1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <asm/unaligned.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "volumes.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 #include "tree-log.h"
29 #include "free-space-cache.h"
30 #include "free-space-tree.h"
31 #include "inode-map.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41
42 #ifdef CONFIG_X86
43 #include <asm/cpufeature.h>
44 #endif
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
72 struct btrfs_end_io_wq {
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
77 blk_status_t status;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
btrfs_end_io_wq_init(void)84 int __init btrfs_end_io_wq_init(void)
85 {
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
89 SLAB_MEM_SPREAD,
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94 }
95
btrfs_end_io_wq_exit(void)96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 /*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
106 struct async_submit_bio {
107 void *private_data;
108 struct bio *bio;
109 extent_submit_bio_start_t *submit_bio_start;
110 int mirror_num;
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
116 struct btrfs_work work;
117 blk_status_t status;
118 };
119
120 /*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
128 * by btrfs_root->objectid. This ensures that all special purpose roots
129 * have separate keysets.
130 *
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
134 *
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
138 *
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
142 */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 # error
146 # endif
147
148 static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166 { .id = 0, .name_stem = "tree" },
167 };
168
btrfs_init_lockdep(void)169 void __init btrfs_init_lockdep(void)
170 {
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181 }
182
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185 {
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197 }
198
199 #endif
200
201 /*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
btree_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206 struct page *page, size_t pg_offset, u64 start, u64 len,
207 int create)
208 {
209 struct btrfs_fs_info *fs_info = inode->root->fs_info;
210 struct extent_map_tree *em_tree = &inode->extent_tree;
211 struct extent_map *em;
212 int ret;
213
214 read_lock(&em_tree->lock);
215 em = lookup_extent_mapping(em_tree, start, len);
216 if (em) {
217 em->bdev = fs_info->fs_devices->latest_bdev;
218 read_unlock(&em_tree->lock);
219 goto out;
220 }
221 read_unlock(&em_tree->lock);
222
223 em = alloc_extent_map();
224 if (!em) {
225 em = ERR_PTR(-ENOMEM);
226 goto out;
227 }
228 em->start = 0;
229 em->len = (u64)-1;
230 em->block_len = (u64)-1;
231 em->block_start = 0;
232 em->bdev = fs_info->fs_devices->latest_bdev;
233
234 write_lock(&em_tree->lock);
235 ret = add_extent_mapping(em_tree, em, 0);
236 if (ret == -EEXIST) {
237 free_extent_map(em);
238 em = lookup_extent_mapping(em_tree, start, len);
239 if (!em)
240 em = ERR_PTR(-EIO);
241 } else if (ret) {
242 free_extent_map(em);
243 em = ERR_PTR(ret);
244 }
245 write_unlock(&em_tree->lock);
246
247 out:
248 return em;
249 }
250
btrfs_csum_data(const char * data,u32 seed,size_t len)251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
252 {
253 return crc32c(seed, data, len);
254 }
255
btrfs_csum_final(u32 crc,u8 * result)256 void btrfs_csum_final(u32 crc, u8 *result)
257 {
258 put_unaligned_le32(~crc, result);
259 }
260
261 /*
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
264 */
csum_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf,int verify)265 static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 struct extent_buffer *buf,
267 int verify)
268 {
269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
270 char result[BTRFS_CSUM_SIZE];
271 unsigned long len;
272 unsigned long cur_len;
273 unsigned long offset = BTRFS_CSUM_SIZE;
274 char *kaddr;
275 unsigned long map_start;
276 unsigned long map_len;
277 int err;
278 u32 crc = ~(u32)0;
279
280 len = buf->len - offset;
281 while (len > 0) {
282 err = map_private_extent_buffer(buf, offset, 32,
283 &kaddr, &map_start, &map_len);
284 if (err)
285 return err;
286 cur_len = min(len, map_len - (offset - map_start));
287 crc = btrfs_csum_data(kaddr + offset - map_start,
288 crc, cur_len);
289 len -= cur_len;
290 offset += cur_len;
291 }
292 memset(result, 0, BTRFS_CSUM_SIZE);
293
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298 u32 val;
299 u32 found = 0;
300 memcpy(&found, result, csum_size);
301
302 read_extent_buffer(buf, &val, 0, csum_size);
303 btrfs_warn_rl(fs_info,
304 "%s checksum verify failed on %llu wanted %X found %X level %d",
305 fs_info->sb->s_id, buf->start,
306 val, found, btrfs_header_level(buf));
307 return -EUCLEAN;
308 }
309 } else {
310 write_extent_buffer(buf, result, 0, csum_size);
311 }
312
313 return 0;
314 }
315
316 /*
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
321 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)322 static int verify_parent_transid(struct extent_io_tree *io_tree,
323 struct extent_buffer *eb, u64 parent_transid,
324 int atomic)
325 {
326 struct extent_state *cached_state = NULL;
327 int ret;
328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
333 if (atomic)
334 return -EAGAIN;
335
336 if (need_lock) {
337 btrfs_tree_read_lock(eb);
338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
339 }
340
341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
342 &cached_state);
343 if (extent_buffer_uptodate(eb) &&
344 btrfs_header_generation(eb) == parent_transid) {
345 ret = 0;
346 goto out;
347 }
348 btrfs_err_rl(eb->fs_info,
349 "parent transid verify failed on %llu wanted %llu found %llu",
350 eb->start,
351 parent_transid, btrfs_header_generation(eb));
352 ret = 1;
353
354 /*
355 * Things reading via commit roots that don't have normal protection,
356 * like send, can have a really old block in cache that may point at a
357 * block that has been freed and re-allocated. So don't clear uptodate
358 * if we find an eb that is under IO (dirty/writeback) because we could
359 * end up reading in the stale data and then writing it back out and
360 * making everybody very sad.
361 */
362 if (!extent_buffer_under_io(eb))
363 clear_extent_buffer_uptodate(eb);
364 out:
365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
366 &cached_state);
367 if (need_lock)
368 btrfs_tree_read_unlock_blocking(eb);
369 return ret;
370 }
371
372 /*
373 * Return 0 if the superblock checksum type matches the checksum value of that
374 * algorithm. Pass the raw disk superblock data.
375 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)376 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
377 char *raw_disk_sb)
378 {
379 struct btrfs_super_block *disk_sb =
380 (struct btrfs_super_block *)raw_disk_sb;
381 u16 csum_type = btrfs_super_csum_type(disk_sb);
382 int ret = 0;
383
384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
385 u32 crc = ~(u32)0;
386 char result[sizeof(crc)];
387
388 /*
389 * The super_block structure does not span the whole
390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
391 * is filled with zeros and is included in the checksum.
392 */
393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395 btrfs_csum_final(crc, result);
396
397 if (memcmp(raw_disk_sb, result, sizeof(result)))
398 ret = 1;
399 }
400
401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
402 btrfs_err(fs_info, "unsupported checksum algorithm %u",
403 csum_type);
404 ret = 1;
405 }
406
407 return ret;
408 }
409
verify_level_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)410 static int verify_level_key(struct btrfs_fs_info *fs_info,
411 struct extent_buffer *eb, int level,
412 struct btrfs_key *first_key, u64 parent_transid)
413 {
414 int found_level;
415 struct btrfs_key found_key;
416 int ret;
417
418 found_level = btrfs_header_level(eb);
419 if (found_level != level) {
420 #ifdef CONFIG_BTRFS_DEBUG
421 WARN_ON(1);
422 btrfs_err(fs_info,
423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424 eb->start, level, found_level);
425 #endif
426 return -EIO;
427 }
428
429 if (!first_key)
430 return 0;
431
432 /*
433 * For live tree block (new tree blocks in current transaction),
434 * we need proper lock context to avoid race, which is impossible here.
435 * So we only checks tree blocks which is read from disk, whose
436 * generation <= fs_info->last_trans_committed.
437 */
438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
439 return 0;
440 if (found_level)
441 btrfs_node_key_to_cpu(eb, &found_key, 0);
442 else
443 btrfs_item_key_to_cpu(eb, &found_key, 0);
444 ret = btrfs_comp_cpu_keys(first_key, &found_key);
445
446 #ifdef CONFIG_BTRFS_DEBUG
447 if (ret) {
448 WARN_ON(1);
449 btrfs_err(fs_info,
450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451 eb->start, parent_transid, first_key->objectid,
452 first_key->type, first_key->offset,
453 found_key.objectid, found_key.type,
454 found_key.offset);
455 }
456 #endif
457 return ret;
458 }
459
460 /*
461 * helper to read a given tree block, doing retries as required when
462 * the checksums don't match and we have alternate mirrors to try.
463 *
464 * @parent_transid: expected transid, skip check if 0
465 * @level: expected level, mandatory check
466 * @first_key: expected key of first slot, skip check if NULL
467 */
btree_read_extent_buffer_pages(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
469 struct extent_buffer *eb,
470 u64 parent_transid, int level,
471 struct btrfs_key *first_key)
472 {
473 struct extent_io_tree *io_tree;
474 int failed = 0;
475 int ret;
476 int num_copies = 0;
477 int mirror_num = 0;
478 int failed_mirror = 0;
479
480 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
481 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
482 while (1) {
483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
484 mirror_num);
485 if (!ret) {
486 if (verify_parent_transid(io_tree, eb,
487 parent_transid, 0))
488 ret = -EIO;
489 else if (verify_level_key(fs_info, eb, level,
490 first_key, parent_transid))
491 ret = -EUCLEAN;
492 else
493 break;
494 }
495
496 /*
497 * This buffer's crc is fine, but its contents are corrupted, so
498 * there is no reason to read the other copies, they won't be
499 * any less wrong.
500 */
501 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
502 ret == -EUCLEAN)
503 break;
504
505 num_copies = btrfs_num_copies(fs_info,
506 eb->start, eb->len);
507 if (num_copies == 1)
508 break;
509
510 if (!failed_mirror) {
511 failed = 1;
512 failed_mirror = eb->read_mirror;
513 }
514
515 mirror_num++;
516 if (mirror_num == failed_mirror)
517 mirror_num++;
518
519 if (mirror_num > num_copies)
520 break;
521 }
522
523 if (failed && !ret && failed_mirror)
524 repair_eb_io_failure(fs_info, eb, failed_mirror);
525
526 return ret;
527 }
528
529 /*
530 * checksum a dirty tree block before IO. This has extra checks to make sure
531 * we only fill in the checksum field in the first page of a multi-page block
532 */
533
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)534 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
535 {
536 u64 start = page_offset(page);
537 u64 found_start;
538 struct extent_buffer *eb;
539
540 eb = (struct extent_buffer *)page->private;
541 if (page != eb->pages[0])
542 return 0;
543
544 found_start = btrfs_header_bytenr(eb);
545 /*
546 * Please do not consolidate these warnings into a single if.
547 * It is useful to know what went wrong.
548 */
549 if (WARN_ON(found_start != start))
550 return -EUCLEAN;
551 if (WARN_ON(!PageUptodate(page)))
552 return -EUCLEAN;
553
554 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
555 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
556
557 return csum_tree_block(fs_info, eb, 0);
558 }
559
check_tree_block_fsid(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)560 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
561 struct extent_buffer *eb)
562 {
563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
564 u8 fsid[BTRFS_FSID_SIZE];
565 int ret = 1;
566
567 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
568 while (fs_devices) {
569 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
570 ret = 0;
571 break;
572 }
573 fs_devices = fs_devices->seed;
574 }
575 return ret;
576 }
577
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
579 u64 phy_offset, struct page *page,
580 u64 start, u64 end, int mirror)
581 {
582 u64 found_start;
583 int found_level;
584 struct extent_buffer *eb;
585 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
586 struct btrfs_fs_info *fs_info = root->fs_info;
587 int ret = 0;
588 int reads_done;
589
590 if (!page->private)
591 goto out;
592
593 eb = (struct extent_buffer *)page->private;
594
595 /* the pending IO might have been the only thing that kept this buffer
596 * in memory. Make sure we have a ref for all this other checks
597 */
598 extent_buffer_get(eb);
599
600 reads_done = atomic_dec_and_test(&eb->io_pages);
601 if (!reads_done)
602 goto err;
603
604 eb->read_mirror = mirror;
605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
606 ret = -EIO;
607 goto err;
608 }
609
610 found_start = btrfs_header_bytenr(eb);
611 if (found_start != eb->start) {
612 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
613 eb->start, found_start);
614 ret = -EIO;
615 goto err;
616 }
617 if (check_tree_block_fsid(fs_info, eb)) {
618 btrfs_err_rl(fs_info, "bad fsid on block %llu",
619 eb->start);
620 ret = -EIO;
621 goto err;
622 }
623 found_level = btrfs_header_level(eb);
624 if (found_level >= BTRFS_MAX_LEVEL) {
625 btrfs_err(fs_info, "bad tree block level %d on %llu",
626 (int)btrfs_header_level(eb), eb->start);
627 ret = -EIO;
628 goto err;
629 }
630
631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
632 eb, found_level);
633
634 ret = csum_tree_block(fs_info, eb, 1);
635 if (ret)
636 goto err;
637
638 /*
639 * If this is a leaf block and it is corrupt, set the corrupt bit so
640 * that we don't try and read the other copies of this block, just
641 * return -EIO.
