1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "export.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "locking.h"
37 #include "inode-map.h"
38 #include "backref.h"
39 #include "rcu-string.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
50
51 #ifdef CONFIG_64BIT
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53 * structures are incorrect, as the timespec structure from userspace
54 * is 4 bytes too small. We define these alternatives here to teach
55 * the kernel about the 32-bit struct packing.
56 */
57 struct btrfs_ioctl_timespec_32 {
58 __u64 sec;
59 __u32 nsec;
60 } __attribute__ ((__packed__));
61
62 struct btrfs_ioctl_received_subvol_args_32 {
63 char uuid[BTRFS_UUID_SIZE]; /* in */
64 __u64 stransid; /* in */
65 __u64 rtransid; /* out */
66 struct btrfs_ioctl_timespec_32 stime; /* in */
67 struct btrfs_ioctl_timespec_32 rtime; /* out */
68 __u64 flags; /* in */
69 __u64 reserved[16]; /* in */
70 } __attribute__ ((__packed__));
71
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 struct btrfs_ioctl_received_subvol_args_32)
74 #endif
75
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 __s64 send_fd; /* in */
79 __u64 clone_sources_count; /* in */
80 compat_uptr_t clone_sources; /* in */
81 __u64 parent_root; /* in */
82 __u64 flags; /* in */
83 __u64 reserved[4]; /* in */
84 } __attribute__ ((__packed__));
85
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 struct btrfs_ioctl_send_args_32)
88 #endif
89
90 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 unsigned int flags)
93 {
94 if (S_ISDIR(inode->i_mode))
95 return flags;
96 else if (S_ISREG(inode->i_mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101
102 /*
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104 * ioctl.
105 */
btrfs_inode_flags_to_fsflags(unsigned int flags)106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 unsigned int iflags = 0;
109
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
124
125 if (flags & BTRFS_INODE_NOCOMPRESS)
126 iflags |= FS_NOCOMP_FL;
127 else if (flags & BTRFS_INODE_COMPRESS)
128 iflags |= FS_COMPR_FL;
129
130 return iflags;
131 }
132
133 /*
134 * Update inode->i_flags based on the btrfs internal flags.
135 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 struct btrfs_inode *binode = BTRFS_I(inode);
139 unsigned int new_fl = 0;
140
141 if (binode->flags & BTRFS_INODE_SYNC)
142 new_fl |= S_SYNC;
143 if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (binode->flags & BTRFS_INODE_APPEND)
146 new_fl |= S_APPEND;
147 if (binode->flags & BTRFS_INODE_NOATIME)
148 new_fl |= S_NOATIME;
149 if (binode->flags & BTRFS_INODE_DIRSYNC)
150 new_fl |= S_DIRSYNC;
151
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 new_fl);
155 }
156
btrfs_ioctl_getflags(struct file * file,void __user * arg)157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161
162 if (copy_to_user(arg, &flags, sizeof(flags)))
163 return -EFAULT;
164 return 0;
165 }
166
167 /*
168 * Check if @flags are a supported and valid set of FS_*_FL flags and that
169 * the old and new flags are not conflicting
170 */
check_fsflags(unsigned int old_flags,unsigned int flags)171 static int check_fsflags(unsigned int old_flags, unsigned int flags)
172 {
173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 FS_NOATIME_FL | FS_NODUMP_FL | \
175 FS_SYNC_FL | FS_DIRSYNC_FL | \
176 FS_NOCOMP_FL | FS_COMPR_FL |
177 FS_NOCOW_FL))
178 return -EOPNOTSUPP;
179
180 /* COMPR and NOCOMP on new/old are valid */
181 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
182 return -EINVAL;
183
184 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
185 return -EINVAL;
186
187 /* NOCOW and compression options are mutually exclusive */
188 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
189 return -EINVAL;
190 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
191 return -EINVAL;
192
193 return 0;
194 }
195
btrfs_ioctl_setflags(struct file * file,void __user * arg)196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
197 {
198 struct inode *inode = file_inode(file);
199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
200 struct btrfs_inode *binode = BTRFS_I(inode);
201 struct btrfs_root *root = binode->root;
202 struct btrfs_trans_handle *trans;
203 unsigned int fsflags, old_fsflags;
204 int ret;
205 const char *comp = NULL;
206 u32 binode_flags;
207
208 if (!inode_owner_or_capable(inode))
209 return -EPERM;
210
211 if (btrfs_root_readonly(root))
212 return -EROFS;
213
214 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
215 return -EFAULT;
216
217 ret = mnt_want_write_file(file);
218 if (ret)
219 return ret;
220
221 inode_lock(inode);
222 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
223 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
224
225 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
226 if (ret)
227 goto out_unlock;
228
229 ret = check_fsflags(old_fsflags, fsflags);
230 if (ret)
231 goto out_unlock;
232
233 binode_flags = binode->flags;
234 if (fsflags & FS_SYNC_FL)
235 binode_flags |= BTRFS_INODE_SYNC;
236 else
237 binode_flags &= ~BTRFS_INODE_SYNC;
238 if (fsflags & FS_IMMUTABLE_FL)
239 binode_flags |= BTRFS_INODE_IMMUTABLE;
240 else
241 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
242 if (fsflags & FS_APPEND_FL)
243 binode_flags |= BTRFS_INODE_APPEND;
244 else
245 binode_flags &= ~BTRFS_INODE_APPEND;
246 if (fsflags & FS_NODUMP_FL)
247 binode_flags |= BTRFS_INODE_NODUMP;
248 else
249 binode_flags &= ~BTRFS_INODE_NODUMP;
250 if (fsflags & FS_NOATIME_FL)
251 binode_flags |= BTRFS_INODE_NOATIME;
252 else
253 binode_flags &= ~BTRFS_INODE_NOATIME;
254 if (fsflags & FS_DIRSYNC_FL)
255 binode_flags |= BTRFS_INODE_DIRSYNC;
256 else
257 binode_flags &= ~BTRFS_INODE_DIRSYNC;
258 if (fsflags & FS_NOCOW_FL) {
259 if (S_ISREG(inode->i_mode)) {
260 /*
261 * It's safe to turn csums off here, no extents exist.
262 * Otherwise we want the flag to reflect the real COW
263 * status of the file and will not set it.
264 */
265 if (inode->i_size == 0)
266 binode_flags |= BTRFS_INODE_NODATACOW |
267 BTRFS_INODE_NODATASUM;
268 } else {
269 binode_flags |= BTRFS_INODE_NODATACOW;
270 }
271 } else {
272 /*
273 * Revert back under same assumptions as above
274 */
275 if (S_ISREG(inode->i_mode)) {
276 if (inode->i_size == 0)
277 binode_flags &= ~(BTRFS_INODE_NODATACOW |
278 BTRFS_INODE_NODATASUM);
279 } else {
280 binode_flags &= ~BTRFS_INODE_NODATACOW;
281 }
282 }
283
284 /*
285 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
286 * flag may be changed automatically if compression code won't make
287 * things smaller.
288 */
289 if (fsflags & FS_NOCOMP_FL) {
290 binode_flags &= ~BTRFS_INODE_COMPRESS;
291 binode_flags |= BTRFS_INODE_NOCOMPRESS;
292 } else if (fsflags & FS_COMPR_FL) {
293
294 if (IS_SWAPFILE(inode)) {
295 ret = -ETXTBSY;
296 goto out_unlock;
297 }
298
299 binode_flags |= BTRFS_INODE_COMPRESS;
300 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
301
302 comp = btrfs_compress_type2str(fs_info->compress_type);
303 if (!comp || comp[0] == 0)
304 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
305 } else {
306 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
307 }
308
309 /*
310 * 1 for inode item
311 * 2 for properties
312 */
313 trans = btrfs_start_transaction(root, 3);
314 if (IS_ERR(trans)) {
315 ret = PTR_ERR(trans);
316 goto out_unlock;
317 }
318
319 if (comp) {
320 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
321 strlen(comp), 0);
322 if (ret) {
323 btrfs_abort_transaction(trans, ret);
324 goto out_end_trans;
325 }
326 } else {
327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
328 0, 0);
329 if (ret && ret != -ENODATA) {
330 btrfs_abort_transaction(trans, ret);
331 goto out_end_trans;
332 }
333 }
334
335 binode->flags = binode_flags;
336 btrfs_sync_inode_flags_to_i_flags(inode);
337 inode_inc_iversion(inode);
338 inode->i_ctime = current_time(inode);
339 ret = btrfs_update_inode(trans, root, inode);
340
341 out_end_trans:
342 btrfs_end_transaction(trans);
343 out_unlock:
344 inode_unlock(inode);
345 mnt_drop_write_file(file);
346 return ret;
347 }
348
349 /*
350 * Translate btrfs internal inode flags to xflags as expected by the
351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
352 * silently dropped.
353 */
btrfs_inode_flags_to_xflags(unsigned int flags)354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
355 {
356 unsigned int xflags = 0;
357
358 if (flags & BTRFS_INODE_APPEND)
359 xflags |= FS_XFLAG_APPEND;
360 if (flags & BTRFS_INODE_IMMUTABLE)
361 xflags |= FS_XFLAG_IMMUTABLE;
362 if (flags & BTRFS_INODE_NOATIME)
363 xflags |= FS_XFLAG_NOATIME;
364 if (flags & BTRFS_INODE_NODUMP)
365 xflags |= FS_XFLAG_NODUMP;
366 if (flags & BTRFS_INODE_SYNC)
367 xflags |= FS_XFLAG_SYNC;
368
369 return xflags;
370 }
371
372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
check_xflags(unsigned int flags)373 static int check_xflags(unsigned int flags)
374 {
375 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
376 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
377 return -EOPNOTSUPP;
378 return 0;
379 }
380
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)381 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
382 enum btrfs_exclusive_operation type)
383 {
384 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
385 }
386
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)387 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
388 {
389 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
390 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
391 }
392
393 /*
394 * Set the xflags from the internal inode flags. The remaining items of fsxattr
395 * are zeroed.
396 */
btrfs_ioctl_fsgetxattr(struct file * file,void __user * arg)397 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
398 {
399 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
400 struct fsxattr fa;
401
402 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
403 if (copy_to_user(arg, &fa, sizeof(fa)))
404 return -EFAULT;
405
406 return 0;
407 }
408
btrfs_ioctl_fssetxattr(struct file * file,void __user * arg)409 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
410 {
411 struct inode *inode = file_inode(file);
412 struct btrfs_inode *binode = BTRFS_I(inode);
413 struct btrfs_root *root = binode->root;
414 struct btrfs_trans_handle *trans;
415 struct fsxattr fa, old_fa;
416 unsigned old_flags;
417 unsigned old_i_flags;
418 int ret = 0;
419
420 if (!inode_owner_or_capable(inode))
421 return -EPERM;
422
423 if (btrfs_root_readonly(root))
424 return -EROFS;
425
426 if (copy_from_user(&fa, arg, sizeof(fa)))
427 return -EFAULT;
428
429 ret = check_xflags(fa.fsx_xflags);
430 if (ret)
431 return ret;
432
433 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
434 return -EOPNOTSUPP;
435
436 ret = mnt_want_write_file(file);
437 if (ret)
438 return ret;
439
440 inode_lock(inode);
441
442 old_flags = binode->flags;
443 old_i_flags = inode->i_flags;
444
445 simple_fill_fsxattr(&old_fa,
446 btrfs_inode_flags_to_xflags(binode->flags));
447 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
448 if (ret)
449 goto out_unlock;
450
451 if (fa.fsx_xflags & FS_XFLAG_SYNC)
452 binode->flags |= BTRFS_INODE_SYNC;
453 else
454 binode->flags &= ~BTRFS_INODE_SYNC;
455 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
456 binode->flags |= BTRFS_INODE_IMMUTABLE;
457 else
458 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
459 if (fa.fsx_xflags & FS_XFLAG_APPEND)
460 binode->flags |= BTRFS_INODE_APPEND;
461 else
462 binode->flags &= ~BTRFS_INODE_APPEND;
463 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
464 binode->flags |= BTRFS_INODE_NODUMP;
465 else
466 binode->flags &= ~BTRFS_INODE_NODUMP;
467 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
468 binode->flags |= BTRFS_INODE_NOATIME;
469 else
470 binode->flags &= ~BTRFS_INODE_NOATIME;
471
472 /* 1 item for the inode */
473 trans = btrfs_start_transaction(root, 1);
474 if (IS_ERR(trans)) {
475 ret = PTR_ERR(trans);
476 goto out_unlock;
477 }
478
479 btrfs_sync_inode_flags_to_i_flags(inode);
480 inode_inc_iversion(inode);
481 inode->i_ctime = current_time(inode);
482 ret = btrfs_update_inode(trans, root, inode);
483
484 btrfs_end_transaction(trans);
485
486 out_unlock:
487 if (ret) {
488 binode->flags = old_flags;
489 inode->i_flags = old_i_flags;
490 }
491
492 inode_unlock(inode);
493 mnt_drop_write_file(file);
494
495 return ret;
496 }
497
btrfs_ioctl_getversion(struct file * file,int __user * arg)498 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
499 {
500 struct inode *inode = file_inode(file);
501
502 return put_user(inode->i_generation, arg);
503 }
504
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)505 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
506 void __user *arg)
507 {
508 struct btrfs_device *device;
509 struct request_queue *q;
510 struct fstrim_range range;
511 u64 minlen = ULLONG_MAX;
512 u64 num_devices = 0;
513 int ret;
514
515 if (!capable(CAP_SYS_ADMIN))
516 return -EPERM;
517
518 /*
519 * If the fs is mounted with nologreplay, which requires it to be
520 * mounted in RO mode as well, we can not allow discard on free space
521 * inside block groups, because log trees refer to extents that are not
522 * pinned in a block group's free space cache (pinning the extents is
523 * precisely the first phase of replaying a log tree).
524 */
525 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
526 return -EROFS;
527
528 rcu_read_lock();
529 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
530 dev_list) {
531 if (!device->bdev)
532 continue;
533 q = bdev_get_queue(device->bdev);
534 if (blk_queue_discard(q)) {
535 num_devices++;
536 minlen = min_t(u64, q->limits.discard_granularity,
537 minlen);
538 }
539 }
540 rcu_read_unlock();
541
542 if (!num_devices)
543 return -EOPNOTSUPP;
544 if (copy_from_user(&range, arg, sizeof(range)))
545 return -EFAULT;
546
547 /*
548 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
549 * block group is in the logical address space, which can be any
550 * sectorsize aligned bytenr in the range [0, U64_MAX].
551 */
552 if (range.len < fs_info->sb->s_blocksize)
553 return -EINVAL;
554
555 range.minlen = max(range.minlen, minlen);
556 ret = btrfs_trim_fs(fs_info, &range);
557 if (ret < 0)
558 return ret;
559
560 if (copy_to_user(arg, &range, sizeof(range)))
561 return -EFAULT;
562
563 return 0;
564 }
565
btrfs_is_empty_uuid(u8 * uuid)566 int __pure btrfs_is_empty_uuid(u8 *uuid)
567 {
568 int i;
569
570 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
571 if (uuid[i])
572 return 0;
573 }
574 return 1;
575 }
576
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,struct btrfs_qgroup_inherit * inherit)577 static noinline int create_subvol(struct inode *dir,
578 struct dentry *dentry,
579 const char *name, int namelen,
580 struct btrfs_qgroup_inherit *inherit)
581 {
582 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
583 struct btrfs_trans_handle *trans;
584 struct btrfs_key key;
585 struct btrfs_root_item *root_item;
586 struct btrfs_inode_item *inode_item;
587 struct extent_buffer *leaf;
588 struct btrfs_root *root = BTRFS_I(dir)->root;
589 struct btrfs_root *new_root;
590 struct btrfs_block_rsv block_rsv;
591 struct timespec64 cur_time = current_time(dir);
592 struct inode *inode;
593 int ret;
594 int err;
595 dev_t anon_dev = 0;
596 u64 objectid;
597 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
598 u64 index = 0;
599
600 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
601 if (!root_item)
602 return -ENOMEM;
603
604 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
605 if (ret)
606 goto fail_free;
607
608 ret = get_anon_bdev(&anon_dev);
609 if (ret < 0)
610 goto fail_free;
611
612 /*
613 * Don't create subvolume whose level is not zero. Or qgroup will be
614 * screwed up since it assumes subvolume qgroup's level to be 0.
615 */
616 if (btrfs_qgroup_level(objectid)) {
617 ret = -ENOSPC;
618 goto fail_free;
619 }
620
621 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
622 /*
623 * The same as the snapshot creation, please see the comment
624 * of create_snapshot().
