1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 [BTRFS_RAID_RAID10] = {
37 .sub_stripes = 2,
38 .dev_stripes = 1,
39 .devs_max = 0, /* 0 == as many as possible */
40 .devs_min = 4,
41 .tolerated_failures = 1,
42 .devs_increment = 2,
43 .ncopies = 2,
44 .nparity = 0,
45 .raid_name = "raid10",
46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 },
49 [BTRFS_RAID_RAID1] = {
50 .sub_stripes = 1,
51 .dev_stripes = 1,
52 .devs_max = 2,
53 .devs_min = 2,
54 .tolerated_failures = 1,
55 .devs_increment = 2,
56 .ncopies = 2,
57 .nparity = 0,
58 .raid_name = "raid1",
59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 },
62 [BTRFS_RAID_RAID1C3] = {
63 .sub_stripes = 1,
64 .dev_stripes = 1,
65 .devs_max = 3,
66 .devs_min = 3,
67 .tolerated_failures = 2,
68 .devs_increment = 3,
69 .ncopies = 3,
70 .nparity = 0,
71 .raid_name = "raid1c3",
72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 },
75 [BTRFS_RAID_RAID1C4] = {
76 .sub_stripes = 1,
77 .dev_stripes = 1,
78 .devs_max = 4,
79 .devs_min = 4,
80 .tolerated_failures = 3,
81 .devs_increment = 4,
82 .ncopies = 4,
83 .nparity = 0,
84 .raid_name = "raid1c4",
85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 },
88 [BTRFS_RAID_DUP] = {
89 .sub_stripes = 1,
90 .dev_stripes = 2,
91 .devs_max = 1,
92 .devs_min = 1,
93 .tolerated_failures = 0,
94 .devs_increment = 1,
95 .ncopies = 2,
96 .nparity = 0,
97 .raid_name = "dup",
98 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
99 .mindev_error = 0,
100 },
101 [BTRFS_RAID_RAID0] = {
102 .sub_stripes = 1,
103 .dev_stripes = 1,
104 .devs_max = 0,
105 .devs_min = 2,
106 .tolerated_failures = 0,
107 .devs_increment = 1,
108 .ncopies = 1,
109 .nparity = 0,
110 .raid_name = "raid0",
111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
112 .mindev_error = 0,
113 },
114 [BTRFS_RAID_SINGLE] = {
115 .sub_stripes = 1,
116 .dev_stripes = 1,
117 .devs_max = 1,
118 .devs_min = 1,
119 .tolerated_failures = 0,
120 .devs_increment = 1,
121 .ncopies = 1,
122 .nparity = 0,
123 .raid_name = "single",
124 .bg_flag = 0,
125 .mindev_error = 0,
126 },
127 [BTRFS_RAID_RAID5] = {
128 .sub_stripes = 1,
129 .dev_stripes = 1,
130 .devs_max = 0,
131 .devs_min = 2,
132 .tolerated_failures = 1,
133 .devs_increment = 1,
134 .ncopies = 1,
135 .nparity = 1,
136 .raid_name = "raid5",
137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 },
140 [BTRFS_RAID_RAID6] = {
141 .sub_stripes = 1,
142 .dev_stripes = 1,
143 .devs_max = 0,
144 .devs_min = 3,
145 .tolerated_failures = 2,
146 .devs_increment = 1,
147 .ncopies = 1,
148 .nparity = 2,
149 .raid_name = "raid6",
150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152 },
153 };
154
btrfs_bg_type_to_raid_name(u64 flags)155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157 const int index = btrfs_bg_flags_to_raid_index(flags);
158
159 if (index >= BTRFS_NR_RAID_TYPES)
160 return NULL;
161
162 return btrfs_raid_array[index].raid_name;
163 }
164
165 /*
166 * Fill @buf with textual description of @bg_flags, no more than @size_buf
167 * bytes including terminating null byte.
168 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171 int i;
172 int ret;
173 char *bp = buf;
174 u64 flags = bg_flags;
175 u32 size_bp = size_buf;
176
177 if (!flags) {
178 strcpy(bp, "NONE");
179 return;
180 }
181
182 #define DESCRIBE_FLAG(flag, desc) \
183 do { \
184 if (flags & (flag)) { \
185 ret = snprintf(bp, size_bp, "%s|", (desc)); \
186 if (ret < 0 || ret >= size_bp) \
187 goto out_overflow; \
188 size_bp -= ret; \
189 bp += ret; \
190 flags &= ~(flag); \
191 } \
192 } while (0)
193
194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197
198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203
204 if (flags) {
205 ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 size_bp -= ret;
207 }
208
209 if (size_bp < size_buf)
210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211
212 /*
213 * The text is trimmed, it's up to the caller to provide sufficiently
214 * large buffer
215 */
216 out_overflow:;
217 }
218
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 enum btrfs_map_op op,
225 u64 logical, u64 *length,
226 struct btrfs_bio **bbio_ret,
227 int mirror_num, int need_raid_map);
228
229 /*
230 * Device locking
231 * ==============
232 *
233 * There are several mutexes that protect manipulation of devices and low-level
234 * structures like chunks but not block groups, extents or files
235 *
236 * uuid_mutex (global lock)
237 * ------------------------
238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240 * device) or requested by the device= mount option
241 *
242 * the mutex can be very coarse and can cover long-running operations
243 *
244 * protects: updates to fs_devices counters like missing devices, rw devices,
245 * seeding, structure cloning, opening/closing devices at mount/umount time
246 *
247 * global::fs_devs - add, remove, updates to the global list
248 *
249 * does not protect: manipulation of the fs_devices::devices list in general
250 * but in mount context it could be used to exclude list modifications by eg.
251 * scan ioctl
252 *
253 * btrfs_device::name - renames (write side), read is RCU
254 *
255 * fs_devices::device_list_mutex (per-fs, with RCU)
256 * ------------------------------------------------
257 * protects updates to fs_devices::devices, ie. adding and deleting
258 *
259 * simple list traversal with read-only actions can be done with RCU protection
260 *
261 * may be used to exclude some operations from running concurrently without any
262 * modifications to the list (see write_all_supers)
263 *
264 * Is not required at mount and close times, because our device list is
265 * protected by the uuid_mutex at that point.
266 *
267 * balance_mutex
268 * -------------
269 * protects balance structures (status, state) and context accessed from
270 * several places (internally, ioctl)
271 *
272 * chunk_mutex
273 * -----------
274 * protects chunks, adding or removing during allocation, trim or when a new
275 * device is added/removed. Additionally it also protects post_commit_list of
276 * individual devices, since they can be added to the transaction's
277 * post_commit_list only with chunk_mutex held.
278 *
279 * cleaner_mutex
280 * -------------
281 * a big lock that is held by the cleaner thread and prevents running subvolume
282 * cleaning together with relocation or delayed iputs
283 *
284 *
285 * Lock nesting
286 * ============
287 *
288 * uuid_mutex
289 * device_list_mutex
290 * chunk_mutex
291 * balance_mutex
292 *
293 *
294 * Exclusive operations
295 * ====================
296 *
297 * Maintains the exclusivity of the following operations that apply to the
298 * whole filesystem and cannot run in parallel.
299 *
300 * - Balance (*)
301 * - Device add
302 * - Device remove
303 * - Device replace (*)
304 * - Resize
305 *
306 * The device operations (as above) can be in one of the following states:
307 *
308 * - Running state
309 * - Paused state
310 * - Completed state
311 *
312 * Only device operations marked with (*) can go into the Paused state for the
313 * following reasons:
314 *
315 * - ioctl (only Balance can be Paused through ioctl)
316 * - filesystem remounted as read-only
317 * - filesystem unmounted and mounted as read-only
318 * - system power-cycle and filesystem mounted as read-only
319 * - filesystem or device errors leading to forced read-only
320 *
321 * The status of exclusive operation is set and cleared atomically.
322 * During the course of Paused state, fs_info::exclusive_operation remains set.
323 * A device operation in Paused or Running state can be canceled or resumed
324 * either by ioctl (Balance only) or when remounted as read-write.
325 * The exclusive status is cleared when the device operation is canceled or
326 * completed.
327 */
328
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333 return &fs_uuids;
334 }
335
336 /*
337 * alloc_fs_devices - allocate struct btrfs_fs_devices
338 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
339 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
340 *
341 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342 * The returned struct is not linked onto any lists and can be destroyed with
343 * kfree() right away.
344 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346 const u8 *metadata_fsid)
347 {
348 struct btrfs_fs_devices *fs_devs;
349
350 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 if (!fs_devs)
352 return ERR_PTR(-ENOMEM);
353
354 mutex_init(&fs_devs->device_list_mutex);
355
356 INIT_LIST_HEAD(&fs_devs->devices);
357 INIT_LIST_HEAD(&fs_devs->alloc_list);
358 INIT_LIST_HEAD(&fs_devs->fs_list);
359 INIT_LIST_HEAD(&fs_devs->seed_list);
360 if (fsid)
361 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
362
363 if (metadata_fsid)
364 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
365 else if (fsid)
366 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
367
368 return fs_devs;
369 }
370
btrfs_free_device(struct btrfs_device * device)371 void btrfs_free_device(struct btrfs_device *device)
372 {
373 WARN_ON(!list_empty(&device->post_commit_list));
374 rcu_string_free(device->name);
375 extent_io_tree_release(&device->alloc_state);
376 bio_put(device->flush_bio);
377 kfree(device);
378 }
379
free_fs_devices(struct btrfs_fs_devices * fs_devices)380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
381 {
382 struct btrfs_device *device;
383 WARN_ON(fs_devices->opened);
384 while (!list_empty(&fs_devices->devices)) {
385 device = list_entry(fs_devices->devices.next,
386 struct btrfs_device, dev_list);
387 list_del(&device->dev_list);
388 btrfs_free_device(device);
389 }
390 kfree(fs_devices);
391 }
392
btrfs_cleanup_fs_uuids(void)393 void __exit btrfs_cleanup_fs_uuids(void)
394 {
395 struct btrfs_fs_devices *fs_devices;
396
397 while (!list_empty(&fs_uuids)) {
398 fs_devices = list_entry(fs_uuids.next,
399 struct btrfs_fs_devices, fs_list);
400 list_del(&fs_devices->fs_list);
401 free_fs_devices(fs_devices);
402 }
403 }
404
405 /*
406 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
407 * Returned struct is not linked onto any lists and must be destroyed using
408 * btrfs_free_device.
409 */
__alloc_device(struct btrfs_fs_info * fs_info)410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 {
412 struct btrfs_device *dev;
413
414 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 if (!dev)
416 return ERR_PTR(-ENOMEM);
417
418 /*
419 * Preallocate a bio that's always going to be used for flushing device
420 * barriers and matches the device lifespan
421 */
422 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
423 if (!dev->flush_bio) {
424 kfree(dev);
425 return ERR_PTR(-ENOMEM);
426 }
427
428 INIT_LIST_HEAD(&dev->dev_list);
429 INIT_LIST_HEAD(&dev->dev_alloc_list);
430 INIT_LIST_HEAD(&dev->post_commit_list);
431
432 atomic_set(&dev->reada_in_flight, 0);
433 atomic_set(&dev->dev_stats_ccnt, 0);
434 btrfs_device_data_ordered_init(dev, fs_info);
435 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 extent_io_tree_init(fs_info, &dev->alloc_state,
438 IO_TREE_DEVICE_ALLOC_STATE, NULL);
439
440 return dev;
441 }
442
find_fsid(const u8 * fsid,const u8 * metadata_fsid)443 static noinline struct btrfs_fs_devices *find_fsid(
444 const u8 *fsid, const u8 *metadata_fsid)
445 {
446 struct btrfs_fs_devices *fs_devices;
447
448 ASSERT(fsid);
449
450 /* Handle non-split brain cases */
451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 if (metadata_fsid) {
453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
454 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
455 BTRFS_FSID_SIZE) == 0)
456 return fs_devices;
457 } else {
458 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
459 return fs_devices;
460 }
461 }
462 return NULL;
463 }
464
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
466 struct btrfs_super_block *disk_super)
467 {
468
469 struct btrfs_fs_devices *fs_devices;
470
471 /*
472 * Handle scanned device having completed its fsid change but
473 * belonging to a fs_devices that was created by first scanning
474 * a device which didn't have its fsid/metadata_uuid changed
475 * at all and the CHANGING_FSID_V2 flag set.
476 */
477 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
478 if (fs_devices->fsid_change &&
479 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
480 BTRFS_FSID_SIZE) == 0 &&
481 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
482 BTRFS_FSID_SIZE) == 0) {
483 return fs_devices;
484 }
485 }
486 /*
487 * Handle scanned device having completed its fsid change but
488 * belonging to a fs_devices that was created by a device that
489 * has an outdated pair of fsid/metadata_uuid and
490 * CHANGING_FSID_V2 flag set.
491 */
492 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
493 if (fs_devices->fsid_change &&
494 memcmp(fs_devices->metadata_uuid,
495 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
496 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
497 BTRFS_FSID_SIZE) == 0) {
498 return fs_devices;
499 }
500 }
501
502 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
503 }
504
505
506 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
508 int flush, struct block_device **bdev,
509 struct btrfs_super_block **disk_super)
510 {
511 int ret;
512
513 *bdev = blkdev_get_by_path(device_path, flags, holder);
514
515 if (IS_ERR(*bdev)) {
516 ret = PTR_ERR(*bdev);
517 goto error;
518 }
519
520 if (flush)
521 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 if (ret) {
524 blkdev_put(*bdev, flags);
525 goto error;
526 }
527 invalidate_bdev(*bdev);
528 *disk_super = btrfs_read_dev_super(*bdev);
529 if (IS_ERR(*disk_super)) {
530 ret = PTR_ERR(*disk_super);
531 blkdev_put(*bdev, flags);
532 goto error;
533 }
534
535 return 0;
536
537 error:
538 *bdev = NULL;
539 return ret;
540 }
541
device_path_matched(const char * path,struct btrfs_device * device)542 static bool device_path_matched(const char *path, struct btrfs_device *device)
543 {
544 int found;
545
546 rcu_read_lock();
547 found = strcmp(rcu_str_deref(device->name), path);
548 rcu_read_unlock();
549
550 return found == 0;
551 }
552
553 /*
554 * Search and remove all stale (devices which are not mounted) devices.
555 * When both inputs are NULL, it will search and release all stale devices.
556 * path: Optional. When provided will it release all unmounted devices
557 * matching this path only.
558 * skip_dev: Optional. Will skip this device when searching for the stale
559 * devices.
560 * Return: 0 for success or if @path is NULL.
561 * -EBUSY if @path is a mounted device.
562 * -ENOENT if @path does not match any device in the list.
563 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)564 static int btrfs_free_stale_devices(const char *path,
565 struct btrfs_device *skip_device)
566 {
567 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
568 struct btrfs_device *device, *tmp_device;
569 int ret = 0;
570
571 if (path)
572 ret = -ENOENT;
573
574 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
575
576 mutex_lock(&fs_devices->device_list_mutex);
577 list_for_each_entry_safe(device, tmp_device,
578 &fs_devices->devices, dev_list) {
579 if (skip_device && skip_device == device)
580 continue;
581 if (path && !device->name)
582 continue;
583 if (path && !device_path_matched(path, device))
584 continue;
585 if (fs_devices->opened) {
586 /* for an already deleted device return 0 */
587 if (path && ret != 0)
588 ret = -EBUSY;
589 break;
590 }
591
592 /* delete the stale device */
593 fs_devices->num_devices--;
594 list_del(&device->dev_list);
595 btrfs_free_device(device);
596
597 ret = 0;
598 }
599 mutex_unlock(&fs_devices->device_list_mutex);
600
601 if (fs_devices->num_devices == 0) {
602 btrfs_sysfs_remove_fsid(fs_devices);
603 list_del(&fs_devices->fs_list);
604 free_fs_devices(fs_devices);
605 }
606 }
607
608 return ret;
609 }
610
611 /*
612 * This is only used on mount, and we are protected from competing things
613 * messing with our fs_devices by the uuid_mutex, thus we do not need the
614 * fs_devices->device_list_mutex here.
615 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
617 struct btrfs_device *device, fmode_t flags,
618 void *holder)
619 {
620 struct request_queue *q;
621 struct block_device *bdev;
622 struct btrfs_super_block *disk_super;
623 u64 devid;
624 int ret;
625
626 if (device->bdev)
627 return -EINVAL;
628 if (!device->name)
629 return -EINVAL;
630
631 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632 &bdev, &disk_super);
633 if (ret)
634 return ret;
635
636 devid = btrfs_stack_device_id(&disk_super->dev_item);
637 if (devid != device->devid)
638 goto error_free_page;
639
640 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641 goto error_free_page;
642
643 device->generation = btrfs_super_generation(disk_super);
644
645 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 if (btrfs_super_incompat_flags(disk_super) &
647 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
648 pr_err(
649 "BTRFS: Invalid seeding and uuid-changed device detected\n");
650 goto error_free_page;
651 }
652
653 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 fs_devices->seeding = true;
655 } else {
656 if (bdev_read_only(bdev))
657 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658 else
659 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 }
661
662 q = bdev_get_queue(bdev);
663 if (!blk_queue_nonrot(q))
664 fs_devices->rotating = true;
665
666 device->bdev = bdev;
667 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 device->mode = flags;
669
670 fs_devices->open_devices++;
671 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
672 device->devid != BTRFS_DEV_REPLACE_DEVID) {
673 fs_devices->rw_devices++;
674 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675 }
676 btrfs_release_disk_super(disk_super);
677
678 return 0;
679
680 error_free_page:
681 btrfs_release_disk_super(disk_super);
682 blkdev_put(bdev, flags);
683
684 return -EINVAL;
685 }
686
687 /*
688 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689 * being created with a disk that has already completed its fsid change. Such
690 * disk can belong to an fs which has its FSID changed or to one which doesn't.
691 * Handle both cases here.
692 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)693 static struct btrfs_fs_devices *find_fsid_inprogress(
694 struct btrfs_super_block *disk_super)
695 {
696 struct btrfs_fs_devices *fs_devices;
697
698 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
699 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
700 BTRFS_FSID_SIZE) != 0 &&
701 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
702 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
703 return fs_devices;
704 }
705 }
706
707 return find_fsid(disk_super->fsid, NULL);
708 }
709
710
find_fsid_changed(struct btrfs_super_block * disk_super)711 static struct btrfs_fs_devices *find_fsid_changed(
712 struct btrfs_super_block *disk_super)
713 {
714 struct btrfs_fs_devices *fs_devices;
715
716 /*
717 * Handles the case where scanned device is part of an fs that had
718 * multiple successful changes of FSID but curently device didn't
719 * observe it. Meaning our fsid will be different than theirs. We need
720 * to handle two subcases :
721 * 1 - The fs still continues to have different METADATA/FSID uuids.
722 * 2 - The fs is switched back to its original FSID (METADATA/FSID
723 * are equal).
724 */
725 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726 /* Changed UUIDs */
727 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
728 BTRFS_FSID_SIZE) != 0 &&
729 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
730 BTRFS_FSID_SIZE) == 0 &&
731 memcmp(fs_devices->fsid, disk_super->fsid,
732 BTRFS_FSID_SIZE) != 0)
733 return fs_devices;
734
735 /* Unchanged UUIDs */
736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 BTRFS_FSID_SIZE) == 0 &&
738 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 BTRFS_FSID_SIZE) == 0)
740 return fs_devices;
741 }
742
743 return NULL;
744 }
745
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 struct btrfs_super_block *disk_super)
748 {
749 struct btrfs_fs_devices *fs_devices;
750
751 /*
752 * Handle the case where the scanned device is part of an fs whose last
753 * metadata UUID change reverted it to the original FSID. At the same
754 * time * fs_devices was first created by another constitutent device
755 * which didn't fully observe the operation. This results in an
756 * btrfs_fs_devices created with metadata/fsid different AND
757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 * fs_devices equal to the FSID of the disk.
759 */
760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
762 BTRFS_FSID_SIZE) != 0 &&
763 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
764 BTRFS_FSID_SIZE) == 0 &&
765 fs_devices->fsid_change)
766 return fs_devices;
767 }
768
769 return NULL;
770 }
771 /*
772 * Add new device to list of registered devices
773 *
774 * Returns:
775 * device pointer which was just added or updated when successful
776 * error pointer when failed
777 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)778 static noinline struct btrfs_device *device_list_add(const char *path,
779 struct btrfs_super_block *disk_super,
780 bool *new_device_added)
781 {
782 struct btrfs_device *device;
783 struct btrfs_fs_devices *fs_devices = NULL;
784 struct rcu_string *name;
785 u64 found_transid = btrfs_super_generation(disk_super);
786 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
788 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
790 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791
792 if (fsid_change_in_progress) {
793 if (!has_metadata_uuid)
794 fs_devices = find_fsid_inprogress(disk_super);
795 else
796 fs_devices = find_fsid_changed(disk_super);
797 } else if (has_metadata_uuid) {
798 fs_devices = find_fsid_with_metadata_uuid(disk_super);
799 } else {
800 fs_devices = find_fsid_reverted_metadata(disk_super);
801 if (!fs_devices)
802 fs_devices = find_fsid(disk_super->fsid, NULL);
803 }
804
805
806 if (!fs_devices) {
807 if (has_metadata_uuid)
808 fs_devices = alloc_fs_devices(disk_super->fsid,
809 disk_super->metadata_uuid);
810 else
811 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
812
813 if (IS_ERR(fs_devices))
814 return ERR_CAST(fs_devices);
815
816 fs_devices->fsid_change = fsid_change_in_progress;
817
818 mutex_lock(&fs_devices->device_list_mutex);
819 list_add(&fs_devices->fs_list, &fs_uuids);
820
821 device = NULL;
822 } else {
823 mutex_lock(&fs_devices->device_list_mutex);
824 device = btrfs_find_device(fs_devices, devid,
825 disk_super->dev_item.uuid, NULL, false);
826
827 /*
828 * If this disk has been pulled into an fs devices created by
829 * a device which had the CHANGING_FSID_V2 flag then replace the
830 * metadata_uuid/fsid values of the fs_devices.
831 */
832 if (fs_devices->fsid_change &&
833 found_transid > fs_devices->latest_generation) {
834 memcpy(fs_devices->fsid, disk_super->fsid,
835 BTRFS_FSID_SIZE);
836
837 if (has_metadata_uuid)
838 memcpy(fs_devices->metadata_uuid,
839 disk_super->metadata_uuid,
840 BTRFS_FSID_SIZE);
841 else
842 memcpy(fs_devices->metadata_uuid,
843 disk_super->fsid, BTRFS_FSID_SIZE);
844
845 fs_devices->fsid_change = false;
846 }
847 }
848
849 if (!device) {
850 if (fs_devices->opened) {
851 mutex_unlock(&fs_devices->device_list_mutex);
852 return ERR_PTR(-EBUSY);
853 }
854
855 device = btrfs_alloc_device(NULL, &devid,
856 disk_super->dev_item.uuid);
857 if (IS_ERR(device)) {
858 mutex_unlock(&fs_devices->device_list_mutex);
859 /* we can safely leave the fs_devices entry around */
860 return device;
861 }
862
863 name = rcu_string_strdup(path, GFP_NOFS);
864 if (!name) {
865 btrfs_free_device(device);
866 mutex_unlock(&fs_devices->device_list_mutex);
867 return ERR_PTR(-ENOMEM);
868 }
869 rcu_assign_pointer(device->name, name);
870
871 list_add_rcu(&device->dev_list, &fs_devices->devices);
872 fs_devices->num_devices++;
873
874 device->fs_devices = fs_devices;
875 *new_device_added = true;
876
877 if (disk_super->label[0])
878 pr_info(
879 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
880 disk_super->label, devid, found_transid, path,
881 current->comm, task_pid_nr(current));
882 else
883 pr_info(
884 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
885 disk_super->fsid, devid, found_transid, path,
886 current->comm, task_pid_nr(current));
887
888 } else if (!device->name || strcmp(device->name->str, path)) {
889 /*
890 * When FS is already mounted.
891 * 1. If you are here and if the device->name is NULL that
892 * means this device was missing at time of FS mount.
893 * 2. If you are here and if the device->name is different
894 * from 'path' that means either
895 * a. The same device disappeared and reappeared with
896 * different name. or
897 * b. The missing-disk-which-was-replaced, has
898 * reappeared now.
899 *
900 * We must allow 1 and 2a above. But 2b would be a spurious
901 * and unintentional.
902 *
903 * Further in case of 1 and 2a above, the disk at 'path'
904 * would have missed some transaction when it was away and
905 * in case of 2a the stale bdev has to be updated as well.
906 * 2b must not be allowed at all time.
907 */
908
909 /*
910 * For now, we do allow update to btrfs_fs_device through the
911 * btrfs dev scan cli after FS has been mounted. We're still
912 * tracking a problem where systems fail mount by subvolume id
913 * when we reject replacement on a mounted FS.
914 */
915 if (!fs_devices->opened && found_transid < device->generation) {
916 /*
917 * That is if the FS is _not_ mounted and if you
918 * are here, that means there is more than one
919 * disk with same uuid and devid.We keep the one
920 * with larger generation number or the last-in if
921 * generation are equal.
922 */
923 mutex_unlock(&fs_devices->device_list_mutex);
924 return ERR_PTR(-EEXIST);
925 }
926
927 /*
928 * We are going to replace the device path for a given devid,
929 * make sure it's the same device if the device is mounted
930 */
931 if (device->bdev) {
932 struct block_device *path_bdev;
933
934 path_bdev = lookup_bdev(path);
935 if (IS_ERR(path_bdev)) {
936 mutex_unlock(&fs_devices->device_list_mutex);
937 return ERR_CAST(path_bdev);
938 }
939
940 if (device->bdev != path_bdev) {
941 bdput(path_bdev);
942 mutex_unlock(&fs_devices->device_list_mutex);
943 /*
944 * device->fs_info may not be reliable here, so
945 * pass in a NULL instead. This avoids a
946 * possible use-after-free when the fs_info and
947 * fs_info->sb are already torn down.
948 */
949 btrfs_warn_in_rcu(NULL,
950 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
951 path, devid, found_transid,
952 current->comm,
953 task_pid_nr(current));
954 return ERR_PTR(-EEXIST);
955 }
956 bdput(path_bdev);
957 btrfs_info_in_rcu(device->fs_info,
958 "devid %llu device path %s changed to %s scanned by %s (%d)",
959 devid, rcu_str_deref(device->name),
960 path, current->comm,
961 task_pid_nr(current));
962 }
963
964 name = rcu_string_strdup(path, GFP_NOFS);
965 if (!name) {
966 mutex_unlock(&fs_devices->device_list_mutex);
967 return ERR_PTR(-ENOMEM);
968 }
969 rcu_string_free(device->name);
970 rcu_assign_pointer(device->name, name);
971 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
972 fs_devices->missing_devices--;
973 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
974 }
975 }
976
977 /*
978 * Unmount does not free the btrfs_device struct but would zero
979 * generation along with most of the other members. So just update
980 * it back. We need it to pick the disk with largest generation
981 * (as above).
982 */
983 if (!fs_devices->opened) {
984 device->generation = found_transid;
985 fs_devices->latest_generation = max_t(u64, found_transid,
986 fs_devices->latest_generation);
987 }
988
989 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
990
991 mutex_unlock(&fs_devices->device_list_mutex);
992 return device;
993 }
994
clone_fs_devices(struct btrfs_fs_devices * orig)995 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
996 {
997 struct btrfs_fs_devices *fs_devices;
998 struct btrfs_device *device;
999 struct btrfs_device *orig_dev;
1000 int ret = 0;
1001
1002 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1003 if (IS_ERR(fs_devices))
1004 return fs_devices;
1005
1006 mutex_lock(&orig->device_list_mutex);
1007 fs_devices->total_devices = orig->total_devices;
1008
1009 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1010 struct rcu_string *name;
1011
1012 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1013 orig_dev->uuid);
1014 if (IS_ERR(device)) {
1015 ret = PTR_ERR(device);
1016 goto error;
1017 }
1018
1019 /*
1020 * This is ok to do without rcu read locked because we hold the
1021 * uuid mutex so nothing we touch in here is going to disappear.
