1 /*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
44
45 #include "c_can.h"
46
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN 11
49 #define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR BIT(8)
53
54 /* control register */
55 #define CONTROL_TEST BIT(7)
56 #define CONTROL_CCE BIT(6)
57 #define CONTROL_DISABLE_AR BIT(5)
58 #define CONTROL_ENABLE_AR (0 << 5)
59 #define CONTROL_EIE BIT(3)
60 #define CONTROL_SIE BIT(2)
61 #define CONTROL_IE BIT(1)
62 #define CONTROL_INIT BIT(0)
63
64 #define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
65
66 /* test register */
67 #define TEST_RX BIT(7)
68 #define TEST_TX1 BIT(6)
69 #define TEST_TX2 BIT(5)
70 #define TEST_LBACK BIT(4)
71 #define TEST_SILENT BIT(3)
72 #define TEST_BASIC BIT(2)
73
74 /* status register */
75 #define STATUS_PDA BIT(10)
76 #define STATUS_BOFF BIT(7)
77 #define STATUS_EWARN BIT(6)
78 #define STATUS_EPASS BIT(5)
79 #define STATUS_RXOK BIT(4)
80 #define STATUS_TXOK BIT(3)
81
82 /* error counter register */
83 #define ERR_CNT_TEC_MASK 0xff
84 #define ERR_CNT_TEC_SHIFT 0
85 #define ERR_CNT_REC_SHIFT 8
86 #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
87 #define ERR_CNT_RP_SHIFT 15
88 #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
89
90 /* bit-timing register */
91 #define BTR_BRP_MASK 0x3f
92 #define BTR_BRP_SHIFT 0
93 #define BTR_SJW_SHIFT 6
94 #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
95 #define BTR_TSEG1_SHIFT 8
96 #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
97 #define BTR_TSEG2_SHIFT 12
98 #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
99
100 /* brp extension register */
101 #define BRP_EXT_BRPE_MASK 0x0f
102 #define BRP_EXT_BRPE_SHIFT 0
103
104 /* IFx command request */
105 #define IF_COMR_BUSY BIT(15)
106
107 /* IFx command mask */
108 #define IF_COMM_WR BIT(7)
109 #define IF_COMM_MASK BIT(6)
110 #define IF_COMM_ARB BIT(5)
111 #define IF_COMM_CONTROL BIT(4)
112 #define IF_COMM_CLR_INT_PND BIT(3)
113 #define IF_COMM_TXRQST BIT(2)
114 #define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST
115 #define IF_COMM_DATAA BIT(1)
116 #define IF_COMM_DATAB BIT(0)
117
118 /* TX buffer setup */
119 #define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \
120 IF_COMM_TXRQST | \
121 IF_COMM_DATAA | IF_COMM_DATAB)
122
123 /* For the low buffers we clear the interrupt bit, but keep newdat */
124 #define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \
125 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
126 IF_COMM_DATAA | IF_COMM_DATAB)
127
128 /* For the high buffers we clear the interrupt bit and newdat */
129 #define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
130
131
132 /* Receive setup of message objects */
133 #define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
134
135 /* Invalidation of message objects */
136 #define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL)
137
138 /* IFx arbitration */
139 #define IF_ARB_MSGVAL BIT(31)
140 #define IF_ARB_MSGXTD BIT(30)
141 #define IF_ARB_TRANSMIT BIT(29)
142
143 /* IFx message control */
144 #define IF_MCONT_NEWDAT BIT(15)
145 #define IF_MCONT_MSGLST BIT(14)
146 #define IF_MCONT_INTPND BIT(13)
147 #define IF_MCONT_UMASK BIT(12)
148 #define IF_MCONT_TXIE BIT(11)
149 #define IF_MCONT_RXIE BIT(10)
150 #define IF_MCONT_RMTEN BIT(9)
151 #define IF_MCONT_TXRQST BIT(8)
152 #define IF_MCONT_EOB BIT(7)
153 #define IF_MCONT_DLC_MASK 0xf
154
155 #define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK)
156 #define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB)
157
158 #define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB)
159
160 /*
161 * Use IF1 for RX and IF2 for TX
162 */
163 #define IF_RX 0
164 #define IF_TX 1
165
166 /* minimum timeout for checking BUSY status */
167 #define MIN_TIMEOUT_VALUE 6
168
169 /* Wait for ~1 sec for INIT bit */
170 #define INIT_WAIT_MS 1000
171
172 /* napi related */
173 #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
174
175 /* c_can lec values */
176 enum c_can_lec_type {
177 LEC_NO_ERROR = 0,
178 LEC_STUFF_ERROR,
179 LEC_FORM_ERROR,
180 LEC_ACK_ERROR,
181 LEC_BIT1_ERROR,
182 LEC_BIT0_ERROR,
183 LEC_CRC_ERROR,
184 LEC_UNUSED,
185 LEC_MASK = LEC_UNUSED,
186 };
187
188 /*
189 * c_can error types:
190 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
191 */
