1 /*
2  * CAN bus driver for Bosch C_CAN controller
3  *
4  * Copyright (C) 2010 ST Microelectronics
5  * Bhupesh Sharma <bhupesh.sharma@st.com>
6  *
7  * Borrowed heavily from the C_CAN driver originally written by:
8  * Copyright (C) 2007
9  * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10  * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11  *
12  * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13  * written by:
14  * Copyright
15  * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16  * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17  *
18  * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19  * Bosch C_CAN user manual can be obtained from:
20  * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21  * users_manual_c_can.pdf
22  *
23  * This file is licensed under the terms of the GNU General Public
24  * License version 2. This program is licensed "as is" without any
25  * warranty of any kind, whether express or implied.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pinctrl/consumer.h>
39 
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
43 #include <linux/can/led.h>
44 
45 #include "c_can.h"
46 
47 /* Number of interface registers */
48 #define IF_ENUM_REG_LEN		11
49 #define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
50 
51 /* control extension register D_CAN specific */
52 #define CONTROL_EX_PDR		BIT(8)
53 
54 /* control register */
55 #define CONTROL_TEST		BIT(7)
56 #define CONTROL_CCE		BIT(6)
57 #define CONTROL_DISABLE_AR	BIT(5)
58 #define CONTROL_ENABLE_AR	(0 << 5)
59 #define CONTROL_EIE		BIT(3)
60 #define CONTROL_SIE		BIT(2)
61 #define CONTROL_IE		BIT(1)
62 #define CONTROL_INIT		BIT(0)
63 
64 #define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
65 
66 /* test register */
67 #define TEST_RX			BIT(7)
68 #define TEST_TX1		BIT(6)
69 #define TEST_TX2		BIT(5)
70 #define TEST_LBACK		BIT(4)
71 #define TEST_SILENT		BIT(3)
72 #define TEST_BASIC		BIT(2)
73 
74 /* status register */
75 #define STATUS_PDA		BIT(10)
76 #define STATUS_BOFF		BIT(7)
77 #define STATUS_EWARN		BIT(6)
78 #define STATUS_EPASS		BIT(5)
79 #define STATUS_RXOK		BIT(4)
80 #define STATUS_TXOK		BIT(3)
81 
82 /* error counter register */
83 #define ERR_CNT_TEC_MASK	0xff
84 #define ERR_CNT_TEC_SHIFT	0
85 #define ERR_CNT_REC_SHIFT	8
86 #define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
87 #define ERR_CNT_RP_SHIFT	15
88 #define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
89 
90 /* bit-timing register */
91 #define BTR_BRP_MASK		0x3f
92 #define BTR_BRP_SHIFT		0
93 #define BTR_SJW_SHIFT		6
94 #define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
95 #define BTR_TSEG1_SHIFT		8
96 #define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
97 #define BTR_TSEG2_SHIFT		12
98 #define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
99 
100 /* brp extension register */
101 #define BRP_EXT_BRPE_MASK	0x0f
102 #define BRP_EXT_BRPE_SHIFT	0
103 
104 /* IFx command request */
105 #define IF_COMR_BUSY		BIT(15)
106 
107 /* IFx command mask */
108 #define IF_COMM_WR		BIT(7)
109 #define IF_COMM_MASK		BIT(6)
110 #define IF_COMM_ARB		BIT(5)
111 #define IF_COMM_CONTROL		BIT(4)
112 #define IF_COMM_CLR_INT_PND	BIT(3)
113 #define IF_COMM_TXRQST		BIT(2)
114 #define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
115 #define IF_COMM_DATAA		BIT(1)
116 #define IF_COMM_DATAB		BIT(0)
117 
118 /* TX buffer setup */
119 #define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
120 				 IF_COMM_TXRQST |		 \
121 				 IF_COMM_DATAA | IF_COMM_DATAB)
122 
123 /* For the low buffers we clear the interrupt bit, but keep newdat */
124 #define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
125 				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
126 				 IF_COMM_DATAA | IF_COMM_DATAB)
127 
128 /* For the high buffers we clear the interrupt bit and newdat */
129 #define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
130 
131 
132 /* Receive setup of message objects */
133 #define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
134 
135 /* Invalidation of message objects */
136 #define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
137 
138 /* IFx arbitration */
139 #define IF_ARB_MSGVAL		BIT(31)
140 #define IF_ARB_MSGXTD		BIT(30)
141 #define IF_ARB_TRANSMIT		BIT(29)
142 
143 /* IFx message control */
144 #define IF_MCONT_NEWDAT		BIT(15)
145 #define IF_MCONT_MSGLST		BIT(14)
146 #define IF_MCONT_INTPND		BIT(13)
147 #define IF_MCONT_UMASK		BIT(12)
148 #define IF_MCONT_TXIE		BIT(11)
149 #define IF_MCONT_RXIE		BIT(10)
150 #define IF_MCONT_RMTEN		BIT(9)
151 #define IF_MCONT_TXRQST		BIT(8)
152 #define IF_MCONT_EOB		BIT(7)
153 #define IF_MCONT_DLC_MASK	0xf
154 
155 #define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
156 #define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
157 
158 #define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
159 
160 /*
161  * Use IF1 for RX and IF2 for TX
162  */
163 #define IF_RX			0
164 #define IF_TX			1
165 
166 /* minimum timeout for checking BUSY status */
167 #define MIN_TIMEOUT_VALUE	6
