1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
48
49 static u32 lpi_id_bits;
50
51 /*
52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53 * deal with (one configuration byte per interrupt). PENDBASE has to
54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55 */
56 #define LPI_NRBITS lpi_id_bits
57 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59
60 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
61
62 /*
63 * Collection structure - just an ID, and a redistributor address to
64 * ping. We use one per CPU as a bag of interrupts assigned to this
65 * CPU.
66 */
67 struct its_collection {
68 u64 target_address;
69 u16 col_id;
70 };
71
72 /*
73 * The ITS_BASER structure - contains memory information, cached
74 * value of BASER register configuration and ITS page size.
75 */
76 struct its_baser {
77 void *base;
78 u64 val;
79 u32 order;
80 u32 psz;
81 };
82
83 struct its_device;
84
85 /*
86 * The ITS structure - contains most of the infrastructure, with the
87 * top-level MSI domain, the command queue, the collections, and the
88 * list of devices writing to it.
89 *
90 * dev_alloc_lock has to be taken for device allocations, while the
91 * spinlock must be taken to parse data structures such as the device
92 * list.
93 */
94 struct its_node {
95 raw_spinlock_t lock;
96 struct mutex dev_alloc_lock;
97 struct list_head entry;
98 void __iomem *base;
99 void __iomem *sgir_base;
100 phys_addr_t phys_base;
101 struct its_cmd_block *cmd_base;
102 struct its_cmd_block *cmd_write;
103 struct its_baser tables[GITS_BASER_NR_REGS];
104 struct its_collection *collections;
105 struct fwnode_handle *fwnode_handle;
106 u64 (*get_msi_base)(struct its_device *its_dev);
107 u64 typer;
108 u64 cbaser_save;
109 u32 ctlr_save;
110 u32 mpidr;
111 struct list_head its_device_list;
112 u64 flags;
113 unsigned long list_nr;
114 int numa_node;
115 unsigned int msi_domain_flags;
116 u32 pre_its_base; /* for Socionext Synquacer */
117 int vlpi_redist_offset;
118 };
119
120 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123
124 #define ITS_ITT_ALIGN SZ_256
125
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS \
128 ({ \
129 int nvpeid = 16; \
130 if (gic_rdists->has_rvpeid && \
131 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
132 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
133 GICD_TYPER2_VID); \
134 \
135 nvpeid; \
136 })
137 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
138
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
141
142 struct event_lpi_map {
143 unsigned long *lpi_map;
144 u16 *col_map;
145 irq_hw_number_t lpi_base;
146 int nr_lpis;
147 raw_spinlock_t vlpi_lock;
148 struct its_vm *vm;
149 struct its_vlpi_map *vlpi_maps;
150 int nr_vlpis;
151 };
152
153 /*
154 * The ITS view of a device - belongs to an ITS, owns an interrupt
155 * translation table, and a list of interrupts. If it some of its
156 * LPIs are injected into a guest (GICv4), the event_map.vm field
157 * indicates which one.
158 */
159 struct its_device {
160 struct list_head entry;
161 struct its_node *its;
162 struct event_lpi_map event_map;
163 void *itt;
164 u32 nr_ites;
165 u32 device_id;
166 bool shared;
167 };
168
169 static struct {
170 raw_spinlock_t lock;
171 struct its_device *dev;
172 struct its_vpe **vpes;
173 int next_victim;
174 } vpe_proxy;
175
176 struct cpu_lpi_count {
177 atomic_t managed;
178 atomic_t unmanaged;
179 };
180
181 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
182
183 static LIST_HEAD(its_nodes);
184 static DEFINE_RAW_SPINLOCK(its_lock);
185 static struct rdists *gic_rdists;
186 static struct irq_domain *its_parent;
187
188 static unsigned long its_list_map;
189 static u16 vmovp_seq_num;
190 static DEFINE_RAW_SPINLOCK(vmovp_lock);
191
192 static DEFINE_IDA(its_vpeid_ida);
193
194 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
195 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
196 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
197 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
198
199 /*
200 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
201 * always have vSGIs mapped.
202 */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)203 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
204 {
205 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
206 }
207
get_its_list(struct its_vm * vm)208 static u16 get_its_list(struct its_vm *vm)
209 {
210 struct its_node *its;
211 unsigned long its_list = 0;
212
213 list_for_each_entry(its, &its_nodes, entry) {
214 if (!is_v4(its))
215 continue;
216
217 if (require_its_list_vmovp(vm, its))
218 __set_bit(its->list_nr, &its_list);
219 }
220
221 return (u16)its_list;
222 }
223
its_get_event_id(struct irq_data * d)224 static inline u32 its_get_event_id(struct irq_data *d)
225 {
226 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
227 return d->hwirq - its_dev->event_map.lpi_base;
228 }
229
dev_event_to_col(struct its_device * its_dev,u32 event)230 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
231 u32 event)
232 {
233 struct its_node *its = its_dev->its;
234
235 return its->collections + its_dev->event_map.col_map[event];
236 }
237
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)238 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
239 u32 event)
240 {
241 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
242 return NULL;
243
244 return &its_dev->event_map.vlpi_maps[event];
245 }
246
get_vlpi_map(struct irq_data * d)247 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
248 {
249 if (irqd_is_forwarded_to_vcpu(d)) {
250 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
251 u32 event = its_get_event_id(d);
252
253 return dev_event_to_vlpi_map(its_dev, event);
254 }
255
256 return NULL;
257 }
258
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)259 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
260 {
261 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
262 return vpe->col_idx;
263 }
264
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)265 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
266 {
267 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
268 }
269
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)270 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
271 {
272 struct its_vlpi_map *map = get_vlpi_map(d);
273 int cpu;
274
275 if (map) {
276 cpu = vpe_to_cpuid_lock(map->vpe, flags);
277 } else {
278 /* Physical LPIs are already locked via the irq_desc lock */
279 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
280 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
281 /* Keep GCC quiet... */
282 *flags = 0;
283 }
284
285 return cpu;
286 }
287
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)288 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
289 {
290 struct its_vlpi_map *map = get_vlpi_map(d);
291
292 if (map)
293 vpe_to_cpuid_unlock(map->vpe, flags);
294 }
295
valid_col(struct its_collection * col)296 static struct its_collection *valid_col(struct its_collection *col)
297 {
298 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
299 return NULL;
300
301 return col;
302 }
303
valid_vpe(struct its_node * its,struct its_vpe * vpe)304 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
305 {
306 if (valid_col(its->collections + vpe->col_idx))
307 return vpe;
308
309 return NULL;
310 }
311
312 /*
313 * ITS command descriptors - parameters to be encoded in a command
314 * block.
315 */
316 struct its_cmd_desc {
317 union {
318 struct {
319 struct its_device *dev;
320 u32 event_id;
321 } its_inv_cmd;
322
323 struct {
324 struct its_device *dev;
325 u32 event_id;
326 } its_clear_cmd;
327
328 struct {
329 struct its_device *dev;
330 u32 event_id;
331 } its_int_cmd;
332
333 struct {
334 struct its_device *dev;
335 int valid;
336 } its_mapd_cmd;
337
338 struct {
339 struct its_collection *col;
340 int valid;
341 } its_mapc_cmd;
342
343 struct {
344 struct its_device *dev;
345 u32 phys_id;
346 u32 event_id;
347 } its_mapti_cmd;
348
349 struct {
350 struct its_device *dev;
351 struct its_collection *col;
352 u32 event_id;
353 } its_movi_cmd;
354
355 struct {
356 struct its_device *dev;
357 u32 event_id;
358 } its_discard_cmd;
359
360 struct {
361 struct its_collection *col;
362 } its_invall_cmd;
363
364 struct {
365 struct its_vpe *vpe;
366 } its_vinvall_cmd;
367
368 struct {
369 struct its_vpe *vpe;
370 struct its_collection *col;
371 bool valid;
372 } its_vmapp_cmd;
373
374 struct {
375 struct its_vpe *vpe;
376 struct its_device *dev;
377 u32 virt_id;
378 u32 event_id;
379 bool db_enabled;
380 } its_vmapti_cmd;
381
382 struct {
383 struct its_vpe *vpe;
384 struct its_device *dev;
385 u32 event_id;
386 bool db_enabled;
387 } its_vmovi_cmd;
388
389 struct {
390 struct its_vpe *vpe;
391 struct its_collection *col;
392 u16 seq_num;
393 u16 its_list;
394 } its_vmovp_cmd;
395
396 struct {
397 struct its_vpe *vpe;
398 } its_invdb_cmd;
399
400 struct {
401 struct its_vpe *vpe;
402 u8 sgi;
403 u8 priority;
404 bool enable;
405 bool group;
406 bool clear;
407 } its_vsgi_cmd;
408 };
409 };
410
411 /*
412 * The ITS command block, which is what the ITS actually parses.
413 */
414 struct its_cmd_block {
415 union {
416 u64 raw_cmd[4];
417 __le64 raw_cmd_le[4];
418 };
419 };
420
421 #define ITS_CMD_QUEUE_SZ SZ_64K
422 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
423
424 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
425 struct its_cmd_block *,
426 struct its_cmd_desc *);
427
428 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
429 struct its_cmd_block *,
430 struct its_cmd_desc *);
431
432 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
433 {
434 u64 mask = GENMASK_ULL(h, l);
435 *raw_cmd &= ~mask;
436 *raw_cmd |= (val << l) & mask;
437 }
438
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)439 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
440 {
441 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
442 }
443
its_encode_devid(struct its_cmd_block * cmd,u32 devid)444 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
445 {
446 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
447 }
448
its_encode_event_id(struct its_cmd_block * cmd,u32 id)449 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
450 {
451 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
452 }
453
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)454 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
455 {
456 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
457 }
458
its_encode_size(struct its_cmd_block * cmd,u8 size)459 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
460 {
461 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
462 }
463
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)464 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
465 {
466 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
467 }
468
its_encode_valid(struct its_cmd_block * cmd,int valid)469 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
470 {
471 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
472 }
473
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)474 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
475 {
476 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
477 }
478
its_encode_collection(struct its_cmd_block * cmd,u16 col)479 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
480 {
481 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
482 }
483
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)484 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
485 {
486 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
487 }
488
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)489 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
490 {
491 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
492 }
493
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)494 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
495 {
496 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
497 }
498
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)499 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
500 {
501 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
502 }
503
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)504 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
505 {
506 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
507 }
508
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)509 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
510 {
511 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
512 }
513
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)514 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
515 {
516 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
517 }
518
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)519 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
520 {
521 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
522 }
523
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)524 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
525 {
526 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
527 }
528
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)529 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
530 {
531 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
532 }
533
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)534 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
535 {
536 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
537 }
538
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)539 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
540 u32 vpe_db_lpi)
541 {
542 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
543 }
544
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)545 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
546 u32 vpe_db_lpi)
547 {
548 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
549 }
550
its_encode_db(struct its_cmd_block * cmd,bool db)551 static void its_encode_db(struct its_cmd_block *cmd, bool db)
552 {
553 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
554 }
555
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)556 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
557 {
558 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
559 }
560
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)561 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
562 {
563 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
564 }
565
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)566 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
567 {
568 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
569 }
570
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)571 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
572 {
573 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
574 }
575
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)576 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
577 {
578 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
579 }
580
its_fixup_cmd(struct its_cmd_block * cmd)581 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
582 {
583 /* Let's fixup BE commands */
584 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
585 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
586 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
587 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
588 }
589
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)590 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
591 struct its_cmd_block *cmd,
592 struct its_cmd_desc *desc)
593 {
594 unsigned long itt_addr;
595 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
596
597 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
598 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
599
600 its_encode_cmd(cmd, GITS_CMD_MAPD);
601 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
602 its_encode_size(cmd, size - 1);
603 its_encode_itt(cmd, itt_addr);
604 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
605
606 its_fixup_cmd(cmd);
607
608 return NULL;
609 }
610
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)611 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
612 struct its_cmd_block *cmd,
613 struct its_cmd_desc *desc)
614 {
615 its_encode_cmd(cmd, GITS_CMD_MAPC);
616 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
617 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
618 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
619
620 its_fixup_cmd(cmd);
621
622 return desc->its_mapc_cmd.col;
623 }
624
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)625 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
626 struct its_cmd_block *cmd,
627 struct its_cmd_desc *desc)
628 {
629 struct its_collection *col;
630
631 col = dev_event_to_col(desc->its_mapti_cmd.dev,
632 desc->its_mapti_cmd.event_id);
633
634 its_encode_cmd(cmd, GITS_CMD_MAPTI);
635 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
636 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
637 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
638 its_encode_collection(cmd, col->col_id);
639
640 its_fixup_cmd(cmd);
641
642 return valid_col(col);
643 }
644
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)645 static struct its_collection *its_build_movi_cmd(struct its_node *its,
646 struct its_cmd_block *cmd,
647 struct its_cmd_desc *desc)
648 {
649 struct its_collection *col;
650
651 col = dev_event_to_col(desc->its_movi_cmd.dev,
652 desc->its_movi_cmd.event_id);
653
654 its_encode_cmd(cmd, GITS_CMD_MOVI);
655 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
656 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
657 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
658
659 its_fixup_cmd(cmd);
660
661 return valid_col(col);
662 }
663
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)664 static struct its_collection *its_build_discard_cmd(struct its_node *its,
665 struct its_cmd_block *cmd,
666 struct its_cmd_desc *desc)
667 {
668 struct its_collection *col;
669
670 col = dev_event_to_col(desc->its_discard_cmd.dev,
671 desc->its_discard_cmd.event_id);
672
673 its_encode_cmd(cmd, GITS_CMD_DISCARD);
674 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
675 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
676
677 its_fixup_cmd(cmd);
678
679 return valid_col(col);
680 }
681
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)682 static struct its_collection *its_build_inv_cmd(struct its_node *its,
683 struct its_cmd_block *cmd,
684 struct its_cmd_desc *desc)
685 {
686 struct its_collection *col;
687
688 col = dev_event_to_col(desc->its_inv_cmd.dev,
689 desc->its_inv_cmd.event_id);
690
691 its_encode_cmd(cmd, GITS_CMD_INV);
692 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
693 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
694
695 its_fixup_cmd(cmd);
696
697 return valid_col(col);
698 }
699
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)700 static struct its_collection *its_build_int_cmd(struct its_node *its,
701 struct its_cmd_block *cmd,
702 struct its_cmd_desc *desc)
703 {
704 struct its_collection *col;
705
706 col = dev_event_to_col(desc->its_int_cmd.dev,
707 desc->its_int_cmd.event_id);
708
709 its_encode_cmd(cmd, GITS_CMD_INT);
710 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
711 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
712
713 its_fixup_cmd(cmd);
714
715 return valid_col(col);
716 }
717
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)718 static struct its_collection *its_build_clear_cmd(struct its_node *its,
719 struct its_cmd_block *cmd,
720 struct its_cmd_desc *desc)
721 {
722 struct its_collection *col;
723
724 col = dev_event_to_col(desc->its_clear_cmd.dev,
725 desc->its_clear_cmd.event_id);
726
727 its_encode_cmd(cmd, GITS_CMD_CLEAR);
728 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
729 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
730
731 its_fixup_cmd(cmd);
732
733 return valid_col(col);
734 }
735
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)736 static struct its_collection *its_build_invall_cmd(struct its_node *its,
737 struct its_cmd_block *cmd,
738 struct its_cmd_desc *desc)
739 {
740 its_encode_cmd(cmd, GITS_CMD_INVALL);
741 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
742
743 its_fixup_cmd(cmd);
744
745 return NULL;
746 }
747
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)748 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
749 struct its_cmd_block *cmd,
750 struct its_cmd_desc *desc)
751 {
752 its_encode_cmd(cmd, GITS_CMD_VINVALL);
753 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
754
755 its_fixup_cmd(cmd);
756
757 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
758 }
759
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)760 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
761 struct its_cmd_block *cmd,
762 struct its_cmd_desc *desc)
763 {
764 unsigned long vpt_addr, vconf_addr;
765 u64 target;
766 bool alloc;
767
768 its_encode_cmd(cmd, GITS_CMD_VMAPP);
769 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
770 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
771
772 if (!desc->its_vmapp_cmd.valid) {
773 if (is_v4_1(its)) {
774 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
775 its_encode_alloc(cmd, alloc);
776 }
777
778 goto out;
779 }
780
781 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
782 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
783
784 its_encode_target(cmd, target);
785 its_encode_vpt_addr(cmd, vpt_addr);
786 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
787
788 if (!is_v4_1(its))
789 goto out;
790
791 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
792
793 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
794
795 its_encode_alloc(cmd, alloc);
796
797 /* We can only signal PTZ when alloc==1. Why do we have two bits? */
798 its_encode_ptz(cmd, alloc);
799 its_encode_vconf_addr(cmd, vconf_addr);
800 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
801
802 out:
803 its_fixup_cmd(cmd);
804
805 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
806 }
807
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)808 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
809 struct its_cmd_block *cmd,
810 struct its_cmd_desc *desc)
811 {
812 u32 db;
813
814 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
815 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
816 else
817 db = 1023;
818
819 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
820 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
821 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
822 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
823 its_encode_db_phys_id(cmd, db);
824 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
825
826 its_fixup_cmd(cmd);
827
828 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
829 }
830
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)831 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
832 struct its_cmd_block *cmd,
833 struct its_cmd_desc *desc)
834 {
835 u32 db;
836
837 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
838 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
839 else
840 db = 1023;
841
842 its_encode_cmd(cmd, GITS_CMD_VMOVI);
843 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
844 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
845 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
846 its_encode_db_phys_id(cmd, db);
847 its_encode_db_valid(cmd, true);
848
849 its_fixup_cmd(cmd);
850
851 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
852 }
853
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)854 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
855 struct its_cmd_block *cmd,
856 struct its_cmd_desc *desc)
857 {
858 u64 target;
859
860 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
861 its_encode_cmd(cmd, GITS_CMD_VMOVP);
862 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
863 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
864 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
865 its_encode_target(cmd, target);
866
867 if (is_v4_1(its)) {
868 its_encode_db(cmd, true);
869 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
870 }
871
872 its_fixup_cmd(cmd);
873
874 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
875 }
876
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)877 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
878 struct its_cmd_block *cmd,
879 struct its_cmd_desc *desc)
880 {
881 struct its_vlpi_map *map;
882
883 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
884 desc->its_inv_cmd.event_id);
885
886 its_encode_cmd(cmd, GITS_CMD_INV);
887 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
888 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
889
890 its_fixup_cmd(cmd);
891
892 return valid_vpe(its, map->vpe);
893 }
894
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)895 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
896 struct its_cmd_block *cmd,
897 struct its_cmd_desc *desc)
898 {
899 struct its_vlpi_map *map;
900
901 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
902 desc->its_int_cmd.event_id);
903
904 its_encode_cmd(cmd, GITS_CMD_INT);
905 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
906 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
907
908 its_fixup_cmd(cmd);
909
910 return valid_vpe(its, map->vpe);
911 }
912
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)913 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
914 struct its_cmd_block *cmd,
915 struct its_cmd_desc *desc)
916 {
917 struct its_vlpi_map *map;
918
919 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
920 desc->its_clear_cmd.event_id);
921
922 its_encode_cmd(cmd, GITS_CMD_CLEAR);
923 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
924 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
925
926 its_fixup_cmd(cmd);
927
928 return valid_vpe(its, map->vpe);
929 }
930
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)931 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
932 struct its_cmd_block *cmd,
933 struct its_cmd_desc *desc)
934 {
935 if (WARN_ON(!is_v4_1(its)))
936 return NULL;
937
938 its_encode_cmd(cmd, GITS_CMD_INVDB);
939 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
940
941 its_fixup_cmd(cmd);
942
943 return valid_vpe(its, desc->its_invdb_cmd.vpe);
944 }
945
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)946 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
947 struct its_cmd_block *cmd,
948 struct its_cmd_desc *desc)
949 {
950 if (WARN_ON(!is_v4_1(its)))
951 return NULL;
952
953 its_encode_cmd(cmd, GITS_CMD_VSGI);
954 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
955 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
956 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
957 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
958 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
959 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
960
961 its_fixup_cmd(cmd);
962
963 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
964 }
965
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)966 static u64 its_cmd_ptr_to_offset(struct its_node *its,
967 struct its_cmd_block *ptr)
968 {
969 return (ptr - its->cmd_base) * sizeof(*ptr);
970 }
971
its_queue_full(struct its_node * its)972 static int its_queue_full(struct its_node *its)
973 {
974 int widx;
975 int ridx;
976
977 widx = its->cmd_write - its->cmd_base;
978 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
979
980 /* This is incredibly unlikely to happen, unless the ITS locks up. */
981 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
982 return 1;
983
984 return 0;
985 }
986
its_allocate_entry(struct its_node * its)987 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
988 {
989 struct its_cmd_block *cmd;
990 u32 count = 1000000; /* 1s! */
991
992 while (its_queue_full(its)) {
993 count--;
994 if (!count) {
995 pr_err_ratelimited("ITS queue not draining\n");
996 return NULL;
997 }
998 cpu_relax();
999 udelay(1);
1000 }
1001
1002 cmd = its->cmd_write++;
1003
1004 /* Handle queue wrapping */
1005 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1006 its->cmd_write = its->cmd_base;
1007
1008 /* Clear command */
1009 cmd->raw_cmd[0] = 0;
1010 cmd->raw_cmd[1] = 0;
1011 cmd->raw_cmd[2] = 0;
1012 cmd->raw_cmd[3] = 0;
1013
1014 return cmd;
1015 }
1016
its_post_commands(struct its_node * its)1017 static struct its_cmd_block *its_post_commands(struct its_node *its)
1018 {
1019 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1020
1021 writel_relaxed(wr, its->base + GITS_CWRITER);
1022
1023 return its->cmd_write;
1024 }
1025
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1026 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1027 {
1028 /*
1029 * Make sure the commands written to memory are observable by
1030 * the ITS.