625 */
626 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
627 if (ret)
628 goto fail_free;
629
630 trans = btrfs_start_transaction(root, 0);
631 if (IS_ERR(trans)) {
632 ret = PTR_ERR(trans);
633 btrfs_subvolume_release_metadata(root, &block_rsv);
634 goto fail_free;
635 }
636 trans->block_rsv = &block_rsv;
637 trans->bytes_reserved = block_rsv.size;
638
639 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
640 if (ret)
641 goto fail;
642
643 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
644 BTRFS_NESTING_NORMAL);
645 if (IS_ERR(leaf)) {
646 ret = PTR_ERR(leaf);
647 goto fail;
648 }
649
650 btrfs_mark_buffer_dirty(leaf);
651
652 inode_item = &root_item->inode;
653 btrfs_set_stack_inode_generation(inode_item, 1);
654 btrfs_set_stack_inode_size(inode_item, 3);
655 btrfs_set_stack_inode_nlink(inode_item, 1);
656 btrfs_set_stack_inode_nbytes(inode_item,
657 fs_info->nodesize);
658 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
659
660 btrfs_set_root_flags(root_item, 0);
661 btrfs_set_root_limit(root_item, 0);
662 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
663
664 btrfs_set_root_bytenr(root_item, leaf->start);
665 btrfs_set_root_generation(root_item, trans->transid);
666 btrfs_set_root_level(root_item, 0);
667 btrfs_set_root_refs(root_item, 1);
668 btrfs_set_root_used(root_item, leaf->len);
669 btrfs_set_root_last_snapshot(root_item, 0);
670
671 btrfs_set_root_generation_v2(root_item,
672 btrfs_root_generation(root_item));
673 generate_random_guid(root_item->uuid);
674 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
675 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
676 root_item->ctime = root_item->otime;
677 btrfs_set_root_ctransid(root_item, trans->transid);
678 btrfs_set_root_otransid(root_item, trans->transid);
679
680 btrfs_tree_unlock(leaf);
681 free_extent_buffer(leaf);
682 leaf = NULL;
683
684 btrfs_set_root_dirid(root_item, new_dirid);
685
686 key.objectid = objectid;
687 key.offset = 0;
688 key.type = BTRFS_ROOT_ITEM_KEY;
689 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
690 root_item);
691 if (ret)
692 goto fail;
693
694 key.offset = (u64)-1;
695 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
696 if (IS_ERR(new_root)) {
697 free_anon_bdev(anon_dev);
698 ret = PTR_ERR(new_root);
699 btrfs_abort_transaction(trans, ret);
700 goto fail;
701 }
702 /* Freeing will be done in btrfs_put_root() of new_root */
703 anon_dev = 0;
704
705 btrfs_record_root_in_trans(trans, new_root);
706
707 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
708 btrfs_put_root(new_root);
709 if (ret) {
710 /* We potentially lose an unused inode item here */
711 btrfs_abort_transaction(trans, ret);
712 goto fail;
713 }
714
715 mutex_lock(&new_root->objectid_mutex);
716 new_root->highest_objectid = new_dirid;
717 mutex_unlock(&new_root->objectid_mutex);
718
719 /*
720 * insert the directory item
721 */
722 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
723 if (ret) {
724 btrfs_abort_transaction(trans, ret);
725 goto fail;
726 }
727
728 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
729 BTRFS_FT_DIR, index);
730 if (ret) {
731 btrfs_abort_transaction(trans, ret);
732 goto fail;
733 }
734
735 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
736 ret = btrfs_update_inode(trans, root, dir);
737 if (ret) {
738 btrfs_abort_transaction(trans, ret);
739 goto fail;
740 }
741
742 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
743 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
744 if (ret) {
745 btrfs_abort_transaction(trans, ret);
746 goto fail;
747 }
748
749 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
750 BTRFS_UUID_KEY_SUBVOL, objectid);
751 if (ret)
752 btrfs_abort_transaction(trans, ret);
753
754 fail:
755 kfree(root_item);
756 trans->block_rsv = NULL;
757 trans->bytes_reserved = 0;
758 btrfs_subvolume_release_metadata(root, &block_rsv);
759
760 err = btrfs_commit_transaction(trans);
761 if (err && !ret)
762 ret = err;
763
764 if (!ret) {
765 inode = btrfs_lookup_dentry(dir, dentry);
766 if (IS_ERR(inode))
767 return PTR_ERR(inode);
768 d_instantiate(dentry, inode);
769 }
770 return ret;
771
772 fail_free:
773 if (anon_dev)
774 free_anon_bdev(anon_dev);
775 kfree(root_item);
776 return ret;
777 }
778
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)779 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
780 struct dentry *dentry, bool readonly,
781 struct btrfs_qgroup_inherit *inherit)
782 {
783 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
784 struct inode *inode;
785 struct btrfs_pending_snapshot *pending_snapshot;
786 struct btrfs_trans_handle *trans;
787 int ret;
788
789 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
790 return -EINVAL;
791
792 if (atomic_read(&root->nr_swapfiles)) {
793 btrfs_warn(fs_info,
794 "cannot snapshot subvolume with active swapfile");
795 return -ETXTBSY;
796 }
797
798 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
799 if (!pending_snapshot)
800 return -ENOMEM;
801
802 ret = get_anon_bdev(&pending_snapshot->anon_dev);
803 if (ret < 0)
804 goto free_pending;
805 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
806 GFP_KERNEL);
807 pending_snapshot->path = btrfs_alloc_path();
808 if (!pending_snapshot->root_item || !pending_snapshot->path) {
809 ret = -ENOMEM;
810 goto free_pending;
811 }
812
813 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
814 BTRFS_BLOCK_RSV_TEMP);
815 /*
816 * 1 - parent dir inode
817 * 2 - dir entries
818 * 1 - root item
819 * 2 - root ref/backref
820 * 1 - root of snapshot
821 * 1 - UUID item
822 */
823 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
824 &pending_snapshot->block_rsv, 8,
825 false);
826 if (ret)
827 goto free_pending;
828
829 pending_snapshot->dentry = dentry;
830 pending_snapshot->root = root;
831 pending_snapshot->readonly = readonly;
832 pending_snapshot->dir = dir;
833 pending_snapshot->inherit = inherit;
834
835 trans = btrfs_start_transaction(root, 0);
836 if (IS_ERR(trans)) {
837 ret = PTR_ERR(trans);
838 goto fail;
839 }
840
841 spin_lock(&fs_info->trans_lock);
842 list_add(&pending_snapshot->list,
843 &trans->transaction->pending_snapshots);
844 spin_unlock(&fs_info->trans_lock);
845
846 ret = btrfs_commit_transaction(trans);
847 if (ret)
848 goto fail;
849
850 ret = pending_snapshot->error;
851 if (ret)
852 goto fail;
853
854 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
855 if (ret)
856 goto fail;
857
858 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
859 if (IS_ERR(inode)) {
860 ret = PTR_ERR(inode);
861 goto fail;
862 }
863
864 d_instantiate(dentry, inode);
865 ret = 0;
866 pending_snapshot->anon_dev = 0;
867 fail:
868 /* Prevent double freeing of anon_dev */
869 if (ret && pending_snapshot->snap)
870 pending_snapshot->snap->anon_dev = 0;
871 btrfs_put_root(pending_snapshot->snap);
872 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
873 free_pending:
874 if (pending_snapshot->anon_dev)
875 free_anon_bdev(pending_snapshot->anon_dev);
876 kfree(pending_snapshot->root_item);
877 btrfs_free_path(pending_snapshot->path);
878 kfree(pending_snapshot);
879
880 return ret;
881 }
882
883 /* copy of may_delete in fs/namei.c()
884 * Check whether we can remove a link victim from directory dir, check
885 * whether the type of victim is right.
886 * 1. We can't do it if dir is read-only (done in permission())
887 * 2. We should have write and exec permissions on dir
888 * 3. We can't remove anything from append-only dir
889 * 4. We can't do anything with immutable dir (done in permission())
890 * 5. If the sticky bit on dir is set we should either
891 * a. be owner of dir, or
892 * b. be owner of victim, or
893 * c. have CAP_FOWNER capability
894 * 6. If the victim is append-only or immutable we can't do anything with
895 * links pointing to it.
896 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
897 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
898 * 9. We can't remove a root or mountpoint.
899 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
900 * nfs_async_unlink().
901 */
902
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)903 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
904 {
905 int error;
906
907 if (d_really_is_negative(victim))
908 return -ENOENT;
909
910 BUG_ON(d_inode(victim->d_parent) != dir);
911 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
912
913 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
914 if (error)
915 return error;
916 if (IS_APPEND(dir))
917 return -EPERM;
918 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
919 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
920 return -EPERM;
921 if (isdir) {
922 if (!d_is_dir(victim))
923 return -ENOTDIR;
924 if (IS_ROOT(victim))
925 return -EBUSY;
926 } else if (d_is_dir(victim))
927 return -EISDIR;
928 if (IS_DEADDIR(dir))
929 return -ENOENT;
930 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
931 return -EBUSY;
932 return 0;
933 }
934
935 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)936 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
937 {
938 if (d_really_is_positive(child))
939 return -EEXIST;
940 if (IS_DEADDIR(dir))
941 return -ENOENT;
942 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
943 }
944
945 /*
946 * Create a new subvolume below @parent. This is largely modeled after
947 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
948 * inside this filesystem so it's quite a bit simpler.
949 */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)950 static noinline int btrfs_mksubvol(const struct path *parent,
951 const char *name, int namelen,
952 struct btrfs_root *snap_src,
953 bool readonly,
954 struct btrfs_qgroup_inherit *inherit)
955 {
956 struct inode *dir = d_inode(parent->dentry);
957 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
958 struct dentry *dentry;
959 int error;
960
961 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
962 if (error == -EINTR)
963 return error;
964
965 dentry = lookup_one_len(name, parent->dentry, namelen);
966 error = PTR_ERR(dentry);
967 if (IS_ERR(dentry))
968 goto out_unlock;
969
970 error = btrfs_may_create(dir, dentry);
971 if (error)
972 goto out_dput;
973
974 /*
975 * even if this name doesn't exist, we may get hash collisions.
976 * check for them now when we can safely fail
977 */
978 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
979 dir->i_ino, name,
980 namelen);
981 if (error)
982 goto out_dput;
983
984 down_read(&fs_info->subvol_sem);
985
986 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
987 goto out_up_read;
988
989 if (snap_src)
990 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
991 else
992 error = create_subvol(dir, dentry, name, namelen, inherit);
993
994 if (!error)
995 fsnotify_mkdir(dir, dentry);
996 out_up_read:
997 up_read(&fs_info->subvol_sem);
998 out_dput:
999 dput(dentry);
1000 out_unlock:
1001 inode_unlock(dir);
1002 return error;
1003 }
1004
btrfs_mksnapshot(const struct path * parent,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1005 static noinline int btrfs_mksnapshot(const struct path *parent,
1006 const char *name, int namelen,
1007 struct btrfs_root *root,
1008 bool readonly,
1009 struct btrfs_qgroup_inherit *inherit)
1010 {
1011 int ret;
1012 bool snapshot_force_cow = false;
1013
1014 /*
1015 * Force new buffered writes to reserve space even when NOCOW is
1016 * possible. This is to avoid later writeback (running dealloc) to
1017 * fallback to COW mode and unexpectedly fail with ENOSPC.
1018 */
1019 btrfs_drew_read_lock(&root->snapshot_lock);
1020
1021 ret = btrfs_start_delalloc_snapshot(root);
1022 if (ret)
1023 goto out;
1024
1025 /*
1026 * All previous writes have started writeback in NOCOW mode, so now
1027 * we force future writes to fallback to COW mode during snapshot
1028 * creation.
1029 */
1030 atomic_inc(&root->snapshot_force_cow);
1031 snapshot_force_cow = true;
1032
1033 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1034
1035 ret = btrfs_mksubvol(parent, name, namelen,
1036 root, readonly, inherit);
1037 out:
1038 if (snapshot_force_cow)
1039 atomic_dec(&root->snapshot_force_cow);
1040 btrfs_drew_read_unlock(&root->snapshot_lock);
1041 return ret;
1042 }
1043
1044 /*
1045 * When we're defragging a range, we don't want to kick it off again
1046 * if it is really just waiting for delalloc to send it down.
1047 * If we find a nice big extent or delalloc range for the bytes in the
1048 * file you want to defrag, we return 0 to let you know to skip this
1049 * part of the file
1050 */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)1051 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1052 {
1053 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1054 struct extent_map *em = NULL;
1055 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1056 u64 end;
1057
1058 read_lock(&em_tree->lock);
1059 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1060 read_unlock(&em_tree->lock);
1061
1062 if (em) {
1063 end = extent_map_end(em);
1064 free_extent_map(em);
1065 if (end - offset > thresh)
1066 return 0;
1067 }
1068 /* if we already have a nice delalloc here, just stop */
1069 thresh /= 2;
1070 end = count_range_bits(io_tree, &offset, offset + thresh,
1071 thresh, EXTENT_DELALLOC, 1);
1072 if (end >= thresh)
1073 return 0;
1074 return 1;
1075 }
1076
1077 /*
1078 * helper function to walk through a file and find extents
1079 * newer than a specific transid, and smaller than thresh.
1080 *
1081 * This is used by the defragging code to find new and small
1082 * extents
1083 */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1084 static int find_new_extents(struct btrfs_root *root,
1085 struct inode *inode, u64 newer_than,
1086 u64 *off, u32 thresh)
1087 {
1088 struct btrfs_path *path;
1089 struct btrfs_key min_key;
1090 struct extent_buffer *leaf;
1091 struct btrfs_file_extent_item *extent;
1092 int type;
1093 int ret;
1094 u64 ino = btrfs_ino(BTRFS_I(inode));
1095
1096 path = btrfs_alloc_path();
1097 if (!path)
1098 return -ENOMEM;
1099
1100 min_key.objectid = ino;
1101 min_key.type = BTRFS_EXTENT_DATA_KEY;
1102 min_key.offset = *off;
1103
1104 while (1) {
1105 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1106 if (ret != 0)
1107 goto none;
1108 process_slot:
1109 if (min_key.objectid != ino)
1110 goto none;
1111 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1112 goto none;
1113
1114 leaf = path->nodes[0];
1115 extent = btrfs_item_ptr(leaf, path->slots[0],
1116 struct btrfs_file_extent_item);
1117
1118 type = btrfs_file_extent_type(leaf, extent);
1119 if (type == BTRFS_FILE_EXTENT_REG &&
1120 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1121 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1122 *off = min_key.offset;
1123 btrfs_free_path(path);
1124 return 0;
1125 }
1126
1127 path->slots[0]++;
1128 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1129 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1130 goto process_slot;
1131 }
1132
1133 if (min_key.offset == (u64)-1)
1134 goto none;
1135
1136 min_key.offset++;
1137 btrfs_release_path(path);
1138 }
1139 none:
1140 btrfs_free_path(path);
1141 return -ENOENT;
1142 }
1143
defrag_lookup_extent(struct inode * inode,u64 start)1144 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1145 {
1146 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1147 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1148 struct extent_map *em;
1149 u64 len = PAGE_SIZE;
1150
1151 /*
1152 * hopefully we have this extent in the tree already, try without
1153 * the full extent lock
1154 */
1155 read_lock(&em_tree->lock);
1156 em = lookup_extent_mapping(em_tree, start, len);
1157 read_unlock(&em_tree->lock);
1158
1159 if (!em) {
1160 struct extent_state *cached = NULL;
1161 u64 end = start + len - 1;
1162
1163 /* get the big lock and read metadata off disk */
1164 lock_extent_bits(io_tree, start, end, &cached);
1165 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1166 unlock_extent_cached(io_tree, start, end, &cached);
1167
1168 if (IS_ERR(em))
1169 return NULL;
1170 }
1171
1172 return em;
1173 }
1174
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1175 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1176 {
1177 struct extent_map *next;
1178 bool ret = true;
1179
1180 /* this is the last extent */
1181 if (em->start + em->len >= i_size_read(inode))
1182 return false;
1183
1184 next = defrag_lookup_extent(inode, em->start + em->len);
1185 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1186 ret = false;
1187 else if ((em->block_start + em->block_len == next->block_start) &&
1188 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1189 ret = false;
1190
1191 free_extent_map(next);
1192 return ret;
1193 }
1194
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1195 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1196 u64 *last_len, u64 *skip, u64 *defrag_end,
1197 int compress)
1198 {
1199 struct extent_map *em;
1200 int ret = 1;
1201 bool next_mergeable = true;
1202 bool prev_mergeable = true;
1203
1204 /*
1205 * make sure that once we start defragging an extent, we keep on
1206 * defragging it
1207 */
1208 if (start < *defrag_end)
1209 return 1;
1210
1211 *skip = 0;
1212
1213 em = defrag_lookup_extent(inode, start);
1214 if (!em)
1215 return 0;
1216
1217 /* this will cover holes, and inline extents */
1218 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1219 ret = 0;
1220 goto out;
1221 }
1222
1223 if (!*defrag_end)
1224 prev_mergeable = false;
1225
1226 next_mergeable = defrag_check_next_extent(inode, em);
1227 /*
1228 * we hit a real extent, if it is big or the next extent is not a
1229 * real extent, don't bother defragging it
1230 */
1231 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1232 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1233 ret = 0;
1234 out:
1235 /*
1236 * last_len ends up being a counter of how many bytes we've defragged.
1237 * every time we choose not to defrag an extent, we reset *last_len
1238 * so that the next tiny extent will force a defrag.
1239 *
1240 * The end result of this is that tiny extents before a single big
1241 * extent will force at least part of that big extent to be defragged.
1242 */
1243 if (ret) {
1244 *defrag_end = extent_map_end(em);
1245 } else {
1246 *last_len = 0;
1247 *skip = extent_map_end(em);
1248 *defrag_end = 0;
1249 }
1250
1251 free_extent_map(em);
1252 return ret;
1253 }
1254
1255 /*
1256 * it doesn't do much good to defrag one or two pages
1257 * at a time. This pulls in a nice chunk of pages
1258 * to COW and defrag.
1259 *
1260 * It also makes sure the delalloc code has enough
1261 * dirty data to avoid making new small extents as part
1262 * of the defrag
1263 *
1264 * It's a good idea to start RA on this range
1265 * before calling this.
1266 */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1267 static int cluster_pages_for_defrag(struct inode *inode,
1268 struct page **pages,
1269 unsigned long start_index,
1270 unsigned long num_pages)
1271 {
1272 unsigned long file_end;
1273 u64 isize = i_size_read(inode);
1274 u64 page_start;
1275 u64 page_end;
1276 u64 page_cnt;
1277 u64 start = (u64)start_index << PAGE_SHIFT;
1278 int ret;
1279 int i;
1280 int i_done;
1281 struct btrfs_ordered_extent *ordered;
1282 struct extent_state *cached_state = NULL;
1283 struct extent_io_tree *tree;
1284 struct extent_changeset *data_reserved = NULL;
1285 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1286
1287 file_end = (isize - 1) >> PAGE_SHIFT;
1288 if (!isize || start_index > file_end)
1289 return 0;
1290
1291 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1292
1293 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1294 start, page_cnt << PAGE_SHIFT);
1295 if (ret)
1296 return ret;
1297 i_done = 0;
1298 tree = &BTRFS_I(inode)->io_tree;
1299
1300 /* step one, lock all the pages */
1301 for (i = 0; i < page_cnt; i++) {
1302 struct page *page;
1303 again:
1304 page = find_or_create_page(inode->i_mapping,
1305 start_index + i, mask);
1306 if (!page)
1307 break;
1308
1309 page_start = page_offset(page);
1310 page_end = page_start + PAGE_SIZE - 1;
1311 while (1) {
1312 lock_extent_bits(tree, page_start, page_end,
1313 &cached_state);
1314 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1315 page_start);
1316 unlock_extent_cached(tree, page_start, page_end,
1317 &cached_state);
1318 if (!ordered)
1319 break;
1320
1321 unlock_page(page);
1322 btrfs_start_ordered_extent(ordered, 1);
1323 btrfs_put_ordered_extent(ordered);
1324 lock_page(page);
1325 /*
1326 * we unlocked the page above, so we need check if
1327 * it was released or not.