642 */
643 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
644 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
645 ret = -EIO;
646 }
647
648 if (found_level > 0 && btrfs_check_node(fs_info, eb))
649 ret = -EIO;
650
651 if (!ret)
652 set_extent_buffer_uptodate(eb);
653 err:
654 if (reads_done &&
655 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
656 btree_readahead_hook(eb, ret);
657
658 if (ret) {
659 /*
660 * our io error hook is going to dec the io pages
661 * again, we have to make sure it has something
662 * to decrement
663 */
664 atomic_inc(&eb->io_pages);
665 clear_extent_buffer_uptodate(eb);
666 }
667 free_extent_buffer(eb);
668 out:
669 return ret;
670 }
671
btree_io_failed_hook(struct page * page,int failed_mirror)672 static int btree_io_failed_hook(struct page *page, int failed_mirror)
673 {
674 struct extent_buffer *eb;
675
676 eb = (struct extent_buffer *)page->private;
677 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
678 eb->read_mirror = failed_mirror;
679 atomic_dec(&eb->io_pages);
680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
681 btree_readahead_hook(eb, -EIO);
682 return -EIO; /* we fixed nothing */
683 }
684
end_workqueue_bio(struct bio * bio)685 static void end_workqueue_bio(struct bio *bio)
686 {
687 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
688 struct btrfs_fs_info *fs_info;
689 struct btrfs_workqueue *wq;
690 btrfs_work_func_t func;
691
692 fs_info = end_io_wq->info;
693 end_io_wq->status = bio->bi_status;
694
695 if (bio_op(bio) == REQ_OP_WRITE) {
696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
697 wq = fs_info->endio_meta_write_workers;
698 func = btrfs_endio_meta_write_helper;
699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
700 wq = fs_info->endio_freespace_worker;
701 func = btrfs_freespace_write_helper;
702 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
703 wq = fs_info->endio_raid56_workers;
704 func = btrfs_endio_raid56_helper;
705 } else {
706 wq = fs_info->endio_write_workers;
707 func = btrfs_endio_write_helper;
708 }
709 } else {
710 if (unlikely(end_io_wq->metadata ==
711 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
712 wq = fs_info->endio_repair_workers;
713 func = btrfs_endio_repair_helper;
714 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
715 wq = fs_info->endio_raid56_workers;
716 func = btrfs_endio_raid56_helper;
717 } else if (end_io_wq->metadata) {
718 wq = fs_info->endio_meta_workers;
719 func = btrfs_endio_meta_helper;
720 } else {
721 wq = fs_info->endio_workers;
722 func = btrfs_endio_helper;
723 }
724 }
725
726 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
727 btrfs_queue_work(wq, &end_io_wq->work);
728 }
729
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)730 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
731 enum btrfs_wq_endio_type metadata)
732 {
733 struct btrfs_end_io_wq *end_io_wq;
734
735 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
736 if (!end_io_wq)
737 return BLK_STS_RESOURCE;
738
739 end_io_wq->private = bio->bi_private;
740 end_io_wq->end_io = bio->bi_end_io;
741 end_io_wq->info = info;
742 end_io_wq->status = 0;
743 end_io_wq->bio = bio;
744 end_io_wq->metadata = metadata;
745
746 bio->bi_private = end_io_wq;
747 bio->bi_end_io = end_workqueue_bio;
748 return 0;
749 }
750
run_one_async_start(struct btrfs_work * work)751 static void run_one_async_start(struct btrfs_work *work)
752 {
753 struct async_submit_bio *async;
754 blk_status_t ret;
755
756 async = container_of(work, struct async_submit_bio, work);
757 ret = async->submit_bio_start(async->private_data, async->bio,
758 async->bio_offset);
759 if (ret)
760 async->status = ret;
761 }
762
run_one_async_done(struct btrfs_work * work)763 static void run_one_async_done(struct btrfs_work *work)
764 {
765 struct async_submit_bio *async;
766
767 async = container_of(work, struct async_submit_bio, work);
768
769 /* If an error occurred we just want to clean up the bio and move on */
770 if (async->status) {
771 async->bio->bi_status = async->status;
772 bio_endio(async->bio);
773 return;
774 }
775
776 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
777 }
778
run_one_async_free(struct btrfs_work * work)779 static void run_one_async_free(struct btrfs_work *work)
780 {
781 struct async_submit_bio *async;
782
783 async = container_of(work, struct async_submit_bio, work);
784 kfree(async);
785 }
786
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)787 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
788 int mirror_num, unsigned long bio_flags,
789 u64 bio_offset, void *private_data,
790 extent_submit_bio_start_t *submit_bio_start)
791 {
792 struct async_submit_bio *async;
793
794 async = kmalloc(sizeof(*async), GFP_NOFS);
795 if (!async)
796 return BLK_STS_RESOURCE;
797
798 async->private_data = private_data;
799 async->bio = bio;
800 async->mirror_num = mirror_num;
801 async->submit_bio_start = submit_bio_start;
802
803 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
804 run_one_async_done, run_one_async_free);
805
806 async->bio_offset = bio_offset;
807
808 async->status = 0;
809
810 if (op_is_sync(bio->bi_opf))
811 btrfs_set_work_high_priority(&async->work);
812
813 btrfs_queue_work(fs_info->workers, &async->work);
814 return 0;
815 }
816
btree_csum_one_bio(struct bio * bio)817 static blk_status_t btree_csum_one_bio(struct bio *bio)
818 {
819 struct bio_vec *bvec;
820 struct btrfs_root *root;
821 int i, ret = 0;
822
823 ASSERT(!bio_flagged(bio, BIO_CLONED));
824 bio_for_each_segment_all(bvec, bio, i) {
825 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
826 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
827 if (ret)
828 break;
829 }
830
831 return errno_to_blk_status(ret);
832 }
833
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)834 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
835 u64 bio_offset)
836 {
837 /*
838 * when we're called for a write, we're already in the async
839 * submission context. Just jump into btrfs_map_bio
840 */
841 return btree_csum_one_bio(bio);
842 }
843
check_async_write(struct btrfs_inode * bi)844 static int check_async_write(struct btrfs_inode *bi)
845 {
846 if (atomic_read(&bi->sync_writers))
847 return 0;
848 #ifdef CONFIG_X86
849 if (static_cpu_has(X86_FEATURE_XMM4_2))
850 return 0;
851 #endif
852 return 1;
853 }
854
btree_submit_bio_hook(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)855 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
856 int mirror_num, unsigned long bio_flags,
857 u64 bio_offset)
858 {
859 struct inode *inode = private_data;
860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
861 int async = check_async_write(BTRFS_I(inode));
862 blk_status_t ret;
863
864 if (bio_op(bio) != REQ_OP_WRITE) {
865 /*
866 * called for a read, do the setup so that checksum validation
867 * can happen in the async kernel threads
868 */
869 ret = btrfs_bio_wq_end_io(fs_info, bio,
870 BTRFS_WQ_ENDIO_METADATA);
871 if (ret)
872 goto out_w_error;
873 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
874 } else if (!async) {
875 ret = btree_csum_one_bio(bio);
876 if (ret)
877 goto out_w_error;
878 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
879 } else {
880 /*
881 * kthread helpers are used to submit writes so that
882 * checksumming can happen in parallel across all CPUs
883 */
884 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
885 bio_offset, private_data,
886 btree_submit_bio_start);
887 }
888
889 if (ret)
890 goto out_w_error;
891 return 0;
892
893 out_w_error:
894 bio->bi_status = ret;
895 bio_endio(bio);
896 return ret;
897 }
898
899 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)900 static int btree_migratepage(struct address_space *mapping,
901 struct page *newpage, struct page *page,
902 enum migrate_mode mode)
903 {
904 /*
905 * we can't safely write a btree page from here,
906 * we haven't done the locking hook
907 */
908 if (PageDirty(page))
909 return -EAGAIN;
910 /*
911 * Buffers may be managed in a filesystem specific way.
912 * We must have no buffers or drop them.
913 */
914 if (page_has_private(page) &&
915 !try_to_release_page(page, GFP_KERNEL))
916 return -EAGAIN;
917 return migrate_page(mapping, newpage, page, mode);
918 }
919 #endif
920
921
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)922 static int btree_writepages(struct address_space *mapping,
923 struct writeback_control *wbc)
924 {
925 struct btrfs_fs_info *fs_info;
926 int ret;
927
928 if (wbc->sync_mode == WB_SYNC_NONE) {
929
930 if (wbc->for_kupdate)
931 return 0;
932
933 fs_info = BTRFS_I(mapping->host)->root->fs_info;
934 /* this is a bit racy, but that's ok */
935 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
936 BTRFS_DIRTY_METADATA_THRESH,
937 fs_info->dirty_metadata_batch);
938 if (ret < 0)
939 return 0;
940 }
941 return btree_write_cache_pages(mapping, wbc);
942 }
943
btree_readpage(struct file * file,struct page * page)944 static int btree_readpage(struct file *file, struct page *page)
945 {
946 struct extent_io_tree *tree;
947 tree = &BTRFS_I(page->mapping->host)->io_tree;
948 return extent_read_full_page(tree, page, btree_get_extent, 0);
949 }
950
btree_releasepage(struct page * page,gfp_t gfp_flags)951 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
952 {
953 if (PageWriteback(page) || PageDirty(page))
954 return 0;
955
956 return try_release_extent_buffer(page);
957 }
958
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)959 static void btree_invalidatepage(struct page *page, unsigned int offset,
960 unsigned int length)
961 {
962 struct extent_io_tree *tree;
963 tree = &BTRFS_I(page->mapping->host)->io_tree;
964 extent_invalidatepage(tree, page, offset);
965 btree_releasepage(page, GFP_NOFS);
966 if (PagePrivate(page)) {
967 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
968 "page private not zero on page %llu",
969 (unsigned long long)page_offset(page));
970 ClearPagePrivate(page);
971 set_page_private(page, 0);
972 put_page(page);
973 }
974 }
975
btree_set_page_dirty(struct page * page)976 static int btree_set_page_dirty(struct page *page)
977 {
978 #ifdef DEBUG
979 struct extent_buffer *eb;
980
981 BUG_ON(!PagePrivate(page));
982 eb = (struct extent_buffer *)page->private;
983 BUG_ON(!eb);
984 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
985 BUG_ON(!atomic_read(&eb->refs));
986 btrfs_assert_tree_locked(eb);
987 #endif
988 return __set_page_dirty_nobuffers(page);
989 }
990
991 static const struct address_space_operations btree_aops = {
992 .readpage = btree_readpage,
993 .writepages = btree_writepages,
994 .releasepage = btree_releasepage,
995 .invalidatepage = btree_invalidatepage,
996 #ifdef CONFIG_MIGRATION
997 .migratepage = btree_migratepage,
998 #endif
999 .set_page_dirty = btree_set_page_dirty,
1000 };
1001
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1002 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1003 {
1004 struct extent_buffer *buf = NULL;
1005 struct inode *btree_inode = fs_info->btree_inode;
1006
1007 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1008 if (IS_ERR(buf))
1009 return;
1010 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1011 buf, WAIT_NONE, 0);
1012 free_extent_buffer(buf);
1013 }
1014
reada_tree_block_flagged(struct btrfs_fs_info * fs_info,u64 bytenr,int mirror_num,struct extent_buffer ** eb)1015 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1016 int mirror_num, struct extent_buffer **eb)
1017 {
1018 struct extent_buffer *buf = NULL;
1019 struct inode *btree_inode = fs_info->btree_inode;
1020 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1021 int ret;
1022
1023 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1024 if (IS_ERR(buf))
1025 return 0;
1026
1027 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1028
1029 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1030 mirror_num);
1031 if (ret) {
1032 free_extent_buffer(buf);
1033 return ret;
1034 }
1035
1036 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1037 free_extent_buffer(buf);
1038 return -EIO;
1039 } else if (extent_buffer_uptodate(buf)) {
1040 *eb = buf;
1041 } else {
1042 free_extent_buffer(buf);
1043 }
1044 return 0;
1045 }
1046
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1047 struct extent_buffer *btrfs_find_create_tree_block(
1048 struct btrfs_fs_info *fs_info,
1049 u64 bytenr)
1050 {
1051 if (btrfs_is_testing(fs_info))
1052 return alloc_test_extent_buffer(fs_info, bytenr);
1053 return alloc_extent_buffer(fs_info, bytenr);
1054 }
1055
1056
btrfs_write_tree_block(struct extent_buffer * buf)1057 int btrfs_write_tree_block(struct extent_buffer *buf)
1058 {
1059 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1060 buf->start + buf->len - 1);
1061 }
1062
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)1063 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1064 {
1065 filemap_fdatawait_range(buf->pages[0]->mapping,
1066 buf->start, buf->start + buf->len - 1);
1067 }
1068
1069 /*
1070 * Read tree block at logical address @bytenr and do variant basic but critical
1071 * verification.
1072 *
1073 * @parent_transid: expected transid of this tree block, skip check if 0
1074 * @level: expected level, mandatory check
1075 * @first_key: expected key in slot 0, skip check if NULL
1076 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)1077 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1078 u64 parent_transid, int level,
1079 struct btrfs_key *first_key)
1080 {
1081 struct extent_buffer *buf = NULL;
1082 int ret;
1083
1084 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1085 if (IS_ERR(buf))
1086 return buf;
1087
1088 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1089 level, first_key);
1090 if (ret) {
1091 free_extent_buffer(buf);
1092 return ERR_PTR(ret);
1093 }
1094 return buf;
1095
1096 }
1097
clean_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf)1098 void clean_tree_block(struct btrfs_fs_info *fs_info,
1099 struct extent_buffer *buf)
1100 {
1101 if (btrfs_header_generation(buf) ==
1102 fs_info->running_transaction->transid) {
1103 btrfs_assert_tree_locked(buf);
1104
1105 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1107 -buf->len,
1108 fs_info->dirty_metadata_batch);
1109 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1110 btrfs_set_lock_blocking(buf);
1111 clear_extent_buffer_dirty(buf);
1112 }
1113 }
1114 }
1115
btrfs_alloc_subvolume_writers(void)1116 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1117 {
1118 struct btrfs_subvolume_writers *writers;
1119 int ret;
1120
1121 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1122 if (!writers)
1123 return ERR_PTR(-ENOMEM);
1124
1125 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1126 if (ret < 0) {
1127 kfree(writers);
1128 return ERR_PTR(ret);
1129 }
1130
1131 init_waitqueue_head(&writers->wait);
1132 return writers;
1133 }
1134
1135 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1136 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1137 {
1138 percpu_counter_destroy(&writers->counter);
1139 kfree(writers);
1140 }
1141
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1142 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1143 u64 objectid)
1144 {
1145 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1146 root->node = NULL;
1147 root->commit_root = NULL;
1148 root->state = 0;
1149 root->orphan_cleanup_state = 0;
1150
1151 root->objectid = objectid;
1152 root->last_trans = 0;
1153 root->highest_objectid = 0;
1154 root->nr_delalloc_inodes = 0;
1155 root->nr_ordered_extents = 0;
1156 root->inode_tree = RB_ROOT;
1157 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1158 root->block_rsv = NULL;
1159
1160 INIT_LIST_HEAD(&root->dirty_list);
1161 INIT_LIST_HEAD(&root->root_list);
1162 INIT_LIST_HEAD(&root->delalloc_inodes);
1163 INIT_LIST_HEAD(&root->delalloc_root);
1164 INIT_LIST_HEAD(&root->ordered_extents);
1165 INIT_LIST_HEAD(&root->ordered_root);
1166 INIT_LIST_HEAD(&root->logged_list[0]);
1167 INIT_LIST_HEAD(&root->logged_list[1]);
1168 spin_lock_init(&root->inode_lock);
1169 spin_lock_init(&root->delalloc_lock);
1170 spin_lock_init(&root->ordered_extent_lock);
1171 spin_lock_init(&root->accounting_lock);
1172 spin_lock_init(&root->log_extents_lock[0]);
1173 spin_lock_init(&root->log_extents_lock[1]);
1174 spin_lock_init(&root->qgroup_meta_rsv_lock);
1175 mutex_init(&root->objectid_mutex);
1176 mutex_init(&root->log_mutex);
1177 mutex_init(&root->ordered_extent_mutex);
1178 mutex_init(&root->delalloc_mutex);
1179 init_waitqueue_head(&root->log_writer_wait);
1180 init_waitqueue_head(&root->log_commit_wait[0]);
1181 init_waitqueue_head(&root->log_commit_wait[1]);
1182 INIT_LIST_HEAD(&root->log_ctxs[0]);
1183 INIT_LIST_HEAD(&root->log_ctxs[1]);
1184 atomic_set(&root->log_commit[0], 0);
1185 atomic_set(&root->log_commit[1], 0);
1186 atomic_set(&root->log_writers, 0);
1187 atomic_set(&root->log_batch, 0);
1188 refcount_set(&root->refs, 1);
1189 atomic_set(&root->will_be_snapshotted, 0);
1190 atomic_set(&root->snapshot_force_cow, 0);
1191 root->log_transid = 0;
1192 root->log_transid_committed = -1;
1193 root->last_log_commit = 0;
1194 if (!dummy)
1195 extent_io_tree_init(&root->dirty_log_pages, NULL);
1196
1197 memset(&root->root_key, 0, sizeof(root->root_key));
1198 memset(&root->root_item, 0, sizeof(root->root_item));
1199 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1200 if (!dummy)
1201 root->defrag_trans_start = fs_info->generation;
1202 else
1203 root->defrag_trans_start = 0;
1204 root->root_key.objectid = objectid;
1205 root->anon_dev = 0;
1206
1207 spin_lock_init(&root->root_item_lock);
1208 }
1209
btrfs_alloc_root(struct btrfs_fs_info * fs_info,gfp_t flags)1210 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1211 gfp_t flags)
1212 {
1213 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1214 if (root)
1215 root->fs_info = fs_info;
1216 return root;
1217 }
1218
1219 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1220 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1221 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1222 {
1223 struct btrfs_root *root;
1224
1225 if (!fs_info)
1226 return ERR_PTR(-EINVAL);
1227
1228 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1229 if (!root)
1230 return ERR_PTR(-ENOMEM);
1231
1232 /* We don't use the stripesize in selftest, set it as sectorsize */
1233 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1234 root->alloc_bytenr = 0;
1235
1236 return root;
1237 }
1238 #endif
1239
btrfs_create_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 objectid)1240 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1241 struct btrfs_fs_info *fs_info,
1242 u64 objectid)
1243 {
1244 struct extent_buffer *leaf;
1245 struct btrfs_root *tree_root = fs_info->tree_root;
1246 struct btrfs_root *root;
1247 struct btrfs_key key;
1248 int ret = 0;
1249 uuid_le uuid = NULL_UUID_LE;
1250
1251 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1252 if (!root)
1253 return ERR_PTR(-ENOMEM);
1254
1255 __setup_root(root, fs_info, objectid);
1256 root->root_key.objectid = objectid;
1257 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1258 root->root_key.offset = 0;
1259
1260 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1261 if (IS_ERR(leaf)) {
1262 ret = PTR_ERR(leaf);
1263 leaf = NULL;
1264 goto fail;
1265 }
1266
1267 root->node = leaf;
1268 btrfs_mark_buffer_dirty(leaf);
1269
1270 root->commit_root = btrfs_root_node(root);
1271 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1272
1273 root->root_item.flags = 0;
1274 root->root_item.byte_limit = 0;
1275 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1276 btrfs_set_root_generation(&root->root_item, trans->transid);
1277 btrfs_set_root_level(&root->root_item, 0);
1278 btrfs_set_root_refs(&root->root_item, 1);
1279 btrfs_set_root_used(&root->root_item, leaf->len);
1280 btrfs_set_root_last_snapshot(&root->root_item, 0);
1281 btrfs_set_root_dirid(&root->root_item, 0);
1282 if (is_fstree(objectid))
1283 uuid_le_gen(&uuid);
1284 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1285 root->root_item.drop_level = 0;
1286
1287 key.objectid = objectid;
1288 key.type = BTRFS_ROOT_ITEM_KEY;
1289 key.offset = 0;
1290 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1291 if (ret)
1292 goto fail;
1293
1294 btrfs_tree_unlock(leaf);
1295
1296 return root;
1297
1298 fail:
1299 if (leaf) {
1300 btrfs_tree_unlock(leaf);
1301 free_extent_buffer(root->commit_root);
1302 free_extent_buffer(leaf);
1303 }
1304 kfree(root);
1305
1306 return ERR_PTR(ret);
1307 }
1308
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1309 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1310 struct btrfs_fs_info *fs_info)
1311 {
1312 struct btrfs_root *root;
1313 struct extent_buffer *leaf;
1314
1315 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1316 if (!root)
1317 return ERR_PTR(-ENOMEM);
1318
1319 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1320
1321 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1322 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1324
1325 /*
1326 * DON'T set REF_COWS for log trees
1327 *
1328 * log trees do not get reference counted because they go away
1329 * before a real commit is actually done. They do store pointers
1330 * to file data extents, and those reference counts still get
1331 * updated (along with back refs to the log tree).
