1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15
16 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
17 *root, struct btrfs_path *path, int level);
18 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
19 const struct btrfs_key *ins_key, struct btrfs_path *path,
20 int data_size, int extend);
21 static int push_node_left(struct btrfs_trans_handle *trans,
22 struct btrfs_fs_info *fs_info,
23 struct extent_buffer *dst,
24 struct extent_buffer *src, int empty);
25 static int balance_node_right(struct btrfs_trans_handle *trans,
26 struct btrfs_fs_info *fs_info,
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
31
btrfs_alloc_path(void)32 struct btrfs_path *btrfs_alloc_path(void)
33 {
34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
35 }
36
37 /*
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
40 */
btrfs_set_path_blocking(struct btrfs_path * p)41 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
42 {
43 int i;
44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 if (!p->nodes[i] || !p->locks[i])
46 continue;
47 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
48 if (p->locks[i] == BTRFS_READ_LOCK)
49 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
50 else if (p->locks[i] == BTRFS_WRITE_LOCK)
51 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
52 }
53 }
54
55 /*
56 * reset all the locked nodes in the patch to spinning locks.
57 *
58 * held is used to keep lockdep happy, when lockdep is enabled
59 * we set held to a blocking lock before we go around and
60 * retake all the spinlocks in the path. You can safely use NULL
61 * for held
62 */
btrfs_clear_path_blocking(struct btrfs_path * p,struct extent_buffer * held,int held_rw)63 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
64 struct extent_buffer *held, int held_rw)
65 {
66 int i;
67
68 if (held) {
69 btrfs_set_lock_blocking_rw(held, held_rw);
70 if (held_rw == BTRFS_WRITE_LOCK)
71 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
72 else if (held_rw == BTRFS_READ_LOCK)
73 held_rw = BTRFS_READ_LOCK_BLOCKING;
74 }
75 btrfs_set_path_blocking(p);
76
77 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
78 if (p->nodes[i] && p->locks[i]) {
79 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
80 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
81 p->locks[i] = BTRFS_WRITE_LOCK;
82 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
83 p->locks[i] = BTRFS_READ_LOCK;
84 }
85 }
86
87 if (held)
88 btrfs_clear_lock_blocking_rw(held, held_rw);
89 }
90
91 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)92 void btrfs_free_path(struct btrfs_path *p)
93 {
94 if (!p)
95 return;
96 btrfs_release_path(p);
97 kmem_cache_free(btrfs_path_cachep, p);
98 }
99
100 /*
101 * path release drops references on the extent buffers in the path
102 * and it drops any locks held by this path
103 *
104 * It is safe to call this on paths that no locks or extent buffers held.
105 */
btrfs_release_path(struct btrfs_path * p)106 noinline void btrfs_release_path(struct btrfs_path *p)
107 {
108 int i;
109
110 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
111 p->slots[i] = 0;
112 if (!p->nodes[i])
113 continue;
114 if (p->locks[i]) {
115 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
116 p->locks[i] = 0;
117 }
118 free_extent_buffer(p->nodes[i]);
119 p->nodes[i] = NULL;
120 }
121 }
122
123 /*
124 * safely gets a reference on the root node of a tree. A lock
125 * is not taken, so a concurrent writer may put a different node
126 * at the root of the tree. See btrfs_lock_root_node for the
127 * looping required.
128 *
129 * The extent buffer returned by this has a reference taken, so
130 * it won't disappear. It may stop being the root of the tree
131 * at any time because there are no locks held.
132 */
btrfs_root_node(struct btrfs_root * root)133 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
134 {
135 struct extent_buffer *eb;
136
137 while (1) {
138 rcu_read_lock();
139 eb = rcu_dereference(root->node);
140
141 /*
142 * RCU really hurts here, we could free up the root node because
143 * it was COWed but we may not get the new root node yet so do
144 * the inc_not_zero dance and if it doesn't work then
145 * synchronize_rcu and try again.
146 */
147 if (atomic_inc_not_zero(&eb->refs)) {
148 rcu_read_unlock();
149 break;
150 }
151 rcu_read_unlock();
152 synchronize_rcu();
153 }
154 return eb;
155 }
156
157 /* loop around taking references on and locking the root node of the
158 * tree until you end up with a lock on the root. A locked buffer
159 * is returned, with a reference held.
160 */
btrfs_lock_root_node(struct btrfs_root * root)161 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
162 {
163 struct extent_buffer *eb;
164
165 while (1) {
166 eb = btrfs_root_node(root);
167 btrfs_tree_lock(eb);
168 if (eb == root->node)
169 break;
170 btrfs_tree_unlock(eb);
171 free_extent_buffer(eb);
172 }
173 return eb;
174 }
175
176 /* loop around taking references on and locking the root node of the
177 * tree until you end up with a lock on the root. A locked buffer
178 * is returned, with a reference held.
179 */
btrfs_read_lock_root_node(struct btrfs_root * root)180 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
181 {
182 struct extent_buffer *eb;
183
184 while (1) {
185 eb = btrfs_root_node(root);
186 btrfs_tree_read_lock(eb);
187 if (eb == root->node)
188 break;
189 btrfs_tree_read_unlock(eb);
190 free_extent_buffer(eb);
191 }
192 return eb;
193 }
194
195 /* cowonly root (everything not a reference counted cow subvolume), just get
196 * put onto a simple dirty list. transaction.c walks this to make sure they
197 * get properly updated on disk.
198 */
add_root_to_dirty_list(struct btrfs_root * root)199 static void add_root_to_dirty_list(struct btrfs_root *root)
200 {
201 struct btrfs_fs_info *fs_info = root->fs_info;
202
203 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
204 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
205 return;
206
207 spin_lock(&fs_info->trans_lock);
208 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
209 /* Want the extent tree to be the last on the list */
210 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
211 list_move_tail(&root->dirty_list,
212 &fs_info->dirty_cowonly_roots);
213 else
214 list_move(&root->dirty_list,
215 &fs_info->dirty_cowonly_roots);
216 }
217 spin_unlock(&fs_info->trans_lock);
218 }
219
220 /*
221 * used by snapshot creation to make a copy of a root for a tree with
222 * a given objectid. The buffer with the new root node is returned in
223 * cow_ret, and this func returns zero on success or a negative error code.
224 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)225 int btrfs_copy_root(struct btrfs_trans_handle *trans,
226 struct btrfs_root *root,
227 struct extent_buffer *buf,
228 struct extent_buffer **cow_ret, u64 new_root_objectid)
229 {
230 struct btrfs_fs_info *fs_info = root->fs_info;
231 struct extent_buffer *cow;
232 int ret = 0;
233 int level;
234 struct btrfs_disk_key disk_key;
235
236 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
237 trans->transid != fs_info->running_transaction->transid);
238 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
239 trans->transid != root->last_trans);
240
241 level = btrfs_header_level(buf);
242 if (level == 0)
243 btrfs_item_key(buf, &disk_key, 0);
244 else
245 btrfs_node_key(buf, &disk_key, 0);
246
247 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
248 &disk_key, level, buf->start, 0);
249 if (IS_ERR(cow))
250 return PTR_ERR(cow);
251
252 copy_extent_buffer_full(cow, buf);
253 btrfs_set_header_bytenr(cow, cow->start);
254 btrfs_set_header_generation(cow, trans->transid);
255 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
256 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
257 BTRFS_HEADER_FLAG_RELOC);
258 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
259 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
260 else
261 btrfs_set_header_owner(cow, new_root_objectid);
262
263 write_extent_buffer_fsid(cow, fs_info->fsid);
264
265 WARN_ON(btrfs_header_generation(buf) > trans->transid);
266 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267 ret = btrfs_inc_ref(trans, root, cow, 1);
268 else
269 ret = btrfs_inc_ref(trans, root, cow, 0);
270
271 if (ret)
272 return ret;
273
274 btrfs_mark_buffer_dirty(cow);
275 *cow_ret = cow;
276 return 0;
277 }
278
279 enum mod_log_op {
280 MOD_LOG_KEY_REPLACE,
281 MOD_LOG_KEY_ADD,
282 MOD_LOG_KEY_REMOVE,
283 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
284 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
285 MOD_LOG_MOVE_KEYS,
286 MOD_LOG_ROOT_REPLACE,
287 };
288
289 struct tree_mod_root {
290 u64 logical;
291 u8 level;
292 };
293
294 struct tree_mod_elem {
295 struct rb_node node;
296 u64 logical;
297 u64 seq;
298 enum mod_log_op op;
299
300 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
301 int slot;
302
303 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
304 u64 generation;
305
306 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
307 struct btrfs_disk_key key;
308 u64 blockptr;
309
310 /* this is used for op == MOD_LOG_MOVE_KEYS */
311 struct {
312 int dst_slot;
313 int nr_items;
314 } move;
315
316 /* this is used for op == MOD_LOG_ROOT_REPLACE */
317 struct tree_mod_root old_root;
318 };
319
320 /*
321 * Pull a new tree mod seq number for our operation.
322 */
btrfs_inc_tree_mod_seq(struct btrfs_fs_info * fs_info)323 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
324 {
325 return atomic64_inc_return(&fs_info->tree_mod_seq);
326 }
327
328 /*
329 * This adds a new blocker to the tree mod log's blocker list if the @elem
330 * passed does not already have a sequence number set. So when a caller expects
331 * to record tree modifications, it should ensure to set elem->seq to zero
332 * before calling btrfs_get_tree_mod_seq.
333 * Returns a fresh, unused tree log modification sequence number, even if no new
334 * blocker was added.
335 */
btrfs_get_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)336 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
337 struct seq_list *elem)
338 {
339 write_lock(&fs_info->tree_mod_log_lock);
340 spin_lock(&fs_info->tree_mod_seq_lock);
341 if (!elem->seq) {
342 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
343 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
344 }
345 spin_unlock(&fs_info->tree_mod_seq_lock);
346 write_unlock(&fs_info->tree_mod_log_lock);
347
348 return elem->seq;
349 }
350
btrfs_put_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)351 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 struct seq_list *elem)
353 {
354 struct rb_root *tm_root;
355 struct rb_node *node;
356 struct rb_node *next;
357 struct seq_list *cur_elem;
358 struct tree_mod_elem *tm;
359 u64 min_seq = (u64)-1;
360 u64 seq_putting = elem->seq;
361
362 if (!seq_putting)
363 return;
364
365 spin_lock(&fs_info->tree_mod_seq_lock);
366 list_del(&elem->list);
367 elem->seq = 0;
368
369 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370 if (cur_elem->seq < min_seq) {
371 if (seq_putting > cur_elem->seq) {
372 /*
373 * blocker with lower sequence number exists, we
374 * cannot remove anything from the log
375 */
376 spin_unlock(&fs_info->tree_mod_seq_lock);
377 return;
378 }
379 min_seq = cur_elem->seq;
380 }
381 }
382 spin_unlock(&fs_info->tree_mod_seq_lock);
383
384 /*
385 * anything that's lower than the lowest existing (read: blocked)
386 * sequence number can be removed from the tree.
387 */
388 write_lock(&fs_info->tree_mod_log_lock);
389 tm_root = &fs_info->tree_mod_log;
390 for (node = rb_first(tm_root); node; node = next) {
391 next = rb_next(node);
392 tm = rb_entry(node, struct tree_mod_elem, node);
393 if (tm->seq > min_seq)
394 continue;
395 rb_erase(node, tm_root);
396 kfree(tm);
397 }
398 write_unlock(&fs_info->tree_mod_log_lock);
399 }
400
401 /*
402 * key order of the log:
403 * node/leaf start address -> sequence
404 *
405 * The 'start address' is the logical address of the *new* root node
406 * for root replace operations, or the logical address of the affected
407 * block for all other operations.
408 *
409 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
410 */
411 static noinline int
__tree_mod_log_insert(struct btrfs_fs_info * fs_info,struct tree_mod_elem * tm)412 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
413 {
414 struct rb_root *tm_root;
415 struct rb_node **new;
416 struct rb_node *parent = NULL;
417 struct tree_mod_elem *cur;
418
419 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
420
421 tm_root = &fs_info->tree_mod_log;
422 new = &tm_root->rb_node;
423 while (*new) {
424 cur = rb_entry(*new, struct tree_mod_elem, node);
425 parent = *new;
426 if (cur->logical < tm->logical)
427 new = &((*new)->rb_left);
428 else if (cur->logical > tm->logical)
429 new = &((*new)->rb_right);
430 else if (cur->seq < tm->seq)
431 new = &((*new)->rb_left);
432 else if (cur->seq > tm->seq)
433 new = &((*new)->rb_right);
434 else
435 return -EEXIST;
436 }
437
438 rb_link_node(&tm->node, parent, new);
439 rb_insert_color(&tm->node, tm_root);
440 return 0;
441 }
442
443 /*
444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
445 * returns zero with the tree_mod_log_lock acquired. The caller must hold
446 * this until all tree mod log insertions are recorded in the rb tree and then
447 * write unlock fs_info::tree_mod_log_lock.
448 */
tree_mod_dont_log(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)449 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
450 struct extent_buffer *eb) {
451 smp_mb();
452 if (list_empty(&(fs_info)->tree_mod_seq_list))
453 return 1;
454 if (eb && btrfs_header_level(eb) == 0)
455 return 1;
456
457 write_lock(&fs_info->tree_mod_log_lock);
458 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
459 write_unlock(&fs_info->tree_mod_log_lock);
460 return 1;
461 }
462
463 return 0;
464 }
465
466 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
tree_mod_need_log(const struct btrfs_fs_info * fs_info,struct extent_buffer * eb)467 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
468 struct extent_buffer *eb)
469 {
470 smp_mb();
471 if (list_empty(&(fs_info)->tree_mod_seq_list))
472 return 0;
473 if (eb && btrfs_header_level(eb) == 0)
474 return 0;
475
476 return 1;
477 }
478
479 static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)480 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
481 enum mod_log_op op, gfp_t flags)
482 {
483 struct tree_mod_elem *tm;
484
485 tm = kzalloc(sizeof(*tm), flags);
486 if (!tm)
487 return NULL;
488
489 tm->logical = eb->start;
490 if (op != MOD_LOG_KEY_ADD) {
491 btrfs_node_key(eb, &tm->key, slot);
492 tm->blockptr = btrfs_node_blockptr(eb, slot);
493 }
494 tm->op = op;
495 tm->slot = slot;
496 tm->generation = btrfs_node_ptr_generation(eb, slot);
497 RB_CLEAR_NODE(&tm->node);
498
499 return tm;
500 }
501
tree_mod_log_insert_key(struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)502 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
503 enum mod_log_op op, gfp_t flags)
504 {
505 struct tree_mod_elem *tm;
506 int ret;
507
508 if (!tree_mod_need_log(eb->fs_info, eb))
509 return 0;
510
511 tm = alloc_tree_mod_elem(eb, slot, op, flags);
512 if (!tm)
513 return -ENOMEM;
514
515 if (tree_mod_dont_log(eb->fs_info, eb)) {
516 kfree(tm);
517 return 0;
518 }
519
520 ret = __tree_mod_log_insert(eb->fs_info, tm);
521 write_unlock(&eb->fs_info->tree_mod_log_lock);
522 if (ret)
523 kfree(tm);
524
525 return ret;
526 }
527
tree_mod_log_insert_move(struct extent_buffer * eb,int dst_slot,int src_slot,int nr_items)528 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
529 int dst_slot, int src_slot, int nr_items)
530 {
531 struct tree_mod_elem *tm = NULL;
532 struct tree_mod_elem **tm_list = NULL;
533 int ret = 0;
534 int i;
535 int locked = 0;
536
537 if (!tree_mod_need_log(eb->fs_info, eb))
538 return 0;
539
540 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
541 if (!tm_list)
542 return -ENOMEM;
543
544 tm = kzalloc(sizeof(*tm), GFP_NOFS);
545 if (!tm) {
546 ret = -ENOMEM;
547 goto free_tms;
548 }
549
550 tm->logical = eb->start;
551 tm->slot = src_slot;
552 tm->move.dst_slot = dst_slot;
553 tm->move.nr_items = nr_items;
554 tm->op = MOD_LOG_MOVE_KEYS;
555
556 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
557 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
558 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
559 if (!tm_list[i]) {
560 ret = -ENOMEM;
561 goto free_tms;
562 }
563 }
564
565 if (tree_mod_dont_log(eb->fs_info, eb))
566 goto free_tms;
567 locked = 1;
568
569 /*
570 * When we override something during the move, we log these removals.
571 * This can only happen when we move towards the beginning of the
572 * buffer, i.e. dst_slot < src_slot.
573 */
574 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
575 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
576 if (ret)
577 goto free_tms;
578 }
579
580 ret = __tree_mod_log_insert(eb->fs_info, tm);
581 if (ret)
582 goto free_tms;
583 write_unlock(&eb->fs_info->tree_mod_log_lock);
584 kfree(tm_list);
585
586 return 0;
587 free_tms:
588 for (i = 0; i < nr_items; i++) {
589 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
590 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
591 kfree(tm_list[i]);
592 }
593 if (locked)
594 write_unlock(&eb->fs_info->tree_mod_log_lock);
595 kfree(tm_list);
596 kfree(tm);
597
598 return ret;
599 }
600
601 static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct tree_mod_elem ** tm_list,int nritems)602 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
603 struct tree_mod_elem **tm_list,
604 int nritems)
605 {
606 int i, j;
607 int ret;
608
609 for (i = nritems - 1; i >= 0; i--) {
610 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
611 if (ret) {
612 for (j = nritems - 1; j > i; j--)
613 rb_erase(&tm_list[j]->node,
614 &fs_info->tree_mod_log);
615 return ret;
616 }
617 }
618
619 return 0;
620 }
621
tree_mod_log_insert_root(struct extent_buffer * old_root,struct extent_buffer * new_root,int log_removal)622 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
623 struct extent_buffer *new_root, int log_removal)
624 {
625 struct btrfs_fs_info *fs_info = old_root->fs_info;
626 struct tree_mod_elem *tm = NULL;
627 struct tree_mod_elem **tm_list = NULL;
628 int nritems = 0;
629 int ret = 0;
630 int i;
631
632 if (!tree_mod_need_log(fs_info, NULL))
633 return 0;
634
635 if (log_removal && btrfs_header_level(old_root) > 0) {
636 nritems = btrfs_header_nritems(old_root);
637 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
638 GFP_NOFS);
639 if (!tm_list) {
640 ret = -ENOMEM;
641 goto free_tms;
642 }
643 for (i = 0; i < nritems; i++) {
644 tm_list[i] = alloc_tree_mod_elem(old_root, i,
645 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
646 if (!tm_list[i]) {
647 ret = -ENOMEM;
648 goto free_tms;
649 }
650 }
651 }
652
653 tm = kzalloc(sizeof(*tm), GFP_NOFS);
654 if (!tm) {
655 ret = -ENOMEM;
656 goto free_tms;
657 }
658
659 tm->logical = new_root->start;
660 tm->old_root.logical = old_root->start;
661 tm->old_root.level = btrfs_header_level(old_root);
662 tm->generation = btrfs_header_generation(old_root);
663 tm->op = MOD_LOG_ROOT_REPLACE;
664
665 if (tree_mod_dont_log(fs_info, NULL))
666 goto free_tms;
667
668 if (tm_list)
669 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
670 if (!ret)
671 ret = __tree_mod_log_insert(fs_info, tm);
672
673 write_unlock(&fs_info->tree_mod_log_lock);
674 if (ret)
675 goto free_tms;
676 kfree(tm_list);
677
678 return ret;
679
680 free_tms:
681 if (tm_list) {
682 for (i = 0; i < nritems; i++)
683 kfree(tm_list[i]);
684 kfree(tm_list);
685 }
686 kfree(tm);
687
688 return ret;
689 }
690
691 static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq,int smallest)692 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
693 int smallest)
694 {
695 struct rb_root *tm_root;
696 struct rb_node *node;
697 struct tree_mod_elem *cur = NULL;
698 struct tree_mod_elem *found = NULL;
699
700 read_lock(&fs_info->tree_mod_log_lock);
701 tm_root = &fs_info->tree_mod_log;
702 node = tm_root->rb_node;
703 while (node) {
704 cur = rb_entry(node, struct tree_mod_elem, node);
705 if (cur->logical < start) {
706 node = node->rb_left;
707 } else if (cur->logical > start) {
708 node = node->rb_right;
709 } else if (cur->seq < min_seq) {
710 node = node->rb_left;
711 } else if (!smallest) {
712 /* we want the node with the highest seq */
713 if (found)
714 BUG_ON(found->seq > cur->seq);
715 found = cur;
716 node = node->rb_left;
717 } else if (cur->seq > min_seq) {
718 /* we want the node with the smallest seq */
719 if (found)
720 BUG_ON(found->seq < cur->seq);
721 found = cur;
722 node = node->rb_right;
723 } else {
724 found = cur;
725 break;
726 }
727 }
728 read_unlock(&fs_info->tree_mod_log_lock);
729
730 return found;
731 }
732
733 /*
734 * this returns the element from the log with the smallest time sequence
735 * value that's in the log (the oldest log item). any element with a time
736 * sequence lower than min_seq will be ignored.
737 */
738 static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)739 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
740 u64 min_seq)
741 {
742 return __tree_mod_log_search(fs_info, start, min_seq, 1);
743 }
744
745 /*
746 * this returns the element from the log with the largest time sequence
747 * value that's in the log (the most recent log item). any element with
748 * a time sequence lower than min_seq will be ignored.