1328 */
1329 if (page->mapping != inode->i_mapping) {
1330 unlock_page(page);
1331 put_page(page);
1332 goto again;
1333 }
1334 }
1335
1336 if (!PageUptodate(page)) {
1337 btrfs_readpage(NULL, page);
1338 lock_page(page);
1339 if (!PageUptodate(page)) {
1340 unlock_page(page);
1341 put_page(page);
1342 ret = -EIO;
1343 break;
1344 }
1345 }
1346
1347 if (page->mapping != inode->i_mapping) {
1348 unlock_page(page);
1349 put_page(page);
1350 goto again;
1351 }
1352
1353 pages[i] = page;
1354 i_done++;
1355 }
1356 if (!i_done || ret)
1357 goto out;
1358
1359 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1360 goto out;
1361
1362 /*
1363 * so now we have a nice long stream of locked
1364 * and up to date pages, lets wait on them
1365 */
1366 for (i = 0; i < i_done; i++)
1367 wait_on_page_writeback(pages[i]);
1368
1369 page_start = page_offset(pages[0]);
1370 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1371
1372 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1373 page_start, page_end - 1, &cached_state);
1374 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1375 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1376 EXTENT_DEFRAG, 0, 0, &cached_state);
1377
1378 if (i_done != page_cnt) {
1379 spin_lock(&BTRFS_I(inode)->lock);
1380 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1381 spin_unlock(&BTRFS_I(inode)->lock);
1382 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1383 start, (page_cnt - i_done) << PAGE_SHIFT, true);
1384 }
1385
1386
1387 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1388 &cached_state);
1389
1390 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1391 page_start, page_end - 1, &cached_state);
1392
1393 for (i = 0; i < i_done; i++) {
1394 clear_page_dirty_for_io(pages[i]);
1395 ClearPageChecked(pages[i]);
1396 set_page_extent_mapped(pages[i]);
1397 set_page_dirty(pages[i]);
1398 unlock_page(pages[i]);
1399 put_page(pages[i]);
1400 }
1401 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1402 extent_changeset_free(data_reserved);
1403 return i_done;
1404 out:
1405 for (i = 0; i < i_done; i++) {
1406 unlock_page(pages[i]);
1407 put_page(pages[i]);
1408 }
1409 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1410 start, page_cnt << PAGE_SHIFT, true);
1411 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1412 extent_changeset_free(data_reserved);
1413 return ret;
1414
1415 }
1416
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1417 int btrfs_defrag_file(struct inode *inode, struct file *file,
1418 struct btrfs_ioctl_defrag_range_args *range,
1419 u64 newer_than, unsigned long max_to_defrag)
1420 {
1421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1422 struct btrfs_root *root = BTRFS_I(inode)->root;
1423 struct file_ra_state *ra = NULL;
1424 unsigned long last_index;
1425 u64 isize = i_size_read(inode);
1426 u64 last_len = 0;
1427 u64 skip = 0;
1428 u64 defrag_end = 0;
1429 u64 newer_off = range->start;
1430 unsigned long i;
1431 unsigned long ra_index = 0;
1432 int ret;
1433 int defrag_count = 0;
1434 int compress_type = BTRFS_COMPRESS_ZLIB;
1435 u32 extent_thresh = range->extent_thresh;
1436 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1437 unsigned long cluster = max_cluster;
1438 u64 new_align = ~((u64)SZ_128K - 1);
1439 struct page **pages = NULL;
1440 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1441
1442 if (isize == 0)
1443 return 0;
1444
1445 if (range->start >= isize)
1446 return -EINVAL;
1447
1448 if (do_compress) {
1449 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1450 return -EINVAL;
1451 if (range->compress_type)
1452 compress_type = range->compress_type;
1453 }
1454
1455 if (extent_thresh == 0)
1456 extent_thresh = SZ_256K;
1457
1458 /*
1459 * If we were not given a file, allocate a readahead context. As
1460 * readahead is just an optimization, defrag will work without it so
1461 * we don't error out.
1462 */
1463 if (!file) {
1464 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1465 if (ra)
1466 file_ra_state_init(ra, inode->i_mapping);
1467 } else {
1468 ra = &file->f_ra;
1469 }
1470
1471 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1472 if (!pages) {
1473 ret = -ENOMEM;
1474 goto out_ra;
1475 }
1476
1477 /* find the last page to defrag */
1478 if (range->start + range->len > range->start) {
1479 last_index = min_t(u64, isize - 1,
1480 range->start + range->len - 1) >> PAGE_SHIFT;
1481 } else {
1482 last_index = (isize - 1) >> PAGE_SHIFT;
1483 }
1484
1485 if (newer_than) {
1486 ret = find_new_extents(root, inode, newer_than,
1487 &newer_off, SZ_64K);
1488 if (!ret) {
1489 range->start = newer_off;
1490 /*
1491 * we always align our defrag to help keep
1492 * the extents in the file evenly spaced
1493 */
1494 i = (newer_off & new_align) >> PAGE_SHIFT;
1495 } else
1496 goto out_ra;
1497 } else {
1498 i = range->start >> PAGE_SHIFT;
1499 }
1500 if (!max_to_defrag)
1501 max_to_defrag = last_index - i + 1;
1502
1503 /*
1504 * make writeback starts from i, so the defrag range can be
1505 * written sequentially.
1506 */
1507 if (i < inode->i_mapping->writeback_index)
1508 inode->i_mapping->writeback_index = i;
1509
1510 while (i <= last_index && defrag_count < max_to_defrag &&
1511 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1512 /*
1513 * make sure we stop running if someone unmounts
1514 * the FS
1515 */
1516 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1517 break;
1518
1519 if (btrfs_defrag_cancelled(fs_info)) {
1520 btrfs_debug(fs_info, "defrag_file cancelled");
1521 ret = -EAGAIN;
1522 break;
1523 }
1524
1525 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1526 extent_thresh, &last_len, &skip,
1527 &defrag_end, do_compress)){
1528 unsigned long next;
1529 /*
1530 * the should_defrag function tells us how much to skip
1531 * bump our counter by the suggested amount
1532 */
1533 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1534 i = max(i + 1, next);
1535 continue;
1536 }
1537
1538 if (!newer_than) {
1539 cluster = (PAGE_ALIGN(defrag_end) >>
1540 PAGE_SHIFT) - i;
1541 cluster = min(cluster, max_cluster);
1542 } else {
1543 cluster = max_cluster;
1544 }
1545
1546 if (i + cluster > ra_index) {
1547 ra_index = max(i, ra_index);
1548 if (ra)
1549 page_cache_sync_readahead(inode->i_mapping, ra,
1550 file, ra_index, cluster);
1551 ra_index += cluster;
1552 }
1553
1554 inode_lock(inode);
1555 if (IS_SWAPFILE(inode)) {
1556 ret = -ETXTBSY;
1557 } else {
1558 if (do_compress)
1559 BTRFS_I(inode)->defrag_compress = compress_type;
1560 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1561 }
1562 if (ret < 0) {
1563 inode_unlock(inode);
1564 goto out_ra;
1565 }
1566
1567 defrag_count += ret;
1568 balance_dirty_pages_ratelimited(inode->i_mapping);
1569 inode_unlock(inode);
1570
1571 if (newer_than) {
1572 if (newer_off == (u64)-1)
1573 break;
1574
1575 if (ret > 0)
1576 i += ret;
1577
1578 newer_off = max(newer_off + 1,
1579 (u64)i << PAGE_SHIFT);
1580
1581 ret = find_new_extents(root, inode, newer_than,
1582 &newer_off, SZ_64K);
1583 if (!ret) {
1584 range->start = newer_off;
1585 i = (newer_off & new_align) >> PAGE_SHIFT;
1586 } else {
1587 break;
1588 }
1589 } else {
1590 if (ret > 0) {
1591 i += ret;
1592 last_len += ret << PAGE_SHIFT;
1593 } else {
1594 i++;
1595 last_len = 0;
1596 }
1597 }
1598 }
1599
1600 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1601 filemap_flush(inode->i_mapping);
1602 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 &BTRFS_I(inode)->runtime_flags))
1604 filemap_flush(inode->i_mapping);
1605 }
1606
1607 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1608 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1609 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1610 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1611 }
1612
1613 ret = defrag_count;
1614
1615 out_ra:
1616 if (do_compress) {
1617 inode_lock(inode);
1618 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1619 inode_unlock(inode);
1620 }
1621 if (!file)
1622 kfree(ra);
1623 kfree(pages);
1624 return ret;
1625 }
1626
btrfs_ioctl_resize(struct file * file,void __user * arg)1627 static noinline int btrfs_ioctl_resize(struct file *file,
1628 void __user *arg)
1629 {
1630 struct inode *inode = file_inode(file);
1631 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1632 u64 new_size;
1633 u64 old_size;
1634 u64 devid = 1;
1635 struct btrfs_root *root = BTRFS_I(inode)->root;
1636 struct btrfs_ioctl_vol_args *vol_args;
1637 struct btrfs_trans_handle *trans;
1638 struct btrfs_device *device = NULL;
1639 char *sizestr;
1640 char *retptr;
1641 char *devstr = NULL;
1642 int ret = 0;
1643 int mod = 0;
1644
1645 if (!capable(CAP_SYS_ADMIN))
1646 return -EPERM;
1647
1648 ret = mnt_want_write_file(file);
1649 if (ret)
1650 return ret;
1651
1652 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1653 mnt_drop_write_file(file);
1654 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1655 }
1656
1657 vol_args = memdup_user(arg, sizeof(*vol_args));
1658 if (IS_ERR(vol_args)) {
1659 ret = PTR_ERR(vol_args);
1660 goto out;
1661 }
1662
1663 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1664
1665 sizestr = vol_args->name;
1666 devstr = strchr(sizestr, ':');
1667 if (devstr) {
1668 sizestr = devstr + 1;
1669 *devstr = '\0';
1670 devstr = vol_args->name;
1671 ret = kstrtoull(devstr, 10, &devid);
1672 if (ret)
1673 goto out_free;
1674 if (!devid) {
1675 ret = -EINVAL;
1676 goto out_free;
1677 }
1678 btrfs_info(fs_info, "resizing devid %llu", devid);
1679 }
1680
1681 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1682 if (!device) {
1683 btrfs_info(fs_info, "resizer unable to find device %llu",
1684 devid);
1685 ret = -ENODEV;
1686 goto out_free;
1687 }
1688
1689 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1690 btrfs_info(fs_info,
1691 "resizer unable to apply on readonly device %llu",
1692 devid);
1693 ret = -EPERM;
1694 goto out_free;
1695 }
1696
1697 if (!strcmp(sizestr, "max"))
1698 new_size = device->bdev->bd_inode->i_size;
1699 else {
1700 if (sizestr[0] == '-') {
1701 mod = -1;
1702 sizestr++;
1703 } else if (sizestr[0] == '+') {
1704 mod = 1;
1705 sizestr++;
1706 }
1707 new_size = memparse(sizestr, &retptr);
1708 if (*retptr != '\0' || new_size == 0) {
1709 ret = -EINVAL;
1710 goto out_free;
1711 }
1712 }
1713
1714 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1715 ret = -EPERM;
1716 goto out_free;
1717 }
1718
1719 old_size = btrfs_device_get_total_bytes(device);
1720
1721 if (mod < 0) {
1722 if (new_size > old_size) {
1723 ret = -EINVAL;
1724 goto out_free;
1725 }
1726 new_size = old_size - new_size;
1727 } else if (mod > 0) {
1728 if (new_size > ULLONG_MAX - old_size) {
1729 ret = -ERANGE;
1730 goto out_free;
1731 }
1732 new_size = old_size + new_size;
1733 }
1734
1735 if (new_size < SZ_256M) {
1736 ret = -EINVAL;
1737 goto out_free;
1738 }
1739 if (new_size > device->bdev->bd_inode->i_size) {
1740 ret = -EFBIG;
1741 goto out_free;
1742 }
1743
1744 new_size = round_down(new_size, fs_info->sectorsize);
1745
1746 if (new_size > old_size) {
1747 trans = btrfs_start_transaction(root, 0);
1748 if (IS_ERR(trans)) {
1749 ret = PTR_ERR(trans);
1750 goto out_free;
1751 }
1752 ret = btrfs_grow_device(trans, device, new_size);
1753 btrfs_commit_transaction(trans);
1754 } else if (new_size < old_size) {
1755 ret = btrfs_shrink_device(device, new_size);
1756 } /* equal, nothing need to do */
1757
1758 if (ret == 0 && new_size != old_size)
1759 btrfs_info_in_rcu(fs_info,
1760 "resize device %s (devid %llu) from %llu to %llu",
1761 rcu_str_deref(device->name), device->devid,
1762 old_size, new_size);
1763 out_free:
1764 kfree(vol_args);
1765 out:
1766 btrfs_exclop_finish(fs_info);
1767 mnt_drop_write_file(file);
1768 return ret;
1769 }
1770
__btrfs_ioctl_snap_create(struct file * file,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1771 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1772 const char *name, unsigned long fd, int subvol,
1773 bool readonly,
1774 struct btrfs_qgroup_inherit *inherit)
1775 {
1776 int namelen;
1777 int ret = 0;
1778
1779 if (!S_ISDIR(file_inode(file)->i_mode))
1780 return -ENOTDIR;
1781
1782 ret = mnt_want_write_file(file);
1783 if (ret)
1784 goto out;
1785
1786 namelen = strlen(name);
1787 if (strchr(name, '/')) {
1788 ret = -EINVAL;
1789 goto out_drop_write;
1790 }
1791
1792 if (name[0] == '.' &&
1793 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1794 ret = -EEXIST;
1795 goto out_drop_write;
1796 }
1797
1798 if (subvol) {
1799 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1800 NULL, readonly, inherit);
1801 } else {
1802 struct fd src = fdget(fd);
1803 struct inode *src_inode;
1804 if (!src.file) {
1805 ret = -EINVAL;
1806 goto out_drop_write;
1807 }
1808
1809 src_inode = file_inode(src.file);
1810 if (src_inode->i_sb != file_inode(file)->i_sb) {
1811 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1812 "Snapshot src from another FS");
1813 ret = -EXDEV;
1814 } else if (!inode_owner_or_capable(src_inode)) {
1815 /*
1816 * Subvolume creation is not restricted, but snapshots
1817 * are limited to own subvolumes only
1818 */
1819 ret = -EPERM;
1820 } else {
1821 ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1822 BTRFS_I(src_inode)->root,
1823 readonly, inherit);
1824 }
1825 fdput(src);
1826 }
1827 out_drop_write:
1828 mnt_drop_write_file(file);
1829 out:
1830 return ret;
1831 }
1832
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1833 static noinline int btrfs_ioctl_snap_create(struct file *file,
1834 void __user *arg, int subvol)
1835 {
1836 struct btrfs_ioctl_vol_args *vol_args;
1837 int ret;
1838
1839 if (!S_ISDIR(file_inode(file)->i_mode))
1840 return -ENOTDIR;
1841
1842 vol_args = memdup_user(arg, sizeof(*vol_args));
1843 if (IS_ERR(vol_args))
1844 return PTR_ERR(vol_args);
1845 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1846
1847 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1848 subvol, false, NULL);
1849
1850 kfree(vol_args);
1851 return ret;
1852 }
1853
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1854 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1855 void __user *arg, int subvol)
1856 {
1857 struct btrfs_ioctl_vol_args_v2 *vol_args;
1858 int ret;
1859 bool readonly = false;
1860 struct btrfs_qgroup_inherit *inherit = NULL;
1861
1862 if (!S_ISDIR(file_inode(file)->i_mode))
1863 return -ENOTDIR;
1864
1865 vol_args = memdup_user(arg, sizeof(*vol_args));
1866 if (IS_ERR(vol_args))
1867 return PTR_ERR(vol_args);
1868 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1869
1870 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1871 ret = -EOPNOTSUPP;
1872 goto free_args;
1873 }
1874
1875 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1876 readonly = true;
1877 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1878 if (vol_args->size > PAGE_SIZE) {
1879 ret = -EINVAL;
1880 goto free_args;
1881 }
1882 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1883 if (IS_ERR(inherit)) {
1884 ret = PTR_ERR(inherit);
1885 goto free_args;
1886 }
1887 }
1888
1889 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1890 subvol, readonly, inherit);
1891 if (ret)
1892 goto free_inherit;
1893 free_inherit:
1894 kfree(inherit);
1895 free_args:
1896 kfree(vol_args);
1897 return ret;
1898 }
1899
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1900 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1901 void __user *arg)
1902 {
1903 struct inode *inode = file_inode(file);
1904 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1905 struct btrfs_root *root = BTRFS_I(inode)->root;
1906 int ret = 0;
1907 u64 flags = 0;
1908
1909 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1910 return -EINVAL;
1911
1912 down_read(&fs_info->subvol_sem);
1913 if (btrfs_root_readonly(root))
1914 flags |= BTRFS_SUBVOL_RDONLY;
1915 up_read(&fs_info->subvol_sem);
1916
1917 if (copy_to_user(arg, &flags, sizeof(flags)))
1918 ret = -EFAULT;
1919
1920 return ret;
1921 }
1922
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1923 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1924 void __user *arg)
1925 {
1926 struct inode *inode = file_inode(file);
1927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1928 struct btrfs_root *root = BTRFS_I(inode)->root;
1929 struct btrfs_trans_handle *trans;
1930 u64 root_flags;
1931 u64 flags;
1932 int ret = 0;
1933
1934 if (!inode_owner_or_capable(inode))
1935 return -EPERM;
1936
1937 ret = mnt_want_write_file(file);
1938 if (ret)
1939 goto out;
1940
1941 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1942 ret = -EINVAL;
1943 goto out_drop_write;
