1 /*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
44
45 #include "c_can.h"
46
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN 11
49 #define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR BIT(8)
53
54 /* control register */
55 #define CONTROL_SWR BIT(15)
56 #define CONTROL_TEST BIT(7)
57 #define CONTROL_CCE BIT(6)
58 #define CONTROL_DISABLE_AR BIT(5)
59 #define CONTROL_ENABLE_AR (0 << 5)
60 #define CONTROL_EIE BIT(3)
61 #define CONTROL_SIE BIT(2)
62 #define CONTROL_IE BIT(1)
63 #define CONTROL_INIT BIT(0)
64
65 #define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
66
67 /* test register */
68 #define TEST_RX BIT(7)
69 #define TEST_TX1 BIT(6)
70 #define TEST_TX2 BIT(5)
71 #define TEST_LBACK BIT(4)
72 #define TEST_SILENT BIT(3)
73 #define TEST_BASIC BIT(2)
74
75 /* status register */
76 #define STATUS_PDA BIT(10)
77 #define STATUS_BOFF BIT(7)
78 #define STATUS_EWARN BIT(6)
79 #define STATUS_EPASS BIT(5)
80 #define STATUS_RXOK BIT(4)
81 #define STATUS_TXOK BIT(3)
82
83 /* error counter register */
84 #define ERR_CNT_TEC_MASK 0xff
85 #define ERR_CNT_TEC_SHIFT 0
86 #define ERR_CNT_REC_SHIFT 8
87 #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
88 #define ERR_CNT_RP_SHIFT 15
89 #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
90
91 /* bit-timing register */
92 #define BTR_BRP_MASK 0x3f
93 #define BTR_BRP_SHIFT 0
94 #define BTR_SJW_SHIFT 6
95 #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
96 #define BTR_TSEG1_SHIFT 8
97 #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
98 #define BTR_TSEG2_SHIFT 12
99 #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
100
101 /* interrupt register */
102 #define INT_STS_PENDING 0x8000
103
104 /* brp extension register */
105 #define BRP_EXT_BRPE_MASK 0x0f
106 #define BRP_EXT_BRPE_SHIFT 0
107
108 /* IFx command request */
109 #define IF_COMR_BUSY BIT(15)
110
111 /* IFx command mask */
112 #define IF_COMM_WR BIT(7)
113 #define IF_COMM_MASK BIT(6)
114 #define IF_COMM_ARB BIT(5)
115 #define IF_COMM_CONTROL BIT(4)
116 #define IF_COMM_CLR_INT_PND BIT(3)
117 #define IF_COMM_TXRQST BIT(2)
118 #define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST
119 #define IF_COMM_DATAA BIT(1)
120 #define IF_COMM_DATAB BIT(0)
121
122 /* TX buffer setup */
123 #define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \
124 IF_COMM_TXRQST | \
125 IF_COMM_DATAA | IF_COMM_DATAB)
126
127 /* For the low buffers we clear the interrupt bit, but keep newdat */
128 #define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \
129 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
130 IF_COMM_DATAA | IF_COMM_DATAB)
131
132 /* For the high buffers we clear the interrupt bit and newdat */
133 #define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
134
135
136 /* Receive setup of message objects */
137 #define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
138
139 /* Invalidation of message objects */
140 #define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL)
141
142 /* IFx arbitration */
143 #define IF_ARB_MSGVAL BIT(31)
144 #define IF_ARB_MSGXTD BIT(30)
145 #define IF_ARB_TRANSMIT BIT(29)
146
147 /* IFx message control */
148 #define IF_MCONT_NEWDAT BIT(15)
149 #define IF_MCONT_MSGLST BIT(14)
150 #define IF_MCONT_INTPND BIT(13)
151 #define IF_MCONT_UMASK BIT(12)
152 #define IF_MCONT_TXIE BIT(11)
153 #define IF_MCONT_RXIE BIT(10)
154 #define IF_MCONT_RMTEN BIT(9)
155 #define IF_MCONT_TXRQST BIT(8)
156 #define IF_MCONT_EOB BIT(7)
157 #define IF_MCONT_DLC_MASK 0xf
158
159 #define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK)
160 #define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB)
161
162 #define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB)
163
164 /*
165 * Use IF1 for RX and IF2 for TX
166 */
167 #define IF_RX 0
168 #define IF_TX 1
169
170 /* minimum timeout for checking BUSY status */
171 #define MIN_TIMEOUT_VALUE 6
172
173 /* Wait for ~1 sec for INIT bit */
174 #define INIT_WAIT_MS 1000
175
176 /* napi related */
177 #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
178
179 /* c_can lec values */
180 enum c_can_lec_type {
181 LEC_NO_ERROR = 0,
182 LEC_STUFF_ERROR,
183 LEC_FORM_ERROR,
184 LEC_ACK_ERROR,
185 LEC_BIT1_ERROR,
186 LEC_BIT0_ERROR,
187 LEC_CRC_ERROR,
188 LEC_UNUSED,
189 LEC_MASK = LEC_UNUSED,
190 };
191
192 /*
193 * c_can error types:
