1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 #include "xattr.h"
27
28 /*
29 * Maximum number of references an extent can have in order for us to attempt to
30 * issue clone operations instead of write operations. This currently exists to
31 * avoid hitting limitations of the backreference walking code (taking a lot of
32 * time and using too much memory for extents with large number of references).
33 */
34 #define SEND_MAX_EXTENT_REFS 64
35
36 /*
37 * A fs_path is a helper to dynamically build path names with unknown size.
38 * It reallocates the internal buffer on demand.
39 * It allows fast adding of path elements on the right side (normal path) and
40 * fast adding to the left side (reversed path). A reversed path can also be
41 * unreversed if needed.
42 */
43 struct fs_path {
44 union {
45 struct {
46 char *start;
47 char *end;
48
49 char *buf;
50 unsigned short buf_len:15;
51 unsigned short reversed:1;
52 char inline_buf[];
53 };
54 /*
55 * Average path length does not exceed 200 bytes, we'll have
56 * better packing in the slab and higher chance to satisfy
57 * a allocation later during send.
58 */
59 char pad[256];
60 };
61 };
62 #define FS_PATH_INLINE_SIZE \
63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64
65
66 /* reused for each extent */
67 struct clone_root {
68 struct btrfs_root *root;
69 u64 ino;
70 u64 offset;
71
72 u64 found_refs;
73 };
74
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77
78 struct send_ctx {
79 struct file *send_filp;
80 loff_t send_off;
81 char *send_buf;
82 u32 send_size;
83 u32 send_max_size;
84 u64 total_send_size;
85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
87
88 struct btrfs_root *send_root;
89 struct btrfs_root *parent_root;
90 struct clone_root *clone_roots;
91 int clone_roots_cnt;
92
93 /* current state of the compare_tree call */
94 struct btrfs_path *left_path;
95 struct btrfs_path *right_path;
96 struct btrfs_key *cmp_key;
97
98 /*
99 * infos of the currently processed inode. In case of deleted inodes,
100 * these are the values from the deleted inode.
101 */
102 u64 cur_ino;
103 u64 cur_inode_gen;
104 int cur_inode_new;
105 int cur_inode_new_gen;
106 int cur_inode_deleted;
107 u64 cur_inode_size;
108 u64 cur_inode_mode;
109 u64 cur_inode_rdev;
110 u64 cur_inode_last_extent;
111 u64 cur_inode_next_write_offset;
112 bool ignore_cur_inode;
113
114 u64 send_progress;
115
116 struct list_head new_refs;
117 struct list_head deleted_refs;
118
119 struct radix_tree_root name_cache;
120 struct list_head name_cache_list;
121 int name_cache_size;
122
123 struct file_ra_state ra;
124
125 /*
126 * We process inodes by their increasing order, so if before an
127 * incremental send we reverse the parent/child relationship of
128 * directories such that a directory with a lower inode number was
129 * the parent of a directory with a higher inode number, and the one
130 * becoming the new parent got renamed too, we can't rename/move the
131 * directory with lower inode number when we finish processing it - we
132 * must process the directory with higher inode number first, then
133 * rename/move it and then rename/move the directory with lower inode
134 * number. Example follows.
135 *
136 * Tree state when the first send was performed:
137 *
138 * .
139 * |-- a (ino 257)
140 * |-- b (ino 258)
141 * |
142 * |
143 * |-- c (ino 259)
144 * | |-- d (ino 260)
145 * |
146 * |-- c2 (ino 261)
147 *
148 * Tree state when the second (incremental) send is performed:
149 *
150 * .
151 * |-- a (ino 257)
152 * |-- b (ino 258)
153 * |-- c2 (ino 261)
154 * |-- d2 (ino 260)
155 * |-- cc (ino 259)
156 *
157 * The sequence of steps that lead to the second state was:
158 *
159 * mv /a/b/c/d /a/b/c2/d2
160 * mv /a/b/c /a/b/c2/d2/cc
161 *
162 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 * before we move "d", which has higher inode number.
164 *
165 * So we just memorize which move/rename operations must be performed
166 * later when their respective parent is processed and moved/renamed.
167 */
168
169 /* Indexed by parent directory inode number. */
170 struct rb_root pending_dir_moves;
171
172 /*
173 * Reverse index, indexed by the inode number of a directory that
174 * is waiting for the move/rename of its immediate parent before its
175 * own move/rename can be performed.
176 */
177 struct rb_root waiting_dir_moves;
178
179 /*
180 * A directory that is going to be rm'ed might have a child directory
181 * which is in the pending directory moves index above. In this case,
182 * the directory can only be removed after the move/rename of its child
183 * is performed. Example:
184 *
185 * Parent snapshot:
186 *
187 * . (ino 256)
188 * |-- a/ (ino 257)
189 * |-- b/ (ino 258)
190 * |-- c/ (ino 259)
191 * | |-- x/ (ino 260)
192 * |
193 * |-- y/ (ino 261)
194 *
195 * Send snapshot:
196 *
197 * . (ino 256)
198 * |-- a/ (ino 257)
199 * |-- b/ (ino 258)
200 * |-- YY/ (ino 261)
201 * |-- x/ (ino 260)
202 *
203 * Sequence of steps that lead to the send snapshot:
204 * rm -f /a/b/c/foo.txt
205 * mv /a/b/y /a/b/YY
206 * mv /a/b/c/x /a/b/YY
207 * rmdir /a/b/c
208 *
209 * When the child is processed, its move/rename is delayed until its
210 * parent is processed (as explained above), but all other operations
211 * like update utimes, chown, chgrp, etc, are performed and the paths
212 * that it uses for those operations must use the orphanized name of
213 * its parent (the directory we're going to rm later), so we need to
214 * memorize that name.
215 *
216 * Indexed by the inode number of the directory to be deleted.
217 */
218 struct rb_root orphan_dirs;
219 };
220
221 struct pending_dir_move {
222 struct rb_node node;
223 struct list_head list;
224 u64 parent_ino;
225 u64 ino;
226 u64 gen;
227 struct list_head update_refs;
228 };
229
230 struct waiting_dir_move {
231 struct rb_node node;
232 u64 ino;
233 /*
234 * There might be some directory that could not be removed because it
235 * was waiting for this directory inode to be moved first. Therefore
236 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
237 */
238 u64 rmdir_ino;
239 bool orphanized;
240 };
241
242 struct orphan_dir_info {
243 struct rb_node node;
244 u64 ino;
245 u64 gen;
246 u64 last_dir_index_offset;
247 };
248
249 struct name_cache_entry {
250 struct list_head list;
251 /*
252 * radix_tree has only 32bit entries but we need to handle 64bit inums.
253 * We use the lower 32bit of the 64bit inum to store it in the tree. If
254 * more then one inum would fall into the same entry, we use radix_list
255 * to store the additional entries. radix_list is also used to store
256 * entries where two entries have the same inum but different
257 * generations.
258 */
259 struct list_head radix_list;
260 u64 ino;
261 u64 gen;
262 u64 parent_ino;
263 u64 parent_gen;
264 int ret;
265 int need_later_update;
266 int name_len;
267 char name[];
268 };
269
270 #define ADVANCE 1
271 #define ADVANCE_ONLY_NEXT -1
272
273 enum btrfs_compare_tree_result {
274 BTRFS_COMPARE_TREE_NEW,
275 BTRFS_COMPARE_TREE_DELETED,
276 BTRFS_COMPARE_TREE_CHANGED,
277 BTRFS_COMPARE_TREE_SAME,
278 };
279
280 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)281 static void inconsistent_snapshot_error(struct send_ctx *sctx,
282 enum btrfs_compare_tree_result result,
283 const char *what)
284 {
285 const char *result_string;
286
287 switch (result) {
288 case BTRFS_COMPARE_TREE_NEW:
289 result_string = "new";
290 break;
291 case BTRFS_COMPARE_TREE_DELETED:
292 result_string = "deleted";
293 break;
294 case BTRFS_COMPARE_TREE_CHANGED:
295 result_string = "updated";
296 break;
297 case BTRFS_COMPARE_TREE_SAME:
298 ASSERT(0);
299 result_string = "unchanged";
300 break;
301 default:
302 ASSERT(0);
303 result_string = "unexpected";
304 }
305
306 btrfs_err(sctx->send_root->fs_info,
307 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
308 result_string, what, sctx->cmp_key->objectid,
309 sctx->send_root->root_key.objectid,
310 (sctx->parent_root ?
311 sctx->parent_root->root_key.objectid : 0));
312 }
313
314 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
315
316 static struct waiting_dir_move *
317 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
318
319 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
320
need_send_hole(struct send_ctx * sctx)321 static int need_send_hole(struct send_ctx *sctx)
322 {
323 return (sctx->parent_root && !sctx->cur_inode_new &&
324 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
325 S_ISREG(sctx->cur_inode_mode));
326 }
327
fs_path_reset(struct fs_path * p)328 static void fs_path_reset(struct fs_path *p)
329 {
330 if (p->reversed) {
331 p->start = p->buf + p->buf_len - 1;
332 p->end = p->start;
333 *p->start = 0;
334 } else {
335 p->start = p->buf;
336 p->end = p->start;
337 *p->start = 0;
338 }
339 }
340
fs_path_alloc(void)341 static struct fs_path *fs_path_alloc(void)
342 {
343 struct fs_path *p;
344
345 p = kmalloc(sizeof(*p), GFP_KERNEL);
346 if (!p)
347 return NULL;
348 p->reversed = 0;
349 p->buf = p->inline_buf;
350 p->buf_len = FS_PATH_INLINE_SIZE;
351 fs_path_reset(p);
352 return p;
353 }
354
fs_path_alloc_reversed(void)355 static struct fs_path *fs_path_alloc_reversed(void)
356 {
357 struct fs_path *p;
358
359 p = fs_path_alloc();
360 if (!p)
361 return NULL;
362 p->reversed = 1;
363 fs_path_reset(p);
364 return p;
365 }
366
fs_path_free(struct fs_path * p)367 static void fs_path_free(struct fs_path *p)
368 {
369 if (!p)
370 return;
371 if (p->buf != p->inline_buf)
372 kfree(p->buf);
373 kfree(p);
374 }
375
fs_path_len(struct fs_path * p)376 static int fs_path_len(struct fs_path *p)
377 {
378 return p->end - p->start;
379 }
380
fs_path_ensure_buf(struct fs_path * p,int len)381 static int fs_path_ensure_buf(struct fs_path *p, int len)
382 {
383 char *tmp_buf;
384 int path_len;
385 int old_buf_len;
386
387 len++;
388
389 if (p->buf_len >= len)
390 return 0;
391
392 if (len > PATH_MAX) {
393 WARN_ON(1);
394 return -ENOMEM;
395 }
396
397 path_len = p->end - p->start;
398 old_buf_len = p->buf_len;
399
400 /*
401 * First time the inline_buf does not suffice
402 */
403 if (p->buf == p->inline_buf) {
404 tmp_buf = kmalloc(len, GFP_KERNEL);
405 if (tmp_buf)
406 memcpy(tmp_buf, p->buf, old_buf_len);
407 } else {
408 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
409 }
410 if (!tmp_buf)
411 return -ENOMEM;
412 p->buf = tmp_buf;
413 /*
414 * The real size of the buffer is bigger, this will let the fast path
415 * happen most of the time
416 */
417 p->buf_len = ksize(p->buf);
418
419 if (p->reversed) {
420 tmp_buf = p->buf + old_buf_len - path_len - 1;
421 p->end = p->buf + p->buf_len - 1;
422 p->start = p->end - path_len;
423 memmove(p->start, tmp_buf, path_len + 1);
424 } else {
425 p->start = p->buf;
426 p->end = p->start + path_len;
427 }
428 return 0;
429 }
430
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)431 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
432 char **prepared)
433 {
434 int ret;
435 int new_len;
436
437 new_len = p->end - p->start + name_len;
438 if (p->start != p->end)
439 new_len++;
440 ret = fs_path_ensure_buf(p, new_len);
441 if (ret < 0)
442 goto out;
443
444 if (p->reversed) {
445 if (p->start != p->end)
446 *--p->start = '/';
447 p->start -= name_len;
448 *prepared = p->start;
449 } else {
450 if (p->start != p->end)
451 *p->end++ = '/';
452 *prepared = p->end;
453 p->end += name_len;
454 *p->end = 0;
455 }
456
457 out:
458 return ret;
459 }
460
fs_path_add(struct fs_path * p,const char * name,int name_len)461 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
462 {
463 int ret;
464 char *prepared;
465
466 ret = fs_path_prepare_for_add(p, name_len, &prepared);
467 if (ret < 0)
468 goto out;
469 memcpy(prepared, name, name_len);
470
471 out:
472 return ret;
473 }
474
fs_path_add_path(struct fs_path * p,struct fs_path * p2)475 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
476 {
477 int ret;
478 char *prepared;
479
480 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
481 if (ret < 0)
482 goto out;
483 memcpy(prepared, p2->start, p2->end - p2->start);
484
485 out:
486 return ret;
487 }
488
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)489 static int fs_path_add_from_extent_buffer(struct fs_path *p,
490 struct extent_buffer *eb,
491 unsigned long off, int len)
492 {
493 int ret;
494 char *prepared;
495
496 ret = fs_path_prepare_for_add(p, len, &prepared);
497 if (ret < 0)
498 goto out;
499
500 read_extent_buffer(eb, prepared, off, len);
501
502 out:
503 return ret;
504 }
505
fs_path_copy(struct fs_path * p,struct fs_path * from)506 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
507 {
508 int ret;
509
510 p->reversed = from->reversed;
511 fs_path_reset(p);
512
513 ret = fs_path_add_path(p, from);
514
515 return ret;
516 }
517
518
fs_path_unreverse(struct fs_path * p)519 static void fs_path_unreverse(struct fs_path *p)
520 {
521 char *tmp;
522 int len;
523
524 if (!p->reversed)
525 return;
526
527 tmp = p->start;
528 len = p->end - p->start;
529 p->start = p->buf;
530 p->end = p->start + len;
531 memmove(p->start, tmp, len + 1);
532 p->reversed = 0;
533 }
534
alloc_path_for_send(void)535 static struct btrfs_path *alloc_path_for_send(void)
536 {
537 struct btrfs_path *path;
538
539 path = btrfs_alloc_path();
540 if (!path)
541 return NULL;
542 path->search_commit_root = 1;
543 path->skip_locking = 1;
544 path->need_commit_sem = 1;
545 return path;
546 }
547
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)548 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
549 {
550 int ret;
551 u32 pos = 0;
552
553 while (pos < len) {
554 ret = kernel_write(filp, buf + pos, len - pos, off);
555 /* TODO handle that correctly */
556 /*if (ret == -ERESTARTSYS) {
557 continue;
558 }*/
559 if (ret < 0)
560 return ret;
561 if (ret == 0) {
562 return -EIO;
563 }
564 pos += ret;
565 }
566
567 return 0;
568 }
569
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)570 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
571 {
572 struct btrfs_tlv_header *hdr;
573 int total_len = sizeof(*hdr) + len;
574 int left = sctx->send_max_size - sctx->send_size;
575
576 if (unlikely(left < total_len))
577 return -EOVERFLOW;
578
579 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
580 put_unaligned_le16(attr, &hdr->tlv_type);
581 put_unaligned_le16(len, &hdr->tlv_len);
582 memcpy(hdr + 1, data, len);
583 sctx->send_size += total_len;
584
585 return 0;
586 }
587
588 #define TLV_PUT_DEFINE_INT(bits) \
589 static int tlv_put_u##bits(struct send_ctx *sctx, \
590 u##bits attr, u##bits value) \
591 { \
592 __le##bits __tmp = cpu_to_le##bits(value); \
593 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
594 }
595
596 TLV_PUT_DEFINE_INT(64)
597
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)598 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
599 const char *str, int len)
600 {
601 if (len == -1)
602 len = strlen(str);
603 return tlv_put(sctx, attr, str, len);
604 }
605
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)606 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
607 const u8 *uuid)
608 {
609 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
610 }
611
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)612 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
613 struct extent_buffer *eb,
614 struct btrfs_timespec *ts)
615 {
616 struct btrfs_timespec bts;
617 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
618 return tlv_put(sctx, attr, &bts, sizeof(bts));
619 }
620
621
622 #define TLV_PUT(sctx, attrtype, data, attrlen) \
623 do { \
624 ret = tlv_put(sctx, attrtype, data, attrlen); \
625 if (ret < 0) \
626 goto tlv_put_failure; \
627 } while (0)
628
629 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
630 do { \
631 ret = tlv_put_u##bits(sctx, attrtype, value); \
632 if (ret < 0) \
633 goto tlv_put_failure; \
634 } while (0)
635
636 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
637 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
638 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
639 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
640 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
641 do { \
642 ret = tlv_put_string(sctx, attrtype, str, len); \
643 if (ret < 0) \
644 goto tlv_put_failure; \
645 } while (0)
646 #define TLV_PUT_PATH(sctx, attrtype, p) \
647 do { \
648 ret = tlv_put_string(sctx, attrtype, p->start, \
649 p->end - p->start); \
650 if (ret < 0) \
651 goto tlv_put_failure; \
652 } while(0)
653 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
654 do { \
655 ret = tlv_put_uuid(sctx, attrtype, uuid); \
656 if (ret < 0) \
657 goto tlv_put_failure; \
658 } while (0)
659 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
660 do { \
661 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
662 if (ret < 0) \
663 goto tlv_put_failure; \
664 } while (0)
665
send_header(struct send_ctx * sctx)666 static int send_header(struct send_ctx *sctx)
667 {
668 struct btrfs_stream_header hdr;
669
670 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
671 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
672
673 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
674 &sctx->send_off);
675 }
676
677 /*
678 * For each command/item we want to send to userspace, we call this function.
679 */
begin_cmd(struct send_ctx * sctx,int cmd)680 static int begin_cmd(struct send_ctx *sctx, int cmd)
681 {
682 struct btrfs_cmd_header *hdr;
683
684 if (WARN_ON(!sctx->send_buf))
685 return -EINVAL;
686
687 BUG_ON(sctx->send_size);
688
689 sctx->send_size += sizeof(*hdr);
690 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
691 put_unaligned_le16(cmd, &hdr->cmd);
692
693 return 0;
694 }
695
send_cmd(struct send_ctx * sctx)696 static int send_cmd(struct send_ctx *sctx)
697 {
698 int ret;
699 struct btrfs_cmd_header *hdr;
700 u32 crc;
701
702 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
703 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
704 put_unaligned_le32(0, &hdr->crc);
705
706 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
707 put_unaligned_le32(crc, &hdr->crc);
708
709 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
710 &sctx->send_off);
711
712 sctx->total_send_size += sctx->send_size;
713 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
714 sctx->send_size = 0;
715
716 return ret;
717 }
718
719 /*
720 * Sends a move instruction to user space
721 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)722 static int send_rename(struct send_ctx *sctx,
723 struct fs_path *from, struct fs_path *to)
724 {
725 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
726 int ret;
727
728 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
729
730 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
731 if (ret < 0)
732 goto out;
733
734 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
736
737 ret = send_cmd(sctx);
738
739 tlv_put_failure:
740 out:
741 return ret;
742 }
743
744 /*
745 * Sends a link instruction to user space
746 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)747 static int send_link(struct send_ctx *sctx,
748 struct fs_path *path, struct fs_path *lnk)
749 {
750 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
751 int ret;
752
753 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
754
755 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
756 if (ret < 0)
757 goto out;
758
759 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
761
762 ret = send_cmd(sctx);
763
764 tlv_put_failure:
765 out:
766 return ret;
767 }
768
769 /*
770 * Sends an unlink instruction to user space
771 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)772 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
773 {
774 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
775 int ret;
776
777 btrfs_debug(fs_info, "send_unlink %s", path->start);
778
779 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
780 if (ret < 0)
781 goto out;
782
783 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
784
785 ret = send_cmd(sctx);
786
787 tlv_put_failure:
788 out:
789 return ret;
790 }
791
792 /*
793 * Sends a rmdir instruction to user space
794 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)795 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
796 {
797 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
798 int ret;
799
800 btrfs_debug(fs_info, "send_rmdir %s", path->start);
801
802 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
803 if (ret < 0)
804 goto out;
805
806 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
807
808 ret = send_cmd(sctx);
809
810 tlv_put_failure:
811 out:
812 return ret;
813 }
814
815 /*
816 * Helper function to retrieve some fields from an inode item.
