1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24
25 #define MAX_CONFLICT_INODES 10
26
27 /* magic values for the inode_only field in btrfs_log_inode:
28 *
29 * LOG_INODE_ALL means to log everything
30 * LOG_INODE_EXISTS means to log just enough to recreate the inode
31 * during log replay
32 */
33 enum {
34 LOG_INODE_ALL,
35 LOG_INODE_EXISTS,
36 };
37
38 /*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
81 /*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
90 enum {
91 LOG_WALK_PIN_ONLY,
92 LOG_WALK_REPLAY_INODES,
93 LOG_WALK_REPLAY_DIR_INDEX,
94 LOG_WALK_REPLAY_ALL,
95 };
96
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_inode *inode,
99 int inode_only,
100 struct btrfs_log_ctx *ctx);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
109 static void wait_log_commit(struct btrfs_root *root, int transid);
110
111 /*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
134 /*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
142 {
143 struct btrfs_fs_info *fs_info = root->fs_info;
144 struct btrfs_root *tree_root = fs_info->tree_root;
145 const bool zoned = btrfs_is_zoned(fs_info);
146 int ret = 0;
147 bool created = false;
148
149 /*
150 * First check if the log root tree was already created. If not, create
151 * it before locking the root's log_mutex, just to keep lockdep happy.
152 */
153 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 mutex_lock(&tree_root->log_mutex);
155 if (!fs_info->log_root_tree) {
156 ret = btrfs_init_log_root_tree(trans, fs_info);
157 if (!ret) {
158 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
159 created = true;
160 }
161 }
162 mutex_unlock(&tree_root->log_mutex);
163 if (ret)
164 return ret;
165 }
166
167 mutex_lock(&root->log_mutex);
168
169 again:
170 if (root->log_root) {
171 int index = (root->log_transid + 1) % 2;
172
173 if (btrfs_need_log_full_commit(trans)) {
174 ret = BTRFS_LOG_FORCE_COMMIT;
175 goto out;
176 }
177
178 if (zoned && atomic_read(&root->log_commit[index])) {
179 wait_log_commit(root, root->log_transid - 1);
180 goto again;
181 }
182
183 if (!root->log_start_pid) {
184 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
185 root->log_start_pid = current->pid;
186 } else if (root->log_start_pid != current->pid) {
187 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
188 }
189 } else {
190 /*
191 * This means fs_info->log_root_tree was already created
192 * for some other FS trees. Do the full commit not to mix
193 * nodes from multiple log transactions to do sequential
194 * writing.
195 */
196 if (zoned && !created) {
197 ret = BTRFS_LOG_FORCE_COMMIT;
198 goto out;
199 }
200
201 ret = btrfs_add_log_tree(trans, root);
202 if (ret)
203 goto out;
204
205 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
206 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 root->log_start_pid = current->pid;
208 }
209
210 atomic_inc(&root->log_writers);
211 if (!ctx->logging_new_name) {
212 int index = root->log_transid % 2;
213 list_add_tail(&ctx->list, &root->log_ctxs[index]);
214 ctx->log_transid = root->log_transid;
215 }
216
217 out:
218 mutex_unlock(&root->log_mutex);
219 return ret;
220 }
221
222 /*
223 * returns 0 if there was a log transaction running and we were able
224 * to join, or returns -ENOENT if there were not transactions
225 * in progress
226 */
join_running_log_trans(struct btrfs_root * root)227 static int join_running_log_trans(struct btrfs_root *root)
228 {
229 const bool zoned = btrfs_is_zoned(root->fs_info);
230 int ret = -ENOENT;
231
232 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
233 return ret;
234
235 mutex_lock(&root->log_mutex);
236 again:
237 if (root->log_root) {
238 int index = (root->log_transid + 1) % 2;
239
240 ret = 0;
241 if (zoned && atomic_read(&root->log_commit[index])) {
242 wait_log_commit(root, root->log_transid - 1);
243 goto again;
244 }
245 atomic_inc(&root->log_writers);
246 }
247 mutex_unlock(&root->log_mutex);
248 return ret;
249 }
250
251 /*
252 * This either makes the current running log transaction wait
253 * until you call btrfs_end_log_trans() or it makes any future
254 * log transactions wait until you call btrfs_end_log_trans()
255 */
btrfs_pin_log_trans(struct btrfs_root * root)256 void btrfs_pin_log_trans(struct btrfs_root *root)
257 {
258 atomic_inc(&root->log_writers);
259 }
260
261 /*
262 * indicate we're done making changes to the log tree
263 * and wake up anyone waiting to do a sync
264 */
btrfs_end_log_trans(struct btrfs_root * root)265 void btrfs_end_log_trans(struct btrfs_root *root)
266 {
267 if (atomic_dec_and_test(&root->log_writers)) {
268 /* atomic_dec_and_test implies a barrier */
269 cond_wake_up_nomb(&root->log_writer_wait);
270 }
271 }
272
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)273 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
274 {
275 filemap_fdatawait_range(buf->pages[0]->mapping,
276 buf->start, buf->start + buf->len - 1);
277 }
278
279 /*
280 * the walk control struct is used to pass state down the chain when
281 * processing the log tree. The stage field tells us which part
282 * of the log tree processing we are currently doing. The others
283 * are state fields used for that specific part
284 */
285 struct walk_control {
286 /* should we free the extent on disk when done? This is used
287 * at transaction commit time while freeing a log tree
288 */
289 int free;
290
291 /* pin only walk, we record which extents on disk belong to the
292 * log trees
293 */
294 int pin;
295
296 /* what stage of the replay code we're currently in */
297 int stage;
298
299 /*
300 * Ignore any items from the inode currently being processed. Needs
301 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
302 * the LOG_WALK_REPLAY_INODES stage.
303 */
304 bool ignore_cur_inode;
305
306 /* the root we are currently replaying */
307 struct btrfs_root *replay_dest;
308
309 /* the trans handle for the current replay */
310 struct btrfs_trans_handle *trans;
311
312 /* the function that gets used to process blocks we find in the
313 * tree. Note the extent_buffer might not be up to date when it is
314 * passed in, and it must be checked or read if you need the data
315 * inside it
316 */
317 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
318 struct walk_control *wc, u64 gen, int level);
319 };
320
321 /*
322 * process_func used to pin down extents, write them or wait on them
323 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)324 static int process_one_buffer(struct btrfs_root *log,
325 struct extent_buffer *eb,
326 struct walk_control *wc, u64 gen, int level)
327 {
328 struct btrfs_fs_info *fs_info = log->fs_info;
329 int ret = 0;
330
331 /*
332 * If this fs is mixed then we need to be able to process the leaves to
333 * pin down any logged extents, so we have to read the block.
334 */
335 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
336 ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
337 if (ret)
338 return ret;
339 }
340
341 if (wc->pin) {
342 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
343 eb->len);
344 if (ret)
345 return ret;
346
347 if (btrfs_buffer_uptodate(eb, gen, 0) &&
348 btrfs_header_level(eb) == 0)
349 ret = btrfs_exclude_logged_extents(eb);
350 }
351 return ret;
352 }
353
do_overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)354 static int do_overwrite_item(struct btrfs_trans_handle *trans,
355 struct btrfs_root *root,
356 struct btrfs_path *path,
357 struct extent_buffer *eb, int slot,
358 struct btrfs_key *key)
359 {
360 int ret;
361 u32 item_size;
362 u64 saved_i_size = 0;
363 int save_old_i_size = 0;
364 unsigned long src_ptr;
365 unsigned long dst_ptr;
366 int overwrite_root = 0;
367 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
368
369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
370 overwrite_root = 1;
371
372 item_size = btrfs_item_size(eb, slot);
373 src_ptr = btrfs_item_ptr_offset(eb, slot);
374
375 /* Our caller must have done a search for the key for us. */
376 ASSERT(path->nodes[0] != NULL);
377
378 /*
379 * And the slot must point to the exact key or the slot where the key
380 * should be at (the first item with a key greater than 'key')
381 */
382 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
383 struct btrfs_key found_key;
384
385 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
386 ret = btrfs_comp_cpu_keys(&found_key, key);
387 ASSERT(ret >= 0);
388 } else {
389 ret = 1;
390 }
391
392 if (ret == 0) {
393 char *src_copy;
394 char *dst_copy;
395 u32 dst_size = btrfs_item_size(path->nodes[0],
396 path->slots[0]);
397 if (dst_size != item_size)
398 goto insert;
399
400 if (item_size == 0) {
401 btrfs_release_path(path);
402 return 0;
403 }
404 dst_copy = kmalloc(item_size, GFP_NOFS);
405 src_copy = kmalloc(item_size, GFP_NOFS);
406 if (!dst_copy || !src_copy) {
407 btrfs_release_path(path);
408 kfree(dst_copy);
409 kfree(src_copy);
410 return -ENOMEM;
411 }
412
413 read_extent_buffer(eb, src_copy, src_ptr, item_size);
414
415 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
416 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
417 item_size);
418 ret = memcmp(dst_copy, src_copy, item_size);
419
420 kfree(dst_copy);
421 kfree(src_copy);
422 /*
423 * they have the same contents, just return, this saves
424 * us from cowing blocks in the destination tree and doing
425 * extra writes that may not have been done by a previous
426 * sync
427 */
428 if (ret == 0) {
429 btrfs_release_path(path);
430 return 0;
431 }
432
433 /*
434 * We need to load the old nbytes into the inode so when we
435 * replay the extents we've logged we get the right nbytes.
436 */
437 if (inode_item) {
438 struct btrfs_inode_item *item;
439 u64 nbytes;
440 u32 mode;
441
442 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
443 struct btrfs_inode_item);
444 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
445 item = btrfs_item_ptr(eb, slot,
446 struct btrfs_inode_item);
447 btrfs_set_inode_nbytes(eb, item, nbytes);
448
449 /*
450 * If this is a directory we need to reset the i_size to
451 * 0 so that we can set it up properly when replaying
452 * the rest of the items in this log.
453 */
454 mode = btrfs_inode_mode(eb, item);
455 if (S_ISDIR(mode))
456 btrfs_set_inode_size(eb, item, 0);
457 }
458 } else if (inode_item) {
459 struct btrfs_inode_item *item;
460 u32 mode;
461
462 /*
463 * New inode, set nbytes to 0 so that the nbytes comes out
464 * properly when we replay the extents.
465 */
466 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
467 btrfs_set_inode_nbytes(eb, item, 0);
468
469 /*
470 * If this is a directory we need to reset the i_size to 0 so
471 * that we can set it up properly when replaying the rest of
472 * the items in this log.
473 */
474 mode = btrfs_inode_mode(eb, item);
475 if (S_ISDIR(mode))
476 btrfs_set_inode_size(eb, item, 0);
477 }
478 insert:
479 btrfs_release_path(path);
480 /* try to insert the key into the destination tree */
481 path->skip_release_on_error = 1;
482 ret = btrfs_insert_empty_item(trans, root, path,
483 key, item_size);
484 path->skip_release_on_error = 0;
485
486 /* make sure any existing item is the correct size */
487 if (ret == -EEXIST || ret == -EOVERFLOW) {
488 u32 found_size;
489 found_size = btrfs_item_size(path->nodes[0],
490 path->slots[0]);
491 if (found_size > item_size)
492 btrfs_truncate_item(path, item_size, 1);
493 else if (found_size < item_size)
494 btrfs_extend_item(path, item_size - found_size);
495 } else if (ret) {
496 return ret;
497 }
498 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
499 path->slots[0]);
500
501 /* don't overwrite an existing inode if the generation number
502 * was logged as zero. This is done when the tree logging code
503 * is just logging an inode to make sure it exists after recovery.
504 *
505 * Also, don't overwrite i_size on directories during replay.
506 * log replay inserts and removes directory items based on the
507 * state of the tree found in the subvolume, and i_size is modified
508 * as it goes
509 */
510 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
511 struct btrfs_inode_item *src_item;
512 struct btrfs_inode_item *dst_item;
513
514 src_item = (struct btrfs_inode_item *)src_ptr;
515 dst_item = (struct btrfs_inode_item *)dst_ptr;
516
517 if (btrfs_inode_generation(eb, src_item) == 0) {
518 struct extent_buffer *dst_eb = path->nodes[0];
519 const u64 ino_size = btrfs_inode_size(eb, src_item);
520
521 /*
522 * For regular files an ino_size == 0 is used only when
523 * logging that an inode exists, as part of a directory
524 * fsync, and the inode wasn't fsynced before. In this
525 * case don't set the size of the inode in the fs/subvol
526 * tree, otherwise we would be throwing valid data away.
527 */
528 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
529 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
530 ino_size != 0)
531 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
532 goto no_copy;
533 }
534
535 if (overwrite_root &&
536 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
537 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
538 save_old_i_size = 1;
539 saved_i_size = btrfs_inode_size(path->nodes[0],
540 dst_item);
541 }
542 }
543
544 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
545 src_ptr, item_size);
546
547 if (save_old_i_size) {
548 struct btrfs_inode_item *dst_item;
549 dst_item = (struct btrfs_inode_item *)dst_ptr;
550 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
551 }
552
553 /* make sure the generation is filled in */
554 if (key->type == BTRFS_INODE_ITEM_KEY) {
555 struct btrfs_inode_item *dst_item;
556 dst_item = (struct btrfs_inode_item *)dst_ptr;
557 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
558 btrfs_set_inode_generation(path->nodes[0], dst_item,
559 trans->transid);
560 }
561 }
562 no_copy:
563 btrfs_mark_buffer_dirty(path->nodes[0]);
564 btrfs_release_path(path);
565 return 0;
566 }
567
568 /*
569 * Item overwrite used by replay and tree logging. eb, slot and key all refer
570 * to the src data we are copying out.
571 *
572 * root is the tree we are copying into, and path is a scratch
573 * path for use in this function (it should be released on entry and
574 * will be released on exit).
575 *
576 * If the key is already in the destination tree the existing item is
577 * overwritten. If the existing item isn't big enough, it is extended.
578 * If it is too large, it is truncated.
579 *
580 * If the key isn't in the destination yet, a new item is inserted.
581 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)582 static int overwrite_item(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_path *path,
585 struct extent_buffer *eb, int slot,
586 struct btrfs_key *key)
587 {
588 int ret;
589
590 /* Look for the key in the destination tree. */
591 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
592 if (ret < 0)
593 return ret;
594
595 return do_overwrite_item(trans, root, path, eb, slot, key);
596 }
597
598 /*
599 * simple helper to read an inode off the disk from a given root
600 * This can only be called for subvolume roots and not for the log
601 */
read_one_inode(struct btrfs_root * root,u64 objectid)602 static noinline struct inode *read_one_inode(struct btrfs_root *root,
603 u64 objectid)
604 {
605 struct inode *inode;
606
607 inode = btrfs_iget(root->fs_info->sb, objectid, root);
608 if (IS_ERR(inode))
609 inode = NULL;
610 return inode;
611 }
612
613 /* replays a single extent in 'eb' at 'slot' with 'key' into the
614 * subvolume 'root'. path is released on entry and should be released
615 * on exit.
616 *
617 * extents in the log tree have not been allocated out of the extent
618 * tree yet. So, this completes the allocation, taking a reference
619 * as required if the extent already exists or creating a new extent
620 * if it isn't in the extent allocation tree yet.
621 *
622 * The extent is inserted into the file, dropping any existing extents
623 * from the file that overlap the new one.
624 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)625 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
626 struct btrfs_root *root,
627 struct btrfs_path *path,
628 struct extent_buffer *eb, int slot,
629 struct btrfs_key *key)
630 {
631 struct btrfs_drop_extents_args drop_args = { 0 };
632 struct btrfs_fs_info *fs_info = root->fs_info;
633 int found_type;
634 u64 extent_end;
635 u64 start = key->offset;
636 u64 nbytes = 0;
637 struct btrfs_file_extent_item *item;
638 struct inode *inode = NULL;
639 unsigned long size;
640 int ret = 0;
641
642 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
643 found_type = btrfs_file_extent_type(eb, item);
644
645 if (found_type == BTRFS_FILE_EXTENT_REG ||
646 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
647 nbytes = btrfs_file_extent_num_bytes(eb, item);
648 extent_end = start + nbytes;
649
650 /*
651 * We don't add to the inodes nbytes if we are prealloc or a
652 * hole.
653 */
654 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
655 nbytes = 0;
656 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
657 size = btrfs_file_extent_ram_bytes(eb, item);
658 nbytes = btrfs_file_extent_ram_bytes(eb, item);
659 extent_end = ALIGN(start + size,
660 fs_info->sectorsize);
661 } else {
662 ret = 0;
663 goto out;
664 }
665
666 inode = read_one_inode(root, key->objectid);
667 if (!inode) {
668 ret = -EIO;
669 goto out;
670 }
671
672 /*
673 * first check to see if we already have this extent in the
674 * file. This must be done before the btrfs_drop_extents run
675 * so we don't try to drop this extent.
676 */
677 ret = btrfs_lookup_file_extent(trans, root, path,
678 btrfs_ino(BTRFS_I(inode)), start, 0);
679
680 if (ret == 0 &&
681 (found_type == BTRFS_FILE_EXTENT_REG ||
682 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
683 struct btrfs_file_extent_item cmp1;
684 struct btrfs_file_extent_item cmp2;
685 struct btrfs_file_extent_item *existing;
686 struct extent_buffer *leaf;
687
688 leaf = path->nodes[0];
689 existing = btrfs_item_ptr(leaf, path->slots[0],
690 struct btrfs_file_extent_item);
691
692 read_extent_buffer(eb, &cmp1, (unsigned long)item,
693 sizeof(cmp1));
694 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
695 sizeof(cmp2));
696
697 /*
698 * we already have a pointer to this exact extent,
699 * we don't have to do anything
700 */
701 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
702 btrfs_release_path(path);
703 goto out;
704 }
705 }
706 btrfs_release_path(path);
707
708 /* drop any overlapping extents */
709 drop_args.start = start;
710 drop_args.end = extent_end;
711 drop_args.drop_cache = true;
712 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
713 if (ret)
714 goto out;
715
716 if (found_type == BTRFS_FILE_EXTENT_REG ||
717 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
718 u64 offset;
719 unsigned long dest_offset;
720 struct btrfs_key ins;
721
722 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
723 btrfs_fs_incompat(fs_info, NO_HOLES))
724 goto update_inode;
725
726 ret = btrfs_insert_empty_item(trans, root, path, key,
727 sizeof(*item));
728 if (ret)
729 goto out;
730 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
731 path->slots[0]);
732 copy_extent_buffer(path->nodes[0], eb, dest_offset,
733 (unsigned long)item, sizeof(*item));
734
735 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
736 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
737 ins.type = BTRFS_EXTENT_ITEM_KEY;
738 offset = key->offset - btrfs_file_extent_offset(eb, item);
739
740 /*
741 * Manually record dirty extent, as here we did a shallow
742 * file extent item copy and skip normal backref update,
743 * but modifying extent tree all by ourselves.
744 * So need to manually record dirty extent for qgroup,
745 * as the owner of the file extent changed from log tree
746 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
747 */
748 ret = btrfs_qgroup_trace_extent(trans,
749 btrfs_file_extent_disk_bytenr(eb, item),
750 btrfs_file_extent_disk_num_bytes(eb, item),
751 GFP_NOFS);
752 if (ret < 0)
753 goto out;
754
755 if (ins.objectid > 0) {
756 struct btrfs_ref ref = { 0 };
757 u64 csum_start;
758 u64 csum_end;
759 LIST_HEAD(ordered_sums);
760
761 /*
762 * is this extent already allocated in the extent
763 * allocation tree? If so, just add a reference
764 */
765 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
766 ins.offset);
767 if (ret < 0) {
768 goto out;
769 } else if (ret == 0) {
770 btrfs_init_generic_ref(&ref,
771 BTRFS_ADD_DELAYED_REF,
772 ins.objectid, ins.offset, 0);
773 btrfs_init_data_ref(&ref,
774 root->root_key.objectid,
775 key->objectid, offset, 0, false);
776 ret = btrfs_inc_extent_ref(trans, &ref);
777 if (ret)
778 goto out;
779 } else {
780 /*
781 * insert the extent pointer in the extent
782 * allocation tree
783 */
784 ret = btrfs_alloc_logged_file_extent(trans,
785 root->root_key.objectid,
786 key->objectid, offset, &ins);
787 if (ret)
788 goto out;
789 }
790 btrfs_release_path(path);
791
792 if (btrfs_file_extent_compression(eb, item)) {
793 csum_start = ins.objectid;
794 csum_end = csum_start + ins.offset;
795 } else {
796 csum_start = ins.objectid +
797 btrfs_file_extent_offset(eb, item);
798 csum_end = csum_start +
799 btrfs_file_extent_num_bytes(eb, item);
800 }
801
802 ret = btrfs_lookup_csums_range(root->log_root,
803 csum_start, csum_end - 1,
804 &ordered_sums, 0, false);
805 if (ret)
806 goto out;
807 /*
808 * Now delete all existing cums in the csum root that
809 * cover our range. We do this because we can have an
810 * extent that is completely referenced by one file
811 * extent item and partially referenced by another
812 * file extent item (like after using the clone or
813 * extent_same ioctls). In this case if we end up doing
814 * the replay of the one that partially references the
815 * extent first, and we do not do the csum deletion
816 * below, we can get 2 csum items in the csum tree that
817 * overlap each other. For example, imagine our log has
818 * the two following file extent items:
819 *
820 * key (257 EXTENT_DATA 409600)
821 * extent data disk byte 12845056 nr 102400
822 * extent data offset 20480 nr 20480 ram 102400
823 *
824 * key (257 EXTENT_DATA 819200)
825 * extent data disk byte 12845056 nr 102400
826 * extent data offset 0 nr 102400 ram 102400
827 *
828 * Where the second one fully references the 100K extent
829 * that starts at disk byte 12845056, and the log tree
830 * has a single csum item that covers the entire range
831 * of the extent:
832 *
833 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 *
835 * After the first file extent item is replayed, the
836 * csum tree gets the following csum item:
837 *
838 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
839 *
840 * Which covers the 20K sub-range starting at offset 20K
841 * of our extent. Now when we replay the second file
842 * extent item, if we do not delete existing csum items
843 * that cover any of its blocks, we end up getting two
844 * csum items in our csum tree that overlap each other:
845 *
846 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
847 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
848 *
849 * Which is a problem, because after this anyone trying
850 * to lookup up for the checksum of any block of our
851 * extent starting at an offset of 40K or higher, will
852 * end up looking at the second csum item only, which
853 * does not contain the checksum for any block starting
854 * at offset 40K or higher of our extent.
855 */
856 while (!list_empty(&ordered_sums)) {
857 struct btrfs_ordered_sum *sums;
858 struct btrfs_root *csum_root;
859
860 sums = list_entry(ordered_sums.next,
861 struct btrfs_ordered_sum,
862 list);
863 csum_root = btrfs_csum_root(fs_info,
864 sums->bytenr);
865 if (!ret)
866 ret = btrfs_del_csums(trans, csum_root,
867 sums->bytenr,
868 sums->len);
869 if (!ret)
870 ret = btrfs_csum_file_blocks(trans,
871 csum_root,
872 sums);
873 list_del(&sums->list);
874 kfree(sums);
875 }
876 if (ret)
877 goto out;
878 } else {
879 btrfs_release_path(path);
880 }
881 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
882 /* inline extents are easy, we just overwrite them */
883 ret = overwrite_item(trans, root, path, eb, slot, key);
884 if (ret)
885 goto out;
886 }
887
888 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
889 extent_end - start);
890 if (ret)
891 goto out;
892
893 update_inode:
894 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
895 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
896 out:
897 iput(inode);
898 return ret;
899 }
900
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)901 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
902 struct btrfs_inode *dir,
903 struct btrfs_inode *inode,
904 const char *name,
905 int name_len)
906 {
907 int ret;
908
909 ret = btrfs_unlink_inode(trans, dir, inode, name, name_len);
910 if (ret)
911 return ret;
912 /*
913 * Whenever we need to check if a name exists or not, we check the
914 * fs/subvolume tree. So after an unlink we must run delayed items, so
915 * that future checks for a name during log replay see that the name
916 * does not exists anymore.
917 */
918 return btrfs_run_delayed_items(trans);
919 }
920
921 /*
922 * when cleaning up conflicts between the directory names in the
923 * subvolume, directory names in the log and directory names in the
924 * inode back references, we may have to unlink inodes from directories.
925 *
926 * This is a helper function to do the unlink of a specific directory
927 * item
928 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)929 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
930 struct btrfs_path *path,
931 struct btrfs_inode *dir,
932 struct btrfs_dir_item *di)
933 {
934 struct btrfs_root *root = dir->root;
935 struct inode *inode;
936 char *name;
937 int name_len;
938 struct extent_buffer *leaf;
939 struct btrfs_key location;
940 int ret;
941
942 leaf = path->nodes[0];
943
944 btrfs_dir_item_key_to_cpu(leaf, di, &location);
945 name_len = btrfs_dir_name_len(leaf, di);
946 name = kmalloc(name_len, GFP_NOFS);
947 if (!name)
948 return -ENOMEM;
949
950 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
951 btrfs_release_path(path);
952
953 inode = read_one_inode(root, location.objectid);
954 if (!inode) {
955 ret = -EIO;
956 goto out;
957 }
958
959 ret = link_to_fixup_dir(trans, root, path, location.objectid);
960 if (ret)
961 goto out;
962
963 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), name,
964 name_len);
965 out:
966 kfree(name);
967 iput(inode);
968 return ret;
969 }
970
971 /*
972 * See if a given name and sequence number found in an inode back reference are
973 * already in a directory and correctly point to this inode.
974 *
975 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
976 * exists.
977 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)978 static noinline int inode_in_dir(struct btrfs_root *root,
979 struct btrfs_path *path,
980 u64 dirid, u64 objectid, u64 index,
981 const char *name, int name_len)
982 {
983 struct btrfs_dir_item *di;
984 struct btrfs_key location;
985 int ret = 0;
986
987 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
988 index, name, name_len, 0);
989 if (IS_ERR(di)) {
990 ret = PTR_ERR(di);
991 goto out;
992 } else if (di) {
993 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
994 if (location.objectid != objectid)
995 goto out;
996 } else {
997 goto out;
998 }
999
1000 btrfs_release_path(path);
1001 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
1002 if (IS_ERR(di)) {
1003 ret = PTR_ERR(di);
1004 goto out;
1005 } else if (di) {
1006 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1007 if (location.objectid == objectid)
1008 ret = 1;
1009 }
1010 out:
1011 btrfs_release_path(path);
1012 return ret;
1013 }
1014
1015 /*
1016 * helper function to check a log tree for a named back reference in
1017 * an inode. This is used to decide if a back reference that is
1018 * found in the subvolume conflicts with what we find in the log.
1019 *
1020 * inode backreferences may have multiple refs in a single item,
1021 * during replay we process one reference at a time, and we don't
1022 * want to delete valid links to a file from the subvolume if that
1023 * link is also in the log.
