1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26
27 static struct kmem_cache *btrfs_path_cachep;
28
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 struct extent_buffer *dst,
36 struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40
41 static const struct btrfs_csums {
42 u16 size;
43 const char name[10];
44 const char driver[12];
45 } btrfs_csums[] = {
46 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 .driver = "blake2b-256" },
51 };
52
53 /*
54 * The leaf data grows from end-to-front in the node. this returns the address
55 * of the start of the last item, which is the stop of the leaf data stack.
56 */
leaf_data_end(const struct extent_buffer * leaf)57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 u32 nr = btrfs_header_nritems(leaf);
60
61 if (nr == 0)
62 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 return btrfs_item_offset(leaf, nr - 1);
64 }
65
66 /*
67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
68 *
69 * @leaf: leaf that we're doing a memmove on
70 * @dst_offset: item data offset we're moving to
71 * @src_offset: item data offset were' moving from
72 * @len: length of the data we're moving
73 *
74 * Wrapper around memmove_extent_buffer() that takes into account the header on
75 * the leaf. The btrfs_item offset's start directly after the header, so we
76 * have to adjust any offsets to account for the header in the leaf. This
77 * handles that math to simplify the callers.
78 */
memmove_leaf_data(const struct extent_buffer * leaf,unsigned long dst_offset,unsigned long src_offset,unsigned long len)79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 unsigned long dst_offset,
81 unsigned long src_offset,
82 unsigned long len)
83 {
84 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87
88 /*
89 * Copy item data from @src into @dst at the given @offset.
90 *
91 * @dst: destination leaf that we're copying into
92 * @src: source leaf that we're copying from
93 * @dst_offset: item data offset we're copying to
94 * @src_offset: item data offset were' copying from
95 * @len: length of the data we're copying
96 *
97 * Wrapper around copy_extent_buffer() that takes into account the header on
98 * the leaf. The btrfs_item offset's start directly after the header, so we
99 * have to adjust any offsets to account for the header in the leaf. This
100 * handles that math to simplify the callers.
101 */
copy_leaf_data(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 const struct extent_buffer *src,
104 unsigned long dst_offset,
105 unsigned long src_offset, unsigned long len)
106 {
107 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110
111 /*
112 * Move items in a @leaf (using memmove).
113 *
114 * @dst: destination leaf for the items
115 * @dst_item: the item nr we're copying into
116 * @src_item: the item nr we're copying from
117 * @nr_items: the number of items to copy
118 *
119 * Wrapper around memmove_extent_buffer() that does the math to get the
120 * appropriate offsets into the leaf from the item numbers.
121 */
memmove_leaf_items(const struct extent_buffer * leaf,int dst_item,int src_item,int nr_items)122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 int dst_item, int src_item, int nr_items)
124 {
125 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 btrfs_item_nr_offset(leaf, src_item),
127 nr_items * sizeof(struct btrfs_item));
128 }
129
130 /*
131 * Copy items from @src into @dst at the given @offset.
132 *
133 * @dst: destination leaf for the items
134 * @src: source leaf for the items
135 * @dst_item: the item nr we're copying into
136 * @src_item: the item nr we're copying from
137 * @nr_items: the number of items to copy
138 *
139 * Wrapper around copy_extent_buffer() that does the math to get the
140 * appropriate offsets into the leaf from the item numbers.
141 */
copy_leaf_items(const struct extent_buffer * dst,const struct extent_buffer * src,int dst_item,int src_item,int nr_items)142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 const struct extent_buffer *src,
144 int dst_item, int src_item, int nr_items)
145 {
146 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 btrfs_item_nr_offset(src, src_item),
148 nr_items * sizeof(struct btrfs_item));
149 }
150
151 /* This exists for btrfs-progs usages. */
btrfs_csum_type_size(u16 type)152 u16 btrfs_csum_type_size(u16 type)
153 {
154 return btrfs_csums[type].size;
155 }
156
btrfs_super_csum_size(const struct btrfs_super_block * s)157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 u16 t = btrfs_super_csum_type(s);
160 /*
161 * csum type is validated at mount time
162 */
163 return btrfs_csum_type_size(t);
164 }
165
btrfs_super_csum_name(u16 csum_type)166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 /* csum type is validated at mount time */
169 return btrfs_csums[csum_type].name;
170 }
171
172 /*
173 * Return driver name if defined, otherwise the name that's also a valid driver
174 * name
175 */
btrfs_super_csum_driver(u16 csum_type)176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 /* csum type is validated at mount time */
179 return btrfs_csums[csum_type].driver[0] ?
180 btrfs_csums[csum_type].driver :
181 btrfs_csums[csum_type].name;
182 }
183
btrfs_get_num_csums(void)184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 return ARRAY_SIZE(btrfs_csums);
187 }
188
btrfs_alloc_path(void)189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 might_sleep();
192
193 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195
196 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 if (!p)
200 return;
201 btrfs_release_path(p);
202 kmem_cache_free(btrfs_path_cachep, p);
203 }
204
205 /*
206 * path release drops references on the extent buffers in the path
207 * and it drops any locks held by this path
208 *
209 * It is safe to call this on paths that no locks or extent buffers held.
210 */
btrfs_release_path(struct btrfs_path * p)211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 int i;
214
215 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 p->slots[i] = 0;
217 if (!p->nodes[i])
218 continue;
219 if (p->locks[i]) {
220 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 p->locks[i] = 0;
222 }
223 free_extent_buffer(p->nodes[i]);
224 p->nodes[i] = NULL;
225 }
226 }
227
228 /*
229 * We want the transaction abort to print stack trace only for errors where the
230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231 * caused by external factors.
232 */
abort_should_print_stack(int errno)233 bool __cold abort_should_print_stack(int errno)
234 {
235 switch (errno) {
236 case -EIO:
237 case -EROFS:
238 case -ENOMEM:
239 return false;
240 }
241 return true;
242 }
243
244 /*
245 * safely gets a reference on the root node of a tree. A lock
246 * is not taken, so a concurrent writer may put a different node
247 * at the root of the tree. See btrfs_lock_root_node for the
248 * looping required.
249 *
250 * The extent buffer returned by this has a reference taken, so
251 * it won't disappear. It may stop being the root of the tree
252 * at any time because there are no locks held.
253 */
btrfs_root_node(struct btrfs_root * root)254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 struct extent_buffer *eb;
257
258 while (1) {
259 rcu_read_lock();
260 eb = rcu_dereference(root->node);
261
262 /*
263 * RCU really hurts here, we could free up the root node because
264 * it was COWed but we may not get the new root node yet so do
265 * the inc_not_zero dance and if it doesn't work then
266 * synchronize_rcu and try again.
267 */
268 if (atomic_inc_not_zero(&eb->refs)) {
269 rcu_read_unlock();
270 break;
271 }
272 rcu_read_unlock();
273 synchronize_rcu();
274 }
275 return eb;
276 }
277
278 /*
279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280 * just get put onto a simple dirty list. Transaction walks this list to make
281 * sure they get properly updated on disk.
282 */
add_root_to_dirty_list(struct btrfs_root * root)283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 struct btrfs_fs_info *fs_info = root->fs_info;
286
287 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 return;
290
291 spin_lock(&fs_info->trans_lock);
292 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 /* Want the extent tree to be the last on the list */
294 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295 list_move_tail(&root->dirty_list,
296 &fs_info->dirty_cowonly_roots);
297 else
298 list_move(&root->dirty_list,
299 &fs_info->dirty_cowonly_roots);
300 }
301 spin_unlock(&fs_info->trans_lock);
302 }
303
304 /*
305 * used by snapshot creation to make a copy of a root for a tree with
306 * a given objectid. The buffer with the new root node is returned in
307 * cow_ret, and this func returns zero on success or a negative error code.
308 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 struct btrfs_root *root,
311 struct extent_buffer *buf,
312 struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 struct btrfs_fs_info *fs_info = root->fs_info;
315 struct extent_buffer *cow;
316 int ret = 0;
317 int level;
318 struct btrfs_disk_key disk_key;
319
320 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
321 trans->transid != fs_info->running_transaction->transid);
322 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
323 trans->transid != root->last_trans);
324
325 level = btrfs_header_level(buf);
326 if (level == 0)
327 btrfs_item_key(buf, &disk_key, 0);
328 else
329 btrfs_node_key(buf, &disk_key, 0);
330
331 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
332 &disk_key, level, buf->start, 0,
333 BTRFS_NESTING_NEW_ROOT);
334 if (IS_ERR(cow))
335 return PTR_ERR(cow);
336
337 copy_extent_buffer_full(cow, buf);
338 btrfs_set_header_bytenr(cow, cow->start);
339 btrfs_set_header_generation(cow, trans->transid);
340 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
341 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
342 BTRFS_HEADER_FLAG_RELOC);
343 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
344 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
345 else
346 btrfs_set_header_owner(cow, new_root_objectid);
347
348 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
349
350 WARN_ON(btrfs_header_generation(buf) > trans->transid);
351 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
352 ret = btrfs_inc_ref(trans, root, cow, 1);
353 else
354 ret = btrfs_inc_ref(trans, root, cow, 0);
355 if (ret) {
356 btrfs_tree_unlock(cow);
357 free_extent_buffer(cow);
358 btrfs_abort_transaction(trans, ret);
359 return ret;
360 }
361
362 btrfs_mark_buffer_dirty(cow);
363 *cow_ret = cow;
364 return 0;
365 }
366
367 /*
368 * check if the tree block can be shared by multiple trees
369 */
btrfs_block_can_be_shared(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)370 int btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
371 struct btrfs_root *root,
372 struct extent_buffer *buf)
373 {
374 /*
375 * Tree blocks not in shareable trees and tree roots are never shared.
376 * If a block was allocated after the last snapshot and the block was
377 * not allocated by tree relocation, we know the block is not shared.
378 */
379 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
380 buf != root->node &&
381 (btrfs_header_generation(buf) <=
382 btrfs_root_last_snapshot(&root->root_item) ||
383 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) {
384 if (buf != root->commit_root)
385 return 1;
386 /*
387 * An extent buffer that used to be the commit root may still be
388 * shared because the tree height may have increased and it
389 * became a child of a higher level root. This can happen when
390 * snapshotting a subvolume created in the current transaction.
391 */
392 if (btrfs_header_generation(buf) == trans->transid)
393 return 1;
394 }
395
396 return 0;
397 }
398
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)399 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
400 struct btrfs_root *root,
401 struct extent_buffer *buf,
402 struct extent_buffer *cow,
403 int *last_ref)
404 {
405 struct btrfs_fs_info *fs_info = root->fs_info;
406 u64 refs;
407 u64 owner;
408 u64 flags;
409 u64 new_flags = 0;
410 int ret;
411
412 /*
413 * Backrefs update rules:
414 *
415 * Always use full backrefs for extent pointers in tree block
416 * allocated by tree relocation.
417 *
418 * If a shared tree block is no longer referenced by its owner
419 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
420 * use full backrefs for extent pointers in tree block.
421 *
422 * If a tree block is been relocating
423 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
424 * use full backrefs for extent pointers in tree block.
425 * The reason for this is some operations (such as drop tree)
426 * are only allowed for blocks use full backrefs.
427 */
428
429 if (btrfs_block_can_be_shared(trans, root, buf)) {
430 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
431 btrfs_header_level(buf), 1,
432 &refs, &flags);
433 if (ret)
434 return ret;
435 if (unlikely(refs == 0)) {
436 btrfs_crit(fs_info,
437 "found 0 references for tree block at bytenr %llu level %d root %llu",
438 buf->start, btrfs_header_level(buf),
439 btrfs_root_id(root));
440 ret = -EUCLEAN;
441 btrfs_abort_transaction(trans, ret);
442 return ret;
443 }
444 } else {
445 refs = 1;
446 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
447 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
448 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
449 else
450 flags = 0;
451 }
452
453 owner = btrfs_header_owner(buf);
454 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
455 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
456
457 if (refs > 1) {
458 if ((owner == root->root_key.objectid ||
459 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
460 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
461 ret = btrfs_inc_ref(trans, root, buf, 1);
462 if (ret)
463 return ret;
464
465 if (root->root_key.objectid ==
466 BTRFS_TREE_RELOC_OBJECTID) {
467 ret = btrfs_dec_ref(trans, root, buf, 0);
468 if (ret)
469 return ret;
470 ret = btrfs_inc_ref(trans, root, cow, 1);
471 if (ret)
472 return ret;
473 }
474 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
475 } else {
476
477 if (root->root_key.objectid ==
478 BTRFS_TREE_RELOC_OBJECTID)
479 ret = btrfs_inc_ref(trans, root, cow, 1);
480 else
481 ret = btrfs_inc_ref(trans, root, cow, 0);
482 if (ret)
483 return ret;
484 }
485 if (new_flags != 0) {
486 ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
487 if (ret)
488 return ret;
489 }
490 } else {
491 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
492 if (root->root_key.objectid ==
493 BTRFS_TREE_RELOC_OBJECTID)
494 ret = btrfs_inc_ref(trans, root, cow, 1);
495 else
496 ret = btrfs_inc_ref(trans, root, cow, 0);
497 if (ret)
498 return ret;
499 ret = btrfs_dec_ref(trans, root, buf, 1);
500 if (ret)
501 return ret;
502 }
503 btrfs_clear_buffer_dirty(trans, buf);
504 *last_ref = 1;
505 }
506 return 0;
507 }
508
509 /*
510 * does the dirty work in cow of a single block. The parent block (if
511 * supplied) is updated to point to the new cow copy. The new buffer is marked
512 * dirty and returned locked. If you modify the block it needs to be marked
513 * dirty again.
514 *
515 * search_start -- an allocation hint for the new block
516 *
517 * empty_size -- a hint that you plan on doing more cow. This is the size in
518 * bytes the allocator should try to find free next to the block it returns.
519 * This is just a hint and may be ignored by the allocator.
520 */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)521 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
522 struct btrfs_root *root,
523 struct extent_buffer *buf,
524 struct extent_buffer *parent, int parent_slot,
525 struct extent_buffer **cow_ret,
526 u64 search_start, u64 empty_size,
527 enum btrfs_lock_nesting nest)
528 {
529 struct btrfs_fs_info *fs_info = root->fs_info;
530 struct btrfs_disk_key disk_key;
531 struct extent_buffer *cow;
532 int level, ret;
533 int last_ref = 0;
534 int unlock_orig = 0;
535 u64 parent_start = 0;
536
537 if (*cow_ret == buf)
538 unlock_orig = 1;
539
540 btrfs_assert_tree_write_locked(buf);
541
542 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
543 trans->transid != fs_info->running_transaction->transid);
544 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
545 trans->transid != root->last_trans);
546
547 level = btrfs_header_level(buf);
548
549 if (level == 0)
550 btrfs_item_key(buf, &disk_key, 0);
551 else
552 btrfs_node_key(buf, &disk_key, 0);
553
554 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
555 parent_start = parent->start;
556
557 cow = btrfs_alloc_tree_block(trans, root, parent_start,
558 root->root_key.objectid, &disk_key, level,
559 search_start, empty_size, nest);
560 if (IS_ERR(cow))
561 return PTR_ERR(cow);
562
563 /* cow is set to blocking by btrfs_init_new_buffer */
564
565 copy_extent_buffer_full(cow, buf);
566 btrfs_set_header_bytenr(cow, cow->start);
567 btrfs_set_header_generation(cow, trans->transid);
568 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
569 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
570 BTRFS_HEADER_FLAG_RELOC);
571 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
572 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
573 else
574 btrfs_set_header_owner(cow, root->root_key.objectid);
575
576 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
577
578 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
579 if (ret) {
580 btrfs_tree_unlock(cow);
581 free_extent_buffer(cow);
582 btrfs_abort_transaction(trans, ret);
583 return ret;
584 }
585
586 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
587 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
588 if (ret) {
589 btrfs_tree_unlock(cow);
590 free_extent_buffer(cow);
591 btrfs_abort_transaction(trans, ret);
592 return ret;
593 }
594 }
595
596 if (buf == root->node) {
597 WARN_ON(parent && parent != buf);
598 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
599 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
600 parent_start = buf->start;
601
602 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
603 if (ret < 0) {
604 btrfs_tree_unlock(cow);
605 free_extent_buffer(cow);
606 btrfs_abort_transaction(trans, ret);
607 return ret;
608 }
609 atomic_inc(&cow->refs);
610 rcu_assign_pointer(root->node, cow);
611
612 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
613 parent_start, last_ref);
614 free_extent_buffer(buf);
615 add_root_to_dirty_list(root);
616 } else {
617 WARN_ON(trans->transid != btrfs_header_generation(parent));
618 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
619 BTRFS_MOD_LOG_KEY_REPLACE);
620 if (ret) {
621 btrfs_tree_unlock(cow);
622 free_extent_buffer(cow);
623 btrfs_abort_transaction(trans, ret);
624 return ret;
625 }
626 btrfs_set_node_blockptr(parent, parent_slot,
627 cow->start);
628 btrfs_set_node_ptr_generation(parent, parent_slot,
629 trans->transid);
630 btrfs_mark_buffer_dirty(parent);
631 if (last_ref) {
632 ret = btrfs_tree_mod_log_free_eb(buf);
633 if (ret) {
634 btrfs_tree_unlock(cow);
635 free_extent_buffer(cow);
636 btrfs_abort_transaction(trans, ret);
637 return ret;
638 }
639 }
640 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
641 parent_start, last_ref);
642 }
643 if (unlock_orig)
644 btrfs_tree_unlock(buf);
645 free_extent_buffer_stale(buf);
646 btrfs_mark_buffer_dirty(cow);
647 *cow_ret = cow;
648 return 0;
649 }
650
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)651 static inline int should_cow_block(struct btrfs_trans_handle *trans,
652 struct btrfs_root *root,
653 struct extent_buffer *buf)
654 {
655 if (btrfs_is_testing(root->fs_info))
656 return 0;
657
658 /* Ensure we can see the FORCE_COW bit */
659 smp_mb__before_atomic();
660
661 /*
662 * We do not need to cow a block if
663 * 1) this block is not created or changed in this transaction;
664 * 2) this block does not belong to TREE_RELOC tree;
665 * 3) the root is not forced COW.
666 *
667 * What is forced COW:
668 * when we create snapshot during committing the transaction,
669 * after we've finished copying src root, we must COW the shared
670 * block to ensure the metadata consistency.
671 */
672 if (btrfs_header_generation(buf) == trans->transid &&
673 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
674 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
675 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
676 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
677 return 0;
678 return 1;
679 }
680
681 /*
682 * cows a single block, see __btrfs_cow_block for the real work.
683 * This version of it has extra checks so that a block isn't COWed more than
684 * once per transaction, as long as it hasn't been written yet
685 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)686 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
687 struct btrfs_root *root, struct extent_buffer *buf,
688 struct extent_buffer *parent, int parent_slot,
689 struct extent_buffer **cow_ret,
690 enum btrfs_lock_nesting nest)
691 {
692 struct btrfs_fs_info *fs_info = root->fs_info;
693 u64 search_start;
694 int ret;
695
696 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
697 btrfs_abort_transaction(trans, -EUCLEAN);
698 btrfs_crit(fs_info,
699 "attempt to COW block %llu on root %llu that is being deleted",
700 buf->start, btrfs_root_id(root));
701 return -EUCLEAN;
702 }
703
704 /*
705 * COWing must happen through a running transaction, which always
706 * matches the current fs generation (it's a transaction with a state
707 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
708 * into error state to prevent the commit of any transaction.
709 */
710 if (unlikely(trans->transaction != fs_info->running_transaction ||
711 trans->transid != fs_info->generation)) {
712 btrfs_abort_transaction(trans, -EUCLEAN);
713 btrfs_crit(fs_info,
714 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
715 buf->start, btrfs_root_id(root), trans->transid,
716 fs_info->running_transaction->transid,
717 fs_info->generation);
718 return -EUCLEAN;
719 }
720
721 if (!should_cow_block(trans, root, buf)) {
722 *cow_ret = buf;
723 return 0;
724 }
725
726 search_start = buf->start & ~((u64)SZ_1G - 1);
727
728 /*
729 * Before CoWing this block for later modification, check if it's
730 * the subtree root and do the delayed subtree trace if needed.
