1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
36 .sub_stripes = 2,
37 .dev_stripes = 1,
38 .devs_max = 0, /* 0 == as many as possible */
39 .devs_min = 4,
40 .tolerated_failures = 1,
41 .devs_increment = 2,
42 .ncopies = 2,
43 .nparity = 0,
44 .raid_name = "raid10",
45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
47 },
48 [BTRFS_RAID_RAID1] = {
49 .sub_stripes = 1,
50 .dev_stripes = 1,
51 .devs_max = 2,
52 .devs_min = 2,
53 .tolerated_failures = 1,
54 .devs_increment = 2,
55 .ncopies = 2,
56 .nparity = 0,
57 .raid_name = "raid1",
58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
60 },
61 [BTRFS_RAID_DUP] = {
62 .sub_stripes = 1,
63 .dev_stripes = 2,
64 .devs_max = 1,
65 .devs_min = 1,
66 .tolerated_failures = 0,
67 .devs_increment = 1,
68 .ncopies = 2,
69 .nparity = 0,
70 .raid_name = "dup",
71 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
72 .mindev_error = 0,
73 },
74 [BTRFS_RAID_RAID0] = {
75 .sub_stripes = 1,
76 .dev_stripes = 1,
77 .devs_max = 0,
78 .devs_min = 2,
79 .tolerated_failures = 0,
80 .devs_increment = 1,
81 .ncopies = 1,
82 .nparity = 0,
83 .raid_name = "raid0",
84 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
85 .mindev_error = 0,
86 },
87 [BTRFS_RAID_SINGLE] = {
88 .sub_stripes = 1,
89 .dev_stripes = 1,
90 .devs_max = 1,
91 .devs_min = 1,
92 .tolerated_failures = 0,
93 .devs_increment = 1,
94 .ncopies = 1,
95 .nparity = 0,
96 .raid_name = "single",
97 .bg_flag = 0,
98 .mindev_error = 0,
99 },
100 [BTRFS_RAID_RAID5] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 2,
105 .tolerated_failures = 1,
106 .devs_increment = 1,
107 .ncopies = 1,
108 .nparity = 1,
109 .raid_name = "raid5",
110 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
111 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
112 },
113 [BTRFS_RAID_RAID6] = {
114 .sub_stripes = 1,
115 .dev_stripes = 1,
116 .devs_max = 0,
117 .devs_min = 3,
118 .tolerated_failures = 2,
119 .devs_increment = 1,
120 .ncopies = 1,
121 .nparity = 2,
122 .raid_name = "raid6",
123 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
124 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
125 },
126 };
127
btrfs_bg_type_to_raid_name(u64 flags)128 const char *btrfs_bg_type_to_raid_name(u64 flags)
129 {
130 const int index = btrfs_bg_flags_to_raid_index(flags);
131
132 if (index >= BTRFS_NR_RAID_TYPES)
133 return NULL;
134
135 return btrfs_raid_array[index].raid_name;
136 }
137
138 /*
139 * Fill @buf with textual description of @bg_flags, no more than @size_buf
140 * bytes including terminating null byte.
141 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)142 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
143 {
144 int i;
145 int ret;
146 char *bp = buf;
147 u64 flags = bg_flags;
148 u32 size_bp = size_buf;
149
150 if (!flags) {
151 strcpy(bp, "NONE");
152 return;
153 }
154
155 #define DESCRIBE_FLAG(flag, desc) \
156 do { \
157 if (flags & (flag)) { \
158 ret = snprintf(bp, size_bp, "%s|", (desc)); \
159 if (ret < 0 || ret >= size_bp) \
160 goto out_overflow; \
161 size_bp -= ret; \
162 bp += ret; \
163 flags &= ~(flag); \
164 } \
165 } while (0)
166
167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
169 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
170
171 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
172 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
173 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
174 btrfs_raid_array[i].raid_name);
175 #undef DESCRIBE_FLAG
176
177 if (flags) {
178 ret = snprintf(bp, size_bp, "0x%llx|", flags);
179 size_bp -= ret;
180 }
181
182 if (size_bp < size_buf)
183 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
184
185 /*
186 * The text is trimmed, it's up to the caller to provide sufficiently
187 * large buffer
188 */
189 out_overflow:;
190 }
191
192 static int init_first_rw_device(struct btrfs_trans_handle *trans);
193 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197 enum btrfs_map_op op,
198 u64 logical, u64 *length,
199 struct btrfs_bio **bbio_ret,
200 int mirror_num, int need_raid_map);
201
202 /*
203 * Device locking
204 * ==============
205 *
206 * There are several mutexes that protect manipulation of devices and low-level
207 * structures like chunks but not block groups, extents or files
208 *
209 * uuid_mutex (global lock)
210 * ------------------------
211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213 * device) or requested by the device= mount option
214 *
215 * the mutex can be very coarse and can cover long-running operations
216 *
217 * protects: updates to fs_devices counters like missing devices, rw devices,
218 * seeding, structure cloning, opening/closing devices at mount/umount time
219 *
220 * global::fs_devs - add, remove, updates to the global list
221 *
222 * does not protect: manipulation of the fs_devices::devices list!
223 *
224 * btrfs_device::name - renames (write side), read is RCU
225 *
226 * fs_devices::device_list_mutex (per-fs, with RCU)
227 * ------------------------------------------------
228 * protects updates to fs_devices::devices, ie. adding and deleting
229 *
230 * simple list traversal with read-only actions can be done with RCU protection
231 *
232 * may be used to exclude some operations from running concurrently without any
233 * modifications to the list (see write_all_supers)
234 *
235 * balance_mutex
236 * -------------
237 * protects balance structures (status, state) and context accessed from
238 * several places (internally, ioctl)
239 *
240 * chunk_mutex
241 * -----------
242 * protects chunks, adding or removing during allocation, trim or when a new
243 * device is added/removed. Additionally it also protects post_commit_list of
244 * individual devices, since they can be added to the transaction's
245 * post_commit_list only with chunk_mutex held.
246 *
247 * cleaner_mutex
248 * -------------
249 * a big lock that is held by the cleaner thread and prevents running subvolume
250 * cleaning together with relocation or delayed iputs
251 *
252 *
253 * Lock nesting
254 * ============
255 *
256 * uuid_mutex
257 * volume_mutex
258 * device_list_mutex
259 * chunk_mutex
260 * balance_mutex
261 *
262 *
263 * Exclusive operations, BTRFS_FS_EXCL_OP
264 * ======================================
265 *
266 * Maintains the exclusivity of the following operations that apply to the
267 * whole filesystem and cannot run in parallel.
268 *
269 * - Balance (*)
270 * - Device add
271 * - Device remove
272 * - Device replace (*)
273 * - Resize
274 *
275 * The device operations (as above) can be in one of the following states:
276 *
277 * - Running state
278 * - Paused state
279 * - Completed state
280 *
281 * Only device operations marked with (*) can go into the Paused state for the
282 * following reasons:
283 *
284 * - ioctl (only Balance can be Paused through ioctl)
285 * - filesystem remounted as read-only
286 * - filesystem unmounted and mounted as read-only
287 * - system power-cycle and filesystem mounted as read-only
288 * - filesystem or device errors leading to forced read-only
289 *
290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292 * A device operation in Paused or Running state can be canceled or resumed
293 * either by ioctl (Balance only) or when remounted as read-write.
294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295 * completed.
296 */
297
298 DEFINE_MUTEX(uuid_mutex);
299 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)300 struct list_head *btrfs_get_fs_uuids(void)
301 {
302 return &fs_uuids;
303 }
304
305 /*
306 * alloc_fs_devices - allocate struct btrfs_fs_devices
307 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
308 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
309 *
310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311 * The returned struct is not linked onto any lists and can be destroyed with
312 * kfree() right away.
313 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315 const u8 *metadata_fsid)
316 {
317 struct btrfs_fs_devices *fs_devs;
318
319 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
320 if (!fs_devs)
321 return ERR_PTR(-ENOMEM);
322
323 mutex_init(&fs_devs->device_list_mutex);
324
325 INIT_LIST_HEAD(&fs_devs->devices);
326 INIT_LIST_HEAD(&fs_devs->alloc_list);
327 INIT_LIST_HEAD(&fs_devs->fs_list);
328 if (fsid)
329 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
330
331 if (metadata_fsid)
332 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333 else if (fsid)
334 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335
336 return fs_devs;
337 }
338
btrfs_free_device(struct btrfs_device * device)339 void btrfs_free_device(struct btrfs_device *device)
340 {
341 WARN_ON(!list_empty(&device->post_commit_list));
342 rcu_string_free(device->name);
343 extent_io_tree_release(&device->alloc_state);
344 bio_put(device->flush_bio);
345 kfree(device);
346 }
347
free_fs_devices(struct btrfs_fs_devices * fs_devices)348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349 {
350 struct btrfs_device *device;
351 WARN_ON(fs_devices->opened);
352 while (!list_empty(&fs_devices->devices)) {
353 device = list_entry(fs_devices->devices.next,
354 struct btrfs_device, dev_list);
355 list_del(&device->dev_list);
356 btrfs_free_device(device);
357 }
358 kfree(fs_devices);
359 }
360
btrfs_cleanup_fs_uuids(void)361 void __exit btrfs_cleanup_fs_uuids(void)
362 {
363 struct btrfs_fs_devices *fs_devices;
364
365 while (!list_empty(&fs_uuids)) {
366 fs_devices = list_entry(fs_uuids.next,
367 struct btrfs_fs_devices, fs_list);
368 list_del(&fs_devices->fs_list);
369 free_fs_devices(fs_devices);
370 }
371 }
372
373 /*
374 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
375 * Returned struct is not linked onto any lists and must be destroyed using
376 * btrfs_free_device.
377 */
__alloc_device(void)378 static struct btrfs_device *__alloc_device(void)
379 {
380 struct btrfs_device *dev;
381
382 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
383 if (!dev)
384 return ERR_PTR(-ENOMEM);
385
386 /*
387 * Preallocate a bio that's always going to be used for flushing device
388 * barriers and matches the device lifespan
389 */
390 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
391 if (!dev->flush_bio) {
392 kfree(dev);
393 return ERR_PTR(-ENOMEM);
394 }
395
396 INIT_LIST_HEAD(&dev->dev_list);
397 INIT_LIST_HEAD(&dev->dev_alloc_list);
398 INIT_LIST_HEAD(&dev->post_commit_list);
399
400 spin_lock_init(&dev->io_lock);
401
402 atomic_set(&dev->reada_in_flight, 0);
403 atomic_set(&dev->dev_stats_ccnt, 0);
404 btrfs_device_data_ordered_init(dev);
405 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
406 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
407 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
408
409 return dev;
410 }
411
find_fsid(const u8 * fsid,const u8 * metadata_fsid)412 static noinline struct btrfs_fs_devices *find_fsid(
413 const u8 *fsid, const u8 *metadata_fsid)
414 {
415 struct btrfs_fs_devices *fs_devices;
416
417 ASSERT(fsid);
418
419 if (metadata_fsid) {
420 /*
421 * Handle scanned device having completed its fsid change but
422 * belonging to a fs_devices that was created by first scanning
423 * a device which didn't have its fsid/metadata_uuid changed
424 * at all and the CHANGING_FSID_V2 flag set.
425 */
426 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
427 if (fs_devices->fsid_change &&
428 memcmp(metadata_fsid, fs_devices->fsid,
429 BTRFS_FSID_SIZE) == 0 &&
430 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
431 BTRFS_FSID_SIZE) == 0) {
432 return fs_devices;
433 }
434 }
435 /*
436 * Handle scanned device having completed its fsid change but
437 * belonging to a fs_devices that was created by a device that
438 * has an outdated pair of fsid/metadata_uuid and
439 * CHANGING_FSID_V2 flag set.
440 */
441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 if (fs_devices->fsid_change &&
443 memcmp(fs_devices->metadata_uuid,
444 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
445 memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 BTRFS_FSID_SIZE) == 0) {
447 return fs_devices;
448 }
449 }
450 }
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (metadata_fsid) {
455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 BTRFS_FSID_SIZE) == 0)
458 return fs_devices;
459 } else {
460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 return fs_devices;
462 }
463 }
464 return NULL;
465 }
466
467 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)468 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
469 int flush, struct block_device **bdev,
470 struct buffer_head **bh)
471 {
472 int ret;
473
474 *bdev = blkdev_get_by_path(device_path, flags, holder);
475
476 if (IS_ERR(*bdev)) {
477 ret = PTR_ERR(*bdev);
478 goto error;
479 }
480
481 if (flush)
482 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
483 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
484 if (ret) {
485 blkdev_put(*bdev, flags);
486 goto error;
487 }
488 invalidate_bdev(*bdev);
489 *bh = btrfs_read_dev_super(*bdev);
490 if (IS_ERR(*bh)) {
491 ret = PTR_ERR(*bh);
492 blkdev_put(*bdev, flags);
493 goto error;
494 }
495
496 return 0;
497
498 error:
499 *bdev = NULL;
500 *bh = NULL;
501 return ret;
502 }
503
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)504 static void requeue_list(struct btrfs_pending_bios *pending_bios,
505 struct bio *head, struct bio *tail)
506 {
507
508 struct bio *old_head;
509
510 old_head = pending_bios->head;
511 pending_bios->head = head;
512 if (pending_bios->tail)
513 tail->bi_next = old_head;
514 else
515 pending_bios->tail = tail;
516 }
517
518 /*
519 * we try to collect pending bios for a device so we don't get a large
520 * number of procs sending bios down to the same device. This greatly
521 * improves the schedulers ability to collect and merge the bios.
522 *
523 * But, it also turns into a long list of bios to process and that is sure
524 * to eventually make the worker thread block. The solution here is to
525 * make some progress and then put this work struct back at the end of
526 * the list if the block device is congested. This way, multiple devices
527 * can make progress from a single worker thread.
528 */
run_scheduled_bios(struct btrfs_device * device)529 static noinline void run_scheduled_bios(struct btrfs_device *device)
530 {
531 struct btrfs_fs_info *fs_info = device->fs_info;
532 struct bio *pending;
533 struct backing_dev_info *bdi;
534 struct btrfs_pending_bios *pending_bios;
535 struct bio *tail;
536 struct bio *cur;
537 int again = 0;
538 unsigned long num_run;
539 unsigned long batch_run = 0;
540 unsigned long last_waited = 0;
541 int force_reg = 0;
542 int sync_pending = 0;
543 struct blk_plug plug;
544
545 /*
546 * this function runs all the bios we've collected for
547 * a particular device. We don't want to wander off to
548 * another device without first sending all of these down.
549 * So, setup a plug here and finish it off before we return
550 */
551 blk_start_plug(&plug);
552
553 bdi = device->bdev->bd_bdi;
554
555 loop:
556 spin_lock(&device->io_lock);
557
558 loop_lock:
559 num_run = 0;
560
561 /* take all the bios off the list at once and process them
562 * later on (without the lock held). But, remember the
563 * tail and other pointers so the bios can be properly reinserted
564 * into the list if we hit congestion
565 */
566 if (!force_reg && device->pending_sync_bios.head) {
567 pending_bios = &device->pending_sync_bios;
568 force_reg = 1;
569 } else {
570 pending_bios = &device->pending_bios;
571 force_reg = 0;
572 }
573
574 pending = pending_bios->head;
575 tail = pending_bios->tail;
576 WARN_ON(pending && !tail);
577
578 /*
579 * if pending was null this time around, no bios need processing
580 * at all and we can stop. Otherwise it'll loop back up again
581 * and do an additional check so no bios are missed.
582 *
583 * device->running_pending is used to synchronize with the
584 * schedule_bio code.
585 */
586 if (device->pending_sync_bios.head == NULL &&
587 device->pending_bios.head == NULL) {
588 again = 0;
589 device->running_pending = 0;
590 } else {
591 again = 1;
592 device->running_pending = 1;
593 }
594
595 pending_bios->head = NULL;
596 pending_bios->tail = NULL;
597
598 spin_unlock(&device->io_lock);
599
600 while (pending) {
601
602 rmb();
603 /* we want to work on both lists, but do more bios on the
604 * sync list than the regular list
605 */
606 if ((num_run > 32 &&
607 pending_bios != &device->pending_sync_bios &&
608 device->pending_sync_bios.head) ||
609 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
610 device->pending_bios.head)) {
611 spin_lock(&device->io_lock);
612 requeue_list(pending_bios, pending, tail);
613 goto loop_lock;
614 }
615
616 cur = pending;
617 pending = pending->bi_next;
618 cur->bi_next = NULL;
619
620 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
621
622 /*
623 * if we're doing the sync list, record that our
624 * plug has some sync requests on it
625 *
626 * If we're doing the regular list and there are
627 * sync requests sitting around, unplug before
628 * we add more
629 */
630 if (pending_bios == &device->pending_sync_bios) {
631 sync_pending = 1;
632 } else if (sync_pending) {
633 blk_finish_plug(&plug);
634 blk_start_plug(&plug);
635 sync_pending = 0;
636 }
637
638 btrfsic_submit_bio(cur);
639 num_run++;
640 batch_run++;
641
642 cond_resched();
643
644 /*
645 * we made progress, there is more work to do and the bdi
646 * is now congested. Back off and let other work structs
647 * run instead
648 */
649 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
650 fs_info->fs_devices->open_devices > 1) {
651 struct io_context *ioc;
652
653 ioc = current->io_context;
654
655 /*
656 * the main goal here is that we don't want to
657 * block if we're going to be able to submit
658 * more requests without blocking.
659 *
660 * This code does two great things, it pokes into
661 * the elevator code from a filesystem _and_
662 * it makes assumptions about how batching works.
663 */
664 if (ioc && ioc->nr_batch_requests > 0 &&
665 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
666 (last_waited == 0 ||
667 ioc->last_waited == last_waited)) {
668 /*
669 * we want to go through our batch of
670 * requests and stop. So, we copy out
671 * the ioc->last_waited time and test
672 * against it before looping
673 */
674 last_waited = ioc->last_waited;
675 cond_resched();
676 continue;
677 }
678 spin_lock(&device->io_lock);
679 requeue_list(pending_bios, pending, tail);
680 device->running_pending = 1;
681
682 spin_unlock(&device->io_lock);
683 btrfs_queue_work(fs_info->submit_workers,
684 &device->work);
685 goto done;
686 }
687 }
688
689 cond_resched();
690 if (again)
691 goto loop;
692
693 spin_lock(&device->io_lock);
694 if (device->pending_bios.head || device->pending_sync_bios.head)
695 goto loop_lock;
696 spin_unlock(&device->io_lock);
697
698 done:
699 blk_finish_plug(&plug);
700 }
701
pending_bios_fn(struct btrfs_work * work)702 static void pending_bios_fn(struct btrfs_work *work)
703 {
704 struct btrfs_device *device;
705
706 device = container_of(work, struct btrfs_device, work);
707 run_scheduled_bios(device);
708 }
709
device_path_matched(const char * path,struct btrfs_device * device)710 static bool device_path_matched(const char *path, struct btrfs_device *device)
711 {
712 int found;
713
714 rcu_read_lock();
715 found = strcmp(rcu_str_deref(device->name), path);
716 rcu_read_unlock();
717
718 return found == 0;
719 }
720
721 /*
722 * Search and remove all stale (devices which are not mounted) devices.
723 * When both inputs are NULL, it will search and release all stale devices.
724 * path: Optional. When provided will it release all unmounted devices
725 * matching this path only.
726 * skip_dev: Optional. Will skip this device when searching for the stale
727 * devices.
728 * Return: 0 for success or if @path is NULL.
729 * -EBUSY if @path is a mounted device.
730 * -ENOENT if @path does not match any device in the list.
731 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)732 static int btrfs_free_stale_devices(const char *path,
733 struct btrfs_device *skip_device)
734 {
735 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
736 struct btrfs_device *device, *tmp_device;
737 int ret = 0;
738
739 if (path)
740 ret = -ENOENT;
741
742 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
743
744 mutex_lock(&fs_devices->device_list_mutex);
745 list_for_each_entry_safe(device, tmp_device,
746 &fs_devices->devices, dev_list) {
747 if (skip_device && skip_device == device)
748 continue;
749 if (path && !device->name)
750 continue;
751 if (path && !device_path_matched(path, device))
752 continue;
753 if (fs_devices->opened) {
754 /* for an already deleted device return 0 */
755 if (path && ret != 0)
756 ret = -EBUSY;
757 break;
758 }
759
760 /* delete the stale device */
761 fs_devices->num_devices--;
762 list_del(&device->dev_list);
763 btrfs_free_device(device);
764
765 ret = 0;
766 if (fs_devices->num_devices == 0)
767 break;
768 }
769 mutex_unlock(&fs_devices->device_list_mutex);
770
771 if (fs_devices->num_devices == 0) {
772 btrfs_sysfs_remove_fsid(fs_devices);
773 list_del(&fs_devices->fs_list);
774 free_fs_devices(fs_devices);
775 }
776 }
777
778 return ret;
779 }
780
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)781 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
782 struct btrfs_device *device, fmode_t flags,
783 void *holder)
784 {
785 struct request_queue *q;
786 struct block_device *bdev;
787 struct buffer_head *bh;
788 struct btrfs_super_block *disk_super;
789 u64 devid;
790 int ret;
791
792 if (device->bdev)
793 return -EINVAL;
794 if (!device->name)
795 return -EINVAL;
796
797 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
798 &bdev, &bh);
799 if (ret)
800 return ret;
801
802 disk_super = (struct btrfs_super_block *)bh->b_data;
803 devid = btrfs_stack_device_id(&disk_super->dev_item);
804 if (devid != device->devid)
805 goto error_brelse;
806
807 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
808 goto error_brelse;
809
810 device->generation = btrfs_super_generation(disk_super);
811
812 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
813 if (btrfs_super_incompat_flags(disk_super) &
814 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
815 pr_err(
816 "BTRFS: Invalid seeding and uuid-changed device detected\n");
817 goto error_brelse;
818 }
819
820 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
821 fs_devices->seeding = 1;
822 } else {
823 if (bdev_read_only(bdev))
824 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
825 else
826 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
827 }
828
829 q = bdev_get_queue(bdev);
830 if (!blk_queue_nonrot(q))
831 fs_devices->rotating = 1;
832
833 device->bdev = bdev;
834 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
835 device->mode = flags;
836
837 fs_devices->open_devices++;
838 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
839 device->devid != BTRFS_DEV_REPLACE_DEVID) {
840 fs_devices->rw_devices++;
841 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
842 }
843 brelse(bh);
844
845 return 0;
846
847 error_brelse:
848 brelse(bh);
849 blkdev_put(bdev, flags);
850
851 return -EINVAL;
852 }
853
854 /*
855 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
856 * being created with a disk that has already completed its fsid change.
857 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)858 static struct btrfs_fs_devices *find_fsid_inprogress(
859 struct btrfs_super_block *disk_super)
860 {
861 struct btrfs_fs_devices *fs_devices;
862
863 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
864 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
865 BTRFS_FSID_SIZE) != 0 &&
866 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
867 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
868 return fs_devices;
869 }
870 }
871
872 return NULL;
873 }
874
875
find_fsid_changed(struct btrfs_super_block * disk_super)876 static struct btrfs_fs_devices *find_fsid_changed(
877 struct btrfs_super_block *disk_super)
878 {
879 struct btrfs_fs_devices *fs_devices;
880
881 /*
882 * Handles the case where scanned device is part of an fs that had
883 * multiple successful changes of FSID but curently device didn't
884 * observe it. Meaning our fsid will be different than theirs.
885 */
886 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
887 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
888 BTRFS_FSID_SIZE) != 0 &&
889 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
890 BTRFS_FSID_SIZE) == 0 &&
891 memcmp(fs_devices->fsid, disk_super->fsid,
892 BTRFS_FSID_SIZE) != 0) {
893 return fs_devices;
894 }
895 }
896
897 return NULL;
898 }
899 /*
900 * Add new device to list of registered devices
901 *
902 * Returns:
903 * device pointer which was just added or updated when successful
904 * error pointer when failed
905 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)906 static noinline struct btrfs_device *device_list_add(const char *path,
907 struct btrfs_super_block *disk_super,
908 bool *new_device_added)
909 {
910 struct btrfs_device *device;
911 struct btrfs_fs_devices *fs_devices = NULL;
912 struct rcu_string *name;
913 u64 found_transid = btrfs_super_generation(disk_super);
914 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
915 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
916 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
917 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
918 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
919
920 if (fsid_change_in_progress) {
921 if (!has_metadata_uuid) {
922 /*
923 * When we have an image which has CHANGING_FSID_V2 set
924 * it might belong to either a filesystem which has
925 * disks with completed fsid change or it might belong
926 * to fs with no UUID changes in effect, handle both.
927 */
928 fs_devices = find_fsid_inprogress(disk_super);
929 if (!fs_devices)
930 fs_devices = find_fsid(disk_super->fsid, NULL);
931 } else {
932 fs_devices = find_fsid_changed(disk_super);
933 }
934 } else if (has_metadata_uuid) {
935 fs_devices = find_fsid(disk_super->fsid,
936 disk_super->metadata_uuid);
937 } else {
938 fs_devices = find_fsid(disk_super->fsid, NULL);
939 }
940
941
942 if (!fs_devices) {
943 if (has_metadata_uuid)
944 fs_devices = alloc_fs_devices(disk_super->fsid,
945 disk_super->metadata_uuid);
946 else
947 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
948
949 if (IS_ERR(fs_devices))
950 return ERR_CAST(fs_devices);
951
952 fs_devices->fsid_change = fsid_change_in_progress;
953
954 mutex_lock(&fs_devices->device_list_mutex);
955 list_add(&fs_devices->fs_list, &fs_uuids);
956
957 device = NULL;
958 } else {
959 mutex_lock(&fs_devices->device_list_mutex);
960 device = btrfs_find_device(fs_devices, devid,
961 disk_super->dev_item.uuid, NULL, false);
962
963 /*
964 * If this disk has been pulled into an fs devices created by
965 * a device which had the CHANGING_FSID_V2 flag then replace the
966 * metadata_uuid/fsid values of the fs_devices.
967 */
968 if (has_metadata_uuid && fs_devices->fsid_change &&
969 found_transid > fs_devices->latest_generation) {
970 memcpy(fs_devices->fsid, disk_super->fsid,
971 BTRFS_FSID_SIZE);
972 memcpy(fs_devices->metadata_uuid,
973 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
974
975 fs_devices->fsid_change = false;
976 }
977 }
978
979 if (!device) {
980 if (fs_devices->opened) {
981 mutex_unlock(&fs_devices->device_list_mutex);
982 return ERR_PTR(-EBUSY);
983 }
984
985 device = btrfs_alloc_device(NULL, &devid,
986 disk_super->dev_item.uuid);
987 if (IS_ERR(device)) {
988 mutex_unlock(&fs_devices->device_list_mutex);
989 /* we can safely leave the fs_devices entry around */
990 return device;
991 }
992
993 name = rcu_string_strdup(path, GFP_NOFS);
994 if (!name) {
995 btrfs_free_device(device);
996 mutex_unlock(&fs_devices->device_list_mutex);
997 return ERR_PTR(-ENOMEM);
998 }
999 rcu_assign_pointer(device->name, name);
1000
1001 list_add_rcu(&device->dev_list, &fs_devices->devices);
1002 fs_devices->num_devices++;
1003
1004 device->fs_devices = fs_devices;
1005 *new_device_added = true;
1006
1007 if (disk_super->label[0])
1008 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1009 disk_super->label, devid, found_transid, path);
1010 else
1011 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1012 disk_super->fsid, devid, found_transid, path);
1013
1014 } else if (!device->name || strcmp(device->name->str, path)) {
1015 /*
1016 * When FS is already mounted.
1017 * 1. If you are here and if the device->name is NULL that
1018 * means this device was missing at time of FS mount.
1019 * 2. If you are here and if the device->name is different
1020 * from 'path' that means either
1021 * a. The same device disappeared and reappeared with
1022 * different name. or
1023 * b. The missing-disk-which-was-replaced, has
1024 * reappeared now.
1025 *
1026 * We must allow 1 and 2a above. But 2b would be a spurious
1027 * and unintentional.
1028 *
1029 * Further in case of 1 and 2a above, the disk at 'path'
1030 * would have missed some transaction when it was away and
1031 * in case of 2a the stale bdev has to be updated as well.
1032 * 2b must not be allowed at all time.
1033 */
1034
1035 /*
1036 * For now, we do allow update to btrfs_fs_device through the
1037 * btrfs dev scan cli after FS has been mounted. We're still
1038 * tracking a problem where systems fail mount by subvolume id
1039 * when we reject replacement on a mounted FS.
1040 */
1041 if (!fs_devices->opened && found_transid < device->generation) {
1042 /*
1043 * That is if the FS is _not_ mounted and if you
1044 * are here, that means there is more than one
1045 * disk with same uuid and devid.We keep the one
1046 * with larger generation number or the last-in if
1047 * generation are equal.
