1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7 #define pr_fmt(fmt) "iommu: " fmt
8
9 #include <linux/device.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/iommu.h>
20 #include <linux/idr.h>
21 #include <linux/notifier.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/bitops.h>
25 #include <linux/property.h>
26 #include <linux/fsl/mc.h>
27 #include <linux/module.h>
28 #include <trace/events/iommu.h>
29
30 static struct kset *iommu_group_kset;
31 static DEFINE_IDA(iommu_group_ida);
32
33 static unsigned int iommu_def_domain_type __read_mostly;
34 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
35 static u32 iommu_cmd_line __read_mostly;
36
37 struct iommu_group {
38 struct kobject kobj;
39 struct kobject *devices_kobj;
40 struct list_head devices;
41 struct mutex mutex;
42 struct blocking_notifier_head notifier;
43 void *iommu_data;
44 void (*iommu_data_release)(void *iommu_data);
45 char *name;
46 int id;
47 struct iommu_domain *default_domain;
48 struct iommu_domain *domain;
49 struct list_head entry;
50 };
51
52 struct group_device {
53 struct list_head list;
54 struct device *dev;
55 char *name;
56 };
57
58 struct iommu_group_attribute {
59 struct attribute attr;
60 ssize_t (*show)(struct iommu_group *group, char *buf);
61 ssize_t (*store)(struct iommu_group *group,
62 const char *buf, size_t count);
63 };
64
65 static const char * const iommu_group_resv_type_string[] = {
66 [IOMMU_RESV_DIRECT] = "direct",
67 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable",
68 [IOMMU_RESV_RESERVED] = "reserved",
69 [IOMMU_RESV_MSI] = "msi",
70 [IOMMU_RESV_SW_MSI] = "msi",
71 };
72
73 #define IOMMU_CMD_LINE_DMA_API BIT(0)
74 #define IOMMU_CMD_LINE_STRICT BIT(1)
75
76 static int iommu_alloc_default_domain(struct iommu_group *group,
77 struct device *dev);
78 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
79 unsigned type);
80 static int __iommu_attach_device(struct iommu_domain *domain,
81 struct device *dev);
82 static int __iommu_attach_group(struct iommu_domain *domain,
83 struct iommu_group *group);
84 static void __iommu_detach_group(struct iommu_domain *domain,
85 struct iommu_group *group);
86 static int iommu_create_device_direct_mappings(struct iommu_group *group,
87 struct device *dev);
88 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
89 static ssize_t iommu_group_store_type(struct iommu_group *group,
90 const char *buf, size_t count);
91
92 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
93 struct iommu_group_attribute iommu_group_attr_##_name = \
94 __ATTR(_name, _mode, _show, _store)
95
96 #define to_iommu_group_attr(_attr) \
97 container_of(_attr, struct iommu_group_attribute, attr)
98 #define to_iommu_group(_kobj) \
99 container_of(_kobj, struct iommu_group, kobj)
100
101 static LIST_HEAD(iommu_device_list);
102 static DEFINE_SPINLOCK(iommu_device_lock);
103
104 /*
105 * Use a function instead of an array here because the domain-type is a
106 * bit-field, so an array would waste memory.
107 */
iommu_domain_type_str(unsigned int t)108 static const char *iommu_domain_type_str(unsigned int t)
109 {
110 switch (t) {
111 case IOMMU_DOMAIN_BLOCKED:
112 return "Blocked";
113 case IOMMU_DOMAIN_IDENTITY:
114 return "Passthrough";
115 case IOMMU_DOMAIN_UNMANAGED:
116 return "Unmanaged";
117 case IOMMU_DOMAIN_DMA:
118 case IOMMU_DOMAIN_DMA_FQ:
119 return "Translated";
120 default:
121 return "Unknown";
122 }
123 }
124
iommu_subsys_init(void)125 static int __init iommu_subsys_init(void)
126 {
127 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
128 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
129 iommu_set_default_passthrough(false);
130 else
131 iommu_set_default_translated(false);
132
133 if (iommu_default_passthrough() && mem_encrypt_active()) {
134 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
135 iommu_set_default_translated(false);
136 }
137 }
138
139 if (!iommu_default_passthrough() && !iommu_dma_strict)
140 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
141
142 pr_info("Default domain type: %s %s\n",
143 iommu_domain_type_str(iommu_def_domain_type),
144 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
145 "(set via kernel command line)" : "");
146
147 if (!iommu_default_passthrough())
148 pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
149 iommu_dma_strict ? "strict" : "lazy",
150 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
151 "(set via kernel command line)" : "");
152
153 return 0;
154 }
155 subsys_initcall(iommu_subsys_init);
156
157 /**
158 * iommu_device_register() - Register an IOMMU hardware instance
159 * @iommu: IOMMU handle for the instance
160 * @ops: IOMMU ops to associate with the instance
161 * @hwdev: (optional) actual instance device, used for fwnode lookup
162 *
163 * Return: 0 on success, or an error.
164 */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)165 int iommu_device_register(struct iommu_device *iommu,
166 const struct iommu_ops *ops, struct device *hwdev)
167 {
168 /* We need to be able to take module references appropriately */
169 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
170 return -EINVAL;
171
172 iommu->ops = ops;
173 if (hwdev)
174 iommu->fwnode = hwdev->fwnode;
175
176 spin_lock(&iommu_device_lock);
177 list_add_tail(&iommu->list, &iommu_device_list);
178 spin_unlock(&iommu_device_lock);
179 return 0;
180 }
181 EXPORT_SYMBOL_GPL(iommu_device_register);
182
iommu_device_unregister(struct iommu_device * iommu)183 void iommu_device_unregister(struct iommu_device *iommu)
184 {
185 spin_lock(&iommu_device_lock);
186 list_del(&iommu->list);
187 spin_unlock(&iommu_device_lock);
188 }
189 EXPORT_SYMBOL_GPL(iommu_device_unregister);
190
dev_iommu_get(struct device * dev)191 static struct dev_iommu *dev_iommu_get(struct device *dev)
192 {
193 struct dev_iommu *param = dev->iommu;
194
195 if (param)
196 return param;
197
198 param = kzalloc(sizeof(*param), GFP_KERNEL);
199 if (!param)
200 return NULL;
201
202 mutex_init(¶m->lock);
203 dev->iommu = param;
204 return param;
205 }
206
dev_iommu_free(struct device * dev)207 static void dev_iommu_free(struct device *dev)
208 {
209 iommu_fwspec_free(dev);
210 kfree(dev->iommu);
211 dev->iommu = NULL;
212 }
213
__iommu_probe_device(struct device * dev,struct list_head * group_list)214 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
215 {
216 const struct iommu_ops *ops = dev->bus->iommu_ops;
217 struct iommu_device *iommu_dev;
218 struct iommu_group *group;
219 int ret;
220
221 if (!ops)
222 return -ENODEV;
223
224 if (!dev_iommu_get(dev))
225 return -ENOMEM;
226
227 if (!try_module_get(ops->owner)) {
228 ret = -EINVAL;
229 goto err_free;
230 }
231
232 iommu_dev = ops->probe_device(dev);
233 if (IS_ERR(iommu_dev)) {
234 ret = PTR_ERR(iommu_dev);
235 goto out_module_put;
236 }
237
238 dev->iommu->iommu_dev = iommu_dev;
239
240 group = iommu_group_get_for_dev(dev);
241 if (IS_ERR(group)) {
242 ret = PTR_ERR(group);
243 goto out_release;
244 }
245 iommu_group_put(group);
246
247 if (group_list && !group->default_domain && list_empty(&group->entry))
248 list_add_tail(&group->entry, group_list);
249
250 iommu_device_link(iommu_dev, dev);
251
252 return 0;
253
254 out_release:
255 ops->release_device(dev);
256
257 out_module_put:
258 module_put(ops->owner);
259
260 err_free:
261 dev_iommu_free(dev);
262
263 return ret;
264 }
265
iommu_probe_device(struct device * dev)266 int iommu_probe_device(struct device *dev)
267 {
268 const struct iommu_ops *ops = dev->bus->iommu_ops;
269 struct iommu_group *group;
270 int ret;
271
272 ret = __iommu_probe_device(dev, NULL);
273 if (ret)
274 goto err_out;
275
276 group = iommu_group_get(dev);
277 if (!group) {
278 ret = -ENODEV;
279 goto err_release;
280 }
281
282 /*
283 * Try to allocate a default domain - needs support from the
284 * IOMMU driver. There are still some drivers which don't
285 * support default domains, so the return value is not yet
286 * checked.
287 */
288 mutex_lock(&group->mutex);
289 iommu_alloc_default_domain(group, dev);
290 mutex_unlock(&group->mutex);
291
292 if (group->default_domain) {
293 ret = __iommu_attach_device(group->default_domain, dev);
294 if (ret) {
295 iommu_group_put(group);
296 goto err_release;
297 }
298 }
299
300 iommu_create_device_direct_mappings(group, dev);
301
302 iommu_group_put(group);
303
304 if (ops->probe_finalize)
305 ops->probe_finalize(dev);
306
307 return 0;
308
309 err_release:
310 iommu_release_device(dev);
311
312 err_out:
313 return ret;
314
315 }
316
iommu_release_device(struct device * dev)317 void iommu_release_device(struct device *dev)
318 {
319 const struct iommu_ops *ops = dev->bus->iommu_ops;
320
321 if (!dev->iommu)
322 return;
323
324 iommu_device_unlink(dev->iommu->iommu_dev, dev);
325
326 ops->release_device(dev);
327
328 iommu_group_remove_device(dev);
329 module_put(ops->owner);
330 dev_iommu_free(dev);
331 }
332
iommu_set_def_domain_type(char * str)333 static int __init iommu_set_def_domain_type(char *str)
334 {
335 bool pt;
336 int ret;
337
338 ret = kstrtobool(str, &pt);
339 if (ret)
340 return ret;
341
342 if (pt)
343 iommu_set_default_passthrough(true);
344 else
345 iommu_set_default_translated(true);
346
347 return 0;
348 }
349 early_param("iommu.passthrough", iommu_set_def_domain_type);
350
iommu_dma_setup(char * str)351 static int __init iommu_dma_setup(char *str)
352 {
353 int ret = kstrtobool(str, &iommu_dma_strict);
354
355 if (!ret)
356 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
357 return ret;
358 }
359 early_param("iommu.strict", iommu_dma_setup);
360
iommu_set_dma_strict(void)361 void iommu_set_dma_strict(void)
362 {
363 iommu_dma_strict = true;
364 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
365 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
366 }
367
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)368 static ssize_t iommu_group_attr_show(struct kobject *kobj,
369 struct attribute *__attr, char *buf)
370 {
371 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
372 struct iommu_group *group = to_iommu_group(kobj);
373 ssize_t ret = -EIO;
374
375 if (attr->show)
376 ret = attr->show(group, buf);
377 return ret;
378 }
379
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)380 static ssize_t iommu_group_attr_store(struct kobject *kobj,
381 struct attribute *__attr,
382 const char *buf, size_t count)
383 {
384 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
385 struct iommu_group *group = to_iommu_group(kobj);
386 ssize_t ret = -EIO;
387
388 if (attr->store)
389 ret = attr->store(group, buf, count);
390 return ret;
391 }
392
393 static const struct sysfs_ops iommu_group_sysfs_ops = {
394 .show = iommu_group_attr_show,
395 .store = iommu_group_attr_store,
396 };
397
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)398 static int iommu_group_create_file(struct iommu_group *group,
399 struct iommu_group_attribute *attr)
400 {
401 return sysfs_create_file(&group->kobj, &attr->attr);
402 }
403
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)404 static void iommu_group_remove_file(struct iommu_group *group,
405 struct iommu_group_attribute *attr)
406 {
407 sysfs_remove_file(&group->kobj, &attr->attr);
408 }
409
iommu_group_show_name(struct iommu_group * group,char * buf)410 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
411 {
412 return sprintf(buf, "%s\n", group->name);
413 }
414
415 /**
416 * iommu_insert_resv_region - Insert a new region in the
417 * list of reserved regions.
418 * @new: new region to insert
419 * @regions: list of regions
420 *
421 * Elements are sorted by start address and overlapping segments
422 * of the same type are merged.