749 */
750 static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)751 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
752 {
753 return __tree_mod_log_search(fs_info, start, min_seq, 0);
754 }
755
756 static noinline int
tree_mod_log_eb_copy(struct btrfs_fs_info * fs_info,struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,int nr_items)757 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
758 struct extent_buffer *src, unsigned long dst_offset,
759 unsigned long src_offset, int nr_items)
760 {
761 int ret = 0;
762 struct tree_mod_elem **tm_list = NULL;
763 struct tree_mod_elem **tm_list_add, **tm_list_rem;
764 int i;
765 int locked = 0;
766
767 if (!tree_mod_need_log(fs_info, NULL))
768 return 0;
769
770 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
771 return 0;
772
773 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
774 GFP_NOFS);
775 if (!tm_list)
776 return -ENOMEM;
777
778 tm_list_add = tm_list;
779 tm_list_rem = tm_list + nr_items;
780 for (i = 0; i < nr_items; i++) {
781 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
782 MOD_LOG_KEY_REMOVE, GFP_NOFS);
783 if (!tm_list_rem[i]) {
784 ret = -ENOMEM;
785 goto free_tms;
786 }
787
788 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
789 MOD_LOG_KEY_ADD, GFP_NOFS);
790 if (!tm_list_add[i]) {
791 ret = -ENOMEM;
792 goto free_tms;
793 }
794 }
795
796 if (tree_mod_dont_log(fs_info, NULL))
797 goto free_tms;
798 locked = 1;
799
800 for (i = 0; i < nr_items; i++) {
801 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
802 if (ret)
803 goto free_tms;
804 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
805 if (ret)
806 goto free_tms;
807 }
808
809 write_unlock(&fs_info->tree_mod_log_lock);
810 kfree(tm_list);
811
812 return 0;
813
814 free_tms:
815 for (i = 0; i < nr_items * 2; i++) {
816 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
817 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
818 kfree(tm_list[i]);
819 }
820 if (locked)
821 write_unlock(&fs_info->tree_mod_log_lock);
822 kfree(tm_list);
823
824 return ret;
825 }
826
tree_mod_log_free_eb(struct extent_buffer * eb)827 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
828 {
829 struct tree_mod_elem **tm_list = NULL;
830 int nritems = 0;
831 int i;
832 int ret = 0;
833
834 if (btrfs_header_level(eb) == 0)
835 return 0;
836
837 if (!tree_mod_need_log(eb->fs_info, NULL))
838 return 0;
839
840 nritems = btrfs_header_nritems(eb);
841 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
842 if (!tm_list)
843 return -ENOMEM;
844
845 for (i = 0; i < nritems; i++) {
846 tm_list[i] = alloc_tree_mod_elem(eb, i,
847 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
848 if (!tm_list[i]) {
849 ret = -ENOMEM;
850 goto free_tms;
851 }
852 }
853
854 if (tree_mod_dont_log(eb->fs_info, eb))
855 goto free_tms;
856
857 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
858 write_unlock(&eb->fs_info->tree_mod_log_lock);
859 if (ret)
860 goto free_tms;
861 kfree(tm_list);
862
863 return 0;
864
865 free_tms:
866 for (i = 0; i < nritems; i++)
867 kfree(tm_list[i]);
868 kfree(tm_list);
869
870 return ret;
871 }
872
873 /*
874 * check if the tree block can be shared by multiple trees
875 */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)876 int btrfs_block_can_be_shared(struct btrfs_root *root,
877 struct extent_buffer *buf)
878 {
879 /*
880 * Tree blocks not in reference counted trees and tree roots
881 * are never shared. If a block was allocated after the last
882 * snapshot and the block was not allocated by tree relocation,
883 * we know the block is not shared.
884 */
885 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
886 buf != root->node && buf != root->commit_root &&
887 (btrfs_header_generation(buf) <=
888 btrfs_root_last_snapshot(&root->root_item) ||
889 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
890 return 1;
891
892 return 0;
893 }
894
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)895 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
896 struct btrfs_root *root,
897 struct extent_buffer *buf,
898 struct extent_buffer *cow,
899 int *last_ref)
900 {
901 struct btrfs_fs_info *fs_info = root->fs_info;
902 u64 refs;
903 u64 owner;
904 u64 flags;
905 u64 new_flags = 0;
906 int ret;
907
908 /*
909 * Backrefs update rules:
910 *
911 * Always use full backrefs for extent pointers in tree block
912 * allocated by tree relocation.
913 *
914 * If a shared tree block is no longer referenced by its owner
915 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
916 * use full backrefs for extent pointers in tree block.
917 *
918 * If a tree block is been relocating
919 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
920 * use full backrefs for extent pointers in tree block.
921 * The reason for this is some operations (such as drop tree)
922 * are only allowed for blocks use full backrefs.
923 */
924
925 if (btrfs_block_can_be_shared(root, buf)) {
926 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
927 btrfs_header_level(buf), 1,
928 &refs, &flags);
929 if (ret)
930 return ret;
931 if (refs == 0) {
932 ret = -EROFS;
933 btrfs_handle_fs_error(fs_info, ret, NULL);
934 return ret;
935 }
936 } else {
937 refs = 1;
938 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
939 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
940 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
941 else
942 flags = 0;
943 }
944
945 owner = btrfs_header_owner(buf);
946 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
947 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
948
949 if (refs > 1) {
950 if ((owner == root->root_key.objectid ||
951 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
952 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
953 ret = btrfs_inc_ref(trans, root, buf, 1);
954 if (ret)
955 return ret;
956
957 if (root->root_key.objectid ==
958 BTRFS_TREE_RELOC_OBJECTID) {
959 ret = btrfs_dec_ref(trans, root, buf, 0);
960 if (ret)
961 return ret;
962 ret = btrfs_inc_ref(trans, root, cow, 1);
963 if (ret)
964 return ret;
965 }
966 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
967 } else {
968
969 if (root->root_key.objectid ==
970 BTRFS_TREE_RELOC_OBJECTID)
971 ret = btrfs_inc_ref(trans, root, cow, 1);
972 else
973 ret = btrfs_inc_ref(trans, root, cow, 0);
974 if (ret)
975 return ret;
976 }
977 if (new_flags != 0) {
978 int level = btrfs_header_level(buf);
979
980 ret = btrfs_set_disk_extent_flags(trans, fs_info,
981 buf->start,
982 buf->len,
983 new_flags, level, 0);
984 if (ret)
985 return ret;
986 }
987 } else {
988 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
989 if (root->root_key.objectid ==
990 BTRFS_TREE_RELOC_OBJECTID)
991 ret = btrfs_inc_ref(trans, root, cow, 1);
992 else
993 ret = btrfs_inc_ref(trans, root, cow, 0);
994 if (ret)
995 return ret;
996 ret = btrfs_dec_ref(trans, root, buf, 1);
997 if (ret)
998 return ret;
999 }
1000 clean_tree_block(fs_info, buf);
1001 *last_ref = 1;
1002 }
1003 return 0;
1004 }
1005
1006 /*
1007 * does the dirty work in cow of a single block. The parent block (if
1008 * supplied) is updated to point to the new cow copy. The new buffer is marked
1009 * dirty and returned locked. If you modify the block it needs to be marked
1010 * dirty again.
1011 *
1012 * search_start -- an allocation hint for the new block
1013 *
1014 * empty_size -- a hint that you plan on doing more cow. This is the size in
1015 * bytes the allocator should try to find free next to the block it returns.
1016 * This is just a hint and may be ignored by the allocator.
1017 */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size)1018 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1019 struct btrfs_root *root,
1020 struct extent_buffer *buf,
1021 struct extent_buffer *parent, int parent_slot,
1022 struct extent_buffer **cow_ret,
1023 u64 search_start, u64 empty_size)
1024 {
1025 struct btrfs_fs_info *fs_info = root->fs_info;
1026 struct btrfs_disk_key disk_key;
1027 struct extent_buffer *cow;
1028 int level, ret;
1029 int last_ref = 0;
1030 int unlock_orig = 0;
1031 u64 parent_start = 0;
1032
1033 if (*cow_ret == buf)
1034 unlock_orig = 1;
1035
1036 btrfs_assert_tree_locked(buf);
1037
1038 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1039 trans->transid != fs_info->running_transaction->transid);
1040 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1041 trans->transid != root->last_trans);
1042
1043 level = btrfs_header_level(buf);
1044
1045 if (level == 0)
1046 btrfs_item_key(buf, &disk_key, 0);
1047 else
1048 btrfs_node_key(buf, &disk_key, 0);
1049
1050 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1051 parent_start = parent->start;
1052
1053 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1054 root->root_key.objectid, &disk_key, level,
1055 search_start, empty_size);
1056 if (IS_ERR(cow))
1057 return PTR_ERR(cow);
1058
1059 /* cow is set to blocking by btrfs_init_new_buffer */
1060
1061 copy_extent_buffer_full(cow, buf);
1062 btrfs_set_header_bytenr(cow, cow->start);
1063 btrfs_set_header_generation(cow, trans->transid);
1064 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1065 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1066 BTRFS_HEADER_FLAG_RELOC);
1067 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1068 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1069 else
1070 btrfs_set_header_owner(cow, root->root_key.objectid);
1071
1072 write_extent_buffer_fsid(cow, fs_info->fsid);
1073
1074 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1075 if (ret) {
1076 btrfs_abort_transaction(trans, ret);
1077 return ret;
1078 }
1079
1080 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1081 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1082 if (ret) {
1083 btrfs_abort_transaction(trans, ret);
1084 return ret;
1085 }
1086 }
1087
1088 if (buf == root->node) {
1089 WARN_ON(parent && parent != buf);
1090 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1091 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1092 parent_start = buf->start;
1093
1094 extent_buffer_get(cow);
1095 ret = tree_mod_log_insert_root(root->node, cow, 1);
1096 BUG_ON(ret < 0);
1097 rcu_assign_pointer(root->node, cow);
1098
1099 btrfs_free_tree_block(trans, root, buf, parent_start,
1100 last_ref);
1101 free_extent_buffer(buf);
1102 add_root_to_dirty_list(root);
1103 } else {
1104 WARN_ON(trans->transid != btrfs_header_generation(parent));
1105 tree_mod_log_insert_key(parent, parent_slot,
1106 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1107 btrfs_set_node_blockptr(parent, parent_slot,
1108 cow->start);
1109 btrfs_set_node_ptr_generation(parent, parent_slot,
1110 trans->transid);
1111 btrfs_mark_buffer_dirty(parent);
1112 if (last_ref) {
1113 ret = tree_mod_log_free_eb(buf);
1114 if (ret) {
1115 btrfs_abort_transaction(trans, ret);
1116 return ret;
1117 }
1118 }
1119 btrfs_free_tree_block(trans, root, buf, parent_start,
1120 last_ref);
1121 }
1122 if (unlock_orig)
1123 btrfs_tree_unlock(buf);
1124 free_extent_buffer_stale(buf);
1125 btrfs_mark_buffer_dirty(cow);
1126 *cow_ret = cow;
1127 return 0;
1128 }
1129
1130 /*
1131 * returns the logical address of the oldest predecessor of the given root.
1132 * entries older than time_seq are ignored.
1133 */
__tree_mod_log_oldest_root(struct extent_buffer * eb_root,u64 time_seq)1134 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1135 struct extent_buffer *eb_root, u64 time_seq)
1136 {
1137 struct tree_mod_elem *tm;
1138 struct tree_mod_elem *found = NULL;
1139 u64 root_logical = eb_root->start;
1140 int looped = 0;
1141
1142 if (!time_seq)
1143 return NULL;
1144
1145 /*
1146 * the very last operation that's logged for a root is the
1147 * replacement operation (if it is replaced at all). this has
1148 * the logical address of the *new* root, making it the very
1149 * first operation that's logged for this root.
1150 */
1151 while (1) {
1152 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1153 time_seq);
1154 if (!looped && !tm)
1155 return NULL;
1156 /*
1157 * if there are no tree operation for the oldest root, we simply
1158 * return it. this should only happen if that (old) root is at
1159 * level 0.
1160 */
1161 if (!tm)
1162 break;
1163
1164 /*
1165 * if there's an operation that's not a root replacement, we
1166 * found the oldest version of our root. normally, we'll find a
1167 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1168 */
1169 if (tm->op != MOD_LOG_ROOT_REPLACE)
1170 break;
1171
1172 found = tm;
1173 root_logical = tm->old_root.logical;
1174 looped = 1;
1175 }
1176
1177 /* if there's no old root to return, return what we found instead */
1178 if (!found)
1179 found = tm;
1180
1181 return found;
1182 }
1183
1184 /*
1185 * tm is a pointer to the first operation to rewind within eb. then, all
1186 * previous operations will be rewound (until we reach something older than
1187 * time_seq).
1188 */
1189 static void
__tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 time_seq,struct tree_mod_elem * first_tm)1190 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1191 u64 time_seq, struct tree_mod_elem *first_tm)
1192 {
1193 u32 n;
1194 struct rb_node *next;
1195 struct tree_mod_elem *tm = first_tm;
1196 unsigned long o_dst;
1197 unsigned long o_src;
1198 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1199
1200 n = btrfs_header_nritems(eb);
1201 read_lock(&fs_info->tree_mod_log_lock);
1202 while (tm && tm->seq >= time_seq) {
1203 /*
1204 * all the operations are recorded with the operator used for
1205 * the modification. as we're going backwards, we do the
1206 * opposite of each operation here.
1207 */
1208 switch (tm->op) {
1209 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1210 BUG_ON(tm->slot < n);
1211 /* Fallthrough */
1212 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1213 case MOD_LOG_KEY_REMOVE:
1214 btrfs_set_node_key(eb, &tm->key, tm->slot);
1215 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1216 btrfs_set_node_ptr_generation(eb, tm->slot,
1217 tm->generation);
1218 n++;
1219 break;
1220 case MOD_LOG_KEY_REPLACE:
1221 BUG_ON(tm->slot >= n);
1222 btrfs_set_node_key(eb, &tm->key, tm->slot);
1223 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1224 btrfs_set_node_ptr_generation(eb, tm->slot,
1225 tm->generation);
1226 break;
1227 case MOD_LOG_KEY_ADD:
1228 /* if a move operation is needed it's in the log */
1229 n--;
1230 break;
1231 case MOD_LOG_MOVE_KEYS:
1232 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1233 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1234 memmove_extent_buffer(eb, o_dst, o_src,
1235 tm->move.nr_items * p_size);
1236 break;
1237 case MOD_LOG_ROOT_REPLACE:
1238 /*
1239 * this operation is special. for roots, this must be
1240 * handled explicitly before rewinding.
1241 * for non-roots, this operation may exist if the node
1242 * was a root: root A -> child B; then A gets empty and
1243 * B is promoted to the new root. in the mod log, we'll
1244 * have a root-replace operation for B, a tree block
1245 * that is no root. we simply ignore that operation.
1246 */
1247 break;
1248 }
1249 next = rb_next(&tm->node);
1250 if (!next)
1251 break;
1252 tm = rb_entry(next, struct tree_mod_elem, node);
1253 if (tm->logical != first_tm->logical)
1254 break;
1255 }
1256 read_unlock(&fs_info->tree_mod_log_lock);
1257 btrfs_set_header_nritems(eb, n);
1258 }
1259
1260 /*
1261 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1262 * is returned. If rewind operations happen, a fresh buffer is returned. The
1263 * returned buffer is always read-locked. If the returned buffer is not the
1264 * input buffer, the lock on the input buffer is released and the input buffer
1265 * is freed (its refcount is decremented).
1266 */
1267 static struct extent_buffer *
tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct extent_buffer * eb,u64 time_seq)1268 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1269 struct extent_buffer *eb, u64 time_seq)
1270 {
1271 struct extent_buffer *eb_rewin;
1272 struct tree_mod_elem *tm;
1273
1274 if (!time_seq)
1275 return eb;
1276
1277 if (btrfs_header_level(eb) == 0)
1278 return eb;
1279
1280 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1281 if (!tm)
1282 return eb;
1283
1284 btrfs_set_path_blocking(path);
1285 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1286
1287 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1288 BUG_ON(tm->slot != 0);
1289 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1290 if (!eb_rewin) {
1291 btrfs_tree_read_unlock_blocking(eb);
1292 free_extent_buffer(eb);
1293 return NULL;
1294 }
1295 btrfs_set_header_bytenr(eb_rewin, eb->start);
1296 btrfs_set_header_backref_rev(eb_rewin,
1297 btrfs_header_backref_rev(eb));
1298 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1299 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1300 } else {
1301 eb_rewin = btrfs_clone_extent_buffer(eb);
1302 if (!eb_rewin) {
1303 btrfs_tree_read_unlock_blocking(eb);
1304 free_extent_buffer(eb);
1305 return NULL;
1306 }
1307 }
1308
1309 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1310 btrfs_tree_read_unlock_blocking(eb);
1311 free_extent_buffer(eb);
1312
1313 extent_buffer_get(eb_rewin);
1314 btrfs_tree_read_lock(eb_rewin);
1315 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1316 WARN_ON(btrfs_header_nritems(eb_rewin) >
1317 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1318
1319 return eb_rewin;
1320 }
1321
1322 /*
1323 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1324 * value. If there are no changes, the current root->root_node is returned. If
1325 * anything changed in between, there's a fresh buffer allocated on which the
1326 * rewind operations are done. In any case, the returned buffer is read locked.
1327 * Returns NULL on error (with no locks held).
1328 */
1329 static inline struct extent_buffer *
get_old_root(struct btrfs_root * root,u64 time_seq)1330 get_old_root(struct btrfs_root *root, u64 time_seq)
1331 {
1332 struct btrfs_fs_info *fs_info = root->fs_info;
1333 struct tree_mod_elem *tm;
1334 struct extent_buffer *eb = NULL;
1335 struct extent_buffer *eb_root;
1336 struct extent_buffer *old;
1337 struct tree_mod_root *old_root = NULL;
1338 u64 old_generation = 0;
1339 u64 logical;
1340 int level;
1341
1342 eb_root = btrfs_read_lock_root_node(root);
1343 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1344 if (!tm)
1345 return eb_root;
1346
1347 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1348 old_root = &tm->old_root;
1349 old_generation = tm->generation;
1350 logical = old_root->logical;
1351 level = old_root->level;
1352 } else {
1353 logical = eb_root->start;
1354 level = btrfs_header_level(eb_root);
1355 }
1356
1357 tm = tree_mod_log_search(fs_info, logical, time_seq);
1358 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1359 btrfs_tree_read_unlock(eb_root);
1360 free_extent_buffer(eb_root);
1361 old = read_tree_block(fs_info, logical, 0, level, NULL);
1362 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1363 if (!IS_ERR(old))
1364 free_extent_buffer(old);
1365 btrfs_warn(fs_info,
1366 "failed to read tree block %llu from get_old_root",
1367 logical);
1368 } else {
1369 eb = btrfs_clone_extent_buffer(old);
1370 free_extent_buffer(old);
1371 }
1372 } else if (old_root) {
1373 btrfs_tree_read_unlock(eb_root);
1374 free_extent_buffer(eb_root);
1375 eb = alloc_dummy_extent_buffer(fs_info, logical);
1376 } else {
1377 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1378 eb = btrfs_clone_extent_buffer(eb_root);
1379 btrfs_tree_read_unlock_blocking(eb_root);
1380 free_extent_buffer(eb_root);
1381 }
1382
1383 if (!eb)
1384 return NULL;
1385 extent_buffer_get(eb);
1386 btrfs_tree_read_lock(eb);
1387 if (old_root) {
1388 btrfs_set_header_bytenr(eb, eb->start);
1389 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1390 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1391 btrfs_set_header_level(eb, old_root->level);
1392 btrfs_set_header_generation(eb, old_generation);
1393 }
1394 if (tm)
1395 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1396 else
1397 WARN_ON(btrfs_header_level(eb) != 0);
1398 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1399
1400 return eb;
1401 }
1402
btrfs_old_root_level(struct btrfs_root * root,u64 time_seq)1403 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1404 {
1405 struct tree_mod_elem *tm;
1406 int level;
1407 struct extent_buffer *eb_root = btrfs_root_node(root);
1408
1409 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1410 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1411 level = tm->old_root.level;
1412 } else {
1413 level = btrfs_header_level(eb_root);
1414 }
1415 free_extent_buffer(eb_root);
1416
1417 return level;
1418 }
1419
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)1420 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1421 struct btrfs_root *root,
1422 struct extent_buffer *buf)
1423 {
1424 if (btrfs_is_testing(root->fs_info))
1425 return 0;
1426
1427 /* Ensure we can see the FORCE_COW bit */
1428 smp_mb__before_atomic();
1429
1430 /*
1431 * We do not need to cow a block if
1432 * 1) this block is not created or changed in this transaction;
1433 * 2) this block does not belong to TREE_RELOC tree;
1434 * 3) the root is not forced COW.
1435 *
1436 * What is forced COW:
1437 * when we create snapshot during committing the transaction,
1438 * after we've finished coping src root, we must COW the shared
1439 * block to ensure the metadata consistency.
1440 */
1441 if (btrfs_header_generation(buf) == trans->transid &&
1442 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1443 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1444 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1445 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1446 return 0;
1447 return 1;
1448 }
1449
1450 /*
1451 * cows a single block, see __btrfs_cow_block for the real work.