1332 */
1333
1334 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1335 NULL, 0, 0, 0);
1336 if (IS_ERR(leaf)) {
1337 kfree(root);
1338 return ERR_CAST(leaf);
1339 }
1340
1341 root->node = leaf;
1342
1343 btrfs_mark_buffer_dirty(root->node);
1344 btrfs_tree_unlock(root->node);
1345 return root;
1346 }
1347
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1348 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1349 struct btrfs_fs_info *fs_info)
1350 {
1351 struct btrfs_root *log_root;
1352
1353 log_root = alloc_log_tree(trans, fs_info);
1354 if (IS_ERR(log_root))
1355 return PTR_ERR(log_root);
1356 WARN_ON(fs_info->log_root_tree);
1357 fs_info->log_root_tree = log_root;
1358 return 0;
1359 }
1360
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1361 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root)
1363 {
1364 struct btrfs_fs_info *fs_info = root->fs_info;
1365 struct btrfs_root *log_root;
1366 struct btrfs_inode_item *inode_item;
1367
1368 log_root = alloc_log_tree(trans, fs_info);
1369 if (IS_ERR(log_root))
1370 return PTR_ERR(log_root);
1371
1372 log_root->last_trans = trans->transid;
1373 log_root->root_key.offset = root->root_key.objectid;
1374
1375 inode_item = &log_root->root_item.inode;
1376 btrfs_set_stack_inode_generation(inode_item, 1);
1377 btrfs_set_stack_inode_size(inode_item, 3);
1378 btrfs_set_stack_inode_nlink(inode_item, 1);
1379 btrfs_set_stack_inode_nbytes(inode_item,
1380 fs_info->nodesize);
1381 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1382
1383 btrfs_set_root_node(&log_root->root_item, log_root->node);
1384
1385 WARN_ON(root->log_root);
1386 root->log_root = log_root;
1387 root->log_transid = 0;
1388 root->log_transid_committed = -1;
1389 root->last_log_commit = 0;
1390 return 0;
1391 }
1392
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1393 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1394 struct btrfs_key *key)
1395 {
1396 struct btrfs_root *root;
1397 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1398 struct btrfs_path *path;
1399 u64 generation;
1400 int ret;
1401 int level;
1402
1403 path = btrfs_alloc_path();
1404 if (!path)
1405 return ERR_PTR(-ENOMEM);
1406
1407 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1408 if (!root) {
1409 ret = -ENOMEM;
1410 goto alloc_fail;
1411 }
1412
1413 __setup_root(root, fs_info, key->objectid);
1414
1415 ret = btrfs_find_root(tree_root, key, path,
1416 &root->root_item, &root->root_key);
1417 if (ret) {
1418 if (ret > 0)
1419 ret = -ENOENT;
1420 goto find_fail;
1421 }
1422
1423 generation = btrfs_root_generation(&root->root_item);
1424 level = btrfs_root_level(&root->root_item);
1425 root->node = read_tree_block(fs_info,
1426 btrfs_root_bytenr(&root->root_item),
1427 generation, level, NULL);
1428 if (IS_ERR(root->node)) {
1429 ret = PTR_ERR(root->node);
1430 goto find_fail;
1431 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1432 ret = -EIO;
1433 free_extent_buffer(root->node);
1434 goto find_fail;
1435 }
1436 root->commit_root = btrfs_root_node(root);
1437 out:
1438 btrfs_free_path(path);
1439 return root;
1440
1441 find_fail:
1442 kfree(root);
1443 alloc_fail:
1444 root = ERR_PTR(ret);
1445 goto out;
1446 }
1447
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1448 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1449 struct btrfs_key *location)
1450 {
1451 struct btrfs_root *root;
1452
1453 root = btrfs_read_tree_root(tree_root, location);
1454 if (IS_ERR(root))
1455 return root;
1456
1457 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1458 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1459 btrfs_check_and_init_root_item(&root->root_item);
1460 }
1461
1462 return root;
1463 }
1464
btrfs_init_fs_root(struct btrfs_root * root)1465 int btrfs_init_fs_root(struct btrfs_root *root)
1466 {
1467 int ret;
1468 struct btrfs_subvolume_writers *writers;
1469
1470 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1471 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1472 GFP_NOFS);
1473 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1474 ret = -ENOMEM;
1475 goto fail;
1476 }
1477
1478 writers = btrfs_alloc_subvolume_writers();
1479 if (IS_ERR(writers)) {
1480 ret = PTR_ERR(writers);
1481 goto fail;
1482 }
1483 root->subv_writers = writers;
1484
1485 btrfs_init_free_ino_ctl(root);
1486 spin_lock_init(&root->ino_cache_lock);
1487 init_waitqueue_head(&root->ino_cache_wait);
1488
1489 ret = get_anon_bdev(&root->anon_dev);
1490 if (ret)
1491 goto fail;
1492
1493 mutex_lock(&root->objectid_mutex);
1494 ret = btrfs_find_highest_objectid(root,
1495 &root->highest_objectid);
1496 if (ret) {
1497 mutex_unlock(&root->objectid_mutex);
1498 goto fail;
1499 }
1500
1501 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1502
1503 mutex_unlock(&root->objectid_mutex);
1504
1505 return 0;
1506 fail:
1507 /* The caller is responsible to call btrfs_free_fs_root */
1508 return ret;
1509 }
1510
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1511 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1512 u64 root_id)
1513 {
1514 struct btrfs_root *root;
1515
1516 spin_lock(&fs_info->fs_roots_radix_lock);
1517 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1518 (unsigned long)root_id);
1519 spin_unlock(&fs_info->fs_roots_radix_lock);
1520 return root;
1521 }
1522
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1523 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1524 struct btrfs_root *root)
1525 {
1526 int ret;
1527
1528 ret = radix_tree_preload(GFP_NOFS);
1529 if (ret)
1530 return ret;
1531
1532 spin_lock(&fs_info->fs_roots_radix_lock);
1533 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1534 (unsigned long)root->root_key.objectid,
1535 root);
1536 if (ret == 0)
1537 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1538 spin_unlock(&fs_info->fs_roots_radix_lock);
1539 radix_tree_preload_end();
1540
1541 return ret;
1542 }
1543
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1544 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1545 struct btrfs_key *location,
1546 bool check_ref)
1547 {
1548 struct btrfs_root *root;
1549 struct btrfs_path *path;
1550 struct btrfs_key key;
1551 int ret;
1552
1553 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1554 return fs_info->tree_root;
1555 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1556 return fs_info->extent_root;
1557 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1558 return fs_info->chunk_root;
1559 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1560 return fs_info->dev_root;
1561 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1562 return fs_info->csum_root;
1563 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1564 return fs_info->quota_root ? fs_info->quota_root :
1565 ERR_PTR(-ENOENT);
1566 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1567 return fs_info->uuid_root ? fs_info->uuid_root :
1568 ERR_PTR(-ENOENT);
1569 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1570 return fs_info->free_space_root ? fs_info->free_space_root :
1571 ERR_PTR(-ENOENT);
1572 again:
1573 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1574 if (root) {
1575 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1576 return ERR_PTR(-ENOENT);
1577 return root;
1578 }
1579
1580 root = btrfs_read_fs_root(fs_info->tree_root, location);
1581 if (IS_ERR(root))
1582 return root;
1583
1584 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1585 ret = -ENOENT;
1586 goto fail;
1587 }
1588
1589 ret = btrfs_init_fs_root(root);
1590 if (ret)
1591 goto fail;
1592
1593 path = btrfs_alloc_path();
1594 if (!path) {
1595 ret = -ENOMEM;
1596 goto fail;
1597 }
1598 key.objectid = BTRFS_ORPHAN_OBJECTID;
1599 key.type = BTRFS_ORPHAN_ITEM_KEY;
1600 key.offset = location->objectid;
1601
1602 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1603 btrfs_free_path(path);
1604 if (ret < 0)
1605 goto fail;
1606 if (ret == 0)
1607 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1608
1609 ret = btrfs_insert_fs_root(fs_info, root);
1610 if (ret) {
1611 if (ret == -EEXIST) {
1612 btrfs_free_fs_root(root);
1613 goto again;
1614 }
1615 goto fail;
1616 }
1617 return root;
1618 fail:
1619 btrfs_free_fs_root(root);
1620 return ERR_PTR(ret);
1621 }
1622
btrfs_congested_fn(void * congested_data,int bdi_bits)1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1624 {
1625 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1626 int ret = 0;
1627 struct btrfs_device *device;
1628 struct backing_dev_info *bdi;
1629
1630 rcu_read_lock();
1631 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1632 if (!device->bdev)
1633 continue;
1634 bdi = device->bdev->bd_bdi;
1635 if (bdi_congested(bdi, bdi_bits)) {
1636 ret = 1;
1637 break;
1638 }
1639 }
1640 rcu_read_unlock();
1641 return ret;
1642 }
1643
1644 /*
1645 * called by the kthread helper functions to finally call the bio end_io
1646 * functions. This is where read checksum verification actually happens
1647 */
end_workqueue_fn(struct btrfs_work * work)1648 static void end_workqueue_fn(struct btrfs_work *work)
1649 {
1650 struct bio *bio;
1651 struct btrfs_end_io_wq *end_io_wq;
1652
1653 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1654 bio = end_io_wq->bio;
1655
1656 bio->bi_status = end_io_wq->status;
1657 bio->bi_private = end_io_wq->private;
1658 bio->bi_end_io = end_io_wq->end_io;
1659 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1660 bio_endio(bio);
1661 }
1662
cleaner_kthread(void * arg)1663 static int cleaner_kthread(void *arg)
1664 {
1665 struct btrfs_root *root = arg;
1666 struct btrfs_fs_info *fs_info = root->fs_info;
1667 int again;
1668 struct btrfs_trans_handle *trans;
1669
1670 do {
1671 again = 0;
1672
1673 /* Make the cleaner go to sleep early. */
1674 if (btrfs_need_cleaner_sleep(fs_info))
1675 goto sleep;
1676
1677 /*
1678 * Do not do anything if we might cause open_ctree() to block
1679 * before we have finished mounting the filesystem.
1680 */
1681 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1682 goto sleep;
1683
1684 if (!mutex_trylock(&fs_info->cleaner_mutex))
1685 goto sleep;
1686
1687 /*
1688 * Avoid the problem that we change the status of the fs
1689 * during the above check and trylock.
1690 */
1691 if (btrfs_need_cleaner_sleep(fs_info)) {
1692 mutex_unlock(&fs_info->cleaner_mutex);
1693 goto sleep;
1694 }
1695
1696 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1697 btrfs_run_delayed_iputs(fs_info);
1698 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1699
1700 again = btrfs_clean_one_deleted_snapshot(root);
1701 mutex_unlock(&fs_info->cleaner_mutex);
1702
1703 /*
1704 * The defragger has dealt with the R/O remount and umount,
1705 * needn't do anything special here.
1706 */
1707 btrfs_run_defrag_inodes(fs_info);
1708
1709 /*
1710 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711 * with relocation (btrfs_relocate_chunk) and relocation
1712 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715 * unused block groups.
1716 */
1717 btrfs_delete_unused_bgs(fs_info);
1718 sleep:
1719 if (!again) {
1720 set_current_state(TASK_INTERRUPTIBLE);
1721 if (!kthread_should_stop())
1722 schedule();
1723 __set_current_state(TASK_RUNNING);
1724 }
1725 } while (!kthread_should_stop());
1726
1727 /*
1728 * Transaction kthread is stopped before us and wakes us up.
1729 * However we might have started a new transaction and COWed some
1730 * tree blocks when deleting unused block groups for example. So
1731 * make sure we commit the transaction we started to have a clean
1732 * shutdown when evicting the btree inode - if it has dirty pages
1733 * when we do the final iput() on it, eviction will trigger a
1734 * writeback for it which will fail with null pointer dereferences
1735 * since work queues and other resources were already released and
1736 * destroyed by the time the iput/eviction/writeback is made.
1737 */
1738 trans = btrfs_attach_transaction(root);
1739 if (IS_ERR(trans)) {
1740 if (PTR_ERR(trans) != -ENOENT)
1741 btrfs_err(fs_info,
1742 "cleaner transaction attach returned %ld",
1743 PTR_ERR(trans));
1744 } else {
1745 int ret;
1746
1747 ret = btrfs_commit_transaction(trans);
1748 if (ret)
1749 btrfs_err(fs_info,
1750 "cleaner open transaction commit returned %d",
1751 ret);
1752 }
1753
1754 return 0;
1755 }
1756
transaction_kthread(void * arg)1757 static int transaction_kthread(void *arg)
1758 {
1759 struct btrfs_root *root = arg;
1760 struct btrfs_fs_info *fs_info = root->fs_info;
1761 struct btrfs_trans_handle *trans;
1762 struct btrfs_transaction *cur;
1763 u64 transid;
1764 time64_t now;
1765 unsigned long delay;
1766 bool cannot_commit;
1767
1768 do {
1769 cannot_commit = false;
1770 delay = HZ * fs_info->commit_interval;
1771 mutex_lock(&fs_info->transaction_kthread_mutex);
1772
1773 spin_lock(&fs_info->trans_lock);
1774 cur = fs_info->running_transaction;
1775 if (!cur) {
1776 spin_unlock(&fs_info->trans_lock);
1777 goto sleep;
1778 }
1779
1780 now = ktime_get_seconds();
1781 if (cur->state < TRANS_STATE_BLOCKED &&
1782 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1783 (now < cur->start_time ||
1784 now - cur->start_time < fs_info->commit_interval)) {
1785 spin_unlock(&fs_info->trans_lock);
1786 delay = HZ * 5;
1787 goto sleep;
1788 }
1789 transid = cur->transid;
1790 spin_unlock(&fs_info->trans_lock);
1791
1792 /* If the file system is aborted, this will always fail. */
1793 trans = btrfs_attach_transaction(root);
1794 if (IS_ERR(trans)) {
1795 if (PTR_ERR(trans) != -ENOENT)
1796 cannot_commit = true;
1797 goto sleep;
1798 }
1799 if (transid == trans->transid) {
1800 btrfs_commit_transaction(trans);
1801 } else {
1802 btrfs_end_transaction(trans);
1803 }
1804 sleep:
1805 wake_up_process(fs_info->cleaner_kthread);
1806 mutex_unlock(&fs_info->transaction_kthread_mutex);
1807
1808 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1809 &fs_info->fs_state)))
1810 btrfs_cleanup_transaction(fs_info);
1811 if (!kthread_should_stop() &&
1812 (!btrfs_transaction_blocked(fs_info) ||
1813 cannot_commit))
1814 schedule_timeout_interruptible(delay);
1815 } while (!kthread_should_stop());
1816 return 0;
1817 }
1818
1819 /*
1820 * this will find the highest generation in the array of
1821 * root backups. The index of the highest array is returned,
1822 * or -1 if we can't find anything.
1823 *
1824 * We check to make sure the array is valid by comparing the
1825 * generation of the latest root in the array with the generation
1826 * in the super block. If they don't match we pitch it.
1827 */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1828 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1829 {
1830 u64 cur;
1831 int newest_index = -1;
1832 struct btrfs_root_backup *root_backup;
1833 int i;
1834
1835 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1836 root_backup = info->super_copy->super_roots + i;
1837 cur = btrfs_backup_tree_root_gen(root_backup);
1838 if (cur == newest_gen)
1839 newest_index = i;
1840 }
1841
1842 /* check to see if we actually wrapped around */
1843 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1844 root_backup = info->super_copy->super_roots;
1845 cur = btrfs_backup_tree_root_gen(root_backup);
1846 if (cur == newest_gen)
1847 newest_index = 0;
1848 }
1849 return newest_index;
1850 }
1851
1852
1853 /*
1854 * find the oldest backup so we know where to store new entries
1855 * in the backup array. This will set the backup_root_index
1856 * field in the fs_info struct
1857 */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1858 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1859 u64 newest_gen)
1860 {
1861 int newest_index = -1;
1862
1863 newest_index = find_newest_super_backup(info, newest_gen);
1864 /* if there was garbage in there, just move along */
1865 if (newest_index == -1) {
1866 info->backup_root_index = 0;
1867 } else {
1868 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1869 }
1870 }
1871
1872 /*
1873 * copy all the root pointers into the super backup array.