168 
169 /* Wait for ~1 sec for INIT bit */
170 #define INIT_WAIT_MS		1000
171 
172 /* napi related */
173 #define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
174 
175 /* c_can lec values */
176 enum c_can_lec_type {
177 	LEC_NO_ERROR = 0,
178 	LEC_STUFF_ERROR,
179 	LEC_FORM_ERROR,
180 	LEC_ACK_ERROR,
181 	LEC_BIT1_ERROR,
182 	LEC_BIT0_ERROR,
183 	LEC_CRC_ERROR,
184 	LEC_UNUSED,
185 	LEC_MASK = LEC_UNUSED,
186 };
187 
188 /*
189  * c_can error types:
190  * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
191  */
192 enum c_can_bus_error_types {
193 	C_CAN_NO_ERROR = 0,
194 	C_CAN_BUS_OFF,
195 	C_CAN_ERROR_WARNING,
196 	C_CAN_ERROR_PASSIVE,
197 };
198 
199 static const struct can_bittiming_const c_can_bittiming_const = {
200 	.name = KBUILD_MODNAME,
201 	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
202 	.tseg1_max = 16,
203 	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
204 	.tseg2_max = 8,
205 	.sjw_max = 4,
206 	.brp_min = 1,
207 	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
208 	.brp_inc = 1,
209 };
210 
c_can_pm_runtime_enable(const struct c_can_priv * priv)211 static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
212 {
213 	if (priv->device)
214 		pm_runtime_enable(priv->device);
215 }
216 
c_can_pm_runtime_disable(const struct c_can_priv * priv)217 static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
218 {
219 	if (priv->device)
220 		pm_runtime_disable(priv->device);
221 }
222 
c_can_pm_runtime_get_sync(const struct c_can_priv * priv)223 static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
224 {
225 	if (priv->device)
226 		pm_runtime_get_sync(priv->device);
227 }
228 
c_can_pm_runtime_put_sync(const struct c_can_priv * priv)229 static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
230 {
231 	if (priv->device)
232 		pm_runtime_put_sync(priv->device);
233 }
234 
c_can_reset_ram(const struct c_can_priv * priv,bool enable)235 static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
236 {
237 	if (priv->raminit)
238 		priv->raminit(priv, enable);
239 }
240 
c_can_irq_control(struct c_can_priv * priv,bool enable)241 static void c_can_irq_control(struct c_can_priv *priv, bool enable)
242 {
243 	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
244 
245 	if (enable)
246 		ctrl |= CONTROL_IRQMSK;
247 
248 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
249 }
250 
c_can_obj_update(struct net_device * dev,int iface,u32 cmd,u32 obj)251 static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
252 {
253 	struct c_can_priv *priv = netdev_priv(dev);
254 	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
255 
256 	priv->write_reg32(priv, reg, (cmd << 16) | obj);
257 
258 	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
259 		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
260 			return;
261 		udelay(1);
262 	}
263 	netdev_err(dev, "Updating object timed out\n");
264 
265 }
266 
c_can_object_get(struct net_device * dev,int iface,u32 obj,u32 cmd)267 static inline void c_can_object_get(struct net_device *dev, int iface,
268 				    u32 obj, u32 cmd)
269 {
270 	c_can_obj_update(dev, iface, cmd, obj);
271 }
272 
c_can_object_put(struct net_device * dev,int iface,u32 obj,u32 cmd)273 static inline void c_can_object_put(struct net_device *dev, int iface,
274 				    u32 obj, u32 cmd)
275 {
276 	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
277 }
278 
279 /*
280  * Note: According to documentation clearing TXIE while MSGVAL is set
281  * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
282  * load significantly.
283  */
c_can_inval_tx_object(struct net_device * dev,int iface,int obj)284 static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
285 {
286 	struct c_can_priv *priv = netdev_priv(dev);
287 
288 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
289 	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
290 }
291 
c_can_inval_msg_object(struct net_device * dev,int iface,int obj)292 static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
293 {
294 	struct c_can_priv *priv = netdev_priv(dev);
295 
296 	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
297 	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
298 	c_can_inval_tx_object(dev, iface, obj);
299 }
300 
c_can_setup_tx_object(struct net_device * dev,int iface,struct can_frame * frame,int idx)301 static void c_can_setup_tx_object(struct net_device *dev, int iface,
302 				  struct can_frame *frame, int idx)
303 {
304 	struct c_can_priv *priv = netdev_priv(dev);
305 	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
306 	bool rtr = frame->can_id & CAN_RTR_FLAG;
307 	u32 arb = IF_ARB_MSGVAL;
308 	int i;
309 
310 	if (frame->can_id & CAN_EFF_FLAG) {
311 		arb |= frame->can_id & CAN_EFF_MASK;
312 		arb |= IF_ARB_MSGXTD;
313 	} else {
314 		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
315 	}
316 
317 	if (!rtr)
318 		arb |= IF_ARB_TRANSMIT;
319 
320 	/*
321 	 * If we change the DIR bit, we need to invalidate the buffer
322 	 * first, i.e. clear the MSGVAL flag in the arbiter.
