1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24
25 #ifdef CONFIG_BTRFS_DEBUG
btrfs_should_fragment_free_space(struct btrfs_block_group * block_group)26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36
37 /*
38 * Return target flags in extended format or 0 if restripe for this chunk_type
39 * is not in progress
40 *
41 * Should be called with balance_lock held
42 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 u64 target = 0;
47
48 if (!bctl)
49 return 0;
50
51 if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 }
61
62 return target;
63 }
64
65 /*
66 * @flags: available profiles in extended format (see ctree.h)
67 *
68 * Return reduced profile in chunk format. If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
71 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 u64 num_devices = fs_info->fs_devices->rw_devices;
75 u64 target;
76 u64 raid_type;
77 u64 allowed = 0;
78
79 /*
80 * See if restripe for this chunk_type is in progress, if so try to
81 * reduce to the target profile
82 */
83 spin_lock(&fs_info->balance_lock);
84 target = get_restripe_target(fs_info, flags);
85 if (target) {
86 spin_unlock(&fs_info->balance_lock);
87 return extended_to_chunk(target);
88 }
89 spin_unlock(&fs_info->balance_lock);
90
91 /* First, mask out the RAID levels which aren't possible */
92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 allowed |= btrfs_raid_array[raid_type].bg_flag;
95 }
96 allowed &= flags;
97
98 /* Select the highest-redundancy RAID level. */
99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 allowed = BTRFS_BLOCK_GROUP_RAID6;
103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 allowed = BTRFS_BLOCK_GROUP_RAID5;
107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 allowed = BTRFS_BLOCK_GROUP_RAID10;
109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 allowed = BTRFS_BLOCK_GROUP_RAID1;
111 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 allowed = BTRFS_BLOCK_GROUP_DUP;
113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 allowed = BTRFS_BLOCK_GROUP_RAID0;
115
116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117
118 return extended_to_chunk(flags | allowed);
119 }
120
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 unsigned seq;
124 u64 flags;
125
126 do {
127 flags = orig_flags;
128 seq = read_seqbegin(&fs_info->profiles_lock);
129
130 if (flags & BTRFS_BLOCK_GROUP_DATA)
131 flags |= fs_info->avail_data_alloc_bits;
132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 flags |= fs_info->avail_system_alloc_bits;
134 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 flags |= fs_info->avail_metadata_alloc_bits;
136 } while (read_seqretry(&fs_info->profiles_lock, seq));
137
138 return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140
btrfs_get_block_group(struct btrfs_block_group * cache)141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 refcount_inc(&cache->refs);
144 }
145
btrfs_put_block_group(struct btrfs_block_group * cache)146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 if (refcount_dec_and_test(&cache->refs)) {
149 WARN_ON(cache->pinned > 0);
150 /*
151 * If there was a failure to cleanup a log tree, very likely due
152 * to an IO failure on a writeback attempt of one or more of its
153 * extent buffers, we could not do proper (and cheap) unaccounting
154 * of their reserved space, so don't warn on reserved > 0 in that
155 * case.
156 */
157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 WARN_ON(cache->reserved > 0);
160
161 /*
162 * A block_group shouldn't be on the discard_list anymore.
163 * Remove the block_group from the discard_list to prevent us
164 * from causing a panic due to NULL pointer dereference.
165 */
166 if (WARN_ON(!list_empty(&cache->discard_list)))
167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 cache);
169
170 kfree(cache->free_space_ctl);
171 kfree(cache->physical_map);
172 kfree(cache);
173 }
174 }
175
176 /*
177 * This adds the block group to the fs_info rb tree for the block group cache
178 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 struct btrfs_block_group *block_group)
181 {
182 struct rb_node **p;
183 struct rb_node *parent = NULL;
184 struct btrfs_block_group *cache;
185 bool leftmost = true;
186
187 ASSERT(block_group->length != 0);
188
189 write_lock(&info->block_group_cache_lock);
190 p = &info->block_group_cache_tree.rb_root.rb_node;
191
192 while (*p) {
193 parent = *p;
194 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 if (block_group->start < cache->start) {
196 p = &(*p)->rb_left;
197 } else if (block_group->start > cache->start) {
198 p = &(*p)->rb_right;
199 leftmost = false;
200 } else {
201 write_unlock(&info->block_group_cache_lock);
202 return -EEXIST;
203 }
204 }
205
206 rb_link_node(&block_group->cache_node, parent, p);
207 rb_insert_color_cached(&block_group->cache_node,
208 &info->block_group_cache_tree, leftmost);
209
210 write_unlock(&info->block_group_cache_lock);
211
212 return 0;
213 }
214
215 /*
216 * This will return the block group at or after bytenr if contains is 0, else
217 * it will return the block group that contains the bytenr
218 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)219 static struct btrfs_block_group *block_group_cache_tree_search(
220 struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 struct btrfs_block_group *cache, *ret = NULL;
223 struct rb_node *n;
224 u64 end, start;
225
226 read_lock(&info->block_group_cache_lock);
227 n = info->block_group_cache_tree.rb_root.rb_node;
228
229 while (n) {
230 cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 end = cache->start + cache->length - 1;
232 start = cache->start;
233
234 if (bytenr < start) {
235 if (!contains && (!ret || start < ret->start))
236 ret = cache;
237 n = n->rb_left;
238 } else if (bytenr > start) {
239 if (contains && bytenr <= end) {
240 ret = cache;
241 break;
242 }
243 n = n->rb_right;
244 } else {
245 ret = cache;
246 break;
247 }
248 }
249 if (ret)
250 btrfs_get_block_group(ret);
251 read_unlock(&info->block_group_cache_lock);
252
253 return ret;
254 }
255
256 /*
257 * Return the block group that starts at or after bytenr
258 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 struct btrfs_fs_info *info, u64 bytenr)
261 {
262 return block_group_cache_tree_search(info, bytenr, 0);
263 }
264
265 /*
266 * Return the block group that contains the given bytenr
267 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)268 struct btrfs_block_group *btrfs_lookup_block_group(
269 struct btrfs_fs_info *info, u64 bytenr)
270 {
271 return block_group_cache_tree_search(info, bytenr, 1);
272 }
273
btrfs_next_block_group(struct btrfs_block_group * cache)274 struct btrfs_block_group *btrfs_next_block_group(
275 struct btrfs_block_group *cache)
276 {
277 struct btrfs_fs_info *fs_info = cache->fs_info;
278 struct rb_node *node;
279
280 read_lock(&fs_info->block_group_cache_lock);
281
282 /* If our block group was removed, we need a full search. */
283 if (RB_EMPTY_NODE(&cache->cache_node)) {
284 const u64 next_bytenr = cache->start + cache->length;
285
286 read_unlock(&fs_info->block_group_cache_lock);
287 btrfs_put_block_group(cache);
288 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 }
290 node = rb_next(&cache->cache_node);
291 btrfs_put_block_group(cache);
292 if (node) {
293 cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 btrfs_get_block_group(cache);
295 } else
296 cache = NULL;
297 read_unlock(&fs_info->block_group_cache_lock);
298 return cache;
299 }
300
301 /*
302 * Check if we can do a NOCOW write for a given extent.
303 *
304 * @fs_info: The filesystem information object.
305 * @bytenr: Logical start address of the extent.
306 *
307 * Check if we can do a NOCOW write for the given extent, and increments the
308 * number of NOCOW writers in the block group that contains the extent, as long
309 * as the block group exists and it's currently not in read-only mode.
310 *
311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312 * is responsible for calling btrfs_dec_nocow_writers() later.
313 *
314 * Or NULL if we can not do a NOCOW write
315 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 u64 bytenr)
318 {
319 struct btrfs_block_group *bg;
320 bool can_nocow = true;
321
322 bg = btrfs_lookup_block_group(fs_info, bytenr);
323 if (!bg)
324 return NULL;
325
326 spin_lock(&bg->lock);
327 if (bg->ro)
328 can_nocow = false;
329 else
330 atomic_inc(&bg->nocow_writers);
331 spin_unlock(&bg->lock);
332
333 if (!can_nocow) {
334 btrfs_put_block_group(bg);
335 return NULL;
336 }
337
338 /* No put on block group, done by btrfs_dec_nocow_writers(). */
339 return bg;
340 }
341
342 /*
343 * Decrement the number of NOCOW writers in a block group.
344 *
345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346 * and on the block group returned by that call. Typically this is called after
347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348 * relocation.
349 *
350 * After this call, the caller should not use the block group anymore. It it wants
351 * to use it, then it should get a reference on it before calling this function.
352 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 if (atomic_dec_and_test(&bg->nocow_writers))
356 wake_up_var(&bg->nocow_writers);
357
358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 btrfs_put_block_group(bg);
360 }
361
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 const u64 start)
369 {
370 struct btrfs_block_group *bg;
371
372 bg = btrfs_lookup_block_group(fs_info, start);
373 ASSERT(bg);
374 if (atomic_dec_and_test(&bg->reservations))
375 wake_up_var(&bg->reservations);
376 btrfs_put_block_group(bg);
377 }
378
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 struct btrfs_space_info *space_info = bg->space_info;
382
383 ASSERT(bg->ro);
384
385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 return;
387
388 /*
389 * Our block group is read only but before we set it to read only,
390 * some task might have had allocated an extent from it already, but it
391 * has not yet created a respective ordered extent (and added it to a
392 * root's list of ordered extents).
393 * Therefore wait for any task currently allocating extents, since the
394 * block group's reservations counter is incremented while a read lock
395 * on the groups' semaphore is held and decremented after releasing
396 * the read access on that semaphore and creating the ordered extent.
397 */
398 down_write(&space_info->groups_sem);
399 up_write(&space_info->groups_sem);
400
401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403
btrfs_get_caching_control(struct btrfs_block_group * cache)404 struct btrfs_caching_control *btrfs_get_caching_control(
405 struct btrfs_block_group *cache)
406 {
407 struct btrfs_caching_control *ctl;
408
409 spin_lock(&cache->lock);
410 if (!cache->caching_ctl) {
411 spin_unlock(&cache->lock);
412 return NULL;
413 }
414
415 ctl = cache->caching_ctl;
416 refcount_inc(&ctl->count);
417 spin_unlock(&cache->lock);
418 return ctl;
419 }
420
btrfs_put_caching_control(struct btrfs_caching_control * ctl)421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 if (refcount_dec_and_test(&ctl->count))
424 kfree(ctl);
425 }
426
427 /*
428 * When we wait for progress in the block group caching, its because our
429 * allocation attempt failed at least once. So, we must sleep and let some
430 * progress happen before we try again.
431 *
432 * This function will sleep at least once waiting for new free space to show
433 * up, and then it will check the block group free space numbers for our min
434 * num_bytes. Another option is to have it go ahead and look in the rbtree for
435 * a free extent of a given size, but this is a good start.
436 *
437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438 * any of the information in this block group.
439 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 u64 num_bytes)
442 {
443 struct btrfs_caching_control *caching_ctl;
444 int progress;
445
446 caching_ctl = btrfs_get_caching_control(cache);
447 if (!caching_ctl)
448 return;
449
450 /*
451 * We've already failed to allocate from this block group, so even if
452 * there's enough space in the block group it isn't contiguous enough to
453 * allow for an allocation, so wait for at least the next wakeup tick,
454 * or for the thing to be done.
455 */
456 progress = atomic_read(&caching_ctl->progress);
457
458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459 (progress != atomic_read(&caching_ctl->progress) &&
460 (cache->free_space_ctl->free_space >= num_bytes)));
461
462 btrfs_put_caching_control(caching_ctl);
463 }
464
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466 struct btrfs_caching_control *caching_ctl)
467 {
468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470 }
471
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473 {
474 struct btrfs_caching_control *caching_ctl;
475 int ret;
476
477 caching_ctl = btrfs_get_caching_control(cache);
478 if (!caching_ctl)
479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481 btrfs_put_caching_control(caching_ctl);
482 return ret;
483 }
484
485 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)486 static void fragment_free_space(struct btrfs_block_group *block_group)
487 {
488 struct btrfs_fs_info *fs_info = block_group->fs_info;
489 u64 start = block_group->start;
490 u64 len = block_group->length;
491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492 fs_info->nodesize : fs_info->sectorsize;
493 u64 step = chunk << 1;
494
495 while (len > chunk) {
496 btrfs_remove_free_space(block_group, start, chunk);
497 start += step;
498 if (len < step)
499 len = 0;
500 else
501 len -= step;
502 }
503 }
504 #endif
505
506 /*
507 * Add a free space range to the in memory free space cache of a block group.
508 * This checks if the range contains super block locations and any such
509 * locations are not added to the free space cache.
510 *
511 * @block_group: The target block group.
512 * @start: Start offset of the range.
513 * @end: End offset of the range (exclusive).
514 * @total_added_ret: Optional pointer to return the total amount of space
515 * added to the block group's free space cache.
516 *
517 * Returns 0 on success or < 0 on error.
518 */
btrfs_add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end,u64 * total_added_ret)519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520 u64 end, u64 *total_added_ret)
521 {
522 struct btrfs_fs_info *info = block_group->fs_info;
523 u64 extent_start, extent_end, size;
524 int ret;
525
526 if (total_added_ret)
527 *total_added_ret = 0;
528
529 while (start < end) {
530 if (!find_first_extent_bit(&info->excluded_extents, start,
531 &extent_start, &extent_end,
532 EXTENT_DIRTY | EXTENT_UPTODATE,
533 NULL))
534 break;
535
536 if (extent_start <= start) {
537 start = extent_end + 1;
538 } else if (extent_start > start && extent_start < end) {
539 size = extent_start - start;
540 ret = btrfs_add_free_space_async_trimmed(block_group,
541 start, size);
542 if (ret)
543 return ret;
544 if (total_added_ret)
545 *total_added_ret += size;
546 start = extent_end + 1;
547 } else {
548 break;
549 }
550 }
551
552 if (start < end) {
553 size = end - start;
554 ret = btrfs_add_free_space_async_trimmed(block_group, start,
555 size);
556 if (ret)
557 return ret;
558 if (total_added_ret)
559 *total_added_ret += size;
560 }
561
562 return 0;
563 }
564
565 /*
566 * Get an arbitrary extent item index / max_index through the block group
567 *
568 * @block_group the block group to sample from
569 * @index: the integral step through the block group to grab from
570 * @max_index: the granularity of the sampling
571 * @key: return value parameter for the item we find
572 *
573 * Pre-conditions on indices:
574 * 0 <= index <= max_index
575 * 0 < max_index
576 *
577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578 * error code on error.
579 */
sample_block_group_extent_item(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group,int index,int max_index,struct btrfs_key * found_key)580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581 struct btrfs_block_group *block_group,
582 int index, int max_index,
583 struct btrfs_key *found_key)
584 {
585 struct btrfs_fs_info *fs_info = block_group->fs_info;
586 struct btrfs_root *extent_root;
587 u64 search_offset;
588 u64 search_end = block_group->start + block_group->length;
589 struct btrfs_path *path;
590 struct btrfs_key search_key;
591 int ret = 0;
592
593 ASSERT(index >= 0);
594 ASSERT(index <= max_index);
595 ASSERT(max_index > 0);
596 lockdep_assert_held(&caching_ctl->mutex);
597 lockdep_assert_held_read(&fs_info->commit_root_sem);
598
599 path = btrfs_alloc_path();
600 if (!path)
601 return -ENOMEM;
602
603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604 BTRFS_SUPER_INFO_OFFSET));
605
606 path->skip_locking = 1;
607 path->search_commit_root = 1;
608 path->reada = READA_FORWARD;
609
610 search_offset = index * div_u64(block_group->length, max_index);
611 search_key.objectid = block_group->start + search_offset;
612 search_key.type = BTRFS_EXTENT_ITEM_KEY;
613 search_key.offset = 0;
614
615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
616 /* Success; sampled an extent item in the block group */
617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618 found_key->objectid >= block_group->start &&
619 found_key->objectid + found_key->offset <= search_end)
620 break;
621
622 /* We can't possibly find a valid extent item anymore */
623 if (found_key->objectid >= search_end) {
624 ret = 1;
625 break;
626 }
627 }
628
629 lockdep_assert_held(&caching_ctl->mutex);
630 lockdep_assert_held_read(&fs_info->commit_root_sem);
631 btrfs_free_path(path);
632 return ret;
633 }
634
635 /*
636 * Best effort attempt to compute a block group's size class while caching it.
637 *
638 * @block_group: the block group we are caching
639 *
640 * We cannot infer the size class while adding free space extents, because that
641 * logic doesn't care about contiguous file extents (it doesn't differentiate
642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643 * file extent items. Reading all of them is quite wasteful, because usually
644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645 * them at even steps through the block group and pick the smallest size class
646 * we see. Since size class is best effort, and not guaranteed in general,
647 * inaccuracy is acceptable.
648 *
649 * To be more explicit about why this algorithm makes sense:
650 *
651 * If we are caching in a block group from disk, then there are three major cases
652 * to consider:
653 * 1. the block group is well behaved and all extents in it are the same size
654 * class.
655 * 2. the block group is mostly one size class with rare exceptions for last
656 * ditch allocations
657 * 3. the block group was populated before size classes and can have a totally
658 * arbitrary mix of size classes.
659 *
660 * In case 1, looking at any extent in the block group will yield the correct
661 * result. For the mixed cases, taking the minimum size class seems like a good
662 * approximation, since gaps from frees will be usable to the size class. For
663 * 2., a small handful of file extents is likely to yield the right answer. For
664 * 3, we can either read every file extent, or admit that this is best effort
665 * anyway and try to stay fast.
666 *
667 * Returns: 0 on success, negative error code on error.