1874 * this will bump the backup pointer by one when it is
1875 * done
1876 */
backup_super_roots(struct btrfs_fs_info * info)1877 static void backup_super_roots(struct btrfs_fs_info *info)
1878 {
1879 int next_backup;
1880 struct btrfs_root_backup *root_backup;
1881 int last_backup;
1882
1883 next_backup = info->backup_root_index;
1884 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1885 BTRFS_NUM_BACKUP_ROOTS;
1886
1887 /*
1888 * just overwrite the last backup if we're at the same generation
1889 * this happens only at umount
1890 */
1891 root_backup = info->super_for_commit->super_roots + last_backup;
1892 if (btrfs_backup_tree_root_gen(root_backup) ==
1893 btrfs_header_generation(info->tree_root->node))
1894 next_backup = last_backup;
1895
1896 root_backup = info->super_for_commit->super_roots + next_backup;
1897
1898 /*
1899 * make sure all of our padding and empty slots get zero filled
1900 * regardless of which ones we use today
1901 */
1902 memset(root_backup, 0, sizeof(*root_backup));
1903
1904 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905
1906 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1907 btrfs_set_backup_tree_root_gen(root_backup,
1908 btrfs_header_generation(info->tree_root->node));
1909
1910 btrfs_set_backup_tree_root_level(root_backup,
1911 btrfs_header_level(info->tree_root->node));
1912
1913 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1914 btrfs_set_backup_chunk_root_gen(root_backup,
1915 btrfs_header_generation(info->chunk_root->node));
1916 btrfs_set_backup_chunk_root_level(root_backup,
1917 btrfs_header_level(info->chunk_root->node));
1918
1919 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1920 btrfs_set_backup_extent_root_gen(root_backup,
1921 btrfs_header_generation(info->extent_root->node));
1922 btrfs_set_backup_extent_root_level(root_backup,
1923 btrfs_header_level(info->extent_root->node));
1924
1925 /*
1926 * we might commit during log recovery, which happens before we set
1927 * the fs_root. Make sure it is valid before we fill it in.
1928 */
1929 if (info->fs_root && info->fs_root->node) {
1930 btrfs_set_backup_fs_root(root_backup,
1931 info->fs_root->node->start);
1932 btrfs_set_backup_fs_root_gen(root_backup,
1933 btrfs_header_generation(info->fs_root->node));
1934 btrfs_set_backup_fs_root_level(root_backup,
1935 btrfs_header_level(info->fs_root->node));
1936 }
1937
1938 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1939 btrfs_set_backup_dev_root_gen(root_backup,
1940 btrfs_header_generation(info->dev_root->node));
1941 btrfs_set_backup_dev_root_level(root_backup,
1942 btrfs_header_level(info->dev_root->node));
1943
1944 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1945 btrfs_set_backup_csum_root_gen(root_backup,
1946 btrfs_header_generation(info->csum_root->node));
1947 btrfs_set_backup_csum_root_level(root_backup,
1948 btrfs_header_level(info->csum_root->node));
1949
1950 btrfs_set_backup_total_bytes(root_backup,
1951 btrfs_super_total_bytes(info->super_copy));
1952 btrfs_set_backup_bytes_used(root_backup,
1953 btrfs_super_bytes_used(info->super_copy));
1954 btrfs_set_backup_num_devices(root_backup,
1955 btrfs_super_num_devices(info->super_copy));
1956
1957 /*
1958 * if we don't copy this out to the super_copy, it won't get remembered
1959 * for the next commit
1960 */
1961 memcpy(&info->super_copy->super_roots,
1962 &info->super_for_commit->super_roots,
1963 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1964 }
1965
1966 /*
1967 * this copies info out of the root backup array and back into
1968 * the in-memory super block. It is meant to help iterate through
1969 * the array, so you send it the number of backups you've already
1970 * tried and the last backup index you used.
1971 *
1972 * this returns -1 when it has tried all the backups
1973 */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)1974 static noinline int next_root_backup(struct btrfs_fs_info *info,
1975 struct btrfs_super_block *super,
1976 int *num_backups_tried, int *backup_index)
1977 {
1978 struct btrfs_root_backup *root_backup;
1979 int newest = *backup_index;
1980
1981 if (*num_backups_tried == 0) {
1982 u64 gen = btrfs_super_generation(super);
1983
1984 newest = find_newest_super_backup(info, gen);
1985 if (newest == -1)
1986 return -1;
1987
1988 *backup_index = newest;
1989 *num_backups_tried = 1;
1990 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1991 /* we've tried all the backups, all done */
1992 return -1;
1993 } else {
1994 /* jump to the next oldest backup */
1995 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1996 BTRFS_NUM_BACKUP_ROOTS;
1997 *backup_index = newest;
1998 *num_backups_tried += 1;
1999 }
2000 root_backup = super->super_roots + newest;
2001
2002 btrfs_set_super_generation(super,
2003 btrfs_backup_tree_root_gen(root_backup));
2004 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2005 btrfs_set_super_root_level(super,
2006 btrfs_backup_tree_root_level(root_backup));
2007 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2008
2009 /*
2010 * fixme: the total bytes and num_devices need to match or we should
2011 * need a fsck
2012 */
2013 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2014 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2015 return 0;
2016 }
2017
2018 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2019 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2020 {
2021 btrfs_destroy_workqueue(fs_info->fixup_workers);
2022 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2023 btrfs_destroy_workqueue(fs_info->workers);
2024 btrfs_destroy_workqueue(fs_info->endio_workers);
2025 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2026 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2027 btrfs_destroy_workqueue(fs_info->rmw_workers);
2028 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2029 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2030 btrfs_destroy_workqueue(fs_info->submit_workers);
2031 btrfs_destroy_workqueue(fs_info->delayed_workers);
2032 btrfs_destroy_workqueue(fs_info->caching_workers);
2033 btrfs_destroy_workqueue(fs_info->readahead_workers);
2034 btrfs_destroy_workqueue(fs_info->flush_workers);
2035 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2036 btrfs_destroy_workqueue(fs_info->extent_workers);
2037 /*
2038 * Now that all other work queues are destroyed, we can safely destroy
2039 * the queues used for metadata I/O, since tasks from those other work
2040 * queues can do metadata I/O operations.
2041 */
2042 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2043 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2044 }
2045
free_root_extent_buffers(struct btrfs_root * root)2046 static void free_root_extent_buffers(struct btrfs_root *root)
2047 {
2048 if (root) {
2049 free_extent_buffer(root->node);
2050 free_extent_buffer(root->commit_root);
2051 root->node = NULL;
2052 root->commit_root = NULL;
2053 }
2054 }
2055
2056 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,int chunk_root)2057 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2058 {
2059 free_root_extent_buffers(info->tree_root);
2060
2061 free_root_extent_buffers(info->dev_root);
2062 free_root_extent_buffers(info->extent_root);
2063 free_root_extent_buffers(info->csum_root);
2064 free_root_extent_buffers(info->quota_root);
2065 free_root_extent_buffers(info->uuid_root);
2066 if (chunk_root)
2067 free_root_extent_buffers(info->chunk_root);
2068 free_root_extent_buffers(info->free_space_root);
2069 }
2070
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2071 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2072 {
2073 int ret;
2074 struct btrfs_root *gang[8];
2075 int i;
2076
2077 while (!list_empty(&fs_info->dead_roots)) {
2078 gang[0] = list_entry(fs_info->dead_roots.next,
2079 struct btrfs_root, root_list);
2080 list_del(&gang[0]->root_list);
2081
2082 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2083 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2084 } else {
2085 free_extent_buffer(gang[0]->node);
2086 free_extent_buffer(gang[0]->commit_root);
2087 btrfs_put_fs_root(gang[0]);
2088 }
2089 }
2090
2091 while (1) {
2092 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2093 (void **)gang, 0,
2094 ARRAY_SIZE(gang));
2095 if (!ret)
2096 break;
2097 for (i = 0; i < ret; i++)
2098 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2099 }
2100
2101 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2102 btrfs_free_log_root_tree(NULL, fs_info);
2103 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2104 }
2105 }
2106
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2107 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2108 {
2109 mutex_init(&fs_info->scrub_lock);
2110 atomic_set(&fs_info->scrubs_running, 0);
2111 atomic_set(&fs_info->scrub_pause_req, 0);
2112 atomic_set(&fs_info->scrubs_paused, 0);
2113 atomic_set(&fs_info->scrub_cancel_req, 0);
2114 init_waitqueue_head(&fs_info->scrub_pause_wait);
2115 fs_info->scrub_workers_refcnt = 0;
2116 }
2117
btrfs_init_balance(struct btrfs_fs_info * fs_info)2118 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2119 {
2120 spin_lock_init(&fs_info->balance_lock);
2121 mutex_init(&fs_info->balance_mutex);
2122 atomic_set(&fs_info->balance_pause_req, 0);
2123 atomic_set(&fs_info->balance_cancel_req, 0);
2124 fs_info->balance_ctl = NULL;
2125 init_waitqueue_head(&fs_info->balance_wait_q);
2126 }
2127
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2128 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2129 {
2130 struct inode *inode = fs_info->btree_inode;
2131
2132 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2133 set_nlink(inode, 1);
2134 /*
2135 * we set the i_size on the btree inode to the max possible int.
2136 * the real end of the address space is determined by all of
2137 * the devices in the system
2138 */
2139 inode->i_size = OFFSET_MAX;
2140 inode->i_mapping->a_ops = &btree_aops;
2141
2142 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2143 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2144 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2145 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2146
2147 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2148
2149 BTRFS_I(inode)->root = fs_info->tree_root;
2150 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2151 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2152 btrfs_insert_inode_hash(inode);
2153 }
2154
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2155 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2156 {
2157 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2158 rwlock_init(&fs_info->dev_replace.lock);
2159 atomic_set(&fs_info->dev_replace.read_locks, 0);
2160 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2161 init_waitqueue_head(&fs_info->replace_wait);
2162 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2163 }
2164
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2165 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2166 {
2167 spin_lock_init(&fs_info->qgroup_lock);
2168 mutex_init(&fs_info->qgroup_ioctl_lock);
2169 fs_info->qgroup_tree = RB_ROOT;
2170 fs_info->qgroup_op_tree = RB_ROOT;
2171 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2172 fs_info->qgroup_seq = 1;
2173 fs_info->qgroup_ulist = NULL;
2174 fs_info->qgroup_rescan_running = false;
2175 mutex_init(&fs_info->qgroup_rescan_lock);
2176 }
2177
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2178 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2179 struct btrfs_fs_devices *fs_devices)
2180 {
2181 u32 max_active = fs_info->thread_pool_size;
2182 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2183
2184 fs_info->workers =
2185 btrfs_alloc_workqueue(fs_info, "worker",
2186 flags | WQ_HIGHPRI, max_active, 16);
2187
2188 fs_info->delalloc_workers =
2189 btrfs_alloc_workqueue(fs_info, "delalloc",
2190 flags, max_active, 2);
2191
2192 fs_info->flush_workers =
2193 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2194 flags, max_active, 0);
2195
2196 fs_info->caching_workers =
2197 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2198
2199 /*
2200 * a higher idle thresh on the submit workers makes it much more
2201 * likely that bios will be send down in a sane order to the
2202 * devices
2203 */
2204 fs_info->submit_workers =
2205 btrfs_alloc_workqueue(fs_info, "submit", flags,
2206 min_t(u64, fs_devices->num_devices,
2207 max_active), 64);
2208
2209 fs_info->fixup_workers =
2210 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2211
2212 /*
2213 * endios are largely parallel and should have a very
2214 * low idle thresh
2215 */
2216 fs_info->endio_workers =
2217 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2218 fs_info->endio_meta_workers =
2219 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2220 max_active, 4);
2221 fs_info->endio_meta_write_workers =
2222 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2223 max_active, 2);
2224 fs_info->endio_raid56_workers =
2225 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2226 max_active, 4);
2227 fs_info->endio_repair_workers =
2228 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2229 fs_info->rmw_workers =
2230 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2231 fs_info->endio_write_workers =
2232 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2233 max_active, 2);
2234 fs_info->endio_freespace_worker =
2235 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2236 max_active, 0);
2237 fs_info->delayed_workers =
2238 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2239 max_active, 0);
2240 fs_info->readahead_workers =
2241 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2242 max_active, 2);
2243 fs_info->qgroup_rescan_workers =
2244 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2245 fs_info->extent_workers =
2246 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2247 min_t(u64, fs_devices->num_devices,
2248 max_active), 8);
2249
2250 if (!(fs_info->workers && fs_info->delalloc_workers &&
2251 fs_info->submit_workers && fs_info->flush_workers &&
2252 fs_info->endio_workers && fs_info->endio_meta_workers &&
2253 fs_info->endio_meta_write_workers &&
2254 fs_info->endio_repair_workers &&
2255 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2256 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2257 fs_info->caching_workers && fs_info->readahead_workers &&
2258 fs_info->fixup_workers && fs_info->delayed_workers &&
2259 fs_info->extent_workers &&
2260 fs_info->qgroup_rescan_workers)) {
2261 return -ENOMEM;
2262 }
2263
2264 return 0;
2265 }
2266
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2267 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2268 struct btrfs_fs_devices *fs_devices)
2269 {
2270 int ret;
2271 struct btrfs_root *log_tree_root;
2272 struct btrfs_super_block *disk_super = fs_info->super_copy;
2273 u64 bytenr = btrfs_super_log_root(disk_super);
2274 int level = btrfs_super_log_root_level(disk_super);
2275
2276 if (fs_devices->rw_devices == 0) {
2277 btrfs_warn(fs_info, "log replay required on RO media");
2278 return -EIO;
2279 }
2280
2281 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2282 if (!log_tree_root)
2283 return -ENOMEM;
2284
2285 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2286
2287 log_tree_root->node = read_tree_block(fs_info, bytenr,
2288 fs_info->generation + 1,
2289 level, NULL);
2290 if (IS_ERR(log_tree_root->node)) {
2291 btrfs_warn(fs_info, "failed to read log tree");
2292 ret = PTR_ERR(log_tree_root->node);
2293 kfree(log_tree_root);
2294 return ret;
2295 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2296 btrfs_err(fs_info, "failed to read log tree");
2297 free_extent_buffer(log_tree_root->node);
2298 kfree(log_tree_root);
2299 return -EIO;
2300 }
2301 /* returns with log_tree_root freed on success */
2302 ret = btrfs_recover_log_trees(log_tree_root);
2303 if (ret) {
2304 btrfs_handle_fs_error(fs_info, ret,
2305 "Failed to recover log tree");
2306 free_extent_buffer(log_tree_root->node);
2307 kfree(log_tree_root);
2308 return ret;
2309 }
2310
2311 if (sb_rdonly(fs_info->sb)) {
2312 ret = btrfs_commit_super(fs_info);
2313 if (ret)
2314 return ret;
2315 }
2316
2317 return 0;
2318 }
2319
btrfs_read_roots(struct btrfs_fs_info * fs_info)2320 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2321 {
2322 struct btrfs_root *tree_root = fs_info->tree_root;
2323 struct btrfs_root *root;
2324 struct btrfs_key location;
2325 int ret;
2326
2327 BUG_ON(!fs_info->tree_root);
2328
2329 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2330 location.type = BTRFS_ROOT_ITEM_KEY;
2331 location.offset = 0;
2332
2333 root = btrfs_read_tree_root(tree_root, &location);
2334 if (IS_ERR(root)) {
2335 ret = PTR_ERR(root);
2336 goto out;
2337 }
2338 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2339 fs_info->extent_root = root;
2340
2341 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2342 root = btrfs_read_tree_root(tree_root, &location);
2343 if (IS_ERR(root)) {
2344 ret = PTR_ERR(root);
2345 goto out;
2346 }
2347 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2348 fs_info->dev_root = root;
2349 btrfs_init_devices_late(fs_info);
2350
2351 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2352 root = btrfs_read_tree_root(tree_root, &location);
2353 if (IS_ERR(root)) {
2354 ret = PTR_ERR(root);
2355 goto out;
2356 }
2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358 fs_info->csum_root = root;
2359
2360 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2361 root = btrfs_read_tree_root(tree_root, &location);
2362 if (!IS_ERR(root)) {
2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2365 fs_info->quota_root = root;
2366 }
2367
2368 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2369 root = btrfs_read_tree_root(tree_root, &location);
2370 if (IS_ERR(root)) {
2371 ret = PTR_ERR(root);
2372 if (ret != -ENOENT)
2373 goto out;
2374 } else {
2375 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376 fs_info->uuid_root = root;
2377 }
2378
2379 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2380 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2381 root = btrfs_read_tree_root(tree_root, &location);
2382 if (IS_ERR(root)) {
2383 ret = PTR_ERR(root);
2384 goto out;
2385 }
2386 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2387 fs_info->free_space_root = root;
2388 }
2389
2390 return 0;
2391 out:
2392 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2393 location.objectid, ret);
2394 return ret;
2395 }
2396
2397 /*
2398 * Real super block validation
2399 * NOTE: super csum type and incompat features will not be checked here.