323 	 */
324 	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
325 		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
326 
327 		c_can_inval_msg_object(dev, iface, obj);
328 		change_bit(idx, &priv->tx_dir);
329 	}
330 
331 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
332 
333 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
334 
335 	if (priv->type == BOSCH_D_CAN) {
336 		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
337 
338 		for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
339 			data = (u32)frame->data[i];
340 			data |= (u32)frame->data[i + 1] << 8;
341 			data |= (u32)frame->data[i + 2] << 16;
342 			data |= (u32)frame->data[i + 3] << 24;
343 			priv->write_reg32(priv, dreg, data);
344 		}
345 	} else {
346 		for (i = 0; i < frame->can_dlc; i += 2) {
347 			priv->write_reg(priv,
348 					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
349 					frame->data[i] |
350 					(frame->data[i + 1] << 8));
351 		}
352 	}
353 }
354 
c_can_activate_all_lower_rx_msg_obj(struct net_device * dev,int iface)355 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
356 						       int iface)
357 {
358 	int i;
359 
360 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
361 		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
362 }
363 
c_can_handle_lost_msg_obj(struct net_device * dev,int iface,int objno,u32 ctrl)364 static int c_can_handle_lost_msg_obj(struct net_device *dev,
365 				     int iface, int objno, u32 ctrl)
366 {
367 	struct net_device_stats *stats = &dev->stats;
368 	struct c_can_priv *priv = netdev_priv(dev);
369 	struct can_frame *frame;
370 	struct sk_buff *skb;
371 
372 	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
373 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
374 	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
375 
376 	stats->rx_errors++;
377 	stats->rx_over_errors++;
378 
379 	/* create an error msg */
380 	skb = alloc_can_err_skb(dev, &frame);
381 	if (unlikely(!skb))
382 		return 0;
383 
384 	frame->can_id |= CAN_ERR_CRTL;
385 	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
386 
387 	netif_receive_skb(skb);
388 	return 1;
389 }
390 
c_can_read_msg_object(struct net_device * dev,int iface,u32 ctrl)391 static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
392 {
393 	struct net_device_stats *stats = &dev->stats;
394 	struct c_can_priv *priv = netdev_priv(dev);
395 	struct can_frame *frame;
396 	struct sk_buff *skb;
397 	u32 arb, data;
398 
399 	skb = alloc_can_skb(dev, &frame);
400 	if (!skb) {
401 		stats->rx_dropped++;
402 		return -ENOMEM;
403 	}
404 
405 	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
406 
407 	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
408 
409 	if (arb & IF_ARB_MSGXTD)
410 		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
411 	else
412 		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
413 
414 	if (arb & IF_ARB_TRANSMIT) {
415 		frame->can_id |= CAN_RTR_FLAG;
416 	} else {
417 		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
418 
419 		if (priv->type == BOSCH_D_CAN) {
420 			for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
421 				data = priv->read_reg32(priv, dreg);
422 				frame->data[i] = data;
423 				frame->data[i + 1] = data >> 8;
424 				frame->data[i + 2] = data >> 16;
425 				frame->data[i + 3] = data >> 24;
426 			}
427 		} else {
428 			for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
429 				data = priv->read_reg(priv, dreg);
430 				frame->data[i] = data;
431 				frame->data[i + 1] = data >> 8;
432 			}
433 		}
434 	}
435 
436 	stats->rx_packets++;
437 	stats->rx_bytes += frame->can_dlc;
438 
439 	netif_receive_skb(skb);
440 	return 0;
441 }
442 
c_can_setup_receive_object(struct net_device * dev,int iface,u32 obj,u32 mask,u32 id,u32 mcont)443 static void c_can_setup_receive_object(struct net_device *dev, int iface,
444 				       u32 obj, u32 mask, u32 id, u32 mcont)
445 {
446 	struct c_can_priv *priv = netdev_priv(dev);
447 
448 	mask |= BIT(29);
449 	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
450 
451 	id |= IF_ARB_MSGVAL;
452 	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
453 
454 	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
455 	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
456 }
457 
c_can_start_xmit(struct sk_buff * skb,struct net_device * dev)458 static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
459 				    struct net_device *dev)
460 {
461 	struct can_frame *frame = (struct can_frame *)skb->data;
462 	struct c_can_priv *priv = netdev_priv(dev);
463 	u32 idx, obj;
464 
465 	if (can_dropped_invalid_skb(dev, skb))
466 		return NETDEV_TX_OK;
467 	/*
468 	 * This is not a FIFO. C/D_CAN sends out the buffers
469 	 * prioritized. The lowest buffer number wins.
470 	 */
471 	idx = fls(atomic_read(&priv->tx_active));
472 	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
473 
474 	/* If this is the last buffer, stop the xmit queue */
475 	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
476 		netif_stop_queue(dev);
477 	/*
478 	 * Store the message in the interface so we can call
479 	 * can_put_echo_skb(). We must do this before we enable
480 	 * transmit as we might race against do_tx().