192 enum c_can_bus_error_types {
193 C_CAN_NO_ERROR = 0,
194 C_CAN_BUS_OFF,
195 C_CAN_ERROR_WARNING,
196 C_CAN_ERROR_PASSIVE,
197 };
198
199 static const struct can_bittiming_const c_can_bittiming_const = {
200 .name = KBUILD_MODNAME,
201 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
202 .tseg1_max = 16,
203 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
204 .tseg2_max = 8,
205 .sjw_max = 4,
206 .brp_min = 1,
207 .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
208 .brp_inc = 1,
209 };
210
c_can_pm_runtime_enable(const struct c_can_priv * priv)211 static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
212 {
213 if (priv->device)
214 pm_runtime_enable(priv->device);
215 }
216
c_can_pm_runtime_disable(const struct c_can_priv * priv)217 static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
218 {
219 if (priv->device)
220 pm_runtime_disable(priv->device);
221 }
222
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)223 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
224 {
225 if (priv->device)
226 pm_runtime_get_sync(priv->device);
227 }
228
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)229 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
230 {
231 if (priv->device)
232 pm_runtime_put_sync(priv->device);
233 }
234
c_can_reset_ram(const struct c_can_priv * priv,bool enable)235 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
236 {
237 if (priv->raminit)
238 priv->raminit(priv, enable);
239 }
240
c_can_irq_control(struct c_can_priv * priv,bool enable)241 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
242 {
243 u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
244
245 if (enable)
246 ctrl |= CONTROL_IRQMSK;
247
248 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
249 }
250
c_can_obj_update(struct net_device * dev,int iface,u32 cmd,u32 obj)251 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
252 {
253 struct c_can_priv *priv = netdev_priv(dev);
254 int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
255
256 priv->write_reg32(priv, reg, (cmd << 16) | obj);
257
258 for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
259 if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
260 return;
261 udelay(1);
262 }
263 netdev_err(dev, "Updating object timed out\n");
264
265 }
266
c_can_object_get(struct net_device * dev,int iface,u32 obj,u32 cmd)267 static inline void c_can_object_get(struct net_device *dev, int iface,
268 u32 obj, u32 cmd)
269 {
270 c_can_obj_update(dev, iface, cmd, obj);
271 }
272
c_can_object_put(struct net_device * dev,int iface,u32 obj,u32 cmd)273 static inline void c_can_object_put(struct net_device *dev, int iface,
274 u32 obj, u32 cmd)
275 {
276 c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
277 }
278
279 /*
280 * Note: According to documentation clearing TXIE while MSGVAL is set
281 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
282 * load significantly.
283 */
c_can_inval_tx_object(struct net_device * dev,int iface,int obj)284 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
285 {
286 struct c_can_priv *priv = netdev_priv(dev);
287
288 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
289 c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
290 }
291
c_can_inval_msg_object(struct net_device * dev,int iface,int obj)292 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
293 {
294 struct c_can_priv *priv = netdev_priv(dev);
295
296 priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
297 priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
298 c_can_inval_tx_object(dev, iface, obj);
299 }
300
c_can_setup_tx_object(struct net_device * dev,int iface,struct can_frame * frame,int idx)301 static void c_can_setup_tx_object(struct net_device *dev, int iface,
302 struct can_frame *frame, int idx)
303 {
304 struct c_can_priv *priv = netdev_priv(dev);
305 u16 ctrl = IF_MCONT_TX | frame->can_dlc;
306 bool rtr = frame->can_id & CAN_RTR_FLAG;
307 u32 arb = IF_ARB_MSGVAL;
308 int i;
309
310 if (frame->can_id & CAN_EFF_FLAG) {
311 arb |= frame->can_id & CAN_EFF_MASK;
312 arb |= IF_ARB_MSGXTD;
313 } else {
314 arb |= (frame->can_id & CAN_SFF_MASK) << 18;
315 }
316
317 if (!rtr)
318 arb |= IF_ARB_TRANSMIT;
319
320 /*
321 * If we change the DIR bit, we need to invalidate the buffer
322 * first, i.e. clear the MSGVAL flag in the arbiter.
