1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36 
37 static struct bio_set btrfs_bioset;
38 
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
40 					 BTRFS_BLOCK_GROUP_RAID10 | \
41 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
42 
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 	[BTRFS_RAID_RAID10] = {
45 		.sub_stripes	= 2,
46 		.dev_stripes	= 1,
47 		.devs_max	= 0,	/* 0 == as many as possible */
48 		.devs_min	= 2,
49 		.tolerated_failures = 1,
50 		.devs_increment	= 2,
51 		.ncopies	= 2,
52 		.nparity        = 0,
53 		.raid_name	= "raid10",
54 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
55 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 	},
57 	[BTRFS_RAID_RAID1] = {
58 		.sub_stripes	= 1,
59 		.dev_stripes	= 1,
60 		.devs_max	= 2,
61 		.devs_min	= 2,
62 		.tolerated_failures = 1,
63 		.devs_increment	= 2,
64 		.ncopies	= 2,
65 		.nparity        = 0,
66 		.raid_name	= "raid1",
67 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
68 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 	},
70 	[BTRFS_RAID_RAID1C3] = {
71 		.sub_stripes	= 1,
72 		.dev_stripes	= 1,
73 		.devs_max	= 3,
74 		.devs_min	= 3,
75 		.tolerated_failures = 2,
76 		.devs_increment	= 3,
77 		.ncopies	= 3,
78 		.nparity        = 0,
79 		.raid_name	= "raid1c3",
80 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
81 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 	},
83 	[BTRFS_RAID_RAID1C4] = {
84 		.sub_stripes	= 1,
85 		.dev_stripes	= 1,
86 		.devs_max	= 4,
87 		.devs_min	= 4,
88 		.tolerated_failures = 3,
89 		.devs_increment	= 4,
90 		.ncopies	= 4,
91 		.nparity        = 0,
92 		.raid_name	= "raid1c4",
93 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
94 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 	},
96 	[BTRFS_RAID_DUP] = {
97 		.sub_stripes	= 1,
98 		.dev_stripes	= 2,
99 		.devs_max	= 1,
100 		.devs_min	= 1,
101 		.tolerated_failures = 0,
102 		.devs_increment	= 1,
103 		.ncopies	= 2,
104 		.nparity        = 0,
105 		.raid_name	= "dup",
106 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
107 		.mindev_error	= 0,
108 	},
109 	[BTRFS_RAID_RAID0] = {
110 		.sub_stripes	= 1,
111 		.dev_stripes	= 1,
112 		.devs_max	= 0,
113 		.devs_min	= 1,
114 		.tolerated_failures = 0,
115 		.devs_increment	= 1,
116 		.ncopies	= 1,
117 		.nparity        = 0,
118 		.raid_name	= "raid0",
119 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
120 		.mindev_error	= 0,
121 	},
122 	[BTRFS_RAID_SINGLE] = {
123 		.sub_stripes	= 1,
124 		.dev_stripes	= 1,
125 		.devs_max	= 1,
126 		.devs_min	= 1,
127 		.tolerated_failures = 0,
128 		.devs_increment	= 1,
129 		.ncopies	= 1,
130 		.nparity        = 0,
131 		.raid_name	= "single",
132 		.bg_flag	= 0,
133 		.mindev_error	= 0,
134 	},
135 	[BTRFS_RAID_RAID5] = {
136 		.sub_stripes	= 1,
137 		.dev_stripes	= 1,
138 		.devs_max	= 0,
139 		.devs_min	= 2,
140 		.tolerated_failures = 1,
141 		.devs_increment	= 1,
142 		.ncopies	= 1,
143 		.nparity        = 1,
144 		.raid_name	= "raid5",
145 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
146 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 	},
148 	[BTRFS_RAID_RAID6] = {
149 		.sub_stripes	= 1,
150 		.dev_stripes	= 1,
151 		.devs_max	= 0,
152 		.devs_min	= 3,
153 		.tolerated_failures = 2,
154 		.devs_increment	= 1,
155 		.ncopies	= 1,
156 		.nparity        = 2,
157 		.raid_name	= "raid6",
158 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
159 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 	},
161 };
162 
163 /*
164  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165  * can be used as index to access btrfs_raid_array[].
166  */
btrfs_bg_flags_to_raid_index(u64 flags)167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170 
171 	if (!profile)
172 		return BTRFS_RAID_SINGLE;
173 
174 	return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176 
btrfs_bg_type_to_raid_name(u64 flags)177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 	const int index = btrfs_bg_flags_to_raid_index(flags);
180 
181 	if (index >= BTRFS_NR_RAID_TYPES)
182 		return NULL;
183 
184 	return btrfs_raid_array[index].raid_name;
185 }
186 
btrfs_nr_parity_stripes(u64 type)187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190 
191 	return btrfs_raid_array[index].nparity;
192 }
193 
194 /*
195  * Fill @buf with textual description of @bg_flags, no more than @size_buf
196  * bytes including terminating null byte.
197  */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 	int i;
201 	int ret;
202 	char *bp = buf;
203 	u64 flags = bg_flags;
204 	u32 size_bp = size_buf;
205 
206 	if (!flags) {
207 		strcpy(bp, "NONE");
208 		return;
209 	}
210 
211 #define DESCRIBE_FLAG(flag, desc)						\
212 	do {								\
213 		if (flags & (flag)) {					\
214 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
215 			if (ret < 0 || ret >= size_bp)			\
216 				goto out_overflow;			\
217 			size_bp -= ret;					\
218 			bp += ret;					\
219 			flags &= ~(flag);				\
220 		}							\
221 	} while (0)
222 
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226 
227 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 			      btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232 
233 	if (flags) {
234 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 		size_bp -= ret;
236 	}
237 
238 	if (size_bp < size_buf)
239 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240 
241 	/*
242 	 * The text is trimmed, it's up to the caller to provide sufficiently
243 	 * large buffer
244 	 */
245 out_overflow:;
246 }
247 
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252 			     enum btrfs_map_op op, u64 logical, u64 *length,
253 			     struct btrfs_io_context **bioc_ret,
254 			     struct btrfs_io_stripe *smap,
255 			     int *mirror_num_ret, int need_raid_map);
256 
257 /*
258  * Device locking
259  * ==============
260  *
261  * There are several mutexes that protect manipulation of devices and low-level
262  * structures like chunks but not block groups, extents or files
263  *
264  * uuid_mutex (global lock)
265  * ------------------------
266  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268  * device) or requested by the device= mount option
269  *
270  * the mutex can be very coarse and can cover long-running operations
271  *
272  * protects: updates to fs_devices counters like missing devices, rw devices,
273  * seeding, structure cloning, opening/closing devices at mount/umount time
274  *
275  * global::fs_devs - add, remove, updates to the global list
276  *
277  * does not protect: manipulation of the fs_devices::devices list in general
278  * but in mount context it could be used to exclude list modifications by eg.
279  * scan ioctl
280  *
281  * btrfs_device::name - renames (write side), read is RCU
282  *
283  * fs_devices::device_list_mutex (per-fs, with RCU)
284  * ------------------------------------------------
285  * protects updates to fs_devices::devices, ie. adding and deleting
286  *
287  * simple list traversal with read-only actions can be done with RCU protection
288  *
289  * may be used to exclude some operations from running concurrently without any
290  * modifications to the list (see write_all_supers)
291  *
292  * Is not required at mount and close times, because our device list is
293  * protected by the uuid_mutex at that point.
294  *
295  * balance_mutex
296  * -------------
297  * protects balance structures (status, state) and context accessed from
298  * several places (internally, ioctl)
299  *
300  * chunk_mutex
301  * -----------
302  * protects chunks, adding or removing during allocation, trim or when a new
303  * device is added/removed. Additionally it also protects post_commit_list of
304  * individual devices, since they can be added to the transaction's
305  * post_commit_list only with chunk_mutex held.
306  *
307  * cleaner_mutex
308  * -------------
309  * a big lock that is held by the cleaner thread and prevents running subvolume
310  * cleaning together with relocation or delayed iputs
311  *
312  *
313  * Lock nesting
314  * ============
315  *
316  * uuid_mutex
317  *   device_list_mutex
318  *     chunk_mutex
319  *   balance_mutex
320  *
321  *
322  * Exclusive operations
323  * ====================
324  *
325  * Maintains the exclusivity of the following operations that apply to the
326  * whole filesystem and cannot run in parallel.
327  *
328  * - Balance (*)
329  * - Device add
330  * - Device remove
331  * - Device replace (*)
332  * - Resize
333  *
334  * The device operations (as above) can be in one of the following states:
335  *
336  * - Running state
337  * - Paused state
338  * - Completed state
339  *
340  * Only device operations marked with (*) can go into the Paused state for the
341  * following reasons:
342  *
343  * - ioctl (only Balance can be Paused through ioctl)
344  * - filesystem remounted as read-only
345  * - filesystem unmounted and mounted as read-only
346  * - system power-cycle and filesystem mounted as read-only
347  * - filesystem or device errors leading to forced read-only
348  *
349  * The status of exclusive operation is set and cleared atomically.
350  * During the course of Paused state, fs_info::exclusive_operation remains set.
351  * A device operation in Paused or Running state can be canceled or resumed
352  * either by ioctl (Balance only) or when remounted as read-write.
353  * The exclusive status is cleared when the device operation is canceled or
354  * completed.
355  */
356 
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 {
361 	return &fs_uuids;
362 }
363 
364 /*
365  * alloc_fs_devices - allocate struct btrfs_fs_devices
366  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
367  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
368  *
369  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370  * The returned struct is not linked onto any lists and can be destroyed with
371  * kfree() right away.
372  */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374 						 const u8 *metadata_fsid)
375 {
376 	struct btrfs_fs_devices *fs_devs;
377 
378 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379 	if (!fs_devs)
380 		return ERR_PTR(-ENOMEM);
381 
382 	mutex_init(&fs_devs->device_list_mutex);
383 
384 	INIT_LIST_HEAD(&fs_devs->devices);
385 	INIT_LIST_HEAD(&fs_devs->alloc_list);
386 	INIT_LIST_HEAD(&fs_devs->fs_list);
387 	INIT_LIST_HEAD(&fs_devs->seed_list);
388 	if (fsid)
389 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
390 
391 	if (metadata_fsid)
392 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393 	else if (fsid)
394 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395 
396 	return fs_devs;
397 }
398 
btrfs_free_device(struct btrfs_device * device)399 void btrfs_free_device(struct btrfs_device *device)
400 {
401 	WARN_ON(!list_empty(&device->post_commit_list));
402 	rcu_string_free(device->name);
403 	extent_io_tree_release(&device->alloc_state);
404 	btrfs_destroy_dev_zone_info(device);
405 	kfree(device);
406 }
407 
free_fs_devices(struct btrfs_fs_devices * fs_devices)408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409 {
410 	struct btrfs_device *device;
411 	WARN_ON(fs_devices->opened);
412 	while (!list_empty(&fs_devices->devices)) {
413 		device = list_entry(fs_devices->devices.next,
414 				    struct btrfs_device, dev_list);
415 		list_del(&device->dev_list);
416 		btrfs_free_device(device);
417 	}
418 	kfree(fs_devices);
419 }
420 
btrfs_cleanup_fs_uuids(void)421 void __exit btrfs_cleanup_fs_uuids(void)
422 {
423 	struct btrfs_fs_devices *fs_devices;
424 
425 	while (!list_empty(&fs_uuids)) {
426 		fs_devices = list_entry(fs_uuids.next,
427 					struct btrfs_fs_devices, fs_list);
428 		list_del(&fs_devices->fs_list);
429 		free_fs_devices(fs_devices);
430 	}
431 }
432 
find_fsid(const u8 * fsid,const u8 * metadata_fsid)433 static noinline struct btrfs_fs_devices *find_fsid(
434 		const u8 *fsid, const u8 *metadata_fsid)
435 {
436 	struct btrfs_fs_devices *fs_devices;
437 
438 	ASSERT(fsid);
439 
440 	/* Handle non-split brain cases */
441 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 		if (metadata_fsid) {
443 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 				      BTRFS_FSID_SIZE) == 0)
446 				return fs_devices;
447 		} else {
448 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 				return fs_devices;
450 		}
451 	}
452 	return NULL;
453 }
454 
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 				struct btrfs_super_block *disk_super)
457 {
458 
459 	struct btrfs_fs_devices *fs_devices;
460 
461 	/*
462 	 * Handle scanned device having completed its fsid change but
463 	 * belonging to a fs_devices that was created by first scanning
464 	 * a device which didn't have its fsid/metadata_uuid changed
465 	 * at all and the CHANGING_FSID_V2 flag set.
466 	 */
467 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 		if (fs_devices->fsid_change &&
469 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 			   BTRFS_FSID_SIZE) == 0 &&
471 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 			   BTRFS_FSID_SIZE) == 0) {
473 			return fs_devices;
474 		}
475 	}
476 	/*
477 	 * Handle scanned device having completed its fsid change but
478 	 * belonging to a fs_devices that was created by a device that
479 	 * has an outdated pair of fsid/metadata_uuid and
480 	 * CHANGING_FSID_V2 flag set.
481 	 */
482 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 		if (fs_devices->fsid_change &&
484 		    memcmp(fs_devices->metadata_uuid,
485 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 			   BTRFS_FSID_SIZE) == 0) {
488 			return fs_devices;
489 		}
490 	}
491 
492 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493 }
494 
495 
496 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 		      int flush, struct block_device **bdev,
499 		      struct btrfs_super_block **disk_super)
500 {
501 	int ret;
502 
503 	*bdev = blkdev_get_by_path(device_path, flags, holder);
504 
505 	if (IS_ERR(*bdev)) {
506 		ret = PTR_ERR(*bdev);
507 		goto error;
508 	}
509 
510 	if (flush)
511 		sync_blockdev(*bdev);
512 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
513 	if (ret) {
514 		blkdev_put(*bdev, flags);
515 		goto error;
516 	}
517 	invalidate_bdev(*bdev);
518 	*disk_super = btrfs_read_dev_super(*bdev);
519 	if (IS_ERR(*disk_super)) {
520 		ret = PTR_ERR(*disk_super);
521 		blkdev_put(*bdev, flags);
522 		goto error;
523 	}
524 
525 	return 0;
526 
527 error:
528 	*bdev = NULL;
529 	return ret;
530 }
531 
532 /**
533  *  Search and remove all stale devices (which are not mounted).
534  *  When both inputs are NULL, it will search and release all stale devices.
535  *
536  *  @devt:	Optional. When provided will it release all unmounted devices
537  *		matching this devt only.
538  *  @skip_device:  Optional. Will skip this device when searching for the stale
539  *		devices.
540  *
541  *  Return:	0 for success or if @devt is 0.
542  *		-EBUSY if @devt is a mounted device.
543  *		-ENOENT if @devt does not match any device in the list.
544  */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)545 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
546 {
547 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
548 	struct btrfs_device *device, *tmp_device;
549 	int ret = 0;
550 
551 	lockdep_assert_held(&uuid_mutex);
552 
553 	if (devt)
554 		ret = -ENOENT;
555 
556 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
557 
558 		mutex_lock(&fs_devices->device_list_mutex);
559 		list_for_each_entry_safe(device, tmp_device,
560 					 &fs_devices->devices, dev_list) {
561 			if (skip_device && skip_device == device)
562 				continue;
563 			if (devt && devt != device->devt)
564 				continue;
565 			if (fs_devices->opened) {
566 				/* for an already deleted device return 0 */
567 				if (devt && ret != 0)
568 					ret = -EBUSY;
569 				break;
570 			}
571 
572 			/* delete the stale device */
573 			fs_devices->num_devices--;
574 			list_del(&device->dev_list);
575 			btrfs_free_device(device);
576 
577 			ret = 0;
578 		}
579 		mutex_unlock(&fs_devices->device_list_mutex);
580 
581 		if (fs_devices->num_devices == 0) {
582 			btrfs_sysfs_remove_fsid(fs_devices);
583 			list_del(&fs_devices->fs_list);
584 			free_fs_devices(fs_devices);
585 		}
586 	}
587 
588 	return ret;
589 }
590 
591 /*
592  * This is only used on mount, and we are protected from competing things
593  * messing with our fs_devices by the uuid_mutex, thus we do not need the
594  * fs_devices->device_list_mutex here.
595  */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)596 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
597 			struct btrfs_device *device, fmode_t flags,
598 			void *holder)
599 {
600 	struct block_device *bdev;
601 	struct btrfs_super_block *disk_super;
602 	u64 devid;
603 	int ret;
604 
605 	if (device->bdev)
606 		return -EINVAL;
607 	if (!device->name)
608 		return -EINVAL;
609 
610 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
611 				    &bdev, &disk_super);
612 	if (ret)
613 		return ret;
614 
615 	devid = btrfs_stack_device_id(&disk_super->dev_item);
616 	if (devid != device->devid)
617 		goto error_free_page;
618 
619 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
620 		goto error_free_page;
621 
622 	device->generation = btrfs_super_generation(disk_super);
623 
624 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
625 		if (btrfs_super_incompat_flags(disk_super) &
626 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
627 			pr_err(
628 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
629 			goto error_free_page;
630 		}
631 
632 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 		fs_devices->seeding = true;
634 	} else {
635 		if (bdev_read_only(bdev))
636 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
637 		else
638 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
639 	}
640 
641 	if (!bdev_nonrot(bdev))
642 		fs_devices->rotating = true;
643 
644 	device->bdev = bdev;
645 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
646 	device->mode = flags;
647 
648 	fs_devices->open_devices++;
649 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
650 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
651 		fs_devices->rw_devices++;
652 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
653 	}
654 	btrfs_release_disk_super(disk_super);
655 
656 	return 0;
657 
658 error_free_page:
659 	btrfs_release_disk_super(disk_super);
660 	blkdev_put(bdev, flags);
661 
662 	return -EINVAL;
663 }
664 
665 /*
666  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
667  * being created with a disk that has already completed its fsid change. Such
668  * disk can belong to an fs which has its FSID changed or to one which doesn't.
669  * Handle both cases here.
670  */
find_fsid_inprogress(struct btrfs_super_block * disk_super)671 static struct btrfs_fs_devices *find_fsid_inprogress(
672 					struct btrfs_super_block *disk_super)
673 {
674 	struct btrfs_fs_devices *fs_devices;
675 
676 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
677 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
678 			   BTRFS_FSID_SIZE) != 0 &&
679 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
680 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
681 			return fs_devices;
682 		}
683 	}
684 
685 	return find_fsid(disk_super->fsid, NULL);
686 }
687 
688 
find_fsid_changed(struct btrfs_super_block * disk_super)689 static struct btrfs_fs_devices *find_fsid_changed(
690 					struct btrfs_super_block *disk_super)
691 {
692 	struct btrfs_fs_devices *fs_devices;
693 
694 	/*
695 	 * Handles the case where scanned device is part of an fs that had
696 	 * multiple successful changes of FSID but currently device didn't
697 	 * observe it. Meaning our fsid will be different than theirs. We need
698 	 * to handle two subcases :
699 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
700 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
701 	 *  are equal).
702 	 */
703 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
704 		/* Changed UUIDs */
705 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
706 			   BTRFS_FSID_SIZE) != 0 &&
707 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
708 			   BTRFS_FSID_SIZE) == 0 &&
709 		    memcmp(fs_devices->fsid, disk_super->fsid,
710 			   BTRFS_FSID_SIZE) != 0)
711 			return fs_devices;
712 
713 		/* Unchanged UUIDs */
714 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
715 			   BTRFS_FSID_SIZE) == 0 &&
716 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
717 			   BTRFS_FSID_SIZE) == 0)
718 			return fs_devices;
719 	}
720 
721 	return NULL;
722 }
723 
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)724 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
725 				struct btrfs_super_block *disk_super)
726 {
727 	struct btrfs_fs_devices *fs_devices;
728 
729 	/*
730 	 * Handle the case where the scanned device is part of an fs whose last
731 	 * metadata UUID change reverted it to the original FSID. At the same
732 	 * time * fs_devices was first created by another constitutent device
733 	 * which didn't fully observe the operation. This results in an
734 	 * btrfs_fs_devices created with metadata/fsid different AND
735 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
736 	 * fs_devices equal to the FSID of the disk.
737 	 */
738 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
739 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
740 			   BTRFS_FSID_SIZE) != 0 &&
741 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
742 			   BTRFS_FSID_SIZE) == 0 &&
743 		    fs_devices->fsid_change)
744 			return fs_devices;
745 	}
746 
747 	return NULL;
748 }
749 /*
750  * Add new device to list of registered devices
751  *
752  * Returns:
753  * device pointer which was just added or updated when successful
754  * error pointer when failed
755  */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)756 static noinline struct btrfs_device *device_list_add(const char *path,
757 			   struct btrfs_super_block *disk_super,
758 			   bool *new_device_added)
759 {
760 	struct btrfs_device *device;
761 	struct btrfs_fs_devices *fs_devices = NULL;
762 	struct rcu_string *name;
763 	u64 found_transid = btrfs_super_generation(disk_super);
764 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
765 	dev_t path_devt;
766 	int error;
767 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
768 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
769 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
770 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
771 
772 	error = lookup_bdev(path, &path_devt);
773 	if (error)
774 		return ERR_PTR(error);
775 
776 	if (fsid_change_in_progress) {
777 		if (!has_metadata_uuid)
778 			fs_devices = find_fsid_inprogress(disk_super);
779 		else
780 			fs_devices = find_fsid_changed(disk_super);
781 	} else if (has_metadata_uuid) {
782 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
783 	} else {
784 		fs_devices = find_fsid_reverted_metadata(disk_super);
785 		if (!fs_devices)
786 			fs_devices = find_fsid(disk_super->fsid, NULL);
787 	}
788 
789 
790 	if (!fs_devices) {
791 		if (has_metadata_uuid)
792 			fs_devices = alloc_fs_devices(disk_super->fsid,
793 						      disk_super->metadata_uuid);
794 		else
795 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
796 
797 		if (IS_ERR(fs_devices))
798 			return ERR_CAST(fs_devices);
799 
800 		fs_devices->fsid_change = fsid_change_in_progress;
801 
802 		mutex_lock(&fs_devices->device_list_mutex);
803 		list_add(&fs_devices->fs_list, &fs_uuids);
804 
805 		device = NULL;
806 	} else {
807 		struct btrfs_dev_lookup_args args = {
808 			.devid = devid,
809 			.uuid = disk_super->dev_item.uuid,
810 		};
811 
812 		mutex_lock(&fs_devices->device_list_mutex);
813 		device = btrfs_find_device(fs_devices, &args);
814 
815 		/*
816 		 * If this disk has been pulled into an fs devices created by
817 		 * a device which had the CHANGING_FSID_V2 flag then replace the
818 		 * metadata_uuid/fsid values of the fs_devices.
819 		 */
820 		if (fs_devices->fsid_change &&
821 		    found_transid > fs_devices->latest_generation) {
822 			memcpy(fs_devices->fsid, disk_super->fsid,
823 					BTRFS_FSID_SIZE);
824 
825 			if (has_metadata_uuid)
826 				memcpy(fs_devices->metadata_uuid,
827 				       disk_super->metadata_uuid,
828 				       BTRFS_FSID_SIZE);
829 			else
830 				memcpy(fs_devices->metadata_uuid,
831 				       disk_super->fsid, BTRFS_FSID_SIZE);
832 
833 			fs_devices->fsid_change = false;
834 		}
835 	}
836 
837 	if (!device) {
838 		if (fs_devices->opened) {
839 			mutex_unlock(&fs_devices->device_list_mutex);
840 			return ERR_PTR(-EBUSY);
841 		}
842 
843 		device = btrfs_alloc_device(NULL, &devid,
844 					    disk_super->dev_item.uuid);
845 		if (IS_ERR(device)) {
846 			mutex_unlock(&fs_devices->device_list_mutex);
847 			/* we can safely leave the fs_devices entry around */
848 			return device;
849 		}
850 
851 		name = rcu_string_strdup(path, GFP_NOFS);
852 		if (!name) {
853 			btrfs_free_device(device);
854 			mutex_unlock(&fs_devices->device_list_mutex);
855 			return ERR_PTR(-ENOMEM);
856 		}
857 		rcu_assign_pointer(device->name, name);
858 		device->devt = path_devt;
859 
860 		list_add_rcu(&device->dev_list, &fs_devices->devices);
861 		fs_devices->num_devices++;
862 
863 		device->fs_devices = fs_devices;
864 		*new_device_added = true;
865 
866 		if (disk_super->label[0])
867 			pr_info(
868 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
869 				disk_super->label, devid, found_transid, path,
870 				current->comm, task_pid_nr(current));
871 		else
872 			pr_info(
873 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
874 				disk_super->fsid, devid, found_transid, path,
875 				current->comm, task_pid_nr(current));
876 
877 	} else if (!device->name || strcmp(device->name->str, path)) {
878 		/*
879 		 * When FS is already mounted.
880 		 * 1. If you are here and if the device->name is NULL that
881 		 *    means this device was missing at time of FS mount.
882 		 * 2. If you are here and if the device->name is different
883 		 *    from 'path' that means either
884 		 *      a. The same device disappeared and reappeared with
885 		 *         different name. or
886 		 *      b. The missing-disk-which-was-replaced, has
887 		 *         reappeared now.
888 		 *
889 		 * We must allow 1 and 2a above. But 2b would be a spurious
890 		 * and unintentional.
891 		 *
892 		 * Further in case of 1 and 2a above, the disk at 'path'
893 		 * would have missed some transaction when it was away and
894 		 * in case of 2a the stale bdev has to be updated as well.
895 		 * 2b must not be allowed at all time.
896 		 */
897 
898 		/*
899 		 * For now, we do allow update to btrfs_fs_device through the
900 		 * btrfs dev scan cli after FS has been mounted.  We're still
901 		 * tracking a problem where systems fail mount by subvolume id
902 		 * when we reject replacement on a mounted FS.
903 		 */
904 		if (!fs_devices->opened && found_transid < device->generation) {
905 			/*
906 			 * That is if the FS is _not_ mounted and if you
907 			 * are here, that means there is more than one
908 			 * disk with same uuid and devid.We keep the one
909 			 * with larger generation number or the last-in if
910 			 * generation are equal.
911 			 */
912 			mutex_unlock(&fs_devices->device_list_mutex);
913 			return ERR_PTR(-EEXIST);
914 		}
915 
916 		/*
917 		 * We are going to replace the device path for a given devid,
918 		 * make sure it's the same device if the device is mounted
919 		 *
920 		 * NOTE: the device->fs_info may not be reliable here so pass
921 		 * in a NULL to message helpers instead. This avoids a possible
922 		 * use-after-free when the fs_info and fs_info->sb are already
923 		 * torn down.
924 		 */
925 		if (device->bdev) {
926 			if (device->devt != path_devt) {
927 				mutex_unlock(&fs_devices->device_list_mutex);
928 				btrfs_warn_in_rcu(NULL,
929 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
930 						  path, devid, found_transid,
931 						  current->comm,
932 						  task_pid_nr(current));
933 				return ERR_PTR(-EEXIST);
934 			}
935 			btrfs_info_in_rcu(NULL,
936 	"devid %llu device path %s changed to %s scanned by %s (%d)",
937 					  devid, rcu_str_deref(device->name),
938 					  path, current->comm,
939 					  task_pid_nr(current));
940 		}
941 
942 		name = rcu_string_strdup(path, GFP_NOFS);
943 		if (!name) {
944 			mutex_unlock(&fs_devices->device_list_mutex);
945 			return ERR_PTR(-ENOMEM);
946 		}
947 		rcu_string_free(device->name);
948 		rcu_assign_pointer(device->name, name);
949 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
950 			fs_devices->missing_devices--;
951 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
952 		}
953 		device->devt = path_devt;
954 	}
955 
956 	/*
957 	 * Unmount does not free the btrfs_device struct but would zero
958 	 * generation along with most of the other members. So just update
959 	 * it back. We need it to pick the disk with largest generation
960 	 * (as above).
961 	 */
962 	if (!fs_devices->opened) {
963 		device->generation = found_transid;
964 		fs_devices->latest_generation = max_t(u64, found_transid,
965 						fs_devices->latest_generation);
966 	}
967 
968 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
969 
970 	mutex_unlock(&fs_devices->device_list_mutex);
971 	return device;
972 }
973 
clone_fs_devices(struct btrfs_fs_devices * orig)974 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
975 {
976 	struct btrfs_fs_devices *fs_devices;
977 	struct btrfs_device *device;
978 	struct btrfs_device *orig_dev;
979 	int ret = 0;
980 
981 	lockdep_assert_held(&uuid_mutex);
982 
983 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
984 	if (IS_ERR(fs_devices))
985 		return fs_devices;
986 
987 	fs_devices->total_devices = orig->total_devices;
988 
989 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
990 		struct rcu_string *name;
991 
992 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
993 					    orig_dev->uuid);
994 		if (IS_ERR(device)) {
995 			ret = PTR_ERR(device);
996 			goto error;
997 		}
998 
999 		/*
1000 		 * This is ok to do without rcu read locked because we hold the
1001 		 * uuid mutex so nothing we touch in here is going to disappear.
1002 		 */
1003 		if (orig_dev->name) {
1004 			name = rcu_string_strdup(orig_dev->name->str,
1005 					GFP_KERNEL);
1006 			if (!name) {
1007 				btrfs_free_device(device);
1008 				ret = -ENOMEM;
1009 				goto error;
1010 			}
1011 			rcu_assign_pointer(device->name, name);
1012 		}
1013 
1014 		if (orig_dev->zone_info) {
1015 			struct btrfs_zoned_device_info *zone_info;
1016 
1017 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1018 			if (!zone_info) {
1019 				btrfs_free_device(device);
1020 				ret = -ENOMEM;
1021 				goto error;
1022 			}
1023 			device->zone_info = zone_info;
1024 		}
1025 
1026 		list_add(&device->dev_list, &fs_devices->devices);
1027 		device->fs_devices = fs_devices;
1028 		fs_devices->num_devices++;
1029 	}
1030 	return fs_devices;
1031 error:
1032 	free_fs_devices(fs_devices);
1033 	return ERR_PTR(ret);
1034 }
1035 
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1036 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1037 				      struct btrfs_device **latest_dev)
1038 {
1039 	struct btrfs_device *device, *next;
1040 
1041 	/* This is the initialized path, it is safe to release the devices. */
1042 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1043 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1044 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1045 				      &device->dev_state) &&
1046 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1047 				      &device->dev_state) &&
1048 			    (!*latest_dev ||
1049 			     device->generation > (*latest_dev)->generation)) {
1050 				*latest_dev = device;
1051 			}
1052 			continue;
1053 		}
1054 
1055 		/*
1056 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1057 		 * in btrfs_init_dev_replace() so just continue.
1058 		 */
1059 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1060 			continue;
1061 
1062 		if (device->bdev) {
1063 			blkdev_put(device->bdev, device->mode);
1064 			device->bdev = NULL;
1065 			fs_devices->open_devices--;
1066 		}
1067 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1068 			list_del_init(&device->dev_alloc_list);
1069 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1070 			fs_devices->rw_devices--;
1071 		}
1072 		list_del_init(&device->dev_list);
1073 		fs_devices->num_devices--;
1074 		btrfs_free_device(device);
1075 	}
1076 
1077 }
1078 
1079 /*
1080  * After we have read the system tree and know devids belonging to this
1081  * filesystem, remove the device which does not belong there.
1082  */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1083 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1084 {
1085 	struct btrfs_device *latest_dev = NULL;
1086 	struct btrfs_fs_devices *seed_dev;
1087 
1088 	mutex_lock(&uuid_mutex);
1089 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1090 
1091 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1092 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1093 
1094 	fs_devices->latest_dev = latest_dev;
1095 
1096 	mutex_unlock(&uuid_mutex);
1097 }
1098 
btrfs_close_bdev(struct btrfs_device * device)1099 static void btrfs_close_bdev(struct btrfs_device *device)
1100 {
1101 	if (!device->bdev)
1102 		return;
1103 
1104 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105 		sync_blockdev(device->bdev);
1106 		invalidate_bdev(device->bdev);
1107 	}
1108 
1109 	blkdev_put(device->bdev, device->mode);
1110 }
1111 
btrfs_close_one_device(struct btrfs_device * device)1112 static void btrfs_close_one_device(struct btrfs_device *device)
1113 {
1114 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1115 
1116 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118 		list_del_init(&device->dev_alloc_list);
1119 		fs_devices->rw_devices--;
1120 	}
1121 
1122 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1123 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1126 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1127 		fs_devices->missing_devices--;
1128 	}
1129 
1130 	btrfs_close_bdev(device);
1131 	if (device->bdev) {
1132 		fs_devices->open_devices--;
1133 		device->bdev = NULL;
1134 	}
1135 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1136 	btrfs_destroy_dev_zone_info(device);
1137 
1138 	device->fs_info = NULL;
1139 	atomic_set(&device->dev_stats_ccnt, 0);
1140 	extent_io_tree_release(&device->alloc_state);
1141 
1142 	/*
1143 	 * Reset the flush error record. We might have a transient flush error
1144 	 * in this mount, and if so we aborted the current transaction and set
1145 	 * the fs to an error state, guaranteeing no super blocks can be further
1146 	 * committed. However that error might be transient and if we unmount the
1147 	 * filesystem and mount it again, we should allow the mount to succeed
1148 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1149 	 * filesystem again we still get flush errors, then we will again abort
1150 	 * any transaction and set the error state, guaranteeing no commits of
1151 	 * unsafe super blocks.