1452 * This version of it has extra checks so that a block isn't COWed more than
1453 * once per transaction, as long as it hasn't been written yet
1454 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret)1455 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root, struct extent_buffer *buf,
1457 struct extent_buffer *parent, int parent_slot,
1458 struct extent_buffer **cow_ret)
1459 {
1460 struct btrfs_fs_info *fs_info = root->fs_info;
1461 u64 search_start;
1462 int ret;
1463
1464 if (trans->transaction != fs_info->running_transaction)
1465 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1466 trans->transid,
1467 fs_info->running_transaction->transid);
1468
1469 if (trans->transid != fs_info->generation)
1470 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1471 trans->transid, fs_info->generation);
1472
1473 if (!should_cow_block(trans, root, buf)) {
1474 trans->dirty = true;
1475 *cow_ret = buf;
1476 return 0;
1477 }
1478
1479 search_start = buf->start & ~((u64)SZ_1G - 1);
1480
1481 if (parent)
1482 btrfs_set_lock_blocking(parent);
1483 btrfs_set_lock_blocking(buf);
1484
1485 ret = __btrfs_cow_block(trans, root, buf, parent,
1486 parent_slot, cow_ret, search_start, 0);
1487
1488 trace_btrfs_cow_block(root, buf, *cow_ret);
1489
1490 return ret;
1491 }
1492
1493 /*
1494 * helper function for defrag to decide if two blocks pointed to by a
1495 * node are actually close by
1496 */
close_blocks(u64 blocknr,u64 other,u32 blocksize)1497 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1498 {
1499 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1500 return 1;
1501 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1502 return 1;
1503 return 0;
1504 }
1505
1506 /*
1507 * compare two keys in a memcmp fashion
1508 */
comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)1509 static int comp_keys(const struct btrfs_disk_key *disk,
1510 const struct btrfs_key *k2)
1511 {
1512 struct btrfs_key k1;
1513
1514 btrfs_disk_key_to_cpu(&k1, disk);
1515
1516 return btrfs_comp_cpu_keys(&k1, k2);
1517 }
1518
1519 /*
1520 * same as comp_keys only with two btrfs_key's
1521 */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)1522 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1523 {
1524 if (k1->objectid > k2->objectid)
1525 return 1;
1526 if (k1->objectid < k2->objectid)
1527 return -1;
1528 if (k1->type > k2->type)
1529 return 1;
1530 if (k1->type < k2->type)
1531 return -1;
1532 if (k1->offset > k2->offset)
1533 return 1;
1534 if (k1->offset < k2->offset)
1535 return -1;
1536 return 0;
1537 }
1538
1539 /*
1540 * this is used by the defrag code to go through all the
1541 * leaves pointed to by a node and reallocate them so that
1542 * disk order is close to key order
1543 */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)1544 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1545 struct btrfs_root *root, struct extent_buffer *parent,
1546 int start_slot, u64 *last_ret,
1547 struct btrfs_key *progress)
1548 {
1549 struct btrfs_fs_info *fs_info = root->fs_info;
1550 struct extent_buffer *cur;
1551 u64 blocknr;
1552 u64 gen;
1553 u64 search_start = *last_ret;
1554 u64 last_block = 0;
1555 u64 other;
1556 u32 parent_nritems;
1557 int end_slot;
1558 int i;
1559 int err = 0;
1560 int parent_level;
1561 int uptodate;
1562 u32 blocksize;
1563 int progress_passed = 0;
1564 struct btrfs_disk_key disk_key;
1565
1566 parent_level = btrfs_header_level(parent);
1567
1568 WARN_ON(trans->transaction != fs_info->running_transaction);
1569 WARN_ON(trans->transid != fs_info->generation);
1570
1571 parent_nritems = btrfs_header_nritems(parent);
1572 blocksize = fs_info->nodesize;
1573 end_slot = parent_nritems - 1;
1574
1575 if (parent_nritems <= 1)
1576 return 0;
1577
1578 btrfs_set_lock_blocking(parent);
1579
1580 for (i = start_slot; i <= end_slot; i++) {
1581 struct btrfs_key first_key;
1582 int close = 1;
1583
1584 btrfs_node_key(parent, &disk_key, i);
1585 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1586 continue;
1587
1588 progress_passed = 1;
1589 blocknr = btrfs_node_blockptr(parent, i);
1590 gen = btrfs_node_ptr_generation(parent, i);
1591 btrfs_node_key_to_cpu(parent, &first_key, i);
1592 if (last_block == 0)
1593 last_block = blocknr;
1594
1595 if (i > 0) {
1596 other = btrfs_node_blockptr(parent, i - 1);
1597 close = close_blocks(blocknr, other, blocksize);
1598 }
1599 if (!close && i < end_slot) {
1600 other = btrfs_node_blockptr(parent, i + 1);
1601 close = close_blocks(blocknr, other, blocksize);
1602 }
1603 if (close) {
1604 last_block = blocknr;
1605 continue;
1606 }
1607
1608 cur = find_extent_buffer(fs_info, blocknr);
1609 if (cur)
1610 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1611 else
1612 uptodate = 0;
1613 if (!cur || !uptodate) {
1614 if (!cur) {
1615 cur = read_tree_block(fs_info, blocknr, gen,
1616 parent_level - 1,
1617 &first_key);
1618 if (IS_ERR(cur)) {
1619 return PTR_ERR(cur);
1620 } else if (!extent_buffer_uptodate(cur)) {
1621 free_extent_buffer(cur);
1622 return -EIO;
1623 }
1624 } else if (!uptodate) {
1625 err = btrfs_read_buffer(cur, gen,
1626 parent_level - 1,&first_key);
1627 if (err) {
1628 free_extent_buffer(cur);
1629 return err;
1630 }
1631 }
1632 }
1633 if (search_start == 0)
1634 search_start = last_block;
1635
1636 btrfs_tree_lock(cur);
1637 btrfs_set_lock_blocking(cur);
1638 err = __btrfs_cow_block(trans, root, cur, parent, i,
1639 &cur, search_start,
1640 min(16 * blocksize,
1641 (end_slot - i) * blocksize));
1642 if (err) {
1643 btrfs_tree_unlock(cur);
1644 free_extent_buffer(cur);
1645 break;
1646 }
1647 search_start = cur->start;
1648 last_block = cur->start;
1649 *last_ret = search_start;
1650 btrfs_tree_unlock(cur);
1651 free_extent_buffer(cur);
1652 }
1653 return err;
1654 }
1655
1656 /*
1657 * search for key in the extent_buffer. The items start at offset p,
1658 * and they are item_size apart. There are 'max' items in p.
1659 *
1660 * the slot in the array is returned via slot, and it points to
1661 * the place where you would insert key if it is not found in
1662 * the array.
1663 *
1664 * slot may point to max if the key is bigger than all of the keys
1665 */
generic_bin_search(struct extent_buffer * eb,unsigned long p,int item_size,const struct btrfs_key * key,int max,int * slot)1666 static noinline int generic_bin_search(struct extent_buffer *eb,
1667 unsigned long p, int item_size,
1668 const struct btrfs_key *key,
1669 int max, int *slot)
1670 {
1671 int low = 0;
1672 int high = max;
1673 int mid;
1674 int ret;
1675 struct btrfs_disk_key *tmp = NULL;
1676 struct btrfs_disk_key unaligned;
1677 unsigned long offset;
1678 char *kaddr = NULL;
1679 unsigned long map_start = 0;
1680 unsigned long map_len = 0;
1681 int err;
1682
1683 if (low > high) {
1684 btrfs_err(eb->fs_info,
1685 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1686 __func__, low, high, eb->start,
1687 btrfs_header_owner(eb), btrfs_header_level(eb));
1688 return -EINVAL;
1689 }
1690
1691 while (low < high) {
1692 mid = (low + high) / 2;
1693 offset = p + mid * item_size;
1694
1695 if (!kaddr || offset < map_start ||
1696 (offset + sizeof(struct btrfs_disk_key)) >
1697 map_start + map_len) {
1698
1699 err = map_private_extent_buffer(eb, offset,
1700 sizeof(struct btrfs_disk_key),
1701 &kaddr, &map_start, &map_len);
1702
1703 if (!err) {
1704 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1705 map_start);
1706 } else if (err == 1) {
1707 read_extent_buffer(eb, &unaligned,
1708 offset, sizeof(unaligned));
1709 tmp = &unaligned;
1710 } else {
1711 return err;
1712 }
1713
1714 } else {
1715 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1716 map_start);
1717 }
1718 ret = comp_keys(tmp, key);
1719
1720 if (ret < 0)
1721 low = mid + 1;
1722 else if (ret > 0)
1723 high = mid;
1724 else {
1725 *slot = mid;
1726 return 0;
1727 }
1728 }
1729 *slot = low;
1730 return 1;
1731 }
1732
1733 /*
1734 * simple bin_search frontend that does the right thing for
1735 * leaves vs nodes
1736 */
btrfs_bin_search(struct extent_buffer * eb,const struct btrfs_key * key,int level,int * slot)1737 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1738 int level, int *slot)
1739 {
1740 if (level == 0)
1741 return generic_bin_search(eb,
1742 offsetof(struct btrfs_leaf, items),
1743 sizeof(struct btrfs_item),
1744 key, btrfs_header_nritems(eb),
1745 slot);
1746 else
1747 return generic_bin_search(eb,
1748 offsetof(struct btrfs_node, ptrs),
1749 sizeof(struct btrfs_key_ptr),
1750 key, btrfs_header_nritems(eb),
1751 slot);
1752 }
1753
root_add_used(struct btrfs_root * root,u32 size)1754 static void root_add_used(struct btrfs_root *root, u32 size)
1755 {
1756 spin_lock(&root->accounting_lock);
1757 btrfs_set_root_used(&root->root_item,
1758 btrfs_root_used(&root->root_item) + size);
1759 spin_unlock(&root->accounting_lock);
1760 }
1761
root_sub_used(struct btrfs_root * root,u32 size)1762 static void root_sub_used(struct btrfs_root *root, u32 size)
1763 {
1764 spin_lock(&root->accounting_lock);
1765 btrfs_set_root_used(&root->root_item,
1766 btrfs_root_used(&root->root_item) - size);
1767 spin_unlock(&root->accounting_lock);
1768 }
1769
1770 /* given a node and slot number, this reads the blocks it points to. The
1771 * extent buffer is returned with a reference taken (but unlocked).
1772 */
1773 static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info * fs_info,struct extent_buffer * parent,int slot)1774 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1775 int slot)
1776 {
1777 int level = btrfs_header_level(parent);
1778 struct extent_buffer *eb;
1779 struct btrfs_key first_key;
1780
1781 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1782 return ERR_PTR(-ENOENT);
1783
1784 BUG_ON(level == 0);
1785
1786 btrfs_node_key_to_cpu(parent, &first_key, slot);
1787 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1788 btrfs_node_ptr_generation(parent, slot),
1789 level - 1, &first_key);
1790 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1791 free_extent_buffer(eb);
1792 eb = ERR_PTR(-EIO);
1793 }
1794
1795 return eb;
1796 }
1797
1798 /*
1799 * node level balancing, used to make sure nodes are in proper order for
1800 * item deletion. We balance from the top down, so we have to make sure
1801 * that a deletion won't leave an node completely empty later on.
1802 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1803 static noinline int balance_level(struct btrfs_trans_handle *trans,
1804 struct btrfs_root *root,
1805 struct btrfs_path *path, int level)
1806 {
1807 struct btrfs_fs_info *fs_info = root->fs_info;
1808 struct extent_buffer *right = NULL;
1809 struct extent_buffer *mid;
1810 struct extent_buffer *left = NULL;
1811 struct extent_buffer *parent = NULL;
1812 int ret = 0;
1813 int wret;
1814 int pslot;
1815 int orig_slot = path->slots[level];
1816 u64 orig_ptr;
1817
1818 if (level == 0)
1819 return 0;
1820
1821 mid = path->nodes[level];
1822
1823 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1824 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1825 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1826
1827 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1828
1829 if (level < BTRFS_MAX_LEVEL - 1) {
1830 parent = path->nodes[level + 1];
1831 pslot = path->slots[level + 1];
1832 }
1833
1834 /*
1835 * deal with the case where there is only one pointer in the root
1836 * by promoting the node below to a root
1837 */
1838 if (!parent) {
1839 struct extent_buffer *child;
1840
1841 if (btrfs_header_nritems(mid) != 1)
1842 return 0;
1843
1844 /* promote the child to a root */
1845 child = read_node_slot(fs_info, mid, 0);
1846 if (IS_ERR(child)) {
1847 ret = PTR_ERR(child);
1848 btrfs_handle_fs_error(fs_info, ret, NULL);
1849 goto enospc;
1850 }
1851
1852 btrfs_tree_lock(child);
1853 btrfs_set_lock_blocking(child);
1854 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1855 if (ret) {
1856 btrfs_tree_unlock(child);
1857 free_extent_buffer(child);
1858 goto enospc;
1859 }
1860
1861 ret = tree_mod_log_insert_root(root->node, child, 1);
1862 BUG_ON(ret < 0);
1863 rcu_assign_pointer(root->node, child);
1864
1865 add_root_to_dirty_list(root);
1866 btrfs_tree_unlock(child);
1867
1868 path->locks[level] = 0;
1869 path->nodes[level] = NULL;
1870 clean_tree_block(fs_info, mid);
1871 btrfs_tree_unlock(mid);
1872 /* once for the path */
1873 free_extent_buffer(mid);
1874
1875 root_sub_used(root, mid->len);
1876 btrfs_free_tree_block(trans, root, mid, 0, 1);
1877 /* once for the root ptr */
1878 free_extent_buffer_stale(mid);
1879 return 0;
1880 }
1881 if (btrfs_header_nritems(mid) >
1882 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1883 return 0;
1884
1885 left = read_node_slot(fs_info, parent, pslot - 1);
1886 if (IS_ERR(left))
1887 left = NULL;
1888
1889 if (left) {
1890 btrfs_tree_lock(left);
1891 btrfs_set_lock_blocking(left);
1892 wret = btrfs_cow_block(trans, root, left,
1893 parent, pslot - 1, &left);
1894 if (wret) {
1895 ret = wret;
1896 goto enospc;
1897 }
1898 }
1899
1900 right = read_node_slot(fs_info, parent, pslot + 1);
1901 if (IS_ERR(right))
1902 right = NULL;
1903
1904 if (right) {
1905 btrfs_tree_lock(right);
1906 btrfs_set_lock_blocking(right);
1907 wret = btrfs_cow_block(trans, root, right,
1908 parent, pslot + 1, &right);
1909 if (wret) {
1910 ret = wret;
1911 goto enospc;
1912 }
1913 }
1914
1915 /* first, try to make some room in the middle buffer */
1916 if (left) {
1917 orig_slot += btrfs_header_nritems(left);
1918 wret = push_node_left(trans, fs_info, left, mid, 1);
1919 if (wret < 0)
1920 ret = wret;
1921 }
1922
1923 /*
1924 * then try to empty the right most buffer into the middle
1925 */
1926 if (right) {
1927 wret = push_node_left(trans, fs_info, mid, right, 1);
1928 if (wret < 0 && wret != -ENOSPC)
1929 ret = wret;
1930 if (btrfs_header_nritems(right) == 0) {
1931 clean_tree_block(fs_info, right);
1932 btrfs_tree_unlock(right);
1933 del_ptr(root, path, level + 1, pslot + 1);
1934 root_sub_used(root, right->len);
1935 btrfs_free_tree_block(trans, root, right, 0, 1);
1936 free_extent_buffer_stale(right);
1937 right = NULL;
1938 } else {
1939 struct btrfs_disk_key right_key;
1940 btrfs_node_key(right, &right_key, 0);
1941 ret = tree_mod_log_insert_key(parent, pslot + 1,
1942 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1943 BUG_ON(ret < 0);
1944 btrfs_set_node_key(parent, &right_key, pslot + 1);
1945 btrfs_mark_buffer_dirty(parent);
1946 }
1947 }
1948 if (btrfs_header_nritems(mid) == 1) {
1949 /*
1950 * we're not allowed to leave a node with one item in the
1951 * tree during a delete. A deletion from lower in the tree
1952 * could try to delete the only pointer in this node.
1953 * So, pull some keys from the left.
1954 * There has to be a left pointer at this point because
1955 * otherwise we would have pulled some pointers from the
1956 * right
1957 */
1958 if (!left) {
1959 ret = -EROFS;
1960 btrfs_handle_fs_error(fs_info, ret, NULL);
1961 goto enospc;
1962 }
1963 wret = balance_node_right(trans, fs_info, mid, left);
1964 if (wret < 0) {
1965 ret = wret;
1966 goto enospc;
1967 }
1968 if (wret == 1) {
1969 wret = push_node_left(trans, fs_info, left, mid, 1);
1970 if (wret < 0)
1971 ret = wret;
1972 }
1973 BUG_ON(wret == 1);
1974 }
1975 if (btrfs_header_nritems(mid) == 0) {
1976 clean_tree_block(fs_info, mid);
1977 btrfs_tree_unlock(mid);
1978 del_ptr(root, path, level + 1, pslot);
1979 root_sub_used(root, mid->len);
1980 btrfs_free_tree_block(trans, root, mid, 0, 1);
1981 free_extent_buffer_stale(mid);
1982 mid = NULL;
1983 } else {
1984 /* update the parent key to reflect our changes */
1985 struct btrfs_disk_key mid_key;
1986 btrfs_node_key(mid, &mid_key, 0);
1987 ret = tree_mod_log_insert_key(parent, pslot,
1988 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1989 BUG_ON(ret < 0);
1990 btrfs_set_node_key(parent, &mid_key, pslot);
1991 btrfs_mark_buffer_dirty(parent);
1992 }
1993
1994 /* update the path */
1995 if (left) {
1996 if (btrfs_header_nritems(left) > orig_slot) {
1997 extent_buffer_get(left);
1998 /* left was locked after cow */
1999 path->nodes[level] = left;
2000 path->slots[level + 1] -= 1;
2001 path->slots[level] = orig_slot;
2002 if (mid) {
2003 btrfs_tree_unlock(mid);
2004 free_extent_buffer(mid);
2005 }
2006 } else {
2007 orig_slot -= btrfs_header_nritems(left);
2008 path->slots[level] = orig_slot;
2009 }
2010 }
2011 /* double check we haven't messed things up */
2012 if (orig_ptr !=
2013 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2014 BUG();
2015 enospc:
2016 if (right) {
2017 btrfs_tree_unlock(right);
2018 free_extent_buffer(right);
2019 }
2020 if (left) {
2021 if (path->nodes[level] != left)
2022 btrfs_tree_unlock(left);
2023 free_extent_buffer(left);
2024 }
2025 return ret;
2026 }
2027
2028 /* Node balancing for insertion. Here we only split or push nodes around
2029 * when they are completely full. This is also done top down, so we
2030 * have to be pessimistic.
2031 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2032 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2033 struct btrfs_root *root,
2034 struct btrfs_path *path, int level)
2035 {
2036 struct btrfs_fs_info *fs_info = root->fs_info;
2037 struct extent_buffer *right = NULL;
2038 struct extent_buffer *mid;
2039 struct extent_buffer *left = NULL;
2040 struct extent_buffer *parent = NULL;
2041 int ret = 0;
2042 int wret;
2043 int pslot;
2044 int orig_slot = path->slots[level];
2045
2046 if (level == 0)
2047 return 1;
2048
2049 mid = path->nodes[level];
2050 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2051
2052 if (level < BTRFS_MAX_LEVEL - 1) {
2053 parent = path->nodes[level + 1];
2054 pslot = path->slots[level + 1];
2055 }
2056
2057 if (!parent)
2058 return 1;
2059
2060 left = read_node_slot(fs_info, parent, pslot - 1);
2061 if (IS_ERR(left))
2062 left = NULL;
2063
2064 /* first, try to make some room in the middle buffer */
2065 if (left) {
2066 u32 left_nr;
2067
2068 btrfs_tree_lock(left);
2069 btrfs_set_lock_blocking(left);
2070
2071 left_nr = btrfs_header_nritems(left);
2072 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2073 wret = 1;
2074 } else {
2075 ret = btrfs_cow_block(trans, root, left, parent,
2076 pslot - 1, &left);
2077 if (ret)
2078 wret = 1;
2079 else {
2080 wret = push_node_left(trans, fs_info,
2081 left, mid, 0);
2082 }
2083 }
2084 if (wret < 0)
2085 ret = wret;
2086 if (wret == 0) {
2087 struct btrfs_disk_key disk_key;
2088 orig_slot += left_nr;
2089 btrfs_node_key(mid, &disk_key, 0);
2090 ret = tree_mod_log_insert_key(parent, pslot,
2091 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2092 BUG_ON(ret < 0);
2093 btrfs_set_node_key(parent, &disk_key, pslot);
2094 btrfs_mark_buffer_dirty(parent);
2095 if (btrfs_header_nritems(left) > orig_slot) {
2096 path->nodes[level] = left;
2097 path->slots[level + 1] -= 1;
2098 path->slots[level] = orig_slot;
2099 btrfs_tree_unlock(mid);
2100 free_extent_buffer(mid);
2101 } else {
2102 orig_slot -=
2103 btrfs_header_nritems(left);
2104 path->slots[level] = orig_slot;
2105 btrfs_tree_unlock(left);
2106 free_extent_buffer(left);
2107 }
2108 return 0;
2109 }
2110 btrfs_tree_unlock(left);
2111 free_extent_buffer(left);
2112 }
2113 right = read_node_slot(fs_info, parent, pslot + 1);
2114 if (IS_ERR(right))
2115 right = NULL;
2116
2117 /*
2118 * then try to empty the right most buffer into the middle
2119 */
2120 if (right) {
2121 u32 right_nr;
2122
2123 btrfs_tree_lock(right);
2124 btrfs_set_lock_blocking(right);
2125
2126 right_nr = btrfs_header_nritems(right);
2127 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2128 wret = 1;
2129 } else {
2130 ret = btrfs_cow_block(trans, root, right,
2131 parent, pslot + 1,
2132 &right);
2133 if (ret)
2134 wret = 1;
2135 else {
2136 wret = balance_node_right(trans, fs_info,
2137 right, mid);
2138 }
2139 }
2140 if (wret < 0)
2141 ret = wret;
2142 if (wret == 0) {
2143 struct btrfs_disk_key disk_key;
2144
2145 btrfs_node_key(right, &disk_key, 0);
2146 ret = tree_mod_log_insert_key(parent, pslot + 1,
2147 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2148 BUG_ON(ret < 0);
2149 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2150 btrfs_mark_buffer_dirty(parent);
2151
2152 if (btrfs_header_nritems(mid) <= orig_slot) {
2153 path->nodes[level] = right;
2154 path->slots[level + 1] += 1;
2155 path->slots[level] = orig_slot -
2156 btrfs_header_nritems(mid);
2157 btrfs_tree_unlock(mid);
2158 free_extent_buffer(mid);
2159 } else {
2160 btrfs_tree_unlock(right);
2161 free_extent_buffer(right);
2162 }
2163 return 0;
2164 }
2165 btrfs_tree_unlock(right);
2166 free_extent_buffer(right);
2167 }
2168 return 1;
2169 }
2170
2171 /*
2172 * readahead one full node of leaves, finding things that are close
2173 * to the block in 'slot', and triggering ra on them.
2174 */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)2175 static void reada_for_search(struct btrfs_fs_info *fs_info,
2176 struct btrfs_path *path,
2177 int level, int slot, u64 objectid)
2178 {
2179 struct extent_buffer *node;
2180 struct btrfs_disk_key disk_key;
2181 u32 nritems;
2182 u64 search;
2183 u64 target;
2184 u64 nread = 0;
2185 struct extent_buffer *eb;
2186 u32 nr;
2187 u32 blocksize;
2188 u32 nscan = 0;
2189
2190 if (level != 1)
2191 return;
2192
2193 if (!path->nodes[level])
2194 return;
2195
2196 node = path->nodes[level];
2197
2198 search = btrfs_node_blockptr(node, slot);
2199 blocksize = fs_info->nodesize;
2200 eb = find_extent_buffer(fs_info, search);
2201 if (eb) {
2202 free_extent_buffer(eb);
2203 return;
2204 }
2205
2206 target = search;
2207
2208 nritems = btrfs_header_nritems(node);
2209 nr = slot;
2210
2211 while (1) {
2212 if (path->reada == READA_BACK) {
2213 if (nr == 0)
2214 break;
2215 nr--;
2216 } else if (path->reada == READA_FORWARD) {
2217 nr++;
2218 if (nr >= nritems)
2219 break;
2220 }
2221 if (path->reada == READA_BACK && objectid) {
2222 btrfs_node_key(node, &disk_key, nr);
2223 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2224 break;
2225 }
2226 search = btrfs_node_blockptr(node, nr);
2227 if ((search <= target && target - search <= 65536) ||
2228 (search > target && search - target <= 65536)) {
2229 readahead_tree_block(fs_info, search);
2230 nread += blocksize;
2231 }
2232 nscan++;
2233 if ((nread > 65536 || nscan > 32))
2234 break;
2235 }
2236 }
2237
reada_for_balance(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level)2238 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2239 struct btrfs_path *path, int level)
2240 {
2241 int slot;
2242 int nritems;
2243 struct extent_buffer *parent;
2244 struct extent_buffer *eb;
2245 u64 gen;
2246 u64 block1 = 0;
2247 u64 block2 = 0;
2248
2249 parent = path->nodes[level + 1];
2250 if (!parent)
2251 return;
2252
2253 nritems = btrfs_header_nritems(parent);
2254 slot = path->slots[level + 1];
2255
2256 if (slot > 0) {
2257 block1 = btrfs_node_blockptr(parent, slot - 1);
2258 gen = btrfs_node_ptr_generation(parent, slot - 1);
2259 eb = find_extent_buffer(fs_info, block1);
2260 /*
2261 * if we get -eagain from btrfs_buffer_uptodate, we
2262 * don't want to return eagain here. That will loop
2263 * forever
2264 */
2265 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2266 block1 = 0;
2267 free_extent_buffer(eb);
2268 }
2269 if (slot + 1 < nritems) {
2270 block2 = btrfs_node_blockptr(parent, slot + 1);
2271 gen = btrfs_node_ptr_generation(parent, slot + 1);
2272 eb = find_extent_buffer(fs_info, block2);
2273 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2274 block2 = 0;
2275 free_extent_buffer(eb);
2276 }
2277
2278 if (block1)
2279 readahead_tree_block(fs_info, block1);
2280 if (block2)
2281 readahead_tree_block(fs_info, block2);
2282 }
2283
2284
2285 /*
2286 * when we walk down the tree, it is usually safe to unlock the higher layers
2287 * in the tree. The exceptions are when our path goes through slot 0, because
2288 * operations on the tree might require changing key pointers higher up in the
2289 * tree.