323 */
324 if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
325 u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
326
327 c_can_inval_msg_object(dev, iface, obj);
328 change_bit(idx, &priv->tx_dir);
329 }
330
331 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
332
333 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
334
335 if (priv->type == BOSCH_D_CAN) {
336 u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
337
338 for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
339 data = (u32)frame->data[i];
340 data |= (u32)frame->data[i + 1] << 8;
341 data |= (u32)frame->data[i + 2] << 16;
342 data |= (u32)frame->data[i + 3] << 24;
343 priv->write_reg32(priv, dreg, data);
344 }
345 } else {
346 for (i = 0; i < frame->can_dlc; i += 2) {
347 priv->write_reg(priv,
348 C_CAN_IFACE(DATA1_REG, iface) + i / 2,
349 frame->data[i] |
350 (frame->data[i + 1] << 8));
351 }
352 }
353 }
354
c_can_activate_all_lower_rx_msg_obj(struct net_device * dev,int iface)355 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
356 int iface)
357 {
358 int i;
359
360 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
361 c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
362 }
363
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno,u32 ctrl)364 static int c_can_handle_lost_msg_obj(struct net_device *dev,
365 int iface, int objno, u32 ctrl)
366 {
367 struct net_device_stats *stats = &dev->stats;
368 struct c_can_priv *priv = netdev_priv(dev);
369 struct can_frame *frame;
370 struct sk_buff *skb;
371
372 ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
373 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
374 c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
375
376 stats->rx_errors++;
377 stats->rx_over_errors++;
378
379 /* create an error msg */
380 skb = alloc_can_err_skb(dev, &frame);
381 if (unlikely(!skb))
382 return 0;
383
384 frame->can_id |= CAN_ERR_CRTL;
385 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
386
387 netif_receive_skb(skb);
388 return 1;
389 }
390
c_can_read_msg_object(struct net_device * dev,int iface,u32 ctrl)391 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
392 {
393 struct net_device_stats *stats = &dev->stats;
394 struct c_can_priv *priv = netdev_priv(dev);
395 struct can_frame *frame;
396 struct sk_buff *skb;
397 u32 arb, data;
398
399 skb = alloc_can_skb(dev, &frame);
400 if (!skb) {
401 stats->rx_dropped++;
402 return -ENOMEM;
403 }
404
405 frame->can_dlc = get_can_dlc(ctrl & 0x0F);
406
407 arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
408
409 if (arb & IF_ARB_MSGXTD)
410 frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
411 else
412 frame->can_id = (arb >> 18) & CAN_SFF_MASK;
413
414 if (arb & IF_ARB_TRANSMIT) {
415 frame->can_id |= CAN_RTR_FLAG;
416 } else {
417 int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
418
419 if (priv->type == BOSCH_D_CAN) {
420 for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
421 data = priv->read_reg32(priv, dreg);
422 frame->data[i] = data;
423 frame->data[i + 1] = data >> 8;
424 frame->data[i + 2] = data >> 16;
425 frame->data[i + 3] = data >> 24;
426 }
427 } else {
428 for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
429 data = priv->read_reg(priv, dreg);
430 frame->data[i] = data;
431 frame->data[i + 1] = data >> 8;
432 }
433 }
434 }
435
436 stats->rx_packets++;
437 stats->rx_bytes += frame->can_dlc;
438
439 netif_receive_skb(skb);
440 return 0;
441 }
442
c_can_setup_receive_object(struct net_device * dev,int iface,u32 obj,u32 mask,u32 id,u32 mcont)443 static void c_can_setup_receive_object(struct net_device *dev, int iface,
444 u32 obj, u32 mask, u32 id, u32 mcont)
445 {
446 struct c_can_priv *priv = netdev_priv(dev);
447
448 mask |= BIT(29);
449 priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
450
451 id |= IF_ARB_MSGVAL;
452 priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
453
454 priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
455 c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
456 }
457
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)458 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
459 struct net_device *dev)
460 {
461 struct can_frame *frame = (struct can_frame *)skb->data;
462 struct c_can_priv *priv = netdev_priv(dev);
463 u32 idx, obj;
464
465 if (can_dropped_invalid_skb(dev, skb))
466 return NETDEV_TX_OK;
467 /*
468 * This is not a FIFO. C/D_CAN sends out the buffers
469 * prioritized. The lowest buffer number wins.
470 */
471 idx = fls(atomic_read(&priv->tx_active));
472 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
473
474 /* If this is the last buffer, stop the xmit queue */
475 if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
476 netif_stop_queue(dev);
477 /*
478 * Store the message in the interface so we can call
479 * can_put_echo_skb(). We must do this before we enable
480 * transmit as we might race against do_tx().