1944 }
1945
1946 if (copy_from_user(&flags, arg, sizeof(flags))) {
1947 ret = -EFAULT;
1948 goto out_drop_write;
1949 }
1950
1951 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1952 ret = -EOPNOTSUPP;
1953 goto out_drop_write;
1954 }
1955
1956 down_write(&fs_info->subvol_sem);
1957
1958 /* nothing to do */
1959 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1960 goto out_drop_sem;
1961
1962 root_flags = btrfs_root_flags(&root->root_item);
1963 if (flags & BTRFS_SUBVOL_RDONLY) {
1964 btrfs_set_root_flags(&root->root_item,
1965 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1966 } else {
1967 /*
1968 * Block RO -> RW transition if this subvolume is involved in
1969 * send
1970 */
1971 spin_lock(&root->root_item_lock);
1972 if (root->send_in_progress == 0) {
1973 btrfs_set_root_flags(&root->root_item,
1974 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1975 spin_unlock(&root->root_item_lock);
1976 } else {
1977 spin_unlock(&root->root_item_lock);
1978 btrfs_warn(fs_info,
1979 "Attempt to set subvolume %llu read-write during send",
1980 root->root_key.objectid);
1981 ret = -EPERM;
1982 goto out_drop_sem;
1983 }
1984 }
1985
1986 trans = btrfs_start_transaction(root, 1);
1987 if (IS_ERR(trans)) {
1988 ret = PTR_ERR(trans);
1989 goto out_reset;
1990 }
1991
1992 ret = btrfs_update_root(trans, fs_info->tree_root,
1993 &root->root_key, &root->root_item);
1994 if (ret < 0) {
1995 btrfs_end_transaction(trans);
1996 goto out_reset;
1997 }
1998
1999 ret = btrfs_commit_transaction(trans);
2000
2001 out_reset:
2002 if (ret)
2003 btrfs_set_root_flags(&root->root_item, root_flags);
2004 out_drop_sem:
2005 up_write(&fs_info->subvol_sem);
2006 out_drop_write:
2007 mnt_drop_write_file(file);
2008 out:
2009 return ret;
2010 }
2011
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2012 static noinline int key_in_sk(struct btrfs_key *key,
2013 struct btrfs_ioctl_search_key *sk)
2014 {
2015 struct btrfs_key test;
2016 int ret;
2017
2018 test.objectid = sk->min_objectid;
2019 test.type = sk->min_type;
2020 test.offset = sk->min_offset;
2021
2022 ret = btrfs_comp_cpu_keys(key, &test);
2023 if (ret < 0)
2024 return 0;
2025
2026 test.objectid = sk->max_objectid;
2027 test.type = sk->max_type;
2028 test.offset = sk->max_offset;
2029
2030 ret = btrfs_comp_cpu_keys(key, &test);
2031 if (ret > 0)
2032 return 0;
2033 return 1;
2034 }
2035
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2036 static noinline int copy_to_sk(struct btrfs_path *path,
2037 struct btrfs_key *key,
2038 struct btrfs_ioctl_search_key *sk,
2039 size_t *buf_size,
2040 char __user *ubuf,
2041 unsigned long *sk_offset,
2042 int *num_found)
2043 {
2044 u64 found_transid;
2045 struct extent_buffer *leaf;
2046 struct btrfs_ioctl_search_header sh;
2047 struct btrfs_key test;
2048 unsigned long item_off;
2049 unsigned long item_len;
2050 int nritems;
2051 int i;
2052 int slot;
2053 int ret = 0;
2054
2055 leaf = path->nodes[0];
2056 slot = path->slots[0];
2057 nritems = btrfs_header_nritems(leaf);
2058
2059 if (btrfs_header_generation(leaf) > sk->max_transid) {
2060 i = nritems;
2061 goto advance_key;
2062 }
2063 found_transid = btrfs_header_generation(leaf);
2064
2065 for (i = slot; i < nritems; i++) {
2066 item_off = btrfs_item_ptr_offset(leaf, i);
2067 item_len = btrfs_item_size_nr(leaf, i);
2068
2069 btrfs_item_key_to_cpu(leaf, key, i);
2070 if (!key_in_sk(key, sk))
2071 continue;
2072
2073 if (sizeof(sh) + item_len > *buf_size) {
2074 if (*num_found) {
2075 ret = 1;
2076 goto out;
2077 }
2078
2079 /*
2080 * return one empty item back for v1, which does not
2081 * handle -EOVERFLOW
2082 */
2083
2084 *buf_size = sizeof(sh) + item_len;
2085 item_len = 0;
2086 ret = -EOVERFLOW;
2087 }
2088
2089 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2090 ret = 1;
2091 goto out;
2092 }
2093
2094 sh.objectid = key->objectid;
2095 sh.offset = key->offset;
2096 sh.type = key->type;
2097 sh.len = item_len;
2098 sh.transid = found_transid;
2099
2100 /*
2101 * Copy search result header. If we fault then loop again so we
2102 * can fault in the pages and -EFAULT there if there's a
2103 * problem. Otherwise we'll fault and then copy the buffer in
2104 * properly this next time through
2105 */
2106 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2107 ret = 0;
2108 goto out;
2109 }
2110
2111 *sk_offset += sizeof(sh);
2112
2113 if (item_len) {
2114 char __user *up = ubuf + *sk_offset;
2115 /*
2116 * Copy the item, same behavior as above, but reset the
2117 * * sk_offset so we copy the full thing again.
2118 */
2119 if (read_extent_buffer_to_user_nofault(leaf, up,
2120 item_off, item_len)) {
2121 ret = 0;
2122 *sk_offset -= sizeof(sh);
2123 goto out;
2124 }
2125
2126 *sk_offset += item_len;
2127 }
2128 (*num_found)++;
2129
2130 if (ret) /* -EOVERFLOW from above */
2131 goto out;
2132
2133 if (*num_found >= sk->nr_items) {
2134 ret = 1;
2135 goto out;
2136 }
2137 }
2138 advance_key:
2139 ret = 0;
2140 test.objectid = sk->max_objectid;
2141 test.type = sk->max_type;
2142 test.offset = sk->max_offset;
2143 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2144 ret = 1;
2145 else if (key->offset < (u64)-1)
2146 key->offset++;
2147 else if (key->type < (u8)-1) {
2148 key->offset = 0;
2149 key->type++;
2150 } else if (key->objectid < (u64)-1) {
2151 key->offset = 0;
2152 key->type = 0;
2153 key->objectid++;
2154 } else
2155 ret = 1;
2156 out:
2157 /*
2158 * 0: all items from this leaf copied, continue with next
2159 * 1: * more items can be copied, but unused buffer is too small
2160 * * all items were found
2161 * Either way, it will stops the loop which iterates to the next
2162 * leaf
2163 * -EOVERFLOW: item was to large for buffer
2164 * -EFAULT: could not copy extent buffer back to userspace
2165 */
2166 return ret;
2167 }
2168
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2169 static noinline int search_ioctl(struct inode *inode,
2170 struct btrfs_ioctl_search_key *sk,
2171 size_t *buf_size,
2172 char __user *ubuf)
2173 {
2174 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2175 struct btrfs_root *root;
2176 struct btrfs_key key;
2177 struct btrfs_path *path;
2178 int ret;
2179 int num_found = 0;
2180 unsigned long sk_offset = 0;
2181
2182 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2183 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2184 return -EOVERFLOW;
2185 }
2186
2187 path = btrfs_alloc_path();
2188 if (!path)
2189 return -ENOMEM;
2190
2191 if (sk->tree_id == 0) {
2192 /* search the root of the inode that was passed */
2193 root = btrfs_grab_root(BTRFS_I(inode)->root);
2194 } else {
2195 root = btrfs_get_fs_root(info, sk->tree_id, true);
2196 if (IS_ERR(root)) {
2197 btrfs_free_path(path);
2198 return PTR_ERR(root);
2199 }
2200 }
2201
2202 key.objectid = sk->min_objectid;
2203 key.type = sk->min_type;
2204 key.offset = sk->min_offset;
2205
2206 while (1) {
2207 ret = fault_in_pages_writeable(ubuf + sk_offset,
2208 *buf_size - sk_offset);
2209 if (ret)
2210 break;
2211
2212 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2213 if (ret != 0) {
2214 if (ret > 0)
2215 ret = 0;
2216 goto err;
2217 }
2218 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2219 &sk_offset, &num_found);
2220 btrfs_release_path(path);
2221 if (ret)
2222 break;
2223
2224 }
2225 if (ret > 0)
2226 ret = 0;
2227 err:
2228 sk->nr_items = num_found;
2229 btrfs_put_root(root);
2230 btrfs_free_path(path);
2231 return ret;
2232 }
2233
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2234 static noinline int btrfs_ioctl_tree_search(struct file *file,
2235 void __user *argp)
2236 {
2237 struct btrfs_ioctl_search_args __user *uargs;
2238 struct btrfs_ioctl_search_key sk;
2239 struct inode *inode;
2240 int ret;
2241 size_t buf_size;
2242
2243 if (!capable(CAP_SYS_ADMIN))
2244 return -EPERM;
2245
2246 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2247
2248 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2249 return -EFAULT;
2250
2251 buf_size = sizeof(uargs->buf);
2252
2253 inode = file_inode(file);
2254 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2255
2256 /*
2257 * In the origin implementation an overflow is handled by returning a
2258 * search header with a len of zero, so reset ret.
2259 */
2260 if (ret == -EOVERFLOW)
2261 ret = 0;
2262
2263 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2264 ret = -EFAULT;
2265 return ret;
2266 }
2267
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2268 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2269 void __user *argp)
2270 {
2271 struct btrfs_ioctl_search_args_v2 __user *uarg;
2272 struct btrfs_ioctl_search_args_v2 args;
2273 struct inode *inode;
2274 int ret;
2275 size_t buf_size;
2276 const size_t buf_limit = SZ_16M;
2277
2278 if (!capable(CAP_SYS_ADMIN))
2279 return -EPERM;
2280
2281 /* copy search header and buffer size */
2282 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2283 if (copy_from_user(&args, uarg, sizeof(args)))
2284 return -EFAULT;
2285
2286 buf_size = args.buf_size;
2287
2288 /* limit result size to 16MB */
2289 if (buf_size > buf_limit)
2290 buf_size = buf_limit;
2291
2292 inode = file_inode(file);
2293 ret = search_ioctl(inode, &args.key, &buf_size,
2294 (char __user *)(&uarg->buf[0]));
2295 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2296 ret = -EFAULT;
2297 else if (ret == -EOVERFLOW &&
2298 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2299 ret = -EFAULT;
2300
2301 return ret;
2302 }
2303
2304 /*
2305 * Search INODE_REFs to identify path name of 'dirid' directory
2306 * in a 'tree_id' tree. and sets path name to 'name'.
2307 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2308 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2309 u64 tree_id, u64 dirid, char *name)
2310 {
2311 struct btrfs_root *root;
2312 struct btrfs_key key;
2313 char *ptr;
2314 int ret = -1;
2315 int slot;
2316 int len;
2317 int total_len = 0;
2318 struct btrfs_inode_ref *iref;
2319 struct extent_buffer *l;
2320 struct btrfs_path *path;
2321
2322 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2323 name[0]='\0';
2324 return 0;
2325 }
2326
2327 path = btrfs_alloc_path();
2328 if (!path)
2329 return -ENOMEM;
2330
2331 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2332
2333 root = btrfs_get_fs_root(info, tree_id, true);
2334 if (IS_ERR(root)) {
2335 ret = PTR_ERR(root);
2336 root = NULL;
2337 goto out;
2338 }
2339
2340 key.objectid = dirid;
2341 key.type = BTRFS_INODE_REF_KEY;
2342 key.offset = (u64)-1;
2343
2344 while (1) {
2345 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2346 if (ret < 0)
2347 goto out;
2348 else if (ret > 0) {
2349 ret = btrfs_previous_item(root, path, dirid,
2350 BTRFS_INODE_REF_KEY);
2351 if (ret < 0)
2352 goto out;
2353 else if (ret > 0) {
2354 ret = -ENOENT;
2355 goto out;
2356 }
2357 }
2358
2359 l = path->nodes[0];
2360 slot = path->slots[0];
2361 btrfs_item_key_to_cpu(l, &key, slot);
2362
2363 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2364 len = btrfs_inode_ref_name_len(l, iref);
2365 ptr -= len + 1;
2366 total_len += len + 1;
2367 if (ptr < name) {
2368 ret = -ENAMETOOLONG;
2369 goto out;
2370 }
2371
2372 *(ptr + len) = '/';
2373 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2374
2375 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2376 break;
2377
2378 btrfs_release_path(path);
2379 key.objectid = key.offset;
2380 key.offset = (u64)-1;
2381 dirid = key.objectid;
2382 }
2383 memmove(name, ptr, total_len);
2384 name[total_len] = '\0';
2385 ret = 0;
2386 out:
2387 btrfs_put_root(root);
2388 btrfs_free_path(path);
2389 return ret;
2390 }
2391
btrfs_search_path_in_tree_user(struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2392 static int btrfs_search_path_in_tree_user(struct inode *inode,
2393 struct btrfs_ioctl_ino_lookup_user_args *args)
2394 {
2395 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2396 struct super_block *sb = inode->i_sb;
2397 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2398 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2399 u64 dirid = args->dirid;
2400 unsigned long item_off;
2401 unsigned long item_len;
2402 struct btrfs_inode_ref *iref;
2403 struct btrfs_root_ref *rref;
2404 struct btrfs_root *root = NULL;
2405 struct btrfs_path *path;
2406 struct btrfs_key key, key2;
2407 struct extent_buffer *leaf;
2408 struct inode *temp_inode;
2409 char *ptr;
2410 int slot;
2411 int len;
2412 int total_len = 0;
2413 int ret;
2414
2415 path = btrfs_alloc_path();
2416 if (!path)
2417 return -ENOMEM;
2418
2419 /*
2420 * If the bottom subvolume does not exist directly under upper_limit,
2421 * construct the path in from the bottom up.
2422 */
2423 if (dirid != upper_limit.objectid) {
2424 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2425
2426 root = btrfs_get_fs_root(fs_info, treeid, true);
2427 if (IS_ERR(root)) {
2428 ret = PTR_ERR(root);
2429 goto out;
2430 }
2431
2432 key.objectid = dirid;
2433 key.type = BTRFS_INODE_REF_KEY;
2434 key.offset = (u64)-1;
2435 while (1) {
2436 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2437 if (ret < 0) {
2438 goto out_put;
2439 } else if (ret > 0) {
2440 ret = btrfs_previous_item(root, path, dirid,
2441 BTRFS_INODE_REF_KEY);
2442 if (ret < 0) {
2443 goto out_put;
2444 } else if (ret > 0) {
2445 ret = -ENOENT;
2446 goto out_put;
2447 }
2448 }
2449
2450 leaf = path->nodes[0];
2451 slot = path->slots[0];
2452 btrfs_item_key_to_cpu(leaf, &key, slot);
2453
2454 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2455 len = btrfs_inode_ref_name_len(leaf, iref);
2456 ptr -= len + 1;
2457 total_len += len + 1;
2458 if (ptr < args->path) {
2459 ret = -ENAMETOOLONG;
2460 goto out_put;
2461 }
2462
2463 *(ptr + len) = '/';
2464 read_extent_buffer(leaf, ptr,
2465 (unsigned long)(iref + 1), len);
2466
2467 /* Check the read+exec permission of this directory */
2468 ret = btrfs_previous_item(root, path, dirid,
2469 BTRFS_INODE_ITEM_KEY);
2470 if (ret < 0) {
2471 goto out_put;
2472 } else if (ret > 0) {
2473 ret = -ENOENT;
2474 goto out_put;
2475 }
2476
2477 leaf = path->nodes[0];
2478 slot = path->slots[0];
2479 btrfs_item_key_to_cpu(leaf, &key2, slot);
2480 if (key2.objectid != dirid) {
2481 ret = -ENOENT;
2482 goto out_put;
2483 }
2484
2485 temp_inode = btrfs_iget(sb, key2.objectid, root);
2486 if (IS_ERR(temp_inode)) {
2487 ret = PTR_ERR(temp_inode);
2488 goto out_put;
2489 }
2490 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2491 iput(temp_inode);
2492 if (ret) {
2493 ret = -EACCES;
2494 goto out_put;
2495 }
2496
2497 if (key.offset == upper_limit.objectid)
2498 break;
2499 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2500 ret = -EACCES;
2501 goto out_put;
2502 }
2503
2504 btrfs_release_path(path);
2505 key.objectid = key.offset;
2506 key.offset = (u64)-1;
2507 dirid = key.objectid;
2508 }
2509
2510 memmove(args->path, ptr, total_len);
2511 args->path[total_len] = '\0';
2512 btrfs_put_root(root);
2513 root = NULL;
2514 btrfs_release_path(path);
2515 }
2516
2517 /* Get the bottom subvolume's name from ROOT_REF */
2518 key.objectid = treeid;
2519 key.type = BTRFS_ROOT_REF_KEY;
2520 key.offset = args->treeid;
2521 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2522 if (ret < 0) {
2523 goto out;
2524 } else if (ret > 0) {
2525 ret = -ENOENT;
2526 goto out;
2527 }
2528
2529 leaf = path->nodes[0];
2530 slot = path->slots[0];
2531 btrfs_item_key_to_cpu(leaf, &key, slot);
2532
2533 item_off = btrfs_item_ptr_offset(leaf, slot);
2534 item_len = btrfs_item_size_nr(leaf, slot);
2535 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2536 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2537 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2538 ret = -EINVAL;
2539 goto out;
2540 }
2541
2542 /* Copy subvolume's name */
2543 item_off += sizeof(struct btrfs_root_ref);
2544 item_len -= sizeof(struct btrfs_root_ref);
2545 read_extent_buffer(leaf, args->name, item_off, item_len);
2546 args->name[item_len] = 0;
2547
2548 out_put:
2549 btrfs_put_root(root);
2550 out:
2551 btrfs_free_path(path);
2552 return ret;
2553 }
2554
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2555 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2556 void __user *argp)
2557 {
2558 struct btrfs_ioctl_ino_lookup_args *args;
2559 struct inode *inode;
2560 int ret = 0;
2561
2562 args = memdup_user(argp, sizeof(*args));
2563 if (IS_ERR(args))
2564 return PTR_ERR(args);
2565
2566 inode = file_inode(file);
2567
2568 /*
2569 * Unprivileged query to obtain the containing subvolume root id. The
2570 * path is reset so it's consistent with btrfs_search_path_in_tree.
