1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "misc.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "print-tree.h"
18 #include "compression.h"
19
20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
21 sizeof(struct btrfs_item) * 2) / \
22 size) - 1))
23
24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
25 PAGE_SIZE))
26
27 /**
28 * Set inode's size according to filesystem options
29 *
30 * @inode: inode we want to update the disk_i_size for
31 * @new_i_size: i_size we want to set to, 0 if we use i_size
32 *
33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
34 * returns as it is perfectly fine with a file that has holes without hole file
35 * extent items.
36 *
37 * However without NO_HOLES we need to only return the area that is contiguous
38 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
39 * to an extent that has a gap in between.
40 *
41 * Finally new_i_size should only be set in the case of truncate where we're not
42 * ready to use i_size_read() as the limiter yet.
43 */
btrfs_inode_safe_disk_i_size_write(struct btrfs_inode * inode,u64 new_i_size)44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
45 {
46 struct btrfs_fs_info *fs_info = inode->root->fs_info;
47 u64 start, end, i_size;
48 int ret;
49
50 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
51 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
52 inode->disk_i_size = i_size;
53 return;
54 }
55
56 spin_lock(&inode->lock);
57 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
58 &end, EXTENT_DIRTY);
59 if (!ret && start == 0)
60 i_size = min(i_size, end + 1);
61 else
62 i_size = 0;
63 inode->disk_i_size = i_size;
64 spin_unlock(&inode->lock);
65 }
66
67 /**
68 * Mark range within a file as having a new extent inserted
69 *
70 * @inode: inode being modified
71 * @start: start file offset of the file extent we've inserted
72 * @len: logical length of the file extent item
73 *
74 * Call when we are inserting a new file extent where there was none before.
75 * Does not need to call this in the case where we're replacing an existing file
76 * extent, however if not sure it's fine to call this multiple times.
77 *
78 * The start and len must match the file extent item, so thus must be sectorsize
79 * aligned.
80 */
btrfs_inode_set_file_extent_range(struct btrfs_inode * inode,u64 start,u64 len)81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
82 u64 len)
83 {
84 if (len == 0)
85 return 0;
86
87 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
88
89 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
90 return 0;
91 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
92 EXTENT_DIRTY);
93 }
94
95 /**
96 * Marks an inode range as not having a backing extent
97 *
98 * @inode: inode being modified
99 * @start: start file offset of the file extent we've inserted
100 * @len: logical length of the file extent item
101 *
102 * Called when we drop a file extent, for example when we truncate. Doesn't
103 * need to be called for cases where we're replacing a file extent, like when
104 * we've COWed a file extent.
105 *
106 * The start and len must match the file extent item, so thus must be sectorsize
107 * aligned.
108 */
btrfs_inode_clear_file_extent_range(struct btrfs_inode * inode,u64 start,u64 len)109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
110 u64 len)
111 {
112 if (len == 0)
113 return 0;
114
115 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
116 len == (u64)-1);
117
118 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
119 return 0;
120 return clear_extent_bit(&inode->file_extent_tree, start,
121 start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
122 }
123
max_ordered_sum_bytes(struct btrfs_fs_info * fs_info,u16 csum_size)124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
125 u16 csum_size)
126 {
127 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
128
129 return ncsums * fs_info->sectorsize;
130 }
131
btrfs_insert_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid,u64 pos,u64 disk_offset,u64 disk_num_bytes,u64 num_bytes,u64 offset,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding)132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
133 struct btrfs_root *root,
134 u64 objectid, u64 pos,
135 u64 disk_offset, u64 disk_num_bytes,
136 u64 num_bytes, u64 offset, u64 ram_bytes,
137 u8 compression, u8 encryption, u16 other_encoding)
138 {
139 int ret = 0;
140 struct btrfs_file_extent_item *item;
141 struct btrfs_key file_key;
142 struct btrfs_path *path;
143 struct extent_buffer *leaf;
144
145 path = btrfs_alloc_path();
146 if (!path)
147 return -ENOMEM;
148 file_key.objectid = objectid;
149 file_key.offset = pos;
150 file_key.type = BTRFS_EXTENT_DATA_KEY;
151
152 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
153 sizeof(*item));
154 if (ret < 0)
155 goto out;
156 BUG_ON(ret); /* Can't happen */
157 leaf = path->nodes[0];
158 item = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
161 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
162 btrfs_set_file_extent_offset(leaf, item, offset);
163 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
164 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
165 btrfs_set_file_extent_generation(leaf, item, trans->transid);
166 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
167 btrfs_set_file_extent_compression(leaf, item, compression);
168 btrfs_set_file_extent_encryption(leaf, item, encryption);
169 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
170
171 btrfs_mark_buffer_dirty(leaf);
172 out:
173 btrfs_free_path(path);
174 return ret;
175 }
176
177 static struct btrfs_csum_item *