817 */
__get_inode_info(struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 * size,u64 * gen,u64 * mode,u64 * uid,u64 * gid,u64 * rdev)818 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
819 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
820 u64 *gid, u64 *rdev)
821 {
822 int ret;
823 struct btrfs_inode_item *ii;
824 struct btrfs_key key;
825
826 key.objectid = ino;
827 key.type = BTRFS_INODE_ITEM_KEY;
828 key.offset = 0;
829 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
830 if (ret) {
831 if (ret > 0)
832 ret = -ENOENT;
833 return ret;
834 }
835
836 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
837 struct btrfs_inode_item);
838 if (size)
839 *size = btrfs_inode_size(path->nodes[0], ii);
840 if (gen)
841 *gen = btrfs_inode_generation(path->nodes[0], ii);
842 if (mode)
843 *mode = btrfs_inode_mode(path->nodes[0], ii);
844 if (uid)
845 *uid = btrfs_inode_uid(path->nodes[0], ii);
846 if (gid)
847 *gid = btrfs_inode_gid(path->nodes[0], ii);
848 if (rdev)
849 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
850
851 return ret;
852 }
853
get_inode_info(struct btrfs_root * root,u64 ino,u64 * size,u64 * gen,u64 * mode,u64 * uid,u64 * gid,u64 * rdev)854 static int get_inode_info(struct btrfs_root *root,
855 u64 ino, u64 *size, u64 *gen,
856 u64 *mode, u64 *uid, u64 *gid,
857 u64 *rdev)
858 {
859 struct btrfs_path *path;
860 int ret;
861
862 path = alloc_path_for_send();
863 if (!path)
864 return -ENOMEM;
865 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
866 rdev);
867 btrfs_free_path(path);
868 return ret;
869 }
870
871 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
872 struct fs_path *p,
873 void *ctx);
874
875 /*
876 * Helper function to iterate the entries in ONE btrfs_inode_ref or
877 * btrfs_inode_extref.
878 * The iterate callback may return a non zero value to stop iteration. This can
879 * be a negative value for error codes or 1 to simply stop it.
880 *
881 * path must point to the INODE_REF or INODE_EXTREF when called.
882 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)883 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
884 struct btrfs_key *found_key, int resolve,
885 iterate_inode_ref_t iterate, void *ctx)
886 {
887 struct extent_buffer *eb = path->nodes[0];
888 struct btrfs_item *item;
889 struct btrfs_inode_ref *iref;
890 struct btrfs_inode_extref *extref;
891 struct btrfs_path *tmp_path;
892 struct fs_path *p;
893 u32 cur = 0;
894 u32 total;
895 int slot = path->slots[0];
896 u32 name_len;
897 char *start;
898 int ret = 0;
899 int num = 0;
900 int index;
901 u64 dir;
902 unsigned long name_off;
903 unsigned long elem_size;
904 unsigned long ptr;
905
906 p = fs_path_alloc_reversed();
907 if (!p)
908 return -ENOMEM;
909
910 tmp_path = alloc_path_for_send();
911 if (!tmp_path) {
912 fs_path_free(p);
913 return -ENOMEM;
914 }
915
916
917 if (found_key->type == BTRFS_INODE_REF_KEY) {
918 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
919 struct btrfs_inode_ref);
920 item = btrfs_item_nr(slot);
921 total = btrfs_item_size(eb, item);
922 elem_size = sizeof(*iref);
923 } else {
924 ptr = btrfs_item_ptr_offset(eb, slot);
925 total = btrfs_item_size_nr(eb, slot);
926 elem_size = sizeof(*extref);
927 }
928
929 while (cur < total) {
930 fs_path_reset(p);
931
932 if (found_key->type == BTRFS_INODE_REF_KEY) {
933 iref = (struct btrfs_inode_ref *)(ptr + cur);
934 name_len = btrfs_inode_ref_name_len(eb, iref);
935 name_off = (unsigned long)(iref + 1);
936 index = btrfs_inode_ref_index(eb, iref);
937 dir = found_key->offset;
938 } else {
939 extref = (struct btrfs_inode_extref *)(ptr + cur);
940 name_len = btrfs_inode_extref_name_len(eb, extref);
941 name_off = (unsigned long)&extref->name;
942 index = btrfs_inode_extref_index(eb, extref);
943 dir = btrfs_inode_extref_parent(eb, extref);
944 }
945
946 if (resolve) {
947 start = btrfs_ref_to_path(root, tmp_path, name_len,
948 name_off, eb, dir,
949 p->buf, p->buf_len);
950 if (IS_ERR(start)) {
951 ret = PTR_ERR(start);
952 goto out;
953 }
954 if (start < p->buf) {
955 /* overflow , try again with larger buffer */
956 ret = fs_path_ensure_buf(p,
957 p->buf_len + p->buf - start);
958 if (ret < 0)
959 goto out;
960 start = btrfs_ref_to_path(root, tmp_path,
961 name_len, name_off,
962 eb, dir,
963 p->buf, p->buf_len);
964 if (IS_ERR(start)) {
965 ret = PTR_ERR(start);
966 goto out;
967 }
968 BUG_ON(start < p->buf);
969 }
970 p->start = start;
971 } else {
972 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
973 name_len);
974 if (ret < 0)
975 goto out;
976 }
977
978 cur += elem_size + name_len;
979 ret = iterate(num, dir, index, p, ctx);
980 if (ret)
981 goto out;
982 num++;
983 }
984
985 out:
986 btrfs_free_path(tmp_path);
987 fs_path_free(p);
988 return ret;
989 }
990
991 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
992 const char *name, int name_len,
993 const char *data, int data_len,
994 u8 type, void *ctx);
995
996 /*
997 * Helper function to iterate the entries in ONE btrfs_dir_item.
998 * The iterate callback may return a non zero value to stop iteration. This can
999 * be a negative value for error codes or 1 to simply stop it.
1000 *
1001 * path must point to the dir item when called.
1002 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1003 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1004 iterate_dir_item_t iterate, void *ctx)
1005 {
1006 int ret = 0;
1007 struct extent_buffer *eb;
1008 struct btrfs_item *item;
1009 struct btrfs_dir_item *di;
1010 struct btrfs_key di_key;
1011 char *buf = NULL;
1012 int buf_len;
1013 u32 name_len;
1014 u32 data_len;
1015 u32 cur;
1016 u32 len;
1017 u32 total;
1018 int slot;
1019 int num;
1020 u8 type;
1021
1022 /*
1023 * Start with a small buffer (1 page). If later we end up needing more
1024 * space, which can happen for xattrs on a fs with a leaf size greater
1025 * then the page size, attempt to increase the buffer. Typically xattr
1026 * values are small.
1027 */
1028 buf_len = PATH_MAX;
1029 buf = kmalloc(buf_len, GFP_KERNEL);
1030 if (!buf) {
1031 ret = -ENOMEM;
1032 goto out;
1033 }
1034
1035 eb = path->nodes[0];
1036 slot = path->slots[0];
1037 item = btrfs_item_nr(slot);
1038 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1039 cur = 0;
1040 len = 0;
1041 total = btrfs_item_size(eb, item);
1042
1043 num = 0;
1044 while (cur < total) {
1045 name_len = btrfs_dir_name_len(eb, di);
1046 data_len = btrfs_dir_data_len(eb, di);
1047 type = btrfs_dir_type(eb, di);
1048 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1049
1050 if (type == BTRFS_FT_XATTR) {
1051 if (name_len > XATTR_NAME_MAX) {
1052 ret = -ENAMETOOLONG;
1053 goto out;
1054 }
1055 if (name_len + data_len >
1056 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1057 ret = -E2BIG;
1058 goto out;
1059 }
1060 } else {
1061 /*
1062 * Path too long
1063 */
1064 if (name_len + data_len > PATH_MAX) {
1065 ret = -ENAMETOOLONG;
1066 goto out;
1067 }
1068 }
1069
1070 if (name_len + data_len > buf_len) {
1071 buf_len = name_len + data_len;
1072 if (is_vmalloc_addr(buf)) {
1073 vfree(buf);
1074 buf = NULL;
1075 } else {
1076 char *tmp = krealloc(buf, buf_len,
1077 GFP_KERNEL | __GFP_NOWARN);
1078
1079 if (!tmp)
1080 kfree(buf);
1081 buf = tmp;
1082 }
1083 if (!buf) {
1084 buf = kvmalloc(buf_len, GFP_KERNEL);
1085 if (!buf) {
1086 ret = -ENOMEM;
1087 goto out;
1088 }
1089 }
1090 }
1091
1092 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1093 name_len + data_len);
1094
1095 len = sizeof(*di) + name_len + data_len;
1096 di = (struct btrfs_dir_item *)((char *)di + len);
1097 cur += len;
1098
1099 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1100 data_len, type, ctx);
1101 if (ret < 0)
1102 goto out;
1103 if (ret) {
1104 ret = 0;
1105 goto out;
1106 }
1107
1108 num++;
1109 }
1110
1111 out:
1112 kvfree(buf);
1113 return ret;
1114 }
1115
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1116 static int __copy_first_ref(int num, u64 dir, int index,
1117 struct fs_path *p, void *ctx)
1118 {
1119 int ret;
1120 struct fs_path *pt = ctx;
1121
1122 ret = fs_path_copy(pt, p);
1123 if (ret < 0)
1124 return ret;
1125
1126 /* we want the first only */
1127 return 1;
1128 }
1129
1130 /*
1131 * Retrieve the first path of an inode. If an inode has more then one
1132 * ref/hardlink, this is ignored.
1133 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1134 static int get_inode_path(struct btrfs_root *root,
1135 u64 ino, struct fs_path *path)
1136 {
1137 int ret;
1138 struct btrfs_key key, found_key;
1139 struct btrfs_path *p;
1140
1141 p = alloc_path_for_send();
1142 if (!p)
1143 return -ENOMEM;
1144
1145 fs_path_reset(path);
1146
1147 key.objectid = ino;
1148 key.type = BTRFS_INODE_REF_KEY;
1149 key.offset = 0;
1150
1151 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1152 if (ret < 0)
1153 goto out;
1154 if (ret) {
1155 ret = 1;
1156 goto out;
1157 }
1158 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1159 if (found_key.objectid != ino ||
1160 (found_key.type != BTRFS_INODE_REF_KEY &&
1161 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1162 ret = -ENOENT;
1163 goto out;
1164 }
1165
1166 ret = iterate_inode_ref(root, p, &found_key, 1,
1167 __copy_first_ref, path);
1168 if (ret < 0)
1169 goto out;
1170 ret = 0;
1171
1172 out:
1173 btrfs_free_path(p);
1174 return ret;
1175 }
1176
1177 struct backref_ctx {
1178 struct send_ctx *sctx;
1179
1180 /* number of total found references */
1181 u64 found;
1182
1183 /*
1184 * used for clones found in send_root. clones found behind cur_objectid
1185 * and cur_offset are not considered as allowed clones.
1186 */
1187 u64 cur_objectid;
1188 u64 cur_offset;
1189
1190 /* may be truncated in case it's the last extent in a file */
1191 u64 extent_len;
1192
1193 /* data offset in the file extent item */
1194 u64 data_offset;
1195
1196 /* Just to check for bugs in backref resolving */
1197 int found_itself;
1198 };
1199
__clone_root_cmp_bsearch(const void * key,const void * elt)1200 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1201 {
1202 u64 root = (u64)(uintptr_t)key;
1203 struct clone_root *cr = (struct clone_root *)elt;
1204
1205 if (root < cr->root->root_key.objectid)
1206 return -1;
1207 if (root > cr->root->root_key.objectid)
1208 return 1;
1209 return 0;
1210 }
1211
__clone_root_cmp_sort(const void * e1,const void * e2)1212 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1213 {
1214 struct clone_root *cr1 = (struct clone_root *)e1;
1215 struct clone_root *cr2 = (struct clone_root *)e2;
1216
1217 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1218 return -1;
1219 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1220 return 1;
1221 return 0;
1222 }
1223
1224 /*
1225 * Called for every backref that is found for the current extent.
1226 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1227 */
__iterate_backrefs(u64 ino,u64 offset,u64 root,void * ctx_)1228 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1229 {
1230 struct backref_ctx *bctx = ctx_;
1231 struct clone_root *found;
1232
1233 /* First check if the root is in the list of accepted clone sources */
1234 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1235 bctx->sctx->clone_roots_cnt,
1236 sizeof(struct clone_root),
1237 __clone_root_cmp_bsearch);
1238 if (!found)
1239 return 0;
1240
1241 if (found->root == bctx->sctx->send_root &&
1242 ino == bctx->cur_objectid &&
1243 offset == bctx->cur_offset) {
1244 bctx->found_itself = 1;
1245 }
1246
1247 /*
1248 * Make sure we don't consider clones from send_root that are
1249 * behind the current inode/offset.
1250 */
1251 if (found->root == bctx->sctx->send_root) {
1252 /*
1253 * If the source inode was not yet processed we can't issue a
1254 * clone operation, as the source extent does not exist yet at
1255 * the destination of the stream.
1256 */
1257 if (ino > bctx->cur_objectid)
1258 return 0;
1259 /*
1260 * We clone from the inode currently being sent as long as the
1261 * source extent is already processed, otherwise we could try
1262 * to clone from an extent that does not exist yet at the
1263 * destination of the stream.
1264 */
1265 if (ino == bctx->cur_objectid &&
1266 offset + bctx->extent_len >
1267 bctx->sctx->cur_inode_next_write_offset)
1268 return 0;
1269 }
1270
1271 bctx->found++;
1272 found->found_refs++;
1273 if (ino < found->ino) {
1274 found->ino = ino;
1275 found->offset = offset;
1276 } else if (found->ino == ino) {
1277 /*
1278 * same extent found more then once in the same file.
1279 */
1280 if (found->offset > offset + bctx->extent_len)
1281 found->offset = offset;
1282 }
1283
1284 return 0;
1285 }
1286
1287 /*
1288 * Given an inode, offset and extent item, it finds a good clone for a clone
1289 * instruction. Returns -ENOENT when none could be found. The function makes
1290 * sure that the returned clone is usable at the point where sending is at the
1291 * moment. This means, that no clones are accepted which lie behind the current
1292 * inode+offset.
1293 *
1294 * path must point to the extent item when called.
1295 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1296 static int find_extent_clone(struct send_ctx *sctx,
1297 struct btrfs_path *path,
1298 u64 ino, u64 data_offset,
1299 u64 ino_size,
1300 struct clone_root **found)
1301 {
1302 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1303 int ret;
1304 int extent_type;
1305 u64 logical;
1306 u64 disk_byte;
1307 u64 num_bytes;
1308 u64 extent_item_pos;
1309 u64 flags = 0;
1310 struct btrfs_file_extent_item *fi;
1311 struct extent_buffer *eb = path->nodes[0];
1312 struct backref_ctx *backref_ctx = NULL;
1313 struct clone_root *cur_clone_root;
1314 struct btrfs_key found_key;
1315 struct btrfs_path *tmp_path;
1316 struct btrfs_extent_item *ei;
1317 int compressed;
1318 u32 i;
1319
1320 tmp_path = alloc_path_for_send();
1321 if (!tmp_path)
1322 return -ENOMEM;
1323
1324 /* We only use this path under the commit sem */
1325 tmp_path->need_commit_sem = 0;
1326
1327 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1328 if (!backref_ctx) {
1329 ret = -ENOMEM;
1330 goto out;
1331 }
1332
1333 if (data_offset >= ino_size) {
1334 /*
1335 * There may be extents that lie behind the file's size.
1336 * I at least had this in combination with snapshotting while
1337 * writing large files.
1338 */
1339 ret = 0;
1340 goto out;
1341 }
1342
1343 fi = btrfs_item_ptr(eb, path->slots[0],
1344 struct btrfs_file_extent_item);
1345 extent_type = btrfs_file_extent_type(eb, fi);
1346 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1347 ret = -ENOENT;
1348 goto out;
1349 }
1350 compressed = btrfs_file_extent_compression(eb, fi);
1351
1352 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1353 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1354 if (disk_byte == 0) {
1355 ret = -ENOENT;
1356 goto out;
1357 }
1358 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1359
1360 down_read(&fs_info->commit_root_sem);
1361 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1362 &found_key, &flags);
1363 up_read(&fs_info->commit_root_sem);
1364
1365 if (ret < 0)
1366 goto out;
1367 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1368 ret = -EIO;
1369 goto out;
1370 }
1371
1372 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1373 struct btrfs_extent_item);
1374 /*
1375 * Backreference walking (iterate_extent_inodes() below) is currently
1376 * too expensive when an extent has a large number of references, both
1377 * in time spent and used memory. So for now just fallback to write
1378 * operations instead of clone operations when an extent has more than
1379 * a certain amount of references.
1380 */
1381 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1382 ret = -ENOENT;
1383 goto out;
1384 }
1385 btrfs_release_path(tmp_path);
1386
1387 /*
1388 * Setup the clone roots.
1389 */
1390 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1391 cur_clone_root = sctx->clone_roots + i;
1392 cur_clone_root->ino = (u64)-1;
1393 cur_clone_root->offset = 0;
1394 cur_clone_root->found_refs = 0;
1395 }
1396
1397 backref_ctx->sctx = sctx;
1398 backref_ctx->found = 0;
1399 backref_ctx->cur_objectid = ino;
1400 backref_ctx->cur_offset = data_offset;
1401 backref_ctx->found_itself = 0;
1402 backref_ctx->extent_len = num_bytes;
1403 /*
1404 * For non-compressed extents iterate_extent_inodes() gives us extent
1405 * offsets that already take into account the data offset, but not for
1406 * compressed extents, since the offset is logical and not relative to
1407 * the physical extent locations. We must take this into account to
1408 * avoid sending clone offsets that go beyond the source file's size,
1409 * which would result in the clone ioctl failing with -EINVAL on the
1410 * receiving end.
1411 */
1412 if (compressed == BTRFS_COMPRESS_NONE)
1413 backref_ctx->data_offset = 0;
1414 else
1415 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1416
1417 /*
1418 * The last extent of a file may be too large due to page alignment.
1419 * We need to adjust extent_len in this case so that the checks in
1420 * __iterate_backrefs work.
1421 */
1422 if (data_offset + num_bytes >= ino_size)
1423 backref_ctx->extent_len = ino_size - data_offset;
1424
1425 /*
1426 * Now collect all backrefs.