1024 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)1025 static noinline int backref_in_log(struct btrfs_root *log,
1026 struct btrfs_key *key,
1027 u64 ref_objectid,
1028 const char *name, int namelen)
1029 {
1030 struct btrfs_path *path;
1031 int ret;
1032
1033 path = btrfs_alloc_path();
1034 if (!path)
1035 return -ENOMEM;
1036
1037 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1038 if (ret < 0) {
1039 goto out;
1040 } else if (ret == 1) {
1041 ret = 0;
1042 goto out;
1043 }
1044
1045 if (key->type == BTRFS_INODE_EXTREF_KEY)
1046 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1047 path->slots[0],
1048 ref_objectid,
1049 name, namelen);
1050 else
1051 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1052 path->slots[0],
1053 name, namelen);
1054 out:
1055 btrfs_free_path(path);
1056 return ret;
1057 }
1058
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen)1059 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1060 struct btrfs_root *root,
1061 struct btrfs_path *path,
1062 struct btrfs_root *log_root,
1063 struct btrfs_inode *dir,
1064 struct btrfs_inode *inode,
1065 u64 inode_objectid, u64 parent_objectid,
1066 u64 ref_index, char *name, int namelen)
1067 {
1068 int ret;
1069 char *victim_name;
1070 int victim_name_len;
1071 struct extent_buffer *leaf;
1072 struct btrfs_dir_item *di;
1073 struct btrfs_key search_key;
1074 struct btrfs_inode_extref *extref;
1075
1076 again:
1077 /* Search old style refs */
1078 search_key.objectid = inode_objectid;
1079 search_key.type = BTRFS_INODE_REF_KEY;
1080 search_key.offset = parent_objectid;
1081 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1082 if (ret == 0) {
1083 struct btrfs_inode_ref *victim_ref;
1084 unsigned long ptr;
1085 unsigned long ptr_end;
1086
1087 leaf = path->nodes[0];
1088
1089 /* are we trying to overwrite a back ref for the root directory
1090 * if so, just jump out, we're done
1091 */
1092 if (search_key.objectid == search_key.offset)
1093 return 1;
1094
1095 /* check all the names in this back reference to see
1096 * if they are in the log. if so, we allow them to stay
1097 * otherwise they must be unlinked as a conflict
1098 */
1099 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1100 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1101 while (ptr < ptr_end) {
1102 victim_ref = (struct btrfs_inode_ref *)ptr;
1103 victim_name_len = btrfs_inode_ref_name_len(leaf,
1104 victim_ref);
1105 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1106 if (!victim_name)
1107 return -ENOMEM;
1108
1109 read_extent_buffer(leaf, victim_name,
1110 (unsigned long)(victim_ref + 1),
1111 victim_name_len);
1112
1113 ret = backref_in_log(log_root, &search_key,
1114 parent_objectid, victim_name,
1115 victim_name_len);
1116 if (ret < 0) {
1117 kfree(victim_name);
1118 return ret;
1119 } else if (!ret) {
1120 inc_nlink(&inode->vfs_inode);
1121 btrfs_release_path(path);
1122
1123 ret = unlink_inode_for_log_replay(trans, dir, inode,
1124 victim_name, victim_name_len);
1125 kfree(victim_name);
1126 if (ret)
1127 return ret;
1128 goto again;
1129 }
1130 kfree(victim_name);
1131
1132 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1133 }
1134 }
1135 btrfs_release_path(path);
1136
1137 /* Same search but for extended refs */
1138 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1139 inode_objectid, parent_objectid, 0,
1140 0);
1141 if (IS_ERR(extref)) {
1142 return PTR_ERR(extref);
1143 } else if (extref) {
1144 u32 item_size;
1145 u32 cur_offset = 0;
1146 unsigned long base;
1147 struct inode *victim_parent;
1148
1149 leaf = path->nodes[0];
1150
1151 item_size = btrfs_item_size(leaf, path->slots[0]);
1152 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1153
1154 while (cur_offset < item_size) {
1155 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1156
1157 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1158
1159 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1160 goto next;
1161
1162 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1163 if (!victim_name)
1164 return -ENOMEM;
1165 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1166 victim_name_len);
1167
1168 search_key.objectid = inode_objectid;
1169 search_key.type = BTRFS_INODE_EXTREF_KEY;
1170 search_key.offset = btrfs_extref_hash(parent_objectid,
1171 victim_name,
1172 victim_name_len);
1173 ret = backref_in_log(log_root, &search_key,
1174 parent_objectid, victim_name,
1175 victim_name_len);
1176 if (ret < 0) {
1177 kfree(victim_name);
1178 return ret;
1179 } else if (!ret) {
1180 ret = -ENOENT;
1181 victim_parent = read_one_inode(root,
1182 parent_objectid);
1183 if (victim_parent) {
1184 inc_nlink(&inode->vfs_inode);
1185 btrfs_release_path(path);
1186
1187 ret = unlink_inode_for_log_replay(trans,
1188 BTRFS_I(victim_parent),
1189 inode,
1190 victim_name,
1191 victim_name_len);
1192 }
1193 iput(victim_parent);
1194 kfree(victim_name);
1195 if (ret)
1196 return ret;
1197 goto again;
1198 }
1199 kfree(victim_name);
1200 next:
1201 cur_offset += victim_name_len + sizeof(*extref);
1202 }
1203 }
1204 btrfs_release_path(path);
1205
1206 /* look for a conflicting sequence number */
1207 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1208 ref_index, name, namelen, 0);
1209 if (IS_ERR(di)) {
1210 return PTR_ERR(di);
1211 } else if (di) {
1212 ret = drop_one_dir_item(trans, path, dir, di);
1213 if (ret)
1214 return ret;
1215 }
1216 btrfs_release_path(path);
1217
1218 /* look for a conflicting name */
1219 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1220 name, namelen, 0);
1221 if (IS_ERR(di)) {
1222 return PTR_ERR(di);
1223 } else if (di) {
1224 ret = drop_one_dir_item(trans, path, dir, di);
1225 if (ret)
1226 return ret;
1227 }
1228 btrfs_release_path(path);
1229
1230 return 0;
1231 }
1232
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1233 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1234 u32 *namelen, char **name, u64 *index,
1235 u64 *parent_objectid)
1236 {
1237 struct btrfs_inode_extref *extref;
1238
1239 extref = (struct btrfs_inode_extref *)ref_ptr;
1240
1241 *namelen = btrfs_inode_extref_name_len(eb, extref);
1242 *name = kmalloc(*namelen, GFP_NOFS);
1243 if (*name == NULL)
1244 return -ENOMEM;
1245
1246 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1247 *namelen);
1248
1249 if (index)
1250 *index = btrfs_inode_extref_index(eb, extref);
1251 if (parent_objectid)
1252 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1253
1254 return 0;
1255 }
1256
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1257 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1258 u32 *namelen, char **name, u64 *index)
1259 {
1260 struct btrfs_inode_ref *ref;
1261
1262 ref = (struct btrfs_inode_ref *)ref_ptr;
1263
1264 *namelen = btrfs_inode_ref_name_len(eb, ref);
1265 *name = kmalloc(*namelen, GFP_NOFS);
1266 if (*name == NULL)
1267 return -ENOMEM;
1268
1269 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1270
1271 if (index)
1272 *index = btrfs_inode_ref_index(eb, ref);
1273
1274 return 0;
1275 }
1276
1277 /*
1278 * Take an inode reference item from the log tree and iterate all names from the
1279 * inode reference item in the subvolume tree with the same key (if it exists).
1280 * For any name that is not in the inode reference item from the log tree, do a
1281 * proper unlink of that name (that is, remove its entry from the inode
1282 * reference item and both dir index keys).
1283 */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1284 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1285 struct btrfs_root *root,
1286 struct btrfs_path *path,
1287 struct btrfs_inode *inode,
1288 struct extent_buffer *log_eb,
1289 int log_slot,
1290 struct btrfs_key *key)
1291 {
1292 int ret;
1293 unsigned long ref_ptr;
1294 unsigned long ref_end;
1295 struct extent_buffer *eb;
1296
1297 again:
1298 btrfs_release_path(path);
1299 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1300 if (ret > 0) {
1301 ret = 0;
1302 goto out;
1303 }
1304 if (ret < 0)
1305 goto out;
1306
1307 eb = path->nodes[0];
1308 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1309 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1310 while (ref_ptr < ref_end) {
1311 char *name = NULL;
1312 int namelen;
1313 u64 parent_id;
1314
1315 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1316 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1317 NULL, &parent_id);
1318 } else {
1319 parent_id = key->offset;
1320 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1321 NULL);
1322 }
1323 if (ret)
1324 goto out;
1325
1326 if (key->type == BTRFS_INODE_EXTREF_KEY)
1327 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1328 parent_id, name,
1329 namelen);
1330 else
1331 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1332 name, namelen);
1333
1334 if (!ret) {
1335 struct inode *dir;
1336
1337 btrfs_release_path(path);
1338 dir = read_one_inode(root, parent_id);
1339 if (!dir) {
1340 ret = -ENOENT;
1341 kfree(name);
1342 goto out;
1343 }
1344 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1345 inode, name, namelen);
1346 kfree(name);
1347 iput(dir);
1348 if (ret)
1349 goto out;
1350 goto again;
1351 }
1352
1353 kfree(name);
1354 ref_ptr += namelen;
1355 if (key->type == BTRFS_INODE_EXTREF_KEY)
1356 ref_ptr += sizeof(struct btrfs_inode_extref);
1357 else
1358 ref_ptr += sizeof(struct btrfs_inode_ref);
1359 }
1360 ret = 0;
1361 out:
1362 btrfs_release_path(path);
1363 return ret;
1364 }
1365
1366 /*
1367 * replay one inode back reference item found in the log tree.
1368 * eb, slot and key refer to the buffer and key found in the log tree.
1369 * root is the destination we are replaying into, and path is for temp
1370 * use by this function. (it should be released on return).
1371 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1372 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1373 struct btrfs_root *root,
1374 struct btrfs_root *log,
1375 struct btrfs_path *path,
1376 struct extent_buffer *eb, int slot,
1377 struct btrfs_key *key)
1378 {
1379 struct inode *dir = NULL;
1380 struct inode *inode = NULL;
1381 unsigned long ref_ptr;
1382 unsigned long ref_end;
1383 char *name = NULL;
1384 int namelen;
1385 int ret;
1386 int log_ref_ver = 0;
1387 u64 parent_objectid;
1388 u64 inode_objectid;
1389 u64 ref_index = 0;
1390 int ref_struct_size;
1391
1392 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1393 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1394
1395 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1396 struct btrfs_inode_extref *r;
1397
1398 ref_struct_size = sizeof(struct btrfs_inode_extref);
1399 log_ref_ver = 1;
1400 r = (struct btrfs_inode_extref *)ref_ptr;
1401 parent_objectid = btrfs_inode_extref_parent(eb, r);
1402 } else {
1403 ref_struct_size = sizeof(struct btrfs_inode_ref);
1404 parent_objectid = key->offset;
1405 }
1406 inode_objectid = key->objectid;
1407
1408 /*
1409 * it is possible that we didn't log all the parent directories
1410 * for a given inode. If we don't find the dir, just don't
1411 * copy the back ref in. The link count fixup code will take
1412 * care of the rest
1413 */
1414 dir = read_one_inode(root, parent_objectid);
1415 if (!dir) {
1416 ret = -ENOENT;
1417 goto out;
1418 }
1419
1420 inode = read_one_inode(root, inode_objectid);
1421 if (!inode) {
1422 ret = -EIO;
1423 goto out;
1424 }
1425
1426 while (ref_ptr < ref_end) {
1427 if (log_ref_ver) {
1428 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1429 &ref_index, &parent_objectid);
1430 /*
1431 * parent object can change from one array
1432 * item to another.
1433 */
1434 if (!dir)
1435 dir = read_one_inode(root, parent_objectid);
1436 if (!dir) {
1437 ret = -ENOENT;
1438 goto out;
1439 }
1440 } else {
1441 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1442 &ref_index);
1443 }
1444 if (ret)
1445 goto out;
1446
1447 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1448 btrfs_ino(BTRFS_I(inode)), ref_index,
1449 name, namelen);
1450 if (ret < 0) {
1451 goto out;
1452 } else if (ret == 0) {
1453 /*
1454 * look for a conflicting back reference in the
1455 * metadata. if we find one we have to unlink that name
1456 * of the file before we add our new link. Later on, we
1457 * overwrite any existing back reference, and we don't
1458 * want to create dangling pointers in the directory.
1459 */
1460 ret = __add_inode_ref(trans, root, path, log,
1461 BTRFS_I(dir), BTRFS_I(inode),
1462 inode_objectid, parent_objectid,
1463 ref_index, name, namelen);
1464 if (ret) {
1465 if (ret == 1)
1466 ret = 0;
1467 goto out;
1468 }
1469
1470 /* insert our name */
1471 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1472 name, namelen, 0, ref_index);
1473 if (ret)
1474 goto out;
1475
1476 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1477 if (ret)
1478 goto out;
1479 }
1480 /* Else, ret == 1, we already have a perfect match, we're done. */
1481
1482 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1483 kfree(name);
1484 name = NULL;
1485 if (log_ref_ver) {
1486 iput(dir);
1487 dir = NULL;
1488 }
1489 }
1490
1491 /*
1492 * Before we overwrite the inode reference item in the subvolume tree
1493 * with the item from the log tree, we must unlink all names from the
1494 * parent directory that are in the subvolume's tree inode reference
1495 * item, otherwise we end up with an inconsistent subvolume tree where
1496 * dir index entries exist for a name but there is no inode reference
1497 * item with the same name.
1498 */
1499 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1500 key);
1501 if (ret)
1502 goto out;
1503
1504 /* finally write the back reference in the inode */
1505 ret = overwrite_item(trans, root, path, eb, slot, key);
1506 out:
1507 btrfs_release_path(path);
1508 kfree(name);
1509 iput(dir);
1510 iput(inode);
1511 return ret;
1512 }
1513
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1514 static int count_inode_extrefs(struct btrfs_root *root,
1515 struct btrfs_inode *inode, struct btrfs_path *path)
1516 {
1517 int ret = 0;
1518 int name_len;
1519 unsigned int nlink = 0;
1520 u32 item_size;
1521 u32 cur_offset = 0;
1522 u64 inode_objectid = btrfs_ino(inode);
1523 u64 offset = 0;
1524 unsigned long ptr;
1525 struct btrfs_inode_extref *extref;
1526 struct extent_buffer *leaf;
1527
1528 while (1) {
1529 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1530 &extref, &offset);
1531 if (ret)
1532 break;
1533
1534 leaf = path->nodes[0];
1535 item_size = btrfs_item_size(leaf, path->slots[0]);
1536 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1537 cur_offset = 0;
1538
1539 while (cur_offset < item_size) {
1540 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1541 name_len = btrfs_inode_extref_name_len(leaf, extref);
1542
1543 nlink++;
1544
1545 cur_offset += name_len + sizeof(*extref);
1546 }
1547
1548 offset++;
1549 btrfs_release_path(path);
1550 }
1551 btrfs_release_path(path);
1552
1553 if (ret < 0 && ret != -ENOENT)
1554 return ret;
1555 return nlink;
1556 }
1557
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1558 static int count_inode_refs(struct btrfs_root *root,
1559 struct btrfs_inode *inode, struct btrfs_path *path)
1560 {
1561 int ret;
1562 struct btrfs_key key;
1563 unsigned int nlink = 0;
1564 unsigned long ptr;
1565 unsigned long ptr_end;
1566 int name_len;
1567 u64 ino = btrfs_ino(inode);
1568
1569 key.objectid = ino;
1570 key.type = BTRFS_INODE_REF_KEY;
1571 key.offset = (u64)-1;
1572
1573 while (1) {
1574 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1575 if (ret < 0)
1576 break;
1577 if (ret > 0) {
1578 if (path->slots[0] == 0)
1579 break;
1580 path->slots[0]--;
1581 }
1582 process_slot:
1583 btrfs_item_key_to_cpu(path->nodes[0], &key,
1584 path->slots[0]);
1585 if (key.objectid != ino ||
1586 key.type != BTRFS_INODE_REF_KEY)
1587 break;
1588 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1589 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1590 path->slots[0]);
1591 while (ptr < ptr_end) {
1592 struct btrfs_inode_ref *ref;
1593
1594 ref = (struct btrfs_inode_ref *)ptr;
1595 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1596 ref);
1597 ptr = (unsigned long)(ref + 1) + name_len;
1598 nlink++;
1599 }
1600
1601 if (key.offset == 0)
1602 break;
1603 if (path->slots[0] > 0) {
1604 path->slots[0]--;
1605 goto process_slot;
1606 }
1607 key.offset--;
1608 btrfs_release_path(path);
1609 }
1610 btrfs_release_path(path);
1611
1612 return nlink;
1613 }
1614
1615 /*
1616 * There are a few corners where the link count of the file can't
1617 * be properly maintained during replay. So, instead of adding
1618 * lots of complexity to the log code, we just scan the backrefs
1619 * for any file that has been through replay.
1620 *
1621 * The scan will update the link count on the inode to reflect the
1622 * number of back refs found. If it goes down to zero, the iput
1623 * will free the inode.
1624 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1625 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1626 struct btrfs_root *root,
1627 struct inode *inode)
1628 {
1629 struct btrfs_path *path;
1630 int ret;
1631 u64 nlink = 0;
1632 u64 ino = btrfs_ino(BTRFS_I(inode));
1633
1634 path = btrfs_alloc_path();
1635 if (!path)
1636 return -ENOMEM;
1637
1638 ret = count_inode_refs(root, BTRFS_I(inode), path);
1639 if (ret < 0)
1640 goto out;
1641
1642 nlink = ret;
1643
1644 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1645 if (ret < 0)
1646 goto out;
1647
1648 nlink += ret;
1649
1650 ret = 0;
1651
1652 if (nlink != inode->i_nlink) {
1653 set_nlink(inode, nlink);
1654 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1655 if (ret)
1656 goto out;
1657 }
1658 BTRFS_I(inode)->index_cnt = (u64)-1;
1659
1660 if (inode->i_nlink == 0) {
1661 if (S_ISDIR(inode->i_mode)) {
1662 ret = replay_dir_deletes(trans, root, NULL, path,
1663 ino, 1);
1664 if (ret)
1665 goto out;
1666 }
1667 ret = btrfs_insert_orphan_item(trans, root, ino);
1668 if (ret == -EEXIST)
1669 ret = 0;
1670 }
1671
1672 out:
1673 btrfs_free_path(path);
1674 return ret;
1675 }
1676
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1677 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1678 struct btrfs_root *root,
1679 struct btrfs_path *path)
1680 {
1681 int ret;
1682 struct btrfs_key key;
1683 struct inode *inode;
1684
1685 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1686 key.type = BTRFS_ORPHAN_ITEM_KEY;
1687 key.offset = (u64)-1;
1688 while (1) {
1689 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1690 if (ret < 0)
1691 break;
1692
1693 if (ret == 1) {
1694 ret = 0;
1695 if (path->slots[0] == 0)
1696 break;
1697 path->slots[0]--;
1698 }
1699
1700 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1701 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1702 key.type != BTRFS_ORPHAN_ITEM_KEY)
1703 break;
1704
1705 ret = btrfs_del_item(trans, root, path);
1706 if (ret)
1707 break;
1708
1709 btrfs_release_path(path);
1710 inode = read_one_inode(root, key.offset);
1711 if (!inode) {
1712 ret = -EIO;
1713 break;
1714 }
1715
1716 ret = fixup_inode_link_count(trans, root, inode);
1717 iput(inode);
1718 if (ret)
1719 break;
1720
1721 /*
1722 * fixup on a directory may create new entries,
1723 * make sure we always look for the highset possible
1724 * offset
1725 */
1726 key.offset = (u64)-1;
1727 }
1728 btrfs_release_path(path);
1729 return ret;
1730 }
1731
1732
1733 /*
1734 * record a given inode in the fixup dir so we can check its link
1735 * count when replay is done. The link count is incremented here
1736 * so the inode won't go away until we check it
1737 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1738 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1739 struct btrfs_root *root,
1740 struct btrfs_path *path,
1741 u64 objectid)
1742 {
1743 struct btrfs_key key;
1744 int ret = 0;
1745 struct inode *inode;
1746
1747 inode = read_one_inode(root, objectid);
1748 if (!inode)
1749 return -EIO;
1750
1751 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1752 key.type = BTRFS_ORPHAN_ITEM_KEY;
1753 key.offset = objectid;
1754
1755 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1756
1757 btrfs_release_path(path);
1758 if (ret == 0) {
1759 if (!inode->i_nlink)
1760 set_nlink(inode, 1);
1761 else
1762 inc_nlink(inode);
1763 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1764 } else if (ret == -EEXIST) {
1765 ret = 0;
1766 }
1767 iput(inode);
1768
1769 return ret;
1770 }
1771
1772 /*
1773 * when replaying the log for a directory, we only insert names
1774 * for inodes that actually exist. This means an fsync on a directory
1775 * does not implicitly fsync all the new files in it
1776 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1777 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1778 struct btrfs_root *root,
1779 u64 dirid, u64 index,
1780 char *name, int name_len,
1781 struct btrfs_key *location)
1782 {
1783 struct inode *inode;
1784 struct inode *dir;
1785 int ret;
1786
1787 inode = read_one_inode(root, location->objectid);
1788 if (!inode)
1789 return -ENOENT;
1790
1791 dir = read_one_inode(root, dirid);
1792 if (!dir) {
1793 iput(inode);
1794 return -EIO;
1795 }
1796
1797 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1798 name_len, 1, index);
1799
1800 /* FIXME, put inode into FIXUP list */
1801
1802 iput(inode);
1803 iput(dir);
1804 return ret;
1805 }
1806
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_type,bool exists)1807 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1808 struct btrfs_inode *dir,
1809 struct btrfs_path *path,
1810 struct btrfs_dir_item *dst_di,
1811 const struct btrfs_key *log_key,
1812 u8 log_type,
1813 bool exists)
1814 {
1815 struct btrfs_key found_key;
1816
1817 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1818 /* The existing dentry points to the same inode, don't delete it. */
1819 if (found_key.objectid == log_key->objectid &&
1820 found_key.type == log_key->type &&
1821 found_key.offset == log_key->offset &&
1822 btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1823 return 1;
1824
1825 /*
1826 * Don't drop the conflicting directory entry if the inode for the new
1827 * entry doesn't exist.
1828 */
1829 if (!exists)
1830 return 0;
1831
1832 return drop_one_dir_item(trans, path, dir, dst_di);
1833 }
1834
1835 /*
1836 * take a single entry in a log directory item and replay it into
1837 * the subvolume.
1838 *
1839 * if a conflicting item exists in the subdirectory already,
1840 * the inode it points to is unlinked and put into the link count
1841 * fix up tree.
1842 *
1843 * If a name from the log points to a file or directory that does
1844 * not exist in the FS, it is skipped. fsyncs on directories
1845 * do not force down inodes inside that directory, just changes to the
1846 * names or unlinks in a directory.
1847 *
1848 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1849 * non-existing inode) and 1 if the name was replayed.
1850 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1851 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 struct btrfs_path *path,
1854 struct extent_buffer *eb,
1855 struct btrfs_dir_item *di,
1856 struct btrfs_key *key)
1857 {
1858 char *name;
1859 int name_len;
1860 struct btrfs_dir_item *dir_dst_di;
1861 struct btrfs_dir_item *index_dst_di;
1862 bool dir_dst_matches = false;
1863 bool index_dst_matches = false;
1864 struct btrfs_key log_key;
1865 struct btrfs_key search_key;
1866 struct inode *dir;
1867 u8 log_type;
1868 bool exists;
1869 int ret;
1870 bool update_size = true;
1871 bool name_added = false;
1872
1873 dir = read_one_inode(root, key->objectid);
1874 if (!dir)
1875 return -EIO;
1876
1877 name_len = btrfs_dir_name_len(eb, di);
1878 name = kmalloc(name_len, GFP_NOFS);
1879 if (!name) {
1880 ret = -ENOMEM;
1881 goto out;
1882 }
1883
1884 log_type = btrfs_dir_type(eb, di);
1885 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1886 name_len);
1887
1888 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1889 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1890 btrfs_release_path(path);
1891 if (ret < 0)
1892 goto out;
1893 exists = (ret == 0);
1894 ret = 0;
1895
1896 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1897 name, name_len, 1);
1898 if (IS_ERR(dir_dst_di)) {
1899 ret = PTR_ERR(dir_dst_di);
1900 goto out;
1901 } else if (dir_dst_di) {
1902 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1903 dir_dst_di, &log_key, log_type,
1904 exists);
1905 if (ret < 0)
1906 goto out;
1907 dir_dst_matches = (ret == 1);
1908 }
1909
1910 btrfs_release_path(path);
1911
1912 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1913 key->objectid, key->offset,
1914 name, name_len, 1);
1915 if (IS_ERR(index_dst_di)) {
1916 ret = PTR_ERR(index_dst_di);
1917 goto out;
1918 } else if (index_dst_di) {
1919 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1920 index_dst_di, &log_key,
1921 log_type, exists);
1922 if (ret < 0)
1923 goto out;
1924 index_dst_matches = (ret == 1);
1925 }
1926
1927 btrfs_release_path(path);
1928
1929 if (dir_dst_matches && index_dst_matches) {
1930 ret = 0;
1931 update_size = false;
1932 goto out;
1933 }
1934
1935 /*
1936 * Check if the inode reference exists in the log for the given name,
1937 * inode and parent inode
1938 */
1939 search_key.objectid = log_key.objectid;
1940 search_key.type = BTRFS_INODE_REF_KEY;
1941 search_key.offset = key->objectid;
1942 ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
1943 if (ret < 0) {
1944 goto out;
1945 } else if (ret) {
1946 /* The dentry will be added later. */
1947 ret = 0;
1948 update_size = false;
1949 goto out;
1950 }
1951
1952 search_key.objectid = log_key.objectid;
1953 search_key.type = BTRFS_INODE_EXTREF_KEY;
1954 search_key.offset = key->objectid;
1955 ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
1956 name_len);
1957 if (ret < 0) {
1958 goto out;
1959 } else if (ret) {
1960 /* The dentry will be added later. */
1961 ret = 0;
1962 update_size = false;
1963 goto out;
1964 }
1965 btrfs_release_path(path);
1966 ret = insert_one_name(trans, root, key->objectid, key->offset,
1967 name, name_len, &log_key);
1968 if (ret && ret != -ENOENT && ret != -EEXIST)
1969 goto out;
1970 if (!ret)
1971 name_added = true;
1972 update_size = false;
1973 ret = 0;
1974
1975 out:
1976 if (!ret && update_size) {
1977 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1978 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1979 }
1980 kfree(name);
1981 iput(dir);
1982 if (!ret && name_added)
1983 ret = 1;
1984 return ret;
1985 }
1986
1987 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1988 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1989 struct btrfs_root *root,
1990 struct btrfs_path *path,
1991 struct extent_buffer *eb, int slot,
1992 struct btrfs_key *key)
1993 {
1994 int ret;
1995 struct btrfs_dir_item *di;
1996
1997 /* We only log dir index keys, which only contain a single dir item. */
1998 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1999
2000 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2001 ret = replay_one_name(trans, root, path, eb, di, key);
2002 if (ret < 0)
2003 return ret;
2004
2005 /*
2006 * If this entry refers to a non-directory (directories can not have a
2007 * link count > 1) and it was added in the transaction that was not
2008 * committed, make sure we fixup the link count of the inode the entry
2009 * points to. Otherwise something like the following would result in a
2010 * directory pointing to an inode with a wrong link that does not account
2011 * for this dir entry:
2012 *
2013 * mkdir testdir
2014 * touch testdir/foo
2015 * touch testdir/bar
2016 * sync
2017 *
2018 * ln testdir/bar testdir/bar_link
2019 * ln testdir/foo testdir/foo_link
2020 * xfs_io -c "fsync" testdir/bar
2021 *
2022 * <power failure>
2023 *
2024 * mount fs, log replay happens
2025 *
2026 * File foo would remain with a link count of 1 when it has two entries
2027 * pointing to it in the directory testdir. This would make it impossible
2028 * to ever delete the parent directory has it would result in stale
2029 * dentries that can never be deleted.
2030 */
2031 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2032 struct btrfs_path *fixup_path;
2033 struct btrfs_key di_key;
2034
2035 fixup_path = btrfs_alloc_path();
2036 if (!fixup_path)
2037 return -ENOMEM;
2038
2039 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2040 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2041 btrfs_free_path(fixup_path);
2042 }
2043
2044 return ret;
2045 }
2046
2047 /*
2048 * directory replay has two parts. There are the standard directory
2049 * items in the log copied from the subvolume, and range items
2050 * created in the log while the subvolume was logged.
2051 *
2052 * The range items tell us which parts of the key space the log
2053 * is authoritative for. During replay, if a key in the subvolume
2054 * directory is in a logged range item, but not actually in the log
2055 * that means it was deleted from the directory before the fsync
2056 * and should be removed.