1031 */
1032 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1033 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1034 else
1035 dsb(ishst);
1036 }
1037
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1038 static int its_wait_for_range_completion(struct its_node *its,
1039 u64 prev_idx,
1040 struct its_cmd_block *to)
1041 {
1042 u64 rd_idx, to_idx, linear_idx;
1043 u32 count = 1000000; /* 1s! */
1044
1045 /* Linearize to_idx if the command set has wrapped around */
1046 to_idx = its_cmd_ptr_to_offset(its, to);
1047 if (to_idx < prev_idx)
1048 to_idx += ITS_CMD_QUEUE_SZ;
1049
1050 linear_idx = prev_idx;
1051
1052 while (1) {
1053 s64 delta;
1054
1055 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1056
1057 /*
1058 * Compute the read pointer progress, taking the
1059 * potential wrap-around into account.
1060 */
1061 delta = rd_idx - prev_idx;
1062 if (rd_idx < prev_idx)
1063 delta += ITS_CMD_QUEUE_SZ;
1064
1065 linear_idx += delta;
1066 if (linear_idx >= to_idx)
1067 break;
1068
1069 count--;
1070 if (!count) {
1071 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1072 to_idx, linear_idx);
1073 return -1;
1074 }
1075 prev_idx = rd_idx;
1076 cpu_relax();
1077 udelay(1);
1078 }
1079
1080 return 0;
1081 }
1082
1083 /* Warning, macro hell follows */
1084 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1085 void name(struct its_node *its, \
1086 buildtype builder, \
1087 struct its_cmd_desc *desc) \
1088 { \
1089 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1090 synctype *sync_obj; \
1091 unsigned long flags; \
1092 u64 rd_idx; \
1093 \
1094 raw_spin_lock_irqsave(&its->lock, flags); \
1095 \
1096 cmd = its_allocate_entry(its); \
1097 if (!cmd) { /* We're soooooo screewed... */ \
1098 raw_spin_unlock_irqrestore(&its->lock, flags); \
1099 return; \
1100 } \
1101 sync_obj = builder(its, cmd, desc); \
1102 its_flush_cmd(its, cmd); \
1103 \
1104 if (sync_obj) { \
1105 sync_cmd = its_allocate_entry(its); \
1106 if (!sync_cmd) \
1107 goto post; \
1108 \
1109 buildfn(its, sync_cmd, sync_obj); \
1110 its_flush_cmd(its, sync_cmd); \
1111 } \
1112 \
1113 post: \
1114 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1115 next_cmd = its_post_commands(its); \
1116 raw_spin_unlock_irqrestore(&its->lock, flags); \
1117 \
1118 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1119 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1120 }
1121
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1122 static void its_build_sync_cmd(struct its_node *its,
1123 struct its_cmd_block *sync_cmd,
1124 struct its_collection *sync_col)
1125 {
1126 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1127 its_encode_target(sync_cmd, sync_col->target_address);
1128
1129 its_fixup_cmd(sync_cmd);
1130 }
1131
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1132 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1133 struct its_collection, its_build_sync_cmd)
1134
1135 static void its_build_vsync_cmd(struct its_node *its,
1136 struct its_cmd_block *sync_cmd,
1137 struct its_vpe *sync_vpe)
1138 {
1139 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1140 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1141
1142 its_fixup_cmd(sync_cmd);
1143 }
1144
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1145 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1146 struct its_vpe, its_build_vsync_cmd)
1147
1148 static void its_send_int(struct its_device *dev, u32 event_id)
1149 {
1150 struct its_cmd_desc desc;
1151
1152 desc.its_int_cmd.dev = dev;
1153 desc.its_int_cmd.event_id = event_id;
1154
1155 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1156 }
1157
its_send_clear(struct its_device * dev,u32 event_id)1158 static void its_send_clear(struct its_device *dev, u32 event_id)
1159 {
1160 struct its_cmd_desc desc;
1161
1162 desc.its_clear_cmd.dev = dev;
1163 desc.its_clear_cmd.event_id = event_id;
1164
1165 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1166 }
1167
its_send_inv(struct its_device * dev,u32 event_id)1168 static void its_send_inv(struct its_device *dev, u32 event_id)
1169 {
1170 struct its_cmd_desc desc;
1171
1172 desc.its_inv_cmd.dev = dev;
1173 desc.its_inv_cmd.event_id = event_id;
1174
1175 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1176 }
1177
its_send_mapd(struct its_device * dev,int valid)1178 static void its_send_mapd(struct its_device *dev, int valid)
1179 {
1180 struct its_cmd_desc desc;
1181
1182 desc.its_mapd_cmd.dev = dev;
1183 desc.its_mapd_cmd.valid = !!valid;
1184
1185 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1186 }
1187
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1188 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1189 int valid)
1190 {
1191 struct its_cmd_desc desc;
1192
1193 desc.its_mapc_cmd.col = col;
1194 desc.its_mapc_cmd.valid = !!valid;
1195
1196 its_send_single_command(its, its_build_mapc_cmd, &desc);
1197 }
1198
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1199 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1200 {
1201 struct its_cmd_desc desc;
1202
1203 desc.its_mapti_cmd.dev = dev;
1204 desc.its_mapti_cmd.phys_id = irq_id;
1205 desc.its_mapti_cmd.event_id = id;
1206
1207 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1208 }
1209
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1210 static void its_send_movi(struct its_device *dev,
1211 struct its_collection *col, u32 id)
1212 {
1213 struct its_cmd_desc desc;
1214
1215 desc.its_movi_cmd.dev = dev;
1216 desc.its_movi_cmd.col = col;
1217 desc.its_movi_cmd.event_id = id;
1218
1219 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1220 }
1221
its_send_discard(struct its_device * dev,u32 id)1222 static void its_send_discard(struct its_device *dev, u32 id)
1223 {
1224 struct its_cmd_desc desc;
1225
1226 desc.its_discard_cmd.dev = dev;
1227 desc.its_discard_cmd.event_id = id;
1228
1229 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1230 }
1231
its_send_invall(struct its_node * its,struct its_collection * col)1232 static void its_send_invall(struct its_node *its, struct its_collection *col)
1233 {
1234 struct its_cmd_desc desc;
1235
1236 desc.its_invall_cmd.col = col;
1237
1238 its_send_single_command(its, its_build_invall_cmd, &desc);
1239 }
1240
its_send_vmapti(struct its_device * dev,u32 id)1241 static void its_send_vmapti(struct its_device *dev, u32 id)
1242 {
1243 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1244 struct its_cmd_desc desc;
1245
1246 desc.its_vmapti_cmd.vpe = map->vpe;
1247 desc.its_vmapti_cmd.dev = dev;
1248 desc.its_vmapti_cmd.virt_id = map->vintid;
1249 desc.its_vmapti_cmd.event_id = id;
1250 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1251
1252 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1253 }
1254
its_send_vmovi(struct its_device * dev,u32 id)1255 static void its_send_vmovi(struct its_device *dev, u32 id)
1256 {
1257 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1258 struct its_cmd_desc desc;
1259
1260 desc.its_vmovi_cmd.vpe = map->vpe;
1261 desc.its_vmovi_cmd.dev = dev;
1262 desc.its_vmovi_cmd.event_id = id;
1263 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1264
1265 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1266 }
1267
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1268 static void its_send_vmapp(struct its_node *its,
1269 struct its_vpe *vpe, bool valid)
1270 {
1271 struct its_cmd_desc desc;
1272
1273 desc.its_vmapp_cmd.vpe = vpe;
1274 desc.its_vmapp_cmd.valid = valid;
1275 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1276
1277 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1278 }
1279
its_send_vmovp(struct its_vpe * vpe)1280 static void its_send_vmovp(struct its_vpe *vpe)
1281 {
1282 struct its_cmd_desc desc = {};
1283 struct its_node *its;
1284 unsigned long flags;
1285 int col_id = vpe->col_idx;
1286
1287 desc.its_vmovp_cmd.vpe = vpe;
1288
1289 if (!its_list_map) {
1290 its = list_first_entry(&its_nodes, struct its_node, entry);
1291 desc.its_vmovp_cmd.col = &its->collections[col_id];
1292 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1293 return;
1294 }
1295
1296 /*
1297 * Yet another marvel of the architecture. If using the
1298 * its_list "feature", we need to make sure that all ITSs
1299 * receive all VMOVP commands in the same order. The only way
1300 * to guarantee this is to make vmovp a serialization point.
1301 *
1302 * Wall <-- Head.
1303 */
1304 raw_spin_lock_irqsave(&vmovp_lock, flags);
1305
1306 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1307 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1308
1309 /* Emit VMOVPs */
1310 list_for_each_entry(its, &its_nodes, entry) {
1311 if (!is_v4(its))
1312 continue;
1313
1314 if (!require_its_list_vmovp(vpe->its_vm, its))
1315 continue;
1316
1317 desc.its_vmovp_cmd.col = &its->collections[col_id];
1318 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1319 }
1320
1321 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1322 }
1323
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1324 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1325 {
1326 struct its_cmd_desc desc;
1327
1328 desc.its_vinvall_cmd.vpe = vpe;
1329 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1330 }
1331
its_send_vinv(struct its_device * dev,u32 event_id)1332 static void its_send_vinv(struct its_device *dev, u32 event_id)
1333 {
1334 struct its_cmd_desc desc;
1335
1336 /*
1337 * There is no real VINV command. This is just a normal INV,
1338 * with a VSYNC instead of a SYNC.
1339 */
1340 desc.its_inv_cmd.dev = dev;
1341 desc.its_inv_cmd.event_id = event_id;
1342
1343 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1344 }
1345
its_send_vint(struct its_device * dev,u32 event_id)1346 static void its_send_vint(struct its_device *dev, u32 event_id)
1347 {
1348 struct its_cmd_desc desc;
1349
1350 /*
1351 * There is no real VINT command. This is just a normal INT,
1352 * with a VSYNC instead of a SYNC.
1353 */
1354 desc.its_int_cmd.dev = dev;
1355 desc.its_int_cmd.event_id = event_id;
1356
1357 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1358 }
1359
its_send_vclear(struct its_device * dev,u32 event_id)1360 static void its_send_vclear(struct its_device *dev, u32 event_id)
1361 {
1362 struct its_cmd_desc desc;
1363
1364 /*
1365 * There is no real VCLEAR command. This is just a normal CLEAR,
1366 * with a VSYNC instead of a SYNC.
1367 */
1368 desc.its_clear_cmd.dev = dev;
1369 desc.its_clear_cmd.event_id = event_id;
1370
1371 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1372 }
1373
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1374 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1375 {
1376 struct its_cmd_desc desc;
1377
1378 desc.its_invdb_cmd.vpe = vpe;
1379 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1380 }
1381
1382 /*
1383 * irqchip functions - assumes MSI, mostly.
1384 */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1385 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1386 {
1387 struct its_vlpi_map *map = get_vlpi_map(d);
1388 irq_hw_number_t hwirq;
1389 void *va;
1390 u8 *cfg;
1391
1392 if (map) {
1393 va = page_address(map->vm->vprop_page);
1394 hwirq = map->vintid;
1395
1396 /* Remember the updated property */
1397 map->properties &= ~clr;
1398 map->properties |= set | LPI_PROP_GROUP1;
1399 } else {
1400 va = gic_rdists->prop_table_va;
1401 hwirq = d->hwirq;
1402 }
1403
1404 cfg = va + hwirq - 8192;
1405 *cfg &= ~clr;
1406 *cfg |= set | LPI_PROP_GROUP1;
1407
1408 /*
1409 * Make the above write visible to the redistributors.
1410 * And yes, we're flushing exactly: One. Single. Byte.
1411 * Humpf...
1412 */
1413 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1414 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1415 else
1416 dsb(ishst);
1417 }
1418
wait_for_syncr(void __iomem * rdbase)1419 static void wait_for_syncr(void __iomem *rdbase)
1420 {
1421 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1422 cpu_relax();
1423 }
1424
direct_lpi_inv(struct irq_data * d)1425 static void direct_lpi_inv(struct irq_data *d)
1426 {
1427 struct its_vlpi_map *map = get_vlpi_map(d);
1428 void __iomem *rdbase;
1429 unsigned long flags;
1430 u64 val;
1431 int cpu;
1432
1433 if (map) {
1434 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1435
1436 WARN_ON(!is_v4_1(its_dev->its));
1437
1438 val = GICR_INVLPIR_V;
1439 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1440 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1441 } else {
1442 val = d->hwirq;
1443 }
1444
1445 /* Target the redistributor this LPI is currently routed to */
1446 cpu = irq_to_cpuid_lock(d, &flags);
1447 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1448 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1449 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1450
1451 wait_for_syncr(rdbase);
1452 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1453 irq_to_cpuid_unlock(d, flags);
1454 }
1455
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1456 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1457 {
1458 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1459
1460 lpi_write_config(d, clr, set);
1461 if (gic_rdists->has_direct_lpi &&
1462 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1463 direct_lpi_inv(d);
1464 else if (!irqd_is_forwarded_to_vcpu(d))
1465 its_send_inv(its_dev, its_get_event_id(d));
1466 else
1467 its_send_vinv(its_dev, its_get_event_id(d));
1468 }
1469
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1470 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1471 {
1472 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1473 u32 event = its_get_event_id(d);
1474 struct its_vlpi_map *map;
1475
1476 /*
1477 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1478 * here.
1479 */
1480 if (is_v4_1(its_dev->its))
1481 return;
1482
1483 map = dev_event_to_vlpi_map(its_dev, event);
1484
1485 if (map->db_enabled == enable)
1486 return;
1487
1488 map->db_enabled = enable;
1489
1490 /*
1491 * More fun with the architecture:
1492 *
1493 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1494 * value or to 1023, depending on the enable bit. But that
1495 * would be issueing a mapping for an /existing/ DevID+EventID
1496 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1497 * to the /same/ vPE, using this opportunity to adjust the
1498 * doorbell. Mouahahahaha. We loves it, Precious.