btrfs_lookup_csum(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,int cow)178 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
179 struct btrfs_root *root,
180 struct btrfs_path *path,
181 u64 bytenr, int cow)
182 {
183 struct btrfs_fs_info *fs_info = root->fs_info;
184 int ret;
185 struct btrfs_key file_key;
186 struct btrfs_key found_key;
187 struct btrfs_csum_item *item;
188 struct extent_buffer *leaf;
189 u64 csum_offset = 0;
190 const u32 csum_size = fs_info->csum_size;
191 int csums_in_item;
192
193 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
194 file_key.offset = bytenr;
195 file_key.type = BTRFS_EXTENT_CSUM_KEY;
196 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
197 if (ret < 0)
198 goto fail;
199 leaf = path->nodes[0];
200 if (ret > 0) {
201 ret = 1;
202 if (path->slots[0] == 0)
203 goto fail;
204 path->slots[0]--;
205 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
206 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
207 goto fail;
208
209 csum_offset = (bytenr - found_key.offset) >>
210 fs_info->sectorsize_bits;
211 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
212 csums_in_item /= csum_size;
213
214 if (csum_offset == csums_in_item) {
215 ret = -EFBIG;
216 goto fail;
217 } else if (csum_offset > csums_in_item) {
218 goto fail;
219 }
220 }
221 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
222 item = (struct btrfs_csum_item *)((unsigned char *)item +
223 csum_offset * csum_size);
224 return item;
225 fail:
226 if (ret > 0)
227 ret = -ENOENT;
228 return ERR_PTR(ret);
229 }
230
btrfs_lookup_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,int mod)231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
232 struct btrfs_root *root,
233 struct btrfs_path *path, u64 objectid,
234 u64 offset, int mod)
235 {
236 struct btrfs_key file_key;
237 int ins_len = mod < 0 ? -1 : 0;
238 int cow = mod != 0;
239
240 file_key.objectid = objectid;
241 file_key.offset = offset;
242 file_key.type = BTRFS_EXTENT_DATA_KEY;
243
244 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
245 }
246
247 /*
248 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
249 * estore the result to @dst.
250 *
251 * Return >0 for the number of sectors we found.
252 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
253 * for it. Caller may want to try next sector until one range is hit.
254 * Return <0 for fatal error.
255 */
search_csum_tree(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 disk_bytenr,u64 len,u8 * dst)256 static int search_csum_tree(struct btrfs_fs_info *fs_info,
257 struct btrfs_path *path, u64 disk_bytenr,
258 u64 len, u8 *dst)
259 {
260 struct btrfs_csum_item *item = NULL;
261 struct btrfs_key key;
262 const u32 sectorsize = fs_info->sectorsize;
263 const u32 csum_size = fs_info->csum_size;
264 u32 itemsize;
265 int ret;
266 u64 csum_start;
267 u64 csum_len;
268
269 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
270 IS_ALIGNED(len, sectorsize));
271
272 /* Check if the current csum item covers disk_bytenr */
273 if (path->nodes[0]) {
274 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
275 struct btrfs_csum_item);
276 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
277 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
278
279 csum_start = key.offset;
280 csum_len = (itemsize / csum_size) * sectorsize;
281
282 if (in_range(disk_bytenr, csum_start, csum_len))
283 goto found;
284 }
285
286 /* Current item doesn't contain the desired range, search again */
287 btrfs_release_path(path);
288 item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
289 if (IS_ERR(item)) {
290 ret = PTR_ERR(item);
291 goto out;
292 }
293 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
294 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
295
296 csum_start = key.offset;
297 csum_len = (itemsize / csum_size) * sectorsize;
298 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
299
300 found:
301 ret = (min(csum_start + csum_len, disk_bytenr + len) -
302 disk_bytenr) >> fs_info->sectorsize_bits;
303 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
304 ret * csum_size);
305 out:
306 if (ret == -ENOENT)
307 ret = 0;
308 return ret;
309 }
310
311 /*
312 * Locate the file_offset of @cur_disk_bytenr of a @bio.
313 *
314 * Bio of btrfs represents read range of
315 * [bi_sector << 9, bi_sector << 9 + bi_size).
316 * Knowing this, we can iterate through each bvec to locate the page belong to
317 * @cur_disk_bytenr and get the file offset.
318 *
319 * @inode is used to determine if the bvec page really belongs to @inode.
320 *
321 * Return 0 if we can't find the file offset
322 * Return >0 if we find the file offset and restore it to @file_offset_ret
323 */
search_file_offset_in_bio(struct bio * bio,struct inode * inode,u64 disk_bytenr,u64 * file_offset_ret)324 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
325 u64 disk_bytenr, u64 *file_offset_ret)
326 {
327 struct bvec_iter iter;
328 struct bio_vec bvec;
329 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
330 int ret = 0;
331
332 bio_for_each_segment(bvec, bio, iter) {
333 struct page *page = bvec.bv_page;
334
335 if (cur > disk_bytenr)
336 break;
337 if (cur + bvec.bv_len <= disk_bytenr) {
338 cur += bvec.bv_len;
339 continue;
340 }
341 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
342 if (page->mapping && page->mapping->host &&
343 page->mapping->host == inode) {
344 ret = 1;
345 *file_offset_ret = page_offset(page) + bvec.bv_offset +
346 disk_bytenr - cur;
347 break;
348 }
349 }
350 return ret;
351 }
352
353 /**
354 * Lookup the checksum for the read bio in csum tree.