1048 */
1049 mutex_unlock(&fs_devices->device_list_mutex);
1050 return ERR_PTR(-EEXIST);
1051 }
1052
1053 /*
1054 * We are going to replace the device path for a given devid,
1055 * make sure it's the same device if the device is mounted
1056 */
1057 if (device->bdev) {
1058 struct block_device *path_bdev;
1059
1060 path_bdev = lookup_bdev(path);
1061 if (IS_ERR(path_bdev)) {
1062 mutex_unlock(&fs_devices->device_list_mutex);
1063 return ERR_CAST(path_bdev);
1064 }
1065
1066 if (device->bdev != path_bdev) {
1067 bdput(path_bdev);
1068 mutex_unlock(&fs_devices->device_list_mutex);
1069 btrfs_warn_in_rcu(device->fs_info,
1070 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1071 disk_super->fsid, devid,
1072 rcu_str_deref(device->name), path);
1073 return ERR_PTR(-EEXIST);
1074 }
1075 bdput(path_bdev);
1076 btrfs_info_in_rcu(device->fs_info,
1077 "device fsid %pU devid %llu moved old:%s new:%s",
1078 disk_super->fsid, devid,
1079 rcu_str_deref(device->name), path);
1080 }
1081
1082 name = rcu_string_strdup(path, GFP_NOFS);
1083 if (!name) {
1084 mutex_unlock(&fs_devices->device_list_mutex);
1085 return ERR_PTR(-ENOMEM);
1086 }
1087 rcu_string_free(device->name);
1088 rcu_assign_pointer(device->name, name);
1089 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1090 fs_devices->missing_devices--;
1091 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1092 }
1093 }
1094
1095 /*
1096 * Unmount does not free the btrfs_device struct but would zero
1097 * generation along with most of the other members. So just update
1098 * it back. We need it to pick the disk with largest generation
1099 * (as above).
1100 */
1101 if (!fs_devices->opened) {
1102 device->generation = found_transid;
1103 fs_devices->latest_generation = max_t(u64, found_transid,
1104 fs_devices->latest_generation);
1105 }
1106
1107 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1108
1109 mutex_unlock(&fs_devices->device_list_mutex);
1110 return device;
1111 }
1112
clone_fs_devices(struct btrfs_fs_devices * orig)1113 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1114 {
1115 struct btrfs_fs_devices *fs_devices;
1116 struct btrfs_device *device;
1117 struct btrfs_device *orig_dev;
1118 int ret = 0;
1119
1120 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1121 if (IS_ERR(fs_devices))
1122 return fs_devices;
1123
1124 mutex_lock(&orig->device_list_mutex);
1125 fs_devices->total_devices = orig->total_devices;
1126
1127 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1128 struct rcu_string *name;
1129
1130 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1131 orig_dev->uuid);
1132 if (IS_ERR(device)) {
1133 ret = PTR_ERR(device);
1134 goto error;
1135 }
1136
1137 /*
1138 * This is ok to do without rcu read locked because we hold the
1139 * uuid mutex so nothing we touch in here is going to disappear.
1140 */
1141 if (orig_dev->name) {
1142 name = rcu_string_strdup(orig_dev->name->str,
1143 GFP_KERNEL);
1144 if (!name) {
1145 btrfs_free_device(device);
1146 ret = -ENOMEM;
1147 goto error;
1148 }
1149 rcu_assign_pointer(device->name, name);
1150 }
1151
1152 list_add(&device->dev_list, &fs_devices->devices);
1153 device->fs_devices = fs_devices;
1154 fs_devices->num_devices++;
1155 }
1156 mutex_unlock(&orig->device_list_mutex);
1157 return fs_devices;
1158 error:
1159 mutex_unlock(&orig->device_list_mutex);
1160 free_fs_devices(fs_devices);
1161 return ERR_PTR(ret);
1162 }
1163
1164 /*
1165 * After we have read the system tree and know devids belonging to
1166 * this filesystem, remove the device which does not belong there.
1167 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step)1168 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1169 {
1170 struct btrfs_device *device, *next;
1171 struct btrfs_device *latest_dev = NULL;
1172
1173 mutex_lock(&uuid_mutex);
1174 again:
1175 /* This is the initialized path, it is safe to release the devices. */
1176 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1177 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1178 &device->dev_state)) {
1179 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1180 &device->dev_state) &&
1181 (!latest_dev ||
1182 device->generation > latest_dev->generation)) {
1183 latest_dev = device;
1184 }
1185 continue;
1186 }
1187
1188 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1189 /*
1190 * In the first step, keep the device which has
1191 * the correct fsid and the devid that is used
1192 * for the dev_replace procedure.
1193 * In the second step, the dev_replace state is
1194 * read from the device tree and it is known
1195 * whether the procedure is really active or
1196 * not, which means whether this device is
1197 * used or whether it should be removed.
1198 */
1199 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1200 &device->dev_state)) {
1201 continue;
1202 }
1203 }
1204 if (device->bdev) {
1205 blkdev_put(device->bdev, device->mode);
1206 device->bdev = NULL;
1207 fs_devices->open_devices--;
1208 }
1209 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1210 list_del_init(&device->dev_alloc_list);
1211 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1212 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1213 &device->dev_state))
1214 fs_devices->rw_devices--;
1215 }
1216 list_del_init(&device->dev_list);
1217 fs_devices->num_devices--;
1218 btrfs_free_device(device);
1219 }
1220
1221 if (fs_devices->seed) {
1222 fs_devices = fs_devices->seed;
1223 goto again;
1224 }
1225
1226 fs_devices->latest_bdev = latest_dev->bdev;
1227
1228 mutex_unlock(&uuid_mutex);
1229 }
1230
btrfs_close_bdev(struct btrfs_device * device)1231 static void btrfs_close_bdev(struct btrfs_device *device)
1232 {
1233 if (!device->bdev)
1234 return;
1235
1236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1237 sync_blockdev(device->bdev);
1238 invalidate_bdev(device->bdev);
1239 }
1240
1241 blkdev_put(device->bdev, device->mode);
1242 }
1243
btrfs_close_one_device(struct btrfs_device * device)1244 static void btrfs_close_one_device(struct btrfs_device *device)
1245 {
1246 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1247 struct btrfs_device *new_device;
1248 struct rcu_string *name;
1249
1250 if (device->bdev)
1251 fs_devices->open_devices--;
1252
1253 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1254 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1255 list_del_init(&device->dev_alloc_list);
1256 fs_devices->rw_devices--;
1257 }
1258
1259 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1260 fs_devices->missing_devices--;
1261
1262 btrfs_close_bdev(device);
1263
1264 new_device = btrfs_alloc_device(NULL, &device->devid,
1265 device->uuid);
1266 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1267
1268 /* Safe because we are under uuid_mutex */
1269 if (device->name) {
1270 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1271 BUG_ON(!name); /* -ENOMEM */
1272 rcu_assign_pointer(new_device->name, name);
1273 }
1274
1275 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1276 new_device->fs_devices = device->fs_devices;
1277
1278 synchronize_rcu();
1279 btrfs_free_device(device);
1280 }
1281
close_fs_devices(struct btrfs_fs_devices * fs_devices)1282 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1283 {
1284 struct btrfs_device *device, *tmp;
1285
1286 if (--fs_devices->opened > 0)
1287 return 0;
1288
1289 mutex_lock(&fs_devices->device_list_mutex);
1290 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1291 btrfs_close_one_device(device);
1292 }
1293 mutex_unlock(&fs_devices->device_list_mutex);
1294
1295 WARN_ON(fs_devices->open_devices);
1296 WARN_ON(fs_devices->rw_devices);
1297 fs_devices->opened = 0;
1298 fs_devices->seeding = 0;
1299
1300 return 0;
1301 }
1302
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1303 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1304 {
1305 struct btrfs_fs_devices *seed_devices = NULL;
1306 int ret;
1307
1308 mutex_lock(&uuid_mutex);
1309 ret = close_fs_devices(fs_devices);
1310 if (!fs_devices->opened) {
1311 seed_devices = fs_devices->seed;
1312 fs_devices->seed = NULL;
1313 }
1314 mutex_unlock(&uuid_mutex);
1315
1316 while (seed_devices) {
1317 fs_devices = seed_devices;
1318 seed_devices = fs_devices->seed;
1319 close_fs_devices(fs_devices);
1320 free_fs_devices(fs_devices);
1321 }
1322 return ret;
1323 }
1324
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1325 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1326 fmode_t flags, void *holder)
1327 {
1328 struct btrfs_device *device;
1329 struct btrfs_device *latest_dev = NULL;
1330 int ret = 0;
1331
1332 flags |= FMODE_EXCL;
1333
1334 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1335 /* Just open everything we can; ignore failures here */
1336 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1337 continue;
1338
1339 if (!latest_dev ||
1340 device->generation > latest_dev->generation)
1341 latest_dev = device;
1342 }
1343 if (fs_devices->open_devices == 0) {
1344 ret = -EINVAL;
1345 goto out;
1346 }
1347 fs_devices->opened = 1;
1348 fs_devices->latest_bdev = latest_dev->bdev;
1349 fs_devices->total_rw_bytes = 0;
1350 out:
1351 return ret;
1352 }
1353
devid_cmp(void * priv,struct list_head * a,struct list_head * b)1354 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1355 {
1356 struct btrfs_device *dev1, *dev2;
1357
1358 dev1 = list_entry(a, struct btrfs_device, dev_list);
1359 dev2 = list_entry(b, struct btrfs_device, dev_list);
1360
1361 if (dev1->devid < dev2->devid)
1362 return -1;
1363 else if (dev1->devid > dev2->devid)
1364 return 1;
1365 return 0;
1366 }
1367
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1368 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1369 fmode_t flags, void *holder)
1370 {
1371 int ret;
1372
1373 lockdep_assert_held(&uuid_mutex);
1374
1375 mutex_lock(&fs_devices->device_list_mutex);
1376 if (fs_devices->opened) {
1377 fs_devices->opened++;
1378 ret = 0;
1379 } else {
1380 list_sort(NULL, &fs_devices->devices, devid_cmp);
1381 ret = open_fs_devices(fs_devices, flags, holder);
1382 }
1383 mutex_unlock(&fs_devices->device_list_mutex);
1384
1385 return ret;
1386 }
1387
btrfs_release_disk_super(struct page * page)1388 static void btrfs_release_disk_super(struct page *page)
1389 {
1390 kunmap(page);
1391 put_page(page);
1392 }
1393
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,struct page ** page,struct btrfs_super_block ** disk_super)1394 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1395 struct page **page,
1396 struct btrfs_super_block **disk_super)
1397 {
1398 void *p;
1399 pgoff_t index;
1400
1401 /* make sure our super fits in the device */
1402 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1403 return 1;
1404
1405 /* make sure our super fits in the page */
1406 if (sizeof(**disk_super) > PAGE_SIZE)
1407 return 1;
1408
1409 /* make sure our super doesn't straddle pages on disk */
1410 index = bytenr >> PAGE_SHIFT;
1411 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1412 return 1;
1413
1414 /* pull in the page with our super */
1415 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1416 index, GFP_KERNEL);
1417
1418 if (IS_ERR_OR_NULL(*page))
1419 return 1;
1420
1421 p = kmap(*page);
1422
1423 /* align our pointer to the offset of the super block */
1424 *disk_super = p + offset_in_page(bytenr);
1425
1426 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1427 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1428 btrfs_release_disk_super(*page);
1429 return 1;
1430 }
1431
1432 if ((*disk_super)->label[0] &&
1433 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1434 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1435
1436 return 0;
1437 }
1438
btrfs_forget_devices(const char * path)1439 int btrfs_forget_devices(const char *path)
1440 {
1441 int ret;
1442
1443 mutex_lock(&uuid_mutex);
1444 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1445 mutex_unlock(&uuid_mutex);
1446
1447 return ret;
1448 }
1449
1450 /*
1451 * Look for a btrfs signature on a device. This may be called out of the mount path
1452 * and we are not allowed to call set_blocksize during the scan. The superblock
1453 * is read via pagecache
1454 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1455 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1456 void *holder)
1457 {
1458 struct btrfs_super_block *disk_super;
1459 bool new_device_added = false;
1460 struct btrfs_device *device = NULL;
1461 struct block_device *bdev;
1462 struct page *page;
1463 u64 bytenr;
1464
1465 lockdep_assert_held(&uuid_mutex);
1466
1467 /*
1468 * we would like to check all the supers, but that would make
1469 * a btrfs mount succeed after a mkfs from a different FS.
1470 * So, we need to add a special mount option to scan for
1471 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1472 */
1473 bytenr = btrfs_sb_offset(0);
1474 flags |= FMODE_EXCL;
1475
1476 bdev = blkdev_get_by_path(path, flags, holder);
1477 if (IS_ERR(bdev))
1478 return ERR_CAST(bdev);
1479
1480 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1481 device = ERR_PTR(-EINVAL);
1482 goto error_bdev_put;
1483 }
1484
1485 device = device_list_add(path, disk_super, &new_device_added);
1486 if (!IS_ERR(device)) {
1487 if (new_device_added)
1488 btrfs_free_stale_devices(path, device);
1489 }
1490
1491 btrfs_release_disk_super(page);
1492
1493 error_bdev_put:
1494 blkdev_put(bdev, flags);
1495
1496 return device;
1497 }
1498
1499 /*
1500 * Try to find a chunk that intersects [start, start + len] range and when one
1501 * such is found, record the end of it in *start
1502 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1503 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1504 u64 len)
1505 {
1506 u64 physical_start, physical_end;
1507
1508 lockdep_assert_held(&device->fs_info->chunk_mutex);
1509
1510 if (!find_first_extent_bit(&device->alloc_state, *start,
1511 &physical_start, &physical_end,
1512 CHUNK_ALLOCATED, NULL)) {
1513
1514 if (in_range(physical_start, *start, len) ||
1515 in_range(*start, physical_start,
1516 physical_end - physical_start)) {
1517 *start = physical_end + 1;
1518 return true;
1519 }
1520 }
1521 return false;
1522 }
1523
1524
1525 /*
1526 * find_free_dev_extent_start - find free space in the specified device
1527 * @device: the device which we search the free space in
1528 * @num_bytes: the size of the free space that we need
1529 * @search_start: the position from which to begin the search
1530 * @start: store the start of the free space.
1531 * @len: the size of the free space. that we find, or the size
1532 * of the max free space if we don't find suitable free space
1533 *
1534 * this uses a pretty simple search, the expectation is that it is
1535 * called very infrequently and that a given device has a small number
1536 * of extents
1537 *
1538 * @start is used to store the start of the free space if we find. But if we
1539 * don't find suitable free space, it will be used to store the start position
1540 * of the max free space.
1541 *
1542 * @len is used to store the size of the free space that we find.
1543 * But if we don't find suitable free space, it is used to store the size of
1544 * the max free space.
1545 *
1546 * NOTE: This function will search *commit* root of device tree, and does extra
1547 * check to ensure dev extents are not double allocated.
1548 * This makes the function safe to allocate dev extents but may not report
1549 * correct usable device space, as device extent freed in current transaction
1550 * is not reported as avaiable.
1551 */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1552 static int find_free_dev_extent_start(struct btrfs_device *device,
1553 u64 num_bytes, u64 search_start, u64 *start,
1554 u64 *len)
1555 {
1556 struct btrfs_fs_info *fs_info = device->fs_info;
1557 struct btrfs_root *root = fs_info->dev_root;
1558 struct btrfs_key key;
1559 struct btrfs_dev_extent *dev_extent;
1560 struct btrfs_path *path;
1561 u64 hole_size;
1562 u64 max_hole_start;
1563 u64 max_hole_size;
1564 u64 extent_end;
1565 u64 search_end = device->total_bytes;
1566 int ret;
1567 int slot;
1568 struct extent_buffer *l;
1569
1570 /*
1571 * We don't want to overwrite the superblock on the drive nor any area
1572 * used by the boot loader (grub for example), so we make sure to start
1573 * at an offset of at least 1MB.
1574 */
1575 search_start = max_t(u64, search_start, SZ_1M);
1576
1577 path = btrfs_alloc_path();
1578 if (!path)
1579 return -ENOMEM;
1580
1581 max_hole_start = search_start;
1582 max_hole_size = 0;
1583
1584 again:
1585 if (search_start >= search_end ||
1586 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1587 ret = -ENOSPC;
1588 goto out;
1589 }
1590
1591 path->reada = READA_FORWARD;
1592 path->search_commit_root = 1;
1593 path->skip_locking = 1;
1594
1595 key.objectid = device->devid;
1596 key.offset = search_start;
1597 key.type = BTRFS_DEV_EXTENT_KEY;
1598
1599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1600 if (ret < 0)
1601 goto out;
1602 if (ret > 0) {
1603 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1604 if (ret < 0)
1605 goto out;
1606 }
1607
1608 while (1) {
1609 l = path->nodes[0];
1610 slot = path->slots[0];
1611 if (slot >= btrfs_header_nritems(l)) {
1612 ret = btrfs_next_leaf(root, path);
1613 if (ret == 0)
1614 continue;
1615 if (ret < 0)
1616 goto out;
1617
1618 break;
1619 }
1620 btrfs_item_key_to_cpu(l, &key, slot);
1621
1622 if (key.objectid < device->devid)
1623 goto next;
1624
1625 if (key.objectid > device->devid)
1626 break;
1627
1628 if (key.type != BTRFS_DEV_EXTENT_KEY)
1629 goto next;
1630
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
1633
1634 /*
1635 * Have to check before we set max_hole_start, otherwise
1636 * we could end up sending back this offset anyway.
1637 */
1638 if (contains_pending_extent(device, &search_start,
1639 hole_size)) {
1640 if (key.offset >= search_start)
1641 hole_size = key.offset - search_start;
1642 else
1643 hole_size = 0;
1644 }
1645
1646 if (hole_size > max_hole_size) {
1647 max_hole_start = search_start;
1648 max_hole_size = hole_size;
1649 }
1650
1651 /*
1652 * If this free space is greater than which we need,
1653 * it must be the max free space that we have found
1654 * until now, so max_hole_start must point to the start
1655 * of this free space and the length of this free space
1656 * is stored in max_hole_size. Thus, we return
1657 * max_hole_start and max_hole_size and go back to the
1658 * caller.
1659 */
1660 if (hole_size >= num_bytes) {
1661 ret = 0;
1662 goto out;
1663 }
1664 }
1665
1666 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1667 extent_end = key.offset + btrfs_dev_extent_length(l,
1668 dev_extent);
1669 if (extent_end > search_start)
1670 search_start = extent_end;
1671 next:
1672 path->slots[0]++;
1673 cond_resched();
1674 }
1675
1676 /*
1677 * At this point, search_start should be the end of
1678 * allocated dev extents, and when shrinking the device,
1679 * search_end may be smaller than search_start.
1680 */
1681 if (search_end > search_start) {
1682 hole_size = search_end - search_start;
1683
1684 if (contains_pending_extent(device, &search_start, hole_size)) {
1685 btrfs_release_path(path);
1686 goto again;
1687 }
1688
1689 if (hole_size > max_hole_size) {
1690 max_hole_start = search_start;
1691 max_hole_size = hole_size;
1692 }
1693 }
1694
1695 /* See above. */
1696 if (max_hole_size < num_bytes)
1697 ret = -ENOSPC;
1698 else
1699 ret = 0;
1700
1701 out:
1702 btrfs_free_path(path);
1703 *start = max_hole_start;
1704 if (len)
1705 *len = max_hole_size;
1706 return ret;
1707 }
1708
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1709 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1710 u64 *start, u64 *len)
1711 {
1712 /* FIXME use last free of some kind */
1713 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1714 }
1715
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1716 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1717 struct btrfs_device *device,
1718 u64 start, u64 *dev_extent_len)
1719 {
1720 struct btrfs_fs_info *fs_info = device->fs_info;
1721 struct btrfs_root *root = fs_info->dev_root;
1722 int ret;
1723 struct btrfs_path *path;
1724 struct btrfs_key key;
1725 struct btrfs_key found_key;
1726 struct extent_buffer *leaf = NULL;
1727 struct btrfs_dev_extent *extent = NULL;
1728
1729 path = btrfs_alloc_path();
1730 if (!path)
1731 return -ENOMEM;
1732
1733 key.objectid = device->devid;
1734 key.offset = start;
1735 key.type = BTRFS_DEV_EXTENT_KEY;
1736 again:
1737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1738 if (ret > 0) {
1739 ret = btrfs_previous_item(root, path, key.objectid,
1740 BTRFS_DEV_EXTENT_KEY);
1741 if (ret)
1742 goto out;
1743 leaf = path->nodes[0];
1744 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1745 extent = btrfs_item_ptr(leaf, path->slots[0],
1746 struct btrfs_dev_extent);
1747 BUG_ON(found_key.offset > start || found_key.offset +
1748 btrfs_dev_extent_length(leaf, extent) < start);
1749 key = found_key;
1750 btrfs_release_path(path);
1751 goto again;
1752 } else if (ret == 0) {
1753 leaf = path->nodes[0];
1754 extent = btrfs_item_ptr(leaf, path->slots[0],
1755 struct btrfs_dev_extent);
1756 } else {
1757 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1758 goto out;
1759 }
1760
1761 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762
1763 ret = btrfs_del_item(trans, root, path);
1764 if (ret) {
1765 btrfs_handle_fs_error(fs_info, ret,
1766 "Failed to remove dev extent item");
1767 } else {
1768 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1769 }
1770 out:
1771 btrfs_free_path(path);
1772 return ret;
1773 }
1774
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)1775 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1776 struct btrfs_device *device,
1777 u64 chunk_offset, u64 start, u64 num_bytes)
1778 {
1779 int ret;
1780 struct btrfs_path *path;
1781 struct btrfs_fs_info *fs_info = device->fs_info;
1782 struct btrfs_root *root = fs_info->dev_root;
1783 struct btrfs_dev_extent *extent;
1784 struct extent_buffer *leaf;
1785 struct btrfs_key key;
1786
1787 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1788 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
1792
1793 key.objectid = device->devid;
1794 key.offset = start;
1795 key.type = BTRFS_DEV_EXTENT_KEY;
1796 ret = btrfs_insert_empty_item(trans, root, path, &key,
1797 sizeof(*extent));
1798 if (ret)
1799 goto out;
1800
1801 leaf = path->nodes[0];
1802 extent = btrfs_item_ptr(leaf, path->slots[0],
1803 struct btrfs_dev_extent);
1804 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1805 BTRFS_CHUNK_TREE_OBJECTID);
1806 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1807 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1808 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1809
1810 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1811 btrfs_mark_buffer_dirty(leaf);
1812 out:
1813 btrfs_free_path(path);
1814 return ret;
1815 }
1816
find_next_chunk(struct btrfs_fs_info * fs_info)1817 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1818 {
1819 struct extent_map_tree *em_tree;
1820 struct extent_map *em;
1821 struct rb_node *n;
1822 u64 ret = 0;
1823
1824 em_tree = &fs_info->mapping_tree;
1825 read_lock(&em_tree->lock);
1826 n = rb_last(&em_tree->map.rb_root);
1827 if (n) {
1828 em = rb_entry(n, struct extent_map, rb_node);
1829 ret = em->start + em->len;
1830 }
1831 read_unlock(&em_tree->lock);
1832
1833 return ret;
1834 }
1835
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1836 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1837 u64 *devid_ret)
1838 {
1839 int ret;
1840 struct btrfs_key key;
1841 struct btrfs_key found_key;
1842 struct btrfs_path *path;
1843
1844 path = btrfs_alloc_path();
1845 if (!path)
1846 return -ENOMEM;
1847
1848 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1849 key.type = BTRFS_DEV_ITEM_KEY;
1850 key.offset = (u64)-1;
1851
1852 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1853 if (ret < 0)
1854 goto error;
1855
1856 if (ret == 0) {
1857 /* Corruption */
1858 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1859 ret = -EUCLEAN;
1860 goto error;
1861 }
1862
1863 ret = btrfs_previous_item(fs_info->chunk_root, path,
1864 BTRFS_DEV_ITEMS_OBJECTID,
1865 BTRFS_DEV_ITEM_KEY);
1866 if (ret) {
1867 *devid_ret = 1;
1868 } else {
1869 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1870 path->slots[0]);
1871 *devid_ret = found_key.offset + 1;
1872 }
1873 ret = 0;
1874 error:
1875 btrfs_free_path(path);
1876 return ret;
1877 }
1878
1879 /*
1880 * the device information is stored in the chunk root
1881 * the btrfs_device struct should be fully filled in
1882 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1883 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1884 struct btrfs_device *device)
1885 {
1886 int ret;
1887 struct btrfs_path *path;
1888 struct btrfs_dev_item *dev_item;
1889 struct extent_buffer *leaf;
1890 struct btrfs_key key;
1891 unsigned long ptr;
1892
1893 path = btrfs_alloc_path();
1894 if (!path)
1895 return -ENOMEM;
1896
1897 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1898 key.type = BTRFS_DEV_ITEM_KEY;
1899 key.offset = device->devid;
1900
1901 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1902 &key, sizeof(*dev_item));
1903 if (ret)
1904 goto out;
1905
1906 leaf = path->nodes[0];
1907 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1908
1909 btrfs_set_device_id(leaf, dev_item, device->devid);
1910 btrfs_set_device_generation(leaf, dev_item, 0);
1911 btrfs_set_device_type(leaf, dev_item, device->type);
1912 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1913 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1914 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1915 btrfs_set_device_total_bytes(leaf, dev_item,
1916 btrfs_device_get_disk_total_bytes(device));
1917 btrfs_set_device_bytes_used(leaf, dev_item,
1918 btrfs_device_get_bytes_used(device));
1919 btrfs_set_device_group(leaf, dev_item, 0);
1920 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1921 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1922 btrfs_set_device_start_offset(leaf, dev_item, 0);
1923
1924 ptr = btrfs_device_uuid(dev_item);
1925 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1926 ptr = btrfs_device_fsid(dev_item);
1927 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1928 ptr, BTRFS_FSID_SIZE);
1929 btrfs_mark_buffer_dirty(leaf);
1930
1931 ret = 0;
1932 out:
1933 btrfs_free_path(path);
1934 return ret;
1935 }
1936
1937 /*
1938 * Function to update ctime/mtime for a given device path.
1939 * Mainly used for ctime/mtime based probe like libblkid.
1940 */
update_dev_time(const char * path_name)1941 static void update_dev_time(const char *path_name)
1942 {
1943 struct file *filp;
1944
1945 filp = filp_open(path_name, O_RDWR, 0);
1946 if (IS_ERR(filp))
1947 return;
1948 file_update_time(filp);
1949 filp_close(filp, NULL);
1950 }
1951
btrfs_rm_dev_item(struct btrfs_device * device)1952 static int btrfs_rm_dev_item(struct btrfs_device *device)
1953 {
1954 struct btrfs_root *root = device->fs_info->chunk_root;
1955 int ret;
1956 struct btrfs_path *path;
1957 struct btrfs_key key;
1958 struct btrfs_trans_handle *trans;
1959
1960 path = btrfs_alloc_path();
1961 if (!path)
1962 return -ENOMEM;
1963
1964 trans = btrfs_start_transaction(root, 0);
1965 if (IS_ERR(trans)) {
1966 btrfs_free_path(path);
1967 return PTR_ERR(trans);
1968 }
1969 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1970 key.type = BTRFS_DEV_ITEM_KEY;
1971 key.offset = device->devid;
1972
1973 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1974 if (ret) {
1975 if (ret > 0)
1976 ret = -ENOENT;
1977 btrfs_abort_transaction(trans, ret);
1978 btrfs_end_transaction(trans);
1979 goto out;
1980 }
1981
1982 ret = btrfs_del_item(trans, root, path);
1983 if (ret) {
1984 btrfs_abort_transaction(trans, ret);
1985 btrfs_end_transaction(trans);
1986 }
1987
1988 out:
1989 btrfs_free_path(path);
1990 if (!ret)
1991 ret = btrfs_commit_transaction(trans);
1992 return ret;
1993 }
1994
1995 /*
1996 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1997 * filesystem. It's up to the caller to adjust that number regarding eg. device
1998 * replace.
1999 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2000 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2001 u64 num_devices)
2002 {
2003 u64 all_avail;
2004 unsigned seq;
2005 int i;
2006
2007 do {
2008 seq = read_seqbegin(&fs_info->profiles_lock);
2009
2010 all_avail = fs_info->avail_data_alloc_bits |
2011 fs_info->avail_system_alloc_bits |
2012 fs_info->avail_metadata_alloc_bits;
2013 } while (read_seqretry(&fs_info->profiles_lock, seq));
2014
2015 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2016 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2017 continue;
2018
2019 if (num_devices < btrfs_raid_array[i].devs_min) {
2020 int ret = btrfs_raid_array[i].mindev_error;
2021
2022 if (ret)
2023 return ret;
2024 }
2025 }
2026
2027 return 0;
2028 }
2029
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2030 static struct btrfs_device * btrfs_find_next_active_device(
2031 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2032 {
2033 struct btrfs_device *next_device;
2034
2035 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2036 if (next_device != device &&
2037 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2038 && next_device->bdev)
2039 return next_device;
2040 }
2041
2042 return NULL;
2043 }
2044
2045 /*
2046 * Helper function to check if the given device is part of s_bdev / latest_bdev
2047 * and replace it with the provided or the next active device, in the context
2048 * where this function called, there should be always be another device (or
2049 * this_dev) which is active.
