1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
4   * of PCI-SCSI IO processors.
5   *
6   * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
7   *
8   * This driver is derived from the Linux sym53c8xx driver.
9   * Copyright (C) 1998-2000  Gerard Roudier
10   *
11   * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12   * a port of the FreeBSD ncr driver to Linux-1.2.13.
13   *
14   * The original ncr driver has been written for 386bsd and FreeBSD by
15   *         Wolfgang Stanglmeier        <wolf@cologne.de>
16   *         Stefan Esser                <se@mi.Uni-Koeln.de>
17   * Copyright (C) 1994  Wolfgang Stanglmeier
18   *
19   * Other major contributions:
20   *
21   * NVRAM detection and reading.
22   * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23   *
24   *-----------------------------------------------------------------------------
25   */
26  
27  #include <linux/gfp.h>
28  
29  #ifndef SYM_HIPD_H
30  #define SYM_HIPD_H
31  
32  /*
33   *  Generic driver options.
34   *
35   *  They may be defined in platform specific headers, if they
36   *  are useful.
37   *
38   *    SYM_OPT_HANDLE_DEVICE_QUEUEING
39   *        When this option is set, the driver will use a queue per
40   *        device and handle QUEUE FULL status requeuing internally.
41   *
42   *    SYM_OPT_LIMIT_COMMAND_REORDERING
43   *        When this option is set, the driver tries to limit tagged
44   *        command reordering to some reasonable value.
45   *        (set for Linux)
46   */
47  #if 0
48  #define SYM_OPT_HANDLE_DEVICE_QUEUEING
49  #define SYM_OPT_LIMIT_COMMAND_REORDERING
50  #endif
51  
52  /*
53   *  Active debugging tags and verbosity.
54   *  Both DEBUG_FLAGS and sym_verbose can be redefined
55   *  by the platform specific code to something else.
56   */
57  #define DEBUG_ALLOC	(0x0001)
58  #define DEBUG_PHASE	(0x0002)
59  #define DEBUG_POLL	(0x0004)
60  #define DEBUG_QUEUE	(0x0008)
61  #define DEBUG_RESULT	(0x0010)
62  #define DEBUG_SCATTER	(0x0020)
63  #define DEBUG_SCRIPT	(0x0040)
64  #define DEBUG_TINY	(0x0080)
65  #define DEBUG_TIMING	(0x0100)
66  #define DEBUG_NEGO	(0x0200)
67  #define DEBUG_TAGS	(0x0400)
68  #define DEBUG_POINTER	(0x0800)
69  
70  #ifndef DEBUG_FLAGS
71  #define DEBUG_FLAGS	(0x0000)
72  #endif
73  
74  #ifndef sym_verbose
75  #define sym_verbose	(np->verbose)
76  #endif
77  
78  /*
79   *  These ones should have been already defined.
80   */
81  #ifndef assert
82  #define	assert(expression) { \
83  	if (!(expression)) { \
84  		(void)panic( \
85  			"assertion \"%s\" failed: file \"%s\", line %d\n", \
86  			#expression, \
87  			__FILE__, __LINE__); \
88  	} \
89  }
90  #endif
91  
92  /*
93   *  Number of tasks per device we want to handle.
94   */
95  #if	SYM_CONF_MAX_TAG_ORDER > 8
96  #error	"more than 256 tags per logical unit not allowed."
97  #endif
98  #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
99  
100  /*
101   *  Donnot use more tasks that we can handle.
102   */
103  #ifndef	SYM_CONF_MAX_TAG
104  #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
105  #endif
106  #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
107  #undef	SYM_CONF_MAX_TAG
108  #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
109  #endif
110  
111  /*
112   *    This one means 'NO TAG for this job'
113   */
114  #define NO_TAG	(256)
115  
116  /*
117   *  Number of SCSI targets.
118   */
119  #if	SYM_CONF_MAX_TARGET > 16
120  #error	"more than 16 targets not allowed."
121  #endif
122  
123  /*
124   *  Number of logical units per target.
125   */
126  #if	SYM_CONF_MAX_LUN > 64
127  #error	"more than 64 logical units per target not allowed."
128  #endif
129  
130  /*
131   *    Asynchronous pre-scaler (ns). Shall be 40 for
132   *    the SCSI timings to be compliant.
133   */
134  #define	SYM_CONF_MIN_ASYNC (40)
135  
136  
137  /*
138   * MEMORY ALLOCATOR.
139   */
140  
141  #define SYM_MEM_WARN	1	/* Warn on failed operations */
142  
143  #define SYM_MEM_PAGE_ORDER 0	/* 1 PAGE  maximum */
144  #define SYM_MEM_CLUSTER_SHIFT	(PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
145  #define SYM_MEM_FREE_UNUSED	/* Free unused pages immediately */
146  /*
147   *  Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
148   *  Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
149   *  (1 PAGE at a time is just fine).
150   */
151  #define SYM_MEM_SHIFT	4
152  #define SYM_MEM_CLUSTER_SIZE	(1UL << SYM_MEM_CLUSTER_SHIFT)
153  #define SYM_MEM_CLUSTER_MASK	(SYM_MEM_CLUSTER_SIZE-1)
154  
155  /*
156   *  Number of entries in the START and DONE queues.
157   *
158   *  We limit to 1 PAGE in order to succeed allocation of
159   *  these queues. Each entry is 8 bytes long (2 DWORDS).