355 *
356 * @inode: inode that the bio is for.
357 * @bio: bio to look up.
358 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
359 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
360 * NULL, the checksum buffer is allocated and returned in
361 * btrfs_io_bio(bio)->csum instead.
362 *
363 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
364 */
btrfs_lookup_bio_sums(struct inode * inode,struct bio * bio,u8 * dst)365 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
366 {
367 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
368 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
369 struct btrfs_path *path;
370 const u32 sectorsize = fs_info->sectorsize;
371 const u32 csum_size = fs_info->csum_size;
372 u32 orig_len = bio->bi_iter.bi_size;
373 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
374 u64 cur_disk_bytenr;
375 u8 *csum;
376 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
377 int count = 0;
378
379 if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
380 return BLK_STS_OK;
381
382 /*
383 * This function is only called for read bio.
384 *
385 * This means two things:
386 * - All our csums should only be in csum tree
387 * No ordered extents csums, as ordered extents are only for write
388 * path.
389 * - No need to bother any other info from bvec
390 * Since we're looking up csums, the only important info is the
391 * disk_bytenr and the length, which can be extracted from bi_iter
392 * directly.
393 */
394 ASSERT(bio_op(bio) == REQ_OP_READ);
395 path = btrfs_alloc_path();
396 if (!path)
397 return BLK_STS_RESOURCE;
398
399 if (!dst) {
400 struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
401
402 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
403 btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
404 GFP_NOFS);
405 if (!btrfs_bio->csum) {
406 btrfs_free_path(path);
407 return BLK_STS_RESOURCE;
408 }
409 } else {
410 btrfs_bio->csum = btrfs_bio->csum_inline;
411 }
412 csum = btrfs_bio->csum;
413 } else {
414 csum = dst;
415 }
416
417 /*
418 * If requested number of sectors is larger than one leaf can contain,
419 * kick the readahead for csum tree.
420 */
421 if (nblocks > fs_info->csums_per_leaf)
422 path->reada = READA_FORWARD;
423
424 /*
425 * the free space stuff is only read when it hasn't been
426 * updated in the current transaction. So, we can safely
427 * read from the commit root and sidestep a nasty deadlock
428 * between reading the free space cache and updating the csum tree.
429 */
430 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
431 path->search_commit_root = 1;
432 path->skip_locking = 1;
433 }
434
435 for (cur_disk_bytenr = orig_disk_bytenr;
436 cur_disk_bytenr < orig_disk_bytenr + orig_len;
437 cur_disk_bytenr += (count * sectorsize)) {
438 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
439 unsigned int sector_offset;
440 u8 *csum_dst;
441
442 /*
443 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
444 * we're calculating the offset to the bio start.
445 *
446 * Bio size is limited to UINT_MAX, thus unsigned int is large
447 * enough to contain the raw result, not to mention the right
448 * shifted result.
449 */
450 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
451 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
452 fs_info->sectorsize_bits;
453 csum_dst = csum + sector_offset * csum_size;
454
455 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
456 search_len, csum_dst);
457 if (count <= 0) {
458 /*
459 * Either we hit a critical error or we didn't find
460 * the csum.
461 * Either way, we put zero into the csums dst, and skip
462 * to the next sector.
463 */
464 memset(csum_dst, 0, csum_size);
465 count = 1;
466
467 /*
468 * For data reloc inode, we need to mark the range
469 * NODATASUM so that balance won't report false csum
470 * error.