1427 */
1428 if (compressed == BTRFS_COMPRESS_NONE)
1429 extent_item_pos = logical - found_key.objectid;
1430 else
1431 extent_item_pos = 0;
1432 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1433 extent_item_pos, 1, __iterate_backrefs,
1434 backref_ctx, false);
1435
1436 if (ret < 0)
1437 goto out;
1438
1439 if (!backref_ctx->found_itself) {
1440 /* found a bug in backref code? */
1441 ret = -EIO;
1442 btrfs_err(fs_info,
1443 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1444 ino, data_offset, disk_byte, found_key.objectid);
1445 goto out;
1446 }
1447
1448 btrfs_debug(fs_info,
1449 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1450 data_offset, ino, num_bytes, logical);
1451
1452 if (!backref_ctx->found)
1453 btrfs_debug(fs_info, "no clones found");
1454
1455 cur_clone_root = NULL;
1456 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1457 if (sctx->clone_roots[i].found_refs) {
1458 if (!cur_clone_root)
1459 cur_clone_root = sctx->clone_roots + i;
1460 else if (sctx->clone_roots[i].root == sctx->send_root)
1461 /* prefer clones from send_root over others */
1462 cur_clone_root = sctx->clone_roots + i;
1463 }
1464
1465 }
1466
1467 if (cur_clone_root) {
1468 *found = cur_clone_root;
1469 ret = 0;
1470 } else {
1471 ret = -ENOENT;
1472 }
1473
1474 out:
1475 btrfs_free_path(tmp_path);
1476 kfree(backref_ctx);
1477 return ret;
1478 }
1479
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1480 static int read_symlink(struct btrfs_root *root,
1481 u64 ino,
1482 struct fs_path *dest)
1483 {
1484 int ret;
1485 struct btrfs_path *path;
1486 struct btrfs_key key;
1487 struct btrfs_file_extent_item *ei;
1488 u8 type;
1489 u8 compression;
1490 unsigned long off;
1491 int len;
1492
1493 path = alloc_path_for_send();
1494 if (!path)
1495 return -ENOMEM;
1496
1497 key.objectid = ino;
1498 key.type = BTRFS_EXTENT_DATA_KEY;
1499 key.offset = 0;
1500 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1501 if (ret < 0)
1502 goto out;
1503 if (ret) {
1504 /*
1505 * An empty symlink inode. Can happen in rare error paths when
1506 * creating a symlink (transaction committed before the inode
1507 * eviction handler removed the symlink inode items and a crash
1508 * happened in between or the subvol was snapshoted in between).
1509 * Print an informative message to dmesg/syslog so that the user
1510 * can delete the symlink.
1511 */
1512 btrfs_err(root->fs_info,
1513 "Found empty symlink inode %llu at root %llu",
1514 ino, root->root_key.objectid);
1515 ret = -EIO;
1516 goto out;
1517 }
1518
1519 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1520 struct btrfs_file_extent_item);
1521 type = btrfs_file_extent_type(path->nodes[0], ei);
1522 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1523 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1524 BUG_ON(compression);
1525
1526 off = btrfs_file_extent_inline_start(ei);
1527 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1528
1529 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1530
1531 out:
1532 btrfs_free_path(path);
1533 return ret;
1534 }
1535
1536 /*
1537 * Helper function to generate a file name that is unique in the root of
1538 * send_root and parent_root. This is used to generate names for orphan inodes.
1539 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1540 static int gen_unique_name(struct send_ctx *sctx,
1541 u64 ino, u64 gen,
1542 struct fs_path *dest)
1543 {
1544 int ret = 0;
1545 struct btrfs_path *path;
1546 struct btrfs_dir_item *di;
1547 char tmp[64];
1548 int len;
1549 u64 idx = 0;
1550
1551 path = alloc_path_for_send();
1552 if (!path)
1553 return -ENOMEM;
1554
1555 while (1) {
1556 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1557 ino, gen, idx);
1558 ASSERT(len < sizeof(tmp));
1559
1560 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1561 path, BTRFS_FIRST_FREE_OBJECTID,
1562 tmp, strlen(tmp), 0);
1563 btrfs_release_path(path);
1564 if (IS_ERR(di)) {
1565 ret = PTR_ERR(di);
1566 goto out;
1567 }
1568 if (di) {
1569 /* not unique, try again */
1570 idx++;
1571 continue;
1572 }
1573
1574 if (!sctx->parent_root) {
1575 /* unique */
1576 ret = 0;
1577 break;
1578 }
1579
1580 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1581 path, BTRFS_FIRST_FREE_OBJECTID,
1582 tmp, strlen(tmp), 0);
1583 btrfs_release_path(path);
1584 if (IS_ERR(di)) {
1585 ret = PTR_ERR(di);
1586 goto out;
1587 }
1588 if (di) {
1589 /* not unique, try again */
1590 idx++;
1591 continue;
1592 }
1593 /* unique */
1594 break;
1595 }
1596
1597 ret = fs_path_add(dest, tmp, strlen(tmp));
1598
1599 out:
1600 btrfs_free_path(path);
1601 return ret;
1602 }
1603
1604 enum inode_state {
1605 inode_state_no_change,
1606 inode_state_will_create,
1607 inode_state_did_create,
1608 inode_state_will_delete,
1609 inode_state_did_delete,
1610 };
1611
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen)1612 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1613 {
1614 int ret;
1615 int left_ret;
1616 int right_ret;
1617 u64 left_gen;
1618 u64 right_gen;
1619
1620 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1621 NULL, NULL);
1622 if (ret < 0 && ret != -ENOENT)
1623 goto out;
1624 left_ret = ret;
1625
1626 if (!sctx->parent_root) {
1627 right_ret = -ENOENT;
1628 } else {
1629 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1630 NULL, NULL, NULL, NULL);
1631 if (ret < 0 && ret != -ENOENT)
1632 goto out;
1633 right_ret = ret;
1634 }
1635
1636 if (!left_ret && !right_ret) {
1637 if (left_gen == gen && right_gen == gen) {
1638 ret = inode_state_no_change;
1639 } else if (left_gen == gen) {
1640 if (ino < sctx->send_progress)
1641 ret = inode_state_did_create;
1642 else
1643 ret = inode_state_will_create;
1644 } else if (right_gen == gen) {
1645 if (ino < sctx->send_progress)
1646 ret = inode_state_did_delete;
1647 else
1648 ret = inode_state_will_delete;
1649 } else {
1650 ret = -ENOENT;
1651 }
1652 } else if (!left_ret) {
1653 if (left_gen == gen) {
1654 if (ino < sctx->send_progress)
1655 ret = inode_state_did_create;
1656 else
1657 ret = inode_state_will_create;
1658 } else {
1659 ret = -ENOENT;
1660 }
1661 } else if (!right_ret) {
1662 if (right_gen == gen) {
1663 if (ino < sctx->send_progress)
1664 ret = inode_state_did_delete;
1665 else
1666 ret = inode_state_will_delete;
1667 } else {
1668 ret = -ENOENT;
1669 }
1670 } else {
1671 ret = -ENOENT;
1672 }
1673
1674 out:
1675 return ret;
1676 }
1677
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen)1678 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1679 {
1680 int ret;
1681
1682 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1683 return 1;
1684
1685 ret = get_cur_inode_state(sctx, ino, gen);
1686 if (ret < 0)
1687 goto out;
1688
1689 if (ret == inode_state_no_change ||
1690 ret == inode_state_did_create ||
1691 ret == inode_state_will_delete)
1692 ret = 1;
1693 else
1694 ret = 0;
1695
1696 out:
1697 return ret;
1698 }
1699
1700 /*
1701 * Helper function to lookup a dir item in a dir.
1702 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode,u8 * found_type)1703 static int lookup_dir_item_inode(struct btrfs_root *root,
1704 u64 dir, const char *name, int name_len,
1705 u64 *found_inode,
1706 u8 *found_type)
1707 {
1708 int ret = 0;
1709 struct btrfs_dir_item *di;
1710 struct btrfs_key key;
1711 struct btrfs_path *path;
1712
1713 path = alloc_path_for_send();
1714 if (!path)
1715 return -ENOMEM;
1716
1717 di = btrfs_lookup_dir_item(NULL, root, path,
1718 dir, name, name_len, 0);
1719 if (IS_ERR_OR_NULL(di)) {
1720 ret = di ? PTR_ERR(di) : -ENOENT;
1721 goto out;
1722 }
1723 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1724 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1725 ret = -ENOENT;
1726 goto out;
1727 }
1728 *found_inode = key.objectid;
1729 *found_type = btrfs_dir_type(path->nodes[0], di);
1730
1731 out:
1732 btrfs_free_path(path);
1733 return ret;
1734 }
1735
1736 /*
1737 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1738 * generation of the parent dir and the name of the dir entry.
1739 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)1740 static int get_first_ref(struct btrfs_root *root, u64 ino,
1741 u64 *dir, u64 *dir_gen, struct fs_path *name)
1742 {
1743 int ret;
1744 struct btrfs_key key;
1745 struct btrfs_key found_key;
1746 struct btrfs_path *path;
1747 int len;
1748 u64 parent_dir;
1749
1750 path = alloc_path_for_send();
1751 if (!path)
1752 return -ENOMEM;
1753
1754 key.objectid = ino;
1755 key.type = BTRFS_INODE_REF_KEY;
1756 key.offset = 0;
1757
1758 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1759 if (ret < 0)
1760 goto out;
1761 if (!ret)
1762 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1763 path->slots[0]);
1764 if (ret || found_key.objectid != ino ||
1765 (found_key.type != BTRFS_INODE_REF_KEY &&
1766 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1767 ret = -ENOENT;
1768 goto out;
1769 }
1770
1771 if (found_key.type == BTRFS_INODE_REF_KEY) {
1772 struct btrfs_inode_ref *iref;
1773 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1774 struct btrfs_inode_ref);
1775 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1776 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1777 (unsigned long)(iref + 1),
1778 len);
1779 parent_dir = found_key.offset;
1780 } else {
1781 struct btrfs_inode_extref *extref;
1782 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1783 struct btrfs_inode_extref);
1784 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1785 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1786 (unsigned long)&extref->name, len);
1787 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1788 }
1789 if (ret < 0)
1790 goto out;
1791 btrfs_release_path(path);
1792
1793 if (dir_gen) {
1794 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1795 NULL, NULL, NULL);
1796 if (ret < 0)
1797 goto out;
1798 }
1799
1800 *dir = parent_dir;
1801
1802 out:
1803 btrfs_free_path(path);
1804 return ret;
1805 }
1806
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)1807 static int is_first_ref(struct btrfs_root *root,
1808 u64 ino, u64 dir,
1809 const char *name, int name_len)
1810 {
1811 int ret;
1812 struct fs_path *tmp_name;
1813 u64 tmp_dir;
1814
1815 tmp_name = fs_path_alloc();
1816 if (!tmp_name)
1817 return -ENOMEM;
1818
1819 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1820 if (ret < 0)
1821 goto out;
1822
1823 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1824 ret = 0;
1825 goto out;
1826 }
1827
1828 ret = !memcmp(tmp_name->start, name, name_len);
1829
1830 out:
1831 fs_path_free(tmp_name);
1832 return ret;
1833 }
1834
1835 /*
1836 * Used by process_recorded_refs to determine if a new ref would overwrite an
1837 * already existing ref. In case it detects an overwrite, it returns the
1838 * inode/gen in who_ino/who_gen.
1839 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1840 * to make sure later references to the overwritten inode are possible.
1841 * Orphanizing is however only required for the first ref of an inode.
1842 * process_recorded_refs does an additional is_first_ref check to see if
1843 * orphanizing is really required.
1844 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)1845 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1846 const char *name, int name_len,
1847 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1848 {
1849 int ret = 0;
1850 u64 gen;
1851 u64 other_inode = 0;
1852 u8 other_type = 0;
1853
1854 if (!sctx->parent_root)
1855 goto out;
1856
1857 ret = is_inode_existent(sctx, dir, dir_gen);
1858 if (ret <= 0)
1859 goto out;
1860
1861 /*
1862 * If we have a parent root we need to verify that the parent dir was
1863 * not deleted and then re-created, if it was then we have no overwrite
1864 * and we can just unlink this entry.
1865 */
1866 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1867 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1868 NULL, NULL, NULL);
1869 if (ret < 0 && ret != -ENOENT)
1870 goto out;
1871 if (ret) {
1872 ret = 0;
1873 goto out;
1874 }
1875 if (gen != dir_gen)
1876 goto out;
1877 }
1878
1879 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1880 &other_inode, &other_type);
1881 if (ret < 0 && ret != -ENOENT)
1882 goto out;
1883 if (ret) {
1884 ret = 0;
1885 goto out;
1886 }
1887
1888 /*
1889 * Check if the overwritten ref was already processed. If yes, the ref
1890 * was already unlinked/moved, so we can safely assume that we will not
1891 * overwrite anything at this point in time.
1892 */
1893 if (other_inode > sctx->send_progress ||
1894 is_waiting_for_move(sctx, other_inode)) {
1895 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1896 who_gen, who_mode, NULL, NULL, NULL);
1897 if (ret < 0)
1898 goto out;
1899
1900 ret = 1;
1901 *who_ino = other_inode;
1902 } else {
1903 ret = 0;
1904 }
1905
1906 out:
1907 return ret;
1908 }
1909
1910 /*
1911 * Checks if the ref was overwritten by an already processed inode. This is
1912 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1913 * thus the orphan name needs be used.
1914 * process_recorded_refs also uses it to avoid unlinking of refs that were
1915 * overwritten.
1916 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)1917 static int did_overwrite_ref(struct send_ctx *sctx,
1918 u64 dir, u64 dir_gen,
1919 u64 ino, u64 ino_gen,
1920 const char *name, int name_len)
1921 {
1922 int ret = 0;
1923 u64 gen;
1924 u64 ow_inode;
1925 u8 other_type;
1926
1927 if (!sctx->parent_root)
1928 goto out;
1929
1930 ret = is_inode_existent(sctx, dir, dir_gen);
1931 if (ret <= 0)
1932 goto out;
1933
1934 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1935 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1936 NULL, NULL, NULL);
1937 if (ret < 0 && ret != -ENOENT)
1938 goto out;
1939 if (ret) {
1940 ret = 0;
1941 goto out;
1942 }
1943 if (gen != dir_gen)
1944 goto out;
1945 }
1946
1947 /* check if the ref was overwritten by another ref */
1948 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1949 &ow_inode, &other_type);
1950 if (ret < 0 && ret != -ENOENT)
1951 goto out;
1952 if (ret) {
1953 /* was never and will never be overwritten */
1954 ret = 0;
1955 goto out;
1956 }
1957
1958 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1959 NULL, NULL);
1960 if (ret < 0)
1961 goto out;
1962
1963 if (ow_inode == ino && gen == ino_gen) {
1964 ret = 0;
1965 goto out;
1966 }
1967
1968 /*
1969 * We know that it is or will be overwritten. Check this now.
1970 * The current inode being processed might have been the one that caused
1971 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1972 * the current inode being processed.
1973 */
1974 if ((ow_inode < sctx->send_progress) ||
1975 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1976 gen == sctx->cur_inode_gen))
1977 ret = 1;
1978 else
1979 ret = 0;
1980
1981 out:
1982 return ret;
1983 }
1984
1985 /*
1986 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1987 * that got overwritten. This is used by process_recorded_refs to determine
1988 * if it has to use the path as returned by get_cur_path or the orphan name.
1989 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)1990 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1991 {
1992 int ret = 0;
1993 struct fs_path *name = NULL;
1994 u64 dir;
1995 u64 dir_gen;
1996
1997 if (!sctx->parent_root)
1998 goto out;
1999
2000 name = fs_path_alloc();
2001 if (!name)
2002 return -ENOMEM;
2003
2004 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2005 if (ret < 0)
2006 goto out;
2007
2008 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2009 name->start, fs_path_len(name));
2010
2011 out:
2012 fs_path_free(name);
2013 return ret;
2014 }
2015
2016 /*
2017 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2018 * so we need to do some special handling in case we have clashes. This function
2019 * takes care of this with the help of name_cache_entry::radix_list.
2020 * In case of error, nce is kfreed.
2021 */
name_cache_insert(struct send_ctx * sctx,struct name_cache_entry * nce)2022 static int name_cache_insert(struct send_ctx *sctx,
2023 struct name_cache_entry *nce)
2024 {
2025 int ret = 0;
2026 struct list_head *nce_head;
2027
2028 nce_head = radix_tree_lookup(&sctx->name_cache,
2029 (unsigned long)nce->ino);
2030 if (!nce_head) {
2031 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2032 if (!nce_head) {
2033 kfree(nce);
2034 return -ENOMEM;
2035 }
2036 INIT_LIST_HEAD(nce_head);
2037
2038 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2039 if (ret < 0) {
2040 kfree(nce_head);
2041 kfree(nce);
2042 return ret;
2043 }
2044 }
2045 list_add_tail(&nce->radix_list, nce_head);
2046 list_add_tail(&nce->list, &sctx->name_cache_list);
2047 sctx->name_cache_size++;
2048
2049 return ret;
2050 }
2051
name_cache_delete(struct send_ctx * sctx,struct name_cache_entry * nce)2052 static void name_cache_delete(struct send_ctx *sctx,
2053 struct name_cache_entry *nce)
2054 {
2055 struct list_head *nce_head;
2056
2057 nce_head = radix_tree_lookup(&sctx->name_cache,
2058 (unsigned long)nce->ino);
2059 if (!nce_head) {
2060 btrfs_err(sctx->send_root->fs_info,
2061 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2062 nce->ino, sctx->name_cache_size);
2063 }
2064
2065 list_del(&nce->radix_list);
2066 list_del(&nce->list);
2067 sctx->name_cache_size--;
2068
2069 /*
2070 * We may not get to the final release of nce_head if the lookup fails
2071 */
2072 if (nce_head && list_empty(nce_head)) {
2073 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2074 kfree(nce_head);
2075 }
2076 }
2077
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2078 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2079 u64 ino, u64 gen)
2080 {
2081 struct list_head *nce_head;
2082 struct name_cache_entry *cur;
2083
2084 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2085 if (!nce_head)
2086 return NULL;
2087
2088 list_for_each_entry(cur, nce_head, radix_list) {
2089 if (cur->ino == ino && cur->gen == gen)
2090 return cur;
2091 }
2092 return NULL;
2093 }
2094
2095 /*
2096 * Removes the entry from the list and adds it back to the end. This marks the
2097 * entry as recently used so that name_cache_clean_unused does not remove it.
2098 */
name_cache_used(struct send_ctx * sctx,struct name_cache_entry * nce)2099 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2100 {
2101 list_del(&nce->list);
2102 list_add_tail(&nce->list, &sctx->name_cache_list);
2103 }
2104
2105 /*
2106 * Remove some entries from the beginning of name_cache_list.
2107 */
name_cache_clean_unused(struct send_ctx * sctx)2108 static void name_cache_clean_unused(struct send_ctx *sctx)
2109 {
2110 struct name_cache_entry *nce;
2111
2112 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2113 return;
2114
2115 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2116 nce = list_entry(sctx->name_cache_list.next,
2117 struct name_cache_entry, list);
2118 name_cache_delete(sctx, nce);
2119 kfree(nce);
2120 }
2121 }
2122
name_cache_free(struct send_ctx * sctx)2123 static void name_cache_free(struct send_ctx *sctx)
2124 {
2125 struct name_cache_entry *nce;
2126
2127 while (!list_empty(&sctx->name_cache_list)) {
2128 nce = list_entry(sctx->name_cache_list.next,
2129 struct name_cache_entry, list);
2130 name_cache_delete(sctx, nce);
2131 kfree(nce);
2132 }
2133 }
2134
2135 /*
2136 * Used by get_cur_path for each ref up to the root.
2137 * Returns 0 if it succeeded.
2138 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2139 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2140 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2141 * Returns <0 in case of error.
2142 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2143 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2144 u64 ino, u64 gen,
2145 u64 *parent_ino,
2146 u64 *parent_gen,
2147 struct fs_path *dest)
2148 {
2149 int ret;
2150 int nce_ret;
2151 struct name_cache_entry *nce = NULL;
2152
2153 /*
2154 * First check if we already did a call to this function with the same
2155 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2156 * return the cached result.