2571 */
2572 if (args->treeid == 0)
2573 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2574
2575 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2576 args->name[0] = 0;
2577 goto out;
2578 }
2579
2580 if (!capable(CAP_SYS_ADMIN)) {
2581 ret = -EPERM;
2582 goto out;
2583 }
2584
2585 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2586 args->treeid, args->objectid,
2587 args->name);
2588
2589 out:
2590 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2591 ret = -EFAULT;
2592
2593 kfree(args);
2594 return ret;
2595 }
2596
2597 /*
2598 * Version of ino_lookup ioctl (unprivileged)
2599 *
2600 * The main differences from ino_lookup ioctl are:
2601 *
2602 * 1. Read + Exec permission will be checked using inode_permission() during
2603 * path construction. -EACCES will be returned in case of failure.
2604 * 2. Path construction will be stopped at the inode number which corresponds
2605 * to the fd with which this ioctl is called. If constructed path does not
2606 * exist under fd's inode, -EACCES will be returned.
2607 * 3. The name of bottom subvolume is also searched and filled.
2608 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2609 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2610 {
2611 struct btrfs_ioctl_ino_lookup_user_args *args;
2612 struct inode *inode;
2613 int ret;
2614
2615 args = memdup_user(argp, sizeof(*args));
2616 if (IS_ERR(args))
2617 return PTR_ERR(args);
2618
2619 inode = file_inode(file);
2620
2621 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2622 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2623 /*
2624 * The subvolume does not exist under fd with which this is
2625 * called
2626 */
2627 kfree(args);
2628 return -EACCES;
2629 }
2630
2631 ret = btrfs_search_path_in_tree_user(inode, args);
2632
2633 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2634 ret = -EFAULT;
2635
2636 kfree(args);
2637 return ret;
2638 }
2639
2640 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2641 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2642 {
2643 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2644 struct btrfs_fs_info *fs_info;
2645 struct btrfs_root *root;
2646 struct btrfs_path *path;
2647 struct btrfs_key key;
2648 struct btrfs_root_item *root_item;
2649 struct btrfs_root_ref *rref;
2650 struct extent_buffer *leaf;
2651 unsigned long item_off;
2652 unsigned long item_len;
2653 struct inode *inode;
2654 int slot;
2655 int ret = 0;
2656
2657 path = btrfs_alloc_path();
2658 if (!path)
2659 return -ENOMEM;
2660
2661 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2662 if (!subvol_info) {
2663 btrfs_free_path(path);
2664 return -ENOMEM;
2665 }
2666
2667 inode = file_inode(file);
2668 fs_info = BTRFS_I(inode)->root->fs_info;
2669
2670 /* Get root_item of inode's subvolume */
2671 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2672 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2673 if (IS_ERR(root)) {
2674 ret = PTR_ERR(root);
2675 goto out_free;
2676 }
2677 root_item = &root->root_item;
2678
2679 subvol_info->treeid = key.objectid;
2680
2681 subvol_info->generation = btrfs_root_generation(root_item);
2682 subvol_info->flags = btrfs_root_flags(root_item);
2683
2684 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2685 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2686 BTRFS_UUID_SIZE);
2687 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2688 BTRFS_UUID_SIZE);
2689
2690 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2691 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2692 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2693
2694 subvol_info->otransid = btrfs_root_otransid(root_item);
2695 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2696 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2697
2698 subvol_info->stransid = btrfs_root_stransid(root_item);
2699 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2700 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2701
2702 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2703 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2704 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2705
2706 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2707 /* Search root tree for ROOT_BACKREF of this subvolume */
2708 key.type = BTRFS_ROOT_BACKREF_KEY;
2709 key.offset = 0;
2710 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2711 if (ret < 0) {
2712 goto out;
2713 } else if (path->slots[0] >=
2714 btrfs_header_nritems(path->nodes[0])) {
2715 ret = btrfs_next_leaf(fs_info->tree_root, path);
2716 if (ret < 0) {
2717 goto out;
2718 } else if (ret > 0) {
2719 ret = -EUCLEAN;
2720 goto out;
2721 }
2722 }
2723
2724 leaf = path->nodes[0];
2725 slot = path->slots[0];
2726 btrfs_item_key_to_cpu(leaf, &key, slot);
2727 if (key.objectid == subvol_info->treeid &&
2728 key.type == BTRFS_ROOT_BACKREF_KEY) {
2729 subvol_info->parent_id = key.offset;
2730
2731 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2732 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2733
2734 item_off = btrfs_item_ptr_offset(leaf, slot)
2735 + sizeof(struct btrfs_root_ref);
2736 item_len = btrfs_item_size_nr(leaf, slot)
2737 - sizeof(struct btrfs_root_ref);
2738 read_extent_buffer(leaf, subvol_info->name,
2739 item_off, item_len);
2740 } else {
2741 ret = -ENOENT;
2742 goto out;
2743 }
2744 }
2745
2746 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2747 ret = -EFAULT;
2748
2749 out:
2750 btrfs_put_root(root);
2751 out_free:
2752 btrfs_free_path(path);
2753 kfree(subvol_info);
2754 return ret;
2755 }
2756
2757 /*
2758 * Return ROOT_REF information of the subvolume containing this inode
2759 * except the subvolume name.
2760 */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2761 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2762 {
2763 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2764 struct btrfs_root_ref *rref;
2765 struct btrfs_root *root;
2766 struct btrfs_path *path;
2767 struct btrfs_key key;
2768 struct extent_buffer *leaf;
2769 struct inode *inode;
2770 u64 objectid;
2771 int slot;
2772 int ret;
2773 u8 found;
2774
2775 path = btrfs_alloc_path();
2776 if (!path)
2777 return -ENOMEM;
2778
2779 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2780 if (IS_ERR(rootrefs)) {
2781 btrfs_free_path(path);
2782 return PTR_ERR(rootrefs);
2783 }
2784
2785 inode = file_inode(file);
2786 root = BTRFS_I(inode)->root->fs_info->tree_root;
2787 objectid = BTRFS_I(inode)->root->root_key.objectid;
2788
2789 key.objectid = objectid;
2790 key.type = BTRFS_ROOT_REF_KEY;
2791 key.offset = rootrefs->min_treeid;
2792 found = 0;
2793
2794 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2795 if (ret < 0) {
2796 goto out;
2797 } else if (path->slots[0] >=
2798 btrfs_header_nritems(path->nodes[0])) {
2799 ret = btrfs_next_leaf(root, path);
2800 if (ret < 0) {
2801 goto out;
2802 } else if (ret > 0) {
2803 ret = -EUCLEAN;
2804 goto out;
2805 }
2806 }
2807 while (1) {
2808 leaf = path->nodes[0];
2809 slot = path->slots[0];
2810
2811 btrfs_item_key_to_cpu(leaf, &key, slot);
2812 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2813 ret = 0;
2814 goto out;
2815 }
2816
2817 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2818 ret = -EOVERFLOW;
2819 goto out;
2820 }
2821
2822 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2823 rootrefs->rootref[found].treeid = key.offset;
2824 rootrefs->rootref[found].dirid =
2825 btrfs_root_ref_dirid(leaf, rref);
2826 found++;
2827
2828 ret = btrfs_next_item(root, path);
2829 if (ret < 0) {
2830 goto out;
2831 } else if (ret > 0) {
2832 ret = -EUCLEAN;
2833 goto out;
2834 }
2835 }
2836
2837 out:
2838 if (!ret || ret == -EOVERFLOW) {
2839 rootrefs->num_items = found;
2840 /* update min_treeid for next search */
2841 if (found)
2842 rootrefs->min_treeid =
2843 rootrefs->rootref[found - 1].treeid + 1;
2844 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2845 ret = -EFAULT;
2846 }
2847
2848 kfree(rootrefs);
2849 btrfs_free_path(path);
2850
2851 return ret;
2852 }
2853
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2854 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2855 void __user *arg,
2856 bool destroy_v2)
2857 {
2858 struct dentry *parent = file->f_path.dentry;
2859 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2860 struct dentry *dentry;
2861 struct inode *dir = d_inode(parent);
2862 struct inode *inode;
2863 struct btrfs_root *root = BTRFS_I(dir)->root;
2864 struct btrfs_root *dest = NULL;
2865 struct btrfs_ioctl_vol_args *vol_args = NULL;
2866 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2867 char *subvol_name, *subvol_name_ptr = NULL;
2868 int subvol_namelen;
2869 int err = 0;
2870 bool destroy_parent = false;
2871
2872 if (destroy_v2) {
2873 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2874 if (IS_ERR(vol_args2))
2875 return PTR_ERR(vol_args2);
2876
2877 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2878 err = -EOPNOTSUPP;
2879 goto out;
2880 }
2881
2882 /*
2883 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2884 * name, same as v1 currently does.
2885 */
2886 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2887 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2888 subvol_name = vol_args2->name;
2889
2890 err = mnt_want_write_file(file);
2891 if (err)
2892 goto out;
2893 } else {
2894 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2895 err = -EINVAL;
2896 goto out;
2897 }
2898
2899 err = mnt_want_write_file(file);
2900 if (err)
2901 goto out;
2902
2903 dentry = btrfs_get_dentry(fs_info->sb,
2904 BTRFS_FIRST_FREE_OBJECTID,
2905 vol_args2->subvolid, 0, 0);
2906 if (IS_ERR(dentry)) {
2907 err = PTR_ERR(dentry);
2908 goto out_drop_write;
2909 }
2910
2911 /*
2912 * Change the default parent since the subvolume being
2913 * deleted can be outside of the current mount point.
2914 */
2915 parent = btrfs_get_parent(dentry);
2916
2917 /*
2918 * At this point dentry->d_name can point to '/' if the
2919 * subvolume we want to destroy is outsite of the
2920 * current mount point, so we need to release the
2921 * current dentry and execute the lookup to return a new
2922 * one with ->d_name pointing to the
2923 * <mount point>/subvol_name.
2924 */
2925 dput(dentry);
2926 if (IS_ERR(parent)) {
2927 err = PTR_ERR(parent);
2928 goto out_drop_write;
2929 }
2930 dir = d_inode(parent);
2931
2932 /*
2933 * If v2 was used with SPEC_BY_ID, a new parent was
2934 * allocated since the subvolume can be outside of the
2935 * current mount point. Later on we need to release this
2936 * new parent dentry.
2937 */
2938 destroy_parent = true;
2939
2940 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2941 fs_info, vol_args2->subvolid);
2942 if (IS_ERR(subvol_name_ptr)) {
2943 err = PTR_ERR(subvol_name_ptr);
2944 goto free_parent;
2945 }
2946 /* subvol_name_ptr is already NULL termined */
2947 subvol_name = (char *)kbasename(subvol_name_ptr);
2948 }
2949 } else {
2950 vol_args = memdup_user(arg, sizeof(*vol_args));
2951 if (IS_ERR(vol_args))
2952 return PTR_ERR(vol_args);
2953
2954 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2955 subvol_name = vol_args->name;
2956
2957 err = mnt_want_write_file(file);
2958 if (err)
2959 goto out;
2960 }
2961
2962 subvol_namelen = strlen(subvol_name);
2963
2964 if (strchr(subvol_name, '/') ||
2965 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2966 err = -EINVAL;
2967 goto free_subvol_name;
2968 }
2969
2970 if (!S_ISDIR(dir->i_mode)) {
2971 err = -ENOTDIR;
2972 goto free_subvol_name;
2973 }
2974
2975 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2976 if (err == -EINTR)
2977 goto free_subvol_name;
2978 dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
2979 if (IS_ERR(dentry)) {
2980 err = PTR_ERR(dentry);
2981 goto out_unlock_dir;
2982 }
2983
2984 if (d_really_is_negative(dentry)) {
2985 err = -ENOENT;
2986 goto out_dput;
2987 }
2988
2989 inode = d_inode(dentry);
2990 dest = BTRFS_I(inode)->root;
2991 if (!capable(CAP_SYS_ADMIN)) {
2992 /*
2993 * Regular user. Only allow this with a special mount
2994 * option, when the user has write+exec access to the
2995 * subvol root, and when rmdir(2) would have been
2996 * allowed.
2997 *
2998 * Note that this is _not_ check that the subvol is
2999 * empty or doesn't contain data that we wouldn't
3000 * otherwise be able to delete.
3001 *
3002 * Users who want to delete empty subvols should try
3003 * rmdir(2).
3004 */
3005 err = -EPERM;
3006 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3007 goto out_dput;
3008
3009 /*
3010 * Do not allow deletion if the parent dir is the same
3011 * as the dir to be deleted. That means the ioctl
3012 * must be called on the dentry referencing the root
3013 * of the subvol, not a random directory contained
3014 * within it.
3015 */
3016 err = -EINVAL;
3017 if (root == dest)
3018 goto out_dput;
3019
3020 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3021 if (err)
3022 goto out_dput;
3023 }
3024
3025 /* check if subvolume may be deleted by a user */
3026 err = btrfs_may_delete(dir, dentry, 1);
3027 if (err)
3028 goto out_dput;
3029
3030 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3031 err = -EINVAL;
3032 goto out_dput;
3033 }
3034
3035 inode_lock(inode);
3036 err = btrfs_delete_subvolume(dir, dentry);
3037 inode_unlock(inode);
3038 if (!err) {
3039 fsnotify_rmdir(dir, dentry);
3040 d_delete(dentry);
3041 }
3042
3043 out_dput:
3044 dput(dentry);
3045 out_unlock_dir:
3046 inode_unlock(dir);
3047 free_subvol_name:
3048 kfree(subvol_name_ptr);
3049 free_parent:
3050 if (destroy_parent)
3051 dput(parent);
3052 out_drop_write:
3053 mnt_drop_write_file(file);
3054 out:
3055 kfree(vol_args2);
3056 kfree(vol_args);
3057 return err;
3058 }
3059
btrfs_ioctl_defrag(struct file * file,void __user * argp)3060 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3061 {
3062 struct inode *inode = file_inode(file);
3063 struct btrfs_root *root = BTRFS_I(inode)->root;
3064 struct btrfs_ioctl_defrag_range_args *range;
3065 int ret;
3066
3067 ret = mnt_want_write_file(file);
3068 if (ret)
3069 return ret;
3070
3071 if (btrfs_root_readonly(root)) {
3072 ret = -EROFS;
3073 goto out;
3074 }
3075
3076 switch (inode->i_mode & S_IFMT) {
3077 case S_IFDIR:
3078 if (!capable(CAP_SYS_ADMIN)) {
3079 ret = -EPERM;
3080 goto out;
3081 }
3082 ret = btrfs_defrag_root(root);
3083 break;
3084 case S_IFREG:
3085 /*
3086 * Note that this does not check the file descriptor for write
3087 * access. This prevents defragmenting executables that are
3088 * running and allows defrag on files open in read-only mode.