2400 *
2401 * @sb: super block to check
2402 * @mirror_num: the super block number to check its bytenr:
2403 * 0 the primary (1st) sb
2404 * 1, 2 2nd and 3rd backup copy
2405 * -1 skip bytenr check
2406 */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2407 static int validate_super(struct btrfs_fs_info *fs_info,
2408 struct btrfs_super_block *sb, int mirror_num)
2409 {
2410 u64 nodesize = btrfs_super_nodesize(sb);
2411 u64 sectorsize = btrfs_super_sectorsize(sb);
2412 int ret = 0;
2413
2414 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2415 btrfs_err(fs_info, "no valid FS found");
2416 ret = -EINVAL;
2417 }
2418 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2419 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2420 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2421 ret = -EINVAL;
2422 }
2423 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2424 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2425 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2426 ret = -EINVAL;
2427 }
2428 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2430 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2431 ret = -EINVAL;
2432 }
2433 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2434 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2435 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2436 ret = -EINVAL;
2437 }
2438
2439 /*
2440 * Check sectorsize and nodesize first, other check will need it.
2441 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2442 */
2443 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2444 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2445 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2446 ret = -EINVAL;
2447 }
2448 /* Only PAGE SIZE is supported yet */
2449 if (sectorsize != PAGE_SIZE) {
2450 btrfs_err(fs_info,
2451 "sectorsize %llu not supported yet, only support %lu",
2452 sectorsize, PAGE_SIZE);
2453 ret = -EINVAL;
2454 }
2455 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2456 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2457 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2458 ret = -EINVAL;
2459 }
2460 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2461 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2462 le32_to_cpu(sb->__unused_leafsize), nodesize);
2463 ret = -EINVAL;
2464 }
2465
2466 /* Root alignment check */
2467 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2468 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2469 btrfs_super_root(sb));
2470 ret = -EINVAL;
2471 }
2472 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2473 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2474 btrfs_super_chunk_root(sb));
2475 ret = -EINVAL;
2476 }
2477 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2478 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2479 btrfs_super_log_root(sb));
2480 ret = -EINVAL;
2481 }
2482
2483 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2484 btrfs_err(fs_info,
2485 "dev_item UUID does not match fsid: %pU != %pU",
2486 fs_info->fsid, sb->dev_item.fsid);
2487 ret = -EINVAL;
2488 }
2489
2490 /*
2491 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2492 * done later
2493 */
2494 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2495 btrfs_err(fs_info, "bytes_used is too small %llu",
2496 btrfs_super_bytes_used(sb));
2497 ret = -EINVAL;
2498 }
2499 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2500 btrfs_err(fs_info, "invalid stripesize %u",
2501 btrfs_super_stripesize(sb));
2502 ret = -EINVAL;
2503 }
2504 if (btrfs_super_num_devices(sb) > (1UL << 31))
2505 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2506 btrfs_super_num_devices(sb));
2507 if (btrfs_super_num_devices(sb) == 0) {
2508 btrfs_err(fs_info, "number of devices is 0");
2509 ret = -EINVAL;
2510 }
2511
2512 if (mirror_num >= 0 &&
2513 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2514 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2515 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2516 ret = -EINVAL;
2517 }
2518
2519 /*
2520 * Obvious sys_chunk_array corruptions, it must hold at least one key
2521 * and one chunk
2522 */
2523 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2524 btrfs_err(fs_info, "system chunk array too big %u > %u",
2525 btrfs_super_sys_array_size(sb),
2526 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2527 ret = -EINVAL;
2528 }
2529 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2530 + sizeof(struct btrfs_chunk)) {
2531 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2532 btrfs_super_sys_array_size(sb),
2533 sizeof(struct btrfs_disk_key)
2534 + sizeof(struct btrfs_chunk));
2535 ret = -EINVAL;
2536 }
2537
2538 /*
2539 * The generation is a global counter, we'll trust it more than the others
2540 * but it's still possible that it's the one that's wrong.
2541 */
2542 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2543 btrfs_warn(fs_info,
2544 "suspicious: generation < chunk_root_generation: %llu < %llu",
2545 btrfs_super_generation(sb),
2546 btrfs_super_chunk_root_generation(sb));
2547 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2548 && btrfs_super_cache_generation(sb) != (u64)-1)
2549 btrfs_warn(fs_info,
2550 "suspicious: generation < cache_generation: %llu < %llu",
2551 btrfs_super_generation(sb),
2552 btrfs_super_cache_generation(sb));
2553
2554 return ret;
2555 }
2556
2557 /*
2558 * Validation of super block at mount time.
2559 * Some checks already done early at mount time, like csum type and incompat
2560 * flags will be skipped.
2561 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2562 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2563 {
2564 return validate_super(fs_info, fs_info->super_copy, 0);
2565 }
2566
2567 /*
2568 * Validation of super block at write time.
2569 * Some checks like bytenr check will be skipped as their values will be
2570 * overwritten soon.
2571 * Extra checks like csum type and incompat flags will be done here.
2572 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2573 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2574 struct btrfs_super_block *sb)
2575 {
2576 int ret;
2577
2578 ret = validate_super(fs_info, sb, -1);
2579 if (ret < 0)
2580 goto out;
2581 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2582 ret = -EUCLEAN;
2583 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2584 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2585 goto out;
2586 }
2587 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2588 ret = -EUCLEAN;
2589 btrfs_err(fs_info,
2590 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2591 btrfs_super_incompat_flags(sb),
2592 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2593 goto out;
2594 }
2595 out:
2596 if (ret < 0)
2597 btrfs_err(fs_info,
2598 "super block corruption detected before writing it to disk");
2599 return ret;
2600 }
2601
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2602 int open_ctree(struct super_block *sb,
2603 struct btrfs_fs_devices *fs_devices,
2604 char *options)
2605 {
2606 u32 sectorsize;
2607 u32 nodesize;
2608 u32 stripesize;
2609 u64 generation;
2610 u64 features;
2611 struct btrfs_key location;
2612 struct buffer_head *bh;
2613 struct btrfs_super_block *disk_super;
2614 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2615 struct btrfs_root *tree_root;
2616 struct btrfs_root *chunk_root;
2617 int ret;
2618 int err = -EINVAL;
2619 int num_backups_tried = 0;
2620 int backup_index = 0;
2621 int clear_free_space_tree = 0;
2622 int level;
2623
2624 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2625 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2626 if (!tree_root || !chunk_root) {
2627 err = -ENOMEM;
2628 goto fail;
2629 }
2630
2631 ret = init_srcu_struct(&fs_info->subvol_srcu);
2632 if (ret) {
2633 err = ret;
2634 goto fail;
2635 }
2636
2637 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2638 if (ret) {
2639 err = ret;
2640 goto fail_srcu;
2641 }
2642 fs_info->dirty_metadata_batch = PAGE_SIZE *
2643 (1 + ilog2(nr_cpu_ids));
2644
2645 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2646 if (ret) {
2647 err = ret;
2648 goto fail_dirty_metadata_bytes;
2649 }
2650
2651 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2652 if (ret) {
2653 err = ret;
2654 goto fail_delalloc_bytes;
2655 }
2656
2657 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2658 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2659 INIT_LIST_HEAD(&fs_info->trans_list);
2660 INIT_LIST_HEAD(&fs_info->dead_roots);
2661 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2662 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2663 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2664 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2665 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2666 spin_lock_init(&fs_info->delalloc_root_lock);
2667 spin_lock_init(&fs_info->trans_lock);
2668 spin_lock_init(&fs_info->fs_roots_radix_lock);
2669 spin_lock_init(&fs_info->delayed_iput_lock);
2670 spin_lock_init(&fs_info->defrag_inodes_lock);
2671 spin_lock_init(&fs_info->tree_mod_seq_lock);
2672 spin_lock_init(&fs_info->super_lock);
2673 spin_lock_init(&fs_info->qgroup_op_lock);
2674 spin_lock_init(&fs_info->buffer_lock);
2675 spin_lock_init(&fs_info->unused_bgs_lock);
2676 rwlock_init(&fs_info->tree_mod_log_lock);
2677 mutex_init(&fs_info->unused_bg_unpin_mutex);
2678 mutex_init(&fs_info->delete_unused_bgs_mutex);
2679 mutex_init(&fs_info->reloc_mutex);
2680 mutex_init(&fs_info->delalloc_root_mutex);
2681 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2682 seqlock_init(&fs_info->profiles_lock);
2683
2684 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2685 INIT_LIST_HEAD(&fs_info->space_info);
2686 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2687 INIT_LIST_HEAD(&fs_info->unused_bgs);
2688 btrfs_mapping_init(&fs_info->mapping_tree);
2689 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2690 BTRFS_BLOCK_RSV_GLOBAL);
2691 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2692 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2693 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2694 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2695 BTRFS_BLOCK_RSV_DELOPS);
2696 atomic_set(&fs_info->async_delalloc_pages, 0);
2697 atomic_set(&fs_info->defrag_running, 0);
2698 atomic_set(&fs_info->qgroup_op_seq, 0);
2699 atomic_set(&fs_info->reada_works_cnt, 0);
2700 atomic64_set(&fs_info->tree_mod_seq, 0);
2701 fs_info->sb = sb;
2702 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2703 fs_info->metadata_ratio = 0;
2704 fs_info->defrag_inodes = RB_ROOT;
2705 atomic64_set(&fs_info->free_chunk_space, 0);
2706 fs_info->tree_mod_log = RB_ROOT;
2707 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2708 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2709 /* readahead state */
2710 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2711 spin_lock_init(&fs_info->reada_lock);
2712 btrfs_init_ref_verify(fs_info);
2713
2714 fs_info->thread_pool_size = min_t(unsigned long,
2715 num_online_cpus() + 2, 8);
2716
2717 INIT_LIST_HEAD(&fs_info->ordered_roots);
2718 spin_lock_init(&fs_info->ordered_root_lock);
2719
2720 fs_info->btree_inode = new_inode(sb);
2721 if (!fs_info->btree_inode) {
2722 err = -ENOMEM;
2723 goto fail_bio_counter;
2724 }
2725 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2726
2727 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2728 GFP_KERNEL);
2729 if (!fs_info->delayed_root) {
2730 err = -ENOMEM;
2731 goto fail_iput;
2732 }
2733 btrfs_init_delayed_root(fs_info->delayed_root);
2734
2735 btrfs_init_scrub(fs_info);
2736 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2737 fs_info->check_integrity_print_mask = 0;
2738 #endif
2739 btrfs_init_balance(fs_info);
2740 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2741
2742 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2743 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2744
2745 btrfs_init_btree_inode(fs_info);
2746
2747 spin_lock_init(&fs_info->block_group_cache_lock);
2748 fs_info->block_group_cache_tree = RB_ROOT;
2749 fs_info->first_logical_byte = (u64)-1;
2750
2751 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2752 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2753 fs_info->pinned_extents = &fs_info->freed_extents[0];
2754 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2755
2756 mutex_init(&fs_info->ordered_operations_mutex);
2757 mutex_init(&fs_info->tree_log_mutex);
2758 mutex_init(&fs_info->chunk_mutex);
2759 mutex_init(&fs_info->transaction_kthread_mutex);
2760 mutex_init(&fs_info->cleaner_mutex);
2761 mutex_init(&fs_info->ro_block_group_mutex);
2762 init_rwsem(&fs_info->commit_root_sem);
2763 init_rwsem(&fs_info->cleanup_work_sem);
2764 init_rwsem(&fs_info->subvol_sem);
2765 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2766
2767 btrfs_init_dev_replace_locks(fs_info);
2768 btrfs_init_qgroup(fs_info);
2769
2770 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2771 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2772
2773 init_waitqueue_head(&fs_info->transaction_throttle);
2774 init_waitqueue_head(&fs_info->transaction_wait);
2775 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2776 init_waitqueue_head(&fs_info->async_submit_wait);
2777
2778 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2779
2780 /* Usable values until the real ones are cached from the superblock */
2781 fs_info->nodesize = 4096;
2782 fs_info->sectorsize = 4096;
2783 fs_info->stripesize = 4096;
2784
2785 ret = btrfs_alloc_stripe_hash_table(fs_info);
2786 if (ret) {
2787 err = ret;
2788 goto fail_alloc;
2789 }
2790
2791 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2792
2793 invalidate_bdev(fs_devices->latest_bdev);
2794
2795 /*
2796 * Read super block and check the signature bytes only
2797 */
2798 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2799 if (IS_ERR(bh)) {
2800 err = PTR_ERR(bh);
2801 goto fail_alloc;
2802 }
2803
2804 /*
2805 * We want to check superblock checksum, the type is stored inside.
2806 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2807 */
2808 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2809 btrfs_err(fs_info, "superblock checksum mismatch");
2810 err = -EINVAL;
2811 brelse(bh);
2812 goto fail_alloc;
2813 }
2814
2815 /*
2816 * super_copy is zeroed at allocation time and we never touch the
2817 * following bytes up to INFO_SIZE, the checksum is calculated from
2818 * the whole block of INFO_SIZE
2819 */
2820 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2821 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2822 sizeof(*fs_info->super_for_commit));
2823 brelse(bh);
2824
2825 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2826
2827 ret = btrfs_validate_mount_super(fs_info);
2828 if (ret) {
2829 btrfs_err(fs_info, "superblock contains fatal errors");
2830 err = -EINVAL;
2831 goto fail_alloc;
2832 }
2833
2834 disk_super = fs_info->super_copy;
2835 if (!btrfs_super_root(disk_super))
2836 goto fail_alloc;
2837
2838 /* check FS state, whether FS is broken. */
2839 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2840 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2841
2842 /*
2843 * run through our array of backup supers and setup
2844 * our ring pointer to the oldest one
2845 */
2846 generation = btrfs_super_generation(disk_super);
2847 find_oldest_super_backup(fs_info, generation);
2848
2849 /*
2850 * In the long term, we'll store the compression type in the super
2851 * block, and it'll be used for per file compression control.
2852 */
2853 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2854
2855 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2856 if (ret) {
2857 err = ret;
2858 goto fail_alloc;
2859 }
2860
2861 features = btrfs_super_incompat_flags(disk_super) &
2862 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2863 if (features) {
2864 btrfs_err(fs_info,
2865 "cannot mount because of unsupported optional features (%llx)",
2866 features);
2867 err = -EINVAL;
2868 goto fail_alloc;
2869 }
2870
2871 features = btrfs_super_incompat_flags(disk_super);
2872 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2873 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2874 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2875 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2876 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2877
2878 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2879 btrfs_info(fs_info, "has skinny extents");
2880
2881 /*
2882 * flag our filesystem as having big metadata blocks if
2883 * they are bigger than the page size
2884 */
2885 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2886 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2887 btrfs_info(fs_info,
2888 "flagging fs with big metadata feature");
2889 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2890 }
2891
2892 nodesize = btrfs_super_nodesize(disk_super);
2893 sectorsize = btrfs_super_sectorsize(disk_super);
2894 stripesize = sectorsize;
2895 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2896 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2897
2898 /* Cache block sizes */
2899 fs_info->nodesize = nodesize;
2900 fs_info->sectorsize = sectorsize;
2901 fs_info->stripesize = stripesize;
2902
2903 /*
2904 * mixed block groups end up with duplicate but slightly offset
2905 * extent buffers for the same range. It leads to corruptions
2906 */
2907 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2908 (sectorsize != nodesize)) {
2909 btrfs_err(fs_info,
2910 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2911 nodesize, sectorsize);
2912 goto fail_alloc;
2913 }
2914
2915 /*
2916 * Needn't use the lock because there is no other task which will
2917 * update the flag.