2290 *
2291 * callers might also have set path->keep_locks, which tells this code to keep
2292 * the lock if the path points to the last slot in the block. This is part of
2293 * walking through the tree, and selecting the next slot in the higher block.
2294 *
2295 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2296 * if lowest_unlock is 1, level 0 won't be unlocked
2297 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)2298 static noinline void unlock_up(struct btrfs_path *path, int level,
2299 int lowest_unlock, int min_write_lock_level,
2300 int *write_lock_level)
2301 {
2302 int i;
2303 int skip_level = level;
2304 int no_skips = 0;
2305 struct extent_buffer *t;
2306
2307 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2308 if (!path->nodes[i])
2309 break;
2310 if (!path->locks[i])
2311 break;
2312 if (!no_skips && path->slots[i] == 0) {
2313 skip_level = i + 1;
2314 continue;
2315 }
2316 if (!no_skips && path->keep_locks) {
2317 u32 nritems;
2318 t = path->nodes[i];
2319 nritems = btrfs_header_nritems(t);
2320 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2321 skip_level = i + 1;
2322 continue;
2323 }
2324 }
2325 if (skip_level < i && i >= lowest_unlock)
2326 no_skips = 1;
2327
2328 t = path->nodes[i];
2329 if (i >= lowest_unlock && i > skip_level) {
2330 btrfs_tree_unlock_rw(t, path->locks[i]);
2331 path->locks[i] = 0;
2332 if (write_lock_level &&
2333 i > min_write_lock_level &&
2334 i <= *write_lock_level) {
2335 *write_lock_level = i - 1;
2336 }
2337 }
2338 }
2339 }
2340
2341 /*
2342 * This releases any locks held in the path starting at level and
2343 * going all the way up to the root.
2344 *
2345 * btrfs_search_slot will keep the lock held on higher nodes in a few
2346 * corner cases, such as COW of the block at slot zero in the node. This
2347 * ignores those rules, and it should only be called when there are no
2348 * more updates to be done higher up in the tree.
2349 */
btrfs_unlock_up_safe(struct btrfs_path * path,int level)2350 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2351 {
2352 int i;
2353
2354 if (path->keep_locks)
2355 return;
2356
2357 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2358 if (!path->nodes[i])
2359 continue;
2360 if (!path->locks[i])
2361 continue;
2362 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2363 path->locks[i] = 0;
2364 }
2365 }
2366
2367 /*
2368 * helper function for btrfs_search_slot. The goal is to find a block
2369 * in cache without setting the path to blocking. If we find the block
2370 * we return zero and the path is unchanged.
2371 *
2372 * If we can't find the block, we set the path blocking and do some
2373 * reada. -EAGAIN is returned and the search must be repeated.
2374 */
2375 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)2376 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2377 struct extent_buffer **eb_ret, int level, int slot,
2378 const struct btrfs_key *key)
2379 {
2380 struct btrfs_fs_info *fs_info = root->fs_info;
2381 u64 blocknr;
2382 u64 gen;
2383 struct extent_buffer *b = *eb_ret;
2384 struct extent_buffer *tmp;
2385 struct btrfs_key first_key;
2386 int ret;
2387 int parent_level;
2388
2389 blocknr = btrfs_node_blockptr(b, slot);
2390 gen = btrfs_node_ptr_generation(b, slot);
2391 parent_level = btrfs_header_level(b);
2392 btrfs_node_key_to_cpu(b, &first_key, slot);
2393
2394 tmp = find_extent_buffer(fs_info, blocknr);
2395 if (tmp) {
2396 /* first we do an atomic uptodate check */
2397 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2398 *eb_ret = tmp;
2399 return 0;
2400 }
2401
2402 /* the pages were up to date, but we failed
2403 * the generation number check. Do a full
2404 * read for the generation number that is correct.
2405 * We must do this without dropping locks so
2406 * we can trust our generation number
2407 */
2408 btrfs_set_path_blocking(p);
2409
2410 /* now we're allowed to do a blocking uptodate check */
2411 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2412 if (!ret) {
2413 *eb_ret = tmp;
2414 return 0;
2415 }
2416 free_extent_buffer(tmp);
2417 btrfs_release_path(p);
2418 return -EIO;
2419 }
2420
2421 /*
2422 * reduce lock contention at high levels
2423 * of the btree by dropping locks before
2424 * we read. Don't release the lock on the current
2425 * level because we need to walk this node to figure
2426 * out which blocks to read.
2427 */
2428 btrfs_unlock_up_safe(p, level + 1);
2429 btrfs_set_path_blocking(p);
2430
2431 if (p->reada != READA_NONE)
2432 reada_for_search(fs_info, p, level, slot, key->objectid);
2433
2434 ret = -EAGAIN;
2435 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2436 &first_key);
2437 if (!IS_ERR(tmp)) {
2438 /*
2439 * If the read above didn't mark this buffer up to date,
2440 * it will never end up being up to date. Set ret to EIO now
2441 * and give up so that our caller doesn't loop forever
2442 * on our EAGAINs.
2443 */
2444 if (!extent_buffer_uptodate(tmp))
2445 ret = -EIO;
2446 free_extent_buffer(tmp);
2447 } else {
2448 ret = PTR_ERR(tmp);
2449 }
2450
2451 btrfs_release_path(p);
2452 return ret;
2453 }
2454
2455 /*
2456 * helper function for btrfs_search_slot. This does all of the checks
2457 * for node-level blocks and does any balancing required based on
2458 * the ins_len.
2459 *
2460 * If no extra work was required, zero is returned. If we had to
2461 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2462 * start over
2463 */
2464 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)2465 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2466 struct btrfs_root *root, struct btrfs_path *p,
2467 struct extent_buffer *b, int level, int ins_len,
2468 int *write_lock_level)
2469 {
2470 struct btrfs_fs_info *fs_info = root->fs_info;
2471 int ret;
2472
2473 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2474 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2475 int sret;
2476
2477 if (*write_lock_level < level + 1) {
2478 *write_lock_level = level + 1;
2479 btrfs_release_path(p);
2480 goto again;
2481 }
2482
2483 btrfs_set_path_blocking(p);
2484 reada_for_balance(fs_info, p, level);
2485 sret = split_node(trans, root, p, level);
2486 btrfs_clear_path_blocking(p, NULL, 0);
2487
2488 BUG_ON(sret > 0);
2489 if (sret) {
2490 ret = sret;
2491 goto done;
2492 }
2493 b = p->nodes[level];
2494 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2495 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2496 int sret;
2497
2498 if (*write_lock_level < level + 1) {
2499 *write_lock_level = level + 1;
2500 btrfs_release_path(p);
2501 goto again;
2502 }
2503
2504 btrfs_set_path_blocking(p);
2505 reada_for_balance(fs_info, p, level);
2506 sret = balance_level(trans, root, p, level);
2507 btrfs_clear_path_blocking(p, NULL, 0);
2508
2509 if (sret) {
2510 ret = sret;
2511 goto done;
2512 }
2513 b = p->nodes[level];
2514 if (!b) {
2515 btrfs_release_path(p);
2516 goto again;
2517 }
2518 BUG_ON(btrfs_header_nritems(b) == 1);
2519 }
2520 return 0;
2521
2522 again:
2523 ret = -EAGAIN;
2524 done:
2525 return ret;
2526 }
2527
key_search_validate(struct extent_buffer * b,const struct btrfs_key * key,int level)2528 static void key_search_validate(struct extent_buffer *b,
2529 const struct btrfs_key *key,
2530 int level)
2531 {
2532 #ifdef CONFIG_BTRFS_ASSERT
2533 struct btrfs_disk_key disk_key;
2534
2535 btrfs_cpu_key_to_disk(&disk_key, key);
2536
2537 if (level == 0)
2538 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2539 offsetof(struct btrfs_leaf, items[0].key),
2540 sizeof(disk_key)));
2541 else
2542 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2543 offsetof(struct btrfs_node, ptrs[0].key),
2544 sizeof(disk_key)));
2545 #endif
2546 }
2547
key_search(struct extent_buffer * b,const struct btrfs_key * key,int level,int * prev_cmp,int * slot)2548 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2549 int level, int *prev_cmp, int *slot)
2550 {
2551 if (*prev_cmp != 0) {
2552 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2553 return *prev_cmp;
2554 }
2555
2556 key_search_validate(b, key, level);
2557 *slot = 0;
2558
2559 return 0;
2560 }
2561
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)2562 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2563 u64 iobjectid, u64 ioff, u8 key_type,
2564 struct btrfs_key *found_key)
2565 {
2566 int ret;
2567 struct btrfs_key key;
2568 struct extent_buffer *eb;
2569
2570 ASSERT(path);
2571 ASSERT(found_key);
2572
2573 key.type = key_type;
2574 key.objectid = iobjectid;
2575 key.offset = ioff;
2576
2577 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2578 if (ret < 0)
2579 return ret;
2580
2581 eb = path->nodes[0];
2582 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2583 ret = btrfs_next_leaf(fs_root, path);
2584 if (ret)
2585 return ret;
2586 eb = path->nodes[0];
2587 }
2588
2589 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2590 if (found_key->type != key.type ||
2591 found_key->objectid != key.objectid)
2592 return 1;
2593
2594 return 0;
2595 }
2596
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)2597 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2598 struct btrfs_path *p,
2599 int write_lock_level)
2600 {
2601 struct btrfs_fs_info *fs_info = root->fs_info;
2602 struct extent_buffer *b;
2603 int root_lock;
2604 int level = 0;
2605
2606 /* We try very hard to do read locks on the root */
2607 root_lock = BTRFS_READ_LOCK;
2608
2609 if (p->search_commit_root) {
2610 /* The commit roots are read only so we always do read locks */
2611 if (p->need_commit_sem)
2612 down_read(&fs_info->commit_root_sem);
2613 b = root->commit_root;
2614 extent_buffer_get(b);
2615 level = btrfs_header_level(b);
2616 if (p->need_commit_sem)
2617 up_read(&fs_info->commit_root_sem);
2618 /*
2619 * Ensure that all callers have set skip_locking when
2620 * p->search_commit_root = 1.
2621 */
2622 ASSERT(p->skip_locking == 1);
2623
2624 goto out;
2625 }
2626
2627 if (p->skip_locking) {
2628 b = btrfs_root_node(root);
2629 level = btrfs_header_level(b);
2630 goto out;
2631 }
2632
2633 /*
2634 * If the level is set to maximum, we can skip trying to get the read
2635 * lock.
2636 */
2637 if (write_lock_level < BTRFS_MAX_LEVEL) {
2638 /*
2639 * We don't know the level of the root node until we actually
2640 * have it read locked
2641 */
2642 b = btrfs_read_lock_root_node(root);
2643 level = btrfs_header_level(b);
2644 if (level > write_lock_level)
2645 goto out;
2646
2647 /* Whoops, must trade for write lock */
2648 btrfs_tree_read_unlock(b);
2649 free_extent_buffer(b);
2650 }
2651
2652 b = btrfs_lock_root_node(root);
2653 root_lock = BTRFS_WRITE_LOCK;
2654
2655 /* The level might have changed, check again */
2656 level = btrfs_header_level(b);
2657
2658 out:
2659 p->nodes[level] = b;
2660 if (!p->skip_locking)
2661 p->locks[level] = root_lock;
2662 /*
2663 * Callers are responsible for dropping b's references.
2664 */
2665 return b;
2666 }
2667
2668
2669 /*
2670 * btrfs_search_slot - look for a key in a tree and perform necessary
2671 * modifications to preserve tree invariants.
2672 *
2673 * @trans: Handle of transaction, used when modifying the tree
2674 * @p: Holds all btree nodes along the search path
2675 * @root: The root node of the tree
2676 * @key: The key we are looking for
2677 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2678 * deletions it's -1. 0 for plain searches
2679 * @cow: boolean should CoW operations be performed. Must always be 1
2680 * when modifying the tree.
2681 *
2682 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2683 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2684 *
2685 * If @key is found, 0 is returned and you can find the item in the leaf level
2686 * of the path (level 0)
2687 *
2688 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2689 * points to the slot where it should be inserted
2690 *
2691 * If an error is encountered while searching the tree a negative error number
2692 * is returned
2693 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2694 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2695 const struct btrfs_key *key, struct btrfs_path *p,
2696 int ins_len, int cow)
2697 {
2698 struct btrfs_fs_info *fs_info = root->fs_info;
2699 struct extent_buffer *b;
2700 int slot;
2701 int ret;
2702 int err;
2703 int level;
2704 int lowest_unlock = 1;
2705 /* everything at write_lock_level or lower must be write locked */
2706 int write_lock_level = 0;
2707 u8 lowest_level = 0;
2708 int min_write_lock_level;
2709 int prev_cmp;
2710
2711 lowest_level = p->lowest_level;
2712 WARN_ON(lowest_level && ins_len > 0);
2713 WARN_ON(p->nodes[0] != NULL);
2714 BUG_ON(!cow && ins_len);
2715
2716 if (ins_len < 0) {
2717 lowest_unlock = 2;
2718
2719 /* when we are removing items, we might have to go up to level
2720 * two as we update tree pointers Make sure we keep write
2721 * for those levels as well
2722 */
2723 write_lock_level = 2;
2724 } else if (ins_len > 0) {
2725 /*
2726 * for inserting items, make sure we have a write lock on
2727 * level 1 so we can update keys
2728 */
2729 write_lock_level = 1;
2730 }
2731
2732 if (!cow)
2733 write_lock_level = -1;
2734
2735 if (cow && (p->keep_locks || p->lowest_level))
2736 write_lock_level = BTRFS_MAX_LEVEL;
2737
2738 min_write_lock_level = write_lock_level;
2739
2740 again:
2741 prev_cmp = -1;
2742 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2743
2744 while (b) {
2745 level = btrfs_header_level(b);
2746
2747 /*
2748 * setup the path here so we can release it under lock
2749 * contention with the cow code
2750 */
2751 if (cow) {
2752 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2753
2754 /*
2755 * if we don't really need to cow this block
2756 * then we don't want to set the path blocking,
2757 * so we test it here
2758 */
2759 if (!should_cow_block(trans, root, b)) {
2760 trans->dirty = true;
2761 goto cow_done;
2762 }
2763
2764 /*
2765 * must have write locks on this node and the
2766 * parent
2767 */
2768 if (level > write_lock_level ||
2769 (level + 1 > write_lock_level &&
2770 level + 1 < BTRFS_MAX_LEVEL &&
2771 p->nodes[level + 1])) {
2772 write_lock_level = level + 1;
2773 btrfs_release_path(p);
2774 goto again;
2775 }
2776
2777 btrfs_set_path_blocking(p);
2778 if (last_level)
2779 err = btrfs_cow_block(trans, root, b, NULL, 0,
2780 &b);
2781 else
2782 err = btrfs_cow_block(trans, root, b,
2783 p->nodes[level + 1],
2784 p->slots[level + 1], &b);
2785 if (err) {
2786 ret = err;
2787 goto done;
2788 }
2789 }
2790 cow_done:
2791 p->nodes[level] = b;
2792 btrfs_clear_path_blocking(p, NULL, 0);
2793
2794 /*
2795 * we have a lock on b and as long as we aren't changing
2796 * the tree, there is no way to for the items in b to change.
2797 * It is safe to drop the lock on our parent before we
2798 * go through the expensive btree search on b.
2799 *
2800 * If we're inserting or deleting (ins_len != 0), then we might
2801 * be changing slot zero, which may require changing the parent.
2802 * So, we can't drop the lock until after we know which slot
2803 * we're operating on.
2804 */
2805 if (!ins_len && !p->keep_locks) {
2806 int u = level + 1;
2807
2808 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2809 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2810 p->locks[u] = 0;
2811 }
2812 }
2813
2814 ret = key_search(b, key, level, &prev_cmp, &slot);
2815 if (ret < 0)
2816 goto done;
2817
2818 if (level != 0) {
2819 int dec = 0;
2820 if (ret && slot > 0) {
2821 dec = 1;
2822 slot -= 1;
2823 }
2824 p->slots[level] = slot;
2825 err = setup_nodes_for_search(trans, root, p, b, level,
2826 ins_len, &write_lock_level);
2827 if (err == -EAGAIN)
2828 goto again;
2829 if (err) {
2830 ret = err;
2831 goto done;
2832 }
2833 b = p->nodes[level];
2834 slot = p->slots[level];
2835
2836 /*
2837 * slot 0 is special, if we change the key
2838 * we have to update the parent pointer
2839 * which means we must have a write lock
2840 * on the parent
2841 */
2842 if (slot == 0 && ins_len &&
2843 write_lock_level < level + 1) {
2844 write_lock_level = level + 1;
2845 btrfs_release_path(p);
2846 goto again;
2847 }
2848
2849 unlock_up(p, level, lowest_unlock,
2850 min_write_lock_level, &write_lock_level);
2851
2852 if (level == lowest_level) {
2853 if (dec)
2854 p->slots[level]++;
2855 goto done;
2856 }
2857
2858 err = read_block_for_search(root, p, &b, level,
2859 slot, key);
2860 if (err == -EAGAIN)
2861 goto again;
2862 if (err) {
2863 ret = err;
2864 goto done;
2865 }
2866
2867 if (!p->skip_locking) {
2868 level = btrfs_header_level(b);
2869 if (level <= write_lock_level) {
2870 err = btrfs_try_tree_write_lock(b);
2871 if (!err) {
2872 btrfs_set_path_blocking(p);
2873 btrfs_tree_lock(b);
2874 btrfs_clear_path_blocking(p, b,
2875 BTRFS_WRITE_LOCK);
2876 }
2877 p->locks[level] = BTRFS_WRITE_LOCK;
2878 } else {
2879 err = btrfs_tree_read_lock_atomic(b);
2880 if (!err) {
2881 btrfs_set_path_blocking(p);
2882 btrfs_tree_read_lock(b);
2883 btrfs_clear_path_blocking(p, b,
2884 BTRFS_READ_LOCK);
2885 }
2886 p->locks[level] = BTRFS_READ_LOCK;
2887 }
2888 p->nodes[level] = b;
2889 }
2890 } else {
2891 p->slots[level] = slot;
2892 if (ins_len > 0 &&
2893 btrfs_leaf_free_space(fs_info, b) < ins_len) {
2894 if (write_lock_level < 1) {
2895 write_lock_level = 1;
2896 btrfs_release_path(p);
2897 goto again;
2898 }
2899
2900 btrfs_set_path_blocking(p);
2901 err = split_leaf(trans, root, key,
2902 p, ins_len, ret == 0);
2903 btrfs_clear_path_blocking(p, NULL, 0);
2904
2905 BUG_ON(err > 0);
2906 if (err) {
2907 ret = err;
2908 goto done;
2909 }
2910 }
2911 if (!p->search_for_split)
2912 unlock_up(p, level, lowest_unlock,
2913 min_write_lock_level, &write_lock_level);
2914 goto done;
2915 }
2916 }
2917 ret = 1;
2918 done:
2919 /*
2920 * we don't really know what they plan on doing with the path
2921 * from here on, so for now just mark it as blocking
2922 */
2923 if (!p->leave_spinning)
2924 btrfs_set_path_blocking(p);
2925 if (ret < 0 && !p->skip_release_on_error)
2926 btrfs_release_path(p);
2927 return ret;
2928 }
2929
2930 /*
2931 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2932 * current state of the tree together with the operations recorded in the tree
2933 * modification log to search for the key in a previous version of this tree, as
2934 * denoted by the time_seq parameter.
2935 *
2936 * Naturally, there is no support for insert, delete or cow operations.
2937 *
2938 * The resulting path and return value will be set up as if we called
2939 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2940 */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2941 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2942 struct btrfs_path *p, u64 time_seq)
2943 {
2944 struct btrfs_fs_info *fs_info = root->fs_info;
2945 struct extent_buffer *b;
2946 int slot;
2947 int ret;
2948 int err;
2949 int level;
2950 int lowest_unlock = 1;
2951 u8 lowest_level = 0;
2952 int prev_cmp = -1;
2953
2954 lowest_level = p->lowest_level;
2955 WARN_ON(p->nodes[0] != NULL);
2956
2957 if (p->search_commit_root) {
2958 BUG_ON(time_seq);
2959 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2960 }
2961
2962 again:
2963 b = get_old_root(root, time_seq);
2964 level = btrfs_header_level(b);
2965 p->locks[level] = BTRFS_READ_LOCK;
2966
2967 while (b) {
2968 level = btrfs_header_level(b);
2969 p->nodes[level] = b;
2970 btrfs_clear_path_blocking(p, NULL, 0);
2971
2972 /*
2973 * we have a lock on b and as long as we aren't changing
2974 * the tree, there is no way to for the items in b to change.
2975 * It is safe to drop the lock on our parent before we
2976 * go through the expensive btree search on b.
2977 */
2978 btrfs_unlock_up_safe(p, level + 1);
2979
2980 /*
2981 * Since we can unwind ebs we want to do a real search every
2982 * time.