2057 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2058 static noinline int find_dir_range(struct btrfs_root *root,
2059 struct btrfs_path *path,
2060 u64 dirid,
2061 u64 *start_ret, u64 *end_ret)
2062 {
2063 struct btrfs_key key;
2064 u64 found_end;
2065 struct btrfs_dir_log_item *item;
2066 int ret;
2067 int nritems;
2068
2069 if (*start_ret == (u64)-1)
2070 return 1;
2071
2072 key.objectid = dirid;
2073 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2074 key.offset = *start_ret;
2075
2076 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2077 if (ret < 0)
2078 goto out;
2079 if (ret > 0) {
2080 if (path->slots[0] == 0)
2081 goto out;
2082 path->slots[0]--;
2083 }
2084 if (ret != 0)
2085 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2086
2087 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2088 ret = 1;
2089 goto next;
2090 }
2091 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2092 struct btrfs_dir_log_item);
2093 found_end = btrfs_dir_log_end(path->nodes[0], item);
2094
2095 if (*start_ret >= key.offset && *start_ret <= found_end) {
2096 ret = 0;
2097 *start_ret = key.offset;
2098 *end_ret = found_end;
2099 goto out;
2100 }
2101 ret = 1;
2102 next:
2103 /* check the next slot in the tree to see if it is a valid item */
2104 nritems = btrfs_header_nritems(path->nodes[0]);
2105 path->slots[0]++;
2106 if (path->slots[0] >= nritems) {
2107 ret = btrfs_next_leaf(root, path);
2108 if (ret)
2109 goto out;
2110 }
2111
2112 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2113
2114 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2115 ret = 1;
2116 goto out;
2117 }
2118 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2119 struct btrfs_dir_log_item);
2120 found_end = btrfs_dir_log_end(path->nodes[0], item);
2121 *start_ret = key.offset;
2122 *end_ret = found_end;
2123 ret = 0;
2124 out:
2125 btrfs_release_path(path);
2126 return ret;
2127 }
2128
2129 /*
2130 * this looks for a given directory item in the log. If the directory
2131 * item is not in the log, the item is removed and the inode it points
2132 * to is unlinked
2133 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2134 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2135 struct btrfs_root *log,
2136 struct btrfs_path *path,
2137 struct btrfs_path *log_path,
2138 struct inode *dir,
2139 struct btrfs_key *dir_key)
2140 {
2141 struct btrfs_root *root = BTRFS_I(dir)->root;
2142 int ret;
2143 struct extent_buffer *eb;
2144 int slot;
2145 struct btrfs_dir_item *di;
2146 int name_len;
2147 char *name;
2148 struct inode *inode = NULL;
2149 struct btrfs_key location;
2150
2151 /*
2152 * Currently we only log dir index keys. Even if we replay a log created
2153 * by an older kernel that logged both dir index and dir item keys, all
2154 * we need to do is process the dir index keys, we (and our caller) can
2155 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2156 */
2157 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2158
2159 eb = path->nodes[0];
2160 slot = path->slots[0];
2161 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2162 name_len = btrfs_dir_name_len(eb, di);
2163 name = kmalloc(name_len, GFP_NOFS);
2164 if (!name) {
2165 ret = -ENOMEM;
2166 goto out;
2167 }
2168
2169 read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
2170
2171 if (log) {
2172 struct btrfs_dir_item *log_di;
2173
2174 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2175 dir_key->objectid,
2176 dir_key->offset,
2177 name, name_len, 0);
2178 if (IS_ERR(log_di)) {
2179 ret = PTR_ERR(log_di);
2180 goto out;
2181 } else if (log_di) {
2182 /* The dentry exists in the log, we have nothing to do. */
2183 ret = 0;
2184 goto out;
2185 }
2186 }
2187
2188 btrfs_dir_item_key_to_cpu(eb, di, &location);
2189 btrfs_release_path(path);
2190 btrfs_release_path(log_path);
2191 inode = read_one_inode(root, location.objectid);
2192 if (!inode) {
2193 ret = -EIO;
2194 goto out;
2195 }
2196
2197 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2198 if (ret)
2199 goto out;
2200
2201 inc_nlink(inode);
2202 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2203 name, name_len);
2204 /*
2205 * Unlike dir item keys, dir index keys can only have one name (entry) in
2206 * them, as there are no key collisions since each key has a unique offset
2207 * (an index number), so we're done.
2208 */
2209 out:
2210 btrfs_release_path(path);
2211 btrfs_release_path(log_path);
2212 kfree(name);
2213 iput(inode);
2214 return ret;
2215 }
2216
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2217 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2218 struct btrfs_root *root,
2219 struct btrfs_root *log,
2220 struct btrfs_path *path,
2221 const u64 ino)
2222 {
2223 struct btrfs_key search_key;
2224 struct btrfs_path *log_path;
2225 int i;
2226 int nritems;
2227 int ret;
2228
2229 log_path = btrfs_alloc_path();
2230 if (!log_path)
2231 return -ENOMEM;
2232
2233 search_key.objectid = ino;
2234 search_key.type = BTRFS_XATTR_ITEM_KEY;
2235 search_key.offset = 0;
2236 again:
2237 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2238 if (ret < 0)
2239 goto out;
2240 process_leaf:
2241 nritems = btrfs_header_nritems(path->nodes[0]);
2242 for (i = path->slots[0]; i < nritems; i++) {
2243 struct btrfs_key key;
2244 struct btrfs_dir_item *di;
2245 struct btrfs_dir_item *log_di;
2246 u32 total_size;
2247 u32 cur;
2248
2249 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2250 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2251 ret = 0;
2252 goto out;
2253 }
2254
2255 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2256 total_size = btrfs_item_size(path->nodes[0], i);
2257 cur = 0;
2258 while (cur < total_size) {
2259 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2260 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2261 u32 this_len = sizeof(*di) + name_len + data_len;
2262 char *name;
2263
2264 name = kmalloc(name_len, GFP_NOFS);
2265 if (!name) {
2266 ret = -ENOMEM;
2267 goto out;
2268 }
2269 read_extent_buffer(path->nodes[0], name,
2270 (unsigned long)(di + 1), name_len);
2271
2272 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2273 name, name_len, 0);
2274 btrfs_release_path(log_path);
2275 if (!log_di) {
2276 /* Doesn't exist in log tree, so delete it. */
2277 btrfs_release_path(path);
2278 di = btrfs_lookup_xattr(trans, root, path, ino,
2279 name, name_len, -1);
2280 kfree(name);
2281 if (IS_ERR(di)) {
2282 ret = PTR_ERR(di);
2283 goto out;
2284 }
2285 ASSERT(di);
2286 ret = btrfs_delete_one_dir_name(trans, root,
2287 path, di);
2288 if (ret)
2289 goto out;
2290 btrfs_release_path(path);
2291 search_key = key;
2292 goto again;
2293 }
2294 kfree(name);
2295 if (IS_ERR(log_di)) {
2296 ret = PTR_ERR(log_di);
2297 goto out;
2298 }
2299 cur += this_len;
2300 di = (struct btrfs_dir_item *)((char *)di + this_len);
2301 }
2302 }
2303 ret = btrfs_next_leaf(root, path);
2304 if (ret > 0)
2305 ret = 0;
2306 else if (ret == 0)
2307 goto process_leaf;
2308 out:
2309 btrfs_free_path(log_path);
2310 btrfs_release_path(path);
2311 return ret;
2312 }
2313
2314
2315 /*
2316 * deletion replay happens before we copy any new directory items
2317 * out of the log or out of backreferences from inodes. It
2318 * scans the log to find ranges of keys that log is authoritative for,
2319 * and then scans the directory to find items in those ranges that are
2320 * not present in the log.
2321 *
2322 * Anything we don't find in the log is unlinked and removed from the
2323 * directory.
2324 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2325 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2326 struct btrfs_root *root,
2327 struct btrfs_root *log,
2328 struct btrfs_path *path,
2329 u64 dirid, int del_all)
2330 {
2331 u64 range_start;
2332 u64 range_end;
2333 int ret = 0;
2334 struct btrfs_key dir_key;
2335 struct btrfs_key found_key;
2336 struct btrfs_path *log_path;
2337 struct inode *dir;
2338
2339 dir_key.objectid = dirid;
2340 dir_key.type = BTRFS_DIR_INDEX_KEY;
2341 log_path = btrfs_alloc_path();
2342 if (!log_path)
2343 return -ENOMEM;
2344
2345 dir = read_one_inode(root, dirid);
2346 /* it isn't an error if the inode isn't there, that can happen
2347 * because we replay the deletes before we copy in the inode item
2348 * from the log
2349 */
2350 if (!dir) {
2351 btrfs_free_path(log_path);
2352 return 0;
2353 }
2354
2355 range_start = 0;
2356 range_end = 0;
2357 while (1) {
2358 if (del_all)
2359 range_end = (u64)-1;
2360 else {
2361 ret = find_dir_range(log, path, dirid,
2362 &range_start, &range_end);
2363 if (ret < 0)
2364 goto out;
2365 else if (ret > 0)
2366 break;
2367 }
2368
2369 dir_key.offset = range_start;
2370 while (1) {
2371 int nritems;
2372 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2373 0, 0);
2374 if (ret < 0)
2375 goto out;
2376
2377 nritems = btrfs_header_nritems(path->nodes[0]);
2378 if (path->slots[0] >= nritems) {
2379 ret = btrfs_next_leaf(root, path);
2380 if (ret == 1)
2381 break;
2382 else if (ret < 0)
2383 goto out;
2384 }
2385 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2386 path->slots[0]);
2387 if (found_key.objectid != dirid ||
2388 found_key.type != dir_key.type) {
2389 ret = 0;
2390 goto out;
2391 }
2392
2393 if (found_key.offset > range_end)
2394 break;
2395
2396 ret = check_item_in_log(trans, log, path,
2397 log_path, dir,
2398 &found_key);
2399 if (ret)
2400 goto out;
2401 if (found_key.offset == (u64)-1)
2402 break;
2403 dir_key.offset = found_key.offset + 1;
2404 }
2405 btrfs_release_path(path);
2406 if (range_end == (u64)-1)
2407 break;
2408 range_start = range_end + 1;
2409 }
2410 ret = 0;
2411 out:
2412 btrfs_release_path(path);
2413 btrfs_free_path(log_path);
2414 iput(dir);
2415 return ret;
2416 }
2417
2418 /*
2419 * the process_func used to replay items from the log tree. This
2420 * gets called in two different stages. The first stage just looks
2421 * for inodes and makes sure they are all copied into the subvolume.
2422 *
2423 * The second stage copies all the other item types from the log into
2424 * the subvolume. The two stage approach is slower, but gets rid of
2425 * lots of complexity around inodes referencing other inodes that exist
2426 * only in the log (references come from either directory items or inode
2427 * back refs).
2428 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2429 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2430 struct walk_control *wc, u64 gen, int level)
2431 {
2432 int nritems;
2433 struct btrfs_path *path;
2434 struct btrfs_root *root = wc->replay_dest;
2435 struct btrfs_key key;
2436 int i;
2437 int ret;
2438
2439 ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
2440 if (ret)
2441 return ret;
2442
2443 level = btrfs_header_level(eb);
2444
2445 if (level != 0)
2446 return 0;
2447
2448 path = btrfs_alloc_path();
2449 if (!path)
2450 return -ENOMEM;
2451
2452 nritems = btrfs_header_nritems(eb);
2453 for (i = 0; i < nritems; i++) {
2454 btrfs_item_key_to_cpu(eb, &key, i);
2455
2456 /* inode keys are done during the first stage */
2457 if (key.type == BTRFS_INODE_ITEM_KEY &&
2458 wc->stage == LOG_WALK_REPLAY_INODES) {
2459 struct btrfs_inode_item *inode_item;
2460 u32 mode;
2461
2462 inode_item = btrfs_item_ptr(eb, i,
2463 struct btrfs_inode_item);
2464 /*
2465 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2466 * and never got linked before the fsync, skip it, as
2467 * replaying it is pointless since it would be deleted
2468 * later. We skip logging tmpfiles, but it's always
2469 * possible we are replaying a log created with a kernel
2470 * that used to log tmpfiles.
2471 */
2472 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2473 wc->ignore_cur_inode = true;
2474 continue;
2475 } else {
2476 wc->ignore_cur_inode = false;
2477 }
2478 ret = replay_xattr_deletes(wc->trans, root, log,
2479 path, key.objectid);
2480 if (ret)
2481 break;
2482 mode = btrfs_inode_mode(eb, inode_item);
2483 if (S_ISDIR(mode)) {
2484 ret = replay_dir_deletes(wc->trans,
2485 root, log, path, key.objectid, 0);
2486 if (ret)
2487 break;
2488 }
2489 ret = overwrite_item(wc->trans, root, path,
2490 eb, i, &key);
2491 if (ret)
2492 break;
2493
2494 /*
2495 * Before replaying extents, truncate the inode to its
2496 * size. We need to do it now and not after log replay
2497 * because before an fsync we can have prealloc extents
2498 * added beyond the inode's i_size. If we did it after,
2499 * through orphan cleanup for example, we would drop
2500 * those prealloc extents just after replaying them.
2501 */
2502 if (S_ISREG(mode)) {
2503 struct btrfs_drop_extents_args drop_args = { 0 };
2504 struct inode *inode;
2505 u64 from;
2506
2507 inode = read_one_inode(root, key.objectid);
2508 if (!inode) {
2509 ret = -EIO;
2510 break;
2511 }
2512 from = ALIGN(i_size_read(inode),
2513 root->fs_info->sectorsize);
2514 drop_args.start = from;
2515 drop_args.end = (u64)-1;
2516 drop_args.drop_cache = true;
2517 ret = btrfs_drop_extents(wc->trans, root,
2518 BTRFS_I(inode),
2519 &drop_args);
2520 if (!ret) {
2521 inode_sub_bytes(inode,
2522 drop_args.bytes_found);
2523 /* Update the inode's nbytes. */
2524 ret = btrfs_update_inode(wc->trans,
2525 root, BTRFS_I(inode));
2526 }
2527 iput(inode);
2528 if (ret)
2529 break;
2530 }
2531
2532 ret = link_to_fixup_dir(wc->trans, root,
2533 path, key.objectid);
2534 if (ret)
2535 break;
2536 }
2537
2538 if (wc->ignore_cur_inode)
2539 continue;
2540
2541 if (key.type == BTRFS_DIR_INDEX_KEY &&
2542 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2543 ret = replay_one_dir_item(wc->trans, root, path,
2544 eb, i, &key);
2545 if (ret)
2546 break;
2547 }
2548
2549 if (wc->stage < LOG_WALK_REPLAY_ALL)
2550 continue;
2551
2552 /* these keys are simply copied */
2553 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2554 ret = overwrite_item(wc->trans, root, path,
2555 eb, i, &key);
2556 if (ret)
2557 break;
2558 } else if (key.type == BTRFS_INODE_REF_KEY ||
2559 key.type == BTRFS_INODE_EXTREF_KEY) {
2560 ret = add_inode_ref(wc->trans, root, log, path,
2561 eb, i, &key);
2562 if (ret && ret != -ENOENT)
2563 break;
2564 ret = 0;
2565 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2566 ret = replay_one_extent(wc->trans, root, path,
2567 eb, i, &key);
2568 if (ret)
2569 break;
2570 }
2571 /*
2572 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2573 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2574 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2575 * older kernel with such keys, ignore them.
2576 */
2577 }
2578 btrfs_free_path(path);
2579 return ret;
2580 }
2581
2582 /*
2583 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2584 */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2585 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2586 {
2587 struct btrfs_block_group *cache;
2588
2589 cache = btrfs_lookup_block_group(fs_info, start);
2590 if (!cache) {
2591 btrfs_err(fs_info, "unable to find block group for %llu", start);
2592 return;
2593 }
2594
2595 spin_lock(&cache->space_info->lock);
2596 spin_lock(&cache->lock);
2597 cache->reserved -= fs_info->nodesize;
2598 cache->space_info->bytes_reserved -= fs_info->nodesize;
2599 spin_unlock(&cache->lock);
2600 spin_unlock(&cache->space_info->lock);
2601
2602 btrfs_put_block_group(cache);
2603 }
2604
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2605 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2606 struct btrfs_root *root,
2607 struct btrfs_path *path, int *level,
2608 struct walk_control *wc)
2609 {
2610 struct btrfs_fs_info *fs_info = root->fs_info;
2611 u64 bytenr;
2612 u64 ptr_gen;
2613 struct extent_buffer *next;
2614 struct extent_buffer *cur;
2615 u32 blocksize;
2616 int ret = 0;
2617
2618 while (*level > 0) {
2619 struct btrfs_key first_key;
2620
2621 cur = path->nodes[*level];
2622
2623 WARN_ON(btrfs_header_level(cur) != *level);
2624
2625 if (path->slots[*level] >=
2626 btrfs_header_nritems(cur))
2627 break;
2628
2629 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2630 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2631 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2632 blocksize = fs_info->nodesize;
2633
2634 next = btrfs_find_create_tree_block(fs_info, bytenr,
2635 btrfs_header_owner(cur),
2636 *level - 1);
2637 if (IS_ERR(next))
2638 return PTR_ERR(next);
2639
2640 if (*level == 1) {
2641 ret = wc->process_func(root, next, wc, ptr_gen,
2642 *level - 1);
2643 if (ret) {
2644 free_extent_buffer(next);
2645 return ret;
2646 }
2647
2648 path->slots[*level]++;
2649 if (wc->free) {
2650 ret = btrfs_read_extent_buffer(next, ptr_gen,
2651 *level - 1, &first_key);
2652 if (ret) {
2653 free_extent_buffer(next);
2654 return ret;
2655 }
2656
2657 if (trans) {
2658 btrfs_tree_lock(next);
2659 btrfs_clean_tree_block(next);
2660 btrfs_wait_tree_block_writeback(next);
2661 btrfs_tree_unlock(next);
2662 ret = btrfs_pin_reserved_extent(trans,
2663 bytenr, blocksize);
2664 if (ret) {
2665 free_extent_buffer(next);
2666 return ret;
2667 }
2668 btrfs_redirty_list_add(
2669 trans->transaction, next);
2670 } else {
2671 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2672 clear_extent_buffer_dirty(next);
2673 unaccount_log_buffer(fs_info, bytenr);
2674 }
2675 }
2676 free_extent_buffer(next);
2677 continue;
2678 }
2679 ret = btrfs_read_extent_buffer(next, ptr_gen, *level - 1, &first_key);
2680 if (ret) {
2681 free_extent_buffer(next);
2682 return ret;
2683 }
2684
2685 if (path->nodes[*level-1])
2686 free_extent_buffer(path->nodes[*level-1]);
2687 path->nodes[*level-1] = next;
2688 *level = btrfs_header_level(next);
2689 path->slots[*level] = 0;
2690 cond_resched();
2691 }
2692 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2693
2694 cond_resched();
2695 return 0;
2696 }
2697
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2698 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2699 struct btrfs_root *root,
2700 struct btrfs_path *path, int *level,
2701 struct walk_control *wc)
2702 {
2703 struct btrfs_fs_info *fs_info = root->fs_info;
2704 int i;
2705 int slot;
2706 int ret;
2707
2708 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2709 slot = path->slots[i];
2710 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2711 path->slots[i]++;
2712 *level = i;
2713 WARN_ON(*level == 0);
2714 return 0;
2715 } else {
2716 ret = wc->process_func(root, path->nodes[*level], wc,
2717 btrfs_header_generation(path->nodes[*level]),
2718 *level);
2719 if (ret)
2720 return ret;
2721
2722 if (wc->free) {
2723 struct extent_buffer *next;
2724
2725 next = path->nodes[*level];
2726
2727 if (trans) {
2728 btrfs_tree_lock(next);
2729 btrfs_clean_tree_block(next);
2730 btrfs_wait_tree_block_writeback(next);
2731 btrfs_tree_unlock(next);
2732 ret = btrfs_pin_reserved_extent(trans,
2733 path->nodes[*level]->start,
2734 path->nodes[*level]->len);
2735 if (ret)
2736 return ret;
2737 btrfs_redirty_list_add(trans->transaction,
2738 next);
2739 } else {
2740 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2741 clear_extent_buffer_dirty(next);
2742
2743 unaccount_log_buffer(fs_info,
2744 path->nodes[*level]->start);
2745 }
2746 }
2747 free_extent_buffer(path->nodes[*level]);
2748 path->nodes[*level] = NULL;
2749 *level = i + 1;
2750 }
2751 }
2752 return 1;
2753 }
2754
2755 /*
2756 * drop the reference count on the tree rooted at 'snap'. This traverses
2757 * the tree freeing any blocks that have a ref count of zero after being
2758 * decremented.
2759 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2760 static int walk_log_tree(struct btrfs_trans_handle *trans,
2761 struct btrfs_root *log, struct walk_control *wc)
2762 {
2763 struct btrfs_fs_info *fs_info = log->fs_info;
2764 int ret = 0;
2765 int wret;
2766 int level;
2767 struct btrfs_path *path;
2768 int orig_level;
2769
2770 path = btrfs_alloc_path();
2771 if (!path)
2772 return -ENOMEM;
2773
2774 level = btrfs_header_level(log->node);
2775 orig_level = level;
2776 path->nodes[level] = log->node;
2777 atomic_inc(&log->node->refs);
2778 path->slots[level] = 0;
2779
2780 while (1) {
2781 wret = walk_down_log_tree(trans, log, path, &level, wc);
2782 if (wret > 0)
2783 break;
2784 if (wret < 0) {
2785 ret = wret;
2786 goto out;
2787 }
2788
2789 wret = walk_up_log_tree(trans, log, path, &level, wc);
2790 if (wret > 0)
2791 break;
2792 if (wret < 0) {
2793 ret = wret;
2794 goto out;
2795 }
2796 }
2797
2798 /* was the root node processed? if not, catch it here */
2799 if (path->nodes[orig_level]) {
2800 ret = wc->process_func(log, path->nodes[orig_level], wc,
2801 btrfs_header_generation(path->nodes[orig_level]),
2802 orig_level);
2803 if (ret)
2804 goto out;
2805 if (wc->free) {
2806 struct extent_buffer *next;
2807
2808 next = path->nodes[orig_level];
2809
2810 if (trans) {
2811 btrfs_tree_lock(next);
2812 btrfs_clean_tree_block(next);
2813 btrfs_wait_tree_block_writeback(next);
2814 btrfs_tree_unlock(next);
2815 ret = btrfs_pin_reserved_extent(trans,
2816 next->start, next->len);
2817 if (ret)
2818 goto out;
2819 btrfs_redirty_list_add(trans->transaction, next);
2820 } else {
2821 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2822 clear_extent_buffer_dirty(next);
2823 unaccount_log_buffer(fs_info, next->start);
2824 }
2825 }
2826 }
2827
2828 out:
2829 btrfs_free_path(path);
2830 return ret;
2831 }
2832
2833 /*
2834 * helper function to update the item for a given subvolumes log root
2835 * in the tree of log roots
2836 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2837 static int update_log_root(struct btrfs_trans_handle *trans,
2838 struct btrfs_root *log,
2839 struct btrfs_root_item *root_item)
2840 {
2841 struct btrfs_fs_info *fs_info = log->fs_info;
2842 int ret;
2843
2844 if (log->log_transid == 1) {
2845 /* insert root item on the first sync */
2846 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2847 &log->root_key, root_item);
2848 } else {
2849 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2850 &log->root_key, root_item);
2851 }
2852 return ret;
2853 }
2854
wait_log_commit(struct btrfs_root * root,int transid)2855 static void wait_log_commit(struct btrfs_root *root, int transid)
2856 {
2857 DEFINE_WAIT(wait);
2858 int index = transid % 2;
2859
2860 /*
2861 * we only allow two pending log transactions at a time,
2862 * so we know that if ours is more than 2 older than the
2863 * current transaction, we're done
2864 */
2865 for (;;) {
2866 prepare_to_wait(&root->log_commit_wait[index],
2867 &wait, TASK_UNINTERRUPTIBLE);
2868
2869 if (!(root->log_transid_committed < transid &&
2870 atomic_read(&root->log_commit[index])))
2871 break;
2872
2873 mutex_unlock(&root->log_mutex);
2874 schedule();
2875 mutex_lock(&root->log_mutex);
2876 }
2877 finish_wait(&root->log_commit_wait[index], &wait);
2878 }
2879
wait_for_writer(struct btrfs_root * root)2880 static void wait_for_writer(struct btrfs_root *root)
2881 {
2882 DEFINE_WAIT(wait);
2883
2884 for (;;) {
2885 prepare_to_wait(&root->log_writer_wait, &wait,
2886 TASK_UNINTERRUPTIBLE);
2887 if (!atomic_read(&root->log_writers))
2888 break;
2889
2890 mutex_unlock(&root->log_mutex);
2891 schedule();
2892 mutex_lock(&root->log_mutex);
2893 }
2894 finish_wait(&root->log_writer_wait, &wait);
2895 }
2896
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2897 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2898 struct btrfs_log_ctx *ctx)
2899 {
2900 mutex_lock(&root->log_mutex);
2901 list_del_init(&ctx->list);
2902 mutex_unlock(&root->log_mutex);
2903 }
2904
2905 /*
2906 * Invoked in log mutex context, or be sure there is no other task which
2907 * can access the list.
2908 */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2909 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2910 int index, int error)
2911 {
2912 struct btrfs_log_ctx *ctx;
2913 struct btrfs_log_ctx *safe;
2914
2915 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2916 list_del_init(&ctx->list);
2917 ctx->log_ret = error;
2918 }
2919 }
2920
2921 /*
2922 * btrfs_sync_log does sends a given tree log down to the disk and
2923 * updates the super blocks to record it. When this call is done,
2924 * you know that any inodes previously logged are safely on disk only
2925 * if it returns 0.
2926 *
2927 * Any other return value means you need to call btrfs_commit_transaction.
2928 * Some of the edge cases for fsyncing directories that have had unlinks
2929 * or renames done in the past mean that sometimes the only safe
2930 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2931 * that has happened.
2932 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2933 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2934 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2935 {
2936 int index1;
2937 int index2;
2938 int mark;
2939 int ret;
2940 struct btrfs_fs_info *fs_info = root->fs_info;
2941 struct btrfs_root *log = root->log_root;
2942 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2943 struct btrfs_root_item new_root_item;
2944 int log_transid = 0;
2945 struct btrfs_log_ctx root_log_ctx;
2946 struct blk_plug plug;
2947 u64 log_root_start;
2948 u64 log_root_level;
2949
2950 mutex_lock(&root->log_mutex);
2951 log_transid = ctx->log_transid;
2952 if (root->log_transid_committed >= log_transid) {
2953 mutex_unlock(&root->log_mutex);
2954 return ctx->log_ret;
2955 }
2956
2957 index1 = log_transid % 2;
2958 if (atomic_read(&root->log_commit[index1])) {
2959 wait_log_commit(root, log_transid);
2960 mutex_unlock(&root->log_mutex);
2961 return ctx->log_ret;
2962 }
2963 ASSERT(log_transid == root->log_transid);
2964 atomic_set(&root->log_commit[index1], 1);
2965
2966 /* wait for previous tree log sync to complete */
2967 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2968 wait_log_commit(root, log_transid - 1);
2969
2970 while (1) {
2971 int batch = atomic_read(&root->log_batch);
2972 /* when we're on an ssd, just kick the log commit out */
2973 if (!btrfs_test_opt(fs_info, SSD) &&
2974 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2975 mutex_unlock(&root->log_mutex);
2976 schedule_timeout_uninterruptible(1);
2977 mutex_lock(&root->log_mutex);
2978 }
2979 wait_for_writer(root);
2980 if (batch == atomic_read(&root->log_batch))
2981 break;
2982 }
2983
2984 /* bail out if we need to do a full commit */
2985 if (btrfs_need_log_full_commit(trans)) {
2986 ret = BTRFS_LOG_FORCE_COMMIT;
2987 mutex_unlock(&root->log_mutex);
2988 goto out;
2989 }
2990
2991 if (log_transid % 2 == 0)
2992 mark = EXTENT_DIRTY;
2993 else
2994 mark = EXTENT_NEW;
2995
2996 /* we start IO on all the marked extents here, but we don't actually
2997 * wait for them until later.
2998 */
2999 blk_start_plug(&plug);
3000 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3001 /*
3002 * -EAGAIN happens when someone, e.g., a concurrent transaction
3003 * commit, writes a dirty extent in this tree-log commit. This
3004 * concurrent write will create a hole writing out the extents,
3005 * and we cannot proceed on a zoned filesystem, requiring
3006 * sequential writing. While we can bail out to a full commit
3007 * here, but we can continue hoping the concurrent writing fills
3008 * the hole.
3009 */
3010 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3011 ret = 0;
3012 if (ret) {
3013 blk_finish_plug(&plug);
3014 btrfs_abort_transaction(trans, ret);
3015 btrfs_set_log_full_commit(trans);
3016 mutex_unlock(&root->log_mutex);
3017 goto out;
3018 }
3019
3020 /*
3021 * We _must_ update under the root->log_mutex in order to make sure we
3022 * have a consistent view of the log root we are trying to commit at
3023 * this moment.
3024 *
3025 * We _must_ copy this into a local copy, because we are not holding the
3026 * log_root_tree->log_mutex yet. This is important because when we
3027 * commit the log_root_tree we must have a consistent view of the
3028 * log_root_tree when we update the super block to point at the
3029 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3030 * with the commit and possibly point at the new block which we may not
3031 * have written out.
3032 */
3033 btrfs_set_root_node(&log->root_item, log->node);
3034 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3035
3036 root->log_transid++;
3037 log->log_transid = root->log_transid;
3038 root->log_start_pid = 0;
3039 /*
3040 * IO has been started, blocks of the log tree have WRITTEN flag set
3041 * in their headers. new modifications of the log will be written to
3042 * new positions. so it's safe to allow log writers to go in.