3089 */
3090 if (!capable(CAP_SYS_ADMIN) &&
3091 inode_permission(inode, MAY_WRITE)) {
3092 ret = -EPERM;
3093 goto out;
3094 }
3095
3096 range = kzalloc(sizeof(*range), GFP_KERNEL);
3097 if (!range) {
3098 ret = -ENOMEM;
3099 goto out;
3100 }
3101
3102 if (argp) {
3103 if (copy_from_user(range, argp,
3104 sizeof(*range))) {
3105 ret = -EFAULT;
3106 kfree(range);
3107 goto out;
3108 }
3109 /* compression requires us to start the IO */
3110 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3111 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3112 range->extent_thresh = (u32)-1;
3113 }
3114 } else {
3115 /* the rest are all set to zero by kzalloc */
3116 range->len = (u64)-1;
3117 }
3118 ret = btrfs_defrag_file(file_inode(file), file,
3119 range, BTRFS_OLDEST_GENERATION, 0);
3120 if (ret > 0)
3121 ret = 0;
3122 kfree(range);
3123 break;
3124 default:
3125 ret = -EINVAL;
3126 }
3127 out:
3128 mnt_drop_write_file(file);
3129 return ret;
3130 }
3131
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3132 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3133 {
3134 struct btrfs_ioctl_vol_args *vol_args;
3135 int ret;
3136
3137 if (!capable(CAP_SYS_ADMIN))
3138 return -EPERM;
3139
3140 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3141 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3142
3143 vol_args = memdup_user(arg, sizeof(*vol_args));
3144 if (IS_ERR(vol_args)) {
3145 ret = PTR_ERR(vol_args);
3146 goto out;
3147 }
3148
3149 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3150 ret = btrfs_init_new_device(fs_info, vol_args->name);
3151
3152 if (!ret)
3153 btrfs_info(fs_info, "disk added %s", vol_args->name);
3154
3155 kfree(vol_args);
3156 out:
3157 btrfs_exclop_finish(fs_info);
3158 return ret;
3159 }
3160
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3161 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3162 {
3163 struct inode *inode = file_inode(file);
3164 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3165 struct btrfs_ioctl_vol_args_v2 *vol_args;
3166 int ret;
3167
3168 if (!capable(CAP_SYS_ADMIN))
3169 return -EPERM;
3170
3171 ret = mnt_want_write_file(file);
3172 if (ret)
3173 return ret;
3174
3175 vol_args = memdup_user(arg, sizeof(*vol_args));
3176 if (IS_ERR(vol_args)) {
3177 ret = PTR_ERR(vol_args);
3178 goto err_drop;
3179 }
3180
3181 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3182 ret = -EOPNOTSUPP;
3183 goto out;
3184 }
3185
3186 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3187 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3188 goto out;
3189 }
3190
3191 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3192 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3193 } else {
3194 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3195 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3196 }
3197 btrfs_exclop_finish(fs_info);
3198
3199 if (!ret) {
3200 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3201 btrfs_info(fs_info, "device deleted: id %llu",
3202 vol_args->devid);
3203 else
3204 btrfs_info(fs_info, "device deleted: %s",
3205 vol_args->name);
3206 }
3207 out:
3208 kfree(vol_args);
3209 err_drop:
3210 mnt_drop_write_file(file);
3211 return ret;
3212 }
3213
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3214 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3215 {
3216 struct inode *inode = file_inode(file);
3217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3218 struct btrfs_ioctl_vol_args *vol_args;
3219 int ret;
3220
3221 if (!capable(CAP_SYS_ADMIN))
3222 return -EPERM;
3223
3224 ret = mnt_want_write_file(file);
3225 if (ret)
3226 return ret;
3227
3228 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3229 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3230 goto out_drop_write;
3231 }
3232
3233 vol_args = memdup_user(arg, sizeof(*vol_args));
3234 if (IS_ERR(vol_args)) {
3235 ret = PTR_ERR(vol_args);
3236 goto out;
3237 }
3238
3239 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3240 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3241
3242 if (!ret)
3243 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3244 kfree(vol_args);
3245 out:
3246 btrfs_exclop_finish(fs_info);
3247 out_drop_write:
3248 mnt_drop_write_file(file);
3249
3250 return ret;
3251 }
3252
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3253 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3254 void __user *arg)
3255 {
3256 struct btrfs_ioctl_fs_info_args *fi_args;
3257 struct btrfs_device *device;
3258 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3259 u64 flags_in;
3260 int ret = 0;
3261
3262 fi_args = memdup_user(arg, sizeof(*fi_args));
3263 if (IS_ERR(fi_args))
3264 return PTR_ERR(fi_args);
3265
3266 flags_in = fi_args->flags;
3267 memset(fi_args, 0, sizeof(*fi_args));
3268
3269 rcu_read_lock();
3270 fi_args->num_devices = fs_devices->num_devices;
3271
3272 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3273 if (device->devid > fi_args->max_id)
3274 fi_args->max_id = device->devid;
3275 }
3276 rcu_read_unlock();
3277
3278 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3279 fi_args->nodesize = fs_info->nodesize;
3280 fi_args->sectorsize = fs_info->sectorsize;
3281 fi_args->clone_alignment = fs_info->sectorsize;
3282
3283 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3284 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3285 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3286 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3287 }
3288
3289 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3290 fi_args->generation = fs_info->generation;
3291 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3292 }
3293
3294 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3295 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3296 sizeof(fi_args->metadata_uuid));
3297 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3298 }
3299
3300 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3301 ret = -EFAULT;
3302
3303 kfree(fi_args);
3304 return ret;
3305 }
3306
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3307 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3308 void __user *arg)
3309 {
3310 struct btrfs_ioctl_dev_info_args *di_args;
3311 struct btrfs_device *dev;
3312 int ret = 0;
3313 char *s_uuid = NULL;
3314
3315 di_args = memdup_user(arg, sizeof(*di_args));
3316 if (IS_ERR(di_args))
3317 return PTR_ERR(di_args);
3318
3319 if (!btrfs_is_empty_uuid(di_args->uuid))
3320 s_uuid = di_args->uuid;
3321
3322 rcu_read_lock();
3323 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3324 NULL, true);
3325
3326 if (!dev) {
3327 ret = -ENODEV;
3328 goto out;
3329 }
3330
3331 di_args->devid = dev->devid;
3332 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3333 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3334 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3335 if (dev->name) {
3336 strncpy(di_args->path, rcu_str_deref(dev->name),
3337 sizeof(di_args->path) - 1);
3338 di_args->path[sizeof(di_args->path) - 1] = 0;
3339 } else {
3340 di_args->path[0] = '\0';
3341 }
3342
3343 out:
3344 rcu_read_unlock();
3345 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3346 ret = -EFAULT;
3347
3348 kfree(di_args);
3349 return ret;
3350 }
3351
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3352 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3353 {
3354 struct inode *inode = file_inode(file);
3355 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3356 struct btrfs_root *root = BTRFS_I(inode)->root;
3357 struct btrfs_root *new_root;
3358 struct btrfs_dir_item *di;
3359 struct btrfs_trans_handle *trans;
3360 struct btrfs_path *path = NULL;
3361 struct btrfs_disk_key disk_key;
3362 u64 objectid = 0;
3363 u64 dir_id;
3364 int ret;
3365
3366 if (!capable(CAP_SYS_ADMIN))
3367 return -EPERM;
3368
3369 ret = mnt_want_write_file(file);
3370 if (ret)
3371 return ret;
3372
3373 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3374 ret = -EFAULT;
3375 goto out;
3376 }
3377
3378 if (!objectid)
3379 objectid = BTRFS_FS_TREE_OBJECTID;
3380
3381 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3382 if (IS_ERR(new_root)) {
3383 ret = PTR_ERR(new_root);
3384 goto out;
3385 }
3386 if (!is_fstree(new_root->root_key.objectid)) {
3387 ret = -ENOENT;
3388 goto out_free;
3389 }
3390
3391 path = btrfs_alloc_path();
3392 if (!path) {
3393 ret = -ENOMEM;
3394 goto out_free;
3395 }
3396 path->leave_spinning = 1;
3397
3398 trans = btrfs_start_transaction(root, 1);
3399 if (IS_ERR(trans)) {
3400 ret = PTR_ERR(trans);
3401 goto out_free;
3402 }
3403
3404 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3405 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3406 dir_id, "default", 7, 1);
3407 if (IS_ERR_OR_NULL(di)) {
3408 btrfs_release_path(path);
3409 btrfs_end_transaction(trans);
3410 btrfs_err(fs_info,
3411 "Umm, you don't have the default diritem, this isn't going to work");
3412 ret = -ENOENT;
3413 goto out_free;
3414 }
3415
3416 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3417 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3418 btrfs_mark_buffer_dirty(path->nodes[0]);
3419 btrfs_release_path(path);
3420
3421 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3422 btrfs_end_transaction(trans);
3423 out_free:
3424 btrfs_put_root(new_root);
3425 btrfs_free_path(path);
3426 out:
3427 mnt_drop_write_file(file);
3428 return ret;
3429 }
3430
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3431 static void get_block_group_info(struct list_head *groups_list,
3432 struct btrfs_ioctl_space_info *space)
3433 {
3434 struct btrfs_block_group *block_group;
3435
3436 space->total_bytes = 0;
3437 space->used_bytes = 0;
3438 space->flags = 0;
3439 list_for_each_entry(block_group, groups_list, list) {
3440 space->flags = block_group->flags;
3441 space->total_bytes += block_group->length;
3442 space->used_bytes += block_group->used;
3443 }
3444 }
3445
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3446 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3447 void __user *arg)
3448 {
3449 struct btrfs_ioctl_space_args space_args;
3450 struct btrfs_ioctl_space_info space;
3451 struct btrfs_ioctl_space_info *dest;
3452 struct btrfs_ioctl_space_info *dest_orig;
3453 struct btrfs_ioctl_space_info __user *user_dest;
3454 struct btrfs_space_info *info;
3455 static const u64 types[] = {
3456 BTRFS_BLOCK_GROUP_DATA,
3457 BTRFS_BLOCK_GROUP_SYSTEM,
3458 BTRFS_BLOCK_GROUP_METADATA,
3459 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3460 };
3461 int num_types = 4;
3462 int alloc_size;
3463 int ret = 0;
3464 u64 slot_count = 0;
3465 int i, c;
3466
3467 if (copy_from_user(&space_args,
3468 (struct btrfs_ioctl_space_args __user *)arg,
3469 sizeof(space_args)))
3470 return -EFAULT;
3471
3472 for (i = 0; i < num_types; i++) {
3473 struct btrfs_space_info *tmp;
3474
3475 info = NULL;
3476 list_for_each_entry(tmp, &fs_info->space_info, list) {
3477 if (tmp->flags == types[i]) {
3478 info = tmp;
3479 break;
3480 }
3481 }
3482
3483 if (!info)
3484 continue;
3485
3486 down_read(&info->groups_sem);
3487 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3488 if (!list_empty(&info->block_groups[c]))
3489 slot_count++;
3490 }
3491 up_read(&info->groups_sem);
3492 }
3493
3494 /*
3495 * Global block reserve, exported as a space_info
3496 */
3497 slot_count++;
3498
3499 /* space_slots == 0 means they are asking for a count */
3500 if (space_args.space_slots == 0) {
3501 space_args.total_spaces = slot_count;
3502 goto out;
3503 }
3504
3505 slot_count = min_t(u64, space_args.space_slots, slot_count);
3506
3507 alloc_size = sizeof(*dest) * slot_count;
3508
3509 /* we generally have at most 6 or so space infos, one for each raid
3510 * level. So, a whole page should be more than enough for everyone
3511 */
3512 if (alloc_size > PAGE_SIZE)
3513 return -ENOMEM;
3514
3515 space_args.total_spaces = 0;
3516 dest = kmalloc(alloc_size, GFP_KERNEL);
3517 if (!dest)
3518 return -ENOMEM;
3519 dest_orig = dest;
3520
3521 /* now we have a buffer to copy into */
3522 for (i = 0; i < num_types; i++) {
3523 struct btrfs_space_info *tmp;
3524
3525 if (!slot_count)
3526 break;
3527
3528 info = NULL;
3529 list_for_each_entry(tmp, &fs_info->space_info, list) {
3530 if (tmp->flags == types[i]) {
3531 info = tmp;
3532 break;
3533 }
3534 }
3535
3536 if (!info)
3537 continue;
3538 down_read(&info->groups_sem);
3539 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3540 if (!list_empty(&info->block_groups[c])) {
3541 get_block_group_info(&info->block_groups[c],
3542 &space);
3543 memcpy(dest, &space, sizeof(space));
3544 dest++;
3545 space_args.total_spaces++;
3546 slot_count--;
3547 }
3548 if (!slot_count)
3549 break;
3550 }
3551 up_read(&info->groups_sem);
3552 }
3553
3554 /*
3555 * Add global block reserve
3556 */
3557 if (slot_count) {
3558 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3559
3560 spin_lock(&block_rsv->lock);
3561 space.total_bytes = block_rsv->size;
3562 space.used_bytes = block_rsv->size - block_rsv->reserved;
3563 spin_unlock(&block_rsv->lock);
3564 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3565 memcpy(dest, &space, sizeof(space));
3566 space_args.total_spaces++;
3567 }
3568
3569 user_dest = (struct btrfs_ioctl_space_info __user *)
3570 (arg + sizeof(struct btrfs_ioctl_space_args));
3571
3572 if (copy_to_user(user_dest, dest_orig, alloc_size))
3573 ret = -EFAULT;
3574
3575 kfree(dest_orig);
3576 out:
3577 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3578 ret = -EFAULT;
3579
3580 return ret;
3581 }
3582
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3583 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3584 void __user *argp)
3585 {
3586 struct btrfs_trans_handle *trans;
3587 u64 transid;
3588 int ret;
3589
3590 trans = btrfs_attach_transaction_barrier(root);
3591 if (IS_ERR(trans)) {
3592 if (PTR_ERR(trans) != -ENOENT)
3593 return PTR_ERR(trans);
3594
3595 /* No running transaction, don't bother */
3596 transid = root->fs_info->last_trans_committed;
3597 goto out;
3598 }
3599 transid = trans->transid;
3600 ret = btrfs_commit_transaction_async(trans, 0);
3601 if (ret) {
3602 btrfs_end_transaction(trans);
3603 return ret;
3604 }
3605 out:
3606 if (argp)
3607 if (copy_to_user(argp, &transid, sizeof(transid)))
3608 return -EFAULT;
3609 return 0;
3610 }
3611
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3612 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3613 void __user *argp)
3614 {
3615 u64 transid;
3616
3617 if (argp) {
3618 if (copy_from_user(&transid, argp, sizeof(transid)))
3619 return -EFAULT;
3620 } else {
3621 transid = 0; /* current trans */
3622 }
3623 return btrfs_wait_for_commit(fs_info, transid);
3624 }
3625
btrfs_ioctl_scrub(struct file * file,void __user * arg)3626 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3627 {
3628 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3629 struct btrfs_ioctl_scrub_args *sa;
3630 int ret;
3631
3632 if (!capable(CAP_SYS_ADMIN))
3633 return -EPERM;
3634
3635 sa = memdup_user(arg, sizeof(*sa));
3636 if (IS_ERR(sa))
3637 return PTR_ERR(sa);
3638
3639 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3640 ret = mnt_want_write_file(file);
3641 if (ret)
3642 goto out;
3643 }
3644
3645 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3646 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3647 0);
3648
3649 /*
3650 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3651 * error. This is important as it allows user space to know how much
3652 * progress scrub has done. For example, if scrub is canceled we get
3653 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3654 * space. Later user space can inspect the progress from the structure
3655 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3656 * previously (btrfs-progs does this).
3657 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3658 * then return -EFAULT to signal the structure was not copied or it may
3659 * be corrupt and unreliable due to a partial copy.
3660 */
3661 if (copy_to_user(arg, sa, sizeof(*sa)))
3662 ret = -EFAULT;
3663
3664 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3665 mnt_drop_write_file(file);
3666 out:
3667 kfree(sa);
3668 return ret;
3669 }
3670
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3671 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3672 {
3673 if (!capable(CAP_SYS_ADMIN))
3674 return -EPERM;
3675
3676 return btrfs_scrub_cancel(fs_info);
3677 }
3678
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3679 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3680 void __user *arg)
3681 {
3682 struct btrfs_ioctl_scrub_args *sa;
3683 int ret;
3684
3685 if (!capable(CAP_SYS_ADMIN))
3686 return -EPERM;
3687
3688 sa = memdup_user(arg, sizeof(*sa));
3689 if (IS_ERR(sa))
3690 return PTR_ERR(sa);
3691
3692 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3693
3694 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3695 ret = -EFAULT;
3696
3697 kfree(sa);
3698 return ret;
3699 }
3700
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3701 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3702 void __user *arg)
3703 {
3704 struct btrfs_ioctl_get_dev_stats *sa;
3705 int ret;
3706
3707 sa = memdup_user(arg, sizeof(*sa));
3708 if (IS_ERR(sa))
3709 return PTR_ERR(sa);
3710
3711 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3712 kfree(sa);
3713 return -EPERM;
3714 }
3715
3716 ret = btrfs_get_dev_stats(fs_info, sa);
3717
3718 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3719 ret = -EFAULT;
3720
3721 kfree(sa);
3722 return ret;
3723 }
3724
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3725 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3726 void __user *arg)
3727 {
3728 struct btrfs_ioctl_dev_replace_args *p;
3729 int ret;
3730
3731 if (!capable(CAP_SYS_ADMIN))
3732 return -EPERM;
3733
3734 p = memdup_user(arg, sizeof(*p));
3735 if (IS_ERR(p))
3736 return PTR_ERR(p);
3737
3738 switch (p->cmd) {
3739 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3740 if (sb_rdonly(fs_info->sb)) {
3741 ret = -EROFS;
3742 goto out;
3743 }
3744 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3745 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3746 } else {
3747 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3748 btrfs_exclop_finish(fs_info);
3749 }
3750 break;
3751 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3752 btrfs_dev_replace_status(fs_info, p);
3753 ret = 0;
3754 break;
3755 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3756 p->result = btrfs_dev_replace_cancel(fs_info);
3757 ret = 0;
3758 break;
3759 default:
3760 ret = -EINVAL;
3761 break;
3762 }
3763
3764 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3765 ret = -EFAULT;
3766 out:
3767 kfree(p);
3768 return ret;
3769 }
3770
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3771 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3772 {
3773 int ret = 0;
3774 int i;
3775 u64 rel_ptr;
3776 int size;
3777 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3778 struct inode_fs_paths *ipath = NULL;
3779 struct btrfs_path *path;
3780
3781 if (!capable(CAP_DAC_READ_SEARCH))
3782 return -EPERM;
3783
3784 path = btrfs_alloc_path();
3785 if (!path) {
3786 ret = -ENOMEM;
3787 goto out;
3788 }
3789
3790 ipa = memdup_user(arg, sizeof(*ipa));
3791 if (IS_ERR(ipa)) {
3792 ret = PTR_ERR(ipa);
3793 ipa = NULL;
3794 goto out;
3795 }
3796
3797 size = min_t(u32, ipa->size, 4096);
3798 ipath = init_ipath(size, root, path);
3799 if (IS_ERR(ipath)) {
3800 ret = PTR_ERR(ipath);
3801 ipath = NULL;
3802 goto out;
3803 }
3804
3805 ret = paths_from_inode(ipa->inum, ipath);
3806 if (ret < 0)
3807 goto out;
3808
3809 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3810 rel_ptr = ipath->fspath->val[i] -
3811 (u64)(unsigned long)ipath->fspath->val;
3812 ipath->fspath->val[i] = rel_ptr;
3813 }
3814
3815 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3816 ipath->fspath, size);
3817 if (ret) {
3818 ret = -EFAULT;
3819 goto out;
3820 }
3821
3822 out:
3823 btrfs_free_path(path);
3824 free_ipath(ipath);
3825 kfree(ipa);
3826
3827 return ret;
3828 }
3829
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)3830 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3831 {
3832 struct btrfs_data_container *inodes = ctx;
3833 const size_t c = 3 * sizeof(u64);
3834
3835 if (inodes->bytes_left >= c) {
3836 inodes->bytes_left -= c;
3837 inodes->val[inodes->elem_cnt] = inum;
3838 inodes->val[inodes->elem_cnt + 1] = offset;
3839 inodes->val[inodes->elem_cnt + 2] = root;
3840 inodes->elem_cnt += 3;
3841 } else {
3842 inodes->bytes_missing += c - inodes->bytes_left;
3843 inodes->bytes_left = 0;
3844 inodes->elem_missed += 3;
3845 }
3846
3847 return 0;
3848 }
3849
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3850 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3851 void __user *arg, int version)
3852 {
3853 int ret = 0;
3854 int size;
3855 struct btrfs_ioctl_logical_ino_args *loi;
3856 struct btrfs_data_container *inodes = NULL;
3857 struct btrfs_path *path = NULL;
3858 bool ignore_offset;
3859
3860 if (!capable(CAP_SYS_ADMIN))
3861 return -EPERM;
3862
3863 loi = memdup_user(arg, sizeof(*loi));
3864 if (IS_ERR(loi))
3865 return PTR_ERR(loi);
3866
3867 if (version == 1) {
3868 ignore_offset = false;
3869 size = min_t(u32, loi->size, SZ_64K);
3870 } else {
3871 /* All reserved bits must be 0 for now */
3872 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3873 ret = -EINVAL;
3874 goto out_loi;
3875 }
3876 /* Only accept flags we have defined so far */
3877 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3878 ret = -EINVAL;
3879 goto out_loi;
3880 }
3881 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3882 size = min_t(u32, loi->size, SZ_16M);
3883 }
3884
3885 path = btrfs_alloc_path();
3886 if (!path) {
3887 ret = -ENOMEM;
3888 goto out;
3889 }
3890
3891 inodes = init_data_container(size);
3892 if (IS_ERR(inodes)) {
3893 ret = PTR_ERR(inodes);
3894 inodes = NULL;
3895 goto out;
3896 }
3897
3898 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3899 build_ino_list, inodes, ignore_offset);
3900 if (ret == -EINVAL)
3901 ret = -ENOENT;
3902 if (ret < 0)
3903 goto out;
3904
3905 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3906 size);
3907 if (ret)
3908 ret = -EFAULT;
3909
3910 out:
3911 btrfs_free_path(path);
3912 kvfree(inodes);
3913 out_loi:
3914 kfree(loi);
3915
3916 return ret;
3917 }
3918
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3919 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3920 struct btrfs_ioctl_balance_args *bargs)
3921 {
3922 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3923
3924 bargs->flags = bctl->flags;
3925
3926 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3927 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3928 if (atomic_read(&fs_info->balance_pause_req))
3929 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3930 if (atomic_read(&fs_info->balance_cancel_req))
3931 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3932
3933 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3934 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3935 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3936
3937 spin_lock(&fs_info->balance_lock);
3938 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3939 spin_unlock(&fs_info->balance_lock);
3940 }
3941
btrfs_ioctl_balance(struct file * file,void __user * arg)3942 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3943 {
3944 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3945 struct btrfs_fs_info *fs_info = root->fs_info;
3946 struct btrfs_ioctl_balance_args *bargs;
3947 struct btrfs_balance_control *bctl;
3948 bool need_unlock; /* for mut. excl. ops lock */
3949 int ret;
3950
3951 if (!capable(CAP_SYS_ADMIN))
3952 return -EPERM;
3953
3954 ret = mnt_want_write_file(file);
3955 if (ret)
3956 return ret;
3957
3958 again:
3959 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3960 mutex_lock(&fs_info->balance_mutex);
3961 need_unlock = true;
3962 goto locked;
3963 }
3964
3965 /*
3966 * mut. excl. ops lock is locked. Three possibilities:
3967 * (1) some other op is running
3968 * (2) balance is running
3969 * (3) balance is paused -- special case (think resume)
3970 */
3971 mutex_lock(&fs_info->balance_mutex);
3972 if (fs_info->balance_ctl) {
3973 /* this is either (2) or (3) */
3974 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3975 mutex_unlock(&fs_info->balance_mutex);
3976 /*
3977 * Lock released to allow other waiters to continue,
3978 * we'll reexamine the status again.