2050 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * this_dev)2051 void btrfs_assign_next_active_device(struct btrfs_device *device,
2052 struct btrfs_device *this_dev)
2053 {
2054 struct btrfs_fs_info *fs_info = device->fs_info;
2055 struct btrfs_device *next_device;
2056
2057 if (this_dev)
2058 next_device = this_dev;
2059 else
2060 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2061 device);
2062 ASSERT(next_device);
2063
2064 if (fs_info->sb->s_bdev &&
2065 (fs_info->sb->s_bdev == device->bdev))
2066 fs_info->sb->s_bdev = next_device->bdev;
2067
2068 if (fs_info->fs_devices->latest_bdev == device->bdev)
2069 fs_info->fs_devices->latest_bdev = next_device->bdev;
2070 }
2071
2072 /*
2073 * Return btrfs_fs_devices::num_devices excluding the device that's being
2074 * currently replaced.
2075 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2076 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2077 {
2078 u64 num_devices = fs_info->fs_devices->num_devices;
2079
2080 down_read(&fs_info->dev_replace.rwsem);
2081 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2082 ASSERT(num_devices > 1);
2083 num_devices--;
2084 }
2085 up_read(&fs_info->dev_replace.rwsem);
2086
2087 return num_devices;
2088 }
2089
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid)2090 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2091 u64 devid)
2092 {
2093 struct btrfs_device *device;
2094 struct btrfs_fs_devices *cur_devices;
2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096 u64 num_devices;
2097 int ret = 0;
2098
2099 mutex_lock(&uuid_mutex);
2100
2101 num_devices = btrfs_num_devices(fs_info);
2102
2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104 if (ret)
2105 goto out;
2106
2107 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2108
2109 if (IS_ERR(device)) {
2110 if (PTR_ERR(device) == -ENOENT &&
2111 strcmp(device_path, "missing") == 0)
2112 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2113 else
2114 ret = PTR_ERR(device);
2115 goto out;
2116 }
2117
2118 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2119 btrfs_warn_in_rcu(fs_info,
2120 "cannot remove device %s (devid %llu) due to active swapfile",
2121 rcu_str_deref(device->name), device->devid);
2122 ret = -ETXTBSY;
2123 goto out;
2124 }
2125
2126 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2127 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2128 goto out;
2129 }
2130
2131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2132 fs_info->fs_devices->rw_devices == 1) {
2133 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2134 goto out;
2135 }
2136
2137 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2138 mutex_lock(&fs_info->chunk_mutex);
2139 list_del_init(&device->dev_alloc_list);
2140 device->fs_devices->rw_devices--;
2141 mutex_unlock(&fs_info->chunk_mutex);
2142 }
2143
2144 mutex_unlock(&uuid_mutex);
2145 ret = btrfs_shrink_device(device, 0);
2146 mutex_lock(&uuid_mutex);
2147 if (ret)
2148 goto error_undo;
2149
2150 /*
2151 * TODO: the superblock still includes this device in its num_devices
2152 * counter although write_all_supers() is not locked out. This
2153 * could give a filesystem state which requires a degraded mount.
2154 */
2155 ret = btrfs_rm_dev_item(device);
2156 if (ret)
2157 goto error_undo;
2158
2159 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2160 btrfs_scrub_cancel_dev(device);
2161
2162 /*
2163 * the device list mutex makes sure that we don't change
2164 * the device list while someone else is writing out all
2165 * the device supers. Whoever is writing all supers, should
2166 * lock the device list mutex before getting the number of
2167 * devices in the super block (super_copy). Conversely,
2168 * whoever updates the number of devices in the super block
2169 * (super_copy) should hold the device list mutex.
2170 */
2171
2172 /*
2173 * In normal cases the cur_devices == fs_devices. But in case
2174 * of deleting a seed device, the cur_devices should point to
2175 * its own fs_devices listed under the fs_devices->seed.
2176 */
2177 cur_devices = device->fs_devices;
2178 mutex_lock(&fs_devices->device_list_mutex);
2179 list_del_rcu(&device->dev_list);
2180
2181 cur_devices->num_devices--;
2182 cur_devices->total_devices--;
2183 /* Update total_devices of the parent fs_devices if it's seed */
2184 if (cur_devices != fs_devices)
2185 fs_devices->total_devices--;
2186
2187 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2188 cur_devices->missing_devices--;
2189
2190 btrfs_assign_next_active_device(device, NULL);
2191
2192 if (device->bdev) {
2193 cur_devices->open_devices--;
2194 /* remove sysfs entry */
2195 btrfs_sysfs_rm_device_link(fs_devices, device);
2196 }
2197
2198 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2199 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2200 mutex_unlock(&fs_devices->device_list_mutex);
2201
2202 /*
2203 * at this point, the device is zero sized and detached from
2204 * the devices list. All that's left is to zero out the old
2205 * supers and free the device.
2206 */
2207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2208 btrfs_scratch_superblocks(device->bdev, device->name->str);
2209
2210 btrfs_close_bdev(device);
2211 synchronize_rcu();
2212 btrfs_free_device(device);
2213
2214 if (cur_devices->open_devices == 0) {
2215 while (fs_devices) {
2216 if (fs_devices->seed == cur_devices) {
2217 fs_devices->seed = cur_devices->seed;
2218 break;
2219 }
2220 fs_devices = fs_devices->seed;
2221 }
2222 cur_devices->seed = NULL;
2223 close_fs_devices(cur_devices);
2224 free_fs_devices(cur_devices);
2225 }
2226
2227 out:
2228 mutex_unlock(&uuid_mutex);
2229 return ret;
2230
2231 error_undo:
2232 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2233 mutex_lock(&fs_info->chunk_mutex);
2234 list_add(&device->dev_alloc_list,
2235 &fs_devices->alloc_list);
2236 device->fs_devices->rw_devices++;
2237 mutex_unlock(&fs_info->chunk_mutex);
2238 }
2239 goto out;
2240 }
2241
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2242 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2243 {
2244 struct btrfs_fs_devices *fs_devices;
2245
2246 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2247
2248 /*
2249 * in case of fs with no seed, srcdev->fs_devices will point
2250 * to fs_devices of fs_info. However when the dev being replaced is
2251 * a seed dev it will point to the seed's local fs_devices. In short
2252 * srcdev will have its correct fs_devices in both the cases.
2253 */
2254 fs_devices = srcdev->fs_devices;
2255
2256 list_del_rcu(&srcdev->dev_list);
2257 list_del(&srcdev->dev_alloc_list);
2258 fs_devices->num_devices--;
2259 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2260 fs_devices->missing_devices--;
2261
2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2263 fs_devices->rw_devices--;
2264
2265 if (srcdev->bdev)
2266 fs_devices->open_devices--;
2267 }
2268
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2269 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2270 {
2271 struct btrfs_fs_info *fs_info = srcdev->fs_info;
2272 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2273
2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2275 /* zero out the old super if it is writable */
2276 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2277 }
2278
2279 btrfs_close_bdev(srcdev);
2280 synchronize_rcu();
2281 btrfs_free_device(srcdev);
2282
2283 /* if this is no devs we rather delete the fs_devices */
2284 if (!fs_devices->num_devices) {
2285 struct btrfs_fs_devices *tmp_fs_devices;
2286
2287 /*
2288 * On a mounted FS, num_devices can't be zero unless it's a
2289 * seed. In case of a seed device being replaced, the replace
2290 * target added to the sprout FS, so there will be no more
2291 * device left under the seed FS.
2292 */
2293 ASSERT(fs_devices->seeding);
2294
2295 tmp_fs_devices = fs_info->fs_devices;
2296 while (tmp_fs_devices) {
2297 if (tmp_fs_devices->seed == fs_devices) {
2298 tmp_fs_devices->seed = fs_devices->seed;
2299 break;
2300 }
2301 tmp_fs_devices = tmp_fs_devices->seed;
2302 }
2303 fs_devices->seed = NULL;
2304 close_fs_devices(fs_devices);
2305 free_fs_devices(fs_devices);
2306 }
2307 }
2308
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2309 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2310 {
2311 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2312
2313 WARN_ON(!tgtdev);
2314 mutex_lock(&fs_devices->device_list_mutex);
2315
2316 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2317
2318 if (tgtdev->bdev)
2319 fs_devices->open_devices--;
2320
2321 fs_devices->num_devices--;
2322
2323 btrfs_assign_next_active_device(tgtdev, NULL);
2324
2325 list_del_rcu(&tgtdev->dev_list);
2326
2327 mutex_unlock(&fs_devices->device_list_mutex);
2328
2329 /*
2330 * The update_dev_time() with in btrfs_scratch_superblocks()
2331 * may lead to a call to btrfs_show_devname() which will try
2332 * to hold device_list_mutex. And here this device
2333 * is already out of device list, so we don't have to hold
2334 * the device_list_mutex lock.
2335 */
2336 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2337
2338 btrfs_close_bdev(tgtdev);
2339 synchronize_rcu();
2340 btrfs_free_device(tgtdev);
2341 }
2342
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path)2343 static struct btrfs_device *btrfs_find_device_by_path(
2344 struct btrfs_fs_info *fs_info, const char *device_path)
2345 {
2346 int ret = 0;
2347 struct btrfs_super_block *disk_super;
2348 u64 devid;
2349 u8 *dev_uuid;
2350 struct block_device *bdev;
2351 struct buffer_head *bh;
2352 struct btrfs_device *device;
2353
2354 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2355 fs_info->bdev_holder, 0, &bdev, &bh);
2356 if (ret)
2357 return ERR_PTR(ret);
2358 disk_super = (struct btrfs_super_block *)bh->b_data;
2359 devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 dev_uuid = disk_super->dev_item.uuid;
2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363 disk_super->metadata_uuid, true);
2364 else
2365 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2366 disk_super->fsid, true);
2367
2368 brelse(bh);
2369 if (!device)
2370 device = ERR_PTR(-ENOENT);
2371 blkdev_put(bdev, FMODE_READ);
2372 return device;
2373 }
2374
2375 /*
2376 * Lookup a device given by device id, or the path if the id is 0.
2377 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2378 struct btrfs_device *btrfs_find_device_by_devspec(
2379 struct btrfs_fs_info *fs_info, u64 devid,
2380 const char *device_path)
2381 {
2382 struct btrfs_device *device;
2383
2384 if (devid) {
2385 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2386 NULL, true);
2387 if (!device)
2388 return ERR_PTR(-ENOENT);
2389 return device;
2390 }
2391
2392 if (!device_path || !device_path[0])
2393 return ERR_PTR(-EINVAL);
2394
2395 if (strcmp(device_path, "missing") == 0) {
2396 /* Find first missing device */
2397 list_for_each_entry(device, &fs_info->fs_devices->devices,
2398 dev_list) {
2399 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2400 &device->dev_state) && !device->bdev)
2401 return device;
2402 }
2403 return ERR_PTR(-ENOENT);
2404 }
2405
2406 return btrfs_find_device_by_path(fs_info, device_path);
2407 }
2408
2409 /*
2410 * does all the dirty work required for changing file system's UUID.
2411 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2412 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2413 {
2414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2415 struct btrfs_fs_devices *old_devices;
2416 struct btrfs_fs_devices *seed_devices;
2417 struct btrfs_super_block *disk_super = fs_info->super_copy;
2418 struct btrfs_device *device;
2419 u64 super_flags;
2420
2421 lockdep_assert_held(&uuid_mutex);
2422 if (!fs_devices->seeding)
2423 return -EINVAL;
2424
2425 seed_devices = alloc_fs_devices(NULL, NULL);
2426 if (IS_ERR(seed_devices))
2427 return PTR_ERR(seed_devices);
2428
2429 old_devices = clone_fs_devices(fs_devices);
2430 if (IS_ERR(old_devices)) {
2431 kfree(seed_devices);
2432 return PTR_ERR(old_devices);
2433 }
2434
2435 list_add(&old_devices->fs_list, &fs_uuids);
2436
2437 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2438 seed_devices->opened = 1;
2439 INIT_LIST_HEAD(&seed_devices->devices);
2440 INIT_LIST_HEAD(&seed_devices->alloc_list);
2441 mutex_init(&seed_devices->device_list_mutex);
2442
2443 mutex_lock(&fs_devices->device_list_mutex);
2444 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2445 synchronize_rcu);
2446 list_for_each_entry(device, &seed_devices->devices, dev_list)
2447 device->fs_devices = seed_devices;
2448
2449 mutex_lock(&fs_info->chunk_mutex);
2450 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2451 mutex_unlock(&fs_info->chunk_mutex);
2452
2453 fs_devices->seeding = 0;
2454 fs_devices->num_devices = 0;
2455 fs_devices->open_devices = 0;
2456 fs_devices->missing_devices = 0;
2457 fs_devices->rotating = 0;
2458 fs_devices->seed = seed_devices;
2459
2460 generate_random_uuid(fs_devices->fsid);
2461 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2462 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2463 mutex_unlock(&fs_devices->device_list_mutex);
2464
2465 super_flags = btrfs_super_flags(disk_super) &
2466 ~BTRFS_SUPER_FLAG_SEEDING;
2467 btrfs_set_super_flags(disk_super, super_flags);
2468
2469 return 0;
2470 }
2471
2472 /*
2473 * Store the expected generation for seed devices in device items.
2474 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2475 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2476 {
2477 struct btrfs_fs_info *fs_info = trans->fs_info;
2478 struct btrfs_root *root = fs_info->chunk_root;
2479 struct btrfs_path *path;
2480 struct extent_buffer *leaf;
2481 struct btrfs_dev_item *dev_item;
2482 struct btrfs_device *device;
2483 struct btrfs_key key;
2484 u8 fs_uuid[BTRFS_FSID_SIZE];
2485 u8 dev_uuid[BTRFS_UUID_SIZE];
2486 u64 devid;
2487 int ret;
2488
2489 path = btrfs_alloc_path();
2490 if (!path)
2491 return -ENOMEM;
2492
2493 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2494 key.offset = 0;
2495 key.type = BTRFS_DEV_ITEM_KEY;
2496
2497 while (1) {
2498 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2499 if (ret < 0)
2500 goto error;
2501
2502 leaf = path->nodes[0];
2503 next_slot:
2504 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2505 ret = btrfs_next_leaf(root, path);
2506 if (ret > 0)
2507 break;
2508 if (ret < 0)
2509 goto error;
2510 leaf = path->nodes[0];
2511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2512 btrfs_release_path(path);
2513 continue;
2514 }
2515
2516 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2517 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2518 key.type != BTRFS_DEV_ITEM_KEY)
2519 break;
2520
2521 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2522 struct btrfs_dev_item);
2523 devid = btrfs_device_id(leaf, dev_item);
2524 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2525 BTRFS_UUID_SIZE);
2526 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2527 BTRFS_FSID_SIZE);
2528 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2529 fs_uuid, true);
2530 BUG_ON(!device); /* Logic error */
2531
2532 if (device->fs_devices->seeding) {
2533 btrfs_set_device_generation(leaf, dev_item,
2534 device->generation);
2535 btrfs_mark_buffer_dirty(leaf);
2536 }
2537
2538 path->slots[0]++;
2539 goto next_slot;
2540 }
2541 ret = 0;
2542 error:
2543 btrfs_free_path(path);
2544 return ret;
2545 }
2546
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2547 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2548 {
2549 struct btrfs_root *root = fs_info->dev_root;
2550 struct request_queue *q;
2551 struct btrfs_trans_handle *trans;
2552 struct btrfs_device *device;
2553 struct block_device *bdev;
2554 struct super_block *sb = fs_info->sb;
2555 struct rcu_string *name;
2556 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2557 u64 orig_super_total_bytes;
2558 u64 orig_super_num_devices;
2559 int seeding_dev = 0;
2560 int ret = 0;
2561 bool unlocked = false;
2562
2563 if (sb_rdonly(sb) && !fs_devices->seeding)
2564 return -EROFS;
2565
2566 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2567 fs_info->bdev_holder);
2568 if (IS_ERR(bdev))
2569 return PTR_ERR(bdev);
2570
2571 if (fs_devices->seeding) {
2572 seeding_dev = 1;
2573 down_write(&sb->s_umount);
2574 mutex_lock(&uuid_mutex);
2575 }
2576
2577 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2578
2579 mutex_lock(&fs_devices->device_list_mutex);
2580 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2581 if (device->bdev == bdev) {
2582 ret = -EEXIST;
2583 mutex_unlock(
2584 &fs_devices->device_list_mutex);
2585 goto error;
2586 }
2587 }
2588 mutex_unlock(&fs_devices->device_list_mutex);
2589
2590 device = btrfs_alloc_device(fs_info, NULL, NULL);
2591 if (IS_ERR(device)) {
2592 /* we can safely leave the fs_devices entry around */
2593 ret = PTR_ERR(device);
2594 goto error;
2595 }
2596
2597 name = rcu_string_strdup(device_path, GFP_KERNEL);
2598 if (!name) {
2599 ret = -ENOMEM;
2600 goto error_free_device;
2601 }
2602 rcu_assign_pointer(device->name, name);
2603
2604 trans = btrfs_start_transaction(root, 0);
2605 if (IS_ERR(trans)) {
2606 ret = PTR_ERR(trans);
2607 goto error_free_device;
2608 }
2609
2610 q = bdev_get_queue(bdev);
2611 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2612 device->generation = trans->transid;
2613 device->io_width = fs_info->sectorsize;
2614 device->io_align = fs_info->sectorsize;
2615 device->sector_size = fs_info->sectorsize;
2616 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2617 fs_info->sectorsize);
2618 device->disk_total_bytes = device->total_bytes;
2619 device->commit_total_bytes = device->total_bytes;
2620 device->fs_info = fs_info;
2621 device->bdev = bdev;
2622 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2623 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2624 device->mode = FMODE_EXCL;
2625 device->dev_stats_valid = 1;
2626 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2627
2628 if (seeding_dev) {
2629 sb->s_flags &= ~SB_RDONLY;
2630 ret = btrfs_prepare_sprout(fs_info);
2631 if (ret) {
2632 btrfs_abort_transaction(trans, ret);
2633 goto error_trans;
2634 }
2635 }
2636
2637 device->fs_devices = fs_devices;
2638
2639 mutex_lock(&fs_devices->device_list_mutex);
2640 mutex_lock(&fs_info->chunk_mutex);
2641 list_add_rcu(&device->dev_list, &fs_devices->devices);
2642 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2643 fs_devices->num_devices++;
2644 fs_devices->open_devices++;
2645 fs_devices->rw_devices++;
2646 fs_devices->total_devices++;
2647 fs_devices->total_rw_bytes += device->total_bytes;
2648
2649 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2650
2651 if (!blk_queue_nonrot(q))
2652 fs_devices->rotating = 1;
2653
2654 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2655 btrfs_set_super_total_bytes(fs_info->super_copy,
2656 round_down(orig_super_total_bytes + device->total_bytes,
2657 fs_info->sectorsize));
2658
2659 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2660 btrfs_set_super_num_devices(fs_info->super_copy,
2661 orig_super_num_devices + 1);
2662
2663 /* add sysfs device entry */
2664 btrfs_sysfs_add_device_link(fs_devices, device);
2665
2666 /*
2667 * we've got more storage, clear any full flags on the space
2668 * infos
2669 */
2670 btrfs_clear_space_info_full(fs_info);
2671
2672 mutex_unlock(&fs_info->chunk_mutex);
2673 mutex_unlock(&fs_devices->device_list_mutex);
2674
2675 if (seeding_dev) {
2676 mutex_lock(&fs_info->chunk_mutex);
2677 ret = init_first_rw_device(trans);
2678 mutex_unlock(&fs_info->chunk_mutex);
2679 if (ret) {
2680 btrfs_abort_transaction(trans, ret);
2681 goto error_sysfs;
2682 }
2683 }
2684
2685 ret = btrfs_add_dev_item(trans, device);
2686 if (ret) {
2687 btrfs_abort_transaction(trans, ret);
2688 goto error_sysfs;
2689 }
2690
2691 if (seeding_dev) {
2692 ret = btrfs_finish_sprout(trans);
2693 if (ret) {
2694 btrfs_abort_transaction(trans, ret);
2695 goto error_sysfs;
2696 }
2697
2698 btrfs_sysfs_update_sprout_fsid(fs_devices,
2699 fs_info->fs_devices->fsid);
2700 }
2701
2702 ret = btrfs_commit_transaction(trans);
2703
2704 if (seeding_dev) {
2705 mutex_unlock(&uuid_mutex);
2706 up_write(&sb->s_umount);
2707 unlocked = true;
2708
2709 if (ret) /* transaction commit */
2710 return ret;
2711
2712 ret = btrfs_relocate_sys_chunks(fs_info);
2713 if (ret < 0)
2714 btrfs_handle_fs_error(fs_info, ret,
2715 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2716 trans = btrfs_attach_transaction(root);
2717 if (IS_ERR(trans)) {
2718 if (PTR_ERR(trans) == -ENOENT)
2719 return 0;
2720 ret = PTR_ERR(trans);
2721 trans = NULL;
2722 goto error_sysfs;
2723 }
2724 ret = btrfs_commit_transaction(trans);
2725 }
2726
2727 /* Update ctime/mtime for libblkid */
2728 update_dev_time(device_path);
2729 return ret;
2730
2731 error_sysfs:
2732 btrfs_sysfs_rm_device_link(fs_devices, device);
2733 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2734 mutex_lock(&fs_info->chunk_mutex);
2735 list_del_rcu(&device->dev_list);
2736 list_del(&device->dev_alloc_list);
2737 fs_info->fs_devices->num_devices--;
2738 fs_info->fs_devices->open_devices--;
2739 fs_info->fs_devices->rw_devices--;
2740 fs_info->fs_devices->total_devices--;
2741 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2742 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2743 btrfs_set_super_total_bytes(fs_info->super_copy,
2744 orig_super_total_bytes);
2745 btrfs_set_super_num_devices(fs_info->super_copy,
2746 orig_super_num_devices);
2747 mutex_unlock(&fs_info->chunk_mutex);
2748 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2749 error_trans:
2750 if (seeding_dev)
2751 sb->s_flags |= SB_RDONLY;
2752 if (trans)
2753 btrfs_end_transaction(trans);
2754 error_free_device:
2755 btrfs_free_device(device);
2756 error:
2757 blkdev_put(bdev, FMODE_EXCL);
2758 if (seeding_dev && !unlocked) {
2759 mutex_unlock(&uuid_mutex);
2760 up_write(&sb->s_umount);
2761 }
2762 return ret;
2763 }
2764
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2765 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2766 struct btrfs_device *device)
2767 {
2768 int ret;
2769 struct btrfs_path *path;
2770 struct btrfs_root *root = device->fs_info->chunk_root;
2771 struct btrfs_dev_item *dev_item;
2772 struct extent_buffer *leaf;
2773 struct btrfs_key key;
2774
2775 path = btrfs_alloc_path();
2776 if (!path)
2777 return -ENOMEM;
2778
2779 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2780 key.type = BTRFS_DEV_ITEM_KEY;
2781 key.offset = device->devid;
2782
2783 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2784 if (ret < 0)
2785 goto out;
2786
2787 if (ret > 0) {
2788 ret = -ENOENT;
2789 goto out;
2790 }
2791
2792 leaf = path->nodes[0];
2793 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2794
2795 btrfs_set_device_id(leaf, dev_item, device->devid);
2796 btrfs_set_device_type(leaf, dev_item, device->type);
2797 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2798 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2799 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2800 btrfs_set_device_total_bytes(leaf, dev_item,
2801 btrfs_device_get_disk_total_bytes(device));
2802 btrfs_set_device_bytes_used(leaf, dev_item,
2803 btrfs_device_get_bytes_used(device));
2804 btrfs_mark_buffer_dirty(leaf);
2805
2806 out:
2807 btrfs_free_path(path);
2808 return ret;
2809 }
2810
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2811 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2812 struct btrfs_device *device, u64 new_size)
2813 {
2814 struct btrfs_fs_info *fs_info = device->fs_info;
2815 struct btrfs_super_block *super_copy = fs_info->super_copy;
2816 u64 old_total;
2817 u64 diff;
2818
2819 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2820 return -EACCES;
2821
2822 new_size = round_down(new_size, fs_info->sectorsize);
2823
2824 mutex_lock(&fs_info->chunk_mutex);
2825 old_total = btrfs_super_total_bytes(super_copy);
2826 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2827
2828 if (new_size <= device->total_bytes ||
2829 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2830 mutex_unlock(&fs_info->chunk_mutex);
2831 return -EINVAL;
2832 }
2833
2834 btrfs_set_super_total_bytes(super_copy,
2835 round_down(old_total + diff, fs_info->sectorsize));
2836 device->fs_devices->total_rw_bytes += diff;
2837
2838 btrfs_device_set_total_bytes(device, new_size);
2839 btrfs_device_set_disk_total_bytes(device, new_size);
2840 btrfs_clear_space_info_full(device->fs_info);
2841 if (list_empty(&device->post_commit_list))
2842 list_add_tail(&device->post_commit_list,
2843 &trans->transaction->dev_update_list);
2844 mutex_unlock(&fs_info->chunk_mutex);
2845
2846 return btrfs_update_device(trans, device);
2847 }
2848
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2849 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2850 {
2851 struct btrfs_fs_info *fs_info = trans->fs_info;
2852 struct btrfs_root *root = fs_info->chunk_root;
2853 int ret;
2854 struct btrfs_path *path;
2855 struct btrfs_key key;
2856
2857 path = btrfs_alloc_path();
2858 if (!path)
2859 return -ENOMEM;
2860
2861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2862 key.offset = chunk_offset;
2863 key.type = BTRFS_CHUNK_ITEM_KEY;
2864
2865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2866 if (ret < 0)
2867 goto out;
2868 else if (ret > 0) { /* Logic error or corruption */
2869 btrfs_handle_fs_error(fs_info, -ENOENT,
2870 "Failed lookup while freeing chunk.");
2871 ret = -ENOENT;
2872 goto out;
2873 }
2874
2875 ret = btrfs_del_item(trans, root, path);
2876 if (ret < 0)
2877 btrfs_handle_fs_error(fs_info, ret,
2878 "Failed to delete chunk item.");
2879 out:
2880 btrfs_free_path(path);
2881 return ret;
2882 }
2883
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2884 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2885 {
2886 struct btrfs_super_block *super_copy = fs_info->super_copy;
2887 struct btrfs_disk_key *disk_key;
2888 struct btrfs_chunk *chunk;
2889 u8 *ptr;
2890 int ret = 0;
2891 u32 num_stripes;
2892 u32 array_size;
2893 u32 len = 0;
2894 u32 cur;
2895 struct btrfs_key key;
2896
2897 mutex_lock(&fs_info->chunk_mutex);
2898 array_size = btrfs_super_sys_array_size(super_copy);
2899
2900 ptr = super_copy->sys_chunk_array;
2901 cur = 0;
2902
2903 while (cur < array_size) {
2904 disk_key = (struct btrfs_disk_key *)ptr;
2905 btrfs_disk_key_to_cpu(&key, disk_key);
2906
2907 len = sizeof(*disk_key);
2908
2909 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2910 chunk = (struct btrfs_chunk *)(ptr + len);
2911 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2912 len += btrfs_chunk_item_size(num_stripes);
2913 } else {
2914 ret = -EIO;
2915 break;
2916 }
2917 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2918 key.offset == chunk_offset) {
2919 memmove(ptr, ptr + len, array_size - (cur + len));
2920 array_size -= len;
2921 btrfs_set_super_sys_array_size(super_copy, array_size);
2922 } else {
2923 ptr += len;
2924 cur += len;
2925 }
2926 }
2927 mutex_unlock(&fs_info->chunk_mutex);
2928 return ret;
2929 }
2930
2931 /*
2932 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2933 * @logical: Logical block offset in bytes.
2934 * @length: Length of extent in bytes.
2935 *
2936 * Return: Chunk mapping or ERR_PTR.
2937 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2938 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2939 u64 logical, u64 length)
2940 {
2941 struct extent_map_tree *em_tree;
2942 struct extent_map *em;
2943
2944 em_tree = &fs_info->mapping_tree;
2945 read_lock(&em_tree->lock);
2946 em = lookup_extent_mapping(em_tree, logical, length);
2947 read_unlock(&em_tree->lock);
2948
2949 if (!em) {
2950 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2951 logical, length);
2952 return ERR_PTR(-EINVAL);
2953 }
2954
2955 if (em->start > logical || em->start + em->len < logical) {
2956 btrfs_crit(fs_info,
2957 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2958 logical, length, em->start, em->start + em->len);
2959 free_extent_map(em);
2960 return ERR_PTR(-EINVAL);
2961 }
2962
2963 /* callers are responsible for dropping em's ref. */
2964 return em;
2965 }
2966
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2967 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2968 {
2969 struct btrfs_fs_info *fs_info = trans->fs_info;
2970 struct extent_map *em;
2971 struct map_lookup *map;
2972 u64 dev_extent_len = 0;
2973 int i, ret = 0;
2974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2975
2976 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2977 if (IS_ERR(em)) {
2978 /*
2979 * This is a logic error, but we don't want to just rely on the
2980 * user having built with ASSERT enabled, so if ASSERT doesn't
2981 * do anything we still error out.
