1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
entry_end(struct btrfs_ordered_extent * entry)26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 return (u64)-1;
30 return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34 * in the tree
35 */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 struct rb_node *node)
38 {
39 struct rb_node **p = &root->rb_node;
40 struct rb_node *parent = NULL;
41 struct btrfs_ordered_extent *entry;
42
43 while (*p) {
44 parent = *p;
45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47 if (file_offset < entry->file_offset)
48 p = &(*p)->rb_left;
49 else if (file_offset >= entry_end(entry))
50 p = &(*p)->rb_right;
51 else
52 return parent;
53 }
54
55 rb_link_node(node, parent, p);
56 rb_insert_color(node, root);
57 return NULL;
58 }
59
60 /*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
66 {
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
69 struct rb_node *test;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
72
73 while (n) {
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 prev = n;
76 prev_entry = entry;
77
78 if (file_offset < entry->file_offset)
79 n = n->rb_left;
80 else if (file_offset >= entry_end(entry))
81 n = n->rb_right;
82 else
83 return n;
84 }
85 if (!prev_ret)
86 return NULL;
87
88 while (prev && file_offset >= entry_end(prev_entry)) {
89 test = rb_next(prev);
90 if (!test)
91 break;
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 rb_node);
94 if (file_offset < entry_end(prev_entry))
95 break;
96
97 prev = test;
98 }
99 if (prev)
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 rb_node);
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 prev = test;
109 }
110 *prev_ret = prev;
111 return NULL;
112 }
113
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 u64 len)
116 {
117 if (file_offset + len <= entry->file_offset ||
118 entry->file_offset + entry->num_bytes <= file_offset)
119 return 0;
120 return 1;
121 }
122
123 /*
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
126 */
tree_search(struct btrfs_ordered_inode_tree * tree,u64 file_offset)127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128 u64 file_offset)
129 {
130 struct rb_root *root = &tree->tree;
131 struct rb_node *prev = NULL;
132 struct rb_node *ret;
133 struct btrfs_ordered_extent *entry;
134
135 if (tree->last) {
136 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137 rb_node);
138 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139 return tree->last;
140 }
141 ret = __tree_search(root, file_offset, &prev);
142 if (!ret)
143 ret = prev;
144 if (ret)
145 tree->last = ret;
146 return ret;
147 }
148
alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)149 static struct btrfs_ordered_extent *alloc_ordered_extent(
150 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152 u64 offset, unsigned long flags, int compress_type)
153 {
154 struct btrfs_ordered_extent *entry;
155 int ret;
156
157 if (flags &
158 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159 /* For nocow write, we can release the qgroup rsv right now */
160 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
161 if (ret < 0)
162 return ERR_PTR(ret);
163 } else {
164 /*
165 * The ordered extent has reserved qgroup space, release now
166 * and pass the reserved number for qgroup_record to free.
167 */
168 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
169 if (ret < 0)
170 return ERR_PTR(ret);
171 }
172 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173 if (!entry)
174 return ERR_PTR(-ENOMEM);
175
176 entry->file_offset = file_offset;
177 entry->num_bytes = num_bytes;
178 entry->ram_bytes = ram_bytes;
179 entry->disk_bytenr = disk_bytenr;
180 entry->disk_num_bytes = disk_num_bytes;
181 entry->offset = offset;
182 entry->bytes_left = num_bytes;
183 entry->inode = igrab(&inode->vfs_inode);
184 entry->compress_type = compress_type;
185 entry->truncated_len = (u64)-1;
186 entry->qgroup_rsv = ret;
187 entry->flags = flags;
188 refcount_set(&entry->refs, 1);
189 init_waitqueue_head(&entry->wait);
190 INIT_LIST_HEAD(&entry->list);
191 INIT_LIST_HEAD(&entry->log_list);
192 INIT_LIST_HEAD(&entry->root_extent_list);
193 INIT_LIST_HEAD(&entry->work_list);
194 init_completion(&entry->completion);
195
196 /*
197 * We don't need the count_max_extents here, we can assume that all of
198 * that work has been done at higher layers, so this is truly the
199 * smallest the extent is going to get.