731 *
732 * Also We don't care about the error, as it's handled internally.
733 */
734 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
735 ret = __btrfs_cow_block(trans, root, buf, parent,
736 parent_slot, cow_ret, search_start, 0, nest);
737
738 trace_btrfs_cow_block(root, buf, *cow_ret);
739
740 return ret;
741 }
742 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
743
744 /*
745 * helper function for defrag to decide if two blocks pointed to by a
746 * node are actually close by
747 */
close_blocks(u64 blocknr,u64 other,u32 blocksize)748 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
749 {
750 if (blocknr < other && other - (blocknr + blocksize) < 32768)
751 return 1;
752 if (blocknr > other && blocknr - (other + blocksize) < 32768)
753 return 1;
754 return 0;
755 }
756
757 #ifdef __LITTLE_ENDIAN
758
759 /*
760 * Compare two keys, on little-endian the disk order is same as CPU order and
761 * we can avoid the conversion.
762 */
comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)763 static int comp_keys(const struct btrfs_disk_key *disk_key,
764 const struct btrfs_key *k2)
765 {
766 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
767
768 return btrfs_comp_cpu_keys(k1, k2);
769 }
770
771 #else
772
773 /*
774 * compare two keys in a memcmp fashion
775 */
comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)776 static int comp_keys(const struct btrfs_disk_key *disk,
777 const struct btrfs_key *k2)
778 {
779 struct btrfs_key k1;
780
781 btrfs_disk_key_to_cpu(&k1, disk);
782
783 return btrfs_comp_cpu_keys(&k1, k2);
784 }
785 #endif
786
787 /*
788 * same as comp_keys only with two btrfs_key's
789 */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)790 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
791 {
792 if (k1->objectid > k2->objectid)
793 return 1;
794 if (k1->objectid < k2->objectid)
795 return -1;
796 if (k1->type > k2->type)
797 return 1;
798 if (k1->type < k2->type)
799 return -1;
800 if (k1->offset > k2->offset)
801 return 1;
802 if (k1->offset < k2->offset)
803 return -1;
804 return 0;
805 }
806
807 /*
808 * this is used by the defrag code to go through all the
809 * leaves pointed to by a node and reallocate them so that
810 * disk order is close to key order
811 */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)812 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
813 struct btrfs_root *root, struct extent_buffer *parent,
814 int start_slot, u64 *last_ret,
815 struct btrfs_key *progress)
816 {
817 struct btrfs_fs_info *fs_info = root->fs_info;
818 struct extent_buffer *cur;
819 u64 blocknr;
820 u64 search_start = *last_ret;
821 u64 last_block = 0;
822 u64 other;
823 u32 parent_nritems;
824 int end_slot;
825 int i;
826 int err = 0;
827 u32 blocksize;
828 int progress_passed = 0;
829 struct btrfs_disk_key disk_key;
830
831 /*
832 * COWing must happen through a running transaction, which always
833 * matches the current fs generation (it's a transaction with a state
834 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
835 * into error state to prevent the commit of any transaction.
836 */
837 if (unlikely(trans->transaction != fs_info->running_transaction ||
838 trans->transid != fs_info->generation)) {
839 btrfs_abort_transaction(trans, -EUCLEAN);
840 btrfs_crit(fs_info,
841 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
842 parent->start, btrfs_root_id(root), trans->transid,
843 fs_info->running_transaction->transid,
844 fs_info->generation);
845 return -EUCLEAN;
846 }
847
848 parent_nritems = btrfs_header_nritems(parent);
849 blocksize = fs_info->nodesize;
850 end_slot = parent_nritems - 1;
851
852 if (parent_nritems <= 1)
853 return 0;
854
855 for (i = start_slot; i <= end_slot; i++) {
856 int close = 1;
857
858 btrfs_node_key(parent, &disk_key, i);
859 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
860 continue;
861
862 progress_passed = 1;
863 blocknr = btrfs_node_blockptr(parent, i);
864 if (last_block == 0)
865 last_block = blocknr;
866
867 if (i > 0) {
868 other = btrfs_node_blockptr(parent, i - 1);
869 close = close_blocks(blocknr, other, blocksize);
870 }
871 if (!close && i < end_slot) {
872 other = btrfs_node_blockptr(parent, i + 1);
873 close = close_blocks(blocknr, other, blocksize);
874 }
875 if (close) {
876 last_block = blocknr;
877 continue;
878 }
879
880 cur = btrfs_read_node_slot(parent, i);
881 if (IS_ERR(cur))
882 return PTR_ERR(cur);
883 if (search_start == 0)
884 search_start = last_block;
885
886 btrfs_tree_lock(cur);
887 err = __btrfs_cow_block(trans, root, cur, parent, i,
888 &cur, search_start,
889 min(16 * blocksize,
890 (end_slot - i) * blocksize),
891 BTRFS_NESTING_COW);
892 if (err) {
893 btrfs_tree_unlock(cur);
894 free_extent_buffer(cur);
895 break;
896 }
897 search_start = cur->start;
898 last_block = cur->start;
899 *last_ret = search_start;
900 btrfs_tree_unlock(cur);
901 free_extent_buffer(cur);
902 }
903 return err;
904 }
905
906 /*
907 * Search for a key in the given extent_buffer.
908 *
909 * The lower boundary for the search is specified by the slot number @first_slot.
910 * Use a value of 0 to search over the whole extent buffer. Works for both
911 * leaves and nodes.
912 *
913 * The slot in the extent buffer is returned via @slot. If the key exists in the
914 * extent buffer, then @slot will point to the slot where the key is, otherwise
915 * it points to the slot where you would insert the key.
916 *
917 * Slot may point to the total number of items (i.e. one position beyond the last
918 * key) if the key is bigger than the last key in the extent buffer.
919 */
btrfs_bin_search(struct extent_buffer * eb,int first_slot,const struct btrfs_key * key,int * slot)920 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
921 const struct btrfs_key *key, int *slot)
922 {
923 unsigned long p;
924 int item_size;
925 /*
926 * Use unsigned types for the low and high slots, so that we get a more
927 * efficient division in the search loop below.
928 */
929 u32 low = first_slot;
930 u32 high = btrfs_header_nritems(eb);
931 int ret;
932 const int key_size = sizeof(struct btrfs_disk_key);
933
934 if (unlikely(low > high)) {
935 btrfs_err(eb->fs_info,
936 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
937 __func__, low, high, eb->start,
938 btrfs_header_owner(eb), btrfs_header_level(eb));
939 return -EINVAL;
940 }
941
942 if (btrfs_header_level(eb) == 0) {
943 p = offsetof(struct btrfs_leaf, items);
944 item_size = sizeof(struct btrfs_item);
945 } else {
946 p = offsetof(struct btrfs_node, ptrs);
947 item_size = sizeof(struct btrfs_key_ptr);
948 }
949
950 while (low < high) {
951 unsigned long oip;
952 unsigned long offset;
953 struct btrfs_disk_key *tmp;
954 struct btrfs_disk_key unaligned;
955 int mid;
956
957 mid = (low + high) / 2;
958 offset = p + mid * item_size;
959 oip = offset_in_page(offset);
960
961 if (oip + key_size <= PAGE_SIZE) {
962 const unsigned long idx = get_eb_page_index(offset);
963 char *kaddr = page_address(eb->pages[idx]);
964
965 oip = get_eb_offset_in_page(eb, offset);
966 tmp = (struct btrfs_disk_key *)(kaddr + oip);
967 } else {
968 read_extent_buffer(eb, &unaligned, offset, key_size);
969 tmp = &unaligned;
970 }
971
972 ret = comp_keys(tmp, key);
973
974 if (ret < 0)
975 low = mid + 1;
976 else if (ret > 0)
977 high = mid;
978 else {
979 *slot = mid;
980 return 0;
981 }
982 }
983 *slot = low;
984 return 1;
985 }
986
root_add_used(struct btrfs_root * root,u32 size)987 static void root_add_used(struct btrfs_root *root, u32 size)
988 {
989 spin_lock(&root->accounting_lock);
990 btrfs_set_root_used(&root->root_item,
991 btrfs_root_used(&root->root_item) + size);
992 spin_unlock(&root->accounting_lock);
993 }
994
root_sub_used(struct btrfs_root * root,u32 size)995 static void root_sub_used(struct btrfs_root *root, u32 size)
996 {
997 spin_lock(&root->accounting_lock);
998 btrfs_set_root_used(&root->root_item,
999 btrfs_root_used(&root->root_item) - size);
1000 spin_unlock(&root->accounting_lock);
1001 }
1002
1003 /* given a node and slot number, this reads the blocks it points to. The
1004 * extent buffer is returned with a reference taken (but unlocked).
1005 */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)1006 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1007 int slot)
1008 {
1009 int level = btrfs_header_level(parent);
1010 struct btrfs_tree_parent_check check = { 0 };
1011 struct extent_buffer *eb;
1012
1013 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1014 return ERR_PTR(-ENOENT);
1015
1016 ASSERT(level);
1017
1018 check.level = level - 1;
1019 check.transid = btrfs_node_ptr_generation(parent, slot);
1020 check.owner_root = btrfs_header_owner(parent);
1021 check.has_first_key = true;
1022 btrfs_node_key_to_cpu(parent, &check.first_key, slot);
1023
1024 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1025 &check);
1026 if (IS_ERR(eb))
1027 return eb;
1028 if (!extent_buffer_uptodate(eb)) {
1029 free_extent_buffer(eb);
1030 return ERR_PTR(-EIO);
1031 }
1032
1033 return eb;
1034 }
1035
1036 /*
1037 * node level balancing, used to make sure nodes are in proper order for
1038 * item deletion. We balance from the top down, so we have to make sure
1039 * that a deletion won't leave an node completely empty later on.
1040 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1041 static noinline int balance_level(struct btrfs_trans_handle *trans,
1042 struct btrfs_root *root,
1043 struct btrfs_path *path, int level)
1044 {
1045 struct btrfs_fs_info *fs_info = root->fs_info;
1046 struct extent_buffer *right = NULL;
1047 struct extent_buffer *mid;
1048 struct extent_buffer *left = NULL;
1049 struct extent_buffer *parent = NULL;
1050 int ret = 0;
1051 int wret;
1052 int pslot;
1053 int orig_slot = path->slots[level];
1054 u64 orig_ptr;
1055
1056 ASSERT(level > 0);
1057
1058 mid = path->nodes[level];
1059
1060 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1061 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1062
1063 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1064
1065 if (level < BTRFS_MAX_LEVEL - 1) {
1066 parent = path->nodes[level + 1];
1067 pslot = path->slots[level + 1];
1068 }
1069
1070 /*
1071 * deal with the case where there is only one pointer in the root
1072 * by promoting the node below to a root
1073 */
1074 if (!parent) {
1075 struct extent_buffer *child;
1076
1077 if (btrfs_header_nritems(mid) != 1)
1078 return 0;
1079
1080 /* promote the child to a root */
1081 child = btrfs_read_node_slot(mid, 0);
1082 if (IS_ERR(child)) {
1083 ret = PTR_ERR(child);
1084 goto out;
1085 }
1086
1087 btrfs_tree_lock(child);
1088 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1089 BTRFS_NESTING_COW);
1090 if (ret) {
1091 btrfs_tree_unlock(child);
1092 free_extent_buffer(child);
1093 goto out;
1094 }
1095
1096 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1097 if (ret < 0) {
1098 btrfs_tree_unlock(child);
1099 free_extent_buffer(child);
1100 btrfs_abort_transaction(trans, ret);
1101 goto out;
1102 }
1103 rcu_assign_pointer(root->node, child);
1104
1105 add_root_to_dirty_list(root);
1106 btrfs_tree_unlock(child);
1107
1108 path->locks[level] = 0;
1109 path->nodes[level] = NULL;
1110 btrfs_clear_buffer_dirty(trans, mid);
1111 btrfs_tree_unlock(mid);
1112 /* once for the path */
1113 free_extent_buffer(mid);
1114
1115 root_sub_used(root, mid->len);
1116 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1117 /* once for the root ptr */
1118 free_extent_buffer_stale(mid);
1119 return 0;
1120 }
1121 if (btrfs_header_nritems(mid) >
1122 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1123 return 0;
1124
1125 if (pslot) {
1126 left = btrfs_read_node_slot(parent, pslot - 1);
1127 if (IS_ERR(left)) {
1128 ret = PTR_ERR(left);
1129 left = NULL;
1130 goto out;
1131 }
1132
1133 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1134 wret = btrfs_cow_block(trans, root, left,
1135 parent, pslot - 1, &left,
1136 BTRFS_NESTING_LEFT_COW);
1137 if (wret) {
1138 ret = wret;
1139 goto out;
1140 }
1141 }
1142
1143 if (pslot + 1 < btrfs_header_nritems(parent)) {
1144 right = btrfs_read_node_slot(parent, pslot + 1);
1145 if (IS_ERR(right)) {
1146 ret = PTR_ERR(right);
1147 right = NULL;
1148 goto out;
1149 }
1150
1151 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1152 wret = btrfs_cow_block(trans, root, right,
1153 parent, pslot + 1, &right,
1154 BTRFS_NESTING_RIGHT_COW);
1155 if (wret) {
1156 ret = wret;
1157 goto out;
1158 }
1159 }
1160
1161 /* first, try to make some room in the middle buffer */
1162 if (left) {
1163 orig_slot += btrfs_header_nritems(left);
1164 wret = push_node_left(trans, left, mid, 1);
1165 if (wret < 0)
1166 ret = wret;
1167 }
1168
1169 /*
1170 * then try to empty the right most buffer into the middle
1171 */
1172 if (right) {
1173 wret = push_node_left(trans, mid, right, 1);
1174 if (wret < 0 && wret != -ENOSPC)
1175 ret = wret;
1176 if (btrfs_header_nritems(right) == 0) {
1177 btrfs_clear_buffer_dirty(trans, right);
1178 btrfs_tree_unlock(right);
1179 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1180 if (ret < 0) {
1181 free_extent_buffer_stale(right);
1182 right = NULL;
1183 goto out;
1184 }
1185 root_sub_used(root, right->len);
1186 btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1187 0, 1);
1188 free_extent_buffer_stale(right);
1189 right = NULL;
1190 } else {
1191 struct btrfs_disk_key right_key;
1192 btrfs_node_key(right, &right_key, 0);
1193 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1194 BTRFS_MOD_LOG_KEY_REPLACE);
1195 if (ret < 0) {
1196 btrfs_abort_transaction(trans, ret);
1197 goto out;
1198 }
1199 btrfs_set_node_key(parent, &right_key, pslot + 1);
1200 btrfs_mark_buffer_dirty(parent);
1201 }
1202 }
1203 if (btrfs_header_nritems(mid) == 1) {
1204 /*
1205 * we're not allowed to leave a node with one item in the
1206 * tree during a delete. A deletion from lower in the tree
1207 * could try to delete the only pointer in this node.
1208 * So, pull some keys from the left.
1209 * There has to be a left pointer at this point because
1210 * otherwise we would have pulled some pointers from the
1211 * right
1212 */
1213 if (unlikely(!left)) {
1214 btrfs_crit(fs_info,
1215 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1216 parent->start, btrfs_header_level(parent),
1217 mid->start, btrfs_root_id(root));
1218 ret = -EUCLEAN;
1219 btrfs_abort_transaction(trans, ret);
1220 goto out;
1221 }
1222 wret = balance_node_right(trans, mid, left);
1223 if (wret < 0) {
1224 ret = wret;
1225 goto out;
1226 }
1227 if (wret == 1) {
1228 wret = push_node_left(trans, left, mid, 1);
1229 if (wret < 0)
1230 ret = wret;
1231 }
1232 BUG_ON(wret == 1);
1233 }
1234 if (btrfs_header_nritems(mid) == 0) {
1235 btrfs_clear_buffer_dirty(trans, mid);
1236 btrfs_tree_unlock(mid);
1237 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1238 if (ret < 0) {
1239 free_extent_buffer_stale(mid);
1240 mid = NULL;
1241 goto out;
1242 }
1243 root_sub_used(root, mid->len);
1244 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1245 free_extent_buffer_stale(mid);
1246 mid = NULL;
1247 } else {
1248 /* update the parent key to reflect our changes */
1249 struct btrfs_disk_key mid_key;
1250 btrfs_node_key(mid, &mid_key, 0);
1251 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1252 BTRFS_MOD_LOG_KEY_REPLACE);
1253 if (ret < 0) {
1254 btrfs_abort_transaction(trans, ret);
1255 goto out;
1256 }
1257 btrfs_set_node_key(parent, &mid_key, pslot);
1258 btrfs_mark_buffer_dirty(parent);
1259 }
1260
1261 /* update the path */
1262 if (left) {
1263 if (btrfs_header_nritems(left) > orig_slot) {
1264 atomic_inc(&left->refs);
1265 /* left was locked after cow */
1266 path->nodes[level] = left;
1267 path->slots[level + 1] -= 1;
1268 path->slots[level] = orig_slot;
1269 if (mid) {
1270 btrfs_tree_unlock(mid);
1271 free_extent_buffer(mid);
1272 }
1273 } else {
1274 orig_slot -= btrfs_header_nritems(left);
1275 path->slots[level] = orig_slot;
1276 }
1277 }
1278 /* double check we haven't messed things up */
1279 if (orig_ptr !=
1280 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1281 BUG();
1282 out:
1283 if (right) {
1284 btrfs_tree_unlock(right);
1285 free_extent_buffer(right);
1286 }
1287 if (left) {
1288 if (path->nodes[level] != left)
1289 btrfs_tree_unlock(left);
1290 free_extent_buffer(left);
1291 }
1292 return ret;
1293 }
1294
1295 /* Node balancing for insertion. Here we only split or push nodes around
1296 * when they are completely full. This is also done top down, so we
1297 * have to be pessimistic.