423 */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)424 static int iommu_insert_resv_region(struct iommu_resv_region *new,
425 struct list_head *regions)
426 {
427 struct iommu_resv_region *iter, *tmp, *nr, *top;
428 LIST_HEAD(stack);
429
430 nr = iommu_alloc_resv_region(new->start, new->length,
431 new->prot, new->type);
432 if (!nr)
433 return -ENOMEM;
434
435 /* First add the new element based on start address sorting */
436 list_for_each_entry(iter, regions, list) {
437 if (nr->start < iter->start ||
438 (nr->start == iter->start && nr->type <= iter->type))
439 break;
440 }
441 list_add_tail(&nr->list, &iter->list);
442
443 /* Merge overlapping segments of type nr->type in @regions, if any */
444 list_for_each_entry_safe(iter, tmp, regions, list) {
445 phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
446
447 /* no merge needed on elements of different types than @new */
448 if (iter->type != new->type) {
449 list_move_tail(&iter->list, &stack);
450 continue;
451 }
452
453 /* look for the last stack element of same type as @iter */
454 list_for_each_entry_reverse(top, &stack, list)
455 if (top->type == iter->type)
456 goto check_overlap;
457
458 list_move_tail(&iter->list, &stack);
459 continue;
460
461 check_overlap:
462 top_end = top->start + top->length - 1;
463
464 if (iter->start > top_end + 1) {
465 list_move_tail(&iter->list, &stack);
466 } else {
467 top->length = max(top_end, iter_end) - top->start + 1;
468 list_del(&iter->list);
469 kfree(iter);
470 }
471 }
472 list_splice(&stack, regions);
473 return 0;
474 }
475
476 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)477 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
478 struct list_head *group_resv_regions)
479 {
480 struct iommu_resv_region *entry;
481 int ret = 0;
482
483 list_for_each_entry(entry, dev_resv_regions, list) {
484 ret = iommu_insert_resv_region(entry, group_resv_regions);
485 if (ret)
486 break;
487 }
488 return ret;
489 }
490
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)491 int iommu_get_group_resv_regions(struct iommu_group *group,
492 struct list_head *head)
493 {
494 struct group_device *device;
495 int ret = 0;
496
497 mutex_lock(&group->mutex);
498 list_for_each_entry(device, &group->devices, list) {
499 struct list_head dev_resv_regions;
500
501 INIT_LIST_HEAD(&dev_resv_regions);
502 iommu_get_resv_regions(device->dev, &dev_resv_regions);
503 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
504 iommu_put_resv_regions(device->dev, &dev_resv_regions);
505 if (ret)
506 break;
507 }
508 mutex_unlock(&group->mutex);
509 return ret;
510 }
511 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
512
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)513 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
514 char *buf)
515 {
516 struct iommu_resv_region *region, *next;
517 struct list_head group_resv_regions;
518 char *str = buf;
519
520 INIT_LIST_HEAD(&group_resv_regions);
521 iommu_get_group_resv_regions(group, &group_resv_regions);
522
523 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
524 str += sprintf(str, "0x%016llx 0x%016llx %s\n",
525 (long long int)region->start,
526 (long long int)(region->start +
527 region->length - 1),
528 iommu_group_resv_type_string[region->type]);
529 kfree(region);
530 }
531
532 return (str - buf);
533 }
534
iommu_group_show_type(struct iommu_group * group,char * buf)535 static ssize_t iommu_group_show_type(struct iommu_group *group,
536 char *buf)
537 {
538 char *type = "unknown\n";
539
540 mutex_lock(&group->mutex);
541 if (group->default_domain) {
542 switch (group->default_domain->type) {
543 case IOMMU_DOMAIN_BLOCKED:
544 type = "blocked\n";
545 break;
546 case IOMMU_DOMAIN_IDENTITY:
547 type = "identity\n";
548 break;
549 case IOMMU_DOMAIN_UNMANAGED:
550 type = "unmanaged\n";
551 break;
552 case IOMMU_DOMAIN_DMA:
553 type = "DMA\n";
554 break;
555 case IOMMU_DOMAIN_DMA_FQ:
556 type = "DMA-FQ\n";
557 break;
558 }
559 }
560 mutex_unlock(&group->mutex);
561 strcpy(buf, type);
562
563 return strlen(type);
564 }
565
566 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
567
568 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
569 iommu_group_show_resv_regions, NULL);
570
571 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
572 iommu_group_store_type);
573
iommu_group_release(struct kobject * kobj)574 static void iommu_group_release(struct kobject *kobj)
575 {
576 struct iommu_group *group = to_iommu_group(kobj);
577
578 pr_debug("Releasing group %d\n", group->id);
579
580 if (group->iommu_data_release)
581 group->iommu_data_release(group->iommu_data);
582
583 ida_simple_remove(&iommu_group_ida, group->id);
584
585 if (group->default_domain)
586 iommu_domain_free(group->default_domain);
587
588 kfree(group->name);
589 kfree(group);
590 }
591
592 static struct kobj_type iommu_group_ktype = {
593 .sysfs_ops = &iommu_group_sysfs_ops,
594 .release = iommu_group_release,
595 };
596
597 /**
598 * iommu_group_alloc - Allocate a new group
599 *
600 * This function is called by an iommu driver to allocate a new iommu
601 * group. The iommu group represents the minimum granularity of the iommu.
602 * Upon successful return, the caller holds a reference to the supplied
603 * group in order to hold the group until devices are added. Use
604 * iommu_group_put() to release this extra reference count, allowing the
605 * group to be automatically reclaimed once it has no devices or external
606 * references.
607 */
iommu_group_alloc(void)608 struct iommu_group *iommu_group_alloc(void)
609 {
610 struct iommu_group *group;
611 int ret;
612
613 group = kzalloc(sizeof(*group), GFP_KERNEL);
614 if (!group)
615 return ERR_PTR(-ENOMEM);
616
617 group->kobj.kset = iommu_group_kset;
618 mutex_init(&group->mutex);
619 INIT_LIST_HEAD(&group->devices);
620 INIT_LIST_HEAD(&group->entry);
621 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
622
623 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
624 if (ret < 0) {
625 kfree(group);
626 return ERR_PTR(ret);
627 }
628 group->id = ret;
629
630 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
631 NULL, "%d", group->id);
632 if (ret) {
633 ida_simple_remove(&iommu_group_ida, group->id);
634 kobject_put(&group->kobj);
635 return ERR_PTR(ret);
636 }
637
638 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
639 if (!group->devices_kobj) {
640 kobject_put(&group->kobj); /* triggers .release & free */
641 return ERR_PTR(-ENOMEM);
642 }
643
644 /*
645 * The devices_kobj holds a reference on the group kobject, so
646 * as long as that exists so will the group. We can therefore
647 * use the devices_kobj for reference counting.
648 */
649 kobject_put(&group->kobj);
650
651 ret = iommu_group_create_file(group,
652 &iommu_group_attr_reserved_regions);
653 if (ret)
654 return ERR_PTR(ret);
655
656 ret = iommu_group_create_file(group, &iommu_group_attr_type);
657 if (ret)
658 return ERR_PTR(ret);
659
660 pr_debug("Allocated group %d\n", group->id);
661
662 return group;
663 }
664 EXPORT_SYMBOL_GPL(iommu_group_alloc);
665
iommu_group_get_by_id(int id)666 struct iommu_group *iommu_group_get_by_id(int id)
667 {
668 struct kobject *group_kobj;
669 struct iommu_group *group;
670 const char *name;
671
672 if (!iommu_group_kset)
673 return NULL;
674
675 name = kasprintf(GFP_KERNEL, "%d", id);
676 if (!name)
677 return NULL;
678
679 group_kobj = kset_find_obj(iommu_group_kset, name);
680 kfree(name);
681
682 if (!group_kobj)
683 return NULL;
684
685 group = container_of(group_kobj, struct iommu_group, kobj);
686 BUG_ON(group->id != id);
687
688 kobject_get(group->devices_kobj);
689 kobject_put(&group->kobj);
690
691 return group;
692 }
693 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
694
695 /**
696 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
697 * @group: the group
698 *
699 * iommu drivers can store data in the group for use when doing iommu
700 * operations. This function provides a way to retrieve it. Caller
701 * should hold a group reference.
702 */
iommu_group_get_iommudata(struct iommu_group * group)703 void *iommu_group_get_iommudata(struct iommu_group *group)
704 {
705 return group->iommu_data;
706 }
707 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
708
709 /**
710 * iommu_group_set_iommudata - set iommu_data for a group
711 * @group: the group
712 * @iommu_data: new data
713 * @release: release function for iommu_data
714 *
715 * iommu drivers can store data in the group for use when doing iommu
716 * operations. This function provides a way to set the data after
717 * the group has been allocated. Caller should hold a group reference.
718 */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))719 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
720 void (*release)(void *iommu_data))
721 {
722 group->iommu_data = iommu_data;
723 group->iommu_data_release = release;
724 }
725 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
726
727 /**
728 * iommu_group_set_name - set name for a group
729 * @group: the group
730 * @name: name
731 *
732 * Allow iommu driver to set a name for a group. When set it will
733 * appear in a name attribute file under the group in sysfs.
734 */
iommu_group_set_name(struct iommu_group * group,const char * name)735 int iommu_group_set_name(struct iommu_group *group, const char *name)
736 {
737 int ret;
738
739 if (group->name) {
740 iommu_group_remove_file(group, &iommu_group_attr_name);
741 kfree(group->name);
742 group->name = NULL;
743 if (!name)
744 return 0;
745 }
746
747 group->name = kstrdup(name, GFP_KERNEL);
748 if (!group->name)
749 return -ENOMEM;
750
751 ret = iommu_group_create_file(group, &iommu_group_attr_name);
752 if (ret) {
753 kfree(group->name);
754 group->name = NULL;
755 return ret;
756 }
757
758 return 0;
759 }
760 EXPORT_SYMBOL_GPL(iommu_group_set_name);
761
iommu_create_device_direct_mappings(struct iommu_group * group,struct device * dev)762 static int iommu_create_device_direct_mappings(struct iommu_group *group,
763 struct device *dev)
764 {
765 struct iommu_domain *domain = group->default_domain;
766 struct iommu_resv_region *entry;
767 struct list_head mappings;
768 unsigned long pg_size;
769 int ret = 0;
770
771 if (!domain || !iommu_is_dma_domain(domain))
772 return 0;
773
774 BUG_ON(!domain->pgsize_bitmap);
775
776 pg_size = 1UL << __ffs(domain->pgsize_bitmap);
777 INIT_LIST_HEAD(&mappings);
778
779 iommu_get_resv_regions(dev, &mappings);
780
781 /* We need to consider overlapping regions for different devices */
782 list_for_each_entry(entry, &mappings, list) {
783 dma_addr_t start, end, addr;
784 size_t map_size = 0;
785
786 if (domain->ops->apply_resv_region)
787 domain->ops->apply_resv_region(dev, domain, entry);
788
789 start = ALIGN(entry->start, pg_size);
790 end = ALIGN(entry->start + entry->length, pg_size);
791
792 if (entry->type != IOMMU_RESV_DIRECT &&
793 entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
794 continue;
795
796 for (addr = start; addr <= end; addr += pg_size) {
797 phys_addr_t phys_addr;
798
799 if (addr == end)
800 goto map_end;
801
802 phys_addr = iommu_iova_to_phys(domain, addr);
803 if (!phys_addr) {
804 map_size += pg_size;
805 continue;
806 }
807
808 map_end:
809 if (map_size) {
810 ret = iommu_map(domain, addr - map_size,
811 addr - map_size, map_size,
812 entry->prot);
813 if (ret)
814 goto out;
815 map_size = 0;
816 }
817 }
818
819 }
820
821 iommu_flush_iotlb_all(domain);
822
823 out:
824 iommu_put_resv_regions(dev, &mappings);
825
826 return ret;
827 }
828
iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)829 static bool iommu_is_attach_deferred(struct iommu_domain *domain,
830 struct device *dev)
831 {
832 if (domain->ops->is_attach_deferred)
833 return domain->ops->is_attach_deferred(domain, dev);
834
835 return false;
836 }
837
838 /**
839 * iommu_group_add_device - add a device to an iommu group
840 * @group: the group into which to add the device (reference should be held)
841 * @dev: the device
842 *
843 * This function is called by an iommu driver to add a device into a
844 * group. Adding a device increments the group reference count.
845 */
iommu_group_add_device(struct iommu_group * group,struct device * dev)846 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
847 {
848 int ret, i = 0;
849 struct group_device *device;
850
851 device = kzalloc(sizeof(*device), GFP_KERNEL);
852 if (!device)
853 return -ENOMEM;
854
855 device->dev = dev;
856
857 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
858 if (ret)
859 goto err_free_device;
860
861 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
862 rename:
863 if (!device->name) {
864 ret = -ENOMEM;
865 goto err_remove_link;
866 }
867
868 ret = sysfs_create_link_nowarn(group->devices_kobj,
869 &dev->kobj, device->name);
870 if (ret) {
871 if (ret == -EEXIST && i >= 0) {
872 /*
873 * Account for the slim chance of collision
874 * and append an instance to the name.