200 */
201 spin_lock(&inode->lock);
202 btrfs_mod_outstanding_extents(inode, 1);
203 spin_unlock(&inode->lock);
204
205 return entry;
206 }
207
insert_ordered_extent(struct btrfs_ordered_extent * entry)208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210 struct btrfs_inode *inode = BTRFS_I(entry->inode);
211 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
212 struct btrfs_root *root = inode->root;
213 struct btrfs_fs_info *fs_info = root->fs_info;
214 struct rb_node *node;
215
216 trace_btrfs_ordered_extent_add(inode, entry);
217
218 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219 fs_info->delalloc_batch);
220
221 /* One ref for the tree. */
222 refcount_inc(&entry->refs);
223
224 spin_lock_irq(&tree->lock);
225 node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
226 if (node)
227 btrfs_panic(fs_info, -EEXIST,
228 "inconsistency in ordered tree at offset %llu",
229 entry->file_offset);
230 spin_unlock_irq(&tree->lock);
231
232 spin_lock(&root->ordered_extent_lock);
233 list_add_tail(&entry->root_extent_list,
234 &root->ordered_extents);
235 root->nr_ordered_extents++;
236 if (root->nr_ordered_extents == 1) {
237 spin_lock(&fs_info->ordered_root_lock);
238 BUG_ON(!list_empty(&root->ordered_root));
239 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240 spin_unlock(&fs_info->ordered_root_lock);
241 }
242 spin_unlock(&root->ordered_extent_lock);
243 }
244
245 /*
246 * Add an ordered extent to the per-inode tree.
247 *
248 * @inode: Inode that this extent is for.
249 * @file_offset: Logical offset in file where the extent starts.
250 * @num_bytes: Logical length of extent in file.
251 * @ram_bytes: Full length of unencoded data.
252 * @disk_bytenr: Offset of extent on disk.
253 * @disk_num_bytes: Size of extent on disk.
254 * @offset: Offset into unencoded data where file data starts.
255 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256 * @compress_type: Compression algorithm used for data.
257 *
258 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259 * tree is given a single reference on the ordered extent that was inserted, and
260 * the returned pointer is given a second reference.
261 *
262 * Return: the new ordered extent or error pointer.
263 */
btrfs_alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265 struct btrfs_inode *inode, u64 file_offset,
266 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267 u64 disk_num_bytes, u64 offset, unsigned long flags,
268 int compress_type)
269 {
270 struct btrfs_ordered_extent *entry;
271
272 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273
274 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275 disk_bytenr, disk_num_bytes, offset, flags,
276 compress_type);
277 if (!IS_ERR(entry))
278 insert_ordered_extent(entry);
279 return entry;
280 }
281
282 /*
283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284 * when an ordered extent is finished. If the list covers more than one
285 * ordered extent, it is split across multiples.
286 */
btrfs_add_ordered_sum(struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288 struct btrfs_ordered_sum *sum)
289 {
290 struct btrfs_ordered_inode_tree *tree;
291
292 tree = &BTRFS_I(entry->inode)->ordered_tree;
293 spin_lock_irq(&tree->lock);
294 list_add_tail(&sum->list, &entry->list);
295 spin_unlock_irq(&tree->lock);
296 }
297
finish_ordered_fn(struct btrfs_work * work)298 static void finish_ordered_fn(struct btrfs_work *work)
299 {
300 struct btrfs_ordered_extent *ordered_extent;
301
302 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
303 btrfs_finish_ordered_io(ordered_extent);
304 }
305
can_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct page * page,u64 file_offset,u64 len,bool uptodate)306 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
307 struct page *page, u64 file_offset,
308 u64 len, bool uptodate)
309 {
310 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
311 struct btrfs_fs_info *fs_info = inode->root->fs_info;
312
313 lockdep_assert_held(&inode->ordered_tree.lock);
314
315 if (page) {
316 ASSERT(page->mapping);
317 ASSERT(page_offset(page) <= file_offset);
318 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
319
320 /*
321 * Ordered (Private2) bit indicates whether we still have
322 * pending io unfinished for the ordered extent.
323 *
324 * If there's no such bit, we need to skip to next range.
325 */
326 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
327 return false;
328 btrfs_page_clear_ordered(fs_info, page, file_offset, len);
329 }
330
331 /* Now we're fine to update the accounting. */
332 if (WARN_ON_ONCE(len > ordered->bytes_left)) {
333 btrfs_crit(fs_info,
334 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
335 inode->root->root_key.objectid, btrfs_ino(inode),
336 ordered->file_offset, ordered->num_bytes,
337 len, ordered->bytes_left);
338 ordered->bytes_left = 0;
339 } else {
340 ordered->bytes_left -= len;
341 }
342
343 if (!uptodate)
344 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
345
346 if (ordered->bytes_left)
347 return false;
348
349 /*
350 * All the IO of the ordered extent is finished, we need to queue
351 * the finish_func to be executed.