3043 */
3044 mutex_unlock(&root->log_mutex);
3045
3046 if (btrfs_is_zoned(fs_info)) {
3047 mutex_lock(&fs_info->tree_root->log_mutex);
3048 if (!log_root_tree->node) {
3049 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3050 if (ret) {
3051 mutex_unlock(&fs_info->tree_root->log_mutex);
3052 blk_finish_plug(&plug);
3053 goto out;
3054 }
3055 }
3056 mutex_unlock(&fs_info->tree_root->log_mutex);
3057 }
3058
3059 btrfs_init_log_ctx(&root_log_ctx, NULL);
3060
3061 mutex_lock(&log_root_tree->log_mutex);
3062
3063 index2 = log_root_tree->log_transid % 2;
3064 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3065 root_log_ctx.log_transid = log_root_tree->log_transid;
3066
3067 /*
3068 * Now we are safe to update the log_root_tree because we're under the
3069 * log_mutex, and we're a current writer so we're holding the commit
3070 * open until we drop the log_mutex.
3071 */
3072 ret = update_log_root(trans, log, &new_root_item);
3073 if (ret) {
3074 if (!list_empty(&root_log_ctx.list))
3075 list_del_init(&root_log_ctx.list);
3076
3077 blk_finish_plug(&plug);
3078 btrfs_set_log_full_commit(trans);
3079
3080 if (ret != -ENOSPC) {
3081 btrfs_abort_transaction(trans, ret);
3082 mutex_unlock(&log_root_tree->log_mutex);
3083 goto out;
3084 }
3085 btrfs_wait_tree_log_extents(log, mark);
3086 mutex_unlock(&log_root_tree->log_mutex);
3087 ret = BTRFS_LOG_FORCE_COMMIT;
3088 goto out;
3089 }
3090
3091 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3092 blk_finish_plug(&plug);
3093 list_del_init(&root_log_ctx.list);
3094 mutex_unlock(&log_root_tree->log_mutex);
3095 ret = root_log_ctx.log_ret;
3096 goto out;
3097 }
3098
3099 index2 = root_log_ctx.log_transid % 2;
3100 if (atomic_read(&log_root_tree->log_commit[index2])) {
3101 blk_finish_plug(&plug);
3102 ret = btrfs_wait_tree_log_extents(log, mark);
3103 wait_log_commit(log_root_tree,
3104 root_log_ctx.log_transid);
3105 mutex_unlock(&log_root_tree->log_mutex);
3106 if (!ret)
3107 ret = root_log_ctx.log_ret;
3108 goto out;
3109 }
3110 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3111 atomic_set(&log_root_tree->log_commit[index2], 1);
3112
3113 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3114 wait_log_commit(log_root_tree,
3115 root_log_ctx.log_transid - 1);
3116 }
3117
3118 /*
3119 * now that we've moved on to the tree of log tree roots,
3120 * check the full commit flag again
3121 */
3122 if (btrfs_need_log_full_commit(trans)) {
3123 blk_finish_plug(&plug);
3124 btrfs_wait_tree_log_extents(log, mark);
3125 mutex_unlock(&log_root_tree->log_mutex);
3126 ret = BTRFS_LOG_FORCE_COMMIT;
3127 goto out_wake_log_root;
3128 }
3129
3130 ret = btrfs_write_marked_extents(fs_info,
3131 &log_root_tree->dirty_log_pages,
3132 EXTENT_DIRTY | EXTENT_NEW);
3133 blk_finish_plug(&plug);
3134 /*
3135 * As described above, -EAGAIN indicates a hole in the extents. We
3136 * cannot wait for these write outs since the waiting cause a
3137 * deadlock. Bail out to the full commit instead.
3138 */
3139 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3140 btrfs_set_log_full_commit(trans);
3141 btrfs_wait_tree_log_extents(log, mark);
3142 mutex_unlock(&log_root_tree->log_mutex);
3143 goto out_wake_log_root;
3144 } else if (ret) {
3145 btrfs_set_log_full_commit(trans);
3146 btrfs_abort_transaction(trans, ret);
3147 mutex_unlock(&log_root_tree->log_mutex);
3148 goto out_wake_log_root;
3149 }
3150 ret = btrfs_wait_tree_log_extents(log, mark);
3151 if (!ret)
3152 ret = btrfs_wait_tree_log_extents(log_root_tree,
3153 EXTENT_NEW | EXTENT_DIRTY);
3154 if (ret) {
3155 btrfs_set_log_full_commit(trans);
3156 mutex_unlock(&log_root_tree->log_mutex);
3157 goto out_wake_log_root;
3158 }
3159
3160 log_root_start = log_root_tree->node->start;
3161 log_root_level = btrfs_header_level(log_root_tree->node);
3162 log_root_tree->log_transid++;
3163 mutex_unlock(&log_root_tree->log_mutex);
3164
3165 /*
3166 * Here we are guaranteed that nobody is going to write the superblock
3167 * for the current transaction before us and that neither we do write
3168 * our superblock before the previous transaction finishes its commit
3169 * and writes its superblock, because:
3170 *
3171 * 1) We are holding a handle on the current transaction, so no body
3172 * can commit it until we release the handle;
3173 *
3174 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3175 * if the previous transaction is still committing, and hasn't yet
3176 * written its superblock, we wait for it to do it, because a
3177 * transaction commit acquires the tree_log_mutex when the commit
3178 * begins and releases it only after writing its superblock.
3179 */
3180 mutex_lock(&fs_info->tree_log_mutex);
3181
3182 /*
3183 * The previous transaction writeout phase could have failed, and thus
3184 * marked the fs in an error state. We must not commit here, as we
3185 * could have updated our generation in the super_for_commit and
3186 * writing the super here would result in transid mismatches. If there
3187 * is an error here just bail.
3188 */
3189 if (BTRFS_FS_ERROR(fs_info)) {
3190 ret = -EIO;
3191 btrfs_set_log_full_commit(trans);
3192 btrfs_abort_transaction(trans, ret);
3193 mutex_unlock(&fs_info->tree_log_mutex);
3194 goto out_wake_log_root;
3195 }
3196
3197 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3198 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3199 ret = write_all_supers(fs_info, 1);
3200 mutex_unlock(&fs_info->tree_log_mutex);
3201 if (ret) {
3202 btrfs_set_log_full_commit(trans);
3203 btrfs_abort_transaction(trans, ret);
3204 goto out_wake_log_root;
3205 }
3206
3207 /*
3208 * We know there can only be one task here, since we have not yet set
3209 * root->log_commit[index1] to 0 and any task attempting to sync the
3210 * log must wait for the previous log transaction to commit if it's
3211 * still in progress or wait for the current log transaction commit if
3212 * someone else already started it. We use <= and not < because the
3213 * first log transaction has an ID of 0.
3214 */
3215 ASSERT(root->last_log_commit <= log_transid);
3216 root->last_log_commit = log_transid;
3217
3218 out_wake_log_root:
3219 mutex_lock(&log_root_tree->log_mutex);
3220 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3221
3222 log_root_tree->log_transid_committed++;
3223 atomic_set(&log_root_tree->log_commit[index2], 0);
3224 mutex_unlock(&log_root_tree->log_mutex);
3225
3226 /*
3227 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3228 * all the updates above are seen by the woken threads. It might not be
3229 * necessary, but proving that seems to be hard.
3230 */
3231 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3232 out:
3233 mutex_lock(&root->log_mutex);
3234 btrfs_remove_all_log_ctxs(root, index1, ret);
3235 root->log_transid_committed++;
3236 atomic_set(&root->log_commit[index1], 0);
3237 mutex_unlock(&root->log_mutex);
3238
3239 /*
3240 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3241 * all the updates above are seen by the woken threads. It might not be
3242 * necessary, but proving that seems to be hard.
3243 */
3244 cond_wake_up(&root->log_commit_wait[index1]);
3245 return ret;
3246 }
3247
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3248 static void free_log_tree(struct btrfs_trans_handle *trans,
3249 struct btrfs_root *log)
3250 {
3251 int ret;
3252 struct walk_control wc = {
3253 .free = 1,
3254 .process_func = process_one_buffer
3255 };
3256
3257 if (log->node) {
3258 ret = walk_log_tree(trans, log, &wc);
3259 if (ret) {
3260 /*
3261 * We weren't able to traverse the entire log tree, the
3262 * typical scenario is getting an -EIO when reading an
3263 * extent buffer of the tree, due to a previous writeback
3264 * failure of it.
3265 */
3266 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3267 &log->fs_info->fs_state);
3268
3269 /*
3270 * Some extent buffers of the log tree may still be dirty
3271 * and not yet written back to storage, because we may
3272 * have updates to a log tree without syncing a log tree,
3273 * such as during rename and link operations. So flush
3274 * them out and wait for their writeback to complete, so
3275 * that we properly cleanup their state and pages.
3276 */
3277 btrfs_write_marked_extents(log->fs_info,
3278 &log->dirty_log_pages,
3279 EXTENT_DIRTY | EXTENT_NEW);
3280 btrfs_wait_tree_log_extents(log,
3281 EXTENT_DIRTY | EXTENT_NEW);
3282
3283 if (trans)
3284 btrfs_abort_transaction(trans, ret);
3285 else
3286 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3287 }
3288 }
3289
3290 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3291 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3292 extent_io_tree_release(&log->log_csum_range);
3293
3294 btrfs_put_root(log);
3295 }
3296
3297 /*
3298 * free all the extents used by the tree log. This should be called
3299 * at commit time of the full transaction
3300 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3301 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3302 {
3303 if (root->log_root) {
3304 free_log_tree(trans, root->log_root);
3305 root->log_root = NULL;
3306 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3307 }
3308 return 0;
3309 }
3310
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3311 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3312 struct btrfs_fs_info *fs_info)
3313 {
3314 if (fs_info->log_root_tree) {
3315 free_log_tree(trans, fs_info->log_root_tree);
3316 fs_info->log_root_tree = NULL;
3317 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3318 }
3319 return 0;
3320 }
3321
3322 /*
3323 * Check if an inode was logged in the current transaction. This correctly deals
3324 * with the case where the inode was logged but has a logged_trans of 0, which
3325 * happens if the inode is evicted and loaded again, as logged_trans is an in
3326 * memory only field (not persisted).
3327 *
3328 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3329 * and < 0 on error.
3330 */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3331 static int inode_logged(struct btrfs_trans_handle *trans,
3332 struct btrfs_inode *inode,
3333 struct btrfs_path *path_in)
3334 {
3335 struct btrfs_path *path = path_in;
3336 struct btrfs_key key;
3337 int ret;
3338
3339 if (inode->logged_trans == trans->transid)
3340 return 1;
3341
3342 /*
3343 * If logged_trans is not 0, then we know the inode logged was not logged
3344 * in this transaction, so we can return false right away.
3345 */
3346 if (inode->logged_trans > 0)
3347 return 0;
3348
3349 /*
3350 * If no log tree was created for this root in this transaction, then
3351 * the inode can not have been logged in this transaction. In that case
3352 * set logged_trans to anything greater than 0 and less than the current
3353 * transaction's ID, to avoid the search below in a future call in case
3354 * a log tree gets created after this.
3355 */
3356 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3357 inode->logged_trans = trans->transid - 1;
3358 return 0;
3359 }
3360
3361 /*
3362 * We have a log tree and the inode's logged_trans is 0. We can't tell
3363 * for sure if the inode was logged before in this transaction by looking
3364 * only at logged_trans. We could be pessimistic and assume it was, but
3365 * that can lead to unnecessarily logging an inode during rename and link
3366 * operations, and then further updating the log in followup rename and
3367 * link operations, specially if it's a directory, which adds latency
3368 * visible to applications doing a series of rename or link operations.
3369 *
3370 * A logged_trans of 0 here can mean several things:
3371 *
3372 * 1) The inode was never logged since the filesystem was mounted, and may
3373 * or may have not been evicted and loaded again;
3374 *
3375 * 2) The inode was logged in a previous transaction, then evicted and
3376 * then loaded again;
3377 *
3378 * 3) The inode was logged in the current transaction, then evicted and
3379 * then loaded again.
3380 *
3381 * For cases 1) and 2) we don't want to return true, but we need to detect
3382 * case 3) and return true. So we do a search in the log root for the inode
3383 * item.
3384 */
3385 key.objectid = btrfs_ino(inode);
3386 key.type = BTRFS_INODE_ITEM_KEY;
3387 key.offset = 0;
3388
3389 if (!path) {
3390 path = btrfs_alloc_path();
3391 if (!path)
3392 return -ENOMEM;
3393 }
3394
3395 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3396
3397 if (path_in)
3398 btrfs_release_path(path);
3399 else
3400 btrfs_free_path(path);
3401
3402 /*
3403 * Logging an inode always results in logging its inode item. So if we
3404 * did not find the item we know the inode was not logged for sure.
3405 */
3406 if (ret < 0) {
3407 return ret;
3408 } else if (ret > 0) {
3409 /*
3410 * Set logged_trans to a value greater than 0 and less then the
3411 * current transaction to avoid doing the search in future calls.
3412 */
3413 inode->logged_trans = trans->transid - 1;
3414 return 0;
3415 }
3416
3417 /*
3418 * The inode was previously logged and then evicted, set logged_trans to
3419 * the current transacion's ID, to avoid future tree searches as long as
3420 * the inode is not evicted again.
3421 */
3422 inode->logged_trans = trans->transid;
3423
3424 /*
3425 * If it's a directory, then we must set last_dir_index_offset to the
3426 * maximum possible value, so that the next attempt to log the inode does
3427 * not skip checking if dir index keys found in modified subvolume tree
3428 * leaves have been logged before, otherwise it would result in attempts
3429 * to insert duplicate dir index keys in the log tree. This must be done
3430 * because last_dir_index_offset is an in-memory only field, not persisted
3431 * in the inode item or any other on-disk structure, so its value is lost
3432 * once the inode is evicted.
3433 */
3434 if (S_ISDIR(inode->vfs_inode.i_mode))
3435 inode->last_dir_index_offset = (u64)-1;
3436
3437 return 1;
3438 }
3439
3440 /*
3441 * Delete a directory entry from the log if it exists.
3442 *
3443 * Returns < 0 on error
3444 * 1 if the entry does not exists
3445 * 0 if the entry existed and was successfully deleted
3446 */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const char * name,int name_len,u64 index)3447 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3448 struct btrfs_root *log,
3449 struct btrfs_path *path,
3450 u64 dir_ino,
3451 const char *name, int name_len,
3452 u64 index)
3453 {
3454 struct btrfs_dir_item *di;
3455
3456 /*
3457 * We only log dir index items of a directory, so we don't need to look
3458 * for dir item keys.
3459 */
3460 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3461 index, name, name_len, -1);
3462 if (IS_ERR(di))
3463 return PTR_ERR(di);
3464 else if (!di)
3465 return 1;
3466
3467 /*
3468 * We do not need to update the size field of the directory's
3469 * inode item because on log replay we update the field to reflect
3470 * all existing entries in the directory (see overwrite_item()).
3471 */
3472 return btrfs_delete_one_dir_name(trans, log, path, di);
3473 }
3474
3475 /*
3476 * If both a file and directory are logged, and unlinks or renames are
3477 * mixed in, we have a few interesting corners:
3478 *
3479 * create file X in dir Y
3480 * link file X to X.link in dir Y
3481 * fsync file X
3482 * unlink file X but leave X.link
3483 * fsync dir Y
3484 *
3485 * After a crash we would expect only X.link to exist. But file X
3486 * didn't get fsync'd again so the log has back refs for X and X.link.
3487 *
3488 * We solve this by removing directory entries and inode backrefs from the
3489 * log when a file that was logged in the current transaction is
3490 * unlinked. Any later fsync will include the updated log entries, and
3491 * we'll be able to reconstruct the proper directory items from backrefs.
3492 *
3493 * This optimizations allows us to avoid relogging the entire inode
3494 * or the entire directory.
3495 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * dir,u64 index)3496 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3497 struct btrfs_root *root,
3498 const char *name, int name_len,
3499 struct btrfs_inode *dir, u64 index)
3500 {
3501 struct btrfs_path *path;
3502 int ret;
3503
3504 ret = inode_logged(trans, dir, NULL);
3505 if (ret == 0)
3506 return;
3507 else if (ret < 0) {
3508 btrfs_set_log_full_commit(trans);
3509 return;
3510 }
3511
3512 ret = join_running_log_trans(root);
3513 if (ret)
3514 return;
3515
3516 mutex_lock(&dir->log_mutex);
3517
3518 path = btrfs_alloc_path();
3519 if (!path) {
3520 ret = -ENOMEM;
3521 goto out_unlock;
3522 }
3523
3524 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3525 name, name_len, index);
3526 btrfs_free_path(path);
3527 out_unlock:
3528 mutex_unlock(&dir->log_mutex);
3529 if (ret < 0)
3530 btrfs_set_log_full_commit(trans);
3531 btrfs_end_log_trans(root);
3532 }
3533
3534 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * inode,u64 dirid)3535 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root,
3537 const char *name, int name_len,
3538 struct btrfs_inode *inode, u64 dirid)
3539 {
3540 struct btrfs_root *log;
3541 u64 index;
3542 int ret;
3543
3544 ret = inode_logged(trans, inode, NULL);
3545 if (ret == 0)
3546 return;
3547 else if (ret < 0) {
3548 btrfs_set_log_full_commit(trans);
3549 return;
3550 }
3551
3552 ret = join_running_log_trans(root);
3553 if (ret)
3554 return;
3555 log = root->log_root;
3556 mutex_lock(&inode->log_mutex);
3557
3558 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3559 dirid, &index);
3560 mutex_unlock(&inode->log_mutex);
3561 if (ret < 0 && ret != -ENOENT)
3562 btrfs_set_log_full_commit(trans);
3563 btrfs_end_log_trans(root);
3564 }
3565
3566 /*
3567 * creates a range item in the log for 'dirid'. first_offset and
3568 * last_offset tell us which parts of the key space the log should
3569 * be considered authoritative for.
3570 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3571 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3572 struct btrfs_root *log,
3573 struct btrfs_path *path,
3574 u64 dirid,
3575 u64 first_offset, u64 last_offset)
3576 {
3577 int ret;
3578 struct btrfs_key key;
3579 struct btrfs_dir_log_item *item;
3580
3581 key.objectid = dirid;
3582 key.offset = first_offset;
3583 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3584 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3585 /*
3586 * -EEXIST is fine and can happen sporadically when we are logging a
3587 * directory and have concurrent insertions in the subvolume's tree for
3588 * items from other inodes and that result in pushing off some dir items
3589 * from one leaf to another in order to accommodate for the new items.
3590 * This results in logging the same dir index range key.
3591 */
3592 if (ret && ret != -EEXIST)
3593 return ret;
3594
3595 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3596 struct btrfs_dir_log_item);
3597 if (ret == -EEXIST) {
3598 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3599
3600 /*
3601 * btrfs_del_dir_entries_in_log() might have been called during
3602 * an unlink between the initial insertion of this key and the
3603 * current update, or we might be logging a single entry deletion
3604 * during a rename, so set the new last_offset to the max value.
3605 */
3606 last_offset = max(last_offset, curr_end);
3607 }
3608 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3609 btrfs_mark_buffer_dirty(path->nodes[0]);
3610 btrfs_release_path(path);
3611 return 0;
3612 }
3613
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3614 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3615 struct btrfs_root *log,
3616 struct extent_buffer *src,
3617 struct btrfs_path *dst_path,
3618 int start_slot,
3619 int count)
3620 {
3621 char *ins_data = NULL;
3622 struct btrfs_item_batch batch;
3623 struct extent_buffer *dst;
3624 unsigned long src_offset;
3625 unsigned long dst_offset;
3626 struct btrfs_key key;
3627 u32 item_size;
3628 int ret;
3629 int i;
3630
3631 ASSERT(count > 0);
3632 batch.nr = count;
3633
3634 if (count == 1) {
3635 btrfs_item_key_to_cpu(src, &key, start_slot);
3636 item_size = btrfs_item_size(src, start_slot);
3637 batch.keys = &key;
3638 batch.data_sizes = &item_size;
3639 batch.total_data_size = item_size;
3640 } else {
3641 struct btrfs_key *ins_keys;
3642 u32 *ins_sizes;
3643
3644 ins_data = kmalloc(count * sizeof(u32) +
3645 count * sizeof(struct btrfs_key), GFP_NOFS);
3646 if (!ins_data)
3647 return -ENOMEM;
3648
3649 ins_sizes = (u32 *)ins_data;
3650 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3651 batch.keys = ins_keys;
3652 batch.data_sizes = ins_sizes;
3653 batch.total_data_size = 0;
3654
3655 for (i = 0; i < count; i++) {
3656 const int slot = start_slot + i;
3657
3658 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3659 ins_sizes[i] = btrfs_item_size(src, slot);
3660 batch.total_data_size += ins_sizes[i];
3661 }
3662 }
3663
3664 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3665 if (ret)
3666 goto out;
3667
3668 dst = dst_path->nodes[0];
3669 /*
3670 * Copy all the items in bulk, in a single copy operation. Item data is
3671 * organized such that it's placed at the end of a leaf and from right
3672 * to left. For example, the data for the second item ends at an offset
3673 * that matches the offset where the data for the first item starts, the
3674 * data for the third item ends at an offset that matches the offset
3675 * where the data of the second items starts, and so on.
3676 * Therefore our source and destination start offsets for copy match the
3677 * offsets of the last items (highest slots).
3678 */
3679 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3680 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3681 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3682 btrfs_release_path(dst_path);
3683 out:
3684 kfree(ins_data);
3685
3686 return ret;
3687 }
3688
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3689 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3690 struct btrfs_inode *inode,
3691 struct btrfs_path *path,
3692 struct btrfs_path *dst_path,
3693 struct btrfs_log_ctx *ctx,
3694 u64 *last_old_dentry_offset)
3695 {
3696 struct btrfs_root *log = inode->root->log_root;
3697 struct extent_buffer *src;
3698 const int nritems = btrfs_header_nritems(path->nodes[0]);
3699 const u64 ino = btrfs_ino(inode);
3700 bool last_found = false;
3701 int batch_start = 0;
3702 int batch_size = 0;
3703 int i;
3704
3705 /*
3706 * We need to clone the leaf, release the read lock on it, and use the
3707 * clone before modifying the log tree. See the comment at copy_items()
3708 * about why we need to do this.
3709 */
3710 src = btrfs_clone_extent_buffer(path->nodes[0]);
3711 if (!src)
3712 return -ENOMEM;
3713
3714 i = path->slots[0];
3715 btrfs_release_path(path);
3716 path->nodes[0] = src;
3717 path->slots[0] = i;
3718
3719 for (; i < nritems; i++) {
3720 struct btrfs_dir_item *di;
3721 struct btrfs_key key;
3722 int ret;
3723
3724 btrfs_item_key_to_cpu(src, &key, i);
3725
3726 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3727 last_found = true;
3728 break;
3729 }
3730
3731 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3732 ctx->last_dir_item_offset = key.offset;
3733
3734 /*
3735 * Skip ranges of items that consist only of dir item keys created
3736 * in past transactions. However if we find a gap, we must log a
3737 * dir index range item for that gap, so that index keys in that
3738 * gap are deleted during log replay.
3739 */
3740 if (btrfs_dir_transid(src, di) < trans->transid) {
3741 if (key.offset > *last_old_dentry_offset + 1) {
3742 ret = insert_dir_log_key(trans, log, dst_path,
3743 ino, *last_old_dentry_offset + 1,
3744 key.offset - 1);
3745 if (ret < 0)
3746 return ret;
3747 }
3748
3749 *last_old_dentry_offset = key.offset;
3750 continue;
3751 }
3752
3753 /* If we logged this dir index item before, we can skip it. */
3754 if (key.offset <= inode->last_dir_index_offset)
3755 continue;
3756
3757 /*
3758 * We must make sure that when we log a directory entry, the
3759 * corresponding inode, after log replay, has a matching link
3760 * count. For example:
3761 *
3762 * touch foo
3763 * mkdir mydir
3764 * sync
3765 * ln foo mydir/bar
3766 * xfs_io -c "fsync" mydir
3767 * <crash>
3768 * <mount fs and log replay>
3769 *
3770 * Would result in a fsync log that when replayed, our file inode
3771 * would have a link count of 1, but we get two directory entries
3772 * pointing to the same inode. After removing one of the names,
3773 * it would not be possible to remove the other name, which
3774 * resulted always in stale file handle errors, and would not be
3775 * possible to rmdir the parent directory, since its i_size could
3776 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3777 * resulting in -ENOTEMPTY errors.
3778 */
3779 if (!ctx->log_new_dentries) {
3780 struct btrfs_key di_key;
3781
3782 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3783 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3784 ctx->log_new_dentries = true;
3785 }
3786
3787 if (batch_size == 0)
3788 batch_start = i;
3789 batch_size++;
3790 }
3791
3792 if (batch_size > 0) {
3793 int ret;
3794
3795 ret = flush_dir_items_batch(trans, log, src, dst_path,
3796 batch_start, batch_size);
3797 if (ret < 0)
3798 return ret;
3799 }
3800
3801 return last_found ? 1 : 0;
3802 }
3803
3804 /*
3805 * log all the items included in the current transaction for a given
3806 * directory. This also creates the range items in the log tree required
3807 * to replay anything deleted before the fsync
3808 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3809 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3810 struct btrfs_inode *inode,
3811 struct btrfs_path *path,
3812 struct btrfs_path *dst_path,
3813 struct btrfs_log_ctx *ctx,
3814 u64 min_offset, u64 *last_offset_ret)
3815 {
3816 struct btrfs_key min_key;
3817 struct btrfs_root *root = inode->root;
3818 struct btrfs_root *log = root->log_root;
3819 int err = 0;
3820 int ret;
3821 u64 last_old_dentry_offset = min_offset - 1;
3822 u64 last_offset = (u64)-1;
3823 u64 ino = btrfs_ino(inode);
3824
3825 min_key.objectid = ino;
3826 min_key.type = BTRFS_DIR_INDEX_KEY;
3827 min_key.offset = min_offset;
3828
3829 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3830
3831 /*
3832 * we didn't find anything from this transaction, see if there
3833 * is anything at all
3834 */
3835 if (ret != 0 || min_key.objectid != ino ||
3836 min_key.type != BTRFS_DIR_INDEX_KEY) {
3837 min_key.objectid = ino;
3838 min_key.type = BTRFS_DIR_INDEX_KEY;
3839 min_key.offset = (u64)-1;
3840 btrfs_release_path(path);
3841 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3842 if (ret < 0) {
3843 btrfs_release_path(path);
3844 return ret;
3845 }
3846 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3847
3848 /* if ret == 0 there are items for this type,
3849 * create a range to tell us the last key of this type.
3850 * otherwise, there are no items in this directory after
3851 * *min_offset, and we create a range to indicate that.
3852 */
3853 if (ret == 0) {
3854 struct btrfs_key tmp;
3855
3856 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3857 path->slots[0]);
3858 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3859 last_old_dentry_offset = tmp.offset;
3860 }
3861 goto done;
3862 }
3863
3864 /* go backward to find any previous key */
3865 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3866 if (ret == 0) {
3867 struct btrfs_key tmp;
3868
3869 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3870 /*
3871 * The dir index key before the first one we found that needs to
3872 * be logged might be in a previous leaf, and there might be a
3873 * gap between these keys, meaning that we had deletions that
3874 * happened. So the key range item we log (key type
3875 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3876 * previous key's offset plus 1, so that those deletes are replayed.
3877 */
3878 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3879 last_old_dentry_offset = tmp.offset;
3880 }
3881 btrfs_release_path(path);
3882
3883 /*
3884 * Find the first key from this transaction again. See the note for
3885 * log_new_dir_dentries, if we're logging a directory recursively we
3886 * won't be holding its i_mutex, which means we can modify the directory
3887 * while we're logging it. If we remove an entry between our first
3888 * search and this search we'll not find the key again and can just
3889 * bail.
3890 */
3891 search:
3892 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3893 if (ret != 0)
3894 goto done;
3895
3896 /*
3897 * we have a block from this transaction, log every item in it
3898 * from our directory
3899 */
3900 while (1) {
3901 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3902 &last_old_dentry_offset);
3903 if (ret != 0) {
3904 if (ret < 0)
3905 err = ret;
3906 goto done;
3907 }
3908 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3909
3910 /*
3911 * look ahead to the next item and see if it is also
3912 * from this directory and from this transaction
3913 */
3914 ret = btrfs_next_leaf(root, path);
3915 if (ret) {
3916 if (ret == 1)
3917 last_offset = (u64)-1;
3918 else
3919 err = ret;
3920 goto done;
3921 }
3922 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3923 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3924 last_offset = (u64)-1;
3925 goto done;
3926 }
3927 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3928 /*
3929 * The next leaf was not changed in the current transaction
3930 * and has at least one dir index key.