2983 */
2984 prev_cmp = -1;
2985 ret = key_search(b, key, level, &prev_cmp, &slot);
2986
2987 if (level != 0) {
2988 int dec = 0;
2989 if (ret && slot > 0) {
2990 dec = 1;
2991 slot -= 1;
2992 }
2993 p->slots[level] = slot;
2994 unlock_up(p, level, lowest_unlock, 0, NULL);
2995
2996 if (level == lowest_level) {
2997 if (dec)
2998 p->slots[level]++;
2999 goto done;
3000 }
3001
3002 err = read_block_for_search(root, p, &b, level,
3003 slot, key);
3004 if (err == -EAGAIN)
3005 goto again;
3006 if (err) {
3007 ret = err;
3008 goto done;
3009 }
3010
3011 level = btrfs_header_level(b);
3012 err = btrfs_tree_read_lock_atomic(b);
3013 if (!err) {
3014 btrfs_set_path_blocking(p);
3015 btrfs_tree_read_lock(b);
3016 btrfs_clear_path_blocking(p, b,
3017 BTRFS_READ_LOCK);
3018 }
3019 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3020 if (!b) {
3021 ret = -ENOMEM;
3022 goto done;
3023 }
3024 p->locks[level] = BTRFS_READ_LOCK;
3025 p->nodes[level] = b;
3026 } else {
3027 p->slots[level] = slot;
3028 unlock_up(p, level, lowest_unlock, 0, NULL);
3029 goto done;
3030 }
3031 }
3032 ret = 1;
3033 done:
3034 if (!p->leave_spinning)
3035 btrfs_set_path_blocking(p);
3036 if (ret < 0)
3037 btrfs_release_path(p);
3038
3039 return ret;
3040 }
3041
3042 /*
3043 * helper to use instead of search slot if no exact match is needed but
3044 * instead the next or previous item should be returned.
3045 * When find_higher is true, the next higher item is returned, the next lower
3046 * otherwise.
3047 * When return_any and find_higher are both true, and no higher item is found,
3048 * return the next lower instead.
3049 * When return_any is true and find_higher is false, and no lower item is found,
3050 * return the next higher instead.
3051 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3052 * < 0 on error
3053 */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)3054 int btrfs_search_slot_for_read(struct btrfs_root *root,
3055 const struct btrfs_key *key,
3056 struct btrfs_path *p, int find_higher,
3057 int return_any)
3058 {
3059 int ret;
3060 struct extent_buffer *leaf;
3061
3062 again:
3063 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3064 if (ret <= 0)
3065 return ret;
3066 /*
3067 * a return value of 1 means the path is at the position where the
3068 * item should be inserted. Normally this is the next bigger item,
3069 * but in case the previous item is the last in a leaf, path points
3070 * to the first free slot in the previous leaf, i.e. at an invalid
3071 * item.
3072 */
3073 leaf = p->nodes[0];
3074
3075 if (find_higher) {
3076 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3077 ret = btrfs_next_leaf(root, p);
3078 if (ret <= 0)
3079 return ret;
3080 if (!return_any)
3081 return 1;
3082 /*
3083 * no higher item found, return the next
3084 * lower instead
3085 */
3086 return_any = 0;
3087 find_higher = 0;
3088 btrfs_release_path(p);
3089 goto again;
3090 }
3091 } else {
3092 if (p->slots[0] == 0) {
3093 ret = btrfs_prev_leaf(root, p);
3094 if (ret < 0)
3095 return ret;
3096 if (!ret) {
3097 leaf = p->nodes[0];
3098 if (p->slots[0] == btrfs_header_nritems(leaf))
3099 p->slots[0]--;
3100 return 0;
3101 }
3102 if (!return_any)
3103 return 1;
3104 /*
3105 * no lower item found, return the next
3106 * higher instead
3107 */
3108 return_any = 0;
3109 find_higher = 1;
3110 btrfs_release_path(p);
3111 goto again;
3112 } else {
3113 --p->slots[0];
3114 }
3115 }
3116 return 0;
3117 }
3118
3119 /*
3120 * adjust the pointers going up the tree, starting at level
3121 * making sure the right key of each node is points to 'key'.
3122 * This is used after shifting pointers to the left, so it stops
3123 * fixing up pointers when a given leaf/node is not in slot 0 of the
3124 * higher levels
3125 *
3126 */
fixup_low_keys(struct btrfs_path * path,struct btrfs_disk_key * key,int level)3127 static void fixup_low_keys(struct btrfs_path *path,
3128 struct btrfs_disk_key *key, int level)
3129 {
3130 int i;
3131 struct extent_buffer *t;
3132 int ret;
3133
3134 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3135 int tslot = path->slots[i];
3136
3137 if (!path->nodes[i])
3138 break;
3139 t = path->nodes[i];
3140 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3141 GFP_ATOMIC);
3142 BUG_ON(ret < 0);
3143 btrfs_set_node_key(t, key, tslot);
3144 btrfs_mark_buffer_dirty(path->nodes[i]);
3145 if (tslot != 0)
3146 break;
3147 }
3148 }
3149
3150 /*
3151 * update item key.
3152 *
3153 * This function isn't completely safe. It's the caller's responsibility
3154 * that the new key won't break the order
3155 */
btrfs_set_item_key_safe(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * new_key)3156 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3157 struct btrfs_path *path,
3158 const struct btrfs_key *new_key)
3159 {
3160 struct btrfs_disk_key disk_key;
3161 struct extent_buffer *eb;
3162 int slot;
3163
3164 eb = path->nodes[0];
3165 slot = path->slots[0];
3166 if (slot > 0) {
3167 btrfs_item_key(eb, &disk_key, slot - 1);
3168 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3169 }
3170 if (slot < btrfs_header_nritems(eb) - 1) {
3171 btrfs_item_key(eb, &disk_key, slot + 1);
3172 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3173 }
3174
3175 btrfs_cpu_key_to_disk(&disk_key, new_key);
3176 btrfs_set_item_key(eb, &disk_key, slot);
3177 btrfs_mark_buffer_dirty(eb);
3178 if (slot == 0)
3179 fixup_low_keys(path, &disk_key, 1);
3180 }
3181
3182 /*
3183 * try to push data from one node into the next node left in the
3184 * tree.
3185 *
3186 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3187 * error, and > 0 if there was no room in the left hand block.
3188 */
push_node_left(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct extent_buffer * dst,struct extent_buffer * src,int empty)3189 static int push_node_left(struct btrfs_trans_handle *trans,
3190 struct btrfs_fs_info *fs_info,
3191 struct extent_buffer *dst,
3192 struct extent_buffer *src, int empty)
3193 {
3194 int push_items = 0;
3195 int src_nritems;
3196 int dst_nritems;
3197 int ret = 0;
3198
3199 src_nritems = btrfs_header_nritems(src);
3200 dst_nritems = btrfs_header_nritems(dst);
3201 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3202 WARN_ON(btrfs_header_generation(src) != trans->transid);
3203 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3204
3205 if (!empty && src_nritems <= 8)
3206 return 1;
3207
3208 if (push_items <= 0)
3209 return 1;
3210
3211 if (empty) {
3212 push_items = min(src_nritems, push_items);
3213 if (push_items < src_nritems) {
3214 /* leave at least 8 pointers in the node if
3215 * we aren't going to empty it
3216 */
3217 if (src_nritems - push_items < 8) {
3218 if (push_items <= 8)
3219 return 1;
3220 push_items -= 8;
3221 }
3222 }
3223 } else
3224 push_items = min(src_nritems - 8, push_items);
3225
3226 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3227 push_items);
3228 if (ret) {
3229 btrfs_abort_transaction(trans, ret);
3230 return ret;
3231 }
3232 copy_extent_buffer(dst, src,
3233 btrfs_node_key_ptr_offset(dst_nritems),
3234 btrfs_node_key_ptr_offset(0),
3235 push_items * sizeof(struct btrfs_key_ptr));
3236
3237 if (push_items < src_nritems) {
3238 /*
3239 * Don't call tree_mod_log_insert_move here, key removal was
3240 * already fully logged by tree_mod_log_eb_copy above.
3241 */
3242 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3243 btrfs_node_key_ptr_offset(push_items),
3244 (src_nritems - push_items) *
3245 sizeof(struct btrfs_key_ptr));
3246 }
3247 btrfs_set_header_nritems(src, src_nritems - push_items);
3248 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3249 btrfs_mark_buffer_dirty(src);
3250 btrfs_mark_buffer_dirty(dst);
3251
3252 return ret;
3253 }
3254
3255 /*
3256 * try to push data from one node into the next node right in the
3257 * tree.
3258 *
3259 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3260 * error, and > 0 if there was no room in the right hand block.
3261 *
3262 * this will only push up to 1/2 the contents of the left node over
3263 */
balance_node_right(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct extent_buffer * dst,struct extent_buffer * src)3264 static int balance_node_right(struct btrfs_trans_handle *trans,
3265 struct btrfs_fs_info *fs_info,
3266 struct extent_buffer *dst,
3267 struct extent_buffer *src)
3268 {
3269 int push_items = 0;
3270 int max_push;
3271 int src_nritems;
3272 int dst_nritems;
3273 int ret = 0;
3274
3275 WARN_ON(btrfs_header_generation(src) != trans->transid);
3276 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3277
3278 src_nritems = btrfs_header_nritems(src);
3279 dst_nritems = btrfs_header_nritems(dst);
3280 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3281 if (push_items <= 0)
3282 return 1;
3283
3284 if (src_nritems < 4)
3285 return 1;
3286
3287 max_push = src_nritems / 2 + 1;
3288 /* don't try to empty the node */
3289 if (max_push >= src_nritems)
3290 return 1;
3291
3292 if (max_push < push_items)
3293 push_items = max_push;
3294
3295 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3296 BUG_ON(ret < 0);
3297 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3298 btrfs_node_key_ptr_offset(0),
3299 (dst_nritems) *
3300 sizeof(struct btrfs_key_ptr));
3301
3302 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3303 src_nritems - push_items, push_items);
3304 if (ret) {
3305 btrfs_abort_transaction(trans, ret);
3306 return ret;
3307 }
3308 copy_extent_buffer(dst, src,
3309 btrfs_node_key_ptr_offset(0),
3310 btrfs_node_key_ptr_offset(src_nritems - push_items),
3311 push_items * sizeof(struct btrfs_key_ptr));
3312
3313 btrfs_set_header_nritems(src, src_nritems - push_items);
3314 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3315
3316 btrfs_mark_buffer_dirty(src);
3317 btrfs_mark_buffer_dirty(dst);
3318
3319 return ret;
3320 }
3321
3322 /*
3323 * helper function to insert a new root level in the tree.
3324 * A new node is allocated, and a single item is inserted to
3325 * point to the existing root
3326 *
3327 * returns zero on success or < 0 on failure.
3328 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3329 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3330 struct btrfs_root *root,
3331 struct btrfs_path *path, int level)
3332 {
3333 struct btrfs_fs_info *fs_info = root->fs_info;
3334 u64 lower_gen;
3335 struct extent_buffer *lower;
3336 struct extent_buffer *c;
3337 struct extent_buffer *old;
3338 struct btrfs_disk_key lower_key;
3339 int ret;
3340
3341 BUG_ON(path->nodes[level]);
3342 BUG_ON(path->nodes[level-1] != root->node);
3343
3344 lower = path->nodes[level-1];
3345 if (level == 1)
3346 btrfs_item_key(lower, &lower_key, 0);
3347 else
3348 btrfs_node_key(lower, &lower_key, 0);
3349
3350 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3351 &lower_key, level, root->node->start, 0);
3352 if (IS_ERR(c))
3353 return PTR_ERR(c);
3354
3355 root_add_used(root, fs_info->nodesize);
3356
3357 btrfs_set_header_nritems(c, 1);
3358 btrfs_set_node_key(c, &lower_key, 0);
3359 btrfs_set_node_blockptr(c, 0, lower->start);
3360 lower_gen = btrfs_header_generation(lower);
3361 WARN_ON(lower_gen != trans->transid);
3362
3363 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3364
3365 btrfs_mark_buffer_dirty(c);
3366
3367 old = root->node;
3368 ret = tree_mod_log_insert_root(root->node, c, 0);
3369 BUG_ON(ret < 0);
3370 rcu_assign_pointer(root->node, c);
3371
3372 /* the super has an extra ref to root->node */
3373 free_extent_buffer(old);
3374
3375 add_root_to_dirty_list(root);
3376 extent_buffer_get(c);
3377 path->nodes[level] = c;
3378 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3379 path->slots[level] = 0;
3380 return 0;
3381 }
3382
3383 /*
3384 * worker function to insert a single pointer in a node.
3385 * the node should have enough room for the pointer already
3386 *
3387 * slot and level indicate where you want the key to go, and
3388 * blocknr is the block the key points to.
3389 */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)3390 static void insert_ptr(struct btrfs_trans_handle *trans,
3391 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3392 struct btrfs_disk_key *key, u64 bytenr,
3393 int slot, int level)
3394 {
3395 struct extent_buffer *lower;
3396 int nritems;
3397 int ret;
3398
3399 BUG_ON(!path->nodes[level]);
3400 btrfs_assert_tree_locked(path->nodes[level]);
3401 lower = path->nodes[level];
3402 nritems = btrfs_header_nritems(lower);
3403 BUG_ON(slot > nritems);
3404 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3405 if (slot != nritems) {
3406 if (level) {
3407 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3408 nritems - slot);
3409 BUG_ON(ret < 0);
3410 }
3411 memmove_extent_buffer(lower,
3412 btrfs_node_key_ptr_offset(slot + 1),
3413 btrfs_node_key_ptr_offset(slot),
3414 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3415 }
3416 if (level) {
3417 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3418 GFP_NOFS);
3419 BUG_ON(ret < 0);
3420 }
3421 btrfs_set_node_key(lower, key, slot);
3422 btrfs_set_node_blockptr(lower, slot, bytenr);
3423 WARN_ON(trans->transid == 0);
3424 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3425 btrfs_set_header_nritems(lower, nritems + 1);
3426 btrfs_mark_buffer_dirty(lower);
3427 }
3428
3429 /*
3430 * split the node at the specified level in path in two.
3431 * The path is corrected to point to the appropriate node after the split
3432 *
3433 * Before splitting this tries to make some room in the node by pushing
3434 * left and right, if either one works, it returns right away.
3435 *
3436 * returns 0 on success and < 0 on failure
3437 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3438 static noinline int split_node(struct btrfs_trans_handle *trans,
3439 struct btrfs_root *root,
3440 struct btrfs_path *path, int level)
3441 {
3442 struct btrfs_fs_info *fs_info = root->fs_info;
3443 struct extent_buffer *c;
3444 struct extent_buffer *split;
3445 struct btrfs_disk_key disk_key;
3446 int mid;
3447 int ret;
3448 u32 c_nritems;
3449
3450 c = path->nodes[level];
3451 WARN_ON(btrfs_header_generation(c) != trans->transid);
3452 if (c == root->node) {
3453 /*
3454 * trying to split the root, lets make a new one
3455 *
3456 * tree mod log: We don't log_removal old root in
3457 * insert_new_root, because that root buffer will be kept as a
3458 * normal node. We are going to log removal of half of the
3459 * elements below with tree_mod_log_eb_copy. We're holding a
3460 * tree lock on the buffer, which is why we cannot race with
3461 * other tree_mod_log users.
3462 */
3463 ret = insert_new_root(trans, root, path, level + 1);
3464 if (ret)
3465 return ret;
3466 } else {
3467 ret = push_nodes_for_insert(trans, root, path, level);
3468 c = path->nodes[level];
3469 if (!ret && btrfs_header_nritems(c) <
3470 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3471 return 0;
3472 if (ret < 0)
3473 return ret;
3474 }
3475
3476 c_nritems = btrfs_header_nritems(c);
3477 mid = (c_nritems + 1) / 2;
3478 btrfs_node_key(c, &disk_key, mid);
3479
3480 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3481 &disk_key, level, c->start, 0);
3482 if (IS_ERR(split))
3483 return PTR_ERR(split);
3484
3485 root_add_used(root, fs_info->nodesize);
3486 ASSERT(btrfs_header_level(c) == level);
3487
3488 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3489 if (ret) {
3490 btrfs_abort_transaction(trans, ret);
3491 return ret;
3492 }
3493 copy_extent_buffer(split, c,
3494 btrfs_node_key_ptr_offset(0),
3495 btrfs_node_key_ptr_offset(mid),
3496 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3497 btrfs_set_header_nritems(split, c_nritems - mid);
3498 btrfs_set_header_nritems(c, mid);
3499 ret = 0;
3500
3501 btrfs_mark_buffer_dirty(c);
3502 btrfs_mark_buffer_dirty(split);
3503
3504 insert_ptr(trans, fs_info, path, &disk_key, split->start,
3505 path->slots[level + 1] + 1, level + 1);
3506
3507 if (path->slots[level] >= mid) {
3508 path->slots[level] -= mid;
3509 btrfs_tree_unlock(c);
3510 free_extent_buffer(c);
3511 path->nodes[level] = split;
3512 path->slots[level + 1] += 1;
3513 } else {
3514 btrfs_tree_unlock(split);
3515 free_extent_buffer(split);
3516 }
3517 return ret;
3518 }
3519
3520 /*
3521 * how many bytes are required to store the items in a leaf. start
3522 * and nr indicate which items in the leaf to check. This totals up the
3523 * space used both by the item structs and the item data
3524 */
leaf_space_used(struct extent_buffer * l,int start,int nr)3525 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3526 {
3527 struct btrfs_item *start_item;
3528 struct btrfs_item *end_item;
3529 struct btrfs_map_token token;
3530 int data_len;
3531 int nritems = btrfs_header_nritems(l);
3532 int end = min(nritems, start + nr) - 1;
3533
3534 if (!nr)
3535 return 0;
3536 btrfs_init_map_token(&token);
3537 start_item = btrfs_item_nr(start);
3538 end_item = btrfs_item_nr(end);
3539 data_len = btrfs_token_item_offset(l, start_item, &token) +
3540 btrfs_token_item_size(l, start_item, &token);
3541 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3542 data_len += sizeof(struct btrfs_item) * nr;
3543 WARN_ON(data_len < 0);
3544 return data_len;
3545 }
3546
3547 /*
3548 * The space between the end of the leaf items and
3549 * the start of the leaf data. IOW, how much room
3550 * the leaf has left for both items and data
3551 */
btrfs_leaf_free_space(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf)3552 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3553 struct extent_buffer *leaf)
3554 {
3555 int nritems = btrfs_header_nritems(leaf);
3556 int ret;
3557
3558 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3559 if (ret < 0) {
3560 btrfs_crit(fs_info,
3561 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3562 ret,
3563 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3564 leaf_space_used(leaf, 0, nritems), nritems);
3565 }
3566 return ret;
3567 }
3568
3569 /*
3570 * min slot controls the lowest index we're willing to push to the
3571 * right. We'll push up to and including min_slot, but no lower
3572 */
__push_leaf_right(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3573 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3574 struct btrfs_path *path,
3575 int data_size, int empty,
3576 struct extent_buffer *right,
3577 int free_space, u32 left_nritems,
3578 u32 min_slot)
3579 {
3580 struct extent_buffer *left = path->nodes[0];
3581 struct extent_buffer *upper = path->nodes[1];
3582 struct btrfs_map_token token;
3583 struct btrfs_disk_key disk_key;
3584 int slot;
3585 u32 i;
3586 int push_space = 0;
3587 int push_items = 0;
3588 struct btrfs_item *item;
3589 u32 nr;
3590 u32 right_nritems;
3591 u32 data_end;
3592 u32 this_item_size;
3593
3594 btrfs_init_map_token(&token);
3595
3596 if (empty)
3597 nr = 0;
3598 else
3599 nr = max_t(u32, 1, min_slot);
3600
3601 if (path->slots[0] >= left_nritems)
3602 push_space += data_size;
3603
3604 slot = path->slots[1];
3605 i = left_nritems - 1;
3606 while (i >= nr) {
3607 item = btrfs_item_nr(i);
3608
3609 if (!empty && push_items > 0) {
3610 if (path->slots[0] > i)
3611 break;
3612 if (path->slots[0] == i) {
3613 int space = btrfs_leaf_free_space(fs_info, left);
3614 if (space + push_space * 2 > free_space)
3615 break;
3616 }
3617 }
3618
3619 if (path->slots[0] == i)
3620 push_space += data_size;
3621
3622 this_item_size = btrfs_item_size(left, item);
3623 if (this_item_size + sizeof(*item) + push_space > free_space)
3624 break;
3625
3626 push_items++;
3627 push_space += this_item_size + sizeof(*item);
3628 if (i == 0)
3629 break;
3630 i--;
3631 }
3632
3633 if (push_items == 0)
3634 goto out_unlock;
3635
3636 WARN_ON(!empty && push_items == left_nritems);
3637
3638 /* push left to right */
3639 right_nritems = btrfs_header_nritems(right);
3640
3641 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3642 push_space -= leaf_data_end(fs_info, left);
3643
3644 /* make room in the right data area */
3645 data_end = leaf_data_end(fs_info, right);
3646 memmove_extent_buffer(right,
3647 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3648 BTRFS_LEAF_DATA_OFFSET + data_end,
3649 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3650
3651 /* copy from the left data area */
3652 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3653 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3654 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3655 push_space);
3656
3657 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3658 btrfs_item_nr_offset(0),
3659 right_nritems * sizeof(struct btrfs_item));
3660
3661 /* copy the items from left to right */
3662 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3663 btrfs_item_nr_offset(left_nritems - push_items),
3664 push_items * sizeof(struct btrfs_item));
3665
3666 /* update the item pointers */
3667 right_nritems += push_items;
3668 btrfs_set_header_nritems(right, right_nritems);
3669 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3670 for (i = 0; i < right_nritems; i++) {
3671 item = btrfs_item_nr(i);
3672 push_space -= btrfs_token_item_size(right, item, &token);
3673 btrfs_set_token_item_offset(right, item, push_space, &token);
3674 }
3675
3676 left_nritems -= push_items;
3677 btrfs_set_header_nritems(left, left_nritems);
3678
3679 if (left_nritems)
3680 btrfs_mark_buffer_dirty(left);
3681 else
3682 clean_tree_block(fs_info, left);
3683
3684 btrfs_mark_buffer_dirty(right);
3685
3686 btrfs_item_key(right, &disk_key, 0);
3687 btrfs_set_node_key(upper, &disk_key, slot + 1);
3688 btrfs_mark_buffer_dirty(upper);
3689
3690 /* then fixup the leaf pointer in the path */
3691 if (path->slots[0] >= left_nritems) {
3692 path->slots[0] -= left_nritems;
3693 if (btrfs_header_nritems(path->nodes[0]) == 0)
3694 clean_tree_block(fs_info, path->nodes[0]);
3695 btrfs_tree_unlock(path->nodes[0]);
3696 free_extent_buffer(path->nodes[0]);
3697 path->nodes[0] = right;
3698 path->slots[1] += 1;
3699 } else {
3700 btrfs_tree_unlock(right);
3701 free_extent_buffer(right);
3702 }
3703 return 0;
3704
3705 out_unlock:
3706 btrfs_tree_unlock(right);
3707 free_extent_buffer(right);
3708 return 1;
3709 }
3710
3711 /*
3712 * push some data in the path leaf to the right, trying to free up at
3713 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3714 *
3715 * returns 1 if the push failed because the other node didn't have enough
3716 * room, 0 if everything worked out and < 0 if there were major errors.