1152 	 */
1153 	device->last_flush_error = 0;
1154 
1155 	/* Verify the device is back in a pristine state  */
1156 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1157 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1158 	ASSERT(list_empty(&device->dev_alloc_list));
1159 	ASSERT(list_empty(&device->post_commit_list));
1160 }
1161 
close_fs_devices(struct btrfs_fs_devices * fs_devices)1162 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1163 {
1164 	struct btrfs_device *device, *tmp;
1165 
1166 	lockdep_assert_held(&uuid_mutex);
1167 
1168 	if (--fs_devices->opened > 0)
1169 		return;
1170 
1171 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1172 		btrfs_close_one_device(device);
1173 
1174 	WARN_ON(fs_devices->open_devices);
1175 	WARN_ON(fs_devices->rw_devices);
1176 	fs_devices->opened = 0;
1177 	fs_devices->seeding = false;
1178 	fs_devices->fs_info = NULL;
1179 }
1180 
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1181 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1182 {
1183 	LIST_HEAD(list);
1184 	struct btrfs_fs_devices *tmp;
1185 
1186 	mutex_lock(&uuid_mutex);
1187 	close_fs_devices(fs_devices);
1188 	if (!fs_devices->opened)
1189 		list_splice_init(&fs_devices->seed_list, &list);
1190 
1191 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1192 		close_fs_devices(fs_devices);
1193 		list_del(&fs_devices->seed_list);
1194 		free_fs_devices(fs_devices);
1195 	}
1196 	mutex_unlock(&uuid_mutex);
1197 }
1198 
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1199 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1200 				fmode_t flags, void *holder)
1201 {
1202 	struct btrfs_device *device;
1203 	struct btrfs_device *latest_dev = NULL;
1204 	struct btrfs_device *tmp_device;
1205 
1206 	flags |= FMODE_EXCL;
1207 
1208 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1209 				 dev_list) {
1210 		int ret;
1211 
1212 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1213 		if (ret == 0 &&
1214 		    (!latest_dev || device->generation > latest_dev->generation)) {
1215 			latest_dev = device;
1216 		} else if (ret == -ENODATA) {
1217 			fs_devices->num_devices--;
1218 			list_del(&device->dev_list);
1219 			btrfs_free_device(device);
1220 		}
1221 	}
1222 	if (fs_devices->open_devices == 0)
1223 		return -EINVAL;
1224 
1225 	fs_devices->opened = 1;
1226 	fs_devices->latest_dev = latest_dev;
1227 	fs_devices->total_rw_bytes = 0;
1228 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1229 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1230 
1231 	return 0;
1232 }
1233 
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1234 static int devid_cmp(void *priv, const struct list_head *a,
1235 		     const struct list_head *b)
1236 {
1237 	const struct btrfs_device *dev1, *dev2;
1238 
1239 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1240 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1241 
1242 	if (dev1->devid < dev2->devid)
1243 		return -1;
1244 	else if (dev1->devid > dev2->devid)
1245 		return 1;
1246 	return 0;
1247 }
1248 
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1249 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1250 		       fmode_t flags, void *holder)
1251 {
1252 	int ret;
1253 
1254 	lockdep_assert_held(&uuid_mutex);
1255 	/*
1256 	 * The device_list_mutex cannot be taken here in case opening the
1257 	 * underlying device takes further locks like open_mutex.
1258 	 *
1259 	 * We also don't need the lock here as this is called during mount and
1260 	 * exclusion is provided by uuid_mutex
1261 	 */
1262 
1263 	if (fs_devices->opened) {
1264 		fs_devices->opened++;
1265 		ret = 0;
1266 	} else {
1267 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1268 		ret = open_fs_devices(fs_devices, flags, holder);
1269 	}
1270 
1271 	return ret;
1272 }
1273 
btrfs_release_disk_super(struct btrfs_super_block * super)1274 void btrfs_release_disk_super(struct btrfs_super_block *super)
1275 {
1276 	struct page *page = virt_to_page(super);
1277 
1278 	put_page(page);
1279 }
1280 
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1281 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1282 						       u64 bytenr, u64 bytenr_orig)
1283 {
1284 	struct btrfs_super_block *disk_super;
1285 	struct page *page;
1286 	void *p;
1287 	pgoff_t index;
1288 
1289 	/* make sure our super fits in the device */
1290 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1291 		return ERR_PTR(-EINVAL);
1292 
1293 	/* make sure our super fits in the page */
1294 	if (sizeof(*disk_super) > PAGE_SIZE)
1295 		return ERR_PTR(-EINVAL);
1296 
1297 	/* make sure our super doesn't straddle pages on disk */
1298 	index = bytenr >> PAGE_SHIFT;
1299 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1300 		return ERR_PTR(-EINVAL);
1301 
1302 	/* pull in the page with our super */
1303 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1304 
1305 	if (IS_ERR(page))
1306 		return ERR_CAST(page);
1307 
1308 	p = page_address(page);
1309 
1310 	/* align our pointer to the offset of the super block */
1311 	disk_super = p + offset_in_page(bytenr);
1312 
1313 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1314 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1315 		btrfs_release_disk_super(p);
1316 		return ERR_PTR(-EINVAL);
1317 	}
1318 
1319 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1320 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1321 
1322 	return disk_super;
1323 }
1324 
btrfs_forget_devices(dev_t devt)1325 int btrfs_forget_devices(dev_t devt)
1326 {
1327 	int ret;
1328 
1329 	mutex_lock(&uuid_mutex);
1330 	ret = btrfs_free_stale_devices(devt, NULL);
1331 	mutex_unlock(&uuid_mutex);
1332 
1333 	return ret;
1334 }
1335 
1336 /*
1337  * Look for a btrfs signature on a device. This may be called out of the mount path
1338  * and we are not allowed to call set_blocksize during the scan. The superblock
1339  * is read via pagecache
1340  */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1341 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1342 					   void *holder)
1343 {
1344 	struct btrfs_super_block *disk_super;
1345 	bool new_device_added = false;
1346 	struct btrfs_device *device = NULL;
1347 	struct block_device *bdev;
1348 	u64 bytenr, bytenr_orig;
1349 	int ret;
1350 
1351 	lockdep_assert_held(&uuid_mutex);
1352 
1353 	/*
1354 	 * we would like to check all the supers, but that would make
1355 	 * a btrfs mount succeed after a mkfs from a different FS.
1356 	 * So, we need to add a special mount option to scan for
1357 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1358 	 */
1359 	flags |= FMODE_EXCL;
1360 
1361 	bdev = blkdev_get_by_path(path, flags, holder);
1362 	if (IS_ERR(bdev))
1363 		return ERR_CAST(bdev);
1364 
1365 	bytenr_orig = btrfs_sb_offset(0);
1366 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1367 	if (ret) {
1368 		device = ERR_PTR(ret);
1369 		goto error_bdev_put;
1370 	}
1371 
1372 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1373 	if (IS_ERR(disk_super)) {
1374 		device = ERR_CAST(disk_super);
1375 		goto error_bdev_put;
1376 	}
1377 
1378 	device = device_list_add(path, disk_super, &new_device_added);
1379 	if (!IS_ERR(device) && new_device_added)
1380 		btrfs_free_stale_devices(device->devt, device);
1381 
1382 	btrfs_release_disk_super(disk_super);
1383 
1384 error_bdev_put:
1385 	blkdev_put(bdev, flags);
1386 
1387 	return device;
1388 }
1389 
1390 /*
1391  * Try to find a chunk that intersects [start, start + len] range and when one
1392  * such is found, record the end of it in *start
1393  */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1394 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1395 				    u64 len)
1396 {
1397 	u64 physical_start, physical_end;
1398 
1399 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1400 
1401 	if (!find_first_extent_bit(&device->alloc_state, *start,
1402 				   &physical_start, &physical_end,
1403 				   CHUNK_ALLOCATED, NULL)) {
1404 
1405 		if (in_range(physical_start, *start, len) ||
1406 		    in_range(*start, physical_start,
1407 			     physical_end - physical_start)) {
1408 			*start = physical_end + 1;
1409 			return true;
1410 		}
1411 	}
1412 	return false;
1413 }
1414 
dev_extent_search_start(struct btrfs_device * device,u64 start)1415 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1416 {
1417 	switch (device->fs_devices->chunk_alloc_policy) {
1418 	case BTRFS_CHUNK_ALLOC_REGULAR:
1419 		return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1420 	case BTRFS_CHUNK_ALLOC_ZONED:
1421 		/*
1422 		 * We don't care about the starting region like regular
1423 		 * allocator, because we anyway use/reserve the first two zones
1424 		 * for superblock logging.
1425 		 */
1426 		return ALIGN(start, device->zone_info->zone_size);
1427 	default:
1428 		BUG();
1429 	}
1430 }
1431 
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1432 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1433 					u64 *hole_start, u64 *hole_size,
1434 					u64 num_bytes)
1435 {
1436 	u64 zone_size = device->zone_info->zone_size;
1437 	u64 pos;
1438 	int ret;
1439 	bool changed = false;
1440 
1441 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1442 
1443 	while (*hole_size > 0) {
1444 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1445 						   *hole_start + *hole_size,
1446 						   num_bytes);
1447 		if (pos != *hole_start) {
1448 			*hole_size = *hole_start + *hole_size - pos;
1449 			*hole_start = pos;
1450 			changed = true;
1451 			if (*hole_size < num_bytes)
1452 				break;
1453 		}
1454 
1455 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1456 
1457 		/* Range is ensured to be empty */
1458 		if (!ret)
1459 			return changed;
1460 
1461 		/* Given hole range was invalid (outside of device) */
1462 		if (ret == -ERANGE) {
1463 			*hole_start += *hole_size;
1464 			*hole_size = 0;
1465 			return true;
1466 		}
1467 
1468 		*hole_start += zone_size;
1469 		*hole_size -= zone_size;
1470 		changed = true;
1471 	}
1472 
1473 	return changed;
1474 }
1475 
1476 /**
1477  * dev_extent_hole_check - check if specified hole is suitable for allocation
1478  * @device:	the device which we have the hole
1479  * @hole_start: starting position of the hole
1480  * @hole_size:	the size of the hole
1481  * @num_bytes:	the size of the free space that we need
1482  *
1483  * This function may modify @hole_start and @hole_size to reflect the suitable
1484  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485  */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1486 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487 				  u64 *hole_size, u64 num_bytes)
1488 {
1489 	bool changed = false;
1490 	u64 hole_end = *hole_start + *hole_size;
1491 
1492 	for (;;) {
1493 		/*
1494 		 * Check before we set max_hole_start, otherwise we could end up
1495 		 * sending back this offset anyway.
1496 		 */
1497 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1498 			if (hole_end >= *hole_start)
1499 				*hole_size = hole_end - *hole_start;
1500 			else
1501 				*hole_size = 0;
1502 			changed = true;
1503 		}
1504 
1505 		switch (device->fs_devices->chunk_alloc_policy) {
1506 		case BTRFS_CHUNK_ALLOC_REGULAR:
1507 			/* No extra check */
1508 			break;
1509 		case BTRFS_CHUNK_ALLOC_ZONED:
1510 			if (dev_extent_hole_check_zoned(device, hole_start,
1511 							hole_size, num_bytes)) {
1512 				changed = true;
1513 				/*
1514 				 * The changed hole can contain pending extent.
1515 				 * Loop again to check that.
1516 				 */
1517 				continue;
1518 			}
1519 			break;
1520 		default:
1521 			BUG();
1522 		}
1523 
1524 		break;
1525 	}
1526 
1527 	return changed;
1528 }
1529 
1530 /*
1531  * find_free_dev_extent_start - find free space in the specified device
1532  * @device:	  the device which we search the free space in
1533  * @num_bytes:	  the size of the free space that we need
1534  * @search_start: the position from which to begin the search
1535  * @start:	  store the start of the free space.
1536  * @len:	  the size of the free space. that we find, or the size
1537  *		  of the max free space if we don't find suitable free space
1538  *
1539  * this uses a pretty simple search, the expectation is that it is
1540  * called very infrequently and that a given device has a small number
1541  * of extents
1542  *
1543  * @start is used to store the start of the free space if we find. But if we
1544  * don't find suitable free space, it will be used to store the start position
1545  * of the max free space.
1546  *
1547  * @len is used to store the size of the free space that we find.
1548  * But if we don't find suitable free space, it is used to store the size of
1549  * the max free space.
1550  *
1551  * NOTE: This function will search *commit* root of device tree, and does extra
1552  * check to ensure dev extents are not double allocated.
1553  * This makes the function safe to allocate dev extents but may not report
1554  * correct usable device space, as device extent freed in current transaction
1555  * is not reported as available.
1556  */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1557 static int find_free_dev_extent_start(struct btrfs_device *device,
1558 				u64 num_bytes, u64 search_start, u64 *start,
1559 				u64 *len)
1560 {
1561 	struct btrfs_fs_info *fs_info = device->fs_info;
1562 	struct btrfs_root *root = fs_info->dev_root;
1563 	struct btrfs_key key;
1564 	struct btrfs_dev_extent *dev_extent;
1565 	struct btrfs_path *path;
1566 	u64 hole_size;
1567 	u64 max_hole_start;
1568 	u64 max_hole_size;
1569 	u64 extent_end;
1570 	u64 search_end = device->total_bytes;
1571 	int ret;
1572 	int slot;
1573 	struct extent_buffer *l;
1574 
1575 	search_start = dev_extent_search_start(device, search_start);
1576 
1577 	WARN_ON(device->zone_info &&
1578 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1579 
1580 	path = btrfs_alloc_path();
1581 	if (!path)
1582 		return -ENOMEM;
1583 
1584 	max_hole_start = search_start;
1585 	max_hole_size = 0;
1586 
1587 again:
1588 	if (search_start >= search_end ||
1589 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1590 		ret = -ENOSPC;
1591 		goto out;
1592 	}
1593 
1594 	path->reada = READA_FORWARD;
1595 	path->search_commit_root = 1;
1596 	path->skip_locking = 1;
1597 
1598 	key.objectid = device->devid;
1599 	key.offset = search_start;
1600 	key.type = BTRFS_DEV_EXTENT_KEY;
1601 
1602 	ret = btrfs_search_backwards(root, &key, path);
1603 	if (ret < 0)
1604 		goto out;
1605 
1606 	while (1) {
1607 		l = path->nodes[0];
1608 		slot = path->slots[0];
1609 		if (slot >= btrfs_header_nritems(l)) {
1610 			ret = btrfs_next_leaf(root, path);
1611 			if (ret == 0)
1612 				continue;
1613 			if (ret < 0)
1614 				goto out;
1615 
1616 			break;
1617 		}
1618 		btrfs_item_key_to_cpu(l, &key, slot);
1619 
1620 		if (key.objectid < device->devid)
1621 			goto next;
1622 
1623 		if (key.objectid > device->devid)
1624 			break;
1625 
1626 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1627 			goto next;
1628 
1629 		if (key.offset > search_start) {
1630 			hole_size = key.offset - search_start;
1631 			dev_extent_hole_check(device, &search_start, &hole_size,
1632 					      num_bytes);
1633 
1634 			if (hole_size > max_hole_size) {
1635 				max_hole_start = search_start;
1636 				max_hole_size = hole_size;
1637 			}
1638 
1639 			/*
1640 			 * If this free space is greater than which we need,
1641 			 * it must be the max free space that we have found
1642 			 * until now, so max_hole_start must point to the start
1643 			 * of this free space and the length of this free space
1644 			 * is stored in max_hole_size. Thus, we return
1645 			 * max_hole_start and max_hole_size and go back to the
1646 			 * caller.
1647 			 */
1648 			if (hole_size >= num_bytes) {
1649 				ret = 0;
1650 				goto out;
1651 			}
1652 		}
1653 
1654 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1655 		extent_end = key.offset + btrfs_dev_extent_length(l,
1656 								  dev_extent);
1657 		if (extent_end > search_start)
1658 			search_start = extent_end;
1659 next:
1660 		path->slots[0]++;
1661 		cond_resched();
1662 	}
1663 
1664 	/*
1665 	 * At this point, search_start should be the end of
1666 	 * allocated dev extents, and when shrinking the device,
1667 	 * search_end may be smaller than search_start.
1668 	 */
1669 	if (search_end > search_start) {
1670 		hole_size = search_end - search_start;
1671 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1672 					  num_bytes)) {
1673 			btrfs_release_path(path);
1674 			goto again;
1675 		}
1676 
1677 		if (hole_size > max_hole_size) {
1678 			max_hole_start = search_start;
1679 			max_hole_size = hole_size;
1680 		}
1681 	}
1682 
1683 	/* See above. */
1684 	if (max_hole_size < num_bytes)
1685 		ret = -ENOSPC;
1686 	else
1687 		ret = 0;
1688 
1689 out:
1690 	btrfs_free_path(path);
1691 	*start = max_hole_start;
1692 	if (len)
1693 		*len = max_hole_size;
1694 	return ret;
1695 }
1696 
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1697 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1698 			 u64 *start, u64 *len)
1699 {
1700 	/* FIXME use last free of some kind */
1701 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1702 }
1703 
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1704 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1705 			  struct btrfs_device *device,
1706 			  u64 start, u64 *dev_extent_len)
1707 {
1708 	struct btrfs_fs_info *fs_info = device->fs_info;
1709 	struct btrfs_root *root = fs_info->dev_root;
1710 	int ret;
1711 	struct btrfs_path *path;
1712 	struct btrfs_key key;
1713 	struct btrfs_key found_key;
1714 	struct extent_buffer *leaf = NULL;
1715 	struct btrfs_dev_extent *extent = NULL;
1716 
1717 	path = btrfs_alloc_path();
1718 	if (!path)
1719 		return -ENOMEM;
1720 
1721 	key.objectid = device->devid;
1722 	key.offset = start;
1723 	key.type = BTRFS_DEV_EXTENT_KEY;
1724 again:
1725 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1726 	if (ret > 0) {
1727 		ret = btrfs_previous_item(root, path, key.objectid,
1728 					  BTRFS_DEV_EXTENT_KEY);
1729 		if (ret)
1730 			goto out;
1731 		leaf = path->nodes[0];
1732 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1733 		extent = btrfs_item_ptr(leaf, path->slots[0],
1734 					struct btrfs_dev_extent);
1735 		BUG_ON(found_key.offset > start || found_key.offset +
1736 		       btrfs_dev_extent_length(leaf, extent) < start);
1737 		key = found_key;
1738 		btrfs_release_path(path);
1739 		goto again;
1740 	} else if (ret == 0) {
1741 		leaf = path->nodes[0];
1742 		extent = btrfs_item_ptr(leaf, path->slots[0],
1743 					struct btrfs_dev_extent);
1744 	} else {
1745 		goto out;
1746 	}
1747 
1748 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1749 
1750 	ret = btrfs_del_item(trans, root, path);
1751 	if (ret == 0)
1752 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1753 out:
1754 	btrfs_free_path(path);
1755 	return ret;
1756 }
1757 
find_next_chunk(struct btrfs_fs_info * fs_info)1758 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1759 {
1760 	struct extent_map_tree *em_tree;
1761 	struct extent_map *em;
1762 	struct rb_node *n;
1763 	u64 ret = 0;
1764 
1765 	em_tree = &fs_info->mapping_tree;
1766 	read_lock(&em_tree->lock);
1767 	n = rb_last(&em_tree->map.rb_root);
1768 	if (n) {
1769 		em = rb_entry(n, struct extent_map, rb_node);
1770 		ret = em->start + em->len;
1771 	}
1772 	read_unlock(&em_tree->lock);
1773 
1774 	return ret;
1775 }
1776 
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1777 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1778 				    u64 *devid_ret)
1779 {
1780 	int ret;
1781 	struct btrfs_key key;
1782 	struct btrfs_key found_key;
1783 	struct btrfs_path *path;
1784 
1785 	path = btrfs_alloc_path();
1786 	if (!path)
1787 		return -ENOMEM;
1788 
1789 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1790 	key.type = BTRFS_DEV_ITEM_KEY;
1791 	key.offset = (u64)-1;
1792 
1793 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1794 	if (ret < 0)
1795 		goto error;
1796 
1797 	if (ret == 0) {
1798 		/* Corruption */
1799 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1800 		ret = -EUCLEAN;
1801 		goto error;
1802 	}
1803 
1804 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1805 				  BTRFS_DEV_ITEMS_OBJECTID,
1806 				  BTRFS_DEV_ITEM_KEY);
1807 	if (ret) {
1808 		*devid_ret = 1;
1809 	} else {
1810 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1811 				      path->slots[0]);
1812 		*devid_ret = found_key.offset + 1;
1813 	}
1814 	ret = 0;
1815 error:
1816 	btrfs_free_path(path);
1817 	return ret;
1818 }
1819 
1820 /*
1821  * the device information is stored in the chunk root
1822  * the btrfs_device struct should be fully filled in
1823  */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1824 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1825 			    struct btrfs_device *device)
1826 {
1827 	int ret;
1828 	struct btrfs_path *path;
1829 	struct btrfs_dev_item *dev_item;
1830 	struct extent_buffer *leaf;
1831 	struct btrfs_key key;
1832 	unsigned long ptr;
1833 
1834 	path = btrfs_alloc_path();
1835 	if (!path)
1836 		return -ENOMEM;
1837 
1838 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1839 	key.type = BTRFS_DEV_ITEM_KEY;
1840 	key.offset = device->devid;
1841 
1842 	btrfs_reserve_chunk_metadata(trans, true);
1843 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1844 				      &key, sizeof(*dev_item));
1845 	btrfs_trans_release_chunk_metadata(trans);
1846 	if (ret)
1847 		goto out;
1848 
1849 	leaf = path->nodes[0];
1850 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1851 
1852 	btrfs_set_device_id(leaf, dev_item, device->devid);
1853 	btrfs_set_device_generation(leaf, dev_item, 0);
1854 	btrfs_set_device_type(leaf, dev_item, device->type);
1855 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1856 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1857 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1858 	btrfs_set_device_total_bytes(leaf, dev_item,
1859 				     btrfs_device_get_disk_total_bytes(device));
1860 	btrfs_set_device_bytes_used(leaf, dev_item,
1861 				    btrfs_device_get_bytes_used(device));
1862 	btrfs_set_device_group(leaf, dev_item, 0);
1863 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1864 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1865 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1866 
1867 	ptr = btrfs_device_uuid(dev_item);
1868 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1869 	ptr = btrfs_device_fsid(dev_item);
1870 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1871 			    ptr, BTRFS_FSID_SIZE);
1872 	btrfs_mark_buffer_dirty(leaf);
1873 
1874 	ret = 0;
1875 out:
1876 	btrfs_free_path(path);
1877 	return ret;
1878 }
1879 
1880 /*
1881  * Function to update ctime/mtime for a given device path.
1882  * Mainly used for ctime/mtime based probe like libblkid.
1883  *
1884  * We don't care about errors here, this is just to be kind to userspace.
1885  */
update_dev_time(const char * device_path)1886 static void update_dev_time(const char *device_path)
1887 {
1888 	struct path path;
1889 	struct timespec64 now;
1890 	int ret;
1891 
1892 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1893 	if (ret)
1894 		return;
1895 
1896 	now = current_time(d_inode(path.dentry));
1897 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1898 	path_put(&path);
1899 }
1900 
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1901 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1902 			     struct btrfs_device *device)
1903 {
1904 	struct btrfs_root *root = device->fs_info->chunk_root;
1905 	int ret;
1906 	struct btrfs_path *path;
1907 	struct btrfs_key key;
1908 
1909 	path = btrfs_alloc_path();
1910 	if (!path)
1911 		return -ENOMEM;
1912 
1913 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1914 	key.type = BTRFS_DEV_ITEM_KEY;
1915 	key.offset = device->devid;
1916 
1917 	btrfs_reserve_chunk_metadata(trans, false);
1918 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1919 	btrfs_trans_release_chunk_metadata(trans);
1920 	if (ret) {
1921 		if (ret > 0)
1922 			ret = -ENOENT;
1923 		goto out;
1924 	}
1925 
1926 	ret = btrfs_del_item(trans, root, path);
1927 out:
1928 	btrfs_free_path(path);
1929 	return ret;
1930 }
1931 
1932 /*
1933  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1934  * filesystem. It's up to the caller to adjust that number regarding eg. device
1935  * replace.
1936  */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1937 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1938 		u64 num_devices)
1939 {
1940 	u64 all_avail;
1941 	unsigned seq;
1942 	int i;
1943 
1944 	do {
1945 		seq = read_seqbegin(&fs_info->profiles_lock);
1946 
1947 		all_avail = fs_info->avail_data_alloc_bits |
1948 			    fs_info->avail_system_alloc_bits |
1949 			    fs_info->avail_metadata_alloc_bits;
1950 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1951 
1952 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1953 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1954 			continue;
1955 
1956 		if (num_devices < btrfs_raid_array[i].devs_min)
1957 			return btrfs_raid_array[i].mindev_error;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1963 static struct btrfs_device * btrfs_find_next_active_device(
1964 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1965 {
1966 	struct btrfs_device *next_device;
1967 
1968 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1969 		if (next_device != device &&
1970 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1971 		    && next_device->bdev)
1972 			return next_device;
1973 	}
1974 
1975 	return NULL;
1976 }
1977 
1978 /*
1979  * Helper function to check if the given device is part of s_bdev / latest_dev
1980  * and replace it with the provided or the next active device, in the context
1981  * where this function called, there should be always be another device (or
1982  * this_dev) which is active.
1983  */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)1984 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1985 					    struct btrfs_device *next_device)
1986 {
1987 	struct btrfs_fs_info *fs_info = device->fs_info;
1988 
1989 	if (!next_device)
1990 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1991 							    device);
1992 	ASSERT(next_device);
1993 
1994 	if (fs_info->sb->s_bdev &&
1995 			(fs_info->sb->s_bdev == device->bdev))
1996 		fs_info->sb->s_bdev = next_device->bdev;
1997 
1998 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1999 		fs_info->fs_devices->latest_dev = next_device;
2000 }
2001 
2002 /*
2003  * Return btrfs_fs_devices::num_devices excluding the device that's being
2004  * currently replaced.
2005  */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2006 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2007 {
2008 	u64 num_devices = fs_info->fs_devices->num_devices;
2009 
2010 	down_read(&fs_info->dev_replace.rwsem);
2011 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2012 		ASSERT(num_devices > 1);
2013 		num_devices--;
2014 	}
2015 	up_read(&fs_info->dev_replace.rwsem);
2016 
2017 	return num_devices;
2018 }
2019 
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2020 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2021 			       struct block_device *bdev,
2022 			       const char *device_path)
2023 {
2024 	struct btrfs_super_block *disk_super;
2025 	int copy_num;
2026 
2027 	if (!bdev)
2028 		return;
2029 
2030 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2031 		struct page *page;
2032 		int ret;
2033 
2034 		disk_super = btrfs_read_dev_one_super(bdev, copy_num, false);
2035 		if (IS_ERR(disk_super))
2036 			continue;
2037 
2038 		if (bdev_is_zoned(bdev)) {
2039 			btrfs_reset_sb_log_zones(bdev, copy_num);
2040 			continue;
2041 		}
2042 
2043 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2044 
2045 		page = virt_to_page(disk_super);
2046 		set_page_dirty(page);
2047 		lock_page(page);
2048 		/* write_on_page() unlocks the page */
2049 		ret = write_one_page(page);
2050 		if (ret)
2051 			btrfs_warn(fs_info,
2052 				"error clearing superblock number %d (%d)",
2053 				copy_num, ret);
2054 		btrfs_release_disk_super(disk_super);
2055 
2056 	}
2057 
2058 	/* Notify udev that device has changed */
2059 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2060 
2061 	/* Update ctime/mtime for device path for libblkid */
2062 	update_dev_time(device_path);
2063 }
2064 
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct block_device ** bdev,fmode_t * mode)2065 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2066 		    struct btrfs_dev_lookup_args *args,
2067 		    struct block_device **bdev, fmode_t *mode)
2068 {
2069 	struct btrfs_trans_handle *trans;
2070 	struct btrfs_device *device;
2071 	struct btrfs_fs_devices *cur_devices;
2072 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2073 	u64 num_devices;
2074 	int ret = 0;
2075 
2076 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2077 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2078 		return -EINVAL;
2079 	}
2080 
2081 	/*
2082 	 * The device list in fs_devices is accessed without locks (neither
2083 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2084 	 * filesystem and another device rm cannot run.
2085 	 */
2086 	num_devices = btrfs_num_devices(fs_info);
2087 
2088 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2089 	if (ret)
2090 		return ret;
2091 
2092 	device = btrfs_find_device(fs_info->fs_devices, args);
2093 	if (!device) {
2094 		if (args->missing)
2095 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2096 		else
2097 			ret = -ENOENT;
2098 		return ret;
2099 	}
2100 
2101 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2102 		btrfs_warn_in_rcu(fs_info,
2103 		  "cannot remove device %s (devid %llu) due to active swapfile",
2104 				  rcu_str_deref(device->name), device->devid);
2105 		return -ETXTBSY;
2106 	}
2107 
2108 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2109 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2110 
2111 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2112 	    fs_info->fs_devices->rw_devices == 1)
2113 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2114 
2115 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2116 		mutex_lock(&fs_info->chunk_mutex);
2117 		list_del_init(&device->dev_alloc_list);
2118 		device->fs_devices->rw_devices--;
2119 		mutex_unlock(&fs_info->chunk_mutex);
2120 	}
2121 
2122 	ret = btrfs_shrink_device(device, 0);
2123 	if (ret)
2124 		goto error_undo;
2125 
2126 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2127 	if (IS_ERR(trans)) {
2128 		ret = PTR_ERR(trans);
2129 		goto error_undo;
2130 	}
2131 
2132 	ret = btrfs_rm_dev_item(trans, device);
2133 	if (ret) {
2134 		/* Any error in dev item removal is critical */
2135 		btrfs_crit(fs_info,
2136 			   "failed to remove device item for devid %llu: %d",
2137 			   device->devid, ret);
2138 		btrfs_abort_transaction(trans, ret);
2139 		btrfs_end_transaction(trans);
2140 		return ret;
2141 	}
2142 
2143 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2144 	btrfs_scrub_cancel_dev(device);
2145 
2146 	/*
2147 	 * the device list mutex makes sure that we don't change
2148 	 * the device list while someone else is writing out all
2149 	 * the device supers. Whoever is writing all supers, should
2150 	 * lock the device list mutex before getting the number of
2151 	 * devices in the super block (super_copy). Conversely,
2152 	 * whoever updates the number of devices in the super block
2153 	 * (super_copy) should hold the device list mutex.
2154 	 */
2155 
2156 	/*
2157 	 * In normal cases the cur_devices == fs_devices. But in case
2158 	 * of deleting a seed device, the cur_devices should point to
2159 	 * its own fs_devices listed under the fs_devices->seed_list.
2160 	 */
2161 	cur_devices = device->fs_devices;
2162 	mutex_lock(&fs_devices->device_list_mutex);
2163 	list_del_rcu(&device->dev_list);
2164 
2165 	cur_devices->num_devices--;
2166 	cur_devices->total_devices--;
2167 	/* Update total_devices of the parent fs_devices if it's seed */
2168 	if (cur_devices != fs_devices)
2169 		fs_devices->total_devices--;
2170 
2171 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2172 		cur_devices->missing_devices--;
2173 
2174 	btrfs_assign_next_active_device(device, NULL);
2175 
2176 	if (device->bdev) {
2177 		cur_devices->open_devices--;
2178 		/* remove sysfs entry */
2179 		btrfs_sysfs_remove_device(device);
2180 	}
2181 
2182 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2183 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2184 	mutex_unlock(&fs_devices->device_list_mutex);
2185 
2186 	/*
2187 	 * At this point, the device is zero sized and detached from the
2188 	 * devices list.  All that's left is to zero out the old supers and
2189 	 * free the device.