1298 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1299 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1300 struct btrfs_root *root,
1301 struct btrfs_path *path, int level)
1302 {
1303 struct btrfs_fs_info *fs_info = root->fs_info;
1304 struct extent_buffer *right = NULL;
1305 struct extent_buffer *mid;
1306 struct extent_buffer *left = NULL;
1307 struct extent_buffer *parent = NULL;
1308 int ret = 0;
1309 int wret;
1310 int pslot;
1311 int orig_slot = path->slots[level];
1312
1313 if (level == 0)
1314 return 1;
1315
1316 mid = path->nodes[level];
1317 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1318
1319 if (level < BTRFS_MAX_LEVEL - 1) {
1320 parent = path->nodes[level + 1];
1321 pslot = path->slots[level + 1];
1322 }
1323
1324 if (!parent)
1325 return 1;
1326
1327 /* first, try to make some room in the middle buffer */
1328 if (pslot) {
1329 u32 left_nr;
1330
1331 left = btrfs_read_node_slot(parent, pslot - 1);
1332 if (IS_ERR(left))
1333 return PTR_ERR(left);
1334
1335 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1336
1337 left_nr = btrfs_header_nritems(left);
1338 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1339 wret = 1;
1340 } else {
1341 ret = btrfs_cow_block(trans, root, left, parent,
1342 pslot - 1, &left,
1343 BTRFS_NESTING_LEFT_COW);
1344 if (ret)
1345 wret = 1;
1346 else {
1347 wret = push_node_left(trans, left, mid, 0);
1348 }
1349 }
1350 if (wret < 0)
1351 ret = wret;
1352 if (wret == 0) {
1353 struct btrfs_disk_key disk_key;
1354 orig_slot += left_nr;
1355 btrfs_node_key(mid, &disk_key, 0);
1356 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1357 BTRFS_MOD_LOG_KEY_REPLACE);
1358 if (ret < 0) {
1359 btrfs_tree_unlock(left);
1360 free_extent_buffer(left);
1361 btrfs_abort_transaction(trans, ret);
1362 return ret;
1363 }
1364 btrfs_set_node_key(parent, &disk_key, pslot);
1365 btrfs_mark_buffer_dirty(parent);
1366 if (btrfs_header_nritems(left) > orig_slot) {
1367 path->nodes[level] = left;
1368 path->slots[level + 1] -= 1;
1369 path->slots[level] = orig_slot;
1370 btrfs_tree_unlock(mid);
1371 free_extent_buffer(mid);
1372 } else {
1373 orig_slot -=
1374 btrfs_header_nritems(left);
1375 path->slots[level] = orig_slot;
1376 btrfs_tree_unlock(left);
1377 free_extent_buffer(left);
1378 }
1379 return 0;
1380 }
1381 btrfs_tree_unlock(left);
1382 free_extent_buffer(left);
1383 }
1384
1385 /*
1386 * then try to empty the right most buffer into the middle
1387 */
1388 if (pslot + 1 < btrfs_header_nritems(parent)) {
1389 u32 right_nr;
1390
1391 right = btrfs_read_node_slot(parent, pslot + 1);
1392 if (IS_ERR(right))
1393 return PTR_ERR(right);
1394
1395 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1396
1397 right_nr = btrfs_header_nritems(right);
1398 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1399 wret = 1;
1400 } else {
1401 ret = btrfs_cow_block(trans, root, right,
1402 parent, pslot + 1,
1403 &right, BTRFS_NESTING_RIGHT_COW);
1404 if (ret)
1405 wret = 1;
1406 else {
1407 wret = balance_node_right(trans, right, mid);
1408 }
1409 }
1410 if (wret < 0)
1411 ret = wret;
1412 if (wret == 0) {
1413 struct btrfs_disk_key disk_key;
1414
1415 btrfs_node_key(right, &disk_key, 0);
1416 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1417 BTRFS_MOD_LOG_KEY_REPLACE);
1418 if (ret < 0) {
1419 btrfs_tree_unlock(right);
1420 free_extent_buffer(right);
1421 btrfs_abort_transaction(trans, ret);
1422 return ret;
1423 }
1424 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1425 btrfs_mark_buffer_dirty(parent);
1426
1427 if (btrfs_header_nritems(mid) <= orig_slot) {
1428 path->nodes[level] = right;
1429 path->slots[level + 1] += 1;
1430 path->slots[level] = orig_slot -
1431 btrfs_header_nritems(mid);
1432 btrfs_tree_unlock(mid);
1433 free_extent_buffer(mid);
1434 } else {
1435 btrfs_tree_unlock(right);
1436 free_extent_buffer(right);
1437 }
1438 return 0;
1439 }
1440 btrfs_tree_unlock(right);
1441 free_extent_buffer(right);
1442 }
1443 return 1;
1444 }
1445
1446 /*
1447 * readahead one full node of leaves, finding things that are close
1448 * to the block in 'slot', and triggering ra on them.
1449 */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1450 static void reada_for_search(struct btrfs_fs_info *fs_info,
1451 struct btrfs_path *path,
1452 int level, int slot, u64 objectid)
1453 {
1454 struct extent_buffer *node;
1455 struct btrfs_disk_key disk_key;
1456 u32 nritems;
1457 u64 search;
1458 u64 target;
1459 u64 nread = 0;
1460 u64 nread_max;
1461 u32 nr;
1462 u32 blocksize;
1463 u32 nscan = 0;
1464
1465 if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1466 return;
1467
1468 if (!path->nodes[level])
1469 return;
1470
1471 node = path->nodes[level];
1472
1473 /*
1474 * Since the time between visiting leaves is much shorter than the time
1475 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1476 * much IO at once (possibly random).
1477 */
1478 if (path->reada == READA_FORWARD_ALWAYS) {
1479 if (level > 1)
1480 nread_max = node->fs_info->nodesize;
1481 else
1482 nread_max = SZ_128K;
1483 } else {
1484 nread_max = SZ_64K;
1485 }
1486
1487 search = btrfs_node_blockptr(node, slot);
1488 blocksize = fs_info->nodesize;
1489 if (path->reada != READA_FORWARD_ALWAYS) {
1490 struct extent_buffer *eb;
1491
1492 eb = find_extent_buffer(fs_info, search);
1493 if (eb) {
1494 free_extent_buffer(eb);
1495 return;
1496 }
1497 }
1498
1499 target = search;
1500
1501 nritems = btrfs_header_nritems(node);
1502 nr = slot;
1503
1504 while (1) {
1505 if (path->reada == READA_BACK) {
1506 if (nr == 0)
1507 break;
1508 nr--;
1509 } else if (path->reada == READA_FORWARD ||
1510 path->reada == READA_FORWARD_ALWAYS) {
1511 nr++;
1512 if (nr >= nritems)
1513 break;
1514 }
1515 if (path->reada == READA_BACK && objectid) {
1516 btrfs_node_key(node, &disk_key, nr);
1517 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1518 break;
1519 }
1520 search = btrfs_node_blockptr(node, nr);
1521 if (path->reada == READA_FORWARD_ALWAYS ||
1522 (search <= target && target - search <= 65536) ||
1523 (search > target && search - target <= 65536)) {
1524 btrfs_readahead_node_child(node, nr);
1525 nread += blocksize;
1526 }
1527 nscan++;
1528 if (nread > nread_max || nscan > 32)
1529 break;
1530 }
1531 }
1532
reada_for_balance(struct btrfs_path * path,int level)1533 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1534 {
1535 struct extent_buffer *parent;
1536 int slot;
1537 int nritems;
1538
1539 parent = path->nodes[level + 1];
1540 if (!parent)
1541 return;
1542
1543 nritems = btrfs_header_nritems(parent);
1544 slot = path->slots[level + 1];
1545
1546 if (slot > 0)
1547 btrfs_readahead_node_child(parent, slot - 1);
1548 if (slot + 1 < nritems)
1549 btrfs_readahead_node_child(parent, slot + 1);
1550 }
1551
1552
1553 /*
1554 * when we walk down the tree, it is usually safe to unlock the higher layers
1555 * in the tree. The exceptions are when our path goes through slot 0, because
1556 * operations on the tree might require changing key pointers higher up in the
1557 * tree.
1558 *
1559 * callers might also have set path->keep_locks, which tells this code to keep
1560 * the lock if the path points to the last slot in the block. This is part of
1561 * walking through the tree, and selecting the next slot in the higher block.
1562 *
1563 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1564 * if lowest_unlock is 1, level 0 won't be unlocked
1565 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1566 static noinline void unlock_up(struct btrfs_path *path, int level,
1567 int lowest_unlock, int min_write_lock_level,
1568 int *write_lock_level)
1569 {
1570 int i;
1571 int skip_level = level;
1572 bool check_skip = true;
1573
1574 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1575 if (!path->nodes[i])
1576 break;
1577 if (!path->locks[i])
1578 break;
1579
1580 if (check_skip) {
1581 if (path->slots[i] == 0) {
1582 skip_level = i + 1;
1583 continue;
1584 }
1585
1586 if (path->keep_locks) {
1587 u32 nritems;
1588
1589 nritems = btrfs_header_nritems(path->nodes[i]);
1590 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1591 skip_level = i + 1;
1592 continue;
1593 }
1594 }
1595 }
1596
1597 if (i >= lowest_unlock && i > skip_level) {
1598 check_skip = false;
1599 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1600 path->locks[i] = 0;
1601 if (write_lock_level &&
1602 i > min_write_lock_level &&
1603 i <= *write_lock_level) {
1604 *write_lock_level = i - 1;
1605 }
1606 }
1607 }
1608 }
1609
1610 /*
1611 * Helper function for btrfs_search_slot() and other functions that do a search
1612 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1613 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1614 * its pages from disk.
1615 *
1616 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1617 * whole btree search, starting again from the current root node.
1618 */
1619 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)1620 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1621 struct extent_buffer **eb_ret, int level, int slot,
1622 const struct btrfs_key *key)
1623 {
1624 struct btrfs_fs_info *fs_info = root->fs_info;
1625 struct btrfs_tree_parent_check check = { 0 };
1626 u64 blocknr;
1627 u64 gen;
1628 struct extent_buffer *tmp;
1629 int ret;
1630 int parent_level;
1631 bool unlock_up;
1632
1633 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1634 blocknr = btrfs_node_blockptr(*eb_ret, slot);
1635 gen = btrfs_node_ptr_generation(*eb_ret, slot);
1636 parent_level = btrfs_header_level(*eb_ret);
1637 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1638 check.has_first_key = true;
1639 check.level = parent_level - 1;
1640 check.transid = gen;
1641 check.owner_root = root->root_key.objectid;
1642
1643 /*
1644 * If we need to read an extent buffer from disk and we are holding locks
1645 * on upper level nodes, we unlock all the upper nodes before reading the
1646 * extent buffer, and then return -EAGAIN to the caller as it needs to
1647 * restart the search. We don't release the lock on the current level
1648 * because we need to walk this node to figure out which blocks to read.
1649 */
1650 tmp = find_extent_buffer(fs_info, blocknr);
1651 if (tmp) {
1652 if (p->reada == READA_FORWARD_ALWAYS)
1653 reada_for_search(fs_info, p, level, slot, key->objectid);
1654
1655 /* first we do an atomic uptodate check */
1656 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1657 /*
1658 * Do extra check for first_key, eb can be stale due to
1659 * being cached, read from scrub, or have multiple
1660 * parents (shared tree blocks).
1661 */
1662 if (btrfs_verify_level_key(tmp,
1663 parent_level - 1, &check.first_key, gen)) {
1664 free_extent_buffer(tmp);
1665 return -EUCLEAN;
1666 }
1667 *eb_ret = tmp;
1668 return 0;
1669 }
1670
1671 if (p->nowait) {
1672 free_extent_buffer(tmp);
1673 return -EAGAIN;
1674 }
1675
1676 if (unlock_up)
1677 btrfs_unlock_up_safe(p, level + 1);
1678
1679 /* now we're allowed to do a blocking uptodate check */
1680 ret = btrfs_read_extent_buffer(tmp, &check);
1681 if (ret) {
1682 free_extent_buffer(tmp);
1683 btrfs_release_path(p);
1684 return -EIO;
1685 }
1686 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1687 free_extent_buffer(tmp);
1688 btrfs_release_path(p);
1689 return -EUCLEAN;
1690 }
1691
1692 if (unlock_up)
1693 ret = -EAGAIN;
1694
1695 goto out;
1696 } else if (p->nowait) {
1697 return -EAGAIN;
1698 }
1699
1700 if (unlock_up) {
1701 btrfs_unlock_up_safe(p, level + 1);
1702 ret = -EAGAIN;
1703 } else {
1704 ret = 0;
1705 }
1706
1707 if (p->reada != READA_NONE)
1708 reada_for_search(fs_info, p, level, slot, key->objectid);
1709
1710 tmp = read_tree_block(fs_info, blocknr, &check);
1711 if (IS_ERR(tmp)) {
1712 btrfs_release_path(p);
1713 return PTR_ERR(tmp);
1714 }
1715 /*
1716 * If the read above didn't mark this buffer up to date,
1717 * it will never end up being up to date. Set ret to EIO now
1718 * and give up so that our caller doesn't loop forever
1719 * on our EAGAINs.
1720 */
1721 if (!extent_buffer_uptodate(tmp))
1722 ret = -EIO;
1723
1724 out:
1725 if (ret == 0) {
1726 *eb_ret = tmp;
1727 } else {
1728 free_extent_buffer(tmp);
1729 btrfs_release_path(p);
1730 }
1731
1732 return ret;
1733 }
1734
1735 /*
1736 * helper function for btrfs_search_slot. This does all of the checks
1737 * for node-level blocks and does any balancing required based on
1738 * the ins_len.
1739 *
1740 * If no extra work was required, zero is returned. If we had to
1741 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1742 * start over
1743 */
1744 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1745 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1746 struct btrfs_root *root, struct btrfs_path *p,
1747 struct extent_buffer *b, int level, int ins_len,
1748 int *write_lock_level)
1749 {
1750 struct btrfs_fs_info *fs_info = root->fs_info;
1751 int ret = 0;
1752
1753 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1754 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1755
1756 if (*write_lock_level < level + 1) {
1757 *write_lock_level = level + 1;
1758 btrfs_release_path(p);
1759 return -EAGAIN;
1760 }
1761
1762 reada_for_balance(p, level);
1763 ret = split_node(trans, root, p, level);
1764
1765 b = p->nodes[level];
1766 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1767 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1768
1769 if (*write_lock_level < level + 1) {
1770 *write_lock_level = level + 1;
1771 btrfs_release_path(p);
1772 return -EAGAIN;
1773 }
1774
1775 reada_for_balance(p, level);
1776 ret = balance_level(trans, root, p, level);
1777 if (ret)
1778 return ret;
1779
1780 b = p->nodes[level];
1781 if (!b) {
1782 btrfs_release_path(p);
1783 return -EAGAIN;
1784 }
1785 BUG_ON(btrfs_header_nritems(b) == 1);
1786 }
1787 return ret;
1788 }
1789
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1790 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1791 u64 iobjectid, u64 ioff, u8 key_type,
1792 struct btrfs_key *found_key)
1793 {
1794 int ret;
1795 struct btrfs_key key;
1796 struct extent_buffer *eb;
1797
1798 ASSERT(path);
1799 ASSERT(found_key);
1800
1801 key.type = key_type;
1802 key.objectid = iobjectid;
1803 key.offset = ioff;
1804
1805 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1806 if (ret < 0)
1807 return ret;
1808
1809 eb = path->nodes[0];
1810 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1811 ret = btrfs_next_leaf(fs_root, path);
1812 if (ret)
1813 return ret;
1814 eb = path->nodes[0];
1815 }
1816
1817 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1818 if (found_key->type != key.type ||
1819 found_key->objectid != key.objectid)
1820 return 1;
1821
1822 return 0;
1823 }
1824
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1825 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1826 struct btrfs_path *p,
1827 int write_lock_level)
1828 {
1829 struct extent_buffer *b;
1830 int root_lock = 0;
1831 int level = 0;
1832
1833 if (p->search_commit_root) {
1834 b = root->commit_root;
1835 atomic_inc(&b->refs);
1836 level = btrfs_header_level(b);
1837 /*
1838 * Ensure that all callers have set skip_locking when
1839 * p->search_commit_root = 1.
1840 */
1841 ASSERT(p->skip_locking == 1);
1842
1843 goto out;
1844 }
1845
1846 if (p->skip_locking) {
1847 b = btrfs_root_node(root);
1848 level = btrfs_header_level(b);
1849 goto out;
1850 }
1851
1852 /* We try very hard to do read locks on the root */
1853 root_lock = BTRFS_READ_LOCK;
1854
1855 /*
1856 * If the level is set to maximum, we can skip trying to get the read
1857 * lock.
1858 */
1859 if (write_lock_level < BTRFS_MAX_LEVEL) {
1860 /*
1861 * We don't know the level of the root node until we actually
1862 * have it read locked
1863 */
1864 if (p->nowait) {
1865 b = btrfs_try_read_lock_root_node(root);
1866 if (IS_ERR(b))
1867 return b;
1868 } else {
1869 b = btrfs_read_lock_root_node(root);
1870 }
1871 level = btrfs_header_level(b);
1872 if (level > write_lock_level)
1873 goto out;
1874
1875 /* Whoops, must trade for write lock */
1876 btrfs_tree_read_unlock(b);
1877 free_extent_buffer(b);
1878 }
1879
1880 b = btrfs_lock_root_node(root);
1881 root_lock = BTRFS_WRITE_LOCK;
1882
1883 /* The level might have changed, check again */
1884 level = btrfs_header_level(b);
1885
1886 out:
1887 /*
1888 * The root may have failed to write out at some point, and thus is no
1889 * longer valid, return an error in this case.
1890 */
1891 if (!extent_buffer_uptodate(b)) {
1892 if (root_lock)
1893 btrfs_tree_unlock_rw(b, root_lock);
1894 free_extent_buffer(b);
1895 return ERR_PTR(-EIO);
1896 }
1897
1898 p->nodes[level] = b;
1899 if (!p->skip_locking)
1900 p->locks[level] = root_lock;
1901 /*
1902 * Callers are responsible for dropping b's references.
1903 */
1904 return b;
1905 }
1906
1907 /*
1908 * Replace the extent buffer at the lowest level of the path with a cloned
1909 * version. The purpose is to be able to use it safely, after releasing the
1910 * commit root semaphore, even if relocation is happening in parallel, the
1911 * transaction used for relocation is committed and the extent buffer is
1912 * reallocated in the next transaction.
1913 *
1914 * This is used in a context where the caller does not prevent transaction
1915 * commits from happening, either by holding a transaction handle or holding
1916 * some lock, while it's doing searches through a commit root.
1917 * At the moment it's only used for send operations.
1918 */
finish_need_commit_sem_search(struct btrfs_path * path)1919 static int finish_need_commit_sem_search(struct btrfs_path *path)
1920 {
1921 const int i = path->lowest_level;
1922 const int slot = path->slots[i];
1923 struct extent_buffer *lowest = path->nodes[i];
1924 struct extent_buffer *clone;
1925
1926 ASSERT(path->need_commit_sem);
1927
1928 if (!lowest)
1929 return 0;
1930
1931 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1932
1933 clone = btrfs_clone_extent_buffer(lowest);
1934 if (!clone)
1935 return -ENOMEM;
1936
1937 btrfs_release_path(path);
1938 path->nodes[i] = clone;
1939 path->slots[i] = slot;
1940
1941 return 0;
1942 }
1943
search_for_key_slot(struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1944 static inline int search_for_key_slot(struct extent_buffer *eb,
1945 int search_low_slot,
1946 const struct btrfs_key *key,
1947 int prev_cmp,
1948 int *slot)
1949 {
1950 /*
1951 * If a previous call to btrfs_bin_search() on a parent node returned an
1952 * exact match (prev_cmp == 0), we can safely assume the target key will
1953 * always be at slot 0 on lower levels, since each key pointer
1954 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1955 * subtree it points to. Thus we can skip searching lower levels.
1956 */
1957 if (prev_cmp == 0) {
1958 *slot = 0;
1959 return 0;
1960 }
1961
1962 return btrfs_bin_search(eb, search_low_slot, key, slot);
1963 }
1964
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1965 static int search_leaf(struct btrfs_trans_handle *trans,
1966 struct btrfs_root *root,
1967 const struct btrfs_key *key,
1968 struct btrfs_path *path,
1969 int ins_len,
1970 int prev_cmp)
1971 {
1972 struct extent_buffer *leaf = path->nodes[0];
1973 int leaf_free_space = -1;
1974 int search_low_slot = 0;
1975 int ret;
1976 bool do_bin_search = true;
1977
1978 /*
1979 * If we are doing an insertion, the leaf has enough free space and the
1980 * destination slot for the key is not slot 0, then we can unlock our
1981 * write lock on the parent, and any other upper nodes, before doing the
1982 * binary search on the leaf (with search_for_key_slot()), allowing other
1983 * tasks to lock the parent and any other upper nodes.
1984 */
1985 if (ins_len > 0) {
1986 /*
1987 * Cache the leaf free space, since we will need it later and it
1988 * will not change until then.
1989 */
1990 leaf_free_space = btrfs_leaf_free_space(leaf);
1991
1992 /*
1993 * !path->locks[1] means we have a single node tree, the leaf is
1994 * the root of the tree.
1995 */
1996 if (path->locks[1] && leaf_free_space >= ins_len) {
1997 struct btrfs_disk_key first_key;
1998
1999 ASSERT(btrfs_header_nritems(leaf) > 0);
2000 btrfs_item_key(leaf, &first_key, 0);
2001
2002 /*
2003 * Doing the extra comparison with the first key is cheap,
2004 * taking into account that the first key is very likely
2005 * already in a cache line because it immediately follows
2006 * the extent buffer's header and we have recently accessed
2007 * the header's level field.