668 */
load_block_group_size_class(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group)669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670 struct btrfs_block_group *block_group)
671 {
672 struct btrfs_fs_info *fs_info = block_group->fs_info;
673 struct btrfs_key key;
674 int i;
675 u64 min_size = block_group->length;
676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677 int ret;
678
679 if (!btrfs_block_group_should_use_size_class(block_group))
680 return 0;
681
682 lockdep_assert_held(&caching_ctl->mutex);
683 lockdep_assert_held_read(&fs_info->commit_root_sem);
684 for (i = 0; i < 5; ++i) {
685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686 if (ret < 0)
687 goto out;
688 if (ret > 0)
689 continue;
690 min_size = min_t(u64, min_size, key.offset);
691 size_class = btrfs_calc_block_group_size_class(min_size);
692 }
693 if (size_class != BTRFS_BG_SZ_NONE) {
694 spin_lock(&block_group->lock);
695 block_group->size_class = size_class;
696 spin_unlock(&block_group->lock);
697 }
698 out:
699 return ret;
700 }
701
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703 {
704 struct btrfs_block_group *block_group = caching_ctl->block_group;
705 struct btrfs_fs_info *fs_info = block_group->fs_info;
706 struct btrfs_root *extent_root;
707 struct btrfs_path *path;
708 struct extent_buffer *leaf;
709 struct btrfs_key key;
710 u64 total_found = 0;
711 u64 last = 0;
712 u32 nritems;
713 int ret;
714 bool wakeup = true;
715
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
719
720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
721 extent_root = btrfs_extent_root(fs_info, last);
722
723 #ifdef CONFIG_BTRFS_DEBUG
724 /*
725 * If we're fragmenting we don't want to make anybody think we can
726 * allocate from this block group until we've had a chance to fragment
727 * the free space.
728 */
729 if (btrfs_should_fragment_free_space(block_group))
730 wakeup = false;
731 #endif
732 /*
733 * We don't want to deadlock with somebody trying to allocate a new
734 * extent for the extent root while also trying to search the extent
735 * root to add free space. So we skip locking and search the commit
736 * root, since its read-only
737 */
738 path->skip_locking = 1;
739 path->search_commit_root = 1;
740 path->reada = READA_FORWARD;
741
742 key.objectid = last;
743 key.offset = 0;
744 key.type = BTRFS_EXTENT_ITEM_KEY;
745
746 next:
747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748 if (ret < 0)
749 goto out;
750
751 leaf = path->nodes[0];
752 nritems = btrfs_header_nritems(leaf);
753
754 while (1) {
755 if (btrfs_fs_closing(fs_info) > 1) {
756 last = (u64)-1;
757 break;
758 }
759
760 if (path->slots[0] < nritems) {
761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762 } else {
763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764 if (ret)
765 break;
766
767 if (need_resched() ||
768 rwsem_is_contended(&fs_info->commit_root_sem)) {
769 btrfs_release_path(path);
770 up_read(&fs_info->commit_root_sem);
771 mutex_unlock(&caching_ctl->mutex);
772 cond_resched();
773 mutex_lock(&caching_ctl->mutex);
774 down_read(&fs_info->commit_root_sem);
775 goto next;
776 }
777
778 ret = btrfs_next_leaf(extent_root, path);
779 if (ret < 0)
780 goto out;
781 if (ret)
782 break;
783 leaf = path->nodes[0];
784 nritems = btrfs_header_nritems(leaf);
785 continue;
786 }
787
788 if (key.objectid < last) {
789 key.objectid = last;
790 key.offset = 0;
791 key.type = BTRFS_EXTENT_ITEM_KEY;
792 btrfs_release_path(path);
793 goto next;
794 }
795
796 if (key.objectid < block_group->start) {
797 path->slots[0]++;
798 continue;
799 }
800
801 if (key.objectid >= block_group->start + block_group->length)
802 break;
803
804 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805 key.type == BTRFS_METADATA_ITEM_KEY) {
806 u64 space_added;
807
808 ret = btrfs_add_new_free_space(block_group, last,
809 key.objectid, &space_added);
810 if (ret)
811 goto out;
812 total_found += space_added;
813 if (key.type == BTRFS_METADATA_ITEM_KEY)
814 last = key.objectid +
815 fs_info->nodesize;
816 else
817 last = key.objectid + key.offset;
818
819 if (total_found > CACHING_CTL_WAKE_UP) {
820 total_found = 0;
821 if (wakeup) {
822 atomic_inc(&caching_ctl->progress);
823 wake_up(&caching_ctl->wait);
824 }
825 }
826 }
827 path->slots[0]++;
828 }
829
830 ret = btrfs_add_new_free_space(block_group, last,
831 block_group->start + block_group->length,
832 NULL);
833 out:
834 btrfs_free_path(path);
835 return ret;
836 }
837
btrfs_free_excluded_extents(const struct btrfs_block_group * bg)838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839 {
840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841 bg->start + bg->length - 1, EXTENT_UPTODATE);
842 }
843
caching_thread(struct btrfs_work * work)844 static noinline void caching_thread(struct btrfs_work *work)
845 {
846 struct btrfs_block_group *block_group;
847 struct btrfs_fs_info *fs_info;
848 struct btrfs_caching_control *caching_ctl;
849 int ret;
850
851 caching_ctl = container_of(work, struct btrfs_caching_control, work);
852 block_group = caching_ctl->block_group;
853 fs_info = block_group->fs_info;
854
855 mutex_lock(&caching_ctl->mutex);
856 down_read(&fs_info->commit_root_sem);
857
858 load_block_group_size_class(caching_ctl, block_group);
859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860 ret = load_free_space_cache(block_group);
861 if (ret == 1) {
862 ret = 0;
863 goto done;
864 }
865
866 /*
867 * We failed to load the space cache, set ourselves to
868 * CACHE_STARTED and carry on.
869 */
870 spin_lock(&block_group->lock);
871 block_group->cached = BTRFS_CACHE_STARTED;
872 spin_unlock(&block_group->lock);
873 wake_up(&caching_ctl->wait);
874 }
875
876 /*
877 * If we are in the transaction that populated the free space tree we
878 * can't actually cache from the free space tree as our commit root and
879 * real root are the same, so we could change the contents of the blocks
880 * while caching. Instead do the slow caching in this case, and after
881 * the transaction has committed we will be safe.
882 */
883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
885 ret = load_free_space_tree(caching_ctl);
886 else
887 ret = load_extent_tree_free(caching_ctl);
888 done:
889 spin_lock(&block_group->lock);
890 block_group->caching_ctl = NULL;
891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892 spin_unlock(&block_group->lock);
893
894 #ifdef CONFIG_BTRFS_DEBUG
895 if (btrfs_should_fragment_free_space(block_group)) {
896 u64 bytes_used;
897
898 spin_lock(&block_group->space_info->lock);
899 spin_lock(&block_group->lock);
900 bytes_used = block_group->length - block_group->used;
901 block_group->space_info->bytes_used += bytes_used >> 1;
902 spin_unlock(&block_group->lock);
903 spin_unlock(&block_group->space_info->lock);
904 fragment_free_space(block_group);
905 }
906 #endif
907
908 up_read(&fs_info->commit_root_sem);
909 btrfs_free_excluded_extents(block_group);
910 mutex_unlock(&caching_ctl->mutex);
911
912 wake_up(&caching_ctl->wait);
913
914 btrfs_put_caching_control(caching_ctl);
915 btrfs_put_block_group(block_group);
916 }
917
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
919 {
920 struct btrfs_fs_info *fs_info = cache->fs_info;
921 struct btrfs_caching_control *caching_ctl = NULL;
922 int ret = 0;
923
924 /* Allocator for zoned filesystems does not use the cache at all */
925 if (btrfs_is_zoned(fs_info))
926 return 0;
927
928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929 if (!caching_ctl)
930 return -ENOMEM;
931
932 INIT_LIST_HEAD(&caching_ctl->list);
933 mutex_init(&caching_ctl->mutex);
934 init_waitqueue_head(&caching_ctl->wait);
935 caching_ctl->block_group = cache;
936 refcount_set(&caching_ctl->count, 2);
937 atomic_set(&caching_ctl->progress, 0);
938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
939
940 spin_lock(&cache->lock);
941 if (cache->cached != BTRFS_CACHE_NO) {
942 kfree(caching_ctl);
943
944 caching_ctl = cache->caching_ctl;
945 if (caching_ctl)
946 refcount_inc(&caching_ctl->count);
947 spin_unlock(&cache->lock);
948 goto out;
949 }
950 WARN_ON(cache->caching_ctl);
951 cache->caching_ctl = caching_ctl;
952 cache->cached = BTRFS_CACHE_STARTED;
953 spin_unlock(&cache->lock);
954
955 write_lock(&fs_info->block_group_cache_lock);
956 refcount_inc(&caching_ctl->count);
957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
958 write_unlock(&fs_info->block_group_cache_lock);
959
960 btrfs_get_block_group(cache);
961
962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
963 out:
964 if (wait && caching_ctl)
965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
966 if (caching_ctl)
967 btrfs_put_caching_control(caching_ctl);
968
969 return ret;
970 }
971
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973 {
974 u64 extra_flags = chunk_to_extended(flags) &
975 BTRFS_EXTENDED_PROFILE_MASK;
976
977 write_seqlock(&fs_info->profiles_lock);
978 if (flags & BTRFS_BLOCK_GROUP_DATA)
979 fs_info->avail_data_alloc_bits &= ~extra_flags;
980 if (flags & BTRFS_BLOCK_GROUP_METADATA)
981 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983 fs_info->avail_system_alloc_bits &= ~extra_flags;
984 write_sequnlock(&fs_info->profiles_lock);
985 }
986
987 /*
988 * Clear incompat bits for the following feature(s):
989 *
990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991 * in the whole filesystem
992 *
993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
994 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996 {
997 bool found_raid56 = false;
998 bool found_raid1c34 = false;
999
1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003 struct list_head *head = &fs_info->space_info;
1004 struct btrfs_space_info *sinfo;
1005
1006 list_for_each_entry_rcu(sinfo, head, list) {
1007 down_read(&sinfo->groups_sem);
1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009 found_raid56 = true;
1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011 found_raid56 = true;
1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013 found_raid1c34 = true;
1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015 found_raid1c34 = true;
1016 up_read(&sinfo->groups_sem);
1017 }
1018 if (!found_raid56)
1019 btrfs_clear_fs_incompat(fs_info, RAID56);
1020 if (!found_raid1c34)
1021 btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022 }
1023 }
1024
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)1025 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1026 struct btrfs_path *path,
1027 struct btrfs_block_group *block_group)
1028 {
1029 struct btrfs_fs_info *fs_info = trans->fs_info;
1030 struct btrfs_root *root;
1031 struct btrfs_key key;
1032 int ret;
1033
1034 root = btrfs_block_group_root(fs_info);
1035 key.objectid = block_group->start;
1036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1037 key.offset = block_group->length;
1038
1039 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1040 if (ret > 0)
1041 ret = -ENOENT;
1042 if (ret < 0)
1043 return ret;
1044
1045 ret = btrfs_del_item(trans, root, path);
1046 return ret;
1047 }
1048
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1050 u64 group_start, struct extent_map *em)
1051 {
1052 struct btrfs_fs_info *fs_info = trans->fs_info;
1053 struct btrfs_path *path;
1054 struct btrfs_block_group *block_group;
1055 struct btrfs_free_cluster *cluster;
1056 struct inode *inode;
1057 struct kobject *kobj = NULL;
1058 int ret;
1059 int index;
1060 int factor;
1061 struct btrfs_caching_control *caching_ctl = NULL;
1062 bool remove_em;
1063 bool remove_rsv = false;
1064
1065 block_group = btrfs_lookup_block_group(fs_info, group_start);
1066 BUG_ON(!block_group);
1067 BUG_ON(!block_group->ro);
1068
1069 trace_btrfs_remove_block_group(block_group);
1070 /*
1071 * Free the reserved super bytes from this block group before
1072 * remove it.
1073 */
1074 btrfs_free_excluded_extents(block_group);
1075 btrfs_free_ref_tree_range(fs_info, block_group->start,
1076 block_group->length);
1077
1078 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1079 factor = btrfs_bg_type_to_factor(block_group->flags);
1080
1081 /* make sure this block group isn't part of an allocation cluster */
1082 cluster = &fs_info->data_alloc_cluster;
1083 spin_lock(&cluster->refill_lock);
1084 btrfs_return_cluster_to_free_space(block_group, cluster);
1085 spin_unlock(&cluster->refill_lock);
1086
1087 /*
1088 * make sure this block group isn't part of a metadata
1089 * allocation cluster
1090 */
1091 cluster = &fs_info->meta_alloc_cluster;
1092 spin_lock(&cluster->refill_lock);
1093 btrfs_return_cluster_to_free_space(block_group, cluster);
1094 spin_unlock(&cluster->refill_lock);
1095
1096 btrfs_clear_treelog_bg(block_group);
1097 btrfs_clear_data_reloc_bg(block_group);
1098
1099 path = btrfs_alloc_path();
1100 if (!path) {
1101 ret = -ENOMEM;
1102 goto out;
1103 }
1104
1105 /*
1106 * get the inode first so any iput calls done for the io_list
1107 * aren't the final iput (no unlinks allowed now)
1108 */
1109 inode = lookup_free_space_inode(block_group, path);
1110
1111 mutex_lock(&trans->transaction->cache_write_mutex);
1112 /*
1113 * Make sure our free space cache IO is done before removing the
1114 * free space inode
1115 */
1116 spin_lock(&trans->transaction->dirty_bgs_lock);
1117 if (!list_empty(&block_group->io_list)) {
1118 list_del_init(&block_group->io_list);
1119
1120 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1121
1122 spin_unlock(&trans->transaction->dirty_bgs_lock);
1123 btrfs_wait_cache_io(trans, block_group, path);
1124 btrfs_put_block_group(block_group);
1125 spin_lock(&trans->transaction->dirty_bgs_lock);
1126 }
1127
1128 if (!list_empty(&block_group->dirty_list)) {
1129 list_del_init(&block_group->dirty_list);
1130 remove_rsv = true;
1131 btrfs_put_block_group(block_group);
1132 }
1133 spin_unlock(&trans->transaction->dirty_bgs_lock);
1134 mutex_unlock(&trans->transaction->cache_write_mutex);
1135
1136 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1137 if (ret)
1138 goto out;
1139
1140 write_lock(&fs_info->block_group_cache_lock);
1141 rb_erase_cached(&block_group->cache_node,
1142 &fs_info->block_group_cache_tree);
1143 RB_CLEAR_NODE(&block_group->cache_node);
1144
1145 /* Once for the block groups rbtree */
1146 btrfs_put_block_group(block_group);
1147
1148 write_unlock(&fs_info->block_group_cache_lock);
1149
1150 down_write(&block_group->space_info->groups_sem);
1151 /*
1152 * we must use list_del_init so people can check to see if they
1153 * are still on the list after taking the semaphore
1154 */
1155 list_del_init(&block_group->list);
1156 if (list_empty(&block_group->space_info->block_groups[index])) {
1157 kobj = block_group->space_info->block_group_kobjs[index];
1158 block_group->space_info->block_group_kobjs[index] = NULL;
1159 clear_avail_alloc_bits(fs_info, block_group->flags);
1160 }
1161 up_write(&block_group->space_info->groups_sem);
1162 clear_incompat_bg_bits(fs_info, block_group->flags);
1163 if (kobj) {
1164 kobject_del(kobj);
1165 kobject_put(kobj);
1166 }
1167
1168 if (block_group->cached == BTRFS_CACHE_STARTED)
1169 btrfs_wait_block_group_cache_done(block_group);
1170
1171 write_lock(&fs_info->block_group_cache_lock);
1172 caching_ctl = btrfs_get_caching_control(block_group);
1173 if (!caching_ctl) {
1174 struct btrfs_caching_control *ctl;
1175
1176 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1177 if (ctl->block_group == block_group) {
1178 caching_ctl = ctl;
1179 refcount_inc(&caching_ctl->count);
1180 break;
1181 }
1182 }
1183 }
1184 if (caching_ctl)
1185 list_del_init(&caching_ctl->list);
1186 write_unlock(&fs_info->block_group_cache_lock);
1187
1188 if (caching_ctl) {
1189 /* Once for the caching bgs list and once for us. */
1190 btrfs_put_caching_control(caching_ctl);
1191 btrfs_put_caching_control(caching_ctl);
1192 }
1193
1194 spin_lock(&trans->transaction->dirty_bgs_lock);
1195 WARN_ON(!list_empty(&block_group->dirty_list));
1196 WARN_ON(!list_empty(&block_group->io_list));
1197 spin_unlock(&trans->transaction->dirty_bgs_lock);
1198
1199 btrfs_remove_free_space_cache(block_group);
1200
1201 spin_lock(&block_group->space_info->lock);
1202 list_del_init(&block_group->ro_list);
1203
1204 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1205 WARN_ON(block_group->space_info->total_bytes
1206 < block_group->length);
1207 WARN_ON(block_group->space_info->bytes_readonly
1208 < block_group->length - block_group->zone_unusable);
1209 WARN_ON(block_group->space_info->bytes_zone_unusable
1210 < block_group->zone_unusable);
1211 WARN_ON(block_group->space_info->disk_total
1212 < block_group->length * factor);
1213 }
1214 block_group->space_info->total_bytes -= block_group->length;
1215 block_group->space_info->bytes_readonly -=
1216 (block_group->length - block_group->zone_unusable);
1217 block_group->space_info->bytes_zone_unusable -=
1218 block_group->zone_unusable;
1219 block_group->space_info->disk_total -= block_group->length * factor;
1220
1221 spin_unlock(&block_group->space_info->lock);
1222
1223 /*
1224 * Remove the free space for the block group from the free space tree
1225 * and the block group's item from the extent tree before marking the
1226 * block group as removed. This is to prevent races with tasks that
1227 * freeze and unfreeze a block group, this task and another task
1228 * allocating a new block group - the unfreeze task ends up removing
1229 * the block group's extent map before the task calling this function
1230 * deletes the block group item from the extent tree, allowing for
1231 * another task to attempt to create another block group with the same
1232 * item key (and failing with -EEXIST and a transaction abort).
1233 */
1234 ret = remove_block_group_free_space(trans, block_group);
1235 if (ret)
1236 goto out;
1237
1238 ret = remove_block_group_item(trans, path, block_group);
1239 if (ret < 0)
1240 goto out;
1241
1242 spin_lock(&block_group->lock);
1243 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1244
1245 /*
1246 * At this point trimming or scrub can't start on this block group,
1247 * because we removed the block group from the rbtree
1248 * fs_info->block_group_cache_tree so no one can't find it anymore and
1249 * even if someone already got this block group before we removed it
1250 * from the rbtree, they have already incremented block_group->frozen -
1251 * if they didn't, for the trimming case they won't find any free space
1252 * entries because we already removed them all when we called
1253 * btrfs_remove_free_space_cache().