3931 * We check for the next key because there might have been
3932 * one or more deletions between the last key we logged and
3933 * that next key. So the key range item we log (key type
3934 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3935 * offset minus 1, so that those deletes are replayed.
3936 */
3937 last_offset = min_key.offset - 1;
3938 goto done;
3939 }
3940 if (need_resched()) {
3941 btrfs_release_path(path);
3942 cond_resched();
3943 goto search;
3944 }
3945 }
3946 done:
3947 btrfs_release_path(path);
3948 btrfs_release_path(dst_path);
3949
3950 if (err == 0) {
3951 *last_offset_ret = last_offset;
3952 /*
3953 * In case the leaf was changed in the current transaction but
3954 * all its dir items are from a past transaction, the last item
3955 * in the leaf is a dir item and there's no gap between that last
3956 * dir item and the first one on the next leaf (which did not
3957 * change in the current transaction), then we don't need to log
3958 * a range, last_old_dentry_offset is == to last_offset.
3959 */
3960 ASSERT(last_old_dentry_offset <= last_offset);
3961 if (last_old_dentry_offset < last_offset) {
3962 ret = insert_dir_log_key(trans, log, path, ino,
3963 last_old_dentry_offset + 1,
3964 last_offset);
3965 if (ret)
3966 err = ret;
3967 }
3968 }
3969 return err;
3970 }
3971
3972 /*
3973 * If the inode was logged before and it was evicted, then its
3974 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3975 * key offset. If that's the case, search for it and update the inode. This
3976 * is to avoid lookups in the log tree every time we try to insert a dir index
3977 * key from a leaf changed in the current transaction, and to allow us to always
3978 * do batch insertions of dir index keys.
3979 */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)3980 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3981 struct btrfs_path *path,
3982 const struct btrfs_log_ctx *ctx)
3983 {
3984 const u64 ino = btrfs_ino(inode);
3985 struct btrfs_key key;
3986 int ret;
3987
3988 lockdep_assert_held(&inode->log_mutex);
3989
3990 if (inode->last_dir_index_offset != (u64)-1)
3991 return 0;
3992
3993 if (!ctx->logged_before) {
3994 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3995 return 0;
3996 }
3997
3998 key.objectid = ino;
3999 key.type = BTRFS_DIR_INDEX_KEY;
4000 key.offset = (u64)-1;
4001
4002 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4003 /*
4004 * An error happened or we actually have an index key with an offset
4005 * value of (u64)-1. Bail out, we're done.
4006 */
4007 if (ret <= 0)
4008 goto out;
4009
4010 ret = 0;
4011 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4012
4013 /*
4014 * No dir index items, bail out and leave last_dir_index_offset with
4015 * the value right before the first valid index value.
4016 */
4017 if (path->slots[0] == 0)
4018 goto out;
4019
4020 /*
4021 * btrfs_search_slot() left us at one slot beyond the slot with the last
4022 * index key, or beyond the last key of the directory that is not an
4023 * index key. If we have an index key before, set last_dir_index_offset
4024 * to its offset value, otherwise leave it with a value right before the
4025 * first valid index value, as it means we have an empty directory.
4026 */
4027 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4028 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4029 inode->last_dir_index_offset = key.offset;
4030
4031 out:
4032 btrfs_release_path(path);
4033
4034 return ret;
4035 }
4036
4037 /*
4038 * logging directories is very similar to logging inodes, We find all the items
4039 * from the current transaction and write them to the log.
4040 *
4041 * The recovery code scans the directory in the subvolume, and if it finds a
4042 * key in the range logged that is not present in the log tree, then it means
4043 * that dir entry was unlinked during the transaction.
4044 *
4045 * In order for that scan to work, we must include one key smaller than
4046 * the smallest logged by this transaction and one key larger than the largest
4047 * key logged by this transaction.
4048 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4049 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4050 struct btrfs_inode *inode,
4051 struct btrfs_path *path,
4052 struct btrfs_path *dst_path,
4053 struct btrfs_log_ctx *ctx)
4054 {
4055 u64 min_key;
4056 u64 max_key;
4057 int ret;
4058
4059 ret = update_last_dir_index_offset(inode, path, ctx);
4060 if (ret)
4061 return ret;
4062
4063 min_key = BTRFS_DIR_START_INDEX;
4064 max_key = 0;
4065 ctx->last_dir_item_offset = inode->last_dir_index_offset;
4066
4067 while (1) {
4068 ret = log_dir_items(trans, inode, path, dst_path,
4069 ctx, min_key, &max_key);
4070 if (ret)
4071 return ret;
4072 if (max_key == (u64)-1)
4073 break;
4074 min_key = max_key + 1;
4075 }
4076
4077 inode->last_dir_index_offset = ctx->last_dir_item_offset;
4078
4079 return 0;
4080 }
4081
4082 /*
4083 * a helper function to drop items from the log before we relog an
4084 * inode. max_key_type indicates the highest item type to remove.
4085 * This cannot be run for file data extents because it does not
4086 * free the extents they point to.
4087 */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4088 static int drop_inode_items(struct btrfs_trans_handle *trans,
4089 struct btrfs_root *log,
4090 struct btrfs_path *path,
4091 struct btrfs_inode *inode,
4092 int max_key_type)
4093 {
4094 int ret;
4095 struct btrfs_key key;
4096 struct btrfs_key found_key;
4097 int start_slot;
4098
4099 key.objectid = btrfs_ino(inode);
4100 key.type = max_key_type;
4101 key.offset = (u64)-1;
4102
4103 while (1) {
4104 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4105 BUG_ON(ret == 0); /* Logic error */
4106 if (ret < 0)
4107 break;
4108
4109 if (path->slots[0] == 0)
4110 break;
4111
4112 path->slots[0]--;
4113 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4114 path->slots[0]);
4115
4116 if (found_key.objectid != key.objectid)
4117 break;
4118
4119 found_key.offset = 0;
4120 found_key.type = 0;
4121 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4122 if (ret < 0)
4123 break;
4124
4125 ret = btrfs_del_items(trans, log, path, start_slot,
4126 path->slots[0] - start_slot + 1);
4127 /*
4128 * If start slot isn't 0 then we don't need to re-search, we've
4129 * found the last guy with the objectid in this tree.
4130 */
4131 if (ret || start_slot != 0)
4132 break;
4133 btrfs_release_path(path);
4134 }
4135 btrfs_release_path(path);
4136 if (ret > 0)
4137 ret = 0;
4138 return ret;
4139 }
4140
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4141 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4142 struct btrfs_root *log_root,
4143 struct btrfs_inode *inode,
4144 u64 new_size, u32 min_type)
4145 {
4146 struct btrfs_truncate_control control = {
4147 .new_size = new_size,
4148 .ino = btrfs_ino(inode),
4149 .min_type = min_type,
4150 .skip_ref_updates = true,
4151 };
4152
4153 return btrfs_truncate_inode_items(trans, log_root, &control);
4154 }
4155
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4156 static void fill_inode_item(struct btrfs_trans_handle *trans,
4157 struct extent_buffer *leaf,
4158 struct btrfs_inode_item *item,
4159 struct inode *inode, int log_inode_only,
4160 u64 logged_isize)
4161 {
4162 struct btrfs_map_token token;
4163 u64 flags;
4164
4165 btrfs_init_map_token(&token, leaf);
4166
4167 if (log_inode_only) {
4168 /* set the generation to zero so the recover code
4169 * can tell the difference between an logging
4170 * just to say 'this inode exists' and a logging
4171 * to say 'update this inode with these values'
4172 */
4173 btrfs_set_token_inode_generation(&token, item, 0);
4174 btrfs_set_token_inode_size(&token, item, logged_isize);
4175 } else {
4176 btrfs_set_token_inode_generation(&token, item,
4177 BTRFS_I(inode)->generation);
4178 btrfs_set_token_inode_size(&token, item, inode->i_size);
4179 }
4180
4181 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4182 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4183 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4184 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4185
4186 btrfs_set_token_timespec_sec(&token, &item->atime,
4187 inode->i_atime.tv_sec);
4188 btrfs_set_token_timespec_nsec(&token, &item->atime,
4189 inode->i_atime.tv_nsec);
4190
4191 btrfs_set_token_timespec_sec(&token, &item->mtime,
4192 inode->i_mtime.tv_sec);
4193 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4194 inode->i_mtime.tv_nsec);
4195
4196 btrfs_set_token_timespec_sec(&token, &item->ctime,
4197 inode->i_ctime.tv_sec);
4198 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4199 inode->i_ctime.tv_nsec);
4200
4201 /*
4202 * We do not need to set the nbytes field, in fact during a fast fsync
4203 * its value may not even be correct, since a fast fsync does not wait
4204 * for ordered extent completion, which is where we update nbytes, it
4205 * only waits for writeback to complete. During log replay as we find
4206 * file extent items and replay them, we adjust the nbytes field of the
4207 * inode item in subvolume tree as needed (see overwrite_item()).
4208 */
4209
4210 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4211 btrfs_set_token_inode_transid(&token, item, trans->transid);
4212 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4213 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4214 BTRFS_I(inode)->ro_flags);
4215 btrfs_set_token_inode_flags(&token, item, flags);
4216 btrfs_set_token_inode_block_group(&token, item, 0);
4217 }
4218
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4219 static int log_inode_item(struct btrfs_trans_handle *trans,
4220 struct btrfs_root *log, struct btrfs_path *path,
4221 struct btrfs_inode *inode, bool inode_item_dropped)
4222 {
4223 struct btrfs_inode_item *inode_item;
4224 int ret;
4225
4226 /*
4227 * If we are doing a fast fsync and the inode was logged before in the
4228 * current transaction, then we know the inode was previously logged and
4229 * it exists in the log tree. For performance reasons, in this case use
4230 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4231 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4232 * contention in case there are concurrent fsyncs for other inodes of the
4233 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4234 * already exists can also result in unnecessarily splitting a leaf.
4235 */
4236 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4237 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4238 ASSERT(ret <= 0);
4239 if (ret > 0)
4240 ret = -ENOENT;
4241 } else {
4242 /*
4243 * This means it is the first fsync in the current transaction,
4244 * so the inode item is not in the log and we need to insert it.
4245 * We can never get -EEXIST because we are only called for a fast
4246 * fsync and in case an inode eviction happens after the inode was
4247 * logged before in the current transaction, when we load again
4248 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4249 * flags and set ->logged_trans to 0.
4250 */
4251 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4252 sizeof(*inode_item));
4253 ASSERT(ret != -EEXIST);
4254 }
4255 if (ret)
4256 return ret;
4257 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4258 struct btrfs_inode_item);
4259 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4260 0, 0);
4261 btrfs_release_path(path);
4262 return 0;
4263 }
4264
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4265 static int log_csums(struct btrfs_trans_handle *trans,
4266 struct btrfs_inode *inode,
4267 struct btrfs_root *log_root,
4268 struct btrfs_ordered_sum *sums)
4269 {
4270 const u64 lock_end = sums->bytenr + sums->len - 1;
4271 struct extent_state *cached_state = NULL;
4272 int ret;
4273
4274 /*
4275 * If this inode was not used for reflink operations in the current
4276 * transaction with new extents, then do the fast path, no need to
4277 * worry about logging checksum items with overlapping ranges.
4278 */
4279 if (inode->last_reflink_trans < trans->transid)
4280 return btrfs_csum_file_blocks(trans, log_root, sums);
4281
4282 /*
4283 * Serialize logging for checksums. This is to avoid racing with the
4284 * same checksum being logged by another task that is logging another
4285 * file which happens to refer to the same extent as well. Such races
4286 * can leave checksum items in the log with overlapping ranges.
4287 */
4288 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4289 &cached_state);
4290 if (ret)
4291 return ret;
4292 /*
4293 * Due to extent cloning, we might have logged a csum item that covers a
4294 * subrange of a cloned extent, and later we can end up logging a csum
4295 * item for a larger subrange of the same extent or the entire range.
4296 * This would leave csum items in the log tree that cover the same range
4297 * and break the searches for checksums in the log tree, resulting in
4298 * some checksums missing in the fs/subvolume tree. So just delete (or
4299 * trim and adjust) any existing csum items in the log for this range.
4300 */
4301 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4302 if (!ret)
4303 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4304
4305 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4306 &cached_state);
4307
4308 return ret;
4309 }
4310
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)4311 static noinline int copy_items(struct btrfs_trans_handle *trans,
4312 struct btrfs_inode *inode,
4313 struct btrfs_path *dst_path,
4314 struct btrfs_path *src_path,
4315 int start_slot, int nr, int inode_only,
4316 u64 logged_isize)
4317 {
4318 struct btrfs_root *log = inode->root->log_root;
4319 struct btrfs_file_extent_item *extent;
4320 struct extent_buffer *src;
4321 int ret = 0;
4322 struct btrfs_key *ins_keys;
4323 u32 *ins_sizes;
4324 struct btrfs_item_batch batch;
4325 char *ins_data;
4326 int i;
4327 int dst_index;
4328 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4329 const u64 i_size = i_size_read(&inode->vfs_inode);
4330
4331 /*
4332 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4333 * use the clone. This is because otherwise we would be changing the log
4334 * tree, to insert items from the subvolume tree or insert csum items,
4335 * while holding a read lock on a leaf from the subvolume tree, which
4336 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4337 *
4338 * 1) Modifying the log tree triggers an extent buffer allocation while
4339 * holding a write lock on a parent extent buffer from the log tree.
4340 * Allocating the pages for an extent buffer, or the extent buffer
4341 * struct, can trigger inode eviction and finally the inode eviction
4342 * will trigger a release/remove of a delayed node, which requires
4343 * taking the delayed node's mutex;
4344 *
4345 * 2) Allocating a metadata extent for a log tree can trigger the async
4346 * reclaim thread and make us wait for it to release enough space and
4347 * unblock our reservation ticket. The reclaim thread can start
4348 * flushing delayed items, and that in turn results in the need to
4349 * lock delayed node mutexes and in the need to write lock extent
4350 * buffers of a subvolume tree - all this while holding a write lock
4351 * on the parent extent buffer in the log tree.
4352 *
4353 * So one task in scenario 1) running in parallel with another task in
4354 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4355 * node mutex while having a read lock on a leaf from the subvolume,
4356 * while the other is holding the delayed node's mutex and wants to
4357 * write lock the same subvolume leaf for flushing delayed items.
4358 */
4359 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4360 if (!src)
4361 return -ENOMEM;
4362
4363 i = src_path->slots[0];
4364 btrfs_release_path(src_path);
4365 src_path->nodes[0] = src;
4366 src_path->slots[0] = i;
4367
4368 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4369 nr * sizeof(u32), GFP_NOFS);
4370 if (!ins_data)
4371 return -ENOMEM;
4372
4373 ins_sizes = (u32 *)ins_data;
4374 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4375 batch.keys = ins_keys;
4376 batch.data_sizes = ins_sizes;
4377 batch.total_data_size = 0;
4378 batch.nr = 0;
4379
4380 dst_index = 0;
4381 for (i = 0; i < nr; i++) {
4382 const int src_slot = start_slot + i;
4383 struct btrfs_root *csum_root;
4384 struct btrfs_ordered_sum *sums;
4385 struct btrfs_ordered_sum *sums_next;
4386 LIST_HEAD(ordered_sums);
4387 u64 disk_bytenr;
4388 u64 disk_num_bytes;
4389 u64 extent_offset;
4390 u64 extent_num_bytes;
4391 bool is_old_extent;
4392
4393 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4394
4395 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4396 goto add_to_batch;
4397
4398 extent = btrfs_item_ptr(src, src_slot,
4399 struct btrfs_file_extent_item);
4400
4401 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4402 trans->transid);
4403
4404 /*
4405 * Don't copy extents from past generations. That would make us
4406 * log a lot more metadata for common cases like doing only a
4407 * few random writes into a file and then fsync it for the first
4408 * time or after the full sync flag is set on the inode. We can
4409 * get leaves full of extent items, most of which are from past
4410 * generations, so we can skip them - as long as the inode has
4411 * not been the target of a reflink operation in this transaction,
4412 * as in that case it might have had file extent items with old
4413 * generations copied into it. We also must always log prealloc
4414 * extents that start at or beyond eof, otherwise we would lose
4415 * them on log replay.
4416 */
4417 if (is_old_extent &&
4418 ins_keys[dst_index].offset < i_size &&
4419 inode->last_reflink_trans < trans->transid)
4420 continue;
4421
4422 if (skip_csum)
4423 goto add_to_batch;
4424
4425 /* Only regular extents have checksums. */
4426 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4427 goto add_to_batch;
4428
4429 /*
4430 * If it's an extent created in a past transaction, then its
4431 * checksums are already accessible from the committed csum tree,
4432 * no need to log them.
4433 */
4434 if (is_old_extent)
4435 goto add_to_batch;
4436
4437 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4438 /* If it's an explicit hole, there are no checksums. */
4439 if (disk_bytenr == 0)
4440 goto add_to_batch;
4441
4442 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4443
4444 if (btrfs_file_extent_compression(src, extent)) {
4445 extent_offset = 0;
4446 extent_num_bytes = disk_num_bytes;
4447 } else {
4448 extent_offset = btrfs_file_extent_offset(src, extent);
4449 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4450 }
4451
4452 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4453 disk_bytenr += extent_offset;
4454 ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4455 disk_bytenr + extent_num_bytes - 1,
4456 &ordered_sums, 0, false);
4457 if (ret)
4458 goto out;
4459
4460 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4461 if (!ret)
4462 ret = log_csums(trans, inode, log, sums);
4463 list_del(&sums->list);
4464 kfree(sums);
4465 }
4466 if (ret)
4467 goto out;
4468
4469 add_to_batch:
4470 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4471 batch.total_data_size += ins_sizes[dst_index];
4472 batch.nr++;
4473 dst_index++;
4474 }
4475
4476 /*
4477 * We have a leaf full of old extent items that don't need to be logged,
4478 * so we don't need to do anything.
4479 */
4480 if (batch.nr == 0)
4481 goto out;
4482
4483 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4484 if (ret)
4485 goto out;
4486
4487 dst_index = 0;
4488 for (i = 0; i < nr; i++) {
4489 const int src_slot = start_slot + i;
4490 const int dst_slot = dst_path->slots[0] + dst_index;
4491 struct btrfs_key key;
4492 unsigned long src_offset;
4493 unsigned long dst_offset;
4494
4495 /*
4496 * We're done, all the remaining items in the source leaf
4497 * correspond to old file extent items.
4498 */
4499 if (dst_index >= batch.nr)
4500 break;
4501
4502 btrfs_item_key_to_cpu(src, &key, src_slot);
4503
4504 if (key.type != BTRFS_EXTENT_DATA_KEY)
4505 goto copy_item;
4506
4507 extent = btrfs_item_ptr(src, src_slot,
4508 struct btrfs_file_extent_item);
4509
4510 /* See the comment in the previous loop, same logic. */
4511 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4512 key.offset < i_size &&
4513 inode->last_reflink_trans < trans->transid)
4514 continue;
4515
4516 copy_item:
4517 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4518 src_offset = btrfs_item_ptr_offset(src, src_slot);
4519
4520 if (key.type == BTRFS_INODE_ITEM_KEY) {
4521 struct btrfs_inode_item *inode_item;
4522
4523 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4524 struct btrfs_inode_item);
4525 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4526 &inode->vfs_inode,
4527 inode_only == LOG_INODE_EXISTS,
4528 logged_isize);
4529 } else {
4530 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4531 src_offset, ins_sizes[dst_index]);
4532 }
4533
4534 dst_index++;
4535 }
4536
4537 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4538 btrfs_release_path(dst_path);
4539 out:
4540 kfree(ins_data);
4541
4542 return ret;
4543 }
4544
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4545 static int extent_cmp(void *priv, const struct list_head *a,
4546 const struct list_head *b)
4547 {
4548 const struct extent_map *em1, *em2;
4549
4550 em1 = list_entry(a, struct extent_map, list);
4551 em2 = list_entry(b, struct extent_map, list);
4552
4553 if (em1->start < em2->start)
4554 return -1;
4555 else if (em1->start > em2->start)
4556 return 1;
4557 return 0;
4558 }
4559
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4560 static int log_extent_csums(struct btrfs_trans_handle *trans,
4561 struct btrfs_inode *inode,
4562 struct btrfs_root *log_root,
4563 const struct extent_map *em,
4564 struct btrfs_log_ctx *ctx)
4565 {
4566 struct btrfs_ordered_extent *ordered;
4567 struct btrfs_root *csum_root;
4568 u64 csum_offset;
4569 u64 csum_len;
4570 u64 mod_start = em->mod_start;
4571 u64 mod_len = em->mod_len;
4572 LIST_HEAD(ordered_sums);
4573 int ret = 0;
4574
4575 if (inode->flags & BTRFS_INODE_NODATASUM ||
4576 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4577 em->block_start == EXTENT_MAP_HOLE)
4578 return 0;
4579
4580 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4581 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4582 const u64 mod_end = mod_start + mod_len;
4583 struct btrfs_ordered_sum *sums;
4584
4585 if (mod_len == 0)
4586 break;
4587
4588 if (ordered_end <= mod_start)
4589 continue;
4590 if (mod_end <= ordered->file_offset)
4591 break;
4592
4593 /*
4594 * We are going to copy all the csums on this ordered extent, so
4595 * go ahead and adjust mod_start and mod_len in case this ordered
4596 * extent has already been logged.
4597 */
4598 if (ordered->file_offset > mod_start) {
4599 if (ordered_end >= mod_end)
4600 mod_len = ordered->file_offset - mod_start;
4601 /*
4602 * If we have this case
4603 *
4604 * |--------- logged extent ---------|
4605 * |----- ordered extent ----|
4606 *
4607 * Just don't mess with mod_start and mod_len, we'll
4608 * just end up logging more csums than we need and it
4609 * will be ok.
4610 */
4611 } else {
4612 if (ordered_end < mod_end) {
4613 mod_len = mod_end - ordered_end;
4614 mod_start = ordered_end;
4615 } else {
4616 mod_len = 0;
4617 }
4618 }
4619
4620 /*
4621 * To keep us from looping for the above case of an ordered
4622 * extent that falls inside of the logged extent.
4623 */
4624 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4625 continue;
4626
4627 list_for_each_entry(sums, &ordered->list, list) {
4628 ret = log_csums(trans, inode, log_root, sums);
4629 if (ret)
4630 return ret;
4631 }
4632 }
4633
4634 /* We're done, found all csums in the ordered extents. */
4635 if (mod_len == 0)
4636 return 0;
4637
4638 /* If we're compressed we have to save the entire range of csums. */
4639 if (em->compress_type) {
4640 csum_offset = 0;
4641 csum_len = max(em->block_len, em->orig_block_len);
4642 } else {
4643 csum_offset = mod_start - em->start;
4644 csum_len = mod_len;
4645 }
4646
4647 /* block start is already adjusted for the file extent offset. */
4648 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4649 ret = btrfs_lookup_csums_range(csum_root,
4650 em->block_start + csum_offset,
4651 em->block_start + csum_offset +
4652 csum_len - 1, &ordered_sums, 0, false);
4653 if (ret)
4654 return ret;
4655
4656 while (!list_empty(&ordered_sums)) {
4657 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4658 struct btrfs_ordered_sum,
4659 list);
4660 if (!ret)
4661 ret = log_csums(trans, inode, log_root, sums);
4662 list_del(&sums->list);
4663 kfree(sums);
4664 }
4665
4666 return ret;
4667 }
4668
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4669 static int log_one_extent(struct btrfs_trans_handle *trans,
4670 struct btrfs_inode *inode,
4671 const struct extent_map *em,
4672 struct btrfs_path *path,
4673 struct btrfs_log_ctx *ctx)
4674 {
4675 struct btrfs_drop_extents_args drop_args = { 0 };
4676 struct btrfs_root *log = inode->root->log_root;
4677 struct btrfs_file_extent_item fi = { 0 };
4678 struct extent_buffer *leaf;
4679 struct btrfs_key key;
4680 u64 extent_offset = em->start - em->orig_start;
4681 u64 block_len;
4682 int ret;
4683
4684 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4685 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4686 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4687 else
4688 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4689
4690 block_len = max(em->block_len, em->orig_block_len);
4691 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4692 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4693 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4694 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4695 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4696 extent_offset);
4697 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4698 }
4699
4700 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4701 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4702 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4703 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4704
4705 ret = log_extent_csums(trans, inode, log, em, ctx);
4706 if (ret)
4707 return ret;
4708
4709 /*
4710 * If this is the first time we are logging the inode in the current
4711 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4712 * because it does a deletion search, which always acquires write locks
4713 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4714 * but also adds significant contention in a log tree, since log trees
4715 * are small, with a root at level 2 or 3 at most, due to their short
4716 * life span.
4717 */
4718 if (ctx->logged_before) {
4719 drop_args.path = path;
4720 drop_args.start = em->start;
4721 drop_args.end = em->start + em->len;
4722 drop_args.replace_extent = true;
4723 drop_args.extent_item_size = sizeof(fi);
4724 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4725 if (ret)
4726 return ret;
4727 }
4728
4729 if (!drop_args.extent_inserted) {
4730 key.objectid = btrfs_ino(inode);
4731 key.type = BTRFS_EXTENT_DATA_KEY;
4732 key.offset = em->start;
4733
4734 ret = btrfs_insert_empty_item(trans, log, path, &key,
4735 sizeof(fi));
4736 if (ret)
4737 return ret;
4738 }
4739 leaf = path->nodes[0];
4740 write_extent_buffer(leaf, &fi,
4741 btrfs_item_ptr_offset(leaf, path->slots[0]),
4742 sizeof(fi));
4743 btrfs_mark_buffer_dirty(leaf);
4744
4745 btrfs_release_path(path);
4746
4747 return ret;
4748 }
4749
4750 /*
4751 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4752 * lose them after doing a full/fast fsync and replaying the log. We scan the
4753 * subvolume's root instead of iterating the inode's extent map tree because
4754 * otherwise we can log incorrect extent items based on extent map conversion.
4755 * That can happen due to the fact that extent maps are merged when they
4756 * are not in the extent map tree's list of modified extents.
4757 */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4758 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4759 struct btrfs_inode *inode,
4760 struct btrfs_path *path)
4761 {
4762 struct btrfs_root *root = inode->root;
4763 struct btrfs_key key;
4764 const u64 i_size = i_size_read(&inode->vfs_inode);
4765 const u64 ino = btrfs_ino(inode);
4766 struct btrfs_path *dst_path = NULL;
4767 bool dropped_extents = false;
4768 u64 truncate_offset = i_size;
4769 struct extent_buffer *leaf;
4770 int slot;
4771 int ins_nr = 0;
4772 int start_slot;
4773 int ret;
4774
4775 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4776 return 0;
4777
4778 key.objectid = ino;
4779 key.type = BTRFS_EXTENT_DATA_KEY;
4780 key.offset = i_size;
4781 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4782 if (ret < 0)
4783 goto out;
4784
4785 /*
4786 * We must check if there is a prealloc extent that starts before the
4787 * i_size and crosses the i_size boundary. This is to ensure later we
4788 * truncate down to the end of that extent and not to the i_size, as
4789 * otherwise we end up losing part of the prealloc extent after a log
4790 * replay and with an implicit hole if there is another prealloc extent
4791 * that starts at an offset beyond i_size.