2008 */
2009 ret = comp_keys(&first_key, key);
2010 if (ret < 0) {
2011 /*
2012 * The first key is smaller than the key we want
2013 * to insert, so we are safe to unlock all upper
2014 * nodes and we have to do the binary search.
2015 *
2016 * We do use btrfs_unlock_up_safe() and not
2017 * unlock_up() because the later does not unlock
2018 * nodes with a slot of 0 - we can safely unlock
2019 * any node even if its slot is 0 since in this
2020 * case the key does not end up at slot 0 of the
2021 * leaf and there's no need to split the leaf.
2022 */
2023 btrfs_unlock_up_safe(path, 1);
2024 search_low_slot = 1;
2025 } else {
2026 /*
2027 * The first key is >= then the key we want to
2028 * insert, so we can skip the binary search as
2029 * the target key will be at slot 0.
2030 *
2031 * We can not unlock upper nodes when the key is
2032 * less than the first key, because we will need
2033 * to update the key at slot 0 of the parent node
2034 * and possibly of other upper nodes too.
2035 * If the key matches the first key, then we can
2036 * unlock all the upper nodes, using
2037 * btrfs_unlock_up_safe() instead of unlock_up()
2038 * as stated above.
2039 */
2040 if (ret == 0)
2041 btrfs_unlock_up_safe(path, 1);
2042 /*
2043 * ret is already 0 or 1, matching the result of
2044 * a btrfs_bin_search() call, so there is no need
2045 * to adjust it.
2046 */
2047 do_bin_search = false;
2048 path->slots[0] = 0;
2049 }
2050 }
2051 }
2052
2053 if (do_bin_search) {
2054 ret = search_for_key_slot(leaf, search_low_slot, key,
2055 prev_cmp, &path->slots[0]);
2056 if (ret < 0)
2057 return ret;
2058 }
2059
2060 if (ins_len > 0) {
2061 /*
2062 * Item key already exists. In this case, if we are allowed to
2063 * insert the item (for example, in dir_item case, item key
2064 * collision is allowed), it will be merged with the original
2065 * item. Only the item size grows, no new btrfs item will be
2066 * added. If search_for_extension is not set, ins_len already
2067 * accounts the size btrfs_item, deduct it here so leaf space
2068 * check will be correct.
2069 */
2070 if (ret == 0 && !path->search_for_extension) {
2071 ASSERT(ins_len >= sizeof(struct btrfs_item));
2072 ins_len -= sizeof(struct btrfs_item);
2073 }
2074
2075 ASSERT(leaf_free_space >= 0);
2076
2077 if (leaf_free_space < ins_len) {
2078 int err;
2079
2080 err = split_leaf(trans, root, key, path, ins_len,
2081 (ret == 0));
2082 ASSERT(err <= 0);
2083 if (WARN_ON(err > 0))
2084 err = -EUCLEAN;
2085 if (err)
2086 ret = err;
2087 }
2088 }
2089
2090 return ret;
2091 }
2092
2093 /*
2094 * btrfs_search_slot - look for a key in a tree and perform necessary
2095 * modifications to preserve tree invariants.
2096 *
2097 * @trans: Handle of transaction, used when modifying the tree
2098 * @p: Holds all btree nodes along the search path
2099 * @root: The root node of the tree
2100 * @key: The key we are looking for
2101 * @ins_len: Indicates purpose of search:
2102 * >0 for inserts it's size of item inserted (*)
2103 * <0 for deletions
2104 * 0 for plain searches, not modifying the tree
2105 *
2106 * (*) If size of item inserted doesn't include
2107 * sizeof(struct btrfs_item), then p->search_for_extension must
2108 * be set.
2109 * @cow: boolean should CoW operations be performed. Must always be 1
2110 * when modifying the tree.
2111 *
2112 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2113 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2114 *
2115 * If @key is found, 0 is returned and you can find the item in the leaf level
2116 * of the path (level 0)
2117 *
2118 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2119 * points to the slot where it should be inserted
2120 *
2121 * If an error is encountered while searching the tree a negative error number
2122 * is returned
2123 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2124 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2125 const struct btrfs_key *key, struct btrfs_path *p,
2126 int ins_len, int cow)
2127 {
2128 struct btrfs_fs_info *fs_info = root->fs_info;
2129 struct extent_buffer *b;
2130 int slot;
2131 int ret;
2132 int err;
2133 int level;
2134 int lowest_unlock = 1;
2135 /* everything at write_lock_level or lower must be write locked */
2136 int write_lock_level = 0;
2137 u8 lowest_level = 0;
2138 int min_write_lock_level;
2139 int prev_cmp;
2140
2141 might_sleep();
2142
2143 lowest_level = p->lowest_level;
2144 WARN_ON(lowest_level && ins_len > 0);
2145 WARN_ON(p->nodes[0] != NULL);
2146 BUG_ON(!cow && ins_len);
2147
2148 /*
2149 * For now only allow nowait for read only operations. There's no
2150 * strict reason why we can't, we just only need it for reads so it's
2151 * only implemented for reads.
2152 */
2153 ASSERT(!p->nowait || !cow);
2154
2155 if (ins_len < 0) {
2156 lowest_unlock = 2;
2157
2158 /* when we are removing items, we might have to go up to level
2159 * two as we update tree pointers Make sure we keep write
2160 * for those levels as well
2161 */
2162 write_lock_level = 2;
2163 } else if (ins_len > 0) {
2164 /*
2165 * for inserting items, make sure we have a write lock on
2166 * level 1 so we can update keys
2167 */
2168 write_lock_level = 1;
2169 }
2170
2171 if (!cow)
2172 write_lock_level = -1;
2173
2174 if (cow && (p->keep_locks || p->lowest_level))
2175 write_lock_level = BTRFS_MAX_LEVEL;
2176
2177 min_write_lock_level = write_lock_level;
2178
2179 if (p->need_commit_sem) {
2180 ASSERT(p->search_commit_root);
2181 if (p->nowait) {
2182 if (!down_read_trylock(&fs_info->commit_root_sem))
2183 return -EAGAIN;
2184 } else {
2185 down_read(&fs_info->commit_root_sem);
2186 }
2187 }
2188
2189 again:
2190 prev_cmp = -1;
2191 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2192 if (IS_ERR(b)) {
2193 ret = PTR_ERR(b);
2194 goto done;
2195 }
2196
2197 while (b) {
2198 int dec = 0;
2199
2200 level = btrfs_header_level(b);
2201
2202 if (cow) {
2203 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2204
2205 /*
2206 * if we don't really need to cow this block
2207 * then we don't want to set the path blocking,
2208 * so we test it here
2209 */
2210 if (!should_cow_block(trans, root, b))
2211 goto cow_done;
2212
2213 /*
2214 * must have write locks on this node and the
2215 * parent
2216 */
2217 if (level > write_lock_level ||
2218 (level + 1 > write_lock_level &&
2219 level + 1 < BTRFS_MAX_LEVEL &&
2220 p->nodes[level + 1])) {
2221 write_lock_level = level + 1;
2222 btrfs_release_path(p);
2223 goto again;
2224 }
2225
2226 if (last_level)
2227 err = btrfs_cow_block(trans, root, b, NULL, 0,
2228 &b,
2229 BTRFS_NESTING_COW);
2230 else
2231 err = btrfs_cow_block(trans, root, b,
2232 p->nodes[level + 1],
2233 p->slots[level + 1], &b,
2234 BTRFS_NESTING_COW);
2235 if (err) {
2236 ret = err;
2237 goto done;
2238 }
2239 }
2240 cow_done:
2241 p->nodes[level] = b;
2242
2243 /*
2244 * we have a lock on b and as long as we aren't changing
2245 * the tree, there is no way to for the items in b to change.
2246 * It is safe to drop the lock on our parent before we
2247 * go through the expensive btree search on b.
2248 *
2249 * If we're inserting or deleting (ins_len != 0), then we might
2250 * be changing slot zero, which may require changing the parent.
2251 * So, we can't drop the lock until after we know which slot
2252 * we're operating on.
2253 */
2254 if (!ins_len && !p->keep_locks) {
2255 int u = level + 1;
2256
2257 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2258 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2259 p->locks[u] = 0;
2260 }
2261 }
2262
2263 if (level == 0) {
2264 if (ins_len > 0)
2265 ASSERT(write_lock_level >= 1);
2266
2267 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2268 if (!p->search_for_split)
2269 unlock_up(p, level, lowest_unlock,
2270 min_write_lock_level, NULL);
2271 goto done;
2272 }
2273
2274 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2275 if (ret < 0)
2276 goto done;
2277 prev_cmp = ret;
2278
2279 if (ret && slot > 0) {
2280 dec = 1;
2281 slot--;
2282 }
2283 p->slots[level] = slot;
2284 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2285 &write_lock_level);
2286 if (err == -EAGAIN)
2287 goto again;
2288 if (err) {
2289 ret = err;
2290 goto done;
2291 }
2292 b = p->nodes[level];
2293 slot = p->slots[level];
2294
2295 /*
2296 * Slot 0 is special, if we change the key we have to update
2297 * the parent pointer which means we must have a write lock on
2298 * the parent
2299 */
2300 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2301 write_lock_level = level + 1;
2302 btrfs_release_path(p);
2303 goto again;
2304 }
2305
2306 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2307 &write_lock_level);
2308
2309 if (level == lowest_level) {
2310 if (dec)
2311 p->slots[level]++;
2312 goto done;
2313 }
2314
2315 err = read_block_for_search(root, p, &b, level, slot, key);
2316 if (err == -EAGAIN)
2317 goto again;
2318 if (err) {
2319 ret = err;
2320 goto done;
2321 }
2322
2323 if (!p->skip_locking) {
2324 level = btrfs_header_level(b);
2325
2326 btrfs_maybe_reset_lockdep_class(root, b);
2327
2328 if (level <= write_lock_level) {
2329 btrfs_tree_lock(b);
2330 p->locks[level] = BTRFS_WRITE_LOCK;
2331 } else {
2332 if (p->nowait) {
2333 if (!btrfs_try_tree_read_lock(b)) {
2334 free_extent_buffer(b);
2335 ret = -EAGAIN;
2336 goto done;
2337 }
2338 } else {
2339 btrfs_tree_read_lock(b);
2340 }
2341 p->locks[level] = BTRFS_READ_LOCK;
2342 }
2343 p->nodes[level] = b;
2344 }
2345 }
2346 ret = 1;
2347 done:
2348 if (ret < 0 && !p->skip_release_on_error)
2349 btrfs_release_path(p);
2350
2351 if (p->need_commit_sem) {
2352 int ret2;
2353
2354 ret2 = finish_need_commit_sem_search(p);
2355 up_read(&fs_info->commit_root_sem);
2356 if (ret2)
2357 ret = ret2;
2358 }
2359
2360 return ret;
2361 }
2362 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2363
2364 /*
2365 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2366 * current state of the tree together with the operations recorded in the tree
2367 * modification log to search for the key in a previous version of this tree, as
2368 * denoted by the time_seq parameter.
2369 *
2370 * Naturally, there is no support for insert, delete or cow operations.
2371 *
2372 * The resulting path and return value will be set up as if we called
2373 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2374 */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2375 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2376 struct btrfs_path *p, u64 time_seq)
2377 {
2378 struct btrfs_fs_info *fs_info = root->fs_info;
2379 struct extent_buffer *b;
2380 int slot;
2381 int ret;
2382 int err;
2383 int level;
2384 int lowest_unlock = 1;
2385 u8 lowest_level = 0;
2386
2387 lowest_level = p->lowest_level;
2388 WARN_ON(p->nodes[0] != NULL);
2389 ASSERT(!p->nowait);
2390
2391 if (p->search_commit_root) {
2392 BUG_ON(time_seq);
2393 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2394 }
2395
2396 again:
2397 b = btrfs_get_old_root(root, time_seq);
2398 if (!b) {
2399 ret = -EIO;
2400 goto done;
2401 }
2402 level = btrfs_header_level(b);
2403 p->locks[level] = BTRFS_READ_LOCK;
2404
2405 while (b) {
2406 int dec = 0;
2407
2408 level = btrfs_header_level(b);
2409 p->nodes[level] = b;
2410
2411 /*
2412 * we have a lock on b and as long as we aren't changing
2413 * the tree, there is no way to for the items in b to change.
2414 * It is safe to drop the lock on our parent before we
2415 * go through the expensive btree search on b.
2416 */
2417 btrfs_unlock_up_safe(p, level + 1);
2418
2419 ret = btrfs_bin_search(b, 0, key, &slot);
2420 if (ret < 0)
2421 goto done;
2422
2423 if (level == 0) {
2424 p->slots[level] = slot;
2425 unlock_up(p, level, lowest_unlock, 0, NULL);
2426 goto done;
2427 }
2428
2429 if (ret && slot > 0) {
2430 dec = 1;
2431 slot--;
2432 }
2433 p->slots[level] = slot;
2434 unlock_up(p, level, lowest_unlock, 0, NULL);
2435
2436 if (level == lowest_level) {
2437 if (dec)
2438 p->slots[level]++;
2439 goto done;
2440 }
2441
2442 err = read_block_for_search(root, p, &b, level, slot, key);
2443 if (err == -EAGAIN)
2444 goto again;
2445 if (err) {
2446 ret = err;
2447 goto done;
2448 }
2449
2450 level = btrfs_header_level(b);
2451 btrfs_tree_read_lock(b);
2452 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2453 if (!b) {
2454 ret = -ENOMEM;
2455 goto done;
2456 }
2457 p->locks[level] = BTRFS_READ_LOCK;
2458 p->nodes[level] = b;
2459 }
2460 ret = 1;
2461 done:
2462 if (ret < 0)
2463 btrfs_release_path(p);
2464
2465 return ret;
2466 }
2467
2468 /*
2469 * Search the tree again to find a leaf with smaller keys.
2470 * Returns 0 if it found something.
2471 * Returns 1 if there are no smaller keys.
2472 * Returns < 0 on error.
2473 *
2474 * This may release the path, and so you may lose any locks held at the
2475 * time you call it.
2476 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)2477 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2478 {
2479 struct btrfs_key key;
2480 struct btrfs_key orig_key;
2481 struct btrfs_disk_key found_key;
2482 int ret;
2483
2484 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2485 orig_key = key;
2486
2487 if (key.offset > 0) {
2488 key.offset--;
2489 } else if (key.type > 0) {
2490 key.type--;
2491 key.offset = (u64)-1;
2492 } else if (key.objectid > 0) {
2493 key.objectid--;
2494 key.type = (u8)-1;
2495 key.offset = (u64)-1;
2496 } else {
2497 return 1;
2498 }
2499
2500 btrfs_release_path(path);
2501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502 if (ret <= 0)
2503 return ret;
2504
2505 /*
2506 * Previous key not found. Even if we were at slot 0 of the leaf we had
2507 * before releasing the path and calling btrfs_search_slot(), we now may
2508 * be in a slot pointing to the same original key - this can happen if
2509 * after we released the path, one of more items were moved from a
2510 * sibling leaf into the front of the leaf we had due to an insertion
2511 * (see push_leaf_right()).
2512 * If we hit this case and our slot is > 0 and just decrement the slot
2513 * so that the caller does not process the same key again, which may or
2514 * may not break the caller, depending on its logic.
2515 */
2516 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2517 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2518 ret = comp_keys(&found_key, &orig_key);
2519 if (ret == 0) {
2520 if (path->slots[0] > 0) {
2521 path->slots[0]--;
2522 return 0;
2523 }
2524 /*
2525 * At slot 0, same key as before, it means orig_key is
2526 * the lowest, leftmost, key in the tree. We're done.
2527 */
2528 return 1;
2529 }
2530 }
2531
2532 btrfs_item_key(path->nodes[0], &found_key, 0);
2533 ret = comp_keys(&found_key, &key);
2534 /*
2535 * We might have had an item with the previous key in the tree right
2536 * before we released our path. And after we released our path, that
2537 * item might have been pushed to the first slot (0) of the leaf we
2538 * were holding due to a tree balance. Alternatively, an item with the
2539 * previous key can exist as the only element of a leaf (big fat item).
2540 * Therefore account for these 2 cases, so that our callers (like
2541 * btrfs_previous_item) don't miss an existing item with a key matching
2542 * the previous key we computed above.
2543 */
2544 if (ret <= 0)
2545 return 0;
2546 return 1;
2547 }
2548
2549 /*
2550 * helper to use instead of search slot if no exact match is needed but
2551 * instead the next or previous item should be returned.
2552 * When find_higher is true, the next higher item is returned, the next lower
2553 * otherwise.
2554 * When return_any and find_higher are both true, and no higher item is found,
2555 * return the next lower instead.
2556 * When return_any is true and find_higher is false, and no lower item is found,
2557 * return the next higher instead.
2558 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2559 * < 0 on error
2560 */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2561 int btrfs_search_slot_for_read(struct btrfs_root *root,
2562 const struct btrfs_key *key,
2563 struct btrfs_path *p, int find_higher,
2564 int return_any)
2565 {
2566 int ret;
2567 struct extent_buffer *leaf;
2568
2569 again:
2570 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2571 if (ret <= 0)
2572 return ret;
2573 /*
2574 * a return value of 1 means the path is at the position where the
2575 * item should be inserted. Normally this is the next bigger item,
2576 * but in case the previous item is the last in a leaf, path points
2577 * to the first free slot in the previous leaf, i.e. at an invalid
2578 * item.
2579 */
2580 leaf = p->nodes[0];
2581
2582 if (find_higher) {
2583 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2584 ret = btrfs_next_leaf(root, p);
2585 if (ret <= 0)
2586 return ret;
2587 if (!return_any)
2588 return 1;
2589 /*
2590 * no higher item found, return the next
2591 * lower instead
2592 */
2593 return_any = 0;
2594 find_higher = 0;
2595 btrfs_release_path(p);
2596 goto again;
2597 }
2598 } else {
2599 if (p->slots[0] == 0) {
2600 ret = btrfs_prev_leaf(root, p);
2601 if (ret < 0)
2602 return ret;
2603 if (!ret) {
2604 leaf = p->nodes[0];
2605 if (p->slots[0] == btrfs_header_nritems(leaf))
2606 p->slots[0]--;
2607 return 0;
2608 }
2609 if (!return_any)
2610 return 1;
2611 /*
2612 * no lower item found, return the next
2613 * higher instead
2614 */
2615 return_any = 0;
2616 find_higher = 1;
2617 btrfs_release_path(p);
2618 goto again;
2619 } else {
2620 --p->slots[0];
2621 }
2622 }
2623 return 0;
2624 }
2625
2626 /*
2627 * Execute search and call btrfs_previous_item to traverse backwards if the item
2628 * was not found.
2629 *
2630 * Return 0 if found, 1 if not found and < 0 if error.
2631 */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2632 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2633 struct btrfs_path *path)
2634 {
2635 int ret;
2636
2637 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2638 if (ret > 0)
2639 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2640
2641 if (ret == 0)
2642 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2643
2644 return ret;
2645 }
2646
2647 /*
2648 * Search for a valid slot for the given path.
2649 *
2650 * @root: The root node of the tree.
2651 * @key: Will contain a valid item if found.
2652 * @path: The starting point to validate the slot.
2653 *
2654 * Return: 0 if the item is valid
2655 * 1 if not found
2656 * <0 if error.
2657 */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2658 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2659 struct btrfs_path *path)
2660 {
2661 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2662 int ret;
2663
2664 ret = btrfs_next_leaf(root, path);
2665 if (ret)
2666 return ret;
2667 }
2668
2669 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2670 return 0;
2671 }
2672
2673 /*
2674 * adjust the pointers going up the tree, starting at level
2675 * making sure the right key of each node is points to 'key'.