2190 	 *
2191 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2192 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2193 	 * block device and it's dependencies.  Instead just flush the device
2194 	 * and let the caller do the final blkdev_put.
2195 	 */
2196 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2197 		btrfs_scratch_superblocks(fs_info, device->bdev,
2198 					  device->name->str);
2199 		if (device->bdev) {
2200 			sync_blockdev(device->bdev);
2201 			invalidate_bdev(device->bdev);
2202 		}
2203 	}
2204 
2205 	*bdev = device->bdev;
2206 	*mode = device->mode;
2207 	synchronize_rcu();
2208 	btrfs_free_device(device);
2209 
2210 	/*
2211 	 * This can happen if cur_devices is the private seed devices list.  We
2212 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2213 	 * to be held, but in fact we don't need that for the private
2214 	 * seed_devices, we can simply decrement cur_devices->opened and then
2215 	 * remove it from our list and free the fs_devices.
2216 	 */
2217 	if (cur_devices->num_devices == 0) {
2218 		list_del_init(&cur_devices->seed_list);
2219 		ASSERT(cur_devices->opened == 1);
2220 		cur_devices->opened--;
2221 		free_fs_devices(cur_devices);
2222 	}
2223 
2224 	ret = btrfs_commit_transaction(trans);
2225 
2226 	return ret;
2227 
2228 error_undo:
2229 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2230 		mutex_lock(&fs_info->chunk_mutex);
2231 		list_add(&device->dev_alloc_list,
2232 			 &fs_devices->alloc_list);
2233 		device->fs_devices->rw_devices++;
2234 		mutex_unlock(&fs_info->chunk_mutex);
2235 	}
2236 	return ret;
2237 }
2238 
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2239 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2240 {
2241 	struct btrfs_fs_devices *fs_devices;
2242 
2243 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2244 
2245 	/*
2246 	 * in case of fs with no seed, srcdev->fs_devices will point
2247 	 * to fs_devices of fs_info. However when the dev being replaced is
2248 	 * a seed dev it will point to the seed's local fs_devices. In short
2249 	 * srcdev will have its correct fs_devices in both the cases.
2250 	 */
2251 	fs_devices = srcdev->fs_devices;
2252 
2253 	list_del_rcu(&srcdev->dev_list);
2254 	list_del(&srcdev->dev_alloc_list);
2255 	fs_devices->num_devices--;
2256 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2257 		fs_devices->missing_devices--;
2258 
2259 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2260 		fs_devices->rw_devices--;
2261 
2262 	if (srcdev->bdev)
2263 		fs_devices->open_devices--;
2264 }
2265 
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2266 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2267 {
2268 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2269 
2270 	mutex_lock(&uuid_mutex);
2271 
2272 	btrfs_close_bdev(srcdev);
2273 	synchronize_rcu();
2274 	btrfs_free_device(srcdev);
2275 
2276 	/* if this is no devs we rather delete the fs_devices */
2277 	if (!fs_devices->num_devices) {
2278 		/*
2279 		 * On a mounted FS, num_devices can't be zero unless it's a
2280 		 * seed. In case of a seed device being replaced, the replace
2281 		 * target added to the sprout FS, so there will be no more
2282 		 * device left under the seed FS.
2283 		 */
2284 		ASSERT(fs_devices->seeding);
2285 
2286 		list_del_init(&fs_devices->seed_list);
2287 		close_fs_devices(fs_devices);
2288 		free_fs_devices(fs_devices);
2289 	}
2290 	mutex_unlock(&uuid_mutex);
2291 }
2292 
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2293 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2294 {
2295 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2296 
2297 	mutex_lock(&fs_devices->device_list_mutex);
2298 
2299 	btrfs_sysfs_remove_device(tgtdev);
2300 
2301 	if (tgtdev->bdev)
2302 		fs_devices->open_devices--;
2303 
2304 	fs_devices->num_devices--;
2305 
2306 	btrfs_assign_next_active_device(tgtdev, NULL);
2307 
2308 	list_del_rcu(&tgtdev->dev_list);
2309 
2310 	mutex_unlock(&fs_devices->device_list_mutex);
2311 
2312 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2313 				  tgtdev->name->str);
2314 
2315 	btrfs_close_bdev(tgtdev);
2316 	synchronize_rcu();
2317 	btrfs_free_device(tgtdev);
2318 }
2319 
2320 /**
2321  * Populate args from device at path
2322  *
2323  * @fs_info:	the filesystem
2324  * @args:	the args to populate
2325  * @path:	the path to the device
2326  *
2327  * This will read the super block of the device at @path and populate @args with
2328  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2329  * lookup a device to operate on, but need to do it before we take any locks.
2330  * This properly handles the special case of "missing" that a user may pass in,
2331  * and does some basic sanity checks.  The caller must make sure that @path is
2332  * properly NUL terminated before calling in, and must call
2333  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2334  * uuid buffers.
2335  *
2336  * Return: 0 for success, -errno for failure
2337  */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2338 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2339 				 struct btrfs_dev_lookup_args *args,
2340 				 const char *path)
2341 {
2342 	struct btrfs_super_block *disk_super;
2343 	struct block_device *bdev;
2344 	int ret;
2345 
2346 	if (!path || !path[0])
2347 		return -EINVAL;
2348 	if (!strcmp(path, "missing")) {
2349 		args->missing = true;
2350 		return 0;
2351 	}
2352 
2353 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2354 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2355 	if (!args->uuid || !args->fsid) {
2356 		btrfs_put_dev_args_from_path(args);
2357 		return -ENOMEM;
2358 	}
2359 
2360 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2361 				    &bdev, &disk_super);
2362 	if (ret) {
2363 		btrfs_put_dev_args_from_path(args);
2364 		return ret;
2365 	}
2366 
2367 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2368 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2369 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2370 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2371 	else
2372 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2373 	btrfs_release_disk_super(disk_super);
2374 	blkdev_put(bdev, FMODE_READ);
2375 	return 0;
2376 }
2377 
2378 /*
2379  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2380  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2381  * that don't need to be freed.
2382  */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2383 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2384 {
2385 	kfree(args->uuid);
2386 	kfree(args->fsid);
2387 	args->uuid = NULL;
2388 	args->fsid = NULL;
2389 }
2390 
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2391 struct btrfs_device *btrfs_find_device_by_devspec(
2392 		struct btrfs_fs_info *fs_info, u64 devid,
2393 		const char *device_path)
2394 {
2395 	BTRFS_DEV_LOOKUP_ARGS(args);
2396 	struct btrfs_device *device;
2397 	int ret;
2398 
2399 	if (devid) {
2400 		args.devid = devid;
2401 		device = btrfs_find_device(fs_info->fs_devices, &args);
2402 		if (!device)
2403 			return ERR_PTR(-ENOENT);
2404 		return device;
2405 	}
2406 
2407 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2408 	if (ret)
2409 		return ERR_PTR(ret);
2410 	device = btrfs_find_device(fs_info->fs_devices, &args);
2411 	btrfs_put_dev_args_from_path(&args);
2412 	if (!device)
2413 		return ERR_PTR(-ENOENT);
2414 	return device;
2415 }
2416 
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2417 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2418 {
2419 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2420 	struct btrfs_fs_devices *old_devices;
2421 	struct btrfs_fs_devices *seed_devices;
2422 
2423 	lockdep_assert_held(&uuid_mutex);
2424 	if (!fs_devices->seeding)
2425 		return ERR_PTR(-EINVAL);
2426 
2427 	/*
2428 	 * Private copy of the seed devices, anchored at
2429 	 * fs_info->fs_devices->seed_list
2430 	 */
2431 	seed_devices = alloc_fs_devices(NULL, NULL);
2432 	if (IS_ERR(seed_devices))
2433 		return seed_devices;
2434 
2435 	/*
2436 	 * It's necessary to retain a copy of the original seed fs_devices in
2437 	 * fs_uuids so that filesystems which have been seeded can successfully
2438 	 * reference the seed device from open_seed_devices. This also supports
2439 	 * multiple fs seed.
2440 	 */
2441 	old_devices = clone_fs_devices(fs_devices);
2442 	if (IS_ERR(old_devices)) {
2443 		kfree(seed_devices);
2444 		return old_devices;
2445 	}
2446 
2447 	list_add(&old_devices->fs_list, &fs_uuids);
2448 
2449 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2450 	seed_devices->opened = 1;
2451 	INIT_LIST_HEAD(&seed_devices->devices);
2452 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2453 	mutex_init(&seed_devices->device_list_mutex);
2454 
2455 	return seed_devices;
2456 }
2457 
2458 /*
2459  * Splice seed devices into the sprout fs_devices.
2460  * Generate a new fsid for the sprouted read-write filesystem.
2461  */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2462 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2463 			       struct btrfs_fs_devices *seed_devices)
2464 {
2465 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2466 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2467 	struct btrfs_device *device;
2468 	u64 super_flags;
2469 
2470 	/*
2471 	 * We are updating the fsid, the thread leading to device_list_add()
2472 	 * could race, so uuid_mutex is needed.
2473 	 */
2474 	lockdep_assert_held(&uuid_mutex);
2475 
2476 	/*
2477 	 * The threads listed below may traverse dev_list but can do that without
2478 	 * device_list_mutex:
2479 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2480 	 * - Various dev_list readers - are using RCU.
2481 	 * - btrfs_ioctl_fitrim() - is using RCU.
2482 	 *
2483 	 * For-read threads as below are using device_list_mutex:
2484 	 * - Readonly scrub btrfs_scrub_dev()
2485 	 * - Readonly scrub btrfs_scrub_progress()
2486 	 * - btrfs_get_dev_stats()
2487 	 */
2488 	lockdep_assert_held(&fs_devices->device_list_mutex);
2489 
2490 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2491 			      synchronize_rcu);
2492 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2493 		device->fs_devices = seed_devices;
2494 
2495 	fs_devices->seeding = false;
2496 	fs_devices->num_devices = 0;
2497 	fs_devices->open_devices = 0;
2498 	fs_devices->missing_devices = 0;
2499 	fs_devices->rotating = false;
2500 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2501 
2502 	generate_random_uuid(fs_devices->fsid);
2503 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2504 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2505 
2506 	super_flags = btrfs_super_flags(disk_super) &
2507 		      ~BTRFS_SUPER_FLAG_SEEDING;
2508 	btrfs_set_super_flags(disk_super, super_flags);
2509 }
2510 
2511 /*
2512  * Store the expected generation for seed devices in device items.
2513  */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2514 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2515 {
2516 	BTRFS_DEV_LOOKUP_ARGS(args);
2517 	struct btrfs_fs_info *fs_info = trans->fs_info;
2518 	struct btrfs_root *root = fs_info->chunk_root;
2519 	struct btrfs_path *path;
2520 	struct extent_buffer *leaf;
2521 	struct btrfs_dev_item *dev_item;
2522 	struct btrfs_device *device;
2523 	struct btrfs_key key;
2524 	u8 fs_uuid[BTRFS_FSID_SIZE];
2525 	u8 dev_uuid[BTRFS_UUID_SIZE];
2526 	int ret;
2527 
2528 	path = btrfs_alloc_path();
2529 	if (!path)
2530 		return -ENOMEM;
2531 
2532 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2533 	key.offset = 0;
2534 	key.type = BTRFS_DEV_ITEM_KEY;
2535 
2536 	while (1) {
2537 		btrfs_reserve_chunk_metadata(trans, false);
2538 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2539 		btrfs_trans_release_chunk_metadata(trans);
2540 		if (ret < 0)
2541 			goto error;
2542 
2543 		leaf = path->nodes[0];
2544 next_slot:
2545 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2546 			ret = btrfs_next_leaf(root, path);
2547 			if (ret > 0)
2548 				break;
2549 			if (ret < 0)
2550 				goto error;
2551 			leaf = path->nodes[0];
2552 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2553 			btrfs_release_path(path);
2554 			continue;
2555 		}
2556 
2557 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2558 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2559 		    key.type != BTRFS_DEV_ITEM_KEY)
2560 			break;
2561 
2562 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2563 					  struct btrfs_dev_item);
2564 		args.devid = btrfs_device_id(leaf, dev_item);
2565 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2566 				   BTRFS_UUID_SIZE);
2567 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2568 				   BTRFS_FSID_SIZE);
2569 		args.uuid = dev_uuid;
2570 		args.fsid = fs_uuid;
2571 		device = btrfs_find_device(fs_info->fs_devices, &args);
2572 		BUG_ON(!device); /* Logic error */
2573 
2574 		if (device->fs_devices->seeding) {
2575 			btrfs_set_device_generation(leaf, dev_item,
2576 						    device->generation);
2577 			btrfs_mark_buffer_dirty(leaf);
2578 		}
2579 
2580 		path->slots[0]++;
2581 		goto next_slot;
2582 	}
2583 	ret = 0;
2584 error:
2585 	btrfs_free_path(path);
2586 	return ret;
2587 }
2588 
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2589 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2590 {
2591 	struct btrfs_root *root = fs_info->dev_root;
2592 	struct btrfs_trans_handle *trans;
2593 	struct btrfs_device *device;
2594 	struct block_device *bdev;
2595 	struct super_block *sb = fs_info->sb;
2596 	struct rcu_string *name;
2597 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2598 	struct btrfs_fs_devices *seed_devices;
2599 	u64 orig_super_total_bytes;
2600 	u64 orig_super_num_devices;
2601 	int ret = 0;
2602 	bool seeding_dev = false;
2603 	bool locked = false;
2604 
2605 	if (sb_rdonly(sb) && !fs_devices->seeding)
2606 		return -EROFS;
2607 
2608 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2609 				  fs_info->bdev_holder);
2610 	if (IS_ERR(bdev))
2611 		return PTR_ERR(bdev);
2612 
2613 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2614 		ret = -EINVAL;
2615 		goto error;
2616 	}
2617 
2618 	if (fs_devices->seeding) {
2619 		seeding_dev = true;
2620 		down_write(&sb->s_umount);
2621 		mutex_lock(&uuid_mutex);
2622 		locked = true;
2623 	}
2624 
2625 	sync_blockdev(bdev);
2626 
2627 	rcu_read_lock();
2628 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2629 		if (device->bdev == bdev) {
2630 			ret = -EEXIST;
2631 			rcu_read_unlock();
2632 			goto error;
2633 		}
2634 	}
2635 	rcu_read_unlock();
2636 
2637 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2638 	if (IS_ERR(device)) {
2639 		/* we can safely leave the fs_devices entry around */
2640 		ret = PTR_ERR(device);
2641 		goto error;
2642 	}
2643 
2644 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2645 	if (!name) {
2646 		ret = -ENOMEM;
2647 		goto error_free_device;
2648 	}
2649 	rcu_assign_pointer(device->name, name);
2650 
2651 	device->fs_info = fs_info;
2652 	device->bdev = bdev;
2653 	ret = lookup_bdev(device_path, &device->devt);
2654 	if (ret)
2655 		goto error_free_device;
2656 
2657 	ret = btrfs_get_dev_zone_info(device, false);
2658 	if (ret)
2659 		goto error_free_device;
2660 
2661 	trans = btrfs_start_transaction(root, 0);
2662 	if (IS_ERR(trans)) {
2663 		ret = PTR_ERR(trans);
2664 		goto error_free_zone;
2665 	}
2666 
2667 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2668 	device->generation = trans->transid;
2669 	device->io_width = fs_info->sectorsize;
2670 	device->io_align = fs_info->sectorsize;
2671 	device->sector_size = fs_info->sectorsize;
2672 	device->total_bytes =
2673 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2674 	device->disk_total_bytes = device->total_bytes;
2675 	device->commit_total_bytes = device->total_bytes;
2676 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2677 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2678 	device->mode = FMODE_EXCL;
2679 	device->dev_stats_valid = 1;
2680 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2681 
2682 	if (seeding_dev) {
2683 		btrfs_clear_sb_rdonly(sb);
2684 
2685 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2686 		seed_devices = btrfs_init_sprout(fs_info);
2687 		if (IS_ERR(seed_devices)) {
2688 			ret = PTR_ERR(seed_devices);
2689 			btrfs_abort_transaction(trans, ret);
2690 			goto error_trans;
2691 		}
2692 	}
2693 
2694 	mutex_lock(&fs_devices->device_list_mutex);
2695 	if (seeding_dev) {
2696 		btrfs_setup_sprout(fs_info, seed_devices);
2697 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2698 						device);
2699 	}
2700 
2701 	device->fs_devices = fs_devices;
2702 
2703 	mutex_lock(&fs_info->chunk_mutex);
2704 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2705 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2706 	fs_devices->num_devices++;
2707 	fs_devices->open_devices++;
2708 	fs_devices->rw_devices++;
2709 	fs_devices->total_devices++;
2710 	fs_devices->total_rw_bytes += device->total_bytes;
2711 
2712 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2713 
2714 	if (!bdev_nonrot(bdev))
2715 		fs_devices->rotating = true;
2716 
2717 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2718 	btrfs_set_super_total_bytes(fs_info->super_copy,
2719 		round_down(orig_super_total_bytes + device->total_bytes,
2720 			   fs_info->sectorsize));
2721 
2722 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2723 	btrfs_set_super_num_devices(fs_info->super_copy,
2724 				    orig_super_num_devices + 1);
2725 
2726 	/*
2727 	 * we've got more storage, clear any full flags on the space
2728 	 * infos
2729 	 */
2730 	btrfs_clear_space_info_full(fs_info);
2731 
2732 	mutex_unlock(&fs_info->chunk_mutex);
2733 
2734 	/* Add sysfs device entry */
2735 	btrfs_sysfs_add_device(device);
2736 
2737 	mutex_unlock(&fs_devices->device_list_mutex);
2738 
2739 	if (seeding_dev) {
2740 		mutex_lock(&fs_info->chunk_mutex);
2741 		ret = init_first_rw_device(trans);
2742 		mutex_unlock(&fs_info->chunk_mutex);
2743 		if (ret) {
2744 			btrfs_abort_transaction(trans, ret);
2745 			goto error_sysfs;
2746 		}
2747 	}
2748 
2749 	ret = btrfs_add_dev_item(trans, device);
2750 	if (ret) {
2751 		btrfs_abort_transaction(trans, ret);
2752 		goto error_sysfs;
2753 	}
2754 
2755 	if (seeding_dev) {
2756 		ret = btrfs_finish_sprout(trans);
2757 		if (ret) {
2758 			btrfs_abort_transaction(trans, ret);
2759 			goto error_sysfs;
2760 		}
2761 
2762 		/*
2763 		 * fs_devices now represents the newly sprouted filesystem and
2764 		 * its fsid has been changed by btrfs_sprout_splice().
2765 		 */
2766 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2767 	}
2768 
2769 	ret = btrfs_commit_transaction(trans);
2770 
2771 	if (seeding_dev) {
2772 		mutex_unlock(&uuid_mutex);
2773 		up_write(&sb->s_umount);
2774 		locked = false;
2775 
2776 		if (ret) /* transaction commit */
2777 			return ret;
2778 
2779 		ret = btrfs_relocate_sys_chunks(fs_info);
2780 		if (ret < 0)
2781 			btrfs_handle_fs_error(fs_info, ret,
2782 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2783 		trans = btrfs_attach_transaction(root);
2784 		if (IS_ERR(trans)) {
2785 			if (PTR_ERR(trans) == -ENOENT)
2786 				return 0;
2787 			ret = PTR_ERR(trans);
2788 			trans = NULL;
2789 			goto error_sysfs;
2790 		}
2791 		ret = btrfs_commit_transaction(trans);
2792 	}
2793 
2794 	/*
2795 	 * Now that we have written a new super block to this device, check all
2796 	 * other fs_devices list if device_path alienates any other scanned
2797 	 * device.
2798 	 * We can ignore the return value as it typically returns -EINVAL and
2799 	 * only succeeds if the device was an alien.
2800 	 */
2801 	btrfs_forget_devices(device->devt);
2802 
2803 	/* Update ctime/mtime for blkid or udev */
2804 	update_dev_time(device_path);
2805 
2806 	return ret;
2807 
2808 error_sysfs:
2809 	btrfs_sysfs_remove_device(device);
2810 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2811 	mutex_lock(&fs_info->chunk_mutex);
2812 	list_del_rcu(&device->dev_list);
2813 	list_del(&device->dev_alloc_list);
2814 	fs_info->fs_devices->num_devices--;
2815 	fs_info->fs_devices->open_devices--;
2816 	fs_info->fs_devices->rw_devices--;
2817 	fs_info->fs_devices->total_devices--;
2818 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2819 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2820 	btrfs_set_super_total_bytes(fs_info->super_copy,
2821 				    orig_super_total_bytes);
2822 	btrfs_set_super_num_devices(fs_info->super_copy,
2823 				    orig_super_num_devices);
2824 	mutex_unlock(&fs_info->chunk_mutex);
2825 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2826 error_trans:
2827 	if (seeding_dev)
2828 		btrfs_set_sb_rdonly(sb);
2829 	if (trans)
2830 		btrfs_end_transaction(trans);
2831 error_free_zone:
2832 	btrfs_destroy_dev_zone_info(device);
2833 error_free_device:
2834 	btrfs_free_device(device);
2835 error:
2836 	blkdev_put(bdev, FMODE_EXCL);
2837 	if (locked) {
2838 		mutex_unlock(&uuid_mutex);
2839 		up_write(&sb->s_umount);
2840 	}
2841 	return ret;
2842 }
2843 
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2844 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2845 					struct btrfs_device *device)
2846 {
2847 	int ret;
2848 	struct btrfs_path *path;
2849 	struct btrfs_root *root = device->fs_info->chunk_root;
2850 	struct btrfs_dev_item *dev_item;
2851 	struct extent_buffer *leaf;
2852 	struct btrfs_key key;
2853 
2854 	path = btrfs_alloc_path();
2855 	if (!path)
2856 		return -ENOMEM;
2857 
2858 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2859 	key.type = BTRFS_DEV_ITEM_KEY;
2860 	key.offset = device->devid;
2861 
2862 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2863 	if (ret < 0)
2864 		goto out;
2865 
2866 	if (ret > 0) {
2867 		ret = -ENOENT;
2868 		goto out;
2869 	}
2870 
2871 	leaf = path->nodes[0];
2872 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2873 
2874 	btrfs_set_device_id(leaf, dev_item, device->devid);
2875 	btrfs_set_device_type(leaf, dev_item, device->type);
2876 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2877 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2878 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2879 	btrfs_set_device_total_bytes(leaf, dev_item,
2880 				     btrfs_device_get_disk_total_bytes(device));
2881 	btrfs_set_device_bytes_used(leaf, dev_item,
2882 				    btrfs_device_get_bytes_used(device));
2883 	btrfs_mark_buffer_dirty(leaf);
2884 
2885 out:
2886 	btrfs_free_path(path);
2887 	return ret;
2888 }
2889 
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2890 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2891 		      struct btrfs_device *device, u64 new_size)
2892 {
2893 	struct btrfs_fs_info *fs_info = device->fs_info;
2894 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2895 	u64 old_total;
2896 	u64 diff;
2897 	int ret;
2898 
2899 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2900 		return -EACCES;
2901 
2902 	new_size = round_down(new_size, fs_info->sectorsize);
2903 
2904 	mutex_lock(&fs_info->chunk_mutex);
2905 	old_total = btrfs_super_total_bytes(super_copy);
2906 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2907 
2908 	if (new_size <= device->total_bytes ||
2909 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2910 		mutex_unlock(&fs_info->chunk_mutex);
2911 		return -EINVAL;
2912 	}
2913 
2914 	btrfs_set_super_total_bytes(super_copy,
2915 			round_down(old_total + diff, fs_info->sectorsize));
2916 	device->fs_devices->total_rw_bytes += diff;
2917 
2918 	btrfs_device_set_total_bytes(device, new_size);
2919 	btrfs_device_set_disk_total_bytes(device, new_size);
2920 	btrfs_clear_space_info_full(device->fs_info);
2921 	if (list_empty(&device->post_commit_list))
2922 		list_add_tail(&device->post_commit_list,
2923 			      &trans->transaction->dev_update_list);
2924 	mutex_unlock(&fs_info->chunk_mutex);
2925 
2926 	btrfs_reserve_chunk_metadata(trans, false);
2927 	ret = btrfs_update_device(trans, device);
2928 	btrfs_trans_release_chunk_metadata(trans);
2929 
2930 	return ret;
2931 }
2932 
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2933 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2934 {
2935 	struct btrfs_fs_info *fs_info = trans->fs_info;
2936 	struct btrfs_root *root = fs_info->chunk_root;
2937 	int ret;
2938 	struct btrfs_path *path;
2939 	struct btrfs_key key;
2940 
2941 	path = btrfs_alloc_path();
2942 	if (!path)
2943 		return -ENOMEM;
2944 
2945 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2946 	key.offset = chunk_offset;
2947 	key.type = BTRFS_CHUNK_ITEM_KEY;
2948 
2949 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2950 	if (ret < 0)
2951 		goto out;
2952 	else if (ret > 0) { /* Logic error or corruption */
2953 		btrfs_handle_fs_error(fs_info, -ENOENT,
2954 				      "Failed lookup while freeing chunk.");
2955 		ret = -ENOENT;
2956 		goto out;
2957 	}
2958 
2959 	ret = btrfs_del_item(trans, root, path);
2960 	if (ret < 0)
2961 		btrfs_handle_fs_error(fs_info, ret,
2962 				      "Failed to delete chunk item.");
2963 out:
2964 	btrfs_free_path(path);
2965 	return ret;
2966 }
2967 
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2968 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2969 {
2970 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2971 	struct btrfs_disk_key *disk_key;
2972 	struct btrfs_chunk *chunk;
2973 	u8 *ptr;
2974 	int ret = 0;
2975 	u32 num_stripes;
2976 	u32 array_size;
2977 	u32 len = 0;
2978 	u32 cur;
2979 	struct btrfs_key key;
2980 
2981 	lockdep_assert_held(&fs_info->chunk_mutex);
2982 	array_size = btrfs_super_sys_array_size(super_copy);
2983 
2984 	ptr = super_copy->sys_chunk_array;
2985 	cur = 0;
2986 
2987 	while (cur < array_size) {
2988 		disk_key = (struct btrfs_disk_key *)ptr;
2989 		btrfs_disk_key_to_cpu(&key, disk_key);
2990 
2991 		len = sizeof(*disk_key);
2992 
2993 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2994 			chunk = (struct btrfs_chunk *)(ptr + len);
2995 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2996 			len += btrfs_chunk_item_size(num_stripes);
2997 		} else {
2998 			ret = -EIO;
2999 			break;
3000 		}
3001 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3002 		    key.offset == chunk_offset) {
3003 			memmove(ptr, ptr + len, array_size - (cur + len));
3004 			array_size -= len;
3005 			btrfs_set_super_sys_array_size(super_copy, array_size);
3006 		} else {
3007 			ptr += len;
3008 			cur += len;
3009 		}
3010 	}
3011 	return ret;
3012 }
3013 
3014 /*
3015  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3016  * @logical: Logical block offset in bytes.
3017  * @length: Length of extent in bytes.
3018  *
3019  * Return: Chunk mapping or ERR_PTR.
3020  */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3021 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3022 				       u64 logical, u64 length)
3023 {
3024 	struct extent_map_tree *em_tree;
3025 	struct extent_map *em;
3026 
3027 	em_tree = &fs_info->mapping_tree;
3028 	read_lock(&em_tree->lock);
3029 	em = lookup_extent_mapping(em_tree, logical, length);
3030 	read_unlock(&em_tree->lock);
3031 
3032 	if (!em) {
3033 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3034 			   logical, length);
3035 		return ERR_PTR(-EINVAL);
3036 	}
3037 
3038 	if (em->start > logical || em->start + em->len < logical) {
3039 		btrfs_crit(fs_info,
3040 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3041 			   logical, length, em->start, em->start + em->len);
3042 		free_extent_map(em);
3043 		return ERR_PTR(-EINVAL);
3044 	}
3045 
3046 	/* callers are responsible for dropping em's ref. */
3047 	return em;
3048 }
3049 
remove_chunk_item(struct btrfs_trans_handle * trans,struct map_lookup * map,u64 chunk_offset)3050 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3051 			     struct map_lookup *map, u64 chunk_offset)
3052 {
3053 	int i;
3054 
3055 	/*
3056 	 * Removing chunk items and updating the device items in the chunks btree
3057 	 * requires holding the chunk_mutex.
3058 	 * See the comment at btrfs_chunk_alloc() for the details.
3059 	 */
3060 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3061 
3062 	for (i = 0; i < map->num_stripes; i++) {
3063 		int ret;
3064 
3065 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3066 		if (ret)
3067 			return ret;
3068 	}
3069 
3070 	return btrfs_free_chunk(trans, chunk_offset);
3071 }
3072 
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3073 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3074 {
3075 	struct btrfs_fs_info *fs_info = trans->fs_info;
3076 	struct extent_map *em;
3077 	struct map_lookup *map;
3078 	u64 dev_extent_len = 0;
3079 	int i, ret = 0;
3080 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3081 
3082 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3083 	if (IS_ERR(em)) {
3084 		/*
3085 		 * This is a logic error, but we don't want to just rely on the
3086 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3087 		 * do anything we still error out.
3088 		 */
3089 		ASSERT(0);
3090 		return PTR_ERR(em);
3091 	}
3092 	map = em->map_lookup;
3093 
3094 	/*
3095 	 * First delete the device extent items from the devices btree.
3096 	 * We take the device_list_mutex to avoid racing with the finishing phase
3097 	 * of a device replace operation. See the comment below before acquiring
3098 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3099 	 * because that can result in a deadlock when deleting the device extent
3100 	 * items from the devices btree - COWing an extent buffer from the btree
3101 	 * may result in allocating a new metadata chunk, which would attempt to
3102 	 * lock again fs_info->chunk_mutex.
3103 	 */
3104 	mutex_lock(&fs_devices->device_list_mutex);
3105 	for (i = 0; i < map->num_stripes; i++) {
3106 		struct btrfs_device *device = map->stripes[i].dev;
3107 		ret = btrfs_free_dev_extent(trans, device,
3108 					    map->stripes[i].physical,
3109 					    &dev_extent_len);
3110 		if (ret) {
3111 			mutex_unlock(&fs_devices->device_list_mutex);
3112 			btrfs_abort_transaction(trans, ret);
3113 			goto out;
3114 		}
3115 
3116 		if (device->bytes_used > 0) {
3117 			mutex_lock(&fs_info->chunk_mutex);
3118 			btrfs_device_set_bytes_used(device,
3119 					device->bytes_used - dev_extent_len);
3120 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3121 			btrfs_clear_space_info_full(fs_info);
3122 			mutex_unlock(&fs_info->chunk_mutex);
3123 		}
3124 	}
3125 	mutex_unlock(&fs_devices->device_list_mutex);
3126 
3127 	/*
3128 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3129 	 *
3130 	 * 1) Just like with the first phase of the chunk allocation, we must
3131 	 *    reserve system space, do all chunk btree updates and deletions, and
3132 	 *    update the system chunk array in the superblock while holding this
3133 	 *    mutex. This is for similar reasons as explained on the comment at
3134 	 *    the top of btrfs_chunk_alloc();
3135 	 *
3136 	 * 2) Prevent races with the final phase of a device replace operation
3137 	 *    that replaces the device object associated with the map's stripes,
3138 	 *    because the device object's id can change at any time during that
3139 	 *    final phase of the device replace operation
3140 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3141 	 *    replaced device and then see it with an ID of
3142 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3143 	 *    the device item, which does not exists on the chunk btree.
3144 	 *    The finishing phase of device replace acquires both the
3145 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3146 	 *    safe by just acquiring the chunk_mutex.
3147 	 */
3148 	trans->removing_chunk = true;
3149 	mutex_lock(&fs_info->chunk_mutex);
3150 
3151 	check_system_chunk(trans, map->type);
3152 
3153 	ret = remove_chunk_item(trans, map, chunk_offset);
3154 	/*
3155 	 * Normally we should not get -ENOSPC since we reserved space before
3156 	 * through the call to check_system_chunk().
3157 	 *
3158 	 * Despite our system space_info having enough free space, we may not
3159 	 * be able to allocate extents from its block groups, because all have
3160 	 * an incompatible profile, which will force us to allocate a new system
3161 	 * block group with the right profile, or right after we called
3162 	 * check_system_space() above, a scrub turned the only system block group
3163 	 * with enough free space into RO mode.
3164 	 * This is explained with more detail at do_chunk_alloc().