160   */
161  #ifdef	SYM_CONF_MAX_START
162  #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
163  #else
164  #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
165  #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
166  #endif
167  
168  #if	SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
169  #undef	SYM_CONF_MAX_QUEUE
170  #define	SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
171  #undef	SYM_CONF_MAX_START
172  #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
173  #endif
174  
175  /*
176   *  For this one, we want a short name :-)
177   */
178  #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
179  
180  /*
181   *  Common definitions for both bus space based and legacy IO methods.
182   */
183  
184  #define INB_OFF(np, o)		ioread8(np->s.ioaddr + (o))
185  #define INW_OFF(np, o)		ioread16(np->s.ioaddr + (o))
186  #define INL_OFF(np, o)		ioread32(np->s.ioaddr + (o))
187  
188  #define OUTB_OFF(np, o, val)	iowrite8((val), np->s.ioaddr + (o))
189  #define OUTW_OFF(np, o, val)	iowrite16((val), np->s.ioaddr + (o))
190  #define OUTL_OFF(np, o, val)	iowrite32((val), np->s.ioaddr + (o))
191  
192  #define INB(np, r)		INB_OFF(np, offsetof(struct sym_reg, r))
193  #define INW(np, r)		INW_OFF(np, offsetof(struct sym_reg, r))
194  #define INL(np, r)		INL_OFF(np, offsetof(struct sym_reg, r))
195  
196  #define OUTB(np, r, v)		OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
197  #define OUTW(np, r, v)		OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
198  #define OUTL(np, r, v)		OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
199  
200  #define OUTONB(np, r, m)	OUTB(np, r, INB(np, r) | (m))
201  #define OUTOFFB(np, r, m)	OUTB(np, r, INB(np, r) & ~(m))
202  #define OUTONW(np, r, m)	OUTW(np, r, INW(np, r) | (m))
203  #define OUTOFFW(np, r, m)	OUTW(np, r, INW(np, r) & ~(m))
204  #define OUTONL(np, r, m)	OUTL(np, r, INL(np, r) | (m))
205  #define OUTOFFL(np, r, m)	OUTL(np, r, INL(np, r) & ~(m))
206  
207  /*
208   *  We normally want the chip to have a consistent view
209   *  of driver internal data structures when we restart it.
210   *  Thus these macros.
211   */
212  #define OUTL_DSP(np, v)				\
213  	do {					\
214  		MEMORY_WRITE_BARRIER();		\
215  		OUTL(np, nc_dsp, (v));		\
216  	} while (0)
217  
218  #define OUTONB_STD()				\
219  	do {					\
220  		MEMORY_WRITE_BARRIER();		\
221  		OUTONB(np, nc_dcntl, (STD|NOCOM));	\
222  	} while (0)
223  
224  /*
225   *  Command control block states.
226   */
227  #define HS_IDLE		(0)
228  #define HS_BUSY		(1)
229  #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
230  #define HS_DISCONNECT	(3)	/* Disconnected by target */
231  #define HS_WAIT		(4)	/* waiting for resource	  */
232  
233  #define HS_DONEMASK	(0x80)
234  #define HS_COMPLETE	(4|HS_DONEMASK)
235  #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
236  #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
237  #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
238  
239  /*
240   *  Software Interrupt Codes
241   */
242  #define	SIR_BAD_SCSI_STATUS	(1)
243  #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
244  #define	SIR_MSG_RECEIVED	(3)
245  #define	SIR_MSG_WEIRD		(4)
246  #define	SIR_NEGO_FAILED		(5)
247  #define	SIR_NEGO_PROTO		(6)
248  #define	SIR_SCRIPT_STOPPED	(7)
249  #define	SIR_REJECT_TO_SEND	(8)
250  #define	SIR_SWIDE_OVERRUN	(9)
251  #define	SIR_SODL_UNDERRUN	(10)
252  #define	SIR_RESEL_NO_MSG_IN	(11)
253  #define	SIR_RESEL_NO_IDENTIFY	(12)
254  #define	SIR_RESEL_BAD_LUN	(13)
255  #define	SIR_TARGET_SELECTED	(14)
256  #define	SIR_RESEL_BAD_I_T_L	(15)
257  #define	SIR_RESEL_BAD_I_T_L_Q	(16)
258  #define	SIR_ABORT_SENT		(17)
259  #define	SIR_RESEL_ABORTED	(18)
260  #define	SIR_MSG_OUT_DONE	(19)
261  #define	SIR_COMPLETE_ERROR	(20)
262  #define	SIR_DATA_OVERRUN	(21)
263  #define	SIR_BAD_PHASE		(22)
264  #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
265  #define	SIR_DMAP_DIRTY		(23)
266  #define	SIR_MAX			(23)
267  #else
268  #define	SIR_MAX			(22)
269  #endif
270  
271  /*
272   *  Extended error bit codes.
273   *  xerr_status field of struct sym_ccb.
274   */
275  #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
276  #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
277  #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
278  #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
279  #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
280  
281  /*
282   *  Negotiation status.
283   *  nego_status field of struct sym_ccb.
284   */
285  #define NS_SYNC		(1)
286  #define NS_WIDE		(2)
287  #define NS_PPR		(3)
288  
289  /*
290   *  A CCB hashed table is used to retrieve CCB address
291   *  from DSA value.