2676 * This is used after shifting pointers to the left, so it stops
2677 * fixing up pointers when a given leaf/node is not in slot 0 of the
2678 * higher levels
2679 *
2680 */
fixup_low_keys(struct btrfs_path * path,struct btrfs_disk_key * key,int level)2681 static void fixup_low_keys(struct btrfs_path *path,
2682 struct btrfs_disk_key *key, int level)
2683 {
2684 int i;
2685 struct extent_buffer *t;
2686 int ret;
2687
2688 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2689 int tslot = path->slots[i];
2690
2691 if (!path->nodes[i])
2692 break;
2693 t = path->nodes[i];
2694 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2695 BTRFS_MOD_LOG_KEY_REPLACE);
2696 BUG_ON(ret < 0);
2697 btrfs_set_node_key(t, key, tslot);
2698 btrfs_mark_buffer_dirty(path->nodes[i]);
2699 if (tslot != 0)
2700 break;
2701 }
2702 }
2703
2704 /*
2705 * update item key.
2706 *
2707 * This function isn't completely safe. It's the caller's responsibility
2708 * that the new key won't break the order
2709 */
btrfs_set_item_key_safe(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * new_key)2710 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2711 struct btrfs_path *path,
2712 const struct btrfs_key *new_key)
2713 {
2714 struct btrfs_disk_key disk_key;
2715 struct extent_buffer *eb;
2716 int slot;
2717
2718 eb = path->nodes[0];
2719 slot = path->slots[0];
2720 if (slot > 0) {
2721 btrfs_item_key(eb, &disk_key, slot - 1);
2722 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2723 btrfs_print_leaf(eb);
2724 btrfs_crit(fs_info,
2725 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2726 slot, btrfs_disk_key_objectid(&disk_key),
2727 btrfs_disk_key_type(&disk_key),
2728 btrfs_disk_key_offset(&disk_key),
2729 new_key->objectid, new_key->type,
2730 new_key->offset);
2731 BUG();
2732 }
2733 }
2734 if (slot < btrfs_header_nritems(eb) - 1) {
2735 btrfs_item_key(eb, &disk_key, slot + 1);
2736 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2737 btrfs_print_leaf(eb);
2738 btrfs_crit(fs_info,
2739 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2740 slot, btrfs_disk_key_objectid(&disk_key),
2741 btrfs_disk_key_type(&disk_key),
2742 btrfs_disk_key_offset(&disk_key),
2743 new_key->objectid, new_key->type,
2744 new_key->offset);
2745 BUG();
2746 }
2747 }
2748
2749 btrfs_cpu_key_to_disk(&disk_key, new_key);
2750 btrfs_set_item_key(eb, &disk_key, slot);
2751 btrfs_mark_buffer_dirty(eb);
2752 if (slot == 0)
2753 fixup_low_keys(path, &disk_key, 1);
2754 }
2755
2756 /*
2757 * Check key order of two sibling extent buffers.
2758 *
2759 * Return true if something is wrong.
2760 * Return false if everything is fine.
2761 *
2762 * Tree-checker only works inside one tree block, thus the following
2763 * corruption can not be detected by tree-checker:
2764 *
2765 * Leaf @left | Leaf @right
2766 * --------------------------------------------------------------
2767 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2768 *
2769 * Key f6 in leaf @left itself is valid, but not valid when the next
2770 * key in leaf @right is 7.
2771 * This can only be checked at tree block merge time.
2772 * And since tree checker has ensured all key order in each tree block
2773 * is correct, we only need to bother the last key of @left and the first
2774 * key of @right.
2775 */
check_sibling_keys(struct extent_buffer * left,struct extent_buffer * right)2776 static bool check_sibling_keys(struct extent_buffer *left,
2777 struct extent_buffer *right)
2778 {
2779 struct btrfs_key left_last;
2780 struct btrfs_key right_first;
2781 int level = btrfs_header_level(left);
2782 int nr_left = btrfs_header_nritems(left);
2783 int nr_right = btrfs_header_nritems(right);
2784
2785 /* No key to check in one of the tree blocks */
2786 if (!nr_left || !nr_right)
2787 return false;
2788
2789 if (level) {
2790 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2791 btrfs_node_key_to_cpu(right, &right_first, 0);
2792 } else {
2793 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2794 btrfs_item_key_to_cpu(right, &right_first, 0);
2795 }
2796
2797 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2798 btrfs_crit(left->fs_info, "left extent buffer:");
2799 btrfs_print_tree(left, false);
2800 btrfs_crit(left->fs_info, "right extent buffer:");
2801 btrfs_print_tree(right, false);
2802 btrfs_crit(left->fs_info,
2803 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2804 left_last.objectid, left_last.type,
2805 left_last.offset, right_first.objectid,
2806 right_first.type, right_first.offset);
2807 return true;
2808 }
2809 return false;
2810 }
2811
2812 /*
2813 * try to push data from one node into the next node left in the
2814 * tree.
2815 *
2816 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2817 * error, and > 0 if there was no room in the left hand block.
2818 */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2819 static int push_node_left(struct btrfs_trans_handle *trans,
2820 struct extent_buffer *dst,
2821 struct extent_buffer *src, int empty)
2822 {
2823 struct btrfs_fs_info *fs_info = trans->fs_info;
2824 int push_items = 0;
2825 int src_nritems;
2826 int dst_nritems;
2827 int ret = 0;
2828
2829 src_nritems = btrfs_header_nritems(src);
2830 dst_nritems = btrfs_header_nritems(dst);
2831 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2832 WARN_ON(btrfs_header_generation(src) != trans->transid);
2833 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2834
2835 if (!empty && src_nritems <= 8)
2836 return 1;
2837
2838 if (push_items <= 0)
2839 return 1;
2840
2841 if (empty) {
2842 push_items = min(src_nritems, push_items);
2843 if (push_items < src_nritems) {
2844 /* leave at least 8 pointers in the node if
2845 * we aren't going to empty it
2846 */
2847 if (src_nritems - push_items < 8) {
2848 if (push_items <= 8)
2849 return 1;
2850 push_items -= 8;
2851 }
2852 }
2853 } else
2854 push_items = min(src_nritems - 8, push_items);
2855
2856 /* dst is the left eb, src is the middle eb */
2857 if (check_sibling_keys(dst, src)) {
2858 ret = -EUCLEAN;
2859 btrfs_abort_transaction(trans, ret);
2860 return ret;
2861 }
2862 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2863 if (ret) {
2864 btrfs_abort_transaction(trans, ret);
2865 return ret;
2866 }
2867 copy_extent_buffer(dst, src,
2868 btrfs_node_key_ptr_offset(dst, dst_nritems),
2869 btrfs_node_key_ptr_offset(src, 0),
2870 push_items * sizeof(struct btrfs_key_ptr));
2871
2872 if (push_items < src_nritems) {
2873 /*
2874 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2875 * don't need to do an explicit tree mod log operation for it.
2876 */
2877 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2878 btrfs_node_key_ptr_offset(src, push_items),
2879 (src_nritems - push_items) *
2880 sizeof(struct btrfs_key_ptr));
2881 }
2882 btrfs_set_header_nritems(src, src_nritems - push_items);
2883 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2884 btrfs_mark_buffer_dirty(src);
2885 btrfs_mark_buffer_dirty(dst);
2886
2887 return ret;
2888 }
2889
2890 /*
2891 * try to push data from one node into the next node right in the
2892 * tree.
2893 *
2894 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2895 * error, and > 0 if there was no room in the right hand block.
2896 *
2897 * this will only push up to 1/2 the contents of the left node over
2898 */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2899 static int balance_node_right(struct btrfs_trans_handle *trans,
2900 struct extent_buffer *dst,
2901 struct extent_buffer *src)
2902 {
2903 struct btrfs_fs_info *fs_info = trans->fs_info;
2904 int push_items = 0;
2905 int max_push;
2906 int src_nritems;
2907 int dst_nritems;
2908 int ret = 0;
2909
2910 WARN_ON(btrfs_header_generation(src) != trans->transid);
2911 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2912
2913 src_nritems = btrfs_header_nritems(src);
2914 dst_nritems = btrfs_header_nritems(dst);
2915 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2916 if (push_items <= 0)
2917 return 1;
2918
2919 if (src_nritems < 4)
2920 return 1;
2921
2922 max_push = src_nritems / 2 + 1;
2923 /* don't try to empty the node */
2924 if (max_push >= src_nritems)
2925 return 1;
2926
2927 if (max_push < push_items)
2928 push_items = max_push;
2929
2930 /* dst is the right eb, src is the middle eb */
2931 if (check_sibling_keys(src, dst)) {
2932 ret = -EUCLEAN;
2933 btrfs_abort_transaction(trans, ret);
2934 return ret;
2935 }
2936
2937 /*
2938 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2939 * need to do an explicit tree mod log operation for it.
2940 */
2941 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2942 btrfs_node_key_ptr_offset(dst, 0),
2943 (dst_nritems) *
2944 sizeof(struct btrfs_key_ptr));
2945
2946 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2947 push_items);
2948 if (ret) {
2949 btrfs_abort_transaction(trans, ret);
2950 return ret;
2951 }
2952 copy_extent_buffer(dst, src,
2953 btrfs_node_key_ptr_offset(dst, 0),
2954 btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2955 push_items * sizeof(struct btrfs_key_ptr));
2956
2957 btrfs_set_header_nritems(src, src_nritems - push_items);
2958 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2959
2960 btrfs_mark_buffer_dirty(src);
2961 btrfs_mark_buffer_dirty(dst);
2962
2963 return ret;
2964 }
2965
2966 /*
2967 * helper function to insert a new root level in the tree.
2968 * A new node is allocated, and a single item is inserted to
2969 * point to the existing root
2970 *
2971 * returns zero on success or < 0 on failure.
2972 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2973 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2974 struct btrfs_root *root,
2975 struct btrfs_path *path, int level)
2976 {
2977 struct btrfs_fs_info *fs_info = root->fs_info;
2978 u64 lower_gen;
2979 struct extent_buffer *lower;
2980 struct extent_buffer *c;
2981 struct extent_buffer *old;
2982 struct btrfs_disk_key lower_key;
2983 int ret;
2984
2985 BUG_ON(path->nodes[level]);
2986 BUG_ON(path->nodes[level-1] != root->node);
2987
2988 lower = path->nodes[level-1];
2989 if (level == 1)
2990 btrfs_item_key(lower, &lower_key, 0);
2991 else
2992 btrfs_node_key(lower, &lower_key, 0);
2993
2994 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2995 &lower_key, level, root->node->start, 0,
2996 BTRFS_NESTING_NEW_ROOT);
2997 if (IS_ERR(c))
2998 return PTR_ERR(c);
2999
3000 root_add_used(root, fs_info->nodesize);
3001
3002 btrfs_set_header_nritems(c, 1);
3003 btrfs_set_node_key(c, &lower_key, 0);
3004 btrfs_set_node_blockptr(c, 0, lower->start);
3005 lower_gen = btrfs_header_generation(lower);
3006 WARN_ON(lower_gen != trans->transid);
3007
3008 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3009
3010 btrfs_mark_buffer_dirty(c);
3011
3012 old = root->node;
3013 ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
3014 if (ret < 0) {
3015 btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
3016 btrfs_tree_unlock(c);
3017 free_extent_buffer(c);
3018 return ret;
3019 }
3020 rcu_assign_pointer(root->node, c);
3021
3022 /* the super has an extra ref to root->node */
3023 free_extent_buffer(old);
3024
3025 add_root_to_dirty_list(root);
3026 atomic_inc(&c->refs);
3027 path->nodes[level] = c;
3028 path->locks[level] = BTRFS_WRITE_LOCK;
3029 path->slots[level] = 0;
3030 return 0;
3031 }
3032
3033 /*
3034 * worker function to insert a single pointer in a node.
3035 * the node should have enough room for the pointer already
3036 *
3037 * slot and level indicate where you want the key to go, and
3038 * blocknr is the block the key points to.
3039 */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)3040 static int insert_ptr(struct btrfs_trans_handle *trans,
3041 struct btrfs_path *path,
3042 struct btrfs_disk_key *key, u64 bytenr,
3043 int slot, int level)
3044 {
3045 struct extent_buffer *lower;
3046 int nritems;
3047 int ret;
3048
3049 BUG_ON(!path->nodes[level]);
3050 btrfs_assert_tree_write_locked(path->nodes[level]);
3051 lower = path->nodes[level];
3052 nritems = btrfs_header_nritems(lower);
3053 BUG_ON(slot > nritems);
3054 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3055 if (slot != nritems) {
3056 if (level) {
3057 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
3058 slot, nritems - slot);
3059 if (ret < 0) {
3060 btrfs_abort_transaction(trans, ret);
3061 return ret;
3062 }
3063 }
3064 memmove_extent_buffer(lower,
3065 btrfs_node_key_ptr_offset(lower, slot + 1),
3066 btrfs_node_key_ptr_offset(lower, slot),
3067 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3068 }
3069 if (level) {
3070 ret = btrfs_tree_mod_log_insert_key(lower, slot,
3071 BTRFS_MOD_LOG_KEY_ADD);
3072 if (ret < 0) {
3073 btrfs_abort_transaction(trans, ret);
3074 return ret;
3075 }
3076 }
3077 btrfs_set_node_key(lower, key, slot);
3078 btrfs_set_node_blockptr(lower, slot, bytenr);
3079 WARN_ON(trans->transid == 0);
3080 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3081 btrfs_set_header_nritems(lower, nritems + 1);
3082 btrfs_mark_buffer_dirty(lower);
3083
3084 return 0;
3085 }
3086
3087 /*
3088 * split the node at the specified level in path in two.
3089 * The path is corrected to point to the appropriate node after the split
3090 *
3091 * Before splitting this tries to make some room in the node by pushing
3092 * left and right, if either one works, it returns right away.
3093 *
3094 * returns 0 on success and < 0 on failure
3095 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3096 static noinline int split_node(struct btrfs_trans_handle *trans,
3097 struct btrfs_root *root,
3098 struct btrfs_path *path, int level)
3099 {
3100 struct btrfs_fs_info *fs_info = root->fs_info;
3101 struct extent_buffer *c;
3102 struct extent_buffer *split;
3103 struct btrfs_disk_key disk_key;
3104 int mid;
3105 int ret;
3106 u32 c_nritems;
3107
3108 c = path->nodes[level];
3109 WARN_ON(btrfs_header_generation(c) != trans->transid);
3110 if (c == root->node) {
3111 /*
3112 * trying to split the root, lets make a new one
3113 *
3114 * tree mod log: We don't log_removal old root in
3115 * insert_new_root, because that root buffer will be kept as a
3116 * normal node. We are going to log removal of half of the
3117 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3118 * holding a tree lock on the buffer, which is why we cannot
3119 * race with other tree_mod_log users.
3120 */
3121 ret = insert_new_root(trans, root, path, level + 1);
3122 if (ret)
3123 return ret;
3124 } else {
3125 ret = push_nodes_for_insert(trans, root, path, level);
3126 c = path->nodes[level];
3127 if (!ret && btrfs_header_nritems(c) <
3128 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3129 return 0;
3130 if (ret < 0)
3131 return ret;
3132 }
3133
3134 c_nritems = btrfs_header_nritems(c);
3135 mid = (c_nritems + 1) / 2;
3136 btrfs_node_key(c, &disk_key, mid);
3137
3138 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3139 &disk_key, level, c->start, 0,
3140 BTRFS_NESTING_SPLIT);
3141 if (IS_ERR(split))
3142 return PTR_ERR(split);
3143
3144 root_add_used(root, fs_info->nodesize);
3145 ASSERT(btrfs_header_level(c) == level);
3146
3147 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3148 if (ret) {
3149 btrfs_tree_unlock(split);
3150 free_extent_buffer(split);
3151 btrfs_abort_transaction(trans, ret);
3152 return ret;
3153 }
3154 copy_extent_buffer(split, c,
3155 btrfs_node_key_ptr_offset(split, 0),
3156 btrfs_node_key_ptr_offset(c, mid),
3157 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3158 btrfs_set_header_nritems(split, c_nritems - mid);
3159 btrfs_set_header_nritems(c, mid);
3160
3161 btrfs_mark_buffer_dirty(c);
3162 btrfs_mark_buffer_dirty(split);
3163
3164 ret = insert_ptr(trans, path, &disk_key, split->start,
3165 path->slots[level + 1] + 1, level + 1);
3166 if (ret < 0) {
3167 btrfs_tree_unlock(split);
3168 free_extent_buffer(split);
3169 return ret;
3170 }
3171
3172 if (path->slots[level] >= mid) {
3173 path->slots[level] -= mid;
3174 btrfs_tree_unlock(c);
3175 free_extent_buffer(c);
3176 path->nodes[level] = split;
3177 path->slots[level + 1] += 1;
3178 } else {
3179 btrfs_tree_unlock(split);
3180 free_extent_buffer(split);
3181 }
3182 return 0;
3183 }
3184
3185 /*
3186 * how many bytes are required to store the items in a leaf. start
3187 * and nr indicate which items in the leaf to check. This totals up the
3188 * space used both by the item structs and the item data
3189 */
leaf_space_used(const struct extent_buffer * l,int start,int nr)3190 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3191 {
3192 int data_len;
3193 int nritems = btrfs_header_nritems(l);
3194 int end = min(nritems, start + nr) - 1;
3195
3196 if (!nr)
3197 return 0;
3198 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3199 data_len = data_len - btrfs_item_offset(l, end);
3200 data_len += sizeof(struct btrfs_item) * nr;
3201 WARN_ON(data_len < 0);
3202 return data_len;
3203 }
3204
3205 /*
3206 * The space between the end of the leaf items and
3207 * the start of the leaf data. IOW, how much room
3208 * the leaf has left for both items and data
3209 */
btrfs_leaf_free_space(const struct extent_buffer * leaf)3210 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3211 {
3212 struct btrfs_fs_info *fs_info = leaf->fs_info;
3213 int nritems = btrfs_header_nritems(leaf);
3214 int ret;
3215
3216 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3217 if (ret < 0) {
3218 btrfs_crit(fs_info,
3219 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3220 ret,
3221 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3222 leaf_space_used(leaf, 0, nritems), nritems);
3223 }
3224 return ret;
3225 }
3226
3227 /*
3228 * min slot controls the lowest index we're willing to push to the
3229 * right. We'll push up to and including min_slot, but no lower
3230 */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3231 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3232 struct btrfs_path *path,
3233 int data_size, int empty,
3234 struct extent_buffer *right,
3235 int free_space, u32 left_nritems,
3236 u32 min_slot)
3237 {
3238 struct btrfs_fs_info *fs_info = right->fs_info;
3239 struct extent_buffer *left = path->nodes[0];
3240 struct extent_buffer *upper = path->nodes[1];
3241 struct btrfs_map_token token;
3242 struct btrfs_disk_key disk_key;
3243 int slot;
3244 u32 i;
3245 int push_space = 0;
3246 int push_items = 0;
3247 u32 nr;
3248 u32 right_nritems;
3249 u32 data_end;
3250 u32 this_item_size;
3251
3252 if (empty)
3253 nr = 0;
3254 else
3255 nr = max_t(u32, 1, min_slot);
3256
3257 if (path->slots[0] >= left_nritems)
3258 push_space += data_size;
3259
3260 slot = path->slots[1];
3261 i = left_nritems - 1;
3262 while (i >= nr) {
3263 if (!empty && push_items > 0) {
3264 if (path->slots[0] > i)
3265 break;
3266 if (path->slots[0] == i) {
3267 int space = btrfs_leaf_free_space(left);
3268
3269 if (space + push_space * 2 > free_space)
3270 break;
3271 }
3272 }
3273
3274 if (path->slots[0] == i)
3275 push_space += data_size;
3276
3277 this_item_size = btrfs_item_size(left, i);
3278 if (this_item_size + sizeof(struct btrfs_item) +
3279 push_space > free_space)
3280 break;
3281
3282 push_items++;
3283 push_space += this_item_size + sizeof(struct btrfs_item);
3284 if (i == 0)
3285 break;
3286 i--;
3287 }
3288
3289 if (push_items == 0)
3290 goto out_unlock;
3291
3292 WARN_ON(!empty && push_items == left_nritems);
3293
3294 /* push left to right */
3295 right_nritems = btrfs_header_nritems(right);
3296
3297 push_space = btrfs_item_data_end(left, left_nritems - push_items);
3298 push_space -= leaf_data_end(left);
3299
3300 /* make room in the right data area */
3301 data_end = leaf_data_end(right);
3302 memmove_leaf_data(right, data_end - push_space, data_end,
3303 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3304
3305 /* copy from the left data area */
3306 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3307 leaf_data_end(left), push_space);
3308
3309 memmove_leaf_items(right, push_items, 0, right_nritems);
3310
3311 /* copy the items from left to right */
3312 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3313
3314 /* update the item pointers */
3315 btrfs_init_map_token(&token, right);
3316 right_nritems += push_items;
3317 btrfs_set_header_nritems(right, right_nritems);
3318 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3319 for (i = 0; i < right_nritems; i++) {
3320 push_space -= btrfs_token_item_size(&token, i);
3321 btrfs_set_token_item_offset(&token, i, push_space);
3322 }
3323
3324 left_nritems -= push_items;
3325 btrfs_set_header_nritems(left, left_nritems);
3326
3327 if (left_nritems)
3328 btrfs_mark_buffer_dirty(left);
3329 else
3330 btrfs_clear_buffer_dirty(trans, left);
3331
3332 btrfs_mark_buffer_dirty(right);
3333
3334 btrfs_item_key(right, &disk_key, 0);
3335 btrfs_set_node_key(upper, &disk_key, slot + 1);
3336 btrfs_mark_buffer_dirty(upper);
3337
3338 /* then fixup the leaf pointer in the path */
3339 if (path->slots[0] >= left_nritems) {
3340 path->slots[0] -= left_nritems;
3341 if (btrfs_header_nritems(path->nodes[0]) == 0)
3342 btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3343 btrfs_tree_unlock(path->nodes[0]);
3344 free_extent_buffer(path->nodes[0]);
3345 path->nodes[0] = right;
3346 path->slots[1] += 1;
3347 } else {
3348 btrfs_tree_unlock(right);
3349 free_extent_buffer(right);
3350 }
3351 return 0;
3352
3353 out_unlock:
3354 btrfs_tree_unlock(right);
3355 free_extent_buffer(right);
3356 return 1;
3357 }
3358
3359 /*
3360 * push some data in the path leaf to the right, trying to free up at
3361 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3362 *
3363 * returns 1 if the push failed because the other node didn't have enough
3364 * room, 0 if everything worked out and < 0 if there were major errors.