1022 */
1023 if (orig_dev->name) {
1024 name = rcu_string_strdup(orig_dev->name->str,
1025 GFP_KERNEL);
1026 if (!name) {
1027 btrfs_free_device(device);
1028 ret = -ENOMEM;
1029 goto error;
1030 }
1031 rcu_assign_pointer(device->name, name);
1032 }
1033
1034 list_add(&device->dev_list, &fs_devices->devices);
1035 device->fs_devices = fs_devices;
1036 fs_devices->num_devices++;
1037 }
1038 mutex_unlock(&orig->device_list_mutex);
1039 return fs_devices;
1040 error:
1041 mutex_unlock(&orig->device_list_mutex);
1042 free_fs_devices(fs_devices);
1043 return ERR_PTR(ret);
1044 }
1045
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step,struct btrfs_device ** latest_dev)1046 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1047 int step, struct btrfs_device **latest_dev)
1048 {
1049 struct btrfs_device *device, *next;
1050
1051 /* This is the initialized path, it is safe to release the devices. */
1052 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1053 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1054 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1055 &device->dev_state) &&
1056 !test_bit(BTRFS_DEV_STATE_MISSING,
1057 &device->dev_state) &&
1058 (!*latest_dev ||
1059 device->generation > (*latest_dev)->generation)) {
1060 *latest_dev = device;
1061 }
1062 continue;
1063 }
1064
1065 /*
1066 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1067 * in btrfs_init_dev_replace() so just continue.
1068 */
1069 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1070 continue;
1071
1072 if (device->bdev) {
1073 blkdev_put(device->bdev, device->mode);
1074 device->bdev = NULL;
1075 fs_devices->open_devices--;
1076 }
1077 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1078 list_del_init(&device->dev_alloc_list);
1079 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1080 }
1081 list_del_init(&device->dev_list);
1082 fs_devices->num_devices--;
1083 btrfs_free_device(device);
1084 }
1085
1086 }
1087
1088 /*
1089 * After we have read the system tree and know devids belonging to this
1090 * filesystem, remove the device which does not belong there.
1091 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step)1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1093 {
1094 struct btrfs_device *latest_dev = NULL;
1095 struct btrfs_fs_devices *seed_dev;
1096
1097 mutex_lock(&uuid_mutex);
1098 __btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1099
1100 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101 __btrfs_free_extra_devids(seed_dev, step, &latest_dev);
1102
1103 fs_devices->latest_bdev = latest_dev->bdev;
1104
1105 mutex_unlock(&uuid_mutex);
1106 }
1107
btrfs_close_bdev(struct btrfs_device * device)1108 static void btrfs_close_bdev(struct btrfs_device *device)
1109 {
1110 if (!device->bdev)
1111 return;
1112
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 sync_blockdev(device->bdev);
1115 invalidate_bdev(device->bdev);
1116 }
1117
1118 blkdev_put(device->bdev, device->mode);
1119 }
1120
btrfs_close_one_device(struct btrfs_device * device)1121 static void btrfs_close_one_device(struct btrfs_device *device)
1122 {
1123 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124
1125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127 list_del_init(&device->dev_alloc_list);
1128 fs_devices->rw_devices--;
1129 }
1130
1131 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1132 fs_devices->missing_devices--;
1133
1134 btrfs_close_bdev(device);
1135 if (device->bdev) {
1136 fs_devices->open_devices--;
1137 device->bdev = NULL;
1138 }
1139 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1140
1141 device->fs_info = NULL;
1142 atomic_set(&device->dev_stats_ccnt, 0);
1143 extent_io_tree_release(&device->alloc_state);
1144
1145 /* Verify the device is back in a pristine state */
1146 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1147 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1148 ASSERT(list_empty(&device->dev_alloc_list));
1149 ASSERT(list_empty(&device->post_commit_list));
1150 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1151 }
1152
close_fs_devices(struct btrfs_fs_devices * fs_devices)1153 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1154 {
1155 struct btrfs_device *device, *tmp;
1156
1157 lockdep_assert_held(&uuid_mutex);
1158
1159 if (--fs_devices->opened > 0)
1160 return;
1161
1162 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1163 btrfs_close_one_device(device);
1164
1165 WARN_ON(fs_devices->open_devices);
1166 WARN_ON(fs_devices->rw_devices);
1167 fs_devices->opened = 0;
1168 fs_devices->seeding = false;
1169 fs_devices->fs_info = NULL;
1170 }
1171
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1172 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1173 {
1174 LIST_HEAD(list);
1175 struct btrfs_fs_devices *tmp;
1176
1177 mutex_lock(&uuid_mutex);
1178 close_fs_devices(fs_devices);
1179 if (!fs_devices->opened)
1180 list_splice_init(&fs_devices->seed_list, &list);
1181
1182 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1183 close_fs_devices(fs_devices);
1184 list_del(&fs_devices->seed_list);
1185 free_fs_devices(fs_devices);
1186 }
1187 mutex_unlock(&uuid_mutex);
1188 }
1189
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1190 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1191 fmode_t flags, void *holder)
1192 {
1193 struct btrfs_device *device;
1194 struct btrfs_device *latest_dev = NULL;
1195 struct btrfs_device *tmp_device;
1196
1197 flags |= FMODE_EXCL;
1198
1199 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1200 dev_list) {
1201 int ret;
1202
1203 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1204 if (ret == 0 &&
1205 (!latest_dev || device->generation > latest_dev->generation)) {
1206 latest_dev = device;
1207 } else if (ret == -ENODATA) {
1208 fs_devices->num_devices--;
1209 list_del(&device->dev_list);
1210 btrfs_free_device(device);
1211 }
1212 }
1213 if (fs_devices->open_devices == 0)
1214 return -EINVAL;
1215
1216 fs_devices->opened = 1;
1217 fs_devices->latest_bdev = latest_dev->bdev;
1218 fs_devices->total_rw_bytes = 0;
1219 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1220
1221 return 0;
1222 }
1223
devid_cmp(void * priv,struct list_head * a,struct list_head * b)1224 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1225 {
1226 struct btrfs_device *dev1, *dev2;
1227
1228 dev1 = list_entry(a, struct btrfs_device, dev_list);
1229 dev2 = list_entry(b, struct btrfs_device, dev_list);
1230
1231 if (dev1->devid < dev2->devid)
1232 return -1;
1233 else if (dev1->devid > dev2->devid)
1234 return 1;
1235 return 0;
1236 }
1237
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1238 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1239 fmode_t flags, void *holder)
1240 {
1241 int ret;
1242
1243 lockdep_assert_held(&uuid_mutex);
1244 /*
1245 * The device_list_mutex cannot be taken here in case opening the
1246 * underlying device takes further locks like bd_mutex.
1247 *
1248 * We also don't need the lock here as this is called during mount and
1249 * exclusion is provided by uuid_mutex
1250 */
1251
1252 if (fs_devices->opened) {
1253 fs_devices->opened++;
1254 ret = 0;
1255 } else {
1256 list_sort(NULL, &fs_devices->devices, devid_cmp);
1257 ret = open_fs_devices(fs_devices, flags, holder);
1258 }
1259
1260 return ret;
1261 }
1262
btrfs_release_disk_super(struct btrfs_super_block * super)1263 void btrfs_release_disk_super(struct btrfs_super_block *super)
1264 {
1265 struct page *page = virt_to_page(super);
1266
1267 put_page(page);
1268 }
1269
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr)1270 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1271 u64 bytenr)
1272 {
1273 struct btrfs_super_block *disk_super;
1274 struct page *page;
1275 void *p;
1276 pgoff_t index;
1277
1278 /* make sure our super fits in the device */
1279 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1280 return ERR_PTR(-EINVAL);
1281
1282 /* make sure our super fits in the page */
1283 if (sizeof(*disk_super) > PAGE_SIZE)
1284 return ERR_PTR(-EINVAL);
1285
1286 /* make sure our super doesn't straddle pages on disk */
1287 index = bytenr >> PAGE_SHIFT;
1288 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1289 return ERR_PTR(-EINVAL);
1290
1291 /* pull in the page with our super */
1292 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1293
1294 if (IS_ERR(page))
1295 return ERR_CAST(page);
1296
1297 p = page_address(page);
1298
1299 /* align our pointer to the offset of the super block */
1300 disk_super = p + offset_in_page(bytenr);
1301
1302 if (btrfs_super_bytenr(disk_super) != bytenr ||
1303 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1304 btrfs_release_disk_super(p);
1305 return ERR_PTR(-EINVAL);
1306 }
1307
1308 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1309 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1310
1311 return disk_super;
1312 }
1313
btrfs_forget_devices(const char * path)1314 int btrfs_forget_devices(const char *path)
1315 {
1316 int ret;
1317
1318 mutex_lock(&uuid_mutex);
1319 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1320 mutex_unlock(&uuid_mutex);
1321
1322 return ret;
1323 }
1324
1325 /*
1326 * Look for a btrfs signature on a device. This may be called out of the mount path
1327 * and we are not allowed to call set_blocksize during the scan. The superblock
1328 * is read via pagecache
1329 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1330 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1331 void *holder)
1332 {
1333 struct btrfs_super_block *disk_super;
1334 bool new_device_added = false;
1335 struct btrfs_device *device = NULL;
1336 struct block_device *bdev;
1337 u64 bytenr;
1338
1339 lockdep_assert_held(&uuid_mutex);
1340
1341 /*
1342 * we would like to check all the supers, but that would make
1343 * a btrfs mount succeed after a mkfs from a different FS.
1344 * So, we need to add a special mount option to scan for
1345 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1346 */
1347 bytenr = btrfs_sb_offset(0);
1348 flags |= FMODE_EXCL;
1349
1350 bdev = blkdev_get_by_path(path, flags, holder);
1351 if (IS_ERR(bdev))
1352 return ERR_CAST(bdev);
1353
1354 disk_super = btrfs_read_disk_super(bdev, bytenr);
1355 if (IS_ERR(disk_super)) {
1356 device = ERR_CAST(disk_super);
1357 goto error_bdev_put;
1358 }
1359
1360 device = device_list_add(path, disk_super, &new_device_added);
1361 if (!IS_ERR(device)) {
1362 if (new_device_added)
1363 btrfs_free_stale_devices(path, device);
1364 }
1365
1366 btrfs_release_disk_super(disk_super);
1367
1368 error_bdev_put:
1369 blkdev_put(bdev, flags);
1370
1371 return device;
1372 }
1373
1374 /*
1375 * Try to find a chunk that intersects [start, start + len] range and when one
1376 * such is found, record the end of it in *start
1377 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1378 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1379 u64 len)
1380 {
1381 u64 physical_start, physical_end;
1382
1383 lockdep_assert_held(&device->fs_info->chunk_mutex);
1384
1385 if (!find_first_extent_bit(&device->alloc_state, *start,
1386 &physical_start, &physical_end,
1387 CHUNK_ALLOCATED, NULL)) {
1388
1389 if (in_range(physical_start, *start, len) ||
1390 in_range(*start, physical_start,
1391 physical_end - physical_start)) {
1392 *start = physical_end + 1;
1393 return true;
1394 }
1395 }
1396 return false;
1397 }
1398
dev_extent_search_start(struct btrfs_device * device,u64 start)1399 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1400 {
1401 switch (device->fs_devices->chunk_alloc_policy) {
1402 case BTRFS_CHUNK_ALLOC_REGULAR:
1403 /*
1404 * We don't want to overwrite the superblock on the drive nor
1405 * any area used by the boot loader (grub for example), so we
1406 * make sure to start at an offset of at least 1MB.
1407 */
1408 return max_t(u64, start, SZ_1M);
1409 default:
1410 BUG();
1411 }
1412 }
1413
1414 /**
1415 * dev_extent_hole_check - check if specified hole is suitable for allocation
1416 * @device: the device which we have the hole
1417 * @hole_start: starting position of the hole
1418 * @hole_size: the size of the hole
1419 * @num_bytes: the size of the free space that we need
1420 *
1421 * This function may modify @hole_start and @hole_end to reflect the suitable
1422 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1423 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1424 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1425 u64 *hole_size, u64 num_bytes)
1426 {
1427 bool changed = false;
1428 u64 hole_end = *hole_start + *hole_size;
1429
1430 /*
1431 * Check before we set max_hole_start, otherwise we could end up
1432 * sending back this offset anyway.
1433 */
1434 if (contains_pending_extent(device, hole_start, *hole_size)) {
1435 if (hole_end >= *hole_start)
1436 *hole_size = hole_end - *hole_start;
1437 else
1438 *hole_size = 0;
1439 changed = true;
1440 }
1441
1442 switch (device->fs_devices->chunk_alloc_policy) {
1443 case BTRFS_CHUNK_ALLOC_REGULAR:
1444 /* No extra check */
1445 break;
1446 default:
1447 BUG();
1448 }
1449
1450 return changed;
1451 }
1452
1453 /*
1454 * find_free_dev_extent_start - find free space in the specified device
1455 * @device: the device which we search the free space in
1456 * @num_bytes: the size of the free space that we need
1457 * @search_start: the position from which to begin the search
1458 * @start: store the start of the free space.
1459 * @len: the size of the free space. that we find, or the size
1460 * of the max free space if we don't find suitable free space
1461 *
1462 * this uses a pretty simple search, the expectation is that it is
1463 * called very infrequently and that a given device has a small number
1464 * of extents
1465 *
1466 * @start is used to store the start of the free space if we find. But if we
1467 * don't find suitable free space, it will be used to store the start position
1468 * of the max free space.
1469 *
1470 * @len is used to store the size of the free space that we find.
1471 * But if we don't find suitable free space, it is used to store the size of
1472 * the max free space.
1473 *
1474 * NOTE: This function will search *commit* root of device tree, and does extra
1475 * check to ensure dev extents are not double allocated.
1476 * This makes the function safe to allocate dev extents but may not report
1477 * correct usable device space, as device extent freed in current transaction
1478 * is not reported as avaiable.
1479 */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1480 static int find_free_dev_extent_start(struct btrfs_device *device,
1481 u64 num_bytes, u64 search_start, u64 *start,
1482 u64 *len)
1483 {
1484 struct btrfs_fs_info *fs_info = device->fs_info;
1485 struct btrfs_root *root = fs_info->dev_root;
1486 struct btrfs_key key;
1487 struct btrfs_dev_extent *dev_extent;
1488 struct btrfs_path *path;
1489 u64 hole_size;
1490 u64 max_hole_start;
1491 u64 max_hole_size;
1492 u64 extent_end;
1493 u64 search_end = device->total_bytes;
1494 int ret;
1495 int slot;
1496 struct extent_buffer *l;
1497
1498 search_start = dev_extent_search_start(device, search_start);
1499
1500 path = btrfs_alloc_path();
1501 if (!path)
1502 return -ENOMEM;
1503
1504 max_hole_start = search_start;
1505 max_hole_size = 0;
1506
1507 again:
1508 if (search_start >= search_end ||
1509 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1510 ret = -ENOSPC;
1511 goto out;
1512 }
1513
1514 path->reada = READA_FORWARD;
1515 path->search_commit_root = 1;
1516 path->skip_locking = 1;
1517
1518 key.objectid = device->devid;
1519 key.offset = search_start;
1520 key.type = BTRFS_DEV_EXTENT_KEY;
1521
1522 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1523 if (ret < 0)
1524 goto out;
1525 if (ret > 0) {
1526 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1527 if (ret < 0)
1528 goto out;
1529 }
1530
1531 while (1) {
1532 l = path->nodes[0];
1533 slot = path->slots[0];
1534 if (slot >= btrfs_header_nritems(l)) {
1535 ret = btrfs_next_leaf(root, path);
1536 if (ret == 0)
1537 continue;
1538 if (ret < 0)
1539 goto out;
1540
1541 break;
1542 }
1543 btrfs_item_key_to_cpu(l, &key, slot);
1544
1545 if (key.objectid < device->devid)
1546 goto next;
1547
1548 if (key.objectid > device->devid)
1549 break;
1550
1551 if (key.type != BTRFS_DEV_EXTENT_KEY)
1552 goto next;
1553
1554 if (key.offset > search_start) {
1555 hole_size = key.offset - search_start;
1556 dev_extent_hole_check(device, &search_start, &hole_size,
1557 num_bytes);
1558
1559 if (hole_size > max_hole_size) {
1560 max_hole_start = search_start;
1561 max_hole_size = hole_size;
1562 }
1563
1564 /*
1565 * If this free space is greater than which we need,
1566 * it must be the max free space that we have found
1567 * until now, so max_hole_start must point to the start
1568 * of this free space and the length of this free space
1569 * is stored in max_hole_size. Thus, we return
1570 * max_hole_start and max_hole_size and go back to the
1571 * caller.
1572 */
1573 if (hole_size >= num_bytes) {
1574 ret = 0;
1575 goto out;
1576 }
1577 }
1578
1579 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1580 extent_end = key.offset + btrfs_dev_extent_length(l,
1581 dev_extent);
1582 if (extent_end > search_start)
1583 search_start = extent_end;
1584 next:
1585 path->slots[0]++;
1586 cond_resched();
1587 }
1588
1589 /*
1590 * At this point, search_start should be the end of
1591 * allocated dev extents, and when shrinking the device,
1592 * search_end may be smaller than search_start.
1593 */
1594 if (search_end > search_start) {
1595 hole_size = search_end - search_start;
1596 if (dev_extent_hole_check(device, &search_start, &hole_size,
1597 num_bytes)) {
1598 btrfs_release_path(path);
1599 goto again;
1600 }
1601
1602 if (hole_size > max_hole_size) {
1603 max_hole_start = search_start;
1604 max_hole_size = hole_size;
1605 }
1606 }
1607
1608 /* See above. */
1609 if (max_hole_size < num_bytes)
1610 ret = -ENOSPC;
1611 else
1612 ret = 0;
1613
1614 out:
1615 btrfs_free_path(path);
1616 *start = max_hole_start;
1617 if (len)
1618 *len = max_hole_size;
1619 return ret;
1620 }
1621
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1622 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1623 u64 *start, u64 *len)
1624 {
1625 /* FIXME use last free of some kind */
1626 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1627 }
1628
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1629 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1630 struct btrfs_device *device,
1631 u64 start, u64 *dev_extent_len)
1632 {
1633 struct btrfs_fs_info *fs_info = device->fs_info;
1634 struct btrfs_root *root = fs_info->dev_root;
1635 int ret;
1636 struct btrfs_path *path;
1637 struct btrfs_key key;
1638 struct btrfs_key found_key;
1639 struct extent_buffer *leaf = NULL;
1640 struct btrfs_dev_extent *extent = NULL;
1641
1642 path = btrfs_alloc_path();
1643 if (!path)
1644 return -ENOMEM;
1645
1646 key.objectid = device->devid;
1647 key.offset = start;
1648 key.type = BTRFS_DEV_EXTENT_KEY;
1649 again:
1650 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1651 if (ret > 0) {
1652 ret = btrfs_previous_item(root, path, key.objectid,
1653 BTRFS_DEV_EXTENT_KEY);
1654 if (ret)
1655 goto out;
1656 leaf = path->nodes[0];
1657 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1658 extent = btrfs_item_ptr(leaf, path->slots[0],
1659 struct btrfs_dev_extent);
1660 BUG_ON(found_key.offset > start || found_key.offset +
1661 btrfs_dev_extent_length(leaf, extent) < start);
1662 key = found_key;
1663 btrfs_release_path(path);
1664 goto again;
1665 } else if (ret == 0) {
1666 leaf = path->nodes[0];
1667 extent = btrfs_item_ptr(leaf, path->slots[0],
1668 struct btrfs_dev_extent);
1669 } else {
1670 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1671 goto out;
1672 }
1673
1674 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1675
1676 ret = btrfs_del_item(trans, root, path);
1677 if (ret) {
1678 btrfs_handle_fs_error(fs_info, ret,
1679 "Failed to remove dev extent item");
1680 } else {
1681 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1682 }
1683 out:
1684 btrfs_free_path(path);
1685 return ret;
1686 }
1687
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)1688 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1689 struct btrfs_device *device,
1690 u64 chunk_offset, u64 start, u64 num_bytes)
1691 {
1692 int ret;
1693 struct btrfs_path *path;
1694 struct btrfs_fs_info *fs_info = device->fs_info;
1695 struct btrfs_root *root = fs_info->dev_root;
1696 struct btrfs_dev_extent *extent;
1697 struct extent_buffer *leaf;
1698 struct btrfs_key key;
1699
1700 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1701 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1702 path = btrfs_alloc_path();
1703 if (!path)
1704 return -ENOMEM;
1705
1706 key.objectid = device->devid;
1707 key.offset = start;
1708 key.type = BTRFS_DEV_EXTENT_KEY;
1709 ret = btrfs_insert_empty_item(trans, root, path, &key,
1710 sizeof(*extent));
1711 if (ret)
1712 goto out;
1713
1714 leaf = path->nodes[0];
1715 extent = btrfs_item_ptr(leaf, path->slots[0],
1716 struct btrfs_dev_extent);
1717 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1718 BTRFS_CHUNK_TREE_OBJECTID);
1719 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1720 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1721 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1722
1723 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1724 btrfs_mark_buffer_dirty(leaf);
1725 out:
1726 btrfs_free_path(path);
1727 return ret;
1728 }
1729
find_next_chunk(struct btrfs_fs_info * fs_info)1730 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1731 {
1732 struct extent_map_tree *em_tree;
1733 struct extent_map *em;
1734 struct rb_node *n;
1735 u64 ret = 0;
1736
1737 em_tree = &fs_info->mapping_tree;
1738 read_lock(&em_tree->lock);
1739 n = rb_last(&em_tree->map.rb_root);
1740 if (n) {
1741 em = rb_entry(n, struct extent_map, rb_node);
1742 ret = em->start + em->len;
1743 }
1744 read_unlock(&em_tree->lock);
1745
1746 return ret;
1747 }
1748
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1749 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1750 u64 *devid_ret)
1751 {
1752 int ret;
1753 struct btrfs_key key;
1754 struct btrfs_key found_key;
1755 struct btrfs_path *path;
1756
1757 path = btrfs_alloc_path();
1758 if (!path)
1759 return -ENOMEM;
1760
1761 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1762 key.type = BTRFS_DEV_ITEM_KEY;
1763 key.offset = (u64)-1;
1764
1765 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1766 if (ret < 0)
1767 goto error;
1768
1769 if (ret == 0) {
1770 /* Corruption */
1771 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1772 ret = -EUCLEAN;
1773 goto error;
1774 }
1775
1776 ret = btrfs_previous_item(fs_info->chunk_root, path,
1777 BTRFS_DEV_ITEMS_OBJECTID,
1778 BTRFS_DEV_ITEM_KEY);
1779 if (ret) {
1780 *devid_ret = 1;
1781 } else {
1782 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1783 path->slots[0]);
1784 *devid_ret = found_key.offset + 1;
1785 }
1786 ret = 0;
1787 error:
1788 btrfs_free_path(path);
1789 return ret;
1790 }
1791
1792 /*
1793 * the device information is stored in the chunk root
1794 * the btrfs_device struct should be fully filled in
1795 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1796 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1797 struct btrfs_device *device)
1798 {
1799 int ret;
1800 struct btrfs_path *path;
1801 struct btrfs_dev_item *dev_item;
1802 struct extent_buffer *leaf;
1803 struct btrfs_key key;
1804 unsigned long ptr;
1805
1806 path = btrfs_alloc_path();
1807 if (!path)
1808 return -ENOMEM;
1809
1810 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1811 key.type = BTRFS_DEV_ITEM_KEY;
1812 key.offset = device->devid;
1813
1814 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1815 &key, sizeof(*dev_item));
1816 if (ret)
1817 goto out;
1818
1819 leaf = path->nodes[0];
1820 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1821
1822 btrfs_set_device_id(leaf, dev_item, device->devid);
1823 btrfs_set_device_generation(leaf, dev_item, 0);
1824 btrfs_set_device_type(leaf, dev_item, device->type);
1825 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1826 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1827 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1828 btrfs_set_device_total_bytes(leaf, dev_item,
1829 btrfs_device_get_disk_total_bytes(device));
1830 btrfs_set_device_bytes_used(leaf, dev_item,
1831 btrfs_device_get_bytes_used(device));
1832 btrfs_set_device_group(leaf, dev_item, 0);
1833 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1834 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1835 btrfs_set_device_start_offset(leaf, dev_item, 0);
1836
1837 ptr = btrfs_device_uuid(dev_item);
1838 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1839 ptr = btrfs_device_fsid(dev_item);
1840 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1841 ptr, BTRFS_FSID_SIZE);
1842 btrfs_mark_buffer_dirty(leaf);
1843
1844 ret = 0;
1845 out:
1846 btrfs_free_path(path);
1847 return ret;
1848 }
1849
1850 /*
1851 * Function to update ctime/mtime for a given device path.
1852 * Mainly used for ctime/mtime based probe like libblkid.
1853 */
update_dev_time(const char * path_name)1854 static void update_dev_time(const char *path_name)
1855 {
1856 struct file *filp;
1857
1858 filp = filp_open(path_name, O_RDWR, 0);
1859 if (IS_ERR(filp))
1860 return;
1861 file_update_time(filp);
1862 filp_close(filp, NULL);
1863 }
1864
btrfs_rm_dev_item(struct btrfs_device * device)1865 static int btrfs_rm_dev_item(struct btrfs_device *device)
1866 {
1867 struct btrfs_root *root = device->fs_info->chunk_root;
1868 int ret;
1869 struct btrfs_path *path;
1870 struct btrfs_key key;
1871 struct btrfs_trans_handle *trans;
1872
1873 path = btrfs_alloc_path();
1874 if (!path)
1875 return -ENOMEM;
1876
1877 trans = btrfs_start_transaction(root, 0);
1878 if (IS_ERR(trans)) {
1879 btrfs_free_path(path);
1880 return PTR_ERR(trans);
1881 }
1882 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1883 key.type = BTRFS_DEV_ITEM_KEY;
1884 key.offset = device->devid;
1885
1886 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1887 if (ret) {
1888 if (ret > 0)
1889 ret = -ENOENT;
1890 btrfs_abort_transaction(trans, ret);
1891 btrfs_end_transaction(trans);
1892 goto out;
1893 }
1894
1895 ret = btrfs_del_item(trans, root, path);
1896 if (ret) {
1897 btrfs_abort_transaction(trans, ret);
1898 btrfs_end_transaction(trans);
1899 }
1900
1901 out:
1902 btrfs_free_path(path);
1903 if (!ret)
1904 ret = btrfs_commit_transaction(trans);
1905 return ret;
1906 }
1907
1908 /*
1909 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1910 * filesystem. It's up to the caller to adjust that number regarding eg. device
1911 * replace.
1912 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1913 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1914 u64 num_devices)
1915 {
1916 u64 all_avail;
1917 unsigned seq;
1918 int i;
1919
1920 do {
1921 seq = read_seqbegin(&fs_info->profiles_lock);
1922
1923 all_avail = fs_info->avail_data_alloc_bits |
1924 fs_info->avail_system_alloc_bits |
1925 fs_info->avail_metadata_alloc_bits;
1926 } while (read_seqretry(&fs_info->profiles_lock, seq));
1927
1928 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1929 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1930 continue;
1931
1932 if (num_devices < btrfs_raid_array[i].devs_min) {
1933 int ret = btrfs_raid_array[i].mindev_error;
1934
1935 if (ret)
1936 return ret;
1937 }
1938 }
1939
1940 return 0;
1941 }
1942
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1943 static struct btrfs_device * btrfs_find_next_active_device(
1944 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1945 {
1946 struct btrfs_device *next_device;
1947
1948 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1949 if (next_device != device &&
1950 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1951 && next_device->bdev)
1952 return next_device;
1953 }
1954
1955 return NULL;
1956 }
1957
1958 /*
1959 * Helper function to check if the given device is part of s_bdev / latest_bdev
1960 * and replace it with the provided or the next active device, in the context
1961 * where this function called, there should be always be another device (or
1962 * this_dev) which is active.
1963 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)1964 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1965 struct btrfs_device *next_device)
1966 {
1967 struct btrfs_fs_info *fs_info = device->fs_info;
1968
1969 if (!next_device)
1970 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1971 device);
1972 ASSERT(next_device);
1973
1974 if (fs_info->sb->s_bdev &&
1975 (fs_info->sb->s_bdev == device->bdev))
1976 fs_info->sb->s_bdev = next_device->bdev;
1977
1978 if (fs_info->fs_devices->latest_bdev == device->bdev)
1979 fs_info->fs_devices->latest_bdev = next_device->bdev;
1980 }
1981
1982 /*
1983 * Return btrfs_fs_devices::num_devices excluding the device that's being
1984 * currently replaced.