3165 	 *
3166 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3167 	 */
3168 	if (ret == -ENOSPC) {
3169 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3170 		struct btrfs_block_group *sys_bg;
3171 
3172 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3173 		if (IS_ERR(sys_bg)) {
3174 			ret = PTR_ERR(sys_bg);
3175 			btrfs_abort_transaction(trans, ret);
3176 			goto out;
3177 		}
3178 
3179 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3180 		if (ret) {
3181 			btrfs_abort_transaction(trans, ret);
3182 			goto out;
3183 		}
3184 
3185 		ret = remove_chunk_item(trans, map, chunk_offset);
3186 		if (ret) {
3187 			btrfs_abort_transaction(trans, ret);
3188 			goto out;
3189 		}
3190 	} else if (ret) {
3191 		btrfs_abort_transaction(trans, ret);
3192 		goto out;
3193 	}
3194 
3195 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3196 
3197 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3198 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3199 		if (ret) {
3200 			btrfs_abort_transaction(trans, ret);
3201 			goto out;
3202 		}
3203 	}
3204 
3205 	mutex_unlock(&fs_info->chunk_mutex);
3206 	trans->removing_chunk = false;
3207 
3208 	/*
3209 	 * We are done with chunk btree updates and deletions, so release the
3210 	 * system space we previously reserved (with check_system_chunk()).
3211 	 */
3212 	btrfs_trans_release_chunk_metadata(trans);
3213 
3214 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3215 	if (ret) {
3216 		btrfs_abort_transaction(trans, ret);
3217 		goto out;
3218 	}
3219 
3220 out:
3221 	if (trans->removing_chunk) {
3222 		mutex_unlock(&fs_info->chunk_mutex);
3223 		trans->removing_chunk = false;
3224 	}
3225 	/* once for us */
3226 	free_extent_map(em);
3227 	return ret;
3228 }
3229 
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3230 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3231 {
3232 	struct btrfs_root *root = fs_info->chunk_root;
3233 	struct btrfs_trans_handle *trans;
3234 	struct btrfs_block_group *block_group;
3235 	u64 length;
3236 	int ret;
3237 
3238 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3239 		btrfs_err(fs_info,
3240 			  "relocate: not supported on extent tree v2 yet");
3241 		return -EINVAL;
3242 	}
3243 
3244 	/*
3245 	 * Prevent races with automatic removal of unused block groups.
3246 	 * After we relocate and before we remove the chunk with offset
3247 	 * chunk_offset, automatic removal of the block group can kick in,
3248 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3249 	 *
3250 	 * Make sure to acquire this mutex before doing a tree search (dev
3251 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3252 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3253 	 * we release the path used to search the chunk/dev tree and before
3254 	 * the current task acquires this mutex and calls us.
3255 	 */
3256 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3257 
3258 	/* step one, relocate all the extents inside this chunk */
3259 	btrfs_scrub_pause(fs_info);
3260 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3261 	btrfs_scrub_continue(fs_info);
3262 	if (ret)
3263 		return ret;
3264 
3265 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3266 	if (!block_group)
3267 		return -ENOENT;
3268 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3269 	length = block_group->length;
3270 	btrfs_put_block_group(block_group);
3271 
3272 	/*
3273 	 * On a zoned file system, discard the whole block group, this will
3274 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3275 	 * resetting the zone fails, don't treat it as a fatal problem from the
3276 	 * filesystem's point of view.
3277 	 */
3278 	if (btrfs_is_zoned(fs_info)) {
3279 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3280 		if (ret)
3281 			btrfs_info(fs_info,
3282 				"failed to reset zone %llu after relocation",
3283 				chunk_offset);
3284 	}
3285 
3286 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3287 						     chunk_offset);
3288 	if (IS_ERR(trans)) {
3289 		ret = PTR_ERR(trans);
3290 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3291 		return ret;
3292 	}
3293 
3294 	/*
3295 	 * step two, delete the device extents and the
3296 	 * chunk tree entries
3297 	 */
3298 	ret = btrfs_remove_chunk(trans, chunk_offset);
3299 	btrfs_end_transaction(trans);
3300 	return ret;
3301 }
3302 
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3303 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3304 {
3305 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3306 	struct btrfs_path *path;
3307 	struct extent_buffer *leaf;
3308 	struct btrfs_chunk *chunk;
3309 	struct btrfs_key key;
3310 	struct btrfs_key found_key;
3311 	u64 chunk_type;
3312 	bool retried = false;
3313 	int failed = 0;
3314 	int ret;
3315 
3316 	path = btrfs_alloc_path();
3317 	if (!path)
3318 		return -ENOMEM;
3319 
3320 again:
3321 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3322 	key.offset = (u64)-1;
3323 	key.type = BTRFS_CHUNK_ITEM_KEY;
3324 
3325 	while (1) {
3326 		mutex_lock(&fs_info->reclaim_bgs_lock);
3327 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3328 		if (ret < 0) {
3329 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3330 			goto error;
3331 		}
3332 		BUG_ON(ret == 0); /* Corruption */
3333 
3334 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3335 					  key.type);
3336 		if (ret)
3337 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3338 		if (ret < 0)
3339 			goto error;
3340 		if (ret > 0)
3341 			break;
3342 
3343 		leaf = path->nodes[0];
3344 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3345 
3346 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3347 				       struct btrfs_chunk);
3348 		chunk_type = btrfs_chunk_type(leaf, chunk);
3349 		btrfs_release_path(path);
3350 
3351 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3352 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3353 			if (ret == -ENOSPC)
3354 				failed++;
3355 			else
3356 				BUG_ON(ret);
3357 		}
3358 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3359 
3360 		if (found_key.offset == 0)
3361 			break;
3362 		key.offset = found_key.offset - 1;
3363 	}
3364 	ret = 0;
3365 	if (failed && !retried) {
3366 		failed = 0;
3367 		retried = true;
3368 		goto again;
3369 	} else if (WARN_ON(failed && retried)) {
3370 		ret = -ENOSPC;
3371 	}
3372 error:
3373 	btrfs_free_path(path);
3374 	return ret;
3375 }
3376 
3377 /*
3378  * return 1 : allocate a data chunk successfully,
3379  * return <0: errors during allocating a data chunk,
3380  * return 0 : no need to allocate a data chunk.
3381  */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3382 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3383 				      u64 chunk_offset)
3384 {
3385 	struct btrfs_block_group *cache;
3386 	u64 bytes_used;
3387 	u64 chunk_type;
3388 
3389 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3390 	ASSERT(cache);
3391 	chunk_type = cache->flags;
3392 	btrfs_put_block_group(cache);
3393 
3394 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3395 		return 0;
3396 
3397 	spin_lock(&fs_info->data_sinfo->lock);
3398 	bytes_used = fs_info->data_sinfo->bytes_used;
3399 	spin_unlock(&fs_info->data_sinfo->lock);
3400 
3401 	if (!bytes_used) {
3402 		struct btrfs_trans_handle *trans;
3403 		int ret;
3404 
3405 		trans =	btrfs_join_transaction(fs_info->tree_root);
3406 		if (IS_ERR(trans))
3407 			return PTR_ERR(trans);
3408 
3409 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3410 		btrfs_end_transaction(trans);
3411 		if (ret < 0)
3412 			return ret;
3413 		return 1;
3414 	}
3415 
3416 	return 0;
3417 }
3418 
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3419 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3420 			       struct btrfs_balance_control *bctl)
3421 {
3422 	struct btrfs_root *root = fs_info->tree_root;
3423 	struct btrfs_trans_handle *trans;
3424 	struct btrfs_balance_item *item;
3425 	struct btrfs_disk_balance_args disk_bargs;
3426 	struct btrfs_path *path;
3427 	struct extent_buffer *leaf;
3428 	struct btrfs_key key;
3429 	int ret, err;
3430 
3431 	path = btrfs_alloc_path();
3432 	if (!path)
3433 		return -ENOMEM;
3434 
3435 	trans = btrfs_start_transaction(root, 0);
3436 	if (IS_ERR(trans)) {
3437 		btrfs_free_path(path);
3438 		return PTR_ERR(trans);
3439 	}
3440 
3441 	key.objectid = BTRFS_BALANCE_OBJECTID;
3442 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3443 	key.offset = 0;
3444 
3445 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3446 				      sizeof(*item));
3447 	if (ret)
3448 		goto out;
3449 
3450 	leaf = path->nodes[0];
3451 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3452 
3453 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3454 
3455 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3456 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3457 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3458 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3459 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3460 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3461 
3462 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3463 
3464 	btrfs_mark_buffer_dirty(leaf);
3465 out:
3466 	btrfs_free_path(path);
3467 	err = btrfs_commit_transaction(trans);
3468 	if (err && !ret)
3469 		ret = err;
3470 	return ret;
3471 }
3472 
del_balance_item(struct btrfs_fs_info * fs_info)3473 static int del_balance_item(struct btrfs_fs_info *fs_info)
3474 {
3475 	struct btrfs_root *root = fs_info->tree_root;
3476 	struct btrfs_trans_handle *trans;
3477 	struct btrfs_path *path;
3478 	struct btrfs_key key;
3479 	int ret, err;
3480 
3481 	path = btrfs_alloc_path();
3482 	if (!path)
3483 		return -ENOMEM;
3484 
3485 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3486 	if (IS_ERR(trans)) {
3487 		btrfs_free_path(path);
3488 		return PTR_ERR(trans);
3489 	}
3490 
3491 	key.objectid = BTRFS_BALANCE_OBJECTID;
3492 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3493 	key.offset = 0;
3494 
3495 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3496 	if (ret < 0)
3497 		goto out;
3498 	if (ret > 0) {
3499 		ret = -ENOENT;
3500 		goto out;
3501 	}
3502 
3503 	ret = btrfs_del_item(trans, root, path);
3504 out:
3505 	btrfs_free_path(path);
3506 	err = btrfs_commit_transaction(trans);
3507 	if (err && !ret)
3508 		ret = err;
3509 	return ret;
3510 }
3511 
3512 /*
3513  * This is a heuristic used to reduce the number of chunks balanced on
3514  * resume after balance was interrupted.
3515  */
update_balance_args(struct btrfs_balance_control * bctl)3516 static void update_balance_args(struct btrfs_balance_control *bctl)
3517 {
3518 	/*
3519 	 * Turn on soft mode for chunk types that were being converted.
3520 	 */
3521 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3522 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3523 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3524 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3525 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3526 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3527 
3528 	/*
3529 	 * Turn on usage filter if is not already used.  The idea is
3530 	 * that chunks that we have already balanced should be
3531 	 * reasonably full.  Don't do it for chunks that are being
3532 	 * converted - that will keep us from relocating unconverted
3533 	 * (albeit full) chunks.
3534 	 */
3535 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3536 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3537 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3538 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3539 		bctl->data.usage = 90;
3540 	}
3541 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3542 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3543 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3544 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3545 		bctl->sys.usage = 90;
3546 	}
3547 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3548 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3549 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3550 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3551 		bctl->meta.usage = 90;
3552 	}
3553 }
3554 
3555 /*
3556  * Clear the balance status in fs_info and delete the balance item from disk.
3557  */
reset_balance_state(struct btrfs_fs_info * fs_info)3558 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3559 {
3560 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3561 	int ret;
3562 
3563 	BUG_ON(!fs_info->balance_ctl);
3564 
3565 	spin_lock(&fs_info->balance_lock);
3566 	fs_info->balance_ctl = NULL;
3567 	spin_unlock(&fs_info->balance_lock);
3568 
3569 	kfree(bctl);
3570 	ret = del_balance_item(fs_info);
3571 	if (ret)
3572 		btrfs_handle_fs_error(fs_info, ret, NULL);
3573 }
3574 
3575 /*
3576  * Balance filters.  Return 1 if chunk should be filtered out
3577  * (should not be balanced).
3578  */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3579 static int chunk_profiles_filter(u64 chunk_type,
3580 				 struct btrfs_balance_args *bargs)
3581 {
3582 	chunk_type = chunk_to_extended(chunk_type) &
3583 				BTRFS_EXTENDED_PROFILE_MASK;
3584 
3585 	if (bargs->profiles & chunk_type)
3586 		return 0;
3587 
3588 	return 1;
3589 }
3590 
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3591 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3592 			      struct btrfs_balance_args *bargs)
3593 {
3594 	struct btrfs_block_group *cache;
3595 	u64 chunk_used;
3596 	u64 user_thresh_min;
3597 	u64 user_thresh_max;
3598 	int ret = 1;
3599 
3600 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3601 	chunk_used = cache->used;
3602 
3603 	if (bargs->usage_min == 0)
3604 		user_thresh_min = 0;
3605 	else
3606 		user_thresh_min = div_factor_fine(cache->length,
3607 						  bargs->usage_min);
3608 
3609 	if (bargs->usage_max == 0)
3610 		user_thresh_max = 1;
3611 	else if (bargs->usage_max > 100)
3612 		user_thresh_max = cache->length;
3613 	else
3614 		user_thresh_max = div_factor_fine(cache->length,
3615 						  bargs->usage_max);
3616 
3617 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3618 		ret = 0;
3619 
3620 	btrfs_put_block_group(cache);
3621 	return ret;
3622 }
3623 
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3624 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3625 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3626 {
3627 	struct btrfs_block_group *cache;
3628 	u64 chunk_used, user_thresh;
3629 	int ret = 1;
3630 
3631 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3632 	chunk_used = cache->used;
3633 
3634 	if (bargs->usage_min == 0)
3635 		user_thresh = 1;
3636 	else if (bargs->usage > 100)
3637 		user_thresh = cache->length;
3638 	else
3639 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3640 
3641 	if (chunk_used < user_thresh)
3642 		ret = 0;
3643 
3644 	btrfs_put_block_group(cache);
3645 	return ret;
3646 }
3647 
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3648 static int chunk_devid_filter(struct extent_buffer *leaf,
3649 			      struct btrfs_chunk *chunk,
3650 			      struct btrfs_balance_args *bargs)
3651 {
3652 	struct btrfs_stripe *stripe;
3653 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3654 	int i;
3655 
3656 	for (i = 0; i < num_stripes; i++) {
3657 		stripe = btrfs_stripe_nr(chunk, i);
3658 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3659 			return 0;
3660 	}
3661 
3662 	return 1;
3663 }
3664 
calc_data_stripes(u64 type,int num_stripes)3665 static u64 calc_data_stripes(u64 type, int num_stripes)
3666 {
3667 	const int index = btrfs_bg_flags_to_raid_index(type);
3668 	const int ncopies = btrfs_raid_array[index].ncopies;
3669 	const int nparity = btrfs_raid_array[index].nparity;
3670 
3671 	return (num_stripes - nparity) / ncopies;
3672 }
3673 
3674 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3675 static int chunk_drange_filter(struct extent_buffer *leaf,
3676 			       struct btrfs_chunk *chunk,
3677 			       struct btrfs_balance_args *bargs)
3678 {
3679 	struct btrfs_stripe *stripe;
3680 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3681 	u64 stripe_offset;
3682 	u64 stripe_length;
3683 	u64 type;
3684 	int factor;
3685 	int i;
3686 
3687 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3688 		return 0;
3689 
3690 	type = btrfs_chunk_type(leaf, chunk);
3691 	factor = calc_data_stripes(type, num_stripes);
3692 
3693 	for (i = 0; i < num_stripes; i++) {
3694 		stripe = btrfs_stripe_nr(chunk, i);
3695 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3696 			continue;
3697 
3698 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3699 		stripe_length = btrfs_chunk_length(leaf, chunk);
3700 		stripe_length = div_u64(stripe_length, factor);
3701 
3702 		if (stripe_offset < bargs->pend &&
3703 		    stripe_offset + stripe_length > bargs->pstart)
3704 			return 0;
3705 	}
3706 
3707 	return 1;
3708 }
3709 
3710 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3711 static int chunk_vrange_filter(struct extent_buffer *leaf,
3712 			       struct btrfs_chunk *chunk,
3713 			       u64 chunk_offset,
3714 			       struct btrfs_balance_args *bargs)
3715 {
3716 	if (chunk_offset < bargs->vend &&
3717 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3718 		/* at least part of the chunk is inside this vrange */
3719 		return 0;
3720 
3721 	return 1;
3722 }
3723 
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3724 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3725 			       struct btrfs_chunk *chunk,
3726 			       struct btrfs_balance_args *bargs)
3727 {
3728 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3729 
3730 	if (bargs->stripes_min <= num_stripes
3731 			&& num_stripes <= bargs->stripes_max)
3732 		return 0;
3733 
3734 	return 1;
3735 }
3736 
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3737 static int chunk_soft_convert_filter(u64 chunk_type,
3738 				     struct btrfs_balance_args *bargs)
3739 {
3740 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3741 		return 0;
3742 
3743 	chunk_type = chunk_to_extended(chunk_type) &
3744 				BTRFS_EXTENDED_PROFILE_MASK;
3745 
3746 	if (bargs->target == chunk_type)
3747 		return 1;
3748 
3749 	return 0;
3750 }
3751 
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3752 static int should_balance_chunk(struct extent_buffer *leaf,
3753 				struct btrfs_chunk *chunk, u64 chunk_offset)
3754 {
3755 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3756 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3757 	struct btrfs_balance_args *bargs = NULL;
3758 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3759 
3760 	/* type filter */
3761 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3762 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3763 		return 0;
3764 	}
3765 
3766 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3767 		bargs = &bctl->data;
3768 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3769 		bargs = &bctl->sys;
3770 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3771 		bargs = &bctl->meta;
3772 
3773 	/* profiles filter */
3774 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3775 	    chunk_profiles_filter(chunk_type, bargs)) {
3776 		return 0;
3777 	}
3778 
3779 	/* usage filter */
3780 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3781 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3782 		return 0;
3783 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3784 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3785 		return 0;
3786 	}
3787 
3788 	/* devid filter */
3789 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3790 	    chunk_devid_filter(leaf, chunk, bargs)) {
3791 		return 0;
3792 	}
3793 
3794 	/* drange filter, makes sense only with devid filter */
3795 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3796 	    chunk_drange_filter(leaf, chunk, bargs)) {
3797 		return 0;
3798 	}
3799 
3800 	/* vrange filter */
3801 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3802 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3803 		return 0;
3804 	}
3805 
3806 	/* stripes filter */
3807 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3808 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3809 		return 0;
3810 	}
3811 
3812 	/* soft profile changing mode */
3813 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3814 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3815 		return 0;
3816 	}
3817 
3818 	/*
3819 	 * limited by count, must be the last filter
3820 	 */
3821 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3822 		if (bargs->limit == 0)
3823 			return 0;
3824 		else
3825 			bargs->limit--;
3826 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3827 		/*
3828 		 * Same logic as the 'limit' filter; the minimum cannot be
3829 		 * determined here because we do not have the global information
3830 		 * about the count of all chunks that satisfy the filters.
3831 		 */
3832 		if (bargs->limit_max == 0)
3833 			return 0;
3834 		else
3835 			bargs->limit_max--;
3836 	}
3837 
3838 	return 1;
3839 }
3840 
__btrfs_balance(struct btrfs_fs_info * fs_info)3841 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3842 {
3843 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3844 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3845 	u64 chunk_type;
3846 	struct btrfs_chunk *chunk;
3847 	struct btrfs_path *path = NULL;
3848 	struct btrfs_key key;
3849 	struct btrfs_key found_key;
3850 	struct extent_buffer *leaf;
3851 	int slot;
3852 	int ret;
3853 	int enospc_errors = 0;
3854 	bool counting = true;
3855 	/* The single value limit and min/max limits use the same bytes in the */
3856 	u64 limit_data = bctl->data.limit;
3857 	u64 limit_meta = bctl->meta.limit;
3858 	u64 limit_sys = bctl->sys.limit;
3859 	u32 count_data = 0;
3860 	u32 count_meta = 0;
3861 	u32 count_sys = 0;
3862 	int chunk_reserved = 0;
3863 
3864 	path = btrfs_alloc_path();
3865 	if (!path) {
3866 		ret = -ENOMEM;
3867 		goto error;
3868 	}
3869 
3870 	/* zero out stat counters */
3871 	spin_lock(&fs_info->balance_lock);
3872 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3873 	spin_unlock(&fs_info->balance_lock);
3874 again:
3875 	if (!counting) {
3876 		/*
3877 		 * The single value limit and min/max limits use the same bytes
3878 		 * in the
3879 		 */
3880 		bctl->data.limit = limit_data;
3881 		bctl->meta.limit = limit_meta;
3882 		bctl->sys.limit = limit_sys;
3883 	}
3884 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3885 	key.offset = (u64)-1;
3886 	key.type = BTRFS_CHUNK_ITEM_KEY;
3887 
3888 	while (1) {
3889 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3890 		    atomic_read(&fs_info->balance_cancel_req)) {
3891 			ret = -ECANCELED;
3892 			goto error;
3893 		}
3894 
3895 		mutex_lock(&fs_info->reclaim_bgs_lock);
3896 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3897 		if (ret < 0) {
3898 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3899 			goto error;
3900 		}
3901 
3902 		/*
3903 		 * this shouldn't happen, it means the last relocate
3904 		 * failed
3905 		 */
3906 		if (ret == 0)
3907 			BUG(); /* FIXME break ? */
3908 
3909 		ret = btrfs_previous_item(chunk_root, path, 0,
3910 					  BTRFS_CHUNK_ITEM_KEY);
3911 		if (ret) {
3912 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3913 			ret = 0;
3914 			break;
3915 		}
3916 
3917 		leaf = path->nodes[0];
3918 		slot = path->slots[0];
3919 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3920 
3921 		if (found_key.objectid != key.objectid) {
3922 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3923 			break;
3924 		}
3925 
3926 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3927 		chunk_type = btrfs_chunk_type(leaf, chunk);
3928 
3929 		if (!counting) {
3930 			spin_lock(&fs_info->balance_lock);
3931 			bctl->stat.considered++;
3932 			spin_unlock(&fs_info->balance_lock);
3933 		}
3934 
3935 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3936 
3937 		btrfs_release_path(path);
3938 		if (!ret) {
3939 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3940 			goto loop;
3941 		}
3942 
3943 		if (counting) {
3944 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3945 			spin_lock(&fs_info->balance_lock);
3946 			bctl->stat.expected++;
3947 			spin_unlock(&fs_info->balance_lock);
3948 
3949 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3950 				count_data++;
3951 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3952 				count_sys++;
3953 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3954 				count_meta++;
3955 
3956 			goto loop;
3957 		}
3958 
3959 		/*
3960 		 * Apply limit_min filter, no need to check if the LIMITS
3961 		 * filter is used, limit_min is 0 by default
3962 		 */
3963 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3964 					count_data < bctl->data.limit_min)
3965 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3966 					count_meta < bctl->meta.limit_min)
3967 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3968 					count_sys < bctl->sys.limit_min)) {
3969 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3970 			goto loop;
3971 		}
3972 
3973 		if (!chunk_reserved) {
3974 			/*
3975 			 * We may be relocating the only data chunk we have,
3976 			 * which could potentially end up with losing data's
3977 			 * raid profile, so lets allocate an empty one in
3978 			 * advance.
3979 			 */
3980 			ret = btrfs_may_alloc_data_chunk(fs_info,
3981 							 found_key.offset);
3982 			if (ret < 0) {
3983 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3984 				goto error;
3985 			} else if (ret == 1) {
3986 				chunk_reserved = 1;
3987 			}
3988 		}
3989 
3990 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3991 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3992 		if (ret == -ENOSPC) {
3993 			enospc_errors++;
3994 		} else if (ret == -ETXTBSY) {
3995 			btrfs_info(fs_info,
3996 	   "skipping relocation of block group %llu due to active swapfile",
3997 				   found_key.offset);
3998 			ret = 0;
3999 		} else if (ret) {
4000 			goto error;
4001 		} else {
4002 			spin_lock(&fs_info->balance_lock);
4003 			bctl->stat.completed++;
4004 			spin_unlock(&fs_info->balance_lock);
4005 		}
4006 loop:
4007 		if (found_key.offset == 0)
4008 			break;
4009 		key.offset = found_key.offset - 1;
4010 	}
4011 
4012 	if (counting) {
4013 		btrfs_release_path(path);
4014 		counting = false;
4015 		goto again;
4016 	}
4017 error:
4018 	btrfs_free_path(path);
4019 	if (enospc_errors) {
4020 		btrfs_info(fs_info, "%d enospc errors during balance",
4021 			   enospc_errors);
4022 		if (!ret)
4023 			ret = -ENOSPC;
4024 	}
4025 
4026 	return ret;
4027 }
4028 
4029 /**
4030  * alloc_profile_is_valid - see if a given profile is valid and reduced
4031  * @flags: profile to validate
4032  * @extended: if true @flags is treated as an extended profile
4033  */
alloc_profile_is_valid(u64 flags,int extended)4034 static int alloc_profile_is_valid(u64 flags, int extended)
4035 {
4036 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4037 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4038 
4039 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4040 
4041 	/* 1) check that all other bits are zeroed */
4042 	if (flags & ~mask)
4043 		return 0;
4044 
4045 	/* 2) see if profile is reduced */
4046 	if (flags == 0)
4047 		return !extended; /* "0" is valid for usual profiles */
4048 
4049 	return has_single_bit_set(flags);
4050 }
4051 
balance_need_close(struct btrfs_fs_info * fs_info)4052 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4053 {
4054 	/* cancel requested || normal exit path */
4055 	return atomic_read(&fs_info->balance_cancel_req) ||
4056 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4057 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4058 }
4059 
4060 /*
4061  * Validate target profile against allowed profiles and return true if it's OK.
4062  * Otherwise print the error message and return false.
4063  */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4064 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4065 		const struct btrfs_balance_args *bargs,
4066 		u64 allowed, const char *type)
4067 {
4068 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4069 		return true;
4070 
4071 	/* Profile is valid and does not have bits outside of the allowed set */
4072 	if (alloc_profile_is_valid(bargs->target, 1) &&
4073 	    (bargs->target & ~allowed) == 0)
4074 		return true;
4075 
4076 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4077 			type, btrfs_bg_type_to_raid_name(bargs->target));
4078 	return false;
4079 }
4080 
4081 /*
4082  * Fill @buf with textual description of balance filter flags @bargs, up to
4083  * @size_buf including the terminating null. The output may be trimmed if it
4084  * does not fit into the provided buffer.
4085  */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4086 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4087 				 u32 size_buf)
4088 {
4089 	int ret;
4090 	u32 size_bp = size_buf;
4091 	char *bp = buf;
4092 	u64 flags = bargs->flags;
4093 	char tmp_buf[128] = {'\0'};
4094 
4095 	if (!flags)
4096 		return;
4097 
4098 #define CHECK_APPEND_NOARG(a)						\
4099 	do {								\
4100 		ret = snprintf(bp, size_bp, (a));			\
4101 		if (ret < 0 || ret >= size_bp)				\
4102 			goto out_overflow;				\
4103 		size_bp -= ret;						\
4104 		bp += ret;						\
4105 	} while (0)
4106 
4107 #define CHECK_APPEND_1ARG(a, v1)					\
4108 	do {								\
4109 		ret = snprintf(bp, size_bp, (a), (v1));			\
4110 		if (ret < 0 || ret >= size_bp)				\
4111 			goto out_overflow;				\
4112 		size_bp -= ret;						\
4113 		bp += ret;						\
4114 	} while (0)
4115 
4116 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4117 	do {								\
4118 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4119 		if (ret < 0 || ret >= size_bp)				\
4120 			goto out_overflow;				\
4121 		size_bp -= ret;						\
4122 		bp += ret;						\
4123 	} while (0)
4124 
4125 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4126 		CHECK_APPEND_1ARG("convert=%s,",
4127 				  btrfs_bg_type_to_raid_name(bargs->target));
4128 
4129 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4130 		CHECK_APPEND_NOARG("soft,");
4131 
4132 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4133 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4134 					    sizeof(tmp_buf));
4135 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4136 	}
4137 
4138 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4139 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4140 
4141 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4142 		CHECK_APPEND_2ARG("usage=%u..%u,",
4143 				  bargs->usage_min, bargs->usage_max);
4144 
4145 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4146 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4147 
4148 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4149 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4150 				  bargs->pstart, bargs->pend);
4151 
4152 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4153 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4154 				  bargs->vstart, bargs->vend);
4155 
4156 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4157 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4158 
4159 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4160 		CHECK_APPEND_2ARG("limit=%u..%u,",
4161 				bargs->limit_min, bargs->limit_max);
4162 
4163 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4164 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4165 				  bargs->stripes_min, bargs->stripes_max);
4166 
4167 #undef CHECK_APPEND_2ARG
4168 #undef CHECK_APPEND_1ARG
4169 #undef CHECK_APPEND_NOARG
4170 
4171 out_overflow:
4172 
4173 	if (size_bp < size_buf)
4174 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4175 	else
4176 		buf[0] = '\0';
4177 }
4178 
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4179 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4180 {
4181 	u32 size_buf = 1024;
4182 	char tmp_buf[192] = {'\0'};
4183 	char *buf;
4184 	char *bp;
4185 	u32 size_bp = size_buf;
4186 	int ret;
4187 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4188 
4189 	buf = kzalloc(size_buf, GFP_KERNEL);
4190 	if (!buf)
4191 		return;
4192 
4193 	bp = buf;
4194 
4195 #define CHECK_APPEND_1ARG(a, v1)					\
4196 	do {								\
4197 		ret = snprintf(bp, size_bp, (a), (v1));			\
4198 		if (ret < 0 || ret >= size_bp)				\
4199 			goto out_overflow;				\
4200 		size_bp -= ret;						\
4201 		bp += ret;						\
4202 	} while (0)
4203 
4204 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4205 		CHECK_APPEND_1ARG("%s", "-f ");
4206 
4207 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4208 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4209 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4210 	}
4211 
4212 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4213 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4214 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4215 	}
4216 
4217 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4218 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4219 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4220 	}
4221 
4222 #undef CHECK_APPEND_1ARG
4223 
4224 out_overflow:
4225 
4226 	if (size_bp < size_buf)
4227 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4228 	btrfs_info(fs_info, "balance: %s %s",
4229 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4230 		   "resume" : "start", buf);
4231 
4232 	kfree(buf);
4233 }
4234 
4235 /*
4236  * Should be called with balance mutexe held
4237  */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4238 int btrfs_balance(struct btrfs_fs_info *fs_info,
4239 		  struct btrfs_balance_control *bctl,
4240 		  struct btrfs_ioctl_balance_args *bargs)
4241 {
4242 	u64 meta_target, data_target;
4243 	u64 allowed;
4244 	int mixed = 0;
4245 	int ret;
4246 	u64 num_devices;
4247 	unsigned seq;
4248 	bool reducing_redundancy;
4249 	int i;
4250 
4251 	if (btrfs_fs_closing(fs_info) ||
4252 	    atomic_read(&fs_info->balance_pause_req) ||
4253 	    btrfs_should_cancel_balance(fs_info)) {
4254 		ret = -EINVAL;
4255 		goto out;
4256 	}
4257 
4258 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4259 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4260 		mixed = 1;
4261 
4262 	/*
4263 	 * In case of mixed groups both data and meta should be picked,
4264 	 * and identical options should be given for both of them.
4265 	 */
4266 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4267 	if (mixed && (bctl->flags & allowed)) {
4268 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4269 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4270 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4271 			btrfs_err(fs_info,
4272 	  "balance: mixed groups data and metadata options must be the same");
4273 			ret = -EINVAL;
4274 			goto out;
4275 		}
4276 	}
4277 
4278 	/*
4279 	 * rw_devices will not change at the moment, device add/delete/replace
4280 	 * are exclusive
4281 	 */
4282 	num_devices = fs_info->fs_devices->rw_devices;
4283 
4284 	/*
4285 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4286 	 * special bit for it, to make it easier to distinguish.  Thus we need
4287 	 * to set it manually, or balance would refuse the profile.