3365 *
3366 * this will push starting from min_slot to the end of the leaf. It won't
3367 * push any slot lower than min_slot
3368 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3369 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3370 *root, struct btrfs_path *path,
3371 int min_data_size, int data_size,
3372 int empty, u32 min_slot)
3373 {
3374 struct extent_buffer *left = path->nodes[0];
3375 struct extent_buffer *right;
3376 struct extent_buffer *upper;
3377 int slot;
3378 int free_space;
3379 u32 left_nritems;
3380 int ret;
3381
3382 if (!path->nodes[1])
3383 return 1;
3384
3385 slot = path->slots[1];
3386 upper = path->nodes[1];
3387 if (slot >= btrfs_header_nritems(upper) - 1)
3388 return 1;
3389
3390 btrfs_assert_tree_write_locked(path->nodes[1]);
3391
3392 right = btrfs_read_node_slot(upper, slot + 1);
3393 if (IS_ERR(right))
3394 return PTR_ERR(right);
3395
3396 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3397
3398 free_space = btrfs_leaf_free_space(right);
3399 if (free_space < data_size)
3400 goto out_unlock;
3401
3402 ret = btrfs_cow_block(trans, root, right, upper,
3403 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3404 if (ret)
3405 goto out_unlock;
3406
3407 left_nritems = btrfs_header_nritems(left);
3408 if (left_nritems == 0)
3409 goto out_unlock;
3410
3411 if (check_sibling_keys(left, right)) {
3412 ret = -EUCLEAN;
3413 btrfs_abort_transaction(trans, ret);
3414 btrfs_tree_unlock(right);
3415 free_extent_buffer(right);
3416 return ret;
3417 }
3418 if (path->slots[0] == left_nritems && !empty) {
3419 /* Key greater than all keys in the leaf, right neighbor has
3420 * enough room for it and we're not emptying our leaf to delete
3421 * it, therefore use right neighbor to insert the new item and
3422 * no need to touch/dirty our left leaf. */
3423 btrfs_tree_unlock(left);
3424 free_extent_buffer(left);
3425 path->nodes[0] = right;
3426 path->slots[0] = 0;
3427 path->slots[1]++;
3428 return 0;
3429 }
3430
3431 return __push_leaf_right(trans, path, min_data_size, empty, right,
3432 free_space, left_nritems, min_slot);
3433 out_unlock:
3434 btrfs_tree_unlock(right);
3435 free_extent_buffer(right);
3436 return 1;
3437 }
3438
3439 /*
3440 * push some data in the path leaf to the left, trying to free up at
3441 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3442 *
3443 * max_slot can put a limit on how far into the leaf we'll push items. The
3444 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3445 * items
3446 */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3447 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3448 struct btrfs_path *path, int data_size,
3449 int empty, struct extent_buffer *left,
3450 int free_space, u32 right_nritems,
3451 u32 max_slot)
3452 {
3453 struct btrfs_fs_info *fs_info = left->fs_info;
3454 struct btrfs_disk_key disk_key;
3455 struct extent_buffer *right = path->nodes[0];
3456 int i;
3457 int push_space = 0;
3458 int push_items = 0;
3459 u32 old_left_nritems;
3460 u32 nr;
3461 int ret = 0;
3462 u32 this_item_size;
3463 u32 old_left_item_size;
3464 struct btrfs_map_token token;
3465
3466 if (empty)
3467 nr = min(right_nritems, max_slot);
3468 else
3469 nr = min(right_nritems - 1, max_slot);
3470
3471 for (i = 0; i < nr; i++) {
3472 if (!empty && push_items > 0) {
3473 if (path->slots[0] < i)
3474 break;
3475 if (path->slots[0] == i) {
3476 int space = btrfs_leaf_free_space(right);
3477
3478 if (space + push_space * 2 > free_space)
3479 break;
3480 }
3481 }
3482
3483 if (path->slots[0] == i)
3484 push_space += data_size;
3485
3486 this_item_size = btrfs_item_size(right, i);
3487 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3488 free_space)
3489 break;
3490
3491 push_items++;
3492 push_space += this_item_size + sizeof(struct btrfs_item);
3493 }
3494
3495 if (push_items == 0) {
3496 ret = 1;
3497 goto out;
3498 }
3499 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3500
3501 /* push data from right to left */
3502 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3503
3504 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3505 btrfs_item_offset(right, push_items - 1);
3506
3507 copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3508 btrfs_item_offset(right, push_items - 1), push_space);
3509 old_left_nritems = btrfs_header_nritems(left);
3510 BUG_ON(old_left_nritems <= 0);
3511
3512 btrfs_init_map_token(&token, left);
3513 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3514 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3515 u32 ioff;
3516
3517 ioff = btrfs_token_item_offset(&token, i);
3518 btrfs_set_token_item_offset(&token, i,
3519 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3520 }
3521 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3522
3523 /* fixup right node */
3524 if (push_items > right_nritems)
3525 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3526 right_nritems);
3527
3528 if (push_items < right_nritems) {
3529 push_space = btrfs_item_offset(right, push_items - 1) -
3530 leaf_data_end(right);
3531 memmove_leaf_data(right,
3532 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3533 leaf_data_end(right), push_space);
3534
3535 memmove_leaf_items(right, 0, push_items,
3536 btrfs_header_nritems(right) - push_items);
3537 }
3538
3539 btrfs_init_map_token(&token, right);
3540 right_nritems -= push_items;
3541 btrfs_set_header_nritems(right, right_nritems);
3542 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3543 for (i = 0; i < right_nritems; i++) {
3544 push_space = push_space - btrfs_token_item_size(&token, i);
3545 btrfs_set_token_item_offset(&token, i, push_space);
3546 }
3547
3548 btrfs_mark_buffer_dirty(left);
3549 if (right_nritems)
3550 btrfs_mark_buffer_dirty(right);
3551 else
3552 btrfs_clear_buffer_dirty(trans, right);
3553
3554 btrfs_item_key(right, &disk_key, 0);
3555 fixup_low_keys(path, &disk_key, 1);
3556
3557 /* then fixup the leaf pointer in the path */
3558 if (path->slots[0] < push_items) {
3559 path->slots[0] += old_left_nritems;
3560 btrfs_tree_unlock(path->nodes[0]);
3561 free_extent_buffer(path->nodes[0]);
3562 path->nodes[0] = left;
3563 path->slots[1] -= 1;
3564 } else {
3565 btrfs_tree_unlock(left);
3566 free_extent_buffer(left);
3567 path->slots[0] -= push_items;
3568 }
3569 BUG_ON(path->slots[0] < 0);
3570 return ret;
3571 out:
3572 btrfs_tree_unlock(left);
3573 free_extent_buffer(left);
3574 return ret;
3575 }
3576
3577 /*
3578 * push some data in the path leaf to the left, trying to free up at
3579 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3580 *
3581 * max_slot can put a limit on how far into the leaf we'll push items. The
3582 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3583 * items
3584 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3585 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3586 *root, struct btrfs_path *path, int min_data_size,
3587 int data_size, int empty, u32 max_slot)
3588 {
3589 struct extent_buffer *right = path->nodes[0];
3590 struct extent_buffer *left;
3591 int slot;
3592 int free_space;
3593 u32 right_nritems;
3594 int ret = 0;
3595
3596 slot = path->slots[1];
3597 if (slot == 0)
3598 return 1;
3599 if (!path->nodes[1])
3600 return 1;
3601
3602 right_nritems = btrfs_header_nritems(right);
3603 if (right_nritems == 0)
3604 return 1;
3605
3606 btrfs_assert_tree_write_locked(path->nodes[1]);
3607
3608 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3609 if (IS_ERR(left))
3610 return PTR_ERR(left);
3611
3612 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3613
3614 free_space = btrfs_leaf_free_space(left);
3615 if (free_space < data_size) {
3616 ret = 1;
3617 goto out;
3618 }
3619
3620 ret = btrfs_cow_block(trans, root, left,
3621 path->nodes[1], slot - 1, &left,
3622 BTRFS_NESTING_LEFT_COW);
3623 if (ret) {
3624 /* we hit -ENOSPC, but it isn't fatal here */
3625 if (ret == -ENOSPC)
3626 ret = 1;
3627 goto out;
3628 }
3629
3630 if (check_sibling_keys(left, right)) {
3631 ret = -EUCLEAN;
3632 btrfs_abort_transaction(trans, ret);
3633 goto out;
3634 }
3635 return __push_leaf_left(trans, path, min_data_size, empty, left,
3636 free_space, right_nritems, max_slot);
3637 out:
3638 btrfs_tree_unlock(left);
3639 free_extent_buffer(left);
3640 return ret;
3641 }
3642
3643 /*
3644 * split the path's leaf in two, making sure there is at least data_size
3645 * available for the resulting leaf level of the path.
3646 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3647 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3648 struct btrfs_path *path,
3649 struct extent_buffer *l,
3650 struct extent_buffer *right,
3651 int slot, int mid, int nritems)
3652 {
3653 struct btrfs_fs_info *fs_info = trans->fs_info;
3654 int data_copy_size;
3655 int rt_data_off;
3656 int i;
3657 int ret;
3658 struct btrfs_disk_key disk_key;
3659 struct btrfs_map_token token;
3660
3661 nritems = nritems - mid;
3662 btrfs_set_header_nritems(right, nritems);
3663 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3664
3665 copy_leaf_items(right, l, 0, mid, nritems);
3666
3667 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3668 leaf_data_end(l), data_copy_size);
3669
3670 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3671
3672 btrfs_init_map_token(&token, right);
3673 for (i = 0; i < nritems; i++) {
3674 u32 ioff;
3675
3676 ioff = btrfs_token_item_offset(&token, i);
3677 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3678 }
3679
3680 btrfs_set_header_nritems(l, mid);
3681 btrfs_item_key(right, &disk_key, 0);
3682 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3683 if (ret < 0)
3684 return ret;
3685
3686 btrfs_mark_buffer_dirty(right);
3687 btrfs_mark_buffer_dirty(l);
3688 BUG_ON(path->slots[0] != slot);
3689
3690 if (mid <= slot) {
3691 btrfs_tree_unlock(path->nodes[0]);
3692 free_extent_buffer(path->nodes[0]);
3693 path->nodes[0] = right;
3694 path->slots[0] -= mid;
3695 path->slots[1] += 1;
3696 } else {
3697 btrfs_tree_unlock(right);
3698 free_extent_buffer(right);
3699 }
3700
3701 BUG_ON(path->slots[0] < 0);
3702
3703 return 0;
3704 }
3705
3706 /*
3707 * double splits happen when we need to insert a big item in the middle
3708 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3709 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3710 * A B C
3711 *
3712 * We avoid this by trying to push the items on either side of our target
3713 * into the adjacent leaves. If all goes well we can avoid the double split
3714 * completely.
3715 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3716 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3717 struct btrfs_root *root,
3718 struct btrfs_path *path,
3719 int data_size)
3720 {
3721 int ret;
3722 int progress = 0;
3723 int slot;
3724 u32 nritems;
3725 int space_needed = data_size;
3726
3727 slot = path->slots[0];
3728 if (slot < btrfs_header_nritems(path->nodes[0]))
3729 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3730
3731 /*
3732 * try to push all the items after our slot into the
3733 * right leaf
3734 */
3735 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3736 if (ret < 0)
3737 return ret;
3738
3739 if (ret == 0)
3740 progress++;
3741
3742 nritems = btrfs_header_nritems(path->nodes[0]);
3743 /*
3744 * our goal is to get our slot at the start or end of a leaf. If
3745 * we've done so we're done
3746 */
3747 if (path->slots[0] == 0 || path->slots[0] == nritems)
3748 return 0;
3749
3750 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3751 return 0;
3752
3753 /* try to push all the items before our slot into the next leaf */
3754 slot = path->slots[0];
3755 space_needed = data_size;
3756 if (slot > 0)
3757 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3758 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3759 if (ret < 0)
3760 return ret;
3761
3762 if (ret == 0)
3763 progress++;
3764
3765 if (progress)
3766 return 0;
3767 return 1;
3768 }
3769
3770 /*
3771 * split the path's leaf in two, making sure there is at least data_size
3772 * available for the resulting leaf level of the path.
3773 *
3774 * returns 0 if all went well and < 0 on failure.
3775 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3776 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3777 struct btrfs_root *root,
3778 const struct btrfs_key *ins_key,
3779 struct btrfs_path *path, int data_size,
3780 int extend)
3781 {
3782 struct btrfs_disk_key disk_key;
3783 struct extent_buffer *l;
3784 u32 nritems;
3785 int mid;
3786 int slot;
3787 struct extent_buffer *right;
3788 struct btrfs_fs_info *fs_info = root->fs_info;
3789 int ret = 0;
3790 int wret;
3791 int split;
3792 int num_doubles = 0;
3793 int tried_avoid_double = 0;
3794
3795 l = path->nodes[0];
3796 slot = path->slots[0];
3797 if (extend && data_size + btrfs_item_size(l, slot) +
3798 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3799 return -EOVERFLOW;
3800
3801 /* first try to make some room by pushing left and right */
3802 if (data_size && path->nodes[1]) {
3803 int space_needed = data_size;
3804
3805 if (slot < btrfs_header_nritems(l))
3806 space_needed -= btrfs_leaf_free_space(l);
3807
3808 wret = push_leaf_right(trans, root, path, space_needed,
3809 space_needed, 0, 0);
3810 if (wret < 0)
3811 return wret;
3812 if (wret) {
3813 space_needed = data_size;
3814 if (slot > 0)
3815 space_needed -= btrfs_leaf_free_space(l);
3816 wret = push_leaf_left(trans, root, path, space_needed,
3817 space_needed, 0, (u32)-1);
3818 if (wret < 0)
3819 return wret;
3820 }
3821 l = path->nodes[0];
3822
3823 /* did the pushes work? */
3824 if (btrfs_leaf_free_space(l) >= data_size)
3825 return 0;
3826 }
3827
3828 if (!path->nodes[1]) {
3829 ret = insert_new_root(trans, root, path, 1);
3830 if (ret)
3831 return ret;
3832 }
3833 again:
3834 split = 1;
3835 l = path->nodes[0];
3836 slot = path->slots[0];
3837 nritems = btrfs_header_nritems(l);
3838 mid = (nritems + 1) / 2;
3839
3840 if (mid <= slot) {
3841 if (nritems == 1 ||
3842 leaf_space_used(l, mid, nritems - mid) + data_size >
3843 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3844 if (slot >= nritems) {
3845 split = 0;
3846 } else {
3847 mid = slot;
3848 if (mid != nritems &&
3849 leaf_space_used(l, mid, nritems - mid) +
3850 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3851 if (data_size && !tried_avoid_double)
3852 goto push_for_double;
3853 split = 2;
3854 }
3855 }
3856 }
3857 } else {
3858 if (leaf_space_used(l, 0, mid) + data_size >
3859 BTRFS_LEAF_DATA_SIZE(fs_info)) {
3860 if (!extend && data_size && slot == 0) {
3861 split = 0;
3862 } else if ((extend || !data_size) && slot == 0) {
3863 mid = 1;
3864 } else {
3865 mid = slot;
3866 if (mid != nritems &&
3867 leaf_space_used(l, mid, nritems - mid) +
3868 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3869 if (data_size && !tried_avoid_double)
3870 goto push_for_double;
3871 split = 2;
3872 }
3873 }
3874 }
3875 }
3876
3877 if (split == 0)
3878 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3879 else
3880 btrfs_item_key(l, &disk_key, mid);
3881
3882 /*
3883 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3884 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3885 * subclasses, which is 8 at the time of this patch, and we've maxed it
3886 * out. In the future we could add a
3887 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3888 * use BTRFS_NESTING_NEW_ROOT.
3889 */
3890 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3891 &disk_key, 0, l->start, 0,
3892 num_doubles ? BTRFS_NESTING_NEW_ROOT :
3893 BTRFS_NESTING_SPLIT);
3894 if (IS_ERR(right))
3895 return PTR_ERR(right);
3896
3897 root_add_used(root, fs_info->nodesize);
3898
3899 if (split == 0) {
3900 if (mid <= slot) {
3901 btrfs_set_header_nritems(right, 0);
3902 ret = insert_ptr(trans, path, &disk_key,
3903 right->start, path->slots[1] + 1, 1);
3904 if (ret < 0) {
3905 btrfs_tree_unlock(right);
3906 free_extent_buffer(right);
3907 return ret;
3908 }
3909 btrfs_tree_unlock(path->nodes[0]);
3910 free_extent_buffer(path->nodes[0]);
3911 path->nodes[0] = right;
3912 path->slots[0] = 0;
3913 path->slots[1] += 1;
3914 } else {
3915 btrfs_set_header_nritems(right, 0);
3916 ret = insert_ptr(trans, path, &disk_key,
3917 right->start, path->slots[1], 1);
3918 if (ret < 0) {
3919 btrfs_tree_unlock(right);
3920 free_extent_buffer(right);
3921 return ret;
3922 }
3923 btrfs_tree_unlock(path->nodes[0]);
3924 free_extent_buffer(path->nodes[0]);
3925 path->nodes[0] = right;
3926 path->slots[0] = 0;
3927 if (path->slots[1] == 0)
3928 fixup_low_keys(path, &disk_key, 1);
3929 }
3930 /*
3931 * We create a new leaf 'right' for the required ins_len and
3932 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3933 * the content of ins_len to 'right'.