3717 *
3718 * this will push starting from min_slot to the end of the leaf. It won't
3719 * push any slot lower than min_slot
3720 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3721 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3722 *root, struct btrfs_path *path,
3723 int min_data_size, int data_size,
3724 int empty, u32 min_slot)
3725 {
3726 struct btrfs_fs_info *fs_info = root->fs_info;
3727 struct extent_buffer *left = path->nodes[0];
3728 struct extent_buffer *right;
3729 struct extent_buffer *upper;
3730 int slot;
3731 int free_space;
3732 u32 left_nritems;
3733 int ret;
3734
3735 if (!path->nodes[1])
3736 return 1;
3737
3738 slot = path->slots[1];
3739 upper = path->nodes[1];
3740 if (slot >= btrfs_header_nritems(upper) - 1)
3741 return 1;
3742
3743 btrfs_assert_tree_locked(path->nodes[1]);
3744
3745 right = read_node_slot(fs_info, upper, slot + 1);
3746 /*
3747 * slot + 1 is not valid or we fail to read the right node,
3748 * no big deal, just return.
3749 */
3750 if (IS_ERR(right))
3751 return 1;
3752
3753 btrfs_tree_lock(right);
3754 btrfs_set_lock_blocking(right);
3755
3756 free_space = btrfs_leaf_free_space(fs_info, right);
3757 if (free_space < data_size)
3758 goto out_unlock;
3759
3760 /* cow and double check */
3761 ret = btrfs_cow_block(trans, root, right, upper,
3762 slot + 1, &right);
3763 if (ret)
3764 goto out_unlock;
3765
3766 free_space = btrfs_leaf_free_space(fs_info, right);
3767 if (free_space < data_size)
3768 goto out_unlock;
3769
3770 left_nritems = btrfs_header_nritems(left);
3771 if (left_nritems == 0)
3772 goto out_unlock;
3773
3774 if (path->slots[0] == left_nritems && !empty) {
3775 /* Key greater than all keys in the leaf, right neighbor has
3776 * enough room for it and we're not emptying our leaf to delete
3777 * it, therefore use right neighbor to insert the new item and
3778 * no need to touch/dirty our left leaft. */
3779 btrfs_tree_unlock(left);
3780 free_extent_buffer(left);
3781 path->nodes[0] = right;
3782 path->slots[0] = 0;
3783 path->slots[1]++;
3784 return 0;
3785 }
3786
3787 return __push_leaf_right(fs_info, path, min_data_size, empty,
3788 right, free_space, left_nritems, min_slot);
3789 out_unlock:
3790 btrfs_tree_unlock(right);
3791 free_extent_buffer(right);
3792 return 1;
3793 }
3794
3795 /*
3796 * push some data in the path leaf to the left, trying to free up at
3797 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3798 *
3799 * max_slot can put a limit on how far into the leaf we'll push items. The
3800 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3801 * items
3802 */
__push_leaf_left(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3803 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3804 struct btrfs_path *path, int data_size,
3805 int empty, struct extent_buffer *left,
3806 int free_space, u32 right_nritems,
3807 u32 max_slot)
3808 {
3809 struct btrfs_disk_key disk_key;
3810 struct extent_buffer *right = path->nodes[0];
3811 int i;
3812 int push_space = 0;
3813 int push_items = 0;
3814 struct btrfs_item *item;
3815 u32 old_left_nritems;
3816 u32 nr;
3817 int ret = 0;
3818 u32 this_item_size;
3819 u32 old_left_item_size;
3820 struct btrfs_map_token token;
3821
3822 btrfs_init_map_token(&token);
3823
3824 if (empty)
3825 nr = min(right_nritems, max_slot);
3826 else
3827 nr = min(right_nritems - 1, max_slot);
3828
3829 for (i = 0; i < nr; i++) {
3830 item = btrfs_item_nr(i);
3831
3832 if (!empty && push_items > 0) {
3833 if (path->slots[0] < i)
3834 break;
3835 if (path->slots[0] == i) {
3836 int space = btrfs_leaf_free_space(fs_info, right);
3837 if (space + push_space * 2 > free_space)
3838 break;
3839 }
3840 }
3841
3842 if (path->slots[0] == i)
3843 push_space += data_size;
3844
3845 this_item_size = btrfs_item_size(right, item);
3846 if (this_item_size + sizeof(*item) + push_space > free_space)
3847 break;
3848
3849 push_items++;
3850 push_space += this_item_size + sizeof(*item);
3851 }
3852
3853 if (push_items == 0) {
3854 ret = 1;
3855 goto out;
3856 }
3857 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3858
3859 /* push data from right to left */
3860 copy_extent_buffer(left, right,
3861 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3862 btrfs_item_nr_offset(0),
3863 push_items * sizeof(struct btrfs_item));
3864
3865 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3866 btrfs_item_offset_nr(right, push_items - 1);
3867
3868 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3869 leaf_data_end(fs_info, left) - push_space,
3870 BTRFS_LEAF_DATA_OFFSET +
3871 btrfs_item_offset_nr(right, push_items - 1),
3872 push_space);
3873 old_left_nritems = btrfs_header_nritems(left);
3874 BUG_ON(old_left_nritems <= 0);
3875
3876 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3877 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3878 u32 ioff;
3879
3880 item = btrfs_item_nr(i);
3881
3882 ioff = btrfs_token_item_offset(left, item, &token);
3883 btrfs_set_token_item_offset(left, item,
3884 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3885 &token);
3886 }
3887 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3888
3889 /* fixup right node */
3890 if (push_items > right_nritems)
3891 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3892 right_nritems);
3893
3894 if (push_items < right_nritems) {
3895 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3896 leaf_data_end(fs_info, right);
3897 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3898 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3899 BTRFS_LEAF_DATA_OFFSET +
3900 leaf_data_end(fs_info, right), push_space);
3901
3902 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3903 btrfs_item_nr_offset(push_items),
3904 (btrfs_header_nritems(right) - push_items) *
3905 sizeof(struct btrfs_item));
3906 }
3907 right_nritems -= push_items;
3908 btrfs_set_header_nritems(right, right_nritems);
3909 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3910 for (i = 0; i < right_nritems; i++) {
3911 item = btrfs_item_nr(i);
3912
3913 push_space = push_space - btrfs_token_item_size(right,
3914 item, &token);
3915 btrfs_set_token_item_offset(right, item, push_space, &token);
3916 }
3917
3918 btrfs_mark_buffer_dirty(left);
3919 if (right_nritems)
3920 btrfs_mark_buffer_dirty(right);
3921 else
3922 clean_tree_block(fs_info, right);
3923
3924 btrfs_item_key(right, &disk_key, 0);
3925 fixup_low_keys(path, &disk_key, 1);
3926
3927 /* then fixup the leaf pointer in the path */
3928 if (path->slots[0] < push_items) {
3929 path->slots[0] += old_left_nritems;
3930 btrfs_tree_unlock(path->nodes[0]);
3931 free_extent_buffer(path->nodes[0]);
3932 path->nodes[0] = left;
3933 path->slots[1] -= 1;
3934 } else {
3935 btrfs_tree_unlock(left);
3936 free_extent_buffer(left);
3937 path->slots[0] -= push_items;
3938 }
3939 BUG_ON(path->slots[0] < 0);
3940 return ret;
3941 out:
3942 btrfs_tree_unlock(left);
3943 free_extent_buffer(left);
3944 return ret;
3945 }
3946
3947 /*
3948 * push some data in the path leaf to the left, trying to free up at
3949 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3950 *
3951 * max_slot can put a limit on how far into the leaf we'll push items. The
3952 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3953 * items
3954 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3955 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3956 *root, struct btrfs_path *path, int min_data_size,
3957 int data_size, int empty, u32 max_slot)
3958 {
3959 struct btrfs_fs_info *fs_info = root->fs_info;
3960 struct extent_buffer *right = path->nodes[0];
3961 struct extent_buffer *left;
3962 int slot;
3963 int free_space;
3964 u32 right_nritems;
3965 int ret = 0;
3966
3967 slot = path->slots[1];
3968 if (slot == 0)
3969 return 1;
3970 if (!path->nodes[1])
3971 return 1;
3972
3973 right_nritems = btrfs_header_nritems(right);
3974 if (right_nritems == 0)
3975 return 1;
3976
3977 btrfs_assert_tree_locked(path->nodes[1]);
3978
3979 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3980 /*
3981 * slot - 1 is not valid or we fail to read the left node,
3982 * no big deal, just return.
3983 */
3984 if (IS_ERR(left))
3985 return 1;
3986
3987 btrfs_tree_lock(left);
3988 btrfs_set_lock_blocking(left);
3989
3990 free_space = btrfs_leaf_free_space(fs_info, left);
3991 if (free_space < data_size) {
3992 ret = 1;
3993 goto out;
3994 }
3995
3996 /* cow and double check */
3997 ret = btrfs_cow_block(trans, root, left,
3998 path->nodes[1], slot - 1, &left);
3999 if (ret) {
4000 /* we hit -ENOSPC, but it isn't fatal here */
4001 if (ret == -ENOSPC)
4002 ret = 1;
4003 goto out;
4004 }
4005
4006 free_space = btrfs_leaf_free_space(fs_info, left);
4007 if (free_space < data_size) {
4008 ret = 1;
4009 goto out;
4010 }
4011
4012 return __push_leaf_left(fs_info, path, min_data_size,
4013 empty, left, free_space, right_nritems,
4014 max_slot);
4015 out:
4016 btrfs_tree_unlock(left);
4017 free_extent_buffer(left);
4018 return ret;
4019 }
4020
4021 /*
4022 * split the path's leaf in two, making sure there is at least data_size
4023 * available for the resulting leaf level of the path.
4024 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)4025 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4026 struct btrfs_fs_info *fs_info,
4027 struct btrfs_path *path,
4028 struct extent_buffer *l,
4029 struct extent_buffer *right,
4030 int slot, int mid, int nritems)
4031 {
4032 int data_copy_size;
4033 int rt_data_off;
4034 int i;
4035 struct btrfs_disk_key disk_key;
4036 struct btrfs_map_token token;
4037
4038 btrfs_init_map_token(&token);
4039
4040 nritems = nritems - mid;
4041 btrfs_set_header_nritems(right, nritems);
4042 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4043
4044 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4045 btrfs_item_nr_offset(mid),
4046 nritems * sizeof(struct btrfs_item));
4047
4048 copy_extent_buffer(right, l,
4049 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4050 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4051 leaf_data_end(fs_info, l), data_copy_size);
4052
4053 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4054
4055 for (i = 0; i < nritems; i++) {
4056 struct btrfs_item *item = btrfs_item_nr(i);
4057 u32 ioff;
4058
4059 ioff = btrfs_token_item_offset(right, item, &token);
4060 btrfs_set_token_item_offset(right, item,
4061 ioff + rt_data_off, &token);
4062 }
4063
4064 btrfs_set_header_nritems(l, mid);
4065 btrfs_item_key(right, &disk_key, 0);
4066 insert_ptr(trans, fs_info, path, &disk_key, right->start,
4067 path->slots[1] + 1, 1);
4068
4069 btrfs_mark_buffer_dirty(right);
4070 btrfs_mark_buffer_dirty(l);
4071 BUG_ON(path->slots[0] != slot);
4072
4073 if (mid <= slot) {
4074 btrfs_tree_unlock(path->nodes[0]);
4075 free_extent_buffer(path->nodes[0]);
4076 path->nodes[0] = right;
4077 path->slots[0] -= mid;
4078 path->slots[1] += 1;
4079 } else {
4080 btrfs_tree_unlock(right);
4081 free_extent_buffer(right);
4082 }
4083
4084 BUG_ON(path->slots[0] < 0);
4085 }
4086
4087 /*
4088 * double splits happen when we need to insert a big item in the middle
4089 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4090 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4091 * A B C
4092 *
4093 * We avoid this by trying to push the items on either side of our target
4094 * into the adjacent leaves. If all goes well we can avoid the double split
4095 * completely.
4096 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)4097 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4098 struct btrfs_root *root,
4099 struct btrfs_path *path,
4100 int data_size)
4101 {
4102 struct btrfs_fs_info *fs_info = root->fs_info;
4103 int ret;
4104 int progress = 0;
4105 int slot;
4106 u32 nritems;
4107 int space_needed = data_size;
4108
4109 slot = path->slots[0];
4110 if (slot < btrfs_header_nritems(path->nodes[0]))
4111 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4112
4113 /*
4114 * try to push all the items after our slot into the
4115 * right leaf
4116 */
4117 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4118 if (ret < 0)
4119 return ret;
4120
4121 if (ret == 0)
4122 progress++;
4123
4124 nritems = btrfs_header_nritems(path->nodes[0]);
4125 /*
4126 * our goal is to get our slot at the start or end of a leaf. If
4127 * we've done so we're done
4128 */
4129 if (path->slots[0] == 0 || path->slots[0] == nritems)
4130 return 0;
4131
4132 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4133 return 0;
4134
4135 /* try to push all the items before our slot into the next leaf */
4136 slot = path->slots[0];
4137 space_needed = data_size;
4138 if (slot > 0)
4139 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4140 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4141 if (ret < 0)
4142 return ret;
4143
4144 if (ret == 0)
4145 progress++;
4146
4147 if (progress)
4148 return 0;
4149 return 1;
4150 }
4151
4152 /*
4153 * split the path's leaf in two, making sure there is at least data_size
4154 * available for the resulting leaf level of the path.
4155 *
4156 * returns 0 if all went well and < 0 on failure.
4157 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)4158 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4159 struct btrfs_root *root,
4160 const struct btrfs_key *ins_key,
4161 struct btrfs_path *path, int data_size,
4162 int extend)
4163 {
4164 struct btrfs_disk_key disk_key;
4165 struct extent_buffer *l;
4166 u32 nritems;
4167 int mid;
4168 int slot;
4169 struct extent_buffer *right;
4170 struct btrfs_fs_info *fs_info = root->fs_info;
4171 int ret = 0;
4172 int wret;
4173 int split;
4174 int num_doubles = 0;
4175 int tried_avoid_double = 0;
4176
4177 l = path->nodes[0];
4178 slot = path->slots[0];
4179 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4180 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4181 return -EOVERFLOW;
4182
4183 /* first try to make some room by pushing left and right */
4184 if (data_size && path->nodes[1]) {
4185 int space_needed = data_size;
4186
4187 if (slot < btrfs_header_nritems(l))
4188 space_needed -= btrfs_leaf_free_space(fs_info, l);
4189
4190 wret = push_leaf_right(trans, root, path, space_needed,
4191 space_needed, 0, 0);
4192 if (wret < 0)
4193 return wret;
4194 if (wret) {
4195 space_needed = data_size;
4196 if (slot > 0)
4197 space_needed -= btrfs_leaf_free_space(fs_info,
4198 l);
4199 wret = push_leaf_left(trans, root, path, space_needed,
4200 space_needed, 0, (u32)-1);
4201 if (wret < 0)
4202 return wret;
4203 }
4204 l = path->nodes[0];
4205
4206 /* did the pushes work? */
4207 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4208 return 0;
4209 }
4210
4211 if (!path->nodes[1]) {
4212 ret = insert_new_root(trans, root, path, 1);
4213 if (ret)
4214 return ret;
4215 }
4216 again:
4217 split = 1;
4218 l = path->nodes[0];
4219 slot = path->slots[0];
4220 nritems = btrfs_header_nritems(l);
4221 mid = (nritems + 1) / 2;
4222
4223 if (mid <= slot) {
4224 if (nritems == 1 ||
4225 leaf_space_used(l, mid, nritems - mid) + data_size >
4226 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4227 if (slot >= nritems) {
4228 split = 0;
4229 } else {
4230 mid = slot;
4231 if (mid != nritems &&
4232 leaf_space_used(l, mid, nritems - mid) +
4233 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4234 if (data_size && !tried_avoid_double)
4235 goto push_for_double;
4236 split = 2;
4237 }
4238 }
4239 }
4240 } else {
4241 if (leaf_space_used(l, 0, mid) + data_size >
4242 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4243 if (!extend && data_size && slot == 0) {
4244 split = 0;
4245 } else if ((extend || !data_size) && slot == 0) {
4246 mid = 1;
4247 } else {
4248 mid = slot;
4249 if (mid != nritems &&
4250 leaf_space_used(l, mid, nritems - mid) +
4251 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4252 if (data_size && !tried_avoid_double)
4253 goto push_for_double;
4254 split = 2;
4255 }
4256 }
4257 }
4258 }
4259
4260 if (split == 0)
4261 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4262 else
4263 btrfs_item_key(l, &disk_key, mid);
4264
4265 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4266 &disk_key, 0, l->start, 0);
4267 if (IS_ERR(right))
4268 return PTR_ERR(right);
4269
4270 root_add_used(root, fs_info->nodesize);
4271
4272 if (split == 0) {
4273 if (mid <= slot) {
4274 btrfs_set_header_nritems(right, 0);
4275 insert_ptr(trans, fs_info, path, &disk_key,
4276 right->start, path->slots[1] + 1, 1);
4277 btrfs_tree_unlock(path->nodes[0]);
4278 free_extent_buffer(path->nodes[0]);
4279 path->nodes[0] = right;
4280 path->slots[0] = 0;
4281 path->slots[1] += 1;
4282 } else {
4283 btrfs_set_header_nritems(right, 0);
4284 insert_ptr(trans, fs_info, path, &disk_key,
4285 right->start, path->slots[1], 1);
4286 btrfs_tree_unlock(path->nodes[0]);
4287 free_extent_buffer(path->nodes[0]);
4288 path->nodes[0] = right;
4289 path->slots[0] = 0;
4290 if (path->slots[1] == 0)
4291 fixup_low_keys(path, &disk_key, 1);
4292 }
4293 /*
4294 * We create a new leaf 'right' for the required ins_len and
4295 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4296 * the content of ins_len to 'right'.
4297 */
4298 return ret;
4299 }
4300
4301 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4302
4303 if (split == 2) {
4304 BUG_ON(num_doubles != 0);
4305 num_doubles++;
4306 goto again;
4307 }
4308
4309 return 0;
4310
4311 push_for_double:
4312 push_for_double_split(trans, root, path, data_size);
4313 tried_avoid_double = 1;
4314 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4315 return 0;
4316 goto again;
4317 }
4318
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)4319 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4320 struct btrfs_root *root,
4321 struct btrfs_path *path, int ins_len)
4322 {
4323 struct btrfs_fs_info *fs_info = root->fs_info;
4324 struct btrfs_key key;
4325 struct extent_buffer *leaf;
4326 struct btrfs_file_extent_item *fi;
4327 u64 extent_len = 0;
4328 u32 item_size;
4329 int ret;
4330
4331 leaf = path->nodes[0];
4332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4333
4334 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4335 key.type != BTRFS_EXTENT_CSUM_KEY);
4336
4337 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4338 return 0;
4339
4340 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4341 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4342 fi = btrfs_item_ptr(leaf, path->slots[0],
4343 struct btrfs_file_extent_item);
4344 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4345 }
4346 btrfs_release_path(path);
4347
4348 path->keep_locks = 1;
4349 path->search_for_split = 1;
4350 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4351 path->search_for_split = 0;
4352 if (ret > 0)
4353 ret = -EAGAIN;
4354 if (ret < 0)
4355 goto err;
4356
4357 ret = -EAGAIN;
4358 leaf = path->nodes[0];
4359 /* if our item isn't there, return now */
4360 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4361 goto err;
4362
4363 /* the leaf has changed, it now has room. return now */
4364 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4365 goto err;
4366
4367 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4368 fi = btrfs_item_ptr(leaf, path->slots[0],
4369 struct btrfs_file_extent_item);
4370 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4371 goto err;
4372 }
4373
4374 btrfs_set_path_blocking(path);
4375 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4376 if (ret)
4377 goto err;
4378
4379 path->keep_locks = 0;
4380 btrfs_unlock_up_safe(path, 1);
4381 return 0;
4382 err:
4383 path->keep_locks = 0;
4384 return ret;
4385 }
4386
split_item(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4387 static noinline int split_item(struct btrfs_fs_info *fs_info,
4388 struct btrfs_path *path,
4389 const struct btrfs_key *new_key,
4390 unsigned long split_offset)
4391 {
4392 struct extent_buffer *leaf;
4393 struct btrfs_item *item;
4394 struct btrfs_item *new_item;
4395 int slot;
4396 char *buf;
4397 u32 nritems;
4398 u32 item_size;
4399 u32 orig_offset;
4400 struct btrfs_disk_key disk_key;
4401
4402 leaf = path->nodes[0];
4403 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4404
4405 btrfs_set_path_blocking(path);
4406
4407 item = btrfs_item_nr(path->slots[0]);
4408 orig_offset = btrfs_item_offset(leaf, item);
4409 item_size = btrfs_item_size(leaf, item);
4410
4411 buf = kmalloc(item_size, GFP_NOFS);
4412 if (!buf)
4413 return -ENOMEM;
4414
4415 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4416 path->slots[0]), item_size);
4417
4418 slot = path->slots[0] + 1;
4419 nritems = btrfs_header_nritems(leaf);
4420 if (slot != nritems) {
4421 /* shift the items */
4422 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4423 btrfs_item_nr_offset(slot),
4424 (nritems - slot) * sizeof(struct btrfs_item));
4425 }
4426
4427 btrfs_cpu_key_to_disk(&disk_key, new_key);
4428 btrfs_set_item_key(leaf, &disk_key, slot);
4429
4430 new_item = btrfs_item_nr(slot);
4431
4432 btrfs_set_item_offset(leaf, new_item, orig_offset);
4433 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4434
4435 btrfs_set_item_offset(leaf, item,
4436 orig_offset + item_size - split_offset);
4437 btrfs_set_item_size(leaf, item, split_offset);
4438
4439 btrfs_set_header_nritems(leaf, nritems + 1);
4440
4441 /* write the data for the start of the original item */
4442 write_extent_buffer(leaf, buf,
4443 btrfs_item_ptr_offset(leaf, path->slots[0]),
4444 split_offset);
4445
4446 /* write the data for the new item */
4447 write_extent_buffer(leaf, buf + split_offset,
4448 btrfs_item_ptr_offset(leaf, slot),
4449 item_size - split_offset);
4450 btrfs_mark_buffer_dirty(leaf);
4451
4452 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4453 kfree(buf);
4454 return 0;
4455 }
4456
4457 /*
4458 * This function splits a single item into two items,
4459 * giving 'new_key' to the new item and splitting the
4460 * old one at split_offset (from the start of the item).
4461 *
4462 * The path may be released by this operation. After
4463 * the split, the path is pointing to the old item. The
4464 * new item is going to be in the same node as the old one.
4465 *
4466 * Note, the item being split must be smaller enough to live alone on
4467 * a tree block with room for one extra struct btrfs_item
4468 *
4469 * This allows us to split the item in place, keeping a lock on the
4470 * leaf the entire time.