2982 */
2983 ASSERT(0);
2984 return PTR_ERR(em);
2985 }
2986 map = em->map_lookup;
2987 mutex_lock(&fs_info->chunk_mutex);
2988 check_system_chunk(trans, map->type);
2989 mutex_unlock(&fs_info->chunk_mutex);
2990
2991 /*
2992 * Take the device list mutex to prevent races with the final phase of
2993 * a device replace operation that replaces the device object associated
2994 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2995 */
2996 mutex_lock(&fs_devices->device_list_mutex);
2997 for (i = 0; i < map->num_stripes; i++) {
2998 struct btrfs_device *device = map->stripes[i].dev;
2999 ret = btrfs_free_dev_extent(trans, device,
3000 map->stripes[i].physical,
3001 &dev_extent_len);
3002 if (ret) {
3003 mutex_unlock(&fs_devices->device_list_mutex);
3004 btrfs_abort_transaction(trans, ret);
3005 goto out;
3006 }
3007
3008 if (device->bytes_used > 0) {
3009 mutex_lock(&fs_info->chunk_mutex);
3010 btrfs_device_set_bytes_used(device,
3011 device->bytes_used - dev_extent_len);
3012 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3013 btrfs_clear_space_info_full(fs_info);
3014 mutex_unlock(&fs_info->chunk_mutex);
3015 }
3016
3017 ret = btrfs_update_device(trans, device);
3018 if (ret) {
3019 mutex_unlock(&fs_devices->device_list_mutex);
3020 btrfs_abort_transaction(trans, ret);
3021 goto out;
3022 }
3023 }
3024 mutex_unlock(&fs_devices->device_list_mutex);
3025
3026 ret = btrfs_free_chunk(trans, chunk_offset);
3027 if (ret) {
3028 btrfs_abort_transaction(trans, ret);
3029 goto out;
3030 }
3031
3032 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3033
3034 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3035 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3036 if (ret) {
3037 btrfs_abort_transaction(trans, ret);
3038 goto out;
3039 }
3040 }
3041
3042 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3043 if (ret) {
3044 btrfs_abort_transaction(trans, ret);
3045 goto out;
3046 }
3047
3048 out:
3049 /* once for us */
3050 free_extent_map(em);
3051 return ret;
3052 }
3053
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3054 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3055 {
3056 struct btrfs_root *root = fs_info->chunk_root;
3057 struct btrfs_trans_handle *trans;
3058 int ret;
3059
3060 /*
3061 * Prevent races with automatic removal of unused block groups.
3062 * After we relocate and before we remove the chunk with offset
3063 * chunk_offset, automatic removal of the block group can kick in,
3064 * resulting in a failure when calling btrfs_remove_chunk() below.
3065 *
3066 * Make sure to acquire this mutex before doing a tree search (dev
3067 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3068 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3069 * we release the path used to search the chunk/dev tree and before
3070 * the current task acquires this mutex and calls us.
3071 */
3072 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3073
3074 /* step one, relocate all the extents inside this chunk */
3075 btrfs_scrub_pause(fs_info);
3076 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3077 btrfs_scrub_continue(fs_info);
3078 if (ret)
3079 return ret;
3080
3081 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3082 chunk_offset);
3083 if (IS_ERR(trans)) {
3084 ret = PTR_ERR(trans);
3085 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3086 return ret;
3087 }
3088
3089 /*
3090 * step two, delete the device extents and the
3091 * chunk tree entries
3092 */
3093 ret = btrfs_remove_chunk(trans, chunk_offset);
3094 btrfs_end_transaction(trans);
3095 return ret;
3096 }
3097
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3098 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3099 {
3100 struct btrfs_root *chunk_root = fs_info->chunk_root;
3101 struct btrfs_path *path;
3102 struct extent_buffer *leaf;
3103 struct btrfs_chunk *chunk;
3104 struct btrfs_key key;
3105 struct btrfs_key found_key;
3106 u64 chunk_type;
3107 bool retried = false;
3108 int failed = 0;
3109 int ret;
3110
3111 path = btrfs_alloc_path();
3112 if (!path)
3113 return -ENOMEM;
3114
3115 again:
3116 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3117 key.offset = (u64)-1;
3118 key.type = BTRFS_CHUNK_ITEM_KEY;
3119
3120 while (1) {
3121 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3122 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3123 if (ret < 0) {
3124 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3125 goto error;
3126 }
3127 BUG_ON(ret == 0); /* Corruption */
3128
3129 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3130 key.type);
3131 if (ret)
3132 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3133 if (ret < 0)
3134 goto error;
3135 if (ret > 0)
3136 break;
3137
3138 leaf = path->nodes[0];
3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3140
3141 chunk = btrfs_item_ptr(leaf, path->slots[0],
3142 struct btrfs_chunk);
3143 chunk_type = btrfs_chunk_type(leaf, chunk);
3144 btrfs_release_path(path);
3145
3146 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3147 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3148 if (ret == -ENOSPC)
3149 failed++;
3150 else
3151 BUG_ON(ret);
3152 }
3153 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3154
3155 if (found_key.offset == 0)
3156 break;
3157 key.offset = found_key.offset - 1;
3158 }
3159 ret = 0;
3160 if (failed && !retried) {
3161 failed = 0;
3162 retried = true;
3163 goto again;
3164 } else if (WARN_ON(failed && retried)) {
3165 ret = -ENOSPC;
3166 }
3167 error:
3168 btrfs_free_path(path);
3169 return ret;
3170 }
3171
3172 /*
3173 * return 1 : allocate a data chunk successfully,
3174 * return <0: errors during allocating a data chunk,
3175 * return 0 : no need to allocate a data chunk.
3176 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3177 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3178 u64 chunk_offset)
3179 {
3180 struct btrfs_block_group_cache *cache;
3181 u64 bytes_used;
3182 u64 chunk_type;
3183
3184 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3185 ASSERT(cache);
3186 chunk_type = cache->flags;
3187 btrfs_put_block_group(cache);
3188
3189 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3190 spin_lock(&fs_info->data_sinfo->lock);
3191 bytes_used = fs_info->data_sinfo->bytes_used;
3192 spin_unlock(&fs_info->data_sinfo->lock);
3193
3194 if (!bytes_used) {
3195 struct btrfs_trans_handle *trans;
3196 int ret;
3197
3198 trans = btrfs_join_transaction(fs_info->tree_root);
3199 if (IS_ERR(trans))
3200 return PTR_ERR(trans);
3201
3202 ret = btrfs_force_chunk_alloc(trans,
3203 BTRFS_BLOCK_GROUP_DATA);
3204 btrfs_end_transaction(trans);
3205 if (ret < 0)
3206 return ret;
3207 return 1;
3208 }
3209 }
3210 return 0;
3211 }
3212
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3213 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3214 struct btrfs_balance_control *bctl)
3215 {
3216 struct btrfs_root *root = fs_info->tree_root;
3217 struct btrfs_trans_handle *trans;
3218 struct btrfs_balance_item *item;
3219 struct btrfs_disk_balance_args disk_bargs;
3220 struct btrfs_path *path;
3221 struct extent_buffer *leaf;
3222 struct btrfs_key key;
3223 int ret, err;
3224
3225 path = btrfs_alloc_path();
3226 if (!path)
3227 return -ENOMEM;
3228
3229 trans = btrfs_start_transaction(root, 0);
3230 if (IS_ERR(trans)) {
3231 btrfs_free_path(path);
3232 return PTR_ERR(trans);
3233 }
3234
3235 key.objectid = BTRFS_BALANCE_OBJECTID;
3236 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3237 key.offset = 0;
3238
3239 ret = btrfs_insert_empty_item(trans, root, path, &key,
3240 sizeof(*item));
3241 if (ret)
3242 goto out;
3243
3244 leaf = path->nodes[0];
3245 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3246
3247 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3248
3249 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3250 btrfs_set_balance_data(leaf, item, &disk_bargs);
3251 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3252 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3253 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3254 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3255
3256 btrfs_set_balance_flags(leaf, item, bctl->flags);
3257
3258 btrfs_mark_buffer_dirty(leaf);
3259 out:
3260 btrfs_free_path(path);
3261 err = btrfs_commit_transaction(trans);
3262 if (err && !ret)
3263 ret = err;
3264 return ret;
3265 }
3266
del_balance_item(struct btrfs_fs_info * fs_info)3267 static int del_balance_item(struct btrfs_fs_info *fs_info)
3268 {
3269 struct btrfs_root *root = fs_info->tree_root;
3270 struct btrfs_trans_handle *trans;
3271 struct btrfs_path *path;
3272 struct btrfs_key key;
3273 int ret, err;
3274
3275 path = btrfs_alloc_path();
3276 if (!path)
3277 return -ENOMEM;
3278
3279 trans = btrfs_start_transaction(root, 0);
3280 if (IS_ERR(trans)) {
3281 btrfs_free_path(path);
3282 return PTR_ERR(trans);
3283 }
3284
3285 key.objectid = BTRFS_BALANCE_OBJECTID;
3286 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3287 key.offset = 0;
3288
3289 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3290 if (ret < 0)
3291 goto out;
3292 if (ret > 0) {
3293 ret = -ENOENT;
3294 goto out;
3295 }
3296
3297 ret = btrfs_del_item(trans, root, path);
3298 out:
3299 btrfs_free_path(path);
3300 err = btrfs_commit_transaction(trans);
3301 if (err && !ret)
3302 ret = err;
3303 return ret;
3304 }
3305
3306 /*
3307 * This is a heuristic used to reduce the number of chunks balanced on
3308 * resume after balance was interrupted.
3309 */
update_balance_args(struct btrfs_balance_control * bctl)3310 static void update_balance_args(struct btrfs_balance_control *bctl)
3311 {
3312 /*
3313 * Turn on soft mode for chunk types that were being converted.
3314 */
3315 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3316 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3317 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3318 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3319 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3320 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3321
3322 /*
3323 * Turn on usage filter if is not already used. The idea is
3324 * that chunks that we have already balanced should be
3325 * reasonably full. Don't do it for chunks that are being
3326 * converted - that will keep us from relocating unconverted
3327 * (albeit full) chunks.
3328 */
3329 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3330 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3331 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3332 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3333 bctl->data.usage = 90;
3334 }
3335 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3336 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3337 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3338 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3339 bctl->sys.usage = 90;
3340 }
3341 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3342 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3343 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3344 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3345 bctl->meta.usage = 90;
3346 }
3347 }
3348
3349 /*
3350 * Clear the balance status in fs_info and delete the balance item from disk.
3351 */
reset_balance_state(struct btrfs_fs_info * fs_info)3352 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3353 {
3354 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3355 int ret;
3356
3357 BUG_ON(!fs_info->balance_ctl);
3358
3359 spin_lock(&fs_info->balance_lock);
3360 fs_info->balance_ctl = NULL;
3361 spin_unlock(&fs_info->balance_lock);
3362
3363 kfree(bctl);
3364 ret = del_balance_item(fs_info);
3365 if (ret)
3366 btrfs_handle_fs_error(fs_info, ret, NULL);
3367 }
3368
3369 /*
3370 * Balance filters. Return 1 if chunk should be filtered out
3371 * (should not be balanced).
3372 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3373 static int chunk_profiles_filter(u64 chunk_type,
3374 struct btrfs_balance_args *bargs)
3375 {
3376 chunk_type = chunk_to_extended(chunk_type) &
3377 BTRFS_EXTENDED_PROFILE_MASK;
3378
3379 if (bargs->profiles & chunk_type)
3380 return 0;
3381
3382 return 1;
3383 }
3384
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3385 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3386 struct btrfs_balance_args *bargs)
3387 {
3388 struct btrfs_block_group_cache *cache;
3389 u64 chunk_used;
3390 u64 user_thresh_min;
3391 u64 user_thresh_max;
3392 int ret = 1;
3393
3394 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3395 chunk_used = btrfs_block_group_used(&cache->item);
3396
3397 if (bargs->usage_min == 0)
3398 user_thresh_min = 0;
3399 else
3400 user_thresh_min = div_factor_fine(cache->key.offset,
3401 bargs->usage_min);
3402
3403 if (bargs->usage_max == 0)
3404 user_thresh_max = 1;
3405 else if (bargs->usage_max > 100)
3406 user_thresh_max = cache->key.offset;
3407 else
3408 user_thresh_max = div_factor_fine(cache->key.offset,
3409 bargs->usage_max);
3410
3411 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3412 ret = 0;
3413
3414 btrfs_put_block_group(cache);
3415 return ret;
3416 }
3417
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3418 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3419 u64 chunk_offset, struct btrfs_balance_args *bargs)
3420 {
3421 struct btrfs_block_group_cache *cache;
3422 u64 chunk_used, user_thresh;
3423 int ret = 1;
3424
3425 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3426 chunk_used = btrfs_block_group_used(&cache->item);
3427
3428 if (bargs->usage_min == 0)
3429 user_thresh = 1;
3430 else if (bargs->usage > 100)
3431 user_thresh = cache->key.offset;
3432 else
3433 user_thresh = div_factor_fine(cache->key.offset,
3434 bargs->usage);
3435
3436 if (chunk_used < user_thresh)
3437 ret = 0;
3438
3439 btrfs_put_block_group(cache);
3440 return ret;
3441 }
3442
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3443 static int chunk_devid_filter(struct extent_buffer *leaf,
3444 struct btrfs_chunk *chunk,
3445 struct btrfs_balance_args *bargs)
3446 {
3447 struct btrfs_stripe *stripe;
3448 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3449 int i;
3450
3451 for (i = 0; i < num_stripes; i++) {
3452 stripe = btrfs_stripe_nr(chunk, i);
3453 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3454 return 0;
3455 }
3456
3457 return 1;
3458 }
3459
calc_data_stripes(u64 type,int num_stripes)3460 static u64 calc_data_stripes(u64 type, int num_stripes)
3461 {
3462 const int index = btrfs_bg_flags_to_raid_index(type);
3463 const int ncopies = btrfs_raid_array[index].ncopies;
3464 const int nparity = btrfs_raid_array[index].nparity;
3465
3466 if (nparity)
3467 return num_stripes - nparity;
3468 else
3469 return num_stripes / ncopies;
3470 }
3471
3472 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3473 static int chunk_drange_filter(struct extent_buffer *leaf,
3474 struct btrfs_chunk *chunk,
3475 struct btrfs_balance_args *bargs)
3476 {
3477 struct btrfs_stripe *stripe;
3478 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3479 u64 stripe_offset;
3480 u64 stripe_length;
3481 u64 type;
3482 int factor;
3483 int i;
3484
3485 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3486 return 0;
3487
3488 type = btrfs_chunk_type(leaf, chunk);
3489 factor = calc_data_stripes(type, num_stripes);
3490
3491 for (i = 0; i < num_stripes; i++) {
3492 stripe = btrfs_stripe_nr(chunk, i);
3493 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3494 continue;
3495
3496 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3497 stripe_length = btrfs_chunk_length(leaf, chunk);
3498 stripe_length = div_u64(stripe_length, factor);
3499
3500 if (stripe_offset < bargs->pend &&
3501 stripe_offset + stripe_length > bargs->pstart)
3502 return 0;
3503 }
3504
3505 return 1;
3506 }
3507
3508 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3509 static int chunk_vrange_filter(struct extent_buffer *leaf,
3510 struct btrfs_chunk *chunk,
3511 u64 chunk_offset,
3512 struct btrfs_balance_args *bargs)
3513 {
3514 if (chunk_offset < bargs->vend &&
3515 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3516 /* at least part of the chunk is inside this vrange */
3517 return 0;
3518
3519 return 1;
3520 }
3521
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3522 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3523 struct btrfs_chunk *chunk,
3524 struct btrfs_balance_args *bargs)
3525 {
3526 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3527
3528 if (bargs->stripes_min <= num_stripes
3529 && num_stripes <= bargs->stripes_max)
3530 return 0;
3531
3532 return 1;
3533 }
3534
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3535 static int chunk_soft_convert_filter(u64 chunk_type,
3536 struct btrfs_balance_args *bargs)
3537 {
3538 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3539 return 0;
3540
3541 chunk_type = chunk_to_extended(chunk_type) &
3542 BTRFS_EXTENDED_PROFILE_MASK;
3543
3544 if (bargs->target == chunk_type)
3545 return 1;
3546
3547 return 0;
3548 }
3549
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3550 static int should_balance_chunk(struct extent_buffer *leaf,
3551 struct btrfs_chunk *chunk, u64 chunk_offset)
3552 {
3553 struct btrfs_fs_info *fs_info = leaf->fs_info;
3554 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3555 struct btrfs_balance_args *bargs = NULL;
3556 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3557
3558 /* type filter */
3559 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3560 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3561 return 0;
3562 }
3563
3564 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3565 bargs = &bctl->data;
3566 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3567 bargs = &bctl->sys;
3568 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3569 bargs = &bctl->meta;
3570
3571 /* profiles filter */
3572 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3573 chunk_profiles_filter(chunk_type, bargs)) {
3574 return 0;
3575 }
3576
3577 /* usage filter */
3578 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3579 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3580 return 0;
3581 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3582 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3583 return 0;
3584 }
3585
3586 /* devid filter */
3587 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3588 chunk_devid_filter(leaf, chunk, bargs)) {
3589 return 0;
3590 }
3591
3592 /* drange filter, makes sense only with devid filter */
3593 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3594 chunk_drange_filter(leaf, chunk, bargs)) {
3595 return 0;
3596 }
3597
3598 /* vrange filter */
3599 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3600 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3601 return 0;
3602 }
3603
3604 /* stripes filter */
3605 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3606 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3607 return 0;
3608 }
3609
3610 /* soft profile changing mode */
3611 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3612 chunk_soft_convert_filter(chunk_type, bargs)) {
3613 return 0;
3614 }
3615
3616 /*
3617 * limited by count, must be the last filter
3618 */
3619 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3620 if (bargs->limit == 0)
3621 return 0;
3622 else
3623 bargs->limit--;
3624 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3625 /*
3626 * Same logic as the 'limit' filter; the minimum cannot be
3627 * determined here because we do not have the global information
3628 * about the count of all chunks that satisfy the filters.
3629 */
3630 if (bargs->limit_max == 0)
3631 return 0;
3632 else
3633 bargs->limit_max--;
3634 }
3635
3636 return 1;
3637 }
3638
__btrfs_balance(struct btrfs_fs_info * fs_info)3639 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3640 {
3641 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3642 struct btrfs_root *chunk_root = fs_info->chunk_root;
3643 u64 chunk_type;
3644 struct btrfs_chunk *chunk;
3645 struct btrfs_path *path = NULL;
3646 struct btrfs_key key;
3647 struct btrfs_key found_key;
3648 struct extent_buffer *leaf;
3649 int slot;
3650 int ret;
3651 int enospc_errors = 0;
3652 bool counting = true;
3653 /* The single value limit and min/max limits use the same bytes in the */
3654 u64 limit_data = bctl->data.limit;
3655 u64 limit_meta = bctl->meta.limit;
3656 u64 limit_sys = bctl->sys.limit;
3657 u32 count_data = 0;
3658 u32 count_meta = 0;
3659 u32 count_sys = 0;
3660 int chunk_reserved = 0;
3661
3662 path = btrfs_alloc_path();
3663 if (!path) {
3664 ret = -ENOMEM;
3665 goto error;
3666 }
3667
3668 /* zero out stat counters */
3669 spin_lock(&fs_info->balance_lock);
3670 memset(&bctl->stat, 0, sizeof(bctl->stat));
3671 spin_unlock(&fs_info->balance_lock);
3672 again:
3673 if (!counting) {
3674 /*
3675 * The single value limit and min/max limits use the same bytes
3676 * in the
3677 */
3678 bctl->data.limit = limit_data;
3679 bctl->meta.limit = limit_meta;
3680 bctl->sys.limit = limit_sys;
3681 }
3682 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3683 key.offset = (u64)-1;
3684 key.type = BTRFS_CHUNK_ITEM_KEY;
3685
3686 while (1) {
3687 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3688 atomic_read(&fs_info->balance_cancel_req)) {
3689 ret = -ECANCELED;
3690 goto error;
3691 }
3692
3693 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3694 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3695 if (ret < 0) {
3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697 goto error;
3698 }
3699
3700 /*
3701 * this shouldn't happen, it means the last relocate
3702 * failed
3703 */
3704 if (ret == 0)
3705 BUG(); /* FIXME break ? */
3706
3707 ret = btrfs_previous_item(chunk_root, path, 0,
3708 BTRFS_CHUNK_ITEM_KEY);
3709 if (ret) {
3710 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3711 ret = 0;
3712 break;
3713 }
3714
3715 leaf = path->nodes[0];
3716 slot = path->slots[0];
3717 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3718
3719 if (found_key.objectid != key.objectid) {
3720 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3721 break;
3722 }
3723
3724 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3725 chunk_type = btrfs_chunk_type(leaf, chunk);
3726
3727 if (!counting) {
3728 spin_lock(&fs_info->balance_lock);
3729 bctl->stat.considered++;
3730 spin_unlock(&fs_info->balance_lock);
3731 }
3732
3733 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3734
3735 btrfs_release_path(path);
3736 if (!ret) {
3737 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3738 goto loop;
3739 }
3740
3741 if (counting) {
3742 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3743 spin_lock(&fs_info->balance_lock);
3744 bctl->stat.expected++;
3745 spin_unlock(&fs_info->balance_lock);
3746
3747 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3748 count_data++;
3749 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3750 count_sys++;
3751 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3752 count_meta++;
3753
3754 goto loop;
3755 }
3756
3757 /*
3758 * Apply limit_min filter, no need to check if the LIMITS
3759 * filter is used, limit_min is 0 by default
3760 */
3761 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3762 count_data < bctl->data.limit_min)
3763 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3764 count_meta < bctl->meta.limit_min)
3765 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3766 count_sys < bctl->sys.limit_min)) {
3767 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3768 goto loop;
3769 }
3770
3771 if (!chunk_reserved) {
3772 /*
3773 * We may be relocating the only data chunk we have,
3774 * which could potentially end up with losing data's
3775 * raid profile, so lets allocate an empty one in
3776 * advance.
3777 */
3778 ret = btrfs_may_alloc_data_chunk(fs_info,
3779 found_key.offset);
3780 if (ret < 0) {
3781 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3782 goto error;
3783 } else if (ret == 1) {
3784 chunk_reserved = 1;
3785 }
3786 }
3787
3788 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3789 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3790 if (ret == -ENOSPC) {
3791 enospc_errors++;
3792 } else if (ret == -ETXTBSY) {
3793 btrfs_info(fs_info,
3794 "skipping relocation of block group %llu due to active swapfile",
3795 found_key.offset);
3796 ret = 0;
3797 } else if (ret) {
3798 goto error;
3799 } else {
3800 spin_lock(&fs_info->balance_lock);
3801 bctl->stat.completed++;
3802 spin_unlock(&fs_info->balance_lock);
3803 }
3804 loop:
3805 if (found_key.offset == 0)
3806 break;
3807 key.offset = found_key.offset - 1;
3808 }
3809
3810 if (counting) {
3811 btrfs_release_path(path);
3812 counting = false;
3813 goto again;
3814 }
3815 error:
3816 btrfs_free_path(path);
3817 if (enospc_errors) {
3818 btrfs_info(fs_info, "%d enospc errors during balance",
3819 enospc_errors);
3820 if (!ret)
3821 ret = -ENOSPC;
3822 }
3823
3824 return ret;
3825 }
3826
3827 /**
3828 * alloc_profile_is_valid - see if a given profile is valid and reduced
3829 * @flags: profile to validate
3830 * @extended: if true @flags is treated as an extended profile
3831 */
alloc_profile_is_valid(u64 flags,int extended)3832 static int alloc_profile_is_valid(u64 flags, int extended)
3833 {
3834 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3835 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3836
3837 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3838
3839 /* 1) check that all other bits are zeroed */
3840 if (flags & ~mask)
3841 return 0;
3842
3843 /* 2) see if profile is reduced */
3844 if (flags == 0)
3845 return !extended; /* "0" is valid for usual profiles */
3846
3847 /* true if exactly one bit set */
3848 /*
3849 * Don't use is_power_of_2(unsigned long) because it won't work
3850 * for the single profile (1ULL << 48) on 32-bit CPUs.
3851 */
3852 return flags != 0 && (flags & (flags - 1)) == 0;
3853 }
3854
balance_need_close(struct btrfs_fs_info * fs_info)3855 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3856 {
3857 /* cancel requested || normal exit path */
3858 return atomic_read(&fs_info->balance_cancel_req) ||
3859 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3860 atomic_read(&fs_info->balance_cancel_req) == 0);
3861 }
3862
3863 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)3864 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3865 u64 allowed)
3866 {
3867 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3868 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3869 (bctl_arg->target & ~allowed)));
3870 }
3871
3872 /*
3873 * Fill @buf with textual description of balance filter flags @bargs, up to
3874 * @size_buf including the terminating null. The output may be trimmed if it
3875 * does not fit into the provided buffer.
3876 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)3877 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3878 u32 size_buf)
3879 {
3880 int ret;
3881 u32 size_bp = size_buf;
3882 char *bp = buf;
3883 u64 flags = bargs->flags;
3884 char tmp_buf[128] = {'\0'};
3885
3886 if (!flags)
3887 return;
3888
3889 #define CHECK_APPEND_NOARG(a) \
3890 do { \
3891 ret = snprintf(bp, size_bp, (a)); \
3892 if (ret < 0 || ret >= size_bp) \
3893 goto out_overflow; \
3894 size_bp -= ret; \
3895 bp += ret; \
3896 } while (0)
3897
3898 #define CHECK_APPEND_1ARG(a, v1) \
3899 do { \
3900 ret = snprintf(bp, size_bp, (a), (v1)); \
3901 if (ret < 0 || ret >= size_bp) \
3902 goto out_overflow; \
3903 size_bp -= ret; \
3904 bp += ret; \
3905 } while (0)
3906
3907 #define CHECK_APPEND_2ARG(a, v1, v2) \
3908 do { \
3909 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3910 if (ret < 0 || ret >= size_bp) \
3911 goto out_overflow; \
3912 size_bp -= ret; \
3913 bp += ret; \
3914 } while (0)
3915
3916 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3917 CHECK_APPEND_1ARG("convert=%s,",
3918 btrfs_bg_type_to_raid_name(bargs->target));
3919
3920 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3921 CHECK_APPEND_NOARG("soft,");
3922
3923 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3924 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3925 sizeof(tmp_buf));
3926 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3927 }
3928
3929 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3930 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3931
3932 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3933 CHECK_APPEND_2ARG("usage=%u..%u,",
3934 bargs->usage_min, bargs->usage_max);
3935
3936 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3937 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3938
3939 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3940 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3941 bargs->pstart, bargs->pend);
3942
3943 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3944 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3945 bargs->vstart, bargs->vend);
3946
3947 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3948 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3949
3950 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3951 CHECK_APPEND_2ARG("limit=%u..%u,",
3952 bargs->limit_min, bargs->limit_max);
3953
3954 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3955 CHECK_APPEND_2ARG("stripes=%u..%u,",
3956 bargs->stripes_min, bargs->stripes_max);
3957
3958 #undef CHECK_APPEND_2ARG
3959 #undef CHECK_APPEND_1ARG
3960 #undef CHECK_APPEND_NOARG
3961
3962 out_overflow:
3963
3964 if (size_bp < size_buf)
3965 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3966 else
3967 buf[0] = '\0';
3968 }
3969
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)3970 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3971 {
3972 u32 size_buf = 1024;
3973 char tmp_buf[192] = {'\0'};
3974 char *buf;
3975 char *bp;
3976 u32 size_bp = size_buf;
3977 int ret;
3978 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3979
3980 buf = kzalloc(size_buf, GFP_KERNEL);
3981 if (!buf)
3982 return;
3983
3984 bp = buf;
3985
3986 #define CHECK_APPEND_1ARG(a, v1) \
3987 do { \
3988 ret = snprintf(bp, size_bp, (a), (v1)); \
3989 if (ret < 0 || ret >= size_bp) \
3990 goto out_overflow; \
3991 size_bp -= ret; \
3992 bp += ret; \
3993 } while (0)
3994
3995 if (bctl->flags & BTRFS_BALANCE_FORCE)
3996 CHECK_APPEND_1ARG("%s", "-f ");
3997
3998 if (bctl->flags & BTRFS_BALANCE_DATA) {
3999 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4000 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4001 }
4002
4003 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4004 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4005 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4006 }
4007
4008 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4009 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4010 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4011 }
4012
4013 #undef CHECK_APPEND_1ARG
4014
4015 out_overflow:
4016
4017 if (size_bp < size_buf)
4018 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4019 btrfs_info(fs_info, "balance: %s %s",
4020 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4021 "resume" : "start", buf);
4022
4023 kfree(buf);
4024 }
4025
4026 /*
4027 * Should be called with balance mutexe held
4028 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4029 int btrfs_balance(struct btrfs_fs_info *fs_info,
4030 struct btrfs_balance_control *bctl,
4031 struct btrfs_ioctl_balance_args *bargs)
4032 {
4033 u64 meta_target, data_target;
4034 u64 allowed;
4035 int mixed = 0;
4036 int ret;
4037 u64 num_devices;
4038 unsigned seq;
4039 bool reducing_integrity;
4040 int i;
4041
4042 if (btrfs_fs_closing(fs_info) ||
4043 atomic_read(&fs_info->balance_pause_req) ||
4044 atomic_read(&fs_info->balance_cancel_req)) {
4045 ret = -EINVAL;
4046 goto out;
4047 }
4048
4049 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4050 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4051 mixed = 1;
4052
4053 /*
4054 * In case of mixed groups both data and meta should be picked,
4055 * and identical options should be given for both of them.