481 	 */
482 	c_can_setup_tx_object(dev, IF_TX, frame, idx);
483 	priv->dlc[idx] = frame->can_dlc;
484 	can_put_echo_skb(skb, dev, idx);
485 
486 	/* Update the active bits */
487 	atomic_add((1 << idx), &priv->tx_active);
488 	/* Start transmission */
489 	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
490 
491 	return NETDEV_TX_OK;
492 }
493 
c_can_wait_for_ctrl_init(struct net_device * dev,struct c_can_priv * priv,u32 init)494 static int c_can_wait_for_ctrl_init(struct net_device *dev,
495 				    struct c_can_priv *priv, u32 init)
496 {
497 	int retry = 0;
498 
499 	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
500 		udelay(10);
501 		if (retry++ > 1000) {
502 			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
503 			return -EIO;
504 		}
505 	}
506 	return 0;
507 }
508 
c_can_set_bittiming(struct net_device * dev)509 static int c_can_set_bittiming(struct net_device *dev)
510 {
511 	unsigned int reg_btr, reg_brpe, ctrl_save;
512 	u8 brp, brpe, sjw, tseg1, tseg2;
513 	u32 ten_bit_brp;
514 	struct c_can_priv *priv = netdev_priv(dev);
515 	const struct can_bittiming *bt = &priv->can.bittiming;
516 	int res;
517 
518 	/* c_can provides a 6-bit brp and 4-bit brpe fields */
519 	ten_bit_brp = bt->brp - 1;
520 	brp = ten_bit_brp & BTR_BRP_MASK;
521 	brpe = ten_bit_brp >> 6;
522 
523 	sjw = bt->sjw - 1;
524 	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
525 	tseg2 = bt->phase_seg2 - 1;
526 	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
527 			(tseg2 << BTR_TSEG2_SHIFT);
528 	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
529 
530 	netdev_info(dev,
531 		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
532 
533 	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
534 	ctrl_save &= ~CONTROL_INIT;
535 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
536 	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
537 	if (res)
538 		return res;
539 
540 	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
541 	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
542 	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
543 
544 	return c_can_wait_for_ctrl_init(dev, priv, 0);
545 }
546 
547 /*
548  * Configure C_CAN message objects for Tx and Rx purposes:
549  * C_CAN provides a total of 32 message objects that can be configured
550  * either for Tx or Rx purposes. Here the first 16 message objects are used as
551  * a reception FIFO. The end of reception FIFO is signified by the EoB bit
552  * being SET. The remaining 16 message objects are kept aside for Tx purposes.
553  * See user guide document for further details on configuring message
554  * objects.
555  */
c_can_configure_msg_objects(struct net_device * dev)556 static void c_can_configure_msg_objects(struct net_device *dev)
557 {
558 	int i;
559 
560 	/* first invalidate all message objects */
561 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
562 		c_can_inval_msg_object(dev, IF_RX, i);
563 
564 	/* setup receive message objects */
565 	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
566 		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
567 
568 	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
569 				   IF_MCONT_RCV_EOB);
570 }
571 
572 /*
573  * Configure C_CAN chip:
574  * - enable/disable auto-retransmission
575  * - set operating mode
576  * - configure message objects
577  */
c_can_chip_config(struct net_device * dev)578 static int c_can_chip_config(struct net_device *dev)
579 {
580 	struct c_can_priv *priv = netdev_priv(dev);
581 
582 	/* enable automatic retransmission */
583 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
584 
585 	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
586 	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
587 		/* loopback + silent mode : useful for hot self-test */
588 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
589 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
590 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
591 		/* loopback mode : useful for self-test function */
592 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
593 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
594 	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
595 		/* silent mode : bus-monitoring mode */
596 		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
597 		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
598 	}
599 
600 	/* configure message objects */
601 	c_can_configure_msg_objects(dev);
602 
603 	/* set a `lec` value so that we can check for updates later */
604 	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
605 
606 	/* Clear all internal status */
607 	atomic_set(&priv->tx_active, 0);
608 	priv->rxmasked = 0;
609 	priv->tx_dir = 0;
610 
611 	/* set bittiming params */
612 	return c_can_set_bittiming(dev);
613 }
614 
c_can_start(struct net_device * dev)615 static int c_can_start(struct net_device *dev)
616 {
617 	struct c_can_priv *priv = netdev_priv(dev);
618 	int err;
619 	struct pinctrl *p;
620 
621 	/* basic c_can configuration */
622 	err = c_can_chip_config(dev);
623 	if (err)
624 		return err;
625 
626 	/* Setup the command for new messages */
627 	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
628 		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
629 
630 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
631 
632 	/* Attempt to use "active" if available else use "default" */
633 	p = pinctrl_get_select(priv->device, "active");
634 	if (!IS_ERR(p))
635 		pinctrl_put(p);
636 	else
637 		pinctrl_pm_select_default_state(priv->device);
638 
639 	return 0;
640 }
641 
c_can_stop(struct net_device * dev)642 static void c_can_stop(struct net_device *dev)
643 {
644 	struct c_can_priv *priv = netdev_priv(dev);
645 
646 	c_can_irq_control(priv, false);
647 
648 	/* put ctrl to init on stop to end ongoing transmission */
649 	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
650 
651 	/* deactivate pins */