194 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
195 */
196 enum c_can_bus_error_types {
197 C_CAN_NO_ERROR = 0,
198 C_CAN_BUS_OFF,
199 C_CAN_ERROR_WARNING,
200 C_CAN_ERROR_PASSIVE,
201 };
202
203 static const struct can_bittiming_const c_can_bittiming_const = {
204 .name = KBUILD_MODNAME,
205 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
206 .tseg1_max = 16,
207 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
208 .tseg2_max = 8,
209 .sjw_max = 4,
210 .brp_min = 1,
211 .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
212 .brp_inc = 1,
213 };
214
c_can_pm_runtime_enable(const struct c_can_priv * priv)215 static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
216 {
217 if (priv->device)
218 pm_runtime_enable(priv->device);
219 }
220
c_can_pm_runtime_disable(const struct c_can_priv * priv)221 static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
222 {
223 if (priv->device)
224 pm_runtime_disable(priv->device);
225 }
226
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)227 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
228 {
229 if (priv->device)
230 pm_runtime_get_sync(priv->device);
231 }
232
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)233 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
234 {
235 if (priv->device)
236 pm_runtime_put_sync(priv->device);
237 }
238
c_can_reset_ram(const struct c_can_priv * priv,bool enable)239 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
240 {
241 if (priv->raminit)
242 priv->raminit(priv, enable);
243 }
244
c_can_irq_control(struct c_can_priv * priv,bool enable)245 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
246 {
247 u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
248
249 if (enable)
250 ctrl |= CONTROL_IRQMSK;
251
252 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
253 }
254
c_can_obj_update(struct net_device * dev,int iface,u32 cmd,u32 obj)255 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
256 {
257 struct c_can_priv *priv = netdev_priv(dev);
258 int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
259
260 priv->write_reg32(priv, reg, (cmd << 16) | obj);
261
262 for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
263 if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
264 return;
265 udelay(1);
266 }
267 netdev_err(dev, "Updating object timed out\n");
268
269 }
270
c_can_object_get(struct net_device * dev,int iface,u32 obj,u32 cmd)271 static inline void c_can_object_get(struct net_device *dev, int iface,
272 u32 obj, u32 cmd)
273 {
274 c_can_obj_update(dev, iface, cmd, obj);
275 }
276
c_can_object_put(struct net_device * dev,int iface,u32 obj,u32 cmd)277 static inline void c_can_object_put(struct net_device *dev, int iface,
278 u32 obj, u32 cmd)
279 {
280 c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
281 }
282
283 /*
284 * Note: According to documentation clearing TXIE while MSGVAL is set
285 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
286 * load significantly.
287 */
c_can_inval_tx_object(struct net_device * dev,int iface,int obj)288 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
289 {
290 struct c_can_priv *priv = netdev_priv(dev);
291
292 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
293 c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
294 }
295
c_can_inval_msg_object(struct net_device * dev,int iface,int obj)296 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
297 {
298 struct c_can_priv *priv = netdev_priv(dev);
299
300 priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
301 priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
302 c_can_inval_tx_object(dev, iface, obj);
303 }
304
c_can_setup_tx_object(struct net_device * dev,int iface,struct can_frame * frame,int idx)305 static void c_can_setup_tx_object(struct net_device *dev, int iface,
306 struct can_frame *frame, int idx)
307 {
308 struct c_can_priv *priv = netdev_priv(dev);
309 u16 ctrl = IF_MCONT_TX | frame->can_dlc;
310 bool rtr = frame->can_id & CAN_RTR_FLAG;
311 u32 arb = IF_ARB_MSGVAL;
312 int i;
313
314 if (frame->can_id & CAN_EFF_FLAG) {
315 arb |= frame->can_id & CAN_EFF_MASK;
316 arb |= IF_ARB_MSGXTD;
317 } else {
318 arb |= (frame->can_id & CAN_SFF_MASK) << 18;
319 }
320
321 if (!rtr)
322 arb |= IF_ARB_TRANSMIT;
323
324 /*
325 * If we change the DIR bit, we need to invalidate the buffer
326 * first, i.e. clear the MSGVAL flag in the arbiter.