1254 *
1255 * And we must not remove the extent map from the fs_info->mapping_tree
1256 * to prevent the same logical address range and physical device space
1257 * ranges from being reused for a new block group. This is needed to
1258 * avoid races with trimming and scrub.
1259 *
1260 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1261 * completely transactionless, so while it is trimming a range the
1262 * currently running transaction might finish and a new one start,
1263 * allowing for new block groups to be created that can reuse the same
1264 * physical device locations unless we take this special care.
1265 *
1266 * There may also be an implicit trim operation if the file system
1267 * is mounted with -odiscard. The same protections must remain
1268 * in place until the extents have been discarded completely when
1269 * the transaction commit has completed.
1270 */
1271 remove_em = (atomic_read(&block_group->frozen) == 0);
1272 spin_unlock(&block_group->lock);
1273
1274 if (remove_em) {
1275 struct extent_map_tree *em_tree;
1276
1277 em_tree = &fs_info->mapping_tree;
1278 write_lock(&em_tree->lock);
1279 remove_extent_mapping(em_tree, em);
1280 write_unlock(&em_tree->lock);
1281 /* once for the tree */
1282 free_extent_map(em);
1283 }
1284
1285 out:
1286 /* Once for the lookup reference */
1287 btrfs_put_block_group(block_group);
1288 if (remove_rsv)
1289 btrfs_delayed_refs_rsv_release(fs_info, 1);
1290 btrfs_free_path(path);
1291 return ret;
1292 }
1293
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1294 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1295 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1296 {
1297 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1298 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1299 struct extent_map *em;
1300 struct map_lookup *map;
1301 unsigned int num_items;
1302
1303 read_lock(&em_tree->lock);
1304 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1305 read_unlock(&em_tree->lock);
1306 ASSERT(em && em->start == chunk_offset);
1307
1308 /*
1309 * We need to reserve 3 + N units from the metadata space info in order
1310 * to remove a block group (done at btrfs_remove_chunk() and at
1311 * btrfs_remove_block_group()), which are used for:
1312 *
1313 * 1 unit for adding the free space inode's orphan (located in the tree
1314 * of tree roots).
1315 * 1 unit for deleting the block group item (located in the extent
1316 * tree).
1317 * 1 unit for deleting the free space item (located in tree of tree
1318 * roots).
1319 * N units for deleting N device extent items corresponding to each
1320 * stripe (located in the device tree).
1321 *
1322 * In order to remove a block group we also need to reserve units in the
1323 * system space info in order to update the chunk tree (update one or
1324 * more device items and remove one chunk item), but this is done at
1325 * btrfs_remove_chunk() through a call to check_system_chunk().
1326 */
1327 map = em->map_lookup;
1328 num_items = 3 + map->num_stripes;
1329 free_extent_map(em);
1330
1331 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1332 }
1333
1334 /*
1335 * Mark block group @cache read-only, so later write won't happen to block
1336 * group @cache.
1337 *
1338 * If @force is not set, this function will only mark the block group readonly
1339 * if we have enough free space (1M) in other metadata/system block groups.
1340 * If @force is not set, this function will mark the block group readonly
1341 * without checking free space.
1342 *
1343 * NOTE: This function doesn't care if other block groups can contain all the
1344 * data in this block group. That check should be done by relocation routine,
1345 * not this function.
1346 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1347 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1348 {
1349 struct btrfs_space_info *sinfo = cache->space_info;
1350 u64 num_bytes;
1351 int ret = -ENOSPC;
1352
1353 spin_lock(&sinfo->lock);
1354 spin_lock(&cache->lock);
1355
1356 if (cache->swap_extents) {
1357 ret = -ETXTBSY;
1358 goto out;
1359 }
1360
1361 if (cache->ro) {
1362 cache->ro++;
1363 ret = 0;
1364 goto out;
1365 }
1366
1367 num_bytes = cache->length - cache->reserved - cache->pinned -
1368 cache->bytes_super - cache->zone_unusable - cache->used;
1369
1370 /*
1371 * Data never overcommits, even in mixed mode, so do just the straight
1372 * check of left over space in how much we have allocated.
1373 */
1374 if (force) {
1375 ret = 0;
1376 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1377 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1378
1379 /*
1380 * Here we make sure if we mark this bg RO, we still have enough
1381 * free space as buffer.
1382 */
1383 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1384 ret = 0;
1385 } else {
1386 /*
1387 * We overcommit metadata, so we need to do the
1388 * btrfs_can_overcommit check here, and we need to pass in
1389 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1390 * leeway to allow us to mark this block group as read only.
1391 */
1392 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1393 BTRFS_RESERVE_NO_FLUSH))
1394 ret = 0;
1395 }
1396
1397 if (!ret) {
1398 sinfo->bytes_readonly += num_bytes;
1399 if (btrfs_is_zoned(cache->fs_info)) {
1400 /* Migrate zone_unusable bytes to readonly */
1401 sinfo->bytes_readonly += cache->zone_unusable;
1402 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1403 cache->zone_unusable = 0;
1404 }
1405 cache->ro++;
1406 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1407 }
1408 out:
1409 spin_unlock(&cache->lock);
1410 spin_unlock(&sinfo->lock);
1411 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1412 btrfs_info(cache->fs_info,
1413 "unable to make block group %llu ro", cache->start);
1414 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1415 }
1416 return ret;
1417 }
1418
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1419 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1420 struct btrfs_block_group *bg)
1421 {
1422 struct btrfs_fs_info *fs_info = bg->fs_info;
1423 struct btrfs_transaction *prev_trans = NULL;
1424 const u64 start = bg->start;
1425 const u64 end = start + bg->length - 1;
1426 int ret;
1427
1428 spin_lock(&fs_info->trans_lock);
1429 if (trans->transaction->list.prev != &fs_info->trans_list) {
1430 prev_trans = list_last_entry(&trans->transaction->list,
1431 struct btrfs_transaction, list);
1432 refcount_inc(&prev_trans->use_count);
1433 }
1434 spin_unlock(&fs_info->trans_lock);
1435
1436 /*
1437 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1438 * btrfs_finish_extent_commit(). If we are at transaction N, another
1439 * task might be running finish_extent_commit() for the previous
1440 * transaction N - 1, and have seen a range belonging to the block
1441 * group in pinned_extents before we were able to clear the whole block
1442 * group range from pinned_extents. This means that task can lookup for
1443 * the block group after we unpinned it from pinned_extents and removed
1444 * it, leading to a BUG_ON() at unpin_extent_range().
1445 */
1446 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1447 if (prev_trans) {
1448 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1449 EXTENT_DIRTY);
1450 if (ret)
1451 goto out;
1452 }
1453
1454 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1455 EXTENT_DIRTY);
1456 out:
1457 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1458 if (prev_trans)
1459 btrfs_put_transaction(prev_trans);
1460
1461 return ret == 0;
1462 }
1463
1464 /*
1465 * Process the unused_bgs list and remove any that don't have any allocated
1466 * space inside of them.
1467 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1468 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1469 {
1470 struct btrfs_block_group *block_group;
1471 struct btrfs_space_info *space_info;
1472 struct btrfs_trans_handle *trans;
1473 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1474 int ret = 0;
1475
1476 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1477 return;
1478
1479 if (btrfs_fs_closing(fs_info))
1480 return;
1481
1482 /*
1483 * Long running balances can keep us blocked here for eternity, so
1484 * simply skip deletion if we're unable to get the mutex.
1485 */
1486 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1487 return;
1488
1489 spin_lock(&fs_info->unused_bgs_lock);
1490 while (!list_empty(&fs_info->unused_bgs)) {
1491 int trimming;
1492
1493 block_group = list_first_entry(&fs_info->unused_bgs,
1494 struct btrfs_block_group,
1495 bg_list);
1496 list_del_init(&block_group->bg_list);
1497
1498 space_info = block_group->space_info;
1499
1500 if (ret || btrfs_mixed_space_info(space_info)) {
1501 btrfs_put_block_group(block_group);
1502 continue;
1503 }
1504 spin_unlock(&fs_info->unused_bgs_lock);
1505
1506 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1507
1508 /* Don't want to race with allocators so take the groups_sem */
1509 down_write(&space_info->groups_sem);
1510
1511 /*
1512 * Async discard moves the final block group discard to be prior
1513 * to the unused_bgs code path. Therefore, if it's not fully
1514 * trimmed, punt it back to the async discard lists.
1515 */
1516 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1517 !btrfs_is_free_space_trimmed(block_group)) {
1518 trace_btrfs_skip_unused_block_group(block_group);
1519 up_write(&space_info->groups_sem);
1520 /* Requeue if we failed because of async discard */
1521 btrfs_discard_queue_work(&fs_info->discard_ctl,
1522 block_group);
1523 goto next;
1524 }
1525
1526 spin_lock(&block_group->lock);
1527 if (block_group->reserved || block_group->pinned ||
1528 block_group->used || block_group->ro ||
1529 list_is_singular(&block_group->list)) {
1530 /*
1531 * We want to bail if we made new allocations or have
1532 * outstanding allocations in this block group. We do
1533 * the ro check in case balance is currently acting on
1534 * this block group.
1535 */
1536 trace_btrfs_skip_unused_block_group(block_group);
1537 spin_unlock(&block_group->lock);
1538 up_write(&space_info->groups_sem);
1539 goto next;
1540 }
1541 spin_unlock(&block_group->lock);
1542
1543 /* We don't want to force the issue, only flip if it's ok. */
1544 ret = inc_block_group_ro(block_group, 0);
1545 up_write(&space_info->groups_sem);
1546 if (ret < 0) {
1547 ret = 0;
1548 goto next;
1549 }
1550
1551 ret = btrfs_zone_finish(block_group);
1552 if (ret < 0) {
1553 btrfs_dec_block_group_ro(block_group);
1554 if (ret == -EAGAIN)
1555 ret = 0;
1556 goto next;
1557 }
1558
1559 /*
1560 * Want to do this before we do anything else so we can recover
1561 * properly if we fail to join the transaction.
1562 */
1563 trans = btrfs_start_trans_remove_block_group(fs_info,
1564 block_group->start);
1565 if (IS_ERR(trans)) {
1566 btrfs_dec_block_group_ro(block_group);
1567 ret = PTR_ERR(trans);
1568 goto next;
1569 }
1570
1571 /*
1572 * We could have pending pinned extents for this block group,
1573 * just delete them, we don't care about them anymore.
1574 */
1575 if (!clean_pinned_extents(trans, block_group)) {
1576 btrfs_dec_block_group_ro(block_group);
1577 goto end_trans;
1578 }
1579
1580 /*
1581 * At this point, the block_group is read only and should fail
1582 * new allocations. However, btrfs_finish_extent_commit() can
1583 * cause this block_group to be placed back on the discard
1584 * lists because now the block_group isn't fully discarded.
1585 * Bail here and try again later after discarding everything.
1586 */
1587 spin_lock(&fs_info->discard_ctl.lock);
1588 if (!list_empty(&block_group->discard_list)) {
1589 spin_unlock(&fs_info->discard_ctl.lock);
1590 btrfs_dec_block_group_ro(block_group);
1591 btrfs_discard_queue_work(&fs_info->discard_ctl,
1592 block_group);
1593 goto end_trans;
1594 }
1595 spin_unlock(&fs_info->discard_ctl.lock);
1596
1597 /* Reset pinned so btrfs_put_block_group doesn't complain */
1598 spin_lock(&space_info->lock);
1599 spin_lock(&block_group->lock);
1600
1601 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1602 -block_group->pinned);
1603 space_info->bytes_readonly += block_group->pinned;
1604 block_group->pinned = 0;
1605
1606 spin_unlock(&block_group->lock);
1607 spin_unlock(&space_info->lock);
1608
1609 /*
1610 * The normal path here is an unused block group is passed here,
1611 * then trimming is handled in the transaction commit path.
1612 * Async discard interposes before this to do the trimming
1613 * before coming down the unused block group path as trimming
1614 * will no longer be done later in the transaction commit path.
1615 */
1616 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1617 goto flip_async;
1618
1619 /*
1620 * DISCARD can flip during remount. On zoned filesystems, we
1621 * need to reset sequential-required zones.
1622 */
1623 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1624 btrfs_is_zoned(fs_info);
1625
1626 /* Implicit trim during transaction commit. */
1627 if (trimming)
1628 btrfs_freeze_block_group(block_group);
1629
1630 /*
1631 * Btrfs_remove_chunk will abort the transaction if things go
1632 * horribly wrong.
1633 */
1634 ret = btrfs_remove_chunk(trans, block_group->start);
1635
1636 if (ret) {
1637 if (trimming)
1638 btrfs_unfreeze_block_group(block_group);
1639 goto end_trans;
1640 }
1641
1642 /*
1643 * If we're not mounted with -odiscard, we can just forget
1644 * about this block group. Otherwise we'll need to wait
1645 * until transaction commit to do the actual discard.
1646 */
1647 if (trimming) {
1648 spin_lock(&fs_info->unused_bgs_lock);
1649 /*
1650 * A concurrent scrub might have added us to the list
1651 * fs_info->unused_bgs, so use a list_move operation
1652 * to add the block group to the deleted_bgs list.
1653 */
1654 list_move(&block_group->bg_list,
1655 &trans->transaction->deleted_bgs);
1656 spin_unlock(&fs_info->unused_bgs_lock);
1657 btrfs_get_block_group(block_group);
1658 }
1659 end_trans:
1660 btrfs_end_transaction(trans);
1661 next:
1662 btrfs_put_block_group(block_group);
1663 spin_lock(&fs_info->unused_bgs_lock);
1664 }
1665 spin_unlock(&fs_info->unused_bgs_lock);
1666 mutex_unlock(&fs_info->reclaim_bgs_lock);
1667 return;
1668
1669 flip_async:
1670 btrfs_end_transaction(trans);
1671 mutex_unlock(&fs_info->reclaim_bgs_lock);
1672 btrfs_put_block_group(block_group);
1673 btrfs_discard_punt_unused_bgs_list(fs_info);
1674 }
1675
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1676 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1677 {
1678 struct btrfs_fs_info *fs_info = bg->fs_info;
1679
1680 spin_lock(&fs_info->unused_bgs_lock);
1681 if (list_empty(&bg->bg_list)) {
1682 btrfs_get_block_group(bg);
1683 trace_btrfs_add_unused_block_group(bg);
1684 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1685 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1686 /* Pull out the block group from the reclaim_bgs list. */
1687 trace_btrfs_add_unused_block_group(bg);
1688 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1689 }
1690 spin_unlock(&fs_info->unused_bgs_lock);
1691 }
1692
1693 /*
1694 * We want block groups with a low number of used bytes to be in the beginning
1695 * of the list, so they will get reclaimed first.
1696 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1697 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1698 const struct list_head *b)
1699 {
1700 const struct btrfs_block_group *bg1, *bg2;
1701
1702 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1703 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1704
1705 return bg1->used > bg2->used;
1706 }
1707
btrfs_should_reclaim(struct btrfs_fs_info * fs_info)1708 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1709 {
1710 if (btrfs_is_zoned(fs_info))
1711 return btrfs_zoned_should_reclaim(fs_info);
1712 return true;
1713 }
1714
should_reclaim_block_group(struct btrfs_block_group * bg,u64 bytes_freed)1715 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1716 {
1717 const struct btrfs_space_info *space_info = bg->space_info;
1718 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1719 const u64 new_val = bg->used;
1720 const u64 old_val = new_val + bytes_freed;
1721 u64 thresh;
1722
1723 if (reclaim_thresh == 0)
1724 return false;
1725
1726 thresh = mult_perc(bg->length, reclaim_thresh);
1727
1728 /*
1729 * If we were below the threshold before don't reclaim, we are likely a
1730 * brand new block group and we don't want to relocate new block groups.
1731 */
1732 if (old_val < thresh)
1733 return false;
1734 if (new_val >= thresh)
1735 return false;
1736 return true;
1737 }
1738
btrfs_reclaim_bgs_work(struct work_struct * work)1739 void btrfs_reclaim_bgs_work(struct work_struct *work)
1740 {
1741 struct btrfs_fs_info *fs_info =
1742 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1743 struct btrfs_block_group *bg;
1744 struct btrfs_space_info *space_info;
1745
1746 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1747 return;
1748
1749 if (btrfs_fs_closing(fs_info))
1750 return;
1751
1752 if (!btrfs_should_reclaim(fs_info))
1753 return;
1754
1755 sb_start_write(fs_info->sb);
1756
1757 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1758 sb_end_write(fs_info->sb);
1759 return;
1760 }
1761
1762 /*
1763 * Long running balances can keep us blocked here for eternity, so
1764 * simply skip reclaim if we're unable to get the mutex.
1765 */
1766 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1767 btrfs_exclop_finish(fs_info);
1768 sb_end_write(fs_info->sb);
1769 return;
1770 }
1771
1772 spin_lock(&fs_info->unused_bgs_lock);
1773 /*
1774 * Sort happens under lock because we can't simply splice it and sort.
1775 * The block groups might still be in use and reachable via bg_list,
1776 * and their presence in the reclaim_bgs list must be preserved.
1777 */
1778 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1779 while (!list_empty(&fs_info->reclaim_bgs)) {
1780 u64 zone_unusable;
1781 int ret = 0;
1782
1783 bg = list_first_entry(&fs_info->reclaim_bgs,
1784 struct btrfs_block_group,
1785 bg_list);
1786 list_del_init(&bg->bg_list);
1787
1788 space_info = bg->space_info;
1789 spin_unlock(&fs_info->unused_bgs_lock);
1790
1791 /* Don't race with allocators so take the groups_sem */
1792 down_write(&space_info->groups_sem);
1793
1794 spin_lock(&bg->lock);
1795 if (bg->reserved || bg->pinned || bg->ro) {
1796 /*
1797 * We want to bail if we made new allocations or have
1798 * outstanding allocations in this block group. We do
1799 * the ro check in case balance is currently acting on
1800 * this block group.
1801 */
1802 spin_unlock(&bg->lock);
1803 up_write(&space_info->groups_sem);
1804 goto next;
1805 }
1806 if (bg->used == 0) {
1807 /*
1808 * It is possible that we trigger relocation on a block
1809 * group as its extents are deleted and it first goes
1810 * below the threshold, then shortly after goes empty.