2157 */
2158 nce = name_cache_search(sctx, ino, gen);
2159 if (nce) {
2160 if (ino < sctx->send_progress && nce->need_later_update) {
2161 name_cache_delete(sctx, nce);
2162 kfree(nce);
2163 nce = NULL;
2164 } else {
2165 name_cache_used(sctx, nce);
2166 *parent_ino = nce->parent_ino;
2167 *parent_gen = nce->parent_gen;
2168 ret = fs_path_add(dest, nce->name, nce->name_len);
2169 if (ret < 0)
2170 goto out;
2171 ret = nce->ret;
2172 goto out;
2173 }
2174 }
2175
2176 /*
2177 * If the inode is not existent yet, add the orphan name and return 1.
2178 * This should only happen for the parent dir that we determine in
2179 * __record_new_ref
2180 */
2181 ret = is_inode_existent(sctx, ino, gen);
2182 if (ret < 0)
2183 goto out;
2184
2185 if (!ret) {
2186 ret = gen_unique_name(sctx, ino, gen, dest);
2187 if (ret < 0)
2188 goto out;
2189 ret = 1;
2190 goto out_cache;
2191 }
2192
2193 /*
2194 * Depending on whether the inode was already processed or not, use
2195 * send_root or parent_root for ref lookup.
2196 */
2197 if (ino < sctx->send_progress)
2198 ret = get_first_ref(sctx->send_root, ino,
2199 parent_ino, parent_gen, dest);
2200 else
2201 ret = get_first_ref(sctx->parent_root, ino,
2202 parent_ino, parent_gen, dest);
2203 if (ret < 0)
2204 goto out;
2205
2206 /*
2207 * Check if the ref was overwritten by an inode's ref that was processed
2208 * earlier. If yes, treat as orphan and return 1.
2209 */
2210 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2211 dest->start, dest->end - dest->start);
2212 if (ret < 0)
2213 goto out;
2214 if (ret) {
2215 fs_path_reset(dest);
2216 ret = gen_unique_name(sctx, ino, gen, dest);
2217 if (ret < 0)
2218 goto out;
2219 ret = 1;
2220 }
2221
2222 out_cache:
2223 /*
2224 * Store the result of the lookup in the name cache.
2225 */
2226 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2227 if (!nce) {
2228 ret = -ENOMEM;
2229 goto out;
2230 }
2231
2232 nce->ino = ino;
2233 nce->gen = gen;
2234 nce->parent_ino = *parent_ino;
2235 nce->parent_gen = *parent_gen;
2236 nce->name_len = fs_path_len(dest);
2237 nce->ret = ret;
2238 strcpy(nce->name, dest->start);
2239
2240 if (ino < sctx->send_progress)
2241 nce->need_later_update = 0;
2242 else
2243 nce->need_later_update = 1;
2244
2245 nce_ret = name_cache_insert(sctx, nce);
2246 if (nce_ret < 0)
2247 ret = nce_ret;
2248 name_cache_clean_unused(sctx);
2249
2250 out:
2251 return ret;
2252 }
2253
2254 /*
2255 * Magic happens here. This function returns the first ref to an inode as it
2256 * would look like while receiving the stream at this point in time.
2257 * We walk the path up to the root. For every inode in between, we check if it
2258 * was already processed/sent. If yes, we continue with the parent as found
2259 * in send_root. If not, we continue with the parent as found in parent_root.
2260 * If we encounter an inode that was deleted at this point in time, we use the
2261 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2262 * that were not created yet and overwritten inodes/refs.
2263 *
2264 * When do we have orphan inodes:
2265 * 1. When an inode is freshly created and thus no valid refs are available yet
2266 * 2. When a directory lost all it's refs (deleted) but still has dir items
2267 * inside which were not processed yet (pending for move/delete). If anyone
2268 * tried to get the path to the dir items, it would get a path inside that
2269 * orphan directory.
2270 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2271 * of an unprocessed inode. If in that case the first ref would be
2272 * overwritten, the overwritten inode gets "orphanized". Later when we
2273 * process this overwritten inode, it is restored at a new place by moving
2274 * the orphan inode.
2275 *
2276 * sctx->send_progress tells this function at which point in time receiving
2277 * would be.
2278 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2279 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2280 struct fs_path *dest)
2281 {
2282 int ret = 0;
2283 struct fs_path *name = NULL;
2284 u64 parent_inode = 0;
2285 u64 parent_gen = 0;
2286 int stop = 0;
2287
2288 name = fs_path_alloc();
2289 if (!name) {
2290 ret = -ENOMEM;
2291 goto out;
2292 }
2293
2294 dest->reversed = 1;
2295 fs_path_reset(dest);
2296
2297 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2298 struct waiting_dir_move *wdm;
2299
2300 fs_path_reset(name);
2301
2302 if (is_waiting_for_rm(sctx, ino)) {
2303 ret = gen_unique_name(sctx, ino, gen, name);
2304 if (ret < 0)
2305 goto out;
2306 ret = fs_path_add_path(dest, name);
2307 break;
2308 }
2309
2310 wdm = get_waiting_dir_move(sctx, ino);
2311 if (wdm && wdm->orphanized) {
2312 ret = gen_unique_name(sctx, ino, gen, name);
2313 stop = 1;
2314 } else if (wdm) {
2315 ret = get_first_ref(sctx->parent_root, ino,
2316 &parent_inode, &parent_gen, name);
2317 } else {
2318 ret = __get_cur_name_and_parent(sctx, ino, gen,
2319 &parent_inode,
2320 &parent_gen, name);
2321 if (ret)
2322 stop = 1;
2323 }
2324
2325 if (ret < 0)
2326 goto out;
2327
2328 ret = fs_path_add_path(dest, name);
2329 if (ret < 0)
2330 goto out;
2331
2332 ino = parent_inode;
2333 gen = parent_gen;
2334 }
2335
2336 out:
2337 fs_path_free(name);
2338 if (!ret)
2339 fs_path_unreverse(dest);
2340 return ret;
2341 }
2342
2343 /*
2344 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2345 */
send_subvol_begin(struct send_ctx * sctx)2346 static int send_subvol_begin(struct send_ctx *sctx)
2347 {
2348 int ret;
2349 struct btrfs_root *send_root = sctx->send_root;
2350 struct btrfs_root *parent_root = sctx->parent_root;
2351 struct btrfs_path *path;
2352 struct btrfs_key key;
2353 struct btrfs_root_ref *ref;
2354 struct extent_buffer *leaf;
2355 char *name = NULL;
2356 int namelen;
2357
2358 path = btrfs_alloc_path();
2359 if (!path)
2360 return -ENOMEM;
2361
2362 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2363 if (!name) {
2364 btrfs_free_path(path);
2365 return -ENOMEM;
2366 }
2367
2368 key.objectid = send_root->root_key.objectid;
2369 key.type = BTRFS_ROOT_BACKREF_KEY;
2370 key.offset = 0;
2371
2372 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2373 &key, path, 1, 0);
2374 if (ret < 0)
2375 goto out;
2376 if (ret) {
2377 ret = -ENOENT;
2378 goto out;
2379 }
2380
2381 leaf = path->nodes[0];
2382 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2383 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2384 key.objectid != send_root->root_key.objectid) {
2385 ret = -ENOENT;
2386 goto out;
2387 }
2388 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2389 namelen = btrfs_root_ref_name_len(leaf, ref);
2390 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2391 btrfs_release_path(path);
2392
2393 if (parent_root) {
2394 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2395 if (ret < 0)
2396 goto out;
2397 } else {
2398 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2399 if (ret < 0)
2400 goto out;
2401 }
2402
2403 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2404
2405 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2406 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2407 sctx->send_root->root_item.received_uuid);
2408 else
2409 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2410 sctx->send_root->root_item.uuid);
2411
2412 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2413 le64_to_cpu(sctx->send_root->root_item.ctransid));
2414 if (parent_root) {
2415 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2416 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2417 parent_root->root_item.received_uuid);
2418 else
2419 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2420 parent_root->root_item.uuid);
2421 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2422 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2423 }
2424
2425 ret = send_cmd(sctx);
2426
2427 tlv_put_failure:
2428 out:
2429 btrfs_free_path(path);
2430 kfree(name);
2431 return ret;
2432 }
2433
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2434 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2435 {
2436 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2437 int ret = 0;
2438 struct fs_path *p;
2439
2440 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2441
2442 p = fs_path_alloc();
2443 if (!p)
2444 return -ENOMEM;
2445
2446 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2447 if (ret < 0)
2448 goto out;
2449
2450 ret = get_cur_path(sctx, ino, gen, p);
2451 if (ret < 0)
2452 goto out;
2453 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2454 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2455
2456 ret = send_cmd(sctx);
2457
2458 tlv_put_failure:
2459 out:
2460 fs_path_free(p);
2461 return ret;
2462 }
2463
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2464 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2465 {
2466 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2467 int ret = 0;
2468 struct fs_path *p;
2469
2470 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2471
2472 p = fs_path_alloc();
2473 if (!p)
2474 return -ENOMEM;
2475
2476 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2477 if (ret < 0)
2478 goto out;
2479
2480 ret = get_cur_path(sctx, ino, gen, p);
2481 if (ret < 0)
2482 goto out;
2483 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2484 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2485
2486 ret = send_cmd(sctx);
2487
2488 tlv_put_failure:
2489 out:
2490 fs_path_free(p);
2491 return ret;
2492 }
2493
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2494 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2495 {
2496 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2497 int ret = 0;
2498 struct fs_path *p;
2499
2500 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2501 ino, uid, gid);
2502
2503 p = fs_path_alloc();
2504 if (!p)
2505 return -ENOMEM;
2506
2507 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2508 if (ret < 0)
2509 goto out;
2510
2511 ret = get_cur_path(sctx, ino, gen, p);
2512 if (ret < 0)
2513 goto out;
2514 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2515 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2516 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2517
2518 ret = send_cmd(sctx);
2519
2520 tlv_put_failure:
2521 out:
2522 fs_path_free(p);
2523 return ret;
2524 }
2525
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2526 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2527 {
2528 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2529 int ret = 0;
2530 struct fs_path *p = NULL;
2531 struct btrfs_inode_item *ii;
2532 struct btrfs_path *path = NULL;
2533 struct extent_buffer *eb;
2534 struct btrfs_key key;
2535 int slot;
2536
2537 btrfs_debug(fs_info, "send_utimes %llu", ino);
2538
2539 p = fs_path_alloc();
2540 if (!p)
2541 return -ENOMEM;
2542
2543 path = alloc_path_for_send();
2544 if (!path) {
2545 ret = -ENOMEM;
2546 goto out;
2547 }
2548
2549 key.objectid = ino;
2550 key.type = BTRFS_INODE_ITEM_KEY;
2551 key.offset = 0;
2552 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2553 if (ret > 0)
2554 ret = -ENOENT;
2555 if (ret < 0)
2556 goto out;
2557
2558 eb = path->nodes[0];
2559 slot = path->slots[0];
2560 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2561
2562 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2563 if (ret < 0)
2564 goto out;
2565
2566 ret = get_cur_path(sctx, ino, gen, p);
2567 if (ret < 0)
2568 goto out;
2569 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2570 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2571 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2572 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2573 /* TODO Add otime support when the otime patches get into upstream */
2574
2575 ret = send_cmd(sctx);
2576
2577 tlv_put_failure:
2578 out:
2579 fs_path_free(p);
2580 btrfs_free_path(path);
2581 return ret;
2582 }
2583
2584 /*
2585 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2586 * a valid path yet because we did not process the refs yet. So, the inode
2587 * is created as orphan.
2588 */
send_create_inode(struct send_ctx * sctx,u64 ino)2589 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2590 {
2591 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2592 int ret = 0;
2593 struct fs_path *p;
2594 int cmd;
2595 u64 gen;
2596 u64 mode;
2597 u64 rdev;
2598
2599 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2600
2601 p = fs_path_alloc();
2602 if (!p)
2603 return -ENOMEM;
2604
2605 if (ino != sctx->cur_ino) {
2606 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2607 NULL, NULL, &rdev);
2608 if (ret < 0)
2609 goto out;
2610 } else {
2611 gen = sctx->cur_inode_gen;
2612 mode = sctx->cur_inode_mode;
2613 rdev = sctx->cur_inode_rdev;
2614 }
2615
2616 if (S_ISREG(mode)) {
2617 cmd = BTRFS_SEND_C_MKFILE;
2618 } else if (S_ISDIR(mode)) {
2619 cmd = BTRFS_SEND_C_MKDIR;
2620 } else if (S_ISLNK(mode)) {
2621 cmd = BTRFS_SEND_C_SYMLINK;
2622 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2623 cmd = BTRFS_SEND_C_MKNOD;
2624 } else if (S_ISFIFO(mode)) {
2625 cmd = BTRFS_SEND_C_MKFIFO;
2626 } else if (S_ISSOCK(mode)) {
2627 cmd = BTRFS_SEND_C_MKSOCK;
2628 } else {
2629 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2630 (int)(mode & S_IFMT));
2631 ret = -EOPNOTSUPP;
2632 goto out;
2633 }
2634
2635 ret = begin_cmd(sctx, cmd);
2636 if (ret < 0)
2637 goto out;
2638
2639 ret = gen_unique_name(sctx, ino, gen, p);
2640 if (ret < 0)
2641 goto out;
2642
2643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2644 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2645
2646 if (S_ISLNK(mode)) {
2647 fs_path_reset(p);
2648 ret = read_symlink(sctx->send_root, ino, p);
2649 if (ret < 0)
2650 goto out;
2651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2652 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2653 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2654 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2655 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2656 }
2657
2658 ret = send_cmd(sctx);
2659 if (ret < 0)
2660 goto out;
2661
2662
2663 tlv_put_failure:
2664 out:
2665 fs_path_free(p);
2666 return ret;
2667 }
2668
2669 /*
2670 * We need some special handling for inodes that get processed before the parent
2671 * directory got created. See process_recorded_refs for details.
2672 * This function does the check if we already created the dir out of order.
2673 */
did_create_dir(struct send_ctx * sctx,u64 dir)2674 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2675 {
2676 int ret = 0;
2677 struct btrfs_path *path = NULL;
2678 struct btrfs_key key;
2679 struct btrfs_key found_key;
2680 struct btrfs_key di_key;
2681 struct extent_buffer *eb;
2682 struct btrfs_dir_item *di;
2683 int slot;
2684
2685 path = alloc_path_for_send();
2686 if (!path) {
2687 ret = -ENOMEM;
2688 goto out;
2689 }
2690
2691 key.objectid = dir;
2692 key.type = BTRFS_DIR_INDEX_KEY;
2693 key.offset = 0;
2694 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2695 if (ret < 0)
2696 goto out;
2697
2698 while (1) {
2699 eb = path->nodes[0];
2700 slot = path->slots[0];
2701 if (slot >= btrfs_header_nritems(eb)) {
2702 ret = btrfs_next_leaf(sctx->send_root, path);
2703 if (ret < 0) {
2704 goto out;
2705 } else if (ret > 0) {
2706 ret = 0;
2707 break;
2708 }
2709 continue;
2710 }
2711
2712 btrfs_item_key_to_cpu(eb, &found_key, slot);
2713 if (found_key.objectid != key.objectid ||
2714 found_key.type != key.type) {
2715 ret = 0;
2716 goto out;
2717 }
2718
2719 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2720 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2721
2722 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2723 di_key.objectid < sctx->send_progress) {
2724 ret = 1;
2725 goto out;
2726 }
2727
2728 path->slots[0]++;
2729 }
2730
2731 out:
2732 btrfs_free_path(path);
2733 return ret;
2734 }
2735
2736 /*
2737 * Only creates the inode if it is:
2738 * 1. Not a directory
2739 * 2. Or a directory which was not created already due to out of order
2740 * directories. See did_create_dir and process_recorded_refs for details.
2741 */
send_create_inode_if_needed(struct send_ctx * sctx)2742 static int send_create_inode_if_needed(struct send_ctx *sctx)
2743 {
2744 int ret;
2745
2746 if (S_ISDIR(sctx->cur_inode_mode)) {
2747 ret = did_create_dir(sctx, sctx->cur_ino);
2748 if (ret < 0)
2749 goto out;
2750 if (ret) {
2751 ret = 0;
2752 goto out;
2753 }
2754 }
2755
2756 ret = send_create_inode(sctx, sctx->cur_ino);
2757 if (ret < 0)
2758 goto out;
2759
2760 out:
2761 return ret;
2762 }
2763
2764 struct recorded_ref {
2765 struct list_head list;
2766 char *name;
2767 struct fs_path *full_path;
2768 u64 dir;
2769 u64 dir_gen;
2770 int name_len;
2771 };
2772
set_ref_path(struct recorded_ref * ref,struct fs_path * path)2773 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2774 {
2775 ref->full_path = path;
2776 ref->name = (char *)kbasename(ref->full_path->start);
2777 ref->name_len = ref->full_path->end - ref->name;
2778 }
2779
2780 /*
2781 * We need to process new refs before deleted refs, but compare_tree gives us
2782 * everything mixed. So we first record all refs and later process them.
2783 * This function is a helper to record one ref.
2784 */
__record_ref(struct list_head * head,u64 dir,u64 dir_gen,struct fs_path * path)2785 static int __record_ref(struct list_head *head, u64 dir,
2786 u64 dir_gen, struct fs_path *path)
2787 {
2788 struct recorded_ref *ref;
2789
2790 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2791 if (!ref)
2792 return -ENOMEM;
2793
2794 ref->dir = dir;
2795 ref->dir_gen = dir_gen;
2796 set_ref_path(ref, path);
2797 list_add_tail(&ref->list, head);
2798 return 0;
2799 }
2800
dup_ref(struct recorded_ref * ref,struct list_head * list)2801 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2802 {
2803 struct recorded_ref *new;
2804
2805 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2806 if (!new)
2807 return -ENOMEM;
2808
2809 new->dir = ref->dir;
2810 new->dir_gen = ref->dir_gen;
2811 new->full_path = NULL;
2812 INIT_LIST_HEAD(&new->list);
2813 list_add_tail(&new->list, list);
2814 return 0;
2815 }
2816
__free_recorded_refs(struct list_head * head)2817 static void __free_recorded_refs(struct list_head *head)
2818 {
2819 struct recorded_ref *cur;
2820
2821 while (!list_empty(head)) {
2822 cur = list_entry(head->next, struct recorded_ref, list);
2823 fs_path_free(cur->full_path);
2824 list_del(&cur->list);
2825 kfree(cur);
2826 }
2827 }
2828
free_recorded_refs(struct send_ctx * sctx)2829 static void free_recorded_refs(struct send_ctx *sctx)
2830 {
2831 __free_recorded_refs(&sctx->new_refs);
2832 __free_recorded_refs(&sctx->deleted_refs);
2833 }
2834
2835 /*
2836 * Renames/moves a file/dir to its orphan name. Used when the first
2837 * ref of an unprocessed inode gets overwritten and for all non empty
2838 * directories.