875 */
876 kfree(device->name);
877 device->name = kasprintf(GFP_KERNEL, "%s.%d",
878 kobject_name(&dev->kobj), i++);
879 goto rename;
880 }
881 goto err_free_name;
882 }
883
884 kobject_get(group->devices_kobj);
885
886 dev->iommu_group = group;
887
888 mutex_lock(&group->mutex);
889 list_add_tail(&device->list, &group->devices);
890 if (group->domain && !iommu_is_attach_deferred(group->domain, dev))
891 ret = __iommu_attach_device(group->domain, dev);
892 mutex_unlock(&group->mutex);
893 if (ret)
894 goto err_put_group;
895
896 /* Notify any listeners about change to group. */
897 blocking_notifier_call_chain(&group->notifier,
898 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
899
900 trace_add_device_to_group(group->id, dev);
901
902 dev_info(dev, "Adding to iommu group %d\n", group->id);
903
904 return 0;
905
906 err_put_group:
907 mutex_lock(&group->mutex);
908 list_del(&device->list);
909 mutex_unlock(&group->mutex);
910 dev->iommu_group = NULL;
911 kobject_put(group->devices_kobj);
912 sysfs_remove_link(group->devices_kobj, device->name);
913 err_free_name:
914 kfree(device->name);
915 err_remove_link:
916 sysfs_remove_link(&dev->kobj, "iommu_group");
917 err_free_device:
918 kfree(device);
919 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
920 return ret;
921 }
922 EXPORT_SYMBOL_GPL(iommu_group_add_device);
923
924 /**
925 * iommu_group_remove_device - remove a device from it's current group
926 * @dev: device to be removed
927 *
928 * This function is called by an iommu driver to remove the device from
929 * it's current group. This decrements the iommu group reference count.
930 */
iommu_group_remove_device(struct device * dev)931 void iommu_group_remove_device(struct device *dev)
932 {
933 struct iommu_group *group = dev->iommu_group;
934 struct group_device *tmp_device, *device = NULL;
935
936 if (!group)
937 return;
938
939 dev_info(dev, "Removing from iommu group %d\n", group->id);
940
941 /* Pre-notify listeners that a device is being removed. */
942 blocking_notifier_call_chain(&group->notifier,
943 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
944
945 mutex_lock(&group->mutex);
946 list_for_each_entry(tmp_device, &group->devices, list) {
947 if (tmp_device->dev == dev) {
948 device = tmp_device;
949 list_del(&device->list);
950 break;
951 }
952 }
953 mutex_unlock(&group->mutex);
954
955 if (!device)
956 return;
957
958 sysfs_remove_link(group->devices_kobj, device->name);
959 sysfs_remove_link(&dev->kobj, "iommu_group");
960
961 trace_remove_device_from_group(group->id, dev);
962
963 kfree(device->name);
964 kfree(device);
965 dev->iommu_group = NULL;
966 kobject_put(group->devices_kobj);
967 }
968 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
969
iommu_group_device_count(struct iommu_group * group)970 static int iommu_group_device_count(struct iommu_group *group)
971 {
972 struct group_device *entry;
973 int ret = 0;
974
975 list_for_each_entry(entry, &group->devices, list)
976 ret++;
977
978 return ret;
979 }
980
981 /**
982 * iommu_group_for_each_dev - iterate over each device in the group
983 * @group: the group
984 * @data: caller opaque data to be passed to callback function
985 * @fn: caller supplied callback function
986 *
987 * This function is called by group users to iterate over group devices.
988 * Callers should hold a reference count to the group during callback.
989 * The group->mutex is held across callbacks, which will block calls to
990 * iommu_group_add/remove_device.
991 */
__iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))992 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
993 int (*fn)(struct device *, void *))
994 {
995 struct group_device *device;
996 int ret = 0;
997
998 list_for_each_entry(device, &group->devices, list) {
999 ret = fn(device->dev, data);
1000 if (ret)
1001 break;
1002 }
1003 return ret;
1004 }
1005
1006
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1007 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1008 int (*fn)(struct device *, void *))
1009 {
1010 int ret;
1011
1012 mutex_lock(&group->mutex);
1013 ret = __iommu_group_for_each_dev(group, data, fn);
1014 mutex_unlock(&group->mutex);
1015
1016 return ret;
1017 }
1018 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1019
1020 /**
1021 * iommu_group_get - Return the group for a device and increment reference
1022 * @dev: get the group that this device belongs to
1023 *
1024 * This function is called by iommu drivers and users to get the group
1025 * for the specified device. If found, the group is returned and the group
1026 * reference in incremented, else NULL.
1027 */
iommu_group_get(struct device * dev)1028 struct iommu_group *iommu_group_get(struct device *dev)
1029 {
1030 struct iommu_group *group = dev->iommu_group;
1031
1032 if (group)
1033 kobject_get(group->devices_kobj);
1034
1035 return group;
1036 }
1037 EXPORT_SYMBOL_GPL(iommu_group_get);
1038
1039 /**
1040 * iommu_group_ref_get - Increment reference on a group
1041 * @group: the group to use, must not be NULL
1042 *
1043 * This function is called by iommu drivers to take additional references on an
1044 * existing group. Returns the given group for convenience.
1045 */
iommu_group_ref_get(struct iommu_group * group)1046 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1047 {
1048 kobject_get(group->devices_kobj);
1049 return group;
1050 }
1051 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1052
1053 /**
1054 * iommu_group_put - Decrement group reference
1055 * @group: the group to use
1056 *
1057 * This function is called by iommu drivers and users to release the
1058 * iommu group. Once the reference count is zero, the group is released.
1059 */
iommu_group_put(struct iommu_group * group)1060 void iommu_group_put(struct iommu_group *group)
1061 {
1062 if (group)
1063 kobject_put(group->devices_kobj);
1064 }
1065 EXPORT_SYMBOL_GPL(iommu_group_put);
1066
1067 /**
1068 * iommu_group_register_notifier - Register a notifier for group changes
1069 * @group: the group to watch
1070 * @nb: notifier block to signal
1071 *
1072 * This function allows iommu group users to track changes in a group.
1073 * See include/linux/iommu.h for actions sent via this notifier. Caller
1074 * should hold a reference to the group throughout notifier registration.
1075 */
iommu_group_register_notifier(struct iommu_group * group,struct notifier_block * nb)1076 int iommu_group_register_notifier(struct iommu_group *group,
1077 struct notifier_block *nb)
1078 {
1079 return blocking_notifier_chain_register(&group->notifier, nb);
1080 }
1081 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
1082
1083 /**
1084 * iommu_group_unregister_notifier - Unregister a notifier
1085 * @group: the group to watch
1086 * @nb: notifier block to signal
1087 *
1088 * Unregister a previously registered group notifier block.
1089 */
iommu_group_unregister_notifier(struct iommu_group * group,struct notifier_block * nb)1090 int iommu_group_unregister_notifier(struct iommu_group *group,
1091 struct notifier_block *nb)
1092 {
1093 return blocking_notifier_chain_unregister(&group->notifier, nb);
1094 }
1095 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
1096
1097 /**
1098 * iommu_register_device_fault_handler() - Register a device fault handler
1099 * @dev: the device
1100 * @handler: the fault handler
1101 * @data: private data passed as argument to the handler
1102 *
1103 * When an IOMMU fault event is received, this handler gets called with the
1104 * fault event and data as argument. The handler should return 0 on success. If
1105 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1106 * complete the fault by calling iommu_page_response() with one of the following
1107 * response code:
1108 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1109 * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1110 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1111 * page faults if possible.
1112 *
1113 * Return 0 if the fault handler was installed successfully, or an error.
1114 */
iommu_register_device_fault_handler(struct device * dev,iommu_dev_fault_handler_t handler,void * data)1115 int iommu_register_device_fault_handler(struct device *dev,
1116 iommu_dev_fault_handler_t handler,
1117 void *data)
1118 {
1119 struct dev_iommu *param = dev->iommu;
1120 int ret = 0;
1121
1122 if (!param)
1123 return -EINVAL;
1124
1125 mutex_lock(¶m->lock);
1126 /* Only allow one fault handler registered for each device */
1127 if (param->fault_param) {
1128 ret = -EBUSY;
1129 goto done_unlock;
1130 }
1131
1132 get_device(dev);
1133 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1134 if (!param->fault_param) {
1135 put_device(dev);
1136 ret = -ENOMEM;
1137 goto done_unlock;
1138 }
1139 param->fault_param->handler = handler;
1140 param->fault_param->data = data;
1141 mutex_init(¶m->fault_param->lock);
1142 INIT_LIST_HEAD(¶m->fault_param->faults);
1143
1144 done_unlock:
1145 mutex_unlock(¶m->lock);
1146
1147 return ret;
1148 }
1149 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1150
1151 /**
1152 * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1153 * @dev: the device
1154 *
1155 * Remove the device fault handler installed with
1156 * iommu_register_device_fault_handler().
1157 *
1158 * Return 0 on success, or an error.
1159 */
iommu_unregister_device_fault_handler(struct device * dev)1160 int iommu_unregister_device_fault_handler(struct device *dev)
1161 {
1162 struct dev_iommu *param = dev->iommu;
1163 int ret = 0;
1164
1165 if (!param)
1166 return -EINVAL;
1167
1168 mutex_lock(¶m->lock);
1169
1170 if (!param->fault_param)
1171 goto unlock;
1172
1173 /* we cannot unregister handler if there are pending faults */
1174 if (!list_empty(¶m->fault_param->faults)) {
1175 ret = -EBUSY;
1176 goto unlock;
1177 }
1178
1179 kfree(param->fault_param);
1180 param->fault_param = NULL;
1181 put_device(dev);
1182 unlock:
1183 mutex_unlock(¶m->lock);
1184
1185 return ret;
1186 }
1187 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1188
1189 /**
1190 * iommu_report_device_fault() - Report fault event to device driver
1191 * @dev: the device
1192 * @evt: fault event data
1193 *
1194 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1195 * handler. When this function fails and the fault is recoverable, it is the
1196 * caller's responsibility to complete the fault.
1197 *
1198 * Return 0 on success, or an error.
1199 */
iommu_report_device_fault(struct device * dev,struct iommu_fault_event * evt)1200 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1201 {
1202 struct dev_iommu *param = dev->iommu;
1203 struct iommu_fault_event *evt_pending = NULL;
1204 struct iommu_fault_param *fparam;
1205 int ret = 0;
1206
1207 if (!param || !evt)
1208 return -EINVAL;
1209
1210 /* we only report device fault if there is a handler registered */
1211 mutex_lock(¶m->lock);
1212 fparam = param->fault_param;
1213 if (!fparam || !fparam->handler) {
1214 ret = -EINVAL;
1215 goto done_unlock;
1216 }
1217
1218 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1219 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1220 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1221 GFP_KERNEL);
1222 if (!evt_pending) {
1223 ret = -ENOMEM;
1224 goto done_unlock;
1225 }
1226 mutex_lock(&fparam->lock);
1227 list_add_tail(&evt_pending->list, &fparam->faults);
1228 mutex_unlock(&fparam->lock);
1229 }
1230
1231 ret = fparam->handler(&evt->fault, fparam->data);
1232 if (ret && evt_pending) {
1233 mutex_lock(&fparam->lock);
1234 list_del(&evt_pending->list);
1235 mutex_unlock(&fparam->lock);
1236 kfree(evt_pending);
1237 }
1238 done_unlock:
1239 mutex_unlock(¶m->lock);
1240 return ret;
1241 }
1242 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1243
iommu_page_response(struct device * dev,struct iommu_page_response * msg)1244 int iommu_page_response(struct device *dev,
1245 struct iommu_page_response *msg)
1246 {
1247 bool needs_pasid;
1248 int ret = -EINVAL;
1249 struct iommu_fault_event *evt;
1250 struct iommu_fault_page_request *prm;
1251 struct dev_iommu *param = dev->iommu;
1252 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1253 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1254
1255 if (!domain || !domain->ops->page_response)
1256 return -ENODEV;
1257
1258 if (!param || !param->fault_param)
1259 return -EINVAL;
1260
1261 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1262 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1263 return -EINVAL;
1264
1265 /* Only send response if there is a fault report pending */
1266 mutex_lock(¶m->fault_param->lock);
1267 if (list_empty(¶m->fault_param->faults)) {
1268 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1269 goto done_unlock;
1270 }
1271 /*
1272 * Check if we have a matching page request pending to respond,
1273 * otherwise return -EINVAL
1274 */
1275 list_for_each_entry(evt, ¶m->fault_param->faults, list) {
1276 prm = &evt->fault.prm;
1277 if (prm->grpid != msg->grpid)
1278 continue;
1279
1280 /*
1281 * If the PASID is required, the corresponding request is
1282 * matched using the group ID, the PASID valid bit and the PASID
1283 * value. Otherwise only the group ID matches request and
1284 * response.