1811 *
1812 * In this case, relocating it does delete it, but has
1813 * some overhead in relocation specific metadata, looking
1814 * for the non-existent extents and running some extra
1815 * transactions, which we can avoid by using one of the
1816 * other mechanisms for dealing with empty block groups.
1817 */
1818 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1819 btrfs_mark_bg_unused(bg);
1820 spin_unlock(&bg->lock);
1821 up_write(&space_info->groups_sem);
1822 goto next;
1823
1824 }
1825 /*
1826 * The block group might no longer meet the reclaim condition by
1827 * the time we get around to reclaiming it, so to avoid
1828 * reclaiming overly full block_groups, skip reclaiming them.
1829 *
1830 * Since the decision making process also depends on the amount
1831 * being freed, pass in a fake giant value to skip that extra
1832 * check, which is more meaningful when adding to the list in
1833 * the first place.
1834 */
1835 if (!should_reclaim_block_group(bg, bg->length)) {
1836 spin_unlock(&bg->lock);
1837 up_write(&space_info->groups_sem);
1838 goto next;
1839 }
1840 spin_unlock(&bg->lock);
1841
1842 /*
1843 * Get out fast, in case we're read-only or unmounting the
1844 * filesystem. It is OK to drop block groups from the list even
1845 * for the read-only case. As we did sb_start_write(),
1846 * "mount -o remount,ro" won't happen and read-only filesystem
1847 * means it is forced read-only due to a fatal error. So, it
1848 * never gets back to read-write to let us reclaim again.
1849 */
1850 if (btrfs_need_cleaner_sleep(fs_info)) {
1851 up_write(&space_info->groups_sem);
1852 goto next;
1853 }
1854
1855 /*
1856 * Cache the zone_unusable value before turning the block group
1857 * to read only. As soon as the blog group is read only it's
1858 * zone_unusable value gets moved to the block group's read-only
1859 * bytes and isn't available for calculations anymore.
1860 */
1861 zone_unusable = bg->zone_unusable;
1862 ret = inc_block_group_ro(bg, 0);
1863 up_write(&space_info->groups_sem);
1864 if (ret < 0)
1865 goto next;
1866
1867 btrfs_info(fs_info,
1868 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1869 bg->start,
1870 div64_u64(bg->used * 100, bg->length),
1871 div64_u64(zone_unusable * 100, bg->length));
1872 trace_btrfs_reclaim_block_group(bg);
1873 ret = btrfs_relocate_chunk(fs_info, bg->start);
1874 if (ret) {
1875 btrfs_dec_block_group_ro(bg);
1876 btrfs_err(fs_info, "error relocating chunk %llu",
1877 bg->start);
1878 }
1879
1880 next:
1881 if (ret)
1882 btrfs_mark_bg_to_reclaim(bg);
1883 btrfs_put_block_group(bg);
1884
1885 mutex_unlock(&fs_info->reclaim_bgs_lock);
1886 /*
1887 * Reclaiming all the block groups in the list can take really
1888 * long. Prioritize cleaning up unused block groups.
1889 */
1890 btrfs_delete_unused_bgs(fs_info);
1891 /*
1892 * If we are interrupted by a balance, we can just bail out. The
1893 * cleaner thread restart again if necessary.
1894 */
1895 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1896 goto end;
1897 spin_lock(&fs_info->unused_bgs_lock);
1898 }
1899 spin_unlock(&fs_info->unused_bgs_lock);
1900 mutex_unlock(&fs_info->reclaim_bgs_lock);
1901 end:
1902 btrfs_exclop_finish(fs_info);
1903 sb_end_write(fs_info->sb);
1904 }
1905
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)1906 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1907 {
1908 spin_lock(&fs_info->unused_bgs_lock);
1909 if (!list_empty(&fs_info->reclaim_bgs))
1910 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1911 spin_unlock(&fs_info->unused_bgs_lock);
1912 }
1913
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)1914 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1915 {
1916 struct btrfs_fs_info *fs_info = bg->fs_info;
1917
1918 spin_lock(&fs_info->unused_bgs_lock);
1919 if (list_empty(&bg->bg_list)) {
1920 btrfs_get_block_group(bg);
1921 trace_btrfs_add_reclaim_block_group(bg);
1922 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1923 }
1924 spin_unlock(&fs_info->unused_bgs_lock);
1925 }
1926
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1927 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1928 struct btrfs_path *path)
1929 {
1930 struct extent_map_tree *em_tree;
1931 struct extent_map *em;
1932 struct btrfs_block_group_item bg;
1933 struct extent_buffer *leaf;
1934 int slot;
1935 u64 flags;
1936 int ret = 0;
1937
1938 slot = path->slots[0];
1939 leaf = path->nodes[0];
1940
1941 em_tree = &fs_info->mapping_tree;
1942 read_lock(&em_tree->lock);
1943 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1944 read_unlock(&em_tree->lock);
1945 if (!em) {
1946 btrfs_err(fs_info,
1947 "logical %llu len %llu found bg but no related chunk",
1948 key->objectid, key->offset);
1949 return -ENOENT;
1950 }
1951
1952 if (em->start != key->objectid || em->len != key->offset) {
1953 btrfs_err(fs_info,
1954 "block group %llu len %llu mismatch with chunk %llu len %llu",
1955 key->objectid, key->offset, em->start, em->len);
1956 ret = -EUCLEAN;
1957 goto out_free_em;
1958 }
1959
1960 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1961 sizeof(bg));
1962 flags = btrfs_stack_block_group_flags(&bg) &
1963 BTRFS_BLOCK_GROUP_TYPE_MASK;
1964
1965 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1966 btrfs_err(fs_info,
1967 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1968 key->objectid, key->offset, flags,
1969 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1970 ret = -EUCLEAN;
1971 }
1972
1973 out_free_em:
1974 free_extent_map(em);
1975 return ret;
1976 }
1977
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1978 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1979 struct btrfs_path *path,
1980 struct btrfs_key *key)
1981 {
1982 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1983 int ret;
1984 struct btrfs_key found_key;
1985
1986 btrfs_for_each_slot(root, key, &found_key, path, ret) {
1987 if (found_key.objectid >= key->objectid &&
1988 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1989 return read_bg_from_eb(fs_info, &found_key, path);
1990 }
1991 }
1992 return ret;
1993 }
1994
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1995 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1996 {
1997 u64 extra_flags = chunk_to_extended(flags) &
1998 BTRFS_EXTENDED_PROFILE_MASK;
1999
2000 write_seqlock(&fs_info->profiles_lock);
2001 if (flags & BTRFS_BLOCK_GROUP_DATA)
2002 fs_info->avail_data_alloc_bits |= extra_flags;
2003 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2004 fs_info->avail_metadata_alloc_bits |= extra_flags;
2005 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2006 fs_info->avail_system_alloc_bits |= extra_flags;
2007 write_sequnlock(&fs_info->profiles_lock);
2008 }
2009
2010 /*
2011 * Map a physical disk address to a list of logical addresses.
2012 *
2013 * @fs_info: the filesystem
2014 * @chunk_start: logical address of block group
2015 * @physical: physical address to map to logical addresses
2016 * @logical: return array of logical addresses which map to @physical
2017 * @naddrs: length of @logical
2018 * @stripe_len: size of IO stripe for the given block group
2019 *
2020 * Maps a particular @physical disk address to a list of @logical addresses.
2021 * Used primarily to exclude those portions of a block group that contain super
2022 * block copies.
2023 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)2024 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2025 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2026 {
2027 struct extent_map *em;
2028 struct map_lookup *map;
2029 u64 *buf;
2030 u64 bytenr;
2031 u64 data_stripe_length;
2032 u64 io_stripe_size;
2033 int i, nr = 0;
2034 int ret = 0;
2035
2036 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2037 if (IS_ERR(em))
2038 return -EIO;
2039
2040 map = em->map_lookup;
2041 data_stripe_length = em->orig_block_len;
2042 io_stripe_size = BTRFS_STRIPE_LEN;
2043 chunk_start = em->start;
2044
2045 /* For RAID5/6 adjust to a full IO stripe length */
2046 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2047 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2048
2049 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2050 if (!buf) {
2051 ret = -ENOMEM;
2052 goto out;
2053 }
2054
2055 for (i = 0; i < map->num_stripes; i++) {
2056 bool already_inserted = false;
2057 u32 stripe_nr;
2058 u32 offset;
2059 int j;
2060
2061 if (!in_range(physical, map->stripes[i].physical,
2062 data_stripe_length))
2063 continue;
2064
2065 stripe_nr = (physical - map->stripes[i].physical) >>
2066 BTRFS_STRIPE_LEN_SHIFT;
2067 offset = (physical - map->stripes[i].physical) &
2068 BTRFS_STRIPE_LEN_MASK;
2069
2070 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2071 BTRFS_BLOCK_GROUP_RAID10))
2072 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2073 map->sub_stripes);
2074 /*
2075 * The remaining case would be for RAID56, multiply by
2076 * nr_data_stripes(). Alternatively, just use rmap_len below
2077 * instead of map->stripe_len
2078 */
2079 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2080
2081 /* Ensure we don't add duplicate addresses */
2082 for (j = 0; j < nr; j++) {
2083 if (buf[j] == bytenr) {
2084 already_inserted = true;
2085 break;
2086 }
2087 }
2088
2089 if (!already_inserted)
2090 buf[nr++] = bytenr;
2091 }
2092
2093 *logical = buf;
2094 *naddrs = nr;
2095 *stripe_len = io_stripe_size;
2096 out:
2097 free_extent_map(em);
2098 return ret;
2099 }
2100
exclude_super_stripes(struct btrfs_block_group * cache)2101 static int exclude_super_stripes(struct btrfs_block_group *cache)
2102 {
2103 struct btrfs_fs_info *fs_info = cache->fs_info;
2104 const bool zoned = btrfs_is_zoned(fs_info);
2105 u64 bytenr;
2106 u64 *logical;
2107 int stripe_len;
2108 int i, nr, ret;
2109
2110 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2111 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2112 cache->bytes_super += stripe_len;
2113 ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2114 cache->start + stripe_len - 1,
2115 EXTENT_UPTODATE, NULL);
2116 if (ret)
2117 return ret;
2118 }
2119
2120 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2121 bytenr = btrfs_sb_offset(i);
2122 ret = btrfs_rmap_block(fs_info, cache->start,
2123 bytenr, &logical, &nr, &stripe_len);
2124 if (ret)
2125 return ret;
2126
2127 /* Shouldn't have super stripes in sequential zones */
2128 if (zoned && nr) {
2129 kfree(logical);
2130 btrfs_err(fs_info,
2131 "zoned: block group %llu must not contain super block",
2132 cache->start);
2133 return -EUCLEAN;
2134 }
2135
2136 while (nr--) {
2137 u64 len = min_t(u64, stripe_len,
2138 cache->start + cache->length - logical[nr]);
2139
2140 cache->bytes_super += len;
2141 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2142 logical[nr] + len - 1,
2143 EXTENT_UPTODATE, NULL);
2144 if (ret) {
2145 kfree(logical);
2146 return ret;
2147 }
2148 }
2149
2150 kfree(logical);
2151 }
2152 return 0;
2153 }
2154
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)2155 static struct btrfs_block_group *btrfs_create_block_group_cache(
2156 struct btrfs_fs_info *fs_info, u64 start)
2157 {
2158 struct btrfs_block_group *cache;
2159
2160 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2161 if (!cache)
2162 return NULL;
2163
2164 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2165 GFP_NOFS);
2166 if (!cache->free_space_ctl) {
2167 kfree(cache);
2168 return NULL;
2169 }
2170
2171 cache->start = start;
2172
2173 cache->fs_info = fs_info;
2174 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2175
2176 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2177
2178 refcount_set(&cache->refs, 1);
2179 spin_lock_init(&cache->lock);
2180 init_rwsem(&cache->data_rwsem);
2181 INIT_LIST_HEAD(&cache->list);
2182 INIT_LIST_HEAD(&cache->cluster_list);
2183 INIT_LIST_HEAD(&cache->bg_list);
2184 INIT_LIST_HEAD(&cache->ro_list);
2185 INIT_LIST_HEAD(&cache->discard_list);
2186 INIT_LIST_HEAD(&cache->dirty_list);
2187 INIT_LIST_HEAD(&cache->io_list);
2188 INIT_LIST_HEAD(&cache->active_bg_list);
2189 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2190 atomic_set(&cache->frozen, 0);
2191 mutex_init(&cache->free_space_lock);
2192
2193 return cache;
2194 }
2195
2196 /*
2197 * Iterate all chunks and verify that each of them has the corresponding block
2198 * group
2199 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)2200 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2201 {
2202 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2203 struct extent_map *em;
2204 struct btrfs_block_group *bg;
2205 u64 start = 0;
2206 int ret = 0;
2207
2208 while (1) {
2209 read_lock(&map_tree->lock);
2210 /*
2211 * lookup_extent_mapping will return the first extent map
2212 * intersecting the range, so setting @len to 1 is enough to
2213 * get the first chunk.
2214 */
2215 em = lookup_extent_mapping(map_tree, start, 1);
2216 read_unlock(&map_tree->lock);
2217 if (!em)
2218 break;
2219
2220 bg = btrfs_lookup_block_group(fs_info, em->start);
2221 if (!bg) {
2222 btrfs_err(fs_info,
2223 "chunk start=%llu len=%llu doesn't have corresponding block group",
2224 em->start, em->len);
2225 ret = -EUCLEAN;
2226 free_extent_map(em);
2227 break;
2228 }
2229 if (bg->start != em->start || bg->length != em->len ||
2230 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2231 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2232 btrfs_err(fs_info,
2233 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2234 em->start, em->len,
2235 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2236 bg->start, bg->length,
2237 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2238 ret = -EUCLEAN;
2239 free_extent_map(em);
2240 btrfs_put_block_group(bg);
2241 break;
2242 }
2243 start = em->start + em->len;
2244 free_extent_map(em);
2245 btrfs_put_block_group(bg);
2246 }
2247 return ret;
2248 }
2249
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2250 static int read_one_block_group(struct btrfs_fs_info *info,
2251 struct btrfs_block_group_item *bgi,
2252 const struct btrfs_key *key,
2253 int need_clear)
2254 {
2255 struct btrfs_block_group *cache;
2256 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2257 int ret;
2258
2259 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2260
2261 cache = btrfs_create_block_group_cache(info, key->objectid);
2262 if (!cache)
2263 return -ENOMEM;
2264
2265 cache->length = key->offset;
2266 cache->used = btrfs_stack_block_group_used(bgi);
2267 cache->commit_used = cache->used;
2268 cache->flags = btrfs_stack_block_group_flags(bgi);
2269 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2270
2271 set_free_space_tree_thresholds(cache);
2272
2273 if (need_clear) {
2274 /*
2275 * When we mount with old space cache, we need to
2276 * set BTRFS_DC_CLEAR and set dirty flag.
2277 *
2278 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2279 * truncate the old free space cache inode and
2280 * setup a new one.
2281 * b) Setting 'dirty flag' makes sure that we flush
2282 * the new space cache info onto disk.
2283 */
2284 if (btrfs_test_opt(info, SPACE_CACHE))
2285 cache->disk_cache_state = BTRFS_DC_CLEAR;
2286 }
2287 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2288 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2289 btrfs_err(info,
2290 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2291 cache->start);
2292 ret = -EINVAL;
2293 goto error;
2294 }
2295
2296 ret = btrfs_load_block_group_zone_info(cache, false);
2297 if (ret) {
2298 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2299 cache->start);
2300 goto error;
2301 }
2302
2303 /*
2304 * We need to exclude the super stripes now so that the space info has
2305 * super bytes accounted for, otherwise we'll think we have more space
2306 * than we actually do.
2307 */
2308 ret = exclude_super_stripes(cache);
2309 if (ret) {
2310 /* We may have excluded something, so call this just in case. */
2311 btrfs_free_excluded_extents(cache);
2312 goto error;
2313 }
2314
2315 /*
2316 * For zoned filesystem, space after the allocation offset is the only
2317 * free space for a block group. So, we don't need any caching work.
2318 * btrfs_calc_zone_unusable() will set the amount of free space and
2319 * zone_unusable space.
2320 *
2321 * For regular filesystem, check for two cases, either we are full, and
2322 * therefore don't need to bother with the caching work since we won't
2323 * find any space, or we are empty, and we can just add all the space
2324 * in and be done with it. This saves us _a_lot_ of time, particularly
2325 * in the full case.
2326 */
2327 if (btrfs_is_zoned(info)) {
2328 btrfs_calc_zone_unusable(cache);
2329 /* Should not have any excluded extents. Just in case, though. */
2330 btrfs_free_excluded_extents(cache);
2331 } else if (cache->length == cache->used) {
2332 cache->cached = BTRFS_CACHE_FINISHED;
2333 btrfs_free_excluded_extents(cache);
2334 } else if (cache->used == 0) {
2335 cache->cached = BTRFS_CACHE_FINISHED;
2336 ret = btrfs_add_new_free_space(cache, cache->start,
2337 cache->start + cache->length, NULL);
2338 btrfs_free_excluded_extents(cache);
2339 if (ret)
2340 goto error;
2341 }
2342
2343 ret = btrfs_add_block_group_cache(info, cache);
2344 if (ret) {
2345 btrfs_remove_free_space_cache(cache);
2346 goto error;
2347 }
2348 trace_btrfs_add_block_group(info, cache, 0);
2349 btrfs_add_bg_to_space_info(info, cache);
2350
2351 set_avail_alloc_bits(info, cache->flags);
2352 if (btrfs_chunk_writeable(info, cache->start)) {
2353 if (cache->used == 0) {
2354 ASSERT(list_empty(&cache->bg_list));
2355 if (btrfs_test_opt(info, DISCARD_ASYNC))
2356 btrfs_discard_queue_work(&info->discard_ctl, cache);
2357 else
2358 btrfs_mark_bg_unused(cache);
2359 }
2360 } else {
2361 inc_block_group_ro(cache, 1);
2362 }
2363
2364 return 0;
2365 error:
2366 btrfs_put_block_group(cache);
2367 return ret;
2368 }
2369
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2370 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2371 {
2372 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2373 struct rb_node *node;
2374 int ret = 0;
2375
2376 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2377 struct extent_map *em;
2378 struct map_lookup *map;
2379 struct btrfs_block_group *bg;
2380
2381 em = rb_entry(node, struct extent_map, rb_node);
2382 map = em->map_lookup;
2383 bg = btrfs_create_block_group_cache(fs_info, em->start);
2384 if (!bg) {
2385 ret = -ENOMEM;
2386 break;
2387 }
2388
2389 /* Fill dummy cache as FULL */
2390 bg->length = em->len;
2391 bg->flags = map->type;
2392 bg->cached = BTRFS_CACHE_FINISHED;
2393 bg->used = em->len;
2394 bg->flags = map->type;
2395 ret = btrfs_add_block_group_cache(fs_info, bg);
2396 /*
2397 * We may have some valid block group cache added already, in
2398 * that case we skip to the next one.