471 */
472 if (BTRFS_I(inode)->root->root_key.objectid ==
473 BTRFS_DATA_RELOC_TREE_OBJECTID) {
474 u64 file_offset;
475 int ret;
476
477 ret = search_file_offset_in_bio(bio, inode,
478 cur_disk_bytenr, &file_offset);
479 if (ret)
480 set_extent_bits(io_tree, file_offset,
481 file_offset + sectorsize - 1,
482 EXTENT_NODATASUM);
483 } else {
484 btrfs_warn_rl(fs_info,
485 "csum hole found for disk bytenr range [%llu, %llu)",
486 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
487 }
488 }
489 }
490
491 btrfs_free_path(path);
492 return BLK_STS_OK;
493 }
494
btrfs_lookup_csums_range(struct btrfs_root * root,u64 start,u64 end,struct list_head * list,int search_commit)495 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
496 struct list_head *list, int search_commit)
497 {
498 struct btrfs_fs_info *fs_info = root->fs_info;
499 struct btrfs_key key;
500 struct btrfs_path *path;
501 struct extent_buffer *leaf;
502 struct btrfs_ordered_sum *sums;
503 struct btrfs_csum_item *item;
504 LIST_HEAD(tmplist);
505 unsigned long offset;
506 int ret;
507 size_t size;
508 u64 csum_end;
509 const u32 csum_size = fs_info->csum_size;
510
511 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
512 IS_ALIGNED(end + 1, fs_info->sectorsize));
513
514 path = btrfs_alloc_path();
515 if (!path)
516 return -ENOMEM;
517
518 if (search_commit) {
519 path->skip_locking = 1;
520 path->reada = READA_FORWARD;
521 path->search_commit_root = 1;
522 }
523
524 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
525 key.offset = start;
526 key.type = BTRFS_EXTENT_CSUM_KEY;
527
528 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
529 if (ret < 0)
530 goto fail;
531 if (ret > 0 && path->slots[0] > 0) {
532 leaf = path->nodes[0];
533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
534 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
535 key.type == BTRFS_EXTENT_CSUM_KEY) {
536 offset = (start - key.offset) >> fs_info->sectorsize_bits;
537 if (offset * csum_size <
538 btrfs_item_size_nr(leaf, path->slots[0] - 1))
539 path->slots[0]--;
540 }
541 }
542
543 while (start <= end) {
544 leaf = path->nodes[0];
545 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
546 ret = btrfs_next_leaf(root, path);
547 if (ret < 0)
548 goto fail;
549 if (ret > 0)
550 break;
551 leaf = path->nodes[0];
552 }
553
554 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
555 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
556 key.type != BTRFS_EXTENT_CSUM_KEY ||
557 key.offset > end)
558 break;
559
560 if (key.offset > start)
561 start = key.offset;
562
563 size = btrfs_item_size_nr(leaf, path->slots[0]);
564 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
565 if (csum_end <= start) {
566 path->slots[0]++;
567 continue;
568 }
569
570 csum_end = min(csum_end, end + 1);
571 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
572 struct btrfs_csum_item);
573 while (start < csum_end) {
574 size = min_t(size_t, csum_end - start,
575 max_ordered_sum_bytes(fs_info, csum_size));
576 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
577 GFP_NOFS);
578 if (!sums) {
579 ret = -ENOMEM;
580 goto fail;
581 }
582
583 sums->bytenr = start;
584 sums->len = (int)size;
585
586 offset = (start - key.offset) >> fs_info->sectorsize_bits;
587 offset *= csum_size;
588 size >>= fs_info->sectorsize_bits;
589
590 read_extent_buffer(path->nodes[0],
591 sums->sums,
592 ((unsigned long)item) + offset,
593 csum_size * size);
594
595 start += fs_info->sectorsize * size;
596 list_add_tail(&sums->list, &tmplist);
597 }
598 path->slots[0]++;
599 }
600 ret = 0;
601 fail:
602 while (ret < 0 && !list_empty(&tmplist)) {
603 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
604 list_del(&sums->list);
605 kfree(sums);
606 }
607 list_splice_tail(&tmplist, list);
608
609 btrfs_free_path(path);
610 return ret;
611 }
612
613 /*
614 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
615 * @inode: Owner of the data inside the bio
616 * @bio: Contains the data to be checksummed
617 * @file_start: offset in file this bio begins to describe
618 * @contig: Boolean. If true/1 means all bio vecs in this bio are
619 * contiguous and they begin at @file_start in the file. False/0
620 * means this bio can contain potentially discontiguous bio vecs
621 * so the logical offset of each should be calculated separately.
622 */
btrfs_csum_one_bio(struct btrfs_inode * inode,struct bio * bio,u64 file_start,int contig)623 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
624 u64 file_start, int contig)
625 {
626 struct btrfs_fs_info *fs_info = inode->root->fs_info;
627 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
628 struct btrfs_ordered_sum *sums;
629 struct btrfs_ordered_extent *ordered = NULL;
630 char *data;
631 struct bvec_iter iter;
632 struct bio_vec bvec;
633 int index;
634 int nr_sectors;
635 unsigned long total_bytes = 0;
636 unsigned long this_sum_bytes = 0;
637 int i;
638 u64 offset;
639 unsigned nofs_flag;
640
641 nofs_flag = memalloc_nofs_save();
642 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
643 GFP_KERNEL);
644 memalloc_nofs_restore(nofs_flag);
645
646 if (!sums)
647 return BLK_STS_RESOURCE;
648
649 sums->len = bio->bi_iter.bi_size;
650 INIT_LIST_HEAD(&sums->list);
651
652 if (contig)
653 offset = file_start;
654 else
655 offset = 0; /* shut up gcc */
656
657 sums->bytenr = bio->bi_iter.bi_sector << 9;
658 index = 0;
659
660 shash->tfm = fs_info->csum_shash;
661
662 bio_for_each_segment(bvec, bio, iter) {
663 if (!contig)
664 offset = page_offset(bvec.bv_page) + bvec.bv_offset;
665
666 if (!ordered) {
667 ordered = btrfs_lookup_ordered_extent(inode, offset);
668 /*
669 * The bio range is not covered by any ordered extent,
670 * must be a code logic error.