1985 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)1986 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1987 {
1988 u64 num_devices = fs_info->fs_devices->num_devices;
1989
1990 down_read(&fs_info->dev_replace.rwsem);
1991 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1992 ASSERT(num_devices > 1);
1993 num_devices--;
1994 }
1995 up_read(&fs_info->dev_replace.rwsem);
1996
1997 return num_devices;
1998 }
1999
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2000 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2001 struct block_device *bdev,
2002 const char *device_path)
2003 {
2004 struct btrfs_super_block *disk_super;
2005 int copy_num;
2006
2007 if (!bdev)
2008 return;
2009
2010 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2011 struct page *page;
2012 int ret;
2013
2014 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2015 if (IS_ERR(disk_super))
2016 continue;
2017
2018 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2019
2020 page = virt_to_page(disk_super);
2021 set_page_dirty(page);
2022 lock_page(page);
2023 /* write_on_page() unlocks the page */
2024 ret = write_one_page(page);
2025 if (ret)
2026 btrfs_warn(fs_info,
2027 "error clearing superblock number %d (%d)",
2028 copy_num, ret);
2029 btrfs_release_disk_super(disk_super);
2030
2031 }
2032
2033 /* Notify udev that device has changed */
2034 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2035
2036 /* Update ctime/mtime for device path for libblkid */
2037 update_dev_time(device_path);
2038 }
2039
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid)2040 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2041 u64 devid)
2042 {
2043 struct btrfs_device *device;
2044 struct btrfs_fs_devices *cur_devices;
2045 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2046 u64 num_devices;
2047 int ret = 0;
2048
2049 mutex_lock(&uuid_mutex);
2050
2051 num_devices = btrfs_num_devices(fs_info);
2052
2053 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2054 if (ret)
2055 goto out;
2056
2057 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2058
2059 if (IS_ERR(device)) {
2060 if (PTR_ERR(device) == -ENOENT &&
2061 strcmp(device_path, "missing") == 0)
2062 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2063 else
2064 ret = PTR_ERR(device);
2065 goto out;
2066 }
2067
2068 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2069 btrfs_warn_in_rcu(fs_info,
2070 "cannot remove device %s (devid %llu) due to active swapfile",
2071 rcu_str_deref(device->name), device->devid);
2072 ret = -ETXTBSY;
2073 goto out;
2074 }
2075
2076 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2077 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2078 goto out;
2079 }
2080
2081 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2082 fs_info->fs_devices->rw_devices == 1) {
2083 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2084 goto out;
2085 }
2086
2087 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2088 mutex_lock(&fs_info->chunk_mutex);
2089 list_del_init(&device->dev_alloc_list);
2090 device->fs_devices->rw_devices--;
2091 mutex_unlock(&fs_info->chunk_mutex);
2092 }
2093
2094 mutex_unlock(&uuid_mutex);
2095 ret = btrfs_shrink_device(device, 0);
2096 if (!ret)
2097 btrfs_reada_remove_dev(device);
2098 mutex_lock(&uuid_mutex);
2099 if (ret)
2100 goto error_undo;
2101
2102 /*
2103 * TODO: the superblock still includes this device in its num_devices
2104 * counter although write_all_supers() is not locked out. This
2105 * could give a filesystem state which requires a degraded mount.
2106 */
2107 ret = btrfs_rm_dev_item(device);
2108 if (ret)
2109 goto error_undo;
2110
2111 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2112 btrfs_scrub_cancel_dev(device);
2113
2114 /*
2115 * the device list mutex makes sure that we don't change
2116 * the device list while someone else is writing out all
2117 * the device supers. Whoever is writing all supers, should
2118 * lock the device list mutex before getting the number of
2119 * devices in the super block (super_copy). Conversely,
2120 * whoever updates the number of devices in the super block
2121 * (super_copy) should hold the device list mutex.
2122 */
2123
2124 /*
2125 * In normal cases the cur_devices == fs_devices. But in case
2126 * of deleting a seed device, the cur_devices should point to
2127 * its own fs_devices listed under the fs_devices->seed.
2128 */
2129 cur_devices = device->fs_devices;
2130 mutex_lock(&fs_devices->device_list_mutex);
2131 list_del_rcu(&device->dev_list);
2132
2133 cur_devices->num_devices--;
2134 cur_devices->total_devices--;
2135 /* Update total_devices of the parent fs_devices if it's seed */
2136 if (cur_devices != fs_devices)
2137 fs_devices->total_devices--;
2138
2139 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2140 cur_devices->missing_devices--;
2141
2142 btrfs_assign_next_active_device(device, NULL);
2143
2144 if (device->bdev) {
2145 cur_devices->open_devices--;
2146 /* remove sysfs entry */
2147 btrfs_sysfs_remove_device(device);
2148 }
2149
2150 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2151 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2152 mutex_unlock(&fs_devices->device_list_mutex);
2153
2154 /*
2155 * at this point, the device is zero sized and detached from
2156 * the devices list. All that's left is to zero out the old
2157 * supers and free the device.
2158 */
2159 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2160 btrfs_scratch_superblocks(fs_info, device->bdev,
2161 device->name->str);
2162
2163 btrfs_close_bdev(device);
2164 synchronize_rcu();
2165 btrfs_free_device(device);
2166
2167 if (cur_devices->open_devices == 0) {
2168 list_del_init(&cur_devices->seed_list);
2169 close_fs_devices(cur_devices);
2170 free_fs_devices(cur_devices);
2171 }
2172
2173 out:
2174 mutex_unlock(&uuid_mutex);
2175 return ret;
2176
2177 error_undo:
2178 btrfs_reada_undo_remove_dev(device);
2179 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2180 mutex_lock(&fs_info->chunk_mutex);
2181 list_add(&device->dev_alloc_list,
2182 &fs_devices->alloc_list);
2183 device->fs_devices->rw_devices++;
2184 mutex_unlock(&fs_info->chunk_mutex);
2185 }
2186 goto out;
2187 }
2188
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2189 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2190 {
2191 struct btrfs_fs_devices *fs_devices;
2192
2193 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2194
2195 /*
2196 * in case of fs with no seed, srcdev->fs_devices will point
2197 * to fs_devices of fs_info. However when the dev being replaced is
2198 * a seed dev it will point to the seed's local fs_devices. In short
2199 * srcdev will have its correct fs_devices in both the cases.
2200 */
2201 fs_devices = srcdev->fs_devices;
2202
2203 list_del_rcu(&srcdev->dev_list);
2204 list_del(&srcdev->dev_alloc_list);
2205 fs_devices->num_devices--;
2206 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2207 fs_devices->missing_devices--;
2208
2209 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2210 fs_devices->rw_devices--;
2211
2212 if (srcdev->bdev)
2213 fs_devices->open_devices--;
2214 }
2215
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2216 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2217 {
2218 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2219
2220 mutex_lock(&uuid_mutex);
2221
2222 btrfs_close_bdev(srcdev);
2223 synchronize_rcu();
2224 btrfs_free_device(srcdev);
2225
2226 /* if this is no devs we rather delete the fs_devices */
2227 if (!fs_devices->num_devices) {
2228 /*
2229 * On a mounted FS, num_devices can't be zero unless it's a
2230 * seed. In case of a seed device being replaced, the replace
2231 * target added to the sprout FS, so there will be no more
2232 * device left under the seed FS.
2233 */
2234 ASSERT(fs_devices->seeding);
2235
2236 list_del_init(&fs_devices->seed_list);
2237 close_fs_devices(fs_devices);
2238 free_fs_devices(fs_devices);
2239 }
2240 mutex_unlock(&uuid_mutex);
2241 }
2242
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2243 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2244 {
2245 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2246
2247 mutex_lock(&fs_devices->device_list_mutex);
2248
2249 btrfs_sysfs_remove_device(tgtdev);
2250
2251 if (tgtdev->bdev)
2252 fs_devices->open_devices--;
2253
2254 fs_devices->num_devices--;
2255
2256 btrfs_assign_next_active_device(tgtdev, NULL);
2257
2258 list_del_rcu(&tgtdev->dev_list);
2259
2260 mutex_unlock(&fs_devices->device_list_mutex);
2261
2262 /*
2263 * The update_dev_time() with in btrfs_scratch_superblocks()
2264 * may lead to a call to btrfs_show_devname() which will try
2265 * to hold device_list_mutex. And here this device
2266 * is already out of device list, so we don't have to hold
2267 * the device_list_mutex lock.
2268 */
2269 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2270 tgtdev->name->str);
2271
2272 btrfs_close_bdev(tgtdev);
2273 synchronize_rcu();
2274 btrfs_free_device(tgtdev);
2275 }
2276
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path)2277 static struct btrfs_device *btrfs_find_device_by_path(
2278 struct btrfs_fs_info *fs_info, const char *device_path)
2279 {
2280 int ret = 0;
2281 struct btrfs_super_block *disk_super;
2282 u64 devid;
2283 u8 *dev_uuid;
2284 struct block_device *bdev;
2285 struct btrfs_device *device;
2286
2287 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2288 fs_info->bdev_holder, 0, &bdev, &disk_super);
2289 if (ret)
2290 return ERR_PTR(ret);
2291
2292 devid = btrfs_stack_device_id(&disk_super->dev_item);
2293 dev_uuid = disk_super->dev_item.uuid;
2294 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2295 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2296 disk_super->metadata_uuid, true);
2297 else
2298 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2299 disk_super->fsid, true);
2300
2301 btrfs_release_disk_super(disk_super);
2302 if (!device)
2303 device = ERR_PTR(-ENOENT);
2304 blkdev_put(bdev, FMODE_READ);
2305 return device;
2306 }
2307
2308 /*
2309 * Lookup a device given by device id, or the path if the id is 0.
2310 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2311 struct btrfs_device *btrfs_find_device_by_devspec(
2312 struct btrfs_fs_info *fs_info, u64 devid,
2313 const char *device_path)
2314 {
2315 struct btrfs_device *device;
2316
2317 if (devid) {
2318 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2319 NULL, true);
2320 if (!device)
2321 return ERR_PTR(-ENOENT);
2322 return device;
2323 }
2324
2325 if (!device_path || !device_path[0])
2326 return ERR_PTR(-EINVAL);
2327
2328 if (strcmp(device_path, "missing") == 0) {
2329 /* Find first missing device */
2330 list_for_each_entry(device, &fs_info->fs_devices->devices,
2331 dev_list) {
2332 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2333 &device->dev_state) && !device->bdev)
2334 return device;
2335 }
2336 return ERR_PTR(-ENOENT);
2337 }
2338
2339 return btrfs_find_device_by_path(fs_info, device_path);
2340 }
2341
2342 /*
2343 * does all the dirty work required for changing file system's UUID.
2344 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2345 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2346 {
2347 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2348 struct btrfs_fs_devices *old_devices;
2349 struct btrfs_fs_devices *seed_devices;
2350 struct btrfs_super_block *disk_super = fs_info->super_copy;
2351 struct btrfs_device *device;
2352 u64 super_flags;
2353
2354 lockdep_assert_held(&uuid_mutex);
2355 if (!fs_devices->seeding)
2356 return -EINVAL;
2357
2358 /*
2359 * Private copy of the seed devices, anchored at
2360 * fs_info->fs_devices->seed_list
2361 */
2362 seed_devices = alloc_fs_devices(NULL, NULL);
2363 if (IS_ERR(seed_devices))
2364 return PTR_ERR(seed_devices);
2365
2366 /*
2367 * It's necessary to retain a copy of the original seed fs_devices in
2368 * fs_uuids so that filesystems which have been seeded can successfully
2369 * reference the seed device from open_seed_devices. This also supports
2370 * multiple fs seed.
2371 */
2372 old_devices = clone_fs_devices(fs_devices);
2373 if (IS_ERR(old_devices)) {
2374 kfree(seed_devices);
2375 return PTR_ERR(old_devices);
2376 }
2377
2378 list_add(&old_devices->fs_list, &fs_uuids);
2379
2380 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2381 seed_devices->opened = 1;
2382 INIT_LIST_HEAD(&seed_devices->devices);
2383 INIT_LIST_HEAD(&seed_devices->alloc_list);
2384 mutex_init(&seed_devices->device_list_mutex);
2385
2386 mutex_lock(&fs_devices->device_list_mutex);
2387 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2388 synchronize_rcu);
2389 list_for_each_entry(device, &seed_devices->devices, dev_list)
2390 device->fs_devices = seed_devices;
2391
2392 fs_devices->seeding = false;
2393 fs_devices->num_devices = 0;
2394 fs_devices->open_devices = 0;
2395 fs_devices->missing_devices = 0;
2396 fs_devices->rotating = false;
2397 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2398
2399 generate_random_uuid(fs_devices->fsid);
2400 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2401 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2402 mutex_unlock(&fs_devices->device_list_mutex);
2403
2404 super_flags = btrfs_super_flags(disk_super) &
2405 ~BTRFS_SUPER_FLAG_SEEDING;
2406 btrfs_set_super_flags(disk_super, super_flags);
2407
2408 return 0;
2409 }
2410
2411 /*
2412 * Store the expected generation for seed devices in device items.
2413 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2414 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2415 {
2416 struct btrfs_fs_info *fs_info = trans->fs_info;
2417 struct btrfs_root *root = fs_info->chunk_root;
2418 struct btrfs_path *path;
2419 struct extent_buffer *leaf;
2420 struct btrfs_dev_item *dev_item;
2421 struct btrfs_device *device;
2422 struct btrfs_key key;
2423 u8 fs_uuid[BTRFS_FSID_SIZE];
2424 u8 dev_uuid[BTRFS_UUID_SIZE];
2425 u64 devid;
2426 int ret;
2427
2428 path = btrfs_alloc_path();
2429 if (!path)
2430 return -ENOMEM;
2431
2432 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2433 key.offset = 0;
2434 key.type = BTRFS_DEV_ITEM_KEY;
2435
2436 while (1) {
2437 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2438 if (ret < 0)
2439 goto error;
2440
2441 leaf = path->nodes[0];
2442 next_slot:
2443 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2444 ret = btrfs_next_leaf(root, path);
2445 if (ret > 0)
2446 break;
2447 if (ret < 0)
2448 goto error;
2449 leaf = path->nodes[0];
2450 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2451 btrfs_release_path(path);
2452 continue;
2453 }
2454
2455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2456 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2457 key.type != BTRFS_DEV_ITEM_KEY)
2458 break;
2459
2460 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2461 struct btrfs_dev_item);
2462 devid = btrfs_device_id(leaf, dev_item);
2463 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2464 BTRFS_UUID_SIZE);
2465 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2466 BTRFS_FSID_SIZE);
2467 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2468 fs_uuid, true);
2469 BUG_ON(!device); /* Logic error */
2470
2471 if (device->fs_devices->seeding) {
2472 btrfs_set_device_generation(leaf, dev_item,
2473 device->generation);
2474 btrfs_mark_buffer_dirty(leaf);
2475 }
2476
2477 path->slots[0]++;
2478 goto next_slot;
2479 }
2480 ret = 0;
2481 error:
2482 btrfs_free_path(path);
2483 return ret;
2484 }
2485
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2486 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2487 {
2488 struct btrfs_root *root = fs_info->dev_root;
2489 struct request_queue *q;
2490 struct btrfs_trans_handle *trans;
2491 struct btrfs_device *device;
2492 struct block_device *bdev;
2493 struct super_block *sb = fs_info->sb;
2494 struct rcu_string *name;
2495 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2496 u64 orig_super_total_bytes;
2497 u64 orig_super_num_devices;
2498 int seeding_dev = 0;
2499 int ret = 0;
2500 bool locked = false;
2501
2502 if (sb_rdonly(sb) && !fs_devices->seeding)
2503 return -EROFS;
2504
2505 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2506 fs_info->bdev_holder);
2507 if (IS_ERR(bdev))
2508 return PTR_ERR(bdev);
2509
2510 if (fs_devices->seeding) {
2511 seeding_dev = 1;
2512 down_write(&sb->s_umount);
2513 mutex_lock(&uuid_mutex);
2514 locked = true;
2515 }
2516
2517 sync_blockdev(bdev);
2518
2519 rcu_read_lock();
2520 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2521 if (device->bdev == bdev) {
2522 ret = -EEXIST;
2523 rcu_read_unlock();
2524 goto error;
2525 }
2526 }
2527 rcu_read_unlock();
2528
2529 device = btrfs_alloc_device(fs_info, NULL, NULL);
2530 if (IS_ERR(device)) {
2531 /* we can safely leave the fs_devices entry around */
2532 ret = PTR_ERR(device);
2533 goto error;
2534 }
2535
2536 name = rcu_string_strdup(device_path, GFP_KERNEL);
2537 if (!name) {
2538 ret = -ENOMEM;
2539 goto error_free_device;
2540 }
2541 rcu_assign_pointer(device->name, name);
2542
2543 trans = btrfs_start_transaction(root, 0);
2544 if (IS_ERR(trans)) {
2545 ret = PTR_ERR(trans);
2546 goto error_free_device;
2547 }
2548
2549 q = bdev_get_queue(bdev);
2550 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2551 device->generation = trans->transid;
2552 device->io_width = fs_info->sectorsize;
2553 device->io_align = fs_info->sectorsize;
2554 device->sector_size = fs_info->sectorsize;
2555 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2556 fs_info->sectorsize);
2557 device->disk_total_bytes = device->total_bytes;
2558 device->commit_total_bytes = device->total_bytes;
2559 device->fs_info = fs_info;
2560 device->bdev = bdev;
2561 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2562 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2563 device->mode = FMODE_EXCL;
2564 device->dev_stats_valid = 1;
2565 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2566
2567 if (seeding_dev) {
2568 sb->s_flags &= ~SB_RDONLY;
2569 ret = btrfs_prepare_sprout(fs_info);
2570 if (ret) {
2571 btrfs_abort_transaction(trans, ret);
2572 goto error_trans;
2573 }
2574 }
2575
2576 device->fs_devices = fs_devices;
2577
2578 mutex_lock(&fs_devices->device_list_mutex);
2579 mutex_lock(&fs_info->chunk_mutex);
2580 list_add_rcu(&device->dev_list, &fs_devices->devices);
2581 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2582 fs_devices->num_devices++;
2583 fs_devices->open_devices++;
2584 fs_devices->rw_devices++;
2585 fs_devices->total_devices++;
2586 fs_devices->total_rw_bytes += device->total_bytes;
2587
2588 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2589
2590 if (!blk_queue_nonrot(q))
2591 fs_devices->rotating = true;
2592
2593 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2594 btrfs_set_super_total_bytes(fs_info->super_copy,
2595 round_down(orig_super_total_bytes + device->total_bytes,
2596 fs_info->sectorsize));
2597
2598 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2599 btrfs_set_super_num_devices(fs_info->super_copy,
2600 orig_super_num_devices + 1);
2601
2602 /*
2603 * we've got more storage, clear any full flags on the space
2604 * infos
2605 */
2606 btrfs_clear_space_info_full(fs_info);
2607
2608 mutex_unlock(&fs_info->chunk_mutex);
2609
2610 /* Add sysfs device entry */
2611 btrfs_sysfs_add_device(device);
2612
2613 mutex_unlock(&fs_devices->device_list_mutex);
2614
2615 if (seeding_dev) {
2616 mutex_lock(&fs_info->chunk_mutex);
2617 ret = init_first_rw_device(trans);
2618 mutex_unlock(&fs_info->chunk_mutex);
2619 if (ret) {
2620 btrfs_abort_transaction(trans, ret);
2621 goto error_sysfs;
2622 }
2623 }
2624
2625 ret = btrfs_add_dev_item(trans, device);
2626 if (ret) {
2627 btrfs_abort_transaction(trans, ret);
2628 goto error_sysfs;
2629 }
2630
2631 if (seeding_dev) {
2632 ret = btrfs_finish_sprout(trans);
2633 if (ret) {
2634 btrfs_abort_transaction(trans, ret);
2635 goto error_sysfs;
2636 }
2637
2638 /*
2639 * fs_devices now represents the newly sprouted filesystem and
2640 * its fsid has been changed by btrfs_prepare_sprout
2641 */
2642 btrfs_sysfs_update_sprout_fsid(fs_devices);
2643 }
2644
2645 ret = btrfs_commit_transaction(trans);
2646
2647 if (seeding_dev) {
2648 mutex_unlock(&uuid_mutex);
2649 up_write(&sb->s_umount);
2650 locked = false;
2651
2652 if (ret) /* transaction commit */
2653 return ret;
2654
2655 ret = btrfs_relocate_sys_chunks(fs_info);
2656 if (ret < 0)
2657 btrfs_handle_fs_error(fs_info, ret,
2658 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2659 trans = btrfs_attach_transaction(root);
2660 if (IS_ERR(trans)) {
2661 if (PTR_ERR(trans) == -ENOENT)
2662 return 0;
2663 ret = PTR_ERR(trans);
2664 trans = NULL;
2665 goto error_sysfs;
2666 }
2667 ret = btrfs_commit_transaction(trans);
2668 }
2669
2670 /*
2671 * Now that we have written a new super block to this device, check all
2672 * other fs_devices list if device_path alienates any other scanned
2673 * device.
2674 * We can ignore the return value as it typically returns -EINVAL and
2675 * only succeeds if the device was an alien.
2676 */
2677 btrfs_forget_devices(device_path);
2678
2679 /* Update ctime/mtime for blkid or udev */
2680 update_dev_time(device_path);
2681
2682 return ret;
2683
2684 error_sysfs:
2685 btrfs_sysfs_remove_device(device);
2686 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2687 mutex_lock(&fs_info->chunk_mutex);
2688 list_del_rcu(&device->dev_list);
2689 list_del(&device->dev_alloc_list);
2690 fs_info->fs_devices->num_devices--;
2691 fs_info->fs_devices->open_devices--;
2692 fs_info->fs_devices->rw_devices--;
2693 fs_info->fs_devices->total_devices--;
2694 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2695 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2696 btrfs_set_super_total_bytes(fs_info->super_copy,
2697 orig_super_total_bytes);
2698 btrfs_set_super_num_devices(fs_info->super_copy,
2699 orig_super_num_devices);
2700 mutex_unlock(&fs_info->chunk_mutex);
2701 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2702 error_trans:
2703 if (seeding_dev)
2704 sb->s_flags |= SB_RDONLY;
2705 if (trans)
2706 btrfs_end_transaction(trans);
2707 error_free_device:
2708 btrfs_free_device(device);
2709 error:
2710 blkdev_put(bdev, FMODE_EXCL);
2711 if (locked) {
2712 mutex_unlock(&uuid_mutex);
2713 up_write(&sb->s_umount);
2714 }
2715 return ret;
2716 }
2717
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2718 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2719 struct btrfs_device *device)
2720 {
2721 int ret;
2722 struct btrfs_path *path;
2723 struct btrfs_root *root = device->fs_info->chunk_root;
2724 struct btrfs_dev_item *dev_item;
2725 struct extent_buffer *leaf;
2726 struct btrfs_key key;
2727
2728 path = btrfs_alloc_path();
2729 if (!path)
2730 return -ENOMEM;
2731
2732 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2733 key.type = BTRFS_DEV_ITEM_KEY;
2734 key.offset = device->devid;
2735
2736 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2737 if (ret < 0)
2738 goto out;
2739
2740 if (ret > 0) {
2741 ret = -ENOENT;
2742 goto out;
2743 }
2744
2745 leaf = path->nodes[0];
2746 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2747
2748 btrfs_set_device_id(leaf, dev_item, device->devid);
2749 btrfs_set_device_type(leaf, dev_item, device->type);
2750 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2751 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2752 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2753 btrfs_set_device_total_bytes(leaf, dev_item,
2754 btrfs_device_get_disk_total_bytes(device));
2755 btrfs_set_device_bytes_used(leaf, dev_item,
2756 btrfs_device_get_bytes_used(device));
2757 btrfs_mark_buffer_dirty(leaf);
2758
2759 out:
2760 btrfs_free_path(path);
2761 return ret;
2762 }
2763
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2764 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2765 struct btrfs_device *device, u64 new_size)
2766 {
2767 struct btrfs_fs_info *fs_info = device->fs_info;
2768 struct btrfs_super_block *super_copy = fs_info->super_copy;
2769 u64 old_total;
2770 u64 diff;
2771
2772 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2773 return -EACCES;
2774
2775 new_size = round_down(new_size, fs_info->sectorsize);
2776
2777 mutex_lock(&fs_info->chunk_mutex);
2778 old_total = btrfs_super_total_bytes(super_copy);
2779 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2780
2781 if (new_size <= device->total_bytes ||
2782 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2783 mutex_unlock(&fs_info->chunk_mutex);
2784 return -EINVAL;
2785 }
2786
2787 btrfs_set_super_total_bytes(super_copy,
2788 round_down(old_total + diff, fs_info->sectorsize));
2789 device->fs_devices->total_rw_bytes += diff;
2790
2791 btrfs_device_set_total_bytes(device, new_size);
2792 btrfs_device_set_disk_total_bytes(device, new_size);
2793 btrfs_clear_space_info_full(device->fs_info);
2794 if (list_empty(&device->post_commit_list))
2795 list_add_tail(&device->post_commit_list,
2796 &trans->transaction->dev_update_list);
2797 mutex_unlock(&fs_info->chunk_mutex);
2798
2799 return btrfs_update_device(trans, device);
2800 }
2801
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2802 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2803 {
2804 struct btrfs_fs_info *fs_info = trans->fs_info;
2805 struct btrfs_root *root = fs_info->chunk_root;
2806 int ret;
2807 struct btrfs_path *path;
2808 struct btrfs_key key;
2809
2810 path = btrfs_alloc_path();
2811 if (!path)
2812 return -ENOMEM;
2813
2814 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2815 key.offset = chunk_offset;
2816 key.type = BTRFS_CHUNK_ITEM_KEY;
2817
2818 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2819 if (ret < 0)
2820 goto out;
2821 else if (ret > 0) { /* Logic error or corruption */
2822 btrfs_handle_fs_error(fs_info, -ENOENT,
2823 "Failed lookup while freeing chunk.");
2824 ret = -ENOENT;
2825 goto out;
2826 }
2827
2828 ret = btrfs_del_item(trans, root, path);
2829 if (ret < 0)
2830 btrfs_handle_fs_error(fs_info, ret,
2831 "Failed to delete chunk item.");
2832 out:
2833 btrfs_free_path(path);
2834 return ret;
2835 }
2836
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2837 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2838 {
2839 struct btrfs_super_block *super_copy = fs_info->super_copy;
2840 struct btrfs_disk_key *disk_key;
2841 struct btrfs_chunk *chunk;
2842 u8 *ptr;
2843 int ret = 0;
2844 u32 num_stripes;
2845 u32 array_size;
2846 u32 len = 0;
2847 u32 cur;
2848 struct btrfs_key key;
2849
2850 mutex_lock(&fs_info->chunk_mutex);
2851 array_size = btrfs_super_sys_array_size(super_copy);
2852
2853 ptr = super_copy->sys_chunk_array;
2854 cur = 0;
2855
2856 while (cur < array_size) {
2857 disk_key = (struct btrfs_disk_key *)ptr;
2858 btrfs_disk_key_to_cpu(&key, disk_key);
2859
2860 len = sizeof(*disk_key);
2861
2862 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2863 chunk = (struct btrfs_chunk *)(ptr + len);
2864 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2865 len += btrfs_chunk_item_size(num_stripes);
2866 } else {
2867 ret = -EIO;
2868 break;
2869 }
2870 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2871 key.offset == chunk_offset) {
2872 memmove(ptr, ptr + len, array_size - (cur + len));
2873 array_size -= len;
2874 btrfs_set_super_sys_array_size(super_copy, array_size);
2875 } else {
2876 ptr += len;
2877 cur += len;
2878 }
2879 }
2880 mutex_unlock(&fs_info->chunk_mutex);
2881 return ret;
2882 }
2883
2884 /*
2885 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2886 * @logical: Logical block offset in bytes.
2887 * @length: Length of extent in bytes.
2888 *
2889 * Return: Chunk mapping or ERR_PTR.
2890 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2891 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2892 u64 logical, u64 length)
2893 {
2894 struct extent_map_tree *em_tree;
2895 struct extent_map *em;
2896
2897 em_tree = &fs_info->mapping_tree;
2898 read_lock(&em_tree->lock);
2899 em = lookup_extent_mapping(em_tree, logical, length);
2900 read_unlock(&em_tree->lock);
2901
2902 if (!em) {
2903 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2904 logical, length);
2905 return ERR_PTR(-EINVAL);
2906 }
2907
2908 if (em->start > logical || em->start + em->len < logical) {
2909 btrfs_crit(fs_info,
2910 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2911 logical, length, em->start, em->start + em->len);
2912 free_extent_map(em);
2913 return ERR_PTR(-EINVAL);
2914 }
2915
2916 /* callers are responsible for dropping em's ref. */
2917 return em;
2918 }
2919
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2920 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2921 {
2922 struct btrfs_fs_info *fs_info = trans->fs_info;
2923 struct extent_map *em;
2924 struct map_lookup *map;
2925 u64 dev_extent_len = 0;
2926 int i, ret = 0;
2927 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2928
2929 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2930 if (IS_ERR(em)) {
2931 /*
2932 * This is a logic error, but we don't want to just rely on the
2933 * user having built with ASSERT enabled, so if ASSERT doesn't
2934 * do anything we still error out.