3979 */
3980 mutex_lock(&fs_info->balance_mutex);
3981
3982 if (fs_info->balance_ctl &&
3983 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3984 /* this is (3) */
3985 need_unlock = false;
3986 goto locked;
3987 }
3988
3989 mutex_unlock(&fs_info->balance_mutex);
3990 goto again;
3991 } else {
3992 /* this is (2) */
3993 mutex_unlock(&fs_info->balance_mutex);
3994 ret = -EINPROGRESS;
3995 goto out;
3996 }
3997 } else {
3998 /* this is (1) */
3999 mutex_unlock(&fs_info->balance_mutex);
4000 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4001 goto out;
4002 }
4003
4004 locked:
4005
4006 if (arg) {
4007 bargs = memdup_user(arg, sizeof(*bargs));
4008 if (IS_ERR(bargs)) {
4009 ret = PTR_ERR(bargs);
4010 goto out_unlock;
4011 }
4012
4013 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4014 if (!fs_info->balance_ctl) {
4015 ret = -ENOTCONN;
4016 goto out_bargs;
4017 }
4018
4019 bctl = fs_info->balance_ctl;
4020 spin_lock(&fs_info->balance_lock);
4021 bctl->flags |= BTRFS_BALANCE_RESUME;
4022 spin_unlock(&fs_info->balance_lock);
4023
4024 goto do_balance;
4025 }
4026 } else {
4027 bargs = NULL;
4028 }
4029
4030 if (fs_info->balance_ctl) {
4031 ret = -EINPROGRESS;
4032 goto out_bargs;
4033 }
4034
4035 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4036 if (!bctl) {
4037 ret = -ENOMEM;
4038 goto out_bargs;
4039 }
4040
4041 if (arg) {
4042 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4043 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4044 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4045
4046 bctl->flags = bargs->flags;
4047 } else {
4048 /* balance everything - no filters */
4049 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4050 }
4051
4052 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4053 ret = -EINVAL;
4054 goto out_bctl;
4055 }
4056
4057 do_balance:
4058 /*
4059 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4060 * bctl is freed in reset_balance_state, or, if restriper was paused
4061 * all the way until unmount, in free_fs_info. The flag should be
4062 * cleared after reset_balance_state.
4063 */
4064 need_unlock = false;
4065
4066 ret = btrfs_balance(fs_info, bctl, bargs);
4067 bctl = NULL;
4068
4069 if ((ret == 0 || ret == -ECANCELED) && arg) {
4070 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4071 ret = -EFAULT;
4072 }
4073
4074 out_bctl:
4075 kfree(bctl);
4076 out_bargs:
4077 kfree(bargs);
4078 out_unlock:
4079 mutex_unlock(&fs_info->balance_mutex);
4080 if (need_unlock)
4081 btrfs_exclop_finish(fs_info);
4082 out:
4083 mnt_drop_write_file(file);
4084 return ret;
4085 }
4086
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4087 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4088 {
4089 if (!capable(CAP_SYS_ADMIN))
4090 return -EPERM;
4091
4092 switch (cmd) {
4093 case BTRFS_BALANCE_CTL_PAUSE:
4094 return btrfs_pause_balance(fs_info);
4095 case BTRFS_BALANCE_CTL_CANCEL:
4096 return btrfs_cancel_balance(fs_info);
4097 }
4098
4099 return -EINVAL;
4100 }
4101
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4102 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4103 void __user *arg)
4104 {
4105 struct btrfs_ioctl_balance_args *bargs;
4106 int ret = 0;
4107
4108 if (!capable(CAP_SYS_ADMIN))
4109 return -EPERM;
4110
4111 mutex_lock(&fs_info->balance_mutex);
4112 if (!fs_info->balance_ctl) {
4113 ret = -ENOTCONN;
4114 goto out;
4115 }
4116
4117 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4118 if (!bargs) {
4119 ret = -ENOMEM;
4120 goto out;
4121 }
4122
4123 btrfs_update_ioctl_balance_args(fs_info, bargs);
4124
4125 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4126 ret = -EFAULT;
4127
4128 kfree(bargs);
4129 out:
4130 mutex_unlock(&fs_info->balance_mutex);
4131 return ret;
4132 }
4133
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4134 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4135 {
4136 struct inode *inode = file_inode(file);
4137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4138 struct btrfs_ioctl_quota_ctl_args *sa;
4139 int ret;
4140
4141 if (!capable(CAP_SYS_ADMIN))
4142 return -EPERM;
4143
4144 ret = mnt_want_write_file(file);
4145 if (ret)
4146 return ret;
4147
4148 sa = memdup_user(arg, sizeof(*sa));
4149 if (IS_ERR(sa)) {
4150 ret = PTR_ERR(sa);
4151 goto drop_write;
4152 }
4153
4154 down_write(&fs_info->subvol_sem);
4155
4156 switch (sa->cmd) {
4157 case BTRFS_QUOTA_CTL_ENABLE:
4158 ret = btrfs_quota_enable(fs_info);
4159 break;
4160 case BTRFS_QUOTA_CTL_DISABLE:
4161 ret = btrfs_quota_disable(fs_info);
4162 break;
4163 default:
4164 ret = -EINVAL;
4165 break;
4166 }
4167
4168 kfree(sa);
4169 up_write(&fs_info->subvol_sem);
4170 drop_write:
4171 mnt_drop_write_file(file);
4172 return ret;
4173 }
4174
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4175 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4176 {
4177 struct inode *inode = file_inode(file);
4178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4179 struct btrfs_root *root = BTRFS_I(inode)->root;
4180 struct btrfs_ioctl_qgroup_assign_args *sa;
4181 struct btrfs_trans_handle *trans;
4182 int ret;
4183 int err;
4184
4185 if (!capable(CAP_SYS_ADMIN))
4186 return -EPERM;
4187
4188 ret = mnt_want_write_file(file);
4189 if (ret)
4190 return ret;
4191
4192 sa = memdup_user(arg, sizeof(*sa));
4193 if (IS_ERR(sa)) {
4194 ret = PTR_ERR(sa);
4195 goto drop_write;
4196 }
4197
4198 trans = btrfs_join_transaction(root);
4199 if (IS_ERR(trans)) {
4200 ret = PTR_ERR(trans);
4201 goto out;
4202 }
4203
4204 if (sa->assign) {
4205 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4206 } else {
4207 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4208 }
4209
4210 /* update qgroup status and info */
4211 err = btrfs_run_qgroups(trans);
4212 if (err < 0)
4213 btrfs_handle_fs_error(fs_info, err,
4214 "failed to update qgroup status and info");
4215 err = btrfs_end_transaction(trans);
4216 if (err && !ret)
4217 ret = err;
4218
4219 out:
4220 kfree(sa);
4221 drop_write:
4222 mnt_drop_write_file(file);
4223 return ret;
4224 }
4225
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4226 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4227 {
4228 struct inode *inode = file_inode(file);
4229 struct btrfs_root *root = BTRFS_I(inode)->root;
4230 struct btrfs_ioctl_qgroup_create_args *sa;
4231 struct btrfs_trans_handle *trans;
4232 int ret;
4233 int err;
4234
4235 if (!capable(CAP_SYS_ADMIN))
4236 return -EPERM;
4237
4238 ret = mnt_want_write_file(file);
4239 if (ret)
4240 return ret;
4241
4242 sa = memdup_user(arg, sizeof(*sa));
4243 if (IS_ERR(sa)) {
4244 ret = PTR_ERR(sa);
4245 goto drop_write;
4246 }
4247
4248 if (!sa->qgroupid) {
4249 ret = -EINVAL;
4250 goto out;
4251 }
4252
4253 trans = btrfs_join_transaction(root);
4254 if (IS_ERR(trans)) {
4255 ret = PTR_ERR(trans);
4256 goto out;
4257 }
4258
4259 if (sa->create) {
4260 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4261 } else {
4262 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4263 }
4264
4265 err = btrfs_end_transaction(trans);
4266 if (err && !ret)
4267 ret = err;
4268
4269 out:
4270 kfree(sa);
4271 drop_write:
4272 mnt_drop_write_file(file);
4273 return ret;
4274 }
4275
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4276 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4277 {
4278 struct inode *inode = file_inode(file);
4279 struct btrfs_root *root = BTRFS_I(inode)->root;
4280 struct btrfs_ioctl_qgroup_limit_args *sa;
4281 struct btrfs_trans_handle *trans;
4282 int ret;
4283 int err;
4284 u64 qgroupid;
4285
4286 if (!capable(CAP_SYS_ADMIN))
4287 return -EPERM;
4288
4289 ret = mnt_want_write_file(file);
4290 if (ret)
4291 return ret;
4292
4293 sa = memdup_user(arg, sizeof(*sa));
4294 if (IS_ERR(sa)) {
4295 ret = PTR_ERR(sa);
4296 goto drop_write;
4297 }
4298
4299 trans = btrfs_join_transaction(root);
4300 if (IS_ERR(trans)) {
4301 ret = PTR_ERR(trans);
4302 goto out;
4303 }
4304
4305 qgroupid = sa->qgroupid;
4306 if (!qgroupid) {
4307 /* take the current subvol as qgroup */
4308 qgroupid = root->root_key.objectid;
4309 }
4310
4311 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4312
4313 err = btrfs_end_transaction(trans);
4314 if (err && !ret)
4315 ret = err;
4316
4317 out:
4318 kfree(sa);
4319 drop_write:
4320 mnt_drop_write_file(file);
4321 return ret;
4322 }
4323
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4324 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4325 {
4326 struct inode *inode = file_inode(file);
4327 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4328 struct btrfs_ioctl_quota_rescan_args *qsa;
4329 int ret;
4330
4331 if (!capable(CAP_SYS_ADMIN))
4332 return -EPERM;
4333
4334 ret = mnt_want_write_file(file);
4335 if (ret)
4336 return ret;
4337
4338 qsa = memdup_user(arg, sizeof(*qsa));
4339 if (IS_ERR(qsa)) {
4340 ret = PTR_ERR(qsa);
4341 goto drop_write;
4342 }
4343
4344 if (qsa->flags) {
4345 ret = -EINVAL;
4346 goto out;
4347 }
4348
4349 ret = btrfs_qgroup_rescan(fs_info);
4350
4351 out:
4352 kfree(qsa);
4353 drop_write:
4354 mnt_drop_write_file(file);
4355 return ret;
4356 }
4357
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4358 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4359 void __user *arg)
4360 {
4361 struct btrfs_ioctl_quota_rescan_args *qsa;
4362 int ret = 0;
4363
4364 if (!capable(CAP_SYS_ADMIN))
4365 return -EPERM;
4366
4367 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4368 if (!qsa)
4369 return -ENOMEM;
4370
4371 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4372 qsa->flags = 1;
4373 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4374 }
4375
4376 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4377 ret = -EFAULT;
4378
4379 kfree(qsa);
4380 return ret;
4381 }
4382
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4383 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4384 void __user *arg)
4385 {
4386 if (!capable(CAP_SYS_ADMIN))
4387 return -EPERM;
4388
4389 return btrfs_qgroup_wait_for_completion(fs_info, true);
4390 }
4391
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)4392 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4393 struct btrfs_ioctl_received_subvol_args *sa)
4394 {
4395 struct inode *inode = file_inode(file);
4396 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4397 struct btrfs_root *root = BTRFS_I(inode)->root;
4398 struct btrfs_root_item *root_item = &root->root_item;
4399 struct btrfs_trans_handle *trans;
4400 struct timespec64 ct = current_time(inode);
4401 int ret = 0;
4402 int received_uuid_changed;
4403
4404 if (!inode_owner_or_capable(inode))
4405 return -EPERM;
4406
4407 ret = mnt_want_write_file(file);
4408 if (ret < 0)
4409 return ret;
4410
4411 down_write(&fs_info->subvol_sem);
4412
4413 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4414 ret = -EINVAL;
4415 goto out;
4416 }
4417
4418 if (btrfs_root_readonly(root)) {
4419 ret = -EROFS;
4420 goto out;
4421 }
4422
4423 /*
4424 * 1 - root item
4425 * 2 - uuid items (received uuid + subvol uuid)
4426 */
4427 trans = btrfs_start_transaction(root, 3);
4428 if (IS_ERR(trans)) {
4429 ret = PTR_ERR(trans);
4430 trans = NULL;
4431 goto out;
4432 }
4433
4434 sa->rtransid = trans->transid;
4435 sa->rtime.sec = ct.tv_sec;
4436 sa->rtime.nsec = ct.tv_nsec;
4437
4438 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4439 BTRFS_UUID_SIZE);
4440 if (received_uuid_changed &&
4441 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4442 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4443 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4444 root->root_key.objectid);
4445 if (ret && ret != -ENOENT) {
4446 btrfs_abort_transaction(trans, ret);
4447 btrfs_end_transaction(trans);
4448 goto out;
4449 }
4450 }
4451 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4452 btrfs_set_root_stransid(root_item, sa->stransid);
4453 btrfs_set_root_rtransid(root_item, sa->rtransid);
4454 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4455 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4456 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4457 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4458
4459 ret = btrfs_update_root(trans, fs_info->tree_root,
4460 &root->root_key, &root->root_item);
4461 if (ret < 0) {
4462 btrfs_end_transaction(trans);
4463 goto out;
4464 }
4465 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4466 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4467 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4468 root->root_key.objectid);
4469 if (ret < 0 && ret != -EEXIST) {
4470 btrfs_abort_transaction(trans, ret);
4471 btrfs_end_transaction(trans);
4472 goto out;
4473 }
4474 }
4475 ret = btrfs_commit_transaction(trans);
4476 out:
4477 up_write(&fs_info->subvol_sem);
4478 mnt_drop_write_file(file);
4479 return ret;
4480 }
4481
4482 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4483 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4484 void __user *arg)
4485 {
4486 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4487 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4488 int ret = 0;
4489
4490 args32 = memdup_user(arg, sizeof(*args32));
4491 if (IS_ERR(args32))
4492 return PTR_ERR(args32);
4493
4494 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4495 if (!args64) {
4496 ret = -ENOMEM;
4497 goto out;
4498 }
4499
4500 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4501 args64->stransid = args32->stransid;
4502 args64->rtransid = args32->rtransid;
4503 args64->stime.sec = args32->stime.sec;
4504 args64->stime.nsec = args32->stime.nsec;
4505 args64->rtime.sec = args32->rtime.sec;
4506 args64->rtime.nsec = args32->rtime.nsec;
4507 args64->flags = args32->flags;
4508
4509 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4510 if (ret)
4511 goto out;
4512
4513 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4514 args32->stransid = args64->stransid;
4515 args32->rtransid = args64->rtransid;
4516 args32->stime.sec = args64->stime.sec;
4517 args32->stime.nsec = args64->stime.nsec;
4518 args32->rtime.sec = args64->rtime.sec;
4519 args32->rtime.nsec = args64->rtime.nsec;
4520 args32->flags = args64->flags;
4521
4522 ret = copy_to_user(arg, args32, sizeof(*args32));
4523 if (ret)
4524 ret = -EFAULT;
4525
4526 out:
4527 kfree(args32);
4528 kfree(args64);
4529 return ret;
4530 }
4531 #endif
4532
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4533 static long btrfs_ioctl_set_received_subvol(struct file *file,
4534 void __user *arg)
4535 {
4536 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4537 int ret = 0;
4538
4539 sa = memdup_user(arg, sizeof(*sa));
4540 if (IS_ERR(sa))
4541 return PTR_ERR(sa);
4542
4543 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4544
4545 if (ret)
4546 goto out;
4547
4548 ret = copy_to_user(arg, sa, sizeof(*sa));
4549 if (ret)
4550 ret = -EFAULT;
4551
4552 out:
4553 kfree(sa);
4554 return ret;
4555 }
4556
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4557 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4558 void __user *arg)
