(dev);
1274 	int ret;
1275 
1276 	if (!(dev->flags & IFF_UP))
1277 		return 0;
1278 
1279 	WARN_ON(priv->type != BOSCH_D_CAN);
1280 
1281 	c_can_pm_runtime_get_sync(priv);
1282 	c_can_reset_ram(priv, true);
1283 
1284 	/* Clear PDR and INIT bits */
1285 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1286 	val &= ~CONTROL_EX_PDR;
1287 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1288 	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1289 	val &= ~CONTROL_INIT;
1290 	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1291 
1292 	/* Wait for the PDA bit to get clear */
1293 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1294 	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1295 				time_after(time_out, jiffies))
1296 		cpu_relax();
1297 
1298 	if (time_after(jiffies, time_out)) {
1299 		ret = -ETIMEDOUT;
1300 		goto err_out;
1301 	}
1302 
1303 	ret = c_can_start(dev);
1304 	if (ret)
1305 		goto err_out;
1306 
1307 	c_can_irq_control(priv, true);
1308 
1309 	return 0;
1310 
1311 err_out:
1312 	c_can_reset_ram(priv, false);
1313 	c_can_pm_runtime_put_sync(priv);
1314 
1315 	return ret;
1316 }
1317 EXPORT_SYMBOL_GPL(c_can_power_up);
1318 #endif
1319 
free_c_can_dev(struct net_device * dev)1320 void free_c_can_dev(struct net_device *dev)
1321 {
1322 	struct c_can_priv *priv = netdev_priv(dev);
1323 
1324 	netif_napi_del(&priv->napi);
1325 	free_candev(dev);
1326 }
1327 EXPORT_SYMBOL_GPL(free_c_can_dev);
1328 
1329 static const struct net_device_ops c_can_netdev_ops = {
1330 	.ndo_open = c_can_open,
1331 	.ndo_stop = c_can_close,
1332 	.ndo_start_xmit = c_can_start_xmit,
1333 	.ndo_change_mtu = can_change_mtu,
1334 };
1335 
register_c_can_dev(struct net_device * dev)1336 int register_c_can_dev(struct net_device *dev)
1337 {
1338 	struct c_can_priv *priv = netdev_priv(dev);
1339 	int err;
1340 
1341 	/* Deactivate pins to prevent DRA7 DCAN IP from being
1342 	 * stuck in transition when module is disabled.
1343 	 * Pins are activated in c_can_start() and deactivated
1344 	 * in c_can_stop()
1345 	 */
1346 	pinctrl_pm_select_sleep_state(dev->dev.parent);
1347 
1348 	c_can_pm_runtime_enable(priv);
1349 
1350 	dev->flags |= IFF_ECHO;	/* we support local echo */
1351 	dev->netdev_ops = &c_can_netdev_ops;
1352 
1353 	err = register_candev(dev);
1354 	if (err)
1355 		c_can_pm_runtime_disable(priv);
1356 	else
1357 		devm_can_led_init(dev);
1358 
1359 	return err;
1360 }
1361 EXPORT_SYMBOL_GPL(register_c_can_dev);
1362 
unregister_c_can_dev(struct net_device * dev)1363 void unregister_c_can_dev(struct net_device *dev)
1364 {
1365 	struct c_can_priv *priv = netdev_priv(dev);
1366 
1367 	unregister_candev(dev);
1368 
1369 	c_can_pm_runtime_disable(priv);
1370 }
1371 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1372 
1373 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1374 MODULE_LICENSE("GPL v2");
1375 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1376