352 */
353 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
354 cond_wake_up(&ordered->wait);
355 refcount_inc(&ordered->refs);
356 trace_btrfs_ordered_extent_mark_finished(inode, ordered);
357 return true;
358 }
359
btrfs_queue_ordered_fn(struct btrfs_ordered_extent * ordered)360 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
361 {
362 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
363 struct btrfs_fs_info *fs_info = inode->root->fs_info;
364 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
365 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
366
367 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
368 btrfs_queue_work(wq, &ordered->work);
369 }
370
btrfs_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct page * page,u64 file_offset,u64 len,bool uptodate)371 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
372 struct page *page, u64 file_offset, u64 len,
373 bool uptodate)
374 {
375 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
376 unsigned long flags;
377 bool ret;
378
379 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
380
381 spin_lock_irqsave(&inode->ordered_tree.lock, flags);
382 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
383 spin_unlock_irqrestore(&inode->ordered_tree.lock, flags);
384
385 if (ret)
386 btrfs_queue_ordered_fn(ordered);
387 return ret;
388 }
389
390 /*
391 * Mark all ordered extents io inside the specified range finished.
392 *
393 * @page: The involved page for the operation.
394 * For uncompressed buffered IO, the page status also needs to be
395 * updated to indicate whether the pending ordered io is finished.
396 * Can be NULL for direct IO and compressed write.
397 * For these cases, callers are ensured they won't execute the
398 * endio function twice.
399 *
400 * This function is called for endio, thus the range must have ordered
401 * extent(s) covering it.
402 */
btrfs_mark_ordered_io_finished(struct btrfs_inode * inode,struct page * page,u64 file_offset,u64 num_bytes,bool uptodate)403 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
404 struct page *page, u64 file_offset,
405 u64 num_bytes, bool uptodate)
406 {
407 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
408 struct rb_node *node;
409 struct btrfs_ordered_extent *entry = NULL;
410 unsigned long flags;
411 u64 cur = file_offset;
412
413 trace_btrfs_writepage_end_io_hook(inode, file_offset,
414 file_offset + num_bytes - 1,
415 uptodate);
416
417 spin_lock_irqsave(&tree->lock, flags);
418 while (cur < file_offset + num_bytes) {
419 u64 entry_end;
420 u64 end;
421 u32 len;
422
423 node = tree_search(tree, cur);
424 /* No ordered extents at all */
425 if (!node)
426 break;
427
428 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
429 entry_end = entry->file_offset + entry->num_bytes;
430 /*
431 * |<-- OE --->| |
432 * cur
433 * Go to next OE.
434 */
435 if (cur >= entry_end) {
436 node = rb_next(node);
437 /* No more ordered extents, exit */
438 if (!node)
439 break;
440 entry = rb_entry(node, struct btrfs_ordered_extent,
441 rb_node);
442
443 /* Go to next ordered extent and continue */
444 cur = entry->file_offset;
445 continue;
446 }
447 /*
448 * | |<--- OE --->|
449 * cur
450 * Go to the start of OE.
451 */
452 if (cur < entry->file_offset) {
453 cur = entry->file_offset;
454 continue;
455 }
456
457 /*
458 * Now we are definitely inside one ordered extent.
459 *
460 * |<--- OE --->|
461 * |
462 * cur
463 */
464 end = min(entry->file_offset + entry->num_bytes,
465 file_offset + num_bytes) - 1;
466 ASSERT(end + 1 - cur < U32_MAX);
467 len = end + 1 - cur;
468
469 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
470 spin_unlock_irqrestore(&tree->lock, flags);
471 btrfs_queue_ordered_fn(entry);
472 spin_lock_irqsave(&tree->lock, flags);
473 }
474 cur += len;
475 }
476 spin_unlock_irqrestore(&tree->lock, flags);
477 }
478
479 /*
480 * Finish IO for one ordered extent across a given range. The range can only
481 * contain one ordered extent.
482 *
483 * @cached: The cached ordered extent. If not NULL, we can skip the tree
484 * search and use the ordered extent directly.
485 * Will be also used to store the finished ordered extent.
486 * @file_offset: File offset for the finished IO
487 * @io_size: Length of the finish IO range
488 *
489 * Return true if the ordered extent is finished in the range, and update
490 * @cached.
491 * Return false otherwise.
492 *
493 * NOTE: The range can NOT cross multiple ordered extents.
494 * Thus caller should ensure the range doesn't cross ordered extents.