1499 */
1500 its_send_vmovi(its_dev, event);
1501 }
1502
its_mask_irq(struct irq_data * d)1503 static void its_mask_irq(struct irq_data *d)
1504 {
1505 if (irqd_is_forwarded_to_vcpu(d))
1506 its_vlpi_set_doorbell(d, false);
1507
1508 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1509 }
1510
its_unmask_irq(struct irq_data * d)1511 static void its_unmask_irq(struct irq_data *d)
1512 {
1513 if (irqd_is_forwarded_to_vcpu(d))
1514 its_vlpi_set_doorbell(d, true);
1515
1516 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1517 }
1518
its_read_lpi_count(struct irq_data * d,int cpu)1519 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1520 {
1521 if (irqd_affinity_is_managed(d))
1522 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1523
1524 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1525 }
1526
its_inc_lpi_count(struct irq_data * d,int cpu)1527 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1528 {
1529 if (irqd_affinity_is_managed(d))
1530 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1531 else
1532 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1533 }
1534
its_dec_lpi_count(struct irq_data * d,int cpu)1535 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1536 {
1537 if (irqd_affinity_is_managed(d))
1538 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1539 else
1540 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1541 }
1542
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1543 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1544 const struct cpumask *cpu_mask)
1545 {
1546 unsigned int cpu = nr_cpu_ids, tmp;
1547 int count = S32_MAX;
1548
1549 for_each_cpu(tmp, cpu_mask) {
1550 int this_count = its_read_lpi_count(d, tmp);
1551 if (this_count < count) {
1552 cpu = tmp;
1553 count = this_count;
1554 }
1555 }
1556
1557 return cpu;
1558 }
1559
1560 /*
1561 * As suggested by Thomas Gleixner in:
1562 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1563 */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1564 static int its_select_cpu(struct irq_data *d,
1565 const struct cpumask *aff_mask)
1566 {
1567 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1568 cpumask_var_t tmpmask;
1569 int cpu, node;
1570
1571 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1572 return -ENOMEM;
1573
1574 node = its_dev->its->numa_node;
1575
1576 if (!irqd_affinity_is_managed(d)) {
1577 /* First try the NUMA node */
1578 if (node != NUMA_NO_NODE) {
1579 /*
1580 * Try the intersection of the affinity mask and the
1581 * node mask (and the online mask, just to be safe).
1582 */
1583 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1584 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1585
1586 /*
1587 * Ideally, we would check if the mask is empty, and
1588 * try again on the full node here.
1589 *
1590 * But it turns out that the way ACPI describes the
1591 * affinity for ITSs only deals about memory, and
1592 * not target CPUs, so it cannot describe a single
1593 * ITS placed next to two NUMA nodes.
1594 *
1595 * Instead, just fallback on the online mask. This
1596 * diverges from Thomas' suggestion above.
1597 */
1598 cpu = cpumask_pick_least_loaded(d, tmpmask);
1599 if (cpu < nr_cpu_ids)
1600 goto out;
1601
1602 /* If we can't cross sockets, give up */
1603 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1604 goto out;
1605
1606 /* If the above failed, expand the search */
1607 }
1608
1609 /* Try the intersection of the affinity and online masks */
1610 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1611
1612 /* If that doesn't fly, the online mask is the last resort */
1613 if (cpumask_empty(tmpmask))
1614 cpumask_copy(tmpmask, cpu_online_mask);
1615
1616 cpu = cpumask_pick_least_loaded(d, tmpmask);
1617 } else {
1618 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1619
1620 /* If we cannot cross sockets, limit the search to that node */
1621 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1622 node != NUMA_NO_NODE)
1623 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1624
1625 cpu = cpumask_pick_least_loaded(d, tmpmask);
1626 }
1627 out:
1628 free_cpumask_var(tmpmask);
1629
1630 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1631 return cpu;
1632 }
1633
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1634 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1635 bool force)
1636 {
1637 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1638 struct its_collection *target_col;
1639 u32 id = its_get_event_id(d);
1640 int cpu, prev_cpu;
1641
1642 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1643 if (irqd_is_forwarded_to_vcpu(d))
1644 return -EINVAL;
1645
1646 prev_cpu = its_dev->event_map.col_map[id];
1647 its_dec_lpi_count(d, prev_cpu);
1648
1649 if (!force)
1650 cpu = its_select_cpu(d, mask_val);
1651 else
1652 cpu = cpumask_pick_least_loaded(d, mask_val);
1653
1654 if (cpu < 0 || cpu >= nr_cpu_ids)
1655 goto err;
1656
1657 /* don't set the affinity when the target cpu is same as current one */
1658 if (cpu != prev_cpu) {
1659 target_col = &its_dev->its->collections[cpu];
1660 its_send_movi(its_dev, target_col, id);
1661 its_dev->event_map.col_map[id] = cpu;
1662 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1663 }
1664
1665 its_inc_lpi_count(d, cpu);
1666
1667 return IRQ_SET_MASK_OK_DONE;
1668
1669 err:
1670 its_inc_lpi_count(d, prev_cpu);
1671 return -EINVAL;
1672 }
1673
its_irq_get_msi_base(struct its_device * its_dev)1674 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1675 {
1676 struct its_node *its = its_dev->its;
1677
1678 return its->phys_base + GITS_TRANSLATER;
1679 }
1680
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1681 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1682 {
1683 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1684 struct its_node *its;
1685 u64 addr;
1686
1687 its = its_dev->its;
1688 addr = its->get_msi_base(its_dev);
1689
1690 msg->address_lo = lower_32_bits(addr);
1691 msg->address_hi = upper_32_bits(addr);
1692 msg->data = its_get_event_id(d);
1693
1694 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1695 }
1696
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1697 static int its_irq_set_irqchip_state(struct irq_data *d,
1698 enum irqchip_irq_state which,
1699 bool state)
1700 {
1701 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1702 u32 event = its_get_event_id(d);
1703
1704 if (which != IRQCHIP_STATE_PENDING)
1705 return -EINVAL;
1706
1707 if (irqd_is_forwarded_to_vcpu(d)) {
1708 if (state)
1709 its_send_vint(its_dev, event);
1710 else
1711 its_send_vclear(its_dev, event);
1712 } else {
1713 if (state)
1714 its_send_int(its_dev, event);
1715 else
1716 its_send_clear(its_dev, event);
1717 }
1718
1719 return 0;
1720 }
1721
its_irq_retrigger(struct irq_data * d)1722 static int its_irq_retrigger(struct irq_data *d)
1723 {
1724 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1725 }
1726
1727 /*
1728 * Two favourable cases:
1729 *
1730 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1731 * for vSGI delivery
1732 *
1733 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1734 * and we're better off mapping all VPEs always
1735 *
1736 * If neither (a) nor (b) is true, then we map vPEs on demand.
1737 *
1738 */
gic_requires_eager_mapping(void)1739 static bool gic_requires_eager_mapping(void)
1740 {
1741 if (!its_list_map || gic_rdists->has_rvpeid)
1742 return true;
1743
1744 return false;
1745 }
1746
its_map_vm(struct its_node * its,struct its_vm * vm)1747 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1748 {
1749 unsigned long flags;
1750
1751 if (gic_requires_eager_mapping())
1752 return;
1753
1754 raw_spin_lock_irqsave(&vmovp_lock, flags);
1755
1756 /*
1757 * If the VM wasn't mapped yet, iterate over the vpes and get
1758 * them mapped now.
1759 */
1760 vm->vlpi_count[its->list_nr]++;
1761
1762 if (vm->vlpi_count[its->list_nr] == 1) {
1763 int i;
1764
1765 for (i = 0; i < vm->nr_vpes; i++) {
1766 struct its_vpe *vpe = vm->vpes[i];
1767 struct irq_data *d = irq_get_irq_data(vpe->irq);
1768
1769 /* Map the VPE to the first possible CPU */
1770 vpe->col_idx = cpumask_first(cpu_online_mask);
1771 its_send_vmapp(its, vpe, true);
1772 its_send_vinvall(its, vpe);
1773 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1774 }
1775 }
1776
1777 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1778 }
1779
its_unmap_vm(struct its_node * its,struct its_vm * vm)1780 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1781 {
1782 unsigned long flags;
1783
1784 /* Not using the ITS list? Everything is always mapped. */
1785 if (gic_requires_eager_mapping())
1786 return;
1787
1788 raw_spin_lock_irqsave(&vmovp_lock, flags);
1789
1790 if (!--vm->vlpi_count[its->list_nr]) {
1791 int i;
1792
1793 for (i = 0; i < vm->nr_vpes; i++)
1794 its_send_vmapp(its, vm->vpes[i], false);
1795 }
1796
1797 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1798 }
1799
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1800 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1801 {
1802 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1803 u32 event = its_get_event_id(d);
1804 int ret = 0;
1805
1806 if (!info->map)
1807 return -EINVAL;
1808
1809 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1810
1811 if (!its_dev->event_map.vm) {
1812 struct its_vlpi_map *maps;
1813
1814 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1815 GFP_ATOMIC);
1816 if (!maps) {
1817 ret = -ENOMEM;
1818 goto out;
1819 }
1820
1821 its_dev->event_map.vm = info->map->vm;
1822 its_dev->event_map.vlpi_maps = maps;
1823 } else if (its_dev->event_map.vm != info->map->vm) {
1824 ret = -EINVAL;
1825 goto out;
1826 }
1827
1828 /* Get our private copy of the mapping information */
1829 its_dev->event_map.vlpi_maps[event] = *info->map;
1830
1831 if (irqd_is_forwarded_to_vcpu(d)) {
1832 /* Already mapped, move it around */
1833 its_send_vmovi(its_dev, event);
1834 } else {
1835 /* Ensure all the VPEs are mapped on this ITS */
1836 its_map_vm(its_dev->its, info->map->vm);
1837
1838 /*
1839 * Flag the interrupt as forwarded so that we can
1840 * start poking the virtual property table.
1841 */
1842 irqd_set_forwarded_to_vcpu(d);
1843
1844 /* Write out the property to the prop table */
1845 lpi_write_config(d, 0xff, info->map->properties);
1846
1847 /* Drop the physical mapping */
1848 its_send_discard(its_dev, event);
1849
1850 /* and install the virtual one */
1851 its_send_vmapti(its_dev, event);
1852
1853 /* Increment the number of VLPIs */
1854 its_dev->event_map.nr_vlpis++;
1855 }
1856
1857 out:
1858 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1859 return ret;
1860 }
1861
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1862 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1863 {
1864 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1865 struct its_vlpi_map *map;
1866 int ret = 0;
1867
1868 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1869
1870 map = get_vlpi_map(d);
1871
1872 if (!its_dev->event_map.vm || !map) {
1873 ret = -EINVAL;
1874 goto out;
1875 }
1876
1877 /* Copy our mapping information to the incoming request */
1878 *info->map = *map;
1879
1880 out:
1881 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1882 return ret;
1883 }
1884
its_vlpi_unmap(struct irq_data * d)1885 static int its_vlpi_unmap(struct irq_data *d)
1886 {
1887 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1888 u32 event = its_get_event_id(d);
1889 int ret = 0;
1890
1891 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1892
1893 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1894 ret = -EINVAL;
1895 goto out;
1896 }
1897
1898 /* Drop the virtual mapping */
1899 its_send_discard(its_dev, event);
1900
1901 /* and restore the physical one */
1902 irqd_clr_forwarded_to_vcpu(d);
1903 its_send_mapti(its_dev, d->hwirq, event);
1904 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1905 LPI_PROP_ENABLED |
1906 LPI_PROP_GROUP1));
1907
1908 /* Potentially unmap the VM from this ITS */
1909 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1910
1911 /*
1912 * Drop the refcount and make the device available again if
1913 * this was the last VLPI.
1914 */
1915 if (!--its_dev->event_map.nr_vlpis) {
1916 its_dev->event_map.vm = NULL;
1917 kfree(its_dev->event_map.vlpi_maps);
1918 }
1919
1920 out:
1921 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1922 return ret;
1923 }
1924
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1925 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1926 {
1927 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1928
1929 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1930 return -EINVAL;
1931
1932 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1933 lpi_update_config(d, 0xff, info->config);
1934 else
1935 lpi_write_config(d, 0xff, info->config);
1936 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1937
1938 return 0;
1939 }
1940
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1941 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1942 {
1943 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1944 struct its_cmd_info *info = vcpu_info;
1945
1946 /* Need a v4 ITS */
1947 if (!is_v4(its_dev->its))
1948 return -EINVAL;
1949
1950 /* Unmap request? */
1951 if (!info)
1952 return its_vlpi_unmap(d);
1953
1954 switch (info->cmd_type) {
1955 case MAP_VLPI:
1956 return its_vlpi_map(d, info);
1957
1958 case GET_VLPI:
1959 return its_vlpi_get(d, info);
1960
1961 case PROP_UPDATE_VLPI:
1962 case PROP_UPDATE_AND_INV_VLPI:
1963 return its_vlpi_prop_update(d, info);
1964
1965 default:
1966 return -EINVAL;
1967 }
1968 }
1969
1970 static struct irq_chip its_irq_chip = {
1971 .name = "ITS",
1972 .irq_mask = its_mask_irq,
1973 .irq_unmask = its_unmask_irq,
1974 .irq_eoi = irq_chip_eoi_parent,
1975 .irq_set_affinity = its_set_affinity,
1976 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1977 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1978 .irq_retrigger = its_irq_retrigger,
1979 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1980 };
1981
1982
1983 /*
1984 * How we allocate LPIs:
1985 *
1986 * lpi_range_list contains ranges of LPIs that are to available to
1987 * allocate from. To allocate LPIs, just pick the first range that
1988 * fits the required allocation, and reduce it by the required
1989 * amount. Once empty, remove the range from the list.
1990 *
1991 * To free a range of LPIs, add a free range to the list, sort it and
1992 * merge the result if the new range happens to be adjacent to an
1993 * already free block.
1994 *
1995 * The consequence of the above is that allocation is cost is low, but
1996 * freeing is expensive. We assumes that freeing rarely occurs.
1997 */
1998 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1999
2000 static DEFINE_MUTEX(lpi_range_lock);
2001 static LIST_HEAD(lpi_range_list);
2002
2003 struct lpi_range {
2004 struct list_head entry;
2005 u32 base_id;
2006 u32 span;
2007 };
2008
mk_lpi_range(u32 base,u32 span)2009 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2010 {
2011 struct lpi_range *range;
2012
2013 range = kmalloc(sizeof(*range), GFP_KERNEL);
2014 if (range) {
2015 range->base_id = base;
2016 range->span = span;
2017 }
2018
2019 return range;
2020 }
2021
alloc_lpi_range(u32 nr_lpis,u32 * base)2022 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2023 {
2024 struct lpi_range *range, *tmp;
2025 int err = -ENOSPC;
2026
2027 mutex_lock(&lpi_range_lock);
2028
2029 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2030 if (range->span >= nr_lpis) {
2031 *base = range->base_id;
2032 range->base_id += nr_lpis;
2033 range->span -= nr_lpis;
2034
2035 if (range->span == 0) {
2036 list_del(&range->entry);
2037 kfree(range);
2038 }
2039
2040 err = 0;
2041 break;
2042 }
2043 }
2044
2045 mutex_unlock(&lpi_range_lock);
2046
2047 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2048 return err;
2049 }
2050
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2051 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2052 {
2053 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2054 return;
2055 if (a->base_id + a->span != b->base_id)
2056 return;
2057 b->base_id = a->base_id;
2058 b->span += a->span;
2059 list_del(&a->entry);
2060 kfree(a);
2061 }
2062
free_lpi_range(u32 base,u32 nr_lpis)2063 static int free_lpi_range(u32 base, u32 nr_lpis)
2064 {
2065 struct lpi_range *new, *old;
2066
2067 new = mk_lpi_range(base, nr_lpis);
2068 if (!new)
2069 return -ENOMEM;
2070
2071 mutex_lock(&lpi_range_lock);
2072
2073 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2074 if (old->base_id < base)
2075 break;
2076 }
2077 /*
2078 * old is the last element with ->base_id smaller than base,
2079 * so new goes right after it. If there are no elements with
2080 * ->base_id smaller than base, &old->entry ends up pointing
2081 * at the head of the list, and inserting new it the start of
2082 * the list is the right thing to do in that case as well.
2083 */
2084 list_add(&new->entry, &old->entry);
2085 /*
2086 * Now check if we can merge with the preceding and/or
2087 * following ranges.
2088 */
2089 merge_lpi_ranges(old, new);
2090 merge_lpi_ranges(new, list_next_entry(new, entry));
2091
2092 mutex_unlock(&lpi_range_lock);
2093 return 0;
2094 }
2095
its_lpi_init(u32 id_bits)2096 static int __init its_lpi_init(u32 id_bits)
2097 {
2098 u32 lpis = (1UL << id_bits) - 8192;
2099 u32 numlpis;
2100 int err;
2101
2102 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2103
2104 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2105 lpis = numlpis;
2106 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2107 lpis);
2108 }
2109
2110 /*
2111 * Initializing the allocator is just the same as freeing the
2112 * full range of LPIs.
2113 */
2114 err = free_lpi_range(8192, lpis);
2115 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2116 return err;
2117 }
2118
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2119 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2120 {
2121 unsigned long *bitmap = NULL;
2122 int err = 0;
2123
2124 do {
2125 err = alloc_lpi_range(nr_irqs, base);
2126 if (!err)
2127 break;
2128
2129 nr_irqs /= 2;
2130 } while (nr_irqs > 0);
2131
2132 if (!nr_irqs)
2133 err = -ENOSPC;
2134
2135 if (err)
2136 goto out;
2137
2138 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2139 if (!bitmap)
2140 goto out;
2141
2142 *nr_ids = nr_irqs;
2143
2144 out:
2145 if (!bitmap)
2146 *base = *nr_ids = 0;
2147
2148 return bitmap;
2149 }
2150
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2151 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2152 {
2153 WARN_ON(free_lpi_range(base, nr_ids));
2154 kfree(bitmap);
2155 }
2156
gic_reset_prop_table(void * va)2157 static void gic_reset_prop_table(void *va)
2158 {
2159 /* Priority 0xa0, Group-1, disabled */
2160 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2161
2162 /* Make sure the GIC will observe the written configuration */
2163 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2164 }
2165
its_allocate_prop_table(gfp_t gfp_flags)2166 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2167 {
2168 struct page *prop_page;
2169
2170 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2171 if (!prop_page)
2172 return NULL;
2173
2174 gic_reset_prop_table(page_address(prop_page));
2175
2176 return prop_page;
2177 }
2178
its_free_prop_table(struct page * prop_page)2179 static void its_free_prop_table(struct page *prop_page)
2180 {
2181 free_pages((unsigned long)page_address(prop_page),
2182 get_order(LPI_PROPBASE_SZ));
2183 }
2184
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2185 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2186 {
2187 phys_addr_t start, end, addr_end;
2188 u64 i;
2189
2190 /*
2191 * We don't bother checking for a kdump kernel as by
2192 * construction, the LPI tables are out of this kernel's
2193 * memory map.