4792 */
4793 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4794 if (ret < 0)
4795 goto out;
4796
4797 if (ret == 0) {
4798 struct btrfs_file_extent_item *ei;
4799
4800 leaf = path->nodes[0];
4801 slot = path->slots[0];
4802 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4803
4804 if (btrfs_file_extent_type(leaf, ei) ==
4805 BTRFS_FILE_EXTENT_PREALLOC) {
4806 u64 extent_end;
4807
4808 btrfs_item_key_to_cpu(leaf, &key, slot);
4809 extent_end = key.offset +
4810 btrfs_file_extent_num_bytes(leaf, ei);
4811
4812 if (extent_end > i_size)
4813 truncate_offset = extent_end;
4814 }
4815 } else {
4816 ret = 0;
4817 }
4818
4819 while (true) {
4820 leaf = path->nodes[0];
4821 slot = path->slots[0];
4822
4823 if (slot >= btrfs_header_nritems(leaf)) {
4824 if (ins_nr > 0) {
4825 ret = copy_items(trans, inode, dst_path, path,
4826 start_slot, ins_nr, 1, 0);
4827 if (ret < 0)
4828 goto out;
4829 ins_nr = 0;
4830 }
4831 ret = btrfs_next_leaf(root, path);
4832 if (ret < 0)
4833 goto out;
4834 if (ret > 0) {
4835 ret = 0;
4836 break;
4837 }
4838 continue;
4839 }
4840
4841 btrfs_item_key_to_cpu(leaf, &key, slot);
4842 if (key.objectid > ino)
4843 break;
4844 if (WARN_ON_ONCE(key.objectid < ino) ||
4845 key.type < BTRFS_EXTENT_DATA_KEY ||
4846 key.offset < i_size) {
4847 path->slots[0]++;
4848 continue;
4849 }
4850 if (!dropped_extents) {
4851 /*
4852 * Avoid logging extent items logged in past fsync calls
4853 * and leading to duplicate keys in the log tree.
4854 */
4855 ret = truncate_inode_items(trans, root->log_root, inode,
4856 truncate_offset,
4857 BTRFS_EXTENT_DATA_KEY);
4858 if (ret)
4859 goto out;
4860 dropped_extents = true;
4861 }
4862 if (ins_nr == 0)
4863 start_slot = slot;
4864 ins_nr++;
4865 path->slots[0]++;
4866 if (!dst_path) {
4867 dst_path = btrfs_alloc_path();
4868 if (!dst_path) {
4869 ret = -ENOMEM;
4870 goto out;
4871 }
4872 }
4873 }
4874 if (ins_nr > 0)
4875 ret = copy_items(trans, inode, dst_path, path,
4876 start_slot, ins_nr, 1, 0);
4877 out:
4878 btrfs_release_path(path);
4879 btrfs_free_path(dst_path);
4880 return ret;
4881 }
4882
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4883 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4884 struct btrfs_inode *inode,
4885 struct btrfs_path *path,
4886 struct btrfs_log_ctx *ctx)
4887 {
4888 struct btrfs_ordered_extent *ordered;
4889 struct btrfs_ordered_extent *tmp;
4890 struct extent_map *em, *n;
4891 struct list_head extents;
4892 struct extent_map_tree *tree = &inode->extent_tree;
4893 int ret = 0;
4894 int num = 0;
4895
4896 INIT_LIST_HEAD(&extents);
4897
4898 write_lock(&tree->lock);
4899
4900 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4901 list_del_init(&em->list);
4902 /*
4903 * Just an arbitrary number, this can be really CPU intensive
4904 * once we start getting a lot of extents, and really once we
4905 * have a bunch of extents we just want to commit since it will
4906 * be faster.
4907 */
4908 if (++num > 32768) {
4909 list_del_init(&tree->modified_extents);
4910 ret = -EFBIG;
4911 goto process;
4912 }
4913
4914 if (em->generation < trans->transid)
4915 continue;
4916
4917 /* We log prealloc extents beyond eof later. */
4918 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4919 em->start >= i_size_read(&inode->vfs_inode))
4920 continue;
4921
4922 /* Need a ref to keep it from getting evicted from cache */
4923 refcount_inc(&em->refs);
4924 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4925 list_add_tail(&em->list, &extents);
4926 num++;
4927 }
4928
4929 list_sort(NULL, &extents, extent_cmp);
4930 process:
4931 while (!list_empty(&extents)) {
4932 em = list_entry(extents.next, struct extent_map, list);
4933
4934 list_del_init(&em->list);
4935
4936 /*
4937 * If we had an error we just need to delete everybody from our
4938 * private list.
4939 */
4940 if (ret) {
4941 clear_em_logging(tree, em);
4942 free_extent_map(em);
4943 continue;
4944 }
4945
4946 write_unlock(&tree->lock);
4947
4948 ret = log_one_extent(trans, inode, em, path, ctx);
4949 write_lock(&tree->lock);
4950 clear_em_logging(tree, em);
4951 free_extent_map(em);
4952 }
4953 WARN_ON(!list_empty(&extents));
4954 write_unlock(&tree->lock);
4955
4956 if (!ret)
4957 ret = btrfs_log_prealloc_extents(trans, inode, path);
4958 if (ret)
4959 return ret;
4960
4961 /*
4962 * We have logged all extents successfully, now make sure the commit of
4963 * the current transaction waits for the ordered extents to complete
4964 * before it commits and wipes out the log trees, otherwise we would
4965 * lose data if an ordered extents completes after the transaction
4966 * commits and a power failure happens after the transaction commit.
4967 */
4968 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4969 list_del_init(&ordered->log_list);
4970 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4971
4972 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4973 spin_lock_irq(&inode->ordered_tree.lock);
4974 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4975 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4976 atomic_inc(&trans->transaction->pending_ordered);
4977 }
4978 spin_unlock_irq(&inode->ordered_tree.lock);
4979 }
4980 btrfs_put_ordered_extent(ordered);
4981 }
4982
4983 return 0;
4984 }
4985
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4986 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4987 struct btrfs_path *path, u64 *size_ret)
4988 {
4989 struct btrfs_key key;
4990 int ret;
4991
4992 key.objectid = btrfs_ino(inode);
4993 key.type = BTRFS_INODE_ITEM_KEY;
4994 key.offset = 0;
4995
4996 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4997 if (ret < 0) {
4998 return ret;
4999 } else if (ret > 0) {
5000 *size_ret = 0;
5001 } else {
5002 struct btrfs_inode_item *item;
5003
5004 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5005 struct btrfs_inode_item);
5006 *size_ret = btrfs_inode_size(path->nodes[0], item);
5007 /*
5008 * If the in-memory inode's i_size is smaller then the inode
5009 * size stored in the btree, return the inode's i_size, so
5010 * that we get a correct inode size after replaying the log
5011 * when before a power failure we had a shrinking truncate
5012 * followed by addition of a new name (rename / new hard link).
5013 * Otherwise return the inode size from the btree, to avoid
5014 * data loss when replaying a log due to previously doing a
5015 * write that expands the inode's size and logging a new name
5016 * immediately after.
5017 */
5018 if (*size_ret > inode->vfs_inode.i_size)
5019 *size_ret = inode->vfs_inode.i_size;
5020 }
5021
5022 btrfs_release_path(path);
5023 return 0;
5024 }
5025
5026 /*
5027 * At the moment we always log all xattrs. This is to figure out at log replay
5028 * time which xattrs must have their deletion replayed. If a xattr is missing
5029 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5030 * because if a xattr is deleted, the inode is fsynced and a power failure
5031 * happens, causing the log to be replayed the next time the fs is mounted,
5032 * we want the xattr to not exist anymore (same behaviour as other filesystems
5033 * with a journal, ext3/4, xfs, f2fs, etc).
5034 */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)5035 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5036 struct btrfs_inode *inode,
5037 struct btrfs_path *path,
5038 struct btrfs_path *dst_path)
5039 {
5040 struct btrfs_root *root = inode->root;
5041 int ret;
5042 struct btrfs_key key;
5043 const u64 ino = btrfs_ino(inode);
5044 int ins_nr = 0;
5045 int start_slot = 0;
5046 bool found_xattrs = false;
5047
5048 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5049 return 0;
5050
5051 key.objectid = ino;
5052 key.type = BTRFS_XATTR_ITEM_KEY;
5053 key.offset = 0;
5054
5055 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5056 if (ret < 0)
5057 return ret;
5058
5059 while (true) {
5060 int slot = path->slots[0];
5061 struct extent_buffer *leaf = path->nodes[0];
5062 int nritems = btrfs_header_nritems(leaf);
5063
5064 if (slot >= nritems) {
5065 if (ins_nr > 0) {
5066 ret = copy_items(trans, inode, dst_path, path,
5067 start_slot, ins_nr, 1, 0);
5068 if (ret < 0)
5069 return ret;
5070 ins_nr = 0;
5071 }
5072 ret = btrfs_next_leaf(root, path);
5073 if (ret < 0)
5074 return ret;
5075 else if (ret > 0)
5076 break;
5077 continue;
5078 }
5079
5080 btrfs_item_key_to_cpu(leaf, &key, slot);
5081 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5082 break;
5083
5084 if (ins_nr == 0)
5085 start_slot = slot;
5086 ins_nr++;
5087 path->slots[0]++;
5088 found_xattrs = true;
5089 cond_resched();
5090 }
5091 if (ins_nr > 0) {
5092 ret = copy_items(trans, inode, dst_path, path,
5093 start_slot, ins_nr, 1, 0);
5094 if (ret < 0)
5095 return ret;
5096 }
5097
5098 if (!found_xattrs)
5099 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5100
5101 return 0;
5102 }
5103
5104 /*
5105 * When using the NO_HOLES feature if we punched a hole that causes the
5106 * deletion of entire leafs or all the extent items of the first leaf (the one
5107 * that contains the inode item and references) we may end up not processing
5108 * any extents, because there are no leafs with a generation matching the
5109 * current transaction that have extent items for our inode. So we need to find
5110 * if any holes exist and then log them. We also need to log holes after any
5111 * truncate operation that changes the inode's size.
5112 */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5113 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5114 struct btrfs_inode *inode,
5115 struct btrfs_path *path)
5116 {
5117 struct btrfs_root *root = inode->root;
5118 struct btrfs_fs_info *fs_info = root->fs_info;
5119 struct btrfs_key key;
5120 const u64 ino = btrfs_ino(inode);
5121 const u64 i_size = i_size_read(&inode->vfs_inode);
5122 u64 prev_extent_end = 0;
5123 int ret;
5124
5125 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5126 return 0;
5127
5128 key.objectid = ino;
5129 key.type = BTRFS_EXTENT_DATA_KEY;
5130 key.offset = 0;
5131
5132 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5133 if (ret < 0)
5134 return ret;
5135
5136 while (true) {
5137 struct extent_buffer *leaf = path->nodes[0];
5138
5139 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5140 ret = btrfs_next_leaf(root, path);
5141 if (ret < 0)
5142 return ret;
5143 if (ret > 0) {
5144 ret = 0;
5145 break;
5146 }
5147 leaf = path->nodes[0];
5148 }
5149
5150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5151 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5152 break;
5153
5154 /* We have a hole, log it. */
5155 if (prev_extent_end < key.offset) {
5156 const u64 hole_len = key.offset - prev_extent_end;
5157
5158 /*
5159 * Release the path to avoid deadlocks with other code
5160 * paths that search the root while holding locks on
5161 * leafs from the log root.
5162 */
5163 btrfs_release_path(path);
5164 ret = btrfs_insert_hole_extent(trans, root->log_root,
5165 ino, prev_extent_end,
5166 hole_len);
5167 if (ret < 0)
5168 return ret;
5169
5170 /*
5171 * Search for the same key again in the root. Since it's
5172 * an extent item and we are holding the inode lock, the
5173 * key must still exist. If it doesn't just emit warning
5174 * and return an error to fall back to a transaction
5175 * commit.
5176 */
5177 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5178 if (ret < 0)
5179 return ret;
5180 if (WARN_ON(ret > 0))
5181 return -ENOENT;
5182 leaf = path->nodes[0];
5183 }
5184
5185 prev_extent_end = btrfs_file_extent_end(path);
5186 path->slots[0]++;
5187 cond_resched();
5188 }
5189
5190 if (prev_extent_end < i_size) {
5191 u64 hole_len;
5192
5193 btrfs_release_path(path);
5194 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5195 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5196 prev_extent_end, hole_len);
5197 if (ret < 0)
5198 return ret;
5199 }
5200
5201 return 0;
5202 }
5203
5204 /*
5205 * When we are logging a new inode X, check if it doesn't have a reference that
5206 * matches the reference from some other inode Y created in a past transaction
5207 * and that was renamed in the current transaction. If we don't do this, then at
5208 * log replay time we can lose inode Y (and all its files if it's a directory):
5209 *
5210 * mkdir /mnt/x
5211 * echo "hello world" > /mnt/x/foobar
5212 * sync
5213 * mv /mnt/x /mnt/y
5214 * mkdir /mnt/x # or touch /mnt/x
5215 * xfs_io -c fsync /mnt/x
5216 * <power fail>
5217 * mount fs, trigger log replay
5218 *
5219 * After the log replay procedure, we would lose the first directory and all its
5220 * files (file foobar).
5221 * For the case where inode Y is not a directory we simply end up losing it:
5222 *
5223 * echo "123" > /mnt/foo
5224 * sync
5225 * mv /mnt/foo /mnt/bar
5226 * echo "abc" > /mnt/foo
5227 * xfs_io -c fsync /mnt/foo
5228 * <power fail>
5229 *
5230 * We also need this for cases where a snapshot entry is replaced by some other
5231 * entry (file or directory) otherwise we end up with an unreplayable log due to
5232 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5233 * if it were a regular entry:
5234 *
5235 * mkdir /mnt/x
5236 * btrfs subvolume snapshot /mnt /mnt/x/snap
5237 * btrfs subvolume delete /mnt/x/snap
5238 * rmdir /mnt/x
5239 * mkdir /mnt/x
5240 * fsync /mnt/x or fsync some new file inside it
5241 * <power fail>
5242 *
5243 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5244 * the same transaction.
5245 */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5246 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5247 const int slot,
5248 const struct btrfs_key *key,
5249 struct btrfs_inode *inode,
5250 u64 *other_ino, u64 *other_parent)
5251 {
5252 int ret;
5253 struct btrfs_path *search_path;
5254 char *name = NULL;
5255 u32 name_len = 0;
5256 u32 item_size = btrfs_item_size(eb, slot);
5257 u32 cur_offset = 0;
5258 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5259
5260 search_path = btrfs_alloc_path();
5261 if (!search_path)
5262 return -ENOMEM;
5263 search_path->search_commit_root = 1;
5264 search_path->skip_locking = 1;
5265
5266 while (cur_offset < item_size) {
5267 u64 parent;
5268 u32 this_name_len;
5269 u32 this_len;
5270 unsigned long name_ptr;
5271 struct btrfs_dir_item *di;
5272
5273 if (key->type == BTRFS_INODE_REF_KEY) {
5274 struct btrfs_inode_ref *iref;
5275
5276 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5277 parent = key->offset;
5278 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5279 name_ptr = (unsigned long)(iref + 1);
5280 this_len = sizeof(*iref) + this_name_len;
5281 } else {
5282 struct btrfs_inode_extref *extref;
5283
5284 extref = (struct btrfs_inode_extref *)(ptr +
5285 cur_offset);
5286 parent = btrfs_inode_extref_parent(eb, extref);
5287 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5288 name_ptr = (unsigned long)&extref->name;
5289 this_len = sizeof(*extref) + this_name_len;
5290 }
5291
5292 if (this_name_len > name_len) {
5293 char *new_name;
5294
5295 new_name = krealloc(name, this_name_len, GFP_NOFS);
5296 if (!new_name) {
5297 ret = -ENOMEM;
5298 goto out;
5299 }
5300 name_len = this_name_len;
5301 name = new_name;
5302 }
5303
5304 read_extent_buffer(eb, name, name_ptr, this_name_len);
5305 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5306 parent, name, this_name_len, 0);
5307 if (di && !IS_ERR(di)) {
5308 struct btrfs_key di_key;
5309
5310 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5311 di, &di_key);
5312 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5313 if (di_key.objectid != key->objectid) {
5314 ret = 1;
5315 *other_ino = di_key.objectid;
5316 *other_parent = parent;
5317 } else {
5318 ret = 0;
5319 }
5320 } else {
5321 ret = -EAGAIN;
5322 }
5323 goto out;
5324 } else if (IS_ERR(di)) {
5325 ret = PTR_ERR(di);
5326 goto out;
5327 }
5328 btrfs_release_path(search_path);
5329
5330 cur_offset += this_len;
5331 }
5332 ret = 0;
5333 out:
5334 btrfs_free_path(search_path);
5335 kfree(name);
5336 return ret;
5337 }
5338
5339 /*
5340 * Check if we need to log an inode. This is used in contexts where while
5341 * logging an inode we need to log another inode (either that it exists or in
5342 * full mode). This is used instead of btrfs_inode_in_log() because the later
5343 * requires the inode to be in the log and have the log transaction committed,
5344 * while here we do not care if the log transaction was already committed - our
5345 * caller will commit the log later - and we want to avoid logging an inode
5346 * multiple times when multiple tasks have joined the same log transaction.
5347 */
need_log_inode(const struct btrfs_trans_handle * trans,const struct btrfs_inode * inode)5348 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5349 const struct btrfs_inode *inode)
5350 {
5351 /*
5352 * If a directory was not modified, no dentries added or removed, we can
5353 * and should avoid logging it.
5354 */
5355 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5356 return false;
5357
5358 /*
5359 * If this inode does not have new/updated/deleted xattrs since the last
5360 * time it was logged and is flagged as logged in the current transaction,
5361 * we can skip logging it. As for new/deleted names, those are updated in
5362 * the log by link/unlink/rename operations.
5363 * In case the inode was logged and then evicted and reloaded, its
5364 * logged_trans will be 0, in which case we have to fully log it since
5365 * logged_trans is a transient field, not persisted.
5366 */
5367 if (inode->logged_trans == trans->transid &&
5368 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5369 return false;
5370
5371 return true;
5372 }
5373
5374 struct btrfs_dir_list {
5375 u64 ino;
5376 struct list_head list;
5377 };
5378
5379 /*
5380 * Log the inodes of the new dentries of a directory.
5381 * See process_dir_items_leaf() for details about why it is needed.
5382 * This is a recursive operation - if an existing dentry corresponds to a
5383 * directory, that directory's new entries are logged too (same behaviour as
5384 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5385 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5386 * complains about the following circular lock dependency / possible deadlock:
5387 *
5388 * CPU0 CPU1
5389 * ---- ----
5390 * lock(&type->i_mutex_dir_key#3/2);
5391 * lock(sb_internal#2);
5392 * lock(&type->i_mutex_dir_key#3/2);
5393 * lock(&sb->s_type->i_mutex_key#14);
5394 *
5395 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5396 * sb_start_intwrite() in btrfs_start_transaction().
5397 * Not acquiring the VFS lock of the inodes is still safe because:
5398 *
5399 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5400 * that while logging the inode new references (names) are added or removed
5401 * from the inode, leaving the logged inode item with a link count that does
5402 * not match the number of logged inode reference items. This is fine because
5403 * at log replay time we compute the real number of links and correct the
5404 * link count in the inode item (see replay_one_buffer() and
5405 * link_to_fixup_dir());
5406 *
5407 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5408 * while logging the inode's items new index items (key type
5409 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5410 * has a size that doesn't match the sum of the lengths of all the logged
5411 * names - this is ok, not a problem, because at log replay time we set the
5412 * directory's i_size to the correct value (see replay_one_name() and
5413 * do_overwrite_item()).
5414 */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5415 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5416 struct btrfs_inode *start_inode,
5417 struct btrfs_log_ctx *ctx)
5418 {
5419 struct btrfs_root *root = start_inode->root;
5420 struct btrfs_fs_info *fs_info = root->fs_info;
5421 struct btrfs_path *path;
5422 LIST_HEAD(dir_list);
5423 struct btrfs_dir_list *dir_elem;
5424 u64 ino = btrfs_ino(start_inode);
5425 int ret = 0;
5426
5427 /*
5428 * If we are logging a new name, as part of a link or rename operation,
5429 * don't bother logging new dentries, as we just want to log the names
5430 * of an inode and that any new parents exist.
5431 */
5432 if (ctx->logging_new_name)
5433 return 0;
5434
5435 path = btrfs_alloc_path();
5436 if (!path)
5437 return -ENOMEM;
5438
5439 while (true) {
5440 struct extent_buffer *leaf;
5441 struct btrfs_key min_key;
5442 bool continue_curr_inode = true;
5443 int nritems;
5444 int i;
5445
5446 min_key.objectid = ino;
5447 min_key.type = BTRFS_DIR_INDEX_KEY;
5448 min_key.offset = 0;
5449 again:
5450 btrfs_release_path(path);
5451 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5452 if (ret < 0) {
5453 break;
5454 } else if (ret > 0) {
5455 ret = 0;
5456 goto next;
5457 }
5458
5459 leaf = path->nodes[0];
5460 nritems = btrfs_header_nritems(leaf);
5461 for (i = path->slots[0]; i < nritems; i++) {
5462 struct btrfs_dir_item *di;
5463 struct btrfs_key di_key;
5464 struct inode *di_inode;
5465 int log_mode = LOG_INODE_EXISTS;
5466 int type;
5467
5468 btrfs_item_key_to_cpu(leaf, &min_key, i);
5469 if (min_key.objectid != ino ||
5470 min_key.type != BTRFS_DIR_INDEX_KEY) {
5471 continue_curr_inode = false;
5472 break;
5473 }
5474
5475 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5476 type = btrfs_dir_type(leaf, di);
5477 if (btrfs_dir_transid(leaf, di) < trans->transid)
5478 continue;
5479 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5480 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5481 continue;
5482
5483 btrfs_release_path(path);
5484 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5485 if (IS_ERR(di_inode)) {
5486 ret = PTR_ERR(di_inode);
5487 goto out;
5488 }
5489
5490 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5491 btrfs_add_delayed_iput(di_inode);
5492 break;
5493 }
5494
5495 ctx->log_new_dentries = false;
5496 if (type == BTRFS_FT_DIR)
5497 log_mode = LOG_INODE_ALL;
5498 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5499 log_mode, ctx);
5500 btrfs_add_delayed_iput(di_inode);
5501 if (ret)
5502 goto out;
5503 if (ctx->log_new_dentries) {
5504 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5505 if (!dir_elem) {
5506 ret = -ENOMEM;
5507 goto out;
5508 }
5509 dir_elem->ino = di_key.objectid;
5510 list_add_tail(&dir_elem->list, &dir_list);
5511 }
5512 break;
5513 }
5514
5515 if (continue_curr_inode && min_key.offset < (u64)-1) {
5516 min_key.offset++;
5517 goto again;
5518 }
5519
5520 next:
5521 if (list_empty(&dir_list))
5522 break;
5523
5524 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5525 ino = dir_elem->ino;
5526 list_del(&dir_elem->list);
5527 kfree(dir_elem);
5528 }
5529 out:
5530 btrfs_free_path(path);
5531 if (ret) {
5532 struct btrfs_dir_list *next;
5533
5534 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5535 kfree(dir_elem);
5536 }
5537
5538 return ret;
5539 }
5540
5541 struct btrfs_ino_list {
5542 u64 ino;
5543 u64 parent;
5544 struct list_head list;
5545 };
5546
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5547 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5548 {
5549 struct btrfs_ino_list *curr;
5550 struct btrfs_ino_list *next;
5551
5552 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5553 list_del(&curr->list);
5554 kfree(curr);
5555 }
5556 }
5557
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5558 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5559 struct btrfs_path *path)
5560 {
5561 struct btrfs_key key;
5562 int ret;
5563
5564 key.objectid = ino;
5565 key.type = BTRFS_INODE_ITEM_KEY;
5566 key.offset = 0;
5567
5568 path->search_commit_root = 1;
5569 path->skip_locking = 1;
5570
5571 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5572 if (WARN_ON_ONCE(ret > 0)) {
5573 /*
5574 * We have previously found the inode through the commit root
5575 * so this should not happen. If it does, just error out and
5576 * fallback to a transaction commit.
5577 */
5578 ret = -ENOENT;
5579 } else if (ret == 0) {
5580 struct btrfs_inode_item *item;
5581
5582 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5583 struct btrfs_inode_item);
5584 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5585 ret = 1;
5586 }
5587
5588 btrfs_release_path(path);
5589 path->search_commit_root = 0;
5590 path->skip_locking = 0;
5591
5592 return ret;
5593 }
5594
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5595 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5596 struct btrfs_root *root,
5597 struct btrfs_path *path,
5598 u64 ino, u64 parent,
5599 struct btrfs_log_ctx *ctx)
5600 {
5601 struct btrfs_ino_list *ino_elem;
5602 struct inode *inode;
5603
5604 /*
5605 * It's rare to have a lot of conflicting inodes, in practice it is not
5606 * common to have more than 1 or 2. We don't want to collect too many,
5607 * as we could end up logging too many inodes (even if only in
5608 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5609 * commits.
5610 */
5611 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5612 return BTRFS_LOG_FORCE_COMMIT;
5613
5614 inode = btrfs_iget(root->fs_info->sb, ino, root);
5615 /*
5616 * If the other inode that had a conflicting dir entry was deleted in
5617 * the current transaction then we either:
5618 *
5619 * 1) Log the parent directory (later after adding it to the list) if
5620 * the inode is a directory. This is because it may be a deleted
5621 * subvolume/snapshot or it may be a regular directory that had
5622 * deleted subvolumes/snapshots (or subdirectories that had them),
5623 * and at the moment we can't deal with dropping subvolumes/snapshots
5624 * during log replay. So we just log the parent, which will result in
5625 * a fallback to a transaction commit if we are dealing with those
5626 * cases (last_unlink_trans will match the current transaction);
5627 *
5628 * 2) Do nothing if it's not a directory. During log replay we simply
5629 * unlink the conflicting dentry from the parent directory and then
5630 * add the dentry for our inode. Like this we can avoid logging the
5631 * parent directory (and maybe fallback to a transaction commit in
5632 * case it has a last_unlink_trans == trans->transid, due to moving
5633 * some inode from it to some other directory).
5634 */
5635 if (IS_ERR(inode)) {
5636 int ret = PTR_ERR(inode);
5637
5638 if (ret != -ENOENT)
5639 return ret;
5640
5641 ret = conflicting_inode_is_dir(root, ino, path);
5642 /* Not a directory or we got an error. */
5643 if (ret <= 0)
5644 return ret;
5645
5646 /* Conflicting inode is a directory, so we'll log its parent. */
5647 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5648 if (!ino_elem)
5649 return -ENOMEM;
5650 ino_elem->ino = ino;
5651 ino_elem->parent = parent;
5652 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5653 ctx->num_conflict_inodes++;
5654
5655 return 0;
5656 }
5657
5658 /*
5659 * If the inode was already logged skip it - otherwise we can hit an
5660 * infinite loop. Example:
5661 *
5662 * From the commit root (previous transaction) we have the following
5663 * inodes:
5664 *
5665 * inode 257 a directory
5666 * inode 258 with references "zz" and "zz_link" on inode 257
5667 * inode 259 with reference "a" on inode 257
5668 *
5669 * And in the current (uncommitted) transaction we have:
5670 *
5671 * inode 257 a directory, unchanged
5672 * inode 258 with references "a" and "a2" on inode 257
5673 * inode 259 with reference "zz_link" on inode 257
5674 * inode 261 with reference "zz" on inode 257
5675 *
5676 * When logging inode 261 the following infinite loop could
5677 * happen if we don't skip already logged inodes:
5678 *
5679 * - we detect inode 258 as a conflicting inode, with inode 261
5680 * on reference "zz", and log it;
5681 *
5682 * - we detect inode 259 as a conflicting inode, with inode 258
5683 * on reference "a", and log it;
5684 *
5685 * - we detect inode 258 as a conflicting inode, with inode 259
5686 * on reference "zz_link", and log it - again! After this we
5687 * repeat the above steps forever.
5688 *
5689 * Here we can use need_log_inode() because we only need to log the
5690 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5691 * so that the log ends up with the new name and without the old name.
5692 */
5693 if (!need_log_inode(trans, BTRFS_I(inode))) {
5694 btrfs_add_delayed_iput(inode);
5695 return 0;
5696 }
5697
5698 btrfs_add_delayed_iput(inode);
5699
5700 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5701 if (!ino_elem)
5702 return -ENOMEM;
5703 ino_elem->ino = ino;
5704 ino_elem->parent = parent;
5705 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5706 ctx->num_conflict_inodes++;
5707
5708 return 0;
5709 }
5710
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5711 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5712 struct btrfs_root *root,
5713 struct btrfs_log_ctx *ctx)
5714 {
5715 struct btrfs_fs_info *fs_info = root->fs_info;
5716 int ret = 0;
5717
5718 /*
5719 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5720 * otherwise we could have unbounded recursion of btrfs_log_inode()
5721 * calls. This check guarantees we can have only 1 level of recursion.
5722 */
5723 if (ctx->logging_conflict_inodes)
5724 return 0;
5725
5726 ctx->logging_conflict_inodes = true;
5727
5728 /*
5729 * New conflicting inodes may be found and added to the list while we
5730 * are logging a conflicting inode, so keep iterating while the list is
5731 * not empty.
