1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "delayed-inode.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "ctree.h"
15 #include "qgroup.h"
16 #include "locking.h"
17
18 #define BTRFS_DELAYED_WRITEBACK 512
19 #define BTRFS_DELAYED_BACKGROUND 128
20 #define BTRFS_DELAYED_BATCH 16
21
22 static struct kmem_cache *delayed_node_cache;
23
btrfs_delayed_inode_init(void)24 int __init btrfs_delayed_inode_init(void)
25 {
26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 sizeof(struct btrfs_delayed_node),
28 0,
29 SLAB_MEM_SPREAD,
30 NULL);
31 if (!delayed_node_cache)
32 return -ENOMEM;
33 return 0;
34 }
35
btrfs_delayed_inode_exit(void)36 void __cold btrfs_delayed_inode_exit(void)
37 {
38 kmem_cache_destroy(delayed_node_cache);
39 }
40
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)41 static inline void btrfs_init_delayed_node(
42 struct btrfs_delayed_node *delayed_node,
43 struct btrfs_root *root, u64 inode_id)
44 {
45 delayed_node->root = root;
46 delayed_node->inode_id = inode_id;
47 refcount_set(&delayed_node->refs, 0);
48 delayed_node->ins_root = RB_ROOT_CACHED;
49 delayed_node->del_root = RB_ROOT_CACHED;
50 mutex_init(&delayed_node->mutex);
51 INIT_LIST_HEAD(&delayed_node->n_list);
52 INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54
btrfs_is_continuous_delayed_item(struct btrfs_delayed_item * item1,struct btrfs_delayed_item * item2)55 static inline int btrfs_is_continuous_delayed_item(
56 struct btrfs_delayed_item *item1,
57 struct btrfs_delayed_item *item2)
58 {
59 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 item1->key.objectid == item2->key.objectid &&
61 item1->key.type == item2->key.type &&
62 item1->key.offset + 1 == item2->key.offset)
63 return 1;
64 return 0;
65 }
66
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69 {
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 spin_lock(&root->inode_lock);
81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 spin_unlock(&root->inode_lock);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the radix tree. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the radix at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the radix, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 spin_unlock(&root->inode_lock);
115 return node;
116 }
117 spin_unlock(&root->inode_lock);
118
119 return NULL;
120 }
121
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 struct btrfs_inode *btrfs_inode)
125 {
126 struct btrfs_delayed_node *node;
127 struct btrfs_root *root = btrfs_inode->root;
128 u64 ino = btrfs_ino(btrfs_inode);
129 int ret;
130
131 again:
132 node = btrfs_get_delayed_node(btrfs_inode);
133 if (node)
134 return node;
135
136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 if (!node)
138 return ERR_PTR(-ENOMEM);
139 btrfs_init_delayed_node(node, root, ino);
140
141 /* cached in the btrfs inode and can be accessed */
142 refcount_set(&node->refs, 2);
143
144 ret = radix_tree_preload(GFP_NOFS);
145 if (ret) {
146 kmem_cache_free(delayed_node_cache, node);
147 return ERR_PTR(ret);
148 }
149
150 spin_lock(&root->inode_lock);
151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 if (ret == -EEXIST) {
153 spin_unlock(&root->inode_lock);
154 kmem_cache_free(delayed_node_cache, node);
155 radix_tree_preload_end();
156 goto again;
157 }
158 btrfs_inode->delayed_node = node;
159 spin_unlock(&root->inode_lock);
160 radix_tree_preload_end();
161
162 return node;
163 }
164
165 /*
166 * Call it when holding delayed_node->mutex
167 *
168 * If mod = 1, add this node into the prepared list.
169 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 struct btrfs_delayed_node *node,
172 int mod)
173 {
174 spin_lock(&root->lock);
175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 if (!list_empty(&node->p_list))
177 list_move_tail(&node->p_list, &root->prepare_list);
178 else if (mod)
179 list_add_tail(&node->p_list, &root->prepare_list);
180 } else {
181 list_add_tail(&node->n_list, &root->node_list);
182 list_add_tail(&node->p_list, &root->prepare_list);
183 refcount_inc(&node->refs); /* inserted into list */
184 root->nodes++;
185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186 }
187 spin_unlock(&root->lock);
188 }
189
190 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 struct btrfs_delayed_node *node)
193 {
194 spin_lock(&root->lock);
195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196 root->nodes--;
197 refcount_dec(&node->refs); /* not in the list */
198 list_del_init(&node->n_list);
199 if (!list_empty(&node->p_list))
200 list_del_init(&node->p_list);
201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202 }
203 spin_unlock(&root->lock);
204 }
205
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 struct btrfs_delayed_root *delayed_root)
208 {
209 struct list_head *p;
210 struct btrfs_delayed_node *node = NULL;
211
212 spin_lock(&delayed_root->lock);
213 if (list_empty(&delayed_root->node_list))
214 goto out;
215
216 p = delayed_root->node_list.next;
217 node = list_entry(p, struct btrfs_delayed_node, n_list);
218 refcount_inc(&node->refs);
219 out:
220 spin_unlock(&delayed_root->lock);
221
222 return node;
223 }
224
btrfs_next_delayed_node(struct btrfs_delayed_node * node)225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 struct btrfs_delayed_node *node)
227 {
228 struct btrfs_delayed_root *delayed_root;
229 struct list_head *p;
230 struct btrfs_delayed_node *next = NULL;
231
232 delayed_root = node->root->fs_info->delayed_root;
233 spin_lock(&delayed_root->lock);
234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 /* not in the list */
236 if (list_empty(&delayed_root->node_list))
237 goto out;
238 p = delayed_root->node_list.next;
239 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
240 goto out;
241 else
242 p = node->n_list.next;
243
244 next = list_entry(p, struct btrfs_delayed_node, n_list);
245 refcount_inc(&next->refs);
246 out:
247 spin_unlock(&delayed_root->lock);
248
249 return next;
250 }
251
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)252 static void __btrfs_release_delayed_node(
253 struct btrfs_delayed_node *delayed_node,
254 int mod)
255 {
256 struct btrfs_delayed_root *delayed_root;
257
258 if (!delayed_node)
259 return;
260
261 delayed_root = delayed_node->root->fs_info->delayed_root;
262
263 mutex_lock(&delayed_node->mutex);
264 if (delayed_node->count)
265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266 else
267 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 mutex_unlock(&delayed_node->mutex);
269
270 if (refcount_dec_and_test(&delayed_node->refs)) {
271 struct btrfs_root *root = delayed_node->root;
272
273 spin_lock(&root->inode_lock);
274 /*
275 * Once our refcount goes to zero, nobody is allowed to bump it
276 * back up. We can delete it now.