2839 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)2840 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2841 struct fs_path *path)
2842 {
2843 int ret;
2844 struct fs_path *orphan;
2845
2846 orphan = fs_path_alloc();
2847 if (!orphan)
2848 return -ENOMEM;
2849
2850 ret = gen_unique_name(sctx, ino, gen, orphan);
2851 if (ret < 0)
2852 goto out;
2853
2854 ret = send_rename(sctx, path, orphan);
2855
2856 out:
2857 fs_path_free(orphan);
2858 return ret;
2859 }
2860
2861 static struct orphan_dir_info *
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino)2862 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2863 {
2864 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2865 struct rb_node *parent = NULL;
2866 struct orphan_dir_info *entry, *odi;
2867
2868 while (*p) {
2869 parent = *p;
2870 entry = rb_entry(parent, struct orphan_dir_info, node);
2871 if (dir_ino < entry->ino) {
2872 p = &(*p)->rb_left;
2873 } else if (dir_ino > entry->ino) {
2874 p = &(*p)->rb_right;
2875 } else {
2876 return entry;
2877 }
2878 }
2879
2880 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2881 if (!odi)
2882 return ERR_PTR(-ENOMEM);
2883 odi->ino = dir_ino;
2884 odi->gen = 0;
2885 odi->last_dir_index_offset = 0;
2886
2887 rb_link_node(&odi->node, parent, p);
2888 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2889 return odi;
2890 }
2891
2892 static struct orphan_dir_info *
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino)2893 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2894 {
2895 struct rb_node *n = sctx->orphan_dirs.rb_node;
2896 struct orphan_dir_info *entry;
2897
2898 while (n) {
2899 entry = rb_entry(n, struct orphan_dir_info, node);
2900 if (dir_ino < entry->ino)
2901 n = n->rb_left;
2902 else if (dir_ino > entry->ino)
2903 n = n->rb_right;
2904 else
2905 return entry;
2906 }
2907 return NULL;
2908 }
2909
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino)2910 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2911 {
2912 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2913
2914 return odi != NULL;
2915 }
2916
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)2917 static void free_orphan_dir_info(struct send_ctx *sctx,
2918 struct orphan_dir_info *odi)
2919 {
2920 if (!odi)
2921 return;
2922 rb_erase(&odi->node, &sctx->orphan_dirs);
2923 kfree(odi);
2924 }
2925
2926 /*
2927 * Returns 1 if a directory can be removed at this point in time.
2928 * We check this by iterating all dir items and checking if the inode behind
2929 * the dir item was already processed.
2930 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 send_progress)2931 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2932 u64 send_progress)
2933 {
2934 int ret = 0;
2935 struct btrfs_root *root = sctx->parent_root;
2936 struct btrfs_path *path;
2937 struct btrfs_key key;
2938 struct btrfs_key found_key;
2939 struct btrfs_key loc;
2940 struct btrfs_dir_item *di;
2941 struct orphan_dir_info *odi = NULL;
2942
2943 /*
2944 * Don't try to rmdir the top/root subvolume dir.
2945 */
2946 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2947 return 0;
2948
2949 path = alloc_path_for_send();
2950 if (!path)
2951 return -ENOMEM;
2952
2953 key.objectid = dir;
2954 key.type = BTRFS_DIR_INDEX_KEY;
2955 key.offset = 0;
2956
2957 odi = get_orphan_dir_info(sctx, dir);
2958 if (odi)
2959 key.offset = odi->last_dir_index_offset;
2960
2961 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2962 if (ret < 0)
2963 goto out;
2964
2965 while (1) {
2966 struct waiting_dir_move *dm;
2967
2968 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2969 ret = btrfs_next_leaf(root, path);
2970 if (ret < 0)
2971 goto out;
2972 else if (ret > 0)
2973 break;
2974 continue;
2975 }
2976 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2977 path->slots[0]);
2978 if (found_key.objectid != key.objectid ||
2979 found_key.type != key.type)
2980 break;
2981
2982 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2983 struct btrfs_dir_item);
2984 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2985
2986 dm = get_waiting_dir_move(sctx, loc.objectid);
2987 if (dm) {
2988 odi = add_orphan_dir_info(sctx, dir);
2989 if (IS_ERR(odi)) {
2990 ret = PTR_ERR(odi);
2991 goto out;
2992 }
2993 odi->gen = dir_gen;
2994 odi->last_dir_index_offset = found_key.offset;
2995 dm->rmdir_ino = dir;
2996 ret = 0;
2997 goto out;
2998 }
2999
3000 if (loc.objectid > send_progress) {
3001 odi = add_orphan_dir_info(sctx, dir);
3002 if (IS_ERR(odi)) {
3003 ret = PTR_ERR(odi);
3004 goto out;
3005 }
3006 odi->gen = dir_gen;
3007 odi->last_dir_index_offset = found_key.offset;
3008 ret = 0;
3009 goto out;
3010 }
3011
3012 path->slots[0]++;
3013 }
3014 free_orphan_dir_info(sctx, odi);
3015
3016 ret = 1;
3017
3018 out:
3019 btrfs_free_path(path);
3020 return ret;
3021 }
3022
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3023 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3024 {
3025 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3026
3027 return entry != NULL;
3028 }
3029
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3030 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3031 {
3032 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3033 struct rb_node *parent = NULL;
3034 struct waiting_dir_move *entry, *dm;
3035
3036 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3037 if (!dm)
3038 return -ENOMEM;
3039 dm->ino = ino;
3040 dm->rmdir_ino = 0;
3041 dm->orphanized = orphanized;
3042
3043 while (*p) {
3044 parent = *p;
3045 entry = rb_entry(parent, struct waiting_dir_move, node);
3046 if (ino < entry->ino) {
3047 p = &(*p)->rb_left;
3048 } else if (ino > entry->ino) {
3049 p = &(*p)->rb_right;
3050 } else {
3051 kfree(dm);
3052 return -EEXIST;
3053 }
3054 }
3055
3056 rb_link_node(&dm->node, parent, p);
3057 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3058 return 0;
3059 }
3060
3061 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3062 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3063 {
3064 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3065 struct waiting_dir_move *entry;
3066
3067 while (n) {
3068 entry = rb_entry(n, struct waiting_dir_move, node);
3069 if (ino < entry->ino)
3070 n = n->rb_left;
3071 else if (ino > entry->ino)
3072 n = n->rb_right;
3073 else
3074 return entry;
3075 }
3076 return NULL;
3077 }
3078
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3079 static void free_waiting_dir_move(struct send_ctx *sctx,
3080 struct waiting_dir_move *dm)
3081 {
3082 if (!dm)
3083 return;
3084 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3085 kfree(dm);
3086 }
3087
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3088 static int add_pending_dir_move(struct send_ctx *sctx,
3089 u64 ino,
3090 u64 ino_gen,
3091 u64 parent_ino,
3092 struct list_head *new_refs,
3093 struct list_head *deleted_refs,
3094 const bool is_orphan)
3095 {
3096 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3097 struct rb_node *parent = NULL;
3098 struct pending_dir_move *entry = NULL, *pm;
3099 struct recorded_ref *cur;
3100 int exists = 0;
3101 int ret;
3102
3103 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3104 if (!pm)
3105 return -ENOMEM;
3106 pm->parent_ino = parent_ino;
3107 pm->ino = ino;
3108 pm->gen = ino_gen;
3109 INIT_LIST_HEAD(&pm->list);
3110 INIT_LIST_HEAD(&pm->update_refs);
3111 RB_CLEAR_NODE(&pm->node);
3112
3113 while (*p) {
3114 parent = *p;
3115 entry = rb_entry(parent, struct pending_dir_move, node);
3116 if (parent_ino < entry->parent_ino) {
3117 p = &(*p)->rb_left;
3118 } else if (parent_ino > entry->parent_ino) {
3119 p = &(*p)->rb_right;
3120 } else {
3121 exists = 1;
3122 break;
3123 }
3124 }
3125
3126 list_for_each_entry(cur, deleted_refs, list) {
3127 ret = dup_ref(cur, &pm->update_refs);
3128 if (ret < 0)
3129 goto out;
3130 }
3131 list_for_each_entry(cur, new_refs, list) {
3132 ret = dup_ref(cur, &pm->update_refs);
3133 if (ret < 0)
3134 goto out;
3135 }
3136
3137 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3138 if (ret)
3139 goto out;
3140
3141 if (exists) {
3142 list_add_tail(&pm->list, &entry->list);
3143 } else {
3144 rb_link_node(&pm->node, parent, p);
3145 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3146 }
3147 ret = 0;
3148 out:
3149 if (ret) {
3150 __free_recorded_refs(&pm->update_refs);
3151 kfree(pm);
3152 }
3153 return ret;
3154 }
3155
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3156 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3157 u64 parent_ino)
3158 {
3159 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3160 struct pending_dir_move *entry;
3161
3162 while (n) {
3163 entry = rb_entry(n, struct pending_dir_move, node);
3164 if (parent_ino < entry->parent_ino)
3165 n = n->rb_left;
3166 else if (parent_ino > entry->parent_ino)
3167 n = n->rb_right;
3168 else
3169 return entry;
3170 }
3171 return NULL;
3172 }
3173
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3174 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3175 u64 ino, u64 gen, u64 *ancestor_ino)
3176 {
3177 int ret = 0;
3178 u64 parent_inode = 0;
3179 u64 parent_gen = 0;
3180 u64 start_ino = ino;
3181
3182 *ancestor_ino = 0;
3183 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3184 fs_path_reset(name);
3185
3186 if (is_waiting_for_rm(sctx, ino))
3187 break;
3188 if (is_waiting_for_move(sctx, ino)) {
3189 if (*ancestor_ino == 0)
3190 *ancestor_ino = ino;
3191 ret = get_first_ref(sctx->parent_root, ino,
3192 &parent_inode, &parent_gen, name);
3193 } else {
3194 ret = __get_cur_name_and_parent(sctx, ino, gen,
3195 &parent_inode,
3196 &parent_gen, name);
3197 if (ret > 0) {
3198 ret = 0;
3199 break;
3200 }
3201 }
3202 if (ret < 0)
3203 break;
3204 if (parent_inode == start_ino) {
3205 ret = 1;
3206 if (*ancestor_ino == 0)
3207 *ancestor_ino = ino;
3208 break;
3209 }
3210 ino = parent_inode;
3211 gen = parent_gen;
3212 }
3213 return ret;
3214 }
3215
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3216 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3217 {
3218 struct fs_path *from_path = NULL;
3219 struct fs_path *to_path = NULL;
3220 struct fs_path *name = NULL;
3221 u64 orig_progress = sctx->send_progress;
3222 struct recorded_ref *cur;
3223 u64 parent_ino, parent_gen;
3224 struct waiting_dir_move *dm = NULL;
3225 u64 rmdir_ino = 0;
3226 u64 ancestor;
3227 bool is_orphan;
3228 int ret;
3229
3230 name = fs_path_alloc();
3231 from_path = fs_path_alloc();
3232 if (!name || !from_path) {
3233 ret = -ENOMEM;
3234 goto out;
3235 }
3236
3237 dm = get_waiting_dir_move(sctx, pm->ino);
3238 ASSERT(dm);
3239 rmdir_ino = dm->rmdir_ino;
3240 is_orphan = dm->orphanized;
3241 free_waiting_dir_move(sctx, dm);
3242
3243 if (is_orphan) {
3244 ret = gen_unique_name(sctx, pm->ino,
3245 pm->gen, from_path);
3246 } else {
3247 ret = get_first_ref(sctx->parent_root, pm->ino,
3248 &parent_ino, &parent_gen, name);
3249 if (ret < 0)
3250 goto out;
3251 ret = get_cur_path(sctx, parent_ino, parent_gen,
3252 from_path);
3253 if (ret < 0)
3254 goto out;
3255 ret = fs_path_add_path(from_path, name);
3256 }
3257 if (ret < 0)
3258 goto out;
3259
3260 sctx->send_progress = sctx->cur_ino + 1;
3261 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3262 if (ret < 0)
3263 goto out;
3264 if (ret) {
3265 LIST_HEAD(deleted_refs);
3266 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3267 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3268 &pm->update_refs, &deleted_refs,
3269 is_orphan);
3270 if (ret < 0)
3271 goto out;
3272 if (rmdir_ino) {
3273 dm = get_waiting_dir_move(sctx, pm->ino);
3274 ASSERT(dm);
3275 dm->rmdir_ino = rmdir_ino;
3276 }
3277 goto out;
3278 }
3279 fs_path_reset(name);
3280 to_path = name;
3281 name = NULL;
3282 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3283 if (ret < 0)
3284 goto out;
3285
3286 ret = send_rename(sctx, from_path, to_path);
3287 if (ret < 0)
3288 goto out;
3289
3290 if (rmdir_ino) {
3291 struct orphan_dir_info *odi;
3292 u64 gen;
3293
3294 odi = get_orphan_dir_info(sctx, rmdir_ino);
3295 if (!odi) {
3296 /* already deleted */
3297 goto finish;
3298 }
3299 gen = odi->gen;
3300
3301 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3302 if (ret < 0)
3303 goto out;
3304 if (!ret)
3305 goto finish;
3306
3307 name = fs_path_alloc();
3308 if (!name) {
3309 ret = -ENOMEM;
3310 goto out;
3311 }
3312 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3313 if (ret < 0)
3314 goto out;
3315 ret = send_rmdir(sctx, name);
3316 if (ret < 0)
3317 goto out;
3318 }
3319
3320 finish:
3321 ret = send_utimes(sctx, pm->ino, pm->gen);
3322 if (ret < 0)
3323 goto out;
3324
3325 /*
3326 * After rename/move, need to update the utimes of both new parent(s)
3327 * and old parent(s).
3328 */
3329 list_for_each_entry(cur, &pm->update_refs, list) {
3330 /*
3331 * The parent inode might have been deleted in the send snapshot
3332 */
3333 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3334 NULL, NULL, NULL, NULL, NULL);
3335 if (ret == -ENOENT) {
3336 ret = 0;
3337 continue;
3338 }
3339 if (ret < 0)
3340 goto out;
3341
3342 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3343 if (ret < 0)
3344 goto out;
3345 }
3346
3347 out:
3348 fs_path_free(name);
3349 fs_path_free(from_path);
3350 fs_path_free(to_path);
3351 sctx->send_progress = orig_progress;
3352
3353 return ret;
3354 }
3355
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3356 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3357 {
3358 if (!list_empty(&m->list))
3359 list_del(&m->list);
3360 if (!RB_EMPTY_NODE(&m->node))
3361 rb_erase(&m->node, &sctx->pending_dir_moves);
3362 __free_recorded_refs(&m->update_refs);
3363 kfree(m);
3364 }
3365
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3366 static void tail_append_pending_moves(struct send_ctx *sctx,
3367 struct pending_dir_move *moves,
3368 struct list_head *stack)
3369 {
3370 if (list_empty(&moves->list)) {
3371 list_add_tail(&moves->list, stack);
3372 } else {
3373 LIST_HEAD(list);
3374 list_splice_init(&moves->list, &list);
3375 list_add_tail(&moves->list, stack);
3376 list_splice_tail(&list, stack);
3377 }
3378 if (!RB_EMPTY_NODE(&moves->node)) {
3379 rb_erase(&moves->node, &sctx->pending_dir_moves);
3380 RB_CLEAR_NODE(&moves->node);
3381 }
3382 }
3383
apply_children_dir_moves(struct send_ctx * sctx)3384 static int apply_children_dir_moves(struct send_ctx *sctx)
3385 {
3386 struct pending_dir_move *pm;
3387 struct list_head stack;
3388 u64 parent_ino = sctx->cur_ino;
3389 int ret = 0;
3390
3391 pm = get_pending_dir_moves(sctx, parent_ino);
3392 if (!pm)
3393 return 0;
3394
3395 INIT_LIST_HEAD(&stack);
3396 tail_append_pending_moves(sctx, pm, &stack);
3397
3398 while (!list_empty(&stack)) {
3399 pm = list_first_entry(&stack, struct pending_dir_move, list);
3400 parent_ino = pm->ino;
3401 ret = apply_dir_move(sctx, pm);
3402 free_pending_move(sctx, pm);
3403 if (ret)
3404 goto out;
3405 pm = get_pending_dir_moves(sctx, parent_ino);
3406 if (pm)
3407 tail_append_pending_moves(sctx, pm, &stack);
3408 }
3409 return 0;
3410
3411 out:
3412 while (!list_empty(&stack)) {
3413 pm = list_first_entry(&stack, struct pending_dir_move, list);
3414 free_pending_move(sctx, pm);
3415 }
3416 return ret;
3417 }
3418
3419 /*
3420 * We might need to delay a directory rename even when no ancestor directory
3421 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3422 * renamed. This happens when we rename a directory to the old name (the name
3423 * in the parent root) of some other unrelated directory that got its rename
3424 * delayed due to some ancestor with higher number that got renamed.
3425 *
3426 * Example:
3427 *
3428 * Parent snapshot:
3429 * . (ino 256)
3430 * |---- a/ (ino 257)
3431 * | |---- file (ino 260)
3432 * |
3433 * |---- b/ (ino 258)
3434 * |---- c/ (ino 259)
3435 *
3436 * Send snapshot:
3437 * . (ino 256)
3438 * |---- a/ (ino 258)
3439 * |---- x/ (ino 259)
3440 * |---- y/ (ino 257)
3441 * |----- file (ino 260)
3442 *
3443 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3444 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3445 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3446 * must issue is:
3447 *
3448 * 1 - rename 259 from 'c' to 'x'
3449 * 2 - rename 257 from 'a' to 'x/y'
3450 * 3 - rename 258 from 'b' to 'a'
3451 *
3452 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3453 * be done right away and < 0 on error.
3454 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3455 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3456 struct recorded_ref *parent_ref,
3457 const bool is_orphan)
3458 {
3459 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3460 struct btrfs_path *path;
3461 struct btrfs_key key;
3462 struct btrfs_key di_key;
3463 struct btrfs_dir_item *di;
3464 u64 left_gen;
3465 u64 right_gen;
3466 int ret = 0;
3467 struct waiting_dir_move *wdm;
3468
3469 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3470 return 0;
3471
3472 path = alloc_path_for_send();
3473 if (!path)
3474 return -ENOMEM;
3475
3476 key.objectid = parent_ref->dir;
3477 key.type = BTRFS_DIR_ITEM_KEY;
3478 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3479
3480 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3481 if (ret < 0) {
3482 goto out;
3483 } else if (ret > 0) {
3484 ret = 0;
3485 goto out;
3486 }
3487
3488 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3489 parent_ref->name_len);
3490 if (!di) {
3491 ret = 0;
3492 goto out;
3493 }
3494 /*
3495 * di_key.objectid has the number of the inode that has a dentry in the
3496 * parent directory with the same name that sctx->cur_ino is being
3497 * renamed to. We need to check if that inode is in the send root as
3498 * well and if it is currently marked as an inode with a pending rename,
3499 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3500 * that it happens after that other inode is renamed.
3501 */
3502 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3503 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3504 ret = 0;
3505 goto out;
3506 }
3507
3508 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3509 &left_gen, NULL, NULL, NULL, NULL);
3510 if (ret < 0)
3511 goto out;
3512 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3513 &right_gen, NULL, NULL, NULL, NULL);
3514 if (ret < 0) {
3515 if (ret == -ENOENT)
3516 ret = 0;
3517 goto out;
3518 }
3519
3520 /* Different inode, no need to delay the rename of sctx->cur_ino */
3521 if (right_gen != left_gen) {
3522 ret = 0;
3523 goto out;
3524 }
3525
3526 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3527 if (wdm && !wdm->orphanized) {
3528 ret = add_pending_dir_move(sctx,
3529 sctx->cur_ino,
3530 sctx->cur_inode_gen,
3531 di_key.objectid,
3532 &sctx->new_refs,
3533 &sctx->deleted_refs,
3534 is_orphan);
3535 if (!ret)
3536 ret = 1;
3537 }
3538 out:
3539 btrfs_free_path(path);
3540 return ret;
3541 }
3542
3543 /*
3544 * Check if inode ino2, or any of its ancestors, is inode ino1.
3545 * Return 1 if true, 0 if false and < 0 on error.