327 */
328 if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
329 u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
330
331 c_can_inval_msg_object(dev, iface, obj);
332 change_bit(idx, &priv->tx_dir);
333 }
334
335 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
336
337 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
338
339 if (priv->type == BOSCH_D_CAN) {
340 u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
341
342 for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
343 data = (u32)frame->data[i];
344 data |= (u32)frame->data[i + 1] << 8;
345 data |= (u32)frame->data[i + 2] << 16;
346 data |= (u32)frame->data[i + 3] << 24;
347 priv->write_reg32(priv, dreg, data);
348 }
349 } else {
350 for (i = 0; i < frame->can_dlc; i += 2) {
351 priv->write_reg(priv,
352 C_CAN_IFACE(DATA1_REG, iface) + i / 2,
353 frame->data[i] |
354 (frame->data[i + 1] << 8));
355 }
356 }
357 }
358
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno,u32 ctrl)359 static int c_can_handle_lost_msg_obj(struct net_device *dev,
360 int iface, int objno, u32 ctrl)
361 {
362 struct net_device_stats *stats = &dev->stats;
363 struct c_can_priv *priv = netdev_priv(dev);
364 struct can_frame *frame;
365 struct sk_buff *skb;
366
367 ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
368 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
369 c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
370
371 stats->rx_errors++;
372 stats->rx_over_errors++;
373
374 /* create an error msg */
375 skb = alloc_can_err_skb(dev, &frame);
376 if (unlikely(!skb))
377 return 0;
378
379 frame->can_id |= CAN_ERR_CRTL;
380 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
381
382 netif_receive_skb(skb);
383 return 1;
384 }
385
c_can_read_msg_object(struct net_device * dev,int iface,u32 ctrl)386 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
387 {
388 struct net_device_stats *stats = &dev->stats;
389 struct c_can_priv *priv = netdev_priv(dev);
390 struct can_frame *frame;
391 struct sk_buff *skb;
392 u32 arb, data;
393
394 skb = alloc_can_skb(dev, &frame);
395 if (!skb) {
396 stats->rx_dropped++;
397 return -ENOMEM;
398 }
399
400 frame->can_dlc = get_can_dlc(ctrl & 0x0F);
401
402 arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
403
404 if (arb & IF_ARB_MSGXTD)
405 frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
406 else
407 frame->can_id = (arb >> 18) & CAN_SFF_MASK;
408
409 if (arb & IF_ARB_TRANSMIT) {
410 frame->can_id |= CAN_RTR_FLAG;
411 } else {
412 int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
413
414 if (priv->type == BOSCH_D_CAN) {
415 for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
416 data = priv->read_reg32(priv, dreg);
417 frame->data[i] = data;
418 frame->data[i + 1] = data >> 8;
419 frame->data[i + 2] = data >> 16;
420 frame->data[i + 3] = data >> 24;
421 }
422 } else {
423 for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
424 data = priv->read_reg(priv, dreg);
425 frame->data[i] = data;
426 frame->data[i + 1] = data >> 8;
427 }
428 }
429 }
430
431 stats->rx_packets++;
432 stats->rx_bytes += frame->can_dlc;
433
434 netif_receive_skb(skb);
435 return 0;
436 }
437
c_can_setup_receive_object(struct net_device * dev,int iface,u32 obj,u32 mask,u32 id,u32 mcont)438 static void c_can_setup_receive_object(struct net_device *dev, int iface,
439 u32 obj, u32 mask, u32 id, u32 mcont)
440 {
441 struct c_can_priv *priv = netdev_priv(dev);
442
443 mask |= BIT(29);
444 priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
445
446 id |= IF_ARB_MSGVAL;
447 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
448
449 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
450 c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
451 }
452
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)453 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
454 struct net_device *dev)
455 {
456 struct can_frame *frame = (struct can_frame *)skb->data;
457 struct c_can_priv *priv = netdev_priv(dev);
458 u32 idx, obj;
459
460 if (can_dropped_invalid_skb(dev, skb))
461 return NETDEV_TX_OK;
462 /*
463 * This is not a FIFO. C/D_CAN sends out the buffers
464 * prioritized. The lowest buffer number wins.
465 */
466 idx = fls(atomic_read(&priv->tx_active));
467 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
468
469 /* If this is the last buffer, stop the xmit queue */
470 if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
471 netif_stop_queue(dev);
472 /*
473 * Store the message in the interface so we can call
474 * can_put_echo_skb(). We must do this before we enable
475 * transmit as we might race against do_tx().
476 */
477 c_can_setup_tx_object(dev, IF_TX, frame, idx);
478 priv->dlc[idx] = frame->can_dlc;
479 can_put_echo_skb(skb, dev, idx);
480
481 /* Update the active bits */
482 atomic_add((1 << idx), &priv->tx_active);
483 /* Start transmission */
484 c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
485
486 return NETDEV_TX_OK;
487 }
488
c_can_wait_for_ctrl_init(struct net_device * dev,struct c_can_priv * priv,u32 init)489 static int c_can_wait_for_ctrl_init(struct net_device *dev,
490 struct c_can_priv *priv, u32 init)
491 {
492 int retry = 0;
493
494 while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
495 udelay(10);
496 if (retry++ > 1000) {
497 netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
498 return -EIO;
499 }
500 }
501 return 0;
502 }
503
c_can_set_bittiming(struct net_device * dev)504 static int c_can_set_bittiming(struct net_device *dev)
505 {
506 unsigned int reg_btr, reg_brpe, ctrl_save;
507 u8 brp, brpe, sjw, tseg1, tseg2;
508 u32 ten_bit_brp;
509 struct c_can_priv *priv = netdev_priv(dev);
510 const struct can_bittiming *bt = &priv->can.bittiming;
511 int res;
512
513 /* c_can provides a 6-bit brp and 4-bit brpe fields */
514 ten_bit_brp = bt->brp - 1;
515 brp = ten_bit_brp & BTR_BRP_MASK;
516 brpe = ten_bit_brp >> 6;
517
518 sjw = bt->sjw - 1;
519 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
520 tseg2 = bt->phase_seg2 - 1;
521 reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
522 (tseg2 << BTR_TSEG2_SHIFT);
523 reg_brpe = brpe & BRP_EXT_BRPE_MASK;
524
525 netdev_info(dev,
526 "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
527
528 ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
529 ctrl_save &= ~CONTROL_INIT;
530 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
531 res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
532 if (res)
533 return res;
534
535 priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
536 priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
537 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
538
539 return c_can_wait_for_ctrl_init(dev, priv, 0);
540 }
541
542 /*
543 * Configure C_CAN message objects for Tx and Rx purposes:
544 * C_CAN provides a total of 32 message objects that can be configured
545 * either for Tx or Rx purposes. Here the first 16 message objects are used as
546 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
547 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
548 * See user guide document for further details on configuring message
549 * objects.