292   */
293  #define CCB_HASH_SHIFT		8
294  #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
295  #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
296  #if 1
297  #define CCB_HASH_CODE(dsa)	\
298  	(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
299  #else
300  #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
301  #endif
302  
303  #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
304  /*
305   *  We may want to use segment registers for 64 bit DMA.
306   *  16 segments registers -> up to 64 GB addressable.
307   */
308  #define SYM_DMAP_SHIFT	(4)
309  #define SYM_DMAP_SIZE	(1u<<SYM_DMAP_SHIFT)
310  #define SYM_DMAP_MASK	(SYM_DMAP_SIZE-1)
311  #endif
312  
313  /*
314   *  Device flags.
315   */
316  #define SYM_DISC_ENABLED	(1)
317  #define SYM_TAGS_ENABLED	(1<<1)
318  #define SYM_SCAN_BOOT_DISABLED	(1<<2)
319  #define SYM_SCAN_LUNS_DISABLED	(1<<3)
320  
321  /*
322   *  Host adapter miscellaneous flags.
323   */
324  #define SYM_AVOID_BUS_RESET	(1)
325  
326  /*
327   *  Misc.
328   */
329  #define SYM_SNOOP_TIMEOUT (10000000)
330  #define BUS_8_BIT	0
331  #define BUS_16_BIT	1
332  
333  /*
334   *  Gather negotiable parameters value
335   */
336  struct sym_trans {
337  	u8 period;
338  	u8 offset;
339  	unsigned int width:1;
340  	unsigned int iu:1;
341  	unsigned int dt:1;
342  	unsigned int qas:1;
343  	unsigned int check_nego:1;
344  	unsigned int renego:2;
345  };
346  
347  /*
348   *  Global TCB HEADER.
349   *
350   *  Due to lack of indirect addressing on earlier NCR chips,
351   *  this substructure is copied from the TCB to a global
352   *  address after selection.
353   *  For SYMBIOS chips that support LOAD/STORE this copy is
354   *  not needed and thus not performed.
355   */
356  struct sym_tcbh {
357  	/*
358  	 *  Scripts bus addresses of LUN table accessed from scripts.
359  	 *  LUN #0 is a special case, since multi-lun devices are rare,
360  	 *  and we we want to speed-up the general case and not waste
361  	 *  resources.
362  	 */
363  	u32	luntbl_sa;	/* bus address of this table	*/
364  	u32	lun0_sa;	/* bus address of LCB #0	*/
365  	/*
366  	 *  Actual SYNC/WIDE IO registers value for this target.
367  	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
368  	 *  so have alignment constraints.
369  	 */
370  /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
371  /*1*/	u_char	sval;		/* -> SXFER  io register	*/
372  /*2*/	u_char	filler1;
373  /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
374  };
375  
376  /*
377   *  Target Control Block
378   */
379  struct sym_tcb {
380  	/*
381  	 *  TCB header.
382  	 *  Assumed at offset 0.
383  	 */
384  /*0*/	struct sym_tcbh head;
385  
386  	/*
387  	 *  LUN table used by the SCRIPTS processor.
388  	 *  An array of bus addresses is used on reselection.
389  	 */
390  	u32	*luntbl;	/* LCBs bus address table	*/
391  	int	nlcb;		/* Number of valid LCBs (including LUN #0) */
392  
393  	/*
394  	 *  LUN table used by the C code.
395  	 */
396  	struct sym_lcb *lun0p;		/* LCB of LUN #0 (usual case)	*/
397  #if SYM_CONF_MAX_LUN > 1
398  	struct sym_lcb **lunmp;		/* Other LCBs [1..MAX_LUN]	*/
399  #endif
400  
401  #ifdef	SYM_HAVE_STCB
402  	/*
403  	 *  O/S specific data structure.
404  	 */
405  	struct sym_stcb s;
406  #endif
407  
408  	/* Transfer goal */
409  	struct sym_trans tgoal;
410  
411  	/* Last printed transfer speed */
412  	struct sym_trans tprint;
413  
414  	/*
415  	 * Keep track of the CCB used for the negotiation in order
416  	 * to ensure that only 1 negotiation is queued at a time.
417  	 */
418  	struct sym_ccb *  nego_cp;	/* CCB used for the nego		*/
419  
420  	/*
421  	 *  Set when we want to reset the device.
422  	 */
423  	u_char	to_reset;
424  
425  	/*
426  	 *  Other user settable limits and options.
427  	 *  These limits are read from the NVRAM if present.
428  	 */
429  	unsigned char	usrflags;
430  	unsigned char	usr_period;
431  	unsigned char	usr_width;
432  	unsigned short	usrtags;
433  	struct scsi_target *starget;
434  };
435  
436  /*
437   *  Global LCB HEADER.
438   *
439   *  Due to lack of indirect addressing on earlier NCR chips,
440   *  this substructure is copied from the LCB to a global
441   *  address after selection.
442   *  For SYMBIOS chips that support LOAD/STORE this copy is
443   *  not needed and thus not performed.
444   */
445  struct sym_lcbh {
446  	/*
447  	 *  SCRIPTS address jumped by SCRIPTS on reselection.
448  	 *  For not probed logical units, this address points to
449  	 *  SCRIPTS that deal with bad LU handling (must be at
450  	 *  offset zero of the LCB for that reason).
451  	 */
452  /*0*/	u32	resel_sa;
453  
454  	/*
455  	 *  Task (bus address of a CCB) read from SCRIPTS that points
456  	 *  to the unique ITL nexus allowed to be disconnected.