2918 */
2919 btrfs_set_super_incompat_flags(disk_super, features);
2920
2921 features = btrfs_super_compat_ro_flags(disk_super) &
2922 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2923 if (!sb_rdonly(sb) && features) {
2924 btrfs_err(fs_info,
2925 "cannot mount read-write because of unsupported optional features (%llx)",
2926 features);
2927 err = -EINVAL;
2928 goto fail_alloc;
2929 }
2930
2931 ret = btrfs_init_workqueues(fs_info, fs_devices);
2932 if (ret) {
2933 err = ret;
2934 goto fail_sb_buffer;
2935 }
2936
2937 sb->s_bdi->congested_fn = btrfs_congested_fn;
2938 sb->s_bdi->congested_data = fs_info;
2939 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2940 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2941 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2942 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2943
2944 sb->s_blocksize = sectorsize;
2945 sb->s_blocksize_bits = blksize_bits(sectorsize);
2946 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2947
2948 mutex_lock(&fs_info->chunk_mutex);
2949 ret = btrfs_read_sys_array(fs_info);
2950 mutex_unlock(&fs_info->chunk_mutex);
2951 if (ret) {
2952 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2953 goto fail_sb_buffer;
2954 }
2955
2956 generation = btrfs_super_chunk_root_generation(disk_super);
2957 level = btrfs_super_chunk_root_level(disk_super);
2958
2959 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2960
2961 chunk_root->node = read_tree_block(fs_info,
2962 btrfs_super_chunk_root(disk_super),
2963 generation, level, NULL);
2964 if (IS_ERR(chunk_root->node) ||
2965 !extent_buffer_uptodate(chunk_root->node)) {
2966 btrfs_err(fs_info, "failed to read chunk root");
2967 if (!IS_ERR(chunk_root->node))
2968 free_extent_buffer(chunk_root->node);
2969 chunk_root->node = NULL;
2970 goto fail_tree_roots;
2971 }
2972 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2973 chunk_root->commit_root = btrfs_root_node(chunk_root);
2974
2975 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2976 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2977
2978 ret = btrfs_read_chunk_tree(fs_info);
2979 if (ret) {
2980 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2981 goto fail_tree_roots;
2982 }
2983
2984 /*
2985 * Keep the devid that is marked to be the target device for the
2986 * device replace procedure
2987 */
2988 btrfs_free_extra_devids(fs_devices, 0);
2989
2990 if (!fs_devices->latest_bdev) {
2991 btrfs_err(fs_info, "failed to read devices");
2992 goto fail_tree_roots;
2993 }
2994
2995 retry_root_backup:
2996 generation = btrfs_super_generation(disk_super);
2997 level = btrfs_super_root_level(disk_super);
2998
2999 tree_root->node = read_tree_block(fs_info,
3000 btrfs_super_root(disk_super),
3001 generation, level, NULL);
3002 if (IS_ERR(tree_root->node) ||
3003 !extent_buffer_uptodate(tree_root->node)) {
3004 btrfs_warn(fs_info, "failed to read tree root");
3005 if (!IS_ERR(tree_root->node))
3006 free_extent_buffer(tree_root->node);
3007 tree_root->node = NULL;
3008 goto recovery_tree_root;
3009 }
3010
3011 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3012 tree_root->commit_root = btrfs_root_node(tree_root);
3013 btrfs_set_root_refs(&tree_root->root_item, 1);
3014
3015 mutex_lock(&tree_root->objectid_mutex);
3016 ret = btrfs_find_highest_objectid(tree_root,
3017 &tree_root->highest_objectid);
3018 if (ret) {
3019 mutex_unlock(&tree_root->objectid_mutex);
3020 goto recovery_tree_root;
3021 }
3022
3023 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3024
3025 mutex_unlock(&tree_root->objectid_mutex);
3026
3027 ret = btrfs_read_roots(fs_info);
3028 if (ret)
3029 goto recovery_tree_root;
3030
3031 fs_info->generation = generation;
3032 fs_info->last_trans_committed = generation;
3033
3034 ret = btrfs_verify_dev_extents(fs_info);
3035 if (ret) {
3036 btrfs_err(fs_info,
3037 "failed to verify dev extents against chunks: %d",
3038 ret);
3039 goto fail_block_groups;
3040 }
3041 ret = btrfs_recover_balance(fs_info);
3042 if (ret) {
3043 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3044 goto fail_block_groups;
3045 }
3046
3047 ret = btrfs_init_dev_stats(fs_info);
3048 if (ret) {
3049 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3050 goto fail_block_groups;
3051 }
3052
3053 ret = btrfs_init_dev_replace(fs_info);
3054 if (ret) {
3055 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3056 goto fail_block_groups;
3057 }
3058
3059 btrfs_free_extra_devids(fs_devices, 1);
3060
3061 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3062 if (ret) {
3063 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3064 ret);
3065 goto fail_block_groups;
3066 }
3067
3068 ret = btrfs_sysfs_add_device(fs_devices);
3069 if (ret) {
3070 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3071 ret);
3072 goto fail_fsdev_sysfs;
3073 }
3074
3075 ret = btrfs_sysfs_add_mounted(fs_info);
3076 if (ret) {
3077 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3078 goto fail_fsdev_sysfs;
3079 }
3080
3081 ret = btrfs_init_space_info(fs_info);
3082 if (ret) {
3083 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3084 goto fail_sysfs;
3085 }
3086
3087 ret = btrfs_read_block_groups(fs_info);
3088 if (ret) {
3089 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3090 goto fail_sysfs;
3091 }
3092
3093 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3094 btrfs_warn(fs_info,
3095 "writeable mount is not allowed due to too many missing devices");
3096 goto fail_sysfs;
3097 }
3098
3099 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3100 "btrfs-cleaner");
3101 if (IS_ERR(fs_info->cleaner_kthread))
3102 goto fail_sysfs;
3103
3104 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3105 tree_root,
3106 "btrfs-transaction");
3107 if (IS_ERR(fs_info->transaction_kthread))
3108 goto fail_cleaner;
3109
3110 if (!btrfs_test_opt(fs_info, NOSSD) &&
3111 !fs_info->fs_devices->rotating) {
3112 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3113 }
3114
3115 /*
3116 * Mount does not set all options immediately, we can do it now and do
3117 * not have to wait for transaction commit
3118 */
3119 btrfs_apply_pending_changes(fs_info);
3120
3121 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3122 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3123 ret = btrfsic_mount(fs_info, fs_devices,
3124 btrfs_test_opt(fs_info,
3125 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3126 1 : 0,
3127 fs_info->check_integrity_print_mask);
3128 if (ret)
3129 btrfs_warn(fs_info,
3130 "failed to initialize integrity check module: %d",
3131 ret);
3132 }
3133 #endif
3134 ret = btrfs_read_qgroup_config(fs_info);
3135 if (ret)
3136 goto fail_trans_kthread;
3137
3138 if (btrfs_build_ref_tree(fs_info))
3139 btrfs_err(fs_info, "couldn't build ref tree");
3140
3141 /* do not make disk changes in broken FS or nologreplay is given */
3142 if (btrfs_super_log_root(disk_super) != 0 &&
3143 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3144 ret = btrfs_replay_log(fs_info, fs_devices);
3145 if (ret) {
3146 err = ret;
3147 goto fail_qgroup;
3148 }
3149 }
3150
3151 ret = btrfs_find_orphan_roots(fs_info);
3152 if (ret)
3153 goto fail_qgroup;
3154
3155 if (!sb_rdonly(sb)) {
3156 ret = btrfs_cleanup_fs_roots(fs_info);
3157 if (ret)
3158 goto fail_qgroup;
3159
3160 mutex_lock(&fs_info->cleaner_mutex);
3161 ret = btrfs_recover_relocation(tree_root);
3162 mutex_unlock(&fs_info->cleaner_mutex);
3163 if (ret < 0) {
3164 btrfs_warn(fs_info, "failed to recover relocation: %d",
3165 ret);
3166 err = -EINVAL;
3167 goto fail_qgroup;
3168 }
3169 }
3170
3171 location.objectid = BTRFS_FS_TREE_OBJECTID;
3172 location.type = BTRFS_ROOT_ITEM_KEY;
3173 location.offset = 0;
3174
3175 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3176 if (IS_ERR(fs_info->fs_root)) {
3177 err = PTR_ERR(fs_info->fs_root);
3178 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3179 goto fail_qgroup;
3180 }
3181
3182 if (sb_rdonly(sb))
3183 return 0;
3184
3185 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3186 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3187 clear_free_space_tree = 1;
3188 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3189 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3190 btrfs_warn(fs_info, "free space tree is invalid");
3191 clear_free_space_tree = 1;
3192 }
3193
3194 if (clear_free_space_tree) {
3195 btrfs_info(fs_info, "clearing free space tree");
3196 ret = btrfs_clear_free_space_tree(fs_info);
3197 if (ret) {
3198 btrfs_warn(fs_info,
3199 "failed to clear free space tree: %d", ret);
3200 close_ctree(fs_info);
3201 return ret;
3202 }
3203 }
3204
3205 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3206 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3207 btrfs_info(fs_info, "creating free space tree");
3208 ret = btrfs_create_free_space_tree(fs_info);
3209 if (ret) {
3210 btrfs_warn(fs_info,
3211 "failed to create free space tree: %d", ret);
3212 close_ctree(fs_info);
3213 return ret;
3214 }
3215 }
3216
3217 down_read(&fs_info->cleanup_work_sem);
3218 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3219 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3220 up_read(&fs_info->cleanup_work_sem);
3221 close_ctree(fs_info);
3222 return ret;
3223 }
3224 up_read(&fs_info->cleanup_work_sem);
3225
3226 ret = btrfs_resume_balance_async(fs_info);
3227 if (ret) {
3228 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3229 close_ctree(fs_info);
3230 return ret;
3231 }
3232
3233 ret = btrfs_resume_dev_replace_async(fs_info);
3234 if (ret) {
3235 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3236 close_ctree(fs_info);
3237 return ret;
3238 }
3239
3240 btrfs_qgroup_rescan_resume(fs_info);
3241
3242 if (!fs_info->uuid_root) {
3243 btrfs_info(fs_info, "creating UUID tree");
3244 ret = btrfs_create_uuid_tree(fs_info);
3245 if (ret) {
3246 btrfs_warn(fs_info,
3247 "failed to create the UUID tree: %d", ret);
3248 close_ctree(fs_info);
3249 return ret;
3250 }
3251 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3252 fs_info->generation !=
3253 btrfs_super_uuid_tree_generation(disk_super)) {
3254 btrfs_info(fs_info, "checking UUID tree");
3255 ret = btrfs_check_uuid_tree(fs_info);
3256 if (ret) {
3257 btrfs_warn(fs_info,
3258 "failed to check the UUID tree: %d", ret);
3259 close_ctree(fs_info);
3260 return ret;
3261 }
3262 } else {
3263 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3264 }
3265 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3266
3267 /*
3268 * backuproot only affect mount behavior, and if open_ctree succeeded,
3269 * no need to keep the flag
3270 */
3271 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3272
3273 return 0;
3274
3275 fail_qgroup:
3276 btrfs_free_qgroup_config(fs_info);
3277 fail_trans_kthread:
3278 kthread_stop(fs_info->transaction_kthread);
3279 btrfs_cleanup_transaction(fs_info);
3280 btrfs_free_fs_roots(fs_info);
3281 fail_cleaner:
3282 kthread_stop(fs_info->cleaner_kthread);
3283
3284 /*
3285 * make sure we're done with the btree inode before we stop our
3286 * kthreads
3287 */
3288 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3289
3290 fail_sysfs:
3291 btrfs_sysfs_remove_mounted(fs_info);
3292
3293 fail_fsdev_sysfs:
3294 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3295
3296 fail_block_groups:
3297 btrfs_put_block_group_cache(fs_info);
3298
3299 fail_tree_roots:
3300 free_root_pointers(fs_info, 1);
3301 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3302
3303 fail_sb_buffer:
3304 btrfs_stop_all_workers(fs_info);
3305 btrfs_free_block_groups(fs_info);
3306 fail_alloc:
3307 fail_iput:
3308 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3309
3310 iput(fs_info->btree_inode);
3311 fail_bio_counter:
3312 percpu_counter_destroy(&fs_info->bio_counter);
3313 fail_delalloc_bytes:
3314 percpu_counter_destroy(&fs_info->delalloc_bytes);
3315 fail_dirty_metadata_bytes:
3316 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3317 fail_srcu:
3318 cleanup_srcu_struct(&fs_info->subvol_srcu);
3319 fail:
3320 btrfs_free_stripe_hash_table(fs_info);
3321 btrfs_close_devices(fs_info->fs_devices);
3322 return err;
3323
3324 recovery_tree_root:
3325 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3326 goto fail_tree_roots;
3327
3328 free_root_pointers(fs_info, 0);
3329
3330 /* don't use the log in recovery mode, it won't be valid */
3331 btrfs_set_super_log_root(disk_super, 0);
3332
3333 /* we can't trust the free space cache either */
3334 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3335
3336 ret = next_root_backup(fs_info, fs_info->super_copy,
3337 &num_backups_tried, &backup_index);
3338 if (ret == -1)
3339 goto fail_block_groups;
3340 goto retry_root_backup;
3341 }
3342 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3343
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3344 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3345 {
3346 if (uptodate) {
3347 set_buffer_uptodate(bh);
3348 } else {
3349 struct btrfs_device *device = (struct btrfs_device *)
3350 bh->b_private;
3351
3352 btrfs_warn_rl_in_rcu(device->fs_info,
3353 "lost page write due to IO error on %s",
3354 rcu_str_deref(device->name));
3355 /* note, we don't set_buffer_write_io_error because we have
3356 * our own ways of dealing with the IO errors
3357 */
3358 clear_buffer_uptodate(bh);
3359 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3360 }
3361 unlock_buffer(bh);
3362 put_bh(bh);
3363 }
3364
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,struct buffer_head ** bh_ret)3365 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3366 struct buffer_head **bh_ret)
3367 {
3368 struct buffer_head *bh;
3369 struct btrfs_super_block *super;
3370 u64 bytenr;
3371
3372 bytenr = btrfs_sb_offset(copy_num);
3373 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3374 return -EINVAL;
3375
3376 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3377 /*
3378 * If we fail to read from the underlying devices, as of now
3379 * the best option we have is to mark it EIO.
3380 */
3381 if (!bh)
3382 return -EIO;
3383
3384 super = (struct btrfs_super_block *)bh->b_data;
3385 if (btrfs_super_bytenr(super) != bytenr ||
3386 btrfs_super_magic(super) != BTRFS_MAGIC) {
3387 brelse(bh);
3388 return -EINVAL;
3389 }
3390
3391 *bh_ret = bh;
3392 return 0;
3393 }
3394
3395
btrfs_read_dev_super(struct block_device * bdev)3396 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3397 {
3398 struct buffer_head *bh;
3399 struct buffer_head *latest = NULL;
3400 struct btrfs_super_block *super;
3401 int i;
3402 u64 transid = 0;
3403 int ret = -EINVAL;
3404
3405 /* we would like to check all the supers, but that would make
3406 * a btrfs mount succeed after a mkfs from a different FS.
3407 * So, we need to add a special mount option to scan for
3408 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3409 */
3410 for (i = 0; i < 1; i++) {
3411 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3412 if (ret)
3413 continue;
3414
3415 super = (struct btrfs_super_block *)bh->b_data;
3416
3417 if (!latest || btrfs_super_generation(super) > transid) {
3418 brelse(latest);
3419 latest = bh;
3420 transid = btrfs_super_generation(super);
3421 } else {
3422 brelse(bh);
3423 }
3424 }
3425
3426 if (!latest)
3427 return ERR_PTR(ret);
3428
3429 return latest;
3430 }
3431
3432 /*
3433 * Write superblock @sb to the @device. Do not wait for completion, all the
3434 * buffer heads we write are pinned.
3435 *
3436 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3437 * the expected device size at commit time. Note that max_mirrors must be
3438 * same for write and wait phases.
3439 *
3440 * Return number of errors when buffer head is not found or submission fails.
3441 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3442 static int write_dev_supers(struct btrfs_device *device,
3443 struct btrfs_super_block *sb, int max_mirrors)
3444 {
3445 struct buffer_head *bh;
3446 int i;
3447 int ret;
3448 int errors = 0;
3449 u32 crc;
3450 u64 bytenr;
3451 int op_flags;
3452
3453 if (max_mirrors == 0)
3454 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3455
3456 for (i = 0; i < max_mirrors; i++) {
3457 bytenr = btrfs_sb_offset(i);
3458 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3459 device->commit_total_bytes)
3460 break;
3461
3462 btrfs_set_super_bytenr(sb, bytenr);
3463
3464 crc = ~(u32)0;
3465 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3466 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3467 btrfs_csum_final(crc, sb->csum);
3468
3469 /* One reference for us, and we leave it for the caller */
3470 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3471 BTRFS_SUPER_INFO_SIZE);
3472 if (!bh) {
3473 btrfs_err(device->fs_info,
3474 "couldn't get super buffer head for bytenr %llu",
3475 bytenr);
3476 errors++;
3477 continue;
3478 }
3479
3480 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3481
3482 /* one reference for submit_bh */
3483 get_bh(bh);
3484
3485 set_buffer_uptodate(bh);
3486 lock_buffer(bh);
3487 bh->b_end_io = btrfs_end_buffer_write_sync;
3488 bh->b_private = device;
3489
3490 /*
3491 * we fua the first super. The others we allow
3492 * to go down lazy.