4056 */
4057 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4058 if (mixed && (bctl->flags & allowed)) {
4059 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4060 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4061 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4062 btrfs_err(fs_info,
4063 "balance: mixed groups data and metadata options must be the same");
4064 ret = -EINVAL;
4065 goto out;
4066 }
4067 }
4068
4069 num_devices = btrfs_num_devices(fs_info);
4070
4071 /*
4072 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4073 * special bit for it, to make it easier to distinguish. Thus we need
4074 * to set it manually, or balance would refuse the profile.
4075 */
4076 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4077 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4078 if (num_devices >= btrfs_raid_array[i].devs_min)
4079 allowed |= btrfs_raid_array[i].bg_flag;
4080
4081 if (validate_convert_profile(&bctl->data, allowed)) {
4082 btrfs_err(fs_info,
4083 "balance: invalid convert data profile %s",
4084 btrfs_bg_type_to_raid_name(bctl->data.target));
4085 ret = -EINVAL;
4086 goto out;
4087 }
4088 if (validate_convert_profile(&bctl->meta, allowed)) {
4089 btrfs_err(fs_info,
4090 "balance: invalid convert metadata profile %s",
4091 btrfs_bg_type_to_raid_name(bctl->meta.target));
4092 ret = -EINVAL;
4093 goto out;
4094 }
4095 if (validate_convert_profile(&bctl->sys, allowed)) {
4096 btrfs_err(fs_info,
4097 "balance: invalid convert system profile %s",
4098 btrfs_bg_type_to_raid_name(bctl->sys.target));
4099 ret = -EINVAL;
4100 goto out;
4101 }
4102
4103 /*
4104 * Allow to reduce metadata or system integrity only if force set for
4105 * profiles with redundancy (copies, parity)
4106 */
4107 allowed = 0;
4108 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4109 if (btrfs_raid_array[i].ncopies >= 2 ||
4110 btrfs_raid_array[i].tolerated_failures >= 1)
4111 allowed |= btrfs_raid_array[i].bg_flag;
4112 }
4113 do {
4114 seq = read_seqbegin(&fs_info->profiles_lock);
4115
4116 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4117 (fs_info->avail_system_alloc_bits & allowed) &&
4118 !(bctl->sys.target & allowed)) ||
4119 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4120 (fs_info->avail_metadata_alloc_bits & allowed) &&
4121 !(bctl->meta.target & allowed)))
4122 reducing_integrity = true;
4123 else
4124 reducing_integrity = false;
4125
4126 /* if we're not converting, the target field is uninitialized */
4127 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4128 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4129 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4130 bctl->data.target : fs_info->avail_data_alloc_bits;
4131 } while (read_seqretry(&fs_info->profiles_lock, seq));
4132
4133 if (reducing_integrity) {
4134 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4135 btrfs_info(fs_info,
4136 "balance: force reducing metadata integrity");
4137 } else {
4138 btrfs_err(fs_info,
4139 "balance: reduces metadata integrity, use --force if you want this");
4140 ret = -EINVAL;
4141 goto out;
4142 }
4143 }
4144
4145 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4146 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4147 btrfs_warn(fs_info,
4148 "balance: metadata profile %s has lower redundancy than data profile %s",
4149 btrfs_bg_type_to_raid_name(meta_target),
4150 btrfs_bg_type_to_raid_name(data_target));
4151 }
4152
4153 if (fs_info->send_in_progress) {
4154 btrfs_warn_rl(fs_info,
4155 "cannot run balance while send operations are in progress (%d in progress)",
4156 fs_info->send_in_progress);
4157 ret = -EAGAIN;
4158 goto out;
4159 }
4160
4161 ret = insert_balance_item(fs_info, bctl);
4162 if (ret && ret != -EEXIST)
4163 goto out;
4164
4165 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4166 BUG_ON(ret == -EEXIST);
4167 BUG_ON(fs_info->balance_ctl);
4168 spin_lock(&fs_info->balance_lock);
4169 fs_info->balance_ctl = bctl;
4170 spin_unlock(&fs_info->balance_lock);
4171 } else {
4172 BUG_ON(ret != -EEXIST);
4173 spin_lock(&fs_info->balance_lock);
4174 update_balance_args(bctl);
4175 spin_unlock(&fs_info->balance_lock);
4176 }
4177
4178 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4179 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4180 describe_balance_start_or_resume(fs_info);
4181 mutex_unlock(&fs_info->balance_mutex);
4182
4183 ret = __btrfs_balance(fs_info);
4184
4185 mutex_lock(&fs_info->balance_mutex);
4186 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4187 btrfs_info(fs_info, "balance: paused");
4188 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4189 btrfs_info(fs_info, "balance: canceled");
4190 else
4191 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4192
4193 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4194
4195 if (bargs) {
4196 memset(bargs, 0, sizeof(*bargs));
4197 btrfs_update_ioctl_balance_args(fs_info, bargs);
4198 }
4199
4200 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4201 balance_need_close(fs_info)) {
4202 reset_balance_state(fs_info);
4203 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4204 }
4205
4206 wake_up(&fs_info->balance_wait_q);
4207
4208 return ret;
4209 out:
4210 if (bctl->flags & BTRFS_BALANCE_RESUME)
4211 reset_balance_state(fs_info);
4212 else
4213 kfree(bctl);
4214 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4215
4216 return ret;
4217 }
4218
balance_kthread(void * data)4219 static int balance_kthread(void *data)
4220 {
4221 struct btrfs_fs_info *fs_info = data;
4222 int ret = 0;
4223
4224 mutex_lock(&fs_info->balance_mutex);
4225 if (fs_info->balance_ctl)
4226 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4227 mutex_unlock(&fs_info->balance_mutex);
4228
4229 return ret;
4230 }
4231
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4232 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4233 {
4234 struct task_struct *tsk;
4235
4236 mutex_lock(&fs_info->balance_mutex);
4237 if (!fs_info->balance_ctl) {
4238 mutex_unlock(&fs_info->balance_mutex);
4239 return 0;
4240 }
4241 mutex_unlock(&fs_info->balance_mutex);
4242
4243 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4244 btrfs_info(fs_info, "balance: resume skipped");
4245 return 0;
4246 }
4247
4248 /*
4249 * A ro->rw remount sequence should continue with the paused balance
4250 * regardless of who pauses it, system or the user as of now, so set
4251 * the resume flag.
4252 */
4253 spin_lock(&fs_info->balance_lock);
4254 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4255 spin_unlock(&fs_info->balance_lock);
4256
4257 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4258 return PTR_ERR_OR_ZERO(tsk);
4259 }
4260
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4261 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4262 {
4263 struct btrfs_balance_control *bctl;
4264 struct btrfs_balance_item *item;
4265 struct btrfs_disk_balance_args disk_bargs;
4266 struct btrfs_path *path;
4267 struct extent_buffer *leaf;
4268 struct btrfs_key key;
4269 int ret;
4270
4271 path = btrfs_alloc_path();
4272 if (!path)
4273 return -ENOMEM;
4274
4275 key.objectid = BTRFS_BALANCE_OBJECTID;
4276 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4277 key.offset = 0;
4278
4279 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4280 if (ret < 0)
4281 goto out;
4282 if (ret > 0) { /* ret = -ENOENT; */
4283 ret = 0;
4284 goto out;
4285 }
4286
4287 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4288 if (!bctl) {
4289 ret = -ENOMEM;
4290 goto out;
4291 }
4292
4293 leaf = path->nodes[0];
4294 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4295
4296 bctl->flags = btrfs_balance_flags(leaf, item);
4297 bctl->flags |= BTRFS_BALANCE_RESUME;
4298
4299 btrfs_balance_data(leaf, item, &disk_bargs);
4300 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4301 btrfs_balance_meta(leaf, item, &disk_bargs);
4302 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4303 btrfs_balance_sys(leaf, item, &disk_bargs);
4304 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4305
4306 /*
4307 * This should never happen, as the paused balance state is recovered
4308 * during mount without any chance of other exclusive ops to collide.
4309 *
4310 * This gives the exclusive op status to balance and keeps in paused
4311 * state until user intervention (cancel or umount). If the ownership
4312 * cannot be assigned, show a message but do not fail. The balance
4313 * is in a paused state and must have fs_info::balance_ctl properly
4314 * set up.
4315 */
4316 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4317 btrfs_warn(fs_info,
4318 "balance: cannot set exclusive op status, resume manually");
4319
4320 mutex_lock(&fs_info->balance_mutex);
4321 BUG_ON(fs_info->balance_ctl);
4322 spin_lock(&fs_info->balance_lock);
4323 fs_info->balance_ctl = bctl;
4324 spin_unlock(&fs_info->balance_lock);
4325 mutex_unlock(&fs_info->balance_mutex);
4326 out:
4327 btrfs_free_path(path);
4328 return ret;
4329 }
4330
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4331 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4332 {
4333 int ret = 0;
4334
4335 mutex_lock(&fs_info->balance_mutex);
4336 if (!fs_info->balance_ctl) {
4337 mutex_unlock(&fs_info->balance_mutex);
4338 return -ENOTCONN;
4339 }
4340
4341 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4342 atomic_inc(&fs_info->balance_pause_req);
4343 mutex_unlock(&fs_info->balance_mutex);
4344
4345 wait_event(fs_info->balance_wait_q,
4346 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4347
4348 mutex_lock(&fs_info->balance_mutex);
4349 /* we are good with balance_ctl ripped off from under us */
4350 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4351 atomic_dec(&fs_info->balance_pause_req);
4352 } else {
4353 ret = -ENOTCONN;
4354 }
4355
4356 mutex_unlock(&fs_info->balance_mutex);
4357 return ret;
4358 }
4359
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4360 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4361 {
4362 mutex_lock(&fs_info->balance_mutex);
4363 if (!fs_info->balance_ctl) {
4364 mutex_unlock(&fs_info->balance_mutex);
4365 return -ENOTCONN;
4366 }
4367
4368 /*
4369 * A paused balance with the item stored on disk can be resumed at
4370 * mount time if the mount is read-write. Otherwise it's still paused
4371 * and we must not allow cancelling as it deletes the item.
4372 */
4373 if (sb_rdonly(fs_info->sb)) {
4374 mutex_unlock(&fs_info->balance_mutex);
4375 return -EROFS;
4376 }
4377
4378 atomic_inc(&fs_info->balance_cancel_req);
4379 /*
4380 * if we are running just wait and return, balance item is
4381 * deleted in btrfs_balance in this case
4382 */
4383 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4384 mutex_unlock(&fs_info->balance_mutex);
4385 wait_event(fs_info->balance_wait_q,
4386 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4387 mutex_lock(&fs_info->balance_mutex);
4388 } else {
4389 mutex_unlock(&fs_info->balance_mutex);
4390 /*
4391 * Lock released to allow other waiters to continue, we'll
4392 * reexamine the status again.
4393 */
4394 mutex_lock(&fs_info->balance_mutex);
4395
4396 if (fs_info->balance_ctl) {
4397 reset_balance_state(fs_info);
4398 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4399 btrfs_info(fs_info, "balance: canceled");
4400 }
4401 }
4402
4403 BUG_ON(fs_info->balance_ctl ||
4404 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4405 atomic_dec(&fs_info->balance_cancel_req);
4406 mutex_unlock(&fs_info->balance_mutex);
4407 return 0;
4408 }
4409
btrfs_uuid_scan_kthread(void * data)4410 static int btrfs_uuid_scan_kthread(void *data)
4411 {
4412 struct btrfs_fs_info *fs_info = data;
4413 struct btrfs_root *root = fs_info->tree_root;
4414 struct btrfs_key key;
4415 struct btrfs_path *path = NULL;
4416 int ret = 0;
4417 struct extent_buffer *eb;
4418 int slot;
4419 struct btrfs_root_item root_item;
4420 u32 item_size;
4421 struct btrfs_trans_handle *trans = NULL;
4422
4423 path = btrfs_alloc_path();
4424 if (!path) {
4425 ret = -ENOMEM;
4426 goto out;
4427 }
4428
4429 key.objectid = 0;
4430 key.type = BTRFS_ROOT_ITEM_KEY;
4431 key.offset = 0;
4432
4433 while (1) {
4434 ret = btrfs_search_forward(root, &key, path,
4435 BTRFS_OLDEST_GENERATION);
4436 if (ret) {
4437 if (ret > 0)
4438 ret = 0;
4439 break;
4440 }
4441
4442 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4443 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4444 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4445 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4446 goto skip;
4447
4448 eb = path->nodes[0];
4449 slot = path->slots[0];
4450 item_size = btrfs_item_size_nr(eb, slot);
4451 if (item_size < sizeof(root_item))
4452 goto skip;
4453
4454 read_extent_buffer(eb, &root_item,
4455 btrfs_item_ptr_offset(eb, slot),
4456 (int)sizeof(root_item));
4457 if (btrfs_root_refs(&root_item) == 0)
4458 goto skip;
4459
4460 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4461 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4462 if (trans)
4463 goto update_tree;
4464
4465 btrfs_release_path(path);
4466 /*
4467 * 1 - subvol uuid item
4468 * 1 - received_subvol uuid item
4469 */
4470 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4471 if (IS_ERR(trans)) {
4472 ret = PTR_ERR(trans);
4473 break;
4474 }
4475 continue;
4476 } else {
4477 goto skip;
4478 }
4479 update_tree:
4480 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4481 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4482 BTRFS_UUID_KEY_SUBVOL,
4483 key.objectid);
4484 if (ret < 0) {
4485 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4486 ret);
4487 break;
4488 }
4489 }
4490
4491 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4492 ret = btrfs_uuid_tree_add(trans,
4493 root_item.received_uuid,
4494 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4495 key.objectid);
4496 if (ret < 0) {
4497 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4498 ret);
4499 break;
4500 }
4501 }
4502
4503 skip:
4504 if (trans) {
4505 ret = btrfs_end_transaction(trans);
4506 trans = NULL;
4507 if (ret)
4508 break;
4509 }
4510
4511 btrfs_release_path(path);
4512 if (key.offset < (u64)-1) {
4513 key.offset++;
4514 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4515 key.offset = 0;
4516 key.type = BTRFS_ROOT_ITEM_KEY;
4517 } else if (key.objectid < (u64)-1) {
4518 key.offset = 0;
4519 key.type = BTRFS_ROOT_ITEM_KEY;
4520 key.objectid++;
4521 } else {
4522 break;
4523 }
4524 cond_resched();
4525 }
4526
4527 out:
4528 btrfs_free_path(path);
4529 if (trans && !IS_ERR(trans))
4530 btrfs_end_transaction(trans);
4531 if (ret)
4532 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4533 else
4534 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4535 up(&fs_info->uuid_tree_rescan_sem);
4536 return 0;
4537 }
4538
4539 /*
4540 * Callback for btrfs_uuid_tree_iterate().
4541 * returns:
4542 * 0 check succeeded, the entry is not outdated.
4543 * < 0 if an error occurred.
4544 * > 0 if the check failed, which means the caller shall remove the entry.
4545 */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4546 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4547 u8 *uuid, u8 type, u64 subid)
4548 {
4549 struct btrfs_key key;
4550 int ret = 0;
4551 struct btrfs_root *subvol_root;
4552
4553 if (type != BTRFS_UUID_KEY_SUBVOL &&
4554 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4555 goto out;
4556
4557 key.objectid = subid;
4558 key.type = BTRFS_ROOT_ITEM_KEY;
4559 key.offset = (u64)-1;
4560 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4561 if (IS_ERR(subvol_root)) {
4562 ret = PTR_ERR(subvol_root);
4563 if (ret == -ENOENT)
4564 ret = 1;
4565 goto out;
4566 }
4567
4568 switch (type) {
4569 case BTRFS_UUID_KEY_SUBVOL:
4570 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4571 ret = 1;
4572 break;
4573 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4574 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4575 BTRFS_UUID_SIZE))
4576 ret = 1;
4577 break;
4578 }
4579
4580 out:
4581 return ret;
4582 }
4583
btrfs_uuid_rescan_kthread(void * data)4584 static int btrfs_uuid_rescan_kthread(void *data)
4585 {
4586 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4587 int ret;
4588
4589 /*
4590 * 1st step is to iterate through the existing UUID tree and
4591 * to delete all entries that contain outdated data.
4592 * 2nd step is to add all missing entries to the UUID tree.
4593 */
4594 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4595 if (ret < 0) {
4596 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4597 up(&fs_info->uuid_tree_rescan_sem);
4598 return ret;
4599 }
4600 return btrfs_uuid_scan_kthread(data);
4601 }
4602
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4603 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4604 {
4605 struct btrfs_trans_handle *trans;
4606 struct btrfs_root *tree_root = fs_info->tree_root;
4607 struct btrfs_root *uuid_root;
4608 struct task_struct *task;
4609 int ret;
4610
4611 /*
4612 * 1 - root node
4613 * 1 - root item
4614 */
4615 trans = btrfs_start_transaction(tree_root, 2);
4616 if (IS_ERR(trans))
4617 return PTR_ERR(trans);
4618
4619 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4620 if (IS_ERR(uuid_root)) {
4621 ret = PTR_ERR(uuid_root);
4622 btrfs_abort_transaction(trans, ret);
4623 btrfs_end_transaction(trans);
4624 return ret;
4625 }
4626
4627 fs_info->uuid_root = uuid_root;
4628
4629 ret = btrfs_commit_transaction(trans);
4630 if (ret)
4631 return ret;
4632
4633 down(&fs_info->uuid_tree_rescan_sem);
4634 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4635 if (IS_ERR(task)) {
4636 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4637 btrfs_warn(fs_info, "failed to start uuid_scan task");
4638 up(&fs_info->uuid_tree_rescan_sem);
4639 return PTR_ERR(task);
4640 }
4641
4642 return 0;
4643 }
4644
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4645 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4646 {
4647 struct task_struct *task;
4648
4649 down(&fs_info->uuid_tree_rescan_sem);
4650 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4651 if (IS_ERR(task)) {
4652 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4653 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4654 up(&fs_info->uuid_tree_rescan_sem);
4655 return PTR_ERR(task);
4656 }
4657
4658 return 0;
4659 }
4660
4661 /*
4662 * shrinking a device means finding all of the device extents past
4663 * the new size, and then following the back refs to the chunks.
4664 * The chunk relocation code actually frees the device extent
4665 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4666 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4667 {
4668 struct btrfs_fs_info *fs_info = device->fs_info;
4669 struct btrfs_root *root = fs_info->dev_root;
4670 struct btrfs_trans_handle *trans;
4671 struct btrfs_dev_extent *dev_extent = NULL;
4672 struct btrfs_path *path;
4673 u64 length;
4674 u64 chunk_offset;
4675 int ret;
4676 int slot;
4677 int failed = 0;
4678 bool retried = false;
4679 struct extent_buffer *l;
4680 struct btrfs_key key;
4681 struct btrfs_super_block *super_copy = fs_info->super_copy;
4682 u64 old_total = btrfs_super_total_bytes(super_copy);
4683 u64 old_size = btrfs_device_get_total_bytes(device);
4684 u64 diff;
4685 u64 start;
4686
4687 new_size = round_down(new_size, fs_info->sectorsize);
4688 start = new_size;
4689 diff = round_down(old_size - new_size, fs_info->sectorsize);
4690
4691 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4692 return -EINVAL;
4693
4694 path = btrfs_alloc_path();
4695 if (!path)
4696 return -ENOMEM;
4697
4698 path->reada = READA_BACK;
4699
4700 trans = btrfs_start_transaction(root, 0);
4701 if (IS_ERR(trans)) {
4702 btrfs_free_path(path);
4703 return PTR_ERR(trans);
4704 }
4705
4706 mutex_lock(&fs_info->chunk_mutex);
4707
4708 btrfs_device_set_total_bytes(device, new_size);
4709 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4710 device->fs_devices->total_rw_bytes -= diff;
4711 atomic64_sub(diff, &fs_info->free_chunk_space);
4712 }
4713
4714 /*
4715 * Once the device's size has been set to the new size, ensure all
4716 * in-memory chunks are synced to disk so that the loop below sees them
4717 * and relocates them accordingly.
4718 */
4719 if (contains_pending_extent(device, &start, diff)) {
4720 mutex_unlock(&fs_info->chunk_mutex);
4721 ret = btrfs_commit_transaction(trans);
4722 if (ret)
4723 goto done;
4724 } else {
4725 mutex_unlock(&fs_info->chunk_mutex);
4726 btrfs_end_transaction(trans);
4727 }
4728
4729 again:
4730 key.objectid = device->devid;
4731 key.offset = (u64)-1;
4732 key.type = BTRFS_DEV_EXTENT_KEY;
4733
4734 do {
4735 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4737 if (ret < 0) {
4738 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4739 goto done;
4740 }
4741
4742 ret = btrfs_previous_item(root, path, 0, key.type);
4743 if (ret)
4744 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4745 if (ret < 0)
4746 goto done;
4747 if (ret) {
4748 ret = 0;
4749 btrfs_release_path(path);
4750 break;
4751 }
4752
4753 l = path->nodes[0];
4754 slot = path->slots[0];
4755 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4756
4757 if (key.objectid != device->devid) {
4758 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4759 btrfs_release_path(path);
4760 break;
4761 }
4762
4763 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4764 length = btrfs_dev_extent_length(l, dev_extent);
4765
4766 if (key.offset + length <= new_size) {
4767 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4768 btrfs_release_path(path);
4769 break;
4770 }
4771
4772 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4773 btrfs_release_path(path);
4774
4775 /*
4776 * We may be relocating the only data chunk we have,
4777 * which could potentially end up with losing data's
4778 * raid profile, so lets allocate an empty one in
4779 * advance.
4780 */
4781 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4782 if (ret < 0) {
4783 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4784 goto done;
4785 }
4786
4787 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4788 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4789 if (ret == -ENOSPC) {
4790 failed++;
4791 } else if (ret) {
4792 if (ret == -ETXTBSY) {
4793 btrfs_warn(fs_info,
4794 "could not shrink block group %llu due to active swapfile",
4795 chunk_offset);
4796 }
4797 goto done;
4798 }
4799 } while (key.offset-- > 0);
4800
4801 if (failed && !retried) {
4802 failed = 0;
4803 retried = true;
4804 goto again;
4805 } else if (failed && retried) {
4806 ret = -ENOSPC;
4807 goto done;
4808 }
4809
4810 /* Shrinking succeeded, else we would be at "done". */
4811 trans = btrfs_start_transaction(root, 0);
4812 if (IS_ERR(trans)) {
4813 ret = PTR_ERR(trans);
4814 goto done;
4815 }
4816
4817 mutex_lock(&fs_info->chunk_mutex);
4818 btrfs_device_set_disk_total_bytes(device, new_size);
4819 if (list_empty(&device->post_commit_list))
4820 list_add_tail(&device->post_commit_list,
4821 &trans->transaction->dev_update_list);
4822
4823 WARN_ON(diff > old_total);
4824 btrfs_set_super_total_bytes(super_copy,
4825 round_down(old_total - diff, fs_info->sectorsize));
4826 mutex_unlock(&fs_info->chunk_mutex);
4827
4828 /* Now btrfs_update_device() will change the on-disk size. */
4829 ret = btrfs_update_device(trans, device);
4830 if (ret < 0) {
4831 btrfs_abort_transaction(trans, ret);
4832 btrfs_end_transaction(trans);
4833 } else {
4834 ret = btrfs_commit_transaction(trans);
4835 }
4836 done:
4837 btrfs_free_path(path);
4838 if (ret) {
4839 mutex_lock(&fs_info->chunk_mutex);
4840 btrfs_device_set_total_bytes(device, old_size);
4841 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4842 device->fs_devices->total_rw_bytes += diff;
4843 atomic64_add(diff, &fs_info->free_chunk_space);
4844 mutex_unlock(&fs_info->chunk_mutex);
4845 }
4846 return ret;
4847 }
4848
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4849 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4850 struct btrfs_key *key,
4851 struct btrfs_chunk *chunk, int item_size)
4852 {
4853 struct btrfs_super_block *super_copy = fs_info->super_copy;
4854 struct btrfs_disk_key disk_key;
4855 u32 array_size;
4856 u8 *ptr;
4857
4858 mutex_lock(&fs_info->chunk_mutex);
4859 array_size = btrfs_super_sys_array_size(super_copy);
4860 if (array_size + item_size + sizeof(disk_key)
4861 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4862 mutex_unlock(&fs_info->chunk_mutex);
4863 return -EFBIG;
4864 }
4865
4866 ptr = super_copy->sys_chunk_array + array_size;
4867 btrfs_cpu_key_to_disk(&disk_key, key);
4868 memcpy(ptr, &disk_key, sizeof(disk_key));
4869 ptr += sizeof(disk_key);
4870 memcpy(ptr, chunk, item_size);
4871 item_size += sizeof(disk_key);
4872 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4873 mutex_unlock(&fs_info->chunk_mutex);
4874
4875 return 0;
4876 }
4877
4878 /*
4879 * sort the devices in descending order by max_avail, total_avail
4880 */
btrfs_cmp_device_info(const void * a,const void * b)4881 static int btrfs_cmp_device_info(const void *a, const void *b)
4882 {
4883 const struct btrfs_device_info *di_a = a;
4884 const struct btrfs_device_info *di_b = b;
4885
4886 if (di_a->max_avail > di_b->max_avail)
4887 return -1;
4888 if (di_a->max_avail < di_b->max_avail)
4889 return 1;
4890 if (di_a->total_avail > di_b->total_avail)
4891 return -1;
4892 if (di_a->total_avail < di_b->total_avail)
4893 return 1;
4894 return 0;
4895 }
4896
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4897 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4898 {
4899 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4900 return;
4901
4902 btrfs_set_fs_incompat(info, RAID56);
4903 }
4904
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 start,u64 type)4905 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906 u64 start, u64 type)
4907 {
4908 struct btrfs_fs_info *info = trans->fs_info;
4909 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4910 struct btrfs_device *device;
4911 struct map_lookup *map = NULL;
4912 struct extent_map_tree *em_tree;
4913 struct extent_map *em;
4914 struct btrfs_device_info *devices_info = NULL;
4915 u64 total_avail;
4916 int num_stripes; /* total number of stripes to allocate */
4917 int data_stripes; /* number of stripes that count for
4918 block group size */
4919 int sub_stripes; /* sub_stripes info for map */
4920 int dev_stripes; /* stripes per dev */
4921 int devs_max; /* max devs to use */
4922 int devs_min; /* min devs needed */
4923 int devs_increment; /* ndevs has to be a multiple of this */
4924 int ncopies; /* how many copies to data has */
4925 int nparity; /* number of stripes worth of bytes to
4926 store parity information */
4927 int ret;
4928 u64 max_stripe_size;
4929 u64 max_chunk_size;
4930 u64 stripe_size;
4931 u64 chunk_size;
4932 int ndevs;
4933 int i;
4934 int j;
4935 int index;
4936
4937 BUG_ON(!alloc_profile_is_valid(type, 0));
4938
4939 if (list_empty(&fs_devices->alloc_list)) {
4940 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4941 btrfs_debug(info, "%s: no writable device", __func__);
4942 return -ENOSPC;
4943 }
4944
4945 index = btrfs_bg_flags_to_raid_index(type);
4946
4947 sub_stripes = btrfs_raid_array[index].sub_stripes;
4948 dev_stripes = btrfs_raid_array[index].dev_stripes;
4949 devs_max = btrfs_raid_array[index].devs_max;
4950 if (!devs_max)
4951 devs_max = BTRFS_MAX_DEVS(info);
4952 devs_min = btrfs_raid_array[index].devs_min;
4953 devs_increment = btrfs_raid_array[index].devs_increment;
4954 ncopies = btrfs_raid_array[index].ncopies;
4955 nparity = btrfs_raid_array[index].nparity;
4956
4957 if (type & BTRFS_BLOCK_GROUP_DATA) {
4958 max_stripe_size = SZ_1G;
4959 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4960 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4961 /* for larger filesystems, use larger metadata chunks */
4962 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4963 max_stripe_size = SZ_1G;
4964 else
4965 max_stripe_size = SZ_256M;
4966 max_chunk_size = max_stripe_size;
4967 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4968 max_stripe_size = SZ_32M;
4969 max_chunk_size = 2 * max_stripe_size;
4970 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
4971 } else {
4972 btrfs_err(info, "invalid chunk type 0x%llx requested",
4973 type);
4974 BUG();
4975 }
4976
4977 /* We don't want a chunk larger than 10% of writable space */
4978 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4979 max_chunk_size);
4980
4981 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4982 GFP_NOFS);
4983 if (!devices_info)
4984 return -ENOMEM;
4985
4986 /*
4987 * in the first pass through the devices list, we gather information
4988 * about the available holes on each device.