495 */
btrfs_dec_test_ordered_pending(struct btrfs_inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)496 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
497 struct btrfs_ordered_extent **cached,
498 u64 file_offset, u64 io_size)
499 {
500 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
501 struct rb_node *node;
502 struct btrfs_ordered_extent *entry = NULL;
503 unsigned long flags;
504 bool finished = false;
505
506 spin_lock_irqsave(&tree->lock, flags);
507 if (cached && *cached) {
508 entry = *cached;
509 goto have_entry;
510 }
511
512 node = tree_search(tree, file_offset);
513 if (!node)
514 goto out;
515
516 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
517 have_entry:
518 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
519 goto out;
520
521 if (io_size > entry->bytes_left)
522 btrfs_crit(inode->root->fs_info,
523 "bad ordered accounting left %llu size %llu",
524 entry->bytes_left, io_size);
525
526 entry->bytes_left -= io_size;
527
528 if (entry->bytes_left == 0) {
529 /*
530 * Ensure only one caller can set the flag and finished_ret
531 * accordingly
532 */
533 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
534 /* test_and_set_bit implies a barrier */
535 cond_wake_up_nomb(&entry->wait);
536 }
537 out:
538 if (finished && cached && entry) {
539 *cached = entry;
540 refcount_inc(&entry->refs);
541 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
542 }
543 spin_unlock_irqrestore(&tree->lock, flags);
544 return finished;
545 }
546
547 /*
548 * used to drop a reference on an ordered extent. This will free
549 * the extent if the last reference is dropped
550 */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)551 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
552 {
553 struct list_head *cur;
554 struct btrfs_ordered_sum *sum;
555
556 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
557
558 if (refcount_dec_and_test(&entry->refs)) {
559 ASSERT(list_empty(&entry->root_extent_list));
560 ASSERT(list_empty(&entry->log_list));
561 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
562 if (entry->inode)
563 btrfs_add_delayed_iput(BTRFS_I(entry->inode));
564 while (!list_empty(&entry->list)) {
565 cur = entry->list.next;
566 sum = list_entry(cur, struct btrfs_ordered_sum, list);
567 list_del(&sum->list);
568 kvfree(sum);
569 }
570 kmem_cache_free(btrfs_ordered_extent_cache, entry);
571 }
572 }
573
574 /*
575 * remove an ordered extent from the tree. No references are dropped
576 * and waiters are woken up.
577 */
btrfs_remove_ordered_extent(struct btrfs_inode * btrfs_inode,struct btrfs_ordered_extent * entry)578 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
579 struct btrfs_ordered_extent *entry)
580 {
581 struct btrfs_ordered_inode_tree *tree;
582 struct btrfs_root *root = btrfs_inode->root;
583 struct btrfs_fs_info *fs_info = root->fs_info;
584 struct rb_node *node;
585 bool pending;
586 bool freespace_inode;
587
588 /*
589 * If this is a free space inode the thread has not acquired the ordered
590 * extents lockdep map.
591 */
592 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
593
594 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
595 /* This is paired with btrfs_alloc_ordered_extent. */
596 spin_lock(&btrfs_inode->lock);
597 btrfs_mod_outstanding_extents(btrfs_inode, -1);
598 spin_unlock(&btrfs_inode->lock);
599 if (root != fs_info->tree_root) {
600 u64 release;
601
602 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
603 release = entry->disk_num_bytes;
604 else
605 release = entry->num_bytes;
606 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
607 }
608
609 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
610 fs_info->delalloc_batch);
611
612 tree = &btrfs_inode->ordered_tree;
613 spin_lock_irq(&tree->lock);
614 node = &entry->rb_node;
615 rb_erase(node, &tree->tree);
616 RB_CLEAR_NODE(node);
617 if (tree->last == node)
618 tree->last = NULL;
619 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
620 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
621 spin_unlock_irq(&tree->lock);
622
623 /*
624 * The current running transaction is waiting on us, we need to let it
625 * know that we're complete and wake it up.
626 */
627 if (pending) {
628 struct btrfs_transaction *trans;
629
630 /*
631 * The checks for trans are just a formality, it should be set,
632 * but if it isn't we don't want to deref/assert under the spin
633 * lock, so be nice and check if trans is set, but ASSERT() so
634 * if it isn't set a developer will notice.
635 */
636 spin_lock(&fs_info->trans_lock);
637 trans = fs_info->running_transaction;
638 if (trans)
639 refcount_inc(&trans->use_count);
640 spin_unlock(&fs_info->trans_lock);
641
642 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
643 if (trans) {
644 if (atomic_dec_and_test(&trans->pending_ordered))
645 wake_up(&trans->pending_wait);
646 btrfs_put_transaction(trans);
647 }
648 }
649
650 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
651
652 spin_lock(&root->ordered_extent_lock);
653 list_del_init(&entry->root_extent_list);
654 root->nr_ordered_extents--;
655
656 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
657
658 if (!root->nr_ordered_extents) {
659 spin_lock(&fs_info->ordered_root_lock);
660 BUG_ON(list_empty(&root->ordered_root));
661 list_del_init(&root->ordered_root);
662 spin_unlock(&fs_info->ordered_root_lock);
663 }
664 spin_unlock(&root->ordered_extent_lock);
665 wake_up(&entry->wait);
666 if (!freespace_inode)
667 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
668 }
669
btrfs_run_ordered_extent_work(struct btrfs_work * work)670 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
671 {
672 struct btrfs_ordered_extent *ordered;
673
674 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
675 btrfs_start_ordered_extent(ordered);
676 complete(&ordered->completion);
677 }
678
679 /*
680 * wait for all the ordered extents in a root. This is done when balancing
681 * space between drives.