277 */
278 ASSERT(refcount_read(&delayed_node->refs) == 0);
279 radix_tree_delete(&root->delayed_nodes_tree,
280 delayed_node->inode_id);
281 spin_unlock(&root->inode_lock);
282 kmem_cache_free(delayed_node_cache, delayed_node);
283 }
284 }
285
btrfs_release_delayed_node(struct btrfs_delayed_node * node)286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287 {
288 __btrfs_release_delayed_node(node, 0);
289 }
290
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 struct btrfs_delayed_root *delayed_root)
293 {
294 struct list_head *p;
295 struct btrfs_delayed_node *node = NULL;
296
297 spin_lock(&delayed_root->lock);
298 if (list_empty(&delayed_root->prepare_list))
299 goto out;
300
301 p = delayed_root->prepare_list.next;
302 list_del_init(p);
303 node = list_entry(p, struct btrfs_delayed_node, p_list);
304 refcount_inc(&node->refs);
305 out:
306 spin_unlock(&delayed_root->lock);
307
308 return node;
309 }
310
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)311 static inline void btrfs_release_prepared_delayed_node(
312 struct btrfs_delayed_node *node)
313 {
314 __btrfs_release_delayed_node(node, 1);
315 }
316
btrfs_alloc_delayed_item(u32 data_len)317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318 {
319 struct btrfs_delayed_item *item;
320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321 if (item) {
322 item->data_len = data_len;
323 item->ins_or_del = 0;
324 item->bytes_reserved = 0;
325 item->delayed_node = NULL;
326 refcount_set(&item->refs, 1);
327 }
328 return item;
329 }
330
331 /*
332 * __btrfs_lookup_delayed_item - look up the delayed item by key
333 * @delayed_node: pointer to the delayed node
334 * @key: the key to look up
335 * @prev: used to store the prev item if the right item isn't found
336 * @next: used to store the next item if the right item isn't found
337 *
338 * Note: if we don't find the right item, we will return the prev item and
339 * the next item.
340 */
__btrfs_lookup_delayed_item(struct rb_root * root,struct btrfs_key * key,struct btrfs_delayed_item ** prev,struct btrfs_delayed_item ** next)341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 struct rb_root *root,
343 struct btrfs_key *key,
344 struct btrfs_delayed_item **prev,
345 struct btrfs_delayed_item **next)
346 {
347 struct rb_node *node, *prev_node = NULL;
348 struct btrfs_delayed_item *delayed_item = NULL;
349 int ret = 0;
350
351 node = root->rb_node;
352
353 while (node) {
354 delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 rb_node);
356 prev_node = node;
357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358 if (ret < 0)
359 node = node->rb_right;
360 else if (ret > 0)
361 node = node->rb_left;
362 else
363 return delayed_item;
364 }
365
366 if (prev) {
367 if (!prev_node)
368 *prev = NULL;
369 else if (ret < 0)
370 *prev = delayed_item;
371 else if ((node = rb_prev(prev_node)) != NULL) {
372 *prev = rb_entry(node, struct btrfs_delayed_item,
373 rb_node);
374 } else
375 *prev = NULL;
376 }
377
378 if (next) {
379 if (!prev_node)
380 *next = NULL;
381 else if (ret > 0)
382 *next = delayed_item;
383 else if ((node = rb_next(prev_node)) != NULL) {
384 *next = rb_entry(node, struct btrfs_delayed_item,
385 rb_node);
386 } else
387 *next = NULL;
388 }
389 return NULL;
390 }
391
__btrfs_lookup_delayed_insertion_item(struct btrfs_delayed_node * delayed_node,struct btrfs_key * key)392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 struct btrfs_delayed_node *delayed_node,
394 struct btrfs_key *key)
395 {
396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397 NULL, NULL);
398 }
399
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins,int action)400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 struct btrfs_delayed_item *ins,
402 int action)
403 {
404 struct rb_node **p, *node;
405 struct rb_node *parent_node = NULL;
406 struct rb_root_cached *root;
407 struct btrfs_delayed_item *item;
408 int cmp;
409 bool leftmost = true;
410
411 if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 root = &delayed_node->ins_root;
413 else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 root = &delayed_node->del_root;
415 else
416 BUG();
417 p = &root->rb_root.rb_node;
418 node = &ins->rb_node;
419
420 while (*p) {
421 parent_node = *p;
422 item = rb_entry(parent_node, struct btrfs_delayed_item,
423 rb_node);
424
425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 if (cmp < 0) {
427 p = &(*p)->rb_right;
428 leftmost = false;
429 } else if (cmp > 0) {
430 p = &(*p)->rb_left;
431 } else {
432 return -EEXIST;
433 }
434 }
435
436 rb_link_node(node, parent_node, p);
437 rb_insert_color_cached(node, root, leftmost);
438 ins->delayed_node = delayed_node;
439 ins->ins_or_del = action;
440
441 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 action == BTRFS_DELAYED_INSERTION_ITEM &&
443 ins->key.offset >= delayed_node->index_cnt)
444 delayed_node->index_cnt = ins->key.offset + 1;
445
446 delayed_node->count++;
447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448 return 0;
449 }
450
__btrfs_add_delayed_insertion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 struct btrfs_delayed_item *item)
453 {
454 return __btrfs_add_delayed_item(node, item,
455 BTRFS_DELAYED_INSERTION_ITEM);
456 }
457
__btrfs_add_delayed_deletion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 struct btrfs_delayed_item *item)
460 {
461 return __btrfs_add_delayed_item(node, item,
462 BTRFS_DELAYED_DELETION_ITEM);
463 }
464
finish_one_item(struct btrfs_delayed_root * delayed_root)465 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466 {
467 int seq = atomic_inc_return(&delayed_root->items_seq);
468
469 /* atomic_dec_return implies a barrier */
470 if ((atomic_dec_return(&delayed_root->items) <
471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 cond_wake_up_nomb(&delayed_root->wait);
473 }
474
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476 {
477 struct rb_root_cached *root;
478 struct btrfs_delayed_root *delayed_root;
479
480 /* Not associated with any delayed_node */
481 if (!delayed_item->delayed_node)
482 return;
483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484
485 BUG_ON(!delayed_root);
486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488
489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 root = &delayed_item->delayed_node->ins_root;
491 else
492 root = &delayed_item->delayed_node->del_root;
493
494 rb_erase_cached(&delayed_item->rb_node, root);
495 delayed_item->delayed_node->count--;
496
497 finish_one_item(delayed_root);
498 }
499
btrfs_release_delayed_item(struct btrfs_delayed_item * item)500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501 {
502 if (item) {
503 __btrfs_remove_delayed_item(item);
504 if (refcount_dec_and_test(&item->refs))
505 kfree(item);
506 }
507 }
508
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 struct btrfs_delayed_node *delayed_node)
511 {
512 struct rb_node *p;
513 struct btrfs_delayed_item *item = NULL;
514
515 p = rb_first_cached(&delayed_node->ins_root);
516 if (p)
517 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518
519 return item;
520 }
521
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 struct btrfs_delayed_node *delayed_node)
524 {
525 struct rb_node *p;
526 struct btrfs_delayed_item *item = NULL;
527
528 p = rb_first_cached(&delayed_node->del_root);
529 if (p)
530 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531
532 return item;
533 }
534
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)535 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 struct btrfs_delayed_item *item)
537 {
538 struct rb_node *p;
539 struct btrfs_delayed_item *next = NULL;
540
541 p = rb_next(&item->rb_node);
542 if (p)
543 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544
545 return next;
546 }
547
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_item * item)548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct btrfs_delayed_item *item)
551 {
552 struct btrfs_block_rsv *src_rsv;
553 struct btrfs_block_rsv *dst_rsv;
554 struct btrfs_fs_info *fs_info = root->fs_info;
555 u64 num_bytes;
556 int ret;
557
558 if (!trans->bytes_reserved)
559 return 0;
560
561 src_rsv = trans->block_rsv;
562 dst_rsv = &fs_info->delayed_block_rsv;
563
564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565
566 /*
567 * Here we migrate space rsv from transaction rsv, since have already
568 * reserved space when starting a transaction. So no need to reserve
569 * qgroup space here.