481 */
482 c_can_setup_tx_object(dev, IF_TX, frame, idx);
483 priv->dlc[idx] = frame->can_dlc;
484 can_put_echo_skb(skb, dev, idx);
485
486 /* Update the active bits */
487 atomic_add((1 << idx), &priv->tx_active);
488 /* Start transmission */
489 c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
490
491 return NETDEV_TX_OK;
492 }
493
c_can_wait_for_ctrl_init(struct net_device * dev,struct c_can_priv * priv,u32 init)494 static int c_can_wait_for_ctrl_init(struct net_device *dev,
495 struct c_can_priv *priv, u32 init)
496 {
497 int retry = 0;
498
499 while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
500 udelay(10);
501 if (retry++ > 1000) {
502 netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
503 return -EIO;
504 }
505 }
506 return 0;
507 }
508
c_can_set_bittiming(struct net_device * dev)509 static int c_can_set_bittiming(struct net_device *dev)
510 {
511 unsigned int reg_btr, reg_brpe, ctrl_save;
512 u8 brp, brpe, sjw, tseg1, tseg2;
513 u32 ten_bit_brp;
514 struct c_can_priv *priv = netdev_priv(dev);
515 const struct can_bittiming *bt = &priv->can.bittiming;
516 int res;
517
518 /* c_can provides a 6-bit brp and 4-bit brpe fields */
519 ten_bit_brp = bt->brp - 1;
520 brp = ten_bit_brp & BTR_BRP_MASK;
521 brpe = ten_bit_brp >> 6;
522
523 sjw = bt->sjw - 1;
524 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
525 tseg2 = bt->phase_seg2 - 1;
526 reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
527 (tseg2 << BTR_TSEG2_SHIFT);
528 reg_brpe = brpe & BRP_EXT_BRPE_MASK;
529
530 netdev_info(dev,
531 "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
532
533 ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
534 ctrl_save &= ~CONTROL_INIT;
535 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
536 res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
537 if (res)
538 return res;
539
540 priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
541 priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
542 priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
543
544 return c_can_wait_for_ctrl_init(dev, priv, 0);
545 }
546
547 /*
548 * Configure C_CAN message objects for Tx and Rx purposes:
549 * C_CAN provides a total of 32 message objects that can be configured
550 * either for Tx or Rx purposes. Here the first 16 message objects are used as
551 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
552 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
553 * See user guide document for further details on configuring message
554 * objects.
555 */
c_can_configure_msg_objects(struct net_device * dev)556 static void c_can_configure_msg_objects(struct net_device *dev)
557 {
558 int i;
559
560 /* first invalidate all message objects */
561 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
562 c_can_inval_msg_object(dev, IF_RX, i);
563
564 /* setup receive message objects */
565 for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
566 c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
567
568 c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
569 IF_MCONT_RCV_EOB);
570 }
571
572 /*
573 * Configure C_CAN chip:
574 * - enable/disable auto-retransmission
575 * - set operating mode
576 * - configure message objects
577 */
c_can_chip_config(struct net_device * dev)578 static int c_can_chip_config(struct net_device *dev)
579 {
580 struct c_can_priv *priv = netdev_priv(dev);
581
582 /* enable automatic retransmission */
583 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
584
585 if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
586 (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
587 /* loopback + silent mode : useful for hot self-test */
588 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
589 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
590 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
591 /* loopback mode : useful for self-test function */
592 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
593 priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
594 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
595 /* silent mode : bus-monitoring mode */
596 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
597 priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
598 }
599
600 /* configure message objects */
601 c_can_configure_msg_objects(dev);
602
603 /* set a `lec` value so that we can check for updates later */
604 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
605
606 /* Clear all internal status */
607 atomic_set(&priv->tx_active, 0);
608 priv->rxmasked = 0;
609 priv->tx_dir = 0;
610
611 /* set bittiming params */
612 return c_can_set_bittiming(dev);
613 }
614
c_can_start(struct net_device * dev)615 static int c_can_start(struct net_device *dev)
616 {
617 struct c_can_priv *priv = netdev_priv(dev);
618 int err;
619 struct pinctrl *p;
620
621 /* basic c_can configuration */
622 err = c_can_chip_config(dev);
623 if (err)
624 return err;
625
626 /* Setup the command for new messages */
627 priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
628 IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
629
630 priv->can.state = CAN_STATE_ERROR_ACTIVE;
631
632 /* Attempt to use "active" if available else use "default" */
633 p = pinctrl_get_select(priv->device, "active");
634 if (!IS_ERR(p))
635 pinctrl_put(p);
636 else
637 pinctrl_pm_select_default_state(priv->device);
638
639 return 0;
640 }
641
c_can_stop(struct net_device * dev)642 static void c_can_stop(struct net_device *dev)
643 {
644 struct c_can_priv *priv = netdev_priv(dev);
645
646 c_can_irq_control(priv, false);
647
648 /* put ctrl to init on stop to end ongoing transmission */
649 priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
650
651 /* deactivate pins */
652 pinctrl_pm_select_sleep_state(dev->dev.parent);
653 priv->can.state = CAN_STATE_STOPPED;
654 }
655
c_can_set_mode(struct net_device * dev,enum can_mode mode)656 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
657 {
658 struct c_can_priv *priv = netdev_priv(dev);
659 int err;
660
661 switch (mode) {
662 case CAN_MODE_START:
663 err = c_can_start(dev);
664 if (err)
665 return err;
666 netif_wake_queue(dev);
667 c_can_irq_control(priv, true);
668 break;
669 default:
670 return -EOPNOTSUPP;
671 }
672
673 return 0;
674 }
675
__c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)676 static int __c_can_get_berr_counter(const struct net_device *dev,
677 struct can_berr_counter *bec)
678 {
679 unsigned int reg_err_counter;
680 struct c_can_priv *priv = netdev_priv(dev);
681
682 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
683 bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
684 ERR_CNT_REC_SHIFT;
685 bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
686
687 return 0;
688 }
689
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)690 static int c_can_get_berr_counter(const struct net_device *dev,
691 struct can_berr_counter *bec)
692 {
693 struct c_can_priv *priv = netdev_priv(dev);
694 int err;
695
696 c_can_pm_runtime_get_sync(priv);
697 err = __c_can_get_berr_counter(dev, bec);
698 c_can_pm_runtime_put_sync(priv);
699
700 return err;
701 }
702
c_can_do_tx(struct net_device * dev)703 static void c_can_do_tx(struct net_device *dev)
704 {
705 struct c_can_priv *priv = netdev_priv(dev);
706 struct net_device_stats *stats = &dev->stats;
707 u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
708
709 clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
710
711 while ((idx = ffs(pend))) {
712 idx--;
713 pend &= ~(1 << idx);
714 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
715 c_can_inval_tx_object(dev, IF_RX, obj);
716 can_get_echo_skb(dev, idx);
717 bytes += priv->dlc[idx];
718 pkts++;
719 }
720
721 /* Clear the bits in the tx_active mask */
722 atomic_sub(clr, &priv->tx_active);
723
724 if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
725 netif_wake_queue(dev);
726
727 if (pkts) {
728 stats->tx_bytes += bytes;
729 stats->tx_packets += pkts;
730 can_led_event(dev, CAN_LED_EVENT_TX);
731 }
732 }
733
734 /*
735 * If we have a gap in the pending bits, that means we either
736 * raced with the hardware or failed to readout all upper
737 * objects in the last run due to quota limit.