2935 */
2936 ASSERT(0);
2937 return PTR_ERR(em);
2938 }
2939 map = em->map_lookup;
2940 mutex_lock(&fs_info->chunk_mutex);
2941 check_system_chunk(trans, map->type);
2942 mutex_unlock(&fs_info->chunk_mutex);
2943
2944 /*
2945 * Take the device list mutex to prevent races with the final phase of
2946 * a device replace operation that replaces the device object associated
2947 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2948 */
2949 mutex_lock(&fs_devices->device_list_mutex);
2950 for (i = 0; i < map->num_stripes; i++) {
2951 struct btrfs_device *device = map->stripes[i].dev;
2952 ret = btrfs_free_dev_extent(trans, device,
2953 map->stripes[i].physical,
2954 &dev_extent_len);
2955 if (ret) {
2956 mutex_unlock(&fs_devices->device_list_mutex);
2957 btrfs_abort_transaction(trans, ret);
2958 goto out;
2959 }
2960
2961 if (device->bytes_used > 0) {
2962 mutex_lock(&fs_info->chunk_mutex);
2963 btrfs_device_set_bytes_used(device,
2964 device->bytes_used - dev_extent_len);
2965 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2966 btrfs_clear_space_info_full(fs_info);
2967 mutex_unlock(&fs_info->chunk_mutex);
2968 }
2969
2970 ret = btrfs_update_device(trans, device);
2971 if (ret) {
2972 mutex_unlock(&fs_devices->device_list_mutex);
2973 btrfs_abort_transaction(trans, ret);
2974 goto out;
2975 }
2976 }
2977 mutex_unlock(&fs_devices->device_list_mutex);
2978
2979 ret = btrfs_free_chunk(trans, chunk_offset);
2980 if (ret) {
2981 btrfs_abort_transaction(trans, ret);
2982 goto out;
2983 }
2984
2985 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2986
2987 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2988 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2989 if (ret) {
2990 btrfs_abort_transaction(trans, ret);
2991 goto out;
2992 }
2993 }
2994
2995 ret = btrfs_remove_block_group(trans, chunk_offset, em);
2996 if (ret) {
2997 btrfs_abort_transaction(trans, ret);
2998 goto out;
2999 }
3000
3001 out:
3002 /* once for us */
3003 free_extent_map(em);
3004 return ret;
3005 }
3006
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3007 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3008 {
3009 struct btrfs_root *root = fs_info->chunk_root;
3010 struct btrfs_trans_handle *trans;
3011 struct btrfs_block_group *block_group;
3012 int ret;
3013
3014 /*
3015 * Prevent races with automatic removal of unused block groups.
3016 * After we relocate and before we remove the chunk with offset
3017 * chunk_offset, automatic removal of the block group can kick in,
3018 * resulting in a failure when calling btrfs_remove_chunk() below.
3019 *
3020 * Make sure to acquire this mutex before doing a tree search (dev
3021 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3022 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3023 * we release the path used to search the chunk/dev tree and before
3024 * the current task acquires this mutex and calls us.
3025 */
3026 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3027
3028 /* step one, relocate all the extents inside this chunk */
3029 btrfs_scrub_pause(fs_info);
3030 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3031 btrfs_scrub_continue(fs_info);
3032 if (ret)
3033 return ret;
3034
3035 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3036 if (!block_group)
3037 return -ENOENT;
3038 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3039 btrfs_put_block_group(block_group);
3040
3041 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3042 chunk_offset);
3043 if (IS_ERR(trans)) {
3044 ret = PTR_ERR(trans);
3045 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3046 return ret;
3047 }
3048
3049 /*
3050 * step two, delete the device extents and the
3051 * chunk tree entries
3052 */
3053 ret = btrfs_remove_chunk(trans, chunk_offset);
3054 btrfs_end_transaction(trans);
3055 return ret;
3056 }
3057
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3058 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3059 {
3060 struct btrfs_root *chunk_root = fs_info->chunk_root;
3061 struct btrfs_path *path;
3062 struct extent_buffer *leaf;
3063 struct btrfs_chunk *chunk;
3064 struct btrfs_key key;
3065 struct btrfs_key found_key;
3066 u64 chunk_type;
3067 bool retried = false;
3068 int failed = 0;
3069 int ret;
3070
3071 path = btrfs_alloc_path();
3072 if (!path)
3073 return -ENOMEM;
3074
3075 again:
3076 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3077 key.offset = (u64)-1;
3078 key.type = BTRFS_CHUNK_ITEM_KEY;
3079
3080 while (1) {
3081 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3082 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3083 if (ret < 0) {
3084 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3085 goto error;
3086 }
3087 BUG_ON(ret == 0); /* Corruption */
3088
3089 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3090 key.type);
3091 if (ret)
3092 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3093 if (ret < 0)
3094 goto error;
3095 if (ret > 0)
3096 break;
3097
3098 leaf = path->nodes[0];
3099 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3100
3101 chunk = btrfs_item_ptr(leaf, path->slots[0],
3102 struct btrfs_chunk);
3103 chunk_type = btrfs_chunk_type(leaf, chunk);
3104 btrfs_release_path(path);
3105
3106 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3107 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3108 if (ret == -ENOSPC)
3109 failed++;
3110 else
3111 BUG_ON(ret);
3112 }
3113 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3114
3115 if (found_key.offset == 0)
3116 break;
3117 key.offset = found_key.offset - 1;
3118 }
3119 ret = 0;
3120 if (failed && !retried) {
3121 failed = 0;
3122 retried = true;
3123 goto again;
3124 } else if (WARN_ON(failed && retried)) {
3125 ret = -ENOSPC;
3126 }
3127 error:
3128 btrfs_free_path(path);
3129 return ret;
3130 }
3131
3132 /*
3133 * return 1 : allocate a data chunk successfully,
3134 * return <0: errors during allocating a data chunk,
3135 * return 0 : no need to allocate a data chunk.
3136 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3137 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3138 u64 chunk_offset)
3139 {
3140 struct btrfs_block_group *cache;
3141 u64 bytes_used;
3142 u64 chunk_type;
3143
3144 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3145 ASSERT(cache);
3146 chunk_type = cache->flags;
3147 btrfs_put_block_group(cache);
3148
3149 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3150 return 0;
3151
3152 spin_lock(&fs_info->data_sinfo->lock);
3153 bytes_used = fs_info->data_sinfo->bytes_used;
3154 spin_unlock(&fs_info->data_sinfo->lock);
3155
3156 if (!bytes_used) {
3157 struct btrfs_trans_handle *trans;
3158 int ret;
3159
3160 trans = btrfs_join_transaction(fs_info->tree_root);
3161 if (IS_ERR(trans))
3162 return PTR_ERR(trans);
3163
3164 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3165 btrfs_end_transaction(trans);
3166 if (ret < 0)
3167 return ret;
3168 return 1;
3169 }
3170
3171 return 0;
3172 }
3173
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3174 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3175 struct btrfs_balance_control *bctl)
3176 {
3177 struct btrfs_root *root = fs_info->tree_root;
3178 struct btrfs_trans_handle *trans;
3179 struct btrfs_balance_item *item;
3180 struct btrfs_disk_balance_args disk_bargs;
3181 struct btrfs_path *path;
3182 struct extent_buffer *leaf;
3183 struct btrfs_key key;
3184 int ret, err;
3185
3186 path = btrfs_alloc_path();
3187 if (!path)
3188 return -ENOMEM;
3189
3190 trans = btrfs_start_transaction(root, 0);
3191 if (IS_ERR(trans)) {
3192 btrfs_free_path(path);
3193 return PTR_ERR(trans);
3194 }
3195
3196 key.objectid = BTRFS_BALANCE_OBJECTID;
3197 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3198 key.offset = 0;
3199
3200 ret = btrfs_insert_empty_item(trans, root, path, &key,
3201 sizeof(*item));
3202 if (ret)
3203 goto out;
3204
3205 leaf = path->nodes[0];
3206 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3207
3208 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3209
3210 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3211 btrfs_set_balance_data(leaf, item, &disk_bargs);
3212 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3213 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3214 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3215 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3216
3217 btrfs_set_balance_flags(leaf, item, bctl->flags);
3218
3219 btrfs_mark_buffer_dirty(leaf);
3220 out:
3221 btrfs_free_path(path);
3222 err = btrfs_commit_transaction(trans);
3223 if (err && !ret)
3224 ret = err;
3225 return ret;
3226 }
3227
del_balance_item(struct btrfs_fs_info * fs_info)3228 static int del_balance_item(struct btrfs_fs_info *fs_info)
3229 {
3230 struct btrfs_root *root = fs_info->tree_root;
3231 struct btrfs_trans_handle *trans;
3232 struct btrfs_path *path;
3233 struct btrfs_key key;
3234 int ret, err;
3235
3236 path = btrfs_alloc_path();
3237 if (!path)
3238 return -ENOMEM;
3239
3240 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3241 if (IS_ERR(trans)) {
3242 btrfs_free_path(path);
3243 return PTR_ERR(trans);
3244 }
3245
3246 key.objectid = BTRFS_BALANCE_OBJECTID;
3247 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3248 key.offset = 0;
3249
3250 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3251 if (ret < 0)
3252 goto out;
3253 if (ret > 0) {
3254 ret = -ENOENT;
3255 goto out;
3256 }
3257
3258 ret = btrfs_del_item(trans, root, path);
3259 out:
3260 btrfs_free_path(path);
3261 err = btrfs_commit_transaction(trans);
3262 if (err && !ret)
3263 ret = err;
3264 return ret;
3265 }
3266
3267 /*
3268 * This is a heuristic used to reduce the number of chunks balanced on
3269 * resume after balance was interrupted.
3270 */
update_balance_args(struct btrfs_balance_control * bctl)3271 static void update_balance_args(struct btrfs_balance_control *bctl)
3272 {
3273 /*
3274 * Turn on soft mode for chunk types that were being converted.
3275 */
3276 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3277 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3278 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3279 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3280 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3281 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3282
3283 /*
3284 * Turn on usage filter if is not already used. The idea is
3285 * that chunks that we have already balanced should be
3286 * reasonably full. Don't do it for chunks that are being
3287 * converted - that will keep us from relocating unconverted
3288 * (albeit full) chunks.
3289 */
3290 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3291 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3292 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3293 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3294 bctl->data.usage = 90;
3295 }
3296 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3297 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3298 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3299 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3300 bctl->sys.usage = 90;
3301 }
3302 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3303 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3304 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3305 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3306 bctl->meta.usage = 90;
3307 }
3308 }
3309
3310 /*
3311 * Clear the balance status in fs_info and delete the balance item from disk.
3312 */
reset_balance_state(struct btrfs_fs_info * fs_info)3313 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3314 {
3315 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3316 int ret;
3317
3318 BUG_ON(!fs_info->balance_ctl);
3319
3320 spin_lock(&fs_info->balance_lock);
3321 fs_info->balance_ctl = NULL;
3322 spin_unlock(&fs_info->balance_lock);
3323
3324 kfree(bctl);
3325 ret = del_balance_item(fs_info);
3326 if (ret)
3327 btrfs_handle_fs_error(fs_info, ret, NULL);
3328 }
3329
3330 /*
3331 * Balance filters. Return 1 if chunk should be filtered out
3332 * (should not be balanced).
3333 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3334 static int chunk_profiles_filter(u64 chunk_type,
3335 struct btrfs_balance_args *bargs)
3336 {
3337 chunk_type = chunk_to_extended(chunk_type) &
3338 BTRFS_EXTENDED_PROFILE_MASK;
3339
3340 if (bargs->profiles & chunk_type)
3341 return 0;
3342
3343 return 1;
3344 }
3345
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3346 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3347 struct btrfs_balance_args *bargs)
3348 {
3349 struct btrfs_block_group *cache;
3350 u64 chunk_used;
3351 u64 user_thresh_min;
3352 u64 user_thresh_max;
3353 int ret = 1;
3354
3355 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3356 chunk_used = cache->used;
3357
3358 if (bargs->usage_min == 0)
3359 user_thresh_min = 0;
3360 else
3361 user_thresh_min = div_factor_fine(cache->length,
3362 bargs->usage_min);
3363
3364 if (bargs->usage_max == 0)
3365 user_thresh_max = 1;
3366 else if (bargs->usage_max > 100)
3367 user_thresh_max = cache->length;
3368 else
3369 user_thresh_max = div_factor_fine(cache->length,
3370 bargs->usage_max);
3371
3372 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3373 ret = 0;
3374
3375 btrfs_put_block_group(cache);
3376 return ret;
3377 }
3378
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3379 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3380 u64 chunk_offset, struct btrfs_balance_args *bargs)
3381 {
3382 struct btrfs_block_group *cache;
3383 u64 chunk_used, user_thresh;
3384 int ret = 1;
3385
3386 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3387 chunk_used = cache->used;
3388
3389 if (bargs->usage_min == 0)
3390 user_thresh = 1;
3391 else if (bargs->usage > 100)
3392 user_thresh = cache->length;
3393 else
3394 user_thresh = div_factor_fine(cache->length, bargs->usage);
3395
3396 if (chunk_used < user_thresh)
3397 ret = 0;
3398
3399 btrfs_put_block_group(cache);
3400 return ret;
3401 }
3402
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3403 static int chunk_devid_filter(struct extent_buffer *leaf,
3404 struct btrfs_chunk *chunk,
3405 struct btrfs_balance_args *bargs)
3406 {
3407 struct btrfs_stripe *stripe;
3408 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3409 int i;
3410
3411 for (i = 0; i < num_stripes; i++) {
3412 stripe = btrfs_stripe_nr(chunk, i);
3413 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3414 return 0;
3415 }
3416
3417 return 1;
3418 }
3419
calc_data_stripes(u64 type,int num_stripes)3420 static u64 calc_data_stripes(u64 type, int num_stripes)
3421 {
3422 const int index = btrfs_bg_flags_to_raid_index(type);
3423 const int ncopies = btrfs_raid_array[index].ncopies;
3424 const int nparity = btrfs_raid_array[index].nparity;
3425
3426 if (nparity)
3427 return num_stripes - nparity;
3428 else
3429 return num_stripes / ncopies;
3430 }
3431
3432 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3433 static int chunk_drange_filter(struct extent_buffer *leaf,
3434 struct btrfs_chunk *chunk,
3435 struct btrfs_balance_args *bargs)
3436 {
3437 struct btrfs_stripe *stripe;
3438 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3439 u64 stripe_offset;
3440 u64 stripe_length;
3441 u64 type;
3442 int factor;
3443 int i;
3444
3445 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3446 return 0;
3447
3448 type = btrfs_chunk_type(leaf, chunk);
3449 factor = calc_data_stripes(type, num_stripes);
3450
3451 for (i = 0; i < num_stripes; i++) {
3452 stripe = btrfs_stripe_nr(chunk, i);
3453 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3454 continue;
3455
3456 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3457 stripe_length = btrfs_chunk_length(leaf, chunk);
3458 stripe_length = div_u64(stripe_length, factor);
3459
3460 if (stripe_offset < bargs->pend &&
3461 stripe_offset + stripe_length > bargs->pstart)
3462 return 0;
3463 }
3464
3465 return 1;
3466 }
3467
3468 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3469 static int chunk_vrange_filter(struct extent_buffer *leaf,
3470 struct btrfs_chunk *chunk,
3471 u64 chunk_offset,
3472 struct btrfs_balance_args *bargs)
3473 {
3474 if (chunk_offset < bargs->vend &&
3475 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3476 /* at least part of the chunk is inside this vrange */
3477 return 0;
3478
3479 return 1;
3480 }
3481
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3482 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3483 struct btrfs_chunk *chunk,
3484 struct btrfs_balance_args *bargs)
3485 {
3486 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3487
3488 if (bargs->stripes_min <= num_stripes
3489 && num_stripes <= bargs->stripes_max)
3490 return 0;
3491
3492 return 1;
3493 }
3494
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3495 static int chunk_soft_convert_filter(u64 chunk_type,
3496 struct btrfs_balance_args *bargs)
3497 {
3498 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3499 return 0;
3500
3501 chunk_type = chunk_to_extended(chunk_type) &
3502 BTRFS_EXTENDED_PROFILE_MASK;
3503
3504 if (bargs->target == chunk_type)
3505 return 1;
3506
3507 return 0;
3508 }
3509
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3510 static int should_balance_chunk(struct extent_buffer *leaf,
3511 struct btrfs_chunk *chunk, u64 chunk_offset)
3512 {
3513 struct btrfs_fs_info *fs_info = leaf->fs_info;
3514 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3515 struct btrfs_balance_args *bargs = NULL;
3516 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3517
3518 /* type filter */
3519 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3520 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3521 return 0;
3522 }
3523
3524 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3525 bargs = &bctl->data;
3526 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3527 bargs = &bctl->sys;
3528 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3529 bargs = &bctl->meta;
3530
3531 /* profiles filter */
3532 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3533 chunk_profiles_filter(chunk_type, bargs)) {
3534 return 0;
3535 }
3536
3537 /* usage filter */
3538 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3539 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3540 return 0;
3541 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3542 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3543 return 0;
3544 }
3545
3546 /* devid filter */
3547 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3548 chunk_devid_filter(leaf, chunk, bargs)) {
3549 return 0;
3550 }
3551
3552 /* drange filter, makes sense only with devid filter */
3553 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3554 chunk_drange_filter(leaf, chunk, bargs)) {
3555 return 0;
3556 }
3557
3558 /* vrange filter */
3559 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3560 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3561 return 0;
3562 }
3563
3564 /* stripes filter */
3565 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3566 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3567 return 0;
3568 }
3569
3570 /* soft profile changing mode */
3571 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3572 chunk_soft_convert_filter(chunk_type, bargs)) {
3573 return 0;
3574 }
3575
3576 /*
3577 * limited by count, must be the last filter
3578 */
3579 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3580 if (bargs->limit == 0)
3581 return 0;
3582 else
3583 bargs->limit--;
3584 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3585 /*
3586 * Same logic as the 'limit' filter; the minimum cannot be
3587 * determined here because we do not have the global information
3588 * about the count of all chunks that satisfy the filters.
3589 */
3590 if (bargs->limit_max == 0)
3591 return 0;
3592 else
3593 bargs->limit_max--;
3594 }
3595
3596 return 1;
3597 }
3598
__btrfs_balance(struct btrfs_fs_info * fs_info)3599 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3600 {
3601 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3602 struct btrfs_root *chunk_root = fs_info->chunk_root;
3603 u64 chunk_type;
3604 struct btrfs_chunk *chunk;
3605 struct btrfs_path *path = NULL;
3606 struct btrfs_key key;
3607 struct btrfs_key found_key;
3608 struct extent_buffer *leaf;
3609 int slot;
3610 int ret;
3611 int enospc_errors = 0;
3612 bool counting = true;
3613 /* The single value limit and min/max limits use the same bytes in the */
3614 u64 limit_data = bctl->data.limit;
3615 u64 limit_meta = bctl->meta.limit;
3616 u64 limit_sys = bctl->sys.limit;
3617 u32 count_data = 0;
3618 u32 count_meta = 0;
3619 u32 count_sys = 0;
3620 int chunk_reserved = 0;
3621
3622 path = btrfs_alloc_path();
3623 if (!path) {
3624 ret = -ENOMEM;
3625 goto error;
3626 }
3627
3628 /* zero out stat counters */
3629 spin_lock(&fs_info->balance_lock);
3630 memset(&bctl->stat, 0, sizeof(bctl->stat));
3631 spin_unlock(&fs_info->balance_lock);
3632 again:
3633 if (!counting) {
3634 /*
3635 * The single value limit and min/max limits use the same bytes
3636 * in the
3637 */
3638 bctl->data.limit = limit_data;
3639 bctl->meta.limit = limit_meta;
3640 bctl->sys.limit = limit_sys;
3641 }
3642 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3643 key.offset = (u64)-1;
3644 key.type = BTRFS_CHUNK_ITEM_KEY;
3645
3646 while (1) {
3647 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3648 atomic_read(&fs_info->balance_cancel_req)) {
3649 ret = -ECANCELED;
3650 goto error;
3651 }
3652
3653 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3654 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3655 if (ret < 0) {
3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3657 goto error;
3658 }
3659
3660 /*
3661 * this shouldn't happen, it means the last relocate
3662 * failed
3663 */
3664 if (ret == 0)
3665 BUG(); /* FIXME break ? */
3666
3667 ret = btrfs_previous_item(chunk_root, path, 0,
3668 BTRFS_CHUNK_ITEM_KEY);
3669 if (ret) {
3670 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3671 ret = 0;
3672 break;
3673 }
3674
3675 leaf = path->nodes[0];
3676 slot = path->slots[0];
3677 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3678
3679 if (found_key.objectid != key.objectid) {
3680 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3681 break;
3682 }
3683
3684 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3685 chunk_type = btrfs_chunk_type(leaf, chunk);
3686
3687 if (!counting) {
3688 spin_lock(&fs_info->balance_lock);
3689 bctl->stat.considered++;
3690 spin_unlock(&fs_info->balance_lock);
3691 }
3692
3693 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3694
3695 btrfs_release_path(path);
3696 if (!ret) {
3697 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3698 goto loop;
3699 }
3700
3701 if (counting) {
3702 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3703 spin_lock(&fs_info->balance_lock);
3704 bctl->stat.expected++;
3705 spin_unlock(&fs_info->balance_lock);
3706
3707 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3708 count_data++;
3709 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3710 count_sys++;
3711 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3712 count_meta++;
3713
3714 goto loop;
3715 }
3716
3717 /*
3718 * Apply limit_min filter, no need to check if the LIMITS
3719 * filter is used, limit_min is 0 by default
3720 */
3721 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3722 count_data < bctl->data.limit_min)
3723 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3724 count_meta < bctl->meta.limit_min)
3725 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3726 count_sys < bctl->sys.limit_min)) {
3727 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3728 goto loop;
3729 }
3730
3731 if (!chunk_reserved) {
3732 /*
3733 * We may be relocating the only data chunk we have,
3734 * which could potentially end up with losing data's
3735 * raid profile, so lets allocate an empty one in
3736 * advance.
3737 */
3738 ret = btrfs_may_alloc_data_chunk(fs_info,
3739 found_key.offset);
3740 if (ret < 0) {
3741 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3742 goto error;
3743 } else if (ret == 1) {
3744 chunk_reserved = 1;
3745 }
3746 }
3747
3748 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3749 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3750 if (ret == -ENOSPC) {
3751 enospc_errors++;
3752 } else if (ret == -ETXTBSY) {
3753 btrfs_info(fs_info,
3754 "skipping relocation of block group %llu due to active swapfile",
3755 found_key.offset);
3756 ret = 0;
3757 } else if (ret) {
3758 goto error;
3759 } else {
3760 spin_lock(&fs_info->balance_lock);
3761 bctl->stat.completed++;
3762 spin_unlock(&fs_info->balance_lock);
3763 }
3764 loop:
3765 if (found_key.offset == 0)
3766 break;
3767 key.offset = found_key.offset - 1;
3768 }
3769
3770 if (counting) {
3771 btrfs_release_path(path);
3772 counting = false;
3773 goto again;
3774 }
3775 error:
3776 btrfs_free_path(path);
3777 if (enospc_errors) {
3778 btrfs_info(fs_info, "%d enospc errors during balance",
3779 enospc_errors);
3780 if (!ret)
3781 ret = -ENOSPC;
3782 }
3783
3784 return ret;
3785 }
3786
3787 /**
3788 * alloc_profile_is_valid - see if a given profile is valid and reduced
3789 * @flags: profile to validate
3790 * @extended: if true @flags is treated as an extended profile
3791 */
alloc_profile_is_valid(u64 flags,int extended)3792 static int alloc_profile_is_valid(u64 flags, int extended)
3793 {
3794 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3795 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3796
3797 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3798
3799 /* 1) check that all other bits are zeroed */
3800 if (flags & ~mask)
3801 return 0;
3802
3803 /* 2) see if profile is reduced */
3804 if (flags == 0)
3805 return !extended; /* "0" is valid for usual profiles */
3806
3807 return has_single_bit_set(flags);
3808 }
3809
balance_need_close(struct btrfs_fs_info * fs_info)3810 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3811 {
3812 /* cancel requested || normal exit path */
3813 return atomic_read(&fs_info->balance_cancel_req) ||
3814 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3815 atomic_read(&fs_info->balance_cancel_req) == 0);
3816 }
3817
3818 /*
3819 * Validate target profile against allowed profiles and return true if it's OK.
3820 * Otherwise print the error message and return false.
3821 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)3822 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3823 const struct btrfs_balance_args *bargs,
3824 u64 allowed, const char *type)
3825 {
3826 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3827 return true;
3828
3829 /* Profile is valid and does not have bits outside of the allowed set */
3830 if (alloc_profile_is_valid(bargs->target, 1) &&
3831 (bargs->target & ~allowed) == 0)
3832 return true;
3833
3834 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3835 type, btrfs_bg_type_to_raid_name(bargs->target));
3836 return false;
3837 }
3838
3839 /*
3840 * Fill @buf with textual description of balance filter flags @bargs, up to
3841 * @size_buf including the terminating null. The output may be trimmed if it
3842 * does not fit into the provided buffer.
3843 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)3844 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3845 u32 size_buf)
3846 {
3847 int ret;
3848 u32 size_bp = size_buf;
3849 char *bp = buf;
3850 u64 flags = bargs->flags;
3851 char tmp_buf[128] = {'\0'};
3852
3853 if (!flags)
3854 return;
3855
3856 #define CHECK_APPEND_NOARG(a) \
3857 do { \
3858 ret = snprintf(bp, size_bp, (a)); \
3859 if (ret < 0 || ret >= size_bp) \
3860 goto out_overflow; \
3861 size_bp -= ret; \
3862 bp += ret; \
3863 } while (0)
3864
3865 #define CHECK_APPEND_1ARG(a, v1) \
3866 do { \
3867 ret = snprintf(bp, size_bp, (a), (v1)); \
3868 if (ret < 0 || ret >= size_bp) \
3869 goto out_overflow; \
3870 size_bp -= ret; \
3871 bp += ret; \
3872 } while (0)
3873
3874 #define CHECK_APPEND_2ARG(a, v1, v2) \
3875 do { \
3876 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3877 if (ret < 0 || ret >= size_bp) \
3878 goto out_overflow; \
3879 size_bp -= ret; \
3880 bp += ret; \
3881 } while (0)
3882
3883 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3884 CHECK_APPEND_1ARG("convert=%s,",
3885 btrfs_bg_type_to_raid_name(bargs->target));
3886
3887 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3888 CHECK_APPEND_NOARG("soft,");
3889
3890 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3891 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3892 sizeof(tmp_buf));
3893 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3894 }
3895
3896 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3897 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3898
3899 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3900 CHECK_APPEND_2ARG("usage=%u..%u,",
3901 bargs->usage_min, bargs->usage_max);
3902
3903 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3904 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3905
3906 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3907 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3908 bargs->pstart, bargs->pend);
3909
3910 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3911 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3912 bargs->vstart, bargs->vend);
3913
3914 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3915 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3916
3917 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3918 CHECK_APPEND_2ARG("limit=%u..%u,",
3919 bargs->limit_min, bargs->limit_max);
3920
3921 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3922 CHECK_APPEND_2ARG("stripes=%u..%u,",
3923 bargs->stripes_min, bargs->stripes_max);
3924
3925 #undef CHECK_APPEND_2ARG
3926 #undef CHECK_APPEND_1ARG
3927 #undef CHECK_APPEND_NOARG
3928
3929 out_overflow:
3930
3931 if (size_bp < size_buf)
3932 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3933 else
3934 buf[0] = '\0';
3935 }
3936
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)3937 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3938 {
3939 u32 size_buf = 1024;
3940 char tmp_buf[192] = {'\0'};
3941 char *buf;
3942 char *bp;
3943 u32 size_bp = size_buf;
3944 int ret;
3945 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3946
3947 buf = kzalloc(size_buf, GFP_KERNEL);
3948 if (!buf)
3949 return;
3950
3951 bp = buf;
3952
3953 #define CHECK_APPEND_1ARG(a, v1) \
3954 do { \
3955 ret = snprintf(bp, size_bp, (a), (v1)); \
3956 if (ret < 0 || ret >= size_bp) \
3957 goto out_overflow; \
3958 size_bp -= ret; \
3959 bp += ret; \
3960 } while (0)
3961
3962 if (bctl->flags & BTRFS_BALANCE_FORCE)
3963 CHECK_APPEND_1ARG("%s", "-f ");
3964
3965 if (bctl->flags & BTRFS_BALANCE_DATA) {
3966 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3967 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3968 }
3969
3970 if (bctl->flags & BTRFS_BALANCE_METADATA) {
3971 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3972 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3973 }
3974
3975 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3976 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3977 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3978 }
3979
3980 #undef CHECK_APPEND_1ARG
3981
3982 out_overflow:
3983
3984 if (size_bp < size_buf)
3985 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3986 btrfs_info(fs_info, "balance: %s %s",
3987 (bctl->flags & BTRFS_BALANCE_RESUME) ?