682 */
btrfs_wait_ordered_extents(struct btrfs_root * root,u64 nr,const u64 range_start,const u64 range_len)683 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
684 const u64 range_start, const u64 range_len)
685 {
686 struct btrfs_fs_info *fs_info = root->fs_info;
687 LIST_HEAD(splice);
688 LIST_HEAD(skipped);
689 LIST_HEAD(works);
690 struct btrfs_ordered_extent *ordered, *next;
691 u64 count = 0;
692 const u64 range_end = range_start + range_len;
693
694 mutex_lock(&root->ordered_extent_mutex);
695 spin_lock(&root->ordered_extent_lock);
696 list_splice_init(&root->ordered_extents, &splice);
697 while (!list_empty(&splice) && nr) {
698 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
699 root_extent_list);
700
701 if (range_end <= ordered->disk_bytenr ||
702 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
703 list_move_tail(&ordered->root_extent_list, &skipped);
704 cond_resched_lock(&root->ordered_extent_lock);
705 continue;
706 }
707
708 list_move_tail(&ordered->root_extent_list,
709 &root->ordered_extents);
710 refcount_inc(&ordered->refs);
711 spin_unlock(&root->ordered_extent_lock);
712
713 btrfs_init_work(&ordered->flush_work,
714 btrfs_run_ordered_extent_work, NULL, NULL);
715 list_add_tail(&ordered->work_list, &works);
716 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
717
718 cond_resched();
719 spin_lock(&root->ordered_extent_lock);
720 if (nr != U64_MAX)
721 nr--;
722 count++;
723 }
724 list_splice_tail(&skipped, &root->ordered_extents);
725 list_splice_tail(&splice, &root->ordered_extents);
726 spin_unlock(&root->ordered_extent_lock);
727
728 list_for_each_entry_safe(ordered, next, &works, work_list) {
729 list_del_init(&ordered->work_list);
730 wait_for_completion(&ordered->completion);
731 btrfs_put_ordered_extent(ordered);
732 cond_resched();
733 }
734 mutex_unlock(&root->ordered_extent_mutex);
735
736 return count;
737 }
738
btrfs_wait_ordered_roots(struct btrfs_fs_info * fs_info,u64 nr,const u64 range_start,const u64 range_len)739 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
740 const u64 range_start, const u64 range_len)
741 {
742 struct btrfs_root *root;
743 LIST_HEAD(splice);
744 u64 done;
745
746 mutex_lock(&fs_info->ordered_operations_mutex);
747 spin_lock(&fs_info->ordered_root_lock);
748 list_splice_init(&fs_info->ordered_roots, &splice);
749 while (!list_empty(&splice) && nr) {
750 root = list_first_entry(&splice, struct btrfs_root,
751 ordered_root);
752 root = btrfs_grab_root(root);
753 BUG_ON(!root);
754 list_move_tail(&root->ordered_root,
755 &fs_info->ordered_roots);
756 spin_unlock(&fs_info->ordered_root_lock);
757
758 done = btrfs_wait_ordered_extents(root, nr,
759 range_start, range_len);
760 btrfs_put_root(root);
761
762 spin_lock(&fs_info->ordered_root_lock);
763 if (nr != U64_MAX) {
764 nr -= done;
765 }
766 }
767 list_splice_tail(&splice, &fs_info->ordered_roots);
768 spin_unlock(&fs_info->ordered_root_lock);
769 mutex_unlock(&fs_info->ordered_operations_mutex);
770 }
771
772 /*
773 * Start IO and wait for a given ordered extent to finish.
774 *
775 * Wait on page writeback for all the pages in the extent and the IO completion
776 * code to insert metadata into the btree corresponding to the extent.
777 */
btrfs_start_ordered_extent(struct btrfs_ordered_extent * entry)778 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
779 {
780 u64 start = entry->file_offset;
781 u64 end = start + entry->num_bytes - 1;
782 struct btrfs_inode *inode = BTRFS_I(entry->inode);
783 bool freespace_inode;
784
785 trace_btrfs_ordered_extent_start(inode, entry);
786
787 /*
788 * If this is a free space inode do not take the ordered extents lockdep
789 * map.
790 */
791 freespace_inode = btrfs_is_free_space_inode(inode);
792
793 /*
794 * pages in the range can be dirty, clean or writeback. We
795 * start IO on any dirty ones so the wait doesn't stall waiting
796 * for the flusher thread to find them
797 */
798 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
799 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
800
801 if (!freespace_inode)
802 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
803 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
804 }
805
806 /*
807 * Used to wait on ordered extents across a large range of bytes.