4288 	 */
4289 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4290 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4291 		if (num_devices >= btrfs_raid_array[i].devs_min)
4292 			allowed |= btrfs_raid_array[i].bg_flag;
4293 
4294 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4295 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4296 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4297 		ret = -EINVAL;
4298 		goto out;
4299 	}
4300 
4301 	/*
4302 	 * Allow to reduce metadata or system integrity only if force set for
4303 	 * profiles with redundancy (copies, parity)
4304 	 */
4305 	allowed = 0;
4306 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4307 		if (btrfs_raid_array[i].ncopies >= 2 ||
4308 		    btrfs_raid_array[i].tolerated_failures >= 1)
4309 			allowed |= btrfs_raid_array[i].bg_flag;
4310 	}
4311 	do {
4312 		seq = read_seqbegin(&fs_info->profiles_lock);
4313 
4314 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4315 		     (fs_info->avail_system_alloc_bits & allowed) &&
4316 		     !(bctl->sys.target & allowed)) ||
4317 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4318 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4319 		     !(bctl->meta.target & allowed)))
4320 			reducing_redundancy = true;
4321 		else
4322 			reducing_redundancy = false;
4323 
4324 		/* if we're not converting, the target field is uninitialized */
4325 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4326 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4327 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4328 			bctl->data.target : fs_info->avail_data_alloc_bits;
4329 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4330 
4331 	if (reducing_redundancy) {
4332 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4333 			btrfs_info(fs_info,
4334 			   "balance: force reducing metadata redundancy");
4335 		} else {
4336 			btrfs_err(fs_info,
4337 	"balance: reduces metadata redundancy, use --force if you want this");
4338 			ret = -EINVAL;
4339 			goto out;
4340 		}
4341 	}
4342 
4343 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4344 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4345 		btrfs_warn(fs_info,
4346 	"balance: metadata profile %s has lower redundancy than data profile %s",
4347 				btrfs_bg_type_to_raid_name(meta_target),
4348 				btrfs_bg_type_to_raid_name(data_target));
4349 	}
4350 
4351 	ret = insert_balance_item(fs_info, bctl);
4352 	if (ret && ret != -EEXIST)
4353 		goto out;
4354 
4355 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4356 		BUG_ON(ret == -EEXIST);
4357 		BUG_ON(fs_info->balance_ctl);
4358 		spin_lock(&fs_info->balance_lock);
4359 		fs_info->balance_ctl = bctl;
4360 		spin_unlock(&fs_info->balance_lock);
4361 	} else {
4362 		BUG_ON(ret != -EEXIST);
4363 		spin_lock(&fs_info->balance_lock);
4364 		update_balance_args(bctl);
4365 		spin_unlock(&fs_info->balance_lock);
4366 	}
4367 
4368 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4369 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4370 	describe_balance_start_or_resume(fs_info);
4371 	mutex_unlock(&fs_info->balance_mutex);
4372 
4373 	ret = __btrfs_balance(fs_info);
4374 
4375 	mutex_lock(&fs_info->balance_mutex);
4376 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4377 		btrfs_info(fs_info, "balance: paused");
4378 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4379 	}
4380 	/*
4381 	 * Balance can be canceled by:
4382 	 *
4383 	 * - Regular cancel request
4384 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4385 	 *
4386 	 * - Fatal signal to "btrfs" process
4387 	 *   Either the signal caught by wait_reserve_ticket() and callers
4388 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4389 	 *   got -ECANCELED.
4390 	 *   Either way, in this case balance_cancel_req = 0, and
4391 	 *   ret == -EINTR or ret == -ECANCELED.
4392 	 *
4393 	 * So here we only check the return value to catch canceled balance.
4394 	 */
4395 	else if (ret == -ECANCELED || ret == -EINTR)
4396 		btrfs_info(fs_info, "balance: canceled");
4397 	else
4398 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4399 
4400 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4401 
4402 	if (bargs) {
4403 		memset(bargs, 0, sizeof(*bargs));
4404 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4405 	}
4406 
4407 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4408 	    balance_need_close(fs_info)) {
4409 		reset_balance_state(fs_info);
4410 		btrfs_exclop_finish(fs_info);
4411 	}
4412 
4413 	wake_up(&fs_info->balance_wait_q);
4414 
4415 	return ret;
4416 out:
4417 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4418 		reset_balance_state(fs_info);
4419 	else
4420 		kfree(bctl);
4421 	btrfs_exclop_finish(fs_info);
4422 
4423 	return ret;
4424 }
4425 
balance_kthread(void * data)4426 static int balance_kthread(void *data)
4427 {
4428 	struct btrfs_fs_info *fs_info = data;
4429 	int ret = 0;
4430 
4431 	sb_start_write(fs_info->sb);
4432 	mutex_lock(&fs_info->balance_mutex);
4433 	if (fs_info->balance_ctl)
4434 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4435 	mutex_unlock(&fs_info->balance_mutex);
4436 	sb_end_write(fs_info->sb);
4437 
4438 	return ret;
4439 }
4440 
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4441 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4442 {
4443 	struct task_struct *tsk;
4444 
4445 	mutex_lock(&fs_info->balance_mutex);
4446 	if (!fs_info->balance_ctl) {
4447 		mutex_unlock(&fs_info->balance_mutex);
4448 		return 0;
4449 	}
4450 	mutex_unlock(&fs_info->balance_mutex);
4451 
4452 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4453 		btrfs_info(fs_info, "balance: resume skipped");
4454 		return 0;
4455 	}
4456 
4457 	spin_lock(&fs_info->super_lock);
4458 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4459 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4460 	spin_unlock(&fs_info->super_lock);
4461 	/*
4462 	 * A ro->rw remount sequence should continue with the paused balance
4463 	 * regardless of who pauses it, system or the user as of now, so set
4464 	 * the resume flag.
4465 	 */
4466 	spin_lock(&fs_info->balance_lock);
4467 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4468 	spin_unlock(&fs_info->balance_lock);
4469 
4470 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4471 	return PTR_ERR_OR_ZERO(tsk);
4472 }
4473 
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4474 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4475 {
4476 	struct btrfs_balance_control *bctl;
4477 	struct btrfs_balance_item *item;
4478 	struct btrfs_disk_balance_args disk_bargs;
4479 	struct btrfs_path *path;
4480 	struct extent_buffer *leaf;
4481 	struct btrfs_key key;
4482 	int ret;
4483 
4484 	path = btrfs_alloc_path();
4485 	if (!path)
4486 		return -ENOMEM;
4487 
4488 	key.objectid = BTRFS_BALANCE_OBJECTID;
4489 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4490 	key.offset = 0;
4491 
4492 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4493 	if (ret < 0)
4494 		goto out;
4495 	if (ret > 0) { /* ret = -ENOENT; */
4496 		ret = 0;
4497 		goto out;
4498 	}
4499 
4500 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4501 	if (!bctl) {
4502 		ret = -ENOMEM;
4503 		goto out;
4504 	}
4505 
4506 	leaf = path->nodes[0];
4507 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4508 
4509 	bctl->flags = btrfs_balance_flags(leaf, item);
4510 	bctl->flags |= BTRFS_BALANCE_RESUME;
4511 
4512 	btrfs_balance_data(leaf, item, &disk_bargs);
4513 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4514 	btrfs_balance_meta(leaf, item, &disk_bargs);
4515 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4516 	btrfs_balance_sys(leaf, item, &disk_bargs);
4517 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4518 
4519 	/*
4520 	 * This should never happen, as the paused balance state is recovered
4521 	 * during mount without any chance of other exclusive ops to collide.
4522 	 *
4523 	 * This gives the exclusive op status to balance and keeps in paused
4524 	 * state until user intervention (cancel or umount). If the ownership
4525 	 * cannot be assigned, show a message but do not fail. The balance
4526 	 * is in a paused state and must have fs_info::balance_ctl properly
4527 	 * set up.
4528 	 */
4529 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4530 		btrfs_warn(fs_info,
4531 	"balance: cannot set exclusive op status, resume manually");
4532 
4533 	btrfs_release_path(path);
4534 
4535 	mutex_lock(&fs_info->balance_mutex);
4536 	BUG_ON(fs_info->balance_ctl);
4537 	spin_lock(&fs_info->balance_lock);
4538 	fs_info->balance_ctl = bctl;
4539 	spin_unlock(&fs_info->balance_lock);
4540 	mutex_unlock(&fs_info->balance_mutex);
4541 out:
4542 	btrfs_free_path(path);
4543 	return ret;
4544 }
4545 
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4546 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4547 {
4548 	int ret = 0;
4549 
4550 	mutex_lock(&fs_info->balance_mutex);
4551 	if (!fs_info->balance_ctl) {
4552 		mutex_unlock(&fs_info->balance_mutex);
4553 		return -ENOTCONN;
4554 	}
4555 
4556 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4557 		atomic_inc(&fs_info->balance_pause_req);
4558 		mutex_unlock(&fs_info->balance_mutex);
4559 
4560 		wait_event(fs_info->balance_wait_q,
4561 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4562 
4563 		mutex_lock(&fs_info->balance_mutex);
4564 		/* we are good with balance_ctl ripped off from under us */
4565 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4566 		atomic_dec(&fs_info->balance_pause_req);
4567 	} else {
4568 		ret = -ENOTCONN;
4569 	}
4570 
4571 	mutex_unlock(&fs_info->balance_mutex);
4572 	return ret;
4573 }
4574 
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4575 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4576 {
4577 	mutex_lock(&fs_info->balance_mutex);
4578 	if (!fs_info->balance_ctl) {
4579 		mutex_unlock(&fs_info->balance_mutex);
4580 		return -ENOTCONN;
4581 	}
4582 
4583 	/*
4584 	 * A paused balance with the item stored on disk can be resumed at
4585 	 * mount time if the mount is read-write. Otherwise it's still paused
4586 	 * and we must not allow cancelling as it deletes the item.
4587 	 */
4588 	if (sb_rdonly(fs_info->sb)) {
4589 		mutex_unlock(&fs_info->balance_mutex);
4590 		return -EROFS;
4591 	}
4592 
4593 	atomic_inc(&fs_info->balance_cancel_req);
4594 	/*
4595 	 * if we are running just wait and return, balance item is
4596 	 * deleted in btrfs_balance in this case
4597 	 */
4598 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4599 		mutex_unlock(&fs_info->balance_mutex);
4600 		wait_event(fs_info->balance_wait_q,
4601 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4602 		mutex_lock(&fs_info->balance_mutex);
4603 	} else {
4604 		mutex_unlock(&fs_info->balance_mutex);
4605 		/*
4606 		 * Lock released to allow other waiters to continue, we'll
4607 		 * reexamine the status again.
4608 		 */
4609 		mutex_lock(&fs_info->balance_mutex);
4610 
4611 		if (fs_info->balance_ctl) {
4612 			reset_balance_state(fs_info);
4613 			btrfs_exclop_finish(fs_info);
4614 			btrfs_info(fs_info, "balance: canceled");
4615 		}
4616 	}
4617 
4618 	BUG_ON(fs_info->balance_ctl ||
4619 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4620 	atomic_dec(&fs_info->balance_cancel_req);
4621 	mutex_unlock(&fs_info->balance_mutex);
4622 	return 0;
4623 }
4624 
btrfs_uuid_scan_kthread(void * data)4625 int btrfs_uuid_scan_kthread(void *data)
4626 {
4627 	struct btrfs_fs_info *fs_info = data;
4628 	struct btrfs_root *root = fs_info->tree_root;
4629 	struct btrfs_key key;
4630 	struct btrfs_path *path = NULL;
4631 	int ret = 0;
4632 	struct extent_buffer *eb;
4633 	int slot;
4634 	struct btrfs_root_item root_item;
4635 	u32 item_size;
4636 	struct btrfs_trans_handle *trans = NULL;
4637 	bool closing = false;
4638 
4639 	path = btrfs_alloc_path();
4640 	if (!path) {
4641 		ret = -ENOMEM;
4642 		goto out;
4643 	}
4644 
4645 	key.objectid = 0;
4646 	key.type = BTRFS_ROOT_ITEM_KEY;
4647 	key.offset = 0;
4648 
4649 	while (1) {
4650 		if (btrfs_fs_closing(fs_info)) {
4651 			closing = true;
4652 			break;
4653 		}
4654 		ret = btrfs_search_forward(root, &key, path,
4655 				BTRFS_OLDEST_GENERATION);
4656 		if (ret) {
4657 			if (ret > 0)
4658 				ret = 0;
4659 			break;
4660 		}
4661 
4662 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4663 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4664 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4665 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4666 			goto skip;
4667 
4668 		eb = path->nodes[0];
4669 		slot = path->slots[0];
4670 		item_size = btrfs_item_size(eb, slot);
4671 		if (item_size < sizeof(root_item))
4672 			goto skip;
4673 
4674 		read_extent_buffer(eb, &root_item,
4675 				   btrfs_item_ptr_offset(eb, slot),
4676 				   (int)sizeof(root_item));
4677 		if (btrfs_root_refs(&root_item) == 0)
4678 			goto skip;
4679 
4680 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4681 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4682 			if (trans)
4683 				goto update_tree;
4684 
4685 			btrfs_release_path(path);
4686 			/*
4687 			 * 1 - subvol uuid item
4688 			 * 1 - received_subvol uuid item
4689 			 */
4690 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4691 			if (IS_ERR(trans)) {
4692 				ret = PTR_ERR(trans);
4693 				break;
4694 			}
4695 			continue;
4696 		} else {
4697 			goto skip;
4698 		}
4699 update_tree:
4700 		btrfs_release_path(path);
4701 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4702 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4703 						  BTRFS_UUID_KEY_SUBVOL,
4704 						  key.objectid);
4705 			if (ret < 0) {
4706 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4707 					ret);
4708 				break;
4709 			}
4710 		}
4711 
4712 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4713 			ret = btrfs_uuid_tree_add(trans,
4714 						  root_item.received_uuid,
4715 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4716 						  key.objectid);
4717 			if (ret < 0) {
4718 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4719 					ret);
4720 				break;
4721 			}
4722 		}
4723 
4724 skip:
4725 		btrfs_release_path(path);
4726 		if (trans) {
4727 			ret = btrfs_end_transaction(trans);
4728 			trans = NULL;
4729 			if (ret)
4730 				break;
4731 		}
4732 
4733 		if (key.offset < (u64)-1) {
4734 			key.offset++;
4735 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4736 			key.offset = 0;
4737 			key.type = BTRFS_ROOT_ITEM_KEY;
4738 		} else if (key.objectid < (u64)-1) {
4739 			key.offset = 0;
4740 			key.type = BTRFS_ROOT_ITEM_KEY;
4741 			key.objectid++;
4742 		} else {
4743 			break;
4744 		}
4745 		cond_resched();
4746 	}
4747 
4748 out:
4749 	btrfs_free_path(path);
4750 	if (trans && !IS_ERR(trans))
4751 		btrfs_end_transaction(trans);
4752 	if (ret)
4753 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4754 	else if (!closing)
4755 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4756 	up(&fs_info->uuid_tree_rescan_sem);
4757 	return 0;
4758 }
4759 
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4760 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4761 {
4762 	struct btrfs_trans_handle *trans;
4763 	struct btrfs_root *tree_root = fs_info->tree_root;
4764 	struct btrfs_root *uuid_root;
4765 	struct task_struct *task;
4766 	int ret;
4767 
4768 	/*
4769 	 * 1 - root node
4770 	 * 1 - root item
4771 	 */
4772 	trans = btrfs_start_transaction(tree_root, 2);
4773 	if (IS_ERR(trans))
4774 		return PTR_ERR(trans);
4775 
4776 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4777 	if (IS_ERR(uuid_root)) {
4778 		ret = PTR_ERR(uuid_root);
4779 		btrfs_abort_transaction(trans, ret);
4780 		btrfs_end_transaction(trans);
4781 		return ret;
4782 	}
4783 
4784 	fs_info->uuid_root = uuid_root;
4785 
4786 	ret = btrfs_commit_transaction(trans);
4787 	if (ret)
4788 		return ret;
4789 
4790 	down(&fs_info->uuid_tree_rescan_sem);
4791 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4792 	if (IS_ERR(task)) {
4793 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4794 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4795 		up(&fs_info->uuid_tree_rescan_sem);
4796 		return PTR_ERR(task);
4797 	}
4798 
4799 	return 0;
4800 }
4801 
4802 /*
4803  * shrinking a device means finding all of the device extents past
4804  * the new size, and then following the back refs to the chunks.
4805  * The chunk relocation code actually frees the device extent
4806  */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4807 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4808 {
4809 	struct btrfs_fs_info *fs_info = device->fs_info;
4810 	struct btrfs_root *root = fs_info->dev_root;
4811 	struct btrfs_trans_handle *trans;
4812 	struct btrfs_dev_extent *dev_extent = NULL;
4813 	struct btrfs_path *path;
4814 	u64 length;
4815 	u64 chunk_offset;
4816 	int ret;
4817 	int slot;
4818 	int failed = 0;
4819 	bool retried = false;
4820 	struct extent_buffer *l;
4821 	struct btrfs_key key;
4822 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4823 	u64 old_total = btrfs_super_total_bytes(super_copy);
4824 	u64 old_size = btrfs_device_get_total_bytes(device);
4825 	u64 diff;
4826 	u64 start;
4827 
4828 	new_size = round_down(new_size, fs_info->sectorsize);
4829 	start = new_size;
4830 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4831 
4832 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4833 		return -EINVAL;
4834 
4835 	path = btrfs_alloc_path();
4836 	if (!path)
4837 		return -ENOMEM;
4838 
4839 	path->reada = READA_BACK;
4840 
4841 	trans = btrfs_start_transaction(root, 0);
4842 	if (IS_ERR(trans)) {
4843 		btrfs_free_path(path);
4844 		return PTR_ERR(trans);
4845 	}
4846 
4847 	mutex_lock(&fs_info->chunk_mutex);
4848 
4849 	btrfs_device_set_total_bytes(device, new_size);
4850 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4851 		device->fs_devices->total_rw_bytes -= diff;
4852 		atomic64_sub(diff, &fs_info->free_chunk_space);
4853 	}
4854 
4855 	/*
4856 	 * Once the device's size has been set to the new size, ensure all
4857 	 * in-memory chunks are synced to disk so that the loop below sees them
4858 	 * and relocates them accordingly.
4859 	 */
4860 	if (contains_pending_extent(device, &start, diff)) {
4861 		mutex_unlock(&fs_info->chunk_mutex);
4862 		ret = btrfs_commit_transaction(trans);
4863 		if (ret)
4864 			goto done;
4865 	} else {
4866 		mutex_unlock(&fs_info->chunk_mutex);
4867 		btrfs_end_transaction(trans);
4868 	}
4869 
4870 again:
4871 	key.objectid = device->devid;
4872 	key.offset = (u64)-1;
4873 	key.type = BTRFS_DEV_EXTENT_KEY;
4874 
4875 	do {
4876 		mutex_lock(&fs_info->reclaim_bgs_lock);
4877 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4878 		if (ret < 0) {
4879 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4880 			goto done;
4881 		}
4882 
4883 		ret = btrfs_previous_item(root, path, 0, key.type);
4884 		if (ret) {
4885 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 			if (ret < 0)
4887 				goto done;
4888 			ret = 0;
4889 			btrfs_release_path(path);
4890 			break;
4891 		}
4892 
4893 		l = path->nodes[0];
4894 		slot = path->slots[0];
4895 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4896 
4897 		if (key.objectid != device->devid) {
4898 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4899 			btrfs_release_path(path);
4900 			break;
4901 		}
4902 
4903 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4904 		length = btrfs_dev_extent_length(l, dev_extent);
4905 
4906 		if (key.offset + length <= new_size) {
4907 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4908 			btrfs_release_path(path);
4909 			break;
4910 		}
4911 
4912 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4913 		btrfs_release_path(path);
4914 
4915 		/*
4916 		 * We may be relocating the only data chunk we have,
4917 		 * which could potentially end up with losing data's
4918 		 * raid profile, so lets allocate an empty one in
4919 		 * advance.
4920 		 */
4921 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4922 		if (ret < 0) {
4923 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4924 			goto done;
4925 		}
4926 
4927 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4928 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4929 		if (ret == -ENOSPC) {
4930 			failed++;
4931 		} else if (ret) {
4932 			if (ret == -ETXTBSY) {
4933 				btrfs_warn(fs_info,
4934 		   "could not shrink block group %llu due to active swapfile",
4935 					   chunk_offset);
4936 			}
4937 			goto done;
4938 		}
4939 	} while (key.offset-- > 0);
4940 
4941 	if (failed && !retried) {
4942 		failed = 0;
4943 		retried = true;
4944 		goto again;
4945 	} else if (failed && retried) {
4946 		ret = -ENOSPC;
4947 		goto done;
4948 	}
4949 
4950 	/* Shrinking succeeded, else we would be at "done". */
4951 	trans = btrfs_start_transaction(root, 0);
4952 	if (IS_ERR(trans)) {
4953 		ret = PTR_ERR(trans);
4954 		goto done;
4955 	}
4956 
4957 	mutex_lock(&fs_info->chunk_mutex);
4958 	/* Clear all state bits beyond the shrunk device size */
4959 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4960 			  CHUNK_STATE_MASK);
4961 
4962 	btrfs_device_set_disk_total_bytes(device, new_size);
4963 	if (list_empty(&device->post_commit_list))
4964 		list_add_tail(&device->post_commit_list,
4965 			      &trans->transaction->dev_update_list);
4966 
4967 	WARN_ON(diff > old_total);
4968 	btrfs_set_super_total_bytes(super_copy,
4969 			round_down(old_total - diff, fs_info->sectorsize));
4970 	mutex_unlock(&fs_info->chunk_mutex);
4971 
4972 	btrfs_reserve_chunk_metadata(trans, false);
4973 	/* Now btrfs_update_device() will change the on-disk size. */
4974 	ret = btrfs_update_device(trans, device);
4975 	btrfs_trans_release_chunk_metadata(trans);
4976 	if (ret < 0) {
4977 		btrfs_abort_transaction(trans, ret);
4978 		btrfs_end_transaction(trans);
4979 	} else {
4980 		ret = btrfs_commit_transaction(trans);
4981 	}
4982 done:
4983 	btrfs_free_path(path);
4984 	if (ret) {
4985 		mutex_lock(&fs_info->chunk_mutex);
4986 		btrfs_device_set_total_bytes(device, old_size);
4987 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4988 			device->fs_devices->total_rw_bytes += diff;
4989 		atomic64_add(diff, &fs_info->free_chunk_space);
4990 		mutex_unlock(&fs_info->chunk_mutex);
4991 	}
4992 	return ret;
4993 }
4994 
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4995 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4996 			   struct btrfs_key *key,
4997 			   struct btrfs_chunk *chunk, int item_size)
4998 {
4999 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5000 	struct btrfs_disk_key disk_key;
5001 	u32 array_size;
5002 	u8 *ptr;
5003 
5004 	lockdep_assert_held(&fs_info->chunk_mutex);
5005 
5006 	array_size = btrfs_super_sys_array_size(super_copy);
5007 	if (array_size + item_size + sizeof(disk_key)
5008 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5009 		return -EFBIG;
5010 
5011 	ptr = super_copy->sys_chunk_array + array_size;
5012 	btrfs_cpu_key_to_disk(&disk_key, key);
5013 	memcpy(ptr, &disk_key, sizeof(disk_key));
5014 	ptr += sizeof(disk_key);
5015 	memcpy(ptr, chunk, item_size);
5016 	item_size += sizeof(disk_key);
5017 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5018 
5019 	return 0;
5020 }
5021 
5022 /*
5023  * sort the devices in descending order by max_avail, total_avail
5024  */
btrfs_cmp_device_info(const void * a,const void * b)5025 static int btrfs_cmp_device_info(const void *a, const void *b)
5026 {
5027 	const struct btrfs_device_info *di_a = a;
5028 	const struct btrfs_device_info *di_b = b;
5029 
5030 	if (di_a->max_avail > di_b->max_avail)
5031 		return -1;
5032 	if (di_a->max_avail < di_b->max_avail)
5033 		return 1;
5034 	if (di_a->total_avail > di_b->total_avail)
5035 		return -1;
5036 	if (di_a->total_avail < di_b->total_avail)
5037 		return 1;
5038 	return 0;
5039 }
5040 
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5041 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5042 {
5043 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5044 		return;
5045 
5046 	btrfs_set_fs_incompat(info, RAID56);
5047 }
5048 
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5049 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5050 {
5051 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5052 		return;
5053 
5054 	btrfs_set_fs_incompat(info, RAID1C34);
5055 }
5056 
5057 /*
5058  * Structure used internally for btrfs_create_chunk() function.
5059  * Wraps needed parameters.
5060  */
5061 struct alloc_chunk_ctl {
5062 	u64 start;
5063 	u64 type;
5064 	/* Total number of stripes to allocate */
5065 	int num_stripes;
5066 	/* sub_stripes info for map */
5067 	int sub_stripes;
5068 	/* Stripes per device */
5069 	int dev_stripes;
5070 	/* Maximum number of devices to use */
5071 	int devs_max;
5072 	/* Minimum number of devices to use */
5073 	int devs_min;
5074 	/* ndevs has to be a multiple of this */
5075 	int devs_increment;
5076 	/* Number of copies */
5077 	int ncopies;
5078 	/* Number of stripes worth of bytes to store parity information */
5079 	int nparity;
5080 	u64 max_stripe_size;
5081 	u64 max_chunk_size;
5082 	u64 dev_extent_min;
5083 	u64 stripe_size;
5084 	u64 chunk_size;
5085 	int ndevs;
5086 };
5087 
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5088 static void init_alloc_chunk_ctl_policy_regular(
5089 				struct btrfs_fs_devices *fs_devices,
5090 				struct alloc_chunk_ctl *ctl)
5091 {
5092 	struct btrfs_space_info *space_info;
5093 
5094 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5095 	ASSERT(space_info);
5096 
5097 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5098 	ctl->max_stripe_size = ctl->max_chunk_size;
5099 
5100 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5101 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5102 
5103 	/* We don't want a chunk larger than 10% of writable space */
5104 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5105 				  ctl->max_chunk_size);
5106 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5107 }
5108 
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5109 static void init_alloc_chunk_ctl_policy_zoned(
5110 				      struct btrfs_fs_devices *fs_devices,
5111 				      struct alloc_chunk_ctl *ctl)
5112 {
5113 	u64 zone_size = fs_devices->fs_info->zone_size;
5114 	u64 limit;
5115 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5116 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5117 	u64 min_chunk_size = min_data_stripes * zone_size;
5118 	u64 type = ctl->type;
5119 
5120 	ctl->max_stripe_size = zone_size;
5121 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5122 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5123 						 zone_size);
5124 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5125 		ctl->max_chunk_size = ctl->max_stripe_size;
5126 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5127 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5128 		ctl->devs_max = min_t(int, ctl->devs_max,
5129 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5130 	} else {
5131 		BUG();
5132 	}
5133 
5134 	/* We don't want a chunk larger than 10% of writable space */
5135 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5136 			       zone_size),
5137 		    min_chunk_size);
5138 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5139 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5140 }
5141 
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5142 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5143 				 struct alloc_chunk_ctl *ctl)
5144 {
5145 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5146 
5147 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5148 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5149 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5150 	if (!ctl->devs_max)
5151 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5152 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5153 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5154 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5155 	ctl->nparity = btrfs_raid_array[index].nparity;
5156 	ctl->ndevs = 0;
5157 
5158 	switch (fs_devices->chunk_alloc_policy) {
5159 	case BTRFS_CHUNK_ALLOC_REGULAR:
5160 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5161 		break;
5162 	case BTRFS_CHUNK_ALLOC_ZONED:
5163 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5164 		break;
5165 	default:
5166 		BUG();
5167 	}
5168 }
5169 
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5170 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5171 			      struct alloc_chunk_ctl *ctl,
5172 			      struct btrfs_device_info *devices_info)
5173 {
5174 	struct btrfs_fs_info *info = fs_devices->fs_info;
5175 	struct btrfs_device *device;
5176 	u64 total_avail;
5177 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5178 	int ret;
5179 	int ndevs = 0;
5180 	u64 max_avail;
5181 	u64 dev_offset;
5182 
5183 	/*
5184 	 * in the first pass through the devices list, we gather information
5185 	 * about the available holes on each device.
5186 	 */
5187 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5188 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5189 			WARN(1, KERN_ERR
5190 			       "BTRFS: read-only device in alloc_list\n");
5191 			continue;
5192 		}
5193 
5194 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5195 					&device->dev_state) ||
5196 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5197 			continue;
5198 
5199 		if (device->total_bytes > device->bytes_used)
5200 			total_avail = device->total_bytes - device->bytes_used;
5201 		else
5202 			total_avail = 0;
5203 
5204 		/* If there is no space on this device, skip it. */
5205 		if (total_avail < ctl->dev_extent_min)
5206 			continue;
5207 
5208 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5209 					   &max_avail);
5210 		if (ret && ret != -ENOSPC)
5211 			return ret;
5212 
5213 		if (ret == 0)
5214 			max_avail = dev_extent_want;
5215 
5216 		if (max_avail < ctl->dev_extent_min) {
5217 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5218 				btrfs_debug(info,
5219 			"%s: devid %llu has no free space, have=%llu want=%llu",
5220 					    __func__, device->devid, max_avail,
5221 					    ctl->dev_extent_min);
5222 			continue;
5223 		}
5224 
5225 		if (ndevs == fs_devices->rw_devices) {
5226 			WARN(1, "%s: found more than %llu devices\n",
5227 			     __func__, fs_devices->rw_devices);
5228 			break;
5229 		}
5230 		devices_info[ndevs].dev_offset = dev_offset;
5231 		devices_info[ndevs].max_avail = max_avail;
5232 		devices_info[ndevs].total_avail = total_avail;
5233 		devices_info[ndevs].dev = device;
5234 		++ndevs;
5235 	}
5236 	ctl->ndevs = ndevs;
5237 
5238 	/*
5239 	 * now sort the devices by hole size / available space
5240 	 */
5241 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5242 	     btrfs_cmp_device_info, NULL);
5243 
5244 	return 0;
5245 }
5246 
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5247 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5248 				      struct btrfs_device_info *devices_info)
5249 {
5250 	/* Number of stripes that count for block group size */
5251 	int data_stripes;
5252 
5253 	/*
5254 	 * The primary goal is to maximize the number of stripes, so use as
5255 	 * many devices as possible, even if the stripes are not maximum sized.
5256 	 *
5257 	 * The DUP profile stores more than one stripe per device, the
5258 	 * max_avail is the total size so we have to adjust.
5259 	 */
5260 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5261 				   ctl->dev_stripes);
5262 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5263 
5264 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5265 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5266 
5267 	/*
5268 	 * Use the number of data stripes to figure out how big this chunk is
5269 	 * really going to be in terms of logical address space, and compare
5270 	 * that answer with the max chunk size. If it's higher, we try to
5271 	 * reduce stripe_size.
5272 	 */
5273 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5274 		/*
5275 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5276 		 * then use it, unless it ends up being even bigger than the
5277 		 * previous value we had already.
5278 		 */
5279 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5280 							data_stripes), SZ_16M),
5281 				       ctl->stripe_size);
5282 	}
5283 
5284 	/* Stripe size should not go beyond 1G. */
5285 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5286 
5287 	/* Align to BTRFS_STRIPE_LEN */
5288 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5289 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5290 
5291 	return 0;
5292 }
5293 
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5294 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5295 				    struct btrfs_device_info *devices_info)
5296 {
5297 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5298 	/* Number of stripes that count for block group size */
5299 	int data_stripes;
5300 
5301 	/*
5302 	 * It should hold because:
5303 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5304 	 */
5305 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5306 
5307 	ctl->stripe_size = zone_size;
5308 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5309 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5310 
5311 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5312 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5313 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5314 					     ctl->stripe_size) + ctl->nparity,
5315 				     ctl->dev_stripes);
5316 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5317 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5318 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5319 	}
5320 
5321 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5322 
5323 	return 0;
5324 }
5325 
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5326 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5327 			      struct alloc_chunk_ctl *ctl,
5328 			      struct btrfs_device_info *devices_info)
5329 {
5330 	struct btrfs_fs_info *info = fs_devices->fs_info;
5331 
5332 	/*
5333 	 * Round down to number of usable stripes, devs_increment can be any
5334 	 * number so we can't use round_down() that requires power of 2, while
5335 	 * rounddown is safe.