738 */
c_can_adjust_pending(u32 pend)739 static u32 c_can_adjust_pending(u32 pend)
740 {
741 u32 weight, lasts;
742
743 if (pend == RECEIVE_OBJECT_BITS)
744 return pend;
745
746 /*
747 * If the last set bit is larger than the number of pending
748 * bits we have a gap.
749 */
750 weight = hweight32(pend);
751 lasts = fls(pend);
752
753 /* If the bits are linear, nothing to do */
754 if (lasts == weight)
755 return pend;
756
757 /*
758 * Find the first set bit after the gap. We walk backwards
759 * from the last set bit.
760 */
761 for (lasts--; pend & (1 << (lasts - 1)); lasts--);
762
763 return pend & ~((1 << lasts) - 1);
764 }
765
c_can_rx_object_get(struct net_device * dev,struct c_can_priv * priv,u32 obj)766 static inline void c_can_rx_object_get(struct net_device *dev,
767 struct c_can_priv *priv, u32 obj)
768 {
769 c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
770 }
771
c_can_rx_finalize(struct net_device * dev,struct c_can_priv * priv,u32 obj)772 static inline void c_can_rx_finalize(struct net_device *dev,
773 struct c_can_priv *priv, u32 obj)
774 {
775 if (priv->type != BOSCH_D_CAN)
776 c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
777 }
778
c_can_read_objects(struct net_device * dev,struct c_can_priv * priv,u32 pend,int quota)779 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
780 u32 pend, int quota)
781 {
782 u32 pkts = 0, ctrl, obj;
783
784 while ((obj = ffs(pend)) && quota > 0) {
785 pend &= ~BIT(obj - 1);
786
787 c_can_rx_object_get(dev, priv, obj);
788 ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
789
790 if (ctrl & IF_MCONT_MSGLST) {
791 int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
792
793 pkts += n;
794 quota -= n;
795 continue;
796 }
797
798 /*
799 * This really should not happen, but this covers some
800 * odd HW behaviour. Do not remove that unless you
801 * want to brick your machine.
802 */
803 if (!(ctrl & IF_MCONT_NEWDAT))
804 continue;
805
806 /* read the data from the message object */
807 c_can_read_msg_object(dev, IF_RX, ctrl);
808
809 c_can_rx_finalize(dev, priv, obj);
810
811 pkts++;
812 quota--;
813 }
814
815 return pkts;
816 }
817
c_can_get_pending(struct c_can_priv * priv)818 static inline u32 c_can_get_pending(struct c_can_priv *priv)
819 {
820 u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
821
822 return pend;
823 }
824
825 /*
826 * theory of operation:
827 *
828 * c_can core saves a received CAN message into the first free message
829 * object it finds free (starting with the lowest). Bits NEWDAT and
830 * INTPND are set for this message object indicating that a new message
831 * has arrived. To work-around this issue, we keep two groups of message
832 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
833 *
834 * We clear the newdat bit right away.
835 *
836 * This can result in packet reordering when the readout is slow.
837 */
c_can_do_rx_poll(struct net_device * dev,int quota)838 static int c_can_do_rx_poll(struct net_device *dev, int quota)
839 {
840 struct c_can_priv *priv = netdev_priv(dev);
841 u32 pkts = 0, pend = 0, toread, n;
842
843 /*
844 * It is faster to read only one 16bit register. This is only possible
845 * for a maximum number of 16 objects.
846 */
847 BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
848 "Implementation does not support more message objects than 16");
849
850 while (quota > 0) {
851 if (!pend) {
852 pend = c_can_get_pending(priv);
853 if (!pend)
854 break;
855 /*
856 * If the pending field has a gap, handle the
857 * bits above the gap first.