2194 */
2195 if (is_kdump_kernel())
2196 return true;
2197
2198 addr_end = addr + size - 1;
2199
2200 for_each_reserved_mem_range(i, &start, &end) {
2201 if (addr >= start && addr_end <= end)
2202 return true;
2203 }
2204
2205 /* Not found, not a good sign... */
2206 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2207 &addr, &addr_end);
2208 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2209 return false;
2210 }
2211
gic_reserve_range(phys_addr_t addr,unsigned long size)2212 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2213 {
2214 if (efi_enabled(EFI_CONFIG_TABLES))
2215 return efi_mem_reserve_persistent(addr, size);
2216
2217 return 0;
2218 }
2219
its_setup_lpi_prop_table(void)2220 static int __init its_setup_lpi_prop_table(void)
2221 {
2222 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2223 u64 val;
2224
2225 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2226 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2227
2228 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2229 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2230 LPI_PROPBASE_SZ,
2231 MEMREMAP_WB);
2232 gic_reset_prop_table(gic_rdists->prop_table_va);
2233 } else {
2234 struct page *page;
2235
2236 lpi_id_bits = min_t(u32,
2237 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2238 ITS_MAX_LPI_NRBITS);
2239 page = its_allocate_prop_table(GFP_NOWAIT);
2240 if (!page) {
2241 pr_err("Failed to allocate PROPBASE\n");
2242 return -ENOMEM;
2243 }
2244
2245 gic_rdists->prop_table_pa = page_to_phys(page);
2246 gic_rdists->prop_table_va = page_address(page);
2247 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2248 LPI_PROPBASE_SZ));
2249 }
2250
2251 pr_info("GICv3: using LPI property table @%pa\n",
2252 &gic_rdists->prop_table_pa);
2253
2254 return its_lpi_init(lpi_id_bits);
2255 }
2256
2257 static const char *its_base_type_string[] = {
2258 [GITS_BASER_TYPE_DEVICE] = "Devices",
2259 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2260 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2261 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2262 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2263 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2264 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2265 };
2266
its_read_baser(struct its_node * its,struct its_baser * baser)2267 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2268 {
2269 u32 idx = baser - its->tables;
2270
2271 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2272 }
2273
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2274 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2275 u64 val)
2276 {
2277 u32 idx = baser - its->tables;
2278
2279 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2280 baser->val = its_read_baser(its, baser);
2281 }
2282
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2283 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2284 u64 cache, u64 shr, u32 order, bool indirect)
2285 {
2286 u64 val = its_read_baser(its, baser);
2287 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2288 u64 type = GITS_BASER_TYPE(val);
2289 u64 baser_phys, tmp;
2290 u32 alloc_pages, psz;
2291 struct page *page;
2292 void *base;
2293
2294 psz = baser->psz;
2295 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2296 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2297 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2298 &its->phys_base, its_base_type_string[type],
2299 alloc_pages, GITS_BASER_PAGES_MAX);
2300 alloc_pages = GITS_BASER_PAGES_MAX;
2301 order = get_order(GITS_BASER_PAGES_MAX * psz);
2302 }
2303
2304 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2305 if (!page)
2306 return -ENOMEM;
2307
2308 base = (void *)page_address(page);
2309 baser_phys = virt_to_phys(base);
2310
2311 /* Check if the physical address of the memory is above 48bits */
2312 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2313
2314 /* 52bit PA is supported only when PageSize=64K */
2315 if (psz != SZ_64K) {
2316 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2317 free_pages((unsigned long)base, order);
2318 return -ENXIO;
2319 }
2320
2321 /* Convert 52bit PA to 48bit field */
2322 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2323 }
2324
2325 retry_baser:
2326 val = (baser_phys |
2327 (type << GITS_BASER_TYPE_SHIFT) |
2328 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2329 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2330 cache |
2331 shr |
2332 GITS_BASER_VALID);
2333
2334 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2335
2336 switch (psz) {
2337 case SZ_4K:
2338 val |= GITS_BASER_PAGE_SIZE_4K;
2339 break;
2340 case SZ_16K:
2341 val |= GITS_BASER_PAGE_SIZE_16K;
2342 break;
2343 case SZ_64K:
2344 val |= GITS_BASER_PAGE_SIZE_64K;
2345 break;
2346 }
2347
2348 its_write_baser(its, baser, val);
2349 tmp = baser->val;
2350
2351 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2352 /*
2353 * Shareability didn't stick. Just use
2354 * whatever the read reported, which is likely
2355 * to be the only thing this redistributor
2356 * supports. If that's zero, make it
2357 * non-cacheable as well.
2358 */
2359 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2360 if (!shr) {
2361 cache = GITS_BASER_nC;
2362 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2363 }
2364 goto retry_baser;
2365 }
2366
2367 if (val != tmp) {
2368 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2369 &its->phys_base, its_base_type_string[type],
2370 val, tmp);
2371 free_pages((unsigned long)base, order);
2372 return -ENXIO;
2373 }
2374
2375 baser->order = order;
2376 baser->base = base;
2377 baser->psz = psz;
2378 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2379
2380 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2381 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2382 its_base_type_string[type],
2383 (unsigned long)virt_to_phys(base),
2384 indirect ? "indirect" : "flat", (int)esz,
2385 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2386
2387 return 0;
2388 }
2389
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2390 static bool its_parse_indirect_baser(struct its_node *its,
2391 struct its_baser *baser,
2392 u32 *order, u32 ids)
2393 {
2394 u64 tmp = its_read_baser(its, baser);
2395 u64 type = GITS_BASER_TYPE(tmp);
2396 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2397 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2398 u32 new_order = *order;
2399 u32 psz = baser->psz;
2400 bool indirect = false;
2401
2402 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2403 if ((esz << ids) > (psz * 2)) {
2404 /*
2405 * Find out whether hw supports a single or two-level table by
2406 * table by reading bit at offset '62' after writing '1' to it.
2407 */
2408 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2409 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2410
2411 if (indirect) {
2412 /*
2413 * The size of the lvl2 table is equal to ITS page size
2414 * which is 'psz'. For computing lvl1 table size,
2415 * subtract ID bits that sparse lvl2 table from 'ids'
2416 * which is reported by ITS hardware times lvl1 table
2417 * entry size.
2418 */
2419 ids -= ilog2(psz / (int)esz);
2420 esz = GITS_LVL1_ENTRY_SIZE;
2421 }
2422 }
2423
2424 /*
2425 * Allocate as many entries as required to fit the
2426 * range of device IDs that the ITS can grok... The ID
2427 * space being incredibly sparse, this results in a
2428 * massive waste of memory if two-level device table
2429 * feature is not supported by hardware.
2430 */
2431 new_order = max_t(u32, get_order(esz << ids), new_order);
2432 if (new_order >= MAX_ORDER) {
2433 new_order = MAX_ORDER - 1;
2434 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2435 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2436 &its->phys_base, its_base_type_string[type],
2437 device_ids(its), ids);
2438 }
2439
2440 *order = new_order;
2441
2442 return indirect;
2443 }
2444
compute_common_aff(u64 val)2445 static u32 compute_common_aff(u64 val)
2446 {
2447 u32 aff, clpiaff;
2448
2449 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2450 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2451
2452 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2453 }
2454
compute_its_aff(struct its_node * its)2455 static u32 compute_its_aff(struct its_node *its)
2456 {
2457 u64 val;
2458 u32 svpet;
2459
2460 /*
2461 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2462 * the resulting affinity. We then use that to see if this match
2463 * our own affinity.
2464 */
2465 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2466 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2467 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2468 return compute_common_aff(val);
2469 }
2470
find_sibling_its(struct its_node * cur_its)2471 static struct its_node *find_sibling_its(struct its_node *cur_its)
2472 {
2473 struct its_node *its;
2474 u32 aff;
2475
2476 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2477 return NULL;
2478
2479 aff = compute_its_aff(cur_its);
2480
2481 list_for_each_entry(its, &its_nodes, entry) {
2482 u64 baser;
2483
2484 if (!is_v4_1(its) || its == cur_its)
2485 continue;
2486
2487 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2488 continue;
2489
2490 if (aff != compute_its_aff(its))
2491 continue;
2492
2493 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2494 baser = its->tables[2].val;
2495 if (!(baser & GITS_BASER_VALID))
2496 continue;
2497
2498 return its;
2499 }
2500
2501 return NULL;
2502 }
2503
its_free_tables(struct its_node * its)2504 static void its_free_tables(struct its_node *its)
2505 {
2506 int i;
2507
2508 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2509 if (its->tables[i].base) {
2510 free_pages((unsigned long)its->tables[i].base,
2511 its->tables[i].order);
2512 its->tables[i].base = NULL;
2513 }
2514 }
2515 }
2516
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2517 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2518 {
2519 u64 psz = SZ_64K;
2520
2521 while (psz) {
2522 u64 val, gpsz;
2523
2524 val = its_read_baser(its, baser);
2525 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2526
2527 switch (psz) {
2528 case SZ_64K:
2529 gpsz = GITS_BASER_PAGE_SIZE_64K;
2530 break;
2531 case SZ_16K:
2532 gpsz = GITS_BASER_PAGE_SIZE_16K;
2533 break;
2534 case SZ_4K:
2535 default:
2536 gpsz = GITS_BASER_PAGE_SIZE_4K;
2537 break;
2538 }
2539
2540 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2541
2542 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2543 its_write_baser(its, baser, val);
2544
2545 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2546 break;
2547
2548 switch (psz) {
2549 case SZ_64K:
2550 psz = SZ_16K;
2551 break;
2552 case SZ_16K:
2553 psz = SZ_4K;
2554 break;
2555 case SZ_4K:
2556 default:
2557 return -1;
2558 }
2559 }
2560
2561 baser->psz = psz;
2562 return 0;
2563 }
2564
its_alloc_tables(struct its_node * its)2565 static int its_alloc_tables(struct its_node *its)
2566 {
2567 u64 shr = GITS_BASER_InnerShareable;
2568 u64 cache = GITS_BASER_RaWaWb;
2569 int err, i;
2570
2571 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2572 /* erratum 24313: ignore memory access type */
2573 cache = GITS_BASER_nCnB;
2574
2575 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2576 struct its_baser *baser = its->tables + i;
2577 u64 val = its_read_baser(its, baser);
2578 u64 type = GITS_BASER_TYPE(val);
2579 bool indirect = false;
2580 u32 order;
2581
2582 if (type == GITS_BASER_TYPE_NONE)
2583 continue;
2584
2585 if (its_probe_baser_psz(its, baser)) {
2586 its_free_tables(its);
2587 return -ENXIO;
2588 }
2589
2590 order = get_order(baser->psz);
2591
2592 switch (type) {
2593 case GITS_BASER_TYPE_DEVICE:
2594 indirect = its_parse_indirect_baser(its, baser, &order,
2595 device_ids(its));
2596 break;
2597
2598 case GITS_BASER_TYPE_VCPU:
2599 if (is_v4_1(its)) {
2600 struct its_node *sibling;
2601
2602 WARN_ON(i != 2);
2603 if ((sibling = find_sibling_its(its))) {
2604 *baser = sibling->tables[2];
2605 its_write_baser(its, baser, baser->val);
2606 continue;
2607 }
2608 }
2609
2610 indirect = its_parse_indirect_baser(its, baser, &order,
2611 ITS_MAX_VPEID_BITS);
2612 break;
2613 }
2614
2615 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2616 if (err < 0) {
2617 its_free_tables(its);
2618 return err;
2619 }
2620
2621 /* Update settings which will be used for next BASERn */
2622 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2623 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2624 }
2625
2626 return 0;
2627 }
2628
inherit_vpe_l1_table_from_its(void)2629 static u64 inherit_vpe_l1_table_from_its(void)
2630 {
2631 struct its_node *its;
2632 u64 val;
2633 u32 aff;
2634
2635 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2636 aff = compute_common_aff(val);
2637
2638 list_for_each_entry(its, &its_nodes, entry) {
2639 u64 baser, addr;
2640
2641 if (!is_v4_1(its))
2642 continue;
2643
2644 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2645 continue;
2646
2647 if (aff != compute_its_aff(its))
2648 continue;
2649
2650 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2651 baser = its->tables[2].val;
2652 if (!(baser & GITS_BASER_VALID))
2653 continue;
2654
2655 /* We have a winner! */
2656 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2657
2658 val = GICR_VPROPBASER_4_1_VALID;
2659 if (baser & GITS_BASER_INDIRECT)
2660 val |= GICR_VPROPBASER_4_1_INDIRECT;
2661 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2662 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2663 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2664 case GIC_PAGE_SIZE_64K:
2665 addr = GITS_BASER_ADDR_48_to_52(baser);
2666 break;
2667 default:
2668 addr = baser & GENMASK_ULL(47, 12);
2669 break;
2670 }
2671 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2672 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2673 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2674 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2675 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2676 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2677
2678 return val;
2679 }
2680
2681 return 0;
2682 }
2683
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2684 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2685 {
2686 u32 aff;
2687 u64 val;
2688 int cpu;
2689
2690 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2691 aff = compute_common_aff(val);
2692
2693 for_each_possible_cpu(cpu) {
2694 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2695
2696 if (!base || cpu == smp_processor_id())
2697 continue;
2698
2699 val = gic_read_typer(base + GICR_TYPER);
2700 if (aff != compute_common_aff(val))
2701 continue;
2702
2703 /*
2704 * At this point, we have a victim. This particular CPU
2705 * has already booted, and has an affinity that matches
2706 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2707 * Make sure we don't write the Z bit in that case.
2708 */
2709 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2710 val &= ~GICR_VPROPBASER_4_1_Z;
2711
2712 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2713 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2714
2715 return val;
2716 }
2717
2718 return 0;
2719 }
2720
allocate_vpe_l2_table(int cpu,u32 id)2721 static bool allocate_vpe_l2_table(int cpu, u32 id)
2722 {
2723 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2724 unsigned int psz, esz, idx, npg, gpsz;
2725 u64 val;
2726 struct page *page;
2727 __le64 *table;
2728
2729 if (!gic_rdists->has_rvpeid)
2730 return true;
2731
2732 /* Skip non-present CPUs */
2733 if (!base)
2734 return true;
2735
2736 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2737
2738 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2739 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2740 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2741
2742 switch (gpsz) {
2743 default:
2744 WARN_ON(1);
2745 fallthrough;
2746 case GIC_PAGE_SIZE_4K:
2747 psz = SZ_4K;
2748 break;
2749 case GIC_PAGE_SIZE_16K:
2750 psz = SZ_16K;
2751 break;
2752 case GIC_PAGE_SIZE_64K:
2753 psz = SZ_64K;
2754 break;
2755 }
2756
2757 /* Don't allow vpe_id that exceeds single, flat table limit */
2758 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2759 return (id < (npg * psz / (esz * SZ_8)));
2760
2761 /* Compute 1st level table index & check if that exceeds table limit */
2762 idx = id >> ilog2(psz / (esz * SZ_8));
2763 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2764 return false;
2765
2766 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2767
2768 /* Allocate memory for 2nd level table */
2769 if (!table[idx]) {
2770 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2771 if (!page)
2772 return false;
2773
2774 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2775 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2776 gic_flush_dcache_to_poc(page_address(page), psz);
2777
2778 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2779
2780 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2781 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2782 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2783
2784 /* Ensure updated table contents are visible to RD hardware */
2785 dsb(sy);
2786 }
2787
2788 return true;
2789 }
2790
allocate_vpe_l1_table(void)2791 static int allocate_vpe_l1_table(void)
2792 {
2793 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2794 u64 val, gpsz, npg, pa;
2795 unsigned int psz = SZ_64K;
2796 unsigned int np, epp, esz;
2797 struct page *page;
2798
2799 if (!gic_rdists->has_rvpeid)
2800 return 0;
2801
2802 /*
2803 * if VPENDBASER.Valid is set, disable any previously programmed
2804 * VPE by setting PendingLast while clearing Valid. This has the
2805 * effect of making sure no doorbell will be generated and we can
2806 * then safely clear VPROPBASER.Valid.
2807 */
2808 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2809 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2810 vlpi_base + GICR_VPENDBASER);
2811
2812 /*
2813 * If we can inherit the configuration from another RD, let's do
2814 * so. Otherwise, we have to go through the allocation process. We
2815 * assume that all RDs have the exact same requirements, as
2816 * nothing will work otherwise.
2817 */
2818 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2819 if (val & GICR_VPROPBASER_4_1_VALID)
2820 goto out;
2821
2822 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2823 if (!gic_data_rdist()->vpe_table_mask)
2824 return -ENOMEM;
2825
2826 val = inherit_vpe_l1_table_from_its();
2827 if (val & GICR_VPROPBASER_4_1_VALID)
2828 goto out;
2829
2830 /* First probe the page size */
2831 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2832 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2833 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2834 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2835 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2836
2837 switch (gpsz) {
2838 default:
2839 gpsz = GIC_PAGE_SIZE_4K;
2840 fallthrough;
2841 case GIC_PAGE_SIZE_4K:
2842 psz = SZ_4K;
2843 break;
2844 case GIC_PAGE_SIZE_16K:
2845 psz = SZ_16K;
2846 break;
2847 case GIC_PAGE_SIZE_64K:
2848 psz = SZ_64K;
2849 break;
2850 }
2851
2852 /*
2853 * Start populating the register from scratch, including RO fields
2854 * (which we want to print in debug cases...)
2855 */
2856 val = 0;
2857 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2858 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2859
2860 /* How many entries per GIC page? */
2861 esz++;
2862 epp = psz / (esz * SZ_8);
2863
2864 /*
2865 * If we need more than just a single L1 page, flag the table
2866 * as indirect and compute the number of required L1 pages.