570 */
571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572 if (!ret) {
573 trace_btrfs_space_reservation(fs_info, "delayed_item",
574 item->key.objectid,
575 num_bytes, 1);
576 item->bytes_reserved = num_bytes;
577 }
578
579 return ret;
580 }
581
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584 {
585 struct btrfs_block_rsv *rsv;
586 struct btrfs_fs_info *fs_info = root->fs_info;
587
588 if (!item->bytes_reserved)
589 return;
590
591 rsv = &fs_info->delayed_block_rsv;
592 /*
593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 * to release/reserve qgroup space.
595 */
596 trace_btrfs_space_reservation(fs_info, "delayed_item",
597 item->key.objectid, item->bytes_reserved,
598 0);
599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600 }
601
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_delayed_node * node)602 static int btrfs_delayed_inode_reserve_metadata(
603 struct btrfs_trans_handle *trans,
604 struct btrfs_root *root,
605 struct btrfs_inode *inode,
606 struct btrfs_delayed_node *node)
607 {
608 struct btrfs_fs_info *fs_info = root->fs_info;
609 struct btrfs_block_rsv *src_rsv;
610 struct btrfs_block_rsv *dst_rsv;
611 u64 num_bytes;
612 int ret;
613
614 src_rsv = trans->block_rsv;
615 dst_rsv = &fs_info->delayed_block_rsv;
616
617 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
618
619 /*
620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 * which doesn't reserve space for speed. This is a problem since we
622 * still need to reserve space for this update, so try to reserve the
623 * space.
624 *
625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 * we always reserve enough to update the inode item.
627 */
628 if (!src_rsv || (!trans->bytes_reserved &&
629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
630 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
631 if (ret < 0)
632 return ret;
633 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
634 BTRFS_RESERVE_NO_FLUSH);
635 /*
636 * Since we're under a transaction reserve_metadata_bytes could
637 * try to commit the transaction which will make it return
638 * EAGAIN to make us stop the transaction we have, so return
639 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
640 */
641 if (ret == -EAGAIN) {
642 ret = -ENOSPC;
643 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
644 }
645 if (!ret) {
646 node->bytes_reserved = num_bytes;
647 trace_btrfs_space_reservation(fs_info,
648 "delayed_inode",
649 btrfs_ino(inode),
650 num_bytes, 1);
651 } else {
652 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
653 }
654 return ret;
655 }
656
657 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
658 if (!ret) {
659 trace_btrfs_space_reservation(fs_info, "delayed_inode",
660 btrfs_ino(inode), num_bytes, 1);
661 node->bytes_reserved = num_bytes;
662 }
663
664 return ret;
665 }
666
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)667 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
668 struct btrfs_delayed_node *node,
669 bool qgroup_free)
670 {
671 struct btrfs_block_rsv *rsv;
672
673 if (!node->bytes_reserved)
674 return;
675
676 rsv = &fs_info->delayed_block_rsv;
677 trace_btrfs_space_reservation(fs_info, "delayed_inode",
678 node->inode_id, node->bytes_reserved, 0);
679 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
680 if (qgroup_free)
681 btrfs_qgroup_free_meta_prealloc(node->root,
682 node->bytes_reserved);
683 else
684 btrfs_qgroup_convert_reserved_meta(node->root,
685 node->bytes_reserved);
686 node->bytes_reserved = 0;
687 }
688
689 /*
690 * This helper will insert some continuous items into the same leaf according
691 * to the free space of the leaf.
692 */
btrfs_batch_insert_items(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)693 static int btrfs_batch_insert_items(struct btrfs_root *root,
694 struct btrfs_path *path,
695 struct btrfs_delayed_item *item)
696 {
697 struct btrfs_delayed_item *curr, *next;
698 int free_space;
699 int total_data_size = 0, total_size = 0;
700 struct extent_buffer *leaf;
701 char *data_ptr;
702 struct btrfs_key *keys;
703 u32 *data_size;
704 struct list_head head;
705 int slot;
706 int nitems;
707 int i;
708 int ret = 0;
709
710 BUG_ON(!path->nodes[0]);
711
712 leaf = path->nodes[0];
713 free_space = btrfs_leaf_free_space(leaf);
714 INIT_LIST_HEAD(&head);
715
716 next = item;
717 nitems = 0;
718
719 /*
720 * count the number of the continuous items that we can insert in batch
721 */
722 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
723 free_space) {
724 total_data_size += next->data_len;
725 total_size += next->data_len + sizeof(struct btrfs_item);
726 list_add_tail(&next->tree_list, &head);
727 nitems++;
728
729 curr = next;
730 next = __btrfs_next_delayed_item(curr);
731 if (!next)
732 break;
733
734 if (!btrfs_is_continuous_delayed_item(curr, next))
735 break;
736 }
737
738 if (!nitems) {
739 ret = 0;
740 goto out;
741 }
742
743 /*
744 * we need allocate some memory space, but it might cause the task
745 * to sleep, so we set all locked nodes in the path to blocking locks
746 * first.
747 */
748 btrfs_set_path_blocking(path);
749
750 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
751 if (!keys) {
752 ret = -ENOMEM;
753 goto out;
754 }
755
756 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
757 if (!data_size) {
758 ret = -ENOMEM;
759 goto error;
760 }
761
762 /* get keys of all the delayed items */
763 i = 0;
764 list_for_each_entry(next, &head, tree_list) {
765 keys[i] = next->key;
766 data_size[i] = next->data_len;
767 i++;
768 }
769
770 /* insert the keys of the items */
771 setup_items_for_insert(root, path, keys, data_size, nitems);
772
773 /* insert the dir index items */
774 slot = path->slots[0];
775 list_for_each_entry_safe(curr, next, &head, tree_list) {
776 data_ptr = btrfs_item_ptr(leaf, slot, char);
777 write_extent_buffer(leaf, &curr->data,
778 (unsigned long)data_ptr,
779 curr->data_len);
780 slot++;
781
782 btrfs_delayed_item_release_metadata(root, curr);
783
784 list_del(&curr->tree_list);
785 btrfs_release_delayed_item(curr);
786 }
787
788 error:
789 kfree(data_size);
790 kfree(keys);
791 out:
792 return ret;
793 }
794
795 /*
796 * This helper can just do simple insertion that needn't extend item for new
797 * data, such as directory name index insertion, inode insertion.