858 */
859 toread = c_can_adjust_pending(pend);
860 } else {
861 toread = pend;
862 }
863 /* Remove the bits from pend */
864 pend &= ~toread;
865 /* Read the objects */
866 n = c_can_read_objects(dev, priv, toread, quota);
867 pkts += n;
868 quota -= n;
869 }
870
871 if (pkts)
872 can_led_event(dev, CAN_LED_EVENT_RX);
873
874 return pkts;
875 }
876
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)877 static int c_can_handle_state_change(struct net_device *dev,
878 enum c_can_bus_error_types error_type)
879 {
880 unsigned int reg_err_counter;
881 unsigned int rx_err_passive;
882 struct c_can_priv *priv = netdev_priv(dev);
883 struct net_device_stats *stats = &dev->stats;
884 struct can_frame *cf;
885 struct sk_buff *skb;
886 struct can_berr_counter bec;
887
888 switch (error_type) {
889 case C_CAN_ERROR_WARNING:
890 /* error warning state */
891 priv->can.can_stats.error_warning++;
892 priv->can.state = CAN_STATE_ERROR_WARNING;
893 break;
894 case C_CAN_ERROR_PASSIVE:
895 /* error passive state */
896 priv->can.can_stats.error_passive++;
897 priv->can.state = CAN_STATE_ERROR_PASSIVE;
898 break;
899 case C_CAN_BUS_OFF:
900 /* bus-off state */
901 priv->can.state = CAN_STATE_BUS_OFF;
902 priv->can.can_stats.bus_off++;
903 break;
904 default:
905 break;
906 }
907
908 /* propagate the error condition to the CAN stack */
909 skb = alloc_can_err_skb(dev, &cf);
910 if (unlikely(!skb))
911 return 0;
912
913 __c_can_get_berr_counter(dev, &bec);
914 reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
915 rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
916 ERR_CNT_RP_SHIFT;
917
918 switch (error_type) {
919 case C_CAN_ERROR_WARNING:
920 /* error warning state */
921 cf->can_id |= CAN_ERR_CRTL;
922 cf->data[1] = (bec.txerr > bec.rxerr) ?
923 CAN_ERR_CRTL_TX_WARNING :
924 CAN_ERR_CRTL_RX_WARNING;
925 cf->data[6] = bec.txerr;
926 cf->data[7] = bec.rxerr;
927
928 break;
929 case C_CAN_ERROR_PASSIVE:
930 /* error passive state */
931 cf->can_id |= CAN_ERR_CRTL;
932 if (rx_err_passive)
933 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
934 if (bec.txerr > 127)
935 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
936
937 cf->data[6] = bec.txerr;
938 cf->data[7] = bec.rxerr;
939 break;
940 case C_CAN_BUS_OFF:
941 /* bus-off state */
942 cf->can_id |= CAN_ERR_BUSOFF;
943 can_bus_off(dev);
944 break;
945 default:
946 break;
947 }
948
949 stats->rx_packets++;
950 stats->rx_bytes += cf->can_dlc;
951 netif_receive_skb(skb);
952
953 return 1;
954 }
955
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)956 static int c_can_handle_bus_err(struct net_device *dev,
957 enum c_can_lec_type lec_type)
958 {
959 struct c_can_priv *priv = netdev_priv(dev);
960 struct net_device_stats *stats = &dev->stats;
961 struct can_frame *cf;
962 struct sk_buff *skb;
963
964 /*
965 * early exit if no lec update or no error.
966 * no lec update means that no CAN bus event has been detected
967 * since CPU wrote 0x7 value to status reg.