4559 {
4560 size_t len;
4561 int ret;
4562 char label[BTRFS_LABEL_SIZE];
4563
4564 spin_lock(&fs_info->super_lock);
4565 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4566 spin_unlock(&fs_info->super_lock);
4567
4568 len = strnlen(label, BTRFS_LABEL_SIZE);
4569
4570 if (len == BTRFS_LABEL_SIZE) {
4571 btrfs_warn(fs_info,
4572 "label is too long, return the first %zu bytes",
4573 --len);
4574 }
4575
4576 ret = copy_to_user(arg, label, len);
4577
4578 return ret ? -EFAULT : 0;
4579 }
4580
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4581 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4582 {
4583 struct inode *inode = file_inode(file);
4584 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4585 struct btrfs_root *root = BTRFS_I(inode)->root;
4586 struct btrfs_super_block *super_block = fs_info->super_copy;
4587 struct btrfs_trans_handle *trans;
4588 char label[BTRFS_LABEL_SIZE];
4589 int ret;
4590
4591 if (!capable(CAP_SYS_ADMIN))
4592 return -EPERM;
4593
4594 if (copy_from_user(label, arg, sizeof(label)))
4595 return -EFAULT;
4596
4597 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4598 btrfs_err(fs_info,
4599 "unable to set label with more than %d bytes",
4600 BTRFS_LABEL_SIZE - 1);
4601 return -EINVAL;
4602 }
4603
4604 ret = mnt_want_write_file(file);
4605 if (ret)
4606 return ret;
4607
4608 trans = btrfs_start_transaction(root, 0);
4609 if (IS_ERR(trans)) {
4610 ret = PTR_ERR(trans);
4611 goto out_unlock;
4612 }
4613
4614 spin_lock(&fs_info->super_lock);
4615 strcpy(super_block->label, label);
4616 spin_unlock(&fs_info->super_lock);
4617 ret = btrfs_commit_transaction(trans);
4618
4619 out_unlock:
4620 mnt_drop_write_file(file);
4621 return ret;
4622 }
4623
4624 #define INIT_FEATURE_FLAGS(suffix) \
4625 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4626 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4627 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4628
btrfs_ioctl_get_supported_features(void __user * arg)4629 int btrfs_ioctl_get_supported_features(void __user *arg)
4630 {
4631 static const struct btrfs_ioctl_feature_flags features[3] = {
4632 INIT_FEATURE_FLAGS(SUPP),
4633 INIT_FEATURE_FLAGS(SAFE_SET),
4634 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4635 };
4636
4637 if (copy_to_user(arg, &features, sizeof(features)))
4638 return -EFAULT;
4639
4640 return 0;
4641 }
4642
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4643 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4644 void __user *arg)
4645 {
4646 struct btrfs_super_block *super_block = fs_info->super_copy;
4647 struct btrfs_ioctl_feature_flags features;
4648
4649 features.compat_flags = btrfs_super_compat_flags(super_block);
4650 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4651 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4652
4653 if (copy_to_user(arg, &features, sizeof(features)))
4654 return -EFAULT;
4655
4656 return 0;
4657 }
4658
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4659 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4660 enum btrfs_feature_set set,
4661 u64 change_mask, u64 flags, u64 supported_flags,
4662 u64 safe_set, u64 safe_clear)
4663 {
4664 const char *type = btrfs_feature_set_name(set);
4665 char *names;
4666 u64 disallowed, unsupported;
4667 u64 set_mask = flags & change_mask;
4668 u64 clear_mask = ~flags & change_mask;
4669
4670 unsupported = set_mask & ~supported_flags;
4671 if (unsupported) {
4672 names = btrfs_printable_features(set, unsupported);
4673 if (names) {
4674 btrfs_warn(fs_info,
4675 "this kernel does not support the %s feature bit%s",
4676 names, strchr(names, ',') ? "s" : "");
4677 kfree(names);
4678 } else
4679 btrfs_warn(fs_info,
4680 "this kernel does not support %s bits 0x%llx",
4681 type, unsupported);
4682 return -EOPNOTSUPP;
4683 }
4684
4685 disallowed = set_mask & ~safe_set;
4686 if (disallowed) {
4687 names = btrfs_printable_features(set, disallowed);
4688 if (names) {
4689 btrfs_warn(fs_info,
4690 "can't set the %s feature bit%s while mounted",
4691 names, strchr(names, ',') ? "s" : "");
4692 kfree(names);
4693 } else
4694 btrfs_warn(fs_info,
4695 "can't set %s bits 0x%llx while mounted",
4696 type, disallowed);
4697 return -EPERM;
4698 }
4699
4700 disallowed = clear_mask & ~safe_clear;
4701 if (disallowed) {
4702 names = btrfs_printable_features(set, disallowed);
4703 if (names) {
4704 btrfs_warn(fs_info,
4705 "can't clear the %s feature bit%s while mounted",
4706 names, strchr(names, ',') ? "s" : "");
4707 kfree(names);
4708 } else
4709 btrfs_warn(fs_info,
4710 "can't clear %s bits 0x%llx while mounted",
4711 type, disallowed);
4712 return -EPERM;
4713 }
4714
4715 return 0;
4716 }
4717
4718 #define check_feature(fs_info, change_mask, flags, mask_base) \
4719 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4720 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4721 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4722 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4723
btrfs_ioctl_set_features(struct file * file,void __user * arg)4724 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4725 {
4726 struct inode *inode = file_inode(file);
4727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4728 struct btrfs_root *root = BTRFS_I(inode)->root;
4729 struct btrfs_super_block *super_block = fs_info->super_copy;
4730 struct btrfs_ioctl_feature_flags flags[2];
4731 struct btrfs_trans_handle *trans;
4732 u64 newflags;
4733 int ret;
4734
4735 if (!capable(CAP_SYS_ADMIN))
4736 return -EPERM;
4737
4738 if (copy_from_user(flags, arg, sizeof(flags)))
4739 return -EFAULT;
4740
4741 /* Nothing to do */
4742 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4743 !flags[0].incompat_flags)
4744 return 0;
4745
4746 ret = check_feature(fs_info, flags[0].compat_flags,
4747 flags[1].compat_flags, COMPAT);
4748 if (ret)
4749 return ret;
4750
4751 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4752 flags[1].compat_ro_flags, COMPAT_RO);
4753 if (ret)
4754 return ret;
4755
4756 ret = check_feature(fs_info, flags[0].incompat_flags,
4757 flags[1].incompat_flags, INCOMPAT);
4758 if (ret)
4759 return ret;
4760
4761 ret = mnt_want_write_file(file);
4762 if (ret)
4763 return ret;
4764
4765 trans = btrfs_start_transaction(root, 0);
4766 if (IS_ERR(trans)) {
4767 ret = PTR_ERR(trans);
4768 goto out_drop_write;
4769 }
4770
4771 spin_lock(&fs_info->super_lock);
4772 newflags = btrfs_super_compat_flags(super_block);
4773 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4774 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4775 btrfs_set_super_compat_flags(super_block, newflags);
4776
4777 newflags = btrfs_super_compat_ro_flags(super_block);
4778 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4779 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4780 btrfs_set_super_compat_ro_flags(super_block, newflags);
4781
4782 newflags = btrfs_super_incompat_flags(super_block);
4783 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4784 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4785 btrfs_set_super_incompat_flags(super_block, newflags);
4786 spin_unlock(&fs_info->super_lock);
4787
4788 ret = btrfs_commit_transaction(trans);
4789 out_drop_write:
4790 mnt_drop_write_file(file);
4791
4792 return ret;
4793 }
4794
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)4795 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4796 {
4797 struct btrfs_ioctl_send_args *arg;
4798 int ret;
4799
4800 if (compat) {
4801 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4802 struct btrfs_ioctl_send_args_32 args32;
4803
4804 ret = copy_from_user(&args32, argp, sizeof(args32));
4805 if (ret)
4806 return -EFAULT;
4807 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4808 if (!arg)
4809 return -ENOMEM;
4810 arg->send_fd = args32.send_fd;
4811 arg->clone_sources_count = args32.clone_sources_count;
4812 arg->clone_sources = compat_ptr(args32.clone_sources);
4813 arg->parent_root = args32.parent_root;
4814 arg->flags = args32.flags;
4815 memcpy(arg->reserved, args32.reserved,
4816 sizeof(args32.reserved));
4817 #else
4818 return -ENOTTY;
4819 #endif
4820 } else {
4821 arg = memdup_user(argp, sizeof(*arg));
4822 if (IS_ERR(arg))
4823 return PTR_ERR(arg);
4824 }
4825 ret = btrfs_ioctl_send(file, arg);
4826 kfree(arg);
4827 return ret;
4828 }
4829
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4830 long btrfs_ioctl(struct file *file, unsigned int
4831 cmd, unsigned long arg)
4832 {
4833 struct inode *inode = file_inode(file);
4834 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4835 struct btrfs_root *root = BTRFS_I(inode)->root;
4836 void __user *argp = (void __user *)arg;
4837
4838 switch (cmd) {
4839 case FS_IOC_GETFLAGS:
4840 return btrfs_ioctl_getflags(file, argp);
4841 case FS_IOC_SETFLAGS:
4842 return btrfs_ioctl_setflags(file, argp);
4843 case FS_IOC_GETVERSION:
4844 return btrfs_ioctl_getversion(file, argp);
4845 case FS_IOC_GETFSLABEL:
4846 return btrfs_ioctl_get_fslabel(fs_info, argp);
4847 case FS_IOC_SETFSLABEL:
4848 return btrfs_ioctl_set_fslabel(file, argp);
4849 case FITRIM:
4850 return btrfs_ioctl_fitrim(fs_info, argp);
4851 case BTRFS_IOC_SNAP_CREATE:
4852 return btrfs_ioctl_snap_create(file, argp, 0);
4853 case BTRFS_IOC_SNAP_CREATE_V2:
4854 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4855 case BTRFS_IOC_SUBVOL_CREATE:
4856 return btrfs_ioctl_snap_create(file, argp, 1);
4857 case BTRFS_IOC_SUBVOL_CREATE_V2:
4858 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4859 case BTRFS_IOC_SNAP_DESTROY:
4860 return btrfs_ioctl_snap_destroy(file, argp, false);
4861 case BTRFS_IOC_SNAP_DESTROY_V2:
4862 return btrfs_ioctl_snap_destroy(file, argp, true);
4863 case BTRFS_IOC_SUBVOL_GETFLAGS:
4864 return btrfs_ioctl_subvol_getflags(file, argp);
4865 case BTRFS_IOC_SUBVOL_SETFLAGS:
4866 return btrfs_ioctl_subvol_setflags(file, argp);
4867 case BTRFS_IOC_DEFAULT_SUBVOL:
4868 return btrfs_ioctl_default_subvol(file, argp);
4869 case BTRFS_IOC_DEFRAG:
4870 return btrfs_ioctl_defrag(file, NULL);
4871 case BTRFS_IOC_DEFRAG_RANGE:
4872 return btrfs_ioctl_defrag(file, argp);
4873 case BTRFS_IOC_RESIZE:
4874 return btrfs_ioctl_resize(file, argp);
4875 case BTRFS_IOC_ADD_DEV:
4876 return btrfs_ioctl_add_dev(fs_info, argp);
4877 case BTRFS_IOC_RM_DEV:
4878 return btrfs_ioctl_rm_dev(file, argp);
4879 case BTRFS_IOC_RM_DEV_V2:
4880 return btrfs_ioctl_rm_dev_v2(file, argp);
4881 case BTRFS_IOC_FS_INFO:
4882 return btrfs_ioctl_fs_info(fs_info, argp);
4883 case BTRFS_IOC_DEV_INFO:
4884 return btrfs_ioctl_dev_info(fs_info, argp);
4885 case BTRFS_IOC_BALANCE:
4886 return btrfs_ioctl_balance(file, NULL);
4887 case BTRFS_IOC_TREE_SEARCH:
4888 return btrfs_ioctl_tree_search(file, argp);
4889 case BTRFS_IOC_TREE_SEARCH_V2:
4890 return btrfs_ioctl_tree_search_v2(file, argp);
4891 case BTRFS_IOC_INO_LOOKUP:
4892 return btrfs_ioctl_ino_lookup(file, argp);
4893 case BTRFS_IOC_INO_PATHS:
4894 return btrfs_ioctl_ino_to_path(root, argp);
4895 case BTRFS_IOC_LOGICAL_INO:
4896 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4897 case BTRFS_IOC_LOGICAL_INO_V2:
4898 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4899 case BTRFS_IOC_SPACE_INFO:
4900 return btrfs_ioctl_space_info(fs_info, argp);
4901 case BTRFS_IOC_SYNC: {
4902 int ret;
4903
4904 ret = btrfs_start_delalloc_roots(fs_info, U64_MAX);
4905 if (ret)
4906 return ret;
4907 ret = btrfs_sync_fs(inode->i_sb, 1);
4908 /*
4909 * The transaction thread may want to do more work,
4910 * namely it pokes the cleaner kthread that will start
4911 * processing uncleaned subvols.
4912 */
4913 wake_up_process(fs_info->transaction_kthread);
4914 return ret;
4915 }
4916 case BTRFS_IOC_START_SYNC:
4917 return btrfs_ioctl_start_sync(root, argp);
4918 case BTRFS_IOC_WAIT_SYNC:
4919 return btrfs_ioctl_wait_sync(fs_info, argp);
4920 case BTRFS_IOC_SCRUB:
4921 return btrfs_ioctl_scrub(file, argp);
4922 case BTRFS_IOC_SCRUB_CANCEL:
4923 return btrfs_ioctl_scrub_cancel(fs_info);
4924 case BTRFS_IOC_SCRUB_PROGRESS:
4925 return btrfs_ioctl_scrub_progress(fs_info, argp);
4926 case BTRFS_IOC_BALANCE_V2:
4927 return btrfs_ioctl_balance(file, argp);
4928 case BTRFS_IOC_BALANCE_CTL:
4929 return btrfs_ioctl_balance_ctl(fs_info, arg);
4930 case BTRFS_IOC_BALANCE_PROGRESS:
4931 return btrfs_ioctl_balance_progress(fs_info, argp);
4932 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4933 return btrfs_ioctl_set_received_subvol(file, argp);
4934 #ifdef CONFIG_64BIT
4935 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4936 return btrfs_ioctl_set_received_subvol_32(file, argp);
4937 #endif
4938 case BTRFS_IOC_SEND:
4939 return _btrfs_ioctl_send(file, argp, false);
4940 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4941 case BTRFS_IOC_SEND_32:
4942 return _btrfs_ioctl_send(file, argp, true);
4943 #endif
4944 case BTRFS_IOC_GET_DEV_STATS:
4945 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4946 case BTRFS_IOC_QUOTA_CTL:
4947 return btrfs_ioctl_quota_ctl(file, argp);
4948 case BTRFS_IOC_QGROUP_ASSIGN:
4949 return btrfs_ioctl_qgroup_assign(file, argp);
4950 case BTRFS_IOC_QGROUP_CREATE:
4951 return btrfs_ioctl_qgroup_create(file, argp);
4952 case BTRFS_IOC_QGROUP_LIMIT:
4953 return btrfs_ioctl_qgroup_limit(file, argp);
4954 case BTRFS_IOC_QUOTA_RESCAN:
4955 return btrfs_ioctl_quota_rescan(file, argp);
4956 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4957 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4958 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4959 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4960 case BTRFS_IOC_DEV_REPLACE:
4961 return btrfs_ioctl_dev_replace(fs_info, argp);
4962 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4963 return btrfs_ioctl_get_supported_features(argp);
4964 case BTRFS_IOC_GET_FEATURES:
4965 return btrfs_ioctl_get_features(fs_info, argp);
4966 case BTRFS_IOC_SET_FEATURES:
4967 return btrfs_ioctl_set_features(file, argp);
4968 case FS_IOC_FSGETXATTR:
4969 return btrfs_ioctl_fsgetxattr(file, argp);
4970 case FS_IOC_FSSETXATTR:
4971 return btrfs_ioctl_fssetxattr(file, argp);
4972 case BTRFS_IOC_GET_SUBVOL_INFO:
4973 return btrfs_ioctl_get_subvol_info(file, argp);
4974 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4975 return btrfs_ioctl_get_subvol_rootref(file, argp);
4976 case BTRFS_IOC_INO_LOOKUP_USER:
4977 return btrfs_ioctl_ino_lookup_user(file, argp);
4978 }
4979
4980 return -ENOTTY;
4981 }
4982
4983 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4984 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4985 {
4986 /*
4987 * These all access 32-bit values anyway so no further
4988 * handling is necessary.
4989 */
4990 switch (cmd) {
4991 case FS_IOC32_GETFLAGS:
4992 cmd = FS_IOC_GETFLAGS;
4993 break;
4994 case FS_IOC32_SETFLAGS:
4995 cmd = FS_IOC_SETFLAGS;
4996 break;
4997 case FS_IOC32_GETVERSION:
4998 cmd = FS_IOC_GETVERSION;
4999 break;
5000 }
5001
5002 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5003 }
5004 #endif
5005