798 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * delayed_item)799 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
800 struct btrfs_root *root,
801 struct btrfs_path *path,
802 struct btrfs_delayed_item *delayed_item)
803 {
804 struct extent_buffer *leaf;
805 unsigned int nofs_flag;
806 char *ptr;
807 int ret;
808
809 nofs_flag = memalloc_nofs_save();
810 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
811 delayed_item->data_len);
812 memalloc_nofs_restore(nofs_flag);
813 if (ret < 0 && ret != -EEXIST)
814 return ret;
815
816 leaf = path->nodes[0];
817
818 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
819
820 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
821 delayed_item->data_len);
822 btrfs_mark_buffer_dirty(leaf);
823
824 btrfs_delayed_item_release_metadata(root, delayed_item);
825 return 0;
826 }
827
828 /*
829 * we insert an item first, then if there are some continuous items, we try
830 * to insert those items into the same leaf.
831 */
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)832 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
833 struct btrfs_path *path,
834 struct btrfs_root *root,
835 struct btrfs_delayed_node *node)
836 {
837 struct btrfs_delayed_item *curr, *prev;
838 int ret = 0;
839
840 do_again:
841 mutex_lock(&node->mutex);
842 curr = __btrfs_first_delayed_insertion_item(node);
843 if (!curr)
844 goto insert_end;
845
846 ret = btrfs_insert_delayed_item(trans, root, path, curr);
847 if (ret < 0) {
848 btrfs_release_path(path);
849 goto insert_end;
850 }
851
852 prev = curr;
853 curr = __btrfs_next_delayed_item(prev);
854 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
855 /* insert the continuous items into the same leaf */
856 path->slots[0]++;
857 btrfs_batch_insert_items(root, path, curr);
858 }
859 btrfs_release_delayed_item(prev);
860 btrfs_mark_buffer_dirty(path->nodes[0]);
861
862 btrfs_release_path(path);
863 mutex_unlock(&node->mutex);
864 goto do_again;
865
866 insert_end:
867 mutex_unlock(&node->mutex);
868 return ret;
869 }
870
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)871 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
872 struct btrfs_root *root,
873 struct btrfs_path *path,
874 struct btrfs_delayed_item *item)
875 {
876 struct btrfs_delayed_item *curr, *next;
877 struct extent_buffer *leaf;
878 struct btrfs_key key;
879 struct list_head head;
880 int nitems, i, last_item;
881 int ret = 0;
882
883 BUG_ON(!path->nodes[0]);
884
885 leaf = path->nodes[0];
886
887 i = path->slots[0];
888 last_item = btrfs_header_nritems(leaf) - 1;
889 if (i > last_item)
890 return -ENOENT; /* FIXME: Is errno suitable? */
891
892 next = item;
893 INIT_LIST_HEAD(&head);
894 btrfs_item_key_to_cpu(leaf, &key, i);
895 nitems = 0;
896 /*
897 * count the number of the dir index items that we can delete in batch
898 */
899 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
900 list_add_tail(&next->tree_list, &head);
901 nitems++;
902
903 curr = next;
904 next = __btrfs_next_delayed_item(curr);
905 if (!next)
906 break;
907
908 if (!btrfs_is_continuous_delayed_item(curr, next))
909 break;
910
911 i++;
912 if (i > last_item)
913 break;
914 btrfs_item_key_to_cpu(leaf, &key, i);
915 }
916
917 if (!nitems)
918 return 0;
919
920 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
921 if (ret)
922 goto out;
923
924 list_for_each_entry_safe(curr, next, &head, tree_list) {
925 btrfs_delayed_item_release_metadata(root, curr);
926 list_del(&curr->tree_list);
927 btrfs_release_delayed_item(curr);
928 }
929
930 out:
931 return ret;
932 }
933
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)934 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
935 struct btrfs_path *path,
936 struct btrfs_root *root,
937 struct btrfs_delayed_node *node)
938 {
939 struct btrfs_delayed_item *curr, *prev;
940 unsigned int nofs_flag;
941 int ret = 0;
942
943 do_again:
944 mutex_lock(&node->mutex);
945 curr = __btrfs_first_delayed_deletion_item(node);
946 if (!curr)
947 goto delete_fail;
948
949 nofs_flag = memalloc_nofs_save();
950 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
951 memalloc_nofs_restore(nofs_flag);
952 if (ret < 0)
953 goto delete_fail;
954 else if (ret > 0) {
955 /*
956 * can't find the item which the node points to, so this node
957 * is invalid, just drop it.
958 */
959 prev = curr;
960 curr = __btrfs_next_delayed_item(prev);
961 btrfs_release_delayed_item(prev);
962 ret = 0;
963 btrfs_release_path(path);
964 if (curr) {
965 mutex_unlock(&node->mutex);
966 goto do_again;
967 } else
968 goto delete_fail;
969 }
970
971 btrfs_batch_delete_items(trans, root, path, curr);
972 btrfs_release_path(path);
973 mutex_unlock(&node->mutex);
974 goto do_again;
975
976 delete_fail:
977 btrfs_release_path(path);
978 mutex_unlock(&node->mutex);
979 return ret;
980 }
981
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)982 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
983 {
984 struct btrfs_delayed_root *delayed_root;
985
986 if (delayed_node &&
987 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
988 BUG_ON(!delayed_node->root);
989 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
990 delayed_node->count--;
991
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
994 }
995 }
996
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)997 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
998 {
999 struct btrfs_delayed_root *delayed_root;
1000
1001 ASSERT(delayed_node->root);
1002 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1003 delayed_node->count--;
1004
1005 delayed_root = delayed_node->root->fs_info->delayed_root;
1006 finish_one_item(delayed_root);
1007 }
1008
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1009 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1010 struct btrfs_root *root,
1011 struct btrfs_path *path,
1012 struct btrfs_delayed_node *node)
1013 {
1014 struct btrfs_fs_info *fs_info = root->fs_info;
1015 struct btrfs_key key;
1016 struct btrfs_inode_item *inode_item;
1017 struct extent_buffer *leaf;
1018 unsigned int nofs_flag;
1019 int mod;
1020 int ret;
1021
1022 key.objectid = node->inode_id;
1023 key.type = BTRFS_INODE_ITEM_KEY;
1024 key.offset = 0;
1025
1026 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1027 mod = -1;
1028 else
1029 mod = 1;
1030
1031 nofs_flag = memalloc_nofs_save();
1032 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1033 memalloc_nofs_restore(nofs_flag);
1034 if (ret > 0) {
1035 btrfs_release_path(path);
1036 return -ENOENT;
1037 } else if (ret < 0) {
1038 return ret;
1039 }
1040
1041 leaf = path->nodes[0];
1042 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1043 struct btrfs_inode_item);
1044 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1045 sizeof(struct btrfs_inode_item));
1046 btrfs_mark_buffer_dirty(leaf);
1047
1048 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1049 goto no_iref;
1050
1051 path->slots[0]++;
1052 if (path->slots[0] >= btrfs_header_nritems(leaf))
1053 goto search;
1054 again:
1055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1056 if (key.objectid != node->inode_id)
1057 goto out;
1058
1059 if (key.type != BTRFS_INODE_REF_KEY &&
1060 key.type != BTRFS_INODE_EXTREF_KEY)
1061 goto out;
1062
1063 /*
1064 * Delayed iref deletion is for the inode who has only one link,
1065 * so there is only one iref. The case that several irefs are
1066 * in the same item doesn't exist.