5732 */
5733 while (!list_empty(&ctx->conflict_inodes)) {
5734 struct btrfs_ino_list *curr;
5735 struct inode *inode;
5736 u64 ino;
5737 u64 parent;
5738
5739 curr = list_first_entry(&ctx->conflict_inodes,
5740 struct btrfs_ino_list, list);
5741 ino = curr->ino;
5742 parent = curr->parent;
5743 list_del(&curr->list);
5744 kfree(curr);
5745
5746 inode = btrfs_iget(fs_info->sb, ino, root);
5747 /*
5748 * If the other inode that had a conflicting dir entry was
5749 * deleted in the current transaction, we need to log its parent
5750 * directory. See the comment at add_conflicting_inode().
5751 */
5752 if (IS_ERR(inode)) {
5753 ret = PTR_ERR(inode);
5754 if (ret != -ENOENT)
5755 break;
5756
5757 inode = btrfs_iget(fs_info->sb, parent, root);
5758 if (IS_ERR(inode)) {
5759 ret = PTR_ERR(inode);
5760 break;
5761 }
5762
5763 /*
5764 * Always log the directory, we cannot make this
5765 * conditional on need_log_inode() because the directory
5766 * might have been logged in LOG_INODE_EXISTS mode or
5767 * the dir index of the conflicting inode is not in a
5768 * dir index key range logged for the directory. So we
5769 * must make sure the deletion is recorded.
5770 */
5771 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5772 LOG_INODE_ALL, ctx);
5773 btrfs_add_delayed_iput(inode);
5774 if (ret)
5775 break;
5776 continue;
5777 }
5778
5779 /*
5780 * Here we can use need_log_inode() because we only need to log
5781 * the inode in LOG_INODE_EXISTS mode and rename operations
5782 * update the log, so that the log ends up with the new name and
5783 * without the old name.
5784 *
5785 * We did this check at add_conflicting_inode(), but here we do
5786 * it again because if some other task logged the inode after
5787 * that, we can avoid doing it again.
5788 */
5789 if (!need_log_inode(trans, BTRFS_I(inode))) {
5790 btrfs_add_delayed_iput(inode);
5791 continue;
5792 }
5793
5794 /*
5795 * We are safe logging the other inode without acquiring its
5796 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5797 * are safe against concurrent renames of the other inode as
5798 * well because during a rename we pin the log and update the
5799 * log with the new name before we unpin it.
5800 */
5801 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5802 btrfs_add_delayed_iput(inode);
5803 if (ret)
5804 break;
5805 }
5806
5807 ctx->logging_conflict_inodes = false;
5808 if (ret)
5809 free_conflicting_inodes(ctx);
5810
5811 return ret;
5812 }
5813
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5814 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5815 struct btrfs_inode *inode,
5816 struct btrfs_key *min_key,
5817 const struct btrfs_key *max_key,
5818 struct btrfs_path *path,
5819 struct btrfs_path *dst_path,
5820 const u64 logged_isize,
5821 const int inode_only,
5822 struct btrfs_log_ctx *ctx,
5823 bool *need_log_inode_item)
5824 {
5825 const u64 i_size = i_size_read(&inode->vfs_inode);
5826 struct btrfs_root *root = inode->root;
5827 int ins_start_slot = 0;
5828 int ins_nr = 0;
5829 int ret;
5830
5831 while (1) {
5832 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5833 if (ret < 0)
5834 return ret;
5835 if (ret > 0) {
5836 ret = 0;
5837 break;
5838 }
5839 again:
5840 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5841 if (min_key->objectid != max_key->objectid)
5842 break;
5843 if (min_key->type > max_key->type)
5844 break;
5845
5846 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5847 *need_log_inode_item = false;
5848 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5849 min_key->offset >= i_size) {
5850 /*
5851 * Extents at and beyond eof are logged with
5852 * btrfs_log_prealloc_extents().
5853 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5854 * and no keys greater than that, so bail out.
5855 */
5856 break;
5857 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5858 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5859 (inode->generation == trans->transid ||
5860 ctx->logging_conflict_inodes)) {
5861 u64 other_ino = 0;
5862 u64 other_parent = 0;
5863
5864 ret = btrfs_check_ref_name_override(path->nodes[0],
5865 path->slots[0], min_key, inode,
5866 &other_ino, &other_parent);
5867 if (ret < 0) {
5868 return ret;
5869 } else if (ret > 0 &&
5870 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5871 if (ins_nr > 0) {
5872 ins_nr++;
5873 } else {
5874 ins_nr = 1;
5875 ins_start_slot = path->slots[0];
5876 }
5877 ret = copy_items(trans, inode, dst_path, path,
5878 ins_start_slot, ins_nr,
5879 inode_only, logged_isize);
5880 if (ret < 0)
5881 return ret;
5882 ins_nr = 0;
5883
5884 btrfs_release_path(path);
5885 ret = add_conflicting_inode(trans, root, path,
5886 other_ino,
5887 other_parent, ctx);
5888 if (ret)
5889 return ret;
5890 goto next_key;
5891 }
5892 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5893 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5894 if (ins_nr == 0)
5895 goto next_slot;
5896 ret = copy_items(trans, inode, dst_path, path,
5897 ins_start_slot,
5898 ins_nr, inode_only, logged_isize);
5899 if (ret < 0)
5900 return ret;
5901 ins_nr = 0;
5902 goto next_slot;
5903 }
5904
5905 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5906 ins_nr++;
5907 goto next_slot;
5908 } else if (!ins_nr) {
5909 ins_start_slot = path->slots[0];
5910 ins_nr = 1;
5911 goto next_slot;
5912 }
5913
5914 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5915 ins_nr, inode_only, logged_isize);
5916 if (ret < 0)
5917 return ret;
5918 ins_nr = 1;
5919 ins_start_slot = path->slots[0];
5920 next_slot:
5921 path->slots[0]++;
5922 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5923 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5924 path->slots[0]);
5925 goto again;
5926 }
5927 if (ins_nr) {
5928 ret = copy_items(trans, inode, dst_path, path,
5929 ins_start_slot, ins_nr, inode_only,
5930 logged_isize);
5931 if (ret < 0)
5932 return ret;
5933 ins_nr = 0;
5934 }
5935 btrfs_release_path(path);
5936 next_key:
5937 if (min_key->offset < (u64)-1) {
5938 min_key->offset++;
5939 } else if (min_key->type < max_key->type) {
5940 min_key->type++;
5941 min_key->offset = 0;
5942 } else {
5943 break;
5944 }
5945
5946 /*
5947 * We may process many leaves full of items for our inode, so
5948 * avoid monopolizing a cpu for too long by rescheduling while
5949 * not holding locks on any tree.
5950 */
5951 cond_resched();
5952 }
5953 if (ins_nr) {
5954 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5955 ins_nr, inode_only, logged_isize);
5956 if (ret)
5957 return ret;
5958 }
5959
5960 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5961 /*
5962 * Release the path because otherwise we might attempt to double
5963 * lock the same leaf with btrfs_log_prealloc_extents() below.
5964 */
5965 btrfs_release_path(path);
5966 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5967 }
5968
5969 return ret;
5970 }
5971
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)5972 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5973 struct btrfs_root *log,
5974 struct btrfs_path *path,
5975 const struct btrfs_item_batch *batch,
5976 const struct btrfs_delayed_item *first_item)
5977 {
5978 const struct btrfs_delayed_item *curr = first_item;
5979 int ret;
5980
5981 ret = btrfs_insert_empty_items(trans, log, path, batch);
5982 if (ret)
5983 return ret;
5984
5985 for (int i = 0; i < batch->nr; i++) {
5986 char *data_ptr;
5987
5988 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5989 write_extent_buffer(path->nodes[0], &curr->data,
5990 (unsigned long)data_ptr, curr->data_len);
5991 curr = list_next_entry(curr, log_list);
5992 path->slots[0]++;
5993 }
5994
5995 btrfs_release_path(path);
5996
5997 return 0;
5998 }
5999
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6000 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6001 struct btrfs_inode *inode,
6002 struct btrfs_path *path,
6003 const struct list_head *delayed_ins_list,
6004 struct btrfs_log_ctx *ctx)
6005 {
6006 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6007 const int max_batch_size = 195;
6008 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6009 const u64 ino = btrfs_ino(inode);
6010 struct btrfs_root *log = inode->root->log_root;
6011 struct btrfs_item_batch batch = {
6012 .nr = 0,
6013 .total_data_size = 0,
6014 };
6015 const struct btrfs_delayed_item *first = NULL;
6016 const struct btrfs_delayed_item *curr;
6017 char *ins_data;
6018 struct btrfs_key *ins_keys;
6019 u32 *ins_sizes;
6020 u64 curr_batch_size = 0;
6021 int batch_idx = 0;
6022 int ret;
6023
6024 /* We are adding dir index items to the log tree. */
6025 lockdep_assert_held(&inode->log_mutex);
6026
6027 /*
6028 * We collect delayed items before copying index keys from the subvolume
6029 * to the log tree. However just after we collected them, they may have
6030 * been flushed (all of them or just some of them), and therefore we
6031 * could have copied them from the subvolume tree to the log tree.
6032 * So find the first delayed item that was not yet logged (they are
6033 * sorted by index number).
6034 */
6035 list_for_each_entry(curr, delayed_ins_list, log_list) {
6036 if (curr->index > inode->last_dir_index_offset) {
6037 first = curr;
6038 break;
6039 }
6040 }
6041
6042 /* Empty list or all delayed items were already logged. */
6043 if (!first)
6044 return 0;
6045
6046 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6047 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6048 if (!ins_data)
6049 return -ENOMEM;
6050 ins_sizes = (u32 *)ins_data;
6051 batch.data_sizes = ins_sizes;
6052 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6053 batch.keys = ins_keys;
6054
6055 curr = first;
6056 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6057 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6058
6059 if (curr_batch_size + curr_size > leaf_data_size ||
6060 batch.nr == max_batch_size) {
6061 ret = insert_delayed_items_batch(trans, log, path,
6062 &batch, first);
6063 if (ret)
6064 goto out;
6065 batch_idx = 0;
6066 batch.nr = 0;
6067 batch.total_data_size = 0;
6068 curr_batch_size = 0;
6069 first = curr;
6070 }
6071
6072 ins_sizes[batch_idx] = curr->data_len;
6073 ins_keys[batch_idx].objectid = ino;
6074 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6075 ins_keys[batch_idx].offset = curr->index;
6076 curr_batch_size += curr_size;
6077 batch.total_data_size += curr->data_len;
6078 batch.nr++;
6079 batch_idx++;
6080 curr = list_next_entry(curr, log_list);
6081 }
6082
6083 ASSERT(batch.nr >= 1);
6084 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6085
6086 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6087 log_list);
6088 inode->last_dir_index_offset = curr->index;
6089 out:
6090 kfree(ins_data);
6091
6092 return ret;
6093 }
6094
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6095 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6096 struct btrfs_inode *inode,
6097 struct btrfs_path *path,
6098 const struct list_head *delayed_del_list,
6099 struct btrfs_log_ctx *ctx)
6100 {
6101 const u64 ino = btrfs_ino(inode);
6102 const struct btrfs_delayed_item *curr;
6103
6104 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6105 log_list);
6106
6107 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6108 u64 first_dir_index = curr->index;
6109 u64 last_dir_index;
6110 const struct btrfs_delayed_item *next;
6111 int ret;
6112
6113 /*
6114 * Find a range of consecutive dir index items to delete. Like
6115 * this we log a single dir range item spanning several contiguous
6116 * dir items instead of logging one range item per dir index item.
6117 */
6118 next = list_next_entry(curr, log_list);
6119 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6120 if (next->index != curr->index + 1)
6121 break;
6122 curr = next;
6123 next = list_next_entry(next, log_list);
6124 }
6125
6126 last_dir_index = curr->index;
6127 ASSERT(last_dir_index >= first_dir_index);
6128
6129 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6130 ino, first_dir_index, last_dir_index);
6131 if (ret)
6132 return ret;
6133 curr = list_next_entry(curr, log_list);
6134 }
6135
6136 return 0;
6137 }
6138
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6139 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6140 struct btrfs_inode *inode,
6141 struct btrfs_path *path,
6142 struct btrfs_log_ctx *ctx,
6143 const struct list_head *delayed_del_list,
6144 const struct btrfs_delayed_item *first,
6145 const struct btrfs_delayed_item **last_ret)
6146 {
6147 const struct btrfs_delayed_item *next;
6148 struct extent_buffer *leaf = path->nodes[0];
6149 const int last_slot = btrfs_header_nritems(leaf) - 1;
6150 int slot = path->slots[0] + 1;
6151 const u64 ino = btrfs_ino(inode);
6152
6153 next = list_next_entry(first, log_list);
6154
6155 while (slot < last_slot &&
6156 !list_entry_is_head(next, delayed_del_list, log_list)) {
6157 struct btrfs_key key;
6158
6159 btrfs_item_key_to_cpu(leaf, &key, slot);
6160 if (key.objectid != ino ||
6161 key.type != BTRFS_DIR_INDEX_KEY ||
6162 key.offset != next->index)
6163 break;
6164
6165 slot++;
6166 *last_ret = next;
6167 next = list_next_entry(next, log_list);
6168 }
6169
6170 return btrfs_del_items(trans, inode->root->log_root, path,
6171 path->slots[0], slot - path->slots[0]);
6172 }
6173
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6174 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6175 struct btrfs_inode *inode,
6176 struct btrfs_path *path,
6177 const struct list_head *delayed_del_list,
6178 struct btrfs_log_ctx *ctx)
6179 {
6180 struct btrfs_root *log = inode->root->log_root;
6181 const struct btrfs_delayed_item *curr;
6182 u64 last_range_start;
6183 u64 last_range_end = 0;
6184 struct btrfs_key key;
6185
6186 key.objectid = btrfs_ino(inode);
6187 key.type = BTRFS_DIR_INDEX_KEY;
6188 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6189 log_list);
6190
6191 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6192 const struct btrfs_delayed_item *last = curr;
6193 u64 first_dir_index = curr->index;
6194 u64 last_dir_index;
6195 bool deleted_items = false;
6196 int ret;
6197
6198 key.offset = curr->index;
6199 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6200 if (ret < 0) {
6201 return ret;
6202 } else if (ret == 0) {
6203 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6204 delayed_del_list, curr,
6205 &last);
6206 if (ret)
6207 return ret;
6208 deleted_items = true;
6209 }
6210
6211 btrfs_release_path(path);
6212
6213 /*
6214 * If we deleted items from the leaf, it means we have a range
6215 * item logging their range, so no need to add one or update an
6216 * existing one. Otherwise we have to log a dir range item.
6217 */
6218 if (deleted_items)
6219 goto next_batch;
6220
6221 last_dir_index = last->index;
6222 ASSERT(last_dir_index >= first_dir_index);
6223 /*
6224 * If this range starts right after where the previous one ends,
6225 * then we want to reuse the previous range item and change its
6226 * end offset to the end of this range. This is just to minimize
6227 * leaf space usage, by avoiding adding a new range item.
6228 */
6229 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6230 first_dir_index = last_range_start;
6231
6232 ret = insert_dir_log_key(trans, log, path, key.objectid,
6233 first_dir_index, last_dir_index);
6234 if (ret)
6235 return ret;
6236
6237 last_range_start = first_dir_index;
6238 last_range_end = last_dir_index;
6239 next_batch:
6240 curr = list_next_entry(last, log_list);
6241 }
6242
6243 return 0;
6244 }
6245
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6246 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6247 struct btrfs_inode *inode,
6248 struct btrfs_path *path,
6249 const struct list_head *delayed_del_list,
6250 struct btrfs_log_ctx *ctx)
6251 {
6252 /*
6253 * We are deleting dir index items from the log tree or adding range
6254 * items to it.
6255 */
6256 lockdep_assert_held(&inode->log_mutex);
6257
6258 if (list_empty(delayed_del_list))
6259 return 0;
6260
6261 if (ctx->logged_before)
6262 return log_delayed_deletions_incremental(trans, inode, path,
6263 delayed_del_list, ctx);
6264
6265 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6266 ctx);
6267 }
6268
6269 /*
6270 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6271 * items instead of the subvolume tree.
6272 */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6273 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6274 struct btrfs_inode *inode,
6275 const struct list_head *delayed_ins_list,
6276 struct btrfs_log_ctx *ctx)
6277 {
6278 const bool orig_log_new_dentries = ctx->log_new_dentries;
6279 struct btrfs_fs_info *fs_info = trans->fs_info;
6280 struct btrfs_delayed_item *item;
6281 int ret = 0;
6282
6283 /*
6284 * No need for the log mutex, plus to avoid potential deadlocks or
6285 * lockdep annotations due to nesting of delayed inode mutexes and log
6286 * mutexes.
6287 */
6288 lockdep_assert_not_held(&inode->log_mutex);
6289
6290 ASSERT(!ctx->logging_new_delayed_dentries);
6291 ctx->logging_new_delayed_dentries = true;
6292
6293 list_for_each_entry(item, delayed_ins_list, log_list) {
6294 struct btrfs_dir_item *dir_item;
6295 struct inode *di_inode;
6296 struct btrfs_key key;
6297 int log_mode = LOG_INODE_EXISTS;
6298
6299 dir_item = (struct btrfs_dir_item *)item->data;
6300 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6301
6302 if (key.type == BTRFS_ROOT_ITEM_KEY)
6303 continue;
6304
6305 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6306 if (IS_ERR(di_inode)) {
6307 ret = PTR_ERR(di_inode);
6308 break;
6309 }
6310
6311 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6312 btrfs_add_delayed_iput(di_inode);
6313 continue;
6314 }
6315
6316 if (btrfs_stack_dir_type(dir_item) == BTRFS_FT_DIR)
6317 log_mode = LOG_INODE_ALL;
6318
6319 ctx->log_new_dentries = false;
6320 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6321
6322 if (!ret && ctx->log_new_dentries)
6323 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6324
6325 btrfs_add_delayed_iput(di_inode);
6326
6327 if (ret)
6328 break;
6329 }
6330
6331 ctx->log_new_dentries = orig_log_new_dentries;
6332 ctx->logging_new_delayed_dentries = false;
6333
6334 return ret;
6335 }
6336
6337 /* log a single inode in the tree log.
6338 * At least one parent directory for this inode must exist in the tree
6339 * or be logged already.
6340 *
6341 * Any items from this inode changed by the current transaction are copied
6342 * to the log tree. An extra reference is taken on any extents in this
6343 * file, allowing us to avoid a whole pile of corner cases around logging
6344 * blocks that have been removed from the tree.
6345 *
6346 * See LOG_INODE_ALL and related defines for a description of what inode_only
6347 * does.
6348 *
6349 * This handles both files and directories.
6350 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6351 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6352 struct btrfs_inode *inode,
6353 int inode_only,
6354 struct btrfs_log_ctx *ctx)
6355 {
6356 struct btrfs_path *path;
6357 struct btrfs_path *dst_path;
6358 struct btrfs_key min_key;
6359 struct btrfs_key max_key;
6360 struct btrfs_root *log = inode->root->log_root;
6361 int ret;
6362 bool fast_search = false;
6363 u64 ino = btrfs_ino(inode);
6364 struct extent_map_tree *em_tree = &inode->extent_tree;
6365 u64 logged_isize = 0;
6366 bool need_log_inode_item = true;
6367 bool xattrs_logged = false;
6368 bool inode_item_dropped = true;
6369 bool full_dir_logging = false;
6370 LIST_HEAD(delayed_ins_list);
6371 LIST_HEAD(delayed_del_list);
6372
6373 path = btrfs_alloc_path();
6374 if (!path)
6375 return -ENOMEM;
6376 dst_path = btrfs_alloc_path();
6377 if (!dst_path) {
6378 btrfs_free_path(path);
6379 return -ENOMEM;
6380 }
6381
6382 min_key.objectid = ino;
6383 min_key.type = BTRFS_INODE_ITEM_KEY;
6384 min_key.offset = 0;
6385
6386 max_key.objectid = ino;
6387
6388
6389 /* today the code can only do partial logging of directories */
6390 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6391 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6392 &inode->runtime_flags) &&
6393 inode_only >= LOG_INODE_EXISTS))
6394 max_key.type = BTRFS_XATTR_ITEM_KEY;
6395 else
6396 max_key.type = (u8)-1;
6397 max_key.offset = (u64)-1;
6398
6399 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6400 full_dir_logging = true;
6401
6402 /*
6403 * If we are logging a directory while we are logging dentries of the
6404 * delayed items of some other inode, then we need to flush the delayed
6405 * items of this directory and not log the delayed items directly. This
6406 * is to prevent more than one level of recursion into btrfs_log_inode()
6407 * by having something like this:
6408 *
6409 * $ mkdir -p a/b/c/d/e/f/g/h/...
6410 * $ xfs_io -c "fsync" a
6411 *
6412 * Where all directories in the path did not exist before and are
6413 * created in the current transaction.
6414 * So in such a case we directly log the delayed items of the main
6415 * directory ("a") without flushing them first, while for each of its
6416 * subdirectories we flush their delayed items before logging them.
6417 * This prevents a potential unbounded recursion like this:
6418 *
6419 * btrfs_log_inode()
6420 * log_new_delayed_dentries()
6421 * btrfs_log_inode()
6422 * log_new_delayed_dentries()
6423 * btrfs_log_inode()
6424 * log_new_delayed_dentries()
6425 * (...)
6426 *
6427 * We have thresholds for the maximum number of delayed items to have in
6428 * memory, and once they are hit, the items are flushed asynchronously.
6429 * However the limit is quite high, so lets prevent deep levels of
6430 * recursion to happen by limiting the maximum depth to be 1.
6431 */
6432 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6433 ret = btrfs_commit_inode_delayed_items(trans, inode);
6434 if (ret)
6435 goto out;
6436 }
6437
6438 mutex_lock(&inode->log_mutex);
6439
6440 /*
6441 * For symlinks, we must always log their content, which is stored in an
6442 * inline extent, otherwise we could end up with an empty symlink after
6443 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6444 * one attempts to create an empty symlink).
6445 * We don't need to worry about flushing delalloc, because when we create
6446 * the inline extent when the symlink is created (we never have delalloc
6447 * for symlinks).
6448 */
6449 if (S_ISLNK(inode->vfs_inode.i_mode))
6450 inode_only = LOG_INODE_ALL;
6451
6452 /*
6453 * Before logging the inode item, cache the value returned by
6454 * inode_logged(), because after that we have the need to figure out if
6455 * the inode was previously logged in this transaction.
6456 */
6457 ret = inode_logged(trans, inode, path);
6458 if (ret < 0)
6459 goto out_unlock;
6460 ctx->logged_before = (ret == 1);
6461 ret = 0;
6462
6463 /*
6464 * This is for cases where logging a directory could result in losing a
6465 * a file after replaying the log. For example, if we move a file from a
6466 * directory A to a directory B, then fsync directory A, we have no way
6467 * to known the file was moved from A to B, so logging just A would
6468 * result in losing the file after a log replay.
6469 */
6470 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6471 btrfs_set_log_full_commit(trans);
6472 ret = BTRFS_LOG_FORCE_COMMIT;
6473 goto out_unlock;
6474 }
6475
6476 /*
6477 * a brute force approach to making sure we get the most uptodate
6478 * copies of everything.
6479 */
6480 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6481 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6482 if (ctx->logged_before)
6483 ret = drop_inode_items(trans, log, path, inode,
6484 BTRFS_XATTR_ITEM_KEY);
6485 } else {
6486 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6487 /*
6488 * Make sure the new inode item we write to the log has
6489 * the same isize as the current one (if it exists).
6490 * This is necessary to prevent data loss after log
6491 * replay, and also to prevent doing a wrong expanding
6492 * truncate - for e.g. create file, write 4K into offset
6493 * 0, fsync, write 4K into offset 4096, add hard link,
6494 * fsync some other file (to sync log), power fail - if
6495 * we use the inode's current i_size, after log replay
6496 * we get a 8Kb file, with the last 4Kb extent as a hole
6497 * (zeroes), as if an expanding truncate happened,
6498 * instead of getting a file of 4Kb only.
6499 */
6500 ret = logged_inode_size(log, inode, path, &logged_isize);
6501 if (ret)
6502 goto out_unlock;
6503 }
6504 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6505 &inode->runtime_flags)) {
6506 if (inode_only == LOG_INODE_EXISTS) {
6507 max_key.type = BTRFS_XATTR_ITEM_KEY;
6508 if (ctx->logged_before)
6509 ret = drop_inode_items(trans, log, path,
6510 inode, max_key.type);
6511 } else {
6512 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6513 &inode->runtime_flags);
6514 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6515 &inode->runtime_flags);
6516 if (ctx->logged_before)
6517 ret = truncate_inode_items(trans, log,
6518 inode, 0, 0);
6519 }
6520 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6521 &inode->runtime_flags) ||
6522 inode_only == LOG_INODE_EXISTS) {
6523 if (inode_only == LOG_INODE_ALL)
6524 fast_search = true;
6525 max_key.type = BTRFS_XATTR_ITEM_KEY;
6526 if (ctx->logged_before)
6527 ret = drop_inode_items(trans, log, path, inode,
6528 max_key.type);
6529 } else {
6530 if (inode_only == LOG_INODE_ALL)
6531 fast_search = true;
6532 inode_item_dropped = false;
6533 goto log_extents;
6534 }
6535
6536 }
6537 if (ret)
6538 goto out_unlock;
6539
6540 /*
6541 * If we are logging a directory in full mode, collect the delayed items
6542 * before iterating the subvolume tree, so that we don't miss any new
6543 * dir index items in case they get flushed while or right after we are
6544 * iterating the subvolume tree.
6545 */
6546 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6547 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6548 &delayed_del_list);
6549
6550 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6551 path, dst_path, logged_isize,
6552 inode_only, ctx,
6553 &need_log_inode_item);
6554 if (ret)
6555 goto out_unlock;
6556
6557 btrfs_release_path(path);
6558 btrfs_release_path(dst_path);
6559 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6560 if (ret)
6561 goto out_unlock;
6562 xattrs_logged = true;
6563 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6564 btrfs_release_path(path);
6565 btrfs_release_path(dst_path);
6566 ret = btrfs_log_holes(trans, inode, path);
6567 if (ret)
6568 goto out_unlock;
6569 }
6570 log_extents:
6571 btrfs_release_path(path);
6572 btrfs_release_path(dst_path);
6573 if (need_log_inode_item) {
6574 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6575 if (ret)
6576 goto out_unlock;
6577 /*
6578 * If we are doing a fast fsync and the inode was logged before
6579 * in this transaction, we don't need to log the xattrs because
6580 * they were logged before. If xattrs were added, changed or
6581 * deleted since the last time we logged the inode, then we have
6582 * already logged them because the inode had the runtime flag
6583 * BTRFS_INODE_COPY_EVERYTHING set.
6584 */
6585 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6586 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6587 if (ret)
6588 goto out_unlock;
6589 btrfs_release_path(path);
6590 }
6591 }
6592 if (fast_search) {
6593 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6594 if (ret)
6595 goto out_unlock;
6596 } else if (inode_only == LOG_INODE_ALL) {
6597 struct extent_map *em, *n;
6598
6599 write_lock(&em_tree->lock);
6600 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6601 list_del_init(&em->list);
6602 write_unlock(&em_tree->lock);
6603 }
6604
6605 if (full_dir_logging) {
6606 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6607 if (ret)
6608 goto out_unlock;
6609 ret = log_delayed_insertion_items(trans, inode, path,
6610 &delayed_ins_list, ctx);
6611 if (ret)
6612 goto out_unlock;
6613 ret = log_delayed_deletion_items(trans, inode, path,
6614 &delayed_del_list, ctx);
6615 if (ret)
6616 goto out_unlock;
6617 }
6618
6619 spin_lock(&inode->lock);
6620 inode->logged_trans = trans->transid;
6621 /*
6622 * Don't update last_log_commit if we logged that an inode exists.
6623 * We do this for three reasons:
6624 *
6625 * 1) We might have had buffered writes to this inode that were
6626 * flushed and had their ordered extents completed in this
6627 * transaction, but we did not previously log the inode with
6628 * LOG_INODE_ALL. Later the inode was evicted and after that
6629 * it was loaded again and this LOG_INODE_EXISTS log operation
6630 * happened. We must make sure that if an explicit fsync against
6631 * the inode is performed later, it logs the new extents, an
6632 * updated inode item, etc, and syncs the log. The same logic
6633 * applies to direct IO writes instead of buffered writes.