3493 */
3494 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3495 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3496 op_flags |= REQ_FUA;
3497 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3498 if (ret)
3499 errors++;
3500 }
3501 return errors < i ? 0 : -1;
3502 }
3503
3504 /*
3505 * Wait for write completion of superblocks done by write_dev_supers,
3506 * @max_mirrors same for write and wait phases.
3507 *
3508 * Return number of errors when buffer head is not found or not marked up to
3509 * date.
3510 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3511 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3512 {
3513 struct buffer_head *bh;
3514 int i;
3515 int errors = 0;
3516 bool primary_failed = false;
3517 u64 bytenr;
3518
3519 if (max_mirrors == 0)
3520 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3521
3522 for (i = 0; i < max_mirrors; i++) {
3523 bytenr = btrfs_sb_offset(i);
3524 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3525 device->commit_total_bytes)
3526 break;
3527
3528 bh = __find_get_block(device->bdev,
3529 bytenr / BTRFS_BDEV_BLOCKSIZE,
3530 BTRFS_SUPER_INFO_SIZE);
3531 if (!bh) {
3532 errors++;
3533 if (i == 0)
3534 primary_failed = true;
3535 continue;
3536 }
3537 wait_on_buffer(bh);
3538 if (!buffer_uptodate(bh)) {
3539 errors++;
3540 if (i == 0)
3541 primary_failed = true;
3542 }
3543
3544 /* drop our reference */
3545 brelse(bh);
3546
3547 /* drop the reference from the writing run */
3548 brelse(bh);
3549 }
3550
3551 /* log error, force error return */
3552 if (primary_failed) {
3553 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3554 device->devid);
3555 return -1;
3556 }
3557
3558 return errors < i ? 0 : -1;
3559 }
3560
3561 /*
3562 * endio for the write_dev_flush, this will wake anyone waiting
3563 * for the barrier when it is done
3564 */
btrfs_end_empty_barrier(struct bio * bio)3565 static void btrfs_end_empty_barrier(struct bio *bio)
3566 {
3567 complete(bio->bi_private);
3568 }
3569
3570 /*
3571 * Submit a flush request to the device if it supports it. Error handling is
3572 * done in the waiting counterpart.
3573 */
write_dev_flush(struct btrfs_device * device)3574 static void write_dev_flush(struct btrfs_device *device)
3575 {
3576 struct request_queue *q = bdev_get_queue(device->bdev);
3577 struct bio *bio = device->flush_bio;
3578
3579 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3580 return;
3581
3582 bio_reset(bio);
3583 bio->bi_end_io = btrfs_end_empty_barrier;
3584 bio_set_dev(bio, device->bdev);
3585 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3586 init_completion(&device->flush_wait);
3587 bio->bi_private = &device->flush_wait;
3588
3589 btrfsic_submit_bio(bio);
3590 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3591 }
3592
3593 /*
3594 * If the flush bio has been submitted by write_dev_flush, wait for it.
3595 */
wait_dev_flush(struct btrfs_device * device)3596 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3597 {
3598 struct bio *bio = device->flush_bio;
3599
3600 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3601 return BLK_STS_OK;
3602
3603 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3604 wait_for_completion_io(&device->flush_wait);
3605
3606 return bio->bi_status;
3607 }
3608
check_barrier_error(struct btrfs_fs_info * fs_info)3609 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3610 {
3611 if (!btrfs_check_rw_degradable(fs_info, NULL))
3612 return -EIO;
3613 return 0;
3614 }
3615
3616 /*
3617 * send an empty flush down to each device in parallel,
3618 * then wait for them
3619 */
barrier_all_devices(struct btrfs_fs_info * info)3620 static int barrier_all_devices(struct btrfs_fs_info *info)
3621 {
3622 struct list_head *head;
3623 struct btrfs_device *dev;
3624 int errors_wait = 0;
3625 blk_status_t ret;
3626
3627 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3628 /* send down all the barriers */
3629 head = &info->fs_devices->devices;
3630 list_for_each_entry(dev, head, dev_list) {
3631 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3632 continue;
3633 if (!dev->bdev)
3634 continue;
3635 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3636 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3637 continue;
3638
3639 write_dev_flush(dev);
3640 dev->last_flush_error = BLK_STS_OK;
3641 }
3642
3643 /* wait for all the barriers */
3644 list_for_each_entry(dev, head, dev_list) {
3645 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3646 continue;
3647 if (!dev->bdev) {
3648 errors_wait++;
3649 continue;
3650 }
3651 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3652 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3653 continue;
3654
3655 ret = wait_dev_flush(dev);
3656 if (ret) {
3657 dev->last_flush_error = ret;
3658 btrfs_dev_stat_inc_and_print(dev,
3659 BTRFS_DEV_STAT_FLUSH_ERRS);
3660 errors_wait++;
3661 }
3662 }
3663
3664 if (errors_wait) {
3665 /*
3666 * At some point we need the status of all disks
3667 * to arrive at the volume status. So error checking
3668 * is being pushed to a separate loop.
3669 */
3670 return check_barrier_error(info);
3671 }
3672 return 0;
3673 }
3674
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3675 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3676 {
3677 int raid_type;
3678 int min_tolerated = INT_MAX;
3679
3680 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3681 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3682 min_tolerated = min(min_tolerated,
3683 btrfs_raid_array[BTRFS_RAID_SINGLE].
3684 tolerated_failures);
3685
3686 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3687 if (raid_type == BTRFS_RAID_SINGLE)
3688 continue;
3689 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3690 continue;
3691 min_tolerated = min(min_tolerated,
3692 btrfs_raid_array[raid_type].
3693 tolerated_failures);
3694 }
3695
3696 if (min_tolerated == INT_MAX) {
3697 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3698 min_tolerated = 0;
3699 }
3700
3701 return min_tolerated;
3702 }
3703
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3704 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3705 {
3706 struct list_head *head;
3707 struct btrfs_device *dev;
3708 struct btrfs_super_block *sb;
3709 struct btrfs_dev_item *dev_item;
3710 int ret;
3711 int do_barriers;
3712 int max_errors;
3713 int total_errors = 0;
3714 u64 flags;
3715
3716 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3717
3718 /*
3719 * max_mirrors == 0 indicates we're from commit_transaction,
3720 * not from fsync where the tree roots in fs_info have not
3721 * been consistent on disk.
3722 */
3723 if (max_mirrors == 0)
3724 backup_super_roots(fs_info);
3725
3726 sb = fs_info->super_for_commit;
3727 dev_item = &sb->dev_item;
3728
3729 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3730 head = &fs_info->fs_devices->devices;
3731 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3732
3733 if (do_barriers) {
3734 ret = barrier_all_devices(fs_info);
3735 if (ret) {
3736 mutex_unlock(
3737 &fs_info->fs_devices->device_list_mutex);
3738 btrfs_handle_fs_error(fs_info, ret,
3739 "errors while submitting device barriers.");
3740 return ret;
3741 }
3742 }
3743
3744 list_for_each_entry(dev, head, dev_list) {
3745 if (!dev->bdev) {
3746 total_errors++;
3747 continue;
3748 }
3749 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3750 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3751 continue;
3752
3753 btrfs_set_stack_device_generation(dev_item, 0);
3754 btrfs_set_stack_device_type(dev_item, dev->type);
3755 btrfs_set_stack_device_id(dev_item, dev->devid);
3756 btrfs_set_stack_device_total_bytes(dev_item,
3757 dev->commit_total_bytes);
3758 btrfs_set_stack_device_bytes_used(dev_item,
3759 dev->commit_bytes_used);
3760 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3761 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3762 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3763 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3764 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3765
3766 flags = btrfs_super_flags(sb);
3767 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3768
3769 ret = btrfs_validate_write_super(fs_info, sb);
3770 if (ret < 0) {
3771 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3772 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3773 "unexpected superblock corruption detected");
3774 return -EUCLEAN;
3775 }
3776
3777 ret = write_dev_supers(dev, sb, max_mirrors);
3778 if (ret)
3779 total_errors++;
3780 }
3781 if (total_errors > max_errors) {
3782 btrfs_err(fs_info, "%d errors while writing supers",
3783 total_errors);
3784 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3785
3786 /* FUA is masked off if unsupported and can't be the reason */
3787 btrfs_handle_fs_error(fs_info, -EIO,
3788 "%d errors while writing supers",
3789 total_errors);
3790 return -EIO;
3791 }
3792
3793 total_errors = 0;
3794 list_for_each_entry(dev, head, dev_list) {
3795 if (!dev->bdev)
3796 continue;
3797 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3798 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3799 continue;
3800
3801 ret = wait_dev_supers(dev, max_mirrors);
3802 if (ret)
3803 total_errors++;
3804 }
3805 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3806 if (total_errors > max_errors) {
3807 btrfs_handle_fs_error(fs_info, -EIO,
3808 "%d errors while writing supers",
3809 total_errors);
3810 return -EIO;
3811 }
3812 return 0;
3813 }
3814
3815 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3816 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3817 struct btrfs_root *root)
3818 {
3819 spin_lock(&fs_info->fs_roots_radix_lock);
3820 radix_tree_delete(&fs_info->fs_roots_radix,
3821 (unsigned long)root->root_key.objectid);
3822 spin_unlock(&fs_info->fs_roots_radix_lock);
3823
3824 if (btrfs_root_refs(&root->root_item) == 0)
3825 synchronize_srcu(&fs_info->subvol_srcu);
3826
3827 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3828 btrfs_free_log(NULL, root);
3829 if (root->reloc_root) {
3830 free_extent_buffer(root->reloc_root->node);
3831 free_extent_buffer(root->reloc_root->commit_root);
3832 btrfs_put_fs_root(root->reloc_root);
3833 root->reloc_root = NULL;
3834 }
3835 }
3836
3837 if (root->free_ino_pinned)
3838 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3839 if (root->free_ino_ctl)
3840 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3841 btrfs_free_fs_root(root);
3842 }
3843
btrfs_free_fs_root(struct btrfs_root * root)3844 void btrfs_free_fs_root(struct btrfs_root *root)
3845 {
3846 iput(root->ino_cache_inode);
3847 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3848 if (root->anon_dev)
3849 free_anon_bdev(root->anon_dev);
3850 if (root->subv_writers)
3851 btrfs_free_subvolume_writers(root->subv_writers);
3852 free_extent_buffer(root->node);
3853 free_extent_buffer(root->commit_root);
3854 kfree(root->free_ino_ctl);
3855 kfree(root->free_ino_pinned);
3856 btrfs_put_fs_root(root);
3857 }
3858
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3859 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3860 {
3861 u64 root_objectid = 0;
3862 struct btrfs_root *gang[8];
3863 int i = 0;
3864 int err = 0;
3865 unsigned int ret = 0;
3866 int index;
3867
3868 while (1) {
3869 index = srcu_read_lock(&fs_info->subvol_srcu);
3870 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3871 (void **)gang, root_objectid,
3872 ARRAY_SIZE(gang));
3873 if (!ret) {
3874 srcu_read_unlock(&fs_info->subvol_srcu, index);
3875 break;
3876 }
3877 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3878
3879 for (i = 0; i < ret; i++) {
3880 /* Avoid to grab roots in dead_roots */
3881 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3882 gang[i] = NULL;
3883 continue;
3884 }
3885 /* grab all the search result for later use */
3886 gang[i] = btrfs_grab_fs_root(gang[i]);
3887 }
3888 srcu_read_unlock(&fs_info->subvol_srcu, index);
3889
3890 for (i = 0; i < ret; i++) {
3891 if (!gang[i])
3892 continue;
3893 root_objectid = gang[i]->root_key.objectid;
3894 err = btrfs_orphan_cleanup(gang[i]);
3895 if (err)
3896 break;
3897 btrfs_put_fs_root(gang[i]);
3898 }
3899 root_objectid++;
3900 }
3901
3902 /* release the uncleaned roots due to error */
3903 for (; i < ret; i++) {
3904 if (gang[i])
3905 btrfs_put_fs_root(gang[i]);
3906 }
3907 return err;
3908 }
3909
btrfs_commit_super(struct btrfs_fs_info * fs_info)3910 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3911 {
3912 struct btrfs_root *root = fs_info->tree_root;
3913 struct btrfs_trans_handle *trans;
3914
3915 mutex_lock(&fs_info->cleaner_mutex);
3916 btrfs_run_delayed_iputs(fs_info);
3917 mutex_unlock(&fs_info->cleaner_mutex);
3918 wake_up_process(fs_info->cleaner_kthread);
3919
3920 /* wait until ongoing cleanup work done */
3921 down_write(&fs_info->cleanup_work_sem);
3922 up_write(&fs_info->cleanup_work_sem);
3923
3924 trans = btrfs_join_transaction(root);
3925 if (IS_ERR(trans))
3926 return PTR_ERR(trans);
3927 return btrfs_commit_transaction(trans);
3928 }
3929
close_ctree(struct btrfs_fs_info * fs_info)3930 void close_ctree(struct btrfs_fs_info *fs_info)
3931 {
3932 int ret;
3933
3934 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3935
3936 /* wait for the qgroup rescan worker to stop */
3937 btrfs_qgroup_wait_for_completion(fs_info, false);
3938
3939 /* wait for the uuid_scan task to finish */
3940 down(&fs_info->uuid_tree_rescan_sem);
3941 /* avoid complains from lockdep et al., set sem back to initial state */
3942 up(&fs_info->uuid_tree_rescan_sem);
3943
3944 /* pause restriper - we want to resume on mount */
3945 btrfs_pause_balance(fs_info);
3946
3947 btrfs_dev_replace_suspend_for_unmount(fs_info);
3948
3949 btrfs_scrub_cancel(fs_info);
3950
3951 /* wait for any defraggers to finish */
3952 wait_event(fs_info->transaction_wait,
3953 (atomic_read(&fs_info->defrag_running) == 0));
3954
3955 /* clear out the rbtree of defraggable inodes */
3956 btrfs_cleanup_defrag_inodes(fs_info);
3957
3958 cancel_work_sync(&fs_info->async_reclaim_work);
3959
3960 if (!sb_rdonly(fs_info->sb)) {
3961 /*
3962 * If the cleaner thread is stopped and there are
3963 * block groups queued for removal, the deletion will be
3964 * skipped when we quit the cleaner thread.
3965 */
3966 btrfs_delete_unused_bgs(fs_info);
3967
3968 ret = btrfs_commit_super(fs_info);
3969 if (ret)
3970 btrfs_err(fs_info, "commit super ret %d", ret);
3971 }
3972
3973 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3974 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3975 btrfs_error_commit_super(fs_info);
3976
3977 kthread_stop(fs_info->transaction_kthread);
3978 kthread_stop(fs_info->cleaner_kthread);
3979
3980 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3981
3982 btrfs_free_qgroup_config(fs_info);
3983 ASSERT(list_empty(&fs_info->delalloc_roots));
3984
3985 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3986 btrfs_info(fs_info, "at unmount delalloc count %lld",
3987 percpu_counter_sum(&fs_info->delalloc_bytes));
3988 }
3989
3990 btrfs_sysfs_remove_mounted(fs_info);
3991 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3992
3993 btrfs_free_fs_roots(fs_info);
3994
3995 btrfs_put_block_group_cache(fs_info);
3996
3997 /*
3998 * we must make sure there is not any read request to
3999 * submit after we stopping all workers.
4000 */
4001 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4002 btrfs_stop_all_workers(fs_info);
4003
4004 btrfs_free_block_groups(fs_info);
4005
4006 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4007 free_root_pointers(fs_info, 1);
4008
4009 iput(fs_info->btree_inode);
4010
4011 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4012 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4013 btrfsic_unmount(fs_info->fs_devices);
4014 #endif
4015
4016 btrfs_close_devices(fs_info->fs_devices);
4017 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4018
4019 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4020 percpu_counter_destroy(&fs_info->delalloc_bytes);
4021 percpu_counter_destroy(&fs_info->bio_counter);
4022 cleanup_srcu_struct(&fs_info->subvol_srcu);
4023
4024 btrfs_free_stripe_hash_table(fs_info);
4025 btrfs_free_ref_cache(fs_info);
4026
4027 while (!list_empty(&fs_info->pinned_chunks)) {
4028 struct extent_map *em;
4029
4030 em = list_first_entry(&fs_info->pinned_chunks,
4031 struct extent_map, list);
4032 list_del_init(&em->list);
4033 free_extent_map(em);
4034 }
4035 }
4036
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4037 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4038 int atomic)
4039 {
4040 int ret;
4041 struct inode *btree_inode = buf->pages[0]->mapping->host;
4042
4043 ret = extent_buffer_uptodate(buf);
4044 if (!ret)
4045 return ret;
4046
4047 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4048 parent_transid, atomic);
4049 if (ret == -EAGAIN)
4050 return ret;
4051 return !ret;
4052 }
4053
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4054 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4055 {
4056 struct btrfs_fs_info *fs_info;
4057 struct btrfs_root *root;
4058 u64 transid = btrfs_header_generation(buf);
4059 int was_dirty;
4060
4061 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4062 /*
4063 * This is a fast path so only do this check if we have sanity tests
4064 * enabled. Normal people shouldn't be using umapped buffers as dirty
4065 * outside of the sanity tests.