4471 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4472 int btrfs_split_item(struct btrfs_trans_handle *trans,
4473 struct btrfs_root *root,
4474 struct btrfs_path *path,
4475 const struct btrfs_key *new_key,
4476 unsigned long split_offset)
4477 {
4478 int ret;
4479 ret = setup_leaf_for_split(trans, root, path,
4480 sizeof(struct btrfs_item));
4481 if (ret)
4482 return ret;
4483
4484 ret = split_item(root->fs_info, path, new_key, split_offset);
4485 return ret;
4486 }
4487
4488 /*
4489 * This function duplicate a item, giving 'new_key' to the new item.
4490 * It guarantees both items live in the same tree leaf and the new item
4491 * is contiguous with the original item.
4492 *
4493 * This allows us to split file extent in place, keeping a lock on the
4494 * leaf the entire time.
4495 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4496 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4497 struct btrfs_root *root,
4498 struct btrfs_path *path,
4499 const struct btrfs_key *new_key)
4500 {
4501 struct extent_buffer *leaf;
4502 int ret;
4503 u32 item_size;
4504
4505 leaf = path->nodes[0];
4506 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4507 ret = setup_leaf_for_split(trans, root, path,
4508 item_size + sizeof(struct btrfs_item));
4509 if (ret)
4510 return ret;
4511
4512 path->slots[0]++;
4513 setup_items_for_insert(root, path, new_key, &item_size,
4514 item_size, item_size +
4515 sizeof(struct btrfs_item), 1);
4516 leaf = path->nodes[0];
4517 memcpy_extent_buffer(leaf,
4518 btrfs_item_ptr_offset(leaf, path->slots[0]),
4519 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4520 item_size);
4521 return 0;
4522 }
4523
4524 /*
4525 * make the item pointed to by the path smaller. new_size indicates
4526 * how small to make it, and from_end tells us if we just chop bytes
4527 * off the end of the item or if we shift the item to chop bytes off
4528 * the front.
4529 */
btrfs_truncate_item(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u32 new_size,int from_end)4530 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4531 struct btrfs_path *path, u32 new_size, int from_end)
4532 {
4533 int slot;
4534 struct extent_buffer *leaf;
4535 struct btrfs_item *item;
4536 u32 nritems;
4537 unsigned int data_end;
4538 unsigned int old_data_start;
4539 unsigned int old_size;
4540 unsigned int size_diff;
4541 int i;
4542 struct btrfs_map_token token;
4543
4544 btrfs_init_map_token(&token);
4545
4546 leaf = path->nodes[0];
4547 slot = path->slots[0];
4548
4549 old_size = btrfs_item_size_nr(leaf, slot);
4550 if (old_size == new_size)
4551 return;
4552
4553 nritems = btrfs_header_nritems(leaf);
4554 data_end = leaf_data_end(fs_info, leaf);
4555
4556 old_data_start = btrfs_item_offset_nr(leaf, slot);
4557
4558 size_diff = old_size - new_size;
4559
4560 BUG_ON(slot < 0);
4561 BUG_ON(slot >= nritems);
4562
4563 /*
4564 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4565 */
4566 /* first correct the data pointers */
4567 for (i = slot; i < nritems; i++) {
4568 u32 ioff;
4569 item = btrfs_item_nr(i);
4570
4571 ioff = btrfs_token_item_offset(leaf, item, &token);
4572 btrfs_set_token_item_offset(leaf, item,
4573 ioff + size_diff, &token);
4574 }
4575
4576 /* shift the data */
4577 if (from_end) {
4578 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4579 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4580 data_end, old_data_start + new_size - data_end);
4581 } else {
4582 struct btrfs_disk_key disk_key;
4583 u64 offset;
4584
4585 btrfs_item_key(leaf, &disk_key, slot);
4586
4587 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4588 unsigned long ptr;
4589 struct btrfs_file_extent_item *fi;
4590
4591 fi = btrfs_item_ptr(leaf, slot,
4592 struct btrfs_file_extent_item);
4593 fi = (struct btrfs_file_extent_item *)(
4594 (unsigned long)fi - size_diff);
4595
4596 if (btrfs_file_extent_type(leaf, fi) ==
4597 BTRFS_FILE_EXTENT_INLINE) {
4598 ptr = btrfs_item_ptr_offset(leaf, slot);
4599 memmove_extent_buffer(leaf, ptr,
4600 (unsigned long)fi,
4601 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4602 }
4603 }
4604
4605 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4606 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4607 data_end, old_data_start - data_end);
4608
4609 offset = btrfs_disk_key_offset(&disk_key);
4610 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4611 btrfs_set_item_key(leaf, &disk_key, slot);
4612 if (slot == 0)
4613 fixup_low_keys(path, &disk_key, 1);
4614 }
4615
4616 item = btrfs_item_nr(slot);
4617 btrfs_set_item_size(leaf, item, new_size);
4618 btrfs_mark_buffer_dirty(leaf);
4619
4620 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4621 btrfs_print_leaf(leaf);
4622 BUG();
4623 }
4624 }
4625
4626 /*
4627 * make the item pointed to by the path bigger, data_size is the added size.
4628 */
btrfs_extend_item(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u32 data_size)4629 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4630 u32 data_size)
4631 {
4632 int slot;
4633 struct extent_buffer *leaf;
4634 struct btrfs_item *item;
4635 u32 nritems;
4636 unsigned int data_end;
4637 unsigned int old_data;
4638 unsigned int old_size;
4639 int i;
4640 struct btrfs_map_token token;
4641
4642 btrfs_init_map_token(&token);
4643
4644 leaf = path->nodes[0];
4645
4646 nritems = btrfs_header_nritems(leaf);
4647 data_end = leaf_data_end(fs_info, leaf);
4648
4649 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4650 btrfs_print_leaf(leaf);
4651 BUG();
4652 }
4653 slot = path->slots[0];
4654 old_data = btrfs_item_end_nr(leaf, slot);
4655
4656 BUG_ON(slot < 0);
4657 if (slot >= nritems) {
4658 btrfs_print_leaf(leaf);
4659 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4660 slot, nritems);
4661 BUG_ON(1);
4662 }
4663
4664 /*
4665 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4666 */
4667 /* first correct the data pointers */
4668 for (i = slot; i < nritems; i++) {
4669 u32 ioff;
4670 item = btrfs_item_nr(i);
4671
4672 ioff = btrfs_token_item_offset(leaf, item, &token);
4673 btrfs_set_token_item_offset(leaf, item,
4674 ioff - data_size, &token);
4675 }
4676
4677 /* shift the data */
4678 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4679 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4680 data_end, old_data - data_end);
4681
4682 data_end = old_data;
4683 old_size = btrfs_item_size_nr(leaf, slot);
4684 item = btrfs_item_nr(slot);
4685 btrfs_set_item_size(leaf, item, old_size + data_size);
4686 btrfs_mark_buffer_dirty(leaf);
4687
4688 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4689 btrfs_print_leaf(leaf);
4690 BUG();
4691 }
4692 }
4693
4694 /*
4695 * this is a helper for btrfs_insert_empty_items, the main goal here is
4696 * to save stack depth by doing the bulk of the work in a function
4697 * that doesn't call btrfs_search_slot
4698 */
setup_items_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * cpu_key,u32 * data_size,u32 total_data,u32 total_size,int nr)4699 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4700 const struct btrfs_key *cpu_key, u32 *data_size,
4701 u32 total_data, u32 total_size, int nr)
4702 {
4703 struct btrfs_fs_info *fs_info = root->fs_info;
4704 struct btrfs_item *item;
4705 int i;
4706 u32 nritems;
4707 unsigned int data_end;
4708 struct btrfs_disk_key disk_key;
4709 struct extent_buffer *leaf;
4710 int slot;
4711 struct btrfs_map_token token;
4712
4713 if (path->slots[0] == 0) {
4714 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4715 fixup_low_keys(path, &disk_key, 1);
4716 }
4717 btrfs_unlock_up_safe(path, 1);
4718
4719 btrfs_init_map_token(&token);
4720
4721 leaf = path->nodes[0];
4722 slot = path->slots[0];
4723
4724 nritems = btrfs_header_nritems(leaf);
4725 data_end = leaf_data_end(fs_info, leaf);
4726
4727 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4728 btrfs_print_leaf(leaf);
4729 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4730 total_size, btrfs_leaf_free_space(fs_info, leaf));
4731 BUG();
4732 }
4733
4734 if (slot != nritems) {
4735 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4736
4737 if (old_data < data_end) {
4738 btrfs_print_leaf(leaf);
4739 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4740 slot, old_data, data_end);
4741 BUG_ON(1);
4742 }
4743 /*
4744 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4745 */
4746 /* first correct the data pointers */
4747 for (i = slot; i < nritems; i++) {
4748 u32 ioff;
4749
4750 item = btrfs_item_nr(i);
4751 ioff = btrfs_token_item_offset(leaf, item, &token);
4752 btrfs_set_token_item_offset(leaf, item,
4753 ioff - total_data, &token);
4754 }
4755 /* shift the items */
4756 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4757 btrfs_item_nr_offset(slot),
4758 (nritems - slot) * sizeof(struct btrfs_item));
4759
4760 /* shift the data */
4761 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4762 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4763 data_end, old_data - data_end);
4764 data_end = old_data;
4765 }
4766
4767 /* setup the item for the new data */
4768 for (i = 0; i < nr; i++) {
4769 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4770 btrfs_set_item_key(leaf, &disk_key, slot + i);
4771 item = btrfs_item_nr(slot + i);
4772 btrfs_set_token_item_offset(leaf, item,
4773 data_end - data_size[i], &token);
4774 data_end -= data_size[i];
4775 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4776 }
4777
4778 btrfs_set_header_nritems(leaf, nritems + nr);
4779 btrfs_mark_buffer_dirty(leaf);
4780
4781 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4782 btrfs_print_leaf(leaf);
4783 BUG();
4784 }
4785 }
4786
4787 /*
4788 * Given a key and some data, insert items into the tree.
4789 * This does all the path init required, making room in the tree if needed.
4790 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * cpu_key,u32 * data_size,int nr)4791 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4792 struct btrfs_root *root,
4793 struct btrfs_path *path,
4794 const struct btrfs_key *cpu_key, u32 *data_size,
4795 int nr)
4796 {
4797 int ret = 0;
4798 int slot;
4799 int i;
4800 u32 total_size = 0;
4801 u32 total_data = 0;
4802
4803 for (i = 0; i < nr; i++)
4804 total_data += data_size[i];
4805
4806 total_size = total_data + (nr * sizeof(struct btrfs_item));
4807 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4808 if (ret == 0)
4809 return -EEXIST;
4810 if (ret < 0)
4811 return ret;
4812
4813 slot = path->slots[0];
4814 BUG_ON(slot < 0);
4815
4816 setup_items_for_insert(root, path, cpu_key, data_size,
4817 total_data, total_size, nr);
4818 return 0;
4819 }
4820
4821 /*
4822 * Given a key and some data, insert an item into the tree.
4823 * This does all the path init required, making room in the tree if needed.
4824 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4825 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4826 const struct btrfs_key *cpu_key, void *data,
4827 u32 data_size)
4828 {
4829 int ret = 0;
4830 struct btrfs_path *path;
4831 struct extent_buffer *leaf;
4832 unsigned long ptr;
4833
4834 path = btrfs_alloc_path();
4835 if (!path)
4836 return -ENOMEM;
4837 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4838 if (!ret) {
4839 leaf = path->nodes[0];
4840 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4841 write_extent_buffer(leaf, data, ptr, data_size);
4842 btrfs_mark_buffer_dirty(leaf);
4843 }
4844 btrfs_free_path(path);
4845 return ret;
4846 }
4847
4848 /*
4849 * delete the pointer from a given node.
4850 *
4851 * the tree should have been previously balanced so the deletion does not
4852 * empty a node.
4853 */
del_ptr(struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4854 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4855 int level, int slot)
4856 {
4857 struct extent_buffer *parent = path->nodes[level];
4858 u32 nritems;
4859 int ret;
4860
4861 nritems = btrfs_header_nritems(parent);
4862 if (slot != nritems - 1) {
4863 if (level) {
4864 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4865 nritems - slot - 1);
4866 BUG_ON(ret < 0);
4867 }
4868 memmove_extent_buffer(parent,
4869 btrfs_node_key_ptr_offset(slot),
4870 btrfs_node_key_ptr_offset(slot + 1),
4871 sizeof(struct btrfs_key_ptr) *
4872 (nritems - slot - 1));
4873 } else if (level) {
4874 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4875 GFP_NOFS);
4876 BUG_ON(ret < 0);
4877 }
4878
4879 nritems--;
4880 btrfs_set_header_nritems(parent, nritems);
4881 if (nritems == 0 && parent == root->node) {
4882 BUG_ON(btrfs_header_level(root->node) != 1);
4883 /* just turn the root into a leaf and break */
4884 btrfs_set_header_level(root->node, 0);
4885 } else if (slot == 0) {
4886 struct btrfs_disk_key disk_key;
4887
4888 btrfs_node_key(parent, &disk_key, 0);
4889 fixup_low_keys(path, &disk_key, level + 1);
4890 }
4891 btrfs_mark_buffer_dirty(parent);
4892 }
4893
4894 /*
4895 * a helper function to delete the leaf pointed to by path->slots[1] and
4896 * path->nodes[1].
4897 *
4898 * This deletes the pointer in path->nodes[1] and frees the leaf
4899 * block extent. zero is returned if it all worked out, < 0 otherwise.
4900 *
4901 * The path must have already been setup for deleting the leaf, including
4902 * all the proper balancing. path->nodes[1] must be locked.
4903 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4904 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4905 struct btrfs_root *root,
4906 struct btrfs_path *path,
4907 struct extent_buffer *leaf)
4908 {
4909 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4910 del_ptr(root, path, 1, path->slots[1]);
4911
4912 /*
4913 * btrfs_free_extent is expensive, we want to make sure we
4914 * aren't holding any locks when we call it
4915 */
4916 btrfs_unlock_up_safe(path, 0);
4917
4918 root_sub_used(root, leaf->len);
4919
4920 extent_buffer_get(leaf);
4921 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4922 free_extent_buffer_stale(leaf);
4923 }
4924 /*
4925 * delete the item at the leaf level in path. If that empties
4926 * the leaf, remove it from the tree
4927 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4928 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4929 struct btrfs_path *path, int slot, int nr)
4930 {
4931 struct btrfs_fs_info *fs_info = root->fs_info;
4932 struct extent_buffer *leaf;
4933 struct btrfs_item *item;
4934 u32 last_off;
4935 u32 dsize = 0;
4936 int ret = 0;
4937 int wret;
4938 int i;
4939 u32 nritems;
4940 struct btrfs_map_token token;
4941
4942 btrfs_init_map_token(&token);
4943
4944 leaf = path->nodes[0];
4945 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4946
4947 for (i = 0; i < nr; i++)
4948 dsize += btrfs_item_size_nr(leaf, slot + i);
4949
4950 nritems = btrfs_header_nritems(leaf);
4951
4952 if (slot + nr != nritems) {
4953 int data_end = leaf_data_end(fs_info, leaf);
4954
4955 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4956 data_end + dsize,
4957 BTRFS_LEAF_DATA_OFFSET + data_end,
4958 last_off - data_end);
4959
4960 for (i = slot + nr; i < nritems; i++) {
4961 u32 ioff;
4962
4963 item = btrfs_item_nr(i);
4964 ioff = btrfs_token_item_offset(leaf, item, &token);
4965 btrfs_set_token_item_offset(leaf, item,
4966 ioff + dsize, &token);
4967 }
4968
4969 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4970 btrfs_item_nr_offset(slot + nr),
4971 sizeof(struct btrfs_item) *
4972 (nritems - slot - nr));
4973 }
4974 btrfs_set_header_nritems(leaf, nritems - nr);
4975 nritems -= nr;
4976
4977 /* delete the leaf if we've emptied it */
4978 if (nritems == 0) {
4979 if (leaf == root->node) {
4980 btrfs_set_header_level(leaf, 0);
4981 } else {
4982 btrfs_set_path_blocking(path);
4983 clean_tree_block(fs_info, leaf);
4984 btrfs_del_leaf(trans, root, path, leaf);
4985 }
4986 } else {
4987 int used = leaf_space_used(leaf, 0, nritems);
4988 if (slot == 0) {
4989 struct btrfs_disk_key disk_key;
4990
4991 btrfs_item_key(leaf, &disk_key, 0);
4992 fixup_low_keys(path, &disk_key, 1);
4993 }
4994
4995 /* delete the leaf if it is mostly empty */
4996 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4997 /* push_leaf_left fixes the path.
4998 * make sure the path still points to our leaf
4999 * for possible call to del_ptr below
5000 */
5001 slot = path->slots[1];
5002 extent_buffer_get(leaf);
5003
5004 btrfs_set_path_blocking(path);
5005 wret = push_leaf_left(trans, root, path, 1, 1,
5006 1, (u32)-1);
5007 if (wret < 0 && wret != -ENOSPC)
5008 ret = wret;
5009
5010 if (path->nodes[0] == leaf &&
5011 btrfs_header_nritems(leaf)) {
5012 wret = push_leaf_right(trans, root, path, 1,
5013 1, 1, 0);
5014 if (wret < 0 && wret != -ENOSPC)
5015 ret = wret;
5016 }
5017
5018 if (btrfs_header_nritems(leaf) == 0) {
5019 path->slots[1] = slot;
5020 btrfs_del_leaf(trans, root, path, leaf);
5021 free_extent_buffer(leaf);
5022 ret = 0;
5023 } else {
5024 /* if we're still in the path, make sure
5025 * we're dirty. Otherwise, one of the
5026 * push_leaf functions must have already
5027 * dirtied this buffer
5028 */
5029 if (path->nodes[0] == leaf)
5030 btrfs_mark_buffer_dirty(leaf);
5031 free_extent_buffer(leaf);
5032 }
5033 } else {
5034 btrfs_mark_buffer_dirty(leaf);
5035 }
5036 }
5037 return ret;
5038 }
5039
5040 /*
5041 * search the tree again to find a leaf with lesser keys
5042 * returns 0 if it found something or 1 if there are no lesser leaves.
5043 * returns < 0 on io errors.
5044 *
5045 * This may release the path, and so you may lose any locks held at the
5046 * time you call it.
5047 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)5048 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5049 {
5050 struct btrfs_key key;
5051 struct btrfs_disk_key found_key;
5052 int ret;
5053
5054 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5055
5056 if (key.offset > 0) {
5057 key.offset--;
5058 } else if (key.type > 0) {
5059 key.type--;
5060 key.offset = (u64)-1;
5061 } else if (key.objectid > 0) {
5062 key.objectid--;
5063 key.type = (u8)-1;
5064 key.offset = (u64)-1;
5065 } else {
5066 return 1;
5067 }
5068
5069 btrfs_release_path(path);
5070 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5071 if (ret < 0)
5072 return ret;
5073 btrfs_item_key(path->nodes[0], &found_key, 0);
5074 ret = comp_keys(&found_key, &key);
5075 /*
5076 * We might have had an item with the previous key in the tree right
5077 * before we released our path. And after we released our path, that
5078 * item might have been pushed to the first slot (0) of the leaf we
5079 * were holding due to a tree balance. Alternatively, an item with the
5080 * previous key can exist as the only element of a leaf (big fat item).
5081 * Therefore account for these 2 cases, so that our callers (like
5082 * btrfs_previous_item) don't miss an existing item with a key matching
5083 * the previous key we computed above.
5084 */
5085 if (ret <= 0)
5086 return 0;
5087 return 1;
5088 }
5089
5090 /*
5091 * A helper function to walk down the tree starting at min_key, and looking
5092 * for nodes or leaves that are have a minimum transaction id.
5093 * This is used by the btree defrag code, and tree logging
5094 *
5095 * This does not cow, but it does stuff the starting key it finds back
5096 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5097 * key and get a writable path.
5098 *
5099 * This honors path->lowest_level to prevent descent past a given level
5100 * of the tree.
5101 *
5102 * min_trans indicates the oldest transaction that you are interested
5103 * in walking through. Any nodes or leaves older than min_trans are
5104 * skipped over (without reading them).
5105 *
5106 * returns zero if something useful was found, < 0 on error and 1 if there
5107 * was nothing in the tree that matched the search criteria.
5108 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)5109 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5110 struct btrfs_path *path,
5111 u64 min_trans)
5112 {
5113 struct btrfs_fs_info *fs_info = root->fs_info;
5114 struct extent_buffer *cur;
5115 struct btrfs_key found_key;
5116 int slot;
5117 int sret;
5118 u32 nritems;
5119 int level;
5120 int ret = 1;
5121 int keep_locks = path->keep_locks;
5122
5123 path->keep_locks = 1;
5124 again:
5125 cur = btrfs_read_lock_root_node(root);
5126 level = btrfs_header_level(cur);
5127 WARN_ON(path->nodes[level]);
5128 path->nodes[level] = cur;
5129 path->locks[level] = BTRFS_READ_LOCK;
5130
5131 if (btrfs_header_generation(cur) < min_trans) {
5132 ret = 1;
5133 goto out;
5134 }
5135 while (1) {
5136 nritems = btrfs_header_nritems(cur);
5137 level = btrfs_header_level(cur);
5138 sret = btrfs_bin_search(cur, min_key, level, &slot);
5139
5140 /* at the lowest level, we're done, setup the path and exit */
5141 if (level == path->lowest_level) {
5142 if (slot >= nritems)
5143 goto find_next_key;
5144 ret = 0;
5145 path->slots[level] = slot;
5146 btrfs_item_key_to_cpu(cur, &found_key, slot);
5147 goto out;
5148 }
5149 if (sret && slot > 0)
5150 slot--;
5151 /*
5152 * check this node pointer against the min_trans parameters.
5153 * If it is too old, old, skip to the next one.