671 */
672 if (unlikely(!ordered)) {
673 WARN(1, KERN_WARNING
674 "no ordered extent for root %llu ino %llu offset %llu\n",
675 inode->root->root_key.objectid,
676 btrfs_ino(inode), offset);
677 kvfree(sums);
678 return BLK_STS_IOERR;
679 }
680 }
681
682 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
683 bvec.bv_len + fs_info->sectorsize
684 - 1);
685
686 for (i = 0; i < nr_sectors; i++) {
687 if (offset >= ordered->file_offset + ordered->num_bytes ||
688 offset < ordered->file_offset) {
689 unsigned long bytes_left;
690
691 sums->len = this_sum_bytes;
692 this_sum_bytes = 0;
693 btrfs_add_ordered_sum(ordered, sums);
694 btrfs_put_ordered_extent(ordered);
695
696 bytes_left = bio->bi_iter.bi_size - total_bytes;
697
698 nofs_flag = memalloc_nofs_save();
699 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
700 bytes_left), GFP_KERNEL);
701 memalloc_nofs_restore(nofs_flag);
702 BUG_ON(!sums); /* -ENOMEM */
703 sums->len = bytes_left;
704 ordered = btrfs_lookup_ordered_extent(inode,
705 offset);
706 ASSERT(ordered); /* Logic error */
707 sums->bytenr = (bio->bi_iter.bi_sector << 9)
708 + total_bytes;
709 index = 0;
710 }
711
712 data = kmap_atomic(bvec.bv_page);
713 crypto_shash_digest(shash, data + bvec.bv_offset
714 + (i * fs_info->sectorsize),
715 fs_info->sectorsize,
716 sums->sums + index);
717 kunmap_atomic(data);
718 index += fs_info->csum_size;
719 offset += fs_info->sectorsize;
720 this_sum_bytes += fs_info->sectorsize;
721 total_bytes += fs_info->sectorsize;
722 }
723
724 }
725 this_sum_bytes = 0;
726 btrfs_add_ordered_sum(ordered, sums);
727 btrfs_put_ordered_extent(ordered);
728 return 0;
729 }
730
731 /*
732 * helper function for csum removal, this expects the
733 * key to describe the csum pointed to by the path, and it expects
734 * the csum to overlap the range [bytenr, len]
735 *
736 * The csum should not be entirely contained in the range and the
737 * range should not be entirely contained in the csum.
738 *
739 * This calls btrfs_truncate_item with the correct args based on the
740 * overlap, and fixes up the key as required.
741 */
truncate_one_csum(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key,u64 bytenr,u64 len)742 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
743 struct btrfs_path *path,
744 struct btrfs_key *key,
745 u64 bytenr, u64 len)
746 {
747 struct extent_buffer *leaf;
748 const u32 csum_size = fs_info->csum_size;
749 u64 csum_end;
750 u64 end_byte = bytenr + len;
751 u32 blocksize_bits = fs_info->sectorsize_bits;
752
753 leaf = path->nodes[0];
754 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
755 csum_end <<= blocksize_bits;
756 csum_end += key->offset;
757
758 if (key->offset < bytenr && csum_end <= end_byte) {
759 /*
760 * [ bytenr - len ]
761 * [ ]
762 * [csum ]
763 * A simple truncate off the end of the item
764 */
765 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
766 new_size *= csum_size;
767 btrfs_truncate_item(path, new_size, 1);
768 } else if (key->offset >= bytenr && csum_end > end_byte &&
769 end_byte > key->offset) {
770 /*
771 * [ bytenr - len ]
772 * [ ]
773 * [csum ]
774 * we need to truncate from the beginning of the csum
775 */
776 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
777 new_size *= csum_size;
778
779 btrfs_truncate_item(path, new_size, 0);
780
781 key->offset = end_byte;
782 btrfs_set_item_key_safe(fs_info, path, key);
783 } else {
784 BUG();
785 }
786 }
787
788 /*
789 * deletes the csum items from the csum tree for a given
790 * range of bytes.
791 */
btrfs_del_csums(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 len)792 int btrfs_del_csums(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root, u64 bytenr, u64 len)
794 {
795 struct btrfs_fs_info *fs_info = trans->fs_info;
796 struct btrfs_path *path;
797 struct btrfs_key key;
798 u64 end_byte = bytenr + len;
799 u64 csum_end;
800 struct extent_buffer *leaf;
801 int ret = 0;
802 const u32 csum_size = fs_info->csum_size;
803 u32 blocksize_bits = fs_info->sectorsize_bits;
804
805 ASSERT(root == fs_info->csum_root ||
806 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
807
808 path = btrfs_alloc_path();
809 if (!path)
810 return -ENOMEM;
811
812 while (1) {
813 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
814 key.offset = end_byte - 1;
815 key.type = BTRFS_EXTENT_CSUM_KEY;
816
817 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
818 if (ret > 0) {
819 ret = 0;
820 if (path->slots[0] == 0)
821 break;
822 path->slots[0]--;
823 } else if (ret < 0) {
824 break;
825 }
826
827 leaf = path->nodes[0];
828 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
829
830 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
831 key.type != BTRFS_EXTENT_CSUM_KEY) {
832 break;
833 }
834
835 if (key.offset >= end_byte)
836 break;
837
838 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
839 csum_end <<= blocksize_bits;
840 csum_end += key.offset;
841
842 /* this csum ends before we start, we're done */
843 if (csum_end <= bytenr)
844 break;
845
846 /* delete the entire item, it is inside our range */
847 if (key.offset >= bytenr && csum_end <= end_byte) {
848 int del_nr = 1;
849
850 /*
851 * Check how many csum items preceding this one in this
852 * leaf correspond to our range and then delete them all
853 * at once.