457  	 */
458  	u32	itl_task_sa;
459  
460  	/*
461  	 *  Task table bus address (read from SCRIPTS).
462  	 */
463  	u32	itlq_tbl_sa;
464  };
465  
466  /*
467   *  Logical Unit Control Block
468   */
469  struct sym_lcb {
470  	/*
471  	 *  TCB header.
472  	 *  Assumed at offset 0.
473  	 */
474  /*0*/	struct sym_lcbh head;
475  
476  	/*
477  	 *  Task table read from SCRIPTS that contains pointers to
478  	 *  ITLQ nexuses. The bus address read from SCRIPTS is
479  	 *  inside the header.
480  	 */
481  	u32	*itlq_tbl;	/* Kernel virtual address	*/
482  
483  	/*
484  	 *  Busy CCBs management.
485  	 */
486  	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
487  	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
488  
489  	/*
490  	 *  Circular tag allocation buffer.
491  	 */
492  	u_short	ia_tag;		/* Tag allocation index		*/
493  	u_short	if_tag;		/* Tag release index		*/
494  	u_char	*cb_tags;	/* Circular tags buffer		*/
495  
496  	/*
497  	 *  O/S specific data structure.
498  	 */
499  #ifdef	SYM_HAVE_SLCB
500  	struct sym_slcb s;
501  #endif
502  
503  #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
504  	/*
505  	 *  Optionnaly the driver can handle device queueing,
506  	 *  and requeues internally command to redo.
507  	 */
508  	SYM_QUEHEAD waiting_ccbq;
509  	SYM_QUEHEAD started_ccbq;
510  	int	num_sgood;
511  	u_short	started_tags;
512  	u_short	started_no_tag;
513  	u_short	started_max;
514  	u_short	started_limit;
515  #endif
516  
517  #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
518  	/*
519  	 *  Optionally the driver can try to prevent SCSI
520  	 *  IOs from being reordered too much.
521  	 */
522  	u_char		tags_si;	/* Current index to tags sum	*/
523  	u_short		tags_sum[2];	/* Tags sum counters		*/
524  	u_short		tags_since;	/* # of tags since last switch	*/
525  #endif
526  
527  	/*
528  	 *  Set when we want to clear all tasks.
529  	 */
530  	u_char to_clear;
531  
532  	/*
533  	 *  Capabilities.
534  	 */
535  	u_char	user_flags;
536  	u_char	curr_flags;
537  };
538  
539  /*
540   *  Action from SCRIPTS on a task.
541   *  Is part of the CCB, but is also used separately to plug
542   *  error handling action to perform from SCRIPTS.
543   */
544  struct sym_actscr {
545  	u32	start;		/* Jumped by SCRIPTS after selection	*/
546  	u32	restart;	/* Jumped by SCRIPTS on relection	*/
547  };
548  
549  /*
550   *  Phase mismatch context.
551   *
552   *  It is part of the CCB and is used as parameters for the
553   *  DATA pointer. We need two contexts to handle correctly the
554   *  SAVED DATA POINTER.
555   */
556  struct sym_pmc {
557  	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
558  	u32	ret;		/* SCRIPT return address	*/
559  };
560  
561  /*
562   *  LUN control block lookup.
563   *  We use a direct pointer for LUN #0, and a table of
564   *  pointers which is only allocated for devices that support
565   *  LUN(s) > 0.
566   */
567  #if SYM_CONF_MAX_LUN <= 1
568  #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
569  #else
570  #define sym_lp(tp, lun) \
571  	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[((u8)lun)] : NULL
572  #endif
573  
574  /*
575   *  Status are used by the host and the script processor.
576   *
577   *  The last four bytes (status[4]) are copied to the
578   *  scratchb register (declared as scr0..scr3) just after the
579   *  select/reselect, and copied back just after disconnecting.
580   *  Inside the script the XX_REG are used.
581   */
582  
583  /*
584   *  Last four bytes (script)
585   */
586  #define  HX_REG	scr0
587  #define  HX_PRT	nc_scr0
588  #define  HS_REG	scr1
589  #define  HS_PRT	nc_scr1
590  #define  SS_REG	scr2
591  #define  SS_PRT	nc_scr2
592  #define  HF_REG	scr3
593  #define  HF_PRT	nc_scr3
594  
595  /*
596   *  Last four bytes (host)
597   */
598  #define  host_xflags   phys.head.status[0]
599  #define  host_status   phys.head.status[1]
600  #define  ssss_status   phys.head.status[2]
601  #define  host_flags    phys.head.status[3]
602  
603  /*
604   *  Host flags
605   */
606  #define HF_IN_PM0	1u
607  #define HF_IN_PM1	(1u<<1)
608  #define HF_ACT_PM	(1u<<2)
609  #define HF_DP_SAVED	(1u<<3)
610  #define HF_SENSE	(1u<<4)
611  #define HF_EXT_ERR	(1u<<5)
612  #define HF_DATA_IN	(1u<<6)
613  #ifdef SYM_CONF_IARB_SUPPORT
614  #define HF_HINT_IARB	(1u<<7)
615  #endif
616  
617  /*
618   *  More host flags
619   */
620  #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
621  #define	HX_DMAP_DIRTY	(1u<<7)
622  #endif
623  
624  /*
625   *  Global CCB HEADER.
626   *
627   *  Due to lack of indirect addressing on earlier NCR chips,
628   *  this substructure is copied from the ccb to a global
629   *  address after selection (or reselection) and copied back
630   *  before disconnect.