4989 */
4990 ndevs = 0;
4991 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4992 u64 max_avail;
4993 u64 dev_offset;
4994
4995 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4996 WARN(1, KERN_ERR
4997 "BTRFS: read-only device in alloc_list\n");
4998 continue;
4999 }
5000
5001 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5002 &device->dev_state) ||
5003 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5004 continue;
5005
5006 if (device->total_bytes > device->bytes_used)
5007 total_avail = device->total_bytes - device->bytes_used;
5008 else
5009 total_avail = 0;
5010
5011 /* If there is no space on this device, skip it. */
5012 if (total_avail == 0)
5013 continue;
5014
5015 ret = find_free_dev_extent(device,
5016 max_stripe_size * dev_stripes,
5017 &dev_offset, &max_avail);
5018 if (ret && ret != -ENOSPC)
5019 goto error;
5020
5021 if (ret == 0)
5022 max_avail = max_stripe_size * dev_stripes;
5023
5024 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5025 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5026 btrfs_debug(info,
5027 "%s: devid %llu has no free space, have=%llu want=%u",
5028 __func__, device->devid, max_avail,
5029 BTRFS_STRIPE_LEN * dev_stripes);
5030 continue;
5031 }
5032
5033 if (ndevs == fs_devices->rw_devices) {
5034 WARN(1, "%s: found more than %llu devices\n",
5035 __func__, fs_devices->rw_devices);
5036 break;
5037 }
5038 devices_info[ndevs].dev_offset = dev_offset;
5039 devices_info[ndevs].max_avail = max_avail;
5040 devices_info[ndevs].total_avail = total_avail;
5041 devices_info[ndevs].dev = device;
5042 ++ndevs;
5043 }
5044
5045 /*
5046 * now sort the devices by hole size / available space
5047 */
5048 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5049 btrfs_cmp_device_info, NULL);
5050
5051 /* round down to number of usable stripes */
5052 ndevs = round_down(ndevs, devs_increment);
5053
5054 if (ndevs < devs_min) {
5055 ret = -ENOSPC;
5056 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5057 btrfs_debug(info,
5058 "%s: not enough devices with free space: have=%d minimum required=%d",
5059 __func__, ndevs, devs_min);
5060 }
5061 goto error;
5062 }
5063
5064 ndevs = min(ndevs, devs_max);
5065
5066 /*
5067 * The primary goal is to maximize the number of stripes, so use as
5068 * many devices as possible, even if the stripes are not maximum sized.
5069 *
5070 * The DUP profile stores more than one stripe per device, the
5071 * max_avail is the total size so we have to adjust.
5072 */
5073 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5074 num_stripes = ndevs * dev_stripes;
5075
5076 /*
5077 * this will have to be fixed for RAID1 and RAID10 over
5078 * more drives
5079 */
5080 data_stripes = (num_stripes - nparity) / ncopies;
5081
5082 /*
5083 * Use the number of data stripes to figure out how big this chunk
5084 * is really going to be in terms of logical address space,
5085 * and compare that answer with the max chunk size. If it's higher,
5086 * we try to reduce stripe_size.
5087 */
5088 if (stripe_size * data_stripes > max_chunk_size) {
5089 /*
5090 * Reduce stripe_size, round it up to a 16MB boundary again and
5091 * then use it, unless it ends up being even bigger than the
5092 * previous value we had already.
5093 */
5094 stripe_size = min(round_up(div_u64(max_chunk_size,
5095 data_stripes), SZ_16M),
5096 stripe_size);
5097 }
5098
5099 /* align to BTRFS_STRIPE_LEN */
5100 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5101
5102 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5103 if (!map) {
5104 ret = -ENOMEM;
5105 goto error;
5106 }
5107 map->num_stripes = num_stripes;
5108
5109 for (i = 0; i < ndevs; ++i) {
5110 for (j = 0; j < dev_stripes; ++j) {
5111 int s = i * dev_stripes + j;
5112 map->stripes[s].dev = devices_info[i].dev;
5113 map->stripes[s].physical = devices_info[i].dev_offset +
5114 j * stripe_size;
5115 }
5116 }
5117 map->stripe_len = BTRFS_STRIPE_LEN;
5118 map->io_align = BTRFS_STRIPE_LEN;
5119 map->io_width = BTRFS_STRIPE_LEN;
5120 map->type = type;
5121 map->sub_stripes = sub_stripes;
5122
5123 chunk_size = stripe_size * data_stripes;
5124
5125 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5126
5127 em = alloc_extent_map();
5128 if (!em) {
5129 kfree(map);
5130 ret = -ENOMEM;
5131 goto error;
5132 }
5133 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5134 em->map_lookup = map;
5135 em->start = start;
5136 em->len = chunk_size;
5137 em->block_start = 0;
5138 em->block_len = em->len;
5139 em->orig_block_len = stripe_size;
5140
5141 em_tree = &info->mapping_tree;
5142 write_lock(&em_tree->lock);
5143 ret = add_extent_mapping(em_tree, em, 0);
5144 if (ret) {
5145 write_unlock(&em_tree->lock);
5146 free_extent_map(em);
5147 goto error;
5148 }
5149 write_unlock(&em_tree->lock);
5150
5151 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5152 if (ret)
5153 goto error_del_extent;
5154
5155 for (i = 0; i < map->num_stripes; i++) {
5156 struct btrfs_device *dev = map->stripes[i].dev;
5157
5158 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5159 if (list_empty(&dev->post_commit_list))
5160 list_add_tail(&dev->post_commit_list,
5161 &trans->transaction->dev_update_list);
5162 }
5163
5164 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5165
5166 free_extent_map(em);
5167 check_raid56_incompat_flag(info, type);
5168
5169 kfree(devices_info);
5170 return 0;
5171
5172 error_del_extent:
5173 write_lock(&em_tree->lock);
5174 remove_extent_mapping(em_tree, em);
5175 write_unlock(&em_tree->lock);
5176
5177 /* One for our allocation */
5178 free_extent_map(em);
5179 /* One for the tree reference */
5180 free_extent_map(em);
5181 error:
5182 kfree(devices_info);
5183 return ret;
5184 }
5185
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)5186 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5187 u64 chunk_offset, u64 chunk_size)
5188 {
5189 struct btrfs_fs_info *fs_info = trans->fs_info;
5190 struct btrfs_root *extent_root = fs_info->extent_root;
5191 struct btrfs_root *chunk_root = fs_info->chunk_root;
5192 struct btrfs_key key;
5193 struct btrfs_device *device;
5194 struct btrfs_chunk *chunk;
5195 struct btrfs_stripe *stripe;
5196 struct extent_map *em;
5197 struct map_lookup *map;
5198 size_t item_size;
5199 u64 dev_offset;
5200 u64 stripe_size;
5201 int i = 0;
5202 int ret = 0;
5203
5204 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5205 if (IS_ERR(em))
5206 return PTR_ERR(em);
5207
5208 map = em->map_lookup;
5209 item_size = btrfs_chunk_item_size(map->num_stripes);
5210 stripe_size = em->orig_block_len;
5211
5212 chunk = kzalloc(item_size, GFP_NOFS);
5213 if (!chunk) {
5214 ret = -ENOMEM;
5215 goto out;
5216 }
5217
5218 /*
5219 * Take the device list mutex to prevent races with the final phase of
5220 * a device replace operation that replaces the device object associated
5221 * with the map's stripes, because the device object's id can change
5222 * at any time during that final phase of the device replace operation
5223 * (dev-replace.c:btrfs_dev_replace_finishing()).
5224 */
5225 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5226 for (i = 0; i < map->num_stripes; i++) {
5227 device = map->stripes[i].dev;
5228 dev_offset = map->stripes[i].physical;
5229
5230 ret = btrfs_update_device(trans, device);
5231 if (ret)
5232 break;
5233 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5234 dev_offset, stripe_size);
5235 if (ret)
5236 break;
5237 }
5238 if (ret) {
5239 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5240 goto out;
5241 }
5242
5243 stripe = &chunk->stripe;
5244 for (i = 0; i < map->num_stripes; i++) {
5245 device = map->stripes[i].dev;
5246 dev_offset = map->stripes[i].physical;
5247
5248 btrfs_set_stack_stripe_devid(stripe, device->devid);
5249 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5250 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5251 stripe++;
5252 }
5253 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5254
5255 btrfs_set_stack_chunk_length(chunk, chunk_size);
5256 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5257 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5258 btrfs_set_stack_chunk_type(chunk, map->type);
5259 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5260 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5261 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5262 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5263 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5264
5265 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5266 key.type = BTRFS_CHUNK_ITEM_KEY;
5267 key.offset = chunk_offset;
5268
5269 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5270 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5271 /*
5272 * TODO: Cleanup of inserted chunk root in case of
5273 * failure.
5274 */
5275 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5276 }
5277
5278 out:
5279 kfree(chunk);
5280 free_extent_map(em);
5281 return ret;
5282 }
5283
5284 /*
5285 * Chunk allocation falls into two parts. The first part does work
5286 * that makes the new allocated chunk usable, but does not do any operation
5287 * that modifies the chunk tree. The second part does the work that
5288 * requires modifying the chunk tree. This division is important for the
5289 * bootstrap process of adding storage to a seed btrfs.
5290 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)5291 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5292 {
5293 u64 chunk_offset;
5294
5295 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5296 chunk_offset = find_next_chunk(trans->fs_info);
5297 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5298 }
5299
init_first_rw_device(struct btrfs_trans_handle * trans)5300 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5301 {
5302 struct btrfs_fs_info *fs_info = trans->fs_info;
5303 u64 chunk_offset;
5304 u64 sys_chunk_offset;
5305 u64 alloc_profile;
5306 int ret;
5307
5308 chunk_offset = find_next_chunk(fs_info);
5309 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5310 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5311 if (ret)
5312 return ret;
5313
5314 sys_chunk_offset = find_next_chunk(fs_info);
5315 alloc_profile = btrfs_system_alloc_profile(fs_info);
5316 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5317 return ret;
5318 }
5319
btrfs_chunk_max_errors(struct map_lookup * map)5320 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5321 {
5322 const int index = btrfs_bg_flags_to_raid_index(map->type);
5323
5324 return btrfs_raid_array[index].tolerated_failures;
5325 }
5326
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5327 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5328 {
5329 struct extent_map *em;
5330 struct map_lookup *map;
5331 int readonly = 0;
5332 int miss_ndevs = 0;
5333 int i;
5334
5335 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5336 if (IS_ERR(em))
5337 return 1;
5338
5339 map = em->map_lookup;
5340 for (i = 0; i < map->num_stripes; i++) {
5341 if (test_bit(BTRFS_DEV_STATE_MISSING,
5342 &map->stripes[i].dev->dev_state)) {
5343 miss_ndevs++;
5344 continue;
5345 }
5346 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5347 &map->stripes[i].dev->dev_state)) {
5348 readonly = 1;
5349 goto end;
5350 }
5351 }
5352
5353 /*
5354 * If the number of missing devices is larger than max errors,
5355 * we can not write the data into that chunk successfully, so
5356 * set it readonly.
5357 */
5358 if (miss_ndevs > btrfs_chunk_max_errors(map))
5359 readonly = 1;
5360 end:
5361 free_extent_map(em);
5362 return readonly;
5363 }
5364
btrfs_mapping_tree_free(struct extent_map_tree * tree)5365 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5366 {
5367 struct extent_map *em;
5368
5369 while (1) {
5370 write_lock(&tree->lock);
5371 em = lookup_extent_mapping(tree, 0, (u64)-1);
5372 if (em)
5373 remove_extent_mapping(tree, em);
5374 write_unlock(&tree->lock);
5375 if (!em)
5376 break;
5377 /* once for us */
5378 free_extent_map(em);
5379 /* once for the tree */
5380 free_extent_map(em);
5381 }
5382 }
5383
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5384 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5385 {
5386 struct extent_map *em;
5387 struct map_lookup *map;
5388 int ret;
5389
5390 em = btrfs_get_chunk_map(fs_info, logical, len);
5391 if (IS_ERR(em))
5392 /*
5393 * We could return errors for these cases, but that could get
5394 * ugly and we'd probably do the same thing which is just not do
5395 * anything else and exit, so return 1 so the callers don't try
5396 * to use other copies.
5397 */
5398 return 1;
5399
5400 map = em->map_lookup;
5401 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5402 ret = map->num_stripes;
5403 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5404 ret = map->sub_stripes;
5405 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5406 ret = 2;
5407 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5408 /*
5409 * There could be two corrupted data stripes, we need
5410 * to loop retry in order to rebuild the correct data.
5411 *
5412 * Fail a stripe at a time on every retry except the
5413 * stripe under reconstruction.
5414 */
5415 ret = map->num_stripes;
5416 else
5417 ret = 1;
5418 free_extent_map(em);
5419
5420 down_read(&fs_info->dev_replace.rwsem);
5421 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5422 fs_info->dev_replace.tgtdev)
5423 ret++;
5424 up_read(&fs_info->dev_replace.rwsem);
5425
5426 return ret;
5427 }
5428
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5429 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5430 u64 logical)
5431 {
5432 struct extent_map *em;
5433 struct map_lookup *map;
5434 unsigned long len = fs_info->sectorsize;
5435
5436 em = btrfs_get_chunk_map(fs_info, logical, len);
5437
5438 if (!WARN_ON(IS_ERR(em))) {
5439 map = em->map_lookup;
5440 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5441 len = map->stripe_len * nr_data_stripes(map);
5442 free_extent_map(em);
5443 }
5444 return len;
5445 }
5446
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5447 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5448 {
5449 struct extent_map *em;
5450 struct map_lookup *map;
5451 int ret = 0;
5452
5453 em = btrfs_get_chunk_map(fs_info, logical, len);
5454
5455 if(!WARN_ON(IS_ERR(em))) {
5456 map = em->map_lookup;
5457 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5458 ret = 1;
5459 free_extent_map(em);
5460 }
5461 return ret;
5462 }
5463
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5464 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5465 struct map_lookup *map, int first,
5466 int dev_replace_is_ongoing)
5467 {
5468 int i;
5469 int num_stripes;
5470 int preferred_mirror;
5471 int tolerance;
5472 struct btrfs_device *srcdev;
5473
5474 ASSERT((map->type &
5475 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5476
5477 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5478 num_stripes = map->sub_stripes;
5479 else
5480 num_stripes = map->num_stripes;
5481
5482 preferred_mirror = first + current->pid % num_stripes;
5483
5484 if (dev_replace_is_ongoing &&
5485 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5486 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5487 srcdev = fs_info->dev_replace.srcdev;
5488 else
5489 srcdev = NULL;
5490
5491 /*
5492 * try to avoid the drive that is the source drive for a
5493 * dev-replace procedure, only choose it if no other non-missing
5494 * mirror is available
5495 */
5496 for (tolerance = 0; tolerance < 2; tolerance++) {
5497 if (map->stripes[preferred_mirror].dev->bdev &&
5498 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5499 return preferred_mirror;
5500 for (i = first; i < first + num_stripes; i++) {
5501 if (map->stripes[i].dev->bdev &&
5502 (tolerance || map->stripes[i].dev != srcdev))
5503 return i;
5504 }
5505 }
5506
5507 /* we couldn't find one that doesn't fail. Just return something
5508 * and the io error handling code will clean up eventually
5509 */
5510 return preferred_mirror;
5511 }
5512
parity_smaller(u64 a,u64 b)5513 static inline int parity_smaller(u64 a, u64 b)
5514 {
5515 return a > b;
5516 }
5517
5518 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5519 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5520 {
5521 struct btrfs_bio_stripe s;
5522 int i;
5523 u64 l;
5524 int again = 1;
5525
5526 while (again) {
5527 again = 0;
5528 for (i = 0; i < num_stripes - 1; i++) {
5529 if (parity_smaller(bbio->raid_map[i],
5530 bbio->raid_map[i+1])) {
5531 s = bbio->stripes[i];
5532 l = bbio->raid_map[i];
5533 bbio->stripes[i] = bbio->stripes[i+1];
5534 bbio->raid_map[i] = bbio->raid_map[i+1];
5535 bbio->stripes[i+1] = s;
5536 bbio->raid_map[i+1] = l;
5537
5538 again = 1;
5539 }
5540 }
5541 }
5542 }
5543
alloc_btrfs_bio(int total_stripes,int real_stripes)5544 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5545 {
5546 struct btrfs_bio *bbio = kzalloc(
5547 /* the size of the btrfs_bio */
5548 sizeof(struct btrfs_bio) +
5549 /* plus the variable array for the stripes */
5550 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5551 /* plus the variable array for the tgt dev */
5552 sizeof(int) * (real_stripes) +
5553 /*
5554 * plus the raid_map, which includes both the tgt dev
5555 * and the stripes
5556 */
5557 sizeof(u64) * (total_stripes),
5558 GFP_NOFS|__GFP_NOFAIL);
5559
5560 atomic_set(&bbio->error, 0);
5561 refcount_set(&bbio->refs, 1);
5562
5563 return bbio;
5564 }
5565
btrfs_get_bbio(struct btrfs_bio * bbio)5566 void btrfs_get_bbio(struct btrfs_bio *bbio)
5567 {
5568 WARN_ON(!refcount_read(&bbio->refs));
5569 refcount_inc(&bbio->refs);
5570 }
5571
btrfs_put_bbio(struct btrfs_bio * bbio)5572 void btrfs_put_bbio(struct btrfs_bio *bbio)
5573 {
5574 if (!bbio)
5575 return;
5576 if (refcount_dec_and_test(&bbio->refs))
5577 kfree(bbio);
5578 }
5579
5580 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5581 /*
5582 * Please note that, discard won't be sent to target device of device
5583 * replace.
5584 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 length,struct btrfs_bio ** bbio_ret)5585 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5586 u64 logical, u64 length,
5587 struct btrfs_bio **bbio_ret)
5588 {
5589 struct extent_map *em;
5590 struct map_lookup *map;
5591 struct btrfs_bio *bbio;
5592 u64 offset;
5593 u64 stripe_nr;
5594 u64 stripe_nr_end;
5595 u64 stripe_end_offset;
5596 u64 stripe_cnt;
5597 u64 stripe_len;
5598 u64 stripe_offset;
5599 u64 num_stripes;
5600 u32 stripe_index;
5601 u32 factor = 0;
5602 u32 sub_stripes = 0;
5603 u64 stripes_per_dev = 0;
5604 u32 remaining_stripes = 0;
5605 u32 last_stripe = 0;
5606 int ret = 0;
5607 int i;
5608
5609 /* discard always return a bbio */
5610 ASSERT(bbio_ret);
5611
5612 em = btrfs_get_chunk_map(fs_info, logical, length);
5613 if (IS_ERR(em))
5614 return PTR_ERR(em);
5615
5616 map = em->map_lookup;
5617 /* we don't discard raid56 yet */
5618 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5619 ret = -EOPNOTSUPP;
5620 goto out;
5621 }
5622
5623 offset = logical - em->start;
5624 length = min_t(u64, em->len - offset, length);
5625
5626 stripe_len = map->stripe_len;
5627 /*
5628 * stripe_nr counts the total number of stripes we have to stride
5629 * to get to this block
5630 */
5631 stripe_nr = div64_u64(offset, stripe_len);
5632
5633 /* stripe_offset is the offset of this block in its stripe */
5634 stripe_offset = offset - stripe_nr * stripe_len;
5635
5636 stripe_nr_end = round_up(offset + length, map->stripe_len);
5637 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5638 stripe_cnt = stripe_nr_end - stripe_nr;
5639 stripe_end_offset = stripe_nr_end * map->stripe_len -
5640 (offset + length);
5641 /*
5642 * after this, stripe_nr is the number of stripes on this
5643 * device we have to walk to find the data, and stripe_index is
5644 * the number of our device in the stripe array
5645 */
5646 num_stripes = 1;
5647 stripe_index = 0;
5648 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5649 BTRFS_BLOCK_GROUP_RAID10)) {
5650 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5651 sub_stripes = 1;
5652 else
5653 sub_stripes = map->sub_stripes;
5654
5655 factor = map->num_stripes / sub_stripes;
5656 num_stripes = min_t(u64, map->num_stripes,
5657 sub_stripes * stripe_cnt);
5658 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5659 stripe_index *= sub_stripes;
5660 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5661 &remaining_stripes);
5662 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5663 last_stripe *= sub_stripes;
5664 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5665 BTRFS_BLOCK_GROUP_DUP)) {
5666 num_stripes = map->num_stripes;
5667 } else {
5668 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5669 &stripe_index);
5670 }
5671
5672 bbio = alloc_btrfs_bio(num_stripes, 0);
5673 if (!bbio) {
5674 ret = -ENOMEM;
5675 goto out;
5676 }
5677
5678 for (i = 0; i < num_stripes; i++) {
5679 bbio->stripes[i].physical =
5680 map->stripes[stripe_index].physical +
5681 stripe_offset + stripe_nr * map->stripe_len;
5682 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5683
5684 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5685 BTRFS_BLOCK_GROUP_RAID10)) {
5686 bbio->stripes[i].length = stripes_per_dev *
5687 map->stripe_len;
5688
5689 if (i / sub_stripes < remaining_stripes)
5690 bbio->stripes[i].length +=
5691 map->stripe_len;
5692
5693 /*
5694 * Special for the first stripe and
5695 * the last stripe:
5696 *
5697 * |-------|...|-------|
5698 * |----------|
5699 * off end_off
5700 */
5701 if (i < sub_stripes)
5702 bbio->stripes[i].length -=
5703 stripe_offset;
5704
5705 if (stripe_index >= last_stripe &&
5706 stripe_index <= (last_stripe +
5707 sub_stripes - 1))
5708 bbio->stripes[i].length -=
5709 stripe_end_offset;
5710
5711 if (i == sub_stripes - 1)
5712 stripe_offset = 0;
5713 } else {
5714 bbio->stripes[i].length = length;
5715 }
5716
5717 stripe_index++;
5718 if (stripe_index == map->num_stripes) {
5719 stripe_index = 0;
5720 stripe_nr++;
5721 }
5722 }
5723
5724 *bbio_ret = bbio;
5725 bbio->map_type = map->type;
5726 bbio->num_stripes = num_stripes;
5727 out:
5728 free_extent_map(em);
5729 return ret;
5730 }
5731
5732 /*
5733 * In dev-replace case, for repair case (that's the only case where the mirror
5734 * is selected explicitly when calling btrfs_map_block), blocks left of the
5735 * left cursor can also be read from the target drive.
5736 *
5737 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5738 * array of stripes.
5739 * For READ, it also needs to be supported using the same mirror number.
5740 *
5741 * If the requested block is not left of the left cursor, EIO is returned. This
5742 * can happen because btrfs_num_copies() returns one more in the dev-replace
5743 * case.
5744 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)5745 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5746 u64 logical, u64 length,
5747 u64 srcdev_devid, int *mirror_num,
5748 u64 *physical)
5749 {
5750 struct btrfs_bio *bbio = NULL;
5751 int num_stripes;
5752 int index_srcdev = 0;
5753 int found = 0;
5754 u64 physical_of_found = 0;
5755 int i;
5756 int ret = 0;
5757
5758 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5759 logical, &length, &bbio, 0, 0);
5760 if (ret) {
5761 ASSERT(bbio == NULL);
5762 return ret;
5763 }
5764
5765 num_stripes = bbio->num_stripes;
5766 if (*mirror_num > num_stripes) {
5767 /*
5768 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5769 * that means that the requested area is not left of the left
5770 * cursor
5771 */
5772 btrfs_put_bbio(bbio);
5773 return -EIO;
5774 }
5775
5776 /*
5777 * process the rest of the function using the mirror_num of the source
5778 * drive. Therefore look it up first. At the end, patch the device
5779 * pointer to the one of the target drive.
5780 */
5781 for (i = 0; i < num_stripes; i++) {
5782 if (bbio->stripes[i].dev->devid != srcdev_devid)
5783 continue;
5784
5785 /*
5786 * In case of DUP, in order to keep it simple, only add the
5787 * mirror with the lowest physical address
5788 */
5789 if (found &&
5790 physical_of_found <= bbio->stripes[i].physical)
5791 continue;
5792
5793 index_srcdev = i;
5794 found = 1;
5795 physical_of_found = bbio->stripes[i].physical;
5796 }
5797
5798 btrfs_put_bbio(bbio);
5799
5800 ASSERT(found);
5801 if (!found)
5802 return -EIO;
5803
5804 *mirror_num = index_srcdev + 1;
5805 *physical = physical_of_found;
5806 return ret;
5807 }
5808
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,int * num_stripes_ret,int * max_errors_ret)5809 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5810 struct btrfs_bio **bbio_ret,
5811 struct btrfs_dev_replace *dev_replace,
5812 int *num_stripes_ret, int *max_errors_ret)
5813 {
5814 struct btrfs_bio *bbio = *bbio_ret;
5815 u64 srcdev_devid = dev_replace->srcdev->devid;
5816 int tgtdev_indexes = 0;
5817 int num_stripes = *num_stripes_ret;
5818 int max_errors = *max_errors_ret;
5819 int i;
5820
5821 if (op == BTRFS_MAP_WRITE) {
5822 int index_where_to_add;
5823
5824 /*
5825 * duplicate the write operations while the dev replace
5826 * procedure is running. Since the copying of the old disk to
5827 * the new disk takes place at run time while the filesystem is
5828 * mounted writable, the regular write operations to the old
5829 * disk have to be duplicated to go to the new disk as well.
5830 *
5831 * Note that device->missing is handled by the caller, and that
5832 * the write to the old disk is already set up in the stripes
5833 * array.
5834 */
5835 index_where_to_add = num_stripes;
5836 for (i = 0; i < num_stripes; i++) {
5837 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5838 /* write to new disk, too */
5839 struct btrfs_bio_stripe *new =
5840 bbio->stripes + index_where_to_add;
5841 struct btrfs_bio_stripe *old =
5842 bbio->stripes + i;
5843
5844 new->physical = old->physical;
5845 new->length = old->length;
5846 new->dev = dev_replace->tgtdev;
5847 bbio->tgtdev_map[i] = index_where_to_add;
5848 index_where_to_add++;
5849 max_errors++;
5850 tgtdev_indexes++;
5851 }
5852 }
5853 num_stripes = index_where_to_add;
5854 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5855 int index_srcdev = 0;
5856 int found = 0;
5857 u64 physical_of_found = 0;
5858
5859 /*
5860 * During the dev-replace procedure, the target drive can also
5861 * be used to read data in case it is needed to repair a corrupt
5862 * block elsewhere. This is possible if the requested area is
5863 * left of the left cursor. In this area, the target drive is a
5864 * full copy of the source drive.
5865 */
5866 for (i = 0; i < num_stripes; i++) {
5867 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5868 /*
5869 * In case of DUP, in order to keep it simple,
5870 * only add the mirror with the lowest physical
5871 * address
5872 */
5873 if (found &&
5874 physical_of_found <=
5875 bbio->stripes[i].physical)
5876 continue;
5877 index_srcdev = i;
5878 found = 1;
5879 physical_of_found = bbio->stripes[i].physical;
5880 }
5881 }
5882 if (found) {
5883 struct btrfs_bio_stripe *tgtdev_stripe =
5884 bbio->stripes + num_stripes;
5885
5886 tgtdev_stripe->physical = physical_of_found;
5887 tgtdev_stripe->length =
5888 bbio->stripes[index_srcdev].length;
5889 tgtdev_stripe->dev = dev_replace->tgtdev;
5890 bbio->tgtdev_map[index_srcdev] = num_stripes;
5891
5892 tgtdev_indexes++;
5893 num_stripes++;
5894 }
5895 }
5896
5897 *num_stripes_ret = num_stripes;
5898 *max_errors_ret = max_errors;
5899 bbio->num_tgtdevs = tgtdev_indexes;
5900 *bbio_ret = bbio;
5901 }
5902
need_full_stripe(enum btrfs_map_op op)5903 static bool need_full_stripe(enum btrfs_map_op op)
5904 {
5905 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5906 }
5907
5908 /*
5909 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5910 * tuple. This information is used to calculate how big a
5911 * particular bio can get before it straddles a stripe.