1285 */
1286 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1287 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1288 continue;
1289
1290 if (!needs_pasid && has_pasid) {
1291 /* No big deal, just clear it. */
1292 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1293 msg->pasid = 0;
1294 }
1295
1296 ret = domain->ops->page_response(dev, evt, msg);
1297 list_del(&evt->list);
1298 kfree(evt);
1299 break;
1300 }
1301
1302 done_unlock:
1303 mutex_unlock(¶m->fault_param->lock);
1304 return ret;
1305 }
1306 EXPORT_SYMBOL_GPL(iommu_page_response);
1307
1308 /**
1309 * iommu_group_id - Return ID for a group
1310 * @group: the group to ID
1311 *
1312 * Return the unique ID for the group matching the sysfs group number.
1313 */
iommu_group_id(struct iommu_group * group)1314 int iommu_group_id(struct iommu_group *group)
1315 {
1316 return group->id;
1317 }
1318 EXPORT_SYMBOL_GPL(iommu_group_id);
1319
1320 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1321 unsigned long *devfns);
1322
1323 /*
1324 * To consider a PCI device isolated, we require ACS to support Source
1325 * Validation, Request Redirection, Completer Redirection, and Upstream
1326 * Forwarding. This effectively means that devices cannot spoof their
1327 * requester ID, requests and completions cannot be redirected, and all
1328 * transactions are forwarded upstream, even as it passes through a
1329 * bridge where the target device is downstream.
1330 */
1331 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1332
1333 /*
1334 * For multifunction devices which are not isolated from each other, find
1335 * all the other non-isolated functions and look for existing groups. For
1336 * each function, we also need to look for aliases to or from other devices
1337 * that may already have a group.
1338 */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1339 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1340 unsigned long *devfns)
1341 {
1342 struct pci_dev *tmp = NULL;
1343 struct iommu_group *group;
1344
1345 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1346 return NULL;
1347
1348 for_each_pci_dev(tmp) {
1349 if (tmp == pdev || tmp->bus != pdev->bus ||
1350 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1351 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1352 continue;
1353
1354 group = get_pci_alias_group(tmp, devfns);
1355 if (group) {
1356 pci_dev_put(tmp);
1357 return group;
1358 }
1359 }
1360
1361 return NULL;
1362 }
1363
1364 /*
1365 * Look for aliases to or from the given device for existing groups. DMA
1366 * aliases are only supported on the same bus, therefore the search
1367 * space is quite small (especially since we're really only looking at pcie
1368 * device, and therefore only expect multiple slots on the root complex or
1369 * downstream switch ports). It's conceivable though that a pair of
1370 * multifunction devices could have aliases between them that would cause a
1371 * loop. To prevent this, we use a bitmap to track where we've been.
1372 */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1373 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1374 unsigned long *devfns)
1375 {
1376 struct pci_dev *tmp = NULL;
1377 struct iommu_group *group;
1378
1379 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1380 return NULL;
1381
1382 group = iommu_group_get(&pdev->dev);
1383 if (group)
1384 return group;
1385
1386 for_each_pci_dev(tmp) {
1387 if (tmp == pdev || tmp->bus != pdev->bus)
1388 continue;
1389
1390 /* We alias them or they alias us */
1391 if (pci_devs_are_dma_aliases(pdev, tmp)) {
1392 group = get_pci_alias_group(tmp, devfns);
1393 if (group) {
1394 pci_dev_put(tmp);
1395 return group;
1396 }
1397
1398 group = get_pci_function_alias_group(tmp, devfns);
1399 if (group) {
1400 pci_dev_put(tmp);
1401 return group;
1402 }
1403 }
1404 }
1405
1406 return NULL;
1407 }
1408
1409 struct group_for_pci_data {
1410 struct pci_dev *pdev;
1411 struct iommu_group *group;
1412 };
1413
1414 /*
1415 * DMA alias iterator callback, return the last seen device. Stop and return
1416 * the IOMMU group if we find one along the way.
1417 */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1418 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1419 {
1420 struct group_for_pci_data *data = opaque;
1421
1422 data->pdev = pdev;
1423 data->group = iommu_group_get(&pdev->dev);
1424
1425 return data->group != NULL;
1426 }
1427
1428 /*
1429 * Generic device_group call-back function. It just allocates one
1430 * iommu-group per device.
1431 */
generic_device_group(struct device * dev)1432 struct iommu_group *generic_device_group(struct device *dev)
1433 {
1434 return iommu_group_alloc();
1435 }
1436 EXPORT_SYMBOL_GPL(generic_device_group);
1437
1438 /*
1439 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1440 * to find or create an IOMMU group for a device.
1441 */
pci_device_group(struct device * dev)1442 struct iommu_group *pci_device_group(struct device *dev)
1443 {
1444 struct pci_dev *pdev = to_pci_dev(dev);
1445 struct group_for_pci_data data;
1446 struct pci_bus *bus;
1447 struct iommu_group *group = NULL;
1448 u64 devfns[4] = { 0 };
1449
1450 if (WARN_ON(!dev_is_pci(dev)))
1451 return ERR_PTR(-EINVAL);
1452
1453 /*
1454 * Find the upstream DMA alias for the device. A device must not
1455 * be aliased due to topology in order to have its own IOMMU group.
1456 * If we find an alias along the way that already belongs to a
1457 * group, use it.
1458 */
1459 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1460 return data.group;
1461
1462 pdev = data.pdev;
1463
1464 /*
1465 * Continue upstream from the point of minimum IOMMU granularity
1466 * due to aliases to the point where devices are protected from
1467 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
1468 * group, use it.
1469 */
1470 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1471 if (!bus->self)
1472 continue;
1473
1474 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1475 break;
1476
1477 pdev = bus->self;
1478
1479 group = iommu_group_get(&pdev->dev);
1480 if (group)
1481 return group;
1482 }
1483
1484 /*
1485 * Look for existing groups on device aliases. If we alias another
1486 * device or another device aliases us, use the same group.
1487 */
1488 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1489 if (group)
1490 return group;
1491
1492 /*
1493 * Look for existing groups on non-isolated functions on the same
1494 * slot and aliases of those funcions, if any. No need to clear
1495 * the search bitmap, the tested devfns are still valid.
1496 */
1497 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1498 if (group)
1499 return group;
1500
1501 /* No shared group found, allocate new */
1502 return iommu_group_alloc();
1503 }
1504 EXPORT_SYMBOL_GPL(pci_device_group);
1505
1506 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1507 struct iommu_group *fsl_mc_device_group(struct device *dev)
1508 {
1509 struct device *cont_dev = fsl_mc_cont_dev(dev);
1510 struct iommu_group *group;
1511
1512 group = iommu_group_get(cont_dev);
1513 if (!group)
1514 group = iommu_group_alloc();
1515 return group;
1516 }
1517 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1518
iommu_get_def_domain_type(struct device * dev)1519 static int iommu_get_def_domain_type(struct device *dev)
1520 {
1521 const struct iommu_ops *ops = dev->bus->iommu_ops;
1522
1523 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1524 return IOMMU_DOMAIN_DMA;
1525
1526 if (ops->def_domain_type)
1527 return ops->def_domain_type(dev);
1528
1529 return 0;
1530 }
1531
iommu_group_alloc_default_domain(struct bus_type * bus,struct iommu_group * group,unsigned int type)1532 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1533 struct iommu_group *group,
1534 unsigned int type)
1535 {
1536 struct iommu_domain *dom;
1537
1538 dom = __iommu_domain_alloc(bus, type);
1539 if (!dom && type != IOMMU_DOMAIN_DMA) {
1540 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1541 if (dom)
1542 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1543 type, group->name);
1544 }
1545
1546 if (!dom)
1547 return -ENOMEM;
1548
1549 group->default_domain = dom;
1550 if (!group->domain)
1551 group->domain = dom;
1552 return 0;
1553 }
1554
iommu_alloc_default_domain(struct iommu_group * group,struct device * dev)1555 static int iommu_alloc_default_domain(struct iommu_group *group,
1556 struct device *dev)
1557 {
1558 unsigned int type;
1559
1560 if (group->default_domain)
1561 return 0;
1562
1563 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1564
1565 return iommu_group_alloc_default_domain(dev->bus, group, type);
1566 }
1567
1568 /**
1569 * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1570 * @dev: target device
1571 *
1572 * This function is intended to be called by IOMMU drivers and extended to
1573 * support common, bus-defined algorithms when determining or creating the
1574 * IOMMU group for a device. On success, the caller will hold a reference
1575 * to the returned IOMMU group, which will already include the provided
1576 * device. The reference should be released with iommu_group_put().
1577 */
iommu_group_get_for_dev(struct device * dev)1578 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1579 {
1580 const struct iommu_ops *ops = dev->bus->iommu_ops;
1581 struct iommu_group *group;
1582 int ret;
1583
1584 group = iommu_group_get(dev);
1585 if (group)
1586 return group;
1587
1588 if (!ops)
1589 return ERR_PTR(-EINVAL);
1590
1591 group = ops->device_group(dev);
1592 if (WARN_ON_ONCE(group == NULL))
1593 return ERR_PTR(-EINVAL);
1594
1595 if (IS_ERR(group))
1596 return group;
1597
1598 ret = iommu_group_add_device(group, dev);
1599 if (ret)
1600 goto out_put_group;
1601
1602 return group;
1603
1604 out_put_group:
1605 iommu_group_put(group);
1606
1607 return ERR_PTR(ret);
1608 }
1609
iommu_group_default_domain(struct iommu_group * group)1610 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1611 {
1612 return group->default_domain;
1613 }
1614
probe_iommu_group(struct device * dev,void * data)1615 static int probe_iommu_group(struct device *dev, void *data)
1616 {
1617 struct list_head *group_list = data;
1618 struct iommu_group *group;
1619 int ret;
1620
1621 /* Device is probed already if in a group */
1622 group = iommu_group_get(dev);
1623 if (group) {
1624 iommu_group_put(group);
1625 return 0;
1626 }
1627
1628 ret = __iommu_probe_device(dev, group_list);
1629 if (ret == -ENODEV)
1630 ret = 0;
1631
1632 return ret;
1633 }
1634
remove_iommu_group(struct device * dev,void * data)1635 static int remove_iommu_group(struct device *dev, void *data)
1636 {
1637 iommu_release_device(dev);
1638
1639 return 0;
1640 }
1641
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1642 static int iommu_bus_notifier(struct notifier_block *nb,
1643 unsigned long action, void *data)
1644 {
1645 unsigned long group_action = 0;
1646 struct device *dev = data;
1647 struct iommu_group *group;
1648
1649 /*
1650 * ADD/DEL call into iommu driver ops if provided, which may
1651 * result in ADD/DEL notifiers to group->notifier
1652 */
1653 if (action == BUS_NOTIFY_ADD_DEVICE) {
1654 int ret;
1655
1656 ret = iommu_probe_device(dev);
1657 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1658 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1659 iommu_release_device(dev);
1660 return NOTIFY_OK;
1661 }
1662
1663 /*
1664 * Remaining BUS_NOTIFYs get filtered and republished to the
1665 * group, if anyone is listening
1666 */
1667 group = iommu_group_get(dev);
1668 if (!group)
1669 return 0;
1670
1671 switch (action) {
1672 case BUS_NOTIFY_BIND_DRIVER:
1673 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1674 break;
1675 case BUS_NOTIFY_BOUND_DRIVER:
1676 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1677 break;
1678 case BUS_NOTIFY_UNBIND_DRIVER:
1679 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1680 break;
1681 case BUS_NOTIFY_UNBOUND_DRIVER:
1682 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1683 break;
1684 }
1685
1686 if (group_action)
1687 blocking_notifier_call_chain(&group->notifier,
1688 group_action, dev);
1689
1690 iommu_group_put(group);
1691 return 0;
1692 }
1693
1694 struct __group_domain_type {
1695 struct device *dev;
1696 unsigned int type;
1697 };
1698
probe_get_default_domain_type(struct device * dev,void * data)1699 static int probe_get_default_domain_type(struct device *dev, void *data)
1700 {
1701 struct __group_domain_type *gtype = data;
1702 unsigned int type = iommu_get_def_domain_type(dev);
1703
1704 if (type) {
1705 if (gtype->type && gtype->type != type) {
1706 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1707 iommu_domain_type_str(type),
1708 dev_name(gtype->dev),
1709 iommu_domain_type_str(gtype->type));
1710 gtype->type = 0;
1711 }
1712
1713 if (!gtype->dev) {
1714 gtype->dev = dev;
1715 gtype->type = type;
1716 }
1717 }
1718
1719 return 0;
1720 }
1721
probe_alloc_default_domain(struct bus_type * bus,struct iommu_group * group)1722 static void probe_alloc_default_domain(struct bus_type *bus,
1723 struct iommu_group *group)
1724 {
1725 struct __group_domain_type gtype;
1726
1727 memset(>ype, 0, sizeof(gtype));
1728
1729 /* Ask for default domain requirements of all devices in the group */
1730 __iommu_group_for_each_dev(group, >ype,
1731 probe_get_default_domain_type);
1732
1733 if (!gtype.type)
1734 gtype.type = iommu_def_domain_type;
1735
1736 iommu_group_alloc_default_domain(bus, group, gtype.type);
1737
1738 }
1739
iommu_group_do_dma_attach(struct device * dev,void * data)1740 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1741 {
1742 struct iommu_domain *domain = data;
1743 int ret = 0;
1744
1745 if (!iommu_is_attach_deferred(domain, dev))
1746 ret = __iommu_attach_device(domain, dev);
1747
1748 return ret;
1749 }
1750
__iommu_group_dma_attach(struct iommu_group * group)1751 static int __iommu_group_dma_attach(struct iommu_group *group)
1752 {
1753 return __iommu_group_for_each_dev(group, group->default_domain,
1754 iommu_group_do_dma_attach);
1755 }
1756
iommu_group_do_probe_finalize(struct device * dev,void * data)1757 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1758 {
1759 struct iommu_domain *domain = data;
1760
1761 if (domain->ops->probe_finalize)
1762 domain->ops->probe_finalize(dev);
1763
1764 return 0;
1765 }
1766
__iommu_group_dma_finalize(struct iommu_group * group)1767 static void __iommu_group_dma_finalize(struct iommu_group *group)
1768 {
1769 __iommu_group_for_each_dev(group, group->default_domain,
1770 iommu_group_do_probe_finalize);
1771 }
1772
iommu_do_create_direct_mappings(struct device * dev,void * data)1773 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1774 {
1775 struct iommu_group *group = data;
1776
1777 iommu_create_device_direct_mappings(group, dev);
1778
1779 return 0;
1780 }
1781
iommu_group_create_direct_mappings(struct iommu_group * group)1782 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1783 {
1784 return __iommu_group_for_each_dev(group, group,
1785 iommu_do_create_direct_mappings);
1786 }
1787
bus_iommu_probe(struct bus_type * bus)1788 int bus_iommu_probe(struct bus_type *bus)
1789 {
1790 struct iommu_group *group, *next;
1791 LIST_HEAD(group_list);
1792 int ret;
1793
1794 /*
1795 * This code-path does not allocate the default domain when
1796 * creating the iommu group, so do it after the groups are
1797 * created.