652 	pinctrl_pm_select_sleep_state(dev->dev.parent);
653 	priv->can.state = CAN_STATE_STOPPED;
654 }
655 
c_can_set_mode(struct net_device * dev,enum can_mode mode)656 static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
657 {
658 	struct c_can_priv *priv = netdev_priv(dev);
659 	int err;
660 
661 	switch (mode) {
662 	case CAN_MODE_START:
663 		err = c_can_start(dev);
664 		if (err)
665 			return err;
666 		netif_wake_queue(dev);
667 		c_can_irq_control(priv, true);
668 		break;
669 	default:
670 		return -EOPNOTSUPP;
671 	}
672 
673 	return 0;
674 }
675 
__c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)676 static int __c_can_get_berr_counter(const struct net_device *dev,
677 				    struct can_berr_counter *bec)
678 {
679 	unsigned int reg_err_counter;
680 	struct c_can_priv *priv = netdev_priv(dev);
681 
682 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
683 	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
684 				ERR_CNT_REC_SHIFT;
685 	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
686 
687 	return 0;
688 }
689 
c_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)690 static int c_can_get_berr_counter(const struct net_device *dev,
691 				  struct can_berr_counter *bec)
692 {
693 	struct c_can_priv *priv = netdev_priv(dev);
694 	int err;
695 
696 	c_can_pm_runtime_get_sync(priv);
697 	err = __c_can_get_berr_counter(dev, bec);
698 	c_can_pm_runtime_put_sync(priv);
699 
700 	return err;
701 }
702 
c_can_do_tx(struct net_device * dev)703 static void c_can_do_tx(struct net_device *dev)
704 {
705 	struct c_can_priv *priv = netdev_priv(dev);
706 	struct net_device_stats *stats = &dev->stats;
707 	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
708 
709 	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
710 
711 	while ((idx = ffs(pend))) {
712 		idx--;
713 		pend &= ~(1 << idx);
714 		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
715 		c_can_inval_tx_object(dev, IF_RX, obj);
716 		can_get_echo_skb(dev, idx);
717 		bytes += priv->dlc[idx];
718 		pkts++;
719 	}
720 
721 	/* Clear the bits in the tx_active mask */
722 	atomic_sub(clr, &priv->tx_active);
723 
724 	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
725 		netif_wake_queue(dev);
726 
727 	if (pkts) {
728 		stats->tx_bytes += bytes;
729 		stats->tx_packets += pkts;
730 		can_led_event(dev, CAN_LED_EVENT_TX);
731 	}
732 }
733 
734 /*
735  * If we have a gap in the pending bits, that means we either
736  * raced with the hardware or failed to readout all upper
737  * objects in the last run due to quota limit.
738  */
c_can_adjust_pending(u32 pend)739 static u32 c_can_adjust_pending(u32 pend)
740 {
741 	u32 weight, lasts;
742 
743 	if (pend == RECEIVE_OBJECT_BITS)
744 		return pend;
745 
746 	/*
747 	 * If the last set bit is larger than the number of pending
748 	 * bits we have a gap.
749 	 */
750 	weight = hweight32(pend);
751 	lasts = fls(pend);
752 
753 	/* If the bits are linear, nothing to do */
754 	if (lasts == weight)
755 		return pend;
756 
757 	/*
758 	 * Find the first set bit after the gap. We walk backwards
759 	 * from the last set bit.
760 	 */
761 	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
762 
763 	return pend & ~((1 << lasts) - 1);
764 }
765 
c_can_rx_object_get(struct net_device * dev,struct c_can_priv * priv,u32 obj)766 static inline void c_can_rx_object_get(struct net_device *dev,
767 				       struct c_can_priv *priv, u32 obj)
768 {
769 		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
770 }
771 
c_can_rx_finalize(struct net_device * dev,struct c_can_priv * priv,u32 obj)772 static inline void c_can_rx_finalize(struct net_device *dev,
773 				     struct c_can_priv *priv, u32 obj)
774 {
775 	if (priv->type != BOSCH_D_CAN)
776 		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
777 }
778 
c_can_read_objects(struct net_device * dev,struct c_can_priv * priv,u32 pend,int quota)779 static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
780 			      u32 pend, int quota)
781 {
782 	u32 pkts = 0, ctrl, obj;
783 
784 	while ((obj = ffs(pend)) && quota > 0) {
785 		pend &= ~BIT(obj - 1);
786 
787 		c_can_rx_object_get(dev, priv, obj);
788 		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
789 
790 		if (ctrl & IF_MCONT_MSGLST) {
791 			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
792 
793 			pkts += n;
794 			quota -= n;
795 			continue;
796 		}
797 
798 		/*
799 		 * This really should not happen, but this covers some
800 		 * odd HW behaviour. Do not remove that unless you
801 		 * want to brick your machine.
802 		 */
803 		if (!(ctrl & IF_MCONT_NEWDAT))
804 			continue;
805 
806 		/* read the data from the message object */
807 		c_can_read_msg_object(dev, IF_RX, ctrl);
808 
809 		c_can_rx_finalize(dev, priv, obj);
810 
811 		pkts++;
812 		quota--;
813 	}
814 
815 	return pkts;
816 }
817 
c_can_get_pending(struct c_can_priv * priv)818 static inline u32 c_can_get_pending(struct c_can_priv *priv)
819 {
820 	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
821 
822 	return pend;
823 }
824 
825 /*
826  * theory of operation:
827  *
828  * c_can core saves a received CAN message into the first free message
829  * object it finds free (starting with the lowest). Bits NEWDAT and
830  * INTPND are set for this message object indicating that a new message
831  * has arrived. To work-around this issue, we keep two groups of message
832  * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
833  *
834  * We clear the newdat bit right away.
835  *
836  * This can result in packet reordering when the readout is slow.
837  */
c_can_do_rx_poll(struct net_device * dev,int quota)838 static int c_can_do_rx_poll(struct net_device *dev, int quota)
839 {
840 	struct c_can_priv *priv = netdev_priv(dev);
841 	u32 pkts = 0, pend = 0, toread, n;
842 
843 	/*
844 	 * It is faster to read only one 16bit register. This is only possible
845 	 * for a maximum number of 16 objects.