2867 */
2868 if (epp < ITS_MAX_VPEID) {
2869 int nl2;
2870
2871 val |= GICR_VPROPBASER_4_1_INDIRECT;
2872
2873 /* Number of L2 pages required to cover the VPEID space */
2874 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2875
2876 /* Number of L1 pages to point to the L2 pages */
2877 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2878 } else {
2879 npg = 1;
2880 }
2881
2882 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2883
2884 /* Right, that's the number of CPU pages we need for L1 */
2885 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2886
2887 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2888 np, npg, psz, epp, esz);
2889 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2890 if (!page)
2891 return -ENOMEM;
2892
2893 gic_data_rdist()->vpe_l1_base = page_address(page);
2894 pa = virt_to_phys(page_address(page));
2895 WARN_ON(!IS_ALIGNED(pa, psz));
2896
2897 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2898 val |= GICR_VPROPBASER_RaWb;
2899 val |= GICR_VPROPBASER_InnerShareable;
2900 val |= GICR_VPROPBASER_4_1_Z;
2901 val |= GICR_VPROPBASER_4_1_VALID;
2902
2903 out:
2904 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2905 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2906
2907 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2908 smp_processor_id(), val,
2909 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2910
2911 return 0;
2912 }
2913
its_alloc_collections(struct its_node * its)2914 static int its_alloc_collections(struct its_node *its)
2915 {
2916 int i;
2917
2918 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2919 GFP_KERNEL);
2920 if (!its->collections)
2921 return -ENOMEM;
2922
2923 for (i = 0; i < nr_cpu_ids; i++)
2924 its->collections[i].target_address = ~0ULL;
2925
2926 return 0;
2927 }
2928
its_allocate_pending_table(gfp_t gfp_flags)2929 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2930 {
2931 struct page *pend_page;
2932
2933 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2934 get_order(LPI_PENDBASE_SZ));
2935 if (!pend_page)
2936 return NULL;
2937
2938 /* Make sure the GIC will observe the zero-ed page */
2939 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2940
2941 return pend_page;
2942 }
2943
its_free_pending_table(struct page * pt)2944 static void its_free_pending_table(struct page *pt)
2945 {
2946 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2947 }
2948
2949 /*
2950 * Booting with kdump and LPIs enabled is generally fine. Any other
2951 * case is wrong in the absence of firmware/EFI support.
2952 */
enabled_lpis_allowed(void)2953 static bool enabled_lpis_allowed(void)
2954 {
2955 phys_addr_t addr;
2956 u64 val;
2957
2958 /* Check whether the property table is in a reserved region */
2959 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2960 addr = val & GENMASK_ULL(51, 12);
2961
2962 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2963 }
2964
allocate_lpi_tables(void)2965 static int __init allocate_lpi_tables(void)
2966 {
2967 u64 val;
2968 int err, cpu;
2969
2970 /*
2971 * If LPIs are enabled while we run this from the boot CPU,
2972 * flag the RD tables as pre-allocated if the stars do align.
2973 */
2974 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2975 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2976 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2977 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2978 pr_info("GICv3: Using preallocated redistributor tables\n");
2979 }
2980
2981 err = its_setup_lpi_prop_table();
2982 if (err)
2983 return err;
2984
2985 /*
2986 * We allocate all the pending tables anyway, as we may have a
2987 * mix of RDs that have had LPIs enabled, and some that
2988 * don't. We'll free the unused ones as each CPU comes online.
2989 */
2990 for_each_possible_cpu(cpu) {
2991 struct page *pend_page;
2992
2993 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2994 if (!pend_page) {
2995 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2996 return -ENOMEM;
2997 }
2998
2999 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3000 }
3001
3002 return 0;
3003 }
3004
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3005 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3006 {
3007 u32 count = 1000000; /* 1s! */
3008 bool clean;
3009 u64 val;
3010
3011 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3012 val &= ~GICR_VPENDBASER_Valid;
3013 val &= ~clr;
3014 val |= set;
3015 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3016
3017 do {
3018 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3019 clean = !(val & GICR_VPENDBASER_Dirty);
3020 if (!clean) {
3021 count--;
3022 cpu_relax();
3023 udelay(1);
3024 }
3025 } while (!clean && count);
3026
3027 if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3028 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3029 val |= GICR_VPENDBASER_PendingLast;
3030 }
3031
3032 return val;
3033 }
3034
its_cpu_init_lpis(void)3035 static void its_cpu_init_lpis(void)
3036 {
3037 void __iomem *rbase = gic_data_rdist_rd_base();
3038 struct page *pend_page;
3039 phys_addr_t paddr;
3040 u64 val, tmp;
3041
3042 if (gic_data_rdist()->lpi_enabled)
3043 return;
3044
3045 val = readl_relaxed(rbase + GICR_CTLR);
3046 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3047 (val & GICR_CTLR_ENABLE_LPIS)) {
3048 /*
3049 * Check that we get the same property table on all
3050 * RDs. If we don't, this is hopeless.
3051 */
3052 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3053 paddr &= GENMASK_ULL(51, 12);
3054 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3055 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3056
3057 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3058 paddr &= GENMASK_ULL(51, 16);
3059
3060 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3061 its_free_pending_table(gic_data_rdist()->pend_page);
3062 gic_data_rdist()->pend_page = NULL;
3063
3064 goto out;
3065 }
3066
3067 pend_page = gic_data_rdist()->pend_page;
3068 paddr = page_to_phys(pend_page);
3069 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3070
3071 /* set PROPBASE */
3072 val = (gic_rdists->prop_table_pa |
3073 GICR_PROPBASER_InnerShareable |
3074 GICR_PROPBASER_RaWaWb |
3075 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3076
3077 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3078 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3079
3080 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3081 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3082 /*
3083 * The HW reports non-shareable, we must
3084 * remove the cacheability attributes as
3085 * well.
3086 */
3087 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3088 GICR_PROPBASER_CACHEABILITY_MASK);
3089 val |= GICR_PROPBASER_nC;
3090 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3091 }
3092 pr_info_once("GIC: using cache flushing for LPI property table\n");
3093 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3094 }
3095
3096 /* set PENDBASE */
3097 val = (page_to_phys(pend_page) |
3098 GICR_PENDBASER_InnerShareable |
3099 GICR_PENDBASER_RaWaWb);
3100
3101 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3102 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3103
3104 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3105 /*
3106 * The HW reports non-shareable, we must remove the
3107 * cacheability attributes as well.
3108 */
3109 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3110 GICR_PENDBASER_CACHEABILITY_MASK);
3111 val |= GICR_PENDBASER_nC;
3112 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3113 }
3114
3115 /* Enable LPIs */
3116 val = readl_relaxed(rbase + GICR_CTLR);
3117 val |= GICR_CTLR_ENABLE_LPIS;
3118 writel_relaxed(val, rbase + GICR_CTLR);
3119
3120 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3121 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3122
3123 /*
3124 * It's possible for CPU to receive VLPIs before it is
3125 * sheduled as a vPE, especially for the first CPU, and the
3126 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3127 * as out of range and dropped by GIC.
3128 * So we initialize IDbits to known value to avoid VLPI drop.
3129 */
3130 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3131 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3132 smp_processor_id(), val);
3133 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3134
3135 /*
3136 * Also clear Valid bit of GICR_VPENDBASER, in case some
3137 * ancient programming gets left in and has possibility of
3138 * corrupting memory.
3139 */
3140 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3141 }
3142
3143 if (allocate_vpe_l1_table()) {
3144 /*
3145 * If the allocation has failed, we're in massive trouble.
3146 * Disable direct injection, and pray that no VM was
3147 * already running...
3148 */
3149 gic_rdists->has_rvpeid = false;
3150 gic_rdists->has_vlpis = false;
3151 }
3152
3153 /* Make sure the GIC has seen the above */
3154 dsb(sy);
3155 out:
3156 gic_data_rdist()->lpi_enabled = true;
3157 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3158 smp_processor_id(),
3159 gic_data_rdist()->pend_page ? "allocated" : "reserved",
3160 &paddr);
3161 }
3162
its_cpu_init_collection(struct its_node * its)3163 static void its_cpu_init_collection(struct its_node *its)
3164 {
3165 int cpu = smp_processor_id();
3166 u64 target;
3167
3168 /* avoid cross node collections and its mapping */
3169 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3170 struct device_node *cpu_node;
3171
3172 cpu_node = of_get_cpu_node(cpu, NULL);
3173 if (its->numa_node != NUMA_NO_NODE &&
3174 its->numa_node != of_node_to_nid(cpu_node))
3175 return;
3176 }
3177
3178 /*
3179 * We now have to bind each collection to its target
3180 * redistributor.
3181 */
3182 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3183 /*
3184 * This ITS wants the physical address of the
3185 * redistributor.
3186 */
3187 target = gic_data_rdist()->phys_base;
3188 } else {
3189 /* This ITS wants a linear CPU number. */
3190 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3191 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3192 }
3193
3194 /* Perform collection mapping */
3195 its->collections[cpu].target_address = target;
3196 its->collections[cpu].col_id = cpu;
3197
3198 its_send_mapc(its, &its->collections[cpu], 1);
3199 its_send_invall(its, &its->collections[cpu]);
3200 }
3201
its_cpu_init_collections(void)3202 static void its_cpu_init_collections(void)
3203 {
3204 struct its_node *its;
3205
3206 raw_spin_lock(&its_lock);
3207
3208 list_for_each_entry(its, &its_nodes, entry)
3209 its_cpu_init_collection(its);
3210
3211 raw_spin_unlock(&its_lock);
3212 }
3213
its_find_device(struct its_node * its,u32 dev_id)3214 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3215 {
3216 struct its_device *its_dev = NULL, *tmp;
3217 unsigned long flags;
3218
3219 raw_spin_lock_irqsave(&its->lock, flags);
3220
3221 list_for_each_entry(tmp, &its->its_device_list, entry) {
3222 if (tmp->device_id == dev_id) {
3223 its_dev = tmp;
3224 break;
3225 }
3226 }
3227
3228 raw_spin_unlock_irqrestore(&its->lock, flags);
3229
3230 return its_dev;
3231 }
3232
its_get_baser(struct its_node * its,u32 type)3233 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3234 {
3235 int i;
3236
3237 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3238 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3239 return &its->tables[i];
3240 }
3241
3242 return NULL;
3243 }
3244
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3245 static bool its_alloc_table_entry(struct its_node *its,
3246 struct its_baser *baser, u32 id)
3247 {
3248 struct page *page;
3249 u32 esz, idx;
3250 __le64 *table;
3251
3252 /* Don't allow device id that exceeds single, flat table limit */
3253 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3254 if (!(baser->val & GITS_BASER_INDIRECT))
3255 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3256
3257 /* Compute 1st level table index & check if that exceeds table limit */
3258 idx = id >> ilog2(baser->psz / esz);
3259 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3260 return false;
3261
3262 table = baser->base;
3263
3264 /* Allocate memory for 2nd level table */
3265 if (!table[idx]) {
3266 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3267 get_order(baser->psz));
3268 if (!page)
3269 return false;
3270
3271 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3272 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3273 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3274
3275 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3276
3277 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3278 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3279 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3280
3281 /* Ensure updated table contents are visible to ITS hardware */
3282 dsb(sy);
3283 }
3284
3285 return true;
3286 }
3287
its_alloc_device_table(struct its_node * its,u32 dev_id)3288 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3289 {
3290 struct its_baser *baser;
3291
3292 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3293
3294 /* Don't allow device id that exceeds ITS hardware limit */
3295 if (!baser)
3296 return (ilog2(dev_id) < device_ids(its));
3297
3298 return its_alloc_table_entry(its, baser, dev_id);
3299 }
3300
its_alloc_vpe_table(u32 vpe_id)3301 static bool its_alloc_vpe_table(u32 vpe_id)
3302 {
3303 struct its_node *its;
3304 int cpu;
3305
3306 /*
3307 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3308 * could try and only do it on ITSs corresponding to devices
3309 * that have interrupts targeted at this VPE, but the
3310 * complexity becomes crazy (and you have tons of memory
3311 * anyway, right?).
3312 */
3313 list_for_each_entry(its, &its_nodes, entry) {
3314 struct its_baser *baser;
3315
3316 if (!is_v4(its))
3317 continue;
3318
3319 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3320 if (!baser)
3321 return false;
3322
3323 if (!its_alloc_table_entry(its, baser, vpe_id))
3324 return false;
3325 }
3326
3327 /* Non v4.1? No need to iterate RDs and go back early. */
3328 if (!gic_rdists->has_rvpeid)
3329 return true;
3330
3331 /*
3332 * Make sure the L2 tables are allocated for all copies of
3333 * the L1 table on *all* v4.1 RDs.
3334 */
3335 for_each_possible_cpu(cpu) {
3336 if (!allocate_vpe_l2_table(cpu, vpe_id))
3337 return false;
3338 }
3339
3340 return true;
3341 }
3342
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3343 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3344 int nvecs, bool alloc_lpis)
3345 {
3346 struct its_device *dev;
3347 unsigned long *lpi_map = NULL;
3348 unsigned long flags;
3349 u16 *col_map = NULL;
3350 void *itt;
3351 int lpi_base;
3352 int nr_lpis;
3353 int nr_ites;
3354 int sz;
3355
3356 if (!its_alloc_device_table(its, dev_id))
3357 return NULL;
3358
3359 if (WARN_ON(!is_power_of_2(nvecs)))
3360 nvecs = roundup_pow_of_two(nvecs);
3361
3362 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3363 /*
3364 * Even if the device wants a single LPI, the ITT must be
3365 * sized as a power of two (and you need at least one bit...).
3366 */
3367 nr_ites = max(2, nvecs);
3368 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3369 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3370 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3371 if (alloc_lpis) {
3372 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3373 if (lpi_map)
3374 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3375 GFP_KERNEL);
3376 } else {
3377 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3378 nr_lpis = 0;
3379 lpi_base = 0;
3380 }
3381
3382 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3383 kfree(dev);
3384 kfree(itt);
3385 kfree(lpi_map);
3386 kfree(col_map);
3387 return NULL;
3388 }
3389
3390 gic_flush_dcache_to_poc(itt, sz);
3391
3392 dev->its = its;
3393 dev->itt = itt;
3394 dev->nr_ites = nr_ites;
3395 dev->event_map.lpi_map = lpi_map;
3396 dev->event_map.col_map = col_map;
3397 dev->event_map.lpi_base = lpi_base;
3398 dev->event_map.nr_lpis = nr_lpis;
3399 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3400 dev->device_id = dev_id;
3401 INIT_LIST_HEAD(&dev->entry);
3402
3403 raw_spin_lock_irqsave(&its->lock, flags);
3404 list_add(&dev->entry, &its->its_device_list);
3405 raw_spin_unlock_irqrestore(&its->lock, flags);
3406
3407 /* Map device to its ITT */
3408 its_send_mapd(dev, 1);
3409
3410 return dev;
3411 }
3412
its_free_device(struct its_device * its_dev)3413 static void its_free_device(struct its_device *its_dev)
3414 {
3415 unsigned long flags;
3416
3417 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3418 list_del(&its_dev->entry);
3419 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3420 kfree(its_dev->event_map.col_map);
3421 kfree(its_dev->itt);
3422 kfree(its_dev);
3423 }
3424
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3425 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3426 {
3427 int idx;
3428
3429 /* Find a free LPI region in lpi_map and allocate them. */
3430 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3431 dev->event_map.nr_lpis,
3432 get_count_order(nvecs));
3433 if (idx < 0)
3434 return -ENOSPC;
3435
3436 *hwirq = dev->event_map.lpi_base + idx;
3437
3438 return 0;
3439 }
3440
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3441 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3442 int nvec, msi_alloc_info_t *info)
3443 {
3444 struct its_node *its;
3445 struct its_device *its_dev;
3446 struct msi_domain_info *msi_info;
3447 u32 dev_id;
3448 int err = 0;
3449
3450 /*
3451 * We ignore "dev" entirely, and rely on the dev_id that has
3452 * been passed via the scratchpad. This limits this domain's
3453 * usefulness to upper layers that definitely know that they
3454 * are built on top of the ITS.
3455 */
3456 dev_id = info->scratchpad[0].ul;
3457
3458 msi_info = msi_get_domain_info(domain);
3459 its = msi_info->data;
3460
3461 if (!gic_rdists->has_direct_lpi &&
3462 vpe_proxy.dev &&
3463 vpe_proxy.dev->its == its &&
3464 dev_id == vpe_proxy.dev->device_id) {
3465 /* Bad luck. Get yourself a better implementation */
3466 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3467 dev_id);
3468 return -EINVAL;
3469 }
3470
3471 mutex_lock(&its->dev_alloc_lock);
3472 its_dev = its_find_device(its, dev_id);
3473 if (its_dev) {
3474 /*
3475 * We already have seen this ID, probably through
3476 * another alias (PCI bridge of some sort). No need to
3477 * create the device.