3546 */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3547 static int check_ino_in_path(struct btrfs_root *root,
3548 const u64 ino1,
3549 const u64 ino1_gen,
3550 const u64 ino2,
3551 const u64 ino2_gen,
3552 struct fs_path *fs_path)
3553 {
3554 u64 ino = ino2;
3555
3556 if (ino1 == ino2)
3557 return ino1_gen == ino2_gen;
3558
3559 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3560 u64 parent;
3561 u64 parent_gen;
3562 int ret;
3563
3564 fs_path_reset(fs_path);
3565 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3566 if (ret < 0)
3567 return ret;
3568 if (parent == ino1)
3569 return parent_gen == ino1_gen;
3570 ino = parent;
3571 }
3572 return 0;
3573 }
3574
3575 /*
3576 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3577 * possible path (in case ino2 is not a directory and has multiple hard links).
3578 * Return 1 if true, 0 if false and < 0 on error.
3579 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3580 static int is_ancestor(struct btrfs_root *root,
3581 const u64 ino1,
3582 const u64 ino1_gen,
3583 const u64 ino2,
3584 struct fs_path *fs_path)
3585 {
3586 bool free_fs_path = false;
3587 int ret = 0;
3588 struct btrfs_path *path = NULL;
3589 struct btrfs_key key;
3590
3591 if (!fs_path) {
3592 fs_path = fs_path_alloc();
3593 if (!fs_path)
3594 return -ENOMEM;
3595 free_fs_path = true;
3596 }
3597
3598 path = alloc_path_for_send();
3599 if (!path) {
3600 ret = -ENOMEM;
3601 goto out;
3602 }
3603
3604 key.objectid = ino2;
3605 key.type = BTRFS_INODE_REF_KEY;
3606 key.offset = 0;
3607
3608 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3609 if (ret < 0)
3610 goto out;
3611
3612 while (true) {
3613 struct extent_buffer *leaf = path->nodes[0];
3614 int slot = path->slots[0];
3615 u32 cur_offset = 0;
3616 u32 item_size;
3617
3618 if (slot >= btrfs_header_nritems(leaf)) {
3619 ret = btrfs_next_leaf(root, path);
3620 if (ret < 0)
3621 goto out;
3622 if (ret > 0)
3623 break;
3624 continue;
3625 }
3626
3627 btrfs_item_key_to_cpu(leaf, &key, slot);
3628 if (key.objectid != ino2)
3629 break;
3630 if (key.type != BTRFS_INODE_REF_KEY &&
3631 key.type != BTRFS_INODE_EXTREF_KEY)
3632 break;
3633
3634 item_size = btrfs_item_size_nr(leaf, slot);
3635 while (cur_offset < item_size) {
3636 u64 parent;
3637 u64 parent_gen;
3638
3639 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3640 unsigned long ptr;
3641 struct btrfs_inode_extref *extref;
3642
3643 ptr = btrfs_item_ptr_offset(leaf, slot);
3644 extref = (struct btrfs_inode_extref *)
3645 (ptr + cur_offset);
3646 parent = btrfs_inode_extref_parent(leaf,
3647 extref);
3648 cur_offset += sizeof(*extref);
3649 cur_offset += btrfs_inode_extref_name_len(leaf,
3650 extref);
3651 } else {
3652 parent = key.offset;
3653 cur_offset = item_size;
3654 }
3655
3656 ret = get_inode_info(root, parent, NULL, &parent_gen,
3657 NULL, NULL, NULL, NULL);
3658 if (ret < 0)
3659 goto out;
3660 ret = check_ino_in_path(root, ino1, ino1_gen,
3661 parent, parent_gen, fs_path);
3662 if (ret)
3663 goto out;
3664 }
3665 path->slots[0]++;
3666 }
3667 ret = 0;
3668 out:
3669 btrfs_free_path(path);
3670 if (free_fs_path)
3671 fs_path_free(fs_path);
3672 return ret;
3673 }
3674
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3675 static int wait_for_parent_move(struct send_ctx *sctx,
3676 struct recorded_ref *parent_ref,
3677 const bool is_orphan)
3678 {
3679 int ret = 0;
3680 u64 ino = parent_ref->dir;
3681 u64 ino_gen = parent_ref->dir_gen;
3682 u64 parent_ino_before, parent_ino_after;
3683 struct fs_path *path_before = NULL;
3684 struct fs_path *path_after = NULL;
3685 int len1, len2;
3686
3687 path_after = fs_path_alloc();
3688 path_before = fs_path_alloc();
3689 if (!path_after || !path_before) {
3690 ret = -ENOMEM;
3691 goto out;
3692 }
3693
3694 /*
3695 * Our current directory inode may not yet be renamed/moved because some
3696 * ancestor (immediate or not) has to be renamed/moved first. So find if
3697 * such ancestor exists and make sure our own rename/move happens after
3698 * that ancestor is processed to avoid path build infinite loops (done
3699 * at get_cur_path()).
3700 */
3701 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3702 u64 parent_ino_after_gen;
3703
3704 if (is_waiting_for_move(sctx, ino)) {
3705 /*
3706 * If the current inode is an ancestor of ino in the
3707 * parent root, we need to delay the rename of the
3708 * current inode, otherwise don't delayed the rename
3709 * because we can end up with a circular dependency
3710 * of renames, resulting in some directories never
3711 * getting the respective rename operations issued in
3712 * the send stream or getting into infinite path build
3713 * loops.
3714 */
3715 ret = is_ancestor(sctx->parent_root,
3716 sctx->cur_ino, sctx->cur_inode_gen,
3717 ino, path_before);
3718 if (ret)
3719 break;
3720 }
3721
3722 fs_path_reset(path_before);
3723 fs_path_reset(path_after);
3724
3725 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3726 &parent_ino_after_gen, path_after);
3727 if (ret < 0)
3728 goto out;
3729 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3730 NULL, path_before);
3731 if (ret < 0 && ret != -ENOENT) {
3732 goto out;
3733 } else if (ret == -ENOENT) {
3734 ret = 0;
3735 break;
3736 }
3737
3738 len1 = fs_path_len(path_before);
3739 len2 = fs_path_len(path_after);
3740 if (ino > sctx->cur_ino &&
3741 (parent_ino_before != parent_ino_after || len1 != len2 ||
3742 memcmp(path_before->start, path_after->start, len1))) {
3743 u64 parent_ino_gen;
3744
3745 ret = get_inode_info(sctx->parent_root, ino, NULL,
3746 &parent_ino_gen, NULL, NULL, NULL,
3747 NULL);
3748 if (ret < 0)
3749 goto out;
3750 if (ino_gen == parent_ino_gen) {
3751 ret = 1;
3752 break;
3753 }
3754 }
3755 ino = parent_ino_after;
3756 ino_gen = parent_ino_after_gen;
3757 }
3758
3759 out:
3760 fs_path_free(path_before);
3761 fs_path_free(path_after);
3762
3763 if (ret == 1) {
3764 ret = add_pending_dir_move(sctx,
3765 sctx->cur_ino,
3766 sctx->cur_inode_gen,
3767 ino,
3768 &sctx->new_refs,
3769 &sctx->deleted_refs,
3770 is_orphan);
3771 if (!ret)
3772 ret = 1;
3773 }
3774
3775 return ret;
3776 }
3777
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)3778 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3779 {
3780 int ret;
3781 struct fs_path *new_path;
3782
3783 /*
3784 * Our reference's name member points to its full_path member string, so
3785 * we use here a new path.
3786 */
3787 new_path = fs_path_alloc();
3788 if (!new_path)
3789 return -ENOMEM;
3790
3791 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3792 if (ret < 0) {
3793 fs_path_free(new_path);
3794 return ret;
3795 }
3796 ret = fs_path_add(new_path, ref->name, ref->name_len);
3797 if (ret < 0) {
3798 fs_path_free(new_path);
3799 return ret;
3800 }
3801
3802 fs_path_free(ref->full_path);
3803 set_ref_path(ref, new_path);
3804
3805 return 0;
3806 }
3807
3808 /*
3809 * When processing the new references for an inode we may orphanize an existing
3810 * directory inode because its old name conflicts with one of the new references
3811 * of the current inode. Later, when processing another new reference of our
3812 * inode, we might need to orphanize another inode, but the path we have in the
3813 * reference reflects the pre-orphanization name of the directory we previously
3814 * orphanized. For example:
3815 *
3816 * parent snapshot looks like:
3817 *
3818 * . (ino 256)
3819 * |----- f1 (ino 257)
3820 * |----- f2 (ino 258)
3821 * |----- d1/ (ino 259)
3822 * |----- d2/ (ino 260)
3823 *
3824 * send snapshot looks like:
3825 *
3826 * . (ino 256)
3827 * |----- d1 (ino 258)
3828 * |----- f2/ (ino 259)
3829 * |----- f2_link/ (ino 260)
3830 * | |----- f1 (ino 257)
3831 * |
3832 * |----- d2 (ino 258)
3833 *
3834 * When processing inode 257 we compute the name for inode 259 as "d1", and we
3835 * cache it in the name cache. Later when we start processing inode 258, when
3836 * collecting all its new references we set a full path of "d1/d2" for its new
3837 * reference with name "d2". When we start processing the new references we
3838 * start by processing the new reference with name "d1", and this results in
3839 * orphanizing inode 259, since its old reference causes a conflict. Then we
3840 * move on the next new reference, with name "d2", and we find out we must
3841 * orphanize inode 260, as its old reference conflicts with ours - but for the
3842 * orphanization we use a source path corresponding to the path we stored in the
3843 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3844 * receiver fail since the path component "d1/" no longer exists, it was renamed
3845 * to "o259-6-0/" when processing the previous new reference. So in this case we
3846 * must recompute the path in the new reference and use it for the new
3847 * orphanization operation.
3848 */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)3849 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3850 {
3851 char *name;
3852 int ret;
3853
3854 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3855 if (!name)
3856 return -ENOMEM;
3857
3858 fs_path_reset(ref->full_path);
3859 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3860 if (ret < 0)
3861 goto out;
3862
3863 ret = fs_path_add(ref->full_path, name, ref->name_len);
3864 if (ret < 0)
3865 goto out;
3866
3867 /* Update the reference's base name pointer. */
3868 set_ref_path(ref, ref->full_path);
3869 out:
3870 kfree(name);
3871 return ret;
3872 }
3873
3874 /*
3875 * This does all the move/link/unlink/rmdir magic.
3876 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)3877 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3878 {
3879 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3880 int ret = 0;
3881 struct recorded_ref *cur;
3882 struct recorded_ref *cur2;
3883 struct list_head check_dirs;
3884 struct fs_path *valid_path = NULL;
3885 u64 ow_inode = 0;
3886 u64 ow_gen;
3887 u64 ow_mode;
3888 int did_overwrite = 0;
3889 int is_orphan = 0;
3890 u64 last_dir_ino_rm = 0;
3891 bool can_rename = true;
3892 bool orphanized_dir = false;
3893 bool orphanized_ancestor = false;
3894
3895 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3896
3897 /*
3898 * This should never happen as the root dir always has the same ref
3899 * which is always '..'
3900 */
3901 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3902 INIT_LIST_HEAD(&check_dirs);
3903
3904 valid_path = fs_path_alloc();
3905 if (!valid_path) {
3906 ret = -ENOMEM;
3907 goto out;
3908 }
3909
3910 /*
3911 * First, check if the first ref of the current inode was overwritten
3912 * before. If yes, we know that the current inode was already orphanized
3913 * and thus use the orphan name. If not, we can use get_cur_path to
3914 * get the path of the first ref as it would like while receiving at
3915 * this point in time.
3916 * New inodes are always orphan at the beginning, so force to use the
3917 * orphan name in this case.
3918 * The first ref is stored in valid_path and will be updated if it
3919 * gets moved around.
3920 */
3921 if (!sctx->cur_inode_new) {
3922 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3923 sctx->cur_inode_gen);
3924 if (ret < 0)
3925 goto out;
3926 if (ret)
3927 did_overwrite = 1;
3928 }
3929 if (sctx->cur_inode_new || did_overwrite) {
3930 ret = gen_unique_name(sctx, sctx->cur_ino,
3931 sctx->cur_inode_gen, valid_path);
3932 if (ret < 0)
3933 goto out;
3934 is_orphan = 1;
3935 } else {
3936 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3937 valid_path);
3938 if (ret < 0)
3939 goto out;
3940 }
3941
3942 /*
3943 * Before doing any rename and link operations, do a first pass on the
3944 * new references to orphanize any unprocessed inodes that may have a
3945 * reference that conflicts with one of the new references of the current
3946 * inode. This needs to happen first because a new reference may conflict
3947 * with the old reference of a parent directory, so we must make sure
3948 * that the path used for link and rename commands don't use an
3949 * orphanized name when an ancestor was not yet orphanized.
3950 *
3951 * Example:
3952 *
3953 * Parent snapshot:
3954 *
3955 * . (ino 256)
3956 * |----- testdir/ (ino 259)
3957 * | |----- a (ino 257)
3958 * |
3959 * |----- b (ino 258)
3960 *
3961 * Send snapshot:
3962 *
3963 * . (ino 256)
3964 * |----- testdir_2/ (ino 259)
3965 * | |----- a (ino 260)
3966 * |
3967 * |----- testdir (ino 257)
3968 * |----- b (ino 257)
3969 * |----- b2 (ino 258)
3970 *
3971 * Processing the new reference for inode 257 with name "b" may happen
3972 * before processing the new reference with name "testdir". If so, we
3973 * must make sure that by the time we send a link command to create the
3974 * hard link "b", inode 259 was already orphanized, since the generated
3975 * path in "valid_path" already contains the orphanized name for 259.
3976 * We are processing inode 257, so only later when processing 259 we do
3977 * the rename operation to change its temporary (orphanized) name to
3978 * "testdir_2".
3979 */
3980 list_for_each_entry(cur, &sctx->new_refs, list) {
3981 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3982 if (ret < 0)
3983 goto out;
3984 if (ret == inode_state_will_create)
3985 continue;
3986
3987 /*
3988 * Check if this new ref would overwrite the first ref of another
3989 * unprocessed inode. If yes, orphanize the overwritten inode.
3990 * If we find an overwritten ref that is not the first ref,
3991 * simply unlink it.
3992 */
3993 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3994 cur->name, cur->name_len,
3995 &ow_inode, &ow_gen, &ow_mode);
3996 if (ret < 0)
3997 goto out;
3998 if (ret) {
3999 ret = is_first_ref(sctx->parent_root,
4000 ow_inode, cur->dir, cur->name,
4001 cur->name_len);
4002 if (ret < 0)
4003 goto out;
4004 if (ret) {
4005 struct name_cache_entry *nce;
4006 struct waiting_dir_move *wdm;
4007
4008 if (orphanized_dir) {
4009 ret = refresh_ref_path(sctx, cur);
4010 if (ret < 0)
4011 goto out;
4012 }
4013
4014 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4015 cur->full_path);
4016 if (ret < 0)
4017 goto out;
4018 if (S_ISDIR(ow_mode))
4019 orphanized_dir = true;
4020
4021 /*
4022 * If ow_inode has its rename operation delayed
4023 * make sure that its orphanized name is used in
4024 * the source path when performing its rename
4025 * operation.
4026 */
4027 if (is_waiting_for_move(sctx, ow_inode)) {
4028 wdm = get_waiting_dir_move(sctx,
4029 ow_inode);
4030 ASSERT(wdm);
4031 wdm->orphanized = true;
4032 }
4033
4034 /*
4035 * Make sure we clear our orphanized inode's
4036 * name from the name cache. This is because the
4037 * inode ow_inode might be an ancestor of some
4038 * other inode that will be orphanized as well
4039 * later and has an inode number greater than
4040 * sctx->send_progress. We need to prevent
4041 * future name lookups from using the old name
4042 * and get instead the orphan name.
4043 */
4044 nce = name_cache_search(sctx, ow_inode, ow_gen);
4045 if (nce) {
4046 name_cache_delete(sctx, nce);
4047 kfree(nce);
4048 }
4049
4050 /*
4051 * ow_inode might currently be an ancestor of
4052 * cur_ino, therefore compute valid_path (the
4053 * current path of cur_ino) again because it
4054 * might contain the pre-orphanization name of
4055 * ow_inode, which is no longer valid.
4056 */
4057 ret = is_ancestor(sctx->parent_root,
4058 ow_inode, ow_gen,
4059 sctx->cur_ino, NULL);
4060 if (ret > 0) {
4061 orphanized_ancestor = true;
4062 fs_path_reset(valid_path);
4063 ret = get_cur_path(sctx, sctx->cur_ino,
4064 sctx->cur_inode_gen,
4065 valid_path);
4066 }
4067 if (ret < 0)
4068 goto out;
4069 } else {
4070 ret = send_unlink(sctx, cur->full_path);
4071 if (ret < 0)
4072 goto out;
4073 }
4074 }
4075
4076 }
4077
4078 list_for_each_entry(cur, &sctx->new_refs, list) {
4079 /*
4080 * We may have refs where the parent directory does not exist
4081 * yet. This happens if the parent directories inum is higher
4082 * than the current inum. To handle this case, we create the
4083 * parent directory out of order. But we need to check if this
4084 * did already happen before due to other refs in the same dir.
4085 */
4086 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4087 if (ret < 0)
4088 goto out;
4089 if (ret == inode_state_will_create) {
4090 ret = 0;
4091 /*
4092 * First check if any of the current inodes refs did
4093 * already create the dir.
4094 */
4095 list_for_each_entry(cur2, &sctx->new_refs, list) {
4096 if (cur == cur2)
4097 break;
4098 if (cur2->dir == cur->dir) {
4099 ret = 1;
4100 break;
4101 }
4102 }
4103
4104 /*
4105 * If that did not happen, check if a previous inode
4106 * did already create the dir.
4107 */
4108 if (!ret)
4109 ret = did_create_dir(sctx, cur->dir);
4110 if (ret < 0)
4111 goto out;
4112 if (!ret) {
4113 ret = send_create_inode(sctx, cur->dir);
4114 if (ret < 0)
4115 goto out;
4116 }
4117 }
4118
4119 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4120 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4121 if (ret < 0)
4122 goto out;
4123 if (ret == 1) {
4124 can_rename = false;
4125 *pending_move = 1;
4126 }
4127 }
4128
4129 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4130 can_rename) {
4131 ret = wait_for_parent_move(sctx, cur, is_orphan);
4132 if (ret < 0)
4133 goto out;
4134 if (ret == 1) {
4135 can_rename = false;
4136 *pending_move = 1;
4137 }
4138 }
4139
4140 /*
4141 * link/move the ref to the new place. If we have an orphan
4142 * inode, move it and update valid_path. If not, link or move
4143 * it depending on the inode mode.
4144 */
4145 if (is_orphan && can_rename) {
4146 ret = send_rename(sctx, valid_path, cur->full_path);
4147 if (ret < 0)
4148 goto out;
4149 is_orphan = 0;
4150 ret = fs_path_copy(valid_path, cur->full_path);
4151 if (ret < 0)
4152 goto out;
4153 } else if (can_rename) {
4154 if (S_ISDIR(sctx->cur_inode_mode)) {
4155 /*
4156 * Dirs can't be linked, so move it. For moved
4157 * dirs, we always have one new and one deleted
4158 * ref. The deleted ref is ignored later.
4159 */
4160 ret = send_rename(sctx, valid_path,
4161 cur->full_path);
4162 if (!ret)
4163 ret = fs_path_copy(valid_path,
4164 cur->full_path);
4165 if (ret < 0)
4166 goto out;
4167 } else {
4168 /*
4169 * We might have previously orphanized an inode
4170 * which is an ancestor of our current inode,
4171 * so our reference's full path, which was
4172 * computed before any such orphanizations, must
4173 * be updated.