550 */
c_can_configure_msg_objects(struct net_device * dev)551 static void c_can_configure_msg_objects(struct net_device *dev)
552 {
553 int i;
554
555 /* first invalidate all message objects */
556 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
557 c_can_inval_msg_object(dev, IF_RX, i);
558
559 /* setup receive message objects */
560 for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
561 c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
562
563 c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
564 IF_MCONT_RCV_EOB);
565 }
566
c_can_software_reset(struct net_device * dev)567 static int c_can_software_reset(struct net_device *dev)
568 {
569 struct c_can_priv *priv = netdev_priv(dev);
570 int retry = 0;
571
572 if (priv->type != BOSCH_D_CAN)
573 return 0;
574
575 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
576 while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
577 msleep(20);
578 if (retry++ > 100) {
579 netdev_err(dev, "CCTRL: software reset failed\n");
580 return -EIO;
581 }
582 }
583
584 return 0;
585 }
586
587 /*
588 * Configure C_CAN chip:
589 * - enable/disable auto-retransmission
590 * - set operating mode
591 * - configure message objects
592 */
c_can_chip_config(struct net_device * dev)593 static int c_can_chip_config(struct net_device *dev)
594 {
595 struct c_can_priv *priv = netdev_priv(dev);
596 int err;
597
598 err = c_can_software_reset(dev);
599 if (err)
600 return err;
601
602 /* enable automatic retransmission */
603 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
604
605 if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
606 (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
607 /* loopback + silent mode : useful for hot self-test */
608 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
609 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
610 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
611 /* loopback mode : useful for self-test function */
612 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
613 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
614 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
615 /* silent mode : bus-monitoring mode */
616 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
617 priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
618 }
619
620 /* configure message objects */
621 c_can_configure_msg_objects(dev);
622
623 /* set a `lec` value so that we can check for updates later */
624 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
625
626 /* Clear all internal status */
627 atomic_set(&priv->tx_active, 0);
628 priv->rxmasked = 0;
629 priv->tx_dir = 0;
630
631 /* set bittiming params */
632 return c_can_set_bittiming(dev);
633 }
634
c_can_start(struct net_device * dev)635 static int c_can_start(struct net_device *dev)
636 {
637 struct c_can_priv *priv = netdev_priv(dev);
638 int err;
639 struct pinctrl *p;
640
641 /* basic c_can configuration */
642 err = c_can_chip_config(dev);
643 if (err)
644 return err;
645
646 /* Setup the command for new messages */
647 priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
648 IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
649
650 priv->can.state = CAN_STATE_ERROR_ACTIVE;
651
652 /* Attempt to use "active" if available else use "default" */
653 p = pinctrl_get_select(priv->device, "active");
654 if (!IS_ERR(p))
655 pinctrl_put(p);
656 else
657 pinctrl_pm_select_default_state(priv->device);
658
659 return 0;
660 }
661
c_can_stop(struct net_device * dev)662 static void c_can_stop(struct net_device *dev)
663 {
664 struct c_can_priv *priv = netdev_priv(dev);
665
666 c_can_irq_control(priv, false);
667
668 /* put ctrl to init on stop to end ongoing transmission */
669 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
670
671 /* deactivate pins */
672 pinctrl_pm_select_sleep_state(dev->dev.parent);
673 priv->can.state = CAN_STATE_STOPPED;
674 }
675
c_can_set_mode(struct net_device * dev,enum can_mode mode)676 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
677 {
678 struct c_can_priv *priv = netdev_priv(dev);
679 int err;
680
681 switch (mode) {
682 case CAN_MODE_START:
683 err = c_can_start(dev);
684 if (err)
685 return err;
686 netif_wake_queue(dev);
687 c_can_irq_control(priv, true);
688 break;
689 default:
690 return -EOPNOTSUPP;
691 }
692
693 return 0;
694 }
695
__c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)696 static int __c_can_get_berr_counter(const struct net_device *dev,
697 struct can_berr_counter *bec)
698 {
699 unsigned int reg_err_counter;
700 struct c_can_priv *priv = netdev_priv(dev);
701
702 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
703 bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
704 ERR_CNT_REC_SHIFT;
705 bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
706
707 return 0;
708 }
709
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)710 static int c_can_get_berr_counter(const struct net_device *dev,
711 struct can_berr_counter *bec)
712 {
713 struct c_can_priv *priv = netdev_priv(dev);
714 int err;
715
716 c_can_pm_runtime_get_sync(priv);
717 err = __c_can_get_berr_counter(dev, bec);
718 c_can_pm_runtime_put_sync(priv);
719
720 return err;
721 }
722
c_can_do_tx(struct net_device * dev)723 static void c_can_do_tx(struct net_device *dev)
724 {
725 struct c_can_priv *priv = netdev_priv(dev);
726 struct net_device_stats *stats = &dev->stats;
727 u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
728
729 clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
730
731 while ((idx = ffs(pend))) {
732 idx--;
733 pend &= ~(1 << idx);
734 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
735 c_can_inval_tx_object(dev, IF_RX, obj);
736 can_get_echo_skb(dev, idx);
737 bytes += priv->dlc[idx];
738 pkts++;
739 }
740
741 /* Clear the bits in the tx_active mask */
742 atomic_sub(clr, &priv->tx_active);
743
744 if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
745 netif_wake_queue(dev);
746
747 if (pkts) {
748 stats->tx_bytes += bytes;
749 stats->tx_packets += pkts;
750 can_led_event(dev, CAN_LED_EVENT_TX);
751 }
752 }
753
754 /*
755 * If we have a gap in the pending bits, that means we either
756 * raced with the hardware or failed to readout all upper
757 * objects in the last run due to quota limit.