1798 */
1799 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1800 if (ret)
1801 return ret;
1802
1803 list_for_each_entry_safe(group, next, &group_list, entry) {
1804 /* Remove item from the list */
1805 list_del_init(&group->entry);
1806
1807 mutex_lock(&group->mutex);
1808
1809 /* Try to allocate default domain */
1810 probe_alloc_default_domain(bus, group);
1811
1812 if (!group->default_domain) {
1813 mutex_unlock(&group->mutex);
1814 continue;
1815 }
1816
1817 iommu_group_create_direct_mappings(group);
1818
1819 ret = __iommu_group_dma_attach(group);
1820
1821 mutex_unlock(&group->mutex);
1822
1823 if (ret)
1824 break;
1825
1826 __iommu_group_dma_finalize(group);
1827 }
1828
1829 return ret;
1830 }
1831
iommu_bus_init(struct bus_type * bus,const struct iommu_ops * ops)1832 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1833 {
1834 struct notifier_block *nb;
1835 int err;
1836
1837 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1838 if (!nb)
1839 return -ENOMEM;
1840
1841 nb->notifier_call = iommu_bus_notifier;
1842
1843 err = bus_register_notifier(bus, nb);
1844 if (err)
1845 goto out_free;
1846
1847 err = bus_iommu_probe(bus);
1848 if (err)
1849 goto out_err;
1850
1851
1852 return 0;
1853
1854 out_err:
1855 /* Clean up */
1856 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1857 bus_unregister_notifier(bus, nb);
1858
1859 out_free:
1860 kfree(nb);
1861
1862 return err;
1863 }
1864
1865 /**
1866 * bus_set_iommu - set iommu-callbacks for the bus
1867 * @bus: bus.
1868 * @ops: the callbacks provided by the iommu-driver
1869 *
1870 * This function is called by an iommu driver to set the iommu methods
1871 * used for a particular bus. Drivers for devices on that bus can use
1872 * the iommu-api after these ops are registered.
1873 * This special function is needed because IOMMUs are usually devices on
1874 * the bus itself, so the iommu drivers are not initialized when the bus
1875 * is set up. With this function the iommu-driver can set the iommu-ops
1876 * afterwards.
1877 */
bus_set_iommu(struct bus_type * bus,const struct iommu_ops * ops)1878 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1879 {
1880 int err;
1881
1882 if (ops == NULL) {
1883 bus->iommu_ops = NULL;
1884 return 0;
1885 }
1886
1887 if (bus->iommu_ops != NULL)
1888 return -EBUSY;
1889
1890 bus->iommu_ops = ops;
1891
1892 /* Do IOMMU specific setup for this bus-type */
1893 err = iommu_bus_init(bus, ops);
1894 if (err)
1895 bus->iommu_ops = NULL;
1896
1897 return err;
1898 }
1899 EXPORT_SYMBOL_GPL(bus_set_iommu);
1900
iommu_present(struct bus_type * bus)1901 bool iommu_present(struct bus_type *bus)
1902 {
1903 return bus->iommu_ops != NULL;
1904 }
1905 EXPORT_SYMBOL_GPL(iommu_present);
1906
iommu_capable(struct bus_type * bus,enum iommu_cap cap)1907 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1908 {
1909 if (!bus->iommu_ops || !bus->iommu_ops->capable)
1910 return false;
1911
1912 return bus->iommu_ops->capable(cap);
1913 }
1914 EXPORT_SYMBOL_GPL(iommu_capable);
1915
1916 /**
1917 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1918 * @domain: iommu domain
1919 * @handler: fault handler
1920 * @token: user data, will be passed back to the fault handler
1921 *
1922 * This function should be used by IOMMU users which want to be notified
1923 * whenever an IOMMU fault happens.
1924 *
1925 * The fault handler itself should return 0 on success, and an appropriate
1926 * error code otherwise.
1927 */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1928 void iommu_set_fault_handler(struct iommu_domain *domain,
1929 iommu_fault_handler_t handler,
1930 void *token)
1931 {
1932 BUG_ON(!domain);
1933
1934 domain->handler = handler;
1935 domain->handler_token = token;
1936 }
1937 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1938
__iommu_domain_alloc(struct bus_type * bus,unsigned type)1939 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1940 unsigned type)
1941 {
1942 struct iommu_domain *domain;
1943
1944 if (bus == NULL || bus->iommu_ops == NULL)
1945 return NULL;
1946
1947 domain = bus->iommu_ops->domain_alloc(type);
1948 if (!domain)
1949 return NULL;
1950
1951 domain->ops = bus->iommu_ops;
1952 domain->type = type;
1953 /* Assume all sizes by default; the driver may override this later */
1954 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1955
1956 /* Temporarily avoid -EEXIST while drivers still get their own cookies */
1957 if (iommu_is_dma_domain(domain) && !domain->iova_cookie && iommu_get_dma_cookie(domain)) {
1958 iommu_domain_free(domain);
1959 domain = NULL;
1960 }
1961 return domain;
1962 }
1963
iommu_domain_alloc(struct bus_type * bus)1964 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1965 {
1966 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1967 }
1968 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1969
iommu_domain_free(struct iommu_domain * domain)1970 void iommu_domain_free(struct iommu_domain *domain)
1971 {
1972 iommu_put_dma_cookie(domain);
1973 domain->ops->domain_free(domain);
1974 }
1975 EXPORT_SYMBOL_GPL(iommu_domain_free);
1976
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)1977 static int __iommu_attach_device(struct iommu_domain *domain,
1978 struct device *dev)
1979 {
1980 int ret;
1981
1982 if (unlikely(domain->ops->attach_dev == NULL))
1983 return -ENODEV;
1984
1985 ret = domain->ops->attach_dev(domain, dev);
1986 if (!ret)
1987 trace_attach_device_to_domain(dev);
1988 return ret;
1989 }
1990
iommu_attach_device(struct iommu_domain * domain,struct device * dev)1991 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1992 {
1993 struct iommu_group *group;
1994 int ret;
1995
1996 group = iommu_group_get(dev);
1997 if (!group)
1998 return -ENODEV;
1999
2000 /*
2001 * Lock the group to make sure the device-count doesn't
2002 * change while we are attaching
2003 */
2004 mutex_lock(&group->mutex);
2005 ret = -EINVAL;
2006 if (iommu_group_device_count(group) != 1)
2007 goto out_unlock;
2008
2009 ret = __iommu_attach_group(domain, group);
2010
2011 out_unlock:
2012 mutex_unlock(&group->mutex);
2013 iommu_group_put(group);
2014
2015 return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(iommu_attach_device);
2018
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2019 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2020 {
2021 const struct iommu_ops *ops = domain->ops;
2022
2023 if (ops->is_attach_deferred && ops->is_attach_deferred(domain, dev))
2024 return __iommu_attach_device(domain, dev);
2025
2026 return 0;
2027 }
2028
2029 /*
2030 * Check flags and other user provided data for valid combinations. We also
2031 * make sure no reserved fields or unused flags are set. This is to ensure
2032 * not breaking userspace in the future when these fields or flags are used.
2033 */
iommu_check_cache_invl_data(struct iommu_cache_invalidate_info * info)2034 static int iommu_check_cache_invl_data(struct iommu_cache_invalidate_info *info)
2035 {
2036 u32 mask;
2037 int i;
2038
2039 if (info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
2040 return -EINVAL;
2041
2042 mask = (1 << IOMMU_CACHE_INV_TYPE_NR) - 1;
2043 if (info->cache & ~mask)
2044 return -EINVAL;
2045
2046 if (info->granularity >= IOMMU_INV_GRANU_NR)
2047 return -EINVAL;
2048
2049 switch (info->granularity) {
2050 case IOMMU_INV_GRANU_ADDR:
2051 if (info->cache & IOMMU_CACHE_INV_TYPE_PASID)
2052 return -EINVAL;
2053
2054 mask = IOMMU_INV_ADDR_FLAGS_PASID |
2055 IOMMU_INV_ADDR_FLAGS_ARCHID |
2056 IOMMU_INV_ADDR_FLAGS_LEAF;
2057
2058 if (info->granu.addr_info.flags & ~mask)
2059 return -EINVAL;
2060 break;
2061 case IOMMU_INV_GRANU_PASID:
2062 mask = IOMMU_INV_PASID_FLAGS_PASID |
2063 IOMMU_INV_PASID_FLAGS_ARCHID;
2064 if (info->granu.pasid_info.flags & ~mask)
2065 return -EINVAL;
2066
2067 break;
2068 case IOMMU_INV_GRANU_DOMAIN:
2069 if (info->cache & IOMMU_CACHE_INV_TYPE_DEV_IOTLB)
2070 return -EINVAL;
2071 break;
2072 default:
2073 return -EINVAL;
2074 }
2075
2076 /* Check reserved padding fields */
2077 for (i = 0; i < sizeof(info->padding); i++) {
2078 if (info->padding[i])
2079 return -EINVAL;
2080 }
2081
2082 return 0;
2083 }
2084
iommu_uapi_cache_invalidate(struct iommu_domain * domain,struct device * dev,void __user * uinfo)2085 int iommu_uapi_cache_invalidate(struct iommu_domain *domain, struct device *dev,
2086 void __user *uinfo)
2087 {
2088 struct iommu_cache_invalidate_info inv_info = { 0 };
2089 u32 minsz;
2090 int ret;
2091
2092 if (unlikely(!domain->ops->cache_invalidate))
2093 return -ENODEV;
2094
2095 /*
2096 * No new spaces can be added before the variable sized union, the
2097 * minimum size is the offset to the union.
2098 */
2099 minsz = offsetof(struct iommu_cache_invalidate_info, granu);
2100
2101 /* Copy minsz from user to get flags and argsz */
2102 if (copy_from_user(&inv_info, uinfo, minsz))
2103 return -EFAULT;
2104
2105 /* Fields before the variable size union are mandatory */
2106 if (inv_info.argsz < minsz)
2107 return -EINVAL;
2108
2109 /* PASID and address granu require additional info beyond minsz */
2110 if (inv_info.granularity == IOMMU_INV_GRANU_PASID &&
2111 inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.pasid_info))
2112 return -EINVAL;
2113
2114 if (inv_info.granularity == IOMMU_INV_GRANU_ADDR &&
2115 inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.addr_info))
2116 return -EINVAL;
2117
2118 /*
2119 * User might be using a newer UAPI header which has a larger data
2120 * size, we shall support the existing flags within the current
2121 * size. Copy the remaining user data _after_ minsz but not more
2122 * than the current kernel supported size.