1067 */
1068 btrfs_del_item(trans, root, path);
1069 out:
1070 btrfs_release_delayed_iref(node);
1071 no_iref:
1072 btrfs_release_path(path);
1073 err_out:
1074 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1075 btrfs_release_delayed_inode(node);
1076
1077 return ret;
1078
1079 search:
1080 btrfs_release_path(path);
1081
1082 key.type = BTRFS_INODE_EXTREF_KEY;
1083 key.offset = -1;
1084
1085 nofs_flag = memalloc_nofs_save();
1086 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1087 memalloc_nofs_restore(nofs_flag);
1088 if (ret < 0)
1089 goto err_out;
1090 ASSERT(ret);
1091
1092 ret = 0;
1093 leaf = path->nodes[0];
1094 path->slots[0]--;
1095 goto again;
1096 }
1097
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1098 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1099 struct btrfs_root *root,
1100 struct btrfs_path *path,
1101 struct btrfs_delayed_node *node)
1102 {
1103 int ret;
1104
1105 mutex_lock(&node->mutex);
1106 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1107 mutex_unlock(&node->mutex);
1108 return 0;
1109 }
1110
1111 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1112 mutex_unlock(&node->mutex);
1113 return ret;
1114 }
1115
1116 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1117 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1118 struct btrfs_path *path,
1119 struct btrfs_delayed_node *node)
1120 {
1121 int ret;
1122
1123 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1124 if (ret)
1125 return ret;
1126
1127 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1128 if (ret)
1129 return ret;
1130
1131 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1132 return ret;
1133 }
1134
1135 /*
1136 * Called when committing the transaction.
1137 * Returns 0 on success.
1138 * Returns < 0 on error and returns with an aborted transaction with any
1139 * outstanding delayed items cleaned up.
1140 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1141 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1142 {
1143 struct btrfs_fs_info *fs_info = trans->fs_info;
1144 struct btrfs_delayed_root *delayed_root;
1145 struct btrfs_delayed_node *curr_node, *prev_node;
1146 struct btrfs_path *path;
1147 struct btrfs_block_rsv *block_rsv;
1148 int ret = 0;
1149 bool count = (nr > 0);
1150
1151 if (TRANS_ABORTED(trans))
1152 return -EIO;
1153
1154 path = btrfs_alloc_path();
1155 if (!path)
1156 return -ENOMEM;
1157 path->leave_spinning = 1;
1158
1159 block_rsv = trans->block_rsv;
1160 trans->block_rsv = &fs_info->delayed_block_rsv;
1161
1162 delayed_root = fs_info->delayed_root;
1163
1164 curr_node = btrfs_first_delayed_node(delayed_root);
1165 while (curr_node && (!count || (count && nr--))) {
1166 ret = __btrfs_commit_inode_delayed_items(trans, path,
1167 curr_node);
1168 if (ret) {
1169 btrfs_release_delayed_node(curr_node);
1170 curr_node = NULL;
1171 btrfs_abort_transaction(trans, ret);
1172 break;
1173 }
1174
1175 prev_node = curr_node;
1176 curr_node = btrfs_next_delayed_node(curr_node);
1177 btrfs_release_delayed_node(prev_node);
1178 }
1179
1180 if (curr_node)
1181 btrfs_release_delayed_node(curr_node);
1182 btrfs_free_path(path);
1183 trans->block_rsv = block_rsv;
1184
1185 return ret;
1186 }
1187
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1188 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1189 {
1190 return __btrfs_run_delayed_items(trans, -1);
1191 }
1192
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1193 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1194 {
1195 return __btrfs_run_delayed_items(trans, nr);
1196 }
1197
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1198 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199 struct btrfs_inode *inode)
1200 {
1201 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202 struct btrfs_path *path;
1203 struct btrfs_block_rsv *block_rsv;
1204 int ret;
1205
1206 if (!delayed_node)
1207 return 0;
1208
1209 mutex_lock(&delayed_node->mutex);
1210 if (!delayed_node->count) {
1211 mutex_unlock(&delayed_node->mutex);
1212 btrfs_release_delayed_node(delayed_node);
1213 return 0;
1214 }
1215 mutex_unlock(&delayed_node->mutex);
1216
1217 path = btrfs_alloc_path();
1218 if (!path) {
1219 btrfs_release_delayed_node(delayed_node);
1220 return -ENOMEM;
1221 }
1222 path->leave_spinning = 1;
1223
1224 block_rsv = trans->block_rsv;
1225 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226
1227 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1228
1229 btrfs_release_delayed_node(delayed_node);
1230 btrfs_free_path(path);
1231 trans->block_rsv = block_rsv;
1232
1233 return ret;
1234 }
1235
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1236 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1237 {
1238 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1239 struct btrfs_trans_handle *trans;
1240 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241 struct btrfs_path *path;
1242 struct btrfs_block_rsv *block_rsv;
1243 int ret;
1244
1245 if (!delayed_node)
1246 return 0;
1247
1248 mutex_lock(&delayed_node->mutex);
1249 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250 mutex_unlock(&delayed_node->mutex);
1251 btrfs_release_delayed_node(delayed_node);
1252 return 0;
1253 }
1254 mutex_unlock(&delayed_node->mutex);
1255
1256 trans = btrfs_join_transaction(delayed_node->root);
1257 if (IS_ERR(trans)) {
1258 ret = PTR_ERR(trans);
1259 goto out;
1260 }
1261
1262 path = btrfs_alloc_path();
1263 if (!path) {
1264 ret = -ENOMEM;
1265 goto trans_out;
1266 }
1267 path->leave_spinning = 1;
1268
1269 block_rsv = trans->block_rsv;
1270 trans->block_rsv = &fs_info->delayed_block_rsv;
1271
1272 mutex_lock(&delayed_node->mutex);
1273 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275 path, delayed_node);
1276 else
1277 ret = 0;
1278 mutex_unlock(&delayed_node->mutex);
1279
1280 btrfs_free_path(path);
1281 trans->block_rsv = block_rsv;
1282 trans_out:
1283 btrfs_end_transaction(trans);
1284 btrfs_btree_balance_dirty(fs_info);
1285 out:
1286 btrfs_release_delayed_node(delayed_node);
1287
1288 return ret;
1289 }
1290
btrfs_remove_delayed_node(struct btrfs_inode * inode)1291 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1292 {
1293 struct btrfs_delayed_node *delayed_node;
1294
1295 delayed_node = READ_ONCE(inode->delayed_node);
1296 if (!delayed_node)
1297 return;
1298
1299 inode->delayed_node = NULL;
1300 btrfs_release_delayed_node(delayed_node);
1301 }
1302
1303 struct btrfs_async_delayed_work {
1304 struct btrfs_delayed_root *delayed_root;
1305 int nr;
1306 struct btrfs_work work;
1307 };
1308
btrfs_async_run_delayed_root(struct btrfs_work * work)1309 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310 {
1311 struct btrfs_async_delayed_work *async_work;
1312 struct btrfs_delayed_root *delayed_root;
1313 struct btrfs_trans_handle *trans;