5336 	 */
5337 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5338 
5339 	if (ctl->ndevs < ctl->devs_min) {
5340 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5341 			btrfs_debug(info,
5342 	"%s: not enough devices with free space: have=%d minimum required=%d",
5343 				    __func__, ctl->ndevs, ctl->devs_min);
5344 		}
5345 		return -ENOSPC;
5346 	}
5347 
5348 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5349 
5350 	switch (fs_devices->chunk_alloc_policy) {
5351 	case BTRFS_CHUNK_ALLOC_REGULAR:
5352 		return decide_stripe_size_regular(ctl, devices_info);
5353 	case BTRFS_CHUNK_ALLOC_ZONED:
5354 		return decide_stripe_size_zoned(ctl, devices_info);
5355 	default:
5356 		BUG();
5357 	}
5358 }
5359 
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5360 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5361 			struct alloc_chunk_ctl *ctl,
5362 			struct btrfs_device_info *devices_info)
5363 {
5364 	struct btrfs_fs_info *info = trans->fs_info;
5365 	struct map_lookup *map = NULL;
5366 	struct extent_map_tree *em_tree;
5367 	struct btrfs_block_group *block_group;
5368 	struct extent_map *em;
5369 	u64 start = ctl->start;
5370 	u64 type = ctl->type;
5371 	int ret;
5372 	int i;
5373 	int j;
5374 
5375 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5376 	if (!map)
5377 		return ERR_PTR(-ENOMEM);
5378 	map->num_stripes = ctl->num_stripes;
5379 
5380 	for (i = 0; i < ctl->ndevs; ++i) {
5381 		for (j = 0; j < ctl->dev_stripes; ++j) {
5382 			int s = i * ctl->dev_stripes + j;
5383 			map->stripes[s].dev = devices_info[i].dev;
5384 			map->stripes[s].physical = devices_info[i].dev_offset +
5385 						   j * ctl->stripe_size;
5386 		}
5387 	}
5388 	map->stripe_len = BTRFS_STRIPE_LEN;
5389 	map->io_align = BTRFS_STRIPE_LEN;
5390 	map->io_width = BTRFS_STRIPE_LEN;
5391 	map->type = type;
5392 	map->sub_stripes = ctl->sub_stripes;
5393 
5394 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5395 
5396 	em = alloc_extent_map();
5397 	if (!em) {
5398 		kfree(map);
5399 		return ERR_PTR(-ENOMEM);
5400 	}
5401 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5402 	em->map_lookup = map;
5403 	em->start = start;
5404 	em->len = ctl->chunk_size;
5405 	em->block_start = 0;
5406 	em->block_len = em->len;
5407 	em->orig_block_len = ctl->stripe_size;
5408 
5409 	em_tree = &info->mapping_tree;
5410 	write_lock(&em_tree->lock);
5411 	ret = add_extent_mapping(em_tree, em, 0);
5412 	if (ret) {
5413 		write_unlock(&em_tree->lock);
5414 		free_extent_map(em);
5415 		return ERR_PTR(ret);
5416 	}
5417 	write_unlock(&em_tree->lock);
5418 
5419 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5420 	if (IS_ERR(block_group))
5421 		goto error_del_extent;
5422 
5423 	for (i = 0; i < map->num_stripes; i++) {
5424 		struct btrfs_device *dev = map->stripes[i].dev;
5425 
5426 		btrfs_device_set_bytes_used(dev,
5427 					    dev->bytes_used + ctl->stripe_size);
5428 		if (list_empty(&dev->post_commit_list))
5429 			list_add_tail(&dev->post_commit_list,
5430 				      &trans->transaction->dev_update_list);
5431 	}
5432 
5433 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5434 		     &info->free_chunk_space);
5435 
5436 	free_extent_map(em);
5437 	check_raid56_incompat_flag(info, type);
5438 	check_raid1c34_incompat_flag(info, type);
5439 
5440 	return block_group;
5441 
5442 error_del_extent:
5443 	write_lock(&em_tree->lock);
5444 	remove_extent_mapping(em_tree, em);
5445 	write_unlock(&em_tree->lock);
5446 
5447 	/* One for our allocation */
5448 	free_extent_map(em);
5449 	/* One for the tree reference */
5450 	free_extent_map(em);
5451 
5452 	return block_group;
5453 }
5454 
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5455 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5456 					    u64 type)
5457 {
5458 	struct btrfs_fs_info *info = trans->fs_info;
5459 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5460 	struct btrfs_device_info *devices_info = NULL;
5461 	struct alloc_chunk_ctl ctl;
5462 	struct btrfs_block_group *block_group;
5463 	int ret;
5464 
5465 	lockdep_assert_held(&info->chunk_mutex);
5466 
5467 	if (!alloc_profile_is_valid(type, 0)) {
5468 		ASSERT(0);
5469 		return ERR_PTR(-EINVAL);
5470 	}
5471 
5472 	if (list_empty(&fs_devices->alloc_list)) {
5473 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5474 			btrfs_debug(info, "%s: no writable device", __func__);
5475 		return ERR_PTR(-ENOSPC);
5476 	}
5477 
5478 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5479 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5480 		ASSERT(0);
5481 		return ERR_PTR(-EINVAL);
5482 	}
5483 
5484 	ctl.start = find_next_chunk(info);
5485 	ctl.type = type;
5486 	init_alloc_chunk_ctl(fs_devices, &ctl);
5487 
5488 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5489 			       GFP_NOFS);
5490 	if (!devices_info)
5491 		return ERR_PTR(-ENOMEM);
5492 
5493 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5494 	if (ret < 0) {
5495 		block_group = ERR_PTR(ret);
5496 		goto out;
5497 	}
5498 
5499 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5500 	if (ret < 0) {
5501 		block_group = ERR_PTR(ret);
5502 		goto out;
5503 	}
5504 
5505 	block_group = create_chunk(trans, &ctl, devices_info);
5506 
5507 out:
5508 	kfree(devices_info);
5509 	return block_group;
5510 }
5511 
5512 /*
5513  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5514  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5515  * chunks.
5516  *
5517  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5518  * phases.
5519  */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5520 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5521 				     struct btrfs_block_group *bg)
5522 {
5523 	struct btrfs_fs_info *fs_info = trans->fs_info;
5524 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5525 	struct btrfs_key key;
5526 	struct btrfs_chunk *chunk;
5527 	struct btrfs_stripe *stripe;
5528 	struct extent_map *em;
5529 	struct map_lookup *map;
5530 	size_t item_size;
5531 	int i;
5532 	int ret;
5533 
5534 	/*
5535 	 * We take the chunk_mutex for 2 reasons:
5536 	 *
5537 	 * 1) Updates and insertions in the chunk btree must be done while holding
5538 	 *    the chunk_mutex, as well as updating the system chunk array in the
5539 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5540 	 *    details;
5541 	 *
5542 	 * 2) To prevent races with the final phase of a device replace operation
5543 	 *    that replaces the device object associated with the map's stripes,
5544 	 *    because the device object's id can change at any time during that
5545 	 *    final phase of the device replace operation
5546 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5547 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5548 	 *    which would cause a failure when updating the device item, which does
5549 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5550 	 *    Here we can't use the device_list_mutex because our caller already
5551 	 *    has locked the chunk_mutex, and the final phase of device replace
5552 	 *    acquires both mutexes - first the device_list_mutex and then the
5553 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5554 	 *    concurrent device replace.
5555 	 */
5556 	lockdep_assert_held(&fs_info->chunk_mutex);
5557 
5558 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5559 	if (IS_ERR(em)) {
5560 		ret = PTR_ERR(em);
5561 		btrfs_abort_transaction(trans, ret);
5562 		return ret;
5563 	}
5564 
5565 	map = em->map_lookup;
5566 	item_size = btrfs_chunk_item_size(map->num_stripes);
5567 
5568 	chunk = kzalloc(item_size, GFP_NOFS);
5569 	if (!chunk) {
5570 		ret = -ENOMEM;
5571 		btrfs_abort_transaction(trans, ret);
5572 		goto out;
5573 	}
5574 
5575 	for (i = 0; i < map->num_stripes; i++) {
5576 		struct btrfs_device *device = map->stripes[i].dev;
5577 
5578 		ret = btrfs_update_device(trans, device);
5579 		if (ret)
5580 			goto out;
5581 	}
5582 
5583 	stripe = &chunk->stripe;
5584 	for (i = 0; i < map->num_stripes; i++) {
5585 		struct btrfs_device *device = map->stripes[i].dev;
5586 		const u64 dev_offset = map->stripes[i].physical;
5587 
5588 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5589 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5590 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5591 		stripe++;
5592 	}
5593 
5594 	btrfs_set_stack_chunk_length(chunk, bg->length);
5595 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5596 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5597 	btrfs_set_stack_chunk_type(chunk, map->type);
5598 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5599 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5600 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5601 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5602 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5603 
5604 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5605 	key.type = BTRFS_CHUNK_ITEM_KEY;
5606 	key.offset = bg->start;
5607 
5608 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5609 	if (ret)
5610 		goto out;
5611 
5612 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5613 
5614 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5615 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5616 		if (ret)
5617 			goto out;
5618 	}
5619 
5620 out:
5621 	kfree(chunk);
5622 	free_extent_map(em);
5623 	return ret;
5624 }
5625 
init_first_rw_device(struct btrfs_trans_handle * trans)5626 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5627 {
5628 	struct btrfs_fs_info *fs_info = trans->fs_info;
5629 	u64 alloc_profile;
5630 	struct btrfs_block_group *meta_bg;
5631 	struct btrfs_block_group *sys_bg;
5632 
5633 	/*
5634 	 * When adding a new device for sprouting, the seed device is read-only
5635 	 * so we must first allocate a metadata and a system chunk. But before
5636 	 * adding the block group items to the extent, device and chunk btrees,
5637 	 * we must first:
5638 	 *
5639 	 * 1) Create both chunks without doing any changes to the btrees, as
5640 	 *    otherwise we would get -ENOSPC since the block groups from the
5641 	 *    seed device are read-only;
5642 	 *
5643 	 * 2) Add the device item for the new sprout device - finishing the setup
5644 	 *    of a new block group requires updating the device item in the chunk
5645 	 *    btree, so it must exist when we attempt to do it. The previous step
5646 	 *    ensures this does not fail with -ENOSPC.
5647 	 *
5648 	 * After that we can add the block group items to their btrees:
5649 	 * update existing device item in the chunk btree, add a new block group
5650 	 * item to the extent btree, add a new chunk item to the chunk btree and
5651 	 * finally add the new device extent items to the devices btree.
5652 	 */
5653 
5654 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5655 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5656 	if (IS_ERR(meta_bg))
5657 		return PTR_ERR(meta_bg);
5658 
5659 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5660 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5661 	if (IS_ERR(sys_bg))
5662 		return PTR_ERR(sys_bg);
5663 
5664 	return 0;
5665 }
5666 
btrfs_chunk_max_errors(struct map_lookup * map)5667 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5668 {
5669 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5670 
5671 	return btrfs_raid_array[index].tolerated_failures;
5672 }
5673 
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5674 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5675 {
5676 	struct extent_map *em;
5677 	struct map_lookup *map;
5678 	int miss_ndevs = 0;
5679 	int i;
5680 	bool ret = true;
5681 
5682 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5683 	if (IS_ERR(em))
5684 		return false;
5685 
5686 	map = em->map_lookup;
5687 	for (i = 0; i < map->num_stripes; i++) {
5688 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5689 					&map->stripes[i].dev->dev_state)) {
5690 			miss_ndevs++;
5691 			continue;
5692 		}
5693 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5694 					&map->stripes[i].dev->dev_state)) {
5695 			ret = false;
5696 			goto end;
5697 		}
5698 	}
5699 
5700 	/*
5701 	 * If the number of missing devices is larger than max errors, we can
5702 	 * not write the data into that chunk successfully.
5703 	 */
5704 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5705 		ret = false;
5706 end:
5707 	free_extent_map(em);
5708 	return ret;
5709 }
5710 
btrfs_mapping_tree_free(struct extent_map_tree * tree)5711 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5712 {
5713 	struct extent_map *em;
5714 
5715 	while (1) {
5716 		write_lock(&tree->lock);
5717 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5718 		if (em)
5719 			remove_extent_mapping(tree, em);
5720 		write_unlock(&tree->lock);
5721 		if (!em)
5722 			break;
5723 		/* once for us */
5724 		free_extent_map(em);
5725 		/* once for the tree */
5726 		free_extent_map(em);
5727 	}
5728 }
5729 
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5730 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5731 {
5732 	struct extent_map *em;
5733 	struct map_lookup *map;
5734 	enum btrfs_raid_types index;
5735 	int ret = 1;
5736 
5737 	em = btrfs_get_chunk_map(fs_info, logical, len);
5738 	if (IS_ERR(em))
5739 		/*
5740 		 * We could return errors for these cases, but that could get
5741 		 * ugly and we'd probably do the same thing which is just not do
5742 		 * anything else and exit, so return 1 so the callers don't try
5743 		 * to use other copies.
5744 		 */
5745 		return 1;
5746 
5747 	map = em->map_lookup;
5748 	index = btrfs_bg_flags_to_raid_index(map->type);
5749 
5750 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5751 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5752 		ret = btrfs_raid_array[index].ncopies;
5753 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5754 		ret = 2;
5755 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5756 		/*
5757 		 * There could be two corrupted data stripes, we need
5758 		 * to loop retry in order to rebuild the correct data.
5759 		 *
5760 		 * Fail a stripe at a time on every retry except the
5761 		 * stripe under reconstruction.
5762 		 */
5763 		ret = map->num_stripes;
5764 	free_extent_map(em);
5765 
5766 	down_read(&fs_info->dev_replace.rwsem);
5767 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5768 	    fs_info->dev_replace.tgtdev)
5769 		ret++;
5770 	up_read(&fs_info->dev_replace.rwsem);
5771 
5772 	return ret;
5773 }
5774 
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5775 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5776 				    u64 logical)
5777 {
5778 	struct extent_map *em;
5779 	struct map_lookup *map;
5780 	unsigned long len = fs_info->sectorsize;
5781 
5782 	if (!btrfs_fs_incompat(fs_info, RAID56))
5783 		return len;
5784 
5785 	em = btrfs_get_chunk_map(fs_info, logical, len);
5786 
5787 	if (!WARN_ON(IS_ERR(em))) {
5788 		map = em->map_lookup;
5789 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5790 			len = map->stripe_len * nr_data_stripes(map);
5791 		free_extent_map(em);
5792 	}
5793 	return len;
5794 }
5795 
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5796 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5797 {
5798 	struct extent_map *em;
5799 	struct map_lookup *map;
5800 	int ret = 0;
5801 
5802 	if (!btrfs_fs_incompat(fs_info, RAID56))
5803 		return 0;
5804 
5805 	em = btrfs_get_chunk_map(fs_info, logical, len);
5806 
5807 	if(!WARN_ON(IS_ERR(em))) {
5808 		map = em->map_lookup;
5809 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5810 			ret = 1;
5811 		free_extent_map(em);
5812 	}
5813 	return ret;
5814 }
5815 
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5816 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5817 			    struct map_lookup *map, int first,
5818 			    int dev_replace_is_ongoing)
5819 {
5820 	int i;
5821 	int num_stripes;
5822 	int preferred_mirror;
5823 	int tolerance;
5824 	struct btrfs_device *srcdev;
5825 
5826 	ASSERT((map->type &
5827 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5828 
5829 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5830 		num_stripes = map->sub_stripes;
5831 	else
5832 		num_stripes = map->num_stripes;
5833 
5834 	switch (fs_info->fs_devices->read_policy) {
5835 	default:
5836 		/* Shouldn't happen, just warn and use pid instead of failing */
5837 		btrfs_warn_rl(fs_info,
5838 			      "unknown read_policy type %u, reset to pid",
5839 			      fs_info->fs_devices->read_policy);
5840 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5841 		fallthrough;
5842 	case BTRFS_READ_POLICY_PID:
5843 		preferred_mirror = first + (current->pid % num_stripes);
5844 		break;
5845 	}
5846 
5847 	if (dev_replace_is_ongoing &&
5848 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5849 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5850 		srcdev = fs_info->dev_replace.srcdev;
5851 	else
5852 		srcdev = NULL;
5853 
5854 	/*
5855 	 * try to avoid the drive that is the source drive for a
5856 	 * dev-replace procedure, only choose it if no other non-missing
5857 	 * mirror is available
5858 	 */
5859 	for (tolerance = 0; tolerance < 2; tolerance++) {
5860 		if (map->stripes[preferred_mirror].dev->bdev &&
5861 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5862 			return preferred_mirror;
5863 		for (i = first; i < first + num_stripes; i++) {
5864 			if (map->stripes[i].dev->bdev &&
5865 			    (tolerance || map->stripes[i].dev != srcdev))
5866 				return i;
5867 		}
5868 	}
5869 
5870 	/* we couldn't find one that doesn't fail.  Just return something
5871 	 * and the io error handling code will clean up eventually
5872 	 */
5873 	return preferred_mirror;
5874 }
5875 
5876 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_io_context * bioc,int num_stripes)5877 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5878 {
5879 	int i;
5880 	int again = 1;
5881 
5882 	while (again) {
5883 		again = 0;
5884 		for (i = 0; i < num_stripes - 1; i++) {
5885 			/* Swap if parity is on a smaller index */
5886 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5887 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5888 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5889 				again = 1;
5890 			}
5891 		}
5892 	}
5893 }
5894 
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,int total_stripes,int real_stripes)5895 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5896 						       int total_stripes,
5897 						       int real_stripes)
5898 {
5899 	struct btrfs_io_context *bioc = kzalloc(
5900 		 /* The size of btrfs_io_context */
5901 		sizeof(struct btrfs_io_context) +
5902 		/* Plus the variable array for the stripes */
5903 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5904 		/* Plus the variable array for the tgt dev */
5905 		sizeof(int) * (real_stripes) +
5906 		/*
5907 		 * Plus the raid_map, which includes both the tgt dev
5908 		 * and the stripes.
5909 		 */
5910 		sizeof(u64) * (total_stripes),
5911 		GFP_NOFS|__GFP_NOFAIL);
5912 
5913 	refcount_set(&bioc->refs, 1);
5914 
5915 	bioc->fs_info = fs_info;
5916 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5917 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5918 
5919 	return bioc;
5920 }
5921 
btrfs_get_bioc(struct btrfs_io_context * bioc)5922 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5923 {
5924 	WARN_ON(!refcount_read(&bioc->refs));
5925 	refcount_inc(&bioc->refs);
5926 }
5927 
btrfs_put_bioc(struct btrfs_io_context * bioc)5928 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5929 {
5930 	if (!bioc)
5931 		return;
5932 	if (refcount_dec_and_test(&bioc->refs))
5933 		kfree(bioc);
5934 }
5935 
5936 /*
5937  * Please note that, discard won't be sent to target device of device
5938  * replace.
5939  */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)5940 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5941 					       u64 logical, u64 *length_ret,
5942 					       u32 *num_stripes)
5943 {
5944 	struct extent_map *em;
5945 	struct map_lookup *map;
5946 	struct btrfs_discard_stripe *stripes;
5947 	u64 length = *length_ret;
5948 	u64 offset;
5949 	u64 stripe_nr;
5950 	u64 stripe_nr_end;
5951 	u64 stripe_end_offset;
5952 	u64 stripe_cnt;
5953 	u64 stripe_len;
5954 	u64 stripe_offset;
5955 	u32 stripe_index;
5956 	u32 factor = 0;
5957 	u32 sub_stripes = 0;
5958 	u64 stripes_per_dev = 0;
5959 	u32 remaining_stripes = 0;
5960 	u32 last_stripe = 0;
5961 	int ret;
5962 	int i;
5963 
5964 	em = btrfs_get_chunk_map(fs_info, logical, length);
5965 	if (IS_ERR(em))
5966 		return ERR_CAST(em);
5967 
5968 	map = em->map_lookup;
5969 
5970 	/* we don't discard raid56 yet */
5971 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5972 		ret = -EOPNOTSUPP;
5973 		goto out_free_map;
5974 }
5975 
5976 	offset = logical - em->start;
5977 	length = min_t(u64, em->start + em->len - logical, length);
5978 	*length_ret = length;
5979 
5980 	stripe_len = map->stripe_len;
5981 	/*
5982 	 * stripe_nr counts the total number of stripes we have to stride
5983 	 * to get to this block
5984 	 */
5985 	stripe_nr = div64_u64(offset, stripe_len);
5986 
5987 	/* stripe_offset is the offset of this block in its stripe */
5988 	stripe_offset = offset - stripe_nr * stripe_len;
5989 
5990 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5991 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5992 	stripe_cnt = stripe_nr_end - stripe_nr;
5993 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5994 			    (offset + length);
5995 	/*
5996 	 * after this, stripe_nr is the number of stripes on this
5997 	 * device we have to walk to find the data, and stripe_index is
5998 	 * the number of our device in the stripe array
5999 	 */
6000 	*num_stripes = 1;
6001 	stripe_index = 0;
6002 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6003 			 BTRFS_BLOCK_GROUP_RAID10)) {
6004 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6005 			sub_stripes = 1;
6006 		else
6007 			sub_stripes = map->sub_stripes;
6008 
6009 		factor = map->num_stripes / sub_stripes;
6010 		*num_stripes = min_t(u64, map->num_stripes,
6011 				    sub_stripes * stripe_cnt);
6012 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6013 		stripe_index *= sub_stripes;
6014 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6015 					      &remaining_stripes);
6016 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6017 		last_stripe *= sub_stripes;
6018 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6019 				BTRFS_BLOCK_GROUP_DUP)) {
6020 		*num_stripes = map->num_stripes;
6021 	} else {
6022 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6023 					&stripe_index);
6024 	}
6025 
6026 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6027 	if (!stripes) {
6028 		ret = -ENOMEM;
6029 		goto out_free_map;
6030 	}
6031 
6032 	for (i = 0; i < *num_stripes; i++) {
6033 		stripes[i].physical =
6034 			map->stripes[stripe_index].physical +
6035 			stripe_offset + stripe_nr * map->stripe_len;
6036 		stripes[i].dev = map->stripes[stripe_index].dev;
6037 
6038 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6039 				 BTRFS_BLOCK_GROUP_RAID10)) {
6040 			stripes[i].length = stripes_per_dev * map->stripe_len;
6041 
6042 			if (i / sub_stripes < remaining_stripes)
6043 				stripes[i].length += map->stripe_len;
6044 
6045 			/*
6046 			 * Special for the first stripe and
6047 			 * the last stripe:
6048 			 *
6049 			 * |-------|...|-------|
6050 			 *     |----------|
6051 			 *    off     end_off
6052 			 */
6053 			if (i < sub_stripes)
6054 				stripes[i].length -= stripe_offset;
6055 
6056 			if (stripe_index >= last_stripe &&
6057 			    stripe_index <= (last_stripe +
6058 					     sub_stripes - 1))
6059 				stripes[i].length -= stripe_end_offset;
6060 
6061 			if (i == sub_stripes - 1)
6062 				stripe_offset = 0;
6063 		} else {
6064 			stripes[i].length = length;
6065 		}
6066 
6067 		stripe_index++;
6068 		if (stripe_index == map->num_stripes) {
6069 			stripe_index = 0;
6070 			stripe_nr++;
6071 		}
6072 	}
6073 
6074 	free_extent_map(em);
6075 	return stripes;
6076 out_free_map:
6077 	free_extent_map(em);
6078 	return ERR_PTR(ret);
6079 }
6080 
6081 /*
6082  * In dev-replace case, for repair case (that's the only case where the mirror
6083  * is selected explicitly when calling btrfs_map_block), blocks left of the
6084  * left cursor can also be read from the target drive.
6085  *
6086  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6087  * array of stripes.
6088  * For READ, it also needs to be supported using the same mirror number.
6089  *
6090  * If the requested block is not left of the left cursor, EIO is returned. This
6091  * can happen because btrfs_num_copies() returns one more in the dev-replace
6092  * case.
6093  */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)6094 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6095 					 u64 logical, u64 length,
6096 					 u64 srcdev_devid, int *mirror_num,
6097 					 u64 *physical)
6098 {
6099 	struct btrfs_io_context *bioc = NULL;
6100 	int num_stripes;
6101 	int index_srcdev = 0;
6102 	int found = 0;
6103 	u64 physical_of_found = 0;
6104 	int i;
6105 	int ret = 0;
6106 
6107 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6108 				logical, &length, &bioc, NULL, NULL, 0);
6109 	if (ret) {
6110 		ASSERT(bioc == NULL);
6111 		return ret;
6112 	}
6113 
6114 	num_stripes = bioc->num_stripes;
6115 	if (*mirror_num > num_stripes) {
6116 		/*
6117 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6118 		 * that means that the requested area is not left of the left
6119 		 * cursor
6120 		 */
6121 		btrfs_put_bioc(bioc);
6122 		return -EIO;
6123 	}
6124 
6125 	/*
6126 	 * process the rest of the function using the mirror_num of the source
6127 	 * drive. Therefore look it up first.  At the end, patch the device
6128 	 * pointer to the one of the target drive.
6129 	 */
6130 	for (i = 0; i < num_stripes; i++) {
6131 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6132 			continue;
6133 
6134 		/*
6135 		 * In case of DUP, in order to keep it simple, only add the
6136 		 * mirror with the lowest physical address
6137 		 */
6138 		if (found &&
6139 		    physical_of_found <= bioc->stripes[i].physical)
6140 			continue;
6141 
6142 		index_srcdev = i;
6143 		found = 1;
6144 		physical_of_found = bioc->stripes[i].physical;
6145 	}
6146 
6147 	btrfs_put_bioc(bioc);
6148 
6149 	ASSERT(found);
6150 	if (!found)
6151 		return -EIO;
6152 
6153 	*mirror_num = index_srcdev + 1;
6154 	*physical = physical_of_found;
6155 	return ret;
6156 }
6157 
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6158 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6159 {
6160 	struct btrfs_block_group *cache;
6161 	bool ret;
6162 
6163 	/* Non zoned filesystem does not use "to_copy" flag */
6164 	if (!btrfs_is_zoned(fs_info))
6165 		return false;
6166 
6167 	cache = btrfs_lookup_block_group(fs_info, logical);
6168 
6169 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6170 
6171 	btrfs_put_block_group(cache);
6172 	return ret;
6173 }
6174 
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_io_context ** bioc_ret,struct btrfs_dev_replace * dev_replace,u64 logical,int * num_stripes_ret,int * max_errors_ret)6175 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6176 				      struct btrfs_io_context **bioc_ret,
6177 				      struct btrfs_dev_replace *dev_replace,
6178 				      u64 logical,
6179 				      int *num_stripes_ret, int *max_errors_ret)
6180 {
6181 	struct btrfs_io_context *bioc = *bioc_ret;
6182 	u64 srcdev_devid = dev_replace->srcdev->devid;
6183 	int tgtdev_indexes = 0;
6184 	int num_stripes = *num_stripes_ret;
6185 	int max_errors = *max_errors_ret;
6186 	int i;
6187 
6188 	if (op == BTRFS_MAP_WRITE) {
6189 		int index_where_to_add;
6190 
6191 		/*
6192 		 * A block group which have "to_copy" set will eventually
6193 		 * copied by dev-replace process. We can avoid cloning IO here.
6194 		 */
6195 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6196 			return;
6197 
6198 		/*
6199 		 * duplicate the write operations while the dev replace
6200 		 * procedure is running. Since the copying of the old disk to
6201 		 * the new disk takes place at run time while the filesystem is
6202 		 * mounted writable, the regular write operations to the old
6203 		 * disk have to be duplicated to go to the new disk as well.
6204 		 *
6205 		 * Note that device->missing is handled by the caller, and that
6206 		 * the write to the old disk is already set up in the stripes
6207 		 * array.
6208 		 */
6209 		index_where_to_add = num_stripes;
6210 		for (i = 0; i < num_stripes; i++) {
6211 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6212 				/* write to new disk, too */
6213 				struct btrfs_io_stripe *new =
6214 					bioc->stripes + index_where_to_add;
6215 				struct btrfs_io_stripe *old =
6216 					bioc->stripes + i;
6217 
6218 				new->physical = old->physical;
6219 				new->dev = dev_replace->tgtdev;
6220 				bioc->tgtdev_map[i] = index_where_to_add;
6221 				index_where_to_add++;
6222 				max_errors++;
6223 				tgtdev_indexes++;
6224 			}
6225 		}
6226 		num_stripes = index_where_to_add;
6227 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6228 		int index_srcdev = 0;
6229 		int found = 0;
6230 		u64 physical_of_found = 0;
6231 
6232 		/*
6233 		 * During the dev-replace procedure, the target drive can also
6234 		 * be used to read data in case it is needed to repair a corrupt
6235 		 * block elsewhere. This is possible if the requested area is
6236 		 * left of the left cursor. In this area, the target drive is a
6237 		 * full copy of the source drive.
6238 		 */
6239 		for (i = 0; i < num_stripes; i++) {
6240 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6241 				/*
6242 				 * In case of DUP, in order to keep it simple,
6243 				 * only add the mirror with the lowest physical
6244 				 * address
6245 				 */
6246 				if (found &&
6247 				    physical_of_found <= bioc->stripes[i].physical)
6248 					continue;
6249 				index_srcdev = i;
6250 				found = 1;
6251 				physical_of_found = bioc->stripes[i].physical;
6252 			}
6253 		}
6254 		if (found) {
6255 			struct btrfs_io_stripe *tgtdev_stripe =
6256 				bioc->stripes + num_stripes;
6257 
6258 			tgtdev_stripe->physical = physical_of_found;
6259 			tgtdev_stripe->dev = dev_replace->tgtdev;
6260 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6261 
6262 			tgtdev_indexes++;
6263 			num_stripes++;
6264 		}
6265 	}
6266 
6267 	*num_stripes_ret = num_stripes;
6268 	*max_errors_ret = max_errors;
6269 	bioc->num_tgtdevs = tgtdev_indexes;
6270 	*bioc_ret = bioc;
6271 }
6272 
need_full_stripe(enum btrfs_map_op op)6273 static bool need_full_stripe(enum btrfs_map_op op)
6274 {
6275 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6276 }
6277 
6278 /*
6279  * Calculate the geometry of a particular (address, len) tuple. This
6280  * information is used to calculate how big a particular bio can get before it
6281  * straddles a stripe.
6282  *
6283  * @fs_info: the filesystem
6284  * @em:      mapping containing the logical extent
6285  * @op:      type of operation - write or read
6286  * @logical: address that we want to figure out the geometry of
6287  * @io_geom: pointer used to return values
6288  *
6289  * Returns < 0 in case a chunk for the given logical address cannot be found,
6290  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6291  */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,struct extent_map * em,enum btrfs_map_op op,u64 logical,struct btrfs_io_geometry * io_geom)6292 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6293 			  enum btrfs_map_op op, u64 logical,
6294 			  struct btrfs_io_geometry *io_geom)
6295 {
6296 	struct map_lookup *map;
6297 	u64 len;
6298 	u64 offset;
6299 	u64 stripe_offset;
6300 	u64 stripe_nr;
6301 	u32 stripe_len;
6302 	u64 raid56_full_stripe_start = (u64)-1;
6303 	int data_stripes;
6304 
6305 	ASSERT(op != BTRFS_MAP_DISCARD);
6306 
6307 	map = em->map_lookup;
6308 	/* Offset of this logical address in the chunk */
6309 	offset = logical - em->start;
6310 	/* Len of a stripe in a chunk */
6311 	stripe_len = map->stripe_len;
6312 	/*
6313 	 * Stripe_nr is where this block falls in
6314 	 * stripe_offset is the offset of this block in its stripe.
6315 	 */
6316 	stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6317 	ASSERT(stripe_offset < U32_MAX);
6318 
6319 	data_stripes = nr_data_stripes(map);
6320 
6321 	/* Only stripe based profiles needs to check against stripe length. */
6322 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6323 		u64 max_len = stripe_len - stripe_offset;
6324 
6325 		/*
6326 		 * In case of raid56, we need to know the stripe aligned start
6327 		 */
6328 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6329 			unsigned long full_stripe_len = stripe_len * data_stripes;
6330 			raid56_full_stripe_start = offset;
6331 
6332 			/*
6333 			 * Allow a write of a full stripe, but make sure we
6334 			 * don't allow straddling of stripes
6335 			 */
6336 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6337 					full_stripe_len);
6338 			raid56_full_stripe_start *= full_stripe_len;
6339 
6340 			/*
6341 			 * For writes to RAID[56], allow a full stripeset across
6342 			 * all disks. For other RAID types and for RAID[56]
6343 			 * reads, just allow a single stripe (on a single disk).