631   *  For SYMBIOS chips that support LOAD/STORE this copy is
632   *  not needed and thus not performed.
633   */
634  
635  struct sym_ccbh {
636  	/*
637  	 *  Start and restart SCRIPTS addresses (must be at 0).
638  	 */
639  /*0*/	struct sym_actscr go;
640  
641  	/*
642  	 *  SCRIPTS jump address that deal with data pointers.
643  	 *  'savep' points to the position in the script responsible
644  	 *  for the actual transfer of data.
645  	 *  It's written on reception of a SAVE_DATA_POINTER message.
646  	 */
647  	u32	savep;		/* Jump address to saved data pointer	*/
648  	u32	lastp;		/* SCRIPTS address at end of data	*/
649  
650  	/*
651  	 *  Status fields.
652  	 */
653  	u8	status[4];
654  };
655  
656  /*
657   *  GET/SET the value of the data pointer used by SCRIPTS.
658   *
659   *  We must distinguish between the LOAD/STORE-based SCRIPTS
660   *  that use directly the header in the CCB, and the NCR-GENERIC
661   *  SCRIPTS that use the copy of the header in the HCB.
662   */
663  #if	SYM_CONF_GENERIC_SUPPORT
664  #define sym_set_script_dp(np, cp, dp)				\
665  	do {							\
666  		if (np->features & FE_LDSTR)			\
667  			cp->phys.head.lastp = cpu_to_scr(dp);	\
668  		else						\
669  			np->ccb_head.lastp = cpu_to_scr(dp);	\
670  	} while (0)
671  #define sym_get_script_dp(np, cp) 				\
672  	scr_to_cpu((np->features & FE_LDSTR) ?			\
673  		cp->phys.head.lastp : np->ccb_head.lastp)
674  #else
675  #define sym_set_script_dp(np, cp, dp)				\
676  	do {							\
677  		cp->phys.head.lastp = cpu_to_scr(dp);		\
678  	} while (0)
679  
680  #define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
681  #endif
682  
683  /*
684   *  Data Structure Block
685   *
686   *  During execution of a ccb by the script processor, the
687   *  DSA (data structure address) register points to this
688   *  substructure of the ccb.
689   */
690  struct sym_dsb {
691  	/*
692  	 *  CCB header.
693  	 *  Also assumed at offset 0 of the sym_ccb structure.
694  	 */
695  /*0*/	struct sym_ccbh head;
696  
697  	/*
698  	 *  Phase mismatch contexts.
699  	 *  We need two to handle correctly the SAVED DATA POINTER.
700  	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
701  	 *  for address calculation from SCRIPTS.
702  	 */
703  	struct sym_pmc pm0;
704  	struct sym_pmc pm1;
705  
706  	/*
707  	 *  Table data for Script
708  	 */
709  	struct sym_tblsel  select;
710  	struct sym_tblmove smsg;
711  	struct sym_tblmove smsg_ext;
712  	struct sym_tblmove cmd;
713  	struct sym_tblmove sense;
714  	struct sym_tblmove wresid;
715  	struct sym_tblmove data [SYM_CONF_MAX_SG];
716  };
717  
718  /*
719   *  Our Command Control Block
720   */
721  struct sym_ccb {
722  	/*
723  	 *  This is the data structure which is pointed by the DSA
724  	 *  register when it is executed by the script processor.
725  	 *  It must be the first entry.
726  	 */
727  	struct sym_dsb phys;
728  
729  	/*
730  	 *  Pointer to CAM ccb and related stuff.
731  	 */
732  	struct scsi_cmnd *cmd;	/* CAM scsiio ccb		*/
733  	u8	cdb_buf[16];	/* Copy of CDB			*/
734  #define	SYM_SNS_BBUF_LEN 32
735  	u8	sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
736  	int	data_len;	/* Total data length		*/
737  	int	segments;	/* Number of SG segments	*/
738  
739  	u8	order;		/* Tag type (if tagged command)	*/
740  	unsigned char odd_byte_adjustment;	/* odd-sized req on wide bus */
741  
742  	u_char	nego_status;	/* Negotiation status		*/
743  	u_char	xerr_status;	/* Extended error flags		*/
744  	u32	extra_bytes;	/* Extraneous bytes transferred	*/
745  
746  	/*
747  	 *  Message areas.
748  	 *  We prepare a message to be sent after selection.
749  	 *  We may use a second one if the command is rescheduled
750  	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
751  	 *  Contents are IDENTIFY and SIMPLE_TAG.
752  	 *  While negotiating sync or wide transfer,
753  	 *  a SDTR or WDTR message is appended.
754  	 */
755  	u_char	scsi_smsg [12];
756  	u_char	scsi_smsg2[12];
757  
758  	/*
759  	 *  Auto request sense related fields.
760  	 */
761  	u_char	sensecmd[6];	/* Request Sense command	*/
762  	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
763  	u_char	sv_xerr_status;	/* Saved extended status	*/
764  	int	sv_resid;	/* Saved residual		*/
765  
766  	/*
767  	 *  Other fields.