1314 struct btrfs_path *path;
1315 struct btrfs_delayed_node *delayed_node = NULL;
1316 struct btrfs_root *root;
1317 struct btrfs_block_rsv *block_rsv;
1318 int total_done = 0;
1319
1320 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321 delayed_root = async_work->delayed_root;
1322
1323 path = btrfs_alloc_path();
1324 if (!path)
1325 goto out;
1326
1327 do {
1328 if (atomic_read(&delayed_root->items) <
1329 BTRFS_DELAYED_BACKGROUND / 2)
1330 break;
1331
1332 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1333 if (!delayed_node)
1334 break;
1335
1336 path->leave_spinning = 1;
1337 root = delayed_node->root;
1338
1339 trans = btrfs_join_transaction(root);
1340 if (IS_ERR(trans)) {
1341 btrfs_release_path(path);
1342 btrfs_release_prepared_delayed_node(delayed_node);
1343 total_done++;
1344 continue;
1345 }
1346
1347 block_rsv = trans->block_rsv;
1348 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1349
1350 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1351
1352 trans->block_rsv = block_rsv;
1353 btrfs_end_transaction(trans);
1354 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1355
1356 btrfs_release_path(path);
1357 btrfs_release_prepared_delayed_node(delayed_node);
1358 total_done++;
1359
1360 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1361 || total_done < async_work->nr);
1362
1363 btrfs_free_path(path);
1364 out:
1365 wake_up(&delayed_root->wait);
1366 kfree(async_work);
1367 }
1368
1369
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1370 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1371 struct btrfs_fs_info *fs_info, int nr)
1372 {
1373 struct btrfs_async_delayed_work *async_work;
1374
1375 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1376 if (!async_work)
1377 return -ENOMEM;
1378
1379 async_work->delayed_root = delayed_root;
1380 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1381 NULL);
1382 async_work->nr = nr;
1383
1384 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1385 return 0;
1386 }
1387
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1388 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1389 {
1390 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1391 }
1392
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1393 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1394 {
1395 int val = atomic_read(&delayed_root->items_seq);
1396
1397 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1398 return 1;
1399
1400 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1401 return 1;
1402
1403 return 0;
1404 }
1405
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1406 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1407 {
1408 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1409
1410 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1411 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1412 return;
1413
1414 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1415 int seq;
1416 int ret;
1417
1418 seq = atomic_read(&delayed_root->items_seq);
1419
1420 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1421 if (ret)
1422 return;
1423
1424 wait_event_interruptible(delayed_root->wait,
1425 could_end_wait(delayed_root, seq));
1426 return;
1427 }
1428
1429 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1430 }
1431
1432 /* Will return 0 or -ENOMEM */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,struct btrfs_disk_key * disk_key,u8 type,u64 index)1433 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1434 const char *name, int name_len,
1435 struct btrfs_inode *dir,
1436 struct btrfs_disk_key *disk_key, u8 type,
1437 u64 index)
1438 {
1439 struct btrfs_delayed_node *delayed_node;
1440 struct btrfs_delayed_item *delayed_item;
1441 struct btrfs_dir_item *dir_item;
1442 int ret;
1443
1444 delayed_node = btrfs_get_or_create_delayed_node(dir);
1445 if (IS_ERR(delayed_node))
1446 return PTR_ERR(delayed_node);
1447
1448 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1449 if (!delayed_item) {
1450 ret = -ENOMEM;
1451 goto release_node;
1452 }
1453
1454 delayed_item->key.objectid = btrfs_ino(dir);
1455 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1456 delayed_item->key.offset = index;
1457
1458 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1459 dir_item->location = *disk_key;
1460 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1461 btrfs_set_stack_dir_data_len(dir_item, 0);
1462 btrfs_set_stack_dir_name_len(dir_item, name_len);
1463 btrfs_set_stack_dir_type(dir_item, type);
1464 memcpy((char *)(dir_item + 1), name, name_len);
1465
1466 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1467 /*
1468 * we have reserved enough space when we start a new transaction,
1469 * so reserving metadata failure is impossible
1470 */
1471 BUG_ON(ret);
1472
1473 mutex_lock(&delayed_node->mutex);
1474 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1475 if (unlikely(ret)) {
1476 btrfs_err(trans->fs_info,
1477 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1478 name_len, name, delayed_node->root->root_key.objectid,
1479 delayed_node->inode_id, ret);
1480 BUG();
1481 }
1482 mutex_unlock(&delayed_node->mutex);
1483
1484 release_node:
1485 btrfs_release_delayed_node(delayed_node);
1486 return ret;
1487 }
1488
btrfs_delete_delayed_insertion_item(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,struct btrfs_key * key)1489 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1490 struct btrfs_delayed_node *node,
1491 struct btrfs_key *key)
1492 {
1493 struct btrfs_delayed_item *item;
1494
1495 mutex_lock(&node->mutex);
1496 item = __btrfs_lookup_delayed_insertion_item(node, key);
1497 if (!item) {
1498 mutex_unlock(&node->mutex);
1499 return 1;
1500 }
1501
1502 btrfs_delayed_item_release_metadata(node->root, item);
1503 btrfs_release_delayed_item(item);
1504 mutex_unlock(&node->mutex);
1505 return 0;
1506 }
1507
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1508 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1509 struct btrfs_inode *dir, u64 index)
1510 {
1511 struct btrfs_delayed_node *node;
1512 struct btrfs_delayed_item *item;
1513 struct btrfs_key item_key;
1514 int ret;
1515
1516 node = btrfs_get_or_create_delayed_node(dir);
1517 if (IS_ERR(node))
1518 return PTR_ERR(node);
1519
1520 item_key.objectid = btrfs_ino(dir);
1521 item_key.type = BTRFS_DIR_INDEX_KEY;
1522 item_key.offset = index;
1523
1524 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1525 &item_key);
1526 if (!ret)
1527 goto end;
1528
1529 item = btrfs_alloc_delayed_item(0);
1530 if (!item) {
1531 ret = -ENOMEM;
1532 goto end;
1533 }
1534
1535 item->key = item_key;
1536
1537 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1538 /*
1539 * we have reserved enough space when we start a new transaction,
1540 * so reserving metadata failure is impossible.