758 */
c_can_adjust_pending(u32 pend)759 static u32 c_can_adjust_pending(u32 pend)
760 {
761 u32 weight, lasts;
762
763 if (pend == RECEIVE_OBJECT_BITS)
764 return pend;
765
766 /*
767 * If the last set bit is larger than the number of pending
768 * bits we have a gap.
769 */
770 weight = hweight32(pend);
771 lasts = fls(pend);
772
773 /* If the bits are linear, nothing to do */
774 if (lasts == weight)
775 return pend;
776
777 /*
778 * Find the first set bit after the gap. We walk backwards
779 * from the last set bit.
780 */
781 for (lasts--; pend & (1 << (lasts - 1)); lasts--);
782
783 return pend & ~((1 << lasts) - 1);
784 }
785
c_can_rx_object_get(struct net_device * dev,struct c_can_priv * priv,u32 obj)786 static inline void c_can_rx_object_get(struct net_device *dev,
787 struct c_can_priv *priv, u32 obj)
788 {
789 c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
790 }
791
c_can_rx_finalize(struct net_device * dev,struct c_can_priv * priv,u32 obj)792 static inline void c_can_rx_finalize(struct net_device *dev,
793 struct c_can_priv *priv, u32 obj)
794 {
795 if (priv->type != BOSCH_D_CAN)
796 c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
797 }
798
c_can_read_objects(struct net_device * dev,struct c_can_priv * priv,u32 pend,int quota)799 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
800 u32 pend, int quota)
801 {
802 u32 pkts = 0, ctrl, obj;
803
804 while ((obj = ffs(pend)) && quota > 0) {
805 pend &= ~BIT(obj - 1);
806
807 c_can_rx_object_get(dev, priv, obj);
808 ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
809
810 if (ctrl & IF_MCONT_MSGLST) {
811 int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
812
813 pkts += n;
814 quota -= n;
815 continue;
816 }
817
818 /*
819 * This really should not happen, but this covers some
820 * odd HW behaviour. Do not remove that unless you
821 * want to brick your machine.
822 */
823 if (!(ctrl & IF_MCONT_NEWDAT))
824 continue;
825
826 /* read the data from the message object */
827 c_can_read_msg_object(dev, IF_RX, ctrl);
828
829 c_can_rx_finalize(dev, priv, obj);
830
831 pkts++;
832 quota--;
833 }
834
835 return pkts;
836 }
837
c_can_get_pending(struct c_can_priv * priv)838 static inline u32 c_can_get_pending(struct c_can_priv *priv)
839 {
840 u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
841
842 return pend;
843 }
844
845 /*
846 * theory of operation:
847 *
848 * c_can core saves a received CAN message into the first free message
849 * object it finds free (starting with the lowest). Bits NEWDAT and
850 * INTPND are set for this message object indicating that a new message
851 * has arrived. To work-around this issue, we keep two groups of message
852 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
853 *
854 * We clear the newdat bit right away.
855 *
856 * This can result in packet reordering when the readout is slow.
857 */
c_can_do_rx_poll(struct net_device * dev,int quota)858 static int c_can_do_rx_poll(struct net_device *dev, int quota)
859 {
860 struct c_can_priv *priv = netdev_priv(dev);
861 u32 pkts = 0, pend = 0, toread, n;
862
863 /*
864 * It is faster to read only one 16bit register. This is only possible
865 * for a maximum number of 16 objects.
866 */
867 BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
868 "Implementation does not support more message objects than 16");
869
870 while (quota > 0) {
871 if (!pend) {
872 pend = c_can_get_pending(priv);
873 if (!pend)
874 break;
875 /*
876 * If the pending field has a gap, handle the
877 * bits above the gap first.