4174 */
4175 if (orphanized_dir) {
4176 ret = update_ref_path(sctx, cur);
4177 if (ret < 0)
4178 goto out;
4179 }
4180 ret = send_link(sctx, cur->full_path,
4181 valid_path);
4182 if (ret < 0)
4183 goto out;
4184 }
4185 }
4186 ret = dup_ref(cur, &check_dirs);
4187 if (ret < 0)
4188 goto out;
4189 }
4190
4191 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4192 /*
4193 * Check if we can already rmdir the directory. If not,
4194 * orphanize it. For every dir item inside that gets deleted
4195 * later, we do this check again and rmdir it then if possible.
4196 * See the use of check_dirs for more details.
4197 */
4198 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4199 sctx->cur_ino);
4200 if (ret < 0)
4201 goto out;
4202 if (ret) {
4203 ret = send_rmdir(sctx, valid_path);
4204 if (ret < 0)
4205 goto out;
4206 } else if (!is_orphan) {
4207 ret = orphanize_inode(sctx, sctx->cur_ino,
4208 sctx->cur_inode_gen, valid_path);
4209 if (ret < 0)
4210 goto out;
4211 is_orphan = 1;
4212 }
4213
4214 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4215 ret = dup_ref(cur, &check_dirs);
4216 if (ret < 0)
4217 goto out;
4218 }
4219 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4220 !list_empty(&sctx->deleted_refs)) {
4221 /*
4222 * We have a moved dir. Add the old parent to check_dirs
4223 */
4224 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4225 list);
4226 ret = dup_ref(cur, &check_dirs);
4227 if (ret < 0)
4228 goto out;
4229 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4230 /*
4231 * We have a non dir inode. Go through all deleted refs and
4232 * unlink them if they were not already overwritten by other
4233 * inodes.
4234 */
4235 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4236 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4237 sctx->cur_ino, sctx->cur_inode_gen,
4238 cur->name, cur->name_len);
4239 if (ret < 0)
4240 goto out;
4241 if (!ret) {
4242 /*
4243 * If we orphanized any ancestor before, we need
4244 * to recompute the full path for deleted names,
4245 * since any such path was computed before we
4246 * processed any references and orphanized any
4247 * ancestor inode.
4248 */
4249 if (orphanized_ancestor) {
4250 ret = update_ref_path(sctx, cur);
4251 if (ret < 0)
4252 goto out;
4253 }
4254 ret = send_unlink(sctx, cur->full_path);
4255 if (ret < 0)
4256 goto out;
4257 }
4258 ret = dup_ref(cur, &check_dirs);
4259 if (ret < 0)
4260 goto out;
4261 }
4262 /*
4263 * If the inode is still orphan, unlink the orphan. This may
4264 * happen when a previous inode did overwrite the first ref
4265 * of this inode and no new refs were added for the current
4266 * inode. Unlinking does not mean that the inode is deleted in
4267 * all cases. There may still be links to this inode in other
4268 * places.
4269 */
4270 if (is_orphan) {
4271 ret = send_unlink(sctx, valid_path);
4272 if (ret < 0)
4273 goto out;
4274 }
4275 }
4276
4277 /*
4278 * We did collect all parent dirs where cur_inode was once located. We
4279 * now go through all these dirs and check if they are pending for
4280 * deletion and if it's finally possible to perform the rmdir now.
4281 * We also update the inode stats of the parent dirs here.
4282 */
4283 list_for_each_entry(cur, &check_dirs, list) {
4284 /*
4285 * In case we had refs into dirs that were not processed yet,
4286 * we don't need to do the utime and rmdir logic for these dirs.
4287 * The dir will be processed later.
4288 */
4289 if (cur->dir > sctx->cur_ino)
4290 continue;
4291
4292 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4293 if (ret < 0)
4294 goto out;
4295
4296 if (ret == inode_state_did_create ||
4297 ret == inode_state_no_change) {
4298 /* TODO delayed utimes */
4299 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4300 if (ret < 0)
4301 goto out;
4302 } else if (ret == inode_state_did_delete &&
4303 cur->dir != last_dir_ino_rm) {
4304 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4305 sctx->cur_ino);
4306 if (ret < 0)
4307 goto out;
4308 if (ret) {
4309 ret = get_cur_path(sctx, cur->dir,
4310 cur->dir_gen, valid_path);
4311 if (ret < 0)
4312 goto out;
4313 ret = send_rmdir(sctx, valid_path);
4314 if (ret < 0)
4315 goto out;
4316 last_dir_ino_rm = cur->dir;
4317 }
4318 }
4319 }
4320
4321 ret = 0;
4322
4323 out:
4324 __free_recorded_refs(&check_dirs);
4325 free_recorded_refs(sctx);
4326 fs_path_free(valid_path);
4327 return ret;
4328 }
4329
record_ref(struct btrfs_root * root,u64 dir,struct fs_path * name,void * ctx,struct list_head * refs)4330 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4331 void *ctx, struct list_head *refs)
4332 {
4333 int ret = 0;
4334 struct send_ctx *sctx = ctx;
4335 struct fs_path *p;
4336 u64 gen;
4337
4338 p = fs_path_alloc();
4339 if (!p)
4340 return -ENOMEM;
4341
4342 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4343 NULL, NULL);
4344 if (ret < 0)
4345 goto out;
4346
4347 ret = get_cur_path(sctx, dir, gen, p);
4348 if (ret < 0)
4349 goto out;
4350 ret = fs_path_add_path(p, name);
4351 if (ret < 0)
4352 goto out;
4353
4354 ret = __record_ref(refs, dir, gen, p);
4355
4356 out:
4357 if (ret)
4358 fs_path_free(p);
4359 return ret;
4360 }
4361
__record_new_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4362 static int __record_new_ref(int num, u64 dir, int index,
4363 struct fs_path *name,
4364 void *ctx)
4365 {
4366 struct send_ctx *sctx = ctx;
4367 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4368 }
4369
4370
__record_deleted_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4371 static int __record_deleted_ref(int num, u64 dir, int index,
4372 struct fs_path *name,
4373 void *ctx)
4374 {
4375 struct send_ctx *sctx = ctx;
4376 return record_ref(sctx->parent_root, dir, name, ctx,
4377 &sctx->deleted_refs);
4378 }
4379
record_new_ref(struct send_ctx * sctx)4380 static int record_new_ref(struct send_ctx *sctx)
4381 {
4382 int ret;
4383
4384 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4385 sctx->cmp_key, 0, __record_new_ref, sctx);
4386 if (ret < 0)
4387 goto out;
4388 ret = 0;
4389
4390 out:
4391 return ret;
4392 }
4393
record_deleted_ref(struct send_ctx * sctx)4394 static int record_deleted_ref(struct send_ctx *sctx)
4395 {
4396 int ret;
4397
4398 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4399 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4400 if (ret < 0)
4401 goto out;
4402 ret = 0;
4403
4404 out:
4405 return ret;
4406 }
4407
4408 struct find_ref_ctx {
4409 u64 dir;
4410 u64 dir_gen;
4411 struct btrfs_root *root;
4412 struct fs_path *name;
4413 int found_idx;
4414 };
4415
__find_iref(int num,u64 dir,int index,struct fs_path * name,void * ctx_)4416 static int __find_iref(int num, u64 dir, int index,
4417 struct fs_path *name,
4418 void *ctx_)
4419 {
4420 struct find_ref_ctx *ctx = ctx_;
4421 u64 dir_gen;
4422 int ret;
4423
4424 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4425 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4426 /*
4427 * To avoid doing extra lookups we'll only do this if everything
4428 * else matches.
4429 */
4430 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4431 NULL, NULL, NULL);
4432 if (ret)
4433 return ret;
4434 if (dir_gen != ctx->dir_gen)
4435 return 0;
4436 ctx->found_idx = num;
4437 return 1;
4438 }
4439 return 0;
4440 }
4441
find_iref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,u64 dir,u64 dir_gen,struct fs_path * name)4442 static int find_iref(struct btrfs_root *root,
4443 struct btrfs_path *path,
4444 struct btrfs_key *key,
4445 u64 dir, u64 dir_gen, struct fs_path *name)
4446 {
4447 int ret;
4448 struct find_ref_ctx ctx;
4449
4450 ctx.dir = dir;
4451 ctx.name = name;
4452 ctx.dir_gen = dir_gen;
4453 ctx.found_idx = -1;
4454 ctx.root = root;
4455
4456 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4457 if (ret < 0)
4458 return ret;
4459
4460 if (ctx.found_idx == -1)
4461 return -ENOENT;
4462
4463 return ctx.found_idx;
4464 }
4465
__record_changed_new_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4466 static int __record_changed_new_ref(int num, u64 dir, int index,
4467 struct fs_path *name,
4468 void *ctx)
4469 {
4470 u64 dir_gen;
4471 int ret;
4472 struct send_ctx *sctx = ctx;
4473
4474 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4475 NULL, NULL, NULL);
4476 if (ret)
4477 return ret;
4478
4479 ret = find_iref(sctx->parent_root, sctx->right_path,
4480 sctx->cmp_key, dir, dir_gen, name);
4481 if (ret == -ENOENT)
4482 ret = __record_new_ref(num, dir, index, name, sctx);
4483 else if (ret > 0)
4484 ret = 0;
4485
4486 return ret;
4487 }
4488
__record_changed_deleted_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4489 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4490 struct fs_path *name,
4491 void *ctx)
4492 {
4493 u64 dir_gen;
4494 int ret;
4495 struct send_ctx *sctx = ctx;
4496
4497 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4498 NULL, NULL, NULL);
4499 if (ret)
4500 return ret;
4501
4502 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4503 dir, dir_gen, name);
4504 if (ret == -ENOENT)
4505 ret = __record_deleted_ref(num, dir, index, name, sctx);
4506 else if (ret > 0)
4507 ret = 0;
4508
4509 return ret;
4510 }
4511
record_changed_ref(struct send_ctx * sctx)4512 static int record_changed_ref(struct send_ctx *sctx)
4513 {
4514 int ret = 0;
4515
4516 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4517 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4518 if (ret < 0)
4519 goto out;
4520 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4521 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4522 if (ret < 0)
4523 goto out;
4524 ret = 0;
4525
4526 out:
4527 return ret;
4528 }
4529
4530 /*
4531 * Record and process all refs at once. Needed when an inode changes the
4532 * generation number, which means that it was deleted and recreated.
4533 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4534 static int process_all_refs(struct send_ctx *sctx,
4535 enum btrfs_compare_tree_result cmd)
4536 {
4537 int ret;
4538 struct btrfs_root *root;
4539 struct btrfs_path *path;
4540 struct btrfs_key key;
4541 struct btrfs_key found_key;
4542 struct extent_buffer *eb;
4543 int slot;
4544 iterate_inode_ref_t cb;
4545 int pending_move = 0;
4546
4547 path = alloc_path_for_send();
4548 if (!path)
4549 return -ENOMEM;
4550
4551 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4552 root = sctx->send_root;
4553 cb = __record_new_ref;
4554 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4555 root = sctx->parent_root;
4556 cb = __record_deleted_ref;
4557 } else {
4558 btrfs_err(sctx->send_root->fs_info,
4559 "Wrong command %d in process_all_refs", cmd);
4560 ret = -EINVAL;
4561 goto out;
4562 }
4563
4564 key.objectid = sctx->cmp_key->objectid;
4565 key.type = BTRFS_INODE_REF_KEY;
4566 key.offset = 0;
4567 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4568 if (ret < 0)
4569 goto out;
4570
4571 while (1) {
4572 eb = path->nodes[0];
4573 slot = path->slots[0];
4574 if (slot >= btrfs_header_nritems(eb)) {
4575 ret = btrfs_next_leaf(root, path);
4576 if (ret < 0)
4577 goto out;
4578 else if (ret > 0)
4579 break;
4580 continue;
4581 }
4582
4583 btrfs_item_key_to_cpu(eb, &found_key, slot);
4584
4585 if (found_key.objectid != key.objectid ||
4586 (found_key.type != BTRFS_INODE_REF_KEY &&
4587 found_key.type != BTRFS_INODE_EXTREF_KEY))
4588 break;
4589
4590 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4591 if (ret < 0)
4592 goto out;
4593
4594 path->slots[0]++;
4595 }
4596 btrfs_release_path(path);
4597
4598 /*
4599 * We don't actually care about pending_move as we are simply
4600 * re-creating this inode and will be rename'ing it into place once we
4601 * rename the parent directory.
4602 */
4603 ret = process_recorded_refs(sctx, &pending_move);
4604 out:
4605 btrfs_free_path(path);
4606 return ret;
4607 }
4608
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4609 static int send_set_xattr(struct send_ctx *sctx,
4610 struct fs_path *path,
4611 const char *name, int name_len,
4612 const char *data, int data_len)
4613 {
4614 int ret = 0;
4615
4616 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4617 if (ret < 0)
4618 goto out;
4619
4620 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4621 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4622 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4623
4624 ret = send_cmd(sctx);
4625
4626 tlv_put_failure:
4627 out:
4628 return ret;
4629 }
4630
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4631 static int send_remove_xattr(struct send_ctx *sctx,
4632 struct fs_path *path,
4633 const char *name, int name_len)
4634 {
4635 int ret = 0;
4636
4637 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4638 if (ret < 0)
4639 goto out;
4640
4641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4642 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4643
4644 ret = send_cmd(sctx);
4645
4646 tlv_put_failure:
4647 out:
4648 return ret;
4649 }
4650
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4651 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4652 const char *name, int name_len,
4653 const char *data, int data_len,
4654 u8 type, void *ctx)
4655 {
4656 int ret;
4657 struct send_ctx *sctx = ctx;
4658 struct fs_path *p;
4659 struct posix_acl_xattr_header dummy_acl;
4660
4661 /* Capabilities are emitted by finish_inode_if_needed */
4662 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4663 return 0;
4664
4665 p = fs_path_alloc();
4666 if (!p)
4667 return -ENOMEM;
4668
4669 /*
4670 * This hack is needed because empty acls are stored as zero byte
4671 * data in xattrs. Problem with that is, that receiving these zero byte
4672 * acls will fail later. To fix this, we send a dummy acl list that
4673 * only contains the version number and no entries.
4674 */
4675 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4676 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4677 if (data_len == 0) {
4678 dummy_acl.a_version =
4679 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4680 data = (char *)&dummy_acl;
4681 data_len = sizeof(dummy_acl);
4682 }
4683 }
4684
4685 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4686 if (ret < 0)
4687 goto out;
4688
4689 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4690
4691 out:
4692 fs_path_free(p);
4693 return ret;
4694 }
4695
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4696 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4697 const char *name, int name_len,
4698 const char *data, int data_len,
4699 u8 type, void *ctx)
4700 {
4701 int ret;
4702 struct send_ctx *sctx = ctx;
4703 struct fs_path *p;
4704
4705 p = fs_path_alloc();
4706 if (!p)
4707 return -ENOMEM;
4708
4709 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4710 if (ret < 0)
4711 goto out;
4712
4713 ret = send_remove_xattr(sctx, p, name, name_len);
4714
4715 out:
4716 fs_path_free(p);
4717 return ret;
4718 }
4719
process_new_xattr(struct send_ctx * sctx)4720 static int process_new_xattr(struct send_ctx *sctx)
4721 {
4722 int ret = 0;
4723
4724 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4725 __process_new_xattr, sctx);
4726
4727 return ret;
4728 }
4729
process_deleted_xattr(struct send_ctx * sctx)4730 static int process_deleted_xattr(struct send_ctx *sctx)
4731 {
4732 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4733 __process_deleted_xattr, sctx);
4734 }
4735
4736 struct find_xattr_ctx {
4737 const char *name;
4738 int name_len;
4739 int found_idx;
4740 char *found_data;
4741 int found_data_len;
4742 };
4743
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * vctx)4744 static int __find_xattr(int num, struct btrfs_key *di_key,
4745 const char *name, int name_len,
4746 const char *data, int data_len,
4747 u8 type, void *vctx)
4748 {
4749 struct find_xattr_ctx *ctx = vctx;
4750
4751 if (name_len == ctx->name_len &&
4752 strncmp(name, ctx->name, name_len) == 0) {
4753 ctx->found_idx = num;
4754 ctx->found_data_len = data_len;
4755 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4756 if (!ctx->found_data)
4757 return -ENOMEM;
4758 return 1;
4759 }
4760 return 0;
4761 }
4762
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)4763 static int find_xattr(struct btrfs_root *root,
4764 struct btrfs_path *path,
4765 struct btrfs_key *key,
4766 const char *name, int name_len,
4767 char **data, int *data_len)
4768 {
4769 int ret;
4770 struct find_xattr_ctx ctx;
4771
4772 ctx.name = name;
4773 ctx.name_len = name_len;
4774 ctx.found_idx = -1;
4775 ctx.found_data = NULL;
4776 ctx.found_data_len = 0;
4777
4778 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4779 if (ret < 0)
4780 return ret;
4781
4782 if (ctx.found_idx == -1)
4783 return -ENOENT;
4784 if (data) {
4785 *data = ctx.found_data;
4786 *data_len = ctx.found_data_len;
4787 } else {
4788 kfree(ctx.found_data);
4789 }
4790 return ctx.found_idx;
4791 }
4792
4793
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4794 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4795 const char *name, int name_len,
4796 const char *data, int data_len,
4797 u8 type, void *ctx)
4798 {
4799 int ret;
4800 struct send_ctx *sctx = ctx;
4801 char *found_data = NULL;
4802 int found_data_len = 0;
4803
4804 ret = find_xattr(sctx->parent_root, sctx->right_path,
4805 sctx->cmp_key, name, name_len, &found_data,
4806 &found_data_len);
4807 if (ret == -ENOENT) {
4808 ret = __process_new_xattr(num, di_key, name, name_len, data,
4809 data_len, type, ctx);
4810 } else if (ret >= 0) {
4811 if (data_len != found_data_len ||
4812 memcmp(data, found_data, data_len)) {
4813 ret = __process_new_xattr(num, di_key, name, name_len,
4814 data, data_len, type, ctx);
4815 } else {
4816 ret = 0;
4817 }
4818 }
4819
4820 kfree(found_data);
4821 return ret;
4822 }
4823
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4824 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4825 const char *name, int name_len,
4826 const char *data, int data_len,
4827 u8 type, void *ctx)
4828 {
4829 int ret;
4830 struct send_ctx *sctx = ctx;
4831
4832 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4833 name, name_len, NULL, NULL);
4834 if (ret == -ENOENT)
4835 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4836 data_len, type, ctx);
4837 else if (ret >= 0)
4838 ret = 0;
4839
4840 return ret;
4841 }
4842
process_changed_xattr(struct send_ctx * sctx)4843 static int process_changed_xattr(struct send_ctx *sctx)
4844 {
4845 int ret = 0;
4846
4847 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4848 __process_changed_new_xattr, sctx);
4849 if (ret < 0)
4850 goto out;
4851 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4852 __process_changed_deleted_xattr, sctx);
4853
4854 out:
4855 return ret;
4856 }
4857
process_all_new_xattrs(struct send_ctx * sctx)4858 static int process_all_new_xattrs(struct send_ctx *sctx)
4859 {
4860 int ret;
4861 struct btrfs_root *root;
4862 struct btrfs_path *path;
4863 struct btrfs_key key;
4864 struct btrfs_key found_key;
4865 struct extent_buffer *eb;
4866 int slot;
4867
4868 path = alloc_path_for_send();
4869 if (!path)
4870 return -ENOMEM;
4871
4872 root = sctx->send_root;
4873
4874 key.objectid = sctx->cmp_key->objectid;
4875 key.type = BTRFS_XATTR_ITEM_KEY;
4876 key.offset = 0;
4877 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4878 if (ret < 0)
4879 goto out;
4880
4881 while (1) {
4882 eb = path->nodes[0];
4883 slot = path->slots[0];
4884 if (slot >= btrfs_header_nritems(eb)) {
4885 ret = btrfs_next_leaf(root, path);
4886 if (ret < 0) {
4887 goto out;
4888 } else if (ret > 0) {
4889 ret = 0;
4890 break;
4891 }
4892 continue;
4893 }
4894
4895 btrfs_item_key_to_cpu(eb, &found_key, slot);
4896 if (found_key.objectid != key.objectid ||
4897 found_key.type != key.type) {
4898 ret = 0;
4899 goto out;
4900 }
4901
4902 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4903 if (ret < 0)
4904 goto out;
4905
4906 path->slots[0]++;
4907 }
4908
4909 out:
4910 btrfs_free_path(path);
4911 return ret;
4912 }
4913
max_send_read_size(const struct send_ctx * sctx)4914 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4915 {
4916 return sctx->send_max_size - SZ_16K;
4917 }
4918
put_data_header(struct send_ctx * sctx,u32 len)4919 static int put_data_header(struct send_ctx *sctx, u32 len)
4920 {
4921 struct btrfs_tlv_header *hdr;
4922
4923 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4924 return -EOVERFLOW;
4925 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4926 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4927 put_unaligned_le16(len, &hdr->tlv_len);
4928 sctx->send_size += sizeof(*hdr);
4929 return 0;
4930 }
4931
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)4932 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4933 {
4934 struct btrfs_root *root = sctx->send_root;
4935 struct btrfs_fs_info *fs_info = root->fs_info;
4936 struct inode *inode;
4937 struct page *page;
4938 char *addr;
4939 pgoff_t index = offset >> PAGE_SHIFT;
4940 pgoff_t last_index;
4941 unsigned pg_offset = offset_in_page(offset);
4942 int ret;
4943
4944 ret = put_data_header(sctx, len);
4945 if (ret)
4946 return ret;
4947
4948 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4949 if (IS_ERR(inode))
4950 return PTR_ERR(inode);
4951
4952 last_index = (offset + len - 1) >> PAGE_SHIFT;
4953
4954 /* initial readahead */
4955 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4956 file_ra_state_init(&sctx->ra, inode->i_mapping);
4957
4958 while (index <= last_index) {
4959 unsigned cur_len = min_t(unsigned, len,
4960 PAGE_SIZE - pg_offset);
4961
4962 page = find_lock_page(inode->i_mapping, index);
4963 if (!page) {
4964 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4965 NULL, index, last_index + 1 - index);
4966
4967 page = find_or_create_page(inode->i_mapping, index,
4968 GFP_KERNEL);
4969 if (!page) {
4970 ret = -ENOMEM;
4971 break;
4972 }
4973 }
4974
4975 if (PageReadahead(page)) {
4976 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4977 NULL, page, index, last_index + 1 - index);
4978 }
4979
4980 if (!PageUptodate(page)) {
4981 btrfs_readpage(NULL, page);
4982 lock_page(page);
4983 if (!PageUptodate(page)) {
4984 unlock_page(page);
4985 put_page(page);
4986 ret = -EIO;
4987 break;
4988 }
4989 }
4990
4991 addr = kmap(page);
4992 memcpy(sctx->send_buf + sctx->send_size, addr + pg_offset,
4993 cur_len);
4994 kunmap(page);
4995 unlock_page(page);
4996 put_page(page);
4997 index++;
4998 pg_offset = 0;
4999 len -= cur_len;
5000 sctx->send_size += cur_len;
5001 }
5002 iput(inode);
5003 return ret;
5004 }
5005
5006 /*
5007 * Read some bytes from the current inode/file and send a write command to
5008 * user space.