854 */
855 if (key.offset > bytenr && path->slots[0] > 0) {
856 int slot = path->slots[0] - 1;
857
858 while (slot >= 0) {
859 struct btrfs_key pk;
860
861 btrfs_item_key_to_cpu(leaf, &pk, slot);
862 if (pk.offset < bytenr ||
863 pk.type != BTRFS_EXTENT_CSUM_KEY ||
864 pk.objectid !=
865 BTRFS_EXTENT_CSUM_OBJECTID)
866 break;
867 path->slots[0] = slot;
868 del_nr++;
869 key.offset = pk.offset;
870 slot--;
871 }
872 }
873 ret = btrfs_del_items(trans, root, path,
874 path->slots[0], del_nr);
875 if (ret)
876 break;
877 if (key.offset == bytenr)
878 break;
879 } else if (key.offset < bytenr && csum_end > end_byte) {
880 unsigned long offset;
881 unsigned long shift_len;
882 unsigned long item_offset;
883 /*
884 * [ bytenr - len ]
885 * [csum ]
886 *
887 * Our bytes are in the middle of the csum,
888 * we need to split this item and insert a new one.
889 *
890 * But we can't drop the path because the
891 * csum could change, get removed, extended etc.
892 *
893 * The trick here is the max size of a csum item leaves
894 * enough room in the tree block for a single
895 * item header. So, we split the item in place,
896 * adding a new header pointing to the existing
897 * bytes. Then we loop around again and we have
898 * a nicely formed csum item that we can neatly
899 * truncate.
900 */
901 offset = (bytenr - key.offset) >> blocksize_bits;
902 offset *= csum_size;
903
904 shift_len = (len >> blocksize_bits) * csum_size;
905
906 item_offset = btrfs_item_ptr_offset(leaf,
907 path->slots[0]);
908
909 memzero_extent_buffer(leaf, item_offset + offset,
910 shift_len);
911 key.offset = bytenr;
912
913 /*
914 * btrfs_split_item returns -EAGAIN when the
915 * item changed size or key
916 */
917 ret = btrfs_split_item(trans, root, path, &key, offset);
918 if (ret && ret != -EAGAIN) {
919 btrfs_abort_transaction(trans, ret);
920 break;
921 }
922 ret = 0;
923
924 key.offset = end_byte - 1;
925 } else {
926 truncate_one_csum(fs_info, path, &key, bytenr, len);
927 if (key.offset < bytenr)
928 break;
929 }
930 btrfs_release_path(path);
931 }
932 btrfs_free_path(path);
933 return ret;
934 }
935
find_next_csum_offset(struct btrfs_root * root,struct btrfs_path * path,u64 * next_offset)936 static int find_next_csum_offset(struct btrfs_root *root,
937 struct btrfs_path *path,
938 u64 *next_offset)
939 {
940 const u32 nritems = btrfs_header_nritems(path->nodes[0]);
941 struct btrfs_key found_key;
942 int slot = path->slots[0] + 1;
943 int ret;
944
945 if (nritems == 0 || slot >= nritems) {
946 ret = btrfs_next_leaf(root, path);
947 if (ret < 0) {
948 return ret;
949 } else if (ret > 0) {
950 *next_offset = (u64)-1;
951 return 0;
952 }
953 slot = path->slots[0];
954 }
955
956 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
957
958 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
959 found_key.type != BTRFS_EXTENT_CSUM_KEY)
960 *next_offset = (u64)-1;
961 else
962 *next_offset = found_key.offset;
963
964 return 0;
965 }
966
btrfs_csum_file_blocks(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_ordered_sum * sums)967 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
968 struct btrfs_root *root,
969 struct btrfs_ordered_sum *sums)
970 {
971 struct btrfs_fs_info *fs_info = root->fs_info;
972 struct btrfs_key file_key;
973 struct btrfs_key found_key;
974 struct btrfs_path *path;
975 struct btrfs_csum_item *item;
976 struct btrfs_csum_item *item_end;
977 struct extent_buffer *leaf = NULL;
978 u64 next_offset;
979 u64 total_bytes = 0;
980 u64 csum_offset;
981 u64 bytenr;
982 u32 ins_size;
983 int index = 0;
984 int found_next;
985 int ret;
986 const u32 csum_size = fs_info->csum_size;
987
988 path = btrfs_alloc_path();
989 if (!path)
990 return -ENOMEM;
991 again:
992 next_offset = (u64)-1;
993 found_next = 0;
994 bytenr = sums->bytenr + total_bytes;
995 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
996 file_key.offset = bytenr;