846 	 */
847 	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
848 			"Implementation does not support more message objects than 16");
849 
850 	while (quota > 0) {
851 		if (!pend) {
852 			pend = c_can_get_pending(priv);
853 			if (!pend)
854 				break;
855 			/*
856 			 * If the pending field has a gap, handle the
857 			 * bits above the gap first.
858 			 */
859 			toread = c_can_adjust_pending(pend);
860 		} else {
861 			toread = pend;
862 		}
863 		/* Remove the bits from pend */
864 		pend &= ~toread;
865 		/* Read the objects */
866 		n = c_can_read_objects(dev, priv, toread, quota);
867 		pkts += n;
868 		quota -= n;
869 	}
870 
871 	if (pkts)
872 		can_led_event(dev, CAN_LED_EVENT_RX);
873 
874 	return pkts;
875 }
876 
c_can_handle_state_change(struct net_device * dev,enum c_can_bus_error_types error_type)877 static int c_can_handle_state_change(struct net_device *dev,
878 				enum c_can_bus_error_types error_type)
879 {
880 	unsigned int reg_err_counter;
881 	unsigned int rx_err_passive;
882 	struct c_can_priv *priv = netdev_priv(dev);
883 	struct net_device_stats *stats = &dev->stats;
884 	struct can_frame *cf;
885 	struct sk_buff *skb;
886 	struct can_berr_counter bec;
887 
888 	switch (error_type) {
889 	case C_CAN_ERROR_WARNING:
890 		/* error warning state */
891 		priv->can.can_stats.error_warning++;
892 		priv->can.state = CAN_STATE_ERROR_WARNING;
893 		break;
894 	case C_CAN_ERROR_PASSIVE:
895 		/* error passive state */
896 		priv->can.can_stats.error_passive++;
897 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
898 		break;
899 	case C_CAN_BUS_OFF:
900 		/* bus-off state */
901 		priv->can.state = CAN_STATE_BUS_OFF;
902 		priv->can.can_stats.bus_off++;
903 		break;
904 	default:
905 		break;
906 	}
907 
908 	/* propagate the error condition to the CAN stack */
909 	skb = alloc_can_err_skb(dev, &cf);
910 	if (unlikely(!skb))
911 		return 0;
912 
913 	__c_can_get_berr_counter(dev, &bec);
914 	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
915 	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
916 				ERR_CNT_RP_SHIFT;
917 
918 	switch (error_type) {
919 	case C_CAN_ERROR_WARNING:
920 		/* error warning state */
921 		cf->can_id |= CAN_ERR_CRTL;
922 		cf->data[1] = (bec.txerr > bec.rxerr) ?
923 			CAN_ERR_CRTL_TX_WARNING :
924 			CAN_ERR_CRTL_RX_WARNING;
925 		cf->data[6] = bec.txerr;
926 		cf->data[7] = bec.rxerr;
927 
928 		break;
929 	case C_CAN_ERROR_PASSIVE:
930 		/* error passive state */
931 		cf->can_id |= CAN_ERR_CRTL;
932 		if (rx_err_passive)
933 			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
934 		if (bec.txerr > 127)
935 			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
936 
937 		cf->data[6] = bec.txerr;
938 		cf->data[7] = bec.rxerr;
939 		break;
940 	case C_CAN_BUS_OFF:
941 		/* bus-off state */
942 		cf->can_id |= CAN_ERR_BUSOFF;
943 		can_bus_off(dev);
944 		break;
945 	default:
946 		break;
947 	}
948 
949 	stats->rx_packets++;
950 	stats->rx_bytes += cf->can_dlc;
951 	netif_receive_skb(skb);
952 
953 	return 1;
954 }
955 
c_can_handle_bus_err(struct net_device * dev,enum c_can_lec_type lec_type)956 static int c_can_handle_bus_err(struct net_device *dev,
957 				enum c_can_lec_type lec_type)
958 {
959 	struct c_can_priv *priv = netdev_priv(dev);
960 	struct net_device_stats *stats = &dev->stats;
961 	struct can_frame *cf;
962 	struct sk_buff *skb;
963 
964 	/*
965 	 * early exit if no lec update or no error.
966 	 * no lec update means that no CAN bus event has been detected
967 	 * since CPU wrote 0x7 value to status reg.