3988 "resume" : "start", buf);
3989
3990 kfree(buf);
3991 }
3992
3993 /*
3994 * Should be called with balance mutexe held
3995 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)3996 int btrfs_balance(struct btrfs_fs_info *fs_info,
3997 struct btrfs_balance_control *bctl,
3998 struct btrfs_ioctl_balance_args *bargs)
3999 {
4000 u64 meta_target, data_target;
4001 u64 allowed;
4002 int mixed = 0;
4003 int ret;
4004 u64 num_devices;
4005 unsigned seq;
4006 bool reducing_redundancy;
4007 int i;
4008
4009 if (btrfs_fs_closing(fs_info) ||
4010 atomic_read(&fs_info->balance_pause_req) ||
4011 btrfs_should_cancel_balance(fs_info)) {
4012 ret = -EINVAL;
4013 goto out;
4014 }
4015
4016 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4017 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4018 mixed = 1;
4019
4020 /*
4021 * In case of mixed groups both data and meta should be picked,
4022 * and identical options should be given for both of them.
4023 */
4024 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4025 if (mixed && (bctl->flags & allowed)) {
4026 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4027 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4028 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4029 btrfs_err(fs_info,
4030 "balance: mixed groups data and metadata options must be the same");
4031 ret = -EINVAL;
4032 goto out;
4033 }
4034 }
4035
4036 /*
4037 * rw_devices will not change at the moment, device add/delete/replace
4038 * are exclusive
4039 */
4040 num_devices = fs_info->fs_devices->rw_devices;
4041
4042 /*
4043 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4044 * special bit for it, to make it easier to distinguish. Thus we need
4045 * to set it manually, or balance would refuse the profile.
4046 */
4047 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4048 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4049 if (num_devices >= btrfs_raid_array[i].devs_min)
4050 allowed |= btrfs_raid_array[i].bg_flag;
4051
4052 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4053 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4054 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4055 ret = -EINVAL;
4056 goto out;
4057 }
4058
4059 /*
4060 * Allow to reduce metadata or system integrity only if force set for
4061 * profiles with redundancy (copies, parity)
4062 */
4063 allowed = 0;
4064 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4065 if (btrfs_raid_array[i].ncopies >= 2 ||
4066 btrfs_raid_array[i].tolerated_failures >= 1)
4067 allowed |= btrfs_raid_array[i].bg_flag;
4068 }
4069 do {
4070 seq = read_seqbegin(&fs_info->profiles_lock);
4071
4072 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4073 (fs_info->avail_system_alloc_bits & allowed) &&
4074 !(bctl->sys.target & allowed)) ||
4075 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4076 (fs_info->avail_metadata_alloc_bits & allowed) &&
4077 !(bctl->meta.target & allowed)))
4078 reducing_redundancy = true;
4079 else
4080 reducing_redundancy = false;
4081
4082 /* if we're not converting, the target field is uninitialized */
4083 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4084 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4085 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4086 bctl->data.target : fs_info->avail_data_alloc_bits;
4087 } while (read_seqretry(&fs_info->profiles_lock, seq));
4088
4089 if (reducing_redundancy) {
4090 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4091 btrfs_info(fs_info,
4092 "balance: force reducing metadata redundancy");
4093 } else {
4094 btrfs_err(fs_info,
4095 "balance: reduces metadata redundancy, use --force if you want this");
4096 ret = -EINVAL;
4097 goto out;
4098 }
4099 }
4100
4101 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4102 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4103 btrfs_warn(fs_info,
4104 "balance: metadata profile %s has lower redundancy than data profile %s",
4105 btrfs_bg_type_to_raid_name(meta_target),
4106 btrfs_bg_type_to_raid_name(data_target));
4107 }
4108
4109 if (fs_info->send_in_progress) {
4110 btrfs_warn_rl(fs_info,
4111 "cannot run balance while send operations are in progress (%d in progress)",
4112 fs_info->send_in_progress);
4113 ret = -EAGAIN;
4114 goto out;
4115 }
4116
4117 ret = insert_balance_item(fs_info, bctl);
4118 if (ret && ret != -EEXIST)
4119 goto out;
4120
4121 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4122 BUG_ON(ret == -EEXIST);
4123 BUG_ON(fs_info->balance_ctl);
4124 spin_lock(&fs_info->balance_lock);
4125 fs_info->balance_ctl = bctl;
4126 spin_unlock(&fs_info->balance_lock);
4127 } else {
4128 BUG_ON(ret != -EEXIST);
4129 spin_lock(&fs_info->balance_lock);
4130 update_balance_args(bctl);
4131 spin_unlock(&fs_info->balance_lock);
4132 }
4133
4134 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4135 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4136 describe_balance_start_or_resume(fs_info);
4137 mutex_unlock(&fs_info->balance_mutex);
4138
4139 ret = __btrfs_balance(fs_info);
4140
4141 mutex_lock(&fs_info->balance_mutex);
4142 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4143 btrfs_info(fs_info, "balance: paused");
4144 /*
4145 * Balance can be canceled by:
4146 *
4147 * - Regular cancel request
4148 * Then ret == -ECANCELED and balance_cancel_req > 0
4149 *
4150 * - Fatal signal to "btrfs" process
4151 * Either the signal caught by wait_reserve_ticket() and callers
4152 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4153 * got -ECANCELED.
4154 * Either way, in this case balance_cancel_req = 0, and
4155 * ret == -EINTR or ret == -ECANCELED.
4156 *
4157 * So here we only check the return value to catch canceled balance.
4158 */
4159 else if (ret == -ECANCELED || ret == -EINTR)
4160 btrfs_info(fs_info, "balance: canceled");
4161 else
4162 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4163
4164 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4165
4166 if (bargs) {
4167 memset(bargs, 0, sizeof(*bargs));
4168 btrfs_update_ioctl_balance_args(fs_info, bargs);
4169 }
4170
4171 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4172 balance_need_close(fs_info)) {
4173 reset_balance_state(fs_info);
4174 btrfs_exclop_finish(fs_info);
4175 }
4176
4177 wake_up(&fs_info->balance_wait_q);
4178
4179 return ret;
4180 out:
4181 if (bctl->flags & BTRFS_BALANCE_RESUME)
4182 reset_balance_state(fs_info);
4183 else
4184 kfree(bctl);
4185 btrfs_exclop_finish(fs_info);
4186
4187 return ret;
4188 }
4189
balance_kthread(void * data)4190 static int balance_kthread(void *data)
4191 {
4192 struct btrfs_fs_info *fs_info = data;
4193 int ret = 0;
4194
4195 mutex_lock(&fs_info->balance_mutex);
4196 if (fs_info->balance_ctl)
4197 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4198 mutex_unlock(&fs_info->balance_mutex);
4199
4200 return ret;
4201 }
4202
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4203 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4204 {
4205 struct task_struct *tsk;
4206
4207 mutex_lock(&fs_info->balance_mutex);
4208 if (!fs_info->balance_ctl) {
4209 mutex_unlock(&fs_info->balance_mutex);
4210 return 0;
4211 }
4212 mutex_unlock(&fs_info->balance_mutex);
4213
4214 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4215 btrfs_info(fs_info, "balance: resume skipped");
4216 return 0;
4217 }
4218
4219 /*
4220 * A ro->rw remount sequence should continue with the paused balance
4221 * regardless of who pauses it, system or the user as of now, so set
4222 * the resume flag.
4223 */
4224 spin_lock(&fs_info->balance_lock);
4225 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4226 spin_unlock(&fs_info->balance_lock);
4227
4228 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4229 return PTR_ERR_OR_ZERO(tsk);
4230 }
4231
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4232 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4233 {
4234 struct btrfs_balance_control *bctl;
4235 struct btrfs_balance_item *item;
4236 struct btrfs_disk_balance_args disk_bargs;
4237 struct btrfs_path *path;
4238 struct extent_buffer *leaf;
4239 struct btrfs_key key;
4240 int ret;
4241
4242 path = btrfs_alloc_path();
4243 if (!path)
4244 return -ENOMEM;
4245
4246 key.objectid = BTRFS_BALANCE_OBJECTID;
4247 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4248 key.offset = 0;
4249
4250 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4251 if (ret < 0)
4252 goto out;
4253 if (ret > 0) { /* ret = -ENOENT; */
4254 ret = 0;
4255 goto out;
4256 }
4257
4258 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4259 if (!bctl) {
4260 ret = -ENOMEM;
4261 goto out;
4262 }
4263
4264 leaf = path->nodes[0];
4265 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4266
4267 bctl->flags = btrfs_balance_flags(leaf, item);
4268 bctl->flags |= BTRFS_BALANCE_RESUME;
4269
4270 btrfs_balance_data(leaf, item, &disk_bargs);
4271 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4272 btrfs_balance_meta(leaf, item, &disk_bargs);
4273 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4274 btrfs_balance_sys(leaf, item, &disk_bargs);
4275 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4276
4277 /*
4278 * This should never happen, as the paused balance state is recovered
4279 * during mount without any chance of other exclusive ops to collide.
4280 *
4281 * This gives the exclusive op status to balance and keeps in paused
4282 * state until user intervention (cancel or umount). If the ownership
4283 * cannot be assigned, show a message but do not fail. The balance
4284 * is in a paused state and must have fs_info::balance_ctl properly
4285 * set up.
4286 */
4287 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4288 btrfs_warn(fs_info,
4289 "balance: cannot set exclusive op status, resume manually");
4290
4291 mutex_lock(&fs_info->balance_mutex);
4292 BUG_ON(fs_info->balance_ctl);
4293 spin_lock(&fs_info->balance_lock);
4294 fs_info->balance_ctl = bctl;
4295 spin_unlock(&fs_info->balance_lock);
4296 mutex_unlock(&fs_info->balance_mutex);
4297 out:
4298 btrfs_free_path(path);
4299 return ret;
4300 }
4301
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4302 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4303 {
4304 int ret = 0;
4305
4306 mutex_lock(&fs_info->balance_mutex);
4307 if (!fs_info->balance_ctl) {
4308 mutex_unlock(&fs_info->balance_mutex);
4309 return -ENOTCONN;
4310 }
4311
4312 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4313 atomic_inc(&fs_info->balance_pause_req);
4314 mutex_unlock(&fs_info->balance_mutex);
4315
4316 wait_event(fs_info->balance_wait_q,
4317 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4318
4319 mutex_lock(&fs_info->balance_mutex);
4320 /* we are good with balance_ctl ripped off from under us */
4321 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4322 atomic_dec(&fs_info->balance_pause_req);
4323 } else {
4324 ret = -ENOTCONN;
4325 }
4326
4327 mutex_unlock(&fs_info->balance_mutex);
4328 return ret;
4329 }
4330
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4331 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4332 {
4333 mutex_lock(&fs_info->balance_mutex);
4334 if (!fs_info->balance_ctl) {
4335 mutex_unlock(&fs_info->balance_mutex);
4336 return -ENOTCONN;
4337 }
4338
4339 /*
4340 * A paused balance with the item stored on disk can be resumed at
4341 * mount time if the mount is read-write. Otherwise it's still paused
4342 * and we must not allow cancelling as it deletes the item.
4343 */
4344 if (sb_rdonly(fs_info->sb)) {
4345 mutex_unlock(&fs_info->balance_mutex);
4346 return -EROFS;
4347 }
4348
4349 atomic_inc(&fs_info->balance_cancel_req);
4350 /*
4351 * if we are running just wait and return, balance item is
4352 * deleted in btrfs_balance in this case
4353 */
4354 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4355 mutex_unlock(&fs_info->balance_mutex);
4356 wait_event(fs_info->balance_wait_q,
4357 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4358 mutex_lock(&fs_info->balance_mutex);
4359 } else {
4360 mutex_unlock(&fs_info->balance_mutex);
4361 /*
4362 * Lock released to allow other waiters to continue, we'll
4363 * reexamine the status again.
4364 */
4365 mutex_lock(&fs_info->balance_mutex);
4366
4367 if (fs_info->balance_ctl) {
4368 reset_balance_state(fs_info);
4369 btrfs_exclop_finish(fs_info);
4370 btrfs_info(fs_info, "balance: canceled");
4371 }
4372 }
4373
4374 BUG_ON(fs_info->balance_ctl ||
4375 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4376 atomic_dec(&fs_info->balance_cancel_req);
4377 mutex_unlock(&fs_info->balance_mutex);
4378 return 0;
4379 }
4380
btrfs_uuid_scan_kthread(void * data)4381 int btrfs_uuid_scan_kthread(void *data)
4382 {
4383 struct btrfs_fs_info *fs_info = data;
4384 struct btrfs_root *root = fs_info->tree_root;
4385 struct btrfs_key key;
4386 struct btrfs_path *path = NULL;
4387 int ret = 0;
4388 struct extent_buffer *eb;
4389 int slot;
4390 struct btrfs_root_item root_item;
4391 u32 item_size;
4392 struct btrfs_trans_handle *trans = NULL;
4393 bool closing = false;
4394
4395 path = btrfs_alloc_path();
4396 if (!path) {
4397 ret = -ENOMEM;
4398 goto out;
4399 }
4400
4401 key.objectid = 0;
4402 key.type = BTRFS_ROOT_ITEM_KEY;
4403 key.offset = 0;
4404
4405 while (1) {
4406 if (btrfs_fs_closing(fs_info)) {
4407 closing = true;
4408 break;
4409 }
4410 ret = btrfs_search_forward(root, &key, path,
4411 BTRFS_OLDEST_GENERATION);
4412 if (ret) {
4413 if (ret > 0)
4414 ret = 0;
4415 break;
4416 }
4417
4418 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4419 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4420 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4421 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4422 goto skip;
4423
4424 eb = path->nodes[0];
4425 slot = path->slots[0];
4426 item_size = btrfs_item_size_nr(eb, slot);
4427 if (item_size < sizeof(root_item))
4428 goto skip;
4429
4430 read_extent_buffer(eb, &root_item,
4431 btrfs_item_ptr_offset(eb, slot),
4432 (int)sizeof(root_item));
4433 if (btrfs_root_refs(&root_item) == 0)
4434 goto skip;
4435
4436 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4437 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4438 if (trans)
4439 goto update_tree;
4440
4441 btrfs_release_path(path);
4442 /*
4443 * 1 - subvol uuid item
4444 * 1 - received_subvol uuid item
4445 */
4446 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4447 if (IS_ERR(trans)) {
4448 ret = PTR_ERR(trans);
4449 break;
4450 }
4451 continue;
4452 } else {
4453 goto skip;
4454 }
4455 update_tree:
4456 btrfs_release_path(path);
4457 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4458 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4459 BTRFS_UUID_KEY_SUBVOL,
4460 key.objectid);
4461 if (ret < 0) {
4462 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4463 ret);
4464 break;
4465 }
4466 }
4467
4468 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4469 ret = btrfs_uuid_tree_add(trans,
4470 root_item.received_uuid,
4471 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4472 key.objectid);
4473 if (ret < 0) {
4474 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4475 ret);
4476 break;
4477 }
4478 }
4479
4480 skip:
4481 btrfs_release_path(path);
4482 if (trans) {
4483 ret = btrfs_end_transaction(trans);
4484 trans = NULL;
4485 if (ret)
4486 break;
4487 }
4488
4489 if (key.offset < (u64)-1) {
4490 key.offset++;
4491 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4492 key.offset = 0;
4493 key.type = BTRFS_ROOT_ITEM_KEY;
4494 } else if (key.objectid < (u64)-1) {
4495 key.offset = 0;
4496 key.type = BTRFS_ROOT_ITEM_KEY;
4497 key.objectid++;
4498 } else {
4499 break;
4500 }
4501 cond_resched();
4502 }
4503
4504 out:
4505 btrfs_free_path(path);
4506 if (trans && !IS_ERR(trans))
4507 btrfs_end_transaction(trans);
4508 if (ret)
4509 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4510 else if (!closing)
4511 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4512 up(&fs_info->uuid_tree_rescan_sem);
4513 return 0;
4514 }
4515
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4516 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4517 {
4518 struct btrfs_trans_handle *trans;
4519 struct btrfs_root *tree_root = fs_info->tree_root;
4520 struct btrfs_root *uuid_root;
4521 struct task_struct *task;
4522 int ret;
4523
4524 /*
4525 * 1 - root node
4526 * 1 - root item
4527 */
4528 trans = btrfs_start_transaction(tree_root, 2);
4529 if (IS_ERR(trans))
4530 return PTR_ERR(trans);
4531
4532 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4533 if (IS_ERR(uuid_root)) {
4534 ret = PTR_ERR(uuid_root);
4535 btrfs_abort_transaction(trans, ret);
4536 btrfs_end_transaction(trans);
4537 return ret;
4538 }
4539
4540 fs_info->uuid_root = uuid_root;
4541
4542 ret = btrfs_commit_transaction(trans);
4543 if (ret)
4544 return ret;
4545
4546 down(&fs_info->uuid_tree_rescan_sem);
4547 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4548 if (IS_ERR(task)) {
4549 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4550 btrfs_warn(fs_info, "failed to start uuid_scan task");
4551 up(&fs_info->uuid_tree_rescan_sem);
4552 return PTR_ERR(task);
4553 }
4554
4555 return 0;
4556 }
4557
4558 /*
4559 * shrinking a device means finding all of the device extents past
4560 * the new size, and then following the back refs to the chunks.
4561 * The chunk relocation code actually frees the device extent
4562 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4563 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4564 {
4565 struct btrfs_fs_info *fs_info = device->fs_info;
4566 struct btrfs_root *root = fs_info->dev_root;
4567 struct btrfs_trans_handle *trans;
4568 struct btrfs_dev_extent *dev_extent = NULL;
4569 struct btrfs_path *path;
4570 u64 length;
4571 u64 chunk_offset;
4572 int ret;
4573 int slot;
4574 int failed = 0;
4575 bool retried = false;
4576 struct extent_buffer *l;
4577 struct btrfs_key key;
4578 struct btrfs_super_block *super_copy = fs_info->super_copy;
4579 u64 old_total = btrfs_super_total_bytes(super_copy);
4580 u64 old_size = btrfs_device_get_total_bytes(device);
4581 u64 diff;
4582 u64 start;
4583
4584 new_size = round_down(new_size, fs_info->sectorsize);
4585 start = new_size;
4586 diff = round_down(old_size - new_size, fs_info->sectorsize);
4587
4588 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4589 return -EINVAL;
4590
4591 path = btrfs_alloc_path();
4592 if (!path)
4593 return -ENOMEM;
4594
4595 path->reada = READA_BACK;
4596
4597 trans = btrfs_start_transaction(root, 0);
4598 if (IS_ERR(trans)) {
4599 btrfs_free_path(path);
4600 return PTR_ERR(trans);
4601 }
4602
4603 mutex_lock(&fs_info->chunk_mutex);
4604
4605 btrfs_device_set_total_bytes(device, new_size);
4606 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4607 device->fs_devices->total_rw_bytes -= diff;
4608 atomic64_sub(diff, &fs_info->free_chunk_space);
4609 }
4610
4611 /*
4612 * Once the device's size has been set to the new size, ensure all
4613 * in-memory chunks are synced to disk so that the loop below sees them
4614 * and relocates them accordingly.
4615 */
4616 if (contains_pending_extent(device, &start, diff)) {
4617 mutex_unlock(&fs_info->chunk_mutex);
4618 ret = btrfs_commit_transaction(trans);
4619 if (ret)
4620 goto done;
4621 } else {
4622 mutex_unlock(&fs_info->chunk_mutex);
4623 btrfs_end_transaction(trans);
4624 }
4625
4626 again:
4627 key.objectid = device->devid;
4628 key.offset = (u64)-1;
4629 key.type = BTRFS_DEV_EXTENT_KEY;
4630
4631 do {
4632 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4634 if (ret < 0) {
4635 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4636 goto done;
4637 }
4638
4639 ret = btrfs_previous_item(root, path, 0, key.type);
4640 if (ret)
4641 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4642 if (ret < 0)
4643 goto done;
4644 if (ret) {
4645 ret = 0;
4646 btrfs_release_path(path);
4647 break;
4648 }
4649
4650 l = path->nodes[0];
4651 slot = path->slots[0];
4652 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4653
4654 if (key.objectid != device->devid) {
4655 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4656 btrfs_release_path(path);
4657 break;
4658 }
4659
4660 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4661 length = btrfs_dev_extent_length(l, dev_extent);
4662
4663 if (key.offset + length <= new_size) {
4664 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4665 btrfs_release_path(path);
4666 break;
4667 }
4668
4669 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4670 btrfs_release_path(path);
4671
4672 /*
4673 * We may be relocating the only data chunk we have,
4674 * which could potentially end up with losing data's
4675 * raid profile, so lets allocate an empty one in
4676 * advance.
4677 */
4678 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4679 if (ret < 0) {
4680 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4681 goto done;
4682 }
4683
4684 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4685 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4686 if (ret == -ENOSPC) {
4687 failed++;
4688 } else if (ret) {
4689 if (ret == -ETXTBSY) {
4690 btrfs_warn(fs_info,
4691 "could not shrink block group %llu due to active swapfile",
4692 chunk_offset);
4693 }
4694 goto done;
4695 }
4696 } while (key.offset-- > 0);
4697
4698 if (failed && !retried) {
4699 failed = 0;
4700 retried = true;
4701 goto again;
4702 } else if (failed && retried) {
4703 ret = -ENOSPC;
4704 goto done;
4705 }
4706
4707 /* Shrinking succeeded, else we would be at "done". */
4708 trans = btrfs_start_transaction(root, 0);
4709 if (IS_ERR(trans)) {
4710 ret = PTR_ERR(trans);
4711 goto done;
4712 }
4713
4714 mutex_lock(&fs_info->chunk_mutex);
4715 /* Clear all state bits beyond the shrunk device size */
4716 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4717 CHUNK_STATE_MASK);
4718
4719 btrfs_device_set_disk_total_bytes(device, new_size);
4720 if (list_empty(&device->post_commit_list))
4721 list_add_tail(&device->post_commit_list,
4722 &trans->transaction->dev_update_list);
4723
4724 WARN_ON(diff > old_total);
4725 btrfs_set_super_total_bytes(super_copy,
4726 round_down(old_total - diff, fs_info->sectorsize));
4727 mutex_unlock(&fs_info->chunk_mutex);
4728
4729 /* Now btrfs_update_device() will change the on-disk size. */
4730 ret = btrfs_update_device(trans, device);
4731 if (ret < 0) {
4732 btrfs_abort_transaction(trans, ret);
4733 btrfs_end_transaction(trans);
4734 } else {
4735 ret = btrfs_commit_transaction(trans);
4736 }
4737 done:
4738 btrfs_free_path(path);
4739 if (ret) {
4740 mutex_lock(&fs_info->chunk_mutex);
4741 btrfs_device_set_total_bytes(device, old_size);
4742 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4743 device->fs_devices->total_rw_bytes += diff;
4744 atomic64_add(diff, &fs_info->free_chunk_space);
4745 mutex_unlock(&fs_info->chunk_mutex);
4746 }
4747 return ret;
4748 }
4749
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4750 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4751 struct btrfs_key *key,
4752 struct btrfs_chunk *chunk, int item_size)
4753 {
4754 struct btrfs_super_block *super_copy = fs_info->super_copy;
4755 struct btrfs_disk_key disk_key;
4756 u32 array_size;
4757 u8 *ptr;
4758
4759 mutex_lock(&fs_info->chunk_mutex);
4760 array_size = btrfs_super_sys_array_size(super_copy);
4761 if (array_size + item_size + sizeof(disk_key)
4762 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4763 mutex_unlock(&fs_info->chunk_mutex);
4764 return -EFBIG;
4765 }
4766
4767 ptr = super_copy->sys_chunk_array + array_size;
4768 btrfs_cpu_key_to_disk(&disk_key, key);
4769 memcpy(ptr, &disk_key, sizeof(disk_key));
4770 ptr += sizeof(disk_key);
4771 memcpy(ptr, chunk, item_size);
4772 item_size += sizeof(disk_key);
4773 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4774 mutex_unlock(&fs_info->chunk_mutex);
4775
4776 return 0;
4777 }
4778
4779 /*
4780 * sort the devices in descending order by max_avail, total_avail
4781 */
btrfs_cmp_device_info(const void * a,const void * b)4782 static int btrfs_cmp_device_info(const void *a, const void *b)
4783 {
4784 const struct btrfs_device_info *di_a = a;
4785 const struct btrfs_device_info *di_b = b;
4786
4787 if (di_a->max_avail > di_b->max_avail)
4788 return -1;
4789 if (di_a->max_avail < di_b->max_avail)
4790 return 1;
4791 if (di_a->total_avail > di_b->total_avail)
4792 return -1;
4793 if (di_a->total_avail < di_b->total_avail)
4794 return 1;
4795 return 0;
4796 }
4797
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4798 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4799 {
4800 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4801 return;
4802
4803 btrfs_set_fs_incompat(info, RAID56);
4804 }
4805
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)4806 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4807 {
4808 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4809 return;
4810
4811 btrfs_set_fs_incompat(info, RAID1C34);
4812 }
4813
4814 /*
4815 * Structure used internally for __btrfs_alloc_chunk() function.
4816 * Wraps needed parameters.
4817 */
4818 struct alloc_chunk_ctl {
4819 u64 start;
4820 u64 type;
4821 /* Total number of stripes to allocate */
4822 int num_stripes;
4823 /* sub_stripes info for map */
4824 int sub_stripes;
4825 /* Stripes per device */
4826 int dev_stripes;
4827 /* Maximum number of devices to use */
4828 int devs_max;
4829 /* Minimum number of devices to use */
4830 int devs_min;
4831 /* ndevs has to be a multiple of this */
4832 int devs_increment;
4833 /* Number of copies */
4834 int ncopies;
4835 /* Number of stripes worth of bytes to store parity information */
4836 int nparity;
4837 u64 max_stripe_size;
4838 u64 max_chunk_size;
4839 u64 dev_extent_min;
4840 u64 stripe_size;
4841 u64 chunk_size;
4842 int ndevs;
4843 };
4844
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)4845 static void init_alloc_chunk_ctl_policy_regular(
4846 struct btrfs_fs_devices *fs_devices,
4847 struct alloc_chunk_ctl *ctl)
4848 {
4849 u64 type = ctl->type;
4850
4851 if (type & BTRFS_BLOCK_GROUP_DATA) {
4852 ctl->max_stripe_size = SZ_1G;
4853 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4854 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4855 /* For larger filesystems, use larger metadata chunks */
4856 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4857 ctl->max_stripe_size = SZ_1G;
4858 else
4859 ctl->max_stripe_size = SZ_256M;
4860 ctl->max_chunk_size = ctl->max_stripe_size;
4861 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4862 ctl->max_stripe_size = SZ_32M;
4863 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4864 ctl->devs_max = min_t(int, ctl->devs_max,
4865 BTRFS_MAX_DEVS_SYS_CHUNK);
4866 } else {
4867 BUG();
4868 }
4869
4870 /* We don't want a chunk larger than 10% of writable space */
4871 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4872 ctl->max_chunk_size);
4873 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4874 }
4875
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)4876 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4877 struct alloc_chunk_ctl *ctl)
4878 {
4879 int index = btrfs_bg_flags_to_raid_index(ctl->type);
4880
4881 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4882 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4883 ctl->devs_max = btrfs_raid_array[index].devs_max;
4884 if (!ctl->devs_max)
4885 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4886 ctl->devs_min = btrfs_raid_array[index].devs_min;
4887 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4888 ctl->ncopies = btrfs_raid_array[index].ncopies;
4889 ctl->nparity = btrfs_raid_array[index].nparity;
4890 ctl->ndevs = 0;
4891
4892 switch (fs_devices->chunk_alloc_policy) {
4893 case BTRFS_CHUNK_ALLOC_REGULAR:
4894 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4895 break;
4896 default:
4897 BUG();
4898 }
4899 }
4900
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)4901 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4902 struct alloc_chunk_ctl *ctl,
4903 struct btrfs_device_info *devices_info)
4904 {
4905 struct btrfs_fs_info *info = fs_devices->fs_info;
4906 struct btrfs_device *device;
4907 u64 total_avail;
4908 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4909 int ret;
4910 int ndevs = 0;
4911 u64 max_avail;
4912 u64 dev_offset;
4913
4914 /*
4915 * in the first pass through the devices list, we gather information
4916 * about the available holes on each device.