808 */
btrfs_wait_ordered_range(struct inode * inode,u64 start,u64 len)809 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
810 {
811 int ret = 0;
812 int ret_wb = 0;
813 u64 end;
814 u64 orig_end;
815 struct btrfs_ordered_extent *ordered;
816
817 if (start + len < start) {
818 orig_end = OFFSET_MAX;
819 } else {
820 orig_end = start + len - 1;
821 if (orig_end > OFFSET_MAX)
822 orig_end = OFFSET_MAX;
823 }
824
825 /* start IO across the range first to instantiate any delalloc
826 * extents
827 */
828 ret = btrfs_fdatawrite_range(inode, start, orig_end);
829 if (ret)
830 return ret;
831
832 /*
833 * If we have a writeback error don't return immediately. Wait first
834 * for any ordered extents that haven't completed yet. This is to make
835 * sure no one can dirty the same page ranges and call writepages()
836 * before the ordered extents complete - to avoid failures (-EEXIST)
837 * when adding the new ordered extents to the ordered tree.
838 */
839 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
840
841 end = orig_end;
842 while (1) {
843 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
844 if (!ordered)
845 break;
846 if (ordered->file_offset > orig_end) {
847 btrfs_put_ordered_extent(ordered);
848 break;
849 }
850 if (ordered->file_offset + ordered->num_bytes <= start) {
851 btrfs_put_ordered_extent(ordered);
852 break;
853 }
854 btrfs_start_ordered_extent(ordered);
855 end = ordered->file_offset;
856 /*
857 * If the ordered extent had an error save the error but don't
858 * exit without waiting first for all other ordered extents in
859 * the range to complete.
860 */
861 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
862 ret = -EIO;
863 btrfs_put_ordered_extent(ordered);
864 if (end == 0 || end == start)
865 break;
866 end--;
867 }
868 return ret_wb ? ret_wb : ret;
869 }
870
871 /*
872 * find an ordered extent corresponding to file_offset. return NULL if
873 * nothing is found, otherwise take a reference on the extent and return it
874 */
btrfs_lookup_ordered_extent(struct btrfs_inode * inode,u64 file_offset)875 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
876 u64 file_offset)
877 {
878 struct btrfs_ordered_inode_tree *tree;
879 struct rb_node *node;
880 struct btrfs_ordered_extent *entry = NULL;
881 unsigned long flags;
882
883 tree = &inode->ordered_tree;
884 spin_lock_irqsave(&tree->lock, flags);
885 node = tree_search(tree, file_offset);
886 if (!node)
887 goto out;
888
889 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
890 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
891 entry = NULL;
892 if (entry) {
893 refcount_inc(&entry->refs);
894 trace_btrfs_ordered_extent_lookup(inode, entry);
895 }
896 out:
897 spin_unlock_irqrestore(&tree->lock, flags);
898 return entry;
899 }
900
901 /* Since the DIO code tries to lock a wide area we need to look for any ordered
902 * extents that exist in the range, rather than just the start of the range.
903 */
btrfs_lookup_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)904 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
905 struct btrfs_inode *inode, u64 file_offset, u64 len)
906 {
907 struct btrfs_ordered_inode_tree *tree;
908 struct rb_node *node;
909 struct btrfs_ordered_extent *entry = NULL;
910
911 tree = &inode->ordered_tree;
912 spin_lock_irq(&tree->lock);
913 node = tree_search(tree, file_offset);
914 if (!node) {
915 node = tree_search(tree, file_offset + len);
916 if (!node)
917 goto out;
918 }
919
920 while (1) {
921 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
922 if (range_overlaps(entry, file_offset, len))
923 break;
924
925 if (entry->file_offset >= file_offset + len) {
926 entry = NULL;
927 break;
928 }
929 entry = NULL;
930 node = rb_next(node);
931 if (!node)
932 break;
933 }
934 out:
935 if (entry) {
936 refcount_inc(&entry->refs);
937 trace_btrfs_ordered_extent_lookup_range(inode, entry);
938 }
939 spin_unlock_irq(&tree->lock);
940 return entry;
941 }
942
943 /*
944 * Adds all ordered extents to the given list. The list ends up sorted by the
945 * file_offset of the ordered extents.