5912 *
5913 * @fs_info - the filesystem
5914 * @logical - address that we want to figure out the geometry of
5915 * @len - the length of IO we are going to perform, starting at @logical
5916 * @op - type of operation - write or read
5917 * @io_geom - pointer used to return values
5918 *
5919 * Returns < 0 in case a chunk for the given logical address cannot be found,
5920 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5921 */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 len,struct btrfs_io_geometry * io_geom)5922 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5923 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5924 {
5925 struct extent_map *em;
5926 struct map_lookup *map;
5927 u64 offset;
5928 u64 stripe_offset;
5929 u64 stripe_nr;
5930 u64 stripe_len;
5931 u64 raid56_full_stripe_start = (u64)-1;
5932 int data_stripes;
5933 int ret = 0;
5934
5935 ASSERT(op != BTRFS_MAP_DISCARD);
5936
5937 em = btrfs_get_chunk_map(fs_info, logical, len);
5938 if (IS_ERR(em))
5939 return PTR_ERR(em);
5940
5941 map = em->map_lookup;
5942 /* Offset of this logical address in the chunk */
5943 offset = logical - em->start;
5944 /* Len of a stripe in a chunk */
5945 stripe_len = map->stripe_len;
5946 /* Stripe wher this block falls in */
5947 stripe_nr = div64_u64(offset, stripe_len);
5948 /* Offset of stripe in the chunk */
5949 stripe_offset = stripe_nr * stripe_len;
5950 if (offset < stripe_offset) {
5951 btrfs_crit(fs_info,
5952 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5953 stripe_offset, offset, em->start, logical, stripe_len);
5954 ret = -EINVAL;
5955 goto out;
5956 }
5957
5958 /* stripe_offset is the offset of this block in its stripe */
5959 stripe_offset = offset - stripe_offset;
5960 data_stripes = nr_data_stripes(map);
5961
5962 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5963 u64 max_len = stripe_len - stripe_offset;
5964
5965 /*
5966 * In case of raid56, we need to know the stripe aligned start
5967 */
5968 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5969 unsigned long full_stripe_len = stripe_len * data_stripes;
5970 raid56_full_stripe_start = offset;
5971
5972 /*
5973 * Allow a write of a full stripe, but make sure we
5974 * don't allow straddling of stripes
5975 */
5976 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5977 full_stripe_len);
5978 raid56_full_stripe_start *= full_stripe_len;
5979
5980 /*
5981 * For writes to RAID[56], allow a full stripeset across
5982 * all disks. For other RAID types and for RAID[56]
5983 * reads, just allow a single stripe (on a single disk).
5984 */
5985 if (op == BTRFS_MAP_WRITE) {
5986 max_len = stripe_len * data_stripes -
5987 (offset - raid56_full_stripe_start);
5988 }
5989 }
5990 len = min_t(u64, em->len - offset, max_len);
5991 } else {
5992 len = em->len - offset;
5993 }
5994
5995 io_geom->len = len;
5996 io_geom->offset = offset;
5997 io_geom->stripe_len = stripe_len;
5998 io_geom->stripe_nr = stripe_nr;
5999 io_geom->stripe_offset = stripe_offset;
6000 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6001
6002 out:
6003 /* once for us */
6004 free_extent_map(em);
6005 return ret;
6006 }
6007
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)6008 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6009 enum btrfs_map_op op,
6010 u64 logical, u64 *length,
6011 struct btrfs_bio **bbio_ret,
6012 int mirror_num, int need_raid_map)
6013 {
6014 struct extent_map *em;
6015 struct map_lookup *map;
6016 u64 stripe_offset;
6017 u64 stripe_nr;
6018 u64 stripe_len;
6019 u32 stripe_index;
6020 int data_stripes;
6021 int i;
6022 int ret = 0;
6023 int num_stripes;
6024 int max_errors = 0;
6025 int tgtdev_indexes = 0;
6026 struct btrfs_bio *bbio = NULL;
6027 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6028 int dev_replace_is_ongoing = 0;
6029 int num_alloc_stripes;
6030 int patch_the_first_stripe_for_dev_replace = 0;
6031 u64 physical_to_patch_in_first_stripe = 0;
6032 u64 raid56_full_stripe_start = (u64)-1;
6033 struct btrfs_io_geometry geom;
6034
6035 ASSERT(bbio_ret);
6036
6037 if (op == BTRFS_MAP_DISCARD)
6038 return __btrfs_map_block_for_discard(fs_info, logical,
6039 *length, bbio_ret);
6040
6041 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6042 if (ret < 0)
6043 return ret;
6044
6045 em = btrfs_get_chunk_map(fs_info, logical, *length);
6046 ASSERT(!IS_ERR(em));
6047 map = em->map_lookup;
6048
6049 *length = geom.len;
6050 stripe_len = geom.stripe_len;
6051 stripe_nr = geom.stripe_nr;
6052 stripe_offset = geom.stripe_offset;
6053 raid56_full_stripe_start = geom.raid56_stripe_offset;
6054 data_stripes = nr_data_stripes(map);
6055
6056 down_read(&dev_replace->rwsem);
6057 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6058 /*
6059 * Hold the semaphore for read during the whole operation, write is
6060 * requested at commit time but must wait.
6061 */
6062 if (!dev_replace_is_ongoing)
6063 up_read(&dev_replace->rwsem);
6064
6065 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6066 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6067 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6068 dev_replace->srcdev->devid,
6069 &mirror_num,
6070 &physical_to_patch_in_first_stripe);
6071 if (ret)
6072 goto out;
6073 else
6074 patch_the_first_stripe_for_dev_replace = 1;
6075 } else if (mirror_num > map->num_stripes) {
6076 mirror_num = 0;
6077 }
6078
6079 num_stripes = 1;
6080 stripe_index = 0;
6081 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6082 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6083 &stripe_index);
6084 if (!need_full_stripe(op))
6085 mirror_num = 1;
6086 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6087 if (need_full_stripe(op))
6088 num_stripes = map->num_stripes;
6089 else if (mirror_num)
6090 stripe_index = mirror_num - 1;
6091 else {
6092 stripe_index = find_live_mirror(fs_info, map, 0,
6093 dev_replace_is_ongoing);
6094 mirror_num = stripe_index + 1;
6095 }
6096
6097 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6098 if (need_full_stripe(op)) {
6099 num_stripes = map->num_stripes;
6100 } else if (mirror_num) {
6101 stripe_index = mirror_num - 1;
6102 } else {
6103 mirror_num = 1;
6104 }
6105
6106 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6107 u32 factor = map->num_stripes / map->sub_stripes;
6108
6109 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6110 stripe_index *= map->sub_stripes;
6111
6112 if (need_full_stripe(op))
6113 num_stripes = map->sub_stripes;
6114 else if (mirror_num)
6115 stripe_index += mirror_num - 1;
6116 else {
6117 int old_stripe_index = stripe_index;
6118 stripe_index = find_live_mirror(fs_info, map,
6119 stripe_index,
6120 dev_replace_is_ongoing);
6121 mirror_num = stripe_index - old_stripe_index + 1;
6122 }
6123
6124 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6125 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6126 /* push stripe_nr back to the start of the full stripe */
6127 stripe_nr = div64_u64(raid56_full_stripe_start,
6128 stripe_len * data_stripes);
6129
6130 /* RAID[56] write or recovery. Return all stripes */
6131 num_stripes = map->num_stripes;
6132 max_errors = nr_parity_stripes(map);
6133
6134 *length = map->stripe_len;
6135 stripe_index = 0;
6136 stripe_offset = 0;
6137 } else {
6138 /*
6139 * Mirror #0 or #1 means the original data block.
6140 * Mirror #2 is RAID5 parity block.
6141 * Mirror #3 is RAID6 Q block.
6142 */
6143 stripe_nr = div_u64_rem(stripe_nr,
6144 data_stripes, &stripe_index);
6145 if (mirror_num > 1)
6146 stripe_index = data_stripes + mirror_num - 2;
6147
6148 /* We distribute the parity blocks across stripes */
6149 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6150 &stripe_index);
6151 if (!need_full_stripe(op) && mirror_num <= 1)
6152 mirror_num = 1;
6153 }
6154 } else {
6155 /*
6156 * after this, stripe_nr is the number of stripes on this
6157 * device we have to walk to find the data, and stripe_index is
6158 * the number of our device in the stripe array
6159 */
6160 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6161 &stripe_index);
6162 mirror_num = stripe_index + 1;
6163 }
6164 if (stripe_index >= map->num_stripes) {
6165 btrfs_crit(fs_info,
6166 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6167 stripe_index, map->num_stripes);
6168 ret = -EINVAL;
6169 goto out;
6170 }
6171
6172 num_alloc_stripes = num_stripes;
6173 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6174 if (op == BTRFS_MAP_WRITE)
6175 num_alloc_stripes <<= 1;
6176 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6177 num_alloc_stripes++;
6178 tgtdev_indexes = num_stripes;
6179 }
6180
6181 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6182 if (!bbio) {
6183 ret = -ENOMEM;
6184 goto out;
6185 }
6186 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6187 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6188
6189 /* build raid_map */
6190 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6191 (need_full_stripe(op) || mirror_num > 1)) {
6192 u64 tmp;
6193 unsigned rot;
6194
6195 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6196 sizeof(struct btrfs_bio_stripe) *
6197 num_alloc_stripes +
6198 sizeof(int) * tgtdev_indexes);
6199
6200 /* Work out the disk rotation on this stripe-set */
6201 div_u64_rem(stripe_nr, num_stripes, &rot);
6202
6203 /* Fill in the logical address of each stripe */
6204 tmp = stripe_nr * data_stripes;
6205 for (i = 0; i < data_stripes; i++)
6206 bbio->raid_map[(i+rot) % num_stripes] =
6207 em->start + (tmp + i) * map->stripe_len;
6208
6209 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6210 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6211 bbio->raid_map[(i+rot+1) % num_stripes] =
6212 RAID6_Q_STRIPE;
6213 }
6214
6215
6216 for (i = 0; i < num_stripes; i++) {
6217 bbio->stripes[i].physical =
6218 map->stripes[stripe_index].physical +
6219 stripe_offset +
6220 stripe_nr * map->stripe_len;
6221 bbio->stripes[i].dev =
6222 map->stripes[stripe_index].dev;
6223 stripe_index++;
6224 }
6225
6226 if (need_full_stripe(op))
6227 max_errors = btrfs_chunk_max_errors(map);
6228
6229 if (bbio->raid_map)
6230 sort_parity_stripes(bbio, num_stripes);
6231
6232 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6233 need_full_stripe(op)) {
6234 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6235 &max_errors);
6236 }
6237
6238 *bbio_ret = bbio;
6239 bbio->map_type = map->type;
6240 bbio->num_stripes = num_stripes;
6241 bbio->max_errors = max_errors;
6242 bbio->mirror_num = mirror_num;
6243
6244 /*
6245 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6246 * mirror_num == num_stripes + 1 && dev_replace target drive is
6247 * available as a mirror
6248 */
6249 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6250 WARN_ON(num_stripes > 1);
6251 bbio->stripes[0].dev = dev_replace->tgtdev;
6252 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6253 bbio->mirror_num = map->num_stripes + 1;
6254 }
6255 out:
6256 if (dev_replace_is_ongoing) {
6257 lockdep_assert_held(&dev_replace->rwsem);
6258 /* Unlock and let waiting writers proceed */
6259 up_read(&dev_replace->rwsem);
6260 }
6261 free_extent_map(em);
6262 return ret;
6263 }
6264
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)6265 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6266 u64 logical, u64 *length,
6267 struct btrfs_bio **bbio_ret, int mirror_num)
6268 {
6269 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6270 mirror_num, 0);
6271 }
6272
6273 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)6274 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6275 u64 logical, u64 *length,
6276 struct btrfs_bio **bbio_ret)
6277 {
6278 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6279 }
6280
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)6281 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6282 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6283 {
6284 struct extent_map *em;
6285 struct map_lookup *map;
6286 u64 *buf;
6287 u64 bytenr;
6288 u64 length;
6289 u64 stripe_nr;
6290 u64 rmap_len;
6291 int i, j, nr = 0;
6292
6293 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6294 if (IS_ERR(em))
6295 return -EIO;
6296
6297 map = em->map_lookup;
6298 length = em->len;
6299 rmap_len = map->stripe_len;
6300
6301 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6302 length = div_u64(length, map->num_stripes / map->sub_stripes);
6303 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6304 length = div_u64(length, map->num_stripes);
6305 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6306 length = div_u64(length, nr_data_stripes(map));
6307 rmap_len = map->stripe_len * nr_data_stripes(map);
6308 }
6309
6310 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6311 BUG_ON(!buf); /* -ENOMEM */
6312
6313 for (i = 0; i < map->num_stripes; i++) {
6314 if (map->stripes[i].physical > physical ||
6315 map->stripes[i].physical + length <= physical)
6316 continue;
6317
6318 stripe_nr = physical - map->stripes[i].physical;
6319 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6320
6321 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6322 stripe_nr = stripe_nr * map->num_stripes + i;
6323 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6324 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6325 stripe_nr = stripe_nr * map->num_stripes + i;
6326 } /* else if RAID[56], multiply by nr_data_stripes().
6327 * Alternatively, just use rmap_len below instead of
6328 * map->stripe_len */
6329
6330 bytenr = chunk_start + stripe_nr * rmap_len;
6331 WARN_ON(nr >= map->num_stripes);
6332 for (j = 0; j < nr; j++) {
6333 if (buf[j] == bytenr)
6334 break;
6335 }
6336 if (j == nr) {
6337 WARN_ON(nr >= map->num_stripes);
6338 buf[nr++] = bytenr;
6339 }
6340 }
6341
6342 *logical = buf;
6343 *naddrs = nr;
6344 *stripe_len = rmap_len;
6345
6346 free_extent_map(em);
6347 return 0;
6348 }
6349
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6350 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6351 {
6352 bio->bi_private = bbio->private;
6353 bio->bi_end_io = bbio->end_io;
6354 bio_endio(bio);
6355
6356 btrfs_put_bbio(bbio);
6357 }
6358
btrfs_end_bio(struct bio * bio)6359 static void btrfs_end_bio(struct bio *bio)
6360 {
6361 struct btrfs_bio *bbio = bio->bi_private;
6362 int is_orig_bio = 0;
6363
6364 if (bio->bi_status) {
6365 atomic_inc(&bbio->error);
6366 if (bio->bi_status == BLK_STS_IOERR ||
6367 bio->bi_status == BLK_STS_TARGET) {
6368 unsigned int stripe_index =
6369 btrfs_io_bio(bio)->stripe_index;
6370 struct btrfs_device *dev;
6371
6372 BUG_ON(stripe_index >= bbio->num_stripes);
6373 dev = bbio->stripes[stripe_index].dev;
6374 if (dev->bdev) {
6375 if (bio_op(bio) == REQ_OP_WRITE)
6376 btrfs_dev_stat_inc_and_print(dev,
6377 BTRFS_DEV_STAT_WRITE_ERRS);
6378 else if (!(bio->bi_opf & REQ_RAHEAD))
6379 btrfs_dev_stat_inc_and_print(dev,
6380 BTRFS_DEV_STAT_READ_ERRS);
6381 if (bio->bi_opf & REQ_PREFLUSH)
6382 btrfs_dev_stat_inc_and_print(dev,
6383 BTRFS_DEV_STAT_FLUSH_ERRS);
6384 }
6385 }
6386 }
6387
6388 if (bio == bbio->orig_bio)
6389 is_orig_bio = 1;
6390
6391 btrfs_bio_counter_dec(bbio->fs_info);
6392
6393 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6394 if (!is_orig_bio) {
6395 bio_put(bio);
6396 bio = bbio->orig_bio;
6397 }
6398
6399 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6400 /* only send an error to the higher layers if it is
6401 * beyond the tolerance of the btrfs bio
6402 */
6403 if (atomic_read(&bbio->error) > bbio->max_errors) {
6404 bio->bi_status = BLK_STS_IOERR;
6405 } else {
6406 /*
6407 * this bio is actually up to date, we didn't
6408 * go over the max number of errors
6409 */
6410 bio->bi_status = BLK_STS_OK;
6411 }
6412
6413 btrfs_end_bbio(bbio, bio);
6414 } else if (!is_orig_bio) {
6415 bio_put(bio);
6416 }
6417 }
6418
6419 /*
6420 * see run_scheduled_bios for a description of why bios are collected for
6421 * async submit.
6422 *
6423 * This will add one bio to the pending list for a device and make sure
6424 * the work struct is scheduled.
6425 */
btrfs_schedule_bio(struct btrfs_device * device,struct bio * bio)6426 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6427 struct bio *bio)
6428 {
6429 struct btrfs_fs_info *fs_info = device->fs_info;
6430 int should_queue = 1;
6431 struct btrfs_pending_bios *pending_bios;
6432
6433 /* don't bother with additional async steps for reads, right now */
6434 if (bio_op(bio) == REQ_OP_READ) {
6435 btrfsic_submit_bio(bio);
6436 return;
6437 }
6438
6439 WARN_ON(bio->bi_next);
6440 bio->bi_next = NULL;
6441
6442 spin_lock(&device->io_lock);
6443 if (op_is_sync(bio->bi_opf))
6444 pending_bios = &device->pending_sync_bios;
6445 else
6446 pending_bios = &device->pending_bios;
6447
6448 if (pending_bios->tail)
6449 pending_bios->tail->bi_next = bio;
6450
6451 pending_bios->tail = bio;
6452 if (!pending_bios->head)
6453 pending_bios->head = bio;
6454 if (device->running_pending)
6455 should_queue = 0;
6456
6457 spin_unlock(&device->io_lock);
6458
6459 if (should_queue)
6460 btrfs_queue_work(fs_info->submit_workers, &device->work);
6461 }
6462
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int async)6463 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6464 u64 physical, int dev_nr, int async)
6465 {
6466 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6467 struct btrfs_fs_info *fs_info = bbio->fs_info;
6468
6469 bio->bi_private = bbio;
6470 btrfs_io_bio(bio)->stripe_index = dev_nr;
6471 bio->bi_end_io = btrfs_end_bio;
6472 bio->bi_iter.bi_sector = physical >> 9;
6473 btrfs_debug_in_rcu(fs_info,
6474 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6475 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6476 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6477 bio->bi_iter.bi_size);
6478 bio_set_dev(bio, dev->bdev);
6479
6480 btrfs_bio_counter_inc_noblocked(fs_info);
6481
6482 if (async)
6483 btrfs_schedule_bio(dev, bio);
6484 else
6485 btrfsic_submit_bio(bio);
6486 }
6487
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6488 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6489 {
6490 atomic_inc(&bbio->error);
6491 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6492 /* Should be the original bio. */
6493 WARN_ON(bio != bbio->orig_bio);
6494
6495 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6496 bio->bi_iter.bi_sector = logical >> 9;
6497 if (atomic_read(&bbio->error) > bbio->max_errors)
6498 bio->bi_status = BLK_STS_IOERR;
6499 else
6500 bio->bi_status = BLK_STS_OK;
6501 btrfs_end_bbio(bbio, bio);
6502 }
6503 }
6504
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,int async_submit)6505 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6506 int mirror_num, int async_submit)
6507 {
6508 struct btrfs_device *dev;
6509 struct bio *first_bio = bio;
6510 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6511 u64 length = 0;
6512 u64 map_length;
6513 int ret;
6514 int dev_nr;
6515 int total_devs;
6516 struct btrfs_bio *bbio = NULL;
6517
6518 length = bio->bi_iter.bi_size;
6519 map_length = length;
6520
6521 btrfs_bio_counter_inc_blocked(fs_info);
6522 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6523 &map_length, &bbio, mirror_num, 1);
6524 if (ret) {
6525 btrfs_bio_counter_dec(fs_info);
6526 return errno_to_blk_status(ret);
6527 }
6528
6529 total_devs = bbio->num_stripes;
6530 bbio->orig_bio = first_bio;
6531 bbio->private = first_bio->bi_private;
6532 bbio->end_io = first_bio->bi_end_io;
6533 bbio->fs_info = fs_info;
6534 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6535
6536 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6537 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6538 /* In this case, map_length has been set to the length of
6539 a single stripe; not the whole write */
6540 if (bio_op(bio) == REQ_OP_WRITE) {
6541 ret = raid56_parity_write(fs_info, bio, bbio,
6542 map_length);
6543 } else {
6544 ret = raid56_parity_recover(fs_info, bio, bbio,
6545 map_length, mirror_num, 1);
6546 }
6547
6548 btrfs_bio_counter_dec(fs_info);
6549 return errno_to_blk_status(ret);
6550 }
6551
6552 if (map_length < length) {
6553 btrfs_crit(fs_info,
6554 "mapping failed logical %llu bio len %llu len %llu",
6555 logical, length, map_length);
6556 BUG();
6557 }
6558
6559 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6560 dev = bbio->stripes[dev_nr].dev;
6561 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6562 &dev->dev_state) ||
6563 (bio_op(first_bio) == REQ_OP_WRITE &&
6564 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6565 bbio_error(bbio, first_bio, logical);
6566 continue;
6567 }
6568
6569 if (dev_nr < total_devs - 1)
6570 bio = btrfs_bio_clone(first_bio);
6571 else
6572 bio = first_bio;
6573
6574 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6575 dev_nr, async_submit);
6576 }
6577 btrfs_bio_counter_dec(fs_info);
6578 return BLK_STS_OK;
6579 }
6580
6581 /*
6582 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6583 * return NULL.
6584 *
6585 * If devid and uuid are both specified, the match must be exact, otherwise
6586 * only devid is used.
6587 *
6588 * If @seed is true, traverse through the seed devices.
6589 */
btrfs_find_device(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * uuid,u8 * fsid,bool seed)6590 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6591 u64 devid, u8 *uuid, u8 *fsid,
6592 bool seed)
6593 {
6594 struct btrfs_device *device;
6595
6596 while (fs_devices) {
6597 if (!fsid ||
6598 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6599 list_for_each_entry(device, &fs_devices->devices,
6600 dev_list) {
6601 if (device->devid == devid &&
6602 (!uuid || memcmp(device->uuid, uuid,
6603 BTRFS_UUID_SIZE) == 0))
6604 return device;
6605 }
6606 }
6607 if (seed)
6608 fs_devices = fs_devices->seed;
6609 else
6610 return NULL;
6611 }
6612 return NULL;
6613 }
6614
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6615 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6616 u64 devid, u8 *dev_uuid)
6617 {
6618 struct btrfs_device *device;
6619
6620 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6621 if (IS_ERR(device))
6622 return device;
6623
6624 list_add(&device->dev_list, &fs_devices->devices);
6625 device->fs_devices = fs_devices;
6626 fs_devices->num_devices++;
6627
6628 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6629 fs_devices->missing_devices++;
6630
6631 return device;
6632 }
6633
6634 /**
6635 * btrfs_alloc_device - allocate struct btrfs_device
6636 * @fs_info: used only for generating a new devid, can be NULL if
6637 * devid is provided (i.e. @devid != NULL).
6638 * @devid: a pointer to devid for this device. If NULL a new devid
6639 * is generated.
6640 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6641 * is generated.
6642 *
6643 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6644 * on error. Returned struct is not linked onto any lists and must be
6645 * destroyed with btrfs_free_device.
6646 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6647 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6648 const u64 *devid,
6649 const u8 *uuid)
6650 {
6651 struct btrfs_device *dev;
6652 u64 tmp;
6653
6654 if (WARN_ON(!devid && !fs_info))
6655 return ERR_PTR(-EINVAL);
6656
6657 dev = __alloc_device();
6658 if (IS_ERR(dev))
6659 return dev;
6660
6661 if (devid)
6662 tmp = *devid;
6663 else {
6664 int ret;
6665
6666 ret = find_next_devid(fs_info, &tmp);
6667 if (ret) {
6668 btrfs_free_device(dev);
6669 return ERR_PTR(ret);
6670 }
6671 }
6672 dev->devid = tmp;
6673
6674 if (uuid)
6675 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6676 else
6677 generate_random_uuid(dev->uuid);
6678
6679 btrfs_init_work(&dev->work, btrfs_submit_helper,
6680 pending_bios_fn, NULL, NULL);
6681
6682 return dev;
6683 }
6684
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6685 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6686 u64 devid, u8 *uuid, bool error)
6687 {
6688 if (error)
6689 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6690 devid, uuid);
6691 else
6692 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6693 devid, uuid);
6694 }
6695
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)6696 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6697 {
6698 int index = btrfs_bg_flags_to_raid_index(type);
6699 int ncopies = btrfs_raid_array[index].ncopies;
6700 int data_stripes;
6701
6702 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6703 case BTRFS_BLOCK_GROUP_RAID5:
6704 data_stripes = num_stripes - 1;
6705 break;
6706 case BTRFS_BLOCK_GROUP_RAID6:
6707 data_stripes = num_stripes - 2;
6708 break;
6709 default:
6710 data_stripes = num_stripes / ncopies;
6711 break;
6712 }
6713 return div_u64(chunk_len, data_stripes);
6714 }
6715
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6716 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6717 struct btrfs_chunk *chunk)
6718 {
6719 struct btrfs_fs_info *fs_info = leaf->fs_info;
6720 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6721 struct map_lookup *map;
6722 struct extent_map *em;
6723 u64 logical;
6724 u64 length;
6725 u64 devid;
6726 u8 uuid[BTRFS_UUID_SIZE];
6727 int num_stripes;
6728 int ret;
6729 int i;
6730
6731 logical = key->offset;
6732 length = btrfs_chunk_length(leaf, chunk);
6733 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6734
6735 /*
6736 * Only need to verify chunk item if we're reading from sys chunk array,
6737 * as chunk item in tree block is already verified by tree-checker.
6738 */
6739 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6740 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6741 if (ret)
6742 return ret;
6743 }
6744
6745 read_lock(&map_tree->lock);
6746 em = lookup_extent_mapping(map_tree, logical, 1);
6747 read_unlock(&map_tree->lock);
6748
6749 /* already mapped? */
6750 if (em && em->start <= logical && em->start + em->len > logical) {
6751 free_extent_map(em);
6752 return 0;
6753 } else if (em) {
6754 free_extent_map(em);
6755 }
6756
6757 em = alloc_extent_map();
6758 if (!em)
6759 return -ENOMEM;
6760 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6761 if (!map) {
6762 free_extent_map(em);
6763 return -ENOMEM;
6764 }
6765
6766 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6767 em->map_lookup = map;
6768 em->start = logical;
6769 em->len = length;
6770 em->orig_start = 0;
6771 em->block_start = 0;
6772 em->block_len = em->len;
6773
6774 map->num_stripes = num_stripes;
6775 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6776 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6777 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6778 map->type = btrfs_chunk_type(leaf, chunk);
6779 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6780 map->verified_stripes = 0;
6781 em->orig_block_len = calc_stripe_length(map->type, em->len,
6782 map->num_stripes);
6783 for (i = 0; i < num_stripes; i++) {
6784 map->stripes[i].physical =
6785 btrfs_stripe_offset_nr(leaf, chunk, i);
6786 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6787 read_extent_buffer(leaf, uuid, (unsigned long)
6788 btrfs_stripe_dev_uuid_nr(chunk, i),
6789 BTRFS_UUID_SIZE);
6790 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6791 devid, uuid, NULL, true);
6792 if (!map->stripes[i].dev &&
6793 !btrfs_test_opt(fs_info, DEGRADED)) {
6794 free_extent_map(em);
6795 btrfs_report_missing_device(fs_info, devid, uuid, true);
6796 return -ENOENT;
6797 }
6798 if (!map->stripes[i].dev) {
6799 map->stripes[i].dev =
6800 add_missing_dev(fs_info->fs_devices, devid,
6801 uuid);
6802 if (IS_ERR(map->stripes[i].dev)) {
6803 free_extent_map(em);
6804 btrfs_err(fs_info,
6805 "failed to init missing dev %llu: %ld",
6806 devid, PTR_ERR(map->stripes[i].dev));
6807 return PTR_ERR(map->stripes[i].dev);
6808 }
6809 btrfs_report_missing_device(fs_info, devid, uuid, false);
6810 }
6811 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6812 &(map->stripes[i].dev->dev_state));
6813
6814 }
6815
6816 write_lock(&map_tree->lock);
6817 ret = add_extent_mapping(map_tree, em, 0);
6818 write_unlock(&map_tree->lock);
6819 if (ret < 0) {
6820 btrfs_err(fs_info,
6821 "failed to add chunk map, start=%llu len=%llu: %d",
6822 em->start, em->len, ret);
6823 }
6824 free_extent_map(em);
6825
6826 return ret;
6827 }
6828
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6829 static void fill_device_from_item(struct extent_buffer *leaf,
6830 struct btrfs_dev_item *dev_item,
6831 struct btrfs_device *device)
6832 {
6833 unsigned long ptr;
6834
6835 device->devid = btrfs_device_id(leaf, dev_item);
6836 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6837 device->total_bytes = device->disk_total_bytes;
6838 device->commit_total_bytes = device->disk_total_bytes;
6839 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6840 device->commit_bytes_used = device->bytes_used;
6841 device->type = btrfs_device_type(leaf, dev_item);
6842 device->io_align = btrfs_device_io_align(leaf, dev_item);
6843 device->io_width = btrfs_device_io_width(leaf, dev_item);
6844 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6845 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6846 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6847
6848 ptr = btrfs_device_uuid(dev_item);
6849 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6850 }
6851
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6852 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6853 u8 *fsid)
6854 {
6855 struct btrfs_fs_devices *fs_devices;
6856 int ret;
6857
6858 lockdep_assert_held(&uuid_mutex);
6859 ASSERT(fsid);
6860
6861 fs_devices = fs_info->fs_devices->seed;
6862 while (fs_devices) {
6863 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6864 return fs_devices;
6865
6866 fs_devices = fs_devices->seed;
6867 }
6868
6869 fs_devices = find_fsid(fsid, NULL);
6870 if (!fs_devices) {
6871 if (!btrfs_test_opt(fs_info, DEGRADED))
6872 return ERR_PTR(-ENOENT);
6873
6874 fs_devices = alloc_fs_devices(fsid, NULL);
6875 if (IS_ERR(fs_devices))
6876 return fs_devices;
6877
6878 fs_devices->seeding = 1;
6879 fs_devices->opened = 1;
6880 return fs_devices;
6881 }
6882
6883 fs_devices = clone_fs_devices(fs_devices);
6884 if (IS_ERR(fs_devices))
6885 return fs_devices;
6886
6887 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6888 if (ret) {
6889 free_fs_devices(fs_devices);
6890 fs_devices = ERR_PTR(ret);
6891 goto out;
6892 }
6893
6894 if (!fs_devices->seeding) {
6895 close_fs_devices(fs_devices);
6896 free_fs_devices(fs_devices);
6897 fs_devices = ERR_PTR(-EINVAL);
6898 goto out;
6899 }
6900
6901 fs_devices->seed = fs_info->fs_devices->seed;
6902 fs_info->fs_devices->seed = fs_devices;
6903 out:
6904 return fs_devices;
6905 }
6906
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6907 static int read_one_dev(struct extent_buffer *leaf,
6908 struct btrfs_dev_item *dev_item)
6909 {
6910 struct btrfs_fs_info *fs_info = leaf->fs_info;
6911 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6912 struct btrfs_device *device;
6913 u64 devid;
6914 int ret;
6915 u8 fs_uuid[BTRFS_FSID_SIZE];
6916 u8 dev_uuid[BTRFS_UUID_SIZE];
6917
6918 devid = btrfs_device_id(leaf, dev_item);
6919 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6920 BTRFS_UUID_SIZE);
6921 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6922 BTRFS_FSID_SIZE);
6923
6924 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6925 fs_devices = open_seed_devices(fs_info, fs_uuid);
6926 if (IS_ERR(fs_devices))
6927 return PTR_ERR(fs_devices);
6928 }
6929
6930 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6931 fs_uuid, true);
6932 if (!device) {
6933 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6934 btrfs_report_missing_device(fs_info, devid,
6935 dev_uuid, true);
6936 return -ENOENT;
6937 }
6938
6939 device = add_missing_dev(fs_devices, devid, dev_uuid);
6940 if (IS_ERR(device)) {
6941 btrfs_err(fs_info,
6942 "failed to add missing dev %llu: %ld",
6943 devid, PTR_ERR(device));
6944 return PTR_ERR(device);
6945 }
6946 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6947 } else {
6948 if (!device->bdev) {
6949 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6950 btrfs_report_missing_device(fs_info,
6951 devid, dev_uuid, true);
6952 return -ENOENT;
6953 }
6954 btrfs_report_missing_device(fs_info, devid,
6955 dev_uuid, false);
6956 }
6957
6958 if (!device->bdev &&
6959 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6960 /*
6961 * this happens when a device that was properly setup
6962 * in the device info lists suddenly goes bad.