3934 */
3935 return ret;
3936 }
3937
3938 ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3939 if (ret < 0) {
3940 btrfs_tree_unlock(right);
3941 free_extent_buffer(right);
3942 return ret;
3943 }
3944
3945 if (split == 2) {
3946 BUG_ON(num_doubles != 0);
3947 num_doubles++;
3948 goto again;
3949 }
3950
3951 return 0;
3952
3953 push_for_double:
3954 push_for_double_split(trans, root, path, data_size);
3955 tried_avoid_double = 1;
3956 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3957 return 0;
3958 goto again;
3959 }
3960
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3961 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3962 struct btrfs_root *root,
3963 struct btrfs_path *path, int ins_len)
3964 {
3965 struct btrfs_key key;
3966 struct extent_buffer *leaf;
3967 struct btrfs_file_extent_item *fi;
3968 u64 extent_len = 0;
3969 u32 item_size;
3970 int ret;
3971
3972 leaf = path->nodes[0];
3973 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3974
3975 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3976 key.type != BTRFS_EXTENT_CSUM_KEY);
3977
3978 if (btrfs_leaf_free_space(leaf) >= ins_len)
3979 return 0;
3980
3981 item_size = btrfs_item_size(leaf, path->slots[0]);
3982 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3983 fi = btrfs_item_ptr(leaf, path->slots[0],
3984 struct btrfs_file_extent_item);
3985 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3986 }
3987 btrfs_release_path(path);
3988
3989 path->keep_locks = 1;
3990 path->search_for_split = 1;
3991 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3992 path->search_for_split = 0;
3993 if (ret > 0)
3994 ret = -EAGAIN;
3995 if (ret < 0)
3996 goto err;
3997
3998 ret = -EAGAIN;
3999 leaf = path->nodes[0];
4000 /* if our item isn't there, return now */
4001 if (item_size != btrfs_item_size(leaf, path->slots[0]))
4002 goto err;
4003
4004 /* the leaf has changed, it now has room. return now */
4005 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4006 goto err;
4007
4008 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4009 fi = btrfs_item_ptr(leaf, path->slots[0],
4010 struct btrfs_file_extent_item);
4011 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4012 goto err;
4013 }
4014
4015 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4016 if (ret)
4017 goto err;
4018
4019 path->keep_locks = 0;
4020 btrfs_unlock_up_safe(path, 1);
4021 return 0;
4022 err:
4023 path->keep_locks = 0;
4024 return ret;
4025 }
4026
split_item(struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4027 static noinline int split_item(struct btrfs_path *path,
4028 const struct btrfs_key *new_key,
4029 unsigned long split_offset)
4030 {
4031 struct extent_buffer *leaf;
4032 int orig_slot, slot;
4033 char *buf;
4034 u32 nritems;
4035 u32 item_size;
4036 u32 orig_offset;
4037 struct btrfs_disk_key disk_key;
4038
4039 leaf = path->nodes[0];
4040 /*
4041 * Shouldn't happen because the caller must have previously called
4042 * setup_leaf_for_split() to make room for the new item in the leaf.
4043 */
4044 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
4045 return -ENOSPC;
4046
4047 orig_slot = path->slots[0];
4048 orig_offset = btrfs_item_offset(leaf, path->slots[0]);
4049 item_size = btrfs_item_size(leaf, path->slots[0]);
4050
4051 buf = kmalloc(item_size, GFP_NOFS);
4052 if (!buf)
4053 return -ENOMEM;
4054
4055 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4056 path->slots[0]), item_size);
4057
4058 slot = path->slots[0] + 1;
4059 nritems = btrfs_header_nritems(leaf);
4060 if (slot != nritems) {
4061 /* shift the items */
4062 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
4063 }
4064
4065 btrfs_cpu_key_to_disk(&disk_key, new_key);
4066 btrfs_set_item_key(leaf, &disk_key, slot);
4067
4068 btrfs_set_item_offset(leaf, slot, orig_offset);
4069 btrfs_set_item_size(leaf, slot, item_size - split_offset);
4070
4071 btrfs_set_item_offset(leaf, orig_slot,
4072 orig_offset + item_size - split_offset);
4073 btrfs_set_item_size(leaf, orig_slot, split_offset);
4074
4075 btrfs_set_header_nritems(leaf, nritems + 1);
4076
4077 /* write the data for the start of the original item */
4078 write_extent_buffer(leaf, buf,
4079 btrfs_item_ptr_offset(leaf, path->slots[0]),
4080 split_offset);
4081
4082 /* write the data for the new item */
4083 write_extent_buffer(leaf, buf + split_offset,
4084 btrfs_item_ptr_offset(leaf, slot),
4085 item_size - split_offset);
4086 btrfs_mark_buffer_dirty(leaf);
4087
4088 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4089 kfree(buf);
4090 return 0;
4091 }
4092
4093 /*
4094 * This function splits a single item into two items,
4095 * giving 'new_key' to the new item and splitting the
4096 * old one at split_offset (from the start of the item).
4097 *
4098 * The path may be released by this operation. After
4099 * the split, the path is pointing to the old item. The
4100 * new item is going to be in the same node as the old one.
4101 *
4102 * Note, the item being split must be smaller enough to live alone on
4103 * a tree block with room for one extra struct btrfs_item
4104 *
4105 * This allows us to split the item in place, keeping a lock on the
4106 * leaf the entire time.
4107 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4108 int btrfs_split_item(struct btrfs_trans_handle *trans,
4109 struct btrfs_root *root,
4110 struct btrfs_path *path,
4111 const struct btrfs_key *new_key,
4112 unsigned long split_offset)
4113 {
4114 int ret;
4115 ret = setup_leaf_for_split(trans, root, path,
4116 sizeof(struct btrfs_item));
4117 if (ret)
4118 return ret;
4119
4120 ret = split_item(path, new_key, split_offset);
4121 return ret;
4122 }
4123
4124 /*
4125 * make the item pointed to by the path smaller. new_size indicates
4126 * how small to make it, and from_end tells us if we just chop bytes
4127 * off the end of the item or if we shift the item to chop bytes off
4128 * the front.
4129 */
btrfs_truncate_item(struct btrfs_path * path,u32 new_size,int from_end)4130 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4131 {
4132 int slot;
4133 struct extent_buffer *leaf;
4134 u32 nritems;
4135 unsigned int data_end;
4136 unsigned int old_data_start;
4137 unsigned int old_size;
4138 unsigned int size_diff;
4139 int i;
4140 struct btrfs_map_token token;
4141
4142 leaf = path->nodes[0];
4143 slot = path->slots[0];
4144
4145 old_size = btrfs_item_size(leaf, slot);
4146 if (old_size == new_size)
4147 return;
4148
4149 nritems = btrfs_header_nritems(leaf);
4150 data_end = leaf_data_end(leaf);
4151
4152 old_data_start = btrfs_item_offset(leaf, slot);
4153
4154 size_diff = old_size - new_size;
4155
4156 BUG_ON(slot < 0);
4157 BUG_ON(slot >= nritems);
4158
4159 /*
4160 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4161 */
4162 /* first correct the data pointers */
4163 btrfs_init_map_token(&token, leaf);
4164 for (i = slot; i < nritems; i++) {
4165 u32 ioff;
4166
4167 ioff = btrfs_token_item_offset(&token, i);
4168 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4169 }
4170
4171 /* shift the data */
4172 if (from_end) {
4173 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4174 old_data_start + new_size - data_end);
4175 } else {
4176 struct btrfs_disk_key disk_key;
4177 u64 offset;
4178
4179 btrfs_item_key(leaf, &disk_key, slot);
4180
4181 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4182 unsigned long ptr;
4183 struct btrfs_file_extent_item *fi;
4184
4185 fi = btrfs_item_ptr(leaf, slot,
4186 struct btrfs_file_extent_item);
4187 fi = (struct btrfs_file_extent_item *)(
4188 (unsigned long)fi - size_diff);
4189
4190 if (btrfs_file_extent_type(leaf, fi) ==
4191 BTRFS_FILE_EXTENT_INLINE) {
4192 ptr = btrfs_item_ptr_offset(leaf, slot);
4193 memmove_extent_buffer(leaf, ptr,
4194 (unsigned long)fi,
4195 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4196 }
4197 }
4198
4199 memmove_leaf_data(leaf, data_end + size_diff, data_end,
4200 old_data_start - data_end);
4201
4202 offset = btrfs_disk_key_offset(&disk_key);
4203 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4204 btrfs_set_item_key(leaf, &disk_key, slot);
4205 if (slot == 0)
4206 fixup_low_keys(path, &disk_key, 1);
4207 }
4208
4209 btrfs_set_item_size(leaf, slot, new_size);
4210 btrfs_mark_buffer_dirty(leaf);
4211
4212 if (btrfs_leaf_free_space(leaf) < 0) {
4213 btrfs_print_leaf(leaf);
4214 BUG();
4215 }
4216 }
4217
4218 /*
4219 * make the item pointed to by the path bigger, data_size is the added size.
4220 */
btrfs_extend_item(struct btrfs_path * path,u32 data_size)4221 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4222 {
4223 int slot;
4224 struct extent_buffer *leaf;
4225 u32 nritems;
4226 unsigned int data_end;
4227 unsigned int old_data;
4228 unsigned int old_size;
4229 int i;
4230 struct btrfs_map_token token;
4231
4232 leaf = path->nodes[0];
4233
4234 nritems = btrfs_header_nritems(leaf);
4235 data_end = leaf_data_end(leaf);
4236
4237 if (btrfs_leaf_free_space(leaf) < data_size) {
4238 btrfs_print_leaf(leaf);
4239 BUG();
4240 }
4241 slot = path->slots[0];
4242 old_data = btrfs_item_data_end(leaf, slot);
4243
4244 BUG_ON(slot < 0);
4245 if (slot >= nritems) {
4246 btrfs_print_leaf(leaf);
4247 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4248 slot, nritems);
4249 BUG();
4250 }
4251
4252 /*
4253 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4254 */
4255 /* first correct the data pointers */
4256 btrfs_init_map_token(&token, leaf);
4257 for (i = slot; i < nritems; i++) {
4258 u32 ioff;
4259
4260 ioff = btrfs_token_item_offset(&token, i);
4261 btrfs_set_token_item_offset(&token, i, ioff - data_size);
4262 }
4263
4264 /* shift the data */
4265 memmove_leaf_data(leaf, data_end - data_size, data_end,
4266 old_data - data_end);
4267
4268 data_end = old_data;
4269 old_size = btrfs_item_size(leaf, slot);
4270 btrfs_set_item_size(leaf, slot, old_size + data_size);
4271 btrfs_mark_buffer_dirty(leaf);
4272
4273 if (btrfs_leaf_free_space(leaf) < 0) {
4274 btrfs_print_leaf(leaf);
4275 BUG();
4276 }
4277 }
4278
4279 /*
4280 * Make space in the node before inserting one or more items.
4281 *
4282 * @root: root we are inserting items to
4283 * @path: points to the leaf/slot where we are going to insert new items
4284 * @batch: information about the batch of items to insert
4285 *
4286 * Main purpose is to save stack depth by doing the bulk of the work in a
4287 * function that doesn't call btrfs_search_slot
4288 */
setup_items_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4289 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4290 const struct btrfs_item_batch *batch)
4291 {
4292 struct btrfs_fs_info *fs_info = root->fs_info;
4293 int i;
4294 u32 nritems;
4295 unsigned int data_end;
4296 struct btrfs_disk_key disk_key;
4297 struct extent_buffer *leaf;
4298 int slot;
4299 struct btrfs_map_token token;
4300 u32 total_size;
4301
4302 /*
4303 * Before anything else, update keys in the parent and other ancestors
4304 * if needed, then release the write locks on them, so that other tasks
4305 * can use them while we modify the leaf.
4306 */
4307 if (path->slots[0] == 0) {
4308 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4309 fixup_low_keys(path, &disk_key, 1);
4310 }
4311 btrfs_unlock_up_safe(path, 1);
4312
4313 leaf = path->nodes[0];
4314 slot = path->slots[0];
4315
4316 nritems = btrfs_header_nritems(leaf);
4317 data_end = leaf_data_end(leaf);
4318 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4319
4320 if (btrfs_leaf_free_space(leaf) < total_size) {
4321 btrfs_print_leaf(leaf);
4322 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4323 total_size, btrfs_leaf_free_space(leaf));
4324 BUG();
4325 }
4326
4327 btrfs_init_map_token(&token, leaf);
4328 if (slot != nritems) {
4329 unsigned int old_data = btrfs_item_data_end(leaf, slot);
4330
4331 if (old_data < data_end) {
4332 btrfs_print_leaf(leaf);
4333 btrfs_crit(fs_info,
4334 "item at slot %d with data offset %u beyond data end of leaf %u",
4335 slot, old_data, data_end);
4336 BUG();
4337 }
4338 /*
4339 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4340 */
4341 /* first correct the data pointers */
4342 for (i = slot; i < nritems; i++) {
4343 u32 ioff;
4344
4345 ioff = btrfs_token_item_offset(&token, i);
4346 btrfs_set_token_item_offset(&token, i,
4347 ioff - batch->total_data_size);
4348 }
4349 /* shift the items */
4350 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4351
4352 /* shift the data */
4353 memmove_leaf_data(leaf, data_end - batch->total_data_size,
4354 data_end, old_data - data_end);
4355 data_end = old_data;
4356 }
4357
4358 /* setup the item for the new data */
4359 for (i = 0; i < batch->nr; i++) {
4360 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4361 btrfs_set_item_key(leaf, &disk_key, slot + i);
4362 data_end -= batch->data_sizes[i];
4363 btrfs_set_token_item_offset(&token, slot + i, data_end);
4364 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4365 }
4366
4367 btrfs_set_header_nritems(leaf, nritems + batch->nr);
4368 btrfs_mark_buffer_dirty(leaf);
4369
4370 if (btrfs_leaf_free_space(leaf) < 0) {
4371 btrfs_print_leaf(leaf);
4372 BUG();
4373 }
4374 }
4375
4376 /*
4377 * Insert a new item into a leaf.
4378 *
4379 * @root: The root of the btree.
4380 * @path: A path pointing to the target leaf and slot.
4381 * @key: The key of the new item.
4382 * @data_size: The size of the data associated with the new key.
4383 */
btrfs_setup_item_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4384 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4385 struct btrfs_path *path,
4386 const struct btrfs_key *key,
4387 u32 data_size)
4388 {
4389 struct btrfs_item_batch batch;
4390
4391 batch.keys = key;
4392 batch.data_sizes = &data_size;
4393 batch.total_data_size = data_size;
4394 batch.nr = 1;
4395
4396 setup_items_for_insert(root, path, &batch);
4397 }
4398
4399 /*
4400 * Given a key and some data, insert items into the tree.
4401 * This does all the path init required, making room in the tree if needed.
4402 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4403 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4404 struct btrfs_root *root,
4405 struct btrfs_path *path,
4406 const struct btrfs_item_batch *batch)
4407 {
4408 int ret = 0;
4409 int slot;
4410 u32 total_size;
4411
4412 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4413 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4414 if (ret == 0)
4415 return -EEXIST;
4416 if (ret < 0)
4417 return ret;
4418
4419 slot = path->slots[0];
4420 BUG_ON(slot < 0);
4421
4422 setup_items_for_insert(root, path, batch);
4423 return 0;
4424 }
4425
4426 /*
4427 * Given a key and some data, insert an item into the tree.
4428 * This does all the path init required, making room in the tree if needed.
4429 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4430 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4431 const struct btrfs_key *cpu_key, void *data,
4432 u32 data_size)
4433 {
4434 int ret = 0;
4435 struct btrfs_path *path;
4436 struct extent_buffer *leaf;
4437 unsigned long ptr;
4438
4439 path = btrfs_alloc_path();
4440 if (!path)
4441 return -ENOMEM;
4442 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4443 if (!ret) {
4444 leaf = path->nodes[0];
4445 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4446 write_extent_buffer(leaf, data, ptr, data_size);
4447 btrfs_mark_buffer_dirty(leaf);
4448 }
4449 btrfs_free_path(path);
4450 return ret;
4451 }
4452
4453 /*
4454 * This function duplicates an item, giving 'new_key' to the new item.
4455 * It guarantees both items live in the same tree leaf and the new item is
4456 * contiguous with the original item.
4457 *
4458 * This allows us to split a file extent in place, keeping a lock on the leaf
4459 * the entire time.
4460 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4461 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4462 struct btrfs_root *root,
4463 struct btrfs_path *path,
4464 const struct btrfs_key *new_key)
4465 {
4466 struct extent_buffer *leaf;
4467 int ret;
4468 u32 item_size;
4469
4470 leaf = path->nodes[0];
4471 item_size = btrfs_item_size(leaf, path->slots[0]);
4472 ret = setup_leaf_for_split(trans, root, path,
4473 item_size + sizeof(struct btrfs_item));
4474 if (ret)
4475 return ret;
4476
4477 path->slots[0]++;
4478 btrfs_setup_item_for_insert(root, path, new_key, item_size);
4479 leaf = path->nodes[0];
4480 memcpy_extent_buffer(leaf,
4481 btrfs_item_ptr_offset(leaf, path->slots[0]),
4482 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4483 item_size);
4484 return 0;
4485 }
4486
4487 /*
4488 * delete the pointer from a given node.
4489 *
4490 * the tree should have been previously balanced so the deletion does not
4491 * empty a node.
4492 *
4493 * This is exported for use inside btrfs-progs, don't un-export it.
4494 */
btrfs_del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4495 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4496 struct btrfs_path *path, int level, int slot)
4497 {
4498 struct extent_buffer *parent = path->nodes[level];
4499 u32 nritems;
4500 int ret;
4501
4502 nritems = btrfs_header_nritems(parent);
4503 if (slot != nritems - 1) {
4504 if (level) {
4505 ret = btrfs_tree_mod_log_insert_move(parent, slot,
4506 slot + 1, nritems - slot - 1);
4507 if (ret < 0) {
4508 btrfs_abort_transaction(trans, ret);
4509 return ret;
4510 }
4511 }
4512 memmove_extent_buffer(parent,
4513 btrfs_node_key_ptr_offset(parent, slot),
4514 btrfs_node_key_ptr_offset(parent, slot + 1),
4515 sizeof(struct btrfs_key_ptr) *
4516 (nritems - slot - 1));
4517 } else if (level) {
4518 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4519 BTRFS_MOD_LOG_KEY_REMOVE);
4520 if (ret < 0) {
4521 btrfs_abort_transaction(trans, ret);
4522 return ret;
4523 }
4524 }
4525
4526 nritems--;
4527 btrfs_set_header_nritems(parent, nritems);
4528 if (nritems == 0 && parent == root->node) {
4529 BUG_ON(btrfs_header_level(root->node) != 1);
4530 /* just turn the root into a leaf and break */
4531 btrfs_set_header_level(root->node, 0);
4532 } else if (slot == 0) {
4533 struct btrfs_disk_key disk_key;
4534
4535 btrfs_node_key(parent, &disk_key, 0);
4536 fixup_low_keys(path, &disk_key, level + 1);
4537 }
4538 btrfs_mark_buffer_dirty(parent);
4539 return 0;
4540 }
4541
4542 /*
4543 * a helper function to delete the leaf pointed to by path->slots[1] and
4544 * path->nodes[1].
4545 *
4546 * This deletes the pointer in path->nodes[1] and frees the leaf
4547 * block extent. zero is returned if it all worked out, < 0 otherwise.
4548 *
4549 * The path must have already been setup for deleting the leaf, including
4550 * all the proper balancing. path->nodes[1] must be locked.