997 file_key.type = BTRFS_EXTENT_CSUM_KEY;
998
999 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1000 if (!IS_ERR(item)) {
1001 ret = 0;
1002 leaf = path->nodes[0];
1003 item_end = btrfs_item_ptr(leaf, path->slots[0],
1004 struct btrfs_csum_item);
1005 item_end = (struct btrfs_csum_item *)((char *)item_end +
1006 btrfs_item_size_nr(leaf, path->slots[0]));
1007 goto found;
1008 }
1009 ret = PTR_ERR(item);
1010 if (ret != -EFBIG && ret != -ENOENT)
1011 goto out;
1012
1013 if (ret == -EFBIG) {
1014 u32 item_size;
1015 /* we found one, but it isn't big enough yet */
1016 leaf = path->nodes[0];
1017 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1018 if ((item_size / csum_size) >=
1019 MAX_CSUM_ITEMS(fs_info, csum_size)) {
1020 /* already at max size, make a new one */
1021 goto insert;
1022 }
1023 } else {
1024 /* We didn't find a csum item, insert one. */
1025 ret = find_next_csum_offset(root, path, &next_offset);
1026 if (ret < 0)
1027 goto out;
1028 found_next = 1;
1029 goto insert;
1030 }
1031
1032 /*
1033 * At this point, we know the tree has a checksum item that ends at an
1034 * offset matching the start of the checksum range we want to insert.
1035 * We try to extend that item as much as possible and then add as many
1036 * checksums to it as they fit.
1037 *
1038 * First check if the leaf has enough free space for at least one
1039 * checksum. If it has go directly to the item extension code, otherwise
1040 * release the path and do a search for insertion before the extension.
1041 */
1042 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1043 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1044 csum_offset = (bytenr - found_key.offset) >>
1045 fs_info->sectorsize_bits;
1046 goto extend_csum;
1047 }
1048
1049 btrfs_release_path(path);
1050 path->search_for_extension = 1;
1051 ret = btrfs_search_slot(trans, root, &file_key, path,
1052 csum_size, 1);
1053 path->search_for_extension = 0;
1054 if (ret < 0)
1055 goto out;
1056
1057 if (ret > 0) {
1058 if (path->slots[0] == 0)
1059 goto insert;
1060 path->slots[0]--;
1061 }
1062
1063 leaf = path->nodes[0];
1064 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1065 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1066
1067 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1068 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1069 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1070 goto insert;
1071 }
1072
1073 extend_csum:
1074 if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1075 csum_size) {
1076 int extend_nr;
1077 u64 tmp;
1078 u32 diff;
1079
1080 tmp = sums->len - total_bytes;
1081 tmp >>= fs_info->sectorsize_bits;
1082 WARN_ON(tmp < 1);
1083 extend_nr = max_t(int, 1, tmp);
1084
1085 /*
1086 * A log tree can already have checksum items with a subset of
1087 * the checksums we are trying to log. This can happen after
1088 * doing a sequence of partial writes into prealloc extents and
1089 * fsyncs in between, with a full fsync logging a larger subrange
1090 * of an extent for which a previous fast fsync logged a smaller
1091 * subrange. And this happens in particular due to merging file
1092 * extent items when we complete an ordered extent for a range
1093 * covered by a prealloc extent - this is done at
1094 * btrfs_mark_extent_written().
1095 *
1096 * So if we try to extend the previous checksum item, which has
1097 * a range that ends at the start of the range we want to insert,
1098 * make sure we don't extend beyond the start offset of the next
1099 * checksum item. If we are at the last item in the leaf, then
1100 * forget the optimization of extending and add a new checksum
1101 * item - it is not worth the complexity of releasing the path,
1102 * getting the first key for the next leaf, repeat the btree
1103 * search, etc, because log trees are temporary anyway and it
1104 * would only save a few bytes of leaf space.