768  	 */
769  	u32	ccb_ba;		/* BUS address of this CCB	*/
770  	u_short	tag;		/* Tag for this transfer	*/
771  				/*  NO_TAG means no tag		*/
772  	u_char	target;
773  	u_char	lun;
774  	struct sym_ccb *link_ccbh;	/* Host adapter CCB hash chain	*/
775  	SYM_QUEHEAD link_ccbq;	/* Link to free/busy CCB queue	*/
776  	u32	startp;		/* Initial data pointer		*/
777  	u32	goalp;		/* Expected last data pointer	*/
778  	int	ext_sg;		/* Extreme data pointer, used	*/
779  	int	ext_ofs;	/*  to calculate the residual.	*/
780  #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
781  	SYM_QUEHEAD link2_ccbq;	/* Link for device queueing	*/
782  	u_char	started;	/* CCB queued to the squeue	*/
783  #endif
784  	u_char	to_abort;	/* Want this IO to be aborted	*/
785  #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
786  	u_char	tags_si;	/* Lun tags sum index (0,1)	*/
787  #endif
788  };
789  
790  #define CCB_BA(cp,lbl)	cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
791  
792  typedef struct device *m_pool_ident_t;
793  
794  /*
795   *  Host Control Block
796   */
797  struct sym_hcb {
798  	/*
799  	 *  Global headers.
800  	 *  Due to poorness of addressing capabilities, earlier
801  	 *  chips (810, 815, 825) copy part of the data structures
802  	 *  (CCB, TCB and LCB) in fixed areas.
803  	 */
804  #if	SYM_CONF_GENERIC_SUPPORT
805  	struct sym_ccbh	ccb_head;
806  	struct sym_tcbh	tcb_head;
807  	struct sym_lcbh	lcb_head;
808  #endif
809  	/*
810  	 *  Idle task and invalid task actions and
811  	 *  their bus addresses.
812  	 */
813  	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
814  	u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
815  
816  	/*
817  	 *  Dummy lun table to protect us against target
818  	 *  returning bad lun number on reselection.
819  	 */
820  	u32	*badluntbl;	/* Table physical address	*/
821  	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
822  
823  	/*
824  	 *  Bus address of this host control block.
825  	 */
826  	u32	hcb_ba;
827  
828  	/*
829  	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
830  	 *  The START_RAM64 script loads the MMRS and MMWS from this
831  	 *  field.
832  	 */
833  	u32	scr_ram_seg;
834  
835  	/*
836  	 *  Initial value of some IO register bits.
837  	 *  These values are assumed to have been set by BIOS, and may
838  	 *  be used to probe adapter implementation differences.
839  	 */
840  	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
841  		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
842  		sv_stest1;
843  
844  	/*
845  	 *  Actual initial value of IO register bits used by the
846  	 *  driver. They are loaded at initialisation according to
847  	 *  features that are to be enabled/disabled.
848  	 */
849  	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
850  		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
851  
852  	/*
853  	 *  Target data.
854  	 */
855  	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
856  
857  	/*
858  	 *  Target control block bus address array used by the SCRIPT
859  	 *  on reselection.
860  	 */
861  	u32		*targtbl;
862  	u32		targtbl_ba;
863  
864  	/*
865  	 *  DMA pool handle for this HBA.
866  	 */
867  	m_pool_ident_t	bus_dmat;
868  
869  	/*
870  	 *  O/S specific data structure
871  	 */
872  	struct sym_shcb s;
873  
874  	/*
875  	 *  Physical bus addresses of the chip.
876  	 */
877  	u32		mmio_ba;	/* MMIO 32 bit BUS address	*/
878  	u32		ram_ba;		/* RAM 32 bit BUS address	*/
879  
880  	/*
881  	 *  SCRIPTS virtual and physical bus addresses.
882  	 *  'script'  is loaded in the on-chip RAM if present.
883  	 *  'scripth' stays in main memory for all chips except the
884  	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
885  	 */
886  	u_char		*scripta0;	/* Copy of scripts A, B, Z	*/
887  	u_char		*scriptb0;
888  	u_char		*scriptz0;
889  	u32		scripta_ba;	/* Actual scripts A, B, Z	*/
890  	u32		scriptb_ba;	/* 32 bit bus addresses.	*/
891  	u32		scriptz_ba;
892  	u_short		scripta_sz;	/* Actual size of script A, B, Z*/
893  	u_short		scriptb_sz;
894  	u_short		scriptz_sz;
895  
896  	/*
897  	 *  Bus addresses, setup and patch methods for
898  	 *  the selected firmware.
899  	 */
900  	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
901  	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
902  	struct sym_fwz_ba fwz_bas;	/* Useful SCRIPTZ bus addresses	*/
903  	void		(*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
904  	void		(*fw_patch)(struct Scsi_Host *);
905  	char		*fw_name;
906  
907  	/*
908  	 *  General controller parameters and configuration.
909  	 */
910  	u_int	features;	/* Chip features map		*/
911  	u_char	myaddr;		/* SCSI id of the adapter	*/
912  	u_char	maxburst;	/* log base 2 of dwords burst	*/
913  	u_char	maxwide;	/* Maximum transfer width	*/
914  	u_char	minsync;	/* Min sync period factor (ST)	*/
915  	u_char	maxsync;	/* Max sync period factor (ST)	*/
916  	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
917  	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
918  	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
919  	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
920  	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
921  	u_char	clock_divn;	/* Number of clock divisors	*/
922  	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
923  	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
924  	/*
925  	 *  Start queue management.
926  	 *  It is filled up by the host processor and accessed by the
927  	 *  SCRIPTS processor in order to start SCSI commands.