5009 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5010 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5011 {
5012 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5013 int ret = 0;
5014 struct fs_path *p;
5015
5016 p = fs_path_alloc();
5017 if (!p)
5018 return -ENOMEM;
5019
5020 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5021
5022 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5023 if (ret < 0)
5024 goto out;
5025
5026 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5027 if (ret < 0)
5028 goto out;
5029
5030 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5031 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5032 ret = put_file_data(sctx, offset, len);
5033 if (ret < 0)
5034 goto out;
5035
5036 ret = send_cmd(sctx);
5037
5038 tlv_put_failure:
5039 out:
5040 fs_path_free(p);
5041 return ret;
5042 }
5043
5044 /*
5045 * Send a clone command to user space.
5046 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5047 static int send_clone(struct send_ctx *sctx,
5048 u64 offset, u32 len,
5049 struct clone_root *clone_root)
5050 {
5051 int ret = 0;
5052 struct fs_path *p;
5053 u64 gen;
5054
5055 btrfs_debug(sctx->send_root->fs_info,
5056 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5057 offset, len, clone_root->root->root_key.objectid,
5058 clone_root->ino, clone_root->offset);
5059
5060 p = fs_path_alloc();
5061 if (!p)
5062 return -ENOMEM;
5063
5064 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5065 if (ret < 0)
5066 goto out;
5067
5068 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5069 if (ret < 0)
5070 goto out;
5071
5072 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5073 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5074 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5075
5076 if (clone_root->root == sctx->send_root) {
5077 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5078 &gen, NULL, NULL, NULL, NULL);
5079 if (ret < 0)
5080 goto out;
5081 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5082 } else {
5083 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5084 }
5085 if (ret < 0)
5086 goto out;
5087
5088 /*
5089 * If the parent we're using has a received_uuid set then use that as
5090 * our clone source as that is what we will look for when doing a
5091 * receive.
5092 *
5093 * This covers the case that we create a snapshot off of a received
5094 * subvolume and then use that as the parent and try to receive on a
5095 * different host.
5096 */
5097 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5098 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5099 clone_root->root->root_item.received_uuid);
5100 else
5101 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5102 clone_root->root->root_item.uuid);
5103 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5104 le64_to_cpu(clone_root->root->root_item.ctransid));
5105 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5106 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5107 clone_root->offset);
5108
5109 ret = send_cmd(sctx);
5110
5111 tlv_put_failure:
5112 out:
5113 fs_path_free(p);
5114 return ret;
5115 }
5116
5117 /*
5118 * Send an update extent command to user space.
5119 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5120 static int send_update_extent(struct send_ctx *sctx,
5121 u64 offset, u32 len)
5122 {
5123 int ret = 0;
5124 struct fs_path *p;
5125
5126 p = fs_path_alloc();
5127 if (!p)
5128 return -ENOMEM;
5129
5130 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5131 if (ret < 0)
5132 goto out;
5133
5134 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5135 if (ret < 0)
5136 goto out;
5137
5138 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5139 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5140 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5141
5142 ret = send_cmd(sctx);
5143
5144 tlv_put_failure:
5145 out:
5146 fs_path_free(p);
5147 return ret;
5148 }
5149
send_hole(struct send_ctx * sctx,u64 end)5150 static int send_hole(struct send_ctx *sctx, u64 end)
5151 {
5152 struct fs_path *p = NULL;
5153 u64 read_size = max_send_read_size(sctx);
5154 u64 offset = sctx->cur_inode_last_extent;
5155 int ret = 0;
5156
5157 /*
5158 * A hole that starts at EOF or beyond it. Since we do not yet support
5159 * fallocate (for extent preallocation and hole punching), sending a
5160 * write of zeroes starting at EOF or beyond would later require issuing
5161 * a truncate operation which would undo the write and achieve nothing.
5162 */
5163 if (offset >= sctx->cur_inode_size)
5164 return 0;
5165
5166 /*
5167 * Don't go beyond the inode's i_size due to prealloc extents that start
5168 * after the i_size.
5169 */
5170 end = min_t(u64, end, sctx->cur_inode_size);
5171
5172 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5173 return send_update_extent(sctx, offset, end - offset);
5174
5175 p = fs_path_alloc();
5176 if (!p)
5177 return -ENOMEM;
5178 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5179 if (ret < 0)
5180 goto tlv_put_failure;
5181 while (offset < end) {
5182 u64 len = min(end - offset, read_size);
5183
5184 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5185 if (ret < 0)
5186 break;
5187 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5188 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5189 ret = put_data_header(sctx, len);
5190 if (ret < 0)
5191 break;
5192 memset(sctx->send_buf + sctx->send_size, 0, len);
5193 sctx->send_size += len;
5194 ret = send_cmd(sctx);
5195 if (ret < 0)
5196 break;
5197 offset += len;
5198 }
5199 sctx->cur_inode_next_write_offset = offset;
5200 tlv_put_failure:
5201 fs_path_free(p);
5202 return ret;
5203 }
5204
send_extent_data(struct send_ctx * sctx,const u64 offset,const u64 len)5205 static int send_extent_data(struct send_ctx *sctx,
5206 const u64 offset,
5207 const u64 len)
5208 {
5209 u64 read_size = max_send_read_size(sctx);
5210 u64 sent = 0;
5211
5212 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5213 return send_update_extent(sctx, offset, len);
5214
5215 while (sent < len) {
5216 u64 size = min(len - sent, read_size);
5217 int ret;
5218
5219 ret = send_write(sctx, offset + sent, size);
5220 if (ret < 0)
5221 return ret;
5222 sent += size;
5223 }
5224 return 0;
5225 }
5226
5227 /*
5228 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5229 * found, call send_set_xattr function to emit it.
5230 *
5231 * Return 0 if there isn't a capability, or when the capability was emitted
5232 * successfully, or < 0 if an error occurred.
5233 */
send_capabilities(struct send_ctx * sctx)5234 static int send_capabilities(struct send_ctx *sctx)
5235 {
5236 struct fs_path *fspath = NULL;
5237 struct btrfs_path *path;
5238 struct btrfs_dir_item *di;
5239 struct extent_buffer *leaf;
5240 unsigned long data_ptr;
5241 char *buf = NULL;
5242 int buf_len;
5243 int ret = 0;
5244
5245 path = alloc_path_for_send();
5246 if (!path)
5247 return -ENOMEM;
5248
5249 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5250 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5251 if (!di) {
5252 /* There is no xattr for this inode */
5253 goto out;
5254 } else if (IS_ERR(di)) {
5255 ret = PTR_ERR(di);
5256 goto out;
5257 }
5258
5259 leaf = path->nodes[0];
5260 buf_len = btrfs_dir_data_len(leaf, di);
5261
5262 fspath = fs_path_alloc();
5263 buf = kmalloc(buf_len, GFP_KERNEL);
5264 if (!fspath || !buf) {
5265 ret = -ENOMEM;
5266 goto out;
5267 }
5268
5269 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5270 if (ret < 0)
5271 goto out;
5272
5273 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5274 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5275
5276 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5277 strlen(XATTR_NAME_CAPS), buf, buf_len);
5278 out:
5279 kfree(buf);
5280 fs_path_free(fspath);
5281 btrfs_free_path(path);
5282 return ret;
5283 }
5284
clone_range(struct send_ctx * sctx,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5285 static int clone_range(struct send_ctx *sctx,
5286 struct clone_root *clone_root,
5287 const u64 disk_byte,
5288 u64 data_offset,
5289 u64 offset,
5290 u64 len)
5291 {
5292 struct btrfs_path *path;
5293 struct btrfs_key key;
5294 int ret;
5295 u64 clone_src_i_size = 0;
5296
5297 /*
5298 * Prevent cloning from a zero offset with a length matching the sector
5299 * size because in some scenarios this will make the receiver fail.
5300 *
5301 * For example, if in the source filesystem the extent at offset 0
5302 * has a length of sectorsize and it was written using direct IO, then
5303 * it can never be an inline extent (even if compression is enabled).
5304 * Then this extent can be cloned in the original filesystem to a non
5305 * zero file offset, but it may not be possible to clone in the
5306 * destination filesystem because it can be inlined due to compression
5307 * on the destination filesystem (as the receiver's write operations are
5308 * always done using buffered IO). The same happens when the original
5309 * filesystem does not have compression enabled but the destination
5310 * filesystem has.
5311 */
5312 if (clone_root->offset == 0 &&
5313 len == sctx->send_root->fs_info->sectorsize)
5314 return send_extent_data(sctx, offset, len);
5315
5316 path = alloc_path_for_send();
5317 if (!path)
5318 return -ENOMEM;
5319
5320 /*
5321 * There are inodes that have extents that lie behind its i_size. Don't
5322 * accept clones from these extents.
5323 */
5324 ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5325 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5326 btrfs_release_path(path);
5327 if (ret < 0)
5328 goto out;
5329
5330 /*
5331 * We can't send a clone operation for the entire range if we find
5332 * extent items in the respective range in the source file that
5333 * refer to different extents or if we find holes.
5334 * So check for that and do a mix of clone and regular write/copy
5335 * operations if needed.
5336 *
5337 * Example:
5338 *
5339 * mkfs.btrfs -f /dev/sda
5340 * mount /dev/sda /mnt
5341 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5342 * cp --reflink=always /mnt/foo /mnt/bar
5343 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5344 * btrfs subvolume snapshot -r /mnt /mnt/snap
5345 *
5346 * If when we send the snapshot and we are processing file bar (which
5347 * has a higher inode number than foo) we blindly send a clone operation
5348 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5349 * a file bar that matches the content of file foo - iow, doesn't match
5350 * the content from bar in the original filesystem.
5351 */
5352 key.objectid = clone_root->ino;
5353 key.type = BTRFS_EXTENT_DATA_KEY;
5354 key.offset = clone_root->offset;
5355 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5356 if (ret < 0)
5357 goto out;
5358 if (ret > 0 && path->slots[0] > 0) {
5359 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5360 if (key.objectid == clone_root->ino &&
5361 key.type == BTRFS_EXTENT_DATA_KEY)
5362 path->slots[0]--;
5363 }
5364
5365 while (true) {
5366 struct extent_buffer *leaf = path->nodes[0];
5367 int slot = path->slots[0];
5368 struct btrfs_file_extent_item *ei;
5369 u8 type;
5370 u64 ext_len;
5371 u64 clone_len;
5372 u64 clone_data_offset;
5373
5374 if (slot >= btrfs_header_nritems(leaf)) {
5375 ret = btrfs_next_leaf(clone_root->root, path);
5376 if (ret < 0)
5377 goto out;
5378 else if (ret > 0)
5379 break;
5380 continue;
5381 }
5382
5383 btrfs_item_key_to_cpu(leaf, &key, slot);
5384
5385 /*
5386 * We might have an implicit trailing hole (NO_HOLES feature
5387 * enabled). We deal with it after leaving this loop.
5388 */
5389 if (key.objectid != clone_root->ino ||
5390 key.type != BTRFS_EXTENT_DATA_KEY)
5391 break;
5392
5393 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5394 type = btrfs_file_extent_type(leaf, ei);
5395 if (type == BTRFS_FILE_EXTENT_INLINE) {
5396 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5397 ext_len = PAGE_ALIGN(ext_len);
5398 } else {
5399 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5400 }
5401
5402 if (key.offset + ext_len <= clone_root->offset)
5403 goto next;
5404
5405 if (key.offset > clone_root->offset) {
5406 /* Implicit hole, NO_HOLES feature enabled. */
5407 u64 hole_len = key.offset - clone_root->offset;
5408
5409 if (hole_len > len)
5410 hole_len = len;
5411 ret = send_extent_data(sctx, offset, hole_len);
5412 if (ret < 0)
5413 goto out;
5414
5415 len -= hole_len;
5416 if (len == 0)
5417 break;
5418 offset += hole_len;
5419 clone_root->offset += hole_len;
5420 data_offset += hole_len;
5421 }
5422
5423 if (key.offset >= clone_root->offset + len)
5424 break;
5425
5426 if (key.offset >= clone_src_i_size)
5427 break;
5428
5429 if (key.offset + ext_len > clone_src_i_size)
5430 ext_len = clone_src_i_size - key.offset;
5431
5432 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5433 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5434 clone_root->offset = key.offset;
5435 if (clone_data_offset < data_offset &&
5436 clone_data_offset + ext_len > data_offset) {
5437 u64 extent_offset;
5438
5439 extent_offset = data_offset - clone_data_offset;
5440 ext_len -= extent_offset;
5441 clone_data_offset += extent_offset;
5442 clone_root->offset += extent_offset;
5443 }
5444 }
5445
5446 clone_len = min_t(u64, ext_len, len);
5447
5448 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5449 clone_data_offset == data_offset) {
5450 const u64 src_end = clone_root->offset + clone_len;
5451 const u64 sectorsize = SZ_64K;
5452
5453 /*
5454 * We can't clone the last block, when its size is not
5455 * sector size aligned, into the middle of a file. If we
5456 * do so, the receiver will get a failure (-EINVAL) when
5457 * trying to clone or will silently corrupt the data in
5458 * the destination file if it's on a kernel without the
5459 * fix introduced by commit ac765f83f1397646
5460 * ("Btrfs: fix data corruption due to cloning of eof
5461 * block).
5462 *
5463 * So issue a clone of the aligned down range plus a
5464 * regular write for the eof block, if we hit that case.
5465 *
5466 * Also, we use the maximum possible sector size, 64K,
5467 * because we don't know what's the sector size of the
5468 * filesystem that receives the stream, so we have to
5469 * assume the largest possible sector size.
5470 */
5471 if (src_end == clone_src_i_size &&
5472 !IS_ALIGNED(src_end, sectorsize) &&
5473 offset + clone_len < sctx->cur_inode_size) {
5474 u64 slen;
5475
5476 slen = ALIGN_DOWN(src_end - clone_root->offset,
5477 sectorsize);
5478 if (slen > 0) {
5479 ret = send_clone(sctx, offset, slen,
5480 clone_root);
5481 if (ret < 0)
5482 goto out;
5483 }
5484 ret = send_extent_data(sctx, offset + slen,
5485 clone_len - slen);
5486 } else {
5487 ret = send_clone(sctx, offset, clone_len,
5488 clone_root);
5489 }
5490 } else {
5491 ret = send_extent_data(sctx, offset, clone_len);
5492 }
5493
5494 if (ret < 0)
5495 goto out;
5496
5497 len -= clone_len;
5498 if (len == 0)
5499 break;
5500 offset += clone_len;
5501 clone_root->offset += clone_len;
5502 data_offset += clone_len;
5503 next:
5504 path->slots[0]++;
5505 }
5506
5507 if (len > 0)
5508 ret = send_extent_data(sctx, offset, len);
5509 else
5510 ret = 0;
5511 out:
5512 btrfs_free_path(path);
5513 return ret;
5514 }
5515
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)5516 static int send_write_or_clone(struct send_ctx *sctx,
5517 struct btrfs_path *path,
5518 struct btrfs_key *key,
5519 struct clone_root *clone_root)
5520 {
5521 int ret = 0;
5522 u64 offset = key->offset;
5523 u64 end;
5524 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5525
5526 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5527 if (offset >= end)
5528 return 0;
5529
5530 if (clone_root && IS_ALIGNED(end, bs)) {
5531 struct btrfs_file_extent_item *ei;
5532 u64 disk_byte;
5533 u64 data_offset;
5534
5535 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5536 struct btrfs_file_extent_item);
5537 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5538 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5539 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5540 offset, end - offset);
5541 } else {
5542 ret = send_extent_data(sctx, offset, end - offset);
5543 }
5544 sctx->cur_inode_next_write_offset = end;
5545 return ret;
5546 }
5547
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)5548 static int is_extent_unchanged(struct send_ctx *sctx,
5549 struct btrfs_path *left_path,
5550 struct btrfs_key *ekey)
5551 {
5552 int