1541 */
1542 if (ret < 0) {
1543 btrfs_err(trans->fs_info,
1544 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1545 btrfs_release_delayed_item(item);
1546 goto end;
1547 }
1548
1549 mutex_lock(&node->mutex);
1550 ret = __btrfs_add_delayed_deletion_item(node, item);
1551 if (unlikely(ret)) {
1552 btrfs_err(trans->fs_info,
1553 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1554 index, node->root->root_key.objectid,
1555 node->inode_id, ret);
1556 btrfs_delayed_item_release_metadata(dir->root, item);
1557 btrfs_release_delayed_item(item);
1558 }
1559 mutex_unlock(&node->mutex);
1560 end:
1561 btrfs_release_delayed_node(node);
1562 return ret;
1563 }
1564
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1565 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1566 {
1567 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1568
1569 if (!delayed_node)
1570 return -ENOENT;
1571
1572 /*
1573 * Since we have held i_mutex of this directory, it is impossible that
1574 * a new directory index is added into the delayed node and index_cnt
1575 * is updated now. So we needn't lock the delayed node.
1576 */
1577 if (!delayed_node->index_cnt) {
1578 btrfs_release_delayed_node(delayed_node);
1579 return -EINVAL;
1580 }
1581
1582 inode->index_cnt = delayed_node->index_cnt;
1583 btrfs_release_delayed_node(delayed_node);
1584 return 0;
1585 }
1586
btrfs_readdir_get_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1587 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1588 struct list_head *ins_list,
1589 struct list_head *del_list)
1590 {
1591 struct btrfs_delayed_node *delayed_node;
1592 struct btrfs_delayed_item *item;
1593
1594 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1595 if (!delayed_node)
1596 return false;
1597
1598 /*
1599 * We can only do one readdir with delayed items at a time because of
1600 * item->readdir_list.
1601 */
1602 inode_unlock_shared(inode);
1603 inode_lock(inode);
1604
1605 mutex_lock(&delayed_node->mutex);
1606 item = __btrfs_first_delayed_insertion_item(delayed_node);
1607 while (item) {
1608 refcount_inc(&item->refs);
1609 list_add_tail(&item->readdir_list, ins_list);
1610 item = __btrfs_next_delayed_item(item);
1611 }
1612
1613 item = __btrfs_first_delayed_deletion_item(delayed_node);
1614 while (item) {
1615 refcount_inc(&item->refs);
1616 list_add_tail(&item->readdir_list, del_list);
1617 item = __btrfs_next_delayed_item(item);
1618 }
1619 mutex_unlock(&delayed_node->mutex);
1620 /*
1621 * This delayed node is still cached in the btrfs inode, so refs
1622 * must be > 1 now, and we needn't check it is going to be freed
1623 * or not.
1624 *
1625 * Besides that, this function is used to read dir, we do not
1626 * insert/delete delayed items in this period. So we also needn't
1627 * requeue or dequeue this delayed node.
1628 */
1629 refcount_dec(&delayed_node->refs);
1630
1631 return true;
1632 }
1633
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1634 void btrfs_readdir_put_delayed_items(struct inode *inode,
1635 struct list_head *ins_list,
1636 struct list_head *del_list)
1637 {
1638 struct btrfs_delayed_item *curr, *next;
1639
1640 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1641 list_del(&curr->readdir_list);
1642 if (refcount_dec_and_test(&curr->refs))
1643 kfree(curr);
1644 }
1645
1646 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1647 list_del(&curr->readdir_list);
1648 if (refcount_dec_and_test(&curr->refs))
1649 kfree(curr);
1650 }
1651
1652 /*
1653 * The VFS is going to do up_read(), so we need to downgrade back to a
1654 * read lock.
1655 */
1656 downgrade_write(&inode->i_rwsem);
1657 }
1658
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1659 int btrfs_should_delete_dir_index(struct list_head *del_list,
1660 u64 index)
1661 {
1662 struct btrfs_delayed_item *curr;
1663 int ret = 0;
1664
1665 list_for_each_entry(curr, del_list, readdir_list) {
1666 if (curr->key.offset > index)
1667 break;
1668 if (curr->key.offset == index) {
1669 ret = 1;
1670 break;
1671 }
1672 }
1673 return ret;
1674 }
1675
1676 /*
1677 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1678 *
1679 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list)1680 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1681 struct list_head *ins_list)
1682 {
1683 struct btrfs_dir_item *di;
1684 struct btrfs_delayed_item *curr, *next;
1685 struct btrfs_key location;
1686 char *name;
1687 int name_len;
1688 int over = 0;
1689 unsigned char d_type;
1690
1691 if (list_empty(ins_list))
1692 return 0;
1693
1694 /*
1695 * Changing the data of the delayed item is impossible. So
1696 * we needn't lock them. And we have held i_mutex of the
1697 * directory, nobody can delete any directory indexes now.