928  	 */
929  	volatile		/* Prevent code optimizations	*/
930  	u32	*squeue;	/* Start queue virtual address	*/
931  	u32	squeue_ba;	/* Start queue BUS address	*/
932  	u_short	squeueput;	/* Next free slot of the queue	*/
933  	u_short	actccbs;	/* Number of allocated CCBs	*/
934  
935  	/*
936  	 *  Command completion queue.
937  	 *  It is the same size as the start queue to avoid overflow.
938  	 */
939  	u_short	dqueueget;	/* Next position to scan	*/
940  	volatile		/* Prevent code optimizations	*/
941  	u32	*dqueue;	/* Completion (done) queue	*/
942  	u32	dqueue_ba;	/* Done queue BUS address	*/
943  
944  	/*
945  	 *  Miscellaneous buffers accessed by the scripts-processor.
946  	 *  They shall be DWORD aligned, because they may be read or
947  	 *  written with a script command.
948  	 */
949  	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
950  	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
951  	u32		lastmsg;	/* Last SCSI message sent	*/
952  	u32		scratch;	/* Scratch for SCSI receive	*/
953  					/* Also used for cache test 	*/
954  	/*
955  	 *  Miscellaneous configuration and status parameters.
956  	 */
957  	u_char		usrflags;	/* Miscellaneous user flags	*/
958  	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
959  	u_char		verbose;	/* Verbosity for this controller*/
960  
961  	/*
962  	 *  CCB lists and queue.
963  	 */
964  	struct sym_ccb **ccbh;			/* CCBs hashed by DSA value	*/
965  					/* CCB_HASH_SIZE lists of CCBs	*/
966  	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
967  	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
968  
969  	/*
970  	 *  During error handling and/or recovery,
971  	 *  active CCBs that are to be completed with
972  	 *  error or requeued are moved from the busy_ccbq
973  	 *  to the comp_ccbq prior to completion.
974  	 */
975  	SYM_QUEHEAD	comp_ccbq;
976  
977  #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
978  	SYM_QUEHEAD	dummy_ccbq;
979  #endif
980  
981  	/*
982  	 *  IMMEDIATE ARBITRATION (IARB) control.
983  	 *
984  	 *  We keep track in 'last_cp' of the last CCB that has been
985  	 *  queued to the SCRIPTS processor and clear 'last_cp' when
986  	 *  this CCB completes. If last_cp is not zero at the moment
987  	 *  we queue a new CCB, we set a flag in 'last_cp' that is
988  	 *  used by the SCRIPTS as a hint for setting IARB.
989  	 *  We donnot set more than 'iarb_max' consecutive hints for
990  	 *  IARB in order to leave devices a chance to reselect.
991  	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
992  	 */
993  #ifdef SYM_CONF_IARB_SUPPORT
994  	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
995  	u_short		iarb_count;	/* Actual # of these hints	*/
996  	struct sym_ccb *	last_cp;
997  #endif
998  
999  	/*
1000  	 *  Command abort handling.
1001  	 *  We need to synchronize tightly with the SCRIPTS
1002  	 *  processor in order to handle things correctly.
1003  	 */
1004  	u_char		abrt_msg[4];	/* Message to send buffer	*/
1005  	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1006  	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1007  	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1008  
1009  	/*
1010  	 *  64 bit DMA handling.
1011  	 */
1012  #if	SYM_CONF_DMA_ADDRESSING_MODE != 0
1013  	u_char	use_dac;		/* Use PCI DAC cycles		*/
1014  #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1015  	u_char	dmap_dirty;		/* Dma segments registers dirty	*/
1016  	u32	dmap_bah[SYM_DMAP_SIZE];/* Segment registers map	*/
1017  #endif
1018  #endif
1019  };
1020  
1021  #if SYM_CONF_DMA_ADDRESSING_MODE == 0
1022  #define use_dac(np)	0
1023  #define set_dac(np)	do { } while (0)
1024  #else
1025  #define use_dac(np)	(np)->use_dac
1026  #define set_dac(np)	(np)->use_dac = 1
1027  #endif
1028  
1029  #define HCB_BA(np, lbl)	(np->hcb_ba + offsetof(struct sym_hcb, lbl))
1030  
1031  
1032  /*
1033   *  FIRMWARES (sym_fw.c)
1034   */
1035  struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1036  void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1037  
1038  /*
1039   *  Driver methods called from O/S specific code.
1040   */
1041  char *sym_driver_name(void);
1042  void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1043  int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1044  struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1045  #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1046  void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1047  #else
1048  void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1049  #endif
1050  void sym_start_up(struct Scsi_Host *, int reason);
1051  irqreturn_t sym_interrupt(struct Scsi_Host *);
1052  int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1053  struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1054  void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1055  struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1056  int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1057  int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1058  int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1059  int sym_reset_scsi_target(struct sym_hcb *np, int target);
1060  void sym_hcb_free(struct sym_hcb *np);
1061  int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1062  
1063  /*
1064   *  Build a scatter/gather entry.
1065   *
1066   *  For 64 bit systems, we use the 8 upper bits of the size field
1067   *  to provide bus address bits 32-39 to the SCRIPTS processor.