968 	 */
969 	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
970 		return 0;
971 
972 	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
973 		return 0;
974 
975 	/* common for all type of bus errors */
976 	priv->can.can_stats.bus_error++;
977 	stats->rx_errors++;
978 
979 	/* propagate the error condition to the CAN stack */
980 	skb = alloc_can_err_skb(dev, &cf);
981 	if (unlikely(!skb))
982 		return 0;
983 
984 	/*
985 	 * check for 'last error code' which tells us the
986 	 * type of the last error to occur on the CAN bus
987 	 */
988 	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
989 
990 	switch (lec_type) {
991 	case LEC_STUFF_ERROR:
992 		netdev_dbg(dev, "stuff error\n");
993 		cf->data[2] |= CAN_ERR_PROT_STUFF;
994 		break;
995 	case LEC_FORM_ERROR:
996 		netdev_dbg(dev, "form error\n");
997 		cf->data[2] |= CAN_ERR_PROT_FORM;
998 		break;
999 	case LEC_ACK_ERROR:
1000 		netdev_dbg(dev, "ack error\n");
1001 		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1002 		break;
1003 	case LEC_BIT1_ERROR:
1004 		netdev_dbg(dev, "bit1 error\n");
1005 		cf->data[2] |= CAN_ERR_PROT_BIT1;
1006 		break;
1007 	case LEC_BIT0_ERROR:
1008 		netdev_dbg(dev, "bit0 error\n");
1009 		cf->data[2] |= CAN_ERR_PROT_BIT0;
1010 		break;
1011 	case LEC_CRC_ERROR:
1012 		netdev_dbg(dev, "CRC error\n");
1013 		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1014 		break;
1015 	default:
1016 		break;
1017 	}
1018 
1019 	stats->rx_packets++;
1020 	stats->rx_bytes += cf->can_dlc;
1021 	netif_receive_skb(skb);
1022 	return 1;
1023 }
1024 
c_can_poll(struct napi_struct * napi,int quota)1025 static int c_can_poll(struct napi_struct *napi, int quota)
1026 {
1027 	struct net_device *dev = napi->dev;
1028 	struct c_can_priv *priv = netdev_priv(dev);
1029 	u16 curr, last = priv->last_status;
1030 	int work_done = 0;
1031 
1032 	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1033 	/* Ack status on C_CAN. D_CAN is self clearing */
1034 	if (priv->type != BOSCH_D_CAN)
1035 		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1036 
1037 	/* handle state changes */
1038 	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1039 		netdev_dbg(dev, "entered error warning state\n");
1040 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1041 	}
1042 
1043 	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1044 		netdev_dbg(dev, "entered error passive state\n");
1045 		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1046 	}
1047 
1048 	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1049 		netdev_dbg(dev, "entered bus off state\n");
1050 		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1051 		goto end;
1052 	}
1053 
1054 	/* handle bus recovery events */
1055 	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1056 		netdev_dbg(dev, "left bus off state\n");
1057 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1058 	}
1059 	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1060 		netdev_dbg(dev, "left error passive state\n");
1061 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1062 	}
1063 
1064 	/* handle lec errors on the bus */
1065 	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1066 
1067 	/* Handle Tx/Rx events. We do this unconditionally */
1068 	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1069 	c_can_do_tx(dev);
1070 
1071 end:
1072 	if (work_done < quota) {
1073 		napi_complete_done(napi, work_done);
1074 		/* enable all IRQs if we are not in bus off state */
1075 		if (priv->can.state != CAN_STATE_BUS_OFF)
1076 			c_can_irq_control(priv, true);
1077 	}
1078 
1079 	return work_done;
1080 }
1081 
c_can_isr(int irq,void * dev_id)1082 static irqreturn_t c_can_isr(int irq, void *dev_id)
1083 {
1084 	struct net_device *dev = (struct net_device *)dev_id;
1085 	struct c_can_priv *priv = netdev_priv(dev);
1086 
1087 	if (!priv->read_reg(priv, C_CAN_INT_REG))
1088 		return IRQ_NONE;
1089 
1090 	/* disable all interrupts and schedule the NAPI */
1091 	c_can_irq_control(priv, false);
1092 	napi_schedule(&priv->napi);
1093 
1094 	return IRQ_HANDLED;
1095 }
1096 
c_can_open(struct net_device * dev)1097 static int c_can_open(struct net_device *dev)
1098 {
1099 	int err;
1100 	struct c_can_priv *priv = netdev_priv(dev);
1101 
1102 	c_can_pm_runtime_get_sync(priv);
1103 	c_can_reset_ram(priv, true);
1104 
1105 	/* open the can device */
1106 	err = open_candev(dev);
1107 	if (err) {
1108 		netdev_err(dev, "failed to open can device\n");
1109 		goto exit_open_fail;
1110 	}
1111 
1112 	/* register interrupt handler */
1113 	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1114 				dev);
1115 	if (err < 0) {
1116 		netdev_err(dev, "failed to request interrupt\n");
1117 		goto exit_irq_fail;
1118 	}
1119 
1120 	/* start the c_can controller */
1121 	err = c_can_start(dev);
1122 	if (err)
1123 		goto exit_start_fail;
1124 
1125 	can_led_event(dev, CAN_LED_EVENT_OPEN);
1126 
1127 	napi_enable(&priv->napi);
1128 	/* enable status change, error and module interrupts */
1129 	c_can_irq_control(priv, true);
1130 	netif_start_queue(dev);
1131 
1132 	return 0;
1133 
1134 exit_start_fail:
1135 	free_irq(dev->irq, dev);
1136 exit_irq_fail:
1137 	close_candev(dev);
1138 exit_open_fail:
1139 	c_can_reset_ram(priv, false);