878 */
879 toread = c_can_adjust_pending(pend);
880 } else {
881 toread = pend;
882 }
883 /* Remove the bits from pend */
884 pend &= ~toread;
885 /* Read the objects */
886 n = c_can_read_objects(dev, priv, toread, quota);
887 pkts += n;
888 quota -= n;
889 }
890
891 if (pkts)
892 can_led_event(dev, CAN_LED_EVENT_RX);
893
894 return pkts;
895 }
896
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)897 static int c_can_handle_state_change(struct net_device *dev,
898 enum c_can_bus_error_types error_type)
899 {
900 unsigned int reg_err_counter;
901 unsigned int rx_err_passive;
902 struct c_can_priv *priv = netdev_priv(dev);
903 struct net_device_stats *stats = &dev->stats;
904 struct can_frame *cf;
905 struct sk_buff *skb;
906 struct can_berr_counter bec;
907
908 switch (error_type) {
909 case C_CAN_NO_ERROR:
910 priv->can.state = CAN_STATE_ERROR_ACTIVE;
911 break;
912 case C_CAN_ERROR_WARNING:
913 /* error warning state */
914 priv->can.can_stats.error_warning++;
915 priv->can.state = CAN_STATE_ERROR_WARNING;
916 break;
917 case C_CAN_ERROR_PASSIVE:
918 /* error passive state */
919 priv->can.can_stats.error_passive++;
920 priv->can.state = CAN_STATE_ERROR_PASSIVE;
921 break;
922 case C_CAN_BUS_OFF:
923 /* bus-off state */
924 priv->can.state = CAN_STATE_BUS_OFF;
925 priv->can.can_stats.bus_off++;
926 break;
927 default:
928 break;
929 }
930
931 /* propagate the error condition to the CAN stack */
932 skb = alloc_can_err_skb(dev, &cf);
933 if (unlikely(!skb))
934 return 0;
935
936 __c_can_get_berr_counter(dev, &bec);
937 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
938 rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
939 ERR_CNT_RP_SHIFT;
940
941 switch (error_type) {
942 case C_CAN_NO_ERROR:
943 /* error warning state */
944 cf->can_id |= CAN_ERR_CRTL;
945 cf->data[1] = CAN_ERR_CRTL_ACTIVE;
946 cf->data[6] = bec.txerr;
947 cf->data[7] = bec.rxerr;
948 break;
949 case C_CAN_ERROR_WARNING:
950 /* error warning state */
951 cf->can_id |= CAN_ERR_CRTL;
952 cf->data[1] = (bec.txerr > bec.rxerr) ?
953 CAN_ERR_CRTL_TX_WARNING :
954 CAN_ERR_CRTL_RX_WARNING;
955 cf->data[6] = bec.txerr;
956 cf->data[7] = bec.rxerr;
957
958 break;
959 case C_CAN_ERROR_PASSIVE:
960 /* error passive state */
961 cf->can_id |= CAN_ERR_CRTL;
962 if (rx_err_passive)
963 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
964 if (bec.txerr > 127)
965 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
966
967 cf->data[6] = bec.txerr;
968 cf->data[7] = bec.rxerr;
969 break;
970 case C_CAN_BUS_OFF:
971 /* bus-off state */
972 cf->can_id |= CAN_ERR_BUSOFF;
973 can_bus_off(dev);
974 break;
975 default:
976 break;
977 }
978
979 stats->rx_packets++;
980 stats->rx_bytes += cf->can_dlc;
981 netif_receive_skb(skb);
982
983 return 1;
984 }
985
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)986 static int c_can_handle_bus_err(struct net_device *dev,
987 enum c_can_lec_type lec_type)
988 {
989 struct c_can_priv *priv = netdev_priv(dev);
990 struct net_device_stats *stats = &dev->stats;
991 struct can_frame *cf;
992 struct sk_buff *skb;
993
994 /*
995 * early exit if no lec update or no error.
996 * no lec update means that no CAN bus event has been detected
997 * since CPU wrote 0x7 value to status reg.
998 */
999 if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
1000 return 0;
1001
1002 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1003 return 0;
1004
1005 /* common for all type of bus errors */
1006 priv->can.can_stats.bus_error++;
1007 stats->rx_errors++;
1008
1009 /* propagate the error condition to the CAN stack */
1010 skb = alloc_can_err_skb(dev, &cf);
1011 if (unlikely(!skb))
1012 return 0;
1013
1014 /*
1015 * check for 'last error code' which tells us the
1016 * type of the last error to occur on the CAN bus
1017 */
1018 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1019
1020 switch (lec_type) {
1021 case LEC_STUFF_ERROR:
1022 netdev_dbg(dev, "stuff error\n");
1023 cf->data[2] |= CAN_ERR_PROT_STUFF;
1024 break;
1025 case LEC_FORM_ERROR:
1026 netdev_dbg(dev, "form error\n");
1027 cf->data[2] |= CAN_ERR_PROT_FORM;
1028 break;
1029 case LEC_ACK_ERROR:
1030 netdev_dbg(dev, "ack error\n");
1031 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1032 break;
1033 case LEC_BIT1_ERROR:
1034 netdev_dbg(dev, "bit1 error\n");
1035 cf->data[2] |= CAN_ERR_PROT_BIT1;
1036 break;
1037 case LEC_BIT0_ERROR:
1038 netdev_dbg(dev, "bit0 error\n");
1039 cf->data[2] |= CAN_ERR_PROT_BIT0;
1040 break;
1041 case LEC_CRC_ERROR:
1042 netdev_dbg(dev, "CRC error\n");
1043 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1044 break;
1045 default:
1046 break;
1047 }
1048
1049 stats->rx_packets++;
1050 stats->rx_bytes += cf->can_dlc;