968 */
969 if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
970 return 0;
971
972 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
973 return 0;
974
975 /* common for all type of bus errors */
976 priv->can.can_stats.bus_error++;
977 stats->rx_errors++;
978
979 /* propagate the error condition to the CAN stack */
980 skb = alloc_can_err_skb(dev, &cf);
981 if (unlikely(!skb))
982 return 0;
983
984 /*
985 * check for 'last error code' which tells us the
986 * type of the last error to occur on the CAN bus
987 */
988 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
989
990 switch (lec_type) {
991 case LEC_STUFF_ERROR:
992 netdev_dbg(dev, "stuff error\n");
993 cf->data[2] |= CAN_ERR_PROT_STUFF;
994 break;
995 case LEC_FORM_ERROR:
996 netdev_dbg(dev, "form error\n");
997 cf->data[2] |= CAN_ERR_PROT_FORM;
998 break;
999 case LEC_ACK_ERROR:
1000 netdev_dbg(dev, "ack error\n");
1001 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1002 break;
1003 case LEC_BIT1_ERROR:
1004 netdev_dbg(dev, "bit1 error\n");
1005 cf->data[2] |= CAN_ERR_PROT_BIT1;
1006 break;
1007 case LEC_BIT0_ERROR:
1008 netdev_dbg(dev, "bit0 error\n");
1009 cf->data[2] |= CAN_ERR_PROT_BIT0;
1010 break;
1011 case LEC_CRC_ERROR:
1012 netdev_dbg(dev, "CRC error\n");
1013 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1014 break;
1015 default:
1016 break;
1017 }
1018
1019 stats->rx_packets++;
1020 stats->rx_bytes += cf->can_dlc;
1021 netif_receive_skb(skb);
1022 return 1;
1023 }
1024
c_can_poll(struct napi_struct * napi,int quota)1025 static int c_can_poll(struct napi_struct *napi, int quota)
1026 {
1027 struct net_device *dev = napi->dev;
1028 struct c_can_priv *priv = netdev_priv(dev);
1029 u16 curr, last = priv->last_status;
1030 int work_done = 0;
1031
1032 priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1033 /* Ack status on C_CAN. D_CAN is self clearing */
1034 if (priv->type != BOSCH_D_CAN)
1035 priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1036
1037 /* handle state changes */
1038 if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1039 netdev_dbg(dev, "entered error warning state\n");
1040 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1041 }
1042
1043 if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1044 netdev_dbg(dev, "entered error passive state\n");
1045 work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1046 }
1047
1048 if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1049 netdev_dbg(dev, "entered bus off state\n");
1050 work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1051 goto end;
1052 }
1053
1054 /* handle bus recovery events */
1055 if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1056 netdev_dbg(dev, "left bus off state\n");
1057 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1058 }
1059 if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1060 netdev_dbg(dev, "left error passive state\n");
1061 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1062 }
1063
1064 /* handle lec errors on the bus */
1065 work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1066
1067 /* Handle Tx/Rx events. We do this unconditionally */
1068 work_done += c_can_do_rx_poll(dev, (quota - work_done));
1069 c_can_do_tx(dev);
1070
1071 end:
1072 if (work_done < quota) {
1073 napi_complete_done(napi, work_done);
1074 /* enable all IRQs if we are not in bus off state */
1075 if (priv->can.state != CAN_STATE_BUS_OFF)
1076 c_can_irq_control(priv, true);
1077 }
1078
1079 return work_done;
1080 }
1081
c_can_isr(int irq,void * dev_id)1082 static irqreturn_t c_can_isr(int irq, void *dev_id)
1083 {
1084 struct net_device *dev = (struct net_device *)dev_id;
1085 struct c_can_priv *priv = netdev_priv(dev);
1086
1087 if (!priv->read_reg(priv, C_CAN_INT_REG))
1088 return IRQ_NONE;
1089
1090 /* disable all interrupts and schedule the NAPI */
1091 c_can_irq_control(priv, false);
1092 napi_schedule(&priv->napi);
1093
1094 return IRQ_HANDLED;
1095 }
1096
c_can_open(struct net_device * dev)1097 static int c_can_open(struct net_device *dev)
1098 {
1099 int err;
1100 struct c_can_priv *priv = netdev_priv(dev);
1101
1102 c_can_pm_runtime_get_sync(priv);
1103 c_can_reset_ram(priv, true);
1104
1105 /* open the can device */
1106 err = open_candev(dev);
1107 if (err) {
1108 netdev_err(dev, "failed to open can device\n");
1109 goto exit_open_fail;
1110 }
1111
1112 /* register interrupt handler */
1113 err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1114 dev);
1115 if (err < 0) {
1116 netdev_err(dev, "failed to request interrupt\n");
1117 goto exit_irq_fail;
1118 }
1119
1120 /* start the c_can controller */
1121 err = c_can_start(dev);
1122 if (err)
1123 goto exit_start_fail;
1124
1125 can_led_event(dev, CAN_LED_EVENT_OPEN);
1126
1127 napi_enable(&priv->napi);
1128 /* enable status change, error and module interrupts */
1129 c_can_irq_control(priv, true);
1130 netif_start_queue(dev);
1131
1132 return 0;
1133
1134 exit_start_fail:
1135 free_irq(dev->irq, dev);
1136 exit_irq_fail:
1137 close_candev(dev);
1138 exit_open_fail:
1139 c_can_reset_ram(priv, false);