6963 * device->bdev is NULL, and so we have to set
6964 * device->missing to one here
6965 */
6966 device->fs_devices->missing_devices++;
6967 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6968 }
6969
6970 /* Move the device to its own fs_devices */
6971 if (device->fs_devices != fs_devices) {
6972 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6973 &device->dev_state));
6974
6975 list_move(&device->dev_list, &fs_devices->devices);
6976 device->fs_devices->num_devices--;
6977 fs_devices->num_devices++;
6978
6979 device->fs_devices->missing_devices--;
6980 fs_devices->missing_devices++;
6981
6982 device->fs_devices = fs_devices;
6983 }
6984 }
6985
6986 if (device->fs_devices != fs_info->fs_devices) {
6987 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6988 if (device->generation !=
6989 btrfs_device_generation(leaf, dev_item))
6990 return -EINVAL;
6991 }
6992
6993 fill_device_from_item(leaf, dev_item, device);
6994 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6995 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6996 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6997 device->fs_devices->total_rw_bytes += device->total_bytes;
6998 atomic64_add(device->total_bytes - device->bytes_used,
6999 &fs_info->free_chunk_space);
7000 }
7001 ret = 0;
7002 return ret;
7003 }
7004
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7005 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7006 {
7007 struct btrfs_root *root = fs_info->tree_root;
7008 struct btrfs_super_block *super_copy = fs_info->super_copy;
7009 struct extent_buffer *sb;
7010 struct btrfs_disk_key *disk_key;
7011 struct btrfs_chunk *chunk;
7012 u8 *array_ptr;
7013 unsigned long sb_array_offset;
7014 int ret = 0;
7015 u32 num_stripes;
7016 u32 array_size;
7017 u32 len = 0;
7018 u32 cur_offset;
7019 u64 type;
7020 struct btrfs_key key;
7021
7022 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7023 /*
7024 * This will create extent buffer of nodesize, superblock size is
7025 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7026 * overallocate but we can keep it as-is, only the first page is used.
7027 */
7028 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7029 if (IS_ERR(sb))
7030 return PTR_ERR(sb);
7031 set_extent_buffer_uptodate(sb);
7032 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7033 /*
7034 * The sb extent buffer is artificial and just used to read the system array.
7035 * set_extent_buffer_uptodate() call does not properly mark all it's
7036 * pages up-to-date when the page is larger: extent does not cover the
7037 * whole page and consequently check_page_uptodate does not find all
7038 * the page's extents up-to-date (the hole beyond sb),
7039 * write_extent_buffer then triggers a WARN_ON.
7040 *
7041 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7042 * but sb spans only this function. Add an explicit SetPageUptodate call
7043 * to silence the warning eg. on PowerPC 64.
7044 */
7045 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7046 SetPageUptodate(sb->pages[0]);
7047
7048 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7049 array_size = btrfs_super_sys_array_size(super_copy);
7050
7051 array_ptr = super_copy->sys_chunk_array;
7052 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7053 cur_offset = 0;
7054
7055 while (cur_offset < array_size) {
7056 disk_key = (struct btrfs_disk_key *)array_ptr;
7057 len = sizeof(*disk_key);
7058 if (cur_offset + len > array_size)
7059 goto out_short_read;
7060
7061 btrfs_disk_key_to_cpu(&key, disk_key);
7062
7063 array_ptr += len;
7064 sb_array_offset += len;
7065 cur_offset += len;
7066
7067 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7068 chunk = (struct btrfs_chunk *)sb_array_offset;
7069 /*
7070 * At least one btrfs_chunk with one stripe must be
7071 * present, exact stripe count check comes afterwards
7072 */
7073 len = btrfs_chunk_item_size(1);
7074 if (cur_offset + len > array_size)
7075 goto out_short_read;
7076
7077 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7078 if (!num_stripes) {
7079 btrfs_err(fs_info,
7080 "invalid number of stripes %u in sys_array at offset %u",
7081 num_stripes, cur_offset);
7082 ret = -EIO;
7083 break;
7084 }
7085
7086 type = btrfs_chunk_type(sb, chunk);
7087 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7088 btrfs_err(fs_info,
7089 "invalid chunk type %llu in sys_array at offset %u",
7090 type, cur_offset);
7091 ret = -EIO;
7092 break;
7093 }
7094
7095 len = btrfs_chunk_item_size(num_stripes);
7096 if (cur_offset + len > array_size)
7097 goto out_short_read;
7098
7099 ret = read_one_chunk(&key, sb, chunk);
7100 if (ret)
7101 break;
7102 } else {
7103 btrfs_err(fs_info,
7104 "unexpected item type %u in sys_array at offset %u",
7105 (u32)key.type, cur_offset);
7106 ret = -EIO;
7107 break;
7108 }
7109 array_ptr += len;
7110 sb_array_offset += len;
7111 cur_offset += len;
7112 }
7113 clear_extent_buffer_uptodate(sb);
7114 free_extent_buffer_stale(sb);
7115 return ret;
7116
7117 out_short_read:
7118 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7119 len, cur_offset);
7120 clear_extent_buffer_uptodate(sb);
7121 free_extent_buffer_stale(sb);
7122 return -EIO;
7123 }
7124
7125 /*
7126 * Check if all chunks in the fs are OK for read-write degraded mount
7127 *
7128 * If the @failing_dev is specified, it's accounted as missing.
7129 *
7130 * Return true if all chunks meet the minimal RW mount requirements.
7131 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7132 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7133 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7134 struct btrfs_device *failing_dev)
7135 {
7136 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7137 struct extent_map *em;
7138 u64 next_start = 0;
7139 bool ret = true;
7140
7141 read_lock(&map_tree->lock);
7142 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7143 read_unlock(&map_tree->lock);
7144 /* No chunk at all? Return false anyway */
7145 if (!em) {
7146 ret = false;
7147 goto out;
7148 }
7149 while (em) {
7150 struct map_lookup *map;
7151 int missing = 0;
7152 int max_tolerated;
7153 int i;
7154
7155 map = em->map_lookup;
7156 max_tolerated =
7157 btrfs_get_num_tolerated_disk_barrier_failures(
7158 map->type);
7159 for (i = 0; i < map->num_stripes; i++) {
7160 struct btrfs_device *dev = map->stripes[i].dev;
7161
7162 if (!dev || !dev->bdev ||
7163 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7164 dev->last_flush_error)
7165 missing++;
7166 else if (failing_dev && failing_dev == dev)
7167 missing++;
7168 }
7169 if (missing > max_tolerated) {
7170 if (!failing_dev)
7171 btrfs_warn(fs_info,
7172 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7173 em->start, missing, max_tolerated);
7174 free_extent_map(em);
7175 ret = false;
7176 goto out;
7177 }
7178 next_start = extent_map_end(em);
7179 free_extent_map(em);
7180
7181 read_lock(&map_tree->lock);
7182 em = lookup_extent_mapping(map_tree, next_start,
7183 (u64)(-1) - next_start);
7184 read_unlock(&map_tree->lock);
7185 }
7186 out:
7187 return ret;
7188 }
7189
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7190 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7191 {
7192 struct btrfs_root *root = fs_info->chunk_root;
7193 struct btrfs_path *path;
7194 struct extent_buffer *leaf;
7195 struct btrfs_key key;
7196 struct btrfs_key found_key;
7197 int ret;
7198 int slot;
7199 u64 total_dev = 0;
7200
7201 path = btrfs_alloc_path();
7202 if (!path)
7203 return -ENOMEM;
7204
7205 /*
7206 * uuid_mutex is needed only if we are mounting a sprout FS
7207 * otherwise we don't need it.
7208 */
7209 mutex_lock(&uuid_mutex);
7210 mutex_lock(&fs_info->chunk_mutex);
7211
7212 /*
7213 * Read all device items, and then all the chunk items. All
7214 * device items are found before any chunk item (their object id
7215 * is smaller than the lowest possible object id for a chunk
7216 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7217 */
7218 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7219 key.offset = 0;
7220 key.type = 0;
7221 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7222 if (ret < 0)
7223 goto error;
7224 while (1) {
7225 leaf = path->nodes[0];
7226 slot = path->slots[0];
7227 if (slot >= btrfs_header_nritems(leaf)) {
7228 ret = btrfs_next_leaf(root, path);
7229 if (ret == 0)
7230 continue;
7231 if (ret < 0)
7232 goto error;
7233 break;
7234 }
7235 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7236 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7237 struct btrfs_dev_item *dev_item;
7238 dev_item = btrfs_item_ptr(leaf, slot,
7239 struct btrfs_dev_item);
7240 ret = read_one_dev(leaf, dev_item);
7241 if (ret)
7242 goto error;
7243 total_dev++;
7244 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7245 struct btrfs_chunk *chunk;
7246 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7247 ret = read_one_chunk(&found_key, leaf, chunk);
7248 if (ret)
7249 goto error;
7250 }
7251 path->slots[0]++;
7252 }
7253
7254 /*
7255 * After loading chunk tree, we've got all device information,
7256 * do another round of validation checks.
7257 */
7258 if (total_dev != fs_info->fs_devices->total_devices) {
7259 btrfs_err(fs_info,
7260 "super_num_devices %llu mismatch with num_devices %llu found here",
7261 btrfs_super_num_devices(fs_info->super_copy),
7262 total_dev);
7263 ret = -EINVAL;
7264 goto error;
7265 }
7266 if (btrfs_super_total_bytes(fs_info->super_copy) <
7267 fs_info->fs_devices->total_rw_bytes) {
7268 btrfs_err(fs_info,
7269 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7270 btrfs_super_total_bytes(fs_info->super_copy),
7271 fs_info->fs_devices->total_rw_bytes);
7272 ret = -EINVAL;
7273 goto error;
7274 }
7275 ret = 0;
7276 error:
7277 mutex_unlock(&fs_info->chunk_mutex);
7278 mutex_unlock(&uuid_mutex);
7279
7280 btrfs_free_path(path);
7281 return ret;
7282 }
7283
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7284 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7285 {
7286 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7287 struct btrfs_device *device;
7288
7289 while (fs_devices) {
7290 mutex_lock(&fs_devices->device_list_mutex);
7291 list_for_each_entry(device, &fs_devices->devices, dev_list)
7292 device->fs_info = fs_info;
7293 mutex_unlock(&fs_devices->device_list_mutex);
7294
7295 fs_devices = fs_devices->seed;
7296 }
7297 }
7298
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7299 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7300 const struct btrfs_dev_stats_item *ptr,
7301 int index)
7302 {
7303 u64 val;
7304
7305 read_extent_buffer(eb, &val,
7306 offsetof(struct btrfs_dev_stats_item, values) +
7307 ((unsigned long)ptr) + (index * sizeof(u64)),
7308 sizeof(val));
7309 return val;
7310 }
7311
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7312 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7313 struct btrfs_dev_stats_item *ptr,
7314 int index, u64 val)
7315 {
7316 write_extent_buffer(eb, &val,
7317 offsetof(struct btrfs_dev_stats_item, values) +
7318 ((unsigned long)ptr) + (index * sizeof(u64)),
7319 sizeof(val));
7320 }
7321
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7322 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7323 {
7324 struct btrfs_key key;
7325 struct btrfs_root *dev_root = fs_info->dev_root;
7326 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7327 struct extent_buffer *eb;
7328 int slot;
7329 int ret = 0;
7330 struct btrfs_device *device;
7331 struct btrfs_path *path = NULL;
7332 int i;
7333
7334 path = btrfs_alloc_path();
7335 if (!path)
7336 return -ENOMEM;
7337
7338 mutex_lock(&fs_devices->device_list_mutex);
7339 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7340 int item_size;
7341 struct btrfs_dev_stats_item *ptr;
7342
7343 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7344 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7345 key.offset = device->devid;
7346 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7347 if (ret) {
7348 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7349 btrfs_dev_stat_set(device, i, 0);
7350 device->dev_stats_valid = 1;
7351 btrfs_release_path(path);
7352 continue;
7353 }
7354 slot = path->slots[0];
7355 eb = path->nodes[0];
7356 item_size = btrfs_item_size_nr(eb, slot);
7357
7358 ptr = btrfs_item_ptr(eb, slot,
7359 struct btrfs_dev_stats_item);
7360
7361 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7362 if (item_size >= (1 + i) * sizeof(__le64))
7363 btrfs_dev_stat_set(device, i,
7364 btrfs_dev_stats_value(eb, ptr, i));
7365 else
7366 btrfs_dev_stat_set(device, i, 0);
7367 }
7368
7369 device->dev_stats_valid = 1;
7370 btrfs_dev_stat_print_on_load(device);
7371 btrfs_release_path(path);
7372 }
7373 mutex_unlock(&fs_devices->device_list_mutex);
7374
7375 btrfs_free_path(path);
7376 return ret < 0 ? ret : 0;
7377 }
7378
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7379 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7380 struct btrfs_device *device)
7381 {
7382 struct btrfs_fs_info *fs_info = trans->fs_info;
7383 struct btrfs_root *dev_root = fs_info->dev_root;
7384 struct btrfs_path *path;
7385 struct btrfs_key key;
7386 struct extent_buffer *eb;
7387 struct btrfs_dev_stats_item *ptr;
7388 int ret;
7389 int i;
7390
7391 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7392 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7393 key.offset = device->devid;
7394
7395 path = btrfs_alloc_path();
7396 if (!path)
7397 return -ENOMEM;
7398 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7399 if (ret < 0) {
7400 btrfs_warn_in_rcu(fs_info,
7401 "error %d while searching for dev_stats item for device %s",
7402 ret, rcu_str_deref(device->name));
7403 goto out;
7404 }
7405
7406 if (ret == 0 &&
7407 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7408 /* need to delete old one and insert a new one */
7409 ret = btrfs_del_item(trans, dev_root, path);
7410 if (ret != 0) {
7411 btrfs_warn_in_rcu(fs_info,
7412 "delete too small dev_stats item for device %s failed %d",
7413 rcu_str_deref(device->name), ret);
7414 goto out;
7415 }
7416 ret = 1;
7417 }
7418
7419 if (ret == 1) {
7420 /* need to insert a new item */
7421 btrfs_release_path(path);
7422 ret = btrfs_insert_empty_item(trans, dev_root, path,
7423 &key, sizeof(*ptr));
7424 if (ret < 0) {
7425 btrfs_warn_in_rcu(fs_info,
7426 "insert dev_stats item for device %s failed %d",
7427 rcu_str_deref(device->name), ret);
7428 goto out;
7429 }
7430 }
7431
7432 eb = path->nodes[0];
7433 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7434 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7435 btrfs_set_dev_stats_value(eb, ptr, i,
7436 btrfs_dev_stat_read(device, i));
7437 btrfs_mark_buffer_dirty(eb);
7438
7439 out:
7440 btrfs_free_path(path);
7441 return ret;
7442 }
7443
7444 /*
7445 * called from commit_transaction. Writes all changed device stats to disk.
7446 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7447 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7448 {
7449 struct btrfs_fs_info *fs_info = trans->fs_info;
7450 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7451 struct btrfs_device *device;
7452 int stats_cnt;
7453 int ret = 0;
7454
7455 mutex_lock(&fs_devices->device_list_mutex);
7456 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7457 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7458 if (!device->dev_stats_valid || stats_cnt == 0)
7459 continue;
7460
7461
7462 /*
7463 * There is a LOAD-LOAD control dependency between the value of
7464 * dev_stats_ccnt and updating the on-disk values which requires
7465 * reading the in-memory counters. Such control dependencies
7466 * require explicit read memory barriers.
7467 *
7468 * This memory barriers pairs with smp_mb__before_atomic in
7469 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7470 * barrier implied by atomic_xchg in
7471 * btrfs_dev_stats_read_and_reset
7472 */
7473 smp_rmb();
7474
7475 ret = update_dev_stat_item(trans, device);
7476 if (!ret)
7477 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7478 }
7479 mutex_unlock(&fs_devices->device_list_mutex);
7480
7481 return ret;
7482 }
7483
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7484 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7485 {
7486 btrfs_dev_stat_inc(dev, index);
7487 btrfs_dev_stat_print_on_error(dev);
7488 }
7489
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7490 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7491 {
7492 if (!dev->dev_stats_valid)
7493 return;
7494 btrfs_err_rl_in_rcu(dev->fs_info,
7495 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7496 rcu_str_deref(dev->name),
7497 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7498 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7499 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7500 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7501 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7502 }
7503
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7504 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7505 {
7506 int i;
7507
7508 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7509 if (btrfs_dev_stat_read(dev, i) != 0)
7510 break;
7511 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7512 return; /* all values == 0, suppress message */
7513
7514 btrfs_info_in_rcu(dev->fs_info,
7515 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7516 rcu_str_deref(dev->name),
7517 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7518 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7519 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7520 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7521 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7522 }
7523
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7524 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7525 struct btrfs_ioctl_get_dev_stats *stats)
7526 {
7527 struct btrfs_device *dev;
7528 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7529 int i;
7530
7531 mutex_lock(&fs_devices->device_list_mutex);
7532 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7533 true);
7534 mutex_unlock(&fs_devices->device_list_mutex);
7535
7536 if (!dev) {
7537 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7538 return -ENODEV;
7539 } else if (!dev->dev_stats_valid) {
7540 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7541 return -ENODEV;
7542 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7543 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7544 if (stats->nr_items > i)
7545 stats->values[i] =
7546 btrfs_dev_stat_read_and_reset(dev, i);
7547 else
7548 btrfs_dev_stat_set(dev, i, 0);
7549 }
7550 } else {
7551 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7552 if (stats->nr_items > i)
7553 stats->values[i] = btrfs_dev_stat_read(dev, i);
7554 }
7555 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7556 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7557 return 0;
7558 }
7559
btrfs_scratch_superblocks(struct block_device * bdev,const char * device_path)7560 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7561 {
7562 struct buffer_head *bh;
7563 struct btrfs_super_block *disk_super;
7564 int copy_num;
7565
7566 if (!bdev)
7567 return;
7568
7569 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7570 copy_num++) {
7571
7572 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7573 continue;
7574
7575 disk_super = (struct btrfs_super_block *)bh->b_data;
7576
7577 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7578 set_buffer_dirty(bh);
7579 sync_dirty_buffer(bh);
7580 brelse(bh);
7581 }
7582
7583 /* Notify udev that device has changed */
7584 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7585
7586 /* Update ctime/mtime for device path for libblkid */
7587 update_dev_time(device_path);
7588 }
7589
7590 /*
7591 * Update the size and bytes used for each device where it changed. This is
7592 * delayed since we would otherwise get errors while writing out the
7593 * superblocks.
7594 *
7595 * Must be invoked during transaction commit.
7596 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7597 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7598 {
7599 struct btrfs_device *curr, *next;
7600
7601 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7602
7603 if (list_empty(&trans->dev_update_list))
7604 return;
7605
7606 /*
7607 * We don't need the device_list_mutex here. This list is owned by the
7608 * transaction and the transaction must complete before the device is
7609 * released.
7610 */
7611 mutex_lock(&trans->fs_info->chunk_mutex);
7612 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7613 post_commit_list) {
7614 list_del_init(&curr->post_commit_list);
7615 curr->commit_total_bytes = curr->disk_total_bytes;
7616 curr->commit_bytes_used = curr->bytes_used;
7617 }
7618 mutex_unlock(&trans->fs_info->chunk_mutex);
7619 }
7620
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7621 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7622 {
7623 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7624 while (fs_devices) {
7625 fs_devices->fs_info = fs_info;
7626 fs_devices = fs_devices->seed;
7627 }
7628 }
7629
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7630 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7631 {
7632 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7633 while (fs_devices) {
7634 fs_devices->fs_info = NULL;
7635 fs_devices = fs_devices->seed;
7636 }
7637 }
7638
7639 /*
7640 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7641 */
btrfs_bg_type_to_factor(u64 flags)7642 int btrfs_bg_type_to_factor(u64 flags)
7643 {
7644 const int index = btrfs_bg_flags_to_raid_index(flags);
7645
7646 return btrfs_raid_array[index].ncopies;
7647 }
7648
7649
7650
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7651 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7652 u64 chunk_offset, u64 devid,
7653 u64 physical_offset, u64 physical_len)
7654 {
7655 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7656 struct extent_map *em;
7657 struct map_lookup *map;
7658 struct btrfs_device *dev;
7659 u64 stripe_len;
7660 bool found = false;
7661 int ret = 0;
7662 int i;
7663
7664 read_lock(&em_tree->lock);
7665 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7666 read_unlock(&em_tree->lock);
7667
7668 if (!em) {
7669 btrfs_err(fs_info,
7670 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7671 physical_offset, devid);
7672 ret = -EUCLEAN;
7673 goto out;
7674 }
7675
7676 map = em->map_lookup;
7677 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7678 if (physical_len != stripe_len) {
7679 btrfs_err(fs_info,
7680 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7681 physical_offset, devid, em->start, physical_len,
7682 stripe_len);
7683 ret = -EUCLEAN;
7684 goto out;
7685 }
7686
7687 for (i = 0; i < map->num_stripes; i++) {
7688 if (map->stripes[i].dev->devid == devid &&
7689 map->stripes[i].physical == physical_offset) {
7690 found = true;
7691 if (map->verified_stripes >= map->num_stripes) {
7692 btrfs_err(fs_info,
7693 "too many dev extents for chunk %llu found",
7694 em->start);
7695 ret = -EUCLEAN;
7696 goto out;
7697 }
7698 map->verified_stripes++;
7699 break;
7700 }
7701 }
7702 if (!found) {
7703 btrfs_err(fs_info,
7704 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7705 physical_offset, devid);
7706 ret = -EUCLEAN;
7707 }
7708
7709 /* Make sure no dev extent is beyond device bondary */
7710 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7711 if (!dev) {
7712 btrfs_err(fs_info, "failed to find devid %llu", devid);
7713 ret = -EUCLEAN;
7714 goto out;
7715 }
7716
7717 /* It's possible this device is a dummy for seed device */
7718 if (dev->disk_total_bytes == 0) {
7719 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7720 NULL, false);
7721 if (!dev) {
7722 btrfs_err(fs_info, "failed to find seed devid %llu",
7723 devid);
7724 ret = -EUCLEAN;
7725 goto out;
7726 }
7727 }
7728
7729 if (physical_offset + physical_len > dev->disk_total_bytes) {
7730 btrfs_err(fs_info,
7731 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7732 devid, physical_offset, physical_len,
7733 dev->disk_total_bytes);
7734 ret = -EUCLEAN;
7735 goto out;
7736 }
7737 out:
7738 free_extent_map(em);
7739 return ret;
7740 }
7741
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7742 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7743 {
7744 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7745 struct extent_map *em;
7746 struct rb_node *node;
7747 int ret = 0;
7748
7749 read_lock(&em_tree->lock);
7750 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7751 em = rb_entry(node, struct extent_map, rb_node);
7752 if (em->map_lookup->num_stripes !=
7753 em->map_lookup->verified_stripes) {
7754 btrfs_err(fs_info,
7755 "chunk %llu has missing dev extent, have %d expect %d",
7756 em->start, em->map_lookup->verified_stripes,
7757 em->map_lookup->num_stripes);
7758 ret = -EUCLEAN;
7759 goto out;
7760 }
7761 }
7762 out:
7763 read_unlock(&em_tree->lock);
7764 return ret;
7765 }
7766
7767 /*
7768 * Ensure that all dev extents are mapped to correct chunk, otherwise
7769 * later chunk allocation/free would cause unexpected behavior.
7770 *
7771 * NOTE: This will iterate through the whole device tree, which should be of
7772 * the same size level as the chunk tree. This slightly increases mount time.
7773 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7774 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7775 {
7776 struct btrfs_path *path;
7777 struct btrfs_root *root = fs_info->dev_root;
7778 struct btrfs_key key;
7779 u64 prev_devid = 0;
7780 u64 prev_dev_ext_end = 0;
7781 int ret = 0;
7782
7783 key.objectid = 1;
7784 key.type = BTRFS_DEV_EXTENT_KEY;
7785 key.offset = 0;
7786
7787 path = btrfs_alloc_path();
7788 if (!path)
7789 return -ENOMEM;
7790
7791 path->reada = READA_FORWARD;
7792 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7793 if (ret < 0)
7794 goto out;
7795
7796 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7797 ret = btrfs_next_item(root, path);
7798 if (ret < 0)
7799 goto out;
7800 /* No dev extents at all? Not good */
7801 if (ret > 0) {
7802 ret = -EUCLEAN;
7803 goto out;
7804 }
7805 }
7806 while (1) {
7807 struct extent_buffer *leaf = path->nodes[0];
7808 struct btrfs_dev_extent *dext;
7809 int slot = path->slots[0];
7810 u64 chunk_offset;
7811 u64 physical_offset;
7812 u64 physical_len;
7813 u64 devid;
7814
7815 btrfs_item_key_to_cpu(leaf, &key, slot);
7816 if (key.type != BTRFS_DEV_EXTENT_KEY)
7817 break;
7818 devid = key.objectid;
7819 physical_offset = key.offset;
7820
7821 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7822 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7823 physical_len = btrfs_dev_extent_length(leaf, dext);
7824
7825 /* Check if this dev extent overlaps with the previous one */
7826 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7827 btrfs_err(fs_info,
7828 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7829 devid, physical_offset, prev_dev_ext_end);
7830 ret = -EUCLEAN;
7831 goto out;
7832 }
7833
7834 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7835 physical_offset, physical_len);
7836 if (ret < 0)
7837 goto out;
7838 prev_devid = devid;
7839 prev_dev_ext_end = physical_offset + physical_len;
7840
7841 ret = btrfs_next_item(root, path);
7842 if (ret < 0)
7843 goto out;
7844 if (ret > 0) {
7845 ret = 0;
7846 break;
7847 }
7848 }
7849
7850 /* Ensure all chunks have corresponding dev extents */
7851 ret = verify_chunk_dev_extent_mapping(fs_info);
7852 out:
7853 btrfs_free_path(path);
7854 return ret;
7855 }
7856
7857 /*
7858 * Check whether the given block group or device is pinned by any inode being
7859 * used as a swapfile.
7860 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)7861 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7862 {
7863 struct btrfs_swapfile_pin *sp;
7864 struct rb_node *node;
7865
7866 spin_lock(&fs_info->swapfile_pins_lock);
7867 node = fs_info->swapfile_pins.rb_node;
7868 while (node) {
7869 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7870 if (ptr < sp->ptr)
7871 node = node->rb_left;
7872 else if (ptr > sp->ptr)
7873 node = node->rb_right;
7874 else
7875 break;
7876 }
7877 spin_unlock(&fs_info->swapfile_pins_lock);
7878 return node != NULL;
7879 }
7880