2123 */
2124 if (copy_from_user((void *)&inv_info + minsz, uinfo + minsz,
2125 min_t(u32, inv_info.argsz, sizeof(inv_info)) - minsz))
2126 return -EFAULT;
2127
2128 /* Now the argsz is validated, check the content */
2129 ret = iommu_check_cache_invl_data(&inv_info);
2130 if (ret)
2131 return ret;
2132
2133 return domain->ops->cache_invalidate(domain, dev, &inv_info);
2134 }
2135 EXPORT_SYMBOL_GPL(iommu_uapi_cache_invalidate);
2136
iommu_check_bind_data(struct iommu_gpasid_bind_data * data)2137 static int iommu_check_bind_data(struct iommu_gpasid_bind_data *data)
2138 {
2139 u64 mask;
2140 int i;
2141
2142 if (data->version != IOMMU_GPASID_BIND_VERSION_1)
2143 return -EINVAL;
2144
2145 /* Check the range of supported formats */
2146 if (data->format >= IOMMU_PASID_FORMAT_LAST)
2147 return -EINVAL;
2148
2149 /* Check all flags */
2150 mask = IOMMU_SVA_GPASID_VAL;
2151 if (data->flags & ~mask)
2152 return -EINVAL;
2153
2154 /* Check reserved padding fields */
2155 for (i = 0; i < sizeof(data->padding); i++) {
2156 if (data->padding[i])
2157 return -EINVAL;
2158 }
2159
2160 return 0;
2161 }
2162
iommu_sva_prepare_bind_data(void __user * udata,struct iommu_gpasid_bind_data * data)2163 static int iommu_sva_prepare_bind_data(void __user *udata,
2164 struct iommu_gpasid_bind_data *data)
2165 {
2166 u32 minsz;
2167
2168 /*
2169 * No new spaces can be added before the variable sized union, the
2170 * minimum size is the offset to the union.
2171 */
2172 minsz = offsetof(struct iommu_gpasid_bind_data, vendor);
2173
2174 /* Copy minsz from user to get flags and argsz */
2175 if (copy_from_user(data, udata, minsz))
2176 return -EFAULT;
2177
2178 /* Fields before the variable size union are mandatory */
2179 if (data->argsz < minsz)
2180 return -EINVAL;
2181 /*
2182 * User might be using a newer UAPI header, we shall let IOMMU vendor
2183 * driver decide on what size it needs. Since the guest PASID bind data
2184 * can be vendor specific, larger argsz could be the result of extension
2185 * for one vendor but it should not affect another vendor.
2186 * Copy the remaining user data _after_ minsz
2187 */
2188 if (copy_from_user((void *)data + minsz, udata + minsz,
2189 min_t(u32, data->argsz, sizeof(*data)) - minsz))
2190 return -EFAULT;
2191
2192 return iommu_check_bind_data(data);
2193 }
2194
iommu_uapi_sva_bind_gpasid(struct iommu_domain * domain,struct device * dev,void __user * udata)2195 int iommu_uapi_sva_bind_gpasid(struct iommu_domain *domain, struct device *dev,
2196 void __user *udata)
2197 {
2198 struct iommu_gpasid_bind_data data = { 0 };
2199 int ret;
2200
2201 if (unlikely(!domain->ops->sva_bind_gpasid))
2202 return -ENODEV;
2203
2204 ret = iommu_sva_prepare_bind_data(udata, &data);
2205 if (ret)
2206 return ret;
2207
2208 return domain->ops->sva_bind_gpasid(domain, dev, &data);
2209 }
2210 EXPORT_SYMBOL_GPL(iommu_uapi_sva_bind_gpasid);
2211
iommu_sva_unbind_gpasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)2212 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2213 ioasid_t pasid)
2214 {
2215 if (unlikely(!domain->ops->sva_unbind_gpasid))
2216 return -ENODEV;
2217
2218 return domain->ops->sva_unbind_gpasid(dev, pasid);
2219 }
2220 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
2221
iommu_uapi_sva_unbind_gpasid(struct iommu_domain * domain,struct device * dev,void __user * udata)2222 int iommu_uapi_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2223 void __user *udata)
2224 {
2225 struct iommu_gpasid_bind_data data = { 0 };
2226 int ret;
2227
2228 if (unlikely(!domain->ops->sva_bind_gpasid))
2229 return -ENODEV;
2230
2231 ret = iommu_sva_prepare_bind_data(udata, &data);
2232 if (ret)
2233 return ret;
2234
2235 return iommu_sva_unbind_gpasid(domain, dev, data.hpasid);
2236 }
2237 EXPORT_SYMBOL_GPL(iommu_uapi_sva_unbind_gpasid);
2238
__iommu_detach_device(struct iommu_domain * domain,struct device * dev)2239 static void __iommu_detach_device(struct iommu_domain *domain,
2240 struct device *dev)
2241 {
2242 if (iommu_is_attach_deferred(domain, dev))
2243 return;
2244
2245 if (unlikely(domain->ops->detach_dev == NULL))
2246 return;
2247
2248 domain->ops->detach_dev(domain, dev);
2249 trace_detach_device_from_domain(dev);
2250 }
2251
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2252 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2253 {
2254 struct iommu_group *group;
2255
2256 group = iommu_group_get(dev);
2257 if (!group)
2258 return;
2259
2260 mutex_lock(&group->mutex);
2261 if (iommu_group_device_count(group) != 1) {
2262 WARN_ON(1);
2263 goto out_unlock;
2264 }
2265
2266 __iommu_detach_group(domain, group);
2267
2268 out_unlock:
2269 mutex_unlock(&group->mutex);
2270 iommu_group_put(group);
2271 }
2272 EXPORT_SYMBOL_GPL(iommu_detach_device);
2273
iommu_get_domain_for_dev(struct device * dev)2274 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2275 {
2276 struct iommu_domain *domain;
2277 struct iommu_group *group;
2278
2279 group = iommu_group_get(dev);
2280 if (!group)
2281 return NULL;
2282
2283 domain = group->domain;
2284
2285 iommu_group_put(group);
2286
2287 return domain;
2288 }
2289 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2290
2291 /*
2292 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2293 * guarantees that the group and its default domain are valid and correct.
2294 */
iommu_get_dma_domain(struct device * dev)2295 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2296 {
2297 return dev->iommu_group->default_domain;
2298 }
2299
2300 /*
2301 * IOMMU groups are really the natural working unit of the IOMMU, but
2302 * the IOMMU API works on domains and devices. Bridge that gap by
2303 * iterating over the devices in a group. Ideally we'd have a single
2304 * device which represents the requestor ID of the group, but we also
2305 * allow IOMMU drivers to create policy defined minimum sets, where
2306 * the physical hardware may be able to distiguish members, but we
2307 * wish to group them at a higher level (ex. untrusted multi-function
2308 * PCI devices). Thus we attach each device.
2309 */
iommu_group_do_attach_device(struct device * dev,void * data)2310 static int iommu_group_do_attach_device(struct device *dev, void *data)
2311 {
2312 struct iommu_domain *domain = data;
2313
2314 return __iommu_attach_device(domain, dev);
2315 }
2316
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2317 static int __iommu_attach_group(struct iommu_domain *domain,
2318 struct iommu_group *group)
2319 {
2320 int ret;
2321
2322 if (group->default_domain && group->domain != group->default_domain)
2323 return -EBUSY;
2324
2325 ret = __iommu_group_for_each_dev(group, domain,
2326 iommu_group_do_attach_device);
2327 if (ret == 0)
2328 group->domain = domain;
2329
2330 return ret;
2331 }
2332
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2333 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2334 {
2335 int ret;
2336
2337 mutex_lock(&group->mutex);
2338 ret = __iommu_attach_group(domain, group);
2339 mutex_unlock(&group->mutex);
2340
2341 return ret;
2342 }
2343 EXPORT_SYMBOL_GPL(iommu_attach_group);
2344
iommu_group_do_detach_device(struct device * dev,void * data)2345 static int iommu_group_do_detach_device(struct device *dev, void *data)
2346 {
2347 struct iommu_domain *domain = data;
2348
2349 __iommu_detach_device(domain, dev);
2350
2351 return 0;
2352 }
2353
__iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2354 static void __iommu_detach_group(struct iommu_domain *domain,
2355 struct iommu_group *group)
2356 {
2357 int ret;
2358
2359 if (!group->default_domain) {
2360 __iommu_group_for_each_dev(group, domain,
2361 iommu_group_do_detach_device);
2362 group->domain = NULL;
2363 return;
2364 }
2365
2366 if (group->domain == group->default_domain)
2367 return;
2368
2369 /* Detach by re-attaching to the default domain */
2370 ret = __iommu_group_for_each_dev(group, group->default_domain,
2371 iommu_group_do_attach_device);
2372 if (ret != 0)
2373 WARN_ON(1);
2374 else
2375 group->domain = group->default_domain;
2376 }
2377
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2378 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2379 {
2380 mutex_lock(&group->mutex);
2381 __iommu_detach_group(domain, group);
2382 mutex_unlock(&group->mutex);
2383 }
2384 EXPORT_SYMBOL_GPL(iommu_detach_group);
2385
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2386 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2387 {
2388 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2389 return iova;
2390
2391 if (domain->type == IOMMU_DOMAIN_BLOCKED)
2392 return 0;
2393
2394 return domain->ops->iova_to_phys(domain, iova);
2395 }
2396 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2397
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2398 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2399 phys_addr_t paddr, size_t size, size_t *count)
2400 {
2401 unsigned int pgsize_idx, pgsize_idx_next;
2402 unsigned long pgsizes;
2403 size_t offset, pgsize, pgsize_next;
2404 unsigned long addr_merge = paddr | iova;
2405
2406 /* Page sizes supported by the hardware and small enough for @size */
2407 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2408
2409 /* Constrain the page sizes further based on the maximum alignment */
2410 if (likely(addr_merge))
2411 pgsizes &= GENMASK(__ffs(addr_merge), 0);
2412
2413 /* Make sure we have at least one suitable page size */
2414 BUG_ON(!pgsizes);
2415
2416 /* Pick the biggest page size remaining */
2417 pgsize_idx = __fls(pgsizes);
2418 pgsize = BIT(pgsize_idx);
2419 if (!count)
2420 return pgsize;
2421
2422 /* Find the next biggest support page size, if it exists */
2423 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2424 if (!pgsizes)
2425 goto out_set_count;
2426
2427 pgsize_idx_next = __ffs(pgsizes);
2428 pgsize_next = BIT(pgsize_idx_next);
2429
2430 /*
2431 * There's no point trying a bigger page size unless the virtual
2432 * and physical addresses are similarly offset within the larger page.
2433 */
2434 if ((iova ^ paddr) & (pgsize_next - 1))
2435 goto out_set_count;
2436
2437 /* Calculate the offset to the next page size alignment boundary */
2438 offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2439
2440 /*
2441 * If size is big enough to accommodate the larger page, reduce
2442 * the number of smaller pages.
2443 */
2444 if (offset + pgsize_next <= size)
2445 size = offset;
2446
2447 out_set_count:
2448 *count = size >> pgsize_idx;
2449 return pgsize;
2450 }
2451
__iommu_map_pages(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp,size_t * mapped)2452 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2453 phys_addr_t paddr, size_t size, int prot,
2454 gfp_t gfp, size_t *mapped)
2455 {
2456 const struct iommu_ops *ops = domain->ops;
2457 size_t pgsize, count;
2458 int ret;
2459
2460 pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2461
2462 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2463 iova, &paddr, pgsize, count);
2464
2465 if (ops->map_pages) {
2466 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2467 gfp, mapped);
2468 } else {
2469 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2470 *mapped = ret ? 0 : pgsize;
2471 }
2472
2473 return ret;
2474 }
2475
__iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2476 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2477 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2478 {
2479 const struct iommu_ops *ops = domain->ops;
2480 unsigned long orig_iova = iova;
2481 unsigned int min_pagesz;
2482 size_t orig_size = size;
2483 phys_addr_t orig_paddr = paddr;
2484 int ret = 0;
2485
2486 if (unlikely(!(ops->map || ops->map_pages) ||
2487 domain->pgsize_bitmap == 0UL))
2488 return -ENODEV;
2489
2490 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2491 return -EINVAL;
2492
2493 /* find out the minimum page size supported */
2494 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2495
2496 /*
2497 * both the virtual address and the physical one, as well as
2498 * the size of the mapping, must be aligned (at least) to the
2499 * size of the smallest page supported by the hardware
2500 */
2501 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2502 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2503 iova, &paddr, size, min_pagesz);
2504 return -EINVAL;
2505 }
2506
2507 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2508
2509 while (size) {
2510 size_t mapped = 0;
2511
2512 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2513 &mapped);
2514 /*
2515 * Some pages may have been mapped, even if an error occurred,
2516 * so we should account for those so they can be unmapped.