6344 			 */
6345 			if (op == BTRFS_MAP_WRITE) {
6346 				max_len = stripe_len * data_stripes -
6347 					  (offset - raid56_full_stripe_start);
6348 			}
6349 		}
6350 		len = min_t(u64, em->len - offset, max_len);
6351 	} else {
6352 		len = em->len - offset;
6353 	}
6354 
6355 	io_geom->len = len;
6356 	io_geom->offset = offset;
6357 	io_geom->stripe_len = stripe_len;
6358 	io_geom->stripe_nr = stripe_nr;
6359 	io_geom->stripe_offset = stripe_offset;
6360 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6361 
6362 	return 0;
6363 }
6364 
set_io_stripe(struct btrfs_io_stripe * dst,const struct map_lookup * map,u32 stripe_index,u64 stripe_offset,u64 stripe_nr)6365 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6366 		          u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6367 {
6368 	dst->dev = map->stripes[stripe_index].dev;
6369 	dst->physical = map->stripes[stripe_index].physical +
6370 			stripe_offset + stripe_nr * map->stripe_len;
6371 }
6372 
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret,int need_raid_map)6373 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6374 			     enum btrfs_map_op op, u64 logical, u64 *length,
6375 			     struct btrfs_io_context **bioc_ret,
6376 			     struct btrfs_io_stripe *smap,
6377 			     int *mirror_num_ret, int need_raid_map)
6378 {
6379 	struct extent_map *em;
6380 	struct map_lookup *map;
6381 	u64 stripe_offset;
6382 	u64 stripe_nr;
6383 	u64 stripe_len;
6384 	u32 stripe_index;
6385 	int data_stripes;
6386 	int i;
6387 	int ret = 0;
6388 	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6389 	int num_stripes;
6390 	int max_errors = 0;
6391 	int tgtdev_indexes = 0;
6392 	struct btrfs_io_context *bioc = NULL;
6393 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6394 	int dev_replace_is_ongoing = 0;
6395 	int num_alloc_stripes;
6396 	int patch_the_first_stripe_for_dev_replace = 0;
6397 	u64 physical_to_patch_in_first_stripe = 0;
6398 	u64 raid56_full_stripe_start = (u64)-1;
6399 	struct btrfs_io_geometry geom;
6400 
6401 	ASSERT(bioc_ret);
6402 	ASSERT(op != BTRFS_MAP_DISCARD);
6403 
6404 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6405 	ASSERT(!IS_ERR(em));
6406 
6407 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6408 	if (ret < 0)
6409 		return ret;
6410 
6411 	map = em->map_lookup;
6412 
6413 	*length = geom.len;
6414 	stripe_len = geom.stripe_len;
6415 	stripe_nr = geom.stripe_nr;
6416 	stripe_offset = geom.stripe_offset;
6417 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6418 	data_stripes = nr_data_stripes(map);
6419 
6420 	down_read(&dev_replace->rwsem);
6421 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6422 	/*
6423 	 * Hold the semaphore for read during the whole operation, write is
6424 	 * requested at commit time but must wait.
6425 	 */
6426 	if (!dev_replace_is_ongoing)
6427 		up_read(&dev_replace->rwsem);
6428 
6429 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6430 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6431 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6432 						    dev_replace->srcdev->devid,
6433 						    &mirror_num,
6434 					    &physical_to_patch_in_first_stripe);
6435 		if (ret)
6436 			goto out;
6437 		else
6438 			patch_the_first_stripe_for_dev_replace = 1;
6439 	} else if (mirror_num > map->num_stripes) {
6440 		mirror_num = 0;
6441 	}
6442 
6443 	num_stripes = 1;
6444 	stripe_index = 0;
6445 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6446 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6447 				&stripe_index);
6448 		if (!need_full_stripe(op))
6449 			mirror_num = 1;
6450 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6451 		if (need_full_stripe(op))
6452 			num_stripes = map->num_stripes;
6453 		else if (mirror_num)
6454 			stripe_index = mirror_num - 1;
6455 		else {
6456 			stripe_index = find_live_mirror(fs_info, map, 0,
6457 					    dev_replace_is_ongoing);
6458 			mirror_num = stripe_index + 1;
6459 		}
6460 
6461 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6462 		if (need_full_stripe(op)) {
6463 			num_stripes = map->num_stripes;
6464 		} else if (mirror_num) {
6465 			stripe_index = mirror_num - 1;
6466 		} else {
6467 			mirror_num = 1;
6468 		}
6469 
6470 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6471 		u32 factor = map->num_stripes / map->sub_stripes;
6472 
6473 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6474 		stripe_index *= map->sub_stripes;
6475 
6476 		if (need_full_stripe(op))
6477 			num_stripes = map->sub_stripes;
6478 		else if (mirror_num)
6479 			stripe_index += mirror_num - 1;
6480 		else {
6481 			int old_stripe_index = stripe_index;
6482 			stripe_index = find_live_mirror(fs_info, map,
6483 					      stripe_index,
6484 					      dev_replace_is_ongoing);
6485 			mirror_num = stripe_index - old_stripe_index + 1;
6486 		}
6487 
6488 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6489 		ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6490 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6491 			/* push stripe_nr back to the start of the full stripe */
6492 			stripe_nr = div64_u64(raid56_full_stripe_start,
6493 					stripe_len * data_stripes);
6494 
6495 			/* RAID[56] write or recovery. Return all stripes */
6496 			num_stripes = map->num_stripes;
6497 			max_errors = btrfs_chunk_max_errors(map);
6498 
6499 			/* Return the length to the full stripe end */
6500 			*length = min(logical + *length,
6501 				      raid56_full_stripe_start + em->start +
6502 				      data_stripes * stripe_len) - logical;
6503 			stripe_index = 0;
6504 			stripe_offset = 0;
6505 		} else {
6506 			/*
6507 			 * Mirror #0 or #1 means the original data block.
6508 			 * Mirror #2 is RAID5 parity block.
6509 			 * Mirror #3 is RAID6 Q block.
6510 			 */
6511 			stripe_nr = div_u64_rem(stripe_nr,
6512 					data_stripes, &stripe_index);
6513 			if (mirror_num > 1)
6514 				stripe_index = data_stripes + mirror_num - 2;
6515 
6516 			/* We distribute the parity blocks across stripes */
6517 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6518 					&stripe_index);
6519 			if (!need_full_stripe(op) && mirror_num <= 1)
6520 				mirror_num = 1;
6521 		}
6522 	} else {
6523 		/*
6524 		 * after this, stripe_nr is the number of stripes on this
6525 		 * device we have to walk to find the data, and stripe_index is
6526 		 * the number of our device in the stripe array
6527 		 */
6528 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6529 				&stripe_index);
6530 		mirror_num = stripe_index + 1;
6531 	}
6532 	if (stripe_index >= map->num_stripes) {
6533 		btrfs_crit(fs_info,
6534 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6535 			   stripe_index, map->num_stripes);
6536 		ret = -EINVAL;
6537 		goto out;
6538 	}
6539 
6540 	num_alloc_stripes = num_stripes;
6541 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6542 		if (op == BTRFS_MAP_WRITE)
6543 			num_alloc_stripes <<= 1;
6544 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6545 			num_alloc_stripes++;
6546 		tgtdev_indexes = num_stripes;
6547 	}
6548 
6549 	/*
6550 	 * If this I/O maps to a single device, try to return the device and
6551 	 * physical block information on the stack instead of allocating an
6552 	 * I/O context structure.
6553 	 */
6554 	if (smap && num_alloc_stripes == 1 &&
6555 	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6556 	    (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6557 	     !dev_replace->tgtdev)) {
6558 		if (patch_the_first_stripe_for_dev_replace) {
6559 			smap->dev = dev_replace->tgtdev;
6560 			smap->physical = physical_to_patch_in_first_stripe;
6561 			*mirror_num_ret = map->num_stripes + 1;
6562 		} else {
6563 			set_io_stripe(smap, map, stripe_index, stripe_offset,
6564 				      stripe_nr);
6565 			*mirror_num_ret = mirror_num;
6566 		}
6567 		*bioc_ret = NULL;
6568 		ret = 0;
6569 		goto out;
6570 	}
6571 
6572 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6573 	if (!bioc) {
6574 		ret = -ENOMEM;
6575 		goto out;
6576 	}
6577 
6578 	for (i = 0; i < num_stripes; i++) {
6579 		set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6580 			      stripe_nr);
6581 		stripe_index++;
6582 	}
6583 
6584 	/* Build raid_map */
6585 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6586 	    (need_full_stripe(op) || mirror_num > 1)) {
6587 		u64 tmp;
6588 		unsigned rot;
6589 
6590 		/* Work out the disk rotation on this stripe-set */
6591 		div_u64_rem(stripe_nr, num_stripes, &rot);
6592 
6593 		/* Fill in the logical address of each stripe */
6594 		tmp = stripe_nr * data_stripes;
6595 		for (i = 0; i < data_stripes; i++)
6596 			bioc->raid_map[(i + rot) % num_stripes] =
6597 				em->start + (tmp + i) * map->stripe_len;
6598 
6599 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6600 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6601 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6602 				RAID6_Q_STRIPE;
6603 
6604 		sort_parity_stripes(bioc, num_stripes);
6605 	}
6606 
6607 	if (need_full_stripe(op))
6608 		max_errors = btrfs_chunk_max_errors(map);
6609 
6610 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6611 	    need_full_stripe(op)) {
6612 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6613 					  &num_stripes, &max_errors);
6614 	}
6615 
6616 	*bioc_ret = bioc;
6617 	bioc->map_type = map->type;
6618 	bioc->num_stripes = num_stripes;
6619 	bioc->max_errors = max_errors;
6620 	bioc->mirror_num = mirror_num;
6621 
6622 	/*
6623 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6624 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6625 	 * available as a mirror
6626 	 */
6627 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6628 		WARN_ON(num_stripes > 1);
6629 		bioc->stripes[0].dev = dev_replace->tgtdev;
6630 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6631 		bioc->mirror_num = map->num_stripes + 1;
6632 	}
6633 out:
6634 	if (dev_replace_is_ongoing) {
6635 		lockdep_assert_held(&dev_replace->rwsem);
6636 		/* Unlock and let waiting writers proceed */
6637 		up_read(&dev_replace->rwsem);
6638 	}
6639 	free_extent_map(em);
6640 	return ret;
6641 }
6642 
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,int mirror_num)6643 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6644 		      u64 logical, u64 *length,
6645 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6646 {
6647 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6648 				 NULL, &mirror_num, 0);
6649 }
6650 
6651 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret)6652 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653 		     u64 logical, u64 *length,
6654 		     struct btrfs_io_context **bioc_ret)
6655 {
6656 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657 				 NULL, NULL, 1);
6658 }
6659 
6660 /*
6661  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
6662  * is already initialized by the block layer.
6663  */
btrfs_bio_init(struct btrfs_bio * bbio,btrfs_bio_end_io_t end_io,void * private)6664 static inline void btrfs_bio_init(struct btrfs_bio *bbio,
6665 				  btrfs_bio_end_io_t end_io, void *private)
6666 {
6667 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
6668 	bbio->end_io = end_io;
6669 	bbio->private = private;
6670 }
6671 
6672 /*
6673  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
6674  * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
6675  *
6676  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
6677  * a mempool.
6678  */
btrfs_bio_alloc(unsigned int nr_vecs,blk_opf_t opf,btrfs_bio_end_io_t end_io,void * private)6679 struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
6680 			    btrfs_bio_end_io_t end_io, void *private)
6681 {
6682 	struct bio *bio;
6683 
6684 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
6685 	btrfs_bio_init(btrfs_bio(bio), end_io, private);
6686 	return bio;
6687 }
6688 
btrfs_bio_clone_partial(struct bio * orig,u64 offset,u64 size,btrfs_bio_end_io_t end_io,void * private)6689 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size,
6690 				    btrfs_bio_end_io_t end_io, void *private)
6691 {
6692 	struct bio *bio;
6693 	struct btrfs_bio *bbio;
6694 
6695 	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
6696 
6697 	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
6698 	bbio = btrfs_bio(bio);
6699 	btrfs_bio_init(bbio, end_io, private);
6700 
6701 	bio_trim(bio, offset >> 9, size >> 9);
6702 	bbio->iter = bio->bi_iter;
6703 	return bio;
6704 }
6705 
btrfs_log_dev_io_error(struct bio * bio,struct btrfs_device * dev)6706 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
6707 {
6708 	if (!dev || !dev->bdev)
6709 		return;
6710 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
6711 		return;
6712 
6713 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6714 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
6715 	if (!(bio->bi_opf & REQ_RAHEAD))
6716 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
6717 	if (bio->bi_opf & REQ_PREFLUSH)
6718 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
6719 }
6720 
btrfs_end_io_wq(struct btrfs_fs_info * fs_info,struct bio * bio)6721 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
6722 						struct bio *bio)
6723 {
6724 	if (bio->bi_opf & REQ_META)
6725 		return fs_info->endio_meta_workers;
6726 	return fs_info->endio_workers;
6727 }
6728 
btrfs_end_bio_work(struct work_struct * work)6729 static void btrfs_end_bio_work(struct work_struct *work)
6730 {
6731 	struct btrfs_bio *bbio =
6732 		container_of(work, struct btrfs_bio, end_io_work);
6733 
6734 	bbio->end_io(bbio);
6735 }
6736 
btrfs_simple_end_io(struct bio * bio)6737 static void btrfs_simple_end_io(struct bio *bio)
6738 {
6739 	struct btrfs_fs_info *fs_info = bio->bi_private;
6740 	struct btrfs_bio *bbio = btrfs_bio(bio);
6741 
6742 	btrfs_bio_counter_dec(fs_info);
6743 
6744 	if (bio->bi_status)
6745 		btrfs_log_dev_io_error(bio, bbio->device);
6746 
6747 	if (bio_op(bio) == REQ_OP_READ) {
6748 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
6749 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
6750 	} else {
6751 		bbio->end_io(bbio);
6752 	}
6753 }
6754 
btrfs_raid56_end_io(struct bio * bio)6755 static void btrfs_raid56_end_io(struct bio *bio)
6756 {
6757 	struct btrfs_io_context *bioc = bio->bi_private;
6758 	struct btrfs_bio *bbio = btrfs_bio(bio);
6759 
6760 	btrfs_bio_counter_dec(bioc->fs_info);
6761 	bbio->mirror_num = bioc->mirror_num;
6762 	bbio->end_io(bbio);
6763 
6764 	btrfs_put_bioc(bioc);
6765 }
6766 
btrfs_orig_write_end_io(struct bio * bio)6767 static void btrfs_orig_write_end_io(struct bio *bio)
6768 {
6769 	struct btrfs_io_stripe *stripe = bio->bi_private;
6770 	struct btrfs_io_context *bioc = stripe->bioc;
6771 	struct btrfs_bio *bbio = btrfs_bio(bio);
6772 
6773 	btrfs_bio_counter_dec(bioc->fs_info);
6774 
6775 	if (bio->bi_status) {
6776 		atomic_inc(&bioc->error);
6777 		btrfs_log_dev_io_error(bio, stripe->dev);
6778 	}
6779 
6780 	/*
6781 	 * Only send an error to the higher layers if it is beyond the tolerance
6782 	 * threshold.
6783 	 */
6784 	if (atomic_read(&bioc->error) > bioc->max_errors)
6785 		bio->bi_status = BLK_STS_IOERR;
6786 	else
6787 		bio->bi_status = BLK_STS_OK;
6788 
6789 	bbio->end_io(bbio);
6790 	btrfs_put_bioc(bioc);
6791 }
6792 
btrfs_clone_write_end_io(struct bio * bio)6793 static void btrfs_clone_write_end_io(struct bio *bio)
6794 {
6795 	struct btrfs_io_stripe *stripe = bio->bi_private;
6796 
6797 	if (bio->bi_status) {
6798 		atomic_inc(&stripe->bioc->error);
6799 		btrfs_log_dev_io_error(bio, stripe->dev);
6800 	}
6801 
6802 	/* Pass on control to the original bio this one was cloned from */
6803 	bio_endio(stripe->bioc->orig_bio);
6804 	bio_put(bio);
6805 }
6806 
btrfs_submit_dev_bio(struct btrfs_device * dev,struct bio * bio)6807 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
6808 {
6809 	if (!dev || !dev->bdev ||
6810 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6811 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
6812 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6813 		bio_io_error(bio);
6814 		return;
6815 	}
6816 
6817 	bio_set_dev(bio, dev->bdev);
6818 
6819 	/*
6820 	 * For zone append writing, bi_sector must point the beginning of the
6821 	 * zone
6822 	 */
6823 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6824 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
6825 
6826 		if (btrfs_dev_is_sequential(dev, physical)) {
6827 			u64 zone_start = round_down(physical,
6828 						    dev->fs_info->zone_size);
6829 
6830 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6831 		} else {
6832 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6833 			bio->bi_opf |= REQ_OP_WRITE;
6834 		}
6835 	}
6836 	btrfs_debug_in_rcu(dev->fs_info,
6837 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6838 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6839 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6840 		dev->devid, bio->bi_iter.bi_size);
6841 
6842 	btrfsic_check_bio(bio);
6843 	submit_bio(bio);
6844 }
6845 
btrfs_submit_mirrored_bio(struct btrfs_io_context * bioc,int dev_nr)6846 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
6847 {
6848 	struct bio *orig_bio = bioc->orig_bio, *bio;
6849 
6850 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
6851 
6852 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
6853 	if (dev_nr == bioc->num_stripes - 1) {
6854 		bio = orig_bio;
6855 		bio->bi_end_io = btrfs_orig_write_end_io;
6856 	} else {
6857 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
6858 		bio_inc_remaining(orig_bio);
6859 		bio->bi_end_io = btrfs_clone_write_end_io;
6860 	}
6861 
6862 	bio->bi_private = &bioc->stripes[dev_nr];
6863 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
6864 	bioc->stripes[dev_nr].bioc = bioc;
6865 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
6866 }
6867 
btrfs_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num)6868 void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num)
6869 {
6870 	u64 logical = bio->bi_iter.bi_sector << 9;
6871 	u64 length = bio->bi_iter.bi_size;
6872 	u64 map_length = length;
6873 	struct btrfs_io_context *bioc = NULL;
6874 	struct btrfs_io_stripe smap;
6875 	int ret;
6876 
6877 	btrfs_bio_counter_inc_blocked(fs_info);
6878 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
6879 				&bioc, &smap, &mirror_num, 1);
6880 	if (ret) {
6881 		btrfs_bio_counter_dec(fs_info);
6882 		btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
6883 		return;
6884 	}
6885 
6886 	if (map_length < length) {
6887 		btrfs_crit(fs_info,
6888 			   "mapping failed logical %llu bio len %llu len %llu",
6889 			   logical, length, map_length);
6890 		BUG();
6891 	}
6892 
6893 	if (!bioc) {
6894 		/* Single mirror read/write fast path */
6895 		btrfs_bio(bio)->mirror_num = mirror_num;
6896 		btrfs_bio(bio)->device = smap.dev;
6897 		bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
6898 		bio->bi_private = fs_info;
6899 		bio->bi_end_io = btrfs_simple_end_io;
6900 		btrfs_submit_dev_bio(smap.dev, bio);
6901 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6902 		/* Parity RAID write or read recovery */
6903 		bio->bi_private = bioc;
6904 		bio->bi_end_io = btrfs_raid56_end_io;
6905 		if (bio_op(bio) == REQ_OP_READ)
6906 			raid56_parity_recover(bio, bioc, mirror_num);
6907 		else
6908 			raid56_parity_write(bio, bioc);
6909 	} else {
6910 		/* Write to multiple mirrors */
6911 		int total_devs = bioc->num_stripes;
6912 		int dev_nr;
6913 
6914 		bioc->orig_bio = bio;
6915 		for (dev_nr = 0; dev_nr < total_devs; dev_nr++)
6916 			btrfs_submit_mirrored_bio(bioc, dev_nr);
6917 	}
6918 }
6919 
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6920 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6921 				      const struct btrfs_fs_devices *fs_devices)
6922 {
6923 	if (args->fsid == NULL)
6924 		return true;
6925 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6926 		return true;
6927 	return false;
6928 }
6929 
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6930 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6931 				  const struct btrfs_device *device)
6932 {
6933 	if (args->missing) {
6934 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6935 		    !device->bdev)
6936 			return true;
6937 		return false;
6938 	}
6939 
6940 	if (device->devid != args->devid)
6941 		return false;
6942 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6943 		return false;
6944 	return true;
6945 }
6946 
6947 /*
6948  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6949  * return NULL.
6950  *
6951  * If devid and uuid are both specified, the match must be exact, otherwise
6952  * only devid is used.
6953  */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6954 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6955 				       const struct btrfs_dev_lookup_args *args)
6956 {
6957 	struct btrfs_device *device;
6958 	struct btrfs_fs_devices *seed_devs;
6959 
6960 	if (dev_args_match_fs_devices(args, fs_devices)) {
6961 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6962 			if (dev_args_match_device(args, device))
6963 				return device;
6964 		}
6965 	}
6966 
6967 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6968 		if (!dev_args_match_fs_devices(args, seed_devs))
6969 			continue;
6970 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6971 			if (dev_args_match_device(args, device))
6972 				return device;
6973 		}
6974 	}
6975 
6976 	return NULL;
6977 }
6978 
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6979 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6980 					    u64 devid, u8 *dev_uuid)
6981 {
6982 	struct btrfs_device *device;
6983 	unsigned int nofs_flag;
6984 
6985 	/*
6986 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6987 	 * allocation, however we don't want to change btrfs_alloc_device() to
6988 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6989 	 * places.
6990 	 */
6991 	nofs_flag = memalloc_nofs_save();
6992 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6993 	memalloc_nofs_restore(nofs_flag);
6994 	if (IS_ERR(device))
6995 		return device;
6996 
6997 	list_add(&device->dev_list, &fs_devices->devices);
6998 	device->fs_devices = fs_devices;
6999 	fs_devices->num_devices++;
7000 
7001 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7002 	fs_devices->missing_devices++;
7003 
7004 	return device;
7005 }
7006 
7007 /**
7008  * btrfs_alloc_device - allocate struct btrfs_device
7009  * @fs_info:	used only for generating a new devid, can be NULL if
7010  *		devid is provided (i.e. @devid != NULL).
7011  * @devid:	a pointer to devid for this device.  If NULL a new devid
7012  *		is generated.
7013  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
7014  *		is generated.
7015  *
7016  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
7017  * on error.  Returned struct is not linked onto any lists and must be
7018  * destroyed with btrfs_free_device.
7019  */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)7020 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
7021 					const u64 *devid,
7022 					const u8 *uuid)
7023 {
7024 	struct btrfs_device *dev;
7025 	u64 tmp;
7026 
7027 	if (WARN_ON(!devid && !fs_info))
7028 		return ERR_PTR(-EINVAL);
7029 
7030 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
7031 	if (!dev)
7032 		return ERR_PTR(-ENOMEM);
7033 
7034 	INIT_LIST_HEAD(&dev->dev_list);
7035 	INIT_LIST_HEAD(&dev->dev_alloc_list);
7036 	INIT_LIST_HEAD(&dev->post_commit_list);
7037 
7038 	atomic_set(&dev->dev_stats_ccnt, 0);
7039 	btrfs_device_data_ordered_init(dev);
7040 	extent_io_tree_init(fs_info, &dev->alloc_state,
7041 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
7042 
7043 	if (devid)
7044 		tmp = *devid;
7045 	else {
7046 		int ret;
7047 
7048 		ret = find_next_devid(fs_info, &tmp);
7049 		if (ret) {
7050 			btrfs_free_device(dev);
7051 			return ERR_PTR(ret);
7052 		}
7053 	}
7054 	dev->devid = tmp;
7055 
7056 	if (uuid)
7057 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
7058 	else
7059 		generate_random_uuid(dev->uuid);
7060 
7061 	return dev;
7062 }
7063 
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)7064 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
7065 					u64 devid, u8 *uuid, bool error)
7066 {
7067 	if (error)
7068 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
7069 			      devid, uuid);
7070 	else
7071 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
7072 			      devid, uuid);
7073 }
7074 
btrfs_calc_stripe_length(const struct extent_map * em)7075 u64 btrfs_calc_stripe_length(const struct extent_map *em)
7076 {
7077 	const struct map_lookup *map = em->map_lookup;
7078 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
7079 
7080 	return div_u64(em->len, data_stripes);
7081 }
7082 
7083 #if BITS_PER_LONG == 32
7084 /*
7085  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7086  * can't be accessed on 32bit systems.
7087  *
7088  * This function do mount time check to reject the fs if it already has
7089  * metadata chunk beyond that limit.
7090  */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)7091 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7092 				  u64 logical, u64 length, u64 type)
7093 {
7094 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7095 		return 0;
7096 
7097 	if (logical + length < MAX_LFS_FILESIZE)
7098 		return 0;
7099 
7100 	btrfs_err_32bit_limit(fs_info);
7101 	return -EOVERFLOW;
7102 }
7103 
7104 /*
7105  * This is to give early warning for any metadata chunk reaching
7106  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7107  * Although we can still access the metadata, it's not going to be possible
7108  * once the limit is reached.
7109  */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)7110 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7111 				  u64 logical, u64 length, u64 type)
7112 {
7113 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7114 		return;
7115 
7116 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7117 		return;
7118 
7119 	btrfs_warn_32bit_limit(fs_info);
7120 }
7121 #endif
7122 
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)7123 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7124 						  u64 devid, u8 *uuid)
7125 {
7126 	struct btrfs_device *dev;
7127 
7128 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7129 		btrfs_report_missing_device(fs_info, devid, uuid, true);
7130 		return ERR_PTR(-ENOENT);
7131 	}
7132 
7133 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7134 	if (IS_ERR(dev)) {
7135 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7136 			  devid, PTR_ERR(dev));
7137 		return dev;
7138 	}
7139 	btrfs_report_missing_device(fs_info, devid, uuid, false);
7140 
7141 	return dev;
7142 }
7143 
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)7144 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7145 			  struct btrfs_chunk *chunk)
7146 {
7147 	BTRFS_DEV_LOOKUP_ARGS(args);
7148 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7149 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7150 	struct map_lookup *map;
7151 	struct extent_map *em;
7152 	u64 logical;
7153 	u64 length;
7154 	u64 devid;
7155 	u64 type;
7156 	u8 uuid[BTRFS_UUID_SIZE];
7157 	int index;
7158 	int num_stripes;
7159 	int ret;
7160 	int i;
7161 
7162 	logical = key->offset;
7163 	length = btrfs_chunk_length(leaf, chunk);
7164 	type = btrfs_chunk_type(leaf, chunk);
7165 	index = btrfs_bg_flags_to_raid_index(type);
7166 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7167 
7168 #if BITS_PER_LONG == 32
7169 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7170 	if (ret < 0)
7171 		return ret;
7172 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7173 #endif
7174 
7175 	/*
7176 	 * Only need to verify chunk item if we're reading from sys chunk array,
7177 	 * as chunk item in tree block is already verified by tree-checker.
7178 	 */
7179 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7180 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7181 		if (ret)
7182 			return ret;
7183 	}
7184 
7185 	read_lock(&map_tree->lock);
7186 	em = lookup_extent_mapping(map_tree, logical, 1);
7187 	read_unlock(&map_tree->lock);
7188 
7189 	/* already mapped? */
7190 	if (em && em->start <= logical && em->start + em->len > logical) {
7191 		free_extent_map(em);
7192 		return 0;
7193 	} else if (em) {
7194 		free_extent_map(em);
7195 	}
7196 
7197 	em = alloc_extent_map();
7198 	if (!em)
7199 		return -ENOMEM;
7200 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7201 	if (!map) {
7202 		free_extent_map(em);
7203 		return -ENOMEM;
7204 	}
7205 
7206 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7207 	em->map_lookup = map;
7208 	em->start = logical;
7209 	em->len = length;
7210 	em->orig_start = 0;
7211 	em->block_start = 0;
7212 	em->block_len = em->len;
7213 
7214 	map->num_stripes = num_stripes;
7215 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7216 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7217 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7218 	map->type = type;
7219 	/*
7220 	 * We can't use the sub_stripes value, as for profiles other than
7221 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7222 	 * older mkfs (<v5.4).
7223 	 * In that case, it can cause divide-by-zero errors later.
7224 	 * Since currently sub_stripes is fixed for each profile, let's
7225 	 * use the trusted value instead.
7226 	 */
7227 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7228 	map->verified_stripes = 0;
7229 	em->orig_block_len = btrfs_calc_stripe_length(em);
7230 	for (i = 0; i < num_stripes; i++) {
7231 		map->stripes[i].physical =
7232 			btrfs_stripe_offset_nr(leaf, chunk, i);
7233 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7234 		args.devid = devid;
7235 		read_extent_buffer(leaf, uuid, (unsigned long)
7236 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7237 				   BTRFS_UUID_SIZE);
7238 		args.uuid = uuid;
7239 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7240 		if (!map->stripes[i].dev) {
7241 			map->stripes[i].dev = handle_missing_device(fs_info,
7242 								    devid, uuid);
7243 			if (IS_ERR(map->stripes[i].dev)) {
7244 				free_extent_map(em);
7245 				return PTR_ERR(map->stripes[i].dev);
7246 			}
7247 		}
7248 
7249 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7250 				&(map->stripes[i].dev->dev_state));
7251 	}
7252 
7253 	write_lock(&map_tree->lock);
7254 	ret = add_extent_mapping(map_tree, em, 0);
7255 	write_unlock(&map_tree->lock);
7256 	if (ret < 0) {
7257 		btrfs_err(fs_info,
7258 			  "failed to add chunk map, start=%llu len=%llu: %d",
7259 			  em->start, em->len, ret);
7260 	}
7261 	free_extent_map(em);
7262 
7263 	return ret;
7264 }
7265 
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7266 static void fill_device_from_item(struct extent_buffer *leaf,
7267 				 struct btrfs_dev_item *dev_item,
7268 				 struct btrfs_device *device)
7269 {
7270 	unsigned long ptr;
7271 
7272 	device->devid = btrfs_device_id(leaf, dev_item);
7273 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7274 	device->total_bytes = device->disk_total_bytes;
7275 	device->commit_total_bytes = device->disk_total_bytes;
7276 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7277 	device->commit_bytes_used = device->bytes_used;
7278 	device->type = btrfs_device_type(leaf, dev_item);
7279 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7280 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7281 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7282 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7283 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7284 
7285 	ptr = btrfs_device_uuid(dev_item);
7286 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7287 }
7288 
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7289 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7290 						  u8 *fsid)
7291 {
7292 	struct btrfs_fs_devices *fs_devices;
7293 	int ret;
7294 
7295 	lockdep_assert_held(&uuid_mutex);
7296 	ASSERT(fsid);
7297 
7298 	/* This will match only for multi-device seed fs */
7299 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7300 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7301 			return fs_devices;
7302 
7303 
7304 	fs_devices = find_fsid(fsid, NULL);
7305 	if (!fs_devices) {
7306 		if (!btrfs_test_opt(fs_info, DEGRADED))
7307 			return ERR_PTR(-ENOENT);
7308 
7309 		fs_devices = alloc_fs_devices(fsid, NULL);
7310 		if (IS_ERR(fs_devices))
7311 			return fs_devices;
7312 
7313 		fs_devices->seeding = true;
7314 		fs_devices->opened = 1;
7315 		return fs_devices;
7316 	}
7317 
7318 	/*
7319 	 * Upon first call for a seed fs fsid, just create a private copy of the
7320 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7321 	 */
7322 	fs_devices = clone_fs_devices(fs_devices);
7323 	if (IS_ERR(fs_devices))
7324 		return fs_devices;
7325 
7326 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7327 	if (ret) {
7328 		free_fs_devices(fs_devices);
7329 		return ERR_PTR(ret);
7330 	}
7331 
7332 	if (!fs_devices->seeding) {
7333 		close_fs_devices(fs_devices);
7334 		free_fs_devices(fs_devices);
7335 		return ERR_PTR(-EINVAL);
7336 	}
7337 
7338 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7339 
7340 	return fs_devices;
7341 }
7342 
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7343 static int read_one_dev(struct extent_buffer *leaf,
7344 			struct btrfs_dev_item *dev_item)
7345 {
7346 	BTRFS_DEV_LOOKUP_ARGS(args);
7347 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7348 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7349 	struct btrfs_device *device;
7350 	u64 devid;
7351 	int ret;
7352 	u8 fs_uuid[BTRFS_FSID_SIZE];
7353 	u8 dev_uuid[BTRFS_UUID_SIZE];
7354 
7355 	devid = btrfs_device_id(leaf, dev_item);
7356 	args.devid = devid;
7357 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7358 			   BTRFS_UUID_SIZE);
7359 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7360 			   BTRFS_FSID_SIZE);
7361 	args.uuid = dev_uuid;
7362 	args.fsid = fs_uuid;
7363 
7364 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7365 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7366 		if (IS_ERR(fs_devices))
7367 			return PTR_ERR(fs_devices);
7368 	}
7369 
7370 	device = btrfs_find_device(fs_info->fs_devices, &args);
7371 	if (!device) {
7372 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7373 			btrfs_report_missing_device(fs_info, devid,
7374 							dev_uuid, true);
7375 			return -ENOENT;
7376 		}
7377 
7378 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7379 		if (IS_ERR(device)) {
7380 			btrfs_err(fs_info,
7381 				"failed to add missing dev %llu: %ld",
7382 				devid, PTR_ERR(device));
7383 			return PTR_ERR(device);
7384 		}
7385 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7386 	} else {
7387 		if (!device->bdev) {
7388 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7389 				btrfs_report_missing_device(fs_info,
7390 						devid, dev_uuid, true);
7391 				return -ENOENT;
7392 			}
7393 			btrfs_report_missing_device(fs_info, devid,
7394 							dev_uuid, false);
7395 		}
7396 
7397 		if (!device->bdev &&
7398 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7399 			/*
7400 			 * this happens when a device that was properly setup
7401 			 * in the device info lists suddenly goes bad.