3478 */
3479 its_dev->shared = true;
3480 pr_debug("Reusing ITT for devID %x\n", dev_id);
3481 goto out;
3482 }
3483
3484 its_dev = its_create_device(its, dev_id, nvec, true);
3485 if (!its_dev) {
3486 err = -ENOMEM;
3487 goto out;
3488 }
3489
3490 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3491 out:
3492 mutex_unlock(&its->dev_alloc_lock);
3493 info->scratchpad[0].ptr = its_dev;
3494 return err;
3495 }
3496
3497 static struct msi_domain_ops its_msi_domain_ops = {
3498 .msi_prepare = its_msi_prepare,
3499 };
3500
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3501 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3502 unsigned int virq,
3503 irq_hw_number_t hwirq)
3504 {
3505 struct irq_fwspec fwspec;
3506
3507 if (irq_domain_get_of_node(domain->parent)) {
3508 fwspec.fwnode = domain->parent->fwnode;
3509 fwspec.param_count = 3;
3510 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3511 fwspec.param[1] = hwirq;
3512 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3513 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3514 fwspec.fwnode = domain->parent->fwnode;
3515 fwspec.param_count = 2;
3516 fwspec.param[0] = hwirq;
3517 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3518 } else {
3519 return -EINVAL;
3520 }
3521
3522 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3523 }
3524
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3525 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3526 unsigned int nr_irqs, void *args)
3527 {
3528 msi_alloc_info_t *info = args;
3529 struct its_device *its_dev = info->scratchpad[0].ptr;
3530 struct its_node *its = its_dev->its;
3531 struct irq_data *irqd;
3532 irq_hw_number_t hwirq;
3533 int err;
3534 int i;
3535
3536 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3537 if (err)
3538 return err;
3539
3540 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3541 if (err)
3542 return err;
3543
3544 for (i = 0; i < nr_irqs; i++) {
3545 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3546 if (err)
3547 return err;
3548
3549 irq_domain_set_hwirq_and_chip(domain, virq + i,
3550 hwirq + i, &its_irq_chip, its_dev);
3551 irqd = irq_get_irq_data(virq + i);
3552 irqd_set_single_target(irqd);
3553 irqd_set_affinity_on_activate(irqd);
3554 pr_debug("ID:%d pID:%d vID:%d\n",
3555 (int)(hwirq + i - its_dev->event_map.lpi_base),
3556 (int)(hwirq + i), virq + i);
3557 }
3558
3559 return 0;
3560 }
3561
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3562 static int its_irq_domain_activate(struct irq_domain *domain,
3563 struct irq_data *d, bool reserve)
3564 {
3565 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3566 u32 event = its_get_event_id(d);
3567 int cpu;
3568
3569 cpu = its_select_cpu(d, cpu_online_mask);
3570 if (cpu < 0 || cpu >= nr_cpu_ids)
3571 return -EINVAL;
3572
3573 its_inc_lpi_count(d, cpu);
3574 its_dev->event_map.col_map[event] = cpu;
3575 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3576
3577 /* Map the GIC IRQ and event to the device */
3578 its_send_mapti(its_dev, d->hwirq, event);
3579 return 0;
3580 }
3581
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3582 static void its_irq_domain_deactivate(struct irq_domain *domain,
3583 struct irq_data *d)
3584 {
3585 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3586 u32 event = its_get_event_id(d);
3587
3588 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3589 /* Stop the delivery of interrupts */
3590 its_send_discard(its_dev, event);
3591 }
3592
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3593 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3594 unsigned int nr_irqs)
3595 {
3596 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3597 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3598 struct its_node *its = its_dev->its;
3599 int i;
3600
3601 bitmap_release_region(its_dev->event_map.lpi_map,
3602 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3603 get_count_order(nr_irqs));
3604
3605 for (i = 0; i < nr_irqs; i++) {
3606 struct irq_data *data = irq_domain_get_irq_data(domain,
3607 virq + i);
3608 /* Nuke the entry in the domain */
3609 irq_domain_reset_irq_data(data);
3610 }
3611
3612 mutex_lock(&its->dev_alloc_lock);
3613
3614 /*
3615 * If all interrupts have been freed, start mopping the
3616 * floor. This is conditionned on the device not being shared.
3617 */
3618 if (!its_dev->shared &&
3619 bitmap_empty(its_dev->event_map.lpi_map,
3620 its_dev->event_map.nr_lpis)) {
3621 its_lpi_free(its_dev->event_map.lpi_map,
3622 its_dev->event_map.lpi_base,
3623 its_dev->event_map.nr_lpis);
3624
3625 /* Unmap device/itt */
3626 its_send_mapd(its_dev, 0);
3627 its_free_device(its_dev);
3628 }
3629
3630 mutex_unlock(&its->dev_alloc_lock);
3631
3632 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3633 }
3634
3635 static const struct irq_domain_ops its_domain_ops = {
3636 .alloc = its_irq_domain_alloc,
3637 .free = its_irq_domain_free,
3638 .activate = its_irq_domain_activate,
3639 .deactivate = its_irq_domain_deactivate,
3640 };
3641
3642 /*
3643 * This is insane.
3644 *
3645 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3646 * likely), the only way to perform an invalidate is to use a fake
3647 * device to issue an INV command, implying that the LPI has first
3648 * been mapped to some event on that device. Since this is not exactly
3649 * cheap, we try to keep that mapping around as long as possible, and
3650 * only issue an UNMAP if we're short on available slots.
3651 *
3652 * Broken by design(tm).
3653 *
3654 * GICv4.1, on the other hand, mandates that we're able to invalidate
3655 * by writing to a MMIO register. It doesn't implement the whole of
3656 * DirectLPI, but that's good enough. And most of the time, we don't
3657 * even have to invalidate anything, as the redistributor can be told
3658 * whether to generate a doorbell or not (we thus leave it enabled,
3659 * always).
3660 */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3661 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3662 {
3663 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3664 if (gic_rdists->has_rvpeid)
3665 return;
3666
3667 /* Already unmapped? */
3668 if (vpe->vpe_proxy_event == -1)
3669 return;
3670
3671 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3672 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3673
3674 /*
3675 * We don't track empty slots at all, so let's move the
3676 * next_victim pointer if we can quickly reuse that slot
3677 * instead of nuking an existing entry. Not clear that this is
3678 * always a win though, and this might just generate a ripple
3679 * effect... Let's just hope VPEs don't migrate too often.
3680 */
3681 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3682 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3683
3684 vpe->vpe_proxy_event = -1;
3685 }
3686
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3687 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3688 {
3689 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3690 if (gic_rdists->has_rvpeid)
3691 return;
3692
3693 if (!gic_rdists->has_direct_lpi) {
3694 unsigned long flags;
3695
3696 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3697 its_vpe_db_proxy_unmap_locked(vpe);
3698 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3699 }
3700 }
3701
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3702 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3703 {
3704 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3705 if (gic_rdists->has_rvpeid)
3706 return;
3707
3708 /* Already mapped? */
3709 if (vpe->vpe_proxy_event != -1)
3710 return;
3711
3712 /* This slot was already allocated. Kick the other VPE out. */
3713 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3714 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3715
3716 /* Map the new VPE instead */
3717 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3718 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3719 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3720
3721 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3722 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3723 }
3724
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3725 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3726 {
3727 unsigned long flags;
3728 struct its_collection *target_col;
3729
3730 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3731 if (gic_rdists->has_rvpeid)
3732 return;
3733
3734 if (gic_rdists->has_direct_lpi) {
3735 void __iomem *rdbase;
3736
3737 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3738 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3739 wait_for_syncr(rdbase);
3740
3741 return;
3742 }
3743
3744 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3745
3746 its_vpe_db_proxy_map_locked(vpe);
3747
3748 target_col = &vpe_proxy.dev->its->collections[to];
3749 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3750 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3751
3752 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3753 }
3754
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3755 static int its_vpe_set_affinity(struct irq_data *d,
3756 const struct cpumask *mask_val,
3757 bool force)
3758 {
3759 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3760 int from, cpu = cpumask_first(mask_val);
3761 unsigned long flags;
3762
3763 /*
3764 * Changing affinity is mega expensive, so let's be as lazy as
3765 * we can and only do it if we really have to. Also, if mapped
3766 * into the proxy device, we need to move the doorbell
3767 * interrupt to its new location.
3768 *
3769 * Another thing is that changing the affinity of a vPE affects
3770 * *other interrupts* such as all the vLPIs that are routed to
3771 * this vPE. This means that the irq_desc lock is not enough to
3772 * protect us, and that we must ensure nobody samples vpe->col_idx
3773 * during the update, hence the lock below which must also be
3774 * taken on any vLPI handling path that evaluates vpe->col_idx.
3775 */
3776 from = vpe_to_cpuid_lock(vpe, &flags);
3777 if (from == cpu)
3778 goto out;
3779
3780 vpe->col_idx = cpu;
3781
3782 /*
3783 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3784 * is sharing its VPE table with the current one.
3785 */
3786 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3787 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3788 goto out;
3789
3790 its_send_vmovp(vpe);
3791 its_vpe_db_proxy_move(vpe, from, cpu);
3792
3793 out:
3794 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3795 vpe_to_cpuid_unlock(vpe, flags);
3796
3797 return IRQ_SET_MASK_OK_DONE;
3798 }
3799
its_wait_vpt_parse_complete(void)3800 static void its_wait_vpt_parse_complete(void)
3801 {
3802 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3803 u64 val;
3804
3805 if (!gic_rdists->has_vpend_valid_dirty)
3806 return;
3807
3808 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3809 val,
3810 !(val & GICR_VPENDBASER_Dirty),
3811 10, 500));
3812 }
3813
its_vpe_schedule(struct its_vpe * vpe)3814 static void its_vpe_schedule(struct its_vpe *vpe)
3815 {
3816 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3817 u64 val;
3818
3819 /* Schedule the VPE */
3820 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3821 GENMASK_ULL(51, 12);
3822 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3823 val |= GICR_VPROPBASER_RaWb;
3824 val |= GICR_VPROPBASER_InnerShareable;
3825 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3826
3827 val = virt_to_phys(page_address(vpe->vpt_page)) &
3828 GENMASK_ULL(51, 16);
3829 val |= GICR_VPENDBASER_RaWaWb;
3830 val |= GICR_VPENDBASER_InnerShareable;
3831 /*
3832 * There is no good way of finding out if the pending table is
3833 * empty as we can race against the doorbell interrupt very
3834 * easily. So in the end, vpe->pending_last is only an
3835 * indication that the vcpu has something pending, not one
3836 * that the pending table is empty. A good implementation
3837 * would be able to read its coarse map pretty quickly anyway,
3838 * making this a tolerable issue.
3839 */
3840 val |= GICR_VPENDBASER_PendingLast;
3841 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3842 val |= GICR_VPENDBASER_Valid;
3843 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3844
3845 its_wait_vpt_parse_complete();
3846 }
3847
its_vpe_deschedule(struct its_vpe * vpe)3848 static void its_vpe_deschedule(struct its_vpe *vpe)
3849 {
3850 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3851 u64 val;
3852
3853 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3854
3855 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3856 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3857 }
3858
its_vpe_invall(struct its_vpe * vpe)3859 static void its_vpe_invall(struct its_vpe *vpe)
3860 {
3861 struct its_node *its;
3862
3863 list_for_each_entry(its, &its_nodes, entry) {
3864 if (!is_v4(its))
3865 continue;
3866
3867 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3868 continue;
3869
3870 /*
3871 * Sending a VINVALL to a single ITS is enough, as all
3872 * we need is to reach the redistributors.
3873 */
3874 its_send_vinvall(its, vpe);
3875 return;
3876 }
3877 }
3878
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3879 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3880 {
3881 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3882 struct its_cmd_info *info = vcpu_info;
3883
3884 switch (info->cmd_type) {
3885 case SCHEDULE_VPE:
3886 its_vpe_schedule(vpe);
3887 return 0;
3888
3889 case DESCHEDULE_VPE:
3890 its_vpe_deschedule(vpe);
3891 return 0;
3892
3893 case INVALL_VPE:
3894 its_vpe_invall(vpe);
3895 return 0;
3896
3897 default:
3898 return -EINVAL;
3899 }
3900 }
3901
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3902 static void its_vpe_send_cmd(struct its_vpe *vpe,
3903 void (*cmd)(struct its_device *, u32))
3904 {
3905 unsigned long flags;
3906
3907 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3908
3909 its_vpe_db_proxy_map_locked(vpe);
3910 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3911
3912 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3913 }
3914
its_vpe_send_inv(struct irq_data * d)3915 static void its_vpe_send_inv(struct irq_data *d)
3916 {
3917 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3918
3919 if (gic_rdists->has_direct_lpi) {
3920 void __iomem *rdbase;
3921
3922 /* Target the redistributor this VPE is currently known on */
3923 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3924 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3925 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3926 wait_for_syncr(rdbase);
3927 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3928 } else {
3929 its_vpe_send_cmd(vpe, its_send_inv);
3930 }
3931 }
3932
its_vpe_mask_irq(struct irq_data * d)3933 static void its_vpe_mask_irq(struct irq_data *d)
3934 {
3935 /*
3936 * We need to unmask the LPI, which is described by the parent
3937 * irq_data. Instead of calling into the parent (which won't
3938 * exactly do the right thing, let's simply use the
3939 * parent_data pointer. Yes, I'm naughty.
3940 */
3941 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3942 its_vpe_send_inv(d);
3943 }
3944
its_vpe_unmask_irq(struct irq_data * d)3945 static void its_vpe_unmask_irq(struct irq_data *d)
3946 {
3947 /* Same hack as above... */
3948 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3949 its_vpe_send_inv(d);
3950 }
3951
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)3952 static int its_vpe_set_irqchip_state(struct irq_data *d,
3953 enum irqchip_irq_state which,
3954 bool state)
3955 {
3956 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3957
3958 if (which != IRQCHIP_STATE_PENDING)
3959 return -EINVAL;
3960
3961 if (gic_rdists->has_direct_lpi) {
3962 void __iomem *rdbase;
3963
3964 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3965 if (state) {
3966 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3967 } else {
3968 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3969 wait_for_syncr(rdbase);
3970 }
3971 } else {
3972 if (state)
3973 its_vpe_send_cmd(vpe, its_send_int);
3974 else
3975 its_vpe_send_cmd(vpe, its_send_clear);
3976 }
3977
3978 return 0;
3979 }
3980
its_vpe_retrigger(struct irq_data * d)3981 static int its_vpe_retrigger(struct irq_data *d)
3982 {
3983 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3984 }
3985
3986 static struct irq_chip its_vpe_irq_chip = {
3987 .name = "GICv4-vpe",
3988 .irq_mask = its_vpe_mask_irq,
3989 .irq_unmask = its_vpe_unmask_irq,
3990 .irq_eoi = irq_chip_eoi_parent,
3991 .irq_set_affinity = its_vpe_set_affinity,
3992 .irq_retrigger = its_vpe_retrigger,
3993 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
3994 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
3995 };
3996
find_4_1_its(void)3997 static struct its_node *find_4_1_its(void)
3998 {
3999 static struct its_node *its = NULL;
4000
4001 if (!its) {
4002 list_for_each_entry(its, &its_nodes, entry) {
4003 if (is_v4_1(its))
4004 return its;
4005 }
4006
4007 /* Oops? */
4008 its = NULL;
4009 }
4010
4011 return its;
4012 }
4013
its_vpe_4_1_send_inv(struct irq_data * d)4014 static void its_vpe_4_1_send_inv(struct irq_data *d)
4015 {
4016 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4017 struct its_node *its;
4018
4019 /*
4020 * GICv4.1 wants doorbells to be invalidated using the
4021 * INVDB command in order to be broadcast to all RDs. Send
4022 * it to the first valid ITS, and let the HW do its magic.
4023 */
4024 its = find_4_1_its();
4025 if (its)
4026 its_send_invdb(its, vpe);
4027 }
4028
its_vpe_4_1_mask_irq(struct irq_data * d)4029 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4030 {
4031 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4032 its_vpe_4_1_send_inv(d);
4033 }
4034
its_vpe_4_1_unmask_irq(struct irq_data * d)4035 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4036 {
4037 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4038 its_vpe_4_1_send_inv(d);
4039 }
4040
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4041 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4042 struct its_cmd_info *info)
4043 {
4044 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4045 u64 val = 0;
4046
4047 /* Schedule the VPE */
4048 val |= GICR_VPENDBASER_Valid;
4049 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4050 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4051 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4052
4053 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4054
4055 its_wait_vpt_parse_complete();
4056 }
4057
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4058 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4059 struct its_cmd_info *info)
4060 {
4061 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4062 u64 val;
4063
4064 if (info->req_db) {
4065 unsigned long flags;
4066
4067 /*
4068 * vPE is going to block: make the vPE non-resident with
4069 * PendingLast clear and DB set. The GIC guarantees that if
4070 * we read-back PendingLast clear, then a doorbell will be
4071 * delivered when an interrupt comes.
4072 *
4073 * Note the locking to deal with the concurrent update of
4074 * pending_last from the doorbell interrupt handler that can
4075 * run concurrently.
4076 */
4077 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4078 val = its_clear_vpend_valid(vlpi_base,
4079 GICR_VPENDBASER_PendingLast,
4080 GICR_VPENDBASER_4_1_DB);
4081 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4082 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4083 } else {
4084 /*
4085 * We're not blocking, so just make the vPE non-resident
4086 * with PendingLast set, indicating that we'll be back.
4087 */
4088 val = its_clear_vpend_valid(vlpi_base,
4089 0,
4090 GICR_VPENDBASER_PendingLast);
4091 vpe->pending_last = true;
4092 }
4093 }
4094
its_vpe_4_1_invall(struct its_vpe * vpe)4095 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4096 {
4097 void __iomem *rdbase;
4098 unsigned long flags;
4099 u64 val;
4100 int cpu;
4101
4102 val = GICR_INVALLR_V;
4103 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4104
4105 /* Target the redistributor this vPE is currently known on */
4106 cpu = vpe_to_cpuid_lock(vpe, &flags);
4107 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4108 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4109 gic_write_lpir(val, rdbase + GICR_INVALLR);
4110
4111 wait_for_syncr(rdbase);
4112 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4113 vpe_to_cpuid_unlock(vpe, flags);
4114 }
4115
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4116 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4117 {
4118 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4119 struct its_cmd_info *info = vcpu_info;
4120
4121 switch (info->cmd_type) {
4122 case SCHEDULE_VPE:
4123 its_vpe_4_1_schedule(vpe, info);
4124 return 0;
4125
4126 case DESCHEDULE_VPE:
4127 its_vpe_4_1_deschedule(vpe, info);
4128 return 0;
4129
4130 case INVALL_VPE:
4131 its_vpe_4_1_invall(vpe);
4132 return 0;
4133
4134 default:
4135 return -EINVAL;
4136 }
4137 }
4138
4139 static struct irq_chip its_vpe_4_1_irq_chip = {
4140 .name = "GICv4.1-vpe",
4141 .irq_mask = its_vpe_4_1_mask_irq,
4142 .irq_unmask = its_vpe_4_1_unmask_irq,
4143 .irq_eoi = irq_chip_eoi_parent,
4144 .irq_set_affinity = its_vpe_set_affinity,
4145 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4146 };
4147
its_configure_sgi(struct irq_data * d,bool clear)4148 static void its_configure_sgi(struct irq_data *d, bool clear)
4149 {
4150 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4151 struct its_cmd_desc desc;
4152
4153 desc.its_vsgi_cmd.vpe = vpe;
4154 desc.its_vsgi_cmd.sgi = d->hwirq;
4155 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4156 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4157 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4158 desc.its_vsgi_cmd.clear = clear;
4159
4160 /*
4161 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4162 * destination VPE is mapped there. Since we map them eagerly at
4163 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4164 */
4165 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4166 }
4167
its_sgi_mask_irq(struct irq_data * d)4168 static void its_sgi_mask_irq(struct irq_data *d)
4169 {
4170 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4171
4172 vpe->sgi_config[d->hwirq].enabled = false;
4173 its_configure_sgi(d, false);
4174 }
4175
its_sgi_unmask_irq(struct irq_data * d)4176 static void its_sgi_unmask_irq(struct irq_data *d)
4177 {
4178 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4179
4180 vpe->sgi_config[d->hwirq].enabled = true;
4181 its_configure_sgi(d, false);
4182 }
4183
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4184 static int its_sgi_set_affinity(struct irq_data *d,
4185 const struct cpumask *mask_val,
4186 bool force)
4187 {
4188 /*
4189 * There is no notion of affinity for virtual SGIs, at least
4190 * not on the host (since they can only be targetting a vPE).