1051 netif_receive_skb(skb);
1052 return 1;
1053 }
1054
c_can_poll(struct napi_struct * napi,int quota)1055 static int c_can_poll(struct napi_struct *napi, int quota)
1056 {
1057 struct net_device *dev = napi->dev;
1058 struct c_can_priv *priv = netdev_priv(dev);
1059 u16 curr, last = priv->last_status;
1060 int work_done = 0;
1061
1062 /* Only read the status register if a status interrupt was pending */
1063 if (atomic_xchg(&priv->sie_pending, 0)) {
1064 priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1065 /* Ack status on C_CAN. D_CAN is self clearing */
1066 if (priv->type != BOSCH_D_CAN)
1067 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1068 } else {
1069 /* no change detected ... */
1070 curr = last;
1071 }
1072
1073 /* handle state changes */
1074 if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1075 netdev_dbg(dev, "entered error warning state\n");
1076 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1077 }
1078
1079 if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1080 netdev_dbg(dev, "entered error passive state\n");
1081 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1082 }
1083
1084 if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1085 netdev_dbg(dev, "entered bus off state\n");
1086 work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1087 goto end;
1088 }
1089
1090 /* handle bus recovery events */
1091 if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1092 netdev_dbg(dev, "left bus off state\n");
1093 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1094 }
1095
1096 if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1097 netdev_dbg(dev, "left error passive state\n");
1098 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1099 }
1100
1101 if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
1102 netdev_dbg(dev, "left error warning state\n");
1103 work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
1104 }
1105
1106 /* handle lec errors on the bus */
1107 work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1108
1109 /* Handle Tx/Rx events. We do this unconditionally */
1110 work_done += c_can_do_rx_poll(dev, (quota - work_done));
1111 c_can_do_tx(dev);
1112
1113 end:
1114 if (work_done < quota) {
1115 napi_complete_done(napi, work_done);
1116 /* enable all IRQs if we are not in bus off state */
1117 if (priv->can.state != CAN_STATE_BUS_OFF)
1118 c_can_irq_control(priv, true);
1119 }
1120
1121 return work_done;
1122 }
1123
c_can_isr(int irq,void * dev_id)1124 static irqreturn_t c_can_isr(int irq, void *dev_id)
1125 {
1126 struct net_device *dev = (struct net_device *)dev_id;
1127 struct c_can_priv *priv = netdev_priv(dev);
1128 int reg_int;
1129
1130 reg_int = priv->read_reg(priv, C_CAN_INT_REG);
1131 if (!reg_int)
1132 return IRQ_NONE;
1133
1134 /* save for later use */
1135 if (reg_int & INT_STS_PENDING)
1136 atomic_set(&priv->sie_pending, 1);
1137
1138 /* disable all interrupts and schedule the NAPI */
1139 c_can_irq_control(priv, false);
1140 napi_schedule(&priv->napi);
1141
1142 return IRQ_HANDLED;
1143 }
1144
c_can_open(struct net_device * dev)1145 static int c_can_open(struct net_device *dev)
1146 {
1147 int err;
1148 struct c_can_priv *priv = netdev_priv(dev);
1149
1150 c_can_pm_runtime_get_sync(priv);
1151 c_can_reset_ram(priv, true);
1152
1153 /* open the can device */
1154 err = open_candev(dev);
1155 if (err) {
1156 netdev_err(dev, "failed to open can device\n");
1157 goto exit_open_fail;
1158 }
1159
1160 /* register interrupt handler */
1161 err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1162 dev);
1163 if (err < 0) {
1164 netdev_err(dev, "failed to request interrupt\n");
1165 goto exit_irq_fail;
1166 }
1167
1168 /* start the c_can controller */
1169 err = c_can_start(dev);
1170 if (err)
1171 goto exit_start_fail;
1172
1173 can_led_event(dev, CAN_LED_EVENT_OPEN);
1174
1175 napi_enable(&priv->napi);
1176 /* enable status change, error and module interrupts */
1177 c_can_irq_control(priv, true);
1178 netif_start_queue(dev);
1179
1180 return 0;
1181
1182 exit_start_fail:
1183 free_irq(dev->irq, dev);
1184 exit_irq_fail:
1185 close_candev(dev);
1186 exit_open_fail:
1187 c_can_reset_ram(priv, false);
1188 c_can_pm_runtime_put_sync(priv);
1189 return err;
1190 }
1191
c_can_close(struct net_device * dev)1192 static int c_can_close(struct net_device *dev)
1193 {
1194 struct c_can_priv *priv = netdev_priv(dev);
1195
1196 netif_stop_queue(dev);
1197 napi_disable(&priv->napi);
1198 c_can_stop(dev);
1199 free_irq(dev->irq, dev);
1200 close_candev(dev);
1201
1202 c_can_reset_ram(priv, false);
1203 c_can_pm_runtime_put_sync(priv);
1204
1205 can_led_event(dev, CAN_LED_EVENT_STOP);
1206
1207 return 0;
1208 }
1209