2517 */
2518 size -= mapped;
2519
2520 if (ret)
2521 break;
2522
2523 iova += mapped;
2524 paddr += mapped;
2525 }
2526
2527 /* unroll mapping in case something went wrong */
2528 if (ret)
2529 iommu_unmap(domain, orig_iova, orig_size - size);
2530 else
2531 trace_map(orig_iova, orig_paddr, orig_size);
2532
2533 return ret;
2534 }
2535
_iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2536 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2537 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2538 {
2539 const struct iommu_ops *ops = domain->ops;
2540 int ret;
2541
2542 ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2543 if (ret == 0 && ops->iotlb_sync_map)
2544 ops->iotlb_sync_map(domain, iova, size);
2545
2546 return ret;
2547 }
2548
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)2549 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2550 phys_addr_t paddr, size_t size, int prot)
2551 {
2552 might_sleep();
2553 return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2554 }
2555 EXPORT_SYMBOL_GPL(iommu_map);
2556
iommu_map_atomic(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)2557 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2558 phys_addr_t paddr, size_t size, int prot)
2559 {
2560 return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2561 }
2562 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2563
__iommu_unmap_pages(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2564 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2565 unsigned long iova, size_t size,
2566 struct iommu_iotlb_gather *iotlb_gather)
2567 {
2568 const struct iommu_ops *ops = domain->ops;
2569 size_t pgsize, count;
2570
2571 pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2572 return ops->unmap_pages ?
2573 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2574 ops->unmap(domain, iova, pgsize, iotlb_gather);
2575 }
2576
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2577 static size_t __iommu_unmap(struct iommu_domain *domain,
2578 unsigned long iova, size_t size,
2579 struct iommu_iotlb_gather *iotlb_gather)
2580 {
2581 const struct iommu_ops *ops = domain->ops;
2582 size_t unmapped_page, unmapped = 0;
2583 unsigned long orig_iova = iova;
2584 unsigned int min_pagesz;
2585
2586 if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2587 domain->pgsize_bitmap == 0UL))
2588 return 0;
2589
2590 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2591 return 0;
2592
2593 /* find out the minimum page size supported */
2594 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2595
2596 /*
2597 * The virtual address, as well as the size of the mapping, must be
2598 * aligned (at least) to the size of the smallest page supported
2599 * by the hardware
2600 */
2601 if (!IS_ALIGNED(iova | size, min_pagesz)) {
2602 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2603 iova, size, min_pagesz);
2604 return 0;
2605 }
2606
2607 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2608
2609 /*
2610 * Keep iterating until we either unmap 'size' bytes (or more)
2611 * or we hit an area that isn't mapped.
2612 */
2613 while (unmapped < size) {
2614 unmapped_page = __iommu_unmap_pages(domain, iova,
2615 size - unmapped,
2616 iotlb_gather);
2617 if (!unmapped_page)
2618 break;
2619
2620 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2621 iova, unmapped_page);
2622
2623 iova += unmapped_page;
2624 unmapped += unmapped_page;
2625 }
2626
2627 trace_unmap(orig_iova, size, unmapped);
2628 return unmapped;
2629 }
2630
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2631 size_t iommu_unmap(struct iommu_domain *domain,
2632 unsigned long iova, size_t size)
2633 {
2634 struct iommu_iotlb_gather iotlb_gather;
2635 size_t ret;
2636
2637 iommu_iotlb_gather_init(&iotlb_gather);
2638 ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2639 iommu_iotlb_sync(domain, &iotlb_gather);
2640
2641 return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(iommu_unmap);
2644
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2645 size_t iommu_unmap_fast(struct iommu_domain *domain,
2646 unsigned long iova, size_t size,
2647 struct iommu_iotlb_gather *iotlb_gather)
2648 {
2649 return __iommu_unmap(domain, iova, size, iotlb_gather);
2650 }
2651 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2652
__iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2653 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2654 struct scatterlist *sg, unsigned int nents, int prot,
2655 gfp_t gfp)
2656 {
2657 const struct iommu_ops *ops = domain->ops;
2658 size_t len = 0, mapped = 0;
2659 phys_addr_t start;
2660 unsigned int i = 0;
2661 int ret;
2662
2663 while (i <= nents) {
2664 phys_addr_t s_phys = sg_phys(sg);
2665
2666 if (len && s_phys != start + len) {
2667 ret = __iommu_map(domain, iova + mapped, start,
2668 len, prot, gfp);
2669
2670 if (ret)
2671 goto out_err;
2672
2673 mapped += len;
2674 len = 0;
2675 }
2676
2677 if (len) {
2678 len += sg->length;
2679 } else {
2680 len = sg->length;
2681 start = s_phys;
2682 }
2683
2684 if (++i < nents)
2685 sg = sg_next(sg);
2686 }
2687
2688 if (ops->iotlb_sync_map)
2689 ops->iotlb_sync_map(domain, iova, mapped);
2690 return mapped;
2691
2692 out_err:
2693 /* undo mappings already done */
2694 iommu_unmap(domain, iova, mapped);
2695
2696 return ret;
2697 }
2698
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot)2699 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2700 struct scatterlist *sg, unsigned int nents, int prot)
2701 {
2702 might_sleep();
2703 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2704 }
2705 EXPORT_SYMBOL_GPL(iommu_map_sg);
2706
iommu_map_sg_atomic(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot)2707 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2708 struct scatterlist *sg, unsigned int nents, int prot)
2709 {
2710 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2711 }
2712
2713 /**
2714 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2715 * @domain: the iommu domain where the fault has happened
2716 * @dev: the device where the fault has happened
2717 * @iova: the faulting address
2718 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2719 *
2720 * This function should be called by the low-level IOMMU implementations
2721 * whenever IOMMU faults happen, to allow high-level users, that are
2722 * interested in such events, to know about them.
2723 *
2724 * This event may be useful for several possible use cases:
2725 * - mere logging of the event
2726 * - dynamic TLB/PTE loading
2727 * - if restarting of the faulting device is required
2728 *
2729 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2730 * PTE/TLB loading will one day be supported, implementations will be able
2731 * to tell whether it succeeded or not according to this return value).
2732 *
2733 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2734 * (though fault handlers can also return -ENOSYS, in case they want to
2735 * elicit the default behavior of the IOMMU drivers).
2736 */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2737 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2738 unsigned long iova, int flags)
2739 {
2740 int ret = -ENOSYS;
2741
2742 /*
2743 * if upper layers showed interest and installed a fault handler,
2744 * invoke it.
2745 */
2746 if (domain->handler)
2747 ret = domain->handler(domain, dev, iova, flags,
2748 domain->handler_token);
2749
2750 trace_io_page_fault(dev, iova, flags);
2751 return ret;
2752 }
2753 EXPORT_SYMBOL_GPL(report_iommu_fault);
2754
iommu_init(void)2755 static int __init iommu_init(void)
2756 {
2757 iommu_group_kset = kset_create_and_add("iommu_groups",
2758 NULL, kernel_kobj);
2759 BUG_ON(!iommu_group_kset);
2760
2761 iommu_debugfs_setup();
2762
2763 return 0;
2764 }
2765 core_initcall(iommu_init);
2766
iommu_enable_nesting(struct iommu_domain * domain)2767 int iommu_enable_nesting(struct iommu_domain *domain)
2768 {
2769 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2770 return -EINVAL;
2771 if (!domain->ops->enable_nesting)
2772 return -EINVAL;
2773 return domain->ops->enable_nesting(domain);
2774 }
2775 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2776
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2777 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2778 unsigned long quirk)
2779 {
2780 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2781 return -EINVAL;
2782 if (!domain->ops->set_pgtable_quirks)
2783 return -EINVAL;
2784 return domain->ops->set_pgtable_quirks(domain, quirk);
2785 }
2786 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2787
iommu_get_resv_regions(struct device * dev,struct list_head * list)2788 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2789 {
2790 const struct iommu_ops *ops = dev->bus->iommu_ops;
2791
2792 if (ops && ops->get_resv_regions)
2793 ops->get_resv_regions(dev, list);
2794 }
2795
iommu_put_resv_regions(struct device * dev,struct list_head * list)2796 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2797 {
2798 const struct iommu_ops *ops = dev->bus->iommu_ops;
2799
2800 if (ops && ops->put_resv_regions)
2801 ops->put_resv_regions(dev, list);
2802 }
2803
2804 /**
2805 * generic_iommu_put_resv_regions - Reserved region driver helper
2806 * @dev: device for which to free reserved regions
2807 * @list: reserved region list for device
2808 *
2809 * IOMMU drivers can use this to implement their .put_resv_regions() callback
2810 * for simple reservations. Memory allocated for each reserved region will be
2811 * freed. If an IOMMU driver allocates additional resources per region, it is
2812 * going to have to implement a custom callback.
2813 */
generic_iommu_put_resv_regions(struct device * dev,struct list_head * list)2814 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2815 {
2816 struct iommu_resv_region *entry, *next;
2817
2818 list_for_each_entry_safe(entry, next, list, list)
2819 kfree(entry);
2820 }
2821 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2822
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type)2823 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2824 size_t length, int prot,
2825 enum iommu_resv_type type)
2826 {
2827 struct iommu_resv_region *region;
2828
2829 region = kzalloc(sizeof(*region), GFP_KERNEL);
2830 if (!region)
2831 return NULL;
2832
2833 INIT_LIST_HEAD(®ion->list);
2834 region->start = start;
2835 region->length = length;
2836 region->prot = prot;
2837 region->type = type;
2838 return region;
2839 }
2840 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2841
iommu_set_default_passthrough(bool cmd_line)2842 void iommu_set_default_passthrough(bool cmd_line)
2843 {
2844 if (cmd_line)
2845 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2846 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2847 }
2848
iommu_set_default_translated(bool cmd_line)2849 void iommu_set_default_translated(bool cmd_line)
2850 {
2851 if (cmd_line)
2852 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2853 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2854 }
2855
iommu_default_passthrough(void)2856 bool iommu_default_passthrough(void)
2857 {
2858 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2859 }
2860 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2861
iommu_ops_from_fwnode(struct fwnode_handle * fwnode)2862 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2863 {
2864 const struct iommu_ops *ops = NULL;
2865 struct iommu_device *iommu;
2866
2867 spin_lock(&iommu_device_lock);
2868 list_for_each_entry(iommu, &iommu_device_list, list)
2869 if (iommu->fwnode == fwnode) {
2870 ops = iommu->ops;
2871 break;
2872 }
2873 spin_unlock(&iommu_device_lock);
2874 return ops;
2875 }
2876
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode,const struct iommu_ops * ops)2877 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2878 const struct iommu_ops *ops)
2879 {
2880 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2881
2882 if (fwspec)
2883 return ops == fwspec->ops ? 0 : -EINVAL;
2884
2885 if (!dev_iommu_get(dev))
2886 return -ENOMEM;
2887
2888 /* Preallocate for the overwhelmingly common case of 1 ID */
2889 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2890 if (!fwspec)
2891 return -ENOMEM;
2892
2893 of_node_get(to_of_node(iommu_fwnode));
2894 fwspec->iommu_fwnode = iommu_fwnode;
2895 fwspec->ops = ops;
2896 dev_iommu_fwspec_set(dev, fwspec);
2897 return 0;
2898 }
2899 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2900
iommu_fwspec_free(struct device * dev)2901 void iommu_fwspec_free(struct device *dev)
2902 {
2903 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2904
2905 if (fwspec) {
2906 fwnode_handle_put(fwspec->iommu_fwnode);
2907 kfree(fwspec);
2908 dev_iommu_fwspec_set(dev, NULL);
2909 }
2910 }
2911 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2912
iommu_fwspec_add_ids(struct device * dev,u32 * ids,int num_ids)2913 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2914 {
2915 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2916 int i, new_num;
2917
2918 if (!fwspec)
2919 return -EINVAL;
2920
2921 new_num = fwspec->num_ids + num_ids;
2922 if (new_num > 1) {
2923 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2924 GFP_KERNEL);
2925 if (!fwspec)
2926 return -ENOMEM;
2927
2928 dev_iommu_fwspec_set(dev, fwspec);
2929 }
2930
2931 for (i = 0; i < num_ids; i++)
2932 fwspec->ids[fwspec->num_ids + i] = ids[i];
2933
2934 fwspec->num_ids = new_num;
2935 return 0;
2936 }
2937 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2938
2939 /*
2940 * Per device IOMMU features.
2941 */
iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2942 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2943 {
2944 if (dev->iommu && dev->iommu->iommu_dev) {
2945 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2946
2947 if (ops->dev_enable_feat)
2948 return ops->dev_enable_feat(dev, feat);
2949 }
2950
2951 return -ENODEV;
2952 }
2953 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2954
2955 /*
2956 * The device drivers should do the necessary cleanups before calling this.
2957 * For example, before disabling the aux-domain feature, the device driver
2958 * should detach all aux-domains. Otherwise, this will return -EBUSY.