5154 */
5155 while (slot < nritems) {
5156 u64 gen;
5157
5158 gen = btrfs_node_ptr_generation(cur, slot);
5159 if (gen < min_trans) {
5160 slot++;
5161 continue;
5162 }
5163 break;
5164 }
5165 find_next_key:
5166 /*
5167 * we didn't find a candidate key in this node, walk forward
5168 * and find another one
5169 */
5170 if (slot >= nritems) {
5171 path->slots[level] = slot;
5172 btrfs_set_path_blocking(path);
5173 sret = btrfs_find_next_key(root, path, min_key, level,
5174 min_trans);
5175 if (sret == 0) {
5176 btrfs_release_path(path);
5177 goto again;
5178 } else {
5179 goto out;
5180 }
5181 }
5182 /* save our key for returning back */
5183 btrfs_node_key_to_cpu(cur, &found_key, slot);
5184 path->slots[level] = slot;
5185 if (level == path->lowest_level) {
5186 ret = 0;
5187 goto out;
5188 }
5189 btrfs_set_path_blocking(path);
5190 cur = read_node_slot(fs_info, cur, slot);
5191 if (IS_ERR(cur)) {
5192 ret = PTR_ERR(cur);
5193 goto out;
5194 }
5195
5196 btrfs_tree_read_lock(cur);
5197
5198 path->locks[level - 1] = BTRFS_READ_LOCK;
5199 path->nodes[level - 1] = cur;
5200 unlock_up(path, level, 1, 0, NULL);
5201 btrfs_clear_path_blocking(path, NULL, 0);
5202 }
5203 out:
5204 path->keep_locks = keep_locks;
5205 if (ret == 0) {
5206 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5207 btrfs_set_path_blocking(path);
5208 memcpy(min_key, &found_key, sizeof(found_key));
5209 }
5210 return ret;
5211 }
5212
tree_move_down(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int * level)5213 static int tree_move_down(struct btrfs_fs_info *fs_info,
5214 struct btrfs_path *path,
5215 int *level)
5216 {
5217 struct extent_buffer *eb;
5218
5219 BUG_ON(*level == 0);
5220 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5221 if (IS_ERR(eb))
5222 return PTR_ERR(eb);
5223
5224 path->nodes[*level - 1] = eb;
5225 path->slots[*level - 1] = 0;
5226 (*level)--;
5227 return 0;
5228 }
5229
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)5230 static int tree_move_next_or_upnext(struct btrfs_path *path,
5231 int *level, int root_level)
5232 {
5233 int ret = 0;
5234 int nritems;
5235 nritems = btrfs_header_nritems(path->nodes[*level]);
5236
5237 path->slots[*level]++;
5238
5239 while (path->slots[*level] >= nritems) {
5240 if (*level == root_level)
5241 return -1;
5242
5243 /* move upnext */
5244 path->slots[*level] = 0;
5245 free_extent_buffer(path->nodes[*level]);
5246 path->nodes[*level] = NULL;
5247 (*level)++;
5248 path->slots[*level]++;
5249
5250 nritems = btrfs_header_nritems(path->nodes[*level]);
5251 ret = 1;
5252 }
5253 return ret;
5254 }
5255
5256 /*
5257 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5258 * or down.
5259 */
tree_advance(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key)5260 static int tree_advance(struct btrfs_fs_info *fs_info,
5261 struct btrfs_path *path,
5262 int *level, int root_level,
5263 int allow_down,
5264 struct btrfs_key *key)
5265 {
5266 int ret;
5267
5268 if (*level == 0 || !allow_down) {
5269 ret = tree_move_next_or_upnext(path, level, root_level);
5270 } else {
5271 ret = tree_move_down(fs_info, path, level);
5272 }
5273 if (ret >= 0) {
5274 if (*level == 0)
5275 btrfs_item_key_to_cpu(path->nodes[*level], key,
5276 path->slots[*level]);
5277 else
5278 btrfs_node_key_to_cpu(path->nodes[*level], key,
5279 path->slots[*level]);
5280 }
5281 return ret;
5282 }
5283
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)5284 static int tree_compare_item(struct btrfs_path *left_path,
5285 struct btrfs_path *right_path,
5286 char *tmp_buf)
5287 {
5288 int cmp;
5289 int len1, len2;
5290 unsigned long off1, off2;
5291
5292 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5293 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5294 if (len1 != len2)
5295 return 1;
5296
5297 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5298 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5299 right_path->slots[0]);
5300
5301 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5302
5303 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5304 if (cmp)
5305 return 1;
5306 return 0;
5307 }
5308
5309 #define ADVANCE 1
5310 #define ADVANCE_ONLY_NEXT -1
5311
5312 /*
5313 * This function compares two trees and calls the provided callback for
5314 * every changed/new/deleted item it finds.
5315 * If shared tree blocks are encountered, whole subtrees are skipped, making
5316 * the compare pretty fast on snapshotted subvolumes.
5317 *
5318 * This currently works on commit roots only. As commit roots are read only,
5319 * we don't do any locking. The commit roots are protected with transactions.
5320 * Transactions are ended and rejoined when a commit is tried in between.
5321 *
5322 * This function checks for modifications done to the trees while comparing.
5323 * If it detects a change, it aborts immediately.
5324 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,btrfs_changed_cb_t changed_cb,void * ctx)5325 int btrfs_compare_trees(struct btrfs_root *left_root,
5326 struct btrfs_root *right_root,
5327 btrfs_changed_cb_t changed_cb, void *ctx)
5328 {
5329 struct btrfs_fs_info *fs_info = left_root->fs_info;
5330 int ret;
5331 int cmp;
5332 struct btrfs_path *left_path = NULL;
5333 struct btrfs_path *right_path = NULL;
5334 struct btrfs_key left_key;
5335 struct btrfs_key right_key;
5336 char *tmp_buf = NULL;
5337 int left_root_level;
5338 int right_root_level;
5339 int left_level;
5340 int right_level;
5341 int left_end_reached;
5342 int right_end_reached;
5343 int advance_left;
5344 int advance_right;
5345 u64 left_blockptr;
5346 u64 right_blockptr;
5347 u64 left_gen;
5348 u64 right_gen;
5349
5350 left_path = btrfs_alloc_path();
5351 if (!left_path) {
5352 ret = -ENOMEM;
5353 goto out;
5354 }
5355 right_path = btrfs_alloc_path();
5356 if (!right_path) {
5357 ret = -ENOMEM;
5358 goto out;
5359 }
5360
5361 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5362 if (!tmp_buf) {
5363 ret = -ENOMEM;
5364 goto out;
5365 }
5366
5367 left_path->search_commit_root = 1;
5368 left_path->skip_locking = 1;
5369 right_path->search_commit_root = 1;
5370 right_path->skip_locking = 1;
5371
5372 /*
5373 * Strategy: Go to the first items of both trees. Then do
5374 *
5375 * If both trees are at level 0
5376 * Compare keys of current items
5377 * If left < right treat left item as new, advance left tree
5378 * and repeat
5379 * If left > right treat right item as deleted, advance right tree
5380 * and repeat
5381 * If left == right do deep compare of items, treat as changed if
5382 * needed, advance both trees and repeat
5383 * If both trees are at the same level but not at level 0
5384 * Compare keys of current nodes/leafs
5385 * If left < right advance left tree and repeat
5386 * If left > right advance right tree and repeat
5387 * If left == right compare blockptrs of the next nodes/leafs
5388 * If they match advance both trees but stay at the same level
5389 * and repeat
5390 * If they don't match advance both trees while allowing to go
5391 * deeper and repeat
5392 * If tree levels are different
5393 * Advance the tree that needs it and repeat
5394 *
5395 * Advancing a tree means:
5396 * If we are at level 0, try to go to the next slot. If that's not
5397 * possible, go one level up and repeat. Stop when we found a level
5398 * where we could go to the next slot. We may at this point be on a
5399 * node or a leaf.
5400 *
5401 * If we are not at level 0 and not on shared tree blocks, go one
5402 * level deeper.
5403 *
5404 * If we are not at level 0 and on shared tree blocks, go one slot to
5405 * the right if possible or go up and right.
5406 */
5407
5408 down_read(&fs_info->commit_root_sem);
5409 left_level = btrfs_header_level(left_root->commit_root);
5410 left_root_level = left_level;
5411 left_path->nodes[left_level] =
5412 btrfs_clone_extent_buffer(left_root->commit_root);
5413 if (!left_path->nodes[left_level]) {
5414 up_read(&fs_info->commit_root_sem);
5415 ret = -ENOMEM;
5416 goto out;
5417 }
5418 extent_buffer_get(left_path->nodes[left_level]);
5419
5420 right_level = btrfs_header_level(right_root->commit_root);
5421 right_root_level = right_level;
5422 right_path->nodes[right_level] =
5423 btrfs_clone_extent_buffer(right_root->commit_root);
5424 if (!right_path->nodes[right_level]) {
5425 up_read(&fs_info->commit_root_sem);
5426 ret = -ENOMEM;
5427 goto out;
5428 }
5429 extent_buffer_get(right_path->nodes[right_level]);
5430 up_read(&fs_info->commit_root_sem);
5431
5432 if (left_level == 0)
5433 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5434 &left_key, left_path->slots[left_level]);
5435 else
5436 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5437 &left_key, left_path->slots[left_level]);
5438 if (right_level == 0)
5439 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5440 &right_key, right_path->slots[right_level]);
5441 else
5442 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5443 &right_key, right_path->slots[right_level]);
5444
5445 left_end_reached = right_end_reached = 0;
5446 advance_left = advance_right = 0;
5447
5448 while (1) {
5449 if (advance_left && !left_end_reached) {
5450 ret = tree_advance(fs_info, left_path, &left_level,
5451 left_root_level,
5452 advance_left != ADVANCE_ONLY_NEXT,
5453 &left_key);
5454 if (ret == -1)
5455 left_end_reached = ADVANCE;
5456 else if (ret < 0)
5457 goto out;
5458 advance_left = 0;
5459 }
5460 if (advance_right && !right_end_reached) {
5461 ret = tree_advance(fs_info, right_path, &right_level,
5462 right_root_level,
5463 advance_right != ADVANCE_ONLY_NEXT,
5464 &right_key);
5465 if (ret == -1)
5466 right_end_reached = ADVANCE;
5467 else if (ret < 0)
5468 goto out;
5469 advance_right = 0;
5470 }
5471
5472 if (left_end_reached && right_end_reached) {
5473 ret = 0;
5474 goto out;
5475 } else if (left_end_reached) {
5476 if (right_level == 0) {
5477 ret = changed_cb(left_path, right_path,
5478 &right_key,
5479 BTRFS_COMPARE_TREE_DELETED,
5480 ctx);
5481 if (ret < 0)
5482 goto out;
5483 }
5484 advance_right = ADVANCE;
5485 continue;
5486 } else if (right_end_reached) {
5487 if (left_level == 0) {
5488 ret = changed_cb(left_path, right_path,
5489 &left_key,
5490 BTRFS_COMPARE_TREE_NEW,
5491 ctx);
5492 if (ret < 0)
5493 goto out;
5494 }
5495 advance_left = ADVANCE;
5496 continue;
5497 }
5498
5499 if (left_level == 0 && right_level == 0) {
5500 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5501 if (cmp < 0) {
5502 ret = changed_cb(left_path, right_path,
5503 &left_key,
5504 BTRFS_COMPARE_TREE_NEW,
5505 ctx);
5506 if (ret < 0)
5507 goto out;
5508 advance_left = ADVANCE;
5509 } else if (cmp > 0) {
5510 ret = changed_cb(left_path, right_path,
5511 &right_key,
5512 BTRFS_COMPARE_TREE_DELETED,
5513 ctx);
5514 if (ret < 0)
5515 goto out;
5516 advance_right = ADVANCE;
5517 } else {
5518 enum btrfs_compare_tree_result result;
5519
5520 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5521 ret = tree_compare_item(left_path, right_path,
5522 tmp_buf);
5523 if (ret)
5524 result = BTRFS_COMPARE_TREE_CHANGED;
5525 else
5526 result = BTRFS_COMPARE_TREE_SAME;
5527 ret = changed_cb(left_path, right_path,
5528 &left_key, result, ctx);
5529 if (ret < 0)
5530 goto out;
5531 advance_left = ADVANCE;
5532 advance_right = ADVANCE;
5533 }
5534 } else if (left_level == right_level) {
5535 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5536 if (cmp < 0) {
5537 advance_left = ADVANCE;
5538 } else if (cmp > 0) {
5539 advance_right = ADVANCE;
5540 } else {
5541 left_blockptr = btrfs_node_blockptr(
5542 left_path->nodes[left_level],
5543 left_path->slots[left_level]);
5544 right_blockptr = btrfs_node_blockptr(
5545 right_path->nodes[right_level],
5546 right_path->slots[right_level]);
5547 left_gen = btrfs_node_ptr_generation(
5548 left_path->nodes[left_level],
5549 left_path->slots[left_level]);
5550 right_gen = btrfs_node_ptr_generation(
5551 right_path->nodes[right_level],
5552 right_path->slots[right_level]);
5553 if (left_blockptr == right_blockptr &&
5554 left_gen == right_gen) {
5555 /*
5556 * As we're on a shared block, don't
5557 * allow to go deeper.
5558 */
5559 advance_left = ADVANCE_ONLY_NEXT;
5560 advance_right = ADVANCE_ONLY_NEXT;
5561 } else {
5562 advance_left = ADVANCE;
5563 advance_right = ADVANCE;
5564 }
5565 }
5566 } else if (left_level < right_level) {
5567 advance_right = ADVANCE;
5568 } else {
5569 advance_left = ADVANCE;
5570 }
5571 }
5572
5573 out:
5574 btrfs_free_path(left_path);
5575 btrfs_free_path(right_path);
5576 kvfree(tmp_buf);
5577 return ret;
5578 }
5579
5580 /*
5581 * this is similar to btrfs_next_leaf, but does not try to preserve
5582 * and fixup the path. It looks for and returns the next key in the
5583 * tree based on the current path and the min_trans parameters.
5584 *
5585 * 0 is returned if another key is found, < 0 if there are any errors
5586 * and 1 is returned if there are no higher keys in the tree
5587 *
5588 * path->keep_locks should be set to 1 on the search made before
5589 * calling this function.
5590 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)5591 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5592 struct btrfs_key *key, int level, u64 min_trans)
5593 {
5594 int slot;
5595 struct extent_buffer *c;
5596
5597 WARN_ON(!path->keep_locks);
5598 while (level < BTRFS_MAX_LEVEL) {
5599 if (!path->nodes[level])
5600 return 1;
5601
5602 slot = path->slots[level] + 1;
5603 c = path->nodes[level];
5604 next:
5605 if (slot >= btrfs_header_nritems(c)) {
5606 int ret;
5607 int orig_lowest;
5608 struct btrfs_key cur_key;
5609 if (level + 1 >= BTRFS_MAX_LEVEL ||
5610 !path->nodes[level + 1])
5611 return 1;
5612
5613 if (path->locks[level + 1]) {
5614 level++;
5615 continue;
5616 }
5617
5618 slot = btrfs_header_nritems(c) - 1;
5619 if (level == 0)
5620 btrfs_item_key_to_cpu(c, &cur_key, slot);
5621 else
5622 btrfs_node_key_to_cpu(c, &cur_key, slot);
5623
5624 orig_lowest = path->lowest_level;
5625 btrfs_release_path(path);
5626 path->lowest_level = level;
5627 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5628 0, 0);
5629 path->lowest_level = orig_lowest;
5630 if (ret < 0)
5631 return ret;
5632
5633 c = path->nodes[level];
5634 slot = path->slots[level];
5635 if (ret == 0)
5636 slot++;
5637 goto next;
5638 }
5639
5640 if (level == 0)
5641 btrfs_item_key_to_cpu(c, key, slot);
5642 else {
5643 u64 gen = btrfs_node_ptr_generation(c, slot);
5644
5645 if (gen < min_trans) {
5646 slot++;
5647 goto next;
5648 }
5649 btrfs_node_key_to_cpu(c, key, slot);
5650 }
5651 return 0;
5652 }
5653 return 1;
5654 }
5655
5656 /*
5657 * search the tree again to find a leaf with greater keys
5658 * returns 0 if it found something or 1 if there are no greater leaves.
5659 * returns < 0 on io errors.
5660 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)5661 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5662 {
5663 return btrfs_next_old_leaf(root, path, 0);
5664 }
5665
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5666 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5667 u64 time_seq)
5668 {
5669 int slot;
5670 int level;
5671 struct extent_buffer *c;
5672 struct extent_buffer *next;
5673 struct btrfs_key key;
5674 u32 nritems;
5675 int ret;
5676 int old_spinning = path->leave_spinning;
5677 int next_rw_lock = 0;
5678
5679 nritems = btrfs_header_nritems(path->nodes[0]);
5680 if (nritems == 0)
5681 return 1;
5682
5683 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5684 again:
5685 level = 1;
5686 next = NULL;
5687 next_rw_lock = 0;
5688 btrfs_release_path(path);
5689
5690 path->keep_locks = 1;
5691 path->leave_spinning = 1;
5692
5693 if (time_seq)
5694 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5695 else
5696 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5697 path->keep_locks = 0;
5698
5699 if (ret < 0)
5700 return ret;
5701
5702 nritems = btrfs_header_nritems(path->nodes[0]);
5703 /*
5704 * by releasing the path above we dropped all our locks. A balance
5705 * could have added more items next to the key that used to be
5706 * at the very end of the block. So, check again here and
5707 * advance the path if there are now more items available.
5708 */
5709 if (nritems > 0 && path->slots[0] < nritems - 1) {
5710 if (ret == 0)
5711 path->slots[0]++;
5712 ret = 0;
5713 goto done;
5714 }
5715 /*
5716 * So the above check misses one case:
5717 * - after releasing the path above, someone has removed the item that
5718 * used to be at the very end of the block, and balance between leafs
5719 * gets another one with bigger key.offset to replace it.
5720 *
5721 * This one should be returned as well, or we can get leaf corruption
5722 * later(esp. in __btrfs_drop_extents()).
5723 *
5724 * And a bit more explanation about this check,
5725 * with ret > 0, the key isn't found, the path points to the slot
5726 * where it should be inserted, so the path->slots[0] item must be the
5727 * bigger one.
5728 */
5729 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5730 ret = 0;
5731 goto done;
5732 }
5733
5734 while (level < BTRFS_MAX_LEVEL) {
5735 if (!path->nodes[level]) {
5736 ret = 1;
5737 goto done;
5738 }
5739
5740 slot = path->slots[level] + 1;
5741 c = path->nodes[level];
5742 if (slot >= btrfs_header_nritems(c)) {
5743 level++;
5744 if (level == BTRFS_MAX_LEVEL) {
5745 ret = 1;
5746 goto done;
5747 }
5748 continue;
5749 }
5750
5751 if (next) {
5752 btrfs_tree_unlock_rw(next, next_rw_lock);
5753 free_extent_buffer(next);
5754 }
5755
5756 next = c;
5757 next_rw_lock = path->locks[level];
5758 ret = read_block_for_search(root, path, &next, level,
5759 slot, &key);
5760 if (ret == -EAGAIN)
5761 goto again;
5762
5763 if (ret < 0) {
5764 btrfs_release_path(path);
5765 goto done;
5766 }
5767
5768 if (!path->skip_locking) {
5769 ret = btrfs_try_tree_read_lock(next);
5770 if (!ret && time_seq) {
5771 /*
5772 * If we don't get the lock, we may be racing
5773 * with push_leaf_left, holding that lock while
5774 * itself waiting for the leaf we've currently
5775 * locked. To solve this situation, we give up
5776 * on our lock and cycle.
5777 */
5778 free_extent_buffer(next);
5779 btrfs_release_path(path);
5780 cond_resched();
5781 goto again;
5782 }
5783 if (!ret) {
5784 btrfs_set_path_blocking(path);
5785 btrfs_tree_read_lock(next);
5786 btrfs_clear_path_blocking(path, next,
5787 BTRFS_READ_LOCK);
5788 }
5789 next_rw_lock = BTRFS_READ_LOCK;
5790 }
5791 break;
5792 }
5793 path->slots[level] = slot;
5794 while (1) {
5795 level--;
5796 c = path->nodes[level];
5797 if (path->locks[level])
5798 btrfs_tree_unlock_rw(c, path->locks[level]);
5799
5800 free_extent_buffer(c);
5801 path->nodes[level] = next;
5802 path->slots[level] = 0;
5803 if (!path->skip_locking)
5804 path->locks[level] = next_rw_lock;
5805 if (!level)
5806 break;
5807
5808 ret = read_block_for_search(root, path, &next, level,
5809 0, &key);
5810 if (ret == -EAGAIN)
5811 goto again;
5812
5813 if (ret < 0) {
5814 btrfs_release_path(path);
5815 goto done;
5816 }
5817
5818 if (!path->skip_locking) {
5819 ret = btrfs_try_tree_read_lock(next);
5820 if (!ret) {
5821 btrfs_set_path_blocking(path);
5822 btrfs_tree_read_lock(next);
5823 btrfs_clear_path_blocking(path, next,
5824 BTRFS_READ_LOCK);
5825 }
5826 next_rw_lock = BTRFS_READ_LOCK;
5827 }
5828 }
5829 ret = 0;
5830 done:
5831 unlock_up(path, 0, 1, 0, NULL);
5832 path->leave_spinning = old_spinning;
5833 if (!old_spinning)
5834 btrfs_set_path_blocking(path);
5835
5836 return ret;
5837 }
5838
5839 /*
5840 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5841 * searching until it gets past min_objectid or finds an item of 'type'
5842 *
5843 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5844 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5845 int btrfs_previous_item(struct btrfs_root *root,
5846 struct btrfs_path *path, u64 min_objectid,
5847 int type)
5848 {
5849 struct btrfs_key found_key;
5850 struct extent_buffer *leaf;
5851 u32 nritems;
5852 int ret;
5853
5854 while (1) {
5855 if (path->slots[0] == 0) {
5856 btrfs_set_path_blocking(path);
5857 ret = btrfs_prev_leaf(root, path);
5858 if (ret != 0)
5859 return ret;
5860 } else {
5861 path->slots[0]--;
5862 }
5863 leaf = path->nodes[0];
5864 nritems = btrfs_header_nritems(leaf);
5865 if (nritems == 0)
5866 return 1;
5867 if (path->slots[0] == nritems)
5868 path->slots[0]--;
5869
5870 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5871 if (found_key.objectid < min_objectid)
5872 break;
5873 if (found_key.type == type)
5874 return 0;
5875 if (found_key.objectid == min_objectid &&
5876 found_key.type < type)
5877 break;
5878 }
5879 return 1;
5880 }
5881
5882 /*
5883 * search in extent tree to find a previous Metadata/Data extent item with
5884 * min objecitd.
5885 *
5886 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5887 */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5888 int btrfs_previous_extent_item(struct btrfs_root *root,
5889 struct btrfs_path *path, u64 min_objectid)
5890 {
5891 struct btrfs_key found_key;
5892 struct extent_buffer *leaf;
5893 u32 nritems;
5894 int ret;
5895
5896 while (1) {
5897 if (path->slots[0] == 0) {
5898 btrfs_set_path_blocking(path);
5899 ret = btrfs_prev_leaf(root, path);
5900 if (ret != 0)
5901 return ret;
5902 } else {
5903 path->slots[0]--;
5904 }
5905 leaf = path->nodes[0];
5906 nritems = btrfs_header_nritems(leaf);
5907 if (nritems == 0)
5908 return 1;
5909 if (path->slots[0] == nritems)
5910 path->slots[0]--;
5911
5912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5913 if (found_key.objectid < min_objectid)
5914 break;
5915 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5916 found_key.type == BTRFS_METADATA_ITEM_KEY)
5917 return 0;
5918 if (found_key.objectid == min_objectid &&
5919 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5920 break;
5921 }
5922 return 1;
5923 }
5924