7402 			 * device->bdev is NULL, and so we have to set
7403 			 * device->missing to one here
7404 			 */
7405 			device->fs_devices->missing_devices++;
7406 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7407 		}
7408 
7409 		/* Move the device to its own fs_devices */
7410 		if (device->fs_devices != fs_devices) {
7411 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7412 							&device->dev_state));
7413 
7414 			list_move(&device->dev_list, &fs_devices->devices);
7415 			device->fs_devices->num_devices--;
7416 			fs_devices->num_devices++;
7417 
7418 			device->fs_devices->missing_devices--;
7419 			fs_devices->missing_devices++;
7420 
7421 			device->fs_devices = fs_devices;
7422 		}
7423 	}
7424 
7425 	if (device->fs_devices != fs_info->fs_devices) {
7426 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7427 		if (device->generation !=
7428 		    btrfs_device_generation(leaf, dev_item))
7429 			return -EINVAL;
7430 	}
7431 
7432 	fill_device_from_item(leaf, dev_item, device);
7433 	if (device->bdev) {
7434 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7435 
7436 		if (device->total_bytes > max_total_bytes) {
7437 			btrfs_err(fs_info,
7438 			"device total_bytes should be at most %llu but found %llu",
7439 				  max_total_bytes, device->total_bytes);
7440 			return -EINVAL;
7441 		}
7442 	}
7443 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7444 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7445 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7446 		device->fs_devices->total_rw_bytes += device->total_bytes;
7447 		atomic64_add(device->total_bytes - device->bytes_used,
7448 				&fs_info->free_chunk_space);
7449 	}
7450 	ret = 0;
7451 	return ret;
7452 }
7453 
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7454 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7455 {
7456 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7457 	struct extent_buffer *sb;
7458 	struct btrfs_disk_key *disk_key;
7459 	struct btrfs_chunk *chunk;
7460 	u8 *array_ptr;
7461 	unsigned long sb_array_offset;
7462 	int ret = 0;
7463 	u32 num_stripes;
7464 	u32 array_size;
7465 	u32 len = 0;
7466 	u32 cur_offset;
7467 	u64 type;
7468 	struct btrfs_key key;
7469 
7470 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7471 
7472 	/*
7473 	 * We allocated a dummy extent, just to use extent buffer accessors.
7474 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7475 	 * that's fine, we will not go beyond system chunk array anyway.
7476 	 */
7477 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7478 	if (!sb)
7479 		return -ENOMEM;
7480 	set_extent_buffer_uptodate(sb);
7481 
7482 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7483 	array_size = btrfs_super_sys_array_size(super_copy);
7484 
7485 	array_ptr = super_copy->sys_chunk_array;
7486 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7487 	cur_offset = 0;
7488 
7489 	while (cur_offset < array_size) {
7490 		disk_key = (struct btrfs_disk_key *)array_ptr;
7491 		len = sizeof(*disk_key);
7492 		if (cur_offset + len > array_size)
7493 			goto out_short_read;
7494 
7495 		btrfs_disk_key_to_cpu(&key, disk_key);
7496 
7497 		array_ptr += len;
7498 		sb_array_offset += len;
7499 		cur_offset += len;
7500 
7501 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7502 			btrfs_err(fs_info,
7503 			    "unexpected item type %u in sys_array at offset %u",
7504 				  (u32)key.type, cur_offset);
7505 			ret = -EIO;
7506 			break;
7507 		}
7508 
7509 		chunk = (struct btrfs_chunk *)sb_array_offset;
7510 		/*
7511 		 * At least one btrfs_chunk with one stripe must be present,
7512 		 * exact stripe count check comes afterwards
7513 		 */
7514 		len = btrfs_chunk_item_size(1);
7515 		if (cur_offset + len > array_size)
7516 			goto out_short_read;
7517 
7518 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7519 		if (!num_stripes) {
7520 			btrfs_err(fs_info,
7521 			"invalid number of stripes %u in sys_array at offset %u",
7522 				  num_stripes, cur_offset);
7523 			ret = -EIO;
7524 			break;
7525 		}
7526 
7527 		type = btrfs_chunk_type(sb, chunk);
7528 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7529 			btrfs_err(fs_info,
7530 			"invalid chunk type %llu in sys_array at offset %u",
7531 				  type, cur_offset);
7532 			ret = -EIO;
7533 			break;
7534 		}
7535 
7536 		len = btrfs_chunk_item_size(num_stripes);
7537 		if (cur_offset + len > array_size)
7538 			goto out_short_read;
7539 
7540 		ret = read_one_chunk(&key, sb, chunk);
7541 		if (ret)
7542 			break;
7543 
7544 		array_ptr += len;
7545 		sb_array_offset += len;
7546 		cur_offset += len;
7547 	}
7548 	clear_extent_buffer_uptodate(sb);
7549 	free_extent_buffer_stale(sb);
7550 	return ret;
7551 
7552 out_short_read:
7553 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7554 			len, cur_offset);
7555 	clear_extent_buffer_uptodate(sb);
7556 	free_extent_buffer_stale(sb);
7557 	return -EIO;
7558 }
7559 
7560 /*
7561  * Check if all chunks in the fs are OK for read-write degraded mount
7562  *
7563  * If the @failing_dev is specified, it's accounted as missing.
7564  *
7565  * Return true if all chunks meet the minimal RW mount requirements.
7566  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7567  */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7568 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7569 					struct btrfs_device *failing_dev)
7570 {
7571 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7572 	struct extent_map *em;
7573 	u64 next_start = 0;
7574 	bool ret = true;
7575 
7576 	read_lock(&map_tree->lock);
7577 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7578 	read_unlock(&map_tree->lock);
7579 	/* No chunk at all? Return false anyway */
7580 	if (!em) {
7581 		ret = false;
7582 		goto out;
7583 	}
7584 	while (em) {
7585 		struct map_lookup *map;
7586 		int missing = 0;
7587 		int max_tolerated;
7588 		int i;
7589 
7590 		map = em->map_lookup;
7591 		max_tolerated =
7592 			btrfs_get_num_tolerated_disk_barrier_failures(
7593 					map->type);
7594 		for (i = 0; i < map->num_stripes; i++) {
7595 			struct btrfs_device *dev = map->stripes[i].dev;
7596 
7597 			if (!dev || !dev->bdev ||
7598 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7599 			    dev->last_flush_error)
7600 				missing++;
7601 			else if (failing_dev && failing_dev == dev)
7602 				missing++;
7603 		}
7604 		if (missing > max_tolerated) {
7605 			if (!failing_dev)
7606 				btrfs_warn(fs_info,
7607 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7608 				   em->start, missing, max_tolerated);
7609 			free_extent_map(em);
7610 			ret = false;
7611 			goto out;
7612 		}
7613 		next_start = extent_map_end(em);
7614 		free_extent_map(em);
7615 
7616 		read_lock(&map_tree->lock);
7617 		em = lookup_extent_mapping(map_tree, next_start,
7618 					   (u64)(-1) - next_start);
7619 		read_unlock(&map_tree->lock);
7620 	}
7621 out:
7622 	return ret;
7623 }
7624 
readahead_tree_node_children(struct extent_buffer * node)7625 static void readahead_tree_node_children(struct extent_buffer *node)
7626 {
7627 	int i;
7628 	const int nr_items = btrfs_header_nritems(node);
7629 
7630 	for (i = 0; i < nr_items; i++)
7631 		btrfs_readahead_node_child(node, i);
7632 }
7633 
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7634 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7635 {
7636 	struct btrfs_root *root = fs_info->chunk_root;
7637 	struct btrfs_path *path;
7638 	struct extent_buffer *leaf;
7639 	struct btrfs_key key;
7640 	struct btrfs_key found_key;
7641 	int ret;
7642 	int slot;
7643 	int iter_ret = 0;
7644 	u64 total_dev = 0;
7645 	u64 last_ra_node = 0;
7646 
7647 	path = btrfs_alloc_path();
7648 	if (!path)
7649 		return -ENOMEM;
7650 
7651 	/*
7652 	 * uuid_mutex is needed only if we are mounting a sprout FS
7653 	 * otherwise we don't need it.
7654 	 */
7655 	mutex_lock(&uuid_mutex);
7656 
7657 	/*
7658 	 * It is possible for mount and umount to race in such a way that
7659 	 * we execute this code path, but open_fs_devices failed to clear
7660 	 * total_rw_bytes. We certainly want it cleared before reading the
7661 	 * device items, so clear it here.
7662 	 */
7663 	fs_info->fs_devices->total_rw_bytes = 0;
7664 
7665 	/*
7666 	 * Lockdep complains about possible circular locking dependency between
7667 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7668 	 * used for freeze procection of a fs (struct super_block.s_writers),
7669 	 * which we take when starting a transaction, and extent buffers of the
7670 	 * chunk tree if we call read_one_dev() while holding a lock on an
7671 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7672 	 * and at this point there can't be any concurrent task modifying the
7673 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7674 	 */
7675 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7676 	path->skip_locking = 1;
7677 
7678 	/*
7679 	 * Read all device items, and then all the chunk items. All
7680 	 * device items are found before any chunk item (their object id
7681 	 * is smaller than the lowest possible object id for a chunk
7682 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7683 	 */
7684 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7685 	key.offset = 0;
7686 	key.type = 0;
7687 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7688 		struct extent_buffer *node = path->nodes[1];
7689 
7690 		leaf = path->nodes[0];
7691 		slot = path->slots[0];
7692 
7693 		if (node) {
7694 			if (last_ra_node != node->start) {
7695 				readahead_tree_node_children(node);
7696 				last_ra_node = node->start;
7697 			}
7698 		}
7699 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7700 			struct btrfs_dev_item *dev_item;
7701 			dev_item = btrfs_item_ptr(leaf, slot,
7702 						  struct btrfs_dev_item);
7703 			ret = read_one_dev(leaf, dev_item);
7704 			if (ret)
7705 				goto error;
7706 			total_dev++;
7707 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7708 			struct btrfs_chunk *chunk;
7709 
7710 			/*
7711 			 * We are only called at mount time, so no need to take
7712 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7713 			 * we always lock first fs_info->chunk_mutex before
7714 			 * acquiring any locks on the chunk tree. This is a
7715 			 * requirement for chunk allocation, see the comment on
7716 			 * top of btrfs_chunk_alloc() for details.
7717 			 */
7718 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7719 			ret = read_one_chunk(&found_key, leaf, chunk);
7720 			if (ret)
7721 				goto error;
7722 		}
7723 	}
7724 	/* Catch error found during iteration */
7725 	if (iter_ret < 0) {
7726 		ret = iter_ret;
7727 		goto error;
7728 	}
7729 
7730 	/*
7731 	 * After loading chunk tree, we've got all device information,
7732 	 * do another round of validation checks.
7733 	 */
7734 	if (total_dev != fs_info->fs_devices->total_devices) {
7735 		btrfs_warn(fs_info,
7736 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7737 			  btrfs_super_num_devices(fs_info->super_copy),
7738 			  total_dev);
7739 		fs_info->fs_devices->total_devices = total_dev;
7740 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7741 	}
7742 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7743 	    fs_info->fs_devices->total_rw_bytes) {
7744 		btrfs_err(fs_info,
7745 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7746 			  btrfs_super_total_bytes(fs_info->super_copy),
7747 			  fs_info->fs_devices->total_rw_bytes);
7748 		ret = -EINVAL;
7749 		goto error;
7750 	}
7751 	ret = 0;
7752 error:
7753 	mutex_unlock(&uuid_mutex);
7754 
7755 	btrfs_free_path(path);
7756 	return ret;
7757 }
7758 
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7759 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7760 {
7761 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7762 	struct btrfs_device *device;
7763 	int ret = 0;
7764 
7765 	fs_devices->fs_info = fs_info;
7766 
7767 	mutex_lock(&fs_devices->device_list_mutex);
7768 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7769 		device->fs_info = fs_info;
7770 
7771 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7772 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7773 			device->fs_info = fs_info;
7774 			ret = btrfs_get_dev_zone_info(device, false);
7775 			if (ret)
7776 				break;
7777 		}
7778 
7779 		seed_devs->fs_info = fs_info;
7780 	}
7781 	mutex_unlock(&fs_devices->device_list_mutex);
7782 
7783 	return ret;
7784 }
7785 
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7786 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7787 				 const struct btrfs_dev_stats_item *ptr,
7788 				 int index)
7789 {
7790 	u64 val;
7791 
7792 	read_extent_buffer(eb, &val,
7793 			   offsetof(struct btrfs_dev_stats_item, values) +
7794 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7795 			   sizeof(val));
7796 	return val;
7797 }
7798 
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7799 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7800 				      struct btrfs_dev_stats_item *ptr,
7801 				      int index, u64 val)
7802 {
7803 	write_extent_buffer(eb, &val,
7804 			    offsetof(struct btrfs_dev_stats_item, values) +
7805 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7806 			    sizeof(val));
7807 }
7808 
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7809 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7810 				       struct btrfs_path *path)
7811 {
7812 	struct btrfs_dev_stats_item *ptr;
7813 	struct extent_buffer *eb;
7814 	struct btrfs_key key;
7815 	int item_size;
7816 	int i, ret, slot;
7817 
7818 	if (!device->fs_info->dev_root)
7819 		return 0;
7820 
7821 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7822 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7823 	key.offset = device->devid;
7824 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7825 	if (ret) {
7826 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7827 			btrfs_dev_stat_set(device, i, 0);
7828 		device->dev_stats_valid = 1;
7829 		btrfs_release_path(path);
7830 		return ret < 0 ? ret : 0;
7831 	}
7832 	slot = path->slots[0];
7833 	eb = path->nodes[0];
7834 	item_size = btrfs_item_size(eb, slot);
7835 
7836 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7837 
7838 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7839 		if (item_size >= (1 + i) * sizeof(__le64))
7840 			btrfs_dev_stat_set(device, i,
7841 					   btrfs_dev_stats_value(eb, ptr, i));
7842 		else
7843 			btrfs_dev_stat_set(device, i, 0);
7844 	}
7845 
7846 	device->dev_stats_valid = 1;
7847 	btrfs_dev_stat_print_on_load(device);
7848 	btrfs_release_path(path);
7849 
7850 	return 0;
7851 }
7852 
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7853 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7854 {
7855 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7856 	struct btrfs_device *device;
7857 	struct btrfs_path *path = NULL;
7858 	int ret = 0;
7859 
7860 	path = btrfs_alloc_path();
7861 	if (!path)
7862 		return -ENOMEM;
7863 
7864 	mutex_lock(&fs_devices->device_list_mutex);
7865 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7866 		ret = btrfs_device_init_dev_stats(device, path);
7867 		if (ret)
7868 			goto out;
7869 	}
7870 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7871 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7872 			ret = btrfs_device_init_dev_stats(device, path);
7873 			if (ret)
7874 				goto out;
7875 		}
7876 	}
7877 out:
7878 	mutex_unlock(&fs_devices->device_list_mutex);
7879 
7880 	btrfs_free_path(path);
7881 	return ret;
7882 }
7883 
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7884 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7885 				struct btrfs_device *device)
7886 {
7887 	struct btrfs_fs_info *fs_info = trans->fs_info;
7888 	struct btrfs_root *dev_root = fs_info->dev_root;
7889 	struct btrfs_path *path;
7890 	struct btrfs_key key;
7891 	struct extent_buffer *eb;
7892 	struct btrfs_dev_stats_item *ptr;
7893 	int ret;
7894 	int i;
7895 
7896 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7897 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7898 	key.offset = device->devid;
7899 
7900 	path = btrfs_alloc_path();
7901 	if (!path)
7902 		return -ENOMEM;
7903 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7904 	if (ret < 0) {
7905 		btrfs_warn_in_rcu(fs_info,
7906 			"error %d while searching for dev_stats item for device %s",
7907 			      ret, rcu_str_deref(device->name));
7908 		goto out;
7909 	}
7910 
7911 	if (ret == 0 &&
7912 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7913 		/* need to delete old one and insert a new one */
7914 		ret = btrfs_del_item(trans, dev_root, path);
7915 		if (ret != 0) {
7916 			btrfs_warn_in_rcu(fs_info,
7917 				"delete too small dev_stats item for device %s failed %d",
7918 				      rcu_str_deref(device->name), ret);
7919 			goto out;
7920 		}
7921 		ret = 1;
7922 	}
7923 
7924 	if (ret == 1) {
7925 		/* need to insert a new item */
7926 		btrfs_release_path(path);
7927 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7928 					      &key, sizeof(*ptr));
7929 		if (ret < 0) {
7930 			btrfs_warn_in_rcu(fs_info,
7931 				"insert dev_stats item for device %s failed %d",
7932 				rcu_str_deref(device->name), ret);
7933 			goto out;
7934 		}
7935 	}
7936 
7937 	eb = path->nodes[0];
7938 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7939 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7940 		btrfs_set_dev_stats_value(eb, ptr, i,
7941 					  btrfs_dev_stat_read(device, i));
7942 	btrfs_mark_buffer_dirty(eb);
7943 
7944 out:
7945 	btrfs_free_path(path);
7946 	return ret;
7947 }
7948 
7949 /*
7950  * called from commit_transaction. Writes all changed device stats to disk.
7951  */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7952 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7953 {
7954 	struct btrfs_fs_info *fs_info = trans->fs_info;
7955 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7956 	struct btrfs_device *device;
7957 	int stats_cnt;
7958 	int ret = 0;
7959 
7960 	mutex_lock(&fs_devices->device_list_mutex);
7961 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7962 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7963 		if (!device->dev_stats_valid || stats_cnt == 0)
7964 			continue;
7965 
7966 
7967 		/*
7968 		 * There is a LOAD-LOAD control dependency between the value of
7969 		 * dev_stats_ccnt and updating the on-disk values which requires
7970 		 * reading the in-memory counters. Such control dependencies
7971 		 * require explicit read memory barriers.
7972 		 *
7973 		 * This memory barriers pairs with smp_mb__before_atomic in
7974 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7975 		 * barrier implied by atomic_xchg in
7976 		 * btrfs_dev_stats_read_and_reset
7977 		 */
7978 		smp_rmb();
7979 
7980 		ret = update_dev_stat_item(trans, device);
7981 		if (!ret)
7982 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7983 	}
7984 	mutex_unlock(&fs_devices->device_list_mutex);
7985 
7986 	return ret;
7987 }
7988 
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7989 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7990 {
7991 	btrfs_dev_stat_inc(dev, index);
7992 
7993 	if (!dev->dev_stats_valid)
7994 		return;
7995 	btrfs_err_rl_in_rcu(dev->fs_info,
7996 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7997 			   rcu_str_deref(dev->name),
7998 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7999 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
8000 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
8001 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
8002 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
8003 }
8004 
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)8005 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
8006 {
8007 	int i;
8008 
8009 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
8010 		if (btrfs_dev_stat_read(dev, i) != 0)
8011 			break;
8012 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
8013 		return; /* all values == 0, suppress message */
8014 
8015 	btrfs_info_in_rcu(dev->fs_info,
8016 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
8017 	       rcu_str_deref(dev->name),
8018 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
8019 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
8020 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
8021 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
8022 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
8023 }
8024 
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)8025 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
8026 			struct btrfs_ioctl_get_dev_stats *stats)
8027 {
8028 	BTRFS_DEV_LOOKUP_ARGS(args);
8029 	struct btrfs_device *dev;
8030 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8031 	int i;
8032 
8033 	mutex_lock(&fs_devices->device_list_mutex);
8034 	args.devid = stats->devid;
8035 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8036 	mutex_unlock(&fs_devices->device_list_mutex);
8037 
8038 	if (!dev) {
8039 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
8040 		return -ENODEV;
8041 	} else if (!dev->dev_stats_valid) {
8042 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
8043 		return -ENODEV;
8044 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
8045 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
8046 			if (stats->nr_items > i)
8047 				stats->values[i] =
8048 					btrfs_dev_stat_read_and_reset(dev, i);
8049 			else
8050 				btrfs_dev_stat_set(dev, i, 0);
8051 		}
8052 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
8053 			   current->comm, task_pid_nr(current));
8054 	} else {
8055 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
8056 			if (stats->nr_items > i)
8057 				stats->values[i] = btrfs_dev_stat_read(dev, i);
8058 	}
8059 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
8060 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
8061 	return 0;
8062 }
8063 
8064 /*
8065  * Update the size and bytes used for each device where it changed.  This is
8066  * delayed since we would otherwise get errors while writing out the
8067  * superblocks.
8068  *
8069  * Must be invoked during transaction commit.
8070  */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)8071 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
8072 {
8073 	struct btrfs_device *curr, *next;
8074 
8075 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
8076 
8077 	if (list_empty(&trans->dev_update_list))
8078 		return;
8079 
8080 	/*
8081 	 * We don't need the device_list_mutex here.  This list is owned by the
8082 	 * transaction and the transaction must complete before the device is
8083 	 * released.
8084 	 */
8085 	mutex_lock(&trans->fs_info->chunk_mutex);
8086 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
8087 				 post_commit_list) {
8088 		list_del_init(&curr->post_commit_list);
8089 		curr->commit_total_bytes = curr->disk_total_bytes;
8090 		curr->commit_bytes_used = curr->bytes_used;
8091 	}
8092 	mutex_unlock(&trans->fs_info->chunk_mutex);
8093 }
8094 
8095 /*
8096  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8097  */
btrfs_bg_type_to_factor(u64 flags)8098 int btrfs_bg_type_to_factor(u64 flags)
8099 {
8100 	const int index = btrfs_bg_flags_to_raid_index(flags);
8101 
8102 	return btrfs_raid_array[index].ncopies;
8103 }
8104 
8105 
8106 
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)8107 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8108 				 u64 chunk_offset, u64 devid,
8109 				 u64 physical_offset, u64 physical_len)
8110 {
8111 	struct btrfs_dev_lookup_args args = { .devid = devid };
8112 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8113 	struct extent_map *em;
8114 	struct map_lookup *map;
8115 	struct btrfs_device *dev;
8116 	u64 stripe_len;
8117 	bool found = false;
8118 	int ret = 0;
8119 	int i;
8120 
8121 	read_lock(&em_tree->lock);
8122 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8123 	read_unlock(&em_tree->lock);
8124 
8125 	if (!em) {
8126 		btrfs_err(fs_info,
8127 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8128 			  physical_offset, devid);
8129 		ret = -EUCLEAN;
8130 		goto out;
8131 	}
8132 
8133 	map = em->map_lookup;
8134 	stripe_len = btrfs_calc_stripe_length(em);
8135 	if (physical_len != stripe_len) {
8136 		btrfs_err(fs_info,
8137 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8138 			  physical_offset, devid, em->start, physical_len,
8139 			  stripe_len);
8140 		ret = -EUCLEAN;
8141 		goto out;
8142 	}
8143 
8144 	/*
8145 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8146 	 * space. Although kernel can handle it without problem, better to warn
8147 	 * the users.
8148 	 */
8149 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8150 		btrfs_warn(fs_info,
8151 		"devid %llu physical %llu len %llu inside the reserved space",
8152 			   devid, physical_offset, physical_len);
8153 
8154 	for (i = 0; i < map->num_stripes; i++) {
8155 		if (map->stripes[i].dev->devid == devid &&
8156 		    map->stripes[i].physical == physical_offset) {
8157 			found = true;
8158 			if (map->verified_stripes >= map->num_stripes) {
8159 				btrfs_err(fs_info,
8160 				"too many dev extents for chunk %llu found",
8161 					  em->start);
8162 				ret = -EUCLEAN;
8163 				goto out;
8164 			}
8165 			map->verified_stripes++;
8166 			break;
8167 		}
8168 	}
8169 	if (!found) {
8170 		btrfs_err(fs_info,
8171 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8172 			physical_offset, devid);
8173 		ret = -EUCLEAN;
8174 	}
8175 
8176 	/* Make sure no dev extent is beyond device boundary */
8177 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8178 	if (!dev) {
8179 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8180 		ret = -EUCLEAN;
8181 		goto out;
8182 	}
8183 
8184 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8185 		btrfs_err(fs_info,
8186 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8187 			  devid, physical_offset, physical_len,
8188 			  dev->disk_total_bytes);
8189 		ret = -EUCLEAN;
8190 		goto out;
8191 	}
8192 
8193 	if (dev->zone_info) {
8194 		u64 zone_size = dev->zone_info->zone_size;
8195 
8196 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8197 		    !IS_ALIGNED(physical_len, zone_size)) {
8198 			btrfs_err(fs_info,
8199 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8200 				  devid, physical_offset, physical_len);
8201 			ret = -EUCLEAN;
8202 			goto out;
8203 		}
8204 	}
8205 
8206 out:
8207 	free_extent_map(em);
8208 	return ret;
8209 }
8210 
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8211 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8212 {
8213 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8214 	struct extent_map *em;
8215 	struct rb_node *node;
8216 	int ret = 0;
8217 
8218 	read_lock(&em_tree->lock);
8219 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8220 		em = rb_entry(node, struct extent_map, rb_node);
8221 		if (em->map_lookup->num_stripes !=
8222 		    em->map_lookup->verified_stripes) {
8223 			btrfs_err(fs_info,
8224 			"chunk %llu has missing dev extent, have %d expect %d",
8225 				  em->start, em->map_lookup->verified_stripes,
8226 				  em->map_lookup->num_stripes);
8227 			ret = -EUCLEAN;
8228 			goto out;
8229 		}
8230 	}
8231 out:
8232 	read_unlock(&em_tree->lock);
8233 	return ret;
8234 }
8235 
8236 /*
8237  * Ensure that all dev extents are mapped to correct chunk, otherwise
8238  * later chunk allocation/free would cause unexpected behavior.
8239  *
8240  * NOTE: This will iterate through the whole device tree, which should be of
8241  * the same size level as the chunk tree.  This slightly increases mount time.
8242  */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8243 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8244 {
8245 	struct btrfs_path *path;
8246 	struct btrfs_root *root = fs_info->dev_root;
8247 	struct btrfs_key key;
8248 	u64 prev_devid = 0;
8249 	u64 prev_dev_ext_end = 0;
8250 	int ret = 0;
8251 
8252 	/*
8253 	 * We don't have a dev_root because we mounted with ignorebadroots and
8254 	 * failed to load the root, so we want to skip the verification in this
8255 	 * case for sure.
8256 	 *
8257 	 * However if the dev root is fine, but the tree itself is corrupted
8258 	 * we'd still fail to mount.  This verification is only to make sure
8259 	 * writes can happen safely, so instead just bypass this check
8260 	 * completely in the case of IGNOREBADROOTS.
8261 	 */
8262 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8263 		return 0;
8264 
8265 	key.objectid = 1;
8266 	key.type = BTRFS_DEV_EXTENT_KEY;
8267 	key.offset = 0;
8268 
8269 	path = btrfs_alloc_path();
8270 	if (!path)
8271 		return -ENOMEM;
8272 
8273 	path->reada = READA_FORWARD;
8274 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8275 	if (ret < 0)
8276 		goto out;
8277 
8278 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8279 		ret = btrfs_next_leaf(root, path);
8280 		if (ret < 0)
8281 			goto out;
8282 		/* No dev extents at all? Not good */
8283 		if (ret > 0) {
8284 			ret = -EUCLEAN;
8285 			goto out;
8286 		}
8287 	}
8288 	while (1) {
8289 		struct extent_buffer *leaf = path->nodes[0];
8290 		struct btrfs_dev_extent *dext;
8291 		int slot = path->slots[0];
8292 		u64 chunk_offset;
8293 		u64 physical_offset;
8294 		u64 physical_len;
8295 		u64 devid;
8296 
8297 		btrfs_item_key_to_cpu(leaf, &key, slot);
8298 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8299 			break;
8300 		devid = key.objectid;
8301 		physical_offset = key.offset;
8302 
8303 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8304 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8305 		physical_len = btrfs_dev_extent_length(leaf, dext);
8306 
8307 		/* Check if this dev extent overlaps with the previous one */
8308 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8309 			btrfs_err(fs_info,
8310 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8311 				  devid, physical_offset, prev_dev_ext_end);
8312 			ret = -EUCLEAN;
8313 			goto out;
8314 		}
8315 
8316 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8317 					    physical_offset, physical_len);
8318 		if (ret < 0)
8319 			goto out;
8320 		prev_devid = devid;
8321 		prev_dev_ext_end = physical_offset + physical_len;
8322 
8323 		ret = btrfs_next_item(root, path);
8324 		if (ret < 0)
8325 			goto out;
8326 		if (ret > 0) {
8327 			ret = 0;
8328 			break;
8329 		}
8330 	}
8331 
8332 	/* Ensure all chunks have corresponding dev extents */
8333 	ret = verify_chunk_dev_extent_mapping(fs_info);
8334 out:
8335 	btrfs_free_path(path);
8336 	return ret;
8337 }
8338 
8339 /*
8340  * Check whether the given block group or device is pinned by any inode being
8341  * used as a swapfile.
8342  */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8343 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8344 {
8345 	struct btrfs_swapfile_pin *sp;
8346 	struct rb_node *node;
8347 
8348 	spin_lock(&fs_info->swapfile_pins_lock);
8349 	node = fs_info->swapfile_pins.rb_node;
8350 	while (node) {
8351 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8352 		if (ptr < sp->ptr)
8353 			node = node->rb_left;
8354 		else if (ptr > sp->ptr)
8355 			node = node->rb_right;
8356 		else
8357 			break;
8358 	}
8359 	spin_unlock(&fs_info->swapfile_pins_lock);
8360 	return node != NULL;
8361 }
8362 
relocating_repair_kthread(void * data)8363 static int relocating_repair_kthread(void *data)
8364 {
8365 	struct btrfs_block_group *cache = data;
8366 	struct btrfs_fs_info *fs_info = cache->fs_info;
8367 	u64 target;
8368 	int ret = 0;
8369 
8370 	target = cache->start;
8371 	btrfs_put_block_group(cache);
8372 
8373 	sb_start_write(fs_info->sb);
8374 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8375 		btrfs_info(fs_info,
8376 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8377 			   target);
8378 		sb_end_write(fs_info->sb);
8379 		return -EBUSY;
8380 	}
8381 
8382 	mutex_lock(&fs_info->reclaim_bgs_lock);
8383 
8384 	/* Ensure block group still exists */
8385 	cache = btrfs_lookup_block_group(fs_info, target);
8386 	if (!cache)
8387 		goto out;
8388 
8389 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8390 		goto out;
8391 
8392 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8393 	if (ret < 0)
8394 		goto out;
8395 
8396 	btrfs_info(fs_info,
8397 		   "zoned: relocating block group %llu to repair IO failure",
8398 		   target);
8399 	ret = btrfs_relocate_chunk(fs_info, target);
8400 
8401 out:
8402 	if (cache)
8403 		btrfs_put_block_group(cache);
8404 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8405 	btrfs_exclop_finish(fs_info);
8406 	sb_end_write(fs_info->sb);
8407 
8408 	return ret;
8409 }
8410 
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8411 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8412 {
8413 	struct btrfs_block_group *cache;
8414 
8415 	if (!btrfs_is_zoned(fs_info))
8416 		return false;
8417 
8418 	/* Do not attempt to repair in degraded state */
8419 	if (btrfs_test_opt(fs_info, DEGRADED))
8420 		return true;
8421 
8422 	cache = btrfs_lookup_block_group(fs_info, logical);
8423 	if (!cache)
8424 		return true;
8425 
8426 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8427 		btrfs_put_block_group(cache);
8428 		return true;
8429 	}
8430 
8431 	kthread_run(relocating_repair_kthread, cache,
8432 		    "btrfs-relocating-repair");
8433 
8434 	return true;
8435 }
8436 
btrfs_bioset_init(void)8437 int __init btrfs_bioset_init(void)
8438 {
8439 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
8440 			offsetof(struct btrfs_bio, bio),
8441 			BIOSET_NEED_BVECS))
8442 		return -ENOMEM;
8443 	return 0;
8444 }
8445 
btrfs_bioset_exit(void)8446 void __cold btrfs_bioset_exit(void)
8447 {
8448 	bioset_exit(&btrfs_bioset);
8449 }
8450