4917 */
4918 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4919 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4920 WARN(1, KERN_ERR
4921 "BTRFS: read-only device in alloc_list\n");
4922 continue;
4923 }
4924
4925 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4926 &device->dev_state) ||
4927 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4928 continue;
4929
4930 if (device->total_bytes > device->bytes_used)
4931 total_avail = device->total_bytes - device->bytes_used;
4932 else
4933 total_avail = 0;
4934
4935 /* If there is no space on this device, skip it. */
4936 if (total_avail < ctl->dev_extent_min)
4937 continue;
4938
4939 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4940 &max_avail);
4941 if (ret && ret != -ENOSPC)
4942 return ret;
4943
4944 if (ret == 0)
4945 max_avail = dev_extent_want;
4946
4947 if (max_avail < ctl->dev_extent_min) {
4948 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4949 btrfs_debug(info,
4950 "%s: devid %llu has no free space, have=%llu want=%llu",
4951 __func__, device->devid, max_avail,
4952 ctl->dev_extent_min);
4953 continue;
4954 }
4955
4956 if (ndevs == fs_devices->rw_devices) {
4957 WARN(1, "%s: found more than %llu devices\n",
4958 __func__, fs_devices->rw_devices);
4959 break;
4960 }
4961 devices_info[ndevs].dev_offset = dev_offset;
4962 devices_info[ndevs].max_avail = max_avail;
4963 devices_info[ndevs].total_avail = total_avail;
4964 devices_info[ndevs].dev = device;
4965 ++ndevs;
4966 }
4967 ctl->ndevs = ndevs;
4968
4969 /*
4970 * now sort the devices by hole size / available space
4971 */
4972 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4973 btrfs_cmp_device_info, NULL);
4974
4975 return 0;
4976 }
4977
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)4978 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4979 struct btrfs_device_info *devices_info)
4980 {
4981 /* Number of stripes that count for block group size */
4982 int data_stripes;
4983
4984 /*
4985 * The primary goal is to maximize the number of stripes, so use as
4986 * many devices as possible, even if the stripes are not maximum sized.
4987 *
4988 * The DUP profile stores more than one stripe per device, the
4989 * max_avail is the total size so we have to adjust.
4990 */
4991 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4992 ctl->dev_stripes);
4993 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
4994
4995 /* This will have to be fixed for RAID1 and RAID10 over more drives */
4996 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
4997
4998 /*
4999 * Use the number of data stripes to figure out how big this chunk is
5000 * really going to be in terms of logical address space, and compare
5001 * that answer with the max chunk size. If it's higher, we try to
5002 * reduce stripe_size.
5003 */
5004 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5005 /*
5006 * Reduce stripe_size, round it up to a 16MB boundary again and
5007 * then use it, unless it ends up being even bigger than the
5008 * previous value we had already.
5009 */
5010 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5011 data_stripes), SZ_16M),
5012 ctl->stripe_size);
5013 }
5014
5015 /* Align to BTRFS_STRIPE_LEN */
5016 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5017 ctl->chunk_size = ctl->stripe_size * data_stripes;
5018
5019 return 0;
5020 }
5021
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5022 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5023 struct alloc_chunk_ctl *ctl,
5024 struct btrfs_device_info *devices_info)
5025 {
5026 struct btrfs_fs_info *info = fs_devices->fs_info;
5027
5028 /*
5029 * Round down to number of usable stripes, devs_increment can be any
5030 * number so we can't use round_down() that requires power of 2, while
5031 * rounddown is safe.
5032 */
5033 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5034
5035 if (ctl->ndevs < ctl->devs_min) {
5036 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5037 btrfs_debug(info,
5038 "%s: not enough devices with free space: have=%d minimum required=%d",
5039 __func__, ctl->ndevs, ctl->devs_min);
5040 }
5041 return -ENOSPC;
5042 }
5043
5044 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5045
5046 switch (fs_devices->chunk_alloc_policy) {
5047 case BTRFS_CHUNK_ALLOC_REGULAR:
5048 return decide_stripe_size_regular(ctl, devices_info);
5049 default:
5050 BUG();
5051 }
5052 }
5053
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5054 static int create_chunk(struct btrfs_trans_handle *trans,
5055 struct alloc_chunk_ctl *ctl,
5056 struct btrfs_device_info *devices_info)
5057 {
5058 struct btrfs_fs_info *info = trans->fs_info;
5059 struct map_lookup *map = NULL;
5060 struct extent_map_tree *em_tree;
5061 struct extent_map *em;
5062 u64 start = ctl->start;
5063 u64 type = ctl->type;
5064 int ret;
5065 int i;
5066 int j;
5067
5068 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5069 if (!map)
5070 return -ENOMEM;
5071 map->num_stripes = ctl->num_stripes;
5072
5073 for (i = 0; i < ctl->ndevs; ++i) {
5074 for (j = 0; j < ctl->dev_stripes; ++j) {
5075 int s = i * ctl->dev_stripes + j;
5076 map->stripes[s].dev = devices_info[i].dev;
5077 map->stripes[s].physical = devices_info[i].dev_offset +
5078 j * ctl->stripe_size;
5079 }
5080 }
5081 map->stripe_len = BTRFS_STRIPE_LEN;
5082 map->io_align = BTRFS_STRIPE_LEN;
5083 map->io_width = BTRFS_STRIPE_LEN;
5084 map->type = type;
5085 map->sub_stripes = ctl->sub_stripes;
5086
5087 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5088
5089 em = alloc_extent_map();
5090 if (!em) {
5091 kfree(map);
5092 return -ENOMEM;
5093 }
5094 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5095 em->map_lookup = map;
5096 em->start = start;
5097 em->len = ctl->chunk_size;
5098 em->block_start = 0;
5099 em->block_len = em->len;
5100 em->orig_block_len = ctl->stripe_size;
5101
5102 em_tree = &info->mapping_tree;
5103 write_lock(&em_tree->lock);
5104 ret = add_extent_mapping(em_tree, em, 0);
5105 if (ret) {
5106 write_unlock(&em_tree->lock);
5107 free_extent_map(em);
5108 return ret;
5109 }
5110 write_unlock(&em_tree->lock);
5111
5112 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5113 if (ret)
5114 goto error_del_extent;
5115
5116 for (i = 0; i < map->num_stripes; i++) {
5117 struct btrfs_device *dev = map->stripes[i].dev;
5118
5119 btrfs_device_set_bytes_used(dev,
5120 dev->bytes_used + ctl->stripe_size);
5121 if (list_empty(&dev->post_commit_list))
5122 list_add_tail(&dev->post_commit_list,
5123 &trans->transaction->dev_update_list);
5124 }
5125
5126 atomic64_sub(ctl->stripe_size * map->num_stripes,
5127 &info->free_chunk_space);
5128
5129 free_extent_map(em);
5130 check_raid56_incompat_flag(info, type);
5131 check_raid1c34_incompat_flag(info, type);
5132
5133 return 0;
5134
5135 error_del_extent:
5136 write_lock(&em_tree->lock);
5137 remove_extent_mapping(em_tree, em);
5138 write_unlock(&em_tree->lock);
5139
5140 /* One for our allocation */
5141 free_extent_map(em);
5142 /* One for the tree reference */
5143 free_extent_map(em);
5144
5145 return ret;
5146 }
5147
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)5148 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5149 {
5150 struct btrfs_fs_info *info = trans->fs_info;
5151 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5152 struct btrfs_device_info *devices_info = NULL;
5153 struct alloc_chunk_ctl ctl;
5154 int ret;
5155
5156 lockdep_assert_held(&info->chunk_mutex);
5157
5158 if (!alloc_profile_is_valid(type, 0)) {
5159 ASSERT(0);
5160 return -EINVAL;
5161 }
5162
5163 if (list_empty(&fs_devices->alloc_list)) {
5164 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5165 btrfs_debug(info, "%s: no writable device", __func__);
5166 return -ENOSPC;
5167 }
5168
5169 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5170 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5171 ASSERT(0);
5172 return -EINVAL;
5173 }
5174
5175 ctl.start = find_next_chunk(info);
5176 ctl.type = type;
5177 init_alloc_chunk_ctl(fs_devices, &ctl);
5178
5179 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5180 GFP_NOFS);
5181 if (!devices_info)
5182 return -ENOMEM;
5183
5184 ret = gather_device_info(fs_devices, &ctl, devices_info);
5185 if (ret < 0)
5186 goto out;
5187
5188 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5189 if (ret < 0)
5190 goto out;
5191
5192 ret = create_chunk(trans, &ctl, devices_info);
5193
5194 out:
5195 kfree(devices_info);
5196 return ret;
5197 }
5198
5199 /*
5200 * Chunk allocation falls into two parts. The first part does work
5201 * that makes the new allocated chunk usable, but does not do any operation
5202 * that modifies the chunk tree. The second part does the work that
5203 * requires modifying the chunk tree. This division is important for the
5204 * bootstrap process of adding storage to a seed btrfs.
5205 */
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)5206 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5207 u64 chunk_offset, u64 chunk_size)
5208 {
5209 struct btrfs_fs_info *fs_info = trans->fs_info;
5210 struct btrfs_root *extent_root = fs_info->extent_root;
5211 struct btrfs_root *chunk_root = fs_info->chunk_root;
5212 struct btrfs_key key;
5213 struct btrfs_device *device;
5214 struct btrfs_chunk *chunk;
5215 struct btrfs_stripe *stripe;
5216 struct extent_map *em;
5217 struct map_lookup *map;
5218 size_t item_size;
5219 u64 dev_offset;
5220 u64 stripe_size;
5221 int i = 0;
5222 int ret = 0;
5223
5224 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5225 if (IS_ERR(em))
5226 return PTR_ERR(em);
5227
5228 map = em->map_lookup;
5229 item_size = btrfs_chunk_item_size(map->num_stripes);
5230 stripe_size = em->orig_block_len;
5231
5232 chunk = kzalloc(item_size, GFP_NOFS);
5233 if (!chunk) {
5234 ret = -ENOMEM;
5235 goto out;
5236 }
5237
5238 /*
5239 * Take the device list mutex to prevent races with the final phase of
5240 * a device replace operation that replaces the device object associated
5241 * with the map's stripes, because the device object's id can change
5242 * at any time during that final phase of the device replace operation
5243 * (dev-replace.c:btrfs_dev_replace_finishing()).
5244 */
5245 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5246 for (i = 0; i < map->num_stripes; i++) {
5247 device = map->stripes[i].dev;
5248 dev_offset = map->stripes[i].physical;
5249
5250 ret = btrfs_update_device(trans, device);
5251 if (ret)
5252 break;
5253 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5254 dev_offset, stripe_size);
5255 if (ret)
5256 break;
5257 }
5258 if (ret) {
5259 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5260 goto out;
5261 }
5262
5263 stripe = &chunk->stripe;
5264 for (i = 0; i < map->num_stripes; i++) {
5265 device = map->stripes[i].dev;
5266 dev_offset = map->stripes[i].physical;
5267
5268 btrfs_set_stack_stripe_devid(stripe, device->devid);
5269 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5270 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5271 stripe++;
5272 }
5273 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5274
5275 btrfs_set_stack_chunk_length(chunk, chunk_size);
5276 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5277 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5278 btrfs_set_stack_chunk_type(chunk, map->type);
5279 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5280 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5281 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5282 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5283 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5284
5285 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5286 key.type = BTRFS_CHUNK_ITEM_KEY;
5287 key.offset = chunk_offset;
5288
5289 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5290 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5291 /*
5292 * TODO: Cleanup of inserted chunk root in case of
5293 * failure.
5294 */
5295 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5296 }
5297
5298 out:
5299 kfree(chunk);
5300 free_extent_map(em);
5301 return ret;
5302 }
5303
init_first_rw_device(struct btrfs_trans_handle * trans)5304 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5305 {
5306 struct btrfs_fs_info *fs_info = trans->fs_info;
5307 u64 alloc_profile;
5308 int ret;
5309
5310 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5311 ret = btrfs_alloc_chunk(trans, alloc_profile);
5312 if (ret)
5313 return ret;
5314
5315 alloc_profile = btrfs_system_alloc_profile(fs_info);
5316 ret = btrfs_alloc_chunk(trans, alloc_profile);
5317 return ret;
5318 }
5319
btrfs_chunk_max_errors(struct map_lookup * map)5320 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5321 {
5322 const int index = btrfs_bg_flags_to_raid_index(map->type);
5323
5324 return btrfs_raid_array[index].tolerated_failures;
5325 }
5326
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5327 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5328 {
5329 struct extent_map *em;
5330 struct map_lookup *map;
5331 int readonly = 0;
5332 int miss_ndevs = 0;
5333 int i;
5334
5335 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5336 if (IS_ERR(em))
5337 return 1;
5338
5339 map = em->map_lookup;
5340 for (i = 0; i < map->num_stripes; i++) {
5341 if (test_bit(BTRFS_DEV_STATE_MISSING,
5342 &map->stripes[i].dev->dev_state)) {
5343 miss_ndevs++;
5344 continue;
5345 }
5346 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5347 &map->stripes[i].dev->dev_state)) {
5348 readonly = 1;
5349 goto end;
5350 }
5351 }
5352
5353 /*
5354 * If the number of missing devices is larger than max errors,
5355 * we can not write the data into that chunk successfully, so
5356 * set it readonly.
5357 */
5358 if (miss_ndevs > btrfs_chunk_max_errors(map))
5359 readonly = 1;
5360 end:
5361 free_extent_map(em);
5362 return readonly;
5363 }
5364
btrfs_mapping_tree_free(struct extent_map_tree * tree)5365 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5366 {
5367 struct extent_map *em;
5368
5369 while (1) {
5370 write_lock(&tree->lock);
5371 em = lookup_extent_mapping(tree, 0, (u64)-1);
5372 if (em)
5373 remove_extent_mapping(tree, em);
5374 write_unlock(&tree->lock);
5375 if (!em)
5376 break;
5377 /* once for us */
5378 free_extent_map(em);
5379 /* once for the tree */
5380 free_extent_map(em);
5381 }
5382 }
5383
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5384 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5385 {
5386 struct extent_map *em;
5387 struct map_lookup *map;
5388 int ret;
5389
5390 em = btrfs_get_chunk_map(fs_info, logical, len);
5391 if (IS_ERR(em))
5392 /*
5393 * We could return errors for these cases, but that could get
5394 * ugly and we'd probably do the same thing which is just not do
5395 * anything else and exit, so return 1 so the callers don't try
5396 * to use other copies.
5397 */
5398 return 1;
5399
5400 map = em->map_lookup;
5401 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5402 ret = map->num_stripes;
5403 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5404 ret = map->sub_stripes;
5405 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5406 ret = 2;
5407 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5408 /*
5409 * There could be two corrupted data stripes, we need
5410 * to loop retry in order to rebuild the correct data.
5411 *
5412 * Fail a stripe at a time on every retry except the
5413 * stripe under reconstruction.
5414 */
5415 ret = map->num_stripes;
5416 else
5417 ret = 1;
5418 free_extent_map(em);
5419
5420 down_read(&fs_info->dev_replace.rwsem);
5421 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5422 fs_info->dev_replace.tgtdev)
5423 ret++;
5424 up_read(&fs_info->dev_replace.rwsem);
5425
5426 return ret;
5427 }
5428
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5429 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5430 u64 logical)
5431 {
5432 struct extent_map *em;
5433 struct map_lookup *map;
5434 unsigned long len = fs_info->sectorsize;
5435
5436 em = btrfs_get_chunk_map(fs_info, logical, len);
5437
5438 if (!WARN_ON(IS_ERR(em))) {
5439 map = em->map_lookup;
5440 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5441 len = map->stripe_len * nr_data_stripes(map);
5442 free_extent_map(em);
5443 }
5444 return len;
5445 }
5446
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5447 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5448 {
5449 struct extent_map *em;
5450 struct map_lookup *map;
5451 int ret = 0;
5452
5453 em = btrfs_get_chunk_map(fs_info, logical, len);
5454
5455 if(!WARN_ON(IS_ERR(em))) {
5456 map = em->map_lookup;
5457 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5458 ret = 1;
5459 free_extent_map(em);
5460 }
5461 return ret;
5462 }
5463
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5464 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5465 struct map_lookup *map, int first,
5466 int dev_replace_is_ongoing)
5467 {
5468 int i;
5469 int num_stripes;
5470 int preferred_mirror;
5471 int tolerance;
5472 struct btrfs_device *srcdev;
5473
5474 ASSERT((map->type &
5475 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5476
5477 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5478 num_stripes = map->sub_stripes;
5479 else
5480 num_stripes = map->num_stripes;
5481
5482 preferred_mirror = first + current->pid % num_stripes;
5483
5484 if (dev_replace_is_ongoing &&
5485 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5486 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5487 srcdev = fs_info->dev_replace.srcdev;
5488 else
5489 srcdev = NULL;
5490
5491 /*
5492 * try to avoid the drive that is the source drive for a
5493 * dev-replace procedure, only choose it if no other non-missing
5494 * mirror is available
5495 */
5496 for (tolerance = 0; tolerance < 2; tolerance++) {
5497 if (map->stripes[preferred_mirror].dev->bdev &&
5498 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5499 return preferred_mirror;
5500 for (i = first; i < first + num_stripes; i++) {
5501 if (map->stripes[i].dev->bdev &&
5502 (tolerance || map->stripes[i].dev != srcdev))
5503 return i;
5504 }
5505 }
5506
5507 /* we couldn't find one that doesn't fail. Just return something
5508 * and the io error handling code will clean up eventually
5509 */
5510 return preferred_mirror;
5511 }
5512
5513 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5514 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5515 {
5516 int i;
5517 int again = 1;
5518
5519 while (again) {
5520 again = 0;
5521 for (i = 0; i < num_stripes - 1; i++) {
5522 /* Swap if parity is on a smaller index */
5523 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5524 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5525 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5526 again = 1;
5527 }
5528 }
5529 }
5530 }
5531
alloc_btrfs_bio(int total_stripes,int real_stripes)5532 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5533 {
5534 struct btrfs_bio *bbio = kzalloc(
5535 /* the size of the btrfs_bio */
5536 sizeof(struct btrfs_bio) +
5537 /* plus the variable array for the stripes */
5538 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5539 /* plus the variable array for the tgt dev */
5540 sizeof(int) * (real_stripes) +
5541 /*
5542 * plus the raid_map, which includes both the tgt dev
5543 * and the stripes
5544 */
5545 sizeof(u64) * (total_stripes),
5546 GFP_NOFS|__GFP_NOFAIL);
5547
5548 atomic_set(&bbio->error, 0);
5549 refcount_set(&bbio->refs, 1);
5550
5551 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5552 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5553
5554 return bbio;
5555 }
5556
btrfs_get_bbio(struct btrfs_bio * bbio)5557 void btrfs_get_bbio(struct btrfs_bio *bbio)
5558 {
5559 WARN_ON(!refcount_read(&bbio->refs));
5560 refcount_inc(&bbio->refs);
5561 }
5562
btrfs_put_bbio(struct btrfs_bio * bbio)5563 void btrfs_put_bbio(struct btrfs_bio *bbio)
5564 {
5565 if (!bbio)
5566 return;
5567 if (refcount_dec_and_test(&bbio->refs))
5568 kfree(bbio);
5569 }
5570
5571 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5572 /*
5573 * Please note that, discard won't be sent to target device of device
5574 * replace.
5575 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,struct btrfs_bio ** bbio_ret)5576 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5577 u64 logical, u64 *length_ret,
5578 struct btrfs_bio **bbio_ret)
5579 {
5580 struct extent_map *em;
5581 struct map_lookup *map;
5582 struct btrfs_bio *bbio;
5583 u64 length = *length_ret;
5584 u64 offset;
5585 u64 stripe_nr;
5586 u64 stripe_nr_end;
5587 u64 stripe_end_offset;
5588 u64 stripe_cnt;
5589 u64 stripe_len;
5590 u64 stripe_offset;
5591 u64 num_stripes;
5592 u32 stripe_index;
5593 u32 factor = 0;
5594 u32 sub_stripes = 0;
5595 u64 stripes_per_dev = 0;
5596 u32 remaining_stripes = 0;
5597 u32 last_stripe = 0;
5598 int ret = 0;
5599 int i;
5600
5601 /* discard always return a bbio */
5602 ASSERT(bbio_ret);
5603
5604 em = btrfs_get_chunk_map(fs_info, logical, length);
5605 if (IS_ERR(em))
5606 return PTR_ERR(em);
5607
5608 map = em->map_lookup;
5609 /* we don't discard raid56 yet */
5610 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5611 ret = -EOPNOTSUPP;
5612 goto out;
5613 }
5614
5615 offset = logical - em->start;
5616 length = min_t(u64, em->start + em->len - logical, length);
5617 *length_ret = length;
5618
5619 stripe_len = map->stripe_len;
5620 /*
5621 * stripe_nr counts the total number of stripes we have to stride
5622 * to get to this block
5623 */
5624 stripe_nr = div64_u64(offset, stripe_len);
5625
5626 /* stripe_offset is the offset of this block in its stripe */
5627 stripe_offset = offset - stripe_nr * stripe_len;
5628
5629 stripe_nr_end = round_up(offset + length, map->stripe_len);
5630 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5631 stripe_cnt = stripe_nr_end - stripe_nr;
5632 stripe_end_offset = stripe_nr_end * map->stripe_len -
5633 (offset + length);
5634 /*
5635 * after this, stripe_nr is the number of stripes on this
5636 * device we have to walk to find the data, and stripe_index is
5637 * the number of our device in the stripe array
5638 */
5639 num_stripes = 1;
5640 stripe_index = 0;
5641 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5642 BTRFS_BLOCK_GROUP_RAID10)) {
5643 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5644 sub_stripes = 1;
5645 else
5646 sub_stripes = map->sub_stripes;
5647
5648 factor = map->num_stripes / sub_stripes;
5649 num_stripes = min_t(u64, map->num_stripes,
5650 sub_stripes * stripe_cnt);
5651 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5652 stripe_index *= sub_stripes;
5653 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5654 &remaining_stripes);
5655 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5656 last_stripe *= sub_stripes;
5657 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5658 BTRFS_BLOCK_GROUP_DUP)) {
5659 num_stripes = map->num_stripes;
5660 } else {
5661 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5662 &stripe_index);
5663 }
5664
5665 bbio = alloc_btrfs_bio(num_stripes, 0);
5666 if (!bbio) {
5667 ret = -ENOMEM;
5668 goto out;
5669 }
5670
5671 for (i = 0; i < num_stripes; i++) {
5672 bbio->stripes[i].physical =
5673 map->stripes[stripe_index].physical +
5674 stripe_offset + stripe_nr * map->stripe_len;
5675 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5676
5677 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5678 BTRFS_BLOCK_GROUP_RAID10)) {
5679 bbio->stripes[i].length = stripes_per_dev *
5680 map->stripe_len;
5681
5682 if (i / sub_stripes < remaining_stripes)
5683 bbio->stripes[i].length +=
5684 map->stripe_len;
5685
5686 /*
5687 * Special for the first stripe and
5688 * the last stripe:
5689 *
5690 * |-------|...|-------|
5691 * |----------|
5692 * off end_off
5693 */
5694 if (i < sub_stripes)
5695 bbio->stripes[i].length -=
5696 stripe_offset;
5697
5698 if (stripe_index >= last_stripe &&
5699 stripe_index <= (last_stripe +
5700 sub_stripes - 1))
5701 bbio->stripes[i].length -=
5702 stripe_end_offset;
5703
5704 if (i == sub_stripes - 1)
5705 stripe_offset = 0;
5706 } else {
5707 bbio->stripes[i].length = length;
5708 }
5709
5710 stripe_index++;
5711 if (stripe_index == map->num_stripes) {
5712 stripe_index = 0;
5713 stripe_nr++;
5714 }
5715 }
5716
5717 *bbio_ret = bbio;
5718 bbio->map_type = map->type;
5719 bbio->num_stripes = num_stripes;
5720 out:
5721 free_extent_map(em);
5722 return ret;
5723 }
5724
5725 /*
5726 * In dev-replace case, for repair case (that's the only case where the mirror
5727 * is selected explicitly when calling btrfs_map_block), blocks left of the
5728 * left cursor can also be read from the target drive.
5729 *
5730 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5731 * array of stripes.
5732 * For READ, it also needs to be supported using the same mirror number.
5733 *
5734 * If the requested block is not left of the left cursor, EIO is returned. This
5735 * can happen because btrfs_num_copies() returns one more in the dev-replace
5736 * case.
5737 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)5738 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5739 u64 logical, u64 length,
5740 u64 srcdev_devid, int *mirror_num,
5741 u64 *physical)
5742 {
5743 struct btrfs_bio *bbio = NULL;
5744 int num_stripes;
5745 int index_srcdev = 0;
5746 int found = 0;
5747 u64 physical_of_found = 0;
5748 int i;
5749 int ret = 0;
5750
5751 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5752 logical, &length, &bbio, 0, 0);
5753 if (ret) {
5754 ASSERT(bbio == NULL);
5755 return ret;
5756 }
5757
5758 num_stripes = bbio->num_stripes;
5759 if (*mirror_num > num_stripes) {
5760 /*
5761 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5762 * that means that the requested area is not left of the left
5763 * cursor
5764 */
5765 btrfs_put_bbio(bbio);
5766 return -EIO;
5767 }
5768
5769 /*
5770 * process the rest of the function using the mirror_num of the source
5771 * drive. Therefore look it up first. At the end, patch the device
5772 * pointer to the one of the target drive.
5773 */
5774 for (i = 0; i < num_stripes; i++) {
5775 if (bbio->stripes[i].dev->devid != srcdev_devid)
5776 continue;
5777
5778 /*
5779 * In case of DUP, in order to keep it simple, only add the
5780 * mirror with the lowest physical address
5781 */
5782 if (found &&
5783 physical_of_found <= bbio->stripes[i].physical)
5784 continue;
5785
5786 index_srcdev = i;
5787 found = 1;
5788 physical_of_found = bbio->stripes[i].physical;
5789 }
5790
5791 btrfs_put_bbio(bbio);
5792
5793 ASSERT(found);
5794 if (!found)
5795 return -EIO;
5796
5797 *mirror_num = index_srcdev + 1;
5798 *physical = physical_of_found;
5799 return ret;
5800 }
5801
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,int * num_stripes_ret,int * max_errors_ret)5802 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5803 struct btrfs_bio **bbio_ret,
5804 struct btrfs_dev_replace *dev_replace,
5805 int *num_stripes_ret, int *max_errors_ret)
5806 {
5807 struct btrfs_bio *bbio = *bbio_ret;
5808 u64 srcdev_devid = dev_replace->srcdev->devid;
5809 int tgtdev_indexes = 0;
5810 int num_stripes = *num_stripes_ret;
5811 int max_errors = *max_errors_ret;
5812 int i;
5813
5814 if (op == BTRFS_MAP_WRITE) {
5815 int index_where_to_add;
5816
5817 /*
5818 * duplicate the write operations while the dev replace
5819 * procedure is running. Since the copying of the old disk to
5820 * the new disk takes place at run time while the filesystem is
5821 * mounted writable, the regular write operations to the old
5822 * disk have to be duplicated to go to the new disk as well.
5823 *
5824 * Note that device->missing is handled by the caller, and that
5825 * the write to the old disk is already set up in the stripes
5826 * array.
5827 */
5828 index_where_to_add = num_stripes;
5829 for (i = 0; i < num_stripes; i++) {
5830 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5831 /* write to new disk, too */
5832 struct btrfs_bio_stripe *new =
5833 bbio->stripes + index_where_to_add;
5834 struct btrfs_bio_stripe *old =
5835 bbio->stripes + i;
5836
5837 new->physical = old->physical;
5838 new->length = old->length;
5839 new->dev = dev_replace->tgtdev;
5840 bbio->tgtdev_map[i] = index_where_to_add;
5841 index_where_to_add++;
5842 max_errors++;
5843 tgtdev_indexes++;
5844 }
5845 }
5846 num_stripes = index_where_to_add;
5847 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5848 int index_srcdev = 0;
5849 int found = 0;
5850 u64 physical_of_found = 0;
5851
5852 /*
5853 * During the dev-replace procedure, the target drive can also
5854 * be used to read data in case it is needed to repair a corrupt
5855 * block elsewhere. This is possible if the requested area is
5856 * left of the left cursor. In this area, the target drive is a
5857 * full copy of the source drive.