1105 */
1106 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1107 if (path->slots[0] + 1 >=
1108 btrfs_header_nritems(path->nodes[0])) {
1109 ret = find_next_csum_offset(root, path, &next_offset);
1110 if (ret < 0)
1111 goto out;
1112 found_next = 1;
1113 goto insert;
1114 }
1115
1116 ret = find_next_csum_offset(root, path, &next_offset);
1117 if (ret < 0)
1118 goto out;
1119
1120 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1121 if (tmp <= INT_MAX)
1122 extend_nr = min_t(int, extend_nr, tmp);
1123 }
1124
1125 diff = (csum_offset + extend_nr) * csum_size;
1126 diff = min(diff,
1127 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1128
1129 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1130 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1131 diff /= csum_size;
1132 diff *= csum_size;
1133
1134 btrfs_extend_item(path, diff);
1135 ret = 0;
1136 goto csum;
1137 }
1138
1139 insert:
1140 btrfs_release_path(path);
1141 csum_offset = 0;
1142 if (found_next) {
1143 u64 tmp;
1144
1145 tmp = sums->len - total_bytes;
1146 tmp >>= fs_info->sectorsize_bits;
1147 tmp = min(tmp, (next_offset - file_key.offset) >>
1148 fs_info->sectorsize_bits);
1149
1150 tmp = max_t(u64, 1, tmp);
1151 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1152 ins_size = csum_size * tmp;
1153 } else {
1154 ins_size = csum_size;
1155 }
1156 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1157 ins_size);
1158 if (ret < 0)
1159 goto out;
1160 if (WARN_ON(ret != 0))
1161 goto out;
1162 leaf = path->nodes[0];
1163 csum:
1164 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1165 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1166 btrfs_item_size_nr(leaf, path->slots[0]));
1167 item = (struct btrfs_csum_item *)((unsigned char *)item +
1168 csum_offset * csum_size);
1169 found:
1170 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1171 ins_size *= csum_size;
1172 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1173 ins_size);
1174 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1175 ins_size);
1176
1177 index += ins_size;
1178 ins_size /= csum_size;
1179 total_bytes += ins_size * fs_info->sectorsize;
1180
1181 btrfs_mark_buffer_dirty(path->nodes[0]);
1182 if (total_bytes < sums->len) {
1183 btrfs_release_path(path);
1184 cond_resched();
1185 goto again;
1186 }
1187 out:
1188 btrfs_free_path(path);
1189 return ret;
1190 }
1191
btrfs_extent_item_to_extent_map(struct btrfs_inode * inode,const struct btrfs_path * path,struct btrfs_file_extent_item * fi,const bool new_inline,struct extent_map * em)1192 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1193 const struct btrfs_path *path,
1194 struct btrfs_file_extent_item *fi,
1195 const bool new_inline,
1196 struct extent_map *em)
1197 {
1198 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1199 struct btrfs_root *root = inode->root;
1200 struct extent_buffer *leaf = path->nodes[0];
1201 const int slot = path->slots[0];
1202 struct btrfs_key key;
1203 u64 extent_start, extent_end;
1204 u64 bytenr;
1205 u8 type = btrfs_file_extent_type(leaf, fi);
1206 int compress_type = btrfs_file_extent_compression(leaf, fi);
1207
1208 btrfs_item_key_to_cpu(leaf, &key, slot);
1209 extent_start = key.offset;
1210 extent_end = btrfs_file_extent_end(path);
1211 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1212 if (type == BTRFS_FILE_EXTENT_REG ||
1213 type == BTRFS_FILE_EXTENT_PREALLOC) {
1214 em->start = extent_start;
1215 em->len = extent_end - extent_start;
1216 em->orig_start = extent_start -
1217 btrfs_file_extent_offset(leaf, fi);
1218 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1219 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1220 if (bytenr == 0) {
1221 em->block_start = EXTENT_MAP_HOLE;
1222 return;
1223 }
1224 if (compress_type != BTRFS_COMPRESS_NONE) {
1225 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1226 em->compress_type = compress_type;
1227 em->block_start = bytenr;
1228 em->block_len = em->orig_block_len;
1229 } else {
1230 bytenr += btrfs_file_extent_offset(leaf, fi);
1231 em->block_start = bytenr;
1232 em->block_len = em->len;
1233 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1234 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1235 }
1236 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1237 em->block_start = EXTENT_MAP_INLINE;
1238 em->start = extent_start;
1239 em->len = extent_end - extent_start;
1240 /*
1241 * Initialize orig_start and block_len with the same values
1242 * as in inode.c:btrfs_get_extent().
1243 */
1244 em->orig_start = EXTENT_MAP_HOLE;
1245 em->block_len = (u64)-1;
1246 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1247 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1248 em->compress_type = compress_type;
1249 }
1250 } else {
1251 btrfs_err(fs_info,
1252 "unknown file extent item type %d, inode %llu, offset %llu, "
1253 "root %llu", type, btrfs_ino(inode), extent_start,
1254 root->root_key.objectid);
1255 }
1256 }
1257
1258 /*
1259 * Returns the end offset (non inclusive) of the file extent item the given path
1260 * points to. If it points to an inline extent, the returned offset is rounded
1261 * up to the sector size.
1262 */
btrfs_file_extent_end(const struct btrfs_path * path)1263 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1264 {
1265 const struct extent_buffer *leaf = path->nodes[0];
1266 const int slot = path->slots[0];
1267 struct btrfs_file_extent_item *fi;
1268 struct btrfs_key key;
1269 u64 end;
1270
1271 btrfs_item_key_to_cpu(leaf, &key, slot);
1272 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1273 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1274
1275 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1276 end = btrfs_file_extent_ram_bytes(leaf, fi);
1277 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1278 } else {
1279 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1280 }
1281
1282 return end;
1283 }
1284