4191 * Tell the kernel we've done whatever it asked for.
4192 */
4193 irq_data_update_effective_affinity(d, mask_val);
4194 return IRQ_SET_MASK_OK;
4195 }
4196
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4197 static int its_sgi_set_irqchip_state(struct irq_data *d,
4198 enum irqchip_irq_state which,
4199 bool state)
4200 {
4201 if (which != IRQCHIP_STATE_PENDING)
4202 return -EINVAL;
4203
4204 if (state) {
4205 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4206 struct its_node *its = find_4_1_its();
4207 u64 val;
4208
4209 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4210 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4211 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4212 } else {
4213 its_configure_sgi(d, true);
4214 }
4215
4216 return 0;
4217 }
4218
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4219 static int its_sgi_get_irqchip_state(struct irq_data *d,
4220 enum irqchip_irq_state which, bool *val)
4221 {
4222 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4223 void __iomem *base;
4224 unsigned long flags;
4225 u32 count = 1000000; /* 1s! */
4226 u32 status;
4227 int cpu;
4228
4229 if (which != IRQCHIP_STATE_PENDING)
4230 return -EINVAL;
4231
4232 /*
4233 * Locking galore! We can race against two different events:
4234 *
4235 * - Concurent vPE affinity change: we must make sure it cannot
4236 * happen, or we'll talk to the wrong redistributor. This is
4237 * identical to what happens with vLPIs.
4238 *
4239 * - Concurrent VSGIPENDR access: As it involves accessing two
4240 * MMIO registers, this must be made atomic one way or another.
4241 */
4242 cpu = vpe_to_cpuid_lock(vpe, &flags);
4243 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4244 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4245 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4246 do {
4247 status = readl_relaxed(base + GICR_VSGIPENDR);
4248 if (!(status & GICR_VSGIPENDR_BUSY))
4249 goto out;
4250
4251 count--;
4252 if (!count) {
4253 pr_err_ratelimited("Unable to get SGI status\n");
4254 goto out;
4255 }
4256 cpu_relax();
4257 udelay(1);
4258 } while (count);
4259
4260 out:
4261 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4262 vpe_to_cpuid_unlock(vpe, flags);
4263
4264 if (!count)
4265 return -ENXIO;
4266
4267 *val = !!(status & (1 << d->hwirq));
4268
4269 return 0;
4270 }
4271
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4272 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4273 {
4274 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4275 struct its_cmd_info *info = vcpu_info;
4276
4277 switch (info->cmd_type) {
4278 case PROP_UPDATE_VSGI:
4279 vpe->sgi_config[d->hwirq].priority = info->priority;
4280 vpe->sgi_config[d->hwirq].group = info->group;
4281 its_configure_sgi(d, false);
4282 return 0;
4283
4284 default:
4285 return -EINVAL;
4286 }
4287 }
4288
4289 static struct irq_chip its_sgi_irq_chip = {
4290 .name = "GICv4.1-sgi",
4291 .irq_mask = its_sgi_mask_irq,
4292 .irq_unmask = its_sgi_unmask_irq,
4293 .irq_set_affinity = its_sgi_set_affinity,
4294 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4295 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4296 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4297 };
4298
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4299 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4300 unsigned int virq, unsigned int nr_irqs,
4301 void *args)
4302 {
4303 struct its_vpe *vpe = args;
4304 int i;
4305
4306 /* Yes, we do want 16 SGIs */
4307 WARN_ON(nr_irqs != 16);
4308
4309 for (i = 0; i < 16; i++) {
4310 vpe->sgi_config[i].priority = 0;
4311 vpe->sgi_config[i].enabled = false;
4312 vpe->sgi_config[i].group = false;
4313
4314 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4315 &its_sgi_irq_chip, vpe);
4316 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4317 }
4318
4319 return 0;
4320 }
4321
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4322 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4323 unsigned int virq,
4324 unsigned int nr_irqs)
4325 {
4326 /* Nothing to do */
4327 }
4328
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4329 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4330 struct irq_data *d, bool reserve)
4331 {
4332 /* Write out the initial SGI configuration */
4333 its_configure_sgi(d, false);
4334 return 0;
4335 }
4336
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4337 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4338 struct irq_data *d)
4339 {
4340 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4341
4342 /*
4343 * The VSGI command is awkward:
4344 *
4345 * - To change the configuration, CLEAR must be set to false,
4346 * leaving the pending bit unchanged.
4347 * - To clear the pending bit, CLEAR must be set to true, leaving
4348 * the configuration unchanged.
4349 *
4350 * You just can't do both at once, hence the two commands below.
4351 */
4352 vpe->sgi_config[d->hwirq].enabled = false;
4353 its_configure_sgi(d, false);
4354 its_configure_sgi(d, true);
4355 }
4356
4357 static const struct irq_domain_ops its_sgi_domain_ops = {
4358 .alloc = its_sgi_irq_domain_alloc,
4359 .free = its_sgi_irq_domain_free,
4360 .activate = its_sgi_irq_domain_activate,
4361 .deactivate = its_sgi_irq_domain_deactivate,
4362 };
4363
its_vpe_id_alloc(void)4364 static int its_vpe_id_alloc(void)
4365 {
4366 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4367 }
4368
its_vpe_id_free(u16 id)4369 static void its_vpe_id_free(u16 id)
4370 {
4371 ida_simple_remove(&its_vpeid_ida, id);
4372 }
4373
its_vpe_init(struct its_vpe * vpe)4374 static int its_vpe_init(struct its_vpe *vpe)
4375 {
4376 struct page *vpt_page;
4377 int vpe_id;
4378
4379 /* Allocate vpe_id */
4380 vpe_id = its_vpe_id_alloc();
4381 if (vpe_id < 0)
4382 return vpe_id;
4383
4384 /* Allocate VPT */
4385 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4386 if (!vpt_page) {
4387 its_vpe_id_free(vpe_id);
4388 return -ENOMEM;
4389 }
4390
4391 if (!its_alloc_vpe_table(vpe_id)) {
4392 its_vpe_id_free(vpe_id);
4393 its_free_pending_table(vpt_page);
4394 return -ENOMEM;
4395 }
4396
4397 raw_spin_lock_init(&vpe->vpe_lock);
4398 vpe->vpe_id = vpe_id;
4399 vpe->vpt_page = vpt_page;
4400 if (gic_rdists->has_rvpeid)
4401 atomic_set(&vpe->vmapp_count, 0);
4402 else
4403 vpe->vpe_proxy_event = -1;
4404
4405 return 0;
4406 }
4407
its_vpe_teardown(struct its_vpe * vpe)4408 static void its_vpe_teardown(struct its_vpe *vpe)
4409 {
4410 its_vpe_db_proxy_unmap(vpe);
4411 its_vpe_id_free(vpe->vpe_id);
4412 its_free_pending_table(vpe->vpt_page);
4413 }
4414
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4415 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4416 unsigned int virq,
4417 unsigned int nr_irqs)
4418 {
4419 struct its_vm *vm = domain->host_data;
4420 int i;
4421
4422 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4423
4424 for (i = 0; i < nr_irqs; i++) {
4425 struct irq_data *data = irq_domain_get_irq_data(domain,
4426 virq + i);
4427 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4428
4429 BUG_ON(vm != vpe->its_vm);
4430
4431 clear_bit(data->hwirq, vm->db_bitmap);
4432 its_vpe_teardown(vpe);
4433 irq_domain_reset_irq_data(data);
4434 }
4435
4436 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4437 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4438 its_free_prop_table(vm->vprop_page);
4439 }
4440 }
4441
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4442 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4443 unsigned int nr_irqs, void *args)
4444 {
4445 struct irq_chip *irqchip = &its_vpe_irq_chip;
4446 struct its_vm *vm = args;
4447 unsigned long *bitmap;
4448 struct page *vprop_page;
4449 int base, nr_ids, i, err = 0;
4450
4451 BUG_ON(!vm);
4452
4453 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4454 if (!bitmap)
4455 return -ENOMEM;
4456
4457 if (nr_ids < nr_irqs) {
4458 its_lpi_free(bitmap, base, nr_ids);
4459 return -ENOMEM;
4460 }
4461
4462 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4463 if (!vprop_page) {
4464 its_lpi_free(bitmap, base, nr_ids);
4465 return -ENOMEM;
4466 }
4467
4468 vm->db_bitmap = bitmap;
4469 vm->db_lpi_base = base;
4470 vm->nr_db_lpis = nr_ids;
4471 vm->vprop_page = vprop_page;
4472
4473 if (gic_rdists->has_rvpeid)
4474 irqchip = &its_vpe_4_1_irq_chip;
4475
4476 for (i = 0; i < nr_irqs; i++) {
4477 vm->vpes[i]->vpe_db_lpi = base + i;
4478 err = its_vpe_init(vm->vpes[i]);
4479 if (err)
4480 break;
4481 err = its_irq_gic_domain_alloc(domain, virq + i,
4482 vm->vpes[i]->vpe_db_lpi);
4483 if (err)
4484 break;
4485 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4486 irqchip, vm->vpes[i]);
4487 set_bit(i, bitmap);
4488 }
4489
4490 if (err) {
4491 if (i > 0)
4492 its_vpe_irq_domain_free(domain, virq, i - 1);
4493
4494 its_lpi_free(bitmap, base, nr_ids);
4495 its_free_prop_table(vprop_page);
4496 }
4497
4498 return err;
4499 }
4500
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4501 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4502 struct irq_data *d, bool reserve)
4503 {
4504 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4505 struct its_node *its;
4506
4507 /*
4508 * If we use the list map, we issue VMAPP on demand... Unless
4509 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4510 * so that VSGIs can work.
4511 */
4512 if (!gic_requires_eager_mapping())
4513 return 0;
4514
4515 /* Map the VPE to the first possible CPU */
4516 vpe->col_idx = cpumask_first(cpu_online_mask);
4517
4518 list_for_each_entry(its, &its_nodes, entry) {
4519 if (!is_v4(its))
4520 continue;
4521
4522 its_send_vmapp(its, vpe, true);
4523 its_send_vinvall(its, vpe);
4524 }
4525
4526 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4527
4528 return 0;
4529 }
4530
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4531 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4532 struct irq_data *d)
4533 {
4534 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4535 struct its_node *its;
4536
4537 /*
4538 * If we use the list map on GICv4.0, we unmap the VPE once no
4539 * VLPIs are associated with the VM.
4540 */
4541 if (!gic_requires_eager_mapping())
4542 return;
4543
4544 list_for_each_entry(its, &its_nodes, entry) {
4545 if (!is_v4(its))
4546 continue;
4547
4548 its_send_vmapp(its, vpe, false);
4549 }
4550 }
4551
4552 static const struct irq_domain_ops its_vpe_domain_ops = {
4553 .alloc = its_vpe_irq_domain_alloc,
4554 .free = its_vpe_irq_domain_free,
4555 .activate = its_vpe_irq_domain_activate,
4556 .deactivate = its_vpe_irq_domain_deactivate,
4557 };
4558
its_force_quiescent(void __iomem * base)4559 static int its_force_quiescent(void __iomem *base)
4560 {
4561 u32 count = 1000000; /* 1s */
4562 u32 val;
4563
4564 val = readl_relaxed(base + GITS_CTLR);
4565 /*
4566 * GIC architecture specification requires the ITS to be both
4567 * disabled and quiescent for writes to GITS_BASER<n> or
4568 * GITS_CBASER to not have UNPREDICTABLE results.
4569 */
4570 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4571 return 0;
4572
4573 /* Disable the generation of all interrupts to this ITS */
4574 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4575 writel_relaxed(val, base + GITS_CTLR);
4576
4577 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4578 while (1) {
4579 val = readl_relaxed(base + GITS_CTLR);
4580 if (val & GITS_CTLR_QUIESCENT)
4581 return 0;
4582
4583 count--;
4584 if (!count)
4585 return -EBUSY;
4586
4587 cpu_relax();
4588 udelay(1);
4589 }
4590 }
4591
its_enable_quirk_cavium_22375(void * data)4592 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4593 {
4594 struct its_node *its = data;
4595
4596 /* erratum 22375: only alloc 8MB table size (20 bits) */
4597 its->typer &= ~GITS_TYPER_DEVBITS;
4598 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4599 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4600
4601 return true;
4602 }
4603
its_enable_quirk_cavium_23144(void * data)4604 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4605 {
4606 struct its_node *its = data;
4607
4608 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4609
4610 return true;
4611 }
4612
its_enable_quirk_qdf2400_e0065(void * data)4613 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4614 {
4615 struct its_node *its = data;
4616
4617 /* On QDF2400, the size of the ITE is 16Bytes */
4618 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4619 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4620
4621 return true;
4622 }
4623
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4624 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4625 {
4626 struct its_node *its = its_dev->its;
4627
4628 /*
4629 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4630 * which maps 32-bit writes targeted at a separate window of
4631 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4632 * with device ID taken from bits [device_id_bits + 1:2] of
4633 * the window offset.
4634 */
4635 return its->pre_its_base + (its_dev->device_id << 2);
4636 }
4637
its_enable_quirk_socionext_synquacer(void * data)4638 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4639 {
4640 struct its_node *its = data;
4641 u32 pre_its_window[2];
4642 u32 ids;
4643
4644 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4645 "socionext,synquacer-pre-its",
4646 pre_its_window,
4647 ARRAY_SIZE(pre_its_window))) {
4648
4649 its->pre_its_base = pre_its_window[0];
4650 its->get_msi_base = its_irq_get_msi_base_pre_its;
4651
4652 ids = ilog2(pre_its_window[1]) - 2;
4653 if (device_ids(its) > ids) {
4654 its->typer &= ~GITS_TYPER_DEVBITS;
4655 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4656 }
4657
4658 /* the pre-ITS breaks isolation, so disable MSI remapping */
4659 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4660 return true;
4661 }
4662 return false;
4663 }
4664
its_enable_quirk_hip07_161600802(void * data)4665 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4666 {
4667 struct its_node *its = data;
4668
4669 /*
4670 * Hip07 insists on using the wrong address for the VLPI
4671 * page. Trick it into doing the right thing...
4672 */
4673 its->vlpi_redist_offset = SZ_128K;
4674 return true;
4675 }
4676
4677 static const struct gic_quirk its_quirks[] = {
4678 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4679 {
4680 .desc = "ITS: Cavium errata 22375, 24313",
4681 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4682 .mask = 0xffff0fff,
4683 .init = its_enable_quirk_cavium_22375,
4684 },
4685 #endif
4686 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4687 {
4688 .desc = "ITS: Cavium erratum 23144",
4689 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4690 .mask = 0xffff0fff,
4691 .init = its_enable_quirk_cavium_23144,
4692 },
4693 #endif
4694 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4695 {
4696 .desc = "ITS: QDF2400 erratum 0065",
4697 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4698 .mask = 0xffffffff,
4699 .init = its_enable_quirk_qdf2400_e0065,
4700 },
4701 #endif
4702 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4703 {
4704 /*
4705 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4706 * implementation, but with a 'pre-ITS' added that requires
4707 * special handling in software.
4708 */
4709 .desc = "ITS: Socionext Synquacer pre-ITS",
4710 .iidr = 0x0001143b,
4711 .mask = 0xffffffff,
4712 .init = its_enable_quirk_socionext_synquacer,
4713 },
4714 #endif
4715 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4716 {
4717 .desc = "ITS: Hip07 erratum 161600802",
4718 .iidr = 0x00000004,
4719 .mask = 0xffffffff,
4720 .init = its_enable_quirk_hip07_161600802,
4721 },
4722 #endif
4723 {
4724 }
4725 };
4726
its_enable_quirks(struct its_node * its)4727 static void its_enable_quirks(struct its_node *its)
4728 {
4729 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4730
4731 gic_enable_quirks(iidr, its_quirks, its);
4732 }
4733
its_save_disable(void)4734 static int its_save_disable(void)
4735 {
4736 struct its_node *its;
4737 int err = 0;
4738
4739 raw_spin_lock(&its_lock);
4740 list_for_each_entry(its, &its_nodes, entry) {
4741 void __iomem *base;
4742
4743 base = its->base;
4744 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4745 err = its_force_quiescent(base);
4746 if (err) {
4747 pr_err("ITS@%pa: failed to quiesce: %d\n",
4748 &its->phys_base, err);
4749 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4750 goto err;
4751 }
4752
4753 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4754 }
4755
4756 err:
4757 if (err) {
4758 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4759 void __iomem *base;
4760
4761 base = its->base;
4762 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4763 }
4764 }
4765 raw_spin_unlock(&its_lock);
4766
4767 return err;
4768 }
4769
its_restore_enable(void)4770 static void its_restore_enable(void)
4771 {
4772 struct its_node *its;
4773 int ret;
4774
4775 raw_spin_lock(&its_lock);
4776 list_for_each_entry(its, &its_nodes, entry) {
4777 void __iomem *base;
4778 int i;
4779
4780 base = its->base;
4781
4782 /*
4783 * Make sure that the ITS is disabled. If it fails to quiesce,
4784 * don't restore it since writing to CBASER or BASER<n>
4785 * registers is undefined according to the GIC v3 ITS
4786 * Specification.