2399 */
2400 if (ret == -EEXIST) {
2401 ret = 0;
2402 btrfs_put_block_group(bg);
2403 continue;
2404 }
2405
2406 if (ret) {
2407 btrfs_remove_free_space_cache(bg);
2408 btrfs_put_block_group(bg);
2409 break;
2410 }
2411
2412 btrfs_add_bg_to_space_info(fs_info, bg);
2413
2414 set_avail_alloc_bits(fs_info, bg->flags);
2415 }
2416 if (!ret)
2417 btrfs_init_global_block_rsv(fs_info);
2418 return ret;
2419 }
2420
btrfs_read_block_groups(struct btrfs_fs_info * info)2421 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2422 {
2423 struct btrfs_root *root = btrfs_block_group_root(info);
2424 struct btrfs_path *path;
2425 int ret;
2426 struct btrfs_block_group *cache;
2427 struct btrfs_space_info *space_info;
2428 struct btrfs_key key;
2429 int need_clear = 0;
2430 u64 cache_gen;
2431
2432 /*
2433 * Either no extent root (with ibadroots rescue option) or we have
2434 * unsupported RO options. The fs can never be mounted read-write, so no
2435 * need to waste time searching block group items.
2436 *
2437 * This also allows new extent tree related changes to be RO compat,
2438 * no need for a full incompat flag.
2439 */
2440 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2441 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2442 return fill_dummy_bgs(info);
2443
2444 key.objectid = 0;
2445 key.offset = 0;
2446 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2447 path = btrfs_alloc_path();
2448 if (!path)
2449 return -ENOMEM;
2450
2451 cache_gen = btrfs_super_cache_generation(info->super_copy);
2452 if (btrfs_test_opt(info, SPACE_CACHE) &&
2453 btrfs_super_generation(info->super_copy) != cache_gen)
2454 need_clear = 1;
2455 if (btrfs_test_opt(info, CLEAR_CACHE))
2456 need_clear = 1;
2457
2458 while (1) {
2459 struct btrfs_block_group_item bgi;
2460 struct extent_buffer *leaf;
2461 int slot;
2462
2463 ret = find_first_block_group(info, path, &key);
2464 if (ret > 0)
2465 break;
2466 if (ret != 0)
2467 goto error;
2468
2469 leaf = path->nodes[0];
2470 slot = path->slots[0];
2471
2472 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2473 sizeof(bgi));
2474
2475 btrfs_item_key_to_cpu(leaf, &key, slot);
2476 btrfs_release_path(path);
2477 ret = read_one_block_group(info, &bgi, &key, need_clear);
2478 if (ret < 0)
2479 goto error;
2480 key.objectid += key.offset;
2481 key.offset = 0;
2482 }
2483 btrfs_release_path(path);
2484
2485 list_for_each_entry(space_info, &info->space_info, list) {
2486 int i;
2487
2488 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2489 if (list_empty(&space_info->block_groups[i]))
2490 continue;
2491 cache = list_first_entry(&space_info->block_groups[i],
2492 struct btrfs_block_group,
2493 list);
2494 btrfs_sysfs_add_block_group_type(cache);
2495 }
2496
2497 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2498 (BTRFS_BLOCK_GROUP_RAID10 |
2499 BTRFS_BLOCK_GROUP_RAID1_MASK |
2500 BTRFS_BLOCK_GROUP_RAID56_MASK |
2501 BTRFS_BLOCK_GROUP_DUP)))
2502 continue;
2503 /*
2504 * Avoid allocating from un-mirrored block group if there are
2505 * mirrored block groups.
2506 */
2507 list_for_each_entry(cache,
2508 &space_info->block_groups[BTRFS_RAID_RAID0],
2509 list)
2510 inc_block_group_ro(cache, 1);
2511 list_for_each_entry(cache,
2512 &space_info->block_groups[BTRFS_RAID_SINGLE],
2513 list)
2514 inc_block_group_ro(cache, 1);
2515 }
2516
2517 btrfs_init_global_block_rsv(info);
2518 ret = check_chunk_block_group_mappings(info);
2519 error:
2520 btrfs_free_path(path);
2521 /*
2522 * We've hit some error while reading the extent tree, and have
2523 * rescue=ibadroots mount option.
2524 * Try to fill the tree using dummy block groups so that the user can
2525 * continue to mount and grab their data.
2526 */
2527 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2528 ret = fill_dummy_bgs(info);
2529 return ret;
2530 }
2531
2532 /*
2533 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2534 * allocation.
2535 *
2536 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2537 * phases.
2538 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2539 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2540 struct btrfs_block_group *block_group)
2541 {
2542 struct btrfs_fs_info *fs_info = trans->fs_info;
2543 struct btrfs_block_group_item bgi;
2544 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2545 struct btrfs_key key;
2546 u64 old_commit_used;
2547 int ret;
2548
2549 spin_lock(&block_group->lock);
2550 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2551 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2552 block_group->global_root_id);
2553 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2554 old_commit_used = block_group->commit_used;
2555 block_group->commit_used = block_group->used;
2556 key.objectid = block_group->start;
2557 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2558 key.offset = block_group->length;
2559 spin_unlock(&block_group->lock);
2560
2561 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2562 if (ret < 0) {
2563 spin_lock(&block_group->lock);
2564 block_group->commit_used = old_commit_used;
2565 spin_unlock(&block_group->lock);
2566 }
2567
2568 return ret;
2569 }
2570
insert_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2571 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2572 struct btrfs_device *device, u64 chunk_offset,
2573 u64 start, u64 num_bytes)
2574 {
2575 struct btrfs_fs_info *fs_info = device->fs_info;
2576 struct btrfs_root *root = fs_info->dev_root;
2577 struct btrfs_path *path;
2578 struct btrfs_dev_extent *extent;
2579 struct extent_buffer *leaf;
2580 struct btrfs_key key;
2581 int ret;
2582
2583 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2584 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2585 path = btrfs_alloc_path();
2586 if (!path)
2587 return -ENOMEM;
2588
2589 key.objectid = device->devid;
2590 key.type = BTRFS_DEV_EXTENT_KEY;
2591 key.offset = start;
2592 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2593 if (ret)
2594 goto out;
2595
2596 leaf = path->nodes[0];
2597 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2598 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2599 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2600 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2601 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2602
2603 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2604 btrfs_mark_buffer_dirty(leaf);
2605 out:
2606 btrfs_free_path(path);
2607 return ret;
2608 }
2609
2610 /*
2611 * This function belongs to phase 2.
2612 *
2613 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2614 * phases.
2615 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2616 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2617 u64 chunk_offset, u64 chunk_size)
2618 {
2619 struct btrfs_fs_info *fs_info = trans->fs_info;
2620 struct btrfs_device *device;
2621 struct extent_map *em;
2622 struct map_lookup *map;
2623 u64 dev_offset;
2624 u64 stripe_size;
2625 int i;
2626 int ret = 0;
2627
2628 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2629 if (IS_ERR(em))
2630 return PTR_ERR(em);
2631
2632 map = em->map_lookup;
2633 stripe_size = em->orig_block_len;
2634
2635 /*
2636 * Take the device list mutex to prevent races with the final phase of
2637 * a device replace operation that replaces the device object associated
2638 * with the map's stripes, because the device object's id can change
2639 * at any time during that final phase of the device replace operation
2640 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2641 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2642 * resulting in persisting a device extent item with such ID.
2643 */
2644 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2645 for (i = 0; i < map->num_stripes; i++) {
2646 device = map->stripes[i].dev;
2647 dev_offset = map->stripes[i].physical;
2648
2649 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2650 stripe_size);
2651 if (ret)
2652 break;
2653 }
2654 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2655
2656 free_extent_map(em);
2657 return ret;
2658 }
2659
2660 /*
2661 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2662 * chunk allocation.
2663 *
2664 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2665 * phases.
2666 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2667 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2668 {
2669 struct btrfs_fs_info *fs_info = trans->fs_info;
2670 struct btrfs_block_group *block_group;
2671 int ret = 0;
2672
2673 while (!list_empty(&trans->new_bgs)) {
2674 int index;
2675
2676 block_group = list_first_entry(&trans->new_bgs,
2677 struct btrfs_block_group,
2678 bg_list);
2679 if (ret)
2680 goto next;
2681
2682 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2683
2684 ret = insert_block_group_item(trans, block_group);
2685 if (ret)
2686 btrfs_abort_transaction(trans, ret);
2687 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2688 &block_group->runtime_flags)) {
2689 mutex_lock(&fs_info->chunk_mutex);
2690 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2691 mutex_unlock(&fs_info->chunk_mutex);
2692 if (ret)
2693 btrfs_abort_transaction(trans, ret);
2694 }
2695 ret = insert_dev_extents(trans, block_group->start,
2696 block_group->length);
2697 if (ret)
2698 btrfs_abort_transaction(trans, ret);
2699 add_block_group_free_space(trans, block_group);
2700
2701 /*
2702 * If we restriped during balance, we may have added a new raid
2703 * type, so now add the sysfs entries when it is safe to do so.
2704 * We don't have to worry about locking here as it's handled in
2705 * btrfs_sysfs_add_block_group_type.
2706 */
2707 if (block_group->space_info->block_group_kobjs[index] == NULL)
2708 btrfs_sysfs_add_block_group_type(block_group);
2709
2710 /* Already aborted the transaction if it failed. */
2711 next:
2712 btrfs_delayed_refs_rsv_release(fs_info, 1);
2713 list_del_init(&block_group->bg_list);
2714 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2715 }
2716 btrfs_trans_release_chunk_metadata(trans);
2717 }
2718
2719 /*
2720 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2721 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2722 */
calculate_global_root_id(struct btrfs_fs_info * fs_info,u64 offset)2723 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2724 {
2725 u64 div = SZ_1G;
2726 u64 index;
2727
2728 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2729 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2730
2731 /* If we have a smaller fs index based on 128MiB. */
2732 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2733 div = SZ_128M;
2734
2735 offset = div64_u64(offset, div);
2736 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2737 return index;
2738 }
2739
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 type,u64 chunk_offset,u64 size)2740 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2741 u64 type,
2742 u64 chunk_offset, u64 size)
2743 {
2744 struct btrfs_fs_info *fs_info = trans->fs_info;
2745 struct btrfs_block_group *cache;
2746 int ret;
2747
2748 btrfs_set_log_full_commit(trans);
2749
2750 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2751 if (!cache)
2752 return ERR_PTR(-ENOMEM);
2753
2754 /*
2755 * Mark it as new before adding it to the rbtree of block groups or any
2756 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2757 * before the new flag is set.
2758 */
2759 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2760
2761 cache->length = size;
2762 set_free_space_tree_thresholds(cache);
2763 cache->flags = type;
2764 cache->cached = BTRFS_CACHE_FINISHED;
2765 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2766
2767 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2768 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2769
2770 ret = btrfs_load_block_group_zone_info(cache, true);
2771 if (ret) {
2772 btrfs_put_block_group(cache);
2773 return ERR_PTR(ret);
2774 }
2775
2776 ret = exclude_super_stripes(cache);
2777 if (ret) {
2778 /* We may have excluded something, so call this just in case */
2779 btrfs_free_excluded_extents(cache);
2780 btrfs_put_block_group(cache);
2781 return ERR_PTR(ret);
2782 }
2783
2784 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2785 btrfs_free_excluded_extents(cache);
2786 if (ret) {
2787 btrfs_put_block_group(cache);
2788 return ERR_PTR(ret);
2789 }
2790
2791 /*
2792 * Ensure the corresponding space_info object is created and
2793 * assigned to our block group. We want our bg to be added to the rbtree
2794 * with its ->space_info set.
2795 */
2796 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2797 ASSERT(cache->space_info);
2798
2799 ret = btrfs_add_block_group_cache(fs_info, cache);
2800 if (ret) {
2801 btrfs_remove_free_space_cache(cache);
2802 btrfs_put_block_group(cache);
2803 return ERR_PTR(ret);
2804 }
2805
2806 /*
2807 * Now that our block group has its ->space_info set and is inserted in
2808 * the rbtree, update the space info's counters.
2809 */
2810 trace_btrfs_add_block_group(fs_info, cache, 1);
2811 btrfs_add_bg_to_space_info(fs_info, cache);
2812 btrfs_update_global_block_rsv(fs_info);
2813
2814 #ifdef CONFIG_BTRFS_DEBUG
2815 if (btrfs_should_fragment_free_space(cache)) {
2816 cache->space_info->bytes_used += size >> 1;
2817 fragment_free_space(cache);
2818 }
2819 #endif
2820
2821 list_add_tail(&cache->bg_list, &trans->new_bgs);
2822 trans->delayed_ref_updates++;
2823 btrfs_update_delayed_refs_rsv(trans);
2824
2825 set_avail_alloc_bits(fs_info, type);
2826 return cache;
2827 }
2828
2829 /*
2830 * Mark one block group RO, can be called several times for the same block
2831 * group.
2832 *
2833 * @cache: the destination block group
2834 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2835 * ensure we still have some free space after marking this
2836 * block group RO.
2837 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2838 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2839 bool do_chunk_alloc)
2840 {
2841 struct btrfs_fs_info *fs_info = cache->fs_info;
2842 struct btrfs_trans_handle *trans;
2843 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2844 u64 alloc_flags;
2845 int ret;
2846 bool dirty_bg_running;
2847
2848 /*
2849 * This can only happen when we are doing read-only scrub on read-only
2850 * mount.
2851 * In that case we should not start a new transaction on read-only fs.
2852 * Thus here we skip all chunk allocations.
2853 */
2854 if (sb_rdonly(fs_info->sb)) {
2855 mutex_lock(&fs_info->ro_block_group_mutex);
2856 ret = inc_block_group_ro(cache, 0);
2857 mutex_unlock(&fs_info->ro_block_group_mutex);
2858 return ret;
2859 }
2860
2861 do {
2862 trans = btrfs_join_transaction(root);
2863 if (IS_ERR(trans))
2864 return PTR_ERR(trans);
2865
2866 dirty_bg_running = false;
2867
2868 /*
2869 * We're not allowed to set block groups readonly after the dirty
2870 * block group cache has started writing. If it already started,
2871 * back off and let this transaction commit.
2872 */
2873 mutex_lock(&fs_info->ro_block_group_mutex);
2874 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2875 u64 transid = trans->transid;
2876
2877 mutex_unlock(&fs_info->ro_block_group_mutex);
2878 btrfs_end_transaction(trans);
2879
2880 ret = btrfs_wait_for_commit(fs_info, transid);
2881 if (ret)
2882 return ret;
2883 dirty_bg_running = true;
2884 }
2885 } while (dirty_bg_running);
2886
2887 if (do_chunk_alloc) {
2888 /*
2889 * If we are changing raid levels, try to allocate a
2890 * corresponding block group with the new raid level.
2891 */
2892 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2893 if (alloc_flags != cache->flags) {
2894 ret = btrfs_chunk_alloc(trans, alloc_flags,
2895 CHUNK_ALLOC_FORCE);
2896 /*
2897 * ENOSPC is allowed here, we may have enough space
2898 * already allocated at the new raid level to carry on
2899 */
2900 if (ret == -ENOSPC)
2901 ret = 0;
2902 if (ret < 0)
2903 goto out;
2904 }
2905 }
2906
2907 ret = inc_block_group_ro(cache, 0);
2908 if (!ret)
2909 goto out;
2910 if (ret == -ETXTBSY)
2911 goto unlock_out;
2912
2913 /*
2914 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2915 * chunk allocation storm to exhaust the system chunk array. Otherwise
2916 * we still want to try our best to mark the block group read-only.
2917 */
2918 if (!do_chunk_alloc && ret == -ENOSPC &&
2919 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2920 goto unlock_out;
2921
2922 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2923 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2924 if (ret < 0)
2925 goto out;
2926 /*
2927 * We have allocated a new chunk. We also need to activate that chunk to
2928 * grant metadata tickets for zoned filesystem.
2929 */
2930 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2931 if (ret < 0)
2932 goto out;
2933
2934 ret = inc_block_group_ro(cache, 0);
2935 if (ret == -ETXTBSY)
2936 goto unlock_out;
2937 out:
2938 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2939 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2940 mutex_lock(&fs_info->chunk_mutex);
2941 check_system_chunk(trans, alloc_flags);
2942 mutex_unlock(&fs_info->chunk_mutex);
2943 }
2944 unlock_out:
2945 mutex_unlock(&fs_info->ro_block_group_mutex);
2946
2947 btrfs_end_transaction(trans);
2948 return ret;
2949 }
2950
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)2951 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2952 {
2953 struct btrfs_space_info *sinfo = cache->space_info;
2954 u64 num_bytes;
2955
2956 BUG_ON(!cache->ro);
2957
2958 spin_lock(&sinfo->lock);
2959 spin_lock(&cache->lock);
2960 if (!--cache->ro) {
2961 if (btrfs_is_zoned(cache->fs_info)) {
2962 /* Migrate zone_unusable bytes back */
2963 cache->zone_unusable =
2964 (cache->alloc_offset - cache->used) +
2965 (cache->length - cache->zone_capacity);
2966 sinfo->bytes_zone_unusable += cache->zone_unusable;
2967 sinfo->bytes_readonly -= cache->zone_unusable;
2968 }
2969 num_bytes = cache->length - cache->reserved -
2970 cache->pinned - cache->bytes_super -
2971 cache->zone_unusable - cache->used;
2972 sinfo->bytes_readonly -= num_bytes;
2973 list_del_init(&cache->ro_list);
2974 }
2975 spin_unlock(&cache->lock);
2976 spin_unlock(&sinfo->lock);
2977 }
2978
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)2979 static int update_block_group_item(struct btrfs_trans_handle *trans,
2980 struct btrfs_path *path,
2981 struct btrfs_block_group *cache)
2982 {
2983 struct btrfs_fs_info *fs_info = trans->fs_info;
2984 int ret;
2985 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2986 unsigned long bi;
2987 struct extent_buffer *leaf;
2988 struct btrfs_block_group_item bgi;
2989 struct btrfs_key key;
2990 u64 old_commit_used;
2991 u64 used;
2992
2993 /*
2994 * Block group items update can be triggered out of commit transaction
2995 * critical section, thus we need a consistent view of used bytes.