4066 */
4067 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4068 return;
4069 #endif
4070 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4071 fs_info = root->fs_info;
4072 btrfs_assert_tree_locked(buf);
4073 if (transid != fs_info->generation)
4074 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4075 buf->start, transid, fs_info->generation);
4076 was_dirty = set_extent_buffer_dirty(buf);
4077 if (!was_dirty)
4078 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4079 buf->len,
4080 fs_info->dirty_metadata_batch);
4081 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4082 /*
4083 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4084 * but item data not updated.
4085 * So here we should only check item pointers, not item data.
4086 */
4087 if (btrfs_header_level(buf) == 0 &&
4088 btrfs_check_leaf_relaxed(fs_info, buf)) {
4089 btrfs_print_leaf(buf);
4090 ASSERT(0);
4091 }
4092 #endif
4093 }
4094
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4095 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4096 int flush_delayed)
4097 {
4098 /*
4099 * looks as though older kernels can get into trouble with
4100 * this code, they end up stuck in balance_dirty_pages forever
4101 */
4102 int ret;
4103
4104 if (current->flags & PF_MEMALLOC)
4105 return;
4106
4107 if (flush_delayed)
4108 btrfs_balance_delayed_items(fs_info);
4109
4110 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4111 BTRFS_DIRTY_METADATA_THRESH,
4112 fs_info->dirty_metadata_batch);
4113 if (ret > 0) {
4114 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4115 }
4116 }
4117
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4118 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4119 {
4120 __btrfs_btree_balance_dirty(fs_info, 1);
4121 }
4122
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4123 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4124 {
4125 __btrfs_btree_balance_dirty(fs_info, 0);
4126 }
4127
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4128 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4129 struct btrfs_key *first_key)
4130 {
4131 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4132 struct btrfs_fs_info *fs_info = root->fs_info;
4133
4134 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4135 level, first_key);
4136 }
4137
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4138 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4139 {
4140 /* cleanup FS via transaction */
4141 btrfs_cleanup_transaction(fs_info);
4142
4143 mutex_lock(&fs_info->cleaner_mutex);
4144 btrfs_run_delayed_iputs(fs_info);
4145 mutex_unlock(&fs_info->cleaner_mutex);
4146
4147 down_write(&fs_info->cleanup_work_sem);
4148 up_write(&fs_info->cleanup_work_sem);
4149 }
4150
btrfs_destroy_ordered_extents(struct btrfs_root * root)4151 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4152 {
4153 struct btrfs_ordered_extent *ordered;
4154
4155 spin_lock(&root->ordered_extent_lock);
4156 /*
4157 * This will just short circuit the ordered completion stuff which will
4158 * make sure the ordered extent gets properly cleaned up.
4159 */
4160 list_for_each_entry(ordered, &root->ordered_extents,
4161 root_extent_list)
4162 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4163 spin_unlock(&root->ordered_extent_lock);
4164 }
4165
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4166 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4167 {
4168 struct btrfs_root *root;
4169 struct list_head splice;
4170
4171 INIT_LIST_HEAD(&splice);
4172
4173 spin_lock(&fs_info->ordered_root_lock);
4174 list_splice_init(&fs_info->ordered_roots, &splice);
4175 while (!list_empty(&splice)) {
4176 root = list_first_entry(&splice, struct btrfs_root,
4177 ordered_root);
4178 list_move_tail(&root->ordered_root,
4179 &fs_info->ordered_roots);
4180
4181 spin_unlock(&fs_info->ordered_root_lock);
4182 btrfs_destroy_ordered_extents(root);
4183
4184 cond_resched();
4185 spin_lock(&fs_info->ordered_root_lock);
4186 }
4187 spin_unlock(&fs_info->ordered_root_lock);
4188 }
4189
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4190 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4191 struct btrfs_fs_info *fs_info)
4192 {
4193 struct rb_node *node;
4194 struct btrfs_delayed_ref_root *delayed_refs;
4195 struct btrfs_delayed_ref_node *ref;
4196 int ret = 0;
4197
4198 delayed_refs = &trans->delayed_refs;
4199
4200 spin_lock(&delayed_refs->lock);
4201 if (atomic_read(&delayed_refs->num_entries) == 0) {
4202 spin_unlock(&delayed_refs->lock);
4203 btrfs_info(fs_info, "delayed_refs has NO entry");
4204 return ret;
4205 }
4206
4207 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4208 struct btrfs_delayed_ref_head *head;
4209 struct rb_node *n;
4210 bool pin_bytes = false;
4211
4212 head = rb_entry(node, struct btrfs_delayed_ref_head,
4213 href_node);
4214 if (!mutex_trylock(&head->mutex)) {
4215 refcount_inc(&head->refs);
4216 spin_unlock(&delayed_refs->lock);
4217
4218 mutex_lock(&head->mutex);
4219 mutex_unlock(&head->mutex);
4220 btrfs_put_delayed_ref_head(head);
4221 spin_lock(&delayed_refs->lock);
4222 continue;
4223 }
4224 spin_lock(&head->lock);
4225 while ((n = rb_first(&head->ref_tree)) != NULL) {
4226 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4227 ref_node);
4228 ref->in_tree = 0;
4229 rb_erase(&ref->ref_node, &head->ref_tree);
4230 RB_CLEAR_NODE(&ref->ref_node);
4231 if (!list_empty(&ref->add_list))
4232 list_del(&ref->add_list);
4233 atomic_dec(&delayed_refs->num_entries);
4234 btrfs_put_delayed_ref(ref);
4235 }
4236 if (head->must_insert_reserved)
4237 pin_bytes = true;
4238 btrfs_free_delayed_extent_op(head->extent_op);
4239 delayed_refs->num_heads--;
4240 if (head->processing == 0)
4241 delayed_refs->num_heads_ready--;
4242 atomic_dec(&delayed_refs->num_entries);
4243 rb_erase(&head->href_node, &delayed_refs->href_root);
4244 RB_CLEAR_NODE(&head->href_node);
4245 spin_unlock(&head->lock);
4246 spin_unlock(&delayed_refs->lock);
4247 mutex_unlock(&head->mutex);
4248
4249 if (pin_bytes)
4250 btrfs_pin_extent(fs_info, head->bytenr,
4251 head->num_bytes, 1);
4252 btrfs_put_delayed_ref_head(head);
4253 cond_resched();
4254 spin_lock(&delayed_refs->lock);
4255 }
4256
4257 spin_unlock(&delayed_refs->lock);
4258
4259 return ret;
4260 }
4261
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4262 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4263 {
4264 struct btrfs_inode *btrfs_inode;
4265 struct list_head splice;
4266
4267 INIT_LIST_HEAD(&splice);
4268
4269 spin_lock(&root->delalloc_lock);
4270 list_splice_init(&root->delalloc_inodes, &splice);
4271
4272 while (!list_empty(&splice)) {
4273 struct inode *inode = NULL;
4274 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4275 delalloc_inodes);
4276 __btrfs_del_delalloc_inode(root, btrfs_inode);
4277 spin_unlock(&root->delalloc_lock);
4278
4279 /*
4280 * Make sure we get a live inode and that it'll not disappear
4281 * meanwhile.
4282 */
4283 inode = igrab(&btrfs_inode->vfs_inode);
4284 if (inode) {
4285 invalidate_inode_pages2(inode->i_mapping);
4286 iput(inode);
4287 }
4288 spin_lock(&root->delalloc_lock);
4289 }
4290 spin_unlock(&root->delalloc_lock);
4291 }
4292
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4293 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4294 {
4295 struct btrfs_root *root;
4296 struct list_head splice;
4297
4298 INIT_LIST_HEAD(&splice);
4299
4300 spin_lock(&fs_info->delalloc_root_lock);
4301 list_splice_init(&fs_info->delalloc_roots, &splice);
4302 while (!list_empty(&splice)) {
4303 root = list_first_entry(&splice, struct btrfs_root,
4304 delalloc_root);
4305 root = btrfs_grab_fs_root(root);
4306 BUG_ON(!root);
4307 spin_unlock(&fs_info->delalloc_root_lock);
4308
4309 btrfs_destroy_delalloc_inodes(root);
4310 btrfs_put_fs_root(root);
4311
4312 spin_lock(&fs_info->delalloc_root_lock);
4313 }
4314 spin_unlock(&fs_info->delalloc_root_lock);
4315 }
4316
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4317 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4318 struct extent_io_tree *dirty_pages,
4319 int mark)
4320 {
4321 int ret;
4322 struct extent_buffer *eb;
4323 u64 start = 0;
4324 u64 end;
4325
4326 while (1) {
4327 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4328 mark, NULL);
4329 if (ret)
4330 break;
4331
4332 clear_extent_bits(dirty_pages, start, end, mark);
4333 while (start <= end) {
4334 eb = find_extent_buffer(fs_info, start);
4335 start += fs_info->nodesize;
4336 if (!eb)
4337 continue;
4338 wait_on_extent_buffer_writeback(eb);
4339
4340 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4341 &eb->bflags))
4342 clear_extent_buffer_dirty(eb);
4343 free_extent_buffer_stale(eb);
4344 }
4345 }
4346
4347 return ret;
4348 }
4349
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * pinned_extents)4350 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4351 struct extent_io_tree *pinned_extents)
4352 {
4353 struct extent_io_tree *unpin;
4354 u64 start;
4355 u64 end;
4356 int ret;
4357 bool loop = true;
4358
4359 unpin = pinned_extents;
4360 again:
4361 while (1) {
4362 ret = find_first_extent_bit(unpin, 0, &start, &end,
4363 EXTENT_DIRTY, NULL);
4364 if (ret)
4365 break;
4366
4367 clear_extent_dirty(unpin, start, end);
4368 btrfs_error_unpin_extent_range(fs_info, start, end);
4369 cond_resched();
4370 }
4371
4372 if (loop) {
4373 if (unpin == &fs_info->freed_extents[0])
4374 unpin = &fs_info->freed_extents[1];
4375 else
4376 unpin = &fs_info->freed_extents[0];
4377 loop = false;
4378 goto again;
4379 }
4380
4381 return 0;
4382 }
4383
btrfs_cleanup_bg_io(struct btrfs_block_group_cache * cache)4384 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4385 {
4386 struct inode *inode;
4387
4388 inode = cache->io_ctl.inode;
4389 if (inode) {
4390 invalidate_inode_pages2(inode->i_mapping);
4391 BTRFS_I(inode)->generation = 0;
4392 cache->io_ctl.inode = NULL;
4393 iput(inode);
4394 }
4395 btrfs_put_block_group(cache);
4396 }
4397
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4398 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4399 struct btrfs_fs_info *fs_info)
4400 {
4401 struct btrfs_block_group_cache *cache;
4402
4403 spin_lock(&cur_trans->dirty_bgs_lock);
4404 while (!list_empty(&cur_trans->dirty_bgs)) {
4405 cache = list_first_entry(&cur_trans->dirty_bgs,
4406 struct btrfs_block_group_cache,
4407 dirty_list);
4408
4409 if (!list_empty(&cache->io_list)) {
4410 spin_unlock(&cur_trans->dirty_bgs_lock);
4411 list_del_init(&cache->io_list);
4412 btrfs_cleanup_bg_io(cache);
4413 spin_lock(&cur_trans->dirty_bgs_lock);
4414 }
4415
4416 list_del_init(&cache->dirty_list);
4417 spin_lock(&cache->lock);
4418 cache->disk_cache_state = BTRFS_DC_ERROR;
4419 spin_unlock(&cache->lock);
4420
4421 spin_unlock(&cur_trans->dirty_bgs_lock);
4422 btrfs_put_block_group(cache);
4423 spin_lock(&cur_trans->dirty_bgs_lock);
4424 }
4425 spin_unlock(&cur_trans->dirty_bgs_lock);
4426
4427 /*
4428 * Refer to the definition of io_bgs member for details why it's safe
4429 * to use it without any locking
4430 */
4431 while (!list_empty(&cur_trans->io_bgs)) {
4432 cache = list_first_entry(&cur_trans->io_bgs,
4433 struct btrfs_block_group_cache,
4434 io_list);
4435
4436 list_del_init(&cache->io_list);
4437 spin_lock(&cache->lock);
4438 cache->disk_cache_state = BTRFS_DC_ERROR;
4439 spin_unlock(&cache->lock);
4440 btrfs_cleanup_bg_io(cache);
4441 }
4442 }
4443
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4444 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4445 struct btrfs_fs_info *fs_info)
4446 {
4447 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4448 ASSERT(list_empty(&cur_trans->dirty_bgs));
4449 ASSERT(list_empty(&cur_trans->io_bgs));
4450
4451 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4452
4453 cur_trans->state = TRANS_STATE_COMMIT_START;
4454 wake_up(&fs_info->transaction_blocked_wait);
4455
4456 cur_trans->state = TRANS_STATE_UNBLOCKED;
4457 wake_up(&fs_info->transaction_wait);
4458
4459 btrfs_destroy_delayed_inodes(fs_info);
4460 btrfs_assert_delayed_root_empty(fs_info);
4461
4462 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4463 EXTENT_DIRTY);
4464 btrfs_destroy_pinned_extent(fs_info,
4465 fs_info->pinned_extents);
4466
4467 cur_trans->state =TRANS_STATE_COMPLETED;
4468 wake_up(&cur_trans->commit_wait);
4469 }
4470
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4471 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4472 {
4473 struct btrfs_transaction *t;
4474
4475 mutex_lock(&fs_info->transaction_kthread_mutex);
4476
4477 spin_lock(&fs_info->trans_lock);
4478 while (!list_empty(&fs_info->trans_list)) {
4479 t = list_first_entry(&fs_info->trans_list,
4480 struct btrfs_transaction, list);
4481 if (t->state >= TRANS_STATE_COMMIT_START) {
4482 refcount_inc(&t->use_count);
4483 spin_unlock(&fs_info->trans_lock);
4484 btrfs_wait_for_commit(fs_info, t->transid);
4485 btrfs_put_transaction(t);
4486 spin_lock(&fs_info->trans_lock);
4487 continue;
4488 }
4489 if (t == fs_info->running_transaction) {
4490 t->state = TRANS_STATE_COMMIT_DOING;
4491 spin_unlock(&fs_info->trans_lock);
4492 /*
4493 * We wait for 0 num_writers since we don't hold a trans
4494 * handle open currently for this transaction.
4495 */
4496 wait_event(t->writer_wait,
4497 atomic_read(&t->num_writers) == 0);
4498 } else {
4499 spin_unlock(&fs_info->trans_lock);
4500 }
4501 btrfs_cleanup_one_transaction(t, fs_info);
4502
4503 spin_lock(&fs_info->trans_lock);
4504 if (t == fs_info->running_transaction)
4505 fs_info->running_transaction = NULL;
4506 list_del_init(&t->list);
4507 spin_unlock(&fs_info->trans_lock);
4508
4509 btrfs_put_transaction(t);
4510 trace_btrfs_transaction_commit(fs_info->tree_root);
4511 spin_lock(&fs_info->trans_lock);
4512 }
4513 spin_unlock(&fs_info->trans_lock);
4514 btrfs_destroy_all_ordered_extents(fs_info);
4515 btrfs_destroy_delayed_inodes(fs_info);
4516 btrfs_assert_delayed_root_empty(fs_info);
4517 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4518 btrfs_destroy_all_delalloc_inodes(fs_info);
4519 mutex_unlock(&fs_info->transaction_kthread_mutex);
4520
4521 return 0;
4522 }
4523
4524 static const struct extent_io_ops btree_extent_io_ops = {
4525 /* mandatory callbacks */
4526 .submit_bio_hook = btree_submit_bio_hook,
4527 .readpage_end_io_hook = btree_readpage_end_io_hook,
4528 .readpage_io_failed_hook = btree_io_failed_hook,
4529
4530 /* optional callbacks */
4531 };
4532