1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30
31 /*
32 * Relocation overview
33 *
34 * [What does relocation do]
35 *
36 * The objective of relocation is to relocate all extents of the target block
37 * group to other block groups.
38 * This is utilized by resize (shrink only), profile converting, compacting
39 * space, or balance routine to spread chunks over devices.
40 *
41 * Before | After
42 * ------------------------------------------------------------------
43 * BG A: 10 data extents | BG A: deleted
44 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
45 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
46 *
47 * [How does relocation work]
48 *
49 * 1. Mark the target block group read-only
50 * New extents won't be allocated from the target block group.
51 *
52 * 2.1 Record each extent in the target block group
53 * To build a proper map of extents to be relocated.
54 *
55 * 2.2 Build data reloc tree and reloc trees
56 * Data reloc tree will contain an inode, recording all newly relocated
57 * data extents.
58 * There will be only one data reloc tree for one data block group.
59 *
60 * Reloc tree will be a special snapshot of its source tree, containing
61 * relocated tree blocks.
62 * Each tree referring to a tree block in target block group will get its
63 * reloc tree built.
64 *
65 * 2.3 Swap source tree with its corresponding reloc tree
66 * Each involved tree only refers to new extents after swap.
67 *
68 * 3. Cleanup reloc trees and data reloc tree.
69 * As old extents in the target block group are still referenced by reloc
70 * trees, we need to clean them up before really freeing the target block
71 * group.
72 *
73 * The main complexity is in steps 2.2 and 2.3.
74 *
75 * The entry point of relocation is relocate_block_group() function.
76 */
77
78 #define RELOCATION_RESERVED_NODES 256
79 /*
80 * map address of tree root to tree
81 */
82 struct mapping_node {
83 struct {
84 struct rb_node rb_node;
85 u64 bytenr;
86 }; /* Use rb_simle_node for search/insert */
87 void *data;
88 };
89
90 struct mapping_tree {
91 struct rb_root rb_root;
92 spinlock_t lock;
93 };
94
95 /*
96 * present a tree block to process
97 */
98 struct tree_block {
99 struct {
100 struct rb_node rb_node;
101 u64 bytenr;
102 }; /* Use rb_simple_node for search/insert */
103 u64 owner;
104 struct btrfs_key key;
105 unsigned int level:8;
106 unsigned int key_ready:1;
107 };
108
109 #define MAX_EXTENTS 128
110
111 struct file_extent_cluster {
112 u64 start;
113 u64 end;
114 u64 boundary[MAX_EXTENTS];
115 unsigned int nr;
116 };
117
118 struct reloc_control {
119 /* block group to relocate */
120 struct btrfs_block_group *block_group;
121 /* extent tree */
122 struct btrfs_root *extent_root;
123 /* inode for moving data */
124 struct inode *data_inode;
125
126 struct btrfs_block_rsv *block_rsv;
127
128 struct btrfs_backref_cache backref_cache;
129
130 struct file_extent_cluster cluster;
131 /* tree blocks have been processed */
132 struct extent_io_tree processed_blocks;
133 /* map start of tree root to corresponding reloc tree */
134 struct mapping_tree reloc_root_tree;
135 /* list of reloc trees */
136 struct list_head reloc_roots;
137 /* list of subvolume trees that get relocated */
138 struct list_head dirty_subvol_roots;
139 /* size of metadata reservation for merging reloc trees */
140 u64 merging_rsv_size;
141 /* size of relocated tree nodes */
142 u64 nodes_relocated;
143 /* reserved size for block group relocation*/
144 u64 reserved_bytes;
145
146 u64 search_start;
147 u64 extents_found;
148
149 unsigned int stage:8;
150 unsigned int create_reloc_tree:1;
151 unsigned int merge_reloc_tree:1;
152 unsigned int found_file_extent:1;
153 };
154
155 /* stages of data relocation */
156 #define MOVE_DATA_EXTENTS 0
157 #define UPDATE_DATA_PTRS 1
158
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)159 static void mark_block_processed(struct reloc_control *rc,
160 struct btrfs_backref_node *node)
161 {
162 u32 blocksize;
163
164 if (node->level == 0 ||
165 in_range(node->bytenr, rc->block_group->start,
166 rc->block_group->length)) {
167 blocksize = rc->extent_root->fs_info->nodesize;
168 set_extent_bits(&rc->processed_blocks, node->bytenr,
169 node->bytenr + blocksize - 1, EXTENT_DIRTY);
170 }
171 node->processed = 1;
172 }
173
174
mapping_tree_init(struct mapping_tree * tree)175 static void mapping_tree_init(struct mapping_tree *tree)
176 {
177 tree->rb_root = RB_ROOT;
178 spin_lock_init(&tree->lock);
179 }
180
181 /*
182 * walk up backref nodes until reach node presents tree root
183 */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)184 static struct btrfs_backref_node *walk_up_backref(
185 struct btrfs_backref_node *node,
186 struct btrfs_backref_edge *edges[], int *index)
187 {
188 struct btrfs_backref_edge *edge;
189 int idx = *index;
190
191 while (!list_empty(&node->upper)) {
192 edge = list_entry(node->upper.next,
193 struct btrfs_backref_edge, list[LOWER]);
194 edges[idx++] = edge;
195 node = edge->node[UPPER];
196 }
197 BUG_ON(node->detached);
198 *index = idx;
199 return node;
200 }
201
202 /*
203 * walk down backref nodes to find start of next reference path
204 */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)205 static struct btrfs_backref_node *walk_down_backref(
206 struct btrfs_backref_edge *edges[], int *index)
207 {
208 struct btrfs_backref_edge *edge;
209 struct btrfs_backref_node *lower;
210 int idx = *index;
211
212 while (idx > 0) {
213 edge = edges[idx - 1];
214 lower = edge->node[LOWER];
215 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
216 idx--;
217 continue;
218 }
219 edge = list_entry(edge->list[LOWER].next,
220 struct btrfs_backref_edge, list[LOWER]);
221 edges[idx - 1] = edge;
222 *index = idx;
223 return edge->node[UPPER];
224 }
225 *index = 0;
226 return NULL;
227 }
228
update_backref_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node,u64 bytenr)229 static void update_backref_node(struct btrfs_backref_cache *cache,
230 struct btrfs_backref_node *node, u64 bytenr)
231 {
232 struct rb_node *rb_node;
233 rb_erase(&node->rb_node, &cache->rb_root);
234 node->bytenr = bytenr;
235 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
236 if (rb_node)
237 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
238 }
239
240 /*
241 * update backref cache after a transaction commit
242 */
update_backref_cache(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache)243 static int update_backref_cache(struct btrfs_trans_handle *trans,
244 struct btrfs_backref_cache *cache)
245 {
246 struct btrfs_backref_node *node;
247 int level = 0;
248
249 if (cache->last_trans == 0) {
250 cache->last_trans = trans->transid;
251 return 0;
252 }
253
254 if (cache->last_trans == trans->transid)
255 return 0;
256
257 /*
258 * detached nodes are used to avoid unnecessary backref
259 * lookup. transaction commit changes the extent tree.
260 * so the detached nodes are no longer useful.
261 */
262 while (!list_empty(&cache->detached)) {
263 node = list_entry(cache->detached.next,
264 struct btrfs_backref_node, list);
265 btrfs_backref_cleanup_node(cache, node);
266 }
267
268 while (!list_empty(&cache->changed)) {
269 node = list_entry(cache->changed.next,
270 struct btrfs_backref_node, list);
271 list_del_init(&node->list);
272 BUG_ON(node->pending);
273 update_backref_node(cache, node, node->new_bytenr);
274 }
275
276 /*
277 * some nodes can be left in the pending list if there were
278 * errors during processing the pending nodes.
279 */
280 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
281 list_for_each_entry(node, &cache->pending[level], list) {
282 BUG_ON(!node->pending);
283 if (node->bytenr == node->new_bytenr)
284 continue;
285 update_backref_node(cache, node, node->new_bytenr);
286 }
287 }
288
289 cache->last_trans = 0;
290 return 1;
291 }
292
reloc_root_is_dead(struct btrfs_root * root)293 static bool reloc_root_is_dead(struct btrfs_root *root)
294 {
295 /*
296 * Pair with set_bit/clear_bit in clean_dirty_subvols and
297 * btrfs_update_reloc_root. We need to see the updated bit before
298 * trying to access reloc_root
299 */
300 smp_rmb();
301 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
302 return true;
303 return false;
304 }
305
306 /*
307 * Check if this subvolume tree has valid reloc tree.
308 *
309 * Reloc tree after swap is considered dead, thus not considered as valid.
310 * This is enough for most callers, as they don't distinguish dead reloc root
311 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
312 * special case.
313 */
have_reloc_root(struct btrfs_root * root)314 static bool have_reloc_root(struct btrfs_root *root)
315 {
316 if (reloc_root_is_dead(root))
317 return false;
318 if (!root->reloc_root)
319 return false;
320 return true;
321 }
322
btrfs_should_ignore_reloc_root(struct btrfs_root * root)323 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
324 {
325 struct btrfs_root *reloc_root;
326
327 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
328 return 0;
329
330 /* This root has been merged with its reloc tree, we can ignore it */
331 if (reloc_root_is_dead(root))
332 return 1;
333
334 reloc_root = root->reloc_root;
335 if (!reloc_root)
336 return 0;
337
338 if (btrfs_header_generation(reloc_root->commit_root) ==
339 root->fs_info->running_transaction->transid)
340 return 0;
341 /*
342 * if there is reloc tree and it was created in previous
343 * transaction backref lookup can find the reloc tree,
344 * so backref node for the fs tree root is useless for
345 * relocation.
346 */
347 return 1;
348 }
349
350 /*
351 * find reloc tree by address of tree root
352 */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)353 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
354 {
355 struct reloc_control *rc = fs_info->reloc_ctl;
356 struct rb_node *rb_node;
357 struct mapping_node *node;
358 struct btrfs_root *root = NULL;
359
360 ASSERT(rc);
361 spin_lock(&rc->reloc_root_tree.lock);
362 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
363 if (rb_node) {
364 node = rb_entry(rb_node, struct mapping_node, rb_node);
365 root = node->data;
366 }
367 spin_unlock(&rc->reloc_root_tree.lock);
368 return btrfs_grab_root(root);
369 }
370
371 /*
372 * For useless nodes, do two major clean ups:
373 *
374 * - Cleanup the children edges and nodes
375 * If child node is also orphan (no parent) during cleanup, then the child
376 * node will also be cleaned up.
377 *
378 * - Freeing up leaves (level 0), keeps nodes detached
379 * For nodes, the node is still cached as "detached"
380 *
381 * Return false if @node is not in the @useless_nodes list.
382 * Return true if @node is in the @useless_nodes list.
383 */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)384 static bool handle_useless_nodes(struct reloc_control *rc,
385 struct btrfs_backref_node *node)
386 {
387 struct btrfs_backref_cache *cache = &rc->backref_cache;
388 struct list_head *useless_node = &cache->useless_node;
389 bool ret = false;
390
391 while (!list_empty(useless_node)) {
392 struct btrfs_backref_node *cur;
393
394 cur = list_first_entry(useless_node, struct btrfs_backref_node,
395 list);
396 list_del_init(&cur->list);
397
398 /* Only tree root nodes can be added to @useless_nodes */
399 ASSERT(list_empty(&cur->upper));
400
401 if (cur == node)
402 ret = true;
403
404 /* The node is the lowest node */
405 if (cur->lowest) {
406 list_del_init(&cur->lower);
407 cur->lowest = 0;
408 }
409
410 /* Cleanup the lower edges */
411 while (!list_empty(&cur->lower)) {
412 struct btrfs_backref_edge *edge;
413 struct btrfs_backref_node *lower;
414
415 edge = list_entry(cur->lower.next,
416 struct btrfs_backref_edge, list[UPPER]);
417 list_del(&edge->list[UPPER]);
418 list_del(&edge->list[LOWER]);
419 lower = edge->node[LOWER];
420 btrfs_backref_free_edge(cache, edge);
421
422 /* Child node is also orphan, queue for cleanup */
423 if (list_empty(&lower->upper))
424 list_add(&lower->list, useless_node);
425 }
426 /* Mark this block processed for relocation */
427 mark_block_processed(rc, cur);
428
429 /*
430 * Backref nodes for tree leaves are deleted from the cache.
431 * Backref nodes for upper level tree blocks are left in the
432 * cache to avoid unnecessary backref lookup.
433 */
434 if (cur->level > 0) {
435 list_add(&cur->list, &cache->detached);
436 cur->detached = 1;
437 } else {
438 rb_erase(&cur->rb_node, &cache->rb_root);
439 btrfs_backref_free_node(cache, cur);
440 }
441 }
442 return ret;
443 }
444
445 /*
446 * Build backref tree for a given tree block. Root of the backref tree
447 * corresponds the tree block, leaves of the backref tree correspond roots of
448 * b-trees that reference the tree block.
449 *
450 * The basic idea of this function is check backrefs of a given block to find
451 * upper level blocks that reference the block, and then check backrefs of
452 * these upper level blocks recursively. The recursion stops when tree root is
453 * reached or backrefs for the block is cached.
454 *
455 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
456 * all upper level blocks that directly/indirectly reference the block are also
457 * cached.
458 */
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)459 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
460 struct reloc_control *rc, struct btrfs_key *node_key,
461 int level, u64 bytenr)
462 {
463 struct btrfs_backref_iter *iter;
464 struct btrfs_backref_cache *cache = &rc->backref_cache;
465 /* For searching parent of TREE_BLOCK_REF */
466 struct btrfs_path *path;
467 struct btrfs_backref_node *cur;
468 struct btrfs_backref_node *node = NULL;
469 struct btrfs_backref_edge *edge;
470 int ret;
471 int err = 0;
472
473 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
474 if (!iter)
475 return ERR_PTR(-ENOMEM);
476 path = btrfs_alloc_path();
477 if (!path) {
478 err = -ENOMEM;
479 goto out;
480 }
481
482 node = btrfs_backref_alloc_node(cache, bytenr, level);
483 if (!node) {
484 err = -ENOMEM;
485 goto out;
486 }
487
488 node->lowest = 1;
489 cur = node;
490
491 /* Breadth-first search to build backref cache */
492 do {
493 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
494 cur);
495 if (ret < 0) {
496 err = ret;
497 goto out;
498 }
499 edge = list_first_entry_or_null(&cache->pending_edge,
500 struct btrfs_backref_edge, list[UPPER]);
501 /*
502 * The pending list isn't empty, take the first block to
503 * process
504 */
505 if (edge) {
506 list_del_init(&edge->list[UPPER]);
507 cur = edge->node[UPPER];
508 }
509 } while (edge);
510
511 /* Finish the upper linkage of newly added edges/nodes */
512 ret = btrfs_backref_finish_upper_links(cache, node);
513 if (ret < 0) {
514 err = ret;
515 goto out;
516 }
517
518 if (handle_useless_nodes(rc, node))
519 node = NULL;
520 out:
521 btrfs_backref_iter_free(iter);
522 btrfs_free_path(path);
523 if (err) {
524 btrfs_backref_error_cleanup(cache, node);
525 return ERR_PTR(err);
526 }
527 ASSERT(!node || !node->detached);
528 ASSERT(list_empty(&cache->useless_node) &&
529 list_empty(&cache->pending_edge));
530 return node;
531 }
532
533 /*
534 * helper to add backref node for the newly created snapshot.