946 */
btrfs_get_ordered_extents_for_logging(struct btrfs_inode * inode,struct list_head * list)947 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
948 struct list_head *list)
949 {
950 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
951 struct rb_node *n;
952
953 ASSERT(inode_is_locked(&inode->vfs_inode));
954
955 spin_lock_irq(&tree->lock);
956 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
957 struct btrfs_ordered_extent *ordered;
958
959 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
960
961 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
962 continue;
963
964 ASSERT(list_empty(&ordered->log_list));
965 list_add_tail(&ordered->log_list, list);
966 refcount_inc(&ordered->refs);
967 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
968 }
969 spin_unlock_irq(&tree->lock);
970 }
971
972 /*
973 * lookup and return any extent before 'file_offset'. NULL is returned
974 * if none is found
975 */
976 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct btrfs_inode * inode,u64 file_offset)977 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
978 {
979 struct btrfs_ordered_inode_tree *tree;
980 struct rb_node *node;
981 struct btrfs_ordered_extent *entry = NULL;
982
983 tree = &inode->ordered_tree;
984 spin_lock_irq(&tree->lock);
985 node = tree_search(tree, file_offset);
986 if (!node)
987 goto out;
988
989 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
990 refcount_inc(&entry->refs);
991 trace_btrfs_ordered_extent_lookup_first(inode, entry);
992 out:
993 spin_unlock_irq(&tree->lock);
994 return entry;
995 }
996
997 /*
998 * Lookup the first ordered extent that overlaps the range
999 * [@file_offset, @file_offset + @len).
1000 *
1001 * The difference between this and btrfs_lookup_first_ordered_extent() is
1002 * that this one won't return any ordered extent that does not overlap the range.
1003 * And the difference against btrfs_lookup_ordered_extent() is, this function
1004 * ensures the first ordered extent gets returned.
1005 */
btrfs_lookup_first_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)1006 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1007 struct btrfs_inode *inode, u64 file_offset, u64 len)
1008 {
1009 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1010 struct rb_node *node;
1011 struct rb_node *cur;
1012 struct rb_node *prev;
1013 struct rb_node *next;
1014 struct btrfs_ordered_extent *entry = NULL;
1015
1016 spin_lock_irq(&tree->lock);
1017 node = tree->tree.rb_node;
1018 /*
1019 * Here we don't want to use tree_search() which will use tree->last
1020 * and screw up the search order.
1021 * And __tree_search() can't return the adjacent ordered extents
1022 * either, thus here we do our own search.
1023 */
1024 while (node) {
1025 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1026
1027 if (file_offset < entry->file_offset) {
1028 node = node->rb_left;
1029 } else if (file_offset >= entry_end(entry)) {
1030 node = node->rb_right;
1031 } else {
1032 /*
1033 * Direct hit, got an ordered extent that starts at
1034 * @file_offset
1035 */
1036 goto out;
1037 }
1038 }
1039 if (!entry) {
1040 /* Empty tree */
1041 goto out;
1042 }
1043
1044 cur = &entry->rb_node;
1045 /* We got an entry around @file_offset, check adjacent entries */
1046 if (entry->file_offset < file_offset) {
1047 prev = cur;
1048 next = rb_next(cur);
1049 } else {
1050 prev = rb_prev(cur);
1051 next = cur;
1052 }
1053 if (prev) {
1054 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1055 if (range_overlaps(entry, file_offset, len))
1056 goto out;
1057 }
1058 if (next) {
1059 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1060 if (range_overlaps(entry, file_offset, len))
1061 goto out;
1062 }
1063 /* No ordered extent in the range */
1064 entry = NULL;
1065 out:
1066 if (entry) {
1067 refcount_inc(&entry->refs);
1068 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1069 }
1070
1071 spin_unlock_irq(&tree->lock);
1072 return entry;
1073 }
1074
1075 /*
1076 * Lock the passed range and ensures all pending ordered extents in it are run
1077 * to completion.
1078 *
1079 * @inode: Inode whose ordered tree is to be searched
1080 * @start: Beginning of range to flush
1081 * @end: Last byte of range to lock
1082 * @cached_state: If passed, will return the extent state responsible for the
1083 * locked range. It's the caller's responsibility to free the
1084 * cached state.
1085 *
1086 * Always return with the given range locked, ensuring after it's called no
1087 * order extent can be pending.
1088 */
btrfs_lock_and_flush_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1089 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1090 u64 end,
1091 struct extent_state **cached_state)
1092 {
1093 struct btrfs_ordered_extent *ordered;
1094 struct extent_state *cache = NULL;
1095 struct extent_state **cachedp = &cache;
1096
1097 if (cached_state)
1098 cachedp = cached_state;
1099
1100 while (1) {
1101 lock_extent(&inode->io_tree, start, end, cachedp);
1102 ordered = btrfs_lookup_ordered_range(inode, start,
1103 end - start + 1);
1104 if (!ordered) {
1105 /*
1106 * If no external cached_state has been passed then
1107 * decrement the extra ref taken for cachedp since we
1108 * aren't exposing it outside of this function
1109 */
1110 if (!cached_state)
1111 refcount_dec(&cache->refs);
1112 break;
1113 }
1114 unlock_extent(&inode->io_tree, start, end, cachedp);
1115 btrfs_start_ordered_extent(ordered);
1116 btrfs_put_ordered_extent(ordered);
1117 }
1118 }
1119
1120 /*
1121 * Lock the passed range and ensure all pending ordered extents in it are run
1122 * to completion in nowait mode.