alloc_c_can_dev(void)1210 struct net_device *alloc_c_can_dev(void)
1211 {
1212 struct net_device *dev;
1213 struct c_can_priv *priv;
1214
1215 dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1216 if (!dev)
1217 return NULL;
1218
1219 priv = netdev_priv(dev);
1220 netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1221
1222 priv->dev = dev;
1223 priv->can.bittiming_const = &c_can_bittiming_const;
1224 priv->can.do_set_mode = c_can_set_mode;
1225 priv->can.do_get_berr_counter = c_can_get_berr_counter;
1226 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1227 CAN_CTRLMODE_LISTENONLY |
1228 CAN_CTRLMODE_BERR_REPORTING;
1229
1230 return dev;
1231 }
1232 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1233
1234 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1235 int c_can_power_down(struct net_device *dev)
1236 {
1237 u32 val;
1238 unsigned long time_out;
1239 struct c_can_priv *priv = netdev_priv(dev);
1240
1241 if (!(dev->flags & IFF_UP))
1242 return 0;
1243
1244 WARN_ON(priv->type != BOSCH_D_CAN);
1245
1246 /* set PDR value so the device goes to power down mode */
1247 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1248 val |= CONTROL_EX_PDR;
1249 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1250
1251 /* Wait for the PDA bit to get set */
1252 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1253 while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1254 time_after(time_out, jiffies))
1255 cpu_relax();
1256
1257 if (time_after(jiffies, time_out))
1258 return -ETIMEDOUT;
1259
1260 c_can_stop(dev);
1261
1262 c_can_reset_ram(priv, false);
1263 c_can_pm_runtime_put_sync(priv);
1264
1265 return 0;
1266 }
1267 EXPORT_SYMBOL_GPL(c_can_power_down);
1268
c_can_power_up(struct net_device * dev)1269 int c_can_power_up(struct net_device *dev)
1270 {
1271 u32 val;
1272 unsigned long time_out;
1273 struct c_can_priv *priv = netdev_priv(dev);
1274 int ret;
1275
1276 if (!(dev->flags & IFF_UP))
1277 return 0;
1278
1279 WARN_ON(priv->type != BOSCH_D_CAN);
1280
1281 c_can_pm_runtime_get_sync(priv);
1282 c_can_reset_ram(priv, true);
1283
1284 /* Clear PDR and INIT bits */
1285 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1286 val &= ~CONTROL_EX_PDR;
1287 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1288 val = priv->read_reg(priv, C_CAN_CTRL_REG);
1289 val &= ~CONTROL_INIT;
1290 priv->write_reg(priv, C_CAN_CTRL_REG, val);
1291
1292 /* Wait for the PDA bit to get clear */
1293 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1294 while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1295 time_after(time_out, jiffies))
1296 cpu_relax();
1297
1298 if (time_after(jiffies, time_out)) {
1299 ret = -ETIMEDOUT;
1300 goto err_out;
1301 }
1302
1303 ret = c_can_start(dev);
1304 if (ret)
1305 goto err_out;
1306
1307 c_can_irq_control(priv, true);
1308
1309 return 0;
1310
1311 err_out:
1312 c_can_reset_ram(priv, false);
1313 c_can_pm_runtime_put_sync(priv);
1314
1315 return ret;
1316 }
1317 EXPORT_SYMBOL_GPL(c_can_power_up);
1318 #endif
1319
free_c_can_dev(struct net_device * dev)1320 void free_c_can_dev(struct net_device *dev)
1321 {
1322 struct c_can_priv *priv = netdev_priv(dev);
1323
1324 netif_napi_del(&priv->napi);
1325 free_candev(dev);
1326 }
1327 EXPORT_SYMBOL_GPL(free_c_can_dev);
1328
1329 static const struct net_device_ops c_can_netdev_ops = {
1330 .ndo_open = c_can_open,
1331 .ndo_stop = c_can_close,
1332 .ndo_start_xmit = c_can_start_xmit,
1333 .ndo_change_mtu = can_change_mtu,
1334 };
1335
register_c_can_dev(struct net_device * dev)1336 int register_c_can_dev(struct net_device *dev)
1337 {
1338 struct c_can_priv *priv = netdev_priv(dev);
1339 int err;
1340
1341 /* Deactivate pins to prevent DRA7 DCAN IP from being
1342 * stuck in transition when module is disabled.
1343 * Pins are activated in c_can_start() and deactivated
1344 * in c_can_stop()
1345 */
1346 pinctrl_pm_select_sleep_state(dev->dev.parent);
1347
1348 c_can_pm_runtime_enable(priv);
1349
1350 dev->flags |= IFF_ECHO; /* we support local echo */
1351 dev->netdev_ops = &c_can_netdev_ops;
1352
1353 err = register_candev(dev);
1354 if (err)
1355 c_can_pm_runtime_disable(priv);
1356 else
1357 devm_can_led_init(dev);
1358
1359 return err;
1360 }
1361 EXPORT_SYMBOL_GPL(register_c_can_dev);
1362
unregister_c_can_dev(struct net_device * dev)1363 void unregister_c_can_dev(struct net_device *dev)
1364 {
1365 struct c_can_priv *priv = netdev_priv(dev);
1366
1367 unregister_candev(dev);
1368
1369 c_can_pm_runtime_disable(priv);
1370 }
1371 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1372
1373 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1374 MODULE_LICENSE("GPL v2");
1375 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1376