2996 * We cannot use cache->used directly outside of the spin lock, as it
2997 * may be changed.
2998 */
2999 spin_lock(&cache->lock);
3000 old_commit_used = cache->commit_used;
3001 used = cache->used;
3002 /* No change in used bytes, can safely skip it. */
3003 if (cache->commit_used == used) {
3004 spin_unlock(&cache->lock);
3005 return 0;
3006 }
3007 cache->commit_used = used;
3008 spin_unlock(&cache->lock);
3009
3010 key.objectid = cache->start;
3011 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3012 key.offset = cache->length;
3013
3014 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3015 if (ret) {
3016 if (ret > 0)
3017 ret = -ENOENT;
3018 goto fail;
3019 }
3020
3021 leaf = path->nodes[0];
3022 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3023 btrfs_set_stack_block_group_used(&bgi, used);
3024 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3025 cache->global_root_id);
3026 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3027 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3028 btrfs_mark_buffer_dirty(leaf);
3029 fail:
3030 btrfs_release_path(path);
3031 /*
3032 * We didn't update the block group item, need to revert commit_used
3033 * unless the block group item didn't exist yet - this is to prevent a
3034 * race with a concurrent insertion of the block group item, with
3035 * insert_block_group_item(), that happened just after we attempted to
3036 * update. In that case we would reset commit_used to 0 just after the
3037 * insertion set it to a value greater than 0 - if the block group later
3038 * becomes with 0 used bytes, we would incorrectly skip its update.
3039 */
3040 if (ret < 0 && ret != -ENOENT) {
3041 spin_lock(&cache->lock);
3042 cache->commit_used = old_commit_used;
3043 spin_unlock(&cache->lock);
3044 }
3045 return ret;
3046
3047 }
3048
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3049 static int cache_save_setup(struct btrfs_block_group *block_group,
3050 struct btrfs_trans_handle *trans,
3051 struct btrfs_path *path)
3052 {
3053 struct btrfs_fs_info *fs_info = block_group->fs_info;
3054 struct btrfs_root *root = fs_info->tree_root;
3055 struct inode *inode = NULL;
3056 struct extent_changeset *data_reserved = NULL;
3057 u64 alloc_hint = 0;
3058 int dcs = BTRFS_DC_ERROR;
3059 u64 cache_size = 0;
3060 int retries = 0;
3061 int ret = 0;
3062
3063 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3064 return 0;
3065
3066 /*
3067 * If this block group is smaller than 100 megs don't bother caching the
3068 * block group.
3069 */
3070 if (block_group->length < (100 * SZ_1M)) {
3071 spin_lock(&block_group->lock);
3072 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3073 spin_unlock(&block_group->lock);
3074 return 0;
3075 }
3076
3077 if (TRANS_ABORTED(trans))
3078 return 0;
3079 again:
3080 inode = lookup_free_space_inode(block_group, path);
3081 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3082 ret = PTR_ERR(inode);
3083 btrfs_release_path(path);
3084 goto out;
3085 }
3086
3087 if (IS_ERR(inode)) {
3088 BUG_ON(retries);
3089 retries++;
3090
3091 if (block_group->ro)
3092 goto out_free;
3093
3094 ret = create_free_space_inode(trans, block_group, path);
3095 if (ret)
3096 goto out_free;
3097 goto again;
3098 }
3099
3100 /*
3101 * We want to set the generation to 0, that way if anything goes wrong
3102 * from here on out we know not to trust this cache when we load up next
3103 * time.
3104 */
3105 BTRFS_I(inode)->generation = 0;
3106 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3107 if (ret) {
3108 /*
3109 * So theoretically we could recover from this, simply set the
3110 * super cache generation to 0 so we know to invalidate the
3111 * cache, but then we'd have to keep track of the block groups
3112 * that fail this way so we know we _have_ to reset this cache
3113 * before the next commit or risk reading stale cache. So to
3114 * limit our exposure to horrible edge cases lets just abort the
3115 * transaction, this only happens in really bad situations
3116 * anyway.
3117 */
3118 btrfs_abort_transaction(trans, ret);
3119 goto out_put;
3120 }
3121 WARN_ON(ret);
3122
3123 /* We've already setup this transaction, go ahead and exit */
3124 if (block_group->cache_generation == trans->transid &&
3125 i_size_read(inode)) {
3126 dcs = BTRFS_DC_SETUP;
3127 goto out_put;
3128 }
3129
3130 if (i_size_read(inode) > 0) {
3131 ret = btrfs_check_trunc_cache_free_space(fs_info,
3132 &fs_info->global_block_rsv);
3133 if (ret)
3134 goto out_put;
3135
3136 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3137 if (ret)
3138 goto out_put;
3139 }
3140
3141 spin_lock(&block_group->lock);
3142 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3143 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3144 /*
3145 * don't bother trying to write stuff out _if_
3146 * a) we're not cached,
3147 * b) we're with nospace_cache mount option,
3148 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3149 */
3150 dcs = BTRFS_DC_WRITTEN;
3151 spin_unlock(&block_group->lock);
3152 goto out_put;
3153 }
3154 spin_unlock(&block_group->lock);
3155
3156 /*
3157 * We hit an ENOSPC when setting up the cache in this transaction, just
3158 * skip doing the setup, we've already cleared the cache so we're safe.
3159 */
3160 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3161 ret = -ENOSPC;
3162 goto out_put;
3163 }
3164
3165 /*
3166 * Try to preallocate enough space based on how big the block group is.
3167 * Keep in mind this has to include any pinned space which could end up
3168 * taking up quite a bit since it's not folded into the other space
3169 * cache.
3170 */
3171 cache_size = div_u64(block_group->length, SZ_256M);
3172 if (!cache_size)
3173 cache_size = 1;
3174
3175 cache_size *= 16;
3176 cache_size *= fs_info->sectorsize;
3177
3178 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3179 cache_size, false);
3180 if (ret)
3181 goto out_put;
3182
3183 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3184 cache_size, cache_size,
3185 &alloc_hint);
3186 /*
3187 * Our cache requires contiguous chunks so that we don't modify a bunch
3188 * of metadata or split extents when writing the cache out, which means
3189 * we can enospc if we are heavily fragmented in addition to just normal
3190 * out of space conditions. So if we hit this just skip setting up any
3191 * other block groups for this transaction, maybe we'll unpin enough
3192 * space the next time around.
3193 */
3194 if (!ret)
3195 dcs = BTRFS_DC_SETUP;
3196 else if (ret == -ENOSPC)
3197 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3198
3199 out_put:
3200 iput(inode);
3201 out_free:
3202 btrfs_release_path(path);
3203 out:
3204 spin_lock(&block_group->lock);
3205 if (!ret && dcs == BTRFS_DC_SETUP)
3206 block_group->cache_generation = trans->transid;
3207 block_group->disk_cache_state = dcs;
3208 spin_unlock(&block_group->lock);
3209
3210 extent_changeset_free(data_reserved);
3211 return ret;
3212 }
3213
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)3214 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3215 {
3216 struct btrfs_fs_info *fs_info = trans->fs_info;
3217 struct btrfs_block_group *cache, *tmp;
3218 struct btrfs_transaction *cur_trans = trans->transaction;
3219 struct btrfs_path *path;
3220
3221 if (list_empty(&cur_trans->dirty_bgs) ||
3222 !btrfs_test_opt(fs_info, SPACE_CACHE))
3223 return 0;
3224
3225 path = btrfs_alloc_path();
3226 if (!path)
3227 return -ENOMEM;
3228
3229 /* Could add new block groups, use _safe just in case */
3230 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3231 dirty_list) {
3232 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3233 cache_save_setup(cache, trans, path);
3234 }
3235
3236 btrfs_free_path(path);
3237 return 0;
3238 }
3239
3240 /*
3241 * Transaction commit does final block group cache writeback during a critical
3242 * section where nothing is allowed to change the FS. This is required in
3243 * order for the cache to actually match the block group, but can introduce a
3244 * lot of latency into the commit.
3245 *
3246 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3247 * There's a chance we'll have to redo some of it if the block group changes
3248 * again during the commit, but it greatly reduces the commit latency by
3249 * getting rid of the easy block groups while we're still allowing others to
3250 * join the commit.
3251 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3252 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3253 {
3254 struct btrfs_fs_info *fs_info = trans->fs_info;
3255 struct btrfs_block_group *cache;
3256 struct btrfs_transaction *cur_trans = trans->transaction;
3257 int ret = 0;
3258 int should_put;
3259 struct btrfs_path *path = NULL;
3260 LIST_HEAD(dirty);
3261 struct list_head *io = &cur_trans->io_bgs;
3262 int loops = 0;
3263
3264 spin_lock(&cur_trans->dirty_bgs_lock);
3265 if (list_empty(&cur_trans->dirty_bgs)) {
3266 spin_unlock(&cur_trans->dirty_bgs_lock);
3267 return 0;
3268 }
3269 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3270 spin_unlock(&cur_trans->dirty_bgs_lock);
3271
3272 again:
3273 /* Make sure all the block groups on our dirty list actually exist */
3274 btrfs_create_pending_block_groups(trans);
3275
3276 if (!path) {
3277 path = btrfs_alloc_path();
3278 if (!path) {
3279 ret = -ENOMEM;
3280 goto out;
3281 }
3282 }
3283
3284 /*
3285 * cache_write_mutex is here only to save us from balance or automatic
3286 * removal of empty block groups deleting this block group while we are
3287 * writing out the cache
3288 */
3289 mutex_lock(&trans->transaction->cache_write_mutex);
3290 while (!list_empty(&dirty)) {
3291 bool drop_reserve = true;
3292
3293 cache = list_first_entry(&dirty, struct btrfs_block_group,
3294 dirty_list);
3295 /*
3296 * This can happen if something re-dirties a block group that
3297 * is already under IO. Just wait for it to finish and then do
3298 * it all again
3299 */
3300 if (!list_empty(&cache->io_list)) {
3301 list_del_init(&cache->io_list);
3302 btrfs_wait_cache_io(trans, cache, path);
3303 btrfs_put_block_group(cache);
3304 }
3305
3306
3307 /*
3308 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3309 * it should update the cache_state. Don't delete until after
3310 * we wait.
3311 *
3312 * Since we're not running in the commit critical section
3313 * we need the dirty_bgs_lock to protect from update_block_group
3314 */
3315 spin_lock(&cur_trans->dirty_bgs_lock);
3316 list_del_init(&cache->dirty_list);
3317 spin_unlock(&cur_trans->dirty_bgs_lock);
3318
3319 should_put = 1;
3320
3321 cache_save_setup(cache, trans, path);
3322
3323 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3324 cache->io_ctl.inode = NULL;
3325 ret = btrfs_write_out_cache(trans, cache, path);
3326 if (ret == 0 && cache->io_ctl.inode) {
3327 should_put = 0;
3328
3329 /*
3330 * The cache_write_mutex is protecting the
3331 * io_list, also refer to the definition of
3332 * btrfs_transaction::io_bgs for more details
3333 */
3334 list_add_tail(&cache->io_list, io);
3335 } else {
3336 /*
3337 * If we failed to write the cache, the
3338 * generation will be bad and life goes on
3339 */
3340 ret = 0;
3341 }
3342 }
3343 if (!ret) {
3344 ret = update_block_group_item(trans, path, cache);
3345 /*
3346 * Our block group might still be attached to the list
3347 * of new block groups in the transaction handle of some
3348 * other task (struct btrfs_trans_handle->new_bgs). This
3349 * means its block group item isn't yet in the extent
3350 * tree. If this happens ignore the error, as we will
3351 * try again later in the critical section of the
3352 * transaction commit.
3353 */
3354 if (ret == -ENOENT) {
3355 ret = 0;
3356 spin_lock(&cur_trans->dirty_bgs_lock);
3357 if (list_empty(&cache->dirty_list)) {
3358 list_add_tail(&cache->dirty_list,
3359 &cur_trans->dirty_bgs);
3360 btrfs_get_block_group(cache);
3361 drop_reserve = false;
3362 }
3363 spin_unlock(&cur_trans->dirty_bgs_lock);
3364 } else if (ret) {
3365 btrfs_abort_transaction(trans, ret);
3366 }
3367 }
3368
3369 /* If it's not on the io list, we need to put the block group */
3370 if (should_put)
3371 btrfs_put_block_group(cache);
3372 if (drop_reserve)
3373 btrfs_delayed_refs_rsv_release(fs_info, 1);
3374 /*
3375 * Avoid blocking other tasks for too long. It might even save
3376 * us from writing caches for block groups that are going to be
3377 * removed.
3378 */
3379 mutex_unlock(&trans->transaction->cache_write_mutex);
3380 if (ret)
3381 goto out;
3382 mutex_lock(&trans->transaction->cache_write_mutex);
3383 }
3384 mutex_unlock(&trans->transaction->cache_write_mutex);
3385
3386 /*
3387 * Go through delayed refs for all the stuff we've just kicked off
3388 * and then loop back (just once)
3389 */
3390 if (!ret)
3391 ret = btrfs_run_delayed_refs(trans, 0);
3392 if (!ret && loops == 0) {
3393 loops++;
3394 spin_lock(&cur_trans->dirty_bgs_lock);
3395 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3396 /*
3397 * dirty_bgs_lock protects us from concurrent block group
3398 * deletes too (not just cache_write_mutex).
3399 */
3400 if (!list_empty(&dirty)) {
3401 spin_unlock(&cur_trans->dirty_bgs_lock);
3402 goto again;
3403 }
3404 spin_unlock(&cur_trans->dirty_bgs_lock);
3405 }
3406 out:
3407 if (ret < 0) {
3408 spin_lock(&cur_trans->dirty_bgs_lock);
3409 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3410 spin_unlock(&cur_trans->dirty_bgs_lock);
3411 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3412 }
3413
3414 btrfs_free_path(path);
3415 return ret;
3416 }
3417
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3418 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3419 {
3420 struct btrfs_fs_info *fs_info = trans->fs_info;
3421 struct btrfs_block_group *cache;
3422 struct btrfs_transaction *cur_trans = trans->transaction;
3423 int ret = 0;
3424 int should_put;
3425 struct btrfs_path *path;
3426 struct list_head *io = &cur_trans->io_bgs;
3427
3428 path = btrfs_alloc_path();
3429 if (!path)
3430 return -ENOMEM;
3431
3432 /*
3433 * Even though we are in the critical section of the transaction commit,
3434 * we can still have concurrent tasks adding elements to this
3435 * transaction's list of dirty block groups. These tasks correspond to
3436 * endio free space workers started when writeback finishes for a
3437 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3438 * allocate new block groups as a result of COWing nodes of the root
3439 * tree when updating the free space inode. The writeback for the space
3440 * caches is triggered by an earlier call to
3441 * btrfs_start_dirty_block_groups() and iterations of the following
3442 * loop.
3443 * Also we want to do the cache_save_setup first and then run the
3444 * delayed refs to make sure we have the best chance at doing this all
3445 * in one shot.
3446 */
3447 spin_lock(&cur_trans->dirty_bgs_lock);
3448 while (!list_empty(&cur_trans->dirty_bgs)) {
3449 cache = list_first_entry(&cur_trans->dirty_bgs,
3450 struct btrfs_block_group,
3451 dirty_list);
3452
3453 /*
3454 * This can happen if cache_save_setup re-dirties a block group
3455 * that is already under IO. Just wait for it to finish and
3456 * then do it all again
3457 */
3458 if (!list_empty(&cache->io_list)) {
3459 spin_unlock(&cur_trans->dirty_bgs_lock);
3460 list_del_init(&cache->io_list);
3461 btrfs_wait_cache_io(trans, cache, path);
3462 btrfs_put_block_group(cache);
3463 spin_lock(&cur_trans->dirty_bgs_lock);
3464 }
3465
3466 /*
3467 * Don't remove from the dirty list until after we've waited on
3468 * any pending IO
3469 */
3470 list_del_init(&cache->dirty_list);
3471 spin_unlock(&cur_trans->dirty_bgs_lock);
3472 should_put = 1;
3473
3474 cache_save_setup(cache, trans, path);
3475
3476 if (!ret)
3477 ret = btrfs_run_delayed_refs(trans,
3478 (unsigned long) -1);
3479
3480 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3481 cache->io_ctl.inode = NULL;
3482 ret = btrfs_write_out_cache(trans, cache, path);
3483 if (ret == 0 && cache->io_ctl.inode) {
3484 should_put = 0;
3485 list_add_tail(&cache->io_list, io);
3486 } else {
3487 /*
3488 * If we failed to write the cache, the
3489 * generation will be bad and life goes on
3490 */
3491 ret = 0;
3492 }
3493 }
3494 if (!ret) {
3495 ret = update_block_group_item(trans, path, cache);
3496 /*
3497 * One of the free space endio workers might have
3498 * created a new block group while updating a free space
3499 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3500 * and hasn't released its transaction handle yet, in
3501 * which case the new block group is still attached to
3502 * its transaction handle and its creation has not
3503 * finished yet (no block group item in the extent tree
3504 * yet, etc). If this is the case, wait for all free
3505 * space endio workers to finish and retry. This is a
3506 * very rare case so no need for a more efficient and
3507 * complex approach.