5858 */
5859 for (i = 0; i < num_stripes; i++) {
5860 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5861 /*
5862 * In case of DUP, in order to keep it simple,
5863 * only add the mirror with the lowest physical
5864 * address
5865 */
5866 if (found &&
5867 physical_of_found <=
5868 bbio->stripes[i].physical)
5869 continue;
5870 index_srcdev = i;
5871 found = 1;
5872 physical_of_found = bbio->stripes[i].physical;
5873 }
5874 }
5875 if (found) {
5876 struct btrfs_bio_stripe *tgtdev_stripe =
5877 bbio->stripes + num_stripes;
5878
5879 tgtdev_stripe->physical = physical_of_found;
5880 tgtdev_stripe->length =
5881 bbio->stripes[index_srcdev].length;
5882 tgtdev_stripe->dev = dev_replace->tgtdev;
5883 bbio->tgtdev_map[index_srcdev] = num_stripes;
5884
5885 tgtdev_indexes++;
5886 num_stripes++;
5887 }
5888 }
5889
5890 *num_stripes_ret = num_stripes;
5891 *max_errors_ret = max_errors;
5892 bbio->num_tgtdevs = tgtdev_indexes;
5893 *bbio_ret = bbio;
5894 }
5895
need_full_stripe(enum btrfs_map_op op)5896 static bool need_full_stripe(enum btrfs_map_op op)
5897 {
5898 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5899 }
5900
5901 /*
5902 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5903 * tuple. This information is used to calculate how big a
5904 * particular bio can get before it straddles a stripe.
5905 *
5906 * @fs_info - the filesystem
5907 * @logical - address that we want to figure out the geometry of
5908 * @len - the length of IO we are going to perform, starting at @logical
5909 * @op - type of operation - write or read
5910 * @io_geom - pointer used to return values
5911 *
5912 * Returns < 0 in case a chunk for the given logical address cannot be found,
5913 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5914 */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 len,struct btrfs_io_geometry * io_geom)5915 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5916 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5917 {
5918 struct extent_map *em;
5919 struct map_lookup *map;
5920 u64 offset;
5921 u64 stripe_offset;
5922 u64 stripe_nr;
5923 u64 stripe_len;
5924 u64 raid56_full_stripe_start = (u64)-1;
5925 int data_stripes;
5926 int ret = 0;
5927
5928 ASSERT(op != BTRFS_MAP_DISCARD);
5929
5930 em = btrfs_get_chunk_map(fs_info, logical, len);
5931 if (IS_ERR(em))
5932 return PTR_ERR(em);
5933
5934 map = em->map_lookup;
5935 /* Offset of this logical address in the chunk */
5936 offset = logical - em->start;
5937 /* Len of a stripe in a chunk */
5938 stripe_len = map->stripe_len;
5939 /* Stripe wher this block falls in */
5940 stripe_nr = div64_u64(offset, stripe_len);
5941 /* Offset of stripe in the chunk */
5942 stripe_offset = stripe_nr * stripe_len;
5943 if (offset < stripe_offset) {
5944 btrfs_crit(fs_info,
5945 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5946 stripe_offset, offset, em->start, logical, stripe_len);
5947 ret = -EINVAL;
5948 goto out;
5949 }
5950
5951 /* stripe_offset is the offset of this block in its stripe */
5952 stripe_offset = offset - stripe_offset;
5953 data_stripes = nr_data_stripes(map);
5954
5955 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5956 u64 max_len = stripe_len - stripe_offset;
5957
5958 /*
5959 * In case of raid56, we need to know the stripe aligned start
5960 */
5961 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5962 unsigned long full_stripe_len = stripe_len * data_stripes;
5963 raid56_full_stripe_start = offset;
5964
5965 /*
5966 * Allow a write of a full stripe, but make sure we
5967 * don't allow straddling of stripes
5968 */
5969 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5970 full_stripe_len);
5971 raid56_full_stripe_start *= full_stripe_len;
5972
5973 /*
5974 * For writes to RAID[56], allow a full stripeset across
5975 * all disks. For other RAID types and for RAID[56]
5976 * reads, just allow a single stripe (on a single disk).
5977 */
5978 if (op == BTRFS_MAP_WRITE) {
5979 max_len = stripe_len * data_stripes -
5980 (offset - raid56_full_stripe_start);
5981 }
5982 }
5983 len = min_t(u64, em->len - offset, max_len);
5984 } else {
5985 len = em->len - offset;
5986 }
5987
5988 io_geom->len = len;
5989 io_geom->offset = offset;
5990 io_geom->stripe_len = stripe_len;
5991 io_geom->stripe_nr = stripe_nr;
5992 io_geom->stripe_offset = stripe_offset;
5993 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5994
5995 out:
5996 /* once for us */
5997 free_extent_map(em);
5998 return ret;
5999 }
6000
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)6001 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6002 enum btrfs_map_op op,
6003 u64 logical, u64 *length,
6004 struct btrfs_bio **bbio_ret,
6005 int mirror_num, int need_raid_map)
6006 {
6007 struct extent_map *em;
6008 struct map_lookup *map;
6009 u64 stripe_offset;
6010 u64 stripe_nr;
6011 u64 stripe_len;
6012 u32 stripe_index;
6013 int data_stripes;
6014 int i;
6015 int ret = 0;
6016 int num_stripes;
6017 int max_errors = 0;
6018 int tgtdev_indexes = 0;
6019 struct btrfs_bio *bbio = NULL;
6020 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6021 int dev_replace_is_ongoing = 0;
6022 int num_alloc_stripes;
6023 int patch_the_first_stripe_for_dev_replace = 0;
6024 u64 physical_to_patch_in_first_stripe = 0;
6025 u64 raid56_full_stripe_start = (u64)-1;
6026 struct btrfs_io_geometry geom;
6027
6028 ASSERT(bbio_ret);
6029 ASSERT(op != BTRFS_MAP_DISCARD);
6030
6031 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6032 if (ret < 0)
6033 return ret;
6034
6035 em = btrfs_get_chunk_map(fs_info, logical, *length);
6036 ASSERT(!IS_ERR(em));
6037 map = em->map_lookup;
6038
6039 *length = geom.len;
6040 stripe_len = geom.stripe_len;
6041 stripe_nr = geom.stripe_nr;
6042 stripe_offset = geom.stripe_offset;
6043 raid56_full_stripe_start = geom.raid56_stripe_offset;
6044 data_stripes = nr_data_stripes(map);
6045
6046 down_read(&dev_replace->rwsem);
6047 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6048 /*
6049 * Hold the semaphore for read during the whole operation, write is
6050 * requested at commit time but must wait.
6051 */
6052 if (!dev_replace_is_ongoing)
6053 up_read(&dev_replace->rwsem);
6054
6055 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6056 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6057 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6058 dev_replace->srcdev->devid,
6059 &mirror_num,
6060 &physical_to_patch_in_first_stripe);
6061 if (ret)
6062 goto out;
6063 else
6064 patch_the_first_stripe_for_dev_replace = 1;
6065 } else if (mirror_num > map->num_stripes) {
6066 mirror_num = 0;
6067 }
6068
6069 num_stripes = 1;
6070 stripe_index = 0;
6071 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6072 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6073 &stripe_index);
6074 if (!need_full_stripe(op))
6075 mirror_num = 1;
6076 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6077 if (need_full_stripe(op))
6078 num_stripes = map->num_stripes;
6079 else if (mirror_num)
6080 stripe_index = mirror_num - 1;
6081 else {
6082 stripe_index = find_live_mirror(fs_info, map, 0,
6083 dev_replace_is_ongoing);
6084 mirror_num = stripe_index + 1;
6085 }
6086
6087 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6088 if (need_full_stripe(op)) {
6089 num_stripes = map->num_stripes;
6090 } else if (mirror_num) {
6091 stripe_index = mirror_num - 1;
6092 } else {
6093 mirror_num = 1;
6094 }
6095
6096 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6097 u32 factor = map->num_stripes / map->sub_stripes;
6098
6099 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6100 stripe_index *= map->sub_stripes;
6101
6102 if (need_full_stripe(op))
6103 num_stripes = map->sub_stripes;
6104 else if (mirror_num)
6105 stripe_index += mirror_num - 1;
6106 else {
6107 int old_stripe_index = stripe_index;
6108 stripe_index = find_live_mirror(fs_info, map,
6109 stripe_index,
6110 dev_replace_is_ongoing);
6111 mirror_num = stripe_index - old_stripe_index + 1;
6112 }
6113
6114 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6115 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6116 /* push stripe_nr back to the start of the full stripe */
6117 stripe_nr = div64_u64(raid56_full_stripe_start,
6118 stripe_len * data_stripes);
6119
6120 /* RAID[56] write or recovery. Return all stripes */
6121 num_stripes = map->num_stripes;
6122 max_errors = nr_parity_stripes(map);
6123
6124 *length = map->stripe_len;
6125 stripe_index = 0;
6126 stripe_offset = 0;
6127 } else {
6128 /*
6129 * Mirror #0 or #1 means the original data block.
6130 * Mirror #2 is RAID5 parity block.
6131 * Mirror #3 is RAID6 Q block.
6132 */
6133 stripe_nr = div_u64_rem(stripe_nr,
6134 data_stripes, &stripe_index);
6135 if (mirror_num > 1)
6136 stripe_index = data_stripes + mirror_num - 2;
6137
6138 /* We distribute the parity blocks across stripes */
6139 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6140 &stripe_index);
6141 if (!need_full_stripe(op) && mirror_num <= 1)
6142 mirror_num = 1;
6143 }
6144 } else {
6145 /*
6146 * after this, stripe_nr is the number of stripes on this
6147 * device we have to walk to find the data, and stripe_index is
6148 * the number of our device in the stripe array
6149 */
6150 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6151 &stripe_index);
6152 mirror_num = stripe_index + 1;
6153 }
6154 if (stripe_index >= map->num_stripes) {
6155 btrfs_crit(fs_info,
6156 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6157 stripe_index, map->num_stripes);
6158 ret = -EINVAL;
6159 goto out;
6160 }
6161
6162 num_alloc_stripes = num_stripes;
6163 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6164 if (op == BTRFS_MAP_WRITE)
6165 num_alloc_stripes <<= 1;
6166 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6167 num_alloc_stripes++;
6168 tgtdev_indexes = num_stripes;
6169 }
6170
6171 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6172 if (!bbio) {
6173 ret = -ENOMEM;
6174 goto out;
6175 }
6176
6177 for (i = 0; i < num_stripes; i++) {
6178 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6179 stripe_offset + stripe_nr * map->stripe_len;
6180 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6181 stripe_index++;
6182 }
6183
6184 /* build raid_map */
6185 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6186 (need_full_stripe(op) || mirror_num > 1)) {
6187 u64 tmp;
6188 unsigned rot;
6189
6190 /* Work out the disk rotation on this stripe-set */
6191 div_u64_rem(stripe_nr, num_stripes, &rot);
6192
6193 /* Fill in the logical address of each stripe */
6194 tmp = stripe_nr * data_stripes;
6195 for (i = 0; i < data_stripes; i++)
6196 bbio->raid_map[(i+rot) % num_stripes] =
6197 em->start + (tmp + i) * map->stripe_len;
6198
6199 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6200 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6201 bbio->raid_map[(i+rot+1) % num_stripes] =
6202 RAID6_Q_STRIPE;
6203
6204 sort_parity_stripes(bbio, num_stripes);
6205 }
6206
6207 if (need_full_stripe(op))
6208 max_errors = btrfs_chunk_max_errors(map);
6209
6210 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6211 need_full_stripe(op)) {
6212 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6213 &max_errors);
6214 }
6215
6216 *bbio_ret = bbio;
6217 bbio->map_type = map->type;
6218 bbio->num_stripes = num_stripes;
6219 bbio->max_errors = max_errors;
6220 bbio->mirror_num = mirror_num;
6221
6222 /*
6223 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6224 * mirror_num == num_stripes + 1 && dev_replace target drive is
6225 * available as a mirror
6226 */
6227 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6228 WARN_ON(num_stripes > 1);
6229 bbio->stripes[0].dev = dev_replace->tgtdev;
6230 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6231 bbio->mirror_num = map->num_stripes + 1;
6232 }
6233 out:
6234 if (dev_replace_is_ongoing) {
6235 lockdep_assert_held(&dev_replace->rwsem);
6236 /* Unlock and let waiting writers proceed */
6237 up_read(&dev_replace->rwsem);
6238 }
6239 free_extent_map(em);
6240 return ret;
6241 }
6242
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)6243 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6244 u64 logical, u64 *length,
6245 struct btrfs_bio **bbio_ret, int mirror_num)
6246 {
6247 if (op == BTRFS_MAP_DISCARD)
6248 return __btrfs_map_block_for_discard(fs_info, logical,
6249 length, bbio_ret);
6250
6251 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6252 mirror_num, 0);
6253 }
6254
6255 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)6256 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6257 u64 logical, u64 *length,
6258 struct btrfs_bio **bbio_ret)
6259 {
6260 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6261 }
6262
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6263 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6264 {
6265 bio->bi_private = bbio->private;
6266 bio->bi_end_io = bbio->end_io;
6267 bio_endio(bio);
6268
6269 btrfs_put_bbio(bbio);
6270 }
6271
btrfs_end_bio(struct bio * bio)6272 static void btrfs_end_bio(struct bio *bio)
6273 {
6274 struct btrfs_bio *bbio = bio->bi_private;
6275 int is_orig_bio = 0;
6276
6277 if (bio->bi_status) {
6278 atomic_inc(&bbio->error);
6279 if (bio->bi_status == BLK_STS_IOERR ||
6280 bio->bi_status == BLK_STS_TARGET) {
6281 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6282
6283 ASSERT(dev->bdev);
6284 if (bio_op(bio) == REQ_OP_WRITE)
6285 btrfs_dev_stat_inc_and_print(dev,
6286 BTRFS_DEV_STAT_WRITE_ERRS);
6287 else if (!(bio->bi_opf & REQ_RAHEAD))
6288 btrfs_dev_stat_inc_and_print(dev,
6289 BTRFS_DEV_STAT_READ_ERRS);
6290 if (bio->bi_opf & REQ_PREFLUSH)
6291 btrfs_dev_stat_inc_and_print(dev,
6292 BTRFS_DEV_STAT_FLUSH_ERRS);
6293 }
6294 }
6295
6296 if (bio == bbio->orig_bio)
6297 is_orig_bio = 1;
6298
6299 btrfs_bio_counter_dec(bbio->fs_info);
6300
6301 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6302 if (!is_orig_bio) {
6303 bio_put(bio);
6304 bio = bbio->orig_bio;
6305 }
6306
6307 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6308 /* only send an error to the higher layers if it is
6309 * beyond the tolerance of the btrfs bio
6310 */
6311 if (atomic_read(&bbio->error) > bbio->max_errors) {
6312 bio->bi_status = BLK_STS_IOERR;
6313 } else {
6314 /*
6315 * this bio is actually up to date, we didn't
6316 * go over the max number of errors
6317 */
6318 bio->bi_status = BLK_STS_OK;
6319 }
6320
6321 btrfs_end_bbio(bbio, bio);
6322 } else if (!is_orig_bio) {
6323 bio_put(bio);
6324 }
6325 }
6326
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,struct btrfs_device * dev)6327 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6328 u64 physical, struct btrfs_device *dev)
6329 {
6330 struct btrfs_fs_info *fs_info = bbio->fs_info;
6331
6332 bio->bi_private = bbio;
6333 btrfs_io_bio(bio)->device = dev;
6334 bio->bi_end_io = btrfs_end_bio;
6335 bio->bi_iter.bi_sector = physical >> 9;
6336 btrfs_debug_in_rcu(fs_info,
6337 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6338 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6339 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6340 dev->devid, bio->bi_iter.bi_size);
6341 bio_set_dev(bio, dev->bdev);
6342
6343 btrfs_bio_counter_inc_noblocked(fs_info);
6344
6345 btrfsic_submit_bio(bio);
6346 }
6347
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6348 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6349 {
6350 atomic_inc(&bbio->error);
6351 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6352 /* Should be the original bio. */
6353 WARN_ON(bio != bbio->orig_bio);
6354
6355 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6356 bio->bi_iter.bi_sector = logical >> 9;
6357 if (atomic_read(&bbio->error) > bbio->max_errors)
6358 bio->bi_status = BLK_STS_IOERR;
6359 else
6360 bio->bi_status = BLK_STS_OK;
6361 btrfs_end_bbio(bbio, bio);
6362 }
6363 }
6364
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num)6365 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6366 int mirror_num)
6367 {
6368 struct btrfs_device *dev;
6369 struct bio *first_bio = bio;
6370 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6371 u64 length = 0;
6372 u64 map_length;
6373 int ret;
6374 int dev_nr;
6375 int total_devs;
6376 struct btrfs_bio *bbio = NULL;
6377
6378 length = bio->bi_iter.bi_size;
6379 map_length = length;
6380
6381 btrfs_bio_counter_inc_blocked(fs_info);
6382 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6383 &map_length, &bbio, mirror_num, 1);
6384 if (ret) {
6385 btrfs_bio_counter_dec(fs_info);
6386 return errno_to_blk_status(ret);
6387 }
6388
6389 total_devs = bbio->num_stripes;
6390 bbio->orig_bio = first_bio;
6391 bbio->private = first_bio->bi_private;
6392 bbio->end_io = first_bio->bi_end_io;
6393 bbio->fs_info = fs_info;
6394 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6395
6396 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6397 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6398 /* In this case, map_length has been set to the length of
6399 a single stripe; not the whole write */
6400 if (bio_op(bio) == REQ_OP_WRITE) {
6401 ret = raid56_parity_write(fs_info, bio, bbio,
6402 map_length);
6403 } else {
6404 ret = raid56_parity_recover(fs_info, bio, bbio,
6405 map_length, mirror_num, 1);
6406 }
6407
6408 btrfs_bio_counter_dec(fs_info);
6409 return errno_to_blk_status(ret);
6410 }
6411
6412 if (map_length < length) {
6413 btrfs_crit(fs_info,
6414 "mapping failed logical %llu bio len %llu len %llu",
6415 logical, length, map_length);
6416 BUG();
6417 }
6418
6419 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6420 dev = bbio->stripes[dev_nr].dev;
6421 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6422 &dev->dev_state) ||
6423 (bio_op(first_bio) == REQ_OP_WRITE &&
6424 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6425 bbio_error(bbio, first_bio, logical);
6426 continue;
6427 }
6428
6429 if (dev_nr < total_devs - 1)
6430 bio = btrfs_bio_clone(first_bio);
6431 else
6432 bio = first_bio;
6433
6434 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6435 }
6436 btrfs_bio_counter_dec(fs_info);
6437 return BLK_STS_OK;
6438 }
6439
6440 /*
6441 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6442 * return NULL.
6443 *
6444 * If devid and uuid are both specified, the match must be exact, otherwise
6445 * only devid is used.
6446 *
6447 * If @seed is true, traverse through the seed devices.
6448 */
btrfs_find_device(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * uuid,u8 * fsid,bool seed)6449 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6450 u64 devid, u8 *uuid, u8 *fsid,
6451 bool seed)
6452 {
6453 struct btrfs_device *device;
6454 struct btrfs_fs_devices *seed_devs;
6455
6456 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6457 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6458 if (device->devid == devid &&
6459 (!uuid || memcmp(device->uuid, uuid,
6460 BTRFS_UUID_SIZE) == 0))
6461 return device;
6462 }
6463 }
6464
6465 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6466 if (!fsid ||
6467 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6468 list_for_each_entry(device, &seed_devs->devices,
6469 dev_list) {
6470 if (device->devid == devid &&
6471 (!uuid || memcmp(device->uuid, uuid,
6472 BTRFS_UUID_SIZE) == 0))
6473 return device;
6474 }
6475 }
6476 }
6477
6478 return NULL;
6479 }
6480
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6481 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6482 u64 devid, u8 *dev_uuid)
6483 {
6484 struct btrfs_device *device;
6485 unsigned int nofs_flag;
6486
6487 /*
6488 * We call this under the chunk_mutex, so we want to use NOFS for this
6489 * allocation, however we don't want to change btrfs_alloc_device() to
6490 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6491 * places.
6492 */
6493 nofs_flag = memalloc_nofs_save();
6494 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6495 memalloc_nofs_restore(nofs_flag);
6496 if (IS_ERR(device))
6497 return device;
6498
6499 list_add(&device->dev_list, &fs_devices->devices);
6500 device->fs_devices = fs_devices;
6501 fs_devices->num_devices++;
6502
6503 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6504 fs_devices->missing_devices++;
6505
6506 return device;
6507 }
6508
6509 /**
6510 * btrfs_alloc_device - allocate struct btrfs_device
6511 * @fs_info: used only for generating a new devid, can be NULL if
6512 * devid is provided (i.e. @devid != NULL).
6513 * @devid: a pointer to devid for this device. If NULL a new devid
6514 * is generated.
6515 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6516 * is generated.
6517 *
6518 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6519 * on error. Returned struct is not linked onto any lists and must be
6520 * destroyed with btrfs_free_device.
6521 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6522 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6523 const u64 *devid,
6524 const u8 *uuid)
6525 {
6526 struct btrfs_device *dev;
6527 u64 tmp;
6528
6529 if (WARN_ON(!devid && !fs_info))
6530 return ERR_PTR(-EINVAL);
6531
6532 dev = __alloc_device(fs_info);
6533 if (IS_ERR(dev))
6534 return dev;
6535
6536 if (devid)
6537 tmp = *devid;
6538 else {
6539 int ret;
6540
6541 ret = find_next_devid(fs_info, &tmp);
6542 if (ret) {
6543 btrfs_free_device(dev);
6544 return ERR_PTR(ret);
6545 }
6546 }
6547 dev->devid = tmp;
6548
6549 if (uuid)
6550 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6551 else
6552 generate_random_uuid(dev->uuid);
6553
6554 return dev;
6555 }
6556
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6557 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6558 u64 devid, u8 *uuid, bool error)
6559 {
6560 if (error)
6561 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6562 devid, uuid);
6563 else
6564 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6565 devid, uuid);
6566 }
6567
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)6568 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6569 {
6570 int index = btrfs_bg_flags_to_raid_index(type);
6571 int ncopies = btrfs_raid_array[index].ncopies;
6572 const int nparity = btrfs_raid_array[index].nparity;
6573 int data_stripes;
6574
6575 if (nparity)
6576 data_stripes = num_stripes - nparity;
6577 else
6578 data_stripes = num_stripes / ncopies;
6579
6580 return div_u64(chunk_len, data_stripes);
6581 }
6582
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6583 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6584 struct btrfs_chunk *chunk)
6585 {
6586 struct btrfs_fs_info *fs_info = leaf->fs_info;
6587 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6588 struct map_lookup *map;
6589 struct extent_map *em;
6590 u64 logical;
6591 u64 length;
6592 u64 devid;
6593 u8 uuid[BTRFS_UUID_SIZE];
6594 int num_stripes;
6595 int ret;
6596 int i;
6597
6598 logical = key->offset;
6599 length = btrfs_chunk_length(leaf, chunk);
6600 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6601
6602 /*
6603 * Only need to verify chunk item if we're reading from sys chunk array,
6604 * as chunk item in tree block is already verified by tree-checker.
6605 */
6606 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6607 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6608 if (ret)
6609 return ret;
6610 }
6611
6612 read_lock(&map_tree->lock);
6613 em = lookup_extent_mapping(map_tree, logical, 1);
6614 read_unlock(&map_tree->lock);
6615
6616 /* already mapped? */
6617 if (em && em->start <= logical && em->start + em->len > logical) {
6618 free_extent_map(em);
6619 return 0;
6620 } else if (em) {
6621 free_extent_map(em);
6622 }
6623
6624 em = alloc_extent_map();
6625 if (!em)
6626 return -ENOMEM;
6627 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6628 if (!map) {
6629 free_extent_map(em);
6630 return -ENOMEM;
6631 }
6632
6633 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6634 em->map_lookup = map;
6635 em->start = logical;
6636 em->len = length;
6637 em->orig_start = 0;
6638 em->block_start = 0;
6639 em->block_len = em->len;
6640
6641 map->num_stripes = num_stripes;
6642 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6643 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6644 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6645 map->type = btrfs_chunk_type(leaf, chunk);
6646 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6647 map->verified_stripes = 0;
6648 em->orig_block_len = calc_stripe_length(map->type, em->len,
6649 map->num_stripes);
6650 for (i = 0; i < num_stripes; i++) {
6651 map->stripes[i].physical =
6652 btrfs_stripe_offset_nr(leaf, chunk, i);
6653 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6654 read_extent_buffer(leaf, uuid, (unsigned long)
6655 btrfs_stripe_dev_uuid_nr(chunk, i),
6656 BTRFS_UUID_SIZE);
6657 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6658 devid, uuid, NULL, true);
6659 if (!map->stripes[i].dev &&
6660 !btrfs_test_opt(fs_info, DEGRADED)) {
6661 free_extent_map(em);
6662 btrfs_report_missing_device(fs_info, devid, uuid, true);
6663 return -ENOENT;
6664 }
6665 if (!map->stripes[i].dev) {
6666 map->stripes[i].dev =
6667 add_missing_dev(fs_info->fs_devices, devid,
6668 uuid);
6669 if (IS_ERR(map->stripes[i].dev)) {
6670 free_extent_map(em);
6671 btrfs_err(fs_info,
6672 "failed to init missing dev %llu: %ld",
6673 devid, PTR_ERR(map->stripes[i].dev));
6674 return PTR_ERR(map->stripes[i].dev);
6675 }
6676 btrfs_report_missing_device(fs_info, devid, uuid, false);
6677 }
6678 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6679 &(map->stripes[i].dev->dev_state));
6680
6681 }
6682
6683 write_lock(&map_tree->lock);
6684 ret = add_extent_mapping(map_tree, em, 0);
6685 write_unlock(&map_tree->lock);
6686 if (ret < 0) {
6687 btrfs_err(fs_info,
6688 "failed to add chunk map, start=%llu len=%llu: %d",
6689 em->start, em->len, ret);
6690 }
6691 free_extent_map(em);
6692
6693 return ret;
6694 }
6695
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6696 static void fill_device_from_item(struct extent_buffer *leaf,
6697 struct btrfs_dev_item *dev_item,
6698 struct btrfs_device *device)
6699 {
6700 unsigned long ptr;
6701
6702 device->devid = btrfs_device_id(leaf, dev_item);
6703 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6704 device->total_bytes = device->disk_total_bytes;
6705 device->commit_total_bytes = device->disk_total_bytes;
6706 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6707 device->commit_bytes_used = device->bytes_used;
6708 device->type = btrfs_device_type(leaf, dev_item);
6709 device->io_align = btrfs_device_io_align(leaf, dev_item);
6710 device->io_width = btrfs_device_io_width(leaf, dev_item);
6711 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6712 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6713 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6714
6715 ptr = btrfs_device_uuid(dev_item);
6716 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6717 }
6718
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6719 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6720 u8 *fsid)
6721 {
6722 struct btrfs_fs_devices *fs_devices;
6723 int ret;
6724
6725 lockdep_assert_held(&uuid_mutex);
6726 ASSERT(fsid);
6727
6728 /* This will match only for multi-device seed fs */
6729 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6730 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6731 return fs_devices;
6732
6733
6734 fs_devices = find_fsid(fsid, NULL);
6735 if (!fs_devices) {
6736 if (!btrfs_test_opt(fs_info, DEGRADED))
6737 return ERR_PTR(-ENOENT);
6738
6739 fs_devices = alloc_fs_devices(fsid, NULL);
6740 if (IS_ERR(fs_devices))
6741 return fs_devices;
6742
6743 fs_devices->seeding = true;
6744 fs_devices->opened = 1;
6745 return fs_devices;
6746 }
6747
6748 /*
6749 * Upon first call for a seed fs fsid, just create a private copy of the
6750 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6751 */
6752 fs_devices = clone_fs_devices(fs_devices);
6753 if (IS_ERR(fs_devices))
6754 return fs_devices;
6755
6756 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6757 if (ret) {
6758 free_fs_devices(fs_devices);
6759 return ERR_PTR(ret);
6760 }
6761
6762 if (!fs_devices->seeding) {
6763 close_fs_devices(fs_devices);
6764 free_fs_devices(fs_devices);
6765 return ERR_PTR(-EINVAL);
6766 }
6767
6768 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6769
6770 return fs_devices;
6771 }
6772
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6773 static int read_one_dev(struct extent_buffer *leaf,
6774 struct btrfs_dev_item *dev_item)
6775 {
6776 struct btrfs_fs_info *fs_info = leaf->fs_info;
6777 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6778 struct btrfs_device *device;
6779 u64 devid;
6780 int ret;
6781 u8 fs_uuid[BTRFS_FSID_SIZE];
6782 u8 dev_uuid[BTRFS_UUID_SIZE];
6783
6784 devid = btrfs_device_id(leaf, dev_item);
6785 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6786 BTRFS_UUID_SIZE);
6787 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6788 BTRFS_FSID_SIZE);
6789
6790 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6791 fs_devices = open_seed_devices(fs_info, fs_uuid);
6792 if (IS_ERR(fs_devices))
6793 return PTR_ERR(fs_devices);
6794 }
6795
6796 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6797 fs_uuid, true);
6798 if (!device) {
6799 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6800 btrfs_report_missing_device(fs_info, devid,
6801 dev_uuid, true);
6802 return -ENOENT;
6803 }
6804
6805 device = add_missing_dev(fs_devices, devid, dev_uuid);
6806 if (IS_ERR(device)) {
6807 btrfs_err(fs_info,
6808 "failed to add missing dev %llu: %ld",
6809 devid, PTR_ERR(device));
6810 return PTR_ERR(device);
6811 }
6812 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6813 } else {
6814 if (!device->bdev) {
6815 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6816 btrfs_report_missing_device(fs_info,
6817 devid, dev_uuid, true);
6818 return -ENOENT;
6819 }
6820 btrfs_report_missing_device(fs_info, devid,
6821 dev_uuid, false);
6822 }
6823
6824 if (!device->bdev &&
6825 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6826 /*
6827 * this happens when a device that was properly setup
6828 * in the device info lists suddenly goes bad.