1140 	c_can_pm_runtime_put_sync(priv);
1141 	return err;
1142 }
1143 
c_can_close(struct net_device * dev)1144 static int c_can_close(struct net_device *dev)
1145 {
1146 	struct c_can_priv *priv = netdev_priv(dev);
1147 
1148 	netif_stop_queue(dev);
1149 	napi_disable(&priv->napi);
1150 	c_can_stop(dev);
1151 	free_irq(dev->irq, dev);
1152 	close_candev(dev);
1153 
1154 	c_can_reset_ram(priv, false);
1155 	c_can_pm_runtime_put_sync(priv);
1156 
1157 	can_led_event(dev, CAN_LED_EVENT_STOP);
1158 
1159 	return 0;
1160 }
1161 
alloc_c_can_dev(void)1162 struct net_device *alloc_c_can_dev(void)
1163 {
1164 	struct net_device *dev;
1165 	struct c_can_priv *priv;
1166 
1167 	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1168 	if (!dev)
1169 		return NULL;
1170 
1171 	priv = netdev_priv(dev);
1172 	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1173 
1174 	priv->dev = dev;
1175 	priv->can.bittiming_const = &c_can_bittiming_const;
1176 	priv->can.do_set_mode = c_can_set_mode;
1177 	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1178 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1179 					CAN_CTRLMODE_LISTENONLY |
1180 					CAN_CTRLMODE_BERR_REPORTING;
1181 
1182 	return dev;
1183 }
1184 EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1185 
1186 #ifdef CONFIG_PM
c_can_power_down(struct net_device * dev)1187 int c_can_power_down(struct net_device *dev)
1188 {
1189 	u32 val;
1190 	unsigned long time_out;
1191 	struct c_can_priv *priv = netdev_priv(dev);
1192 
1193 	if (!(dev->flags & IFF_UP))
1194 		return 0;
1195 
1196 	WARN_ON(priv->type != BOSCH_D_CAN);
1197 
1198 	/* set PDR value so the device goes to power down mode */
1199 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1200 	val |= CONTROL_EX_PDR;
1201 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1202 
1203 	/* Wait for the PDA bit to get set */
1204 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1205 	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1206 				time_after(time_out, jiffies))
1207 		cpu_relax();
1208 
1209 	if (time_after(jiffies, time_out))
1210 		return -ETIMEDOUT;
1211 
1212 	c_can_stop(dev);
1213 
1214 	c_can_reset_ram(priv, false);
1215 	c_can_pm_runtime_put_sync(priv);
1216 
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(c_can_power_down);
1220 
c_can_power_up(struct net_device * dev)1221 int c_can_power_up(struct net_device *dev)
1222 {
1223 	u32 val;
1224 	unsigned long time_out;
1225 	struct c_can_priv *priv = netdev_priv(dev);
1226 	int ret;
1227 
1228 	if (!(dev->flags & IFF_UP))
1229 		return 0;
1230 
1231 	WARN_ON(priv->type != BOSCH_D_CAN);
1232 
1233 	c_can_pm_runtime_get_sync(priv);
1234 	c_can_reset_ram(priv, true);
1235 
1236 	/* Clear PDR and INIT bits */
1237 	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1238 	val &= ~CONTROL_EX_PDR;
1239 	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1240 	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1241 	val &= ~CONTROL_INIT;
1242 	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1243 
1244 	/* Wait for the PDA bit to get clear */
1245 	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1246 	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1247 				time_after(time_out, jiffies))
1248 		cpu_relax();
1249 
1250 	if (time_after(jiffies, time_out))
1251 		return -ETIMEDOUT;
1252 
1253 	ret = c_can_start(dev);
1254 	if (!ret)
1255 		c_can_irq_control(priv, true);
1256 
1257 	return ret;
1258 }
1259 EXPORT_SYMBOL_GPL(c_can_power_up);
1260 #endif
1261 
free_c_can_dev(struct net_device * dev)1262 void free_c_can_dev(struct net_device *dev)
1263 {
1264 	struct c_can_priv *priv = netdev_priv(dev);
1265 
1266 	netif_napi_del(&priv->napi);
1267 	free_candev(dev);
1268 }
1269 EXPORT_SYMBOL_GPL(free_c_can_dev);
1270 
1271 static const struct net_device_ops c_can_netdev_ops = {
1272 	.ndo_open = c_can_open,
1273 	.ndo_stop = c_can_close,
1274 	.ndo_start_xmit = c_can_start_xmit,
1275 	.ndo_change_mtu = can_change_mtu,
1276 };
1277 
register_c_can_dev(struct net_device * dev)1278 int register_c_can_dev(struct net_device *dev)
1279 {
1280 	struct c_can_priv *priv = netdev_priv(dev);
1281 	int err;
1282 
1283 	/* Deactivate pins to prevent DRA7 DCAN IP from being
1284 	 * stuck in transition when module is disabled.
1285 	 * Pins are activated in c_can_start() and deactivated
1286 	 * in c_can_stop()
1287 	 */
1288 	pinctrl_pm_select_sleep_state(dev->dev.parent);
1289 
1290 	c_can_pm_runtime_enable(priv);
1291 
1292 	dev->flags |= IFF_ECHO;	/* we support local echo */
1293 	dev->netdev_ops = &c_can_netdev_ops;
1294 
1295 	err = register_candev(dev);
1296 	if (err)
1297 		c_can_pm_runtime_disable(priv);
1298 	else
1299 		devm_can_led_init(dev);
1300 
1301 	return err;
1302 }
1303 EXPORT_SYMBOL_GPL(register_c_can_dev);
1304 
unregister_c_can_dev(struct net_device * dev)1305 void unregister_c_can_dev(struct net_device *dev)
1306 {
1307 	struct c_can_priv *priv = netdev_priv(dev);
1308 
1309 	unregister_candev(dev);
1310 
1311 	c_can_pm_runtime_disable(priv);
1312 }
1313 EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1314 
1315 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1316 MODULE_LICENSE("GPL v2");
1317 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
1318