3508 */
3509 if (ret == -ENOENT) {
3510 wait_event(cur_trans->writer_wait,
3511 atomic_read(&cur_trans->num_writers) == 1);
3512 ret = update_block_group_item(trans, path, cache);
3513 }
3514 if (ret)
3515 btrfs_abort_transaction(trans, ret);
3516 }
3517
3518 /* If its not on the io list, we need to put the block group */
3519 if (should_put)
3520 btrfs_put_block_group(cache);
3521 btrfs_delayed_refs_rsv_release(fs_info, 1);
3522 spin_lock(&cur_trans->dirty_bgs_lock);
3523 }
3524 spin_unlock(&cur_trans->dirty_bgs_lock);
3525
3526 /*
3527 * Refer to the definition of io_bgs member for details why it's safe
3528 * to use it without any locking
3529 */
3530 while (!list_empty(io)) {
3531 cache = list_first_entry(io, struct btrfs_block_group,
3532 io_list);
3533 list_del_init(&cache->io_list);
3534 btrfs_wait_cache_io(trans, cache, path);
3535 btrfs_put_block_group(cache);
3536 }
3537
3538 btrfs_free_path(path);
3539 return ret;
3540 }
3541
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3542 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3543 u64 bytenr, u64 num_bytes, bool alloc)
3544 {
3545 struct btrfs_fs_info *info = trans->fs_info;
3546 struct btrfs_block_group *cache = NULL;
3547 u64 total = num_bytes;
3548 u64 old_val;
3549 u64 byte_in_group;
3550 int factor;
3551 int ret = 0;
3552
3553 /* Block accounting for super block */
3554 spin_lock(&info->delalloc_root_lock);
3555 old_val = btrfs_super_bytes_used(info->super_copy);
3556 if (alloc)
3557 old_val += num_bytes;
3558 else
3559 old_val -= num_bytes;
3560 btrfs_set_super_bytes_used(info->super_copy, old_val);
3561 spin_unlock(&info->delalloc_root_lock);
3562
3563 while (total) {
3564 struct btrfs_space_info *space_info;
3565 bool reclaim = false;
3566
3567 cache = btrfs_lookup_block_group(info, bytenr);
3568 if (!cache) {
3569 ret = -ENOENT;
3570 break;
3571 }
3572 space_info = cache->space_info;
3573 factor = btrfs_bg_type_to_factor(cache->flags);
3574
3575 /*
3576 * If this block group has free space cache written out, we
3577 * need to make sure to load it if we are removing space. This
3578 * is because we need the unpinning stage to actually add the
3579 * space back to the block group, otherwise we will leak space.
3580 */
3581 if (!alloc && !btrfs_block_group_done(cache))
3582 btrfs_cache_block_group(cache, true);
3583
3584 byte_in_group = bytenr - cache->start;
3585 WARN_ON(byte_in_group > cache->length);
3586
3587 spin_lock(&space_info->lock);
3588 spin_lock(&cache->lock);
3589
3590 if (btrfs_test_opt(info, SPACE_CACHE) &&
3591 cache->disk_cache_state < BTRFS_DC_CLEAR)
3592 cache->disk_cache_state = BTRFS_DC_CLEAR;
3593
3594 old_val = cache->used;
3595 num_bytes = min(total, cache->length - byte_in_group);
3596 if (alloc) {
3597 old_val += num_bytes;
3598 cache->used = old_val;
3599 cache->reserved -= num_bytes;
3600 space_info->bytes_reserved -= num_bytes;
3601 space_info->bytes_used += num_bytes;
3602 space_info->disk_used += num_bytes * factor;
3603 spin_unlock(&cache->lock);
3604 spin_unlock(&space_info->lock);
3605 } else {
3606 old_val -= num_bytes;
3607 cache->used = old_val;
3608 cache->pinned += num_bytes;
3609 btrfs_space_info_update_bytes_pinned(info, space_info,
3610 num_bytes);
3611 space_info->bytes_used -= num_bytes;
3612 space_info->disk_used -= num_bytes * factor;
3613
3614 reclaim = should_reclaim_block_group(cache, num_bytes);
3615
3616 spin_unlock(&cache->lock);
3617 spin_unlock(&space_info->lock);
3618
3619 set_extent_bit(&trans->transaction->pinned_extents,
3620 bytenr, bytenr + num_bytes - 1,
3621 EXTENT_DIRTY, NULL);
3622 }
3623
3624 spin_lock(&trans->transaction->dirty_bgs_lock);
3625 if (list_empty(&cache->dirty_list)) {
3626 list_add_tail(&cache->dirty_list,
3627 &trans->transaction->dirty_bgs);
3628 trans->delayed_ref_updates++;
3629 btrfs_get_block_group(cache);
3630 }
3631 spin_unlock(&trans->transaction->dirty_bgs_lock);
3632
3633 /*
3634 * No longer have used bytes in this block group, queue it for
3635 * deletion. We do this after adding the block group to the
3636 * dirty list to avoid races between cleaner kthread and space
3637 * cache writeout.
3638 */
3639 if (!alloc && old_val == 0) {
3640 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3641 btrfs_mark_bg_unused(cache);
3642 } else if (!alloc && reclaim) {
3643 btrfs_mark_bg_to_reclaim(cache);
3644 }
3645
3646 btrfs_put_block_group(cache);
3647 total -= num_bytes;
3648 bytenr += num_bytes;
3649 }
3650
3651 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3652 btrfs_update_delayed_refs_rsv(trans);
3653 return ret;
3654 }
3655
3656 /*
3657 * Update the block_group and space info counters.
3658 *
3659 * @cache: The cache we are manipulating
3660 * @ram_bytes: The number of bytes of file content, and will be same to
3661 * @num_bytes except for the compress path.
3662 * @num_bytes: The number of bytes in question
3663 * @delalloc: The blocks are allocated for the delalloc write
3664 *
3665 * This is called by the allocator when it reserves space. If this is a
3666 * reservation and the block group has become read only we cannot make the
3667 * reservation and return -EAGAIN, otherwise this function always succeeds.
3668 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc,bool force_wrong_size_class)3669 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3670 u64 ram_bytes, u64 num_bytes, int delalloc,
3671 bool force_wrong_size_class)
3672 {
3673 struct btrfs_space_info *space_info = cache->space_info;
3674 enum btrfs_block_group_size_class size_class;
3675 int ret = 0;
3676
3677 spin_lock(&space_info->lock);
3678 spin_lock(&cache->lock);
3679 if (cache->ro) {
3680 ret = -EAGAIN;
3681 goto out;
3682 }
3683
3684 if (btrfs_block_group_should_use_size_class(cache)) {
3685 size_class = btrfs_calc_block_group_size_class(num_bytes);
3686 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3687 if (ret)
3688 goto out;
3689 }
3690 cache->reserved += num_bytes;
3691 space_info->bytes_reserved += num_bytes;
3692 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3693 space_info->flags, num_bytes, 1);
3694 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3695 space_info, -ram_bytes);
3696 if (delalloc)
3697 cache->delalloc_bytes += num_bytes;
3698
3699 /*
3700 * Compression can use less space than we reserved, so wake tickets if
3701 * that happens.
3702 */
3703 if (num_bytes < ram_bytes)
3704 btrfs_try_granting_tickets(cache->fs_info, space_info);
3705 out:
3706 spin_unlock(&cache->lock);
3707 spin_unlock(&space_info->lock);
3708 return ret;
3709 }
3710
3711 /*
3712 * Update the block_group and space info counters.
3713 *
3714 * @cache: The cache we are manipulating
3715 * @num_bytes: The number of bytes in question
3716 * @delalloc: The blocks are allocated for the delalloc write
3717 *
3718 * This is called by somebody who is freeing space that was never actually used
3719 * on disk. For example if you reserve some space for a new leaf in transaction
3720 * A and before transaction A commits you free that leaf, you call this with
3721 * reserve set to 0 in order to clear the reservation.
3722 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3723 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3724 u64 num_bytes, int delalloc)
3725 {
3726 struct btrfs_space_info *space_info = cache->space_info;
3727
3728 spin_lock(&space_info->lock);
3729 spin_lock(&cache->lock);
3730 if (cache->ro)
3731 space_info->bytes_readonly += num_bytes;
3732 cache->reserved -= num_bytes;
3733 space_info->bytes_reserved -= num_bytes;
3734 space_info->max_extent_size = 0;
3735
3736 if (delalloc)
3737 cache->delalloc_bytes -= num_bytes;
3738 spin_unlock(&cache->lock);
3739
3740 btrfs_try_granting_tickets(cache->fs_info, space_info);
3741 spin_unlock(&space_info->lock);
3742 }
3743
force_metadata_allocation(struct btrfs_fs_info * info)3744 static void force_metadata_allocation(struct btrfs_fs_info *info)
3745 {
3746 struct list_head *head = &info->space_info;
3747 struct btrfs_space_info *found;
3748
3749 list_for_each_entry(found, head, list) {
3750 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3751 found->force_alloc = CHUNK_ALLOC_FORCE;
3752 }
3753 }
3754
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3755 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3756 struct btrfs_space_info *sinfo, int force)
3757 {
3758 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3759 u64 thresh;
3760
3761 if (force == CHUNK_ALLOC_FORCE)
3762 return 1;
3763
3764 /*
3765 * in limited mode, we want to have some free space up to
3766 * about 1% of the FS size.
3767 */
3768 if (force == CHUNK_ALLOC_LIMITED) {
3769 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3770 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3771
3772 if (sinfo->total_bytes - bytes_used < thresh)
3773 return 1;
3774 }
3775
3776 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3777 return 0;
3778 return 1;
3779 }
3780
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3781 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3782 {
3783 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3784
3785 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3786 }
3787
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3788 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3789 {
3790 struct btrfs_block_group *bg;
3791 int ret;
3792
3793 /*
3794 * Check if we have enough space in the system space info because we
3795 * will need to update device items in the chunk btree and insert a new
3796 * chunk item in the chunk btree as well. This will allocate a new
3797 * system block group if needed.
3798 */
3799 check_system_chunk(trans, flags);
3800
3801 bg = btrfs_create_chunk(trans, flags);
3802 if (IS_ERR(bg)) {
3803 ret = PTR_ERR(bg);
3804 goto out;
3805 }
3806
3807 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3808 /*
3809 * Normally we are not expected to fail with -ENOSPC here, since we have
3810 * previously reserved space in the system space_info and allocated one
3811 * new system chunk if necessary. However there are three exceptions:
3812 *
3813 * 1) We may have enough free space in the system space_info but all the
3814 * existing system block groups have a profile which can not be used
3815 * for extent allocation.
3816 *
3817 * This happens when mounting in degraded mode. For example we have a
3818 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3819 * using the other device in degraded mode. If we then allocate a chunk,
3820 * we may have enough free space in the existing system space_info, but
3821 * none of the block groups can be used for extent allocation since they
3822 * have a RAID1 profile, and because we are in degraded mode with a
3823 * single device, we are forced to allocate a new system chunk with a
3824 * SINGLE profile. Making check_system_chunk() iterate over all system
3825 * block groups and check if they have a usable profile and enough space
3826 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3827 * try again after forcing allocation of a new system chunk. Like this
3828 * we avoid paying the cost of that search in normal circumstances, when
3829 * we were not mounted in degraded mode;
3830 *
3831 * 2) We had enough free space info the system space_info, and one suitable
3832 * block group to allocate from when we called check_system_chunk()
3833 * above. However right after we called it, the only system block group
3834 * with enough free space got turned into RO mode by a running scrub,
3835 * and in this case we have to allocate a new one and retry. We only
3836 * need do this allocate and retry once, since we have a transaction
3837 * handle and scrub uses the commit root to search for block groups;
3838 *
3839 * 3) We had one system block group with enough free space when we called
3840 * check_system_chunk(), but after that, right before we tried to
3841 * allocate the last extent buffer we needed, a discard operation came
3842 * in and it temporarily removed the last free space entry from the
3843 * block group (discard removes a free space entry, discards it, and
3844 * then adds back the entry to the block group cache).
3845 */
3846 if (ret == -ENOSPC) {
3847 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3848 struct btrfs_block_group *sys_bg;
3849
3850 sys_bg = btrfs_create_chunk(trans, sys_flags);
3851 if (IS_ERR(sys_bg)) {
3852 ret = PTR_ERR(sys_bg);
3853 btrfs_abort_transaction(trans, ret);
3854 goto out;
3855 }
3856
3857 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3858 if (ret) {
3859 btrfs_abort_transaction(trans, ret);
3860 goto out;
3861 }
3862
3863 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3864 if (ret) {
3865 btrfs_abort_transaction(trans, ret);
3866 goto out;
3867 }
3868 } else if (ret) {
3869 btrfs_abort_transaction(trans, ret);
3870 goto out;
3871 }
3872 out:
3873 btrfs_trans_release_chunk_metadata(trans);
3874
3875 if (ret)
3876 return ERR_PTR(ret);
3877
3878 btrfs_get_block_group(bg);
3879 return bg;
3880 }
3881
3882 /*
3883 * Chunk allocation is done in 2 phases:
3884 *
3885 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3886 * the chunk, the chunk mapping, create its block group and add the items
3887 * that belong in the chunk btree to it - more specifically, we need to
3888 * update device items in the chunk btree and add a new chunk item to it.
3889 *
3890 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3891 * group item to the extent btree and the device extent items to the devices
3892 * btree.
3893 *
3894 * This is done to prevent deadlocks. For example when COWing a node from the
3895 * extent btree we are holding a write lock on the node's parent and if we
3896 * trigger chunk allocation and attempted to insert the new block group item
3897 * in the extent btree right way, we could deadlock because the path for the
3898 * insertion can include that parent node. At first glance it seems impossible
3899 * to trigger chunk allocation after starting a transaction since tasks should
3900 * reserve enough transaction units (metadata space), however while that is true
3901 * most of the time, chunk allocation may still be triggered for several reasons:
3902 *
3903 * 1) When reserving metadata, we check if there is enough free space in the
3904 * metadata space_info and therefore don't trigger allocation of a new chunk.
3905 * However later when the task actually tries to COW an extent buffer from
3906 * the extent btree or from the device btree for example, it is forced to
3907 * allocate a new block group (chunk) because the only one that had enough
3908 * free space was just turned to RO mode by a running scrub for example (or
3909 * device replace, block group reclaim thread, etc), so we can not use it
3910 * for allocating an extent and end up being forced to allocate a new one;
3911 *
3912 * 2) Because we only check that the metadata space_info has enough free bytes,
3913 * we end up not allocating a new metadata chunk in that case. However if
3914 * the filesystem was mounted in degraded mode, none of the existing block
3915 * groups might be suitable for extent allocation due to their incompatible
3916 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3917 * use a RAID1 profile, in degraded mode using a single device). In this case
3918 * when the task attempts to COW some extent buffer of the extent btree for
3919 * example, it will trigger allocation of a new metadata block group with a
3920 * suitable profile (SINGLE profile in the example of the degraded mount of
3921 * the RAID1 filesystem);
3922 *
3923 * 3) The task has reserved enough transaction units / metadata space, but when
3924 * it attempts to COW an extent buffer from the extent or device btree for
3925 * example, it does not find any free extent in any metadata block group,
3926 * therefore forced to try to allocate a new metadata block group.
3927 * This is because some other task allocated all available extents in the
3928 * meanwhile - this typically happens with tasks that don't reserve space
3929 * properly, either intentionally or as a bug. One example where this is
3930 * done intentionally is fsync, as it does not reserve any transaction units
3931 * and ends up allocating a variable number of metadata extents for log
3932 * tree extent buffers;
3933 *
3934 * 4) The task has reserved enough transaction units / metadata space, but right
3935 * before it tries to allocate the last extent buffer it needs, a discard
3936 * operation comes in and, temporarily, removes the last free space entry from
3937 * the only metadata block group that had free space (discard starts by
3938 * removing a free space entry from a block group, then does the discard
3939 * operation and, once it's done, it adds back the free space entry to the
3940 * block group).
3941 *
3942 * We also need this 2 phases setup when adding a device to a filesystem with
3943 * a seed device - we must create new metadata and system chunks without adding
3944 * any of the block group items to the chunk, extent and device btrees. If we
3945 * did not do it this way, we would get ENOSPC when attempting to update those
3946 * btrees, since all the chunks from the seed device are read-only.
3947 *
3948 * Phase 1 does the updates and insertions to the chunk btree because if we had
3949 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3950 * parallel, we risk having too many system chunks allocated by many tasks if
3951 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3952 * extreme case this leads to exhaustion of the system chunk array in the
3953 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3954 * and with RAID filesystems (so we have more device items in the chunk btree).
3955 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3956 * the system chunk array due to concurrent allocations") provides more details.
3957 *
3958 * Allocation of system chunks does not happen through this function. A task that
3959 * needs to update the chunk btree (the only btree that uses system chunks), must
3960 * preallocate chunk space by calling either check_system_chunk() or
3961 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3962 * metadata chunk or when removing a chunk, while the later is used before doing
3963 * a modification to the chunk btree - use cases for the later are adding,
3964 * removing and resizing a device as well as relocation of a system chunk.
3965 * See the comment below for more details.
3966 *
3967 * The reservation of system space, done through check_system_chunk(), as well
3968 * as all the updates and insertions into the chunk btree must be done while
3969 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3970 * an extent buffer from the chunks btree we never trigger allocation of a new
3971 * system chunk, which would result in a deadlock (trying to lock twice an
3972 * extent buffer of the chunk btree, first time before triggering the chunk
3973 * allocation and the second time during chunk allocation while attempting to
3974 * update the chunks btree). The system chunk array is also updated while holding
3975 * that mutex. The same logic applies to removing chunks - we must reserve system
3976 * space, update the chunk btree and the system chunk array in the superblock
3977 * while holding fs_info->chunk_mutex.
3978 *
3979 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3980 *
3981 * If @force is CHUNK_ALLOC_FORCE:
3982 * - return 1 if it successfully allocates a chunk,
3983 * - return errors including -ENOSPC otherwise.
3984 * If @force is NOT CHUNK_ALLOC_FORCE:
3985 * - return 0 if it doesn't need to allocate a new chunk,
3986 * - return 1 if it successfully allocates a chunk,
3987 * - return errors including -ENOSPC otherwise.
3988 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)3989 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3990 enum btrfs_chunk_alloc_enum force)
3991 {
3992 struct btrfs_fs_info *fs_info = trans->fs_info;
3993 struct btrfs_space_info *space_info;
3994 struct btrfs_block_group *ret_bg;
3995 bool wait_for_alloc = false;
3996 bool should_alloc = false;
3997 bool from_extent_allocation = false;
3998 int ret = 0;
3999
4000 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4001 from_extent_allocation = true;
4002 force = CHUNK_ALLOC_FORCE;
4003 }
4004
4005 /* Don't re-enter if we're already allocating a chunk */
4006 if (trans->allocating_chunk)
4007 return -ENOSPC;
4008 /*
4009 * Allocation of system chunks can not happen through this path, as we
4010 * could end up in a deadlock if we are allocating a data or metadata
4011 * chunk and there is another task modifying the chunk btree.