6634 *
6635 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6636 * is logged with an i_size of 0 or whatever value was logged
6637 * before. If later the i_size of the inode is increased by a
6638 * truncate operation, the log is synced through an fsync of
6639 * some other inode and then finally an explicit fsync against
6640 * this inode is made, we must make sure this fsync logs the
6641 * inode with the new i_size, the hole between old i_size and
6642 * the new i_size, and syncs the log.
6643 *
6644 * 3) If we are logging that an ancestor inode exists as part of
6645 * logging a new name from a link or rename operation, don't update
6646 * its last_log_commit - otherwise if an explicit fsync is made
6647 * against an ancestor, the fsync considers the inode in the log
6648 * and doesn't sync the log, resulting in the ancestor missing after
6649 * a power failure unless the log was synced as part of an fsync
6650 * against any other unrelated inode.
6651 */
6652 if (inode_only != LOG_INODE_EXISTS)
6653 inode->last_log_commit = inode->last_sub_trans;
6654 spin_unlock(&inode->lock);
6655
6656 /*
6657 * Reset the last_reflink_trans so that the next fsync does not need to
6658 * go through the slower path when logging extents and their checksums.
6659 */
6660 if (inode_only == LOG_INODE_ALL)
6661 inode->last_reflink_trans = 0;
6662
6663 out_unlock:
6664 mutex_unlock(&inode->log_mutex);
6665 out:
6666 btrfs_free_path(path);
6667 btrfs_free_path(dst_path);
6668
6669 if (ret)
6670 free_conflicting_inodes(ctx);
6671 else
6672 ret = log_conflicting_inodes(trans, inode->root, ctx);
6673
6674 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6675 if (!ret)
6676 ret = log_new_delayed_dentries(trans, inode,
6677 &delayed_ins_list, ctx);
6678
6679 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6680 &delayed_del_list);
6681 }
6682
6683 return ret;
6684 }
6685
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6686 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6687 struct btrfs_inode *inode,
6688 struct btrfs_log_ctx *ctx)
6689 {
6690 struct btrfs_fs_info *fs_info = trans->fs_info;
6691 int ret;
6692 struct btrfs_path *path;
6693 struct btrfs_key key;
6694 struct btrfs_root *root = inode->root;
6695 const u64 ino = btrfs_ino(inode);
6696
6697 path = btrfs_alloc_path();
6698 if (!path)
6699 return -ENOMEM;
6700 path->skip_locking = 1;
6701 path->search_commit_root = 1;
6702
6703 key.objectid = ino;
6704 key.type = BTRFS_INODE_REF_KEY;
6705 key.offset = 0;
6706 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6707 if (ret < 0)
6708 goto out;
6709
6710 while (true) {
6711 struct extent_buffer *leaf = path->nodes[0];
6712 int slot = path->slots[0];
6713 u32 cur_offset = 0;
6714 u32 item_size;
6715 unsigned long ptr;
6716
6717 if (slot >= btrfs_header_nritems(leaf)) {
6718 ret = btrfs_next_leaf(root, path);
6719 if (ret < 0)
6720 goto out;
6721 else if (ret > 0)
6722 break;
6723 continue;
6724 }
6725
6726 btrfs_item_key_to_cpu(leaf, &key, slot);
6727 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6728 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6729 break;
6730
6731 item_size = btrfs_item_size(leaf, slot);
6732 ptr = btrfs_item_ptr_offset(leaf, slot);
6733 while (cur_offset < item_size) {
6734 struct btrfs_key inode_key;
6735 struct inode *dir_inode;
6736
6737 inode_key.type = BTRFS_INODE_ITEM_KEY;
6738 inode_key.offset = 0;
6739
6740 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6741 struct btrfs_inode_extref *extref;
6742
6743 extref = (struct btrfs_inode_extref *)
6744 (ptr + cur_offset);
6745 inode_key.objectid = btrfs_inode_extref_parent(
6746 leaf, extref);
6747 cur_offset += sizeof(*extref);
6748 cur_offset += btrfs_inode_extref_name_len(leaf,
6749 extref);
6750 } else {
6751 inode_key.objectid = key.offset;
6752 cur_offset = item_size;
6753 }
6754
6755 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6756 root);
6757 /*
6758 * If the parent inode was deleted, return an error to
6759 * fallback to a transaction commit. This is to prevent
6760 * getting an inode that was moved from one parent A to
6761 * a parent B, got its former parent A deleted and then
6762 * it got fsync'ed, from existing at both parents after
6763 * a log replay (and the old parent still existing).
6764 * Example:
6765 *
6766 * mkdir /mnt/A
6767 * mkdir /mnt/B
6768 * touch /mnt/B/bar
6769 * sync
6770 * mv /mnt/B/bar /mnt/A/bar
6771 * mv -T /mnt/A /mnt/B
6772 * fsync /mnt/B/bar
6773 * <power fail>
6774 *
6775 * If we ignore the old parent B which got deleted,
6776 * after a log replay we would have file bar linked
6777 * at both parents and the old parent B would still
6778 * exist.
6779 */
6780 if (IS_ERR(dir_inode)) {
6781 ret = PTR_ERR(dir_inode);
6782 goto out;
6783 }
6784
6785 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6786 btrfs_add_delayed_iput(dir_inode);
6787 continue;
6788 }
6789
6790 ctx->log_new_dentries = false;
6791 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6792 LOG_INODE_ALL, ctx);
6793 if (!ret && ctx->log_new_dentries)
6794 ret = log_new_dir_dentries(trans,
6795 BTRFS_I(dir_inode), ctx);
6796 btrfs_add_delayed_iput(dir_inode);
6797 if (ret)
6798 goto out;
6799 }
6800 path->slots[0]++;
6801 }
6802 ret = 0;
6803 out:
6804 btrfs_free_path(path);
6805 return ret;
6806 }
6807
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6808 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6809 struct btrfs_root *root,
6810 struct btrfs_path *path,
6811 struct btrfs_log_ctx *ctx)
6812 {
6813 struct btrfs_key found_key;
6814
6815 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6816
6817 while (true) {
6818 struct btrfs_fs_info *fs_info = root->fs_info;
6819 struct extent_buffer *leaf = path->nodes[0];
6820 int slot = path->slots[0];
6821 struct btrfs_key search_key;
6822 struct inode *inode;
6823 u64 ino;
6824 int ret = 0;
6825
6826 btrfs_release_path(path);
6827
6828 ino = found_key.offset;
6829
6830 search_key.objectid = found_key.offset;
6831 search_key.type = BTRFS_INODE_ITEM_KEY;
6832 search_key.offset = 0;
6833 inode = btrfs_iget(fs_info->sb, ino, root);
6834 if (IS_ERR(inode))
6835 return PTR_ERR(inode);
6836
6837 if (BTRFS_I(inode)->generation >= trans->transid &&
6838 need_log_inode(trans, BTRFS_I(inode)))
6839 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6840 LOG_INODE_EXISTS, ctx);
6841 btrfs_add_delayed_iput(inode);
6842 if (ret)
6843 return ret;
6844
6845 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6846 break;
6847
6848 search_key.type = BTRFS_INODE_REF_KEY;
6849 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6850 if (ret < 0)
6851 return ret;
6852
6853 leaf = path->nodes[0];
6854 slot = path->slots[0];
6855 if (slot >= btrfs_header_nritems(leaf)) {
6856 ret = btrfs_next_leaf(root, path);
6857 if (ret < 0)
6858 return ret;
6859 else if (ret > 0)
6860 return -ENOENT;
6861 leaf = path->nodes[0];
6862 slot = path->slots[0];
6863 }
6864
6865 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6866 if (found_key.objectid != search_key.objectid ||
6867 found_key.type != BTRFS_INODE_REF_KEY)
6868 return -ENOENT;
6869 }
6870 return 0;
6871 }
6872
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6873 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6874 struct btrfs_inode *inode,
6875 struct dentry *parent,
6876 struct btrfs_log_ctx *ctx)
6877 {
6878 struct btrfs_root *root = inode->root;
6879 struct dentry *old_parent = NULL;
6880 struct super_block *sb = inode->vfs_inode.i_sb;
6881 int ret = 0;
6882
6883 while (true) {
6884 if (!parent || d_really_is_negative(parent) ||
6885 sb != parent->d_sb)
6886 break;
6887
6888 inode = BTRFS_I(d_inode(parent));
6889 if (root != inode->root)
6890 break;
6891
6892 if (inode->generation >= trans->transid &&
6893 need_log_inode(trans, inode)) {
6894 ret = btrfs_log_inode(trans, inode,
6895 LOG_INODE_EXISTS, ctx);
6896 if (ret)
6897 break;
6898 }
6899 if (IS_ROOT(parent))
6900 break;
6901
6902 parent = dget_parent(parent);
6903 dput(old_parent);
6904 old_parent = parent;
6905 }
6906 dput(old_parent);
6907
6908 return ret;
6909 }
6910
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6911 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6912 struct btrfs_inode *inode,
6913 struct dentry *parent,
6914 struct btrfs_log_ctx *ctx)
6915 {
6916 struct btrfs_root *root = inode->root;
6917 const u64 ino = btrfs_ino(inode);
6918 struct btrfs_path *path;
6919 struct btrfs_key search_key;
6920 int ret;
6921
6922 /*
6923 * For a single hard link case, go through a fast path that does not
6924 * need to iterate the fs/subvolume tree.
6925 */
6926 if (inode->vfs_inode.i_nlink < 2)
6927 return log_new_ancestors_fast(trans, inode, parent, ctx);
6928
6929 path = btrfs_alloc_path();
6930 if (!path)
6931 return -ENOMEM;
6932
6933 search_key.objectid = ino;
6934 search_key.type = BTRFS_INODE_REF_KEY;
6935 search_key.offset = 0;
6936 again:
6937 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6938 if (ret < 0)
6939 goto out;
6940 if (ret == 0)
6941 path->slots[0]++;
6942
6943 while (true) {
6944 struct extent_buffer *leaf = path->nodes[0];
6945 int slot = path->slots[0];
6946 struct btrfs_key found_key;
6947
6948 if (slot >= btrfs_header_nritems(leaf)) {
6949 ret = btrfs_next_leaf(root, path);
6950 if (ret < 0)
6951 goto out;
6952 else if (ret > 0)
6953 break;
6954 continue;
6955 }
6956
6957 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6958 if (found_key.objectid != ino ||
6959 found_key.type > BTRFS_INODE_EXTREF_KEY)
6960 break;
6961
6962 /*
6963 * Don't deal with extended references because they are rare
6964 * cases and too complex to deal with (we would need to keep
6965 * track of which subitem we are processing for each item in
6966 * this loop, etc). So just return some error to fallback to
6967 * a transaction commit.
6968 */
6969 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6970 ret = -EMLINK;
6971 goto out;
6972 }
6973
6974 /*
6975 * Logging ancestors needs to do more searches on the fs/subvol
6976 * tree, so it releases the path as needed to avoid deadlocks.
6977 * Keep track of the last inode ref key and resume from that key
6978 * after logging all new ancestors for the current hard link.
6979 */
6980 memcpy(&search_key, &found_key, sizeof(search_key));
6981
6982 ret = log_new_ancestors(trans, root, path, ctx);
6983 if (ret)
6984 goto out;
6985 btrfs_release_path(path);
6986 goto again;
6987 }
6988 ret = 0;
6989 out:
6990 btrfs_free_path(path);
6991 return ret;
6992 }
6993
6994 /*
6995 * helper function around btrfs_log_inode to make sure newly created
6996 * parent directories also end up in the log. A minimal inode and backref
6997 * only logging is done of any parent directories that are older than
6998 * the last committed transaction
6999 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7000 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7001 struct btrfs_inode *inode,
7002 struct dentry *parent,
7003 int inode_only,
7004 struct btrfs_log_ctx *ctx)
7005 {
7006 struct btrfs_root *root = inode->root;
7007 struct btrfs_fs_info *fs_info = root->fs_info;
7008 int ret = 0;
7009 bool log_dentries = false;
7010
7011 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7012 ret = BTRFS_LOG_FORCE_COMMIT;
7013 goto end_no_trans;
7014 }
7015
7016 if (btrfs_root_refs(&root->root_item) == 0) {
7017 ret = BTRFS_LOG_FORCE_COMMIT;
7018 goto end_no_trans;
7019 }
7020
7021 /*
7022 * Skip already logged inodes or inodes corresponding to tmpfiles
7023 * (since logging them is pointless, a link count of 0 means they
7024 * will never be accessible).
7025 */
7026 if ((btrfs_inode_in_log(inode, trans->transid) &&
7027 list_empty(&ctx->ordered_extents)) ||
7028 inode->vfs_inode.i_nlink == 0) {
7029 ret = BTRFS_NO_LOG_SYNC;
7030 goto end_no_trans;
7031 }
7032
7033 ret = start_log_trans(trans, root, ctx);
7034 if (ret)
7035 goto end_no_trans;
7036
7037 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7038 if (ret)
7039 goto end_trans;
7040
7041 /*
7042 * for regular files, if its inode is already on disk, we don't
7043 * have to worry about the parents at all. This is because
7044 * we can use the last_unlink_trans field to record renames
7045 * and other fun in this file.
7046 */
7047 if (S_ISREG(inode->vfs_inode.i_mode) &&
7048 inode->generation < trans->transid &&
7049 inode->last_unlink_trans < trans->transid) {
7050 ret = 0;
7051 goto end_trans;
7052 }
7053
7054 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7055 log_dentries = true;
7056
7057 /*
7058 * On unlink we must make sure all our current and old parent directory
7059 * inodes are fully logged. This is to prevent leaving dangling
7060 * directory index entries in directories that were our parents but are
7061 * not anymore. Not doing this results in old parent directory being
7062 * impossible to delete after log replay (rmdir will always fail with
7063 * error -ENOTEMPTY).
7064 *
7065 * Example 1:
7066 *
7067 * mkdir testdir
7068 * touch testdir/foo
7069 * ln testdir/foo testdir/bar
7070 * sync
7071 * unlink testdir/bar
7072 * xfs_io -c fsync testdir/foo
7073 * <power failure>
7074 * mount fs, triggers log replay
7075 *
7076 * If we don't log the parent directory (testdir), after log replay the
7077 * directory still has an entry pointing to the file inode using the bar
7078 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7079 * the file inode has a link count of 1.
7080 *
7081 * Example 2:
7082 *
7083 * mkdir testdir
7084 * touch foo
7085 * ln foo testdir/foo2
7086 * ln foo testdir/foo3
7087 * sync
7088 * unlink testdir/foo3
7089 * xfs_io -c fsync foo
7090 * <power failure>
7091 * mount fs, triggers log replay
7092 *
7093 * Similar as the first example, after log replay the parent directory
7094 * testdir still has an entry pointing to the inode file with name foo3
7095 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7096 * and has a link count of 2.
7097 */
7098 if (inode->last_unlink_trans >= trans->transid) {
7099 ret = btrfs_log_all_parents(trans, inode, ctx);
7100 if (ret)
7101 goto end_trans;
7102 }
7103
7104 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7105 if (ret)
7106 goto end_trans;
7107
7108 if (log_dentries)
7109 ret = log_new_dir_dentries(trans, inode, ctx);
7110 else
7111 ret = 0;
7112 end_trans:
7113 if (ret < 0) {
7114 btrfs_set_log_full_commit(trans);
7115 ret = BTRFS_LOG_FORCE_COMMIT;
7116 }
7117
7118 if (ret)
7119 btrfs_remove_log_ctx(root, ctx);
7120 btrfs_end_log_trans(root);
7121 end_no_trans:
7122 return ret;
7123 }
7124
7125 /*
7126 * it is not safe to log dentry if the chunk root has added new
7127 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7128 * If this returns 1, you must commit the transaction to safely get your
7129 * data on disk.
7130 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7131 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7132 struct dentry *dentry,
7133 struct btrfs_log_ctx *ctx)
7134 {
7135 struct dentry *parent = dget_parent(dentry);
7136 int ret;
7137
7138 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7139 LOG_INODE_ALL, ctx);
7140 dput(parent);
7141
7142 return ret;
7143 }
7144
7145 /*
7146 * should be called during mount to recover any replay any log trees
7147 * from the FS
7148 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7149 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7150 {
7151 int ret;
7152 struct btrfs_path *path;
7153 struct btrfs_trans_handle *trans;
7154 struct btrfs_key key;
7155 struct btrfs_key found_key;
7156 struct btrfs_root *log;
7157 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7158 struct walk_control wc = {
7159 .process_func = process_one_buffer,
7160 .stage = LOG_WALK_PIN_ONLY,
7161 };
7162
7163 path = btrfs_alloc_path();
7164 if (!path)
7165 return -ENOMEM;
7166
7167 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7168
7169 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7170 if (IS_ERR(trans)) {
7171 ret = PTR_ERR(trans);
7172 goto error;
7173 }
7174
7175 wc.trans = trans;
7176 wc.pin = 1;
7177
7178 ret = walk_log_tree(trans, log_root_tree, &wc);
7179 if (ret) {
7180 btrfs_abort_transaction(trans, ret);
7181 goto error;
7182 }
7183
7184 again:
7185 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7186 key.offset = (u64)-1;
7187 key.type = BTRFS_ROOT_ITEM_KEY;
7188
7189 while (1) {
7190 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7191
7192 if (ret < 0) {
7193 btrfs_abort_transaction(trans, ret);
7194 goto error;
7195 }
7196 if (ret > 0) {
7197 if (path->slots[0] == 0)
7198 break;
7199 path->slots[0]--;
7200 }
7201 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7202 path->slots[0]);
7203 btrfs_release_path(path);
7204 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7205 break;
7206
7207 log = btrfs_read_tree_root(log_root_tree, &found_key);
7208 if (IS_ERR(log)) {
7209 ret = PTR_ERR(log);
7210 btrfs_abort_transaction(trans, ret);
7211 goto error;
7212 }
7213
7214 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7215 true);
7216 if (IS_ERR(wc.replay_dest)) {
7217 ret = PTR_ERR(wc.replay_dest);
7218
7219 /*
7220 * We didn't find the subvol, likely because it was
7221 * deleted. This is ok, simply skip this log and go to
7222 * the next one.
7223 *
7224 * We need to exclude the root because we can't have
7225 * other log replays overwriting this log as we'll read
7226 * it back in a few more times. This will keep our
7227 * block from being modified, and we'll just bail for
7228 * each subsequent pass.
7229 */
7230 if (ret == -ENOENT)
7231 ret = btrfs_pin_extent_for_log_replay(trans,
7232 log->node->start,
7233 log->node->len);
7234 btrfs_put_root(log);
7235
7236 if (!ret)
7237 goto next;
7238 btrfs_abort_transaction(trans, ret);
7239 goto error;
7240 }
7241
7242 wc.replay_dest->log_root = log;
7243 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7244 if (ret)
7245 /* The loop needs to continue due to the root refs */
7246 btrfs_abort_transaction(trans, ret);
7247 else
7248 ret = walk_log_tree(trans, log, &wc);
7249
7250 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7251 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7252 path);
7253 if (ret)
7254 btrfs_abort_transaction(trans, ret);
7255 }
7256
7257 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7258 struct btrfs_root *root = wc.replay_dest;
7259
7260 btrfs_release_path(path);
7261
7262 /*
7263 * We have just replayed everything, and the highest
7264 * objectid of fs roots probably has changed in case
7265 * some inode_item's got replayed.
7266 *
7267 * root->objectid_mutex is not acquired as log replay
7268 * could only happen during mount.
7269 */
7270 ret = btrfs_init_root_free_objectid(root);
7271 if (ret)
7272 btrfs_abort_transaction(trans, ret);
7273 }
7274
7275 wc.replay_dest->log_root = NULL;
7276 btrfs_put_root(wc.replay_dest);
7277 btrfs_put_root(log);
7278
7279 if (ret)
7280 goto error;
7281 next:
7282 if (found_key.offset == 0)
7283 break;
7284 key.offset = found_key.offset - 1;
7285 }
7286 btrfs_release_path(path);
7287
7288 /* step one is to pin it all, step two is to replay just inodes */
7289 if (wc.pin) {
7290 wc.pin = 0;
7291 wc.process_func = replay_one_buffer;
7292 wc.stage = LOG_WALK_REPLAY_INODES;
7293 goto again;
7294 }
7295 /* step three is to replay everything */
7296 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7297 wc.stage++;
7298 goto again;
7299 }
7300
7301 btrfs_free_path(path);
7302
7303 /* step 4: commit the transaction, which also unpins the blocks */
7304 ret = btrfs_commit_transaction(trans);
7305 if (ret)
7306 return ret;
7307
7308 log_root_tree->log_root = NULL;
7309 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7310 btrfs_put_root(log_root_tree);
7311
7312 return 0;
7313 error:
7314 if (wc.trans)
7315 btrfs_end_transaction(wc.trans);
7316 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7317 btrfs_free_path(path);
7318 return ret;
7319 }
7320
7321 /*
7322 * there are some corner cases where we want to force a full
7323 * commit instead of allowing a directory to be logged.
7324 *
7325 * They revolve around files there were unlinked from the directory, and
7326 * this function updates the parent directory so that a full commit is
7327 * properly done if it is fsync'd later after the unlinks are done.
7328 *
7329 * Must be called before the unlink operations (updates to the subvolume tree,
7330 * inodes, etc) are done.
7331 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)7332 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7333 struct btrfs_inode *dir, struct btrfs_inode *inode,
7334 int for_rename)
7335 {
7336 /*
7337 * when we're logging a file, if it hasn't been renamed
7338 * or unlinked, and its inode is fully committed on disk,
7339 * we don't have to worry about walking up the directory chain
7340 * to log its parents.
7341 *
7342 * So, we use the last_unlink_trans field to put this transid
7343 * into the file. When the file is logged we check it and
7344 * don't log the parents if the file is fully on disk.
7345 */
7346 mutex_lock(&inode->log_mutex);
7347 inode->last_unlink_trans = trans->transid;
7348 mutex_unlock(&inode->log_mutex);
7349
7350 /*
7351 * if this directory was already logged any new
7352 * names for this file/dir will get recorded
7353 */
7354 if (dir->logged_trans == trans->transid)
7355 return;
7356
7357 /*
7358 * if the inode we're about to unlink was logged,
7359 * the log will be properly updated for any new names
7360 */
7361 if (inode->logged_trans == trans->transid)
7362 return;
7363
7364 /*
7365 * when renaming files across directories, if the directory
7366 * there we're unlinking from gets fsync'd later on, there's
7367 * no way to find the destination directory later and fsync it
7368 * properly. So, we have to be conservative and force commits
7369 * so the new name gets discovered.
7370 */
7371 if (for_rename)
7372 goto record;
7373
7374 /* we can safely do the unlink without any special recording */
7375 return;
7376
7377 record:
7378 mutex_lock(&dir->log_mutex);
7379 dir->last_unlink_trans = trans->transid;
7380 mutex_unlock(&dir->log_mutex);
7381 }
7382
7383 /*
7384 * Make sure that if someone attempts to fsync the parent directory of a deleted
7385 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7386 * that after replaying the log tree of the parent directory's root we will not
7387 * see the snapshot anymore and at log replay time we will not see any log tree
7388 * corresponding to the deleted snapshot's root, which could lead to replaying
7389 * it after replaying the log tree of the parent directory (which would replay
7390 * the snapshot delete operation).
7391 *
7392 * Must be called before the actual snapshot destroy operation (updates to the
7393 * parent root and tree of tree roots trees, etc) are done.
7394 */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7395 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7396 struct btrfs_inode *dir)
7397 {
7398 mutex_lock(&dir->log_mutex);
7399 dir->last_unlink_trans = trans->transid;
7400 mutex_unlock(&dir->log_mutex);
7401 }
7402
7403 /**
7404 * Update the log after adding a new name for an inode.
7405 *
7406 * @trans: Transaction handle.
7407 * @old_dentry: The dentry associated with the old name and the old
7408 * parent directory.
7409 * @old_dir: The inode of the previous parent directory for the case
7410 * of a rename. For a link operation, it must be NULL.
7411 * @old_dir_index: The index number associated with the old name, meaningful
7412 * only for rename operations (when @old_dir is not NULL).
7413 * Ignored for link operations.
7414 * @parent: The dentry associated with the directory under which the
7415 * new name is located.
7416 *
7417 * Call this after adding a new name for an inode, as a result of a link or
7418 * rename operation, and it will properly update the log to reflect the new name.
7419 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7420 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7421 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7422 u64 old_dir_index, struct dentry *parent)
7423 {
7424 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7425 struct btrfs_root *root = inode->root;
7426 struct btrfs_log_ctx ctx;
7427 bool log_pinned = false;
7428 int ret;
7429
7430 /*
7431 * this will force the logging code to walk the dentry chain
7432 * up for the file
7433 */
7434 if (!S_ISDIR(inode->vfs_inode.i_mode))
7435 inode->last_unlink_trans = trans->transid;
7436
7437 /*
7438 * if this inode hasn't been logged and directory we're renaming it
7439 * from hasn't been logged, we don't need to log it
7440 */
7441 ret = inode_logged(trans, inode, NULL);
7442 if (ret < 0) {
7443 goto out;
7444 } else if (ret == 0) {
7445 if (!old_dir)
7446 return;
7447 /*
7448 * If the inode was not logged and we are doing a rename (old_dir is not
7449 * NULL), check if old_dir was logged - if it was not we can return and
7450 * do nothing.
7451 */
7452 ret = inode_logged(trans, old_dir, NULL);
7453 if (ret < 0)
7454 goto out;
7455 else if (ret == 0)
7456 return;
7457 }
7458 ret = 0;
7459
7460 /*
7461 * If we are doing a rename (old_dir is not NULL) from a directory that
7462 * was previously logged, make sure that on log replay we get the old
7463 * dir entry deleted. This is needed because we will also log the new
7464 * name of the renamed inode, so we need to make sure that after log
7465 * replay we don't end up with both the new and old dir entries existing.
7466 */
7467 if (old_dir && old_dir->logged_trans == trans->transid) {
7468 struct btrfs_root *log = old_dir->root->log_root;
7469 struct btrfs_path *path;
7470
7471 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7472
7473 /*
7474 * We have two inodes to update in the log, the old directory and
7475 * the inode that got renamed, so we must pin the log to prevent
7476 * anyone from syncing the log until we have updated both inodes
7477 * in the log.
7478 */
7479 ret = join_running_log_trans(root);
7480 /*
7481 * At least one of the inodes was logged before, so this should
7482 * not fail, but if it does, it's not serious, just bail out and
7483 * mark the log for a full commit.
7484 */
7485 if (WARN_ON_ONCE(ret < 0))
7486 goto out;
7487 log_pinned = true;
7488
7489 path = btrfs_alloc_path();
7490 if (!path) {
7491 ret = -ENOMEM;
7492 goto out;
7493 }
7494
7495 /*
7496 * Other concurrent task might be logging the old directory,
7497 * as it can be triggered when logging other inode that had or
7498 * still has a dentry in the old directory. We lock the old
7499 * directory's log_mutex to ensure the deletion of the old
7500 * name is persisted, because during directory logging we
7501 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7502 * the old name's dir index item is in the delayed items, so
7503 * it could be missed by an in progress directory logging.
7504 */
7505 mutex_lock(&old_dir->log_mutex);
7506 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7507 old_dentry->d_name.name,
7508 old_dentry->d_name.len, old_dir_index);
7509 if (ret > 0) {
7510 /*
7511 * The dentry does not exist in the log, so record its
7512 * deletion.
7513 */
7514 btrfs_release_path(path);
7515 ret = insert_dir_log_key(trans, log, path,
7516 btrfs_ino(old_dir),
7517 old_dir_index, old_dir_index);
7518 }
7519 mutex_unlock(&old_dir->log_mutex);
7520
7521 btrfs_free_path(path);
7522 if (ret < 0)
7523 goto out;
7524 }
7525
7526 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7527 ctx.logging_new_name = true;
7528 /*
7529 * We don't care about the return value. If we fail to log the new name
7530 * then we know the next attempt to sync the log will fallback to a full
7531 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7532 * we don't need to worry about getting a log committed that has an
7533 * inconsistent state after a rename operation.
7534 */
7535 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7536 ASSERT(list_empty(&ctx.conflict_inodes));
7537 out:
7538 /*
7539 * If an error happened mark the log for a full commit because it's not
7540 * consistent and up to date or we couldn't find out if one of the
7541 * inodes was logged before in this transaction. Do it before unpinning
7542 * the log, to avoid any races with someone else trying to commit it.
7543 */
7544 if (ret < 0)
7545 btrfs_set_log_full_commit(trans);
7546 if (log_pinned)
7547 btrfs_end_log_trans(root);
7548 }
7549
7550