1140 c_can_pm_runtime_put_sync(priv);
1141 return err;
1142 }
1143
c_can_close(struct net_device * dev)1144 static int c_can_close(struct net_device *dev)
1145 {
1146 struct c_can_priv *priv = netdev_priv(dev);
1147
1148 netif_stop_queue(dev);
1149 napi_disable(&priv->napi);
1150 c_can_stop(dev);
1151 free_irq(dev->irq, dev);
1152 close_candev(dev);
1153
1154 c_can_reset_ram(priv, false);
1155 c_can_pm_runtime_put_sync(priv);
1156
1157 can_led_event(dev, CAN_LED_EVENT_STOP);
1158
1159 return 0;
1160 }
1161
alloc_c_can_dev(void)1162 struct net_device *alloc_c_can_dev(void)
1163 {
1164 struct net_device *dev;
1165 struct c_can_priv *priv;
1166
1167 dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1168 if (!dev)
1169 return NULL;
1170
1171 priv = netdev_priv(dev);
1172 netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1173
1174 priv->dev = dev;
1175 priv->can.bittiming_const = &c_can_bittiming_const;
1176 priv->can.do_set_mode = c_can_set_mode;
1177 priv->can.do_get_berr_counter = c_can_get_berr_counter;
1178 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1179 CAN_CTRLMODE_LISTENONLY |
1180 CAN_CTRLMODE_BERR_REPORTING;
1181
1182 return dev;
1183 }
1184 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1185
1186 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1187 int c_can_power_down(struct net_device *dev)
1188 {
1189 u32 val;
1190 unsigned long time_out;
1191 struct c_can_priv *priv = netdev_priv(dev);
1192
1193 if (!(dev->flags & IFF_UP))
1194 return 0;
1195
1196 WARN_ON(priv->type != BOSCH_D_CAN);
1197
1198 /* set PDR value so the device goes to power down mode */
1199 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1200 val |= CONTROL_EX_PDR;
1201 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1202
1203 /* Wait for the PDA bit to get set */
1204 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1205 while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1206 time_after(time_out, jiffies))
1207 cpu_relax();
1208
1209 if (time_after(jiffies, time_out))
1210 return -ETIMEDOUT;
1211
1212 c_can_stop(dev);
1213
1214 c_can_reset_ram(priv, false);
1215 c_can_pm_runtime_put_sync(priv);
1216
1217 return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(c_can_power_down);
1220
c_can_power_up(struct net_device * dev)1221 int c_can_power_up(struct net_device *dev)
1222 {
1223 u32 val;
1224 unsigned long time_out;
1225 struct c_can_priv *priv = netdev_priv(dev);
1226 int ret;
1227
1228 if (!(dev->flags & IFF_UP))
1229 return 0;
1230
1231 WARN_ON(priv->type != BOSCH_D_CAN);
1232
1233 c_can_pm_runtime_get_sync(priv);
1234 c_can_reset_ram(priv, true);
1235
1236 /* Clear PDR and INIT bits */
1237 val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1238 val &= ~CONTROL_EX_PDR;
1239 priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1240 val = priv->read_reg(priv, C_CAN_CTRL_REG);
1241 val &= ~CONTROL_INIT;
1242 priv->write_reg(priv, C_CAN_CTRL_REG, val);
1243
1244 /* Wait for the PDA bit to get clear */
1245 time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1246 while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1247 time_after(time_out, jiffies))
1248 cpu_relax();
1249
1250 if (time_after(jiffies, time_out))
1251 return -ETIMEDOUT;
1252
1253 ret = c_can_start(dev);
1254 if (!ret)
1255 c_can_irq_control(priv, true);
1256
1257 return ret;
1258 }
1259 EXPORT_SYMBOL_GPL(c_can_power_up);
1260 #endif
1261
free_c_can_dev(struct net_device * dev)1262 void free_c_can_dev(struct net_device *dev)
1263 {
1264 struct c_can_priv *priv = netdev_priv(dev);
1265
1266 netif_napi_del(&priv->napi);
1267 free_candev(dev);
1268 }
1269 EXPORT_SYMBOL_GPL(free_c_can_dev);
1270
1271 static const struct net_device_ops c_can_netdev_ops = {
1272 .ndo_open = c_can_open,
1273 .ndo_stop = c_can_close,
1274 .ndo_start_xmit = c_can_start_xmit,
1275 .ndo_change_mtu = can_change_mtu,
1276 };
1277
register_c_can_dev(struct net_device * dev)1278 int register_c_can_dev(struct net_device *dev)
1279 {
1280 struct c_can_priv *priv = netdev_priv(dev);
1281 int err;
1282
1283 /* Deactivate pins to prevent DRA7 DCAN IP from being
1284 * stuck in transition when module is disabled.
1285 * Pins are activated in c_can_start() and deactivated
1286 * in c_can_stop()
1287 */
1288 pinctrl_pm_select_sleep_state(dev->dev.parent);
1289
1290 c_can_pm_runtime_enable(priv);
1291
1292 dev->flags |= IFF_ECHO; /* we support local echo */
1293 dev->netdev_ops = &c_can_netdev_ops;
1294
1295 err = register_candev(dev);
1296 if (err)
1297 c_can_pm_runtime_disable(priv);
1298 else
1299 devm_can_led_init(dev);
1300
1301 return err;
1302 }
1303 EXPORT_SYMBOL_GPL(register_c_can_dev);
1304
unregister_c_can_dev(struct net_device * dev)1305 void unregister_c_can_dev(struct net_device *dev)
1306 {
1307 struct c_can_priv *priv = netdev_priv(dev);
1308
1309 unregister_candev(dev);
1310
1311 c_can_pm_runtime_disable(priv);
1312 }
1313 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1314
1315 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1316 MODULE_LICENSE("GPL v2");
1317 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1318