1068   *  This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1069   */
1070  
1071  #if   SYM_CONF_DMA_ADDRESSING_MODE == 0
1072  #define DMA_DAC_MASK	DMA_BIT_MASK(32)
1073  #define sym_build_sge(np, data, badd, len)	\
1074  do {						\
1075  	(data)->addr = cpu_to_scr(badd);	\
1076  	(data)->size = cpu_to_scr(len);		\
1077  } while (0)
1078  #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1079  #define DMA_DAC_MASK	DMA_BIT_MASK(40)
1080  #define sym_build_sge(np, data, badd, len)				\
1081  do {									\
1082  	(data)->addr = cpu_to_scr(badd);				\
1083  	(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len);	\
1084  } while (0)
1085  #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1086  #define DMA_DAC_MASK	DMA_BIT_MASK(64)
1087  int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1088  static inline void
sym_build_sge(struct sym_hcb * np,struct sym_tblmove * data,u64 badd,int len)1089  sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1090  {
1091  	u32 h = (badd>>32);
1092  	int s = (h&SYM_DMAP_MASK);
1093  
1094  	if (h != np->dmap_bah[s])
1095  		goto bad;
1096  good:
1097  	(data)->addr = cpu_to_scr(badd);
1098  	(data)->size = cpu_to_scr((s<<24) + len);
1099  	return;
1100  bad:
1101  	s = sym_lookup_dmap(np, h, s);
1102  	goto good;
1103  }
1104  #else
1105  #error "Unsupported DMA addressing mode"
1106  #endif
1107  
1108  /*
1109   *  MEMORY ALLOCATOR.
1110   */
1111  
1112  #define sym_get_mem_cluster()	\
1113  	(void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1114  #define sym_free_mem_cluster(p)	\
1115  	free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1116  
1117  /*
1118   *  Link between free memory chunks of a given size.
1119   */
1120  typedef struct sym_m_link {
1121  	struct sym_m_link *next;
1122  } *m_link_p;
1123  
1124  /*
1125   *  Virtual to bus physical translation for a given cluster.
1126   *  Such a structure is only useful with DMA abstraction.
1127   */
1128  typedef struct sym_m_vtob {	/* Virtual to Bus address translation */
1129  	struct sym_m_vtob *next;
1130  	void *vaddr;		/* Virtual address */
1131  	dma_addr_t baddr;	/* Bus physical address */
1132  } *m_vtob_p;
1133  
1134  /* Hash this stuff a bit to speed up translations */
1135  #define VTOB_HASH_SHIFT		5
1136  #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
1137  #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
1138  #define VTOB_HASH_CODE(m)	\
1139  	((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1140  
1141  /*
1142   *  Memory pool of a given kind.
1143   *  Ideally, we want to use:
1144   *  1) 1 pool for memory we donnot need to involve in DMA.
1145   *  2) The same pool for controllers that require same DMA
1146   *     constraints and features.
1147   *     The OS specific m_pool_id_t thing and the sym_m_pool_match()
1148   *     method are expected to tell the driver about.
1149   */
1150  typedef struct sym_m_pool {
1151  	m_pool_ident_t	dev_dmat;	/* Identifies the pool (see above) */
1152  	void * (*get_mem_cluster)(struct sym_m_pool *);
1153  #ifdef	SYM_MEM_FREE_UNUSED
1154  	void (*free_mem_cluster)(struct sym_m_pool *, void *);
1155  #endif
1156  #define M_GET_MEM_CLUSTER()		mp->get_mem_cluster(mp)
1157  #define M_FREE_MEM_CLUSTER(p)		mp->free_mem_cluster(mp, p)
1158  	int nump;
1159  	m_vtob_p vtob[VTOB_HASH_SIZE];
1160  	struct sym_m_pool *next;
1161  	struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1162  } *m_pool_p;
1163  
1164  /*
1165   *  Alloc, free and translate addresses to bus physical
1166   *  for DMAable memory.
1167   */
1168  void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1169  void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1170  dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1171  
1172  /*
1173   * Verbs used by the driver code for DMAable memory handling.
1174   * The _uvptv_ macro avoids a nasty warning about pointer to volatile
1175   * being discarded.
1176   */
1177  #define _uvptv_(p) ((void *)((u_long)(p)))
1178  
1179  #define _sym_calloc_dma(np, l, n)	__sym_calloc_dma(np->bus_dmat, l, n)
1180  #define _sym_mfree_dma(np, p, l, n)	\
1181  			__sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1182  #define sym_calloc_dma(l, n)		_sym_calloc_dma(np, l, n)
1183  #define sym_mfree_dma(p, l, n)		_sym_mfree_dma(np, p, l, n)
1184  #define vtobus(p)			__vtobus(np->bus_dmat, _uvptv_(p))
1185  
1186  /*
1187   *  We have to provide the driver memory allocator with methods for
1188   *  it to maintain virtual to bus physical address translations.
1189   */
1190  
1191  #define sym_m_pool_match(mp_id1, mp_id2)	(mp_id1 == mp_id2)
1192  
sym_m_get_dma_mem_cluster(m_pool_p mp,m_vtob_p vbp)1193  static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1194  {
1195  	void *vaddr = NULL;
1196  	dma_addr_t baddr = 0;
1197  
1198  	vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1199  			GFP_ATOMIC);
1200  	if (vaddr) {
1201  		vbp->vaddr = vaddr;
1202  		vbp->baddr = baddr;
1203  	}
1204  	return vaddr;
1205  }
1206  
sym_m_free_dma_mem_cluster(m_pool_p mp,m_vtob_p vbp)1207  static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1208  {
1209  	dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1210  			vbp->baddr);
1211  }
1212  
1213  #endif /* SYM_HIPD_H */
1214