2959 */
iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2960 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2961 {
2962 if (dev->iommu && dev->iommu->iommu_dev) {
2963 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2964
2965 if (ops->dev_disable_feat)
2966 return ops->dev_disable_feat(dev, feat);
2967 }
2968
2969 return -EBUSY;
2970 }
2971 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2972
iommu_dev_feature_enabled(struct device * dev,enum iommu_dev_features feat)2973 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2974 {
2975 if (dev->iommu && dev->iommu->iommu_dev) {
2976 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2977
2978 if (ops->dev_feat_enabled)
2979 return ops->dev_feat_enabled(dev, feat);
2980 }
2981
2982 return false;
2983 }
2984 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2985
2986 /*
2987 * Aux-domain specific attach/detach.
2988 *
2989 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2990 * true. Also, as long as domains are attached to a device through this
2991 * interface, any tries to call iommu_attach_device() should fail
2992 * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2993 * This should make us safe against a device being attached to a guest as a
2994 * whole while there are still pasid users on it (aux and sva).
2995 */
iommu_aux_attach_device(struct iommu_domain * domain,struct device * dev)2996 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2997 {
2998 int ret = -ENODEV;
2999
3000 if (domain->ops->aux_attach_dev)
3001 ret = domain->ops->aux_attach_dev(domain, dev);
3002
3003 if (!ret)
3004 trace_attach_device_to_domain(dev);
3005
3006 return ret;
3007 }
3008 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
3009
iommu_aux_detach_device(struct iommu_domain * domain,struct device * dev)3010 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
3011 {
3012 if (domain->ops->aux_detach_dev) {
3013 domain->ops->aux_detach_dev(domain, dev);
3014 trace_detach_device_from_domain(dev);
3015 }
3016 }
3017 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
3018
iommu_aux_get_pasid(struct iommu_domain * domain,struct device * dev)3019 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
3020 {
3021 int ret = -ENODEV;
3022
3023 if (domain->ops->aux_get_pasid)
3024 ret = domain->ops->aux_get_pasid(domain, dev);
3025
3026 return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
3029
3030 /**
3031 * iommu_sva_bind_device() - Bind a process address space to a device
3032 * @dev: the device
3033 * @mm: the mm to bind, caller must hold a reference to it
3034 *
3035 * Create a bond between device and address space, allowing the device to access
3036 * the mm using the returned PASID. If a bond already exists between @device and
3037 * @mm, it is returned and an additional reference is taken. Caller must call
3038 * iommu_sva_unbind_device() to release each reference.
3039 *
3040 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
3041 * initialize the required SVA features.
3042 *
3043 * On error, returns an ERR_PTR value.
3044 */
3045 struct iommu_sva *
iommu_sva_bind_device(struct device * dev,struct mm_struct * mm,void * drvdata)3046 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
3047 {
3048 struct iommu_group *group;
3049 struct iommu_sva *handle = ERR_PTR(-EINVAL);
3050 const struct iommu_ops *ops = dev->bus->iommu_ops;
3051
3052 if (!ops || !ops->sva_bind)
3053 return ERR_PTR(-ENODEV);
3054
3055 group = iommu_group_get(dev);
3056 if (!group)
3057 return ERR_PTR(-ENODEV);
3058
3059 /* Ensure device count and domain don't change while we're binding */
3060 mutex_lock(&group->mutex);
3061
3062 /*
3063 * To keep things simple, SVA currently doesn't support IOMMU groups
3064 * with more than one device. Existing SVA-capable systems are not
3065 * affected by the problems that required IOMMU groups (lack of ACS
3066 * isolation, device ID aliasing and other hardware issues).
3067 */
3068 if (iommu_group_device_count(group) != 1)
3069 goto out_unlock;
3070
3071 handle = ops->sva_bind(dev, mm, drvdata);
3072
3073 out_unlock:
3074 mutex_unlock(&group->mutex);
3075 iommu_group_put(group);
3076
3077 return handle;
3078 }
3079 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
3080
3081 /**
3082 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
3083 * @handle: the handle returned by iommu_sva_bind_device()
3084 *
3085 * Put reference to a bond between device and address space. The device should
3086 * not be issuing any more transaction for this PASID. All outstanding page
3087 * requests for this PASID must have been flushed to the IOMMU.
3088 */
iommu_sva_unbind_device(struct iommu_sva * handle)3089 void iommu_sva_unbind_device(struct iommu_sva *handle)
3090 {
3091 struct iommu_group *group;
3092 struct device *dev = handle->dev;
3093 const struct iommu_ops *ops = dev->bus->iommu_ops;
3094
3095 if (!ops || !ops->sva_unbind)
3096 return;
3097
3098 group = iommu_group_get(dev);
3099 if (!group)
3100 return;
3101
3102 mutex_lock(&group->mutex);
3103 ops->sva_unbind(handle);
3104 mutex_unlock(&group->mutex);
3105
3106 iommu_group_put(group);
3107 }
3108 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
3109
iommu_sva_get_pasid(struct iommu_sva * handle)3110 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
3111 {
3112 const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
3113
3114 if (!ops || !ops->sva_get_pasid)
3115 return IOMMU_PASID_INVALID;
3116
3117 return ops->sva_get_pasid(handle);
3118 }
3119 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
3120
3121 /*
3122 * Changes the default domain of an iommu group that has *only* one device
3123 *
3124 * @group: The group for which the default domain should be changed
3125 * @prev_dev: The device in the group (this is used to make sure that the device
3126 * hasn't changed after the caller has called this function)
3127 * @type: The type of the new default domain that gets associated with the group
3128 *
3129 * Returns 0 on success and error code on failure
3130 *
3131 * Note:
3132 * 1. Presently, this function is called only when user requests to change the
3133 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
3134 * Please take a closer look if intended to use for other purposes.
3135 */
iommu_change_dev_def_domain(struct iommu_group * group,struct device * prev_dev,int type)3136 static int iommu_change_dev_def_domain(struct iommu_group *group,
3137 struct device *prev_dev, int type)
3138 {
3139 struct iommu_domain *prev_dom;
3140 struct group_device *grp_dev;
3141 int ret, dev_def_dom;
3142 struct device *dev;
3143
3144 mutex_lock(&group->mutex);
3145
3146 if (group->default_domain != group->domain) {
3147 dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
3148 ret = -EBUSY;
3149 goto out;
3150 }
3151
3152 /*
3153 * iommu group wasn't locked while acquiring device lock in
3154 * iommu_group_store_type(). So, make sure that the device count hasn't
3155 * changed while acquiring device lock.
3156 *
3157 * Changing default domain of an iommu group with two or more devices
3158 * isn't supported because there could be a potential deadlock. Consider
3159 * the following scenario. T1 is trying to acquire device locks of all
3160 * the devices in the group and before it could acquire all of them,
3161 * there could be another thread T2 (from different sub-system and use
3162 * case) that has already acquired some of the device locks and might be
3163 * waiting for T1 to release other device locks.
3164 */
3165 if (iommu_group_device_count(group) != 1) {
3166 dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
3167 ret = -EINVAL;
3168 goto out;
3169 }
3170
3171 /* Since group has only one device */
3172 grp_dev = list_first_entry(&group->devices, struct group_device, list);
3173 dev = grp_dev->dev;
3174
3175 if (prev_dev != dev) {
3176 dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
3177 ret = -EBUSY;
3178 goto out;
3179 }
3180
3181 prev_dom = group->default_domain;
3182 if (!prev_dom) {
3183 ret = -EINVAL;
3184 goto out;
3185 }
3186
3187 dev_def_dom = iommu_get_def_domain_type(dev);
3188 if (!type) {
3189 /*
3190 * If the user hasn't requested any specific type of domain and
3191 * if the device supports both the domains, then default to the
3192 * domain the device was booted with
3193 */
3194 type = dev_def_dom ? : iommu_def_domain_type;
3195 } else if (dev_def_dom && type != dev_def_dom) {
3196 dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
3197 iommu_domain_type_str(type));
3198 ret = -EINVAL;
3199 goto out;
3200 }
3201
3202 /*
3203 * Switch to a new domain only if the requested domain type is different
3204 * from the existing default domain type
3205 */
3206 if (prev_dom->type == type) {
3207 ret = 0;
3208 goto out;
3209 }
3210
3211 /* We can bring up a flush queue without tearing down the domain */
3212 if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
3213 ret = iommu_dma_init_fq(prev_dom);
3214 if (!ret)
3215 prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
3216 goto out;
3217 }
3218
3219 /* Sets group->default_domain to the newly allocated domain */
3220 ret = iommu_group_alloc_default_domain(dev->bus, group, type);
3221 if (ret)
3222 goto out;
3223
3224 ret = iommu_create_device_direct_mappings(group, dev);
3225 if (ret)
3226 goto free_new_domain;
3227
3228 ret = __iommu_attach_device(group->default_domain, dev);
3229 if (ret)
3230 goto free_new_domain;
3231
3232 group->domain = group->default_domain;
3233
3234 /*
3235 * Release the mutex here because ops->probe_finalize() call-back of
3236 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3237 * in-turn might call back into IOMMU core code, where it tries to take
3238 * group->mutex, resulting in a deadlock.
3239 */
3240 mutex_unlock(&group->mutex);
3241
3242 /* Make sure dma_ops is appropriatley set */
3243 iommu_group_do_probe_finalize(dev, group->default_domain);
3244 iommu_domain_free(prev_dom);
3245 return 0;
3246
3247 free_new_domain:
3248 iommu_domain_free(group->default_domain);
3249 group->default_domain = prev_dom;
3250 group->domain = prev_dom;
3251
3252 out:
3253 mutex_unlock(&group->mutex);
3254
3255 return ret;
3256 }
3257
3258 /*
3259 * Changing the default domain through sysfs requires the users to unbind the
3260 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3261 * transition. Return failure if this isn't met.
3262 *
3263 * We need to consider the race between this and the device release path.
3264 * device_lock(dev) is used here to guarantee that the device release path
3265 * will not be entered at the same time.
3266 */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)3267 static ssize_t iommu_group_store_type(struct iommu_group *group,
3268 const char *buf, size_t count)
3269 {
3270 struct group_device *grp_dev;
3271 struct device *dev;
3272 int ret, req_type;
3273
3274 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3275 return -EACCES;
3276
3277 if (WARN_ON(!group))
3278 return -EINVAL;
3279
3280 if (sysfs_streq(buf, "identity"))
3281 req_type = IOMMU_DOMAIN_IDENTITY;
3282 else if (sysfs_streq(buf, "DMA"))
3283 req_type = IOMMU_DOMAIN_DMA;
3284 else if (sysfs_streq(buf, "DMA-FQ"))
3285 req_type = IOMMU_DOMAIN_DMA_FQ;
3286 else if (sysfs_streq(buf, "auto"))
3287 req_type = 0;
3288 else
3289 return -EINVAL;
3290
3291 /*
3292 * Lock/Unlock the group mutex here before device lock to
3293 * 1. Make sure that the iommu group has only one device (this is a
3294 * prerequisite for step 2)
3295 * 2. Get struct *dev which is needed to lock device
3296 */
3297 mutex_lock(&group->mutex);
3298 if (iommu_group_device_count(group) != 1) {
3299 mutex_unlock(&group->mutex);
3300 pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3301 return -EINVAL;
3302 }
3303
3304 /* Since group has only one device */
3305 grp_dev = list_first_entry(&group->devices, struct group_device, list);
3306 dev = grp_dev->dev;
3307 get_device(dev);
3308
3309 /*
3310 * Don't hold the group mutex because taking group mutex first and then
3311 * the device lock could potentially cause a deadlock as below. Assume
3312 * two threads T1 and T2. T1 is trying to change default domain of an
3313 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3314 * of a PCIe device which is in the same iommu group. T1 takes group
3315 * mutex and before it could take device lock assume T2 has taken device
3316 * lock and is yet to take group mutex. Now, both the threads will be
3317 * waiting for the other thread to release lock. Below, lock order was
3318 * suggested.
3319 * device_lock(dev);
3320 * mutex_lock(&group->mutex);
3321 * iommu_change_dev_def_domain();
3322 * mutex_unlock(&group->mutex);
3323 * device_unlock(dev);
3324 *
3325 * [1] Typical device release path
3326 * device_lock() from device/driver core code
3327 * -> bus_notifier()
3328 * -> iommu_bus_notifier()
3329 * -> iommu_release_device()
3330 * -> ops->release_device() vendor driver calls back iommu core code
3331 * -> mutex_lock() from iommu core code
3332 */
3333 mutex_unlock(&group->mutex);
3334
3335 /* Check if the device in the group still has a driver bound to it */
3336 device_lock(dev);
3337 if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3338 group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3339 pr_err_ratelimited("Device is still bound to driver\n");
3340 ret = -EBUSY;
3341 goto out;
3342 }
3343
3344 ret = iommu_change_dev_def_domain(group, dev, req_type);
3345 ret = ret ?: count;
3346
3347 out:
3348 device_unlock(dev);
3349 put_device(dev);
3350
3351 return ret;
3352 }
3353