4787 *
4788 * Firmware resuming with the ITS enabled is terminally broken.
4789 */
4790 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4791 ret = its_force_quiescent(base);
4792 if (ret) {
4793 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4794 &its->phys_base, ret);
4795 continue;
4796 }
4797
4798 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4799
4800 /*
4801 * Writing CBASER resets CREADR to 0, so make CWRITER and
4802 * cmd_write line up with it.
4803 */
4804 its->cmd_write = its->cmd_base;
4805 gits_write_cwriter(0, base + GITS_CWRITER);
4806
4807 /* Restore GITS_BASER from the value cache. */
4808 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4809 struct its_baser *baser = &its->tables[i];
4810
4811 if (!(baser->val & GITS_BASER_VALID))
4812 continue;
4813
4814 its_write_baser(its, baser, baser->val);
4815 }
4816 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4817
4818 /*
4819 * Reinit the collection if it's stored in the ITS. This is
4820 * indicated by the col_id being less than the HCC field.
4821 * CID < HCC as specified in the GIC v3 Documentation.
4822 */
4823 if (its->collections[smp_processor_id()].col_id <
4824 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4825 its_cpu_init_collection(its);
4826 }
4827 raw_spin_unlock(&its_lock);
4828 }
4829
4830 static struct syscore_ops its_syscore_ops = {
4831 .suspend = its_save_disable,
4832 .resume = its_restore_enable,
4833 };
4834
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4835 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4836 {
4837 struct irq_domain *inner_domain;
4838 struct msi_domain_info *info;
4839
4840 info = kzalloc(sizeof(*info), GFP_KERNEL);
4841 if (!info)
4842 return -ENOMEM;
4843
4844 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4845 if (!inner_domain) {
4846 kfree(info);
4847 return -ENOMEM;
4848 }
4849
4850 inner_domain->parent = its_parent;
4851 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4852 inner_domain->flags |= its->msi_domain_flags;
4853 info->ops = &its_msi_domain_ops;
4854 info->data = its;
4855 inner_domain->host_data = info;
4856
4857 return 0;
4858 }
4859
its_init_vpe_domain(void)4860 static int its_init_vpe_domain(void)
4861 {
4862 struct its_node *its;
4863 u32 devid;
4864 int entries;
4865
4866 if (gic_rdists->has_direct_lpi) {
4867 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4868 return 0;
4869 }
4870
4871 /* Any ITS will do, even if not v4 */
4872 its = list_first_entry(&its_nodes, struct its_node, entry);
4873
4874 entries = roundup_pow_of_two(nr_cpu_ids);
4875 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4876 GFP_KERNEL);
4877 if (!vpe_proxy.vpes) {
4878 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4879 return -ENOMEM;
4880 }
4881
4882 /* Use the last possible DevID */
4883 devid = GENMASK(device_ids(its) - 1, 0);
4884 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4885 if (!vpe_proxy.dev) {
4886 kfree(vpe_proxy.vpes);
4887 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4888 return -ENOMEM;
4889 }
4890
4891 BUG_ON(entries > vpe_proxy.dev->nr_ites);
4892
4893 raw_spin_lock_init(&vpe_proxy.lock);
4894 vpe_proxy.next_victim = 0;
4895 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4896 devid, vpe_proxy.dev->nr_ites);
4897
4898 return 0;
4899 }
4900
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4901 static int __init its_compute_its_list_map(struct resource *res,
4902 void __iomem *its_base)
4903 {
4904 int its_number;
4905 u32 ctlr;
4906
4907 /*
4908 * This is assumed to be done early enough that we're
4909 * guaranteed to be single-threaded, hence no
4910 * locking. Should this change, we should address
4911 * this.
4912 */
4913 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4914 if (its_number >= GICv4_ITS_LIST_MAX) {
4915 pr_err("ITS@%pa: No ITSList entry available!\n",
4916 &res->start);
4917 return -EINVAL;
4918 }
4919
4920 ctlr = readl_relaxed(its_base + GITS_CTLR);
4921 ctlr &= ~GITS_CTLR_ITS_NUMBER;
4922 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4923 writel_relaxed(ctlr, its_base + GITS_CTLR);
4924 ctlr = readl_relaxed(its_base + GITS_CTLR);
4925 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4926 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4927 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4928 }
4929
4930 if (test_and_set_bit(its_number, &its_list_map)) {
4931 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4932 &res->start, its_number);
4933 return -EINVAL;
4934 }
4935
4936 return its_number;
4937 }
4938
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)4939 static int __init its_probe_one(struct resource *res,
4940 struct fwnode_handle *handle, int numa_node)
4941 {
4942 struct its_node *its;
4943 void __iomem *its_base;
4944 u32 val, ctlr;
4945 u64 baser, tmp, typer;
4946 struct page *page;
4947 int err;
4948
4949 its_base = ioremap(res->start, SZ_64K);
4950 if (!its_base) {
4951 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4952 return -ENOMEM;
4953 }
4954
4955 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4956 if (val != 0x30 && val != 0x40) {
4957 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4958 err = -ENODEV;
4959 goto out_unmap;
4960 }
4961
4962 err = its_force_quiescent(its_base);
4963 if (err) {
4964 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4965 goto out_unmap;
4966 }
4967
4968 pr_info("ITS %pR\n", res);
4969
4970 its = kzalloc(sizeof(*its), GFP_KERNEL);
4971 if (!its) {
4972 err = -ENOMEM;
4973 goto out_unmap;
4974 }
4975
4976 raw_spin_lock_init(&its->lock);
4977 mutex_init(&its->dev_alloc_lock);
4978 INIT_LIST_HEAD(&its->entry);
4979 INIT_LIST_HEAD(&its->its_device_list);
4980 typer = gic_read_typer(its_base + GITS_TYPER);
4981 its->typer = typer;
4982 its->base = its_base;
4983 its->phys_base = res->start;
4984 if (is_v4(its)) {
4985 if (!(typer & GITS_TYPER_VMOVP)) {
4986 err = its_compute_its_list_map(res, its_base);
4987 if (err < 0)
4988 goto out_free_its;
4989
4990 its->list_nr = err;
4991
4992 pr_info("ITS@%pa: Using ITS number %d\n",
4993 &res->start, err);
4994 } else {
4995 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
4996 }
4997
4998 if (is_v4_1(its)) {
4999 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5000
5001 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5002 if (!its->sgir_base) {
5003 err = -ENOMEM;
5004 goto out_free_its;
5005 }
5006
5007 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5008
5009 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5010 &res->start, its->mpidr, svpet);
5011 }
5012 }
5013
5014 its->numa_node = numa_node;
5015
5016 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5017 get_order(ITS_CMD_QUEUE_SZ));
5018 if (!page) {
5019 err = -ENOMEM;
5020 goto out_unmap_sgir;
5021 }
5022 its->cmd_base = (void *)page_address(page);
5023 its->cmd_write = its->cmd_base;
5024 its->fwnode_handle = handle;
5025 its->get_msi_base = its_irq_get_msi_base;
5026 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5027
5028 its_enable_quirks(its);
5029
5030 err = its_alloc_tables(its);
5031 if (err)
5032 goto out_free_cmd;
5033
5034 err = its_alloc_collections(its);
5035 if (err)
5036 goto out_free_tables;
5037
5038 baser = (virt_to_phys(its->cmd_base) |
5039 GITS_CBASER_RaWaWb |
5040 GITS_CBASER_InnerShareable |
5041 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5042 GITS_CBASER_VALID);
5043
5044 gits_write_cbaser(baser, its->base + GITS_CBASER);
5045 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5046
5047 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5048 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5049 /*
5050 * The HW reports non-shareable, we must
5051 * remove the cacheability attributes as
5052 * well.
5053 */
5054 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5055 GITS_CBASER_CACHEABILITY_MASK);
5056 baser |= GITS_CBASER_nC;
5057 gits_write_cbaser(baser, its->base + GITS_CBASER);
5058 }
5059 pr_info("ITS: using cache flushing for cmd queue\n");
5060 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5061 }
5062
5063 gits_write_cwriter(0, its->base + GITS_CWRITER);
5064 ctlr = readl_relaxed(its->base + GITS_CTLR);
5065 ctlr |= GITS_CTLR_ENABLE;
5066 if (is_v4(its))
5067 ctlr |= GITS_CTLR_ImDe;
5068 writel_relaxed(ctlr, its->base + GITS_CTLR);
5069
5070 err = its_init_domain(handle, its);
5071 if (err)
5072 goto out_free_tables;
5073
5074 raw_spin_lock(&its_lock);
5075 list_add(&its->entry, &its_nodes);
5076 raw_spin_unlock(&its_lock);
5077
5078 return 0;
5079
5080 out_free_tables:
5081 its_free_tables(its);
5082 out_free_cmd:
5083 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5084 out_unmap_sgir:
5085 if (its->sgir_base)
5086 iounmap(its->sgir_base);
5087 out_free_its:
5088 kfree(its);
5089 out_unmap:
5090 iounmap(its_base);
5091 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5092 return err;
5093 }
5094
gic_rdists_supports_plpis(void)5095 static bool gic_rdists_supports_plpis(void)
5096 {
5097 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5098 }
5099
redist_disable_lpis(void)5100 static int redist_disable_lpis(void)
5101 {
5102 void __iomem *rbase = gic_data_rdist_rd_base();
5103 u64 timeout = USEC_PER_SEC;
5104 u64 val;
5105
5106 if (!gic_rdists_supports_plpis()) {
5107 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5108 return -ENXIO;
5109 }
5110
5111 val = readl_relaxed(rbase + GICR_CTLR);
5112 if (!(val & GICR_CTLR_ENABLE_LPIS))
5113 return 0;
5114
5115 /*
5116 * If coming via a CPU hotplug event, we don't need to disable
5117 * LPIs before trying to re-enable them. They are already
5118 * configured and all is well in the world.
5119 *
5120 * If running with preallocated tables, there is nothing to do.
5121 */
5122 if (gic_data_rdist()->lpi_enabled ||
5123 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5124 return 0;
5125
5126 /*
5127 * From that point on, we only try to do some damage control.
5128 */
5129 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5130 smp_processor_id());
5131 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5132
5133 /* Disable LPIs */
5134 val &= ~GICR_CTLR_ENABLE_LPIS;
5135 writel_relaxed(val, rbase + GICR_CTLR);
5136
5137 /* Make sure any change to GICR_CTLR is observable by the GIC */
5138 dsb(sy);
5139
5140 /*
5141 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5142 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5143 * Error out if we time out waiting for RWP to clear.
5144 */
5145 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5146 if (!timeout) {
5147 pr_err("CPU%d: Timeout while disabling LPIs\n",
5148 smp_processor_id());
5149 return -ETIMEDOUT;
5150 }
5151 udelay(1);
5152 timeout--;
5153 }
5154
5155 /*
5156 * After it has been written to 1, it is IMPLEMENTATION
5157 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5158 * cleared to 0. Error out if clearing the bit failed.
5159 */
5160 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5161 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5162 return -EBUSY;
5163 }
5164
5165 return 0;
5166 }
5167
its_cpu_init(void)5168 int its_cpu_init(void)
5169 {
5170 if (!list_empty(&its_nodes)) {
5171 int ret;
5172
5173 ret = redist_disable_lpis();
5174 if (ret)
5175 return ret;
5176
5177 its_cpu_init_lpis();
5178 its_cpu_init_collections();
5179 }
5180
5181 return 0;
5182 }
5183
5184 static const struct of_device_id its_device_id[] = {
5185 { .compatible = "arm,gic-v3-its", },
5186 {},
5187 };
5188
its_of_probe(struct device_node * node)5189 static int __init its_of_probe(struct device_node *node)
5190 {
5191 struct device_node *np;
5192 struct resource res;
5193
5194 for (np = of_find_matching_node(node, its_device_id); np;
5195 np = of_find_matching_node(np, its_device_id)) {
5196 if (!of_device_is_available(np))
5197 continue;
5198 if (!of_property_read_bool(np, "msi-controller")) {
5199 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5200 np);
5201 continue;
5202 }
5203
5204 if (of_address_to_resource(np, 0, &res)) {
5205 pr_warn("%pOF: no regs?\n", np);
5206 continue;
5207 }
5208
5209 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5210 }
5211 return 0;
5212 }
5213
5214 #ifdef CONFIG_ACPI
5215
5216 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5217
5218 #ifdef CONFIG_ACPI_NUMA
5219 struct its_srat_map {
5220 /* numa node id */
5221 u32 numa_node;
5222 /* GIC ITS ID */
5223 u32 its_id;
5224 };
5225
5226 static struct its_srat_map *its_srat_maps __initdata;
5227 static int its_in_srat __initdata;
5228
acpi_get_its_numa_node(u32 its_id)5229 static int __init acpi_get_its_numa_node(u32 its_id)
5230 {
5231 int i;
5232
5233 for (i = 0; i < its_in_srat; i++) {
5234 if (its_id == its_srat_maps[i].its_id)
5235 return its_srat_maps[i].numa_node;
5236 }
5237 return NUMA_NO_NODE;
5238 }
5239
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5240 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5241 const unsigned long end)
5242 {
5243 return 0;
5244 }
5245
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5246 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5247 const unsigned long end)
5248 {
5249 int node;
5250 struct acpi_srat_gic_its_affinity *its_affinity;
5251
5252 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5253 if (!its_affinity)
5254 return -EINVAL;
5255
5256 if (its_affinity->header.length < sizeof(*its_affinity)) {
5257 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5258 its_affinity->header.length);
5259 return -EINVAL;
5260 }
5261
5262 /*
5263 * Note that in theory a new proximity node could be created by this
5264 * entry as it is an SRAT resource allocation structure.
5265 * We do not currently support doing so.
5266 */
5267 node = pxm_to_node(its_affinity->proximity_domain);
5268
5269 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5270 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5271 return 0;
5272 }
5273
5274 its_srat_maps[its_in_srat].numa_node = node;
5275 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5276 its_in_srat++;
5277 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5278 its_affinity->proximity_domain, its_affinity->its_id, node);
5279
5280 return 0;
5281 }
5282
acpi_table_parse_srat_its(void)5283 static void __init acpi_table_parse_srat_its(void)
5284 {
5285 int count;
5286
5287 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5288 sizeof(struct acpi_table_srat),
5289 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5290 gic_acpi_match_srat_its, 0);
5291 if (count <= 0)
5292 return;
5293
5294 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5295 GFP_KERNEL);
5296 if (!its_srat_maps) {
5297 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5298 return;
5299 }
5300
5301 acpi_table_parse_entries(ACPI_SIG_SRAT,
5302 sizeof(struct acpi_table_srat),
5303 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5304 gic_acpi_parse_srat_its, 0);
5305 }
5306
5307 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5308 static void __init acpi_its_srat_maps_free(void)
5309 {
5310 kfree(its_srat_maps);
5311 }
5312 #else
acpi_table_parse_srat_its(void)5313 static void __init acpi_table_parse_srat_its(void) { }
acpi_get_its_numa_node(u32 its_id)5314 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5315 static void __init acpi_its_srat_maps_free(void) { }
5316 #endif
5317
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5318 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5319 const unsigned long end)
5320 {
5321 struct acpi_madt_generic_translator *its_entry;
5322 struct fwnode_handle *dom_handle;
5323 struct resource res;
5324 int err;
5325
5326 its_entry = (struct acpi_madt_generic_translator *)header;
5327 memset(&res, 0, sizeof(res));
5328 res.start = its_entry->base_address;
5329 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5330 res.flags = IORESOURCE_MEM;
5331
5332 dom_handle = irq_domain_alloc_fwnode(&res.start);
5333 if (!dom_handle) {
5334 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5335 &res.start);
5336 return -ENOMEM;
5337 }
5338
5339 err = iort_register_domain_token(its_entry->translation_id, res.start,
5340 dom_handle);
5341 if (err) {
5342 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5343 &res.start, its_entry->translation_id);
5344 goto dom_err;
5345 }
5346
5347 err = its_probe_one(&res, dom_handle,
5348 acpi_get_its_numa_node(its_entry->translation_id));
5349 if (!err)
5350 return 0;
5351
5352 iort_deregister_domain_token(its_entry->translation_id);
5353 dom_err:
5354 irq_domain_free_fwnode(dom_handle);
5355 return err;
5356 }
5357
its_acpi_probe(void)5358 static void __init its_acpi_probe(void)
5359 {
5360 acpi_table_parse_srat_its();
5361 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5362 gic_acpi_parse_madt_its, 0);
5363 acpi_its_srat_maps_free();
5364 }
5365 #else
its_acpi_probe(void)5366 static void __init its_acpi_probe(void) { }
5367 #endif
5368
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5369 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5370 struct irq_domain *parent_domain)
5371 {
5372 struct device_node *of_node;
5373 struct its_node *its;
5374 bool has_v4 = false;
5375 bool has_v4_1 = false;
5376 int err;
5377
5378 gic_rdists = rdists;
5379
5380 its_parent = parent_domain;
5381 of_node = to_of_node(handle);
5382 if (of_node)
5383 its_of_probe(of_node);
5384 else
5385 its_acpi_probe();
5386
5387 if (list_empty(&its_nodes)) {
5388 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5389 return -ENXIO;
5390 }
5391
5392 err = allocate_lpi_tables();
5393 if (err)
5394 return err;
5395
5396 list_for_each_entry(its, &its_nodes, entry) {
5397 has_v4 |= is_v4(its);
5398 has_v4_1 |= is_v4_1(its);
5399 }
5400
5401 /* Don't bother with inconsistent systems */
5402 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5403 rdists->has_rvpeid = false;
5404
5405 if (has_v4 & rdists->has_vlpis) {
5406 const struct irq_domain_ops *sgi_ops;
5407
5408 if (has_v4_1)
5409 sgi_ops = &its_sgi_domain_ops;
5410 else
5411 sgi_ops = NULL;
5412
5413 if (its_init_vpe_domain() ||
5414 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5415 rdists->has_vlpis = false;
5416 pr_err("ITS: Disabling GICv4 support\n");
5417 }
5418 }
5419
5420 register_syscore_ops(&its_syscore_ops);
5421
5422 return 0;
5423 }
5424