535 * the backref node is created by cloning backref node that
536 * corresponds to root of source tree
537 */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)538 static int clone_backref_node(struct btrfs_trans_handle *trans,
539 struct reloc_control *rc,
540 struct btrfs_root *src,
541 struct btrfs_root *dest)
542 {
543 struct btrfs_root *reloc_root = src->reloc_root;
544 struct btrfs_backref_cache *cache = &rc->backref_cache;
545 struct btrfs_backref_node *node = NULL;
546 struct btrfs_backref_node *new_node;
547 struct btrfs_backref_edge *edge;
548 struct btrfs_backref_edge *new_edge;
549 struct rb_node *rb_node;
550
551 if (cache->last_trans > 0)
552 update_backref_cache(trans, cache);
553
554 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
555 if (rb_node) {
556 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
557 if (node->detached)
558 node = NULL;
559 else
560 BUG_ON(node->new_bytenr != reloc_root->node->start);
561 }
562
563 if (!node) {
564 rb_node = rb_simple_search(&cache->rb_root,
565 reloc_root->commit_root->start);
566 if (rb_node) {
567 node = rb_entry(rb_node, struct btrfs_backref_node,
568 rb_node);
569 BUG_ON(node->detached);
570 }
571 }
572
573 if (!node)
574 return 0;
575
576 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
577 node->level);
578 if (!new_node)
579 return -ENOMEM;
580
581 new_node->lowest = node->lowest;
582 new_node->checked = 1;
583 new_node->root = btrfs_grab_root(dest);
584 ASSERT(new_node->root);
585
586 if (!node->lowest) {
587 list_for_each_entry(edge, &node->lower, list[UPPER]) {
588 new_edge = btrfs_backref_alloc_edge(cache);
589 if (!new_edge)
590 goto fail;
591
592 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
593 new_node, LINK_UPPER);
594 }
595 } else {
596 list_add_tail(&new_node->lower, &cache->leaves);
597 }
598
599 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
600 &new_node->rb_node);
601 if (rb_node)
602 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
603
604 if (!new_node->lowest) {
605 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
606 list_add_tail(&new_edge->list[LOWER],
607 &new_edge->node[LOWER]->upper);
608 }
609 }
610 return 0;
611 fail:
612 while (!list_empty(&new_node->lower)) {
613 new_edge = list_entry(new_node->lower.next,
614 struct btrfs_backref_edge, list[UPPER]);
615 list_del(&new_edge->list[UPPER]);
616 btrfs_backref_free_edge(cache, new_edge);
617 }
618 btrfs_backref_free_node(cache, new_node);
619 return -ENOMEM;
620 }
621
622 /*
623 * helper to add 'address of tree root -> reloc tree' mapping
624 */
__add_reloc_root(struct btrfs_root * root)625 static int __must_check __add_reloc_root(struct btrfs_root *root)
626 {
627 struct btrfs_fs_info *fs_info = root->fs_info;
628 struct rb_node *rb_node;
629 struct mapping_node *node;
630 struct reloc_control *rc = fs_info->reloc_ctl;
631
632 node = kmalloc(sizeof(*node), GFP_NOFS);
633 if (!node)
634 return -ENOMEM;
635
636 node->bytenr = root->commit_root->start;
637 node->data = root;
638
639 spin_lock(&rc->reloc_root_tree.lock);
640 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
641 node->bytenr, &node->rb_node);
642 spin_unlock(&rc->reloc_root_tree.lock);
643 if (rb_node) {
644 btrfs_err(fs_info,
645 "Duplicate root found for start=%llu while inserting into relocation tree",
646 node->bytenr);
647 return -EEXIST;
648 }
649
650 list_add_tail(&root->root_list, &rc->reloc_roots);
651 return 0;
652 }
653
654 /*
655 * helper to delete the 'address of tree root -> reloc tree'
656 * mapping
657 */
__del_reloc_root(struct btrfs_root * root)658 static void __del_reloc_root(struct btrfs_root *root)
659 {
660 struct btrfs_fs_info *fs_info = root->fs_info;
661 struct rb_node *rb_node;
662 struct mapping_node *node = NULL;
663 struct reloc_control *rc = fs_info->reloc_ctl;
664 bool put_ref = false;
665
666 if (rc && root->node) {
667 spin_lock(&rc->reloc_root_tree.lock);
668 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
669 root->commit_root->start);
670 if (rb_node) {
671 node = rb_entry(rb_node, struct mapping_node, rb_node);
672 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
673 RB_CLEAR_NODE(&node->rb_node);
674 }
675 spin_unlock(&rc->reloc_root_tree.lock);
676 ASSERT(!node || (struct btrfs_root *)node->data == root);
677 }
678
679 /*
680 * We only put the reloc root here if it's on the list. There's a lot
681 * of places where the pattern is to splice the rc->reloc_roots, process
682 * the reloc roots, and then add the reloc root back onto
683 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
684 * list we don't want the reference being dropped, because the guy
685 * messing with the list is in charge of the reference.
686 */
687 spin_lock(&fs_info->trans_lock);
688 if (!list_empty(&root->root_list)) {
689 put_ref = true;
690 list_del_init(&root->root_list);
691 }
692 spin_unlock(&fs_info->trans_lock);
693 if (put_ref)
694 btrfs_put_root(root);
695 kfree(node);
696 }
697
698 /*
699 * helper to update the 'address of tree root -> reloc tree'
700 * mapping
701 */
__update_reloc_root(struct btrfs_root * root)702 static int __update_reloc_root(struct btrfs_root *root)
703 {
704 struct btrfs_fs_info *fs_info = root->fs_info;
705 struct rb_node *rb_node;
706 struct mapping_node *node = NULL;
707 struct reloc_control *rc = fs_info->reloc_ctl;
708
709 spin_lock(&rc->reloc_root_tree.lock);
710 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
711 root->commit_root->start);
712 if (rb_node) {
713 node = rb_entry(rb_node, struct mapping_node, rb_node);
714 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
715 }
716 spin_unlock(&rc->reloc_root_tree.lock);
717
718 if (!node)
719 return 0;
720 BUG_ON((struct btrfs_root *)node->data != root);
721
722 spin_lock(&rc->reloc_root_tree.lock);
723 node->bytenr = root->node->start;
724 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
725 node->bytenr, &node->rb_node);
726 spin_unlock(&rc->reloc_root_tree.lock);
727 if (rb_node)
728 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
729 return 0;
730 }
731
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)732 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
733 struct btrfs_root *root, u64 objectid)
734 {
735 struct btrfs_fs_info *fs_info = root->fs_info;
736 struct btrfs_root *reloc_root;
737 struct extent_buffer *eb;
738 struct btrfs_root_item *root_item;
739 struct btrfs_key root_key;
740 int ret = 0;
741 bool must_abort = false;
742
743 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
744 if (!root_item)
745 return ERR_PTR(-ENOMEM);
746
747 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
748 root_key.type = BTRFS_ROOT_ITEM_KEY;
749 root_key.offset = objectid;
750
751 if (root->root_key.objectid == objectid) {
752 u64 commit_root_gen;
753
754 /* called by btrfs_init_reloc_root */
755 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
756 BTRFS_TREE_RELOC_OBJECTID);
757 if (ret)
758 goto fail;
759
760 /*
761 * Set the last_snapshot field to the generation of the commit
762 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
763 * correctly (returns true) when the relocation root is created
764 * either inside the critical section of a transaction commit
765 * (through transaction.c:qgroup_account_snapshot()) and when
766 * it's created before the transaction commit is started.
767 */
768 commit_root_gen = btrfs_header_generation(root->commit_root);
769 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
770 } else {
771 /*
772 * called by btrfs_reloc_post_snapshot_hook.
773 * the source tree is a reloc tree, all tree blocks
774 * modified after it was created have RELOC flag
775 * set in their headers. so it's OK to not update
776 * the 'last_snapshot'.
777 */
778 ret = btrfs_copy_root(trans, root, root->node, &eb,
779 BTRFS_TREE_RELOC_OBJECTID);
780 if (ret)
781 goto fail;
782 }
783
784 /*
785 * We have changed references at this point, we must abort the
786 * transaction if anything fails.
787 */
788 must_abort = true;
789
790 memcpy(root_item, &root->root_item, sizeof(*root_item));
791 btrfs_set_root_bytenr(root_item, eb->start);
792 btrfs_set_root_level(root_item, btrfs_header_level(eb));
793 btrfs_set_root_generation(root_item, trans->transid);
794
795 if (root->root_key.objectid == objectid) {
796 btrfs_set_root_refs(root_item, 0);
797 memset(&root_item->drop_progress, 0,
798 sizeof(struct btrfs_disk_key));
799 btrfs_set_root_drop_level(root_item, 0);
800 }
801
802 btrfs_tree_unlock(eb);
803 free_extent_buffer(eb);
804
805 ret = btrfs_insert_root(trans, fs_info->tree_root,
806 &root_key, root_item);
807 if (ret)
808 goto fail;
809
810 kfree(root_item);
811
812 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
813 if (IS_ERR(reloc_root)) {
814 ret = PTR_ERR(reloc_root);
815 goto abort;
816 }
817 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
818 reloc_root->last_trans = trans->transid;
819 return reloc_root;
820 fail:
821 kfree(root_item);
822 abort:
823 if (must_abort)
824 btrfs_abort_transaction(trans, ret);
825 return ERR_PTR(ret);
826 }
827
828 /*
829 * create reloc tree for a given fs tree. reloc tree is just a
830 * snapshot of the fs tree with special root objectid.
831 *
832 * The reloc_root comes out of here with two references, one for
833 * root->reloc_root, and another for being on the rc->reloc_roots list.
834 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)835 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
836 struct btrfs_root *root)
837 {
838 struct btrfs_fs_info *fs_info = root->fs_info;
839 struct btrfs_root *reloc_root;
840 struct reloc_control *rc = fs_info->reloc_ctl;
841 struct btrfs_block_rsv *rsv;
842 int clear_rsv = 0;
843 int ret;
844
845 if (!rc)
846 return 0;
847
848 /*
849 * The subvolume has reloc tree but the swap is finished, no need to
850 * create/update the dead reloc tree
851 */
852 if (reloc_root_is_dead(root))
853 return 0;
854
855 /*
856 * This is subtle but important. We do not do
857 * record_root_in_transaction for reloc roots, instead we record their
858 * corresponding fs root, and then here we update the last trans for the
859 * reloc root. This means that we have to do this for the entire life
860 * of the reloc root, regardless of which stage of the relocation we are
861 * in.
862 */
863 if (root->reloc_root) {
864 reloc_root = root->reloc_root;
865 reloc_root->last_trans = trans->transid;
866 return 0;
867 }
868
869 /*
870 * We are merging reloc roots, we do not need new reloc trees. Also
871 * reloc trees never need their own reloc tree.
872 */
873 if (!rc->create_reloc_tree ||
874 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
875 return 0;
876
877 if (!trans->reloc_reserved) {
878 rsv = trans->block_rsv;
879 trans->block_rsv = rc->block_rsv;
880 clear_rsv = 1;
881 }
882 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
883 if (clear_rsv)
884 trans->block_rsv = rsv;
885 if (IS_ERR(reloc_root))
886 return PTR_ERR(reloc_root);
887
888 ret = __add_reloc_root(reloc_root);
889 ASSERT(ret != -EEXIST);
890 if (ret) {
891 /* Pairs with create_reloc_root */
892 btrfs_put_root(reloc_root);
893 return ret;
894 }
895 root->reloc_root = btrfs_grab_root(reloc_root);
896 return 0;
897 }
898
899 /*
900 * update root item of reloc tree
901 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)902 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
903 struct btrfs_root *root)
904 {
905 struct btrfs_fs_info *fs_info = root->fs_info;
906 struct btrfs_root *reloc_root;
907 struct btrfs_root_item *root_item;
908 int ret;
909
910 if (!have_reloc_root(root))
911 return 0;
912
913 reloc_root = root->reloc_root;
914 root_item = &reloc_root->root_item;
915
916 /*
917 * We are probably ok here, but __del_reloc_root() will drop its ref of
918 * the root. We have the ref for root->reloc_root, but just in case
919 * hold it while we update the reloc root.
920 */
921 btrfs_grab_root(reloc_root);
922
923 /* root->reloc_root will stay until current relocation finished */
924 if (fs_info->reloc_ctl->merge_reloc_tree &&
925 btrfs_root_refs(root_item) == 0) {
926 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
927 /*
928 * Mark the tree as dead before we change reloc_root so
929 * have_reloc_root will not touch it from now on.
930 */
931 smp_wmb();
932 __del_reloc_root(reloc_root);
933 }
934
935 if (reloc_root->commit_root != reloc_root->node) {
936 __update_reloc_root(reloc_root);
937 btrfs_set_root_node(root_item, reloc_root->node);
938 free_extent_buffer(reloc_root->commit_root);
939 reloc_root->commit_root = btrfs_root_node(reloc_root);
940 }
941
942 ret = btrfs_update_root(trans, fs_info->tree_root,
943 &reloc_root->root_key, root_item);
944 btrfs_put_root(reloc_root);
945 return ret;
946 }
947
948 /*
949 * helper to find first cached inode with inode number >= objectid
950 * in a subvolume
951 */
find_next_inode(struct btrfs_root * root,u64 objectid)952 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
953 {
954 struct rb_node *node;
955 struct rb_node *prev;
956 struct btrfs_inode *entry;
957 struct inode *inode;
958
959 spin_lock(&root->inode_lock);
960 again:
961 node = root->inode_tree.rb_node;
962 prev = NULL;
963 while (node) {
964 prev = node;
965 entry = rb_entry(node, struct btrfs_inode, rb_node);
966
967 if (objectid < btrfs_ino(entry))
968 node = node->rb_left;
969 else if (objectid > btrfs_ino(entry))
970 node = node->rb_right;
971 else
972 break;
973 }
974 if (!node) {
975 while (prev) {
976 entry = rb_entry(prev, struct btrfs_inode, rb_node);
977 if (objectid <= btrfs_ino(entry)) {
978 node = prev;
979 break;
980 }
981 prev = rb_next(prev);
982 }
983 }
984 while (node) {
985 entry = rb_entry(node, struct btrfs_inode, rb_node);
986 inode = igrab(&entry->vfs_inode);
987 if (inode) {
988 spin_unlock(&root->inode_lock);
989 return inode;
990 }
991
992 objectid = btrfs_ino(entry) + 1;
993 if (cond_resched_lock(&root->inode_lock))
994 goto again;
995
996 node = rb_next(node);
997 }
998 spin_unlock(&root->inode_lock);
999 return NULL;
1000 }
1001
1002 /*
1003 * get new location of data
1004 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)1005 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1006 u64 bytenr, u64 num_bytes)
1007 {
1008 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1009 struct btrfs_path *path;
1010 struct btrfs_file_extent_item *fi;
1011 struct extent_buffer *leaf;
1012 int ret;
1013
1014 path = btrfs_alloc_path();
1015 if (!path)
1016 return -ENOMEM;
1017
1018 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1019 ret = btrfs_lookup_file_extent(NULL, root, path,
1020 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1021 if (ret < 0)
1022 goto out;
1023 if (ret > 0) {
1024 ret = -ENOENT;
1025 goto out;
1026 }
1027
1028 leaf = path->nodes[0];
1029 fi = btrfs_item_ptr(leaf, path->slots[0],
1030 struct btrfs_file_extent_item);
1031
1032 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1033 btrfs_file_extent_compression(leaf, fi) ||
1034 btrfs_file_extent_encryption(leaf, fi) ||
1035 btrfs_file_extent_other_encoding(leaf, fi));
1036
1037 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1038 ret = -EINVAL;
1039 goto out;
1040 }
1041
1042 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1043 ret = 0;
1044 out:
1045 btrfs_free_path(path);
1046 return ret;
1047 }
1048
1049 /*
1050 * update file extent items in the tree leaf to point to
1051 * the new locations.
1052 */
1053 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1054 int replace_file_extents(struct btrfs_trans_handle *trans,
1055 struct reloc_control *rc,
1056 struct btrfs_root *root,
1057 struct extent_buffer *leaf)
1058 {
1059 struct btrfs_fs_info *fs_info = root->fs_info;
1060 struct btrfs_key key;
1061 struct btrfs_file_extent_item *fi;
1062 struct inode *inode = NULL;
1063 u64 parent;
1064 u64 bytenr;
1065 u64 new_bytenr = 0;
1066 u64 num_bytes;
1067 u64 end;
1068 u32 nritems;
1069 u32 i;
1070 int ret = 0;
1071 int first = 1;
1072 int dirty = 0;
1073
1074 if (rc->stage != UPDATE_DATA_PTRS)
1075 return 0;
1076
1077 /* reloc trees always use full backref */
1078 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1079 parent = leaf->start;
1080 else
1081 parent = 0;
1082
1083 nritems = btrfs_header_nritems(leaf);
1084 for (i = 0; i < nritems; i++) {
1085 struct btrfs_ref ref = { 0 };
1086
1087 cond_resched();
1088 btrfs_item_key_to_cpu(leaf, &key, i);
1089 if (key.type != BTRFS_EXTENT_DATA_KEY)
1090 continue;
1091 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1092 if (btrfs_file_extent_type(leaf, fi) ==
1093 BTRFS_FILE_EXTENT_INLINE)
1094 continue;
1095 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1096 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1097 if (bytenr == 0)
1098 continue;
1099 if (!in_range(bytenr, rc->block_group->start,
1100 rc->block_group->length))
1101 continue;
1102
1103 /*
1104 * if we are modifying block in fs tree, wait for read_folio
1105 * to complete and drop the extent cache
1106 */
1107 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1108 if (first) {
1109 inode = find_next_inode(root, key.objectid);
1110 first = 0;
1111 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1112 btrfs_add_delayed_iput(inode);
1113 inode = find_next_inode(root, key.objectid);
1114 }
1115 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1116 end = key.offset +
1117 btrfs_file_extent_num_bytes(leaf, fi);
1118 WARN_ON(!IS_ALIGNED(key.offset,
1119 fs_info->sectorsize));
1120 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1121 end--;
1122 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1123 key.offset, end);
1124 if (!ret)
1125 continue;
1126
1127 btrfs_drop_extent_map_range(BTRFS_I(inode),
1128 key.offset, end, true);
1129 unlock_extent(&BTRFS_I(inode)->io_tree,
1130 key.offset, end, NULL);
1131 }
1132 }
1133
1134 ret = get_new_location(rc->data_inode, &new_bytenr,
1135 bytenr, num_bytes);
1136 if (ret) {
1137 /*
1138 * Don't have to abort since we've not changed anything
1139 * in the file extent yet.
1140 */
1141 break;
1142 }
1143
1144 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1145 dirty = 1;
1146
1147 key.offset -= btrfs_file_extent_offset(leaf, fi);
1148 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1149 num_bytes, parent);
1150 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1151 key.objectid, key.offset,
1152 root->root_key.objectid, false);
1153 ret = btrfs_inc_extent_ref(trans, &ref);
1154 if (ret) {
1155 btrfs_abort_transaction(trans, ret);
1156 break;
1157 }
1158
1159 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1160 num_bytes, parent);
1161 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1162 key.objectid, key.offset,
1163 root->root_key.objectid, false);
1164 ret = btrfs_free_extent(trans, &ref);
1165 if (ret) {
1166 btrfs_abort_transaction(trans, ret);
1167 break;
1168 }
1169 }
1170 if (dirty)
1171 btrfs_mark_buffer_dirty(leaf);
1172 if (inode)
1173 btrfs_add_delayed_iput(inode);
1174 return ret;
1175 }
1176
1177 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1178 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1179 struct btrfs_path *path, int level)
1180 {
1181 struct btrfs_disk_key key1;
1182 struct btrfs_disk_key key2;
1183 btrfs_node_key(eb, &key1, slot);
1184 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1185 return memcmp(&key1, &key2, sizeof(key1));
1186 }
1187
1188 /*
1189 * try to replace tree blocks in fs tree with the new blocks
1190 * in reloc tree. tree blocks haven't been modified since the
1191 * reloc tree was create can be replaced.
1192 *
1193 * if a block was replaced, level of the block + 1 is returned.
1194 * if no block got replaced, 0 is returned. if there are other
1195 * errors, a negative error number is returned.
1196 */
1197 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1198 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1199 struct btrfs_root *dest, struct btrfs_root *src,
1200 struct btrfs_path *path, struct btrfs_key *next_key,
1201 int lowest_level, int max_level)
1202 {
1203 struct btrfs_fs_info *fs_info = dest->fs_info;
1204 struct extent_buffer *eb;
1205 struct extent_buffer *parent;
1206 struct btrfs_ref ref = { 0 };
1207 struct btrfs_key key;
1208 u64 old_bytenr;
1209 u64 new_bytenr;
1210 u64 old_ptr_gen;
1211 u64 new_ptr_gen;
1212 u64 last_snapshot;
1213 u32 blocksize;
1214 int cow = 0;
1215 int level;
1216 int ret;
1217 int slot;
1218
1219 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1220 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1221
1222 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1223 again:
1224 slot = path->slots[lowest_level];
1225 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1226
1227 eb = btrfs_lock_root_node(dest);
1228 level = btrfs_header_level(eb);
1229
1230 if (level < lowest_level) {
1231 btrfs_tree_unlock(eb);
1232 free_extent_buffer(eb);
1233 return 0;
1234 }
1235
1236 if (cow) {
1237 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1238 BTRFS_NESTING_COW);
1239 if (ret) {
1240 btrfs_tree_unlock(eb);
1241 free_extent_buffer(eb);
1242 return ret;
1243 }
1244 }
1245
1246 if (next_key) {
1247 next_key->objectid = (u64)-1;
1248 next_key->type = (u8)-1;
1249 next_key->offset = (u64)-1;
1250 }
1251
1252 parent = eb;
1253 while (1) {
1254 level = btrfs_header_level(parent);
1255 ASSERT(level >= lowest_level);
1256
1257 ret = btrfs_bin_search(parent, &key, &slot);
1258 if (ret < 0)
1259 break;
1260 if (ret && slot > 0)
1261 slot--;
1262
1263 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1264 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1265
1266 old_bytenr = btrfs_node_blockptr(parent, slot);
1267 blocksize = fs_info->nodesize;
1268 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1269
1270 if (level <= max_level) {
1271 eb = path->nodes[level];
1272 new_bytenr = btrfs_node_blockptr(eb,
1273 path->slots[level]);
1274 new_ptr_gen = btrfs_node_ptr_generation(eb,
1275 path->slots[level]);
1276 } else {
1277 new_bytenr = 0;
1278 new_ptr_gen = 0;
1279 }
1280
1281 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1282 ret = level;
1283 break;
1284 }
1285
1286 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1287 memcmp_node_keys(parent, slot, path, level)) {
1288 if (level <= lowest_level) {
1289 ret = 0;
1290 break;
1291 }
1292
1293 eb = btrfs_read_node_slot(parent, slot);
1294 if (IS_ERR(eb)) {
1295 ret = PTR_ERR(eb);
1296 break;
1297 }
1298 btrfs_tree_lock(eb);
1299 if (cow) {
1300 ret = btrfs_cow_block(trans, dest, eb, parent,
1301 slot, &eb,
1302 BTRFS_NESTING_COW);
1303 if (ret) {
1304 btrfs_tree_unlock(eb);
1305 free_extent_buffer(eb);
1306 break;
1307 }
1308 }
1309
1310 btrfs_tree_unlock(parent);
1311 free_extent_buffer(parent);
1312
1313 parent = eb;
1314 continue;
1315 }
1316
1317 if (!cow) {
1318 btrfs_tree_unlock(parent);
1319 free_extent_buffer(parent);
1320 cow = 1;
1321 goto again;
1322 }
1323
1324 btrfs_node_key_to_cpu(path->nodes[level], &key,
1325 path->slots[level]);
1326 btrfs_release_path(path);
1327
1328 path->lowest_level = level;
1329 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1330 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1331 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1332 path->lowest_level = 0;
1333 if (ret) {
1334 if (ret > 0)
1335 ret = -ENOENT;
1336 break;
1337 }
1338
1339 /*
1340 * Info qgroup to trace both subtrees.
1341 *
1342 * We must trace both trees.
1343 * 1) Tree reloc subtree
1344 * If not traced, we will leak data numbers
1345 * 2) Fs subtree
1346 * If not traced, we will double count old data
1347 *
1348 * We don't scan the subtree right now, but only record
1349 * the swapped tree blocks.
1350 * The real subtree rescan is delayed until we have new
1351 * CoW on the subtree root node before transaction commit.
1352 */
1353 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1354 rc->block_group, parent, slot,
1355 path->nodes[level], path->slots[level],
1356 last_snapshot);
1357 if (ret < 0)
1358 break;
1359 /*
1360 * swap blocks in fs tree and reloc tree.
1361 */
1362 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1363 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1364 btrfs_mark_buffer_dirty(parent);
1365
1366 btrfs_set_node_blockptr(path->nodes[level],
1367 path->slots[level], old_bytenr);
1368 btrfs_set_node_ptr_generation(path->nodes[level],
1369 path->slots[level], old_ptr_gen);
1370 btrfs_mark_buffer_dirty(path->nodes[level]);
1371
1372 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1373 blocksize, path->nodes[level]->start);
1374 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1375 0, true);
1376 ret = btrfs_inc_extent_ref(trans, &ref);
1377 if (ret) {
1378 btrfs_abort_transaction(trans, ret);
1379 break;
1380 }
1381 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1382 blocksize, 0);
1383 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1384 true);
1385 ret = btrfs_inc_extent_ref(trans, &ref);
1386 if (ret) {
1387 btrfs_abort_transaction(trans, ret);
1388 break;
1389 }
1390
1391 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1392 blocksize, path->nodes[level]->start);
1393 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1394 0, true);
1395 ret = btrfs_free_extent(trans, &ref);
1396 if (ret) {
1397 btrfs_abort_transaction(trans, ret);
1398 break;
1399 }
1400
1401 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1402 blocksize, 0);
1403 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1404 0, true);
1405 ret = btrfs_free_extent(trans, &ref);
1406 if (ret) {
1407 btrfs_abort_transaction(trans, ret);
1408 break;
1409 }
1410
1411 btrfs_unlock_up_safe(path, 0);
1412
1413 ret = level;
1414 break;
1415 }
1416 btrfs_tree_unlock(parent);
1417 free_extent_buffer(parent);
1418 return ret;
1419 }
1420
1421 /*
1422 * helper to find next relocated block in reloc tree
1423 */
1424 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1425 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1426 int *level)
1427 {
1428 struct extent_buffer *eb;
1429 int i;
1430 u64 last_snapshot;
1431 u32 nritems;
1432
1433 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1434
1435 for (i = 0; i < *level; i++) {
1436 free_extent_buffer(path->nodes[i]);
1437 path->nodes[i] = NULL;
1438 }
1439
1440 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1441 eb = path->nodes[i];
1442 nritems = btrfs_header_nritems(eb);
1443 while (path->slots[i] + 1 < nritems) {
1444 path->slots[i]++;
1445 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1446 last_snapshot)
1447 continue;
1448
1449 *level = i;
1450 return 0;
1451 }
1452 free_extent_buffer(path->nodes[i]);
1453 path->nodes[i] = NULL;
1454 }
1455 return 1;
1456 }
1457
1458 /*
1459 * walk down reloc tree to find relocated block of lowest level
1460 */
1461 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1462 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1463 int *level)
1464 {
1465 struct extent_buffer *eb = NULL;
1466 int i;
1467 u64 ptr_gen = 0;
1468 u64 last_snapshot;
1469 u32 nritems;
1470
1471 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1472
1473 for (i = *level; i > 0; i--) {
1474 eb = path->nodes[i];
1475 nritems = btrfs_header_nritems(eb);
1476 while (path->slots[i] < nritems) {
1477 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1478 if (ptr_gen > last_snapshot)
1479 break;
1480 path->slots[i]++;
1481 }
1482 if (path->slots[i] >= nritems) {
1483 if (i == *level)
1484 break;
1485 *level = i + 1;
1486 return 0;
1487 }
1488 if (i == 1) {
1489 *level = i;
1490 return 0;
1491 }
1492
1493 eb = btrfs_read_node_slot(eb, path->slots[i]);
1494 if (IS_ERR(eb))
1495 return PTR_ERR(eb);
1496 BUG_ON(btrfs_header_level(eb) != i - 1);
1497 path->nodes[i - 1] = eb;
1498 path->slots[i - 1] = 0;
1499 }
1500 return 1;
1501 }
1502
1503 /*
1504 * invalidate extent cache for file extents whose key in range of
1505 * [min_key, max_key)
1506 */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)1507 static int invalidate_extent_cache(struct btrfs_root *root,
1508 struct btrfs_key *min_key,
1509 struct btrfs_key *max_key)
1510 {
1511 struct btrfs_fs_info *fs_info = root->fs_info;
1512 struct inode *inode = NULL;
1513 u64 objectid;
1514 u64 start, end;
1515 u64 ino;
1516
1517 objectid = min_key->objectid;
1518 while (1) {
1519 cond_resched();
1520 iput(inode);
1521
1522 if (objectid > max_key->objectid)
1523 break;
1524
1525 inode = find_next_inode(root, objectid);
1526 if (!inode)
1527 break;
1528 ino = btrfs_ino(BTRFS_I(inode));
1529
1530 if (ino > max_key->objectid) {
1531 iput(inode);
1532 break;
1533 }
1534
1535 objectid = ino + 1;
1536 if (!S_ISREG(inode->i_mode))
1537 continue;
1538
1539 if (unlikely(min_key->objectid == ino)) {
1540 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1541 continue;
1542 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1543 start = 0;
1544 else {
1545 start = min_key->offset;
1546 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1547 }
1548 } else {
1549 start = 0;
1550 }
1551
1552 if (unlikely(max_key->objectid == ino)) {
1553 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1554 continue;
1555 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1556 end = (u64)-1;
1557 } else {
1558 if (max_key->offset == 0)
1559 continue;
1560 end = max_key->offset;
1561 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1562 end--;
1563 }
1564 } else {
1565 end = (u64)-1;
1566 }
1567
1568 /* the lock_extent waits for read_folio to complete */
1569 lock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL);
1570 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1571 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL);
1572 }
1573 return 0;
1574 }
1575
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1576 static int find_next_key(struct btrfs_path *path, int level,
1577 struct btrfs_key *key)
1578
1579 {
1580 while (level < BTRFS_MAX_LEVEL) {
1581 if (!path->nodes[level])
1582 break;
1583 if (path->slots[level] + 1 <
1584 btrfs_header_nritems(path->nodes[level])) {
1585 btrfs_node_key_to_cpu(path->nodes[level], key,
1586 path->slots[level] + 1);
1587 return 0;
1588 }
1589 level++;
1590 }
1591 return 1;
1592 }
1593
1594 /*
1595 * Insert current subvolume into reloc_control::dirty_subvol_roots
1596 */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1597 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1598 struct reloc_control *rc,
1599 struct btrfs_root *root)
1600 {
1601 struct btrfs_root *reloc_root = root->reloc_root;
1602 struct btrfs_root_item *reloc_root_item;
1603 int ret;
1604
1605 /* @root must be a subvolume tree root with a valid reloc tree */
1606 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1607 ASSERT(reloc_root);
1608
1609 reloc_root_item = &reloc_root->root_item;
1610 memset(&reloc_root_item->drop_progress, 0,
1611 sizeof(reloc_root_item->drop_progress));
1612 btrfs_set_root_drop_level(reloc_root_item, 0);
1613 btrfs_set_root_refs(reloc_root_item, 0);
1614 ret = btrfs_update_reloc_root(trans, root);
1615 if (ret)
1616 return ret;
1617
1618 if (list_empty(&root->reloc_dirty_list)) {
1619 btrfs_grab_root(root);
1620 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1621 }
1622
1623 return 0;
1624 }
1625
clean_dirty_subvols(struct reloc_control * rc)1626 static int clean_dirty_subvols(struct reloc_control *rc)
1627 {
1628 struct btrfs_root *root;
1629 struct btrfs_root *next;
1630 int ret = 0;
1631 int ret2;
1632
1633 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1634 reloc_dirty_list) {
1635 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1636 /* Merged subvolume, cleanup its reloc root */
1637 struct btrfs_root *reloc_root = root->reloc_root;
1638
1639 list_del_init(&root->reloc_dirty_list);
1640 root->reloc_root = NULL;
1641 /*
1642 * Need barrier to ensure clear_bit() only happens after
1643 * root->reloc_root = NULL. Pairs with have_reloc_root.
1644 */
1645 smp_wmb();
1646 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1647 if (reloc_root) {
1648 /*
1649 * btrfs_drop_snapshot drops our ref we hold for
1650 * ->reloc_root. If it fails however we must
1651 * drop the ref ourselves.
1652 */
1653 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1654 if (ret2 < 0) {
1655 btrfs_put_root(reloc_root);
1656 if (!ret)
1657 ret = ret2;
1658 }
1659 }
1660 btrfs_put_root(root);
1661 } else {
1662 /* Orphan reloc tree, just clean it up */
1663 ret2 = btrfs_drop_snapshot(root, 0, 1);
1664 if (ret2 < 0) {
1665 btrfs_put_root(root);
1666 if (!ret)
1667 ret = ret2;
1668 }
1669 }
1670 }
1671 return ret;
1672 }
1673
1674 /*
1675 * merge the relocated tree blocks in reloc tree with corresponding
1676 * fs tree.
1677 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1678 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1679 struct btrfs_root *root)
1680 {
1681 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1682 struct btrfs_key key;
1683 struct btrfs_key next_key;
1684 struct btrfs_trans_handle *trans = NULL;
1685 struct btrfs_root *reloc_root;
1686 struct btrfs_root_item *root_item;
1687 struct btrfs_path *path;
1688 struct extent_buffer *leaf;
1689 int reserve_level;
1690 int level;
1691 int max_level;
1692 int replaced = 0;
1693 int ret = 0;
1694 u32 min_reserved;
1695
1696 path = btrfs_alloc_path();
1697 if (!path)
1698 return -ENOMEM;
1699 path->reada = READA_FORWARD;
1700
1701 reloc_root = root->reloc_root;
1702 root_item = &reloc_root->root_item;
1703
1704 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1705 level = btrfs_root_level(root_item);
1706 atomic_inc(&reloc_root->node->refs);
1707 path->nodes[level] = reloc_root->node;
1708 path->slots[level] = 0;
1709 } else {
1710 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1711
1712 level = btrfs_root_drop_level(root_item);
1713 BUG_ON(level == 0);
1714 path->lowest_level = level;
1715 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1716 path->lowest_level = 0;
1717 if (ret < 0) {
1718 btrfs_free_path(path);
1719 return ret;
1720 }
1721
1722 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1723 path->slots[level]);
1724 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1725
1726 btrfs_unlock_up_safe(path, 0);
1727 }
1728
1729 /*
1730 * In merge_reloc_root(), we modify the upper level pointer to swap the
1731 * tree blocks between reloc tree and subvolume tree. Thus for tree
1732 * block COW, we COW at most from level 1 to root level for each tree.
1733 *
1734 * Thus the needed metadata size is at most root_level * nodesize,
1735 * and * 2 since we have two trees to COW.
1736 */
1737 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1738 min_reserved = fs_info->nodesize * reserve_level * 2;
1739 memset(&next_key, 0, sizeof(next_key));
1740
1741 while (1) {
1742 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1743 min_reserved,
1744 BTRFS_RESERVE_FLUSH_LIMIT);
1745 if (ret)
1746 goto out;
1747 trans = btrfs_start_transaction(root, 0);
1748 if (IS_ERR(trans)) {
1749 ret = PTR_ERR(trans);
1750 trans = NULL;
1751 goto out;
1752 }
1753
1754 /*
1755 * At this point we no longer have a reloc_control, so we can't
1756 * depend on btrfs_init_reloc_root to update our last_trans.
1757 *
1758 * But that's ok, we started the trans handle on our
1759 * corresponding fs_root, which means it's been added to the
1760 * dirty list. At commit time we'll still call
1761 * btrfs_update_reloc_root() and update our root item
1762 * appropriately.
1763 */
1764 reloc_root->last_trans = trans->transid;
1765 trans->block_rsv = rc->block_rsv;
1766
1767 replaced = 0;
1768 max_level = level;
1769
1770 ret = walk_down_reloc_tree(reloc_root, path, &level);
1771 if (ret < 0)
1772 goto out;
1773 if (ret > 0)
1774 break;
1775
1776 if (!find_next_key(path, level, &key) &&
1777 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1778 ret = 0;
1779 } else {
1780 ret = replace_path(trans, rc, root, reloc_root, path,
1781 &next_key, level, max_level);
1782 }
1783 if (ret < 0)
1784 goto out;
1785 if (ret > 0) {
1786 level = ret;
1787 btrfs_node_key_to_cpu(path->nodes[level], &key,
1788 path->slots[level]);
1789 replaced = 1;
1790 }
1791
1792 ret = walk_up_reloc_tree(reloc_root, path, &level);
1793 if (ret > 0)
1794 break;
1795
1796 BUG_ON(level == 0);
1797 /*
1798 * save the merging progress in the drop_progress.
1799 * this is OK since root refs == 1 in this case.
1800 */
1801 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1802 path->slots[level]);
1803 btrfs_set_root_drop_level(root_item, level);
1804
1805 btrfs_end_transaction_throttle(trans);
1806 trans = NULL;
1807
1808 btrfs_btree_balance_dirty(fs_info);
1809
1810 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1811 invalidate_extent_cache(root, &key, &next_key);
1812 }
1813
1814 /*
1815 * handle the case only one block in the fs tree need to be
1816 * relocated and the block is tree root.
1817 */
1818 leaf = btrfs_lock_root_node(root);
1819 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1820 BTRFS_NESTING_COW);
1821 btrfs_tree_unlock(leaf);
1822 free_extent_buffer(leaf);
1823 out:
1824 btrfs_free_path(path);
1825
1826 if (ret == 0) {
1827 ret = insert_dirty_subvol(trans, rc, root);
1828 if (ret)
1829 btrfs_abort_transaction(trans, ret);
1830 }
1831
1832 if (trans)
1833 btrfs_end_transaction_throttle(trans);
1834
1835 btrfs_btree_balance_dirty(fs_info);
1836
1837 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1838 invalidate_extent_cache(root, &key, &next_key);
1839
1840 return ret;
1841 }
1842
1843 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1844 int prepare_to_merge(struct reloc_control *rc, int err)
1845 {
1846 struct btrfs_root *root = rc->extent_root;
1847 struct btrfs_fs_info *fs_info = root->fs_info;
1848 struct btrfs_root *reloc_root;
1849 struct btrfs_trans_handle *trans;
1850 LIST_HEAD(reloc_roots);
1851 u64 num_bytes = 0;
1852 int ret;
1853
1854 mutex_lock(&fs_info->reloc_mutex);
1855 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1856 rc->merging_rsv_size += rc->nodes_relocated * 2;
1857 mutex_unlock(&fs_info->reloc_mutex);
1858
1859 again:
1860 if (!err) {
1861 num_bytes = rc->merging_rsv_size;
1862 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1863 BTRFS_RESERVE_FLUSH_ALL);
1864 if (ret)
1865 err = ret;
1866 }
1867
1868 trans = btrfs_join_transaction(rc->extent_root);
1869 if (IS_ERR(trans)) {
1870 if (!err)
1871 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1872 num_bytes, NULL);
1873 return PTR_ERR(trans);
1874 }
1875
1876 if (!err) {
1877 if (num_bytes != rc->merging_rsv_size) {
1878 btrfs_end_transaction(trans);
1879 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1880 num_bytes, NULL);
1881 goto again;
1882 }
1883 }
1884
1885 rc->merge_reloc_tree = 1;
1886
1887 while (!list_empty(&rc->reloc_roots)) {
1888 reloc_root = list_entry(rc->reloc_roots.next,
1889 struct btrfs_root, root_list);
1890 list_del_init(&reloc_root->root_list);
1891
1892 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1893 false);
1894 if (IS_ERR(root)) {
1895 /*
1896 * Even if we have an error we need this reloc root
1897 * back on our list so we can clean up properly.
1898 */
1899 list_add(&reloc_root->root_list, &reloc_roots);
1900 btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1901 if (!err)
1902 err = PTR_ERR(root);
1903 break;
1904 }
1905 ASSERT(root->reloc_root == reloc_root);
1906
1907 /*
1908 * set reference count to 1, so btrfs_recover_relocation
1909 * knows it should resumes merging
1910 */
1911 if (!err)
1912 btrfs_set_root_refs(&reloc_root->root_item, 1);
1913 ret = btrfs_update_reloc_root(trans, root);
1914
1915 /*
1916 * Even if we have an error we need this reloc root back on our
1917 * list so we can clean up properly.
1918 */
1919 list_add(&reloc_root->root_list, &reloc_roots);
1920 btrfs_put_root(root);
1921
1922 if (ret) {
1923 btrfs_abort_transaction(trans, ret);
1924 if (!err)
1925 err = ret;
1926 break;
1927 }
1928 }
1929
1930 list_splice(&reloc_roots, &rc->reloc_roots);
1931
1932 if (!err)
1933 err = btrfs_commit_transaction(trans);
1934 else
1935 btrfs_end_transaction(trans);
1936 return err;
1937 }
1938
1939 static noinline_for_stack
free_reloc_roots(struct list_head * list)1940 void free_reloc_roots(struct list_head *list)
1941 {
1942 struct btrfs_root *reloc_root, *tmp;
1943
1944 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1945 __del_reloc_root(reloc_root);
1946 }
1947
1948 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1949 void merge_reloc_roots(struct reloc_control *rc)
1950 {
1951 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1952 struct btrfs_root *root;
1953 struct btrfs_root *reloc_root;
1954 LIST_HEAD(reloc_roots);
1955 int found = 0;
1956 int ret = 0;
1957 again:
1958 root = rc->extent_root;
1959
1960 /*
1961 * this serializes us with btrfs_record_root_in_transaction,
1962 * we have to make sure nobody is in the middle of
1963 * adding their roots to the list while we are
1964 * doing this splice
1965 */
1966 mutex_lock(&fs_info->reloc_mutex);
1967 list_splice_init(&rc->reloc_roots, &reloc_roots);
1968 mutex_unlock(&fs_info->reloc_mutex);
1969
1970 while (!list_empty(&reloc_roots)) {
1971 found = 1;
1972 reloc_root = list_entry(reloc_roots.next,
1973 struct btrfs_root, root_list);
1974
1975 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1976 false);
1977 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1978 if (IS_ERR(root)) {
1979 /*
1980 * For recovery we read the fs roots on mount,
1981 * and if we didn't find the root then we marked
1982 * the reloc root as a garbage root. For normal
1983 * relocation obviously the root should exist in
1984 * memory. However there's no reason we can't
1985 * handle the error properly here just in case.
1986 */
1987 ASSERT(0);
1988 ret = PTR_ERR(root);
1989 goto out;
1990 }
1991 if (root->reloc_root != reloc_root) {
1992 /*
1993 * This is actually impossible without something
1994 * going really wrong (like weird race condition
1995 * or cosmic rays).
1996 */
1997 ASSERT(0);
1998 ret = -EINVAL;
1999 goto out;
2000 }
2001 ret = merge_reloc_root(rc, root);
2002 btrfs_put_root(root);
2003 if (ret) {
2004 if (list_empty(&reloc_root->root_list))
2005 list_add_tail(&reloc_root->root_list,
2006 &reloc_roots);
2007 goto out;
2008 }
2009 } else {
2010 if (!IS_ERR(root)) {
2011 if (root->reloc_root == reloc_root) {
2012 root->reloc_root = NULL;
2013 btrfs_put_root(reloc_root);
2014 }
2015 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2016 &root->state);
2017 btrfs_put_root(root);
2018 }
2019
2020 list_del_init(&reloc_root->root_list);
2021 /* Don't forget to queue this reloc root for cleanup */
2022 list_add_tail(&reloc_root->reloc_dirty_list,
2023 &rc->dirty_subvol_roots);
2024 }
2025 }
2026
2027 if (found) {
2028 found = 0;
2029 goto again;
2030 }
2031 out:
2032 if (ret) {
2033 btrfs_handle_fs_error(fs_info, ret, NULL);
2034 free_reloc_roots(&reloc_roots);
2035
2036 /* new reloc root may be added */
2037 mutex_lock(&fs_info->reloc_mutex);
2038 list_splice_init(&rc->reloc_roots, &reloc_roots);
2039 mutex_unlock(&fs_info->reloc_mutex);
2040 free_reloc_roots(&reloc_roots);
2041 }
2042
2043 /*
2044 * We used to have
2045 *
2046 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2047 *
2048 * here, but it's wrong. If we fail to start the transaction in
2049 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2050 * have actually been removed from the reloc_root_tree rb tree. This is
2051 * fine because we're bailing here, and we hold a reference on the root
2052 * for the list that holds it, so these roots will be cleaned up when we
2053 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2054 * will be cleaned up on unmount.
2055 *
2056 * The remaining nodes will be cleaned up by free_reloc_control.
2057 */
2058 }
2059
free_block_list(struct rb_root * blocks)2060 static void free_block_list(struct rb_root *blocks)
2061 {
2062 struct tree_block *block;
2063 struct rb_node *rb_node;
2064 while ((rb_node = rb_first(blocks))) {
2065 block = rb_entry(rb_node, struct tree_block, rb_node);
2066 rb_erase(rb_node, blocks);
2067 kfree(block);
2068 }
2069 }
2070
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2071 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2072 struct btrfs_root *reloc_root)
2073 {
2074 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2075 struct btrfs_root *root;
2076 int ret;
2077
2078 if (reloc_root->last_trans == trans->transid)
2079 return 0;
2080
2081 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2082
2083 /*
2084 * This should succeed, since we can't have a reloc root without having
2085 * already looked up the actual root and created the reloc root for this
2086 * root.
2087 *
2088 * However if there's some sort of corruption where we have a ref to a
2089 * reloc root without a corresponding root this could return ENOENT.
2090 */
2091 if (IS_ERR(root)) {
2092 ASSERT(0);
2093 return PTR_ERR(root);
2094 }
2095 if (root->reloc_root != reloc_root) {
2096 ASSERT(0);
2097 btrfs_err(fs_info,
2098 "root %llu has two reloc roots associated with it",
2099 reloc_root->root_key.offset);
2100 btrfs_put_root(root);
2101 return -EUCLEAN;
2102 }
2103 ret = btrfs_record_root_in_trans(trans, root);
2104 btrfs_put_root(root);
2105
2106 return ret;
2107 }
2108
2109 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])2110 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2111 struct reloc_control *rc,
2112 struct btrfs_backref_node *node,
2113 struct btrfs_backref_edge *edges[])
2114 {
2115 struct btrfs_backref_node *next;
2116 struct btrfs_root *root;
2117 int index = 0;
2118 int ret;
2119
2120 next = node;
2121 while (1) {
2122 cond_resched();
2123 next = walk_up_backref(next, edges, &index);
2124 root = next->root;
2125
2126 /*
2127 * If there is no root, then our references for this block are
2128 * incomplete, as we should be able to walk all the way up to a
2129 * block that is owned by a root.
2130 *
2131 * This path is only for SHAREABLE roots, so if we come upon a
2132 * non-SHAREABLE root then we have backrefs that resolve
2133 * improperly.
2134 *
2135 * Both of these cases indicate file system corruption, or a bug
2136 * in the backref walking code.
2137 */
2138 if (!root) {
2139 ASSERT(0);
2140 btrfs_err(trans->fs_info,
2141 "bytenr %llu doesn't have a backref path ending in a root",
2142 node->bytenr);
2143 return ERR_PTR(-EUCLEAN);
2144 }
2145 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2146 ASSERT(0);
2147 btrfs_err(trans->fs_info,
2148 "bytenr %llu has multiple refs with one ending in a non-shareable root",
2149 node->bytenr);
2150 return ERR_PTR(-EUCLEAN);
2151 }
2152
2153 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2154 ret = record_reloc_root_in_trans(trans, root);
2155 if (ret)
2156 return ERR_PTR(ret);
2157 break;
2158 }
2159
2160 ret = btrfs_record_root_in_trans(trans, root);
2161 if (ret)
2162 return ERR_PTR(ret);
2163 root = root->reloc_root;
2164
2165 /*
2166 * We could have raced with another thread which failed, so
2167 * root->reloc_root may not be set, return ENOENT in this case.
2168 */
2169 if (!root)
2170 return ERR_PTR(-ENOENT);
2171
2172 if (next->new_bytenr != root->node->start) {
2173 /*
2174 * We just created the reloc root, so we shouldn't have
2175 * ->new_bytenr set and this shouldn't be in the changed
2176 * list. If it is then we have multiple roots pointing
2177 * at the same bytenr which indicates corruption, or
2178 * we've made a mistake in the backref walking code.
2179 */
2180 ASSERT(next->new_bytenr == 0);
2181 ASSERT(list_empty(&next->list));
2182 if (next->new_bytenr || !list_empty(&next->list)) {
2183 btrfs_err(trans->fs_info,
2184 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2185 node->bytenr, next->bytenr);
2186 return ERR_PTR(-EUCLEAN);
2187 }
2188
2189 next->new_bytenr = root->node->start;
2190 btrfs_put_root(next->root);
2191 next->root = btrfs_grab_root(root);
2192 ASSERT(next->root);
2193 list_add_tail(&next->list,
2194 &rc->backref_cache.changed);
2195 mark_block_processed(rc, next);
2196 break;
2197 }
2198
2199 WARN_ON(1);
2200 root = NULL;
2201 next = walk_down_backref(edges, &index);
2202 if (!next || next->level <= node->level)
2203 break;
2204 }
2205 if (!root) {
2206 /*
2207 * This can happen if there's fs corruption or if there's a bug
2208 * in the backref lookup code.
2209 */
2210 ASSERT(0);
2211 return ERR_PTR(-ENOENT);
2212 }
2213
2214 next = node;
2215 /* setup backref node path for btrfs_reloc_cow_block */
2216 while (1) {
2217 rc->backref_cache.path[next->level] = next;
2218 if (--index < 0)
2219 break;
2220 next = edges[index]->node[UPPER];
2221 }
2222 return root;
2223 }
2224
2225 /*
2226 * Select a tree root for relocation.
2227 *
2228 * Return NULL if the block is not shareable. We should use do_relocation() in
2229 * this case.
2230 *
2231 * Return a tree root pointer if the block is shareable.
2232 * Return -ENOENT if the block is root of reloc tree.
2233 */
2234 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2235 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2236 {
2237 struct btrfs_backref_node *next;
2238 struct btrfs_root *root;
2239 struct btrfs_root *fs_root = NULL;
2240 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2241 int index = 0;
2242
2243 next = node;
2244 while (1) {
2245 cond_resched();
2246 next = walk_up_backref(next, edges, &index);
2247 root = next->root;
2248
2249 /*
2250 * This can occur if we have incomplete extent refs leading all
2251 * the way up a particular path, in this case return -EUCLEAN.
2252 */
2253 if (!root)
2254 return ERR_PTR(-EUCLEAN);
2255
2256 /* No other choice for non-shareable tree */
2257 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2258 return root;
2259
2260 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2261 fs_root = root;
2262
2263 if (next != node)
2264 return NULL;
2265
2266 next = walk_down_backref(edges, &index);
2267 if (!next || next->level <= node->level)
2268 break;
2269 }
2270
2271 if (!fs_root)
2272 return ERR_PTR(-ENOENT);
2273 return fs_root;
2274 }
2275
2276 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node,int reserve)2277 u64 calcu_metadata_size(struct reloc_control *rc,
2278 struct btrfs_backref_node *node, int reserve)
2279 {
2280 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2281 struct btrfs_backref_node *next = node;
2282 struct btrfs_backref_edge *edge;
2283 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2284 u64 num_bytes = 0;
2285 int index = 0;
2286
2287 BUG_ON(reserve && node->processed);
2288
2289 while (next) {
2290 cond_resched();
2291 while (1) {
2292 if (next->processed && (reserve || next != node))
2293 break;
2294
2295 num_bytes += fs_info->nodesize;
2296
2297 if (list_empty(&next->upper))
2298 break;
2299
2300 edge = list_entry(next->upper.next,
2301 struct btrfs_backref_edge, list[LOWER]);
2302 edges[index++] = edge;
2303 next = edge->node[UPPER];
2304 }
2305 next = walk_down_backref(edges, &index);
2306 }
2307 return num_bytes;
2308 }
2309
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2310 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2311 struct reloc_control *rc,
2312 struct btrfs_backref_node *node)
2313 {
2314 struct btrfs_root *root = rc->extent_root;
2315 struct btrfs_fs_info *fs_info = root->fs_info;
2316 u64 num_bytes;
2317 int ret;
2318 u64 tmp;
2319
2320 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2321
2322 trans->block_rsv = rc->block_rsv;
2323 rc->reserved_bytes += num_bytes;
2324
2325 /*
2326 * We are under a transaction here so we can only do limited flushing.
2327 * If we get an enospc just kick back -EAGAIN so we know to drop the
2328 * transaction and try to refill when we can flush all the things.
2329 */
2330 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2331 BTRFS_RESERVE_FLUSH_LIMIT);
2332 if (ret) {
2333 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2334 while (tmp <= rc->reserved_bytes)
2335 tmp <<= 1;
2336 /*
2337 * only one thread can access block_rsv at this point,
2338 * so we don't need hold lock to protect block_rsv.
2339 * we expand more reservation size here to allow enough
2340 * space for relocation and we will return earlier in
2341 * enospc case.
2342 */
2343 rc->block_rsv->size = tmp + fs_info->nodesize *
2344 RELOCATION_RESERVED_NODES;
2345 return -EAGAIN;
2346 }
2347
2348 return 0;
2349 }
2350
2351 /*
2352 * relocate a block tree, and then update pointers in upper level
2353 * blocks that reference the block to point to the new location.
2354 *
2355 * if called by link_to_upper, the block has already been relocated.
2356 * in that case this function just updates pointers.
2357 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2358 static int do_relocation(struct btrfs_trans_handle *trans,
2359 struct reloc_control *rc,
2360 struct btrfs_backref_node *node,
2361 struct btrfs_key *key,
2362 struct btrfs_path *path, int lowest)
2363 {
2364 struct btrfs_backref_node *upper;
2365 struct btrfs_backref_edge *edge;
2366 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2367 struct btrfs_root *root;
2368 struct extent_buffer *eb;
2369 u32 blocksize;
2370 u64 bytenr;
2371 int slot;
2372 int ret = 0;
2373
2374 /*
2375 * If we are lowest then this is the first time we're processing this
2376 * block, and thus shouldn't have an eb associated with it yet.
2377 */
2378 ASSERT(!lowest || !node->eb);
2379
2380 path->lowest_level = node->level + 1;
2381 rc->backref_cache.path[node->level] = node;
2382 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2383 struct btrfs_ref ref = { 0 };
2384
2385 cond_resched();
2386
2387 upper = edge->node[UPPER];
2388 root = select_reloc_root(trans, rc, upper, edges);
2389 if (IS_ERR(root)) {
2390 ret = PTR_ERR(root);
2391 goto next;
2392 }
2393
2394 if (upper->eb && !upper->locked) {
2395 if (!lowest) {
2396 ret = btrfs_bin_search(upper->eb, key, &slot);
2397 if (ret < 0)
2398 goto next;
2399 BUG_ON(ret);
2400 bytenr = btrfs_node_blockptr(upper->eb, slot);
2401 if (node->eb->start == bytenr)
2402 goto next;
2403 }
2404 btrfs_backref_drop_node_buffer(upper);
2405 }
2406
2407 if (!upper->eb) {
2408 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2409 if (ret) {
2410 if (ret > 0)
2411 ret = -ENOENT;
2412
2413 btrfs_release_path(path);
2414 break;
2415 }
2416
2417 if (!upper->eb) {
2418 upper->eb = path->nodes[upper->level];
2419 path->nodes[upper->level] = NULL;
2420 } else {
2421 BUG_ON(upper->eb != path->nodes[upper->level]);
2422 }
2423
2424 upper->locked = 1;
2425 path->locks[upper->level] = 0;
2426
2427 slot = path->slots[upper->level];
2428 btrfs_release_path(path);
2429 } else {
2430 ret = btrfs_bin_search(upper->eb, key, &slot);
2431 if (ret < 0)
2432 goto next;
2433 BUG_ON(ret);
2434 }
2435
2436 bytenr = btrfs_node_blockptr(upper->eb, slot);
2437 if (lowest) {
2438 if (bytenr != node->bytenr) {
2439 btrfs_err(root->fs_info,
2440 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2441 bytenr, node->bytenr, slot,
2442 upper->eb->start);
2443 ret = -EIO;
2444 goto next;
2445 }
2446 } else {
2447 if (node->eb->start == bytenr)
2448 goto next;
2449 }
2450
2451 blocksize = root->fs_info->nodesize;
2452 eb = btrfs_read_node_slot(upper->eb, slot);
2453 if (IS_ERR(eb)) {
2454 ret = PTR_ERR(eb);
2455 goto next;
2456 }
2457 btrfs_tree_lock(eb);
2458
2459 if (!node->eb) {
2460 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2461 slot, &eb, BTRFS_NESTING_COW);
2462 btrfs_tree_unlock(eb);
2463 free_extent_buffer(eb);
2464 if (ret < 0)
2465 goto next;
2466 /*
2467 * We've just COWed this block, it should have updated
2468 * the correct backref node entry.
2469 */
2470 ASSERT(node->eb == eb);
2471 } else {
2472 btrfs_set_node_blockptr(upper->eb, slot,
2473 node->eb->start);
2474 btrfs_set_node_ptr_generation(upper->eb, slot,
2475 trans->transid);
2476 btrfs_mark_buffer_dirty(upper->eb);
2477
2478 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2479 node->eb->start, blocksize,
2480 upper->eb->start);
2481 btrfs_init_tree_ref(&ref, node->level,
2482 btrfs_header_owner(upper->eb),
2483 root->root_key.objectid, false);
2484 ret = btrfs_inc_extent_ref(trans, &ref);
2485 if (!ret)
2486 ret = btrfs_drop_subtree(trans, root, eb,
2487 upper->eb);
2488 if (ret)
2489 btrfs_abort_transaction(trans, ret);
2490 }
2491 next:
2492 if (!upper->pending)
2493 btrfs_backref_drop_node_buffer(upper);
2494 else
2495 btrfs_backref_unlock_node_buffer(upper);
2496 if (ret)
2497 break;
2498 }
2499
2500 if (!ret && node->pending) {
2501 btrfs_backref_drop_node_buffer(node);
2502 list_move_tail(&node->list, &rc->backref_cache.changed);
2503 node->pending = 0;
2504 }
2505
2506 path->lowest_level = 0;
2507
2508 /*
2509 * We should have allocated all of our space in the block rsv and thus
2510 * shouldn't ENOSPC.
2511 */
2512 ASSERT(ret != -ENOSPC);
2513 return ret;
2514 }
2515
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2516 static int link_to_upper(struct btrfs_trans_handle *trans,
2517 struct reloc_control *rc,
2518 struct btrfs_backref_node *node,
2519 struct btrfs_path *path)
2520 {
2521 struct btrfs_key key;
2522
2523 btrfs_node_key_to_cpu(node->eb, &key, 0);
2524 return do_relocation(trans, rc, node, &key, path, 0);
2525 }
2526
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2527 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2528 struct reloc_control *rc,
2529 struct btrfs_path *path, int err)
2530 {
2531 LIST_HEAD(list);
2532 struct btrfs_backref_cache *cache = &rc->backref_cache;
2533 struct btrfs_backref_node *node;
2534 int level;
2535 int ret;
2536
2537 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2538 while (!list_empty(&cache->pending[level])) {
2539 node = list_entry(cache->pending[level].next,
2540 struct btrfs_backref_node, list);
2541 list_move_tail(&node->list, &list);
2542 BUG_ON(!node->pending);
2543
2544 if (!err) {
2545 ret = link_to_upper(trans, rc, node, path);
2546 if (ret < 0)
2547 err = ret;
2548 }
2549 }
2550 list_splice_init(&list, &cache->pending[level]);
2551 }
2552 return err;
2553 }
2554
2555 /*
2556 * mark a block and all blocks directly/indirectly reference the block
2557 * as processed.
2558 */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2559 static void update_processed_blocks(struct reloc_control *rc,
2560 struct btrfs_backref_node *node)
2561 {
2562 struct btrfs_backref_node *next = node;
2563 struct btrfs_backref_edge *edge;
2564 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2565 int index = 0;
2566
2567 while (next) {
2568 cond_resched();
2569 while (1) {
2570 if (next->processed)
2571 break;
2572
2573 mark_block_processed(rc, next);
2574
2575 if (list_empty(&next->upper))
2576 break;
2577
2578 edge = list_entry(next->upper.next,
2579 struct btrfs_backref_edge, list[LOWER]);
2580 edges[index++] = edge;
2581 next = edge->node[UPPER];
2582 }
2583 next = walk_down_backref(edges, &index);
2584 }
2585 }
2586
tree_block_processed(u64 bytenr,struct reloc_control * rc)2587 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2588 {
2589 u32 blocksize = rc->extent_root->fs_info->nodesize;
2590
2591 if (test_range_bit(&rc->processed_blocks, bytenr,
2592 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2593 return 1;
2594 return 0;
2595 }
2596
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2597 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2598 struct tree_block *block)
2599 {
2600 struct extent_buffer *eb;
2601
2602 eb = read_tree_block(fs_info, block->bytenr, block->owner,
2603 block->key.offset, block->level, NULL);
2604 if (IS_ERR(eb))
2605 return PTR_ERR(eb);
2606 if (!extent_buffer_uptodate(eb)) {
2607 free_extent_buffer(eb);
2608 return -EIO;
2609 }
2610 if (block->level == 0)
2611 btrfs_item_key_to_cpu(eb, &block->key, 0);
2612 else
2613 btrfs_node_key_to_cpu(eb, &block->key, 0);
2614 free_extent_buffer(eb);
2615 block->key_ready = 1;
2616 return 0;
2617 }
2618
2619 /*
2620 * helper function to relocate a tree block
2621 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2622 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2623 struct reloc_control *rc,
2624 struct btrfs_backref_node *node,
2625 struct btrfs_key *key,
2626 struct btrfs_path *path)
2627 {
2628 struct btrfs_root *root;
2629 int ret = 0;
2630
2631 if (!node)
2632 return 0;
2633
2634 /*
2635 * If we fail here we want to drop our backref_node because we are going
2636 * to start over and regenerate the tree for it.
2637 */
2638 ret = reserve_metadata_space(trans, rc, node);
2639 if (ret)
2640 goto out;
2641
2642 BUG_ON(node->processed);
2643 root = select_one_root(node);
2644 if (IS_ERR(root)) {
2645 ret = PTR_ERR(root);
2646
2647 /* See explanation in select_one_root for the -EUCLEAN case. */
2648 ASSERT(ret == -ENOENT);
2649 if (ret == -ENOENT) {
2650 ret = 0;
2651 update_processed_blocks(rc, node);
2652 }
2653 goto out;
2654 }
2655
2656 if (root) {
2657 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2658 /*
2659 * This block was the root block of a root, and this is
2660 * the first time we're processing the block and thus it
2661 * should not have had the ->new_bytenr modified and
2662 * should have not been included on the changed list.
2663 *
2664 * However in the case of corruption we could have
2665 * multiple refs pointing to the same block improperly,
2666 * and thus we would trip over these checks. ASSERT()
2667 * for the developer case, because it could indicate a
2668 * bug in the backref code, however error out for a
2669 * normal user in the case of corruption.
2670 */
2671 ASSERT(node->new_bytenr == 0);
2672 ASSERT(list_empty(&node->list));
2673 if (node->new_bytenr || !list_empty(&node->list)) {
2674 btrfs_err(root->fs_info,
2675 "bytenr %llu has improper references to it",
2676 node->bytenr);
2677 ret = -EUCLEAN;
2678 goto out;
2679 }
2680 ret = btrfs_record_root_in_trans(trans, root);
2681 if (ret)
2682 goto out;
2683 /*
2684 * Another thread could have failed, need to check if we
2685 * have reloc_root actually set.
2686 */
2687 if (!root->reloc_root) {
2688 ret = -ENOENT;
2689 goto out;
2690 }
2691 root = root->reloc_root;
2692 node->new_bytenr = root->node->start;
2693 btrfs_put_root(node->root);
2694 node->root = btrfs_grab_root(root);
2695 ASSERT(node->root);
2696 list_add_tail(&node->list, &rc->backref_cache.changed);
2697 } else {
2698 path->lowest_level = node->level;
2699 if (root == root->fs_info->chunk_root)
2700 btrfs_reserve_chunk_metadata(trans, false);
2701 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2702 btrfs_release_path(path);
2703 if (root == root->fs_info->chunk_root)
2704 btrfs_trans_release_chunk_metadata(trans);
2705 if (ret > 0)
2706 ret = 0;
2707 }
2708 if (!ret)
2709 update_processed_blocks(rc, node);
2710 } else {
2711 ret = do_relocation(trans, rc, node, key, path, 1);
2712 }
2713 out:
2714 if (ret || node->level == 0 || node->cowonly)
2715 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2716 return ret;
2717 }
2718
2719 /*
2720 * relocate a list of blocks
2721 */
2722 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2723 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2724 struct reloc_control *rc, struct rb_root *blocks)
2725 {
2726 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2727 struct btrfs_backref_node *node;
2728 struct btrfs_path *path;
2729 struct tree_block *block;
2730 struct tree_block *next;
2731 int ret;
2732 int err = 0;
2733
2734 path = btrfs_alloc_path();
2735 if (!path) {
2736 err = -ENOMEM;
2737 goto out_free_blocks;
2738 }
2739
2740 /* Kick in readahead for tree blocks with missing keys */
2741 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2742 if (!block->key_ready)
2743 btrfs_readahead_tree_block(fs_info, block->bytenr,
2744 block->owner, 0,
2745 block->level);
2746 }
2747
2748 /* Get first keys */
2749 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2750 if (!block->key_ready) {
2751 err = get_tree_block_key(fs_info, block);
2752 if (err)
2753 goto out_free_path;
2754 }
2755 }
2756
2757 /* Do tree relocation */
2758 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2759 node = build_backref_tree(rc, &block->key,
2760 block->level, block->bytenr);
2761 if (IS_ERR(node)) {
2762 err = PTR_ERR(node);
2763 goto out;
2764 }
2765
2766 ret = relocate_tree_block(trans, rc, node, &block->key,
2767 path);
2768 if (ret < 0) {
2769 err = ret;
2770 break;
2771 }
2772 }
2773 out:
2774 err = finish_pending_nodes(trans, rc, path, err);
2775
2776 out_free_path:
2777 btrfs_free_path(path);
2778 out_free_blocks:
2779 free_block_list(blocks);
2780 return err;
2781 }
2782
prealloc_file_extent_cluster(struct btrfs_inode * inode,struct file_extent_cluster * cluster)2783 static noinline_for_stack int prealloc_file_extent_cluster(
2784 struct btrfs_inode *inode,
2785 struct file_extent_cluster *cluster)
2786 {
2787 u64 alloc_hint = 0;
2788 u64 start;
2789 u64 end;
2790 u64 offset = inode->index_cnt;
2791 u64 num_bytes;
2792 int nr;
2793 int ret = 0;
2794 u64 i_size = i_size_read(&inode->vfs_inode);
2795 u64 prealloc_start = cluster->start - offset;
2796 u64 prealloc_end = cluster->end - offset;
2797 u64 cur_offset = prealloc_start;
2798
2799 /*
2800 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2801 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2802 * btrfs_do_readpage() call of previously relocated file cluster.
2803 *
2804 * If the current cluster starts in the above range, btrfs_do_readpage()
2805 * will skip the read, and relocate_one_page() will later writeback
2806 * the padding zeros as new data, causing data corruption.
2807 *
2808 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2809 */
2810 if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2811 struct address_space *mapping = inode->vfs_inode.i_mapping;
2812 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2813 const u32 sectorsize = fs_info->sectorsize;
2814 struct page *page;
2815
2816 ASSERT(sectorsize < PAGE_SIZE);
2817 ASSERT(IS_ALIGNED(i_size, sectorsize));
2818
2819 /*
2820 * Subpage can't handle page with DIRTY but without UPTODATE
2821 * bit as it can lead to the following deadlock:
2822 *
2823 * btrfs_read_folio()
2824 * | Page already *locked*
2825 * |- btrfs_lock_and_flush_ordered_range()
2826 * |- btrfs_start_ordered_extent()
2827 * |- extent_write_cache_pages()
2828 * |- lock_page()
2829 * We try to lock the page we already hold.
2830 *
2831 * Here we just writeback the whole data reloc inode, so that
2832 * we will be ensured to have no dirty range in the page, and
2833 * are safe to clear the uptodate bits.
2834 *
2835 * This shouldn't cause too much overhead, as we need to write
2836 * the data back anyway.
2837 */
2838 ret = filemap_write_and_wait(mapping);
2839 if (ret < 0)
2840 return ret;
2841
2842 clear_extent_bits(&inode->io_tree, i_size,
2843 round_up(i_size, PAGE_SIZE) - 1,
2844 EXTENT_UPTODATE);
2845 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2846 /*
2847 * If page is freed we don't need to do anything then, as we
2848 * will re-read the whole page anyway.
2849 */
2850 if (page) {
2851 btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2852 round_up(i_size, PAGE_SIZE) - i_size);
2853 unlock_page(page);
2854 put_page(page);
2855 }
2856 }
2857
2858 BUG_ON(cluster->start != cluster->boundary[0]);
2859 ret = btrfs_alloc_data_chunk_ondemand(inode,
2860 prealloc_end + 1 - prealloc_start);
2861 if (ret)
2862 return ret;
2863
2864 btrfs_inode_lock(&inode->vfs_inode, 0);
2865 for (nr = 0; nr < cluster->nr; nr++) {
2866 start = cluster->boundary[nr] - offset;
2867 if (nr + 1 < cluster->nr)
2868 end = cluster->boundary[nr + 1] - 1 - offset;
2869 else
2870 end = cluster->end - offset;
2871
2872 lock_extent(&inode->io_tree, start, end, NULL);
2873 num_bytes = end + 1 - start;
2874 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2875 num_bytes, num_bytes,
2876 end + 1, &alloc_hint);
2877 cur_offset = end + 1;
2878 unlock_extent(&inode->io_tree, start, end, NULL);
2879 if (ret)
2880 break;
2881 }
2882 btrfs_inode_unlock(&inode->vfs_inode, 0);
2883
2884 if (cur_offset < prealloc_end)
2885 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2886 prealloc_end + 1 - cur_offset);
2887 return ret;
2888 }
2889
setup_relocation_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)2890 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2891 u64 start, u64 end, u64 block_start)
2892 {
2893 struct extent_map *em;
2894 int ret = 0;
2895
2896 em = alloc_extent_map();
2897 if (!em)
2898 return -ENOMEM;
2899
2900 em->start = start;
2901 em->len = end + 1 - start;
2902 em->block_len = em->len;
2903 em->block_start = block_start;
2904 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2905
2906 lock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL);
2907 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2908 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL);
2909 free_extent_map(em);
2910
2911 return ret;
2912 }
2913
2914 /*
2915 * Allow error injection to test balance/relocation cancellation
2916 */
btrfs_should_cancel_balance(struct btrfs_fs_info * fs_info)2917 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2918 {
2919 return atomic_read(&fs_info->balance_cancel_req) ||
2920 atomic_read(&fs_info->reloc_cancel_req) ||
2921 fatal_signal_pending(current);
2922 }
2923 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2924
get_cluster_boundary_end(struct file_extent_cluster * cluster,int cluster_nr)2925 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2926 int cluster_nr)
2927 {
2928 /* Last extent, use cluster end directly */
2929 if (cluster_nr >= cluster->nr - 1)
2930 return cluster->end;
2931
2932 /* Use next boundary start*/
2933 return cluster->boundary[cluster_nr + 1] - 1;
2934 }
2935
relocate_one_page(struct inode * inode,struct file_ra_state * ra,struct file_extent_cluster * cluster,int * cluster_nr,unsigned long page_index)2936 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2937 struct file_extent_cluster *cluster,
2938 int *cluster_nr, unsigned long page_index)
2939 {
2940 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2941 u64 offset = BTRFS_I(inode)->index_cnt;
2942 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2943 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2944 struct page *page;
2945 u64 page_start;
2946 u64 page_end;
2947 u64 cur;
2948 int ret;
2949
2950 ASSERT(page_index <= last_index);
2951 page = find_lock_page(inode->i_mapping, page_index);
2952 if (!page) {
2953 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2954 page_index, last_index + 1 - page_index);
2955 page = find_or_create_page(inode->i_mapping, page_index, mask);
2956 if (!page)
2957 return -ENOMEM;
2958 }
2959 ret = set_page_extent_mapped(page);
2960 if (ret < 0)
2961 goto release_page;
2962
2963 if (PageReadahead(page))
2964 page_cache_async_readahead(inode->i_mapping, ra, NULL,
2965 page_folio(page), page_index,
2966 last_index + 1 - page_index);
2967
2968 if (!PageUptodate(page)) {
2969 btrfs_read_folio(NULL, page_folio(page));
2970 lock_page(page);
2971 if (!PageUptodate(page)) {
2972 ret = -EIO;
2973 goto release_page;
2974 }
2975 }
2976
2977 page_start = page_offset(page);
2978 page_end = page_start + PAGE_SIZE - 1;
2979
2980 /*
2981 * Start from the cluster, as for subpage case, the cluster can start
2982 * inside the page.
2983 */
2984 cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
2985 while (cur <= page_end) {
2986 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2987 u64 extent_end = get_cluster_boundary_end(cluster,
2988 *cluster_nr) - offset;
2989 u64 clamped_start = max(page_start, extent_start);
2990 u64 clamped_end = min(page_end, extent_end);
2991 u32 clamped_len = clamped_end + 1 - clamped_start;
2992
2993 /* Reserve metadata for this range */
2994 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2995 clamped_len, clamped_len,
2996 false);
2997 if (ret)
2998 goto release_page;
2999
3000 /* Mark the range delalloc and dirty for later writeback */
3001 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, NULL);
3002 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3003 clamped_end, 0, NULL);
3004 if (ret) {
3005 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3006 clamped_start, clamped_end,
3007 EXTENT_LOCKED | EXTENT_BOUNDARY);
3008 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3009 clamped_len, true);
3010 btrfs_delalloc_release_extents(BTRFS_I(inode),
3011 clamped_len);
3012 goto release_page;
3013 }
3014 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3015
3016 /*
3017 * Set the boundary if it's inside the page.
3018 * Data relocation requires the destination extents to have the
3019 * same size as the source.
3020 * EXTENT_BOUNDARY bit prevents current extent from being merged
3021 * with previous extent.
3022 */
3023 if (in_range(cluster->boundary[*cluster_nr] - offset,
3024 page_start, PAGE_SIZE)) {
3025 u64 boundary_start = cluster->boundary[*cluster_nr] -
3026 offset;
3027 u64 boundary_end = boundary_start +
3028 fs_info->sectorsize - 1;
3029
3030 set_extent_bits(&BTRFS_I(inode)->io_tree,
3031 boundary_start, boundary_end,
3032 EXTENT_BOUNDARY);
3033 }
3034 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, NULL);
3035 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3036 cur += clamped_len;
3037
3038 /* Crossed extent end, go to next extent */
3039 if (cur >= extent_end) {
3040 (*cluster_nr)++;
3041 /* Just finished the last extent of the cluster, exit. */
3042 if (*cluster_nr >= cluster->nr)
3043 break;
3044 }
3045 }
3046 unlock_page(page);
3047 put_page(page);
3048
3049 balance_dirty_pages_ratelimited(inode->i_mapping);
3050 btrfs_throttle(fs_info);
3051 if (btrfs_should_cancel_balance(fs_info))
3052 ret = -ECANCELED;
3053 return ret;
3054
3055 release_page:
3056 unlock_page(page);
3057 put_page(page);
3058 return ret;
3059 }
3060
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3061 static int relocate_file_extent_cluster(struct inode *inode,
3062 struct file_extent_cluster *cluster)
3063 {
3064 u64 offset = BTRFS_I(inode)->index_cnt;
3065 unsigned long index;
3066 unsigned long last_index;
3067 struct file_ra_state *ra;
3068 int cluster_nr = 0;
3069 int ret = 0;
3070
3071 if (!cluster->nr)
3072 return 0;
3073
3074 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3075 if (!ra)
3076 return -ENOMEM;
3077
3078 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3079 if (ret)
3080 goto out;
3081
3082 file_ra_state_init(ra, inode->i_mapping);
3083
3084 ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3085 cluster->end - offset, cluster->start);
3086 if (ret)
3087 goto out;
3088
3089 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3090 for (index = (cluster->start - offset) >> PAGE_SHIFT;
3091 index <= last_index && !ret; index++)
3092 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3093 if (ret == 0)
3094 WARN_ON(cluster_nr != cluster->nr);
3095 out:
3096 kfree(ra);
3097 return ret;
3098 }
3099
3100 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)3101 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3102 struct file_extent_cluster *cluster)
3103 {
3104 int ret;
3105
3106 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3107 ret = relocate_file_extent_cluster(inode, cluster);
3108 if (ret)
3109 return ret;
3110 cluster->nr = 0;
3111 }
3112
3113 if (!cluster->nr)
3114 cluster->start = extent_key->objectid;
3115 else
3116 BUG_ON(cluster->nr >= MAX_EXTENTS);
3117 cluster->end = extent_key->objectid + extent_key->offset - 1;
3118 cluster->boundary[cluster->nr] = extent_key->objectid;
3119 cluster->nr++;
3120
3121 if (cluster->nr >= MAX_EXTENTS) {
3122 ret = relocate_file_extent_cluster(inode, cluster);
3123 if (ret)
3124 return ret;
3125 cluster->nr = 0;
3126 }
3127 return 0;
3128 }
3129
3130 /*
3131 * helper to add a tree block to the list.
3132 * the major work is getting the generation and level of the block
3133 */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3134 static int add_tree_block(struct reloc_control *rc,
3135 struct btrfs_key *extent_key,
3136 struct btrfs_path *path,
3137 struct rb_root *blocks)
3138 {
3139 struct extent_buffer *eb;
3140 struct btrfs_extent_item *ei;
3141 struct btrfs_tree_block_info *bi;
3142 struct tree_block *block;
3143 struct rb_node *rb_node;
3144 u32 item_size;
3145 int level = -1;
3146 u64 generation;
3147 u64 owner = 0;
3148
3149 eb = path->nodes[0];
3150 item_size = btrfs_item_size(eb, path->slots[0]);
3151
3152 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3153 item_size >= sizeof(*ei) + sizeof(*bi)) {
3154 unsigned long ptr = 0, end;
3155
3156 ei = btrfs_item_ptr(eb, path->slots[0],
3157 struct btrfs_extent_item);
3158 end = (unsigned long)ei + item_size;
3159 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3160 bi = (struct btrfs_tree_block_info *)(ei + 1);
3161 level = btrfs_tree_block_level(eb, bi);
3162 ptr = (unsigned long)(bi + 1);
3163 } else {
3164 level = (int)extent_key->offset;
3165 ptr = (unsigned long)(ei + 1);
3166 }
3167 generation = btrfs_extent_generation(eb, ei);
3168
3169 /*
3170 * We're reading random blocks without knowing their owner ahead
3171 * of time. This is ok most of the time, as all reloc roots and
3172 * fs roots have the same lock type. However normal trees do
3173 * not, and the only way to know ahead of time is to read the
3174 * inline ref offset. We know it's an fs root if
3175 *
3176 * 1. There's more than one ref.
3177 * 2. There's a SHARED_DATA_REF_KEY set.
3178 * 3. FULL_BACKREF is set on the flags.
3179 *
3180 * Otherwise it's safe to assume that the ref offset == the
3181 * owner of this block, so we can use that when calling
3182 * read_tree_block.
3183 */
3184 if (btrfs_extent_refs(eb, ei) == 1 &&
3185 !(btrfs_extent_flags(eb, ei) &
3186 BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3187 ptr < end) {
3188 struct btrfs_extent_inline_ref *iref;
3189 int type;
3190
3191 iref = (struct btrfs_extent_inline_ref *)ptr;
3192 type = btrfs_get_extent_inline_ref_type(eb, iref,
3193 BTRFS_REF_TYPE_BLOCK);
3194 if (type == BTRFS_REF_TYPE_INVALID)
3195 return -EINVAL;
3196 if (type == BTRFS_TREE_BLOCK_REF_KEY)
3197 owner = btrfs_extent_inline_ref_offset(eb, iref);
3198 }
3199 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3200 btrfs_print_v0_err(eb->fs_info);
3201 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3202 return -EINVAL;
3203 } else {
3204 BUG();
3205 }
3206
3207 btrfs_release_path(path);
3208
3209 BUG_ON(level == -1);
3210
3211 block = kmalloc(sizeof(*block), GFP_NOFS);
3212 if (!block)
3213 return -ENOMEM;
3214
3215 block->bytenr = extent_key->objectid;
3216 block->key.objectid = rc->extent_root->fs_info->nodesize;
3217 block->key.offset = generation;
3218 block->level = level;
3219 block->key_ready = 0;
3220 block->owner = owner;
3221
3222 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3223 if (rb_node)
3224 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3225 -EEXIST);
3226
3227 return 0;
3228 }
3229
3230 /*
3231 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3232 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3233 static int __add_tree_block(struct reloc_control *rc,
3234 u64 bytenr, u32 blocksize,
3235 struct rb_root *blocks)
3236 {
3237 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3238 struct btrfs_path *path;
3239 struct btrfs_key key;
3240 int ret;
3241 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3242
3243 if (tree_block_processed(bytenr, rc))
3244 return 0;
3245
3246 if (rb_simple_search(blocks, bytenr))
3247 return 0;
3248
3249 path = btrfs_alloc_path();
3250 if (!path)
3251 return -ENOMEM;
3252 again:
3253 key.objectid = bytenr;
3254 if (skinny) {
3255 key.type = BTRFS_METADATA_ITEM_KEY;
3256 key.offset = (u64)-1;
3257 } else {
3258 key.type = BTRFS_EXTENT_ITEM_KEY;
3259 key.offset = blocksize;
3260 }
3261
3262 path->search_commit_root = 1;
3263 path->skip_locking = 1;
3264 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3265 if (ret < 0)
3266 goto out;
3267
3268 if (ret > 0 && skinny) {
3269 if (path->slots[0]) {
3270 path->slots[0]--;
3271 btrfs_item_key_to_cpu(path->nodes[0], &key,
3272 path->slots[0]);
3273 if (key.objectid == bytenr &&
3274 (key.type == BTRFS_METADATA_ITEM_KEY ||
3275 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3276 key.offset == blocksize)))
3277 ret = 0;
3278 }
3279
3280 if (ret) {
3281 skinny = false;
3282 btrfs_release_path(path);
3283 goto again;
3284 }
3285 }
3286 if (ret) {
3287 ASSERT(ret == 1);
3288 btrfs_print_leaf(path->nodes[0]);
3289 btrfs_err(fs_info,
3290 "tree block extent item (%llu) is not found in extent tree",
3291 bytenr);
3292 WARN_ON(1);
3293 ret = -EINVAL;
3294 goto out;
3295 }
3296
3297 ret = add_tree_block(rc, &key, path, blocks);
3298 out:
3299 btrfs_free_path(path);
3300 return ret;
3301 }
3302
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group,struct inode * inode,u64 ino)3303 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3304 struct btrfs_block_group *block_group,
3305 struct inode *inode,
3306 u64 ino)
3307 {
3308 struct btrfs_root *root = fs_info->tree_root;
3309 struct btrfs_trans_handle *trans;
3310 int ret = 0;
3311
3312 if (inode)
3313 goto truncate;
3314
3315 inode = btrfs_iget(fs_info->sb, ino, root);
3316 if (IS_ERR(inode))
3317 return -ENOENT;
3318
3319 truncate:
3320 ret = btrfs_check_trunc_cache_free_space(fs_info,
3321 &fs_info->global_block_rsv);
3322 if (ret)
3323 goto out;
3324
3325 trans = btrfs_join_transaction(root);
3326 if (IS_ERR(trans)) {
3327 ret = PTR_ERR(trans);
3328 goto out;
3329 }
3330
3331 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3332
3333 btrfs_end_transaction(trans);
3334 btrfs_btree_balance_dirty(fs_info);
3335 out:
3336 iput(inode);
3337 return ret;
3338 }
3339
3340 /*
3341 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3342 * cache inode, to avoid free space cache data extent blocking data relocation.
3343 */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3344 static int delete_v1_space_cache(struct extent_buffer *leaf,
3345 struct btrfs_block_group *block_group,
3346 u64 data_bytenr)
3347 {
3348 u64 space_cache_ino;
3349 struct btrfs_file_extent_item *ei;
3350 struct btrfs_key key;
3351 bool found = false;
3352 int i;
3353 int ret;
3354
3355 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3356 return 0;
3357
3358 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3359 u8 type;
3360
3361 btrfs_item_key_to_cpu(leaf, &key, i);
3362 if (key.type != BTRFS_EXTENT_DATA_KEY)
3363 continue;
3364 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3365 type = btrfs_file_extent_type(leaf, ei);
3366
3367 if ((type == BTRFS_FILE_EXTENT_REG ||
3368 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3369 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3370 found = true;
3371 space_cache_ino = key.objectid;
3372 break;
3373 }
3374 }
3375 if (!found)
3376 return -ENOENT;
3377 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3378 space_cache_ino);
3379 return ret;
3380 }
3381
3382 /*
3383 * helper to find all tree blocks that reference a given data extent
3384 */
3385 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3386 int add_data_references(struct reloc_control *rc,
3387 struct btrfs_key *extent_key,
3388 struct btrfs_path *path,
3389 struct rb_root *blocks)
3390 {
3391 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3392 struct ulist *leaves = NULL;
3393 struct ulist_iterator leaf_uiter;
3394 struct ulist_node *ref_node = NULL;
3395 const u32 blocksize = fs_info->nodesize;
3396 int ret = 0;
3397
3398 btrfs_release_path(path);
3399 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3400 0, &leaves, NULL, true);
3401 if (ret < 0)
3402 return ret;
3403
3404 ULIST_ITER_INIT(&leaf_uiter);
3405 while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3406 struct extent_buffer *eb;
3407
3408 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3409 if (IS_ERR(eb)) {
3410 ret = PTR_ERR(eb);
3411 break;
3412 }
3413 ret = delete_v1_space_cache(eb, rc->block_group,
3414 extent_key->objectid);
3415 free_extent_buffer(eb);
3416 if (ret < 0)
3417 break;
3418 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3419 if (ret < 0)
3420 break;
3421 }
3422 if (ret < 0)
3423 free_block_list(blocks);
3424 ulist_free(leaves);
3425 return ret;
3426 }
3427
3428 /*
3429 * helper to find next unprocessed extent
3430 */
3431 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3432 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3433 struct btrfs_key *extent_key)
3434 {
3435 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3436 struct btrfs_key key;
3437 struct extent_buffer *leaf;
3438 u64 start, end, last;
3439 int ret;
3440
3441 last = rc->block_group->start + rc->block_group->length;
3442 while (1) {
3443 cond_resched();
3444 if (rc->search_start >= last) {
3445 ret = 1;
3446 break;
3447 }
3448
3449 key.objectid = rc->search_start;
3450 key.type = BTRFS_EXTENT_ITEM_KEY;
3451 key.offset = 0;
3452
3453 path->search_commit_root = 1;
3454 path->skip_locking = 1;
3455 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3456 0, 0);
3457 if (ret < 0)
3458 break;
3459 next:
3460 leaf = path->nodes[0];
3461 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3462 ret = btrfs_next_leaf(rc->extent_root, path);
3463 if (ret != 0)
3464 break;
3465 leaf = path->nodes[0];
3466 }
3467
3468 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3469 if (key.objectid >= last) {
3470 ret = 1;
3471 break;
3472 }
3473
3474 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3475 key.type != BTRFS_METADATA_ITEM_KEY) {
3476 path->slots[0]++;
3477 goto next;
3478 }
3479
3480 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3481 key.objectid + key.offset <= rc->search_start) {
3482 path->slots[0]++;
3483 goto next;
3484 }
3485
3486 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3487 key.objectid + fs_info->nodesize <=
3488 rc->search_start) {
3489 path->slots[0]++;
3490 goto next;
3491 }
3492
3493 ret = find_first_extent_bit(&rc->processed_blocks,
3494 key.objectid, &start, &end,
3495 EXTENT_DIRTY, NULL);
3496
3497 if (ret == 0 && start <= key.objectid) {
3498 btrfs_release_path(path);
3499 rc->search_start = end + 1;
3500 } else {
3501 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3502 rc->search_start = key.objectid + key.offset;
3503 else
3504 rc->search_start = key.objectid +
3505 fs_info->nodesize;
3506 memcpy(extent_key, &key, sizeof(key));
3507 return 0;
3508 }
3509 }
3510 btrfs_release_path(path);
3511 return ret;
3512 }
3513
set_reloc_control(struct reloc_control * rc)3514 static void set_reloc_control(struct reloc_control *rc)
3515 {
3516 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3517
3518 mutex_lock(&fs_info->reloc_mutex);
3519 fs_info->reloc_ctl = rc;
3520 mutex_unlock(&fs_info->reloc_mutex);
3521 }
3522
unset_reloc_control(struct reloc_control * rc)3523 static void unset_reloc_control(struct reloc_control *rc)
3524 {
3525 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3526
3527 mutex_lock(&fs_info->reloc_mutex);
3528 fs_info->reloc_ctl = NULL;
3529 mutex_unlock(&fs_info->reloc_mutex);
3530 }
3531
3532 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3533 int prepare_to_relocate(struct reloc_control *rc)
3534 {
3535 struct btrfs_trans_handle *trans;
3536 int ret;
3537
3538 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3539 BTRFS_BLOCK_RSV_TEMP);
3540 if (!rc->block_rsv)
3541 return -ENOMEM;
3542
3543 memset(&rc->cluster, 0, sizeof(rc->cluster));
3544 rc->search_start = rc->block_group->start;
3545 rc->extents_found = 0;
3546 rc->nodes_relocated = 0;
3547 rc->merging_rsv_size = 0;
3548 rc->reserved_bytes = 0;
3549 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3550 RELOCATION_RESERVED_NODES;
3551 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3552 rc->block_rsv, rc->block_rsv->size,
3553 BTRFS_RESERVE_FLUSH_ALL);
3554 if (ret)
3555 return ret;
3556
3557 rc->create_reloc_tree = 1;
3558 set_reloc_control(rc);
3559
3560 trans = btrfs_join_transaction(rc->extent_root);
3561 if (IS_ERR(trans)) {
3562 unset_reloc_control(rc);
3563 /*
3564 * extent tree is not a ref_cow tree and has no reloc_root to
3565 * cleanup. And callers are responsible to free the above
3566 * block rsv.
3567 */
3568 return PTR_ERR(trans);
3569 }
3570
3571 ret = btrfs_commit_transaction(trans);
3572 if (ret)
3573 unset_reloc_control(rc);
3574
3575 return ret;
3576 }
3577
relocate_block_group(struct reloc_control * rc)3578 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3579 {
3580 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3581 struct rb_root blocks = RB_ROOT;
3582 struct btrfs_key key;
3583 struct btrfs_trans_handle *trans = NULL;
3584 struct btrfs_path *path;
3585 struct btrfs_extent_item *ei;
3586 u64 flags;
3587 int ret;
3588 int err = 0;
3589 int progress = 0;
3590
3591 path = btrfs_alloc_path();
3592 if (!path)
3593 return -ENOMEM;
3594 path->reada = READA_FORWARD;
3595
3596 ret = prepare_to_relocate(rc);
3597 if (ret) {
3598 err = ret;
3599 goto out_free;
3600 }
3601
3602 while (1) {
3603 rc->reserved_bytes = 0;
3604 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3605 rc->block_rsv->size,
3606 BTRFS_RESERVE_FLUSH_ALL);
3607 if (ret) {
3608 err = ret;
3609 break;
3610 }
3611 progress++;
3612 trans = btrfs_start_transaction(rc->extent_root, 0);
3613 if (IS_ERR(trans)) {
3614 err = PTR_ERR(trans);
3615 trans = NULL;
3616 break;
3617 }
3618 restart:
3619 if (update_backref_cache(trans, &rc->backref_cache)) {
3620 btrfs_end_transaction(trans);
3621 trans = NULL;
3622 continue;
3623 }
3624
3625 ret = find_next_extent(rc, path, &key);
3626 if (ret < 0)
3627 err = ret;
3628 if (ret != 0)
3629 break;
3630
3631 rc->extents_found++;
3632
3633 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3634 struct btrfs_extent_item);
3635 flags = btrfs_extent_flags(path->nodes[0], ei);
3636
3637 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3638 ret = add_tree_block(rc, &key, path, &blocks);
3639 } else if (rc->stage == UPDATE_DATA_PTRS &&
3640 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3641 ret = add_data_references(rc, &key, path, &blocks);
3642 } else {
3643 btrfs_release_path(path);
3644 ret = 0;
3645 }
3646 if (ret < 0) {
3647 err = ret;
3648 break;
3649 }
3650
3651 if (!RB_EMPTY_ROOT(&blocks)) {
3652 ret = relocate_tree_blocks(trans, rc, &blocks);
3653 if (ret < 0) {
3654 if (ret != -EAGAIN) {
3655 err = ret;
3656 break;
3657 }
3658 rc->extents_found--;
3659 rc->search_start = key.objectid;
3660 }
3661 }
3662
3663 btrfs_end_transaction_throttle(trans);
3664 btrfs_btree_balance_dirty(fs_info);
3665 trans = NULL;
3666
3667 if (rc->stage == MOVE_DATA_EXTENTS &&
3668 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3669 rc->found_file_extent = 1;
3670 ret = relocate_data_extent(rc->data_inode,
3671 &key, &rc->cluster);
3672 if (ret < 0) {
3673 err = ret;
3674 break;
3675 }
3676 }
3677 if (btrfs_should_cancel_balance(fs_info)) {
3678 err = -ECANCELED;
3679 break;
3680 }
3681 }
3682 if (trans && progress && err == -ENOSPC) {
3683 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3684 if (ret == 1) {
3685 err = 0;
3686 progress = 0;
3687 goto restart;
3688 }
3689 }
3690
3691 btrfs_release_path(path);
3692 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3693
3694 if (trans) {
3695 btrfs_end_transaction_throttle(trans);
3696 btrfs_btree_balance_dirty(fs_info);
3697 }
3698
3699 if (!err) {
3700 ret = relocate_file_extent_cluster(rc->data_inode,
3701 &rc->cluster);
3702 if (ret < 0)
3703 err = ret;
3704 }
3705
3706 rc->create_reloc_tree = 0;
3707 set_reloc_control(rc);
3708
3709 btrfs_backref_release_cache(&rc->backref_cache);
3710 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3711
3712 /*
3713 * Even in the case when the relocation is cancelled, we should all go
3714 * through prepare_to_merge() and merge_reloc_roots().
3715 *
3716 * For error (including cancelled balance), prepare_to_merge() will
3717 * mark all reloc trees orphan, then queue them for cleanup in
3718 * merge_reloc_roots()
3719 */
3720 err = prepare_to_merge(rc, err);
3721
3722 merge_reloc_roots(rc);
3723
3724 rc->merge_reloc_tree = 0;
3725 unset_reloc_control(rc);
3726 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3727
3728 /* get rid of pinned extents */
3729 trans = btrfs_join_transaction(rc->extent_root);
3730 if (IS_ERR(trans)) {
3731 err = PTR_ERR(trans);
3732 goto out_free;
3733 }
3734 ret = btrfs_commit_transaction(trans);
3735 if (ret && !err)
3736 err = ret;
3737 out_free:
3738 ret = clean_dirty_subvols(rc);
3739 if (ret < 0 && !err)
3740 err = ret;
3741 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3742 btrfs_free_path(path);
3743 return err;
3744 }
3745
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3746 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3747 struct btrfs_root *root, u64 objectid)
3748 {
3749 struct btrfs_path *path;
3750 struct btrfs_inode_item *item;
3751 struct extent_buffer *leaf;
3752 int ret;
3753
3754 path = btrfs_alloc_path();
3755 if (!path)
3756 return -ENOMEM;
3757
3758 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3759 if (ret)
3760 goto out;
3761
3762 leaf = path->nodes[0];
3763 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3764 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3765 btrfs_set_inode_generation(leaf, item, 1);
3766 btrfs_set_inode_size(leaf, item, 0);
3767 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3768 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3769 BTRFS_INODE_PREALLOC);
3770 btrfs_mark_buffer_dirty(leaf);
3771 out:
3772 btrfs_free_path(path);
3773 return ret;
3774 }
3775
delete_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3776 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3777 struct btrfs_root *root, u64 objectid)
3778 {
3779 struct btrfs_path *path;
3780 struct btrfs_key key;
3781 int ret = 0;
3782
3783 path = btrfs_alloc_path();
3784 if (!path) {
3785 ret = -ENOMEM;
3786 goto out;
3787 }
3788
3789 key.objectid = objectid;
3790 key.type = BTRFS_INODE_ITEM_KEY;
3791 key.offset = 0;
3792 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3793 if (ret) {
3794 if (ret > 0)
3795 ret = -ENOENT;
3796 goto out;
3797 }
3798 ret = btrfs_del_item(trans, root, path);
3799 out:
3800 if (ret)
3801 btrfs_abort_transaction(trans, ret);
3802 btrfs_free_path(path);
3803 }
3804
3805 /*
3806 * helper to create inode for data relocation.
3807 * the inode is in data relocation tree and its link count is 0
3808 */
3809 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group * group)3810 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3811 struct btrfs_block_group *group)
3812 {
3813 struct inode *inode = NULL;
3814 struct btrfs_trans_handle *trans;
3815 struct btrfs_root *root;
3816 u64 objectid;
3817 int err = 0;
3818
3819 root = btrfs_grab_root(fs_info->data_reloc_root);
3820 trans = btrfs_start_transaction(root, 6);
3821 if (IS_ERR(trans)) {
3822 btrfs_put_root(root);
3823 return ERR_CAST(trans);
3824 }
3825
3826 err = btrfs_get_free_objectid(root, &objectid);
3827 if (err)
3828 goto out;
3829
3830 err = __insert_orphan_inode(trans, root, objectid);
3831 if (err)
3832 goto out;
3833
3834 inode = btrfs_iget(fs_info->sb, objectid, root);
3835 if (IS_ERR(inode)) {
3836 delete_orphan_inode(trans, root, objectid);
3837 err = PTR_ERR(inode);
3838 inode = NULL;
3839 goto out;
3840 }
3841 BTRFS_I(inode)->index_cnt = group->start;
3842
3843 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3844 out:
3845 btrfs_put_root(root);
3846 btrfs_end_transaction(trans);
3847 btrfs_btree_balance_dirty(fs_info);
3848 if (err) {
3849 iput(inode);
3850 inode = ERR_PTR(err);
3851 }
3852 return inode;
3853 }
3854
3855 /*
3856 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3857 * has been requested meanwhile and don't start in that case.
3858 *
3859 * Return:
3860 * 0 success
3861 * -EINPROGRESS operation is already in progress, that's probably a bug
3862 * -ECANCELED cancellation request was set before the operation started
3863 */
reloc_chunk_start(struct btrfs_fs_info * fs_info)3864 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3865 {
3866 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3867 /* This should not happen */
3868 btrfs_err(fs_info, "reloc already running, cannot start");
3869 return -EINPROGRESS;
3870 }
3871
3872 if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3873 btrfs_info(fs_info, "chunk relocation canceled on start");
3874 /*
3875 * On cancel, clear all requests but let the caller mark
3876 * the end after cleanup operations.
3877 */
3878 atomic_set(&fs_info->reloc_cancel_req, 0);
3879 return -ECANCELED;
3880 }
3881 return 0;
3882 }
3883
3884 /*
3885 * Mark end of chunk relocation that is cancellable and wake any waiters.
3886 */
reloc_chunk_end(struct btrfs_fs_info * fs_info)3887 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3888 {
3889 /* Requested after start, clear bit first so any waiters can continue */
3890 if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3891 btrfs_info(fs_info, "chunk relocation canceled during operation");
3892 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3893 atomic_set(&fs_info->reloc_cancel_req, 0);
3894 }
3895
alloc_reloc_control(struct btrfs_fs_info * fs_info)3896 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3897 {
3898 struct reloc_control *rc;
3899
3900 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3901 if (!rc)
3902 return NULL;
3903
3904 INIT_LIST_HEAD(&rc->reloc_roots);
3905 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3906 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3907 mapping_tree_init(&rc->reloc_root_tree);
3908 extent_io_tree_init(fs_info, &rc->processed_blocks,
3909 IO_TREE_RELOC_BLOCKS, NULL);
3910 return rc;
3911 }
3912
free_reloc_control(struct reloc_control * rc)3913 static void free_reloc_control(struct reloc_control *rc)
3914 {
3915 struct mapping_node *node, *tmp;
3916
3917 free_reloc_roots(&rc->reloc_roots);
3918 rbtree_postorder_for_each_entry_safe(node, tmp,
3919 &rc->reloc_root_tree.rb_root, rb_node)
3920 kfree(node);
3921
3922 kfree(rc);
3923 }
3924
3925 /*
3926 * Print the block group being relocated
3927 */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group)3928 static void describe_relocation(struct btrfs_fs_info *fs_info,
3929 struct btrfs_block_group *block_group)
3930 {
3931 char buf[128] = {'\0'};
3932
3933 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3934
3935 btrfs_info(fs_info,
3936 "relocating block group %llu flags %s",
3937 block_group->start, buf);
3938 }
3939
stage_to_string(int stage)3940 static const char *stage_to_string(int stage)
3941 {
3942 if (stage == MOVE_DATA_EXTENTS)
3943 return "move data extents";
3944 if (stage == UPDATE_DATA_PTRS)
3945 return "update data pointers";
3946 return "unknown";
3947 }
3948
3949 /*
3950 * function to relocate all extents in a block group.
3951 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)3952 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3953 {
3954 struct btrfs_block_group *bg;
3955 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3956 struct reloc_control *rc;
3957 struct inode *inode;
3958 struct btrfs_path *path;
3959 int ret;
3960 int rw = 0;
3961 int err = 0;
3962
3963 /*
3964 * This only gets set if we had a half-deleted snapshot on mount. We
3965 * cannot allow relocation to start while we're still trying to clean up
3966 * these pending deletions.
3967 */
3968 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3969 if (ret)
3970 return ret;
3971
3972 /* We may have been woken up by close_ctree, so bail if we're closing. */
3973 if (btrfs_fs_closing(fs_info))
3974 return -EINTR;
3975
3976 bg = btrfs_lookup_block_group(fs_info, group_start);
3977 if (!bg)
3978 return -ENOENT;
3979
3980 /*
3981 * Relocation of a data block group creates ordered extents. Without
3982 * sb_start_write(), we can freeze the filesystem while unfinished
3983 * ordered extents are left. Such ordered extents can cause a deadlock
3984 * e.g. when syncfs() is waiting for their completion but they can't
3985 * finish because they block when joining a transaction, due to the
3986 * fact that the freeze locks are being held in write mode.
3987 */
3988 if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3989 ASSERT(sb_write_started(fs_info->sb));
3990
3991 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3992 btrfs_put_block_group(bg);
3993 return -ETXTBSY;
3994 }
3995
3996 rc = alloc_reloc_control(fs_info);
3997 if (!rc) {
3998 btrfs_put_block_group(bg);
3999 return -ENOMEM;
4000 }
4001
4002 ret = reloc_chunk_start(fs_info);
4003 if (ret < 0) {
4004 err = ret;
4005 goto out_put_bg;
4006 }
4007
4008 rc->extent_root = extent_root;
4009 rc->block_group = bg;
4010
4011 ret = btrfs_inc_block_group_ro(rc->block_group, true);
4012 if (ret) {
4013 err = ret;
4014 goto out;
4015 }
4016 rw = 1;
4017
4018 path = btrfs_alloc_path();
4019 if (!path) {
4020 err = -ENOMEM;
4021 goto out;
4022 }
4023
4024 inode = lookup_free_space_inode(rc->block_group, path);
4025 btrfs_free_path(path);
4026
4027 if (!IS_ERR(inode))
4028 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4029 else
4030 ret = PTR_ERR(inode);
4031
4032 if (ret && ret != -ENOENT) {
4033 err = ret;
4034 goto out;
4035 }
4036
4037 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4038 if (IS_ERR(rc->data_inode)) {
4039 err = PTR_ERR(rc->data_inode);
4040 rc->data_inode = NULL;
4041 goto out;
4042 }
4043
4044 describe_relocation(fs_info, rc->block_group);
4045
4046 btrfs_wait_block_group_reservations(rc->block_group);
4047 btrfs_wait_nocow_writers(rc->block_group);
4048 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4049 rc->block_group->start,
4050 rc->block_group->length);
4051
4052 ret = btrfs_zone_finish(rc->block_group);
4053 WARN_ON(ret && ret != -EAGAIN);
4054
4055 while (1) {
4056 int finishes_stage;
4057
4058 mutex_lock(&fs_info->cleaner_mutex);
4059 ret = relocate_block_group(rc);
4060 mutex_unlock(&fs_info->cleaner_mutex);
4061 if (ret < 0)
4062 err = ret;
4063
4064 finishes_stage = rc->stage;
4065 /*
4066 * We may have gotten ENOSPC after we already dirtied some
4067 * extents. If writeout happens while we're relocating a
4068 * different block group we could end up hitting the
4069 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4070 * btrfs_reloc_cow_block. Make sure we write everything out
4071 * properly so we don't trip over this problem, and then break
4072 * out of the loop if we hit an error.
4073 */
4074 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4075 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4076 (u64)-1);
4077 if (ret)
4078 err = ret;
4079 invalidate_mapping_pages(rc->data_inode->i_mapping,
4080 0, -1);
4081 rc->stage = UPDATE_DATA_PTRS;
4082 }
4083
4084 if (err < 0)
4085 goto out;
4086
4087 if (rc->extents_found == 0)
4088 break;
4089
4090 btrfs_info(fs_info, "found %llu extents, stage: %s",
4091 rc->extents_found, stage_to_string(finishes_stage));
4092 }
4093
4094 WARN_ON(rc->block_group->pinned > 0);
4095 WARN_ON(rc->block_group->reserved > 0);
4096 WARN_ON(rc->block_group->used > 0);
4097 out:
4098 if (err && rw)
4099 btrfs_dec_block_group_ro(rc->block_group);
4100 iput(rc->data_inode);
4101 out_put_bg:
4102 btrfs_put_block_group(bg);
4103 reloc_chunk_end(fs_info);
4104 free_reloc_control(rc);
4105 return err;
4106 }
4107
mark_garbage_root(struct btrfs_root * root)4108 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4109 {
4110 struct btrfs_fs_info *fs_info = root->fs_info;
4111 struct btrfs_trans_handle *trans;
4112 int ret, err;
4113
4114 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4115 if (IS_ERR(trans))
4116 return PTR_ERR(trans);
4117
4118 memset(&root->root_item.drop_progress, 0,
4119 sizeof(root->root_item.drop_progress));
4120 btrfs_set_root_drop_level(&root->root_item, 0);
4121 btrfs_set_root_refs(&root->root_item, 0);
4122 ret = btrfs_update_root(trans, fs_info->tree_root,
4123 &root->root_key, &root->root_item);
4124
4125 err = btrfs_end_transaction(trans);
4126 if (err)
4127 return err;
4128 return ret;
4129 }
4130
4131 /*
4132 * recover relocation interrupted by system crash.
4133 *
4134 * this function resumes merging reloc trees with corresponding fs trees.
4135 * this is important for keeping the sharing of tree blocks
4136 */
btrfs_recover_relocation(struct btrfs_fs_info * fs_info)4137 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4138 {
4139 LIST_HEAD(reloc_roots);
4140 struct btrfs_key key;
4141 struct btrfs_root *fs_root;
4142 struct btrfs_root *reloc_root;
4143 struct btrfs_path *path;
4144 struct extent_buffer *leaf;
4145 struct reloc_control *rc = NULL;
4146 struct btrfs_trans_handle *trans;
4147 int ret;
4148 int err = 0;
4149
4150 path = btrfs_alloc_path();
4151 if (!path)
4152 return -ENOMEM;
4153 path->reada = READA_BACK;
4154
4155 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4156 key.type = BTRFS_ROOT_ITEM_KEY;
4157 key.offset = (u64)-1;
4158
4159 while (1) {
4160 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4161 path, 0, 0);
4162 if (ret < 0) {
4163 err = ret;
4164 goto out;
4165 }
4166 if (ret > 0) {
4167 if (path->slots[0] == 0)
4168 break;
4169 path->slots[0]--;
4170 }
4171 leaf = path->nodes[0];
4172 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4173 btrfs_release_path(path);
4174
4175 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4176 key.type != BTRFS_ROOT_ITEM_KEY)
4177 break;
4178
4179 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4180 if (IS_ERR(reloc_root)) {
4181 err = PTR_ERR(reloc_root);
4182 goto out;
4183 }
4184
4185 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4186 list_add(&reloc_root->root_list, &reloc_roots);
4187
4188 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4189 fs_root = btrfs_get_fs_root(fs_info,
4190 reloc_root->root_key.offset, false);
4191 if (IS_ERR(fs_root)) {
4192 ret = PTR_ERR(fs_root);
4193 if (ret != -ENOENT) {
4194 err = ret;
4195 goto out;
4196 }
4197 ret = mark_garbage_root(reloc_root);
4198 if (ret < 0) {
4199 err = ret;
4200 goto out;
4201 }
4202 } else {
4203 btrfs_put_root(fs_root);
4204 }
4205 }
4206
4207 if (key.offset == 0)
4208 break;
4209
4210 key.offset--;
4211 }
4212 btrfs_release_path(path);
4213
4214 if (list_empty(&reloc_roots))
4215 goto out;
4216
4217 rc = alloc_reloc_control(fs_info);
4218 if (!rc) {
4219 err = -ENOMEM;
4220 goto out;
4221 }
4222
4223 ret = reloc_chunk_start(fs_info);
4224 if (ret < 0) {
4225 err = ret;
4226 goto out_end;
4227 }
4228
4229 rc->extent_root = btrfs_extent_root(fs_info, 0);
4230
4231 set_reloc_control(rc);
4232
4233 trans = btrfs_join_transaction(rc->extent_root);
4234 if (IS_ERR(trans)) {
4235 err = PTR_ERR(trans);
4236 goto out_unset;
4237 }
4238
4239 rc->merge_reloc_tree = 1;
4240
4241 while (!list_empty(&reloc_roots)) {
4242 reloc_root = list_entry(reloc_roots.next,
4243 struct btrfs_root, root_list);
4244 list_del(&reloc_root->root_list);
4245
4246 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4247 list_add_tail(&reloc_root->root_list,
4248 &rc->reloc_roots);
4249 continue;
4250 }
4251
4252 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4253 false);
4254 if (IS_ERR(fs_root)) {
4255 err = PTR_ERR(fs_root);
4256 list_add_tail(&reloc_root->root_list, &reloc_roots);
4257 btrfs_end_transaction(trans);
4258 goto out_unset;
4259 }
4260
4261 err = __add_reloc_root(reloc_root);
4262 ASSERT(err != -EEXIST);
4263 if (err) {
4264 list_add_tail(&reloc_root->root_list, &reloc_roots);
4265 btrfs_put_root(fs_root);
4266 btrfs_end_transaction(trans);
4267 goto out_unset;
4268 }
4269 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4270 btrfs_put_root(fs_root);
4271 }
4272
4273 err = btrfs_commit_transaction(trans);
4274 if (err)
4275 goto out_unset;
4276
4277 merge_reloc_roots(rc);
4278
4279 unset_reloc_control(rc);
4280
4281 trans = btrfs_join_transaction(rc->extent_root);
4282 if (IS_ERR(trans)) {
4283 err = PTR_ERR(trans);
4284 goto out_clean;
4285 }
4286 err = btrfs_commit_transaction(trans);
4287 out_clean:
4288 ret = clean_dirty_subvols(rc);
4289 if (ret < 0 && !err)
4290 err = ret;
4291 out_unset:
4292 unset_reloc_control(rc);
4293 out_end:
4294 reloc_chunk_end(fs_info);
4295 free_reloc_control(rc);
4296 out:
4297 free_reloc_roots(&reloc_roots);
4298
4299 btrfs_free_path(path);
4300
4301 if (err == 0) {
4302 /* cleanup orphan inode in data relocation tree */
4303 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4304 ASSERT(fs_root);
4305 err = btrfs_orphan_cleanup(fs_root);
4306 btrfs_put_root(fs_root);
4307 }
4308 return err;
4309 }
4310
4311 /*
4312 * helper to add ordered checksum for data relocation.
4313 *
4314 * cloning checksum properly handles the nodatasum extents.
4315 * it also saves CPU time to re-calculate the checksum.
4316 */
btrfs_reloc_clone_csums(struct btrfs_inode * inode,u64 file_pos,u64 len)4317 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4318 {
4319 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4320 struct btrfs_root *csum_root;
4321 struct btrfs_ordered_sum *sums;
4322 struct btrfs_ordered_extent *ordered;
4323 int ret;
4324 u64 disk_bytenr;
4325 u64 new_bytenr;
4326 LIST_HEAD(list);
4327
4328 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4329 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4330
4331 disk_bytenr = file_pos + inode->index_cnt;
4332 csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4333 ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4334 disk_bytenr + len - 1, &list, 0, false);
4335 if (ret)
4336 goto out;
4337
4338 while (!list_empty(&list)) {
4339 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4340 list_del_init(&sums->list);
4341
4342 /*
4343 * We need to offset the new_bytenr based on where the csum is.
4344 * We need to do this because we will read in entire prealloc
4345 * extents but we may have written to say the middle of the
4346 * prealloc extent, so we need to make sure the csum goes with
4347 * the right disk offset.
4348 *
4349 * We can do this because the data reloc inode refers strictly
4350 * to the on disk bytes, so we don't have to worry about
4351 * disk_len vs real len like with real inodes since it's all
4352 * disk length.
4353 */
4354 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4355 sums->bytenr = new_bytenr;
4356
4357 btrfs_add_ordered_sum(ordered, sums);
4358 }
4359 out:
4360 btrfs_put_ordered_extent(ordered);
4361 return ret;
4362 }
4363
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)4364 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4365 struct btrfs_root *root, struct extent_buffer *buf,
4366 struct extent_buffer *cow)
4367 {
4368 struct btrfs_fs_info *fs_info = root->fs_info;
4369 struct reloc_control *rc;
4370 struct btrfs_backref_node *node;
4371 int first_cow = 0;
4372 int level;
4373 int ret = 0;
4374
4375 rc = fs_info->reloc_ctl;
4376 if (!rc)
4377 return 0;
4378
4379 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4380
4381 level = btrfs_header_level(buf);
4382 if (btrfs_header_generation(buf) <=
4383 btrfs_root_last_snapshot(&root->root_item))
4384 first_cow = 1;
4385
4386 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4387 rc->create_reloc_tree) {
4388 WARN_ON(!first_cow && level == 0);
4389
4390 node = rc->backref_cache.path[level];
4391 BUG_ON(node->bytenr != buf->start &&
4392 node->new_bytenr != buf->start);
4393
4394 btrfs_backref_drop_node_buffer(node);
4395 atomic_inc(&cow->refs);
4396 node->eb = cow;
4397 node->new_bytenr = cow->start;
4398
4399 if (!node->pending) {
4400 list_move_tail(&node->list,
4401 &rc->backref_cache.pending[level]);
4402 node->pending = 1;
4403 }
4404
4405 if (first_cow)
4406 mark_block_processed(rc, node);
4407
4408 if (first_cow && level > 0)
4409 rc->nodes_relocated += buf->len;
4410 }
4411
4412 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4413 ret = replace_file_extents(trans, rc, root, cow);
4414 return ret;
4415 }
4416
4417 /*
4418 * called before creating snapshot. it calculates metadata reservation
4419 * required for relocating tree blocks in the snapshot
4420 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4421 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4422 u64 *bytes_to_reserve)
4423 {
4424 struct btrfs_root *root = pending->root;
4425 struct reloc_control *rc = root->fs_info->reloc_ctl;
4426
4427 if (!rc || !have_reloc_root(root))
4428 return;
4429
4430 if (!rc->merge_reloc_tree)
4431 return;
4432
4433 root = root->reloc_root;
4434 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4435 /*
4436 * relocation is in the stage of merging trees. the space
4437 * used by merging a reloc tree is twice the size of
4438 * relocated tree nodes in the worst case. half for cowing
4439 * the reloc tree, half for cowing the fs tree. the space
4440 * used by cowing the reloc tree will be freed after the
4441 * tree is dropped. if we create snapshot, cowing the fs
4442 * tree may use more space than it frees. so we need
4443 * reserve extra space.
4444 */
4445 *bytes_to_reserve += rc->nodes_relocated;
4446 }
4447
4448 /*
4449 * called after snapshot is created. migrate block reservation
4450 * and create reloc root for the newly created snapshot
4451 *
4452 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4453 * references held on the reloc_root, one for root->reloc_root and one for
4454 * rc->reloc_roots.
4455 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4456 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4457 struct btrfs_pending_snapshot *pending)
4458 {
4459 struct btrfs_root *root = pending->root;
4460 struct btrfs_root *reloc_root;
4461 struct btrfs_root *new_root;
4462 struct reloc_control *rc = root->fs_info->reloc_ctl;
4463 int ret;
4464
4465 if (!rc || !have_reloc_root(root))
4466 return 0;
4467
4468 rc = root->fs_info->reloc_ctl;
4469 rc->merging_rsv_size += rc->nodes_relocated;
4470
4471 if (rc->merge_reloc_tree) {
4472 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4473 rc->block_rsv,
4474 rc->nodes_relocated, true);
4475 if (ret)
4476 return ret;
4477 }
4478
4479 new_root = pending->snap;
4480 reloc_root = create_reloc_root(trans, root->reloc_root,
4481 new_root->root_key.objectid);
4482 if (IS_ERR(reloc_root))
4483 return PTR_ERR(reloc_root);
4484
4485 ret = __add_reloc_root(reloc_root);
4486 ASSERT(ret != -EEXIST);
4487 if (ret) {
4488 /* Pairs with create_reloc_root */
4489 btrfs_put_root(reloc_root);
4490 return ret;
4491 }
4492 new_root->reloc_root = btrfs_grab_root(reloc_root);
4493
4494 if (rc->create_reloc_tree)
4495 ret = clone_backref_node(trans, rc, root, reloc_root);
4496 return ret;
4497 }
4498