1698 */
1699 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1700 list_del(&curr->readdir_list);
1701
1702 if (curr->key.offset < ctx->pos) {
1703 if (refcount_dec_and_test(&curr->refs))
1704 kfree(curr);
1705 continue;
1706 }
1707
1708 ctx->pos = curr->key.offset;
1709
1710 di = (struct btrfs_dir_item *)curr->data;
1711 name = (char *)(di + 1);
1712 name_len = btrfs_stack_dir_name_len(di);
1713
1714 d_type = fs_ftype_to_dtype(di->type);
1715 btrfs_disk_key_to_cpu(&location, &di->location);
1716
1717 over = !dir_emit(ctx, name, name_len,
1718 location.objectid, d_type);
1719
1720 if (refcount_dec_and_test(&curr->refs))
1721 kfree(curr);
1722
1723 if (over)
1724 return 1;
1725 ctx->pos++;
1726 }
1727 return 0;
1728 }
1729
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1730 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1731 struct btrfs_inode_item *inode_item,
1732 struct inode *inode)
1733 {
1734 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1735 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1736 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1737 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1738 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1739 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1740 btrfs_set_stack_inode_generation(inode_item,
1741 BTRFS_I(inode)->generation);
1742 btrfs_set_stack_inode_sequence(inode_item,
1743 inode_peek_iversion(inode));
1744 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1745 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1746 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1747 btrfs_set_stack_inode_block_group(inode_item, 0);
1748
1749 btrfs_set_stack_timespec_sec(&inode_item->atime,
1750 inode->i_atime.tv_sec);
1751 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1752 inode->i_atime.tv_nsec);
1753
1754 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1755 inode->i_mtime.tv_sec);
1756 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1757 inode->i_mtime.tv_nsec);
1758
1759 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1760 inode->i_ctime.tv_sec);
1761 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1762 inode->i_ctime.tv_nsec);
1763
1764 btrfs_set_stack_timespec_sec(&inode_item->otime,
1765 BTRFS_I(inode)->i_otime.tv_sec);
1766 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1767 BTRFS_I(inode)->i_otime.tv_nsec);
1768 }
1769
btrfs_fill_inode(struct inode * inode,u32 * rdev)1770 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1771 {
1772 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1773 struct btrfs_delayed_node *delayed_node;
1774 struct btrfs_inode_item *inode_item;
1775
1776 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1777 if (!delayed_node)
1778 return -ENOENT;
1779
1780 mutex_lock(&delayed_node->mutex);
1781 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1782 mutex_unlock(&delayed_node->mutex);
1783 btrfs_release_delayed_node(delayed_node);
1784 return -ENOENT;
1785 }
1786
1787 inode_item = &delayed_node->inode_item;
1788
1789 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1790 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1791 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1792 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1793 round_up(i_size_read(inode), fs_info->sectorsize));
1794 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1795 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1796 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1797 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1798 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1799
1800 inode_set_iversion_queried(inode,
1801 btrfs_stack_inode_sequence(inode_item));
1802 inode->i_rdev = 0;
1803 *rdev = btrfs_stack_inode_rdev(inode_item);
1804 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1805
1806 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1807 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1808
1809 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1810 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1811
1812 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1813 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1814
1815 BTRFS_I(inode)->i_otime.tv_sec =
1816 btrfs_stack_timespec_sec(&inode_item->otime);
1817 BTRFS_I(inode)->i_otime.tv_nsec =
1818 btrfs_stack_timespec_nsec(&inode_item->otime);
1819
1820 inode->i_generation = BTRFS_I(inode)->generation;
1821 BTRFS_I(inode)->index_cnt = (u64)-1;
1822
1823 mutex_unlock(&delayed_node->mutex);
1824 btrfs_release_delayed_node(delayed_node);
1825 return 0;
1826 }
1827
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1828 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1829 struct btrfs_root *root, struct inode *inode)
1830 {
1831 struct btrfs_delayed_node *delayed_node;
1832 int ret = 0;
1833
1834 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1835 if (IS_ERR(delayed_node))
1836 return PTR_ERR(delayed_node);
1837
1838 mutex_lock(&delayed_node->mutex);
1839 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1840 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1841 goto release_node;
1842 }
1843
1844 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1845 delayed_node);
1846 if (ret)
1847 goto release_node;
1848
1849 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1851 delayed_node->count++;
1852 atomic_inc(&root->fs_info->delayed_root->items);
1853 release_node:
1854 mutex_unlock(&delayed_node->mutex);
1855 btrfs_release_delayed_node(delayed_node);
1856 return ret;
1857 }
1858
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1859 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1860 {
1861 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1862 struct btrfs_delayed_node *delayed_node;
1863
1864 /*
1865 * we don't do delayed inode updates during log recovery because it
1866 * leads to enospc problems. This means we also can't do
1867 * delayed inode refs
1868 */
1869 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1870 return -EAGAIN;
1871
1872 delayed_node = btrfs_get_or_create_delayed_node(inode);
1873 if (IS_ERR(delayed_node))
1874 return PTR_ERR(delayed_node);
1875
1876 /*
1877 * We don't reserve space for inode ref deletion is because:
1878 * - We ONLY do async inode ref deletion for the inode who has only
1879 * one link(i_nlink == 1), it means there is only one inode ref.
1880 * And in most case, the inode ref and the inode item are in the
1881 * same leaf, and we will deal with them at the same time.
1882 * Since we are sure we will reserve the space for the inode item,
1883 * it is unnecessary to reserve space for inode ref deletion.
1884 * - If the inode ref and the inode item are not in the same leaf,
1885 * We also needn't worry about enospc problem, because we reserve
1886 * much more space for the inode update than it needs.
1887 * - At the worst, we can steal some space from the global reservation.
1888 * It is very rare.
1889 */
1890 mutex_lock(&delayed_node->mutex);
1891 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1892 goto release_node;
1893
1894 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1895 delayed_node->count++;
1896 atomic_inc(&fs_info->delayed_root->items);
1897 release_node:
1898 mutex_unlock(&delayed_node->mutex);
1899 btrfs_release_delayed_node(delayed_node);
1900 return 0;
1901 }
1902
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1903 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1904 {
1905 struct btrfs_root *root = delayed_node->root;
1906 struct btrfs_fs_info *fs_info = root->fs_info;
1907 struct btrfs_delayed_item *curr_item, *prev_item;
1908
1909 mutex_lock(&delayed_node->mutex);
1910 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1911 while (curr_item) {
1912 btrfs_delayed_item_release_metadata(root, curr_item);
1913 prev_item = curr_item;
1914 curr_item = __btrfs_next_delayed_item(prev_item);
1915 btrfs_release_delayed_item(prev_item);
1916 }
1917
1918 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1919 while (curr_item) {
1920 btrfs_delayed_item_release_metadata(root, curr_item);
1921 prev_item = curr_item;
1922 curr_item = __btrfs_next_delayed_item(prev_item);
1923 btrfs_release_delayed_item(prev_item);
1924 }
1925
1926 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1927 btrfs_release_delayed_iref(delayed_node);
1928
1929 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1930 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1931 btrfs_release_delayed_inode(delayed_node);
1932 }
1933 mutex_unlock(&delayed_node->mutex);
1934 }
1935
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)1936 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1937 {
1938 struct btrfs_delayed_node *delayed_node;
1939
1940 delayed_node = btrfs_get_delayed_node(inode);
1941 if (!delayed_node)
1942 return;
1943
1944 __btrfs_kill_delayed_node(delayed_node);
1945 btrfs_release_delayed_node(delayed_node);
1946 }
1947
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)1948 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1949 {
1950 u64 inode_id = 0;
1951 struct btrfs_delayed_node *delayed_nodes[8];
1952 int i, n;
1953
1954 while (1) {
1955 spin_lock(&root->inode_lock);
1956 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1957 (void **)delayed_nodes, inode_id,
1958 ARRAY_SIZE(delayed_nodes));
1959 if (!n) {
1960 spin_unlock(&root->inode_lock);
1961 break;
1962 }
1963
1964 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1965 for (i = 0; i < n; i++) {
1966 /*
1967 * Don't increase refs in case the node is dead and
1968 * about to be removed from the tree in the loop below
1969 */
1970 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1971 delayed_nodes[i] = NULL;
1972 }
1973 spin_unlock(&root->inode_lock);
1974
1975 for (i = 0; i < n; i++) {
1976 if (!delayed_nodes[i])
1977 continue;
1978 __btrfs_kill_delayed_node(delayed_nodes[i]);
1979 btrfs_release_delayed_node(delayed_nodes[i]);
1980 }
1981 }
1982 }
1983
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)1984 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1985 {
1986 struct btrfs_delayed_node *curr_node, *prev_node;
1987
1988 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1989 while (curr_node) {
1990 __btrfs_kill_delayed_node(curr_node);
1991
1992 prev_node = curr_node;
1993 curr_node = btrfs_next_delayed_node(curr_node);
1994 btrfs_release_delayed_node(prev_node);
1995 }
1996 }
1997
1998