1123 *
1124 * Return true if btrfs_lock_ordered_range does not return any extents,
1125 * otherwise false.
1126 */
btrfs_try_lock_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1127 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1128 struct extent_state **cached_state)
1129 {
1130 struct btrfs_ordered_extent *ordered;
1131
1132 if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1133 return false;
1134
1135 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1136 if (!ordered)
1137 return true;
1138
1139 btrfs_put_ordered_extent(ordered);
1140 unlock_extent(&inode->io_tree, start, end, cached_state);
1141
1142 return false;
1143 }
1144
1145 /* Split out a new ordered extent for this first @len bytes of @ordered. */
btrfs_split_ordered_extent(struct btrfs_ordered_extent * ordered,u64 len)1146 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1147 struct btrfs_ordered_extent *ordered, u64 len)
1148 {
1149 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1150 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1151 struct btrfs_root *root = inode->root;
1152 struct btrfs_fs_info *fs_info = root->fs_info;
1153 u64 file_offset = ordered->file_offset;
1154 u64 disk_bytenr = ordered->disk_bytenr;
1155 unsigned long flags = ordered->flags;
1156 struct btrfs_ordered_sum *sum, *tmpsum;
1157 struct btrfs_ordered_extent *new;
1158 struct rb_node *node;
1159 u64 offset = 0;
1160
1161 trace_btrfs_ordered_extent_split(inode, ordered);
1162
1163 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1164
1165 /*
1166 * The entire bio must be covered by the ordered extent, but we can't
1167 * reduce the original extent to a zero length either.
1168 */
1169 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1170 return ERR_PTR(-EINVAL);
1171 /* We cannot split partially completed ordered extents. */
1172 if (ordered->bytes_left) {
1173 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1174 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1175 return ERR_PTR(-EINVAL);
1176 }
1177 /* We cannot split a compressed ordered extent. */
1178 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1179 return ERR_PTR(-EINVAL);
1180
1181 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1182 len, 0, flags, ordered->compress_type);
1183 if (IS_ERR(new))
1184 return new;
1185
1186 /* One ref for the tree. */
1187 refcount_inc(&new->refs);
1188
1189 spin_lock_irq(&root->ordered_extent_lock);
1190 spin_lock(&tree->lock);
1191 /* Remove from tree once */
1192 node = &ordered->rb_node;
1193 rb_erase(node, &tree->tree);
1194 RB_CLEAR_NODE(node);
1195 if (tree->last == node)
1196 tree->last = NULL;
1197
1198 ordered->file_offset += len;
1199 ordered->disk_bytenr += len;
1200 ordered->num_bytes -= len;
1201 ordered->disk_num_bytes -= len;
1202
1203 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1204 ASSERT(ordered->bytes_left == 0);
1205 new->bytes_left = 0;
1206 } else {
1207 ordered->bytes_left -= len;
1208 }
1209
1210 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1211 if (ordered->truncated_len > len) {
1212 ordered->truncated_len -= len;
1213 } else {
1214 new->truncated_len = ordered->truncated_len;
1215 ordered->truncated_len = 0;
1216 }
1217 }
1218
1219 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1220 if (offset == len)
1221 break;
1222 list_move_tail(&sum->list, &new->list);
1223 offset += sum->len;
1224 }
1225
1226 /* Re-insert the node */
1227 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1228 if (node)
1229 btrfs_panic(fs_info, -EEXIST,
1230 "zoned: inconsistency in ordered tree at offset %llu",
1231 ordered->file_offset);
1232
1233 node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
1234 if (node)
1235 btrfs_panic(fs_info, -EEXIST,
1236 "zoned: inconsistency in ordered tree at offset %llu",
1237 new->file_offset);
1238 spin_unlock(&tree->lock);
1239
1240 list_add_tail(&new->root_extent_list, &root->ordered_extents);
1241 root->nr_ordered_extents++;
1242 spin_unlock_irq(&root->ordered_extent_lock);
1243 return new;
1244 }
1245
ordered_data_init(void)1246 int __init ordered_data_init(void)
1247 {
1248 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1249 sizeof(struct btrfs_ordered_extent), 0,
1250 SLAB_MEM_SPREAD,
1251 NULL);
1252 if (!btrfs_ordered_extent_cache)
1253 return -ENOMEM;
1254
1255 return 0;
1256 }
1257
ordered_data_exit(void)1258 void __cold ordered_data_exit(void)
1259 {
1260 kmem_cache_destroy(btrfs_ordered_extent_cache);
1261 }
1262