6829 * device->bdev is NULL, and so we have to set
6830 * device->missing to one here
6831 */
6832 device->fs_devices->missing_devices++;
6833 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6834 }
6835
6836 /* Move the device to its own fs_devices */
6837 if (device->fs_devices != fs_devices) {
6838 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6839 &device->dev_state));
6840
6841 list_move(&device->dev_list, &fs_devices->devices);
6842 device->fs_devices->num_devices--;
6843 fs_devices->num_devices++;
6844
6845 device->fs_devices->missing_devices--;
6846 fs_devices->missing_devices++;
6847
6848 device->fs_devices = fs_devices;
6849 }
6850 }
6851
6852 if (device->fs_devices != fs_info->fs_devices) {
6853 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6854 if (device->generation !=
6855 btrfs_device_generation(leaf, dev_item))
6856 return -EINVAL;
6857 }
6858
6859 fill_device_from_item(leaf, dev_item, device);
6860 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6861 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6862 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6863 device->fs_devices->total_rw_bytes += device->total_bytes;
6864 atomic64_add(device->total_bytes - device->bytes_used,
6865 &fs_info->free_chunk_space);
6866 }
6867 ret = 0;
6868 return ret;
6869 }
6870
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)6871 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6872 {
6873 struct btrfs_root *root = fs_info->tree_root;
6874 struct btrfs_super_block *super_copy = fs_info->super_copy;
6875 struct extent_buffer *sb;
6876 struct btrfs_disk_key *disk_key;
6877 struct btrfs_chunk *chunk;
6878 u8 *array_ptr;
6879 unsigned long sb_array_offset;
6880 int ret = 0;
6881 u32 num_stripes;
6882 u32 array_size;
6883 u32 len = 0;
6884 u32 cur_offset;
6885 u64 type;
6886 struct btrfs_key key;
6887
6888 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6889 /*
6890 * This will create extent buffer of nodesize, superblock size is
6891 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6892 * overallocate but we can keep it as-is, only the first page is used.
6893 */
6894 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6895 if (IS_ERR(sb))
6896 return PTR_ERR(sb);
6897 set_extent_buffer_uptodate(sb);
6898 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6899 /*
6900 * The sb extent buffer is artificial and just used to read the system array.
6901 * set_extent_buffer_uptodate() call does not properly mark all it's
6902 * pages up-to-date when the page is larger: extent does not cover the
6903 * whole page and consequently check_page_uptodate does not find all
6904 * the page's extents up-to-date (the hole beyond sb),
6905 * write_extent_buffer then triggers a WARN_ON.
6906 *
6907 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6908 * but sb spans only this function. Add an explicit SetPageUptodate call
6909 * to silence the warning eg. on PowerPC 64.
6910 */
6911 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6912 SetPageUptodate(sb->pages[0]);
6913
6914 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6915 array_size = btrfs_super_sys_array_size(super_copy);
6916
6917 array_ptr = super_copy->sys_chunk_array;
6918 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6919 cur_offset = 0;
6920
6921 while (cur_offset < array_size) {
6922 disk_key = (struct btrfs_disk_key *)array_ptr;
6923 len = sizeof(*disk_key);
6924 if (cur_offset + len > array_size)
6925 goto out_short_read;
6926
6927 btrfs_disk_key_to_cpu(&key, disk_key);
6928
6929 array_ptr += len;
6930 sb_array_offset += len;
6931 cur_offset += len;
6932
6933 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6934 btrfs_err(fs_info,
6935 "unexpected item type %u in sys_array at offset %u",
6936 (u32)key.type, cur_offset);
6937 ret = -EIO;
6938 break;
6939 }
6940
6941 chunk = (struct btrfs_chunk *)sb_array_offset;
6942 /*
6943 * At least one btrfs_chunk with one stripe must be present,
6944 * exact stripe count check comes afterwards
6945 */
6946 len = btrfs_chunk_item_size(1);
6947 if (cur_offset + len > array_size)
6948 goto out_short_read;
6949
6950 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6951 if (!num_stripes) {
6952 btrfs_err(fs_info,
6953 "invalid number of stripes %u in sys_array at offset %u",
6954 num_stripes, cur_offset);
6955 ret = -EIO;
6956 break;
6957 }
6958
6959 type = btrfs_chunk_type(sb, chunk);
6960 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6961 btrfs_err(fs_info,
6962 "invalid chunk type %llu in sys_array at offset %u",
6963 type, cur_offset);
6964 ret = -EIO;
6965 break;
6966 }
6967
6968 len = btrfs_chunk_item_size(num_stripes);
6969 if (cur_offset + len > array_size)
6970 goto out_short_read;
6971
6972 ret = read_one_chunk(&key, sb, chunk);
6973 if (ret)
6974 break;
6975
6976 array_ptr += len;
6977 sb_array_offset += len;
6978 cur_offset += len;
6979 }
6980 clear_extent_buffer_uptodate(sb);
6981 free_extent_buffer_stale(sb);
6982 return ret;
6983
6984 out_short_read:
6985 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6986 len, cur_offset);
6987 clear_extent_buffer_uptodate(sb);
6988 free_extent_buffer_stale(sb);
6989 return -EIO;
6990 }
6991
6992 /*
6993 * Check if all chunks in the fs are OK for read-write degraded mount
6994 *
6995 * If the @failing_dev is specified, it's accounted as missing.
6996 *
6997 * Return true if all chunks meet the minimal RW mount requirements.
6998 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6999 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7000 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7001 struct btrfs_device *failing_dev)
7002 {
7003 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7004 struct extent_map *em;
7005 u64 next_start = 0;
7006 bool ret = true;
7007
7008 read_lock(&map_tree->lock);
7009 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7010 read_unlock(&map_tree->lock);
7011 /* No chunk at all? Return false anyway */
7012 if (!em) {
7013 ret = false;
7014 goto out;
7015 }
7016 while (em) {
7017 struct map_lookup *map;
7018 int missing = 0;
7019 int max_tolerated;
7020 int i;
7021
7022 map = em->map_lookup;
7023 max_tolerated =
7024 btrfs_get_num_tolerated_disk_barrier_failures(
7025 map->type);
7026 for (i = 0; i < map->num_stripes; i++) {
7027 struct btrfs_device *dev = map->stripes[i].dev;
7028
7029 if (!dev || !dev->bdev ||
7030 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7031 dev->last_flush_error)
7032 missing++;
7033 else if (failing_dev && failing_dev == dev)
7034 missing++;
7035 }
7036 if (missing > max_tolerated) {
7037 if (!failing_dev)
7038 btrfs_warn(fs_info,
7039 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7040 em->start, missing, max_tolerated);
7041 free_extent_map(em);
7042 ret = false;
7043 goto out;
7044 }
7045 next_start = extent_map_end(em);
7046 free_extent_map(em);
7047
7048 read_lock(&map_tree->lock);
7049 em = lookup_extent_mapping(map_tree, next_start,
7050 (u64)(-1) - next_start);
7051 read_unlock(&map_tree->lock);
7052 }
7053 out:
7054 return ret;
7055 }
7056
readahead_tree_node_children(struct extent_buffer * node)7057 static void readahead_tree_node_children(struct extent_buffer *node)
7058 {
7059 int i;
7060 const int nr_items = btrfs_header_nritems(node);
7061
7062 for (i = 0; i < nr_items; i++) {
7063 u64 start;
7064
7065 start = btrfs_node_blockptr(node, i);
7066 readahead_tree_block(node->fs_info, start);
7067 }
7068 }
7069
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7070 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7071 {
7072 struct btrfs_root *root = fs_info->chunk_root;
7073 struct btrfs_path *path;
7074 struct extent_buffer *leaf;
7075 struct btrfs_key key;
7076 struct btrfs_key found_key;
7077 int ret;
7078 int slot;
7079 u64 total_dev = 0;
7080 u64 last_ra_node = 0;
7081
7082 path = btrfs_alloc_path();
7083 if (!path)
7084 return -ENOMEM;
7085
7086 /*
7087 * uuid_mutex is needed only if we are mounting a sprout FS
7088 * otherwise we don't need it.
7089 */
7090 mutex_lock(&uuid_mutex);
7091
7092 /*
7093 * It is possible for mount and umount to race in such a way that
7094 * we execute this code path, but open_fs_devices failed to clear
7095 * total_rw_bytes. We certainly want it cleared before reading the
7096 * device items, so clear it here.
7097 */
7098 fs_info->fs_devices->total_rw_bytes = 0;
7099
7100 /*
7101 * Read all device items, and then all the chunk items. All
7102 * device items are found before any chunk item (their object id
7103 * is smaller than the lowest possible object id for a chunk
7104 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7105 */
7106 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7107 key.offset = 0;
7108 key.type = 0;
7109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7110 if (ret < 0)
7111 goto error;
7112 while (1) {
7113 struct extent_buffer *node;
7114
7115 leaf = path->nodes[0];
7116 slot = path->slots[0];
7117 if (slot >= btrfs_header_nritems(leaf)) {
7118 ret = btrfs_next_leaf(root, path);
7119 if (ret == 0)
7120 continue;
7121 if (ret < 0)
7122 goto error;
7123 break;
7124 }
7125 /*
7126 * The nodes on level 1 are not locked but we don't need to do
7127 * that during mount time as nothing else can access the tree
7128 */
7129 node = path->nodes[1];
7130 if (node) {
7131 if (last_ra_node != node->start) {
7132 readahead_tree_node_children(node);
7133 last_ra_node = node->start;
7134 }
7135 }
7136 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7137 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7138 struct btrfs_dev_item *dev_item;
7139 dev_item = btrfs_item_ptr(leaf, slot,
7140 struct btrfs_dev_item);
7141 ret = read_one_dev(leaf, dev_item);
7142 if (ret)
7143 goto error;
7144 total_dev++;
7145 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7146 struct btrfs_chunk *chunk;
7147 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7148 mutex_lock(&fs_info->chunk_mutex);
7149 ret = read_one_chunk(&found_key, leaf, chunk);
7150 mutex_unlock(&fs_info->chunk_mutex);
7151 if (ret)
7152 goto error;
7153 }
7154 path->slots[0]++;
7155 }
7156
7157 /*
7158 * After loading chunk tree, we've got all device information,
7159 * do another round of validation checks.
7160 */
7161 if (total_dev != fs_info->fs_devices->total_devices) {
7162 btrfs_err(fs_info,
7163 "super_num_devices %llu mismatch with num_devices %llu found here",
7164 btrfs_super_num_devices(fs_info->super_copy),
7165 total_dev);
7166 ret = -EINVAL;
7167 goto error;
7168 }
7169 if (btrfs_super_total_bytes(fs_info->super_copy) <
7170 fs_info->fs_devices->total_rw_bytes) {
7171 btrfs_err(fs_info,
7172 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7173 btrfs_super_total_bytes(fs_info->super_copy),
7174 fs_info->fs_devices->total_rw_bytes);
7175 ret = -EINVAL;
7176 goto error;
7177 }
7178 ret = 0;
7179 error:
7180 mutex_unlock(&uuid_mutex);
7181
7182 btrfs_free_path(path);
7183 return ret;
7184 }
7185
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7186 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7187 {
7188 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7189 struct btrfs_device *device;
7190
7191 fs_devices->fs_info = fs_info;
7192
7193 mutex_lock(&fs_devices->device_list_mutex);
7194 list_for_each_entry(device, &fs_devices->devices, dev_list)
7195 device->fs_info = fs_info;
7196
7197 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7198 list_for_each_entry(device, &seed_devs->devices, dev_list)
7199 device->fs_info = fs_info;
7200
7201 seed_devs->fs_info = fs_info;
7202 }
7203 mutex_unlock(&fs_devices->device_list_mutex);
7204 }
7205
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7206 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7207 const struct btrfs_dev_stats_item *ptr,
7208 int index)
7209 {
7210 u64 val;
7211
7212 read_extent_buffer(eb, &val,
7213 offsetof(struct btrfs_dev_stats_item, values) +
7214 ((unsigned long)ptr) + (index * sizeof(u64)),
7215 sizeof(val));
7216 return val;
7217 }
7218
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7219 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7220 struct btrfs_dev_stats_item *ptr,
7221 int index, u64 val)
7222 {
7223 write_extent_buffer(eb, &val,
7224 offsetof(struct btrfs_dev_stats_item, values) +
7225 ((unsigned long)ptr) + (index * sizeof(u64)),
7226 sizeof(val));
7227 }
7228
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7229 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7230 struct btrfs_path *path)
7231 {
7232 struct btrfs_dev_stats_item *ptr;
7233 struct extent_buffer *eb;
7234 struct btrfs_key key;
7235 int item_size;
7236 int i, ret, slot;
7237
7238 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7239 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7240 key.offset = device->devid;
7241 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7242 if (ret) {
7243 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7244 btrfs_dev_stat_set(device, i, 0);
7245 device->dev_stats_valid = 1;
7246 btrfs_release_path(path);
7247 return ret < 0 ? ret : 0;
7248 }
7249 slot = path->slots[0];
7250 eb = path->nodes[0];
7251 item_size = btrfs_item_size_nr(eb, slot);
7252
7253 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7254
7255 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7256 if (item_size >= (1 + i) * sizeof(__le64))
7257 btrfs_dev_stat_set(device, i,
7258 btrfs_dev_stats_value(eb, ptr, i));
7259 else
7260 btrfs_dev_stat_set(device, i, 0);
7261 }
7262
7263 device->dev_stats_valid = 1;
7264 btrfs_dev_stat_print_on_load(device);
7265 btrfs_release_path(path);
7266
7267 return 0;
7268 }
7269
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7270 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7271 {
7272 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7273 struct btrfs_device *device;
7274 struct btrfs_path *path = NULL;
7275 int ret = 0;
7276
7277 path = btrfs_alloc_path();
7278 if (!path)
7279 return -ENOMEM;
7280
7281 mutex_lock(&fs_devices->device_list_mutex);
7282 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7283 ret = btrfs_device_init_dev_stats(device, path);
7284 if (ret)
7285 goto out;
7286 }
7287 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7288 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7289 ret = btrfs_device_init_dev_stats(device, path);
7290 if (ret)
7291 goto out;
7292 }
7293 }
7294 out:
7295 mutex_unlock(&fs_devices->device_list_mutex);
7296
7297 btrfs_free_path(path);
7298 return ret;
7299 }
7300
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7301 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7302 struct btrfs_device *device)
7303 {
7304 struct btrfs_fs_info *fs_info = trans->fs_info;
7305 struct btrfs_root *dev_root = fs_info->dev_root;
7306 struct btrfs_path *path;
7307 struct btrfs_key key;
7308 struct extent_buffer *eb;
7309 struct btrfs_dev_stats_item *ptr;
7310 int ret;
7311 int i;
7312
7313 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7314 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7315 key.offset = device->devid;
7316
7317 path = btrfs_alloc_path();
7318 if (!path)
7319 return -ENOMEM;
7320 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7321 if (ret < 0) {
7322 btrfs_warn_in_rcu(fs_info,
7323 "error %d while searching for dev_stats item for device %s",
7324 ret, rcu_str_deref(device->name));
7325 goto out;
7326 }
7327
7328 if (ret == 0 &&
7329 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7330 /* need to delete old one and insert a new one */
7331 ret = btrfs_del_item(trans, dev_root, path);
7332 if (ret != 0) {
7333 btrfs_warn_in_rcu(fs_info,
7334 "delete too small dev_stats item for device %s failed %d",
7335 rcu_str_deref(device->name), ret);
7336 goto out;
7337 }
7338 ret = 1;
7339 }
7340
7341 if (ret == 1) {
7342 /* need to insert a new item */
7343 btrfs_release_path(path);
7344 ret = btrfs_insert_empty_item(trans, dev_root, path,
7345 &key, sizeof(*ptr));
7346 if (ret < 0) {
7347 btrfs_warn_in_rcu(fs_info,
7348 "insert dev_stats item for device %s failed %d",
7349 rcu_str_deref(device->name), ret);
7350 goto out;
7351 }
7352 }
7353
7354 eb = path->nodes[0];
7355 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7356 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7357 btrfs_set_dev_stats_value(eb, ptr, i,
7358 btrfs_dev_stat_read(device, i));
7359 btrfs_mark_buffer_dirty(eb);
7360
7361 out:
7362 btrfs_free_path(path);
7363 return ret;
7364 }
7365
7366 /*
7367 * called from commit_transaction. Writes all changed device stats to disk.
7368 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7369 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7370 {
7371 struct btrfs_fs_info *fs_info = trans->fs_info;
7372 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7373 struct btrfs_device *device;
7374 int stats_cnt;
7375 int ret = 0;
7376
7377 mutex_lock(&fs_devices->device_list_mutex);
7378 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7379 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7380 if (!device->dev_stats_valid || stats_cnt == 0)
7381 continue;
7382
7383
7384 /*
7385 * There is a LOAD-LOAD control dependency between the value of
7386 * dev_stats_ccnt and updating the on-disk values which requires
7387 * reading the in-memory counters. Such control dependencies
7388 * require explicit read memory barriers.
7389 *
7390 * This memory barriers pairs with smp_mb__before_atomic in
7391 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7392 * barrier implied by atomic_xchg in
7393 * btrfs_dev_stats_read_and_reset
7394 */
7395 smp_rmb();
7396
7397 ret = update_dev_stat_item(trans, device);
7398 if (!ret)
7399 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7400 }
7401 mutex_unlock(&fs_devices->device_list_mutex);
7402
7403 return ret;
7404 }
7405
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7406 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7407 {
7408 btrfs_dev_stat_inc(dev, index);
7409 btrfs_dev_stat_print_on_error(dev);
7410 }
7411
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7412 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7413 {
7414 if (!dev->dev_stats_valid)
7415 return;
7416 btrfs_err_rl_in_rcu(dev->fs_info,
7417 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7418 rcu_str_deref(dev->name),
7419 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7420 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7421 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7422 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7423 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7424 }
7425
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7426 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7427 {
7428 int i;
7429
7430 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7431 if (btrfs_dev_stat_read(dev, i) != 0)
7432 break;
7433 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7434 return; /* all values == 0, suppress message */
7435
7436 btrfs_info_in_rcu(dev->fs_info,
7437 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7438 rcu_str_deref(dev->name),
7439 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7440 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7441 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7442 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7443 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7444 }
7445
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7446 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7447 struct btrfs_ioctl_get_dev_stats *stats)
7448 {
7449 struct btrfs_device *dev;
7450 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7451 int i;
7452
7453 mutex_lock(&fs_devices->device_list_mutex);
7454 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7455 true);
7456 mutex_unlock(&fs_devices->device_list_mutex);
7457
7458 if (!dev) {
7459 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7460 return -ENODEV;
7461 } else if (!dev->dev_stats_valid) {
7462 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7463 return -ENODEV;
7464 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7465 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7466 if (stats->nr_items > i)
7467 stats->values[i] =
7468 btrfs_dev_stat_read_and_reset(dev, i);
7469 else
7470 btrfs_dev_stat_set(dev, i, 0);
7471 }
7472 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7473 current->comm, task_pid_nr(current));
7474 } else {
7475 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7476 if (stats->nr_items > i)
7477 stats->values[i] = btrfs_dev_stat_read(dev, i);
7478 }
7479 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7480 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7481 return 0;
7482 }
7483
7484 /*
7485 * Update the size and bytes used for each device where it changed. This is
7486 * delayed since we would otherwise get errors while writing out the
7487 * superblocks.
7488 *
7489 * Must be invoked during transaction commit.
7490 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7491 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7492 {
7493 struct btrfs_device *curr, *next;
7494
7495 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7496
7497 if (list_empty(&trans->dev_update_list))
7498 return;
7499
7500 /*
7501 * We don't need the device_list_mutex here. This list is owned by the
7502 * transaction and the transaction must complete before the device is
7503 * released.
7504 */
7505 mutex_lock(&trans->fs_info->chunk_mutex);
7506 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7507 post_commit_list) {
7508 list_del_init(&curr->post_commit_list);
7509 curr->commit_total_bytes = curr->disk_total_bytes;
7510 curr->commit_bytes_used = curr->bytes_used;
7511 }
7512 mutex_unlock(&trans->fs_info->chunk_mutex);
7513 }
7514
7515 /*
7516 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7517 */
btrfs_bg_type_to_factor(u64 flags)7518 int btrfs_bg_type_to_factor(u64 flags)
7519 {
7520 const int index = btrfs_bg_flags_to_raid_index(flags);
7521
7522 return btrfs_raid_array[index].ncopies;
7523 }
7524
7525
7526
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7527 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7528 u64 chunk_offset, u64 devid,
7529 u64 physical_offset, u64 physical_len)
7530 {
7531 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7532 struct extent_map *em;
7533 struct map_lookup *map;
7534 struct btrfs_device *dev;
7535 u64 stripe_len;
7536 bool found = false;
7537 int ret = 0;
7538 int i;
7539
7540 read_lock(&em_tree->lock);
7541 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7542 read_unlock(&em_tree->lock);
7543
7544 if (!em) {
7545 btrfs_err(fs_info,
7546 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7547 physical_offset, devid);
7548 ret = -EUCLEAN;
7549 goto out;
7550 }
7551
7552 map = em->map_lookup;
7553 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7554 if (physical_len != stripe_len) {
7555 btrfs_err(fs_info,
7556 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7557 physical_offset, devid, em->start, physical_len,
7558 stripe_len);
7559 ret = -EUCLEAN;
7560 goto out;
7561 }
7562
7563 for (i = 0; i < map->num_stripes; i++) {
7564 if (map->stripes[i].dev->devid == devid &&
7565 map->stripes[i].physical == physical_offset) {
7566 found = true;
7567 if (map->verified_stripes >= map->num_stripes) {
7568 btrfs_err(fs_info,
7569 "too many dev extents for chunk %llu found",
7570 em->start);
7571 ret = -EUCLEAN;
7572 goto out;
7573 }
7574 map->verified_stripes++;
7575 break;
7576 }
7577 }
7578 if (!found) {
7579 btrfs_err(fs_info,
7580 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7581 physical_offset, devid);
7582 ret = -EUCLEAN;
7583 }
7584
7585 /* Make sure no dev extent is beyond device bondary */
7586 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7587 if (!dev) {
7588 btrfs_err(fs_info, "failed to find devid %llu", devid);
7589 ret = -EUCLEAN;
7590 goto out;
7591 }
7592
7593 /* It's possible this device is a dummy for seed device */
7594 if (dev->disk_total_bytes == 0) {
7595 struct btrfs_fs_devices *devs;
7596
7597 devs = list_first_entry(&fs_info->fs_devices->seed_list,
7598 struct btrfs_fs_devices, seed_list);
7599 dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7600 if (!dev) {
7601 btrfs_err(fs_info, "failed to find seed devid %llu",
7602 devid);
7603 ret = -EUCLEAN;
7604 goto out;
7605 }
7606 }
7607
7608 if (physical_offset + physical_len > dev->disk_total_bytes) {
7609 btrfs_err(fs_info,
7610 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7611 devid, physical_offset, physical_len,
7612 dev->disk_total_bytes);
7613 ret = -EUCLEAN;
7614 goto out;
7615 }
7616 out:
7617 free_extent_map(em);
7618 return ret;
7619 }
7620
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7621 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7622 {
7623 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7624 struct extent_map *em;
7625 struct rb_node *node;
7626 int ret = 0;
7627
7628 read_lock(&em_tree->lock);
7629 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7630 em = rb_entry(node, struct extent_map, rb_node);
7631 if (em->map_lookup->num_stripes !=
7632 em->map_lookup->verified_stripes) {
7633 btrfs_err(fs_info,
7634 "chunk %llu has missing dev extent, have %d expect %d",
7635 em->start, em->map_lookup->verified_stripes,
7636 em->map_lookup->num_stripes);
7637 ret = -EUCLEAN;
7638 goto out;
7639 }
7640 }
7641 out:
7642 read_unlock(&em_tree->lock);
7643 return ret;
7644 }
7645
7646 /*
7647 * Ensure that all dev extents are mapped to correct chunk, otherwise
7648 * later chunk allocation/free would cause unexpected behavior.
7649 *
7650 * NOTE: This will iterate through the whole device tree, which should be of
7651 * the same size level as the chunk tree. This slightly increases mount time.
7652 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7653 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7654 {
7655 struct btrfs_path *path;
7656 struct btrfs_root *root = fs_info->dev_root;
7657 struct btrfs_key key;
7658 u64 prev_devid = 0;
7659 u64 prev_dev_ext_end = 0;
7660 int ret = 0;
7661
7662 key.objectid = 1;
7663 key.type = BTRFS_DEV_EXTENT_KEY;
7664 key.offset = 0;
7665
7666 path = btrfs_alloc_path();
7667 if (!path)
7668 return -ENOMEM;
7669
7670 path->reada = READA_FORWARD;
7671 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7672 if (ret < 0)
7673 goto out;
7674
7675 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7676 ret = btrfs_next_item(root, path);
7677 if (ret < 0)
7678 goto out;
7679 /* No dev extents at all? Not good */
7680 if (ret > 0) {
7681 ret = -EUCLEAN;
7682 goto out;
7683 }
7684 }
7685 while (1) {
7686 struct extent_buffer *leaf = path->nodes[0];
7687 struct btrfs_dev_extent *dext;
7688 int slot = path->slots[0];
7689 u64 chunk_offset;
7690 u64 physical_offset;
7691 u64 physical_len;
7692 u64 devid;
7693
7694 btrfs_item_key_to_cpu(leaf, &key, slot);
7695 if (key.type != BTRFS_DEV_EXTENT_KEY)
7696 break;
7697 devid = key.objectid;
7698 physical_offset = key.offset;
7699
7700 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7701 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7702 physical_len = btrfs_dev_extent_length(leaf, dext);
7703
7704 /* Check if this dev extent overlaps with the previous one */
7705 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7706 btrfs_err(fs_info,
7707 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7708 devid, physical_offset, prev_dev_ext_end);
7709 ret = -EUCLEAN;
7710 goto out;
7711 }
7712
7713 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7714 physical_offset, physical_len);
7715 if (ret < 0)
7716 goto out;
7717 prev_devid = devid;
7718 prev_dev_ext_end = physical_offset + physical_len;
7719
7720 ret = btrfs_next_item(root, path);
7721 if (ret < 0)
7722 goto out;
7723 if (ret > 0) {
7724 ret = 0;
7725 break;
7726 }
7727 }
7728
7729 /* Ensure all chunks have corresponding dev extents */
7730 ret = verify_chunk_dev_extent_mapping(fs_info);
7731 out:
7732 btrfs_free_path(path);
7733 return ret;
7734 }
7735
7736 /*
7737 * Check whether the given block group or device is pinned by any inode being
7738 * used as a swapfile.
7739 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)7740 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7741 {
7742 struct btrfs_swapfile_pin *sp;
7743 struct rb_node *node;
7744
7745 spin_lock(&fs_info->swapfile_pins_lock);
7746 node = fs_info->swapfile_pins.rb_node;
7747 while (node) {
7748 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7749 if (ptr < sp->ptr)
7750 node = node->rb_left;
7751 else if (ptr > sp->ptr)
7752 node = node->rb_right;
7753 else
7754 break;
7755 }
7756 spin_unlock(&fs_info->swapfile_pins_lock);
7757 return node != NULL;
7758 }
7759