4012 *
4013 * This is because while we are holding the chunk mutex, we will attempt
4014 * to add the new chunk item to the chunk btree or update an existing
4015 * device item in the chunk btree, while the other task that is modifying
4016 * the chunk btree is attempting to COW an extent buffer while holding a
4017 * lock on it and on its parent - if the COW operation triggers a system
4018 * chunk allocation, then we can deadlock because we are holding the
4019 * chunk mutex and we may need to access that extent buffer or its parent
4020 * in order to add the chunk item or update a device item.
4021 *
4022 * Tasks that want to modify the chunk tree should reserve system space
4023 * before updating the chunk btree, by calling either
4024 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4025 * It's possible that after a task reserves the space, it still ends up
4026 * here - this happens in the cases described above at do_chunk_alloc().
4027 * The task will have to either retry or fail.
4028 */
4029 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4030 return -ENOSPC;
4031
4032 space_info = btrfs_find_space_info(fs_info, flags);
4033 ASSERT(space_info);
4034
4035 do {
4036 spin_lock(&space_info->lock);
4037 if (force < space_info->force_alloc)
4038 force = space_info->force_alloc;
4039 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4040 if (space_info->full) {
4041 /* No more free physical space */
4042 if (should_alloc)
4043 ret = -ENOSPC;
4044 else
4045 ret = 0;
4046 spin_unlock(&space_info->lock);
4047 return ret;
4048 } else if (!should_alloc) {
4049 spin_unlock(&space_info->lock);
4050 return 0;
4051 } else if (space_info->chunk_alloc) {
4052 /*
4053 * Someone is already allocating, so we need to block
4054 * until this someone is finished and then loop to
4055 * recheck if we should continue with our allocation
4056 * attempt.
4057 */
4058 wait_for_alloc = true;
4059 force = CHUNK_ALLOC_NO_FORCE;
4060 spin_unlock(&space_info->lock);
4061 mutex_lock(&fs_info->chunk_mutex);
4062 mutex_unlock(&fs_info->chunk_mutex);
4063 } else {
4064 /* Proceed with allocation */
4065 space_info->chunk_alloc = 1;
4066 wait_for_alloc = false;
4067 spin_unlock(&space_info->lock);
4068 }
4069
4070 cond_resched();
4071 } while (wait_for_alloc);
4072
4073 mutex_lock(&fs_info->chunk_mutex);
4074 trans->allocating_chunk = true;
4075
4076 /*
4077 * If we have mixed data/metadata chunks we want to make sure we keep
4078 * allocating mixed chunks instead of individual chunks.
4079 */
4080 if (btrfs_mixed_space_info(space_info))
4081 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4082
4083 /*
4084 * if we're doing a data chunk, go ahead and make sure that
4085 * we keep a reasonable number of metadata chunks allocated in the
4086 * FS as well.
4087 */
4088 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4089 fs_info->data_chunk_allocations++;
4090 if (!(fs_info->data_chunk_allocations %
4091 fs_info->metadata_ratio))
4092 force_metadata_allocation(fs_info);
4093 }
4094
4095 ret_bg = do_chunk_alloc(trans, flags);
4096 trans->allocating_chunk = false;
4097
4098 if (IS_ERR(ret_bg)) {
4099 ret = PTR_ERR(ret_bg);
4100 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4101 /*
4102 * New block group is likely to be used soon. Try to activate
4103 * it now. Failure is OK for now.
4104 */
4105 btrfs_zone_activate(ret_bg);
4106 }
4107
4108 if (!ret)
4109 btrfs_put_block_group(ret_bg);
4110
4111 spin_lock(&space_info->lock);
4112 if (ret < 0) {
4113 if (ret == -ENOSPC)
4114 space_info->full = 1;
4115 else
4116 goto out;
4117 } else {
4118 ret = 1;
4119 space_info->max_extent_size = 0;
4120 }
4121
4122 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4123 out:
4124 space_info->chunk_alloc = 0;
4125 spin_unlock(&space_info->lock);
4126 mutex_unlock(&fs_info->chunk_mutex);
4127
4128 return ret;
4129 }
4130
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)4131 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4132 {
4133 u64 num_dev;
4134
4135 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4136 if (!num_dev)
4137 num_dev = fs_info->fs_devices->rw_devices;
4138
4139 return num_dev;
4140 }
4141
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)4142 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4143 u64 bytes,
4144 u64 type)
4145 {
4146 struct btrfs_fs_info *fs_info = trans->fs_info;
4147 struct btrfs_space_info *info;
4148 u64 left;
4149 int ret = 0;
4150
4151 /*
4152 * Needed because we can end up allocating a system chunk and for an
4153 * atomic and race free space reservation in the chunk block reserve.
4154 */
4155 lockdep_assert_held(&fs_info->chunk_mutex);
4156
4157 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4158 spin_lock(&info->lock);
4159 left = info->total_bytes - btrfs_space_info_used(info, true);
4160 spin_unlock(&info->lock);
4161
4162 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4163 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4164 left, bytes, type);
4165 btrfs_dump_space_info(fs_info, info, 0, 0);
4166 }
4167
4168 if (left < bytes) {
4169 u64 flags = btrfs_system_alloc_profile(fs_info);
4170 struct btrfs_block_group *bg;
4171
4172 /*
4173 * Ignore failure to create system chunk. We might end up not
4174 * needing it, as we might not need to COW all nodes/leafs from
4175 * the paths we visit in the chunk tree (they were already COWed
4176 * or created in the current transaction for example).
4177 */
4178 bg = btrfs_create_chunk(trans, flags);
4179 if (IS_ERR(bg)) {
4180 ret = PTR_ERR(bg);
4181 } else {
4182 /*
4183 * We have a new chunk. We also need to activate it for
4184 * zoned filesystem.
4185 */
4186 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4187 if (ret < 0)
4188 return;
4189
4190 /*
4191 * If we fail to add the chunk item here, we end up
4192 * trying again at phase 2 of chunk allocation, at
4193 * btrfs_create_pending_block_groups(). So ignore
4194 * any error here. An ENOSPC here could happen, due to
4195 * the cases described at do_chunk_alloc() - the system
4196 * block group we just created was just turned into RO
4197 * mode by a scrub for example, or a running discard
4198 * temporarily removed its free space entries, etc.
4199 */
4200 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4201 }
4202 }
4203
4204 if (!ret) {
4205 ret = btrfs_block_rsv_add(fs_info,
4206 &fs_info->chunk_block_rsv,
4207 bytes, BTRFS_RESERVE_NO_FLUSH);
4208 if (!ret)
4209 trans->chunk_bytes_reserved += bytes;
4210 }
4211 }
4212
4213 /*
4214 * Reserve space in the system space for allocating or removing a chunk.
4215 * The caller must be holding fs_info->chunk_mutex.
4216 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4217 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4218 {
4219 struct btrfs_fs_info *fs_info = trans->fs_info;
4220 const u64 num_devs = get_profile_num_devs(fs_info, type);
4221 u64 bytes;
4222
4223 /* num_devs device items to update and 1 chunk item to add or remove. */
4224 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4225 btrfs_calc_insert_metadata_size(fs_info, 1);
4226
4227 reserve_chunk_space(trans, bytes, type);
4228 }
4229
4230 /*
4231 * Reserve space in the system space, if needed, for doing a modification to the
4232 * chunk btree.
4233 *
4234 * @trans: A transaction handle.
4235 * @is_item_insertion: Indicate if the modification is for inserting a new item
4236 * in the chunk btree or if it's for the deletion or update
4237 * of an existing item.
4238 *
4239 * This is used in a context where we need to update the chunk btree outside
4240 * block group allocation and removal, to avoid a deadlock with a concurrent
4241 * task that is allocating a metadata or data block group and therefore needs to
4242 * update the chunk btree while holding the chunk mutex. After the update to the
4243 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4244 *
4245 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)4246 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4247 bool is_item_insertion)
4248 {
4249 struct btrfs_fs_info *fs_info = trans->fs_info;
4250 u64 bytes;
4251
4252 if (is_item_insertion)
4253 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4254 else
4255 bytes = btrfs_calc_metadata_size(fs_info, 1);
4256
4257 mutex_lock(&fs_info->chunk_mutex);
4258 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4259 mutex_unlock(&fs_info->chunk_mutex);
4260 }
4261
btrfs_put_block_group_cache(struct btrfs_fs_info * info)4262 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4263 {
4264 struct btrfs_block_group *block_group;
4265
4266 block_group = btrfs_lookup_first_block_group(info, 0);
4267 while (block_group) {
4268 btrfs_wait_block_group_cache_done(block_group);
4269 spin_lock(&block_group->lock);
4270 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4271 &block_group->runtime_flags)) {
4272 struct inode *inode = block_group->inode;
4273
4274 block_group->inode = NULL;
4275 spin_unlock(&block_group->lock);
4276
4277 ASSERT(block_group->io_ctl.inode == NULL);
4278 iput(inode);
4279 } else {
4280 spin_unlock(&block_group->lock);
4281 }
4282 block_group = btrfs_next_block_group(block_group);
4283 }
4284 }
4285
4286 /*
4287 * Must be called only after stopping all workers, since we could have block
4288 * group caching kthreads running, and therefore they could race with us if we
4289 * freed the block groups before stopping them.
4290 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4291 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4292 {
4293 struct btrfs_block_group *block_group;
4294 struct btrfs_space_info *space_info;
4295 struct btrfs_caching_control *caching_ctl;
4296 struct rb_node *n;
4297
4298 if (btrfs_is_zoned(info)) {
4299 if (info->active_meta_bg) {
4300 btrfs_put_block_group(info->active_meta_bg);
4301 info->active_meta_bg = NULL;
4302 }
4303 if (info->active_system_bg) {
4304 btrfs_put_block_group(info->active_system_bg);
4305 info->active_system_bg = NULL;
4306 }
4307 }
4308
4309 write_lock(&info->block_group_cache_lock);
4310 while (!list_empty(&info->caching_block_groups)) {
4311 caching_ctl = list_entry(info->caching_block_groups.next,
4312 struct btrfs_caching_control, list);
4313 list_del(&caching_ctl->list);
4314 btrfs_put_caching_control(caching_ctl);
4315 }
4316 write_unlock(&info->block_group_cache_lock);
4317
4318 spin_lock(&info->unused_bgs_lock);
4319 while (!list_empty(&info->unused_bgs)) {
4320 block_group = list_first_entry(&info->unused_bgs,
4321 struct btrfs_block_group,
4322 bg_list);
4323 list_del_init(&block_group->bg_list);
4324 btrfs_put_block_group(block_group);
4325 }
4326
4327 while (!list_empty(&info->reclaim_bgs)) {
4328 block_group = list_first_entry(&info->reclaim_bgs,
4329 struct btrfs_block_group,
4330 bg_list);
4331 list_del_init(&block_group->bg_list);
4332 btrfs_put_block_group(block_group);
4333 }
4334 spin_unlock(&info->unused_bgs_lock);
4335
4336 spin_lock(&info->zone_active_bgs_lock);
4337 while (!list_empty(&info->zone_active_bgs)) {
4338 block_group = list_first_entry(&info->zone_active_bgs,
4339 struct btrfs_block_group,
4340 active_bg_list);
4341 list_del_init(&block_group->active_bg_list);
4342 btrfs_put_block_group(block_group);
4343 }
4344 spin_unlock(&info->zone_active_bgs_lock);
4345
4346 write_lock(&info->block_group_cache_lock);
4347 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4348 block_group = rb_entry(n, struct btrfs_block_group,
4349 cache_node);
4350 rb_erase_cached(&block_group->cache_node,
4351 &info->block_group_cache_tree);
4352 RB_CLEAR_NODE(&block_group->cache_node);
4353 write_unlock(&info->block_group_cache_lock);
4354
4355 down_write(&block_group->space_info->groups_sem);
4356 list_del(&block_group->list);
4357 up_write(&block_group->space_info->groups_sem);
4358
4359 /*
4360 * We haven't cached this block group, which means we could
4361 * possibly have excluded extents on this block group.
4362 */
4363 if (block_group->cached == BTRFS_CACHE_NO ||
4364 block_group->cached == BTRFS_CACHE_ERROR)
4365 btrfs_free_excluded_extents(block_group);
4366
4367 btrfs_remove_free_space_cache(block_group);
4368 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4369 ASSERT(list_empty(&block_group->dirty_list));
4370 ASSERT(list_empty(&block_group->io_list));
4371 ASSERT(list_empty(&block_group->bg_list));
4372 ASSERT(refcount_read(&block_group->refs) == 1);
4373 ASSERT(block_group->swap_extents == 0);
4374 btrfs_put_block_group(block_group);
4375
4376 write_lock(&info->block_group_cache_lock);
4377 }
4378 write_unlock(&info->block_group_cache_lock);
4379
4380 btrfs_release_global_block_rsv(info);
4381
4382 while (!list_empty(&info->space_info)) {
4383 space_info = list_entry(info->space_info.next,
4384 struct btrfs_space_info,
4385 list);
4386
4387 /*
4388 * Do not hide this behind enospc_debug, this is actually
4389 * important and indicates a real bug if this happens.
4390 */
4391 if (WARN_ON(space_info->bytes_pinned > 0 ||
4392 space_info->bytes_may_use > 0))
4393 btrfs_dump_space_info(info, space_info, 0, 0);
4394
4395 /*
4396 * If there was a failure to cleanup a log tree, very likely due
4397 * to an IO failure on a writeback attempt of one or more of its
4398 * extent buffers, we could not do proper (and cheap) unaccounting
4399 * of their reserved space, so don't warn on bytes_reserved > 0 in
4400 * that case.
4401 */
4402 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4403 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4404 if (WARN_ON(space_info->bytes_reserved > 0))
4405 btrfs_dump_space_info(info, space_info, 0, 0);
4406 }
4407
4408 WARN_ON(space_info->reclaim_size > 0);
4409 list_del(&space_info->list);
4410 btrfs_sysfs_remove_space_info(space_info);
4411 }
4412 return 0;
4413 }
4414
btrfs_freeze_block_group(struct btrfs_block_group * cache)4415 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4416 {
4417 atomic_inc(&cache->frozen);
4418 }
4419
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4420 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4421 {
4422 struct btrfs_fs_info *fs_info = block_group->fs_info;
4423 struct extent_map_tree *em_tree;
4424 struct extent_map *em;
4425 bool cleanup;
4426
4427 spin_lock(&block_group->lock);
4428 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4429 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4430 spin_unlock(&block_group->lock);
4431
4432 if (cleanup) {
4433 em_tree = &fs_info->mapping_tree;
4434 write_lock(&em_tree->lock);
4435 em = lookup_extent_mapping(em_tree, block_group->start,
4436 1);
4437 BUG_ON(!em); /* logic error, can't happen */
4438 remove_extent_mapping(em_tree, em);
4439 write_unlock(&em_tree->lock);
4440
4441 /* once for us and once for the tree */
4442 free_extent_map(em);
4443 free_extent_map(em);
4444
4445 /*
4446 * We may have left one free space entry and other possible
4447 * tasks trimming this block group have left 1 entry each one.
4448 * Free them if any.
4449 */
4450 btrfs_remove_free_space_cache(block_group);
4451 }
4452 }
4453
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4454 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4455 {
4456 bool ret = true;
4457
4458 spin_lock(&bg->lock);
4459 if (bg->ro)
4460 ret = false;
4461 else
4462 bg->swap_extents++;
4463 spin_unlock(&bg->lock);
4464
4465 return ret;
4466 }
4467
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4468 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4469 {
4470 spin_lock(&bg->lock);
4471 ASSERT(!bg->ro);
4472 ASSERT(bg->swap_extents >= amount);
4473 bg->swap_extents -= amount;
4474 spin_unlock(&bg->lock);
4475 }
4476
btrfs_calc_block_group_size_class(u64 size)4477 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4478 {
4479 if (size <= SZ_128K)
4480 return BTRFS_BG_SZ_SMALL;
4481 if (size <= SZ_8M)
4482 return BTRFS_BG_SZ_MEDIUM;
4483 return BTRFS_BG_SZ_LARGE;
4484 }
4485
4486 /*
4487 * Handle a block group allocating an extent in a size class
4488 *
4489 * @bg: The block group we allocated in.
4490 * @size_class: The size class of the allocation.
4491 * @force_wrong_size_class: Whether we are desperate enough to allow
4492 * mismatched size classes.
4493 *
4494 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4495 * case of a race that leads to the wrong size class without
4496 * force_wrong_size_class set.
4497 *
4498 * find_free_extent will skip block groups with a mismatched size class until
4499 * it really needs to avoid ENOSPC. In that case it will set
4500 * force_wrong_size_class. However, if a block group is newly allocated and
4501 * doesn't yet have a size class, then it is possible for two allocations of
4502 * different sizes to race and both try to use it. The loser is caught here and
4503 * has to retry.
4504 */
btrfs_use_block_group_size_class(struct btrfs_block_group * bg,enum btrfs_block_group_size_class size_class,bool force_wrong_size_class)4505 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4506 enum btrfs_block_group_size_class size_class,
4507 bool force_wrong_size_class)
4508 {
4509 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4510
4511 /* The new allocation is in the right size class, do nothing */
4512 if (bg->size_class == size_class)
4513 return 0;
4514 /*
4515 * The new allocation is in a mismatched size class.
4516 * This means one of two things:
4517 *
4518 * 1. Two tasks in find_free_extent for different size_classes raced
4519 * and hit the same empty block_group. Make the loser try again.
4520 * 2. A call to find_free_extent got desperate enough to set
4521 * 'force_wrong_slab'. Don't change the size_class, but allow the
4522 * allocation.
4523 */
4524 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4525 if (force_wrong_size_class)
4526 return 0;
4527 return -EAGAIN;
4528 }
4529 /*
4530 * The happy new block group case: the new allocation is the first
4531 * one in the block_group so we set size_class.
4532 */
4533 bg->size_class = size_class;
4534
4535 return 0;
4536 }
4537
btrfs_block_group_should_use_size_class(struct btrfs_block_group * bg)4538 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4539 {
4540 if (btrfs_is_zoned(bg->fs_info))
4541 return false;
4542 if (!btrfs_is_block_group_data_only(bg))
4543 return false;
4544 return true;
4545 }
4546