4551 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4552 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4553 struct btrfs_root *root,
4554 struct btrfs_path *path,
4555 struct extent_buffer *leaf)
4556 {
4557 int ret;
4558
4559 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4560 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4561 if (ret < 0)
4562 return ret;
4563
4564 /*
4565 * btrfs_free_extent is expensive, we want to make sure we
4566 * aren't holding any locks when we call it
4567 */
4568 btrfs_unlock_up_safe(path, 0);
4569
4570 root_sub_used(root, leaf->len);
4571
4572 atomic_inc(&leaf->refs);
4573 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4574 free_extent_buffer_stale(leaf);
4575 return 0;
4576 }
4577 /*
4578 * delete the item at the leaf level in path. If that empties
4579 * the leaf, remove it from the tree
4580 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4581 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4582 struct btrfs_path *path, int slot, int nr)
4583 {
4584 struct btrfs_fs_info *fs_info = root->fs_info;
4585 struct extent_buffer *leaf;
4586 int ret = 0;
4587 int wret;
4588 u32 nritems;
4589
4590 leaf = path->nodes[0];
4591 nritems = btrfs_header_nritems(leaf);
4592
4593 if (slot + nr != nritems) {
4594 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4595 const int data_end = leaf_data_end(leaf);
4596 struct btrfs_map_token token;
4597 u32 dsize = 0;
4598 int i;
4599
4600 for (i = 0; i < nr; i++)
4601 dsize += btrfs_item_size(leaf, slot + i);
4602
4603 memmove_leaf_data(leaf, data_end + dsize, data_end,
4604 last_off - data_end);
4605
4606 btrfs_init_map_token(&token, leaf);
4607 for (i = slot + nr; i < nritems; i++) {
4608 u32 ioff;
4609
4610 ioff = btrfs_token_item_offset(&token, i);
4611 btrfs_set_token_item_offset(&token, i, ioff + dsize);
4612 }
4613
4614 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4615 }
4616 btrfs_set_header_nritems(leaf, nritems - nr);
4617 nritems -= nr;
4618
4619 /* delete the leaf if we've emptied it */
4620 if (nritems == 0) {
4621 if (leaf == root->node) {
4622 btrfs_set_header_level(leaf, 0);
4623 } else {
4624 btrfs_clear_buffer_dirty(trans, leaf);
4625 ret = btrfs_del_leaf(trans, root, path, leaf);
4626 if (ret < 0)
4627 return ret;
4628 }
4629 } else {
4630 int used = leaf_space_used(leaf, 0, nritems);
4631 if (slot == 0) {
4632 struct btrfs_disk_key disk_key;
4633
4634 btrfs_item_key(leaf, &disk_key, 0);
4635 fixup_low_keys(path, &disk_key, 1);
4636 }
4637
4638 /*
4639 * Try to delete the leaf if it is mostly empty. We do this by
4640 * trying to move all its items into its left and right neighbours.
4641 * If we can't move all the items, then we don't delete it - it's
4642 * not ideal, but future insertions might fill the leaf with more
4643 * items, or items from other leaves might be moved later into our
4644 * leaf due to deletions on those leaves.
4645 */
4646 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4647 u32 min_push_space;
4648
4649 /* push_leaf_left fixes the path.
4650 * make sure the path still points to our leaf
4651 * for possible call to btrfs_del_ptr below
4652 */
4653 slot = path->slots[1];
4654 atomic_inc(&leaf->refs);
4655 /*
4656 * We want to be able to at least push one item to the
4657 * left neighbour leaf, and that's the first item.
4658 */
4659 min_push_space = sizeof(struct btrfs_item) +
4660 btrfs_item_size(leaf, 0);
4661 wret = push_leaf_left(trans, root, path, 0,
4662 min_push_space, 1, (u32)-1);
4663 if (wret < 0 && wret != -ENOSPC)
4664 ret = wret;
4665
4666 if (path->nodes[0] == leaf &&
4667 btrfs_header_nritems(leaf)) {
4668 /*
4669 * If we were not able to push all items from our
4670 * leaf to its left neighbour, then attempt to
4671 * either push all the remaining items to the
4672 * right neighbour or none. There's no advantage
4673 * in pushing only some items, instead of all, as
4674 * it's pointless to end up with a leaf having
4675 * too few items while the neighbours can be full
4676 * or nearly full.
4677 */
4678 nritems = btrfs_header_nritems(leaf);
4679 min_push_space = leaf_space_used(leaf, 0, nritems);
4680 wret = push_leaf_right(trans, root, path, 0,
4681 min_push_space, 1, 0);
4682 if (wret < 0 && wret != -ENOSPC)
4683 ret = wret;
4684 }
4685
4686 if (btrfs_header_nritems(leaf) == 0) {
4687 path->slots[1] = slot;
4688 ret = btrfs_del_leaf(trans, root, path, leaf);
4689 if (ret < 0)
4690 return ret;
4691 free_extent_buffer(leaf);
4692 ret = 0;
4693 } else {
4694 /* if we're still in the path, make sure
4695 * we're dirty. Otherwise, one of the
4696 * push_leaf functions must have already
4697 * dirtied this buffer
4698 */
4699 if (path->nodes[0] == leaf)
4700 btrfs_mark_buffer_dirty(leaf);
4701 free_extent_buffer(leaf);
4702 }
4703 } else {
4704 btrfs_mark_buffer_dirty(leaf);
4705 }
4706 }
4707 return ret;
4708 }
4709
4710 /*
4711 * A helper function to walk down the tree starting at min_key, and looking
4712 * for nodes or leaves that are have a minimum transaction id.
4713 * This is used by the btree defrag code, and tree logging
4714 *
4715 * This does not cow, but it does stuff the starting key it finds back
4716 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4717 * key and get a writable path.
4718 *
4719 * This honors path->lowest_level to prevent descent past a given level
4720 * of the tree.
4721 *
4722 * min_trans indicates the oldest transaction that you are interested
4723 * in walking through. Any nodes or leaves older than min_trans are
4724 * skipped over (without reading them).
4725 *
4726 * returns zero if something useful was found, < 0 on error and 1 if there
4727 * was nothing in the tree that matched the search criteria.
4728 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4729 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4730 struct btrfs_path *path,
4731 u64 min_trans)
4732 {
4733 struct extent_buffer *cur;
4734 struct btrfs_key found_key;
4735 int slot;
4736 int sret;
4737 u32 nritems;
4738 int level;
4739 int ret = 1;
4740 int keep_locks = path->keep_locks;
4741
4742 ASSERT(!path->nowait);
4743 path->keep_locks = 1;
4744 again:
4745 cur = btrfs_read_lock_root_node(root);
4746 level = btrfs_header_level(cur);
4747 WARN_ON(path->nodes[level]);
4748 path->nodes[level] = cur;
4749 path->locks[level] = BTRFS_READ_LOCK;
4750
4751 if (btrfs_header_generation(cur) < min_trans) {
4752 ret = 1;
4753 goto out;
4754 }
4755 while (1) {
4756 nritems = btrfs_header_nritems(cur);
4757 level = btrfs_header_level(cur);
4758 sret = btrfs_bin_search(cur, 0, min_key, &slot);
4759 if (sret < 0) {
4760 ret = sret;
4761 goto out;
4762 }
4763
4764 /* at the lowest level, we're done, setup the path and exit */
4765 if (level == path->lowest_level) {
4766 if (slot >= nritems)
4767 goto find_next_key;
4768 ret = 0;
4769 path->slots[level] = slot;
4770 btrfs_item_key_to_cpu(cur, &found_key, slot);
4771 goto out;
4772 }
4773 if (sret && slot > 0)
4774 slot--;
4775 /*
4776 * check this node pointer against the min_trans parameters.
4777 * If it is too old, skip to the next one.
4778 */
4779 while (slot < nritems) {
4780 u64 gen;
4781
4782 gen = btrfs_node_ptr_generation(cur, slot);
4783 if (gen < min_trans) {
4784 slot++;
4785 continue;
4786 }
4787 break;
4788 }
4789 find_next_key:
4790 /*
4791 * we didn't find a candidate key in this node, walk forward
4792 * and find another one
4793 */
4794 if (slot >= nritems) {
4795 path->slots[level] = slot;
4796 sret = btrfs_find_next_key(root, path, min_key, level,
4797 min_trans);
4798 if (sret == 0) {
4799 btrfs_release_path(path);
4800 goto again;
4801 } else {
4802 goto out;
4803 }
4804 }
4805 /* save our key for returning back */
4806 btrfs_node_key_to_cpu(cur, &found_key, slot);
4807 path->slots[level] = slot;
4808 if (level == path->lowest_level) {
4809 ret = 0;
4810 goto out;
4811 }
4812 cur = btrfs_read_node_slot(cur, slot);
4813 if (IS_ERR(cur)) {
4814 ret = PTR_ERR(cur);
4815 goto out;
4816 }
4817
4818 btrfs_tree_read_lock(cur);
4819
4820 path->locks[level - 1] = BTRFS_READ_LOCK;
4821 path->nodes[level - 1] = cur;
4822 unlock_up(path, level, 1, 0, NULL);
4823 }
4824 out:
4825 path->keep_locks = keep_locks;
4826 if (ret == 0) {
4827 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4828 memcpy(min_key, &found_key, sizeof(found_key));
4829 }
4830 return ret;
4831 }
4832
4833 /*
4834 * this is similar to btrfs_next_leaf, but does not try to preserve
4835 * and fixup the path. It looks for and returns the next key in the
4836 * tree based on the current path and the min_trans parameters.
4837 *
4838 * 0 is returned if another key is found, < 0 if there are any errors
4839 * and 1 is returned if there are no higher keys in the tree
4840 *
4841 * path->keep_locks should be set to 1 on the search made before
4842 * calling this function.
4843 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4844 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4845 struct btrfs_key *key, int level, u64 min_trans)
4846 {
4847 int slot;
4848 struct extent_buffer *c;
4849
4850 WARN_ON(!path->keep_locks && !path->skip_locking);
4851 while (level < BTRFS_MAX_LEVEL) {
4852 if (!path->nodes[level])
4853 return 1;
4854
4855 slot = path->slots[level] + 1;
4856 c = path->nodes[level];
4857 next:
4858 if (slot >= btrfs_header_nritems(c)) {
4859 int ret;
4860 int orig_lowest;
4861 struct btrfs_key cur_key;
4862 if (level + 1 >= BTRFS_MAX_LEVEL ||
4863 !path->nodes[level + 1])
4864 return 1;
4865
4866 if (path->locks[level + 1] || path->skip_locking) {
4867 level++;
4868 continue;
4869 }
4870
4871 slot = btrfs_header_nritems(c) - 1;
4872 if (level == 0)
4873 btrfs_item_key_to_cpu(c, &cur_key, slot);
4874 else
4875 btrfs_node_key_to_cpu(c, &cur_key, slot);
4876
4877 orig_lowest = path->lowest_level;
4878 btrfs_release_path(path);
4879 path->lowest_level = level;
4880 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4881 0, 0);
4882 path->lowest_level = orig_lowest;
4883 if (ret < 0)
4884 return ret;
4885
4886 c = path->nodes[level];
4887 slot = path->slots[level];
4888 if (ret == 0)
4889 slot++;
4890 goto next;
4891 }
4892
4893 if (level == 0)
4894 btrfs_item_key_to_cpu(c, key, slot);
4895 else {
4896 u64 gen = btrfs_node_ptr_generation(c, slot);
4897
4898 if (gen < min_trans) {
4899 slot++;
4900 goto next;
4901 }
4902 btrfs_node_key_to_cpu(c, key, slot);
4903 }
4904 return 0;
4905 }
4906 return 1;
4907 }
4908
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4909 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4910 u64 time_seq)
4911 {
4912 int slot;
4913 int level;
4914 struct extent_buffer *c;
4915 struct extent_buffer *next;
4916 struct btrfs_fs_info *fs_info = root->fs_info;
4917 struct btrfs_key key;
4918 bool need_commit_sem = false;
4919 u32 nritems;
4920 int ret;
4921 int i;
4922
4923 /*
4924 * The nowait semantics are used only for write paths, where we don't
4925 * use the tree mod log and sequence numbers.
4926 */
4927 if (time_seq)
4928 ASSERT(!path->nowait);
4929
4930 nritems = btrfs_header_nritems(path->nodes[0]);
4931 if (nritems == 0)
4932 return 1;
4933
4934 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4935 again:
4936 level = 1;
4937 next = NULL;
4938 btrfs_release_path(path);
4939
4940 path->keep_locks = 1;
4941
4942 if (time_seq) {
4943 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4944 } else {
4945 if (path->need_commit_sem) {
4946 path->need_commit_sem = 0;
4947 need_commit_sem = true;
4948 if (path->nowait) {
4949 if (!down_read_trylock(&fs_info->commit_root_sem)) {
4950 ret = -EAGAIN;
4951 goto done;
4952 }
4953 } else {
4954 down_read(&fs_info->commit_root_sem);
4955 }
4956 }
4957 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4958 }
4959 path->keep_locks = 0;
4960
4961 if (ret < 0)
4962 goto done;
4963
4964 nritems = btrfs_header_nritems(path->nodes[0]);
4965 /*
4966 * by releasing the path above we dropped all our locks. A balance
4967 * could have added more items next to the key that used to be
4968 * at the very end of the block. So, check again here and
4969 * advance the path if there are now more items available.
4970 */
4971 if (nritems > 0 && path->slots[0] < nritems - 1) {
4972 if (ret == 0)
4973 path->slots[0]++;
4974 ret = 0;
4975 goto done;
4976 }
4977 /*
4978 * So the above check misses one case:
4979 * - after releasing the path above, someone has removed the item that
4980 * used to be at the very end of the block, and balance between leafs
4981 * gets another one with bigger key.offset to replace it.
4982 *
4983 * This one should be returned as well, or we can get leaf corruption
4984 * later(esp. in __btrfs_drop_extents()).
4985 *
4986 * And a bit more explanation about this check,
4987 * with ret > 0, the key isn't found, the path points to the slot
4988 * where it should be inserted, so the path->slots[0] item must be the
4989 * bigger one.
4990 */
4991 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4992 ret = 0;
4993 goto done;
4994 }
4995
4996 while (level < BTRFS_MAX_LEVEL) {
4997 if (!path->nodes[level]) {
4998 ret = 1;
4999 goto done;
5000 }
5001
5002 slot = path->slots[level] + 1;
5003 c = path->nodes[level];
5004 if (slot >= btrfs_header_nritems(c)) {
5005 level++;
5006 if (level == BTRFS_MAX_LEVEL) {
5007 ret = 1;
5008 goto done;
5009 }
5010 continue;
5011 }
5012
5013
5014 /*
5015 * Our current level is where we're going to start from, and to
5016 * make sure lockdep doesn't complain we need to drop our locks
5017 * and nodes from 0 to our current level.
5018 */
5019 for (i = 0; i < level; i++) {
5020 if (path->locks[level]) {
5021 btrfs_tree_read_unlock(path->nodes[i]);
5022 path->locks[i] = 0;
5023 }
5024 free_extent_buffer(path->nodes[i]);
5025 path->nodes[i] = NULL;
5026 }
5027
5028 next = c;
5029 ret = read_block_for_search(root, path, &next, level,
5030 slot, &key);
5031 if (ret == -EAGAIN && !path->nowait)
5032 goto again;
5033
5034 if (ret < 0) {
5035 btrfs_release_path(path);
5036 goto done;
5037 }
5038
5039 if (!path->skip_locking) {
5040 ret = btrfs_try_tree_read_lock(next);
5041 if (!ret && path->nowait) {
5042 ret = -EAGAIN;
5043 goto done;
5044 }
5045 if (!ret && time_seq) {
5046 /*
5047 * If we don't get the lock, we may be racing
5048 * with push_leaf_left, holding that lock while
5049 * itself waiting for the leaf we've currently
5050 * locked. To solve this situation, we give up
5051 * on our lock and cycle.
5052 */
5053 free_extent_buffer(next);
5054 btrfs_release_path(path);
5055 cond_resched();
5056 goto again;
5057 }
5058 if (!ret)
5059 btrfs_tree_read_lock(next);
5060 }
5061 break;
5062 }
5063 path->slots[level] = slot;
5064 while (1) {
5065 level--;
5066 path->nodes[level] = next;
5067 path->slots[level] = 0;
5068 if (!path->skip_locking)
5069 path->locks[level] = BTRFS_READ_LOCK;
5070 if (!level)
5071 break;
5072
5073 ret = read_block_for_search(root, path, &next, level,
5074 0, &key);
5075 if (ret == -EAGAIN && !path->nowait)
5076 goto again;
5077
5078 if (ret < 0) {
5079 btrfs_release_path(path);
5080 goto done;
5081 }
5082
5083 if (!path->skip_locking) {
5084 if (path->nowait) {
5085 if (!btrfs_try_tree_read_lock(next)) {
5086 ret = -EAGAIN;
5087 goto done;
5088 }
5089 } else {
5090 btrfs_tree_read_lock(next);
5091 }
5092 }
5093 }
5094 ret = 0;
5095 done:
5096 unlock_up(path, 0, 1, 0, NULL);
5097 if (need_commit_sem) {
5098 int ret2;
5099
5100 path->need_commit_sem = 1;
5101 ret2 = finish_need_commit_sem_search(path);
5102 up_read(&fs_info->commit_root_sem);
5103 if (ret2)
5104 ret = ret2;
5105 }
5106
5107 return ret;
5108 }
5109
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5110 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5111 {
5112 path->slots[0]++;
5113 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5114 return btrfs_next_old_leaf(root, path, time_seq);
5115 return 0;
5116 }
5117
5118 /*
5119 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5120 * searching until it gets past min_objectid or finds an item of 'type'
5121 *
5122 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5123 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5124 int btrfs_previous_item(struct btrfs_root *root,
5125 struct btrfs_path *path, u64 min_objectid,
5126 int type)
5127 {
5128 struct btrfs_key found_key;
5129 struct extent_buffer *leaf;
5130 u32 nritems;
5131 int ret;
5132
5133 while (1) {
5134 if (path->slots[0] == 0) {
5135 ret = btrfs_prev_leaf(root, path);
5136 if (ret != 0)
5137 return ret;
5138 } else {
5139 path->slots[0]--;
5140 }
5141 leaf = path->nodes[0];
5142 nritems = btrfs_header_nritems(leaf);
5143 if (nritems == 0)
5144 return 1;
5145 if (path->slots[0] == nritems)
5146 path->slots[0]--;
5147
5148 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5149 if (found_key.objectid < min_objectid)
5150 break;
5151 if (found_key.type == type)
5152 return 0;
5153 if (found_key.objectid == min_objectid &&
5154 found_key.type < type)
5155 break;
5156 }
5157 return 1;
5158 }
5159
5160 /*
5161 * search in extent tree to find a previous Metadata/Data extent item with
5162 * min objecitd.
5163 *
5164 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5165 */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5166 int btrfs_previous_extent_item(struct btrfs_root *root,
5167 struct btrfs_path *path, u64 min_objectid)
5168 {
5169 struct btrfs_key found_key;
5170 struct extent_buffer *leaf;
5171 u32 nritems;
5172 int ret;
5173
5174 while (1) {
5175 if (path->slots[0] == 0) {
5176 ret = btrfs_prev_leaf(root, path);
5177 if (ret != 0)
5178 return ret;
5179 } else {
5180 path->slots[0]--;
5181 }
5182 leaf = path->nodes[0];
5183 nritems = btrfs_header_nritems(leaf);
5184 if (nritems == 0)
5185 return 1;
5186 if (path->slots[0] == nritems)
5187 path->slots[0]--;
5188
5189 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5190 if (found_key.objectid < min_objectid)
5191 break;
5192 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5193 found_key.type == BTRFS_METADATA_ITEM_KEY)
5194 return 0;
5195 if (found_key.objectid == min_objectid &&
5196 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5197 break;
5198 }
5199 return 1;
5200 }
5201
btrfs_ctree_init(void)5202 int __init btrfs_ctree_init(void)
5203 {
5204 btrfs_path_cachep = kmem_cache_create("btrfs_path",
5205 sizeof(struct btrfs_path), 0,
5206 SLAB_MEM_SPREAD, NULL);
5207 if (!btrfs_path_cachep)
5208 return -ENOMEM;
5209 return 0;
5210 }
5211
btrfs_ctree_exit(void)5212 void __cold btrfs_ctree_exit(void)
5213 {
5214 kmem_cache_destroy(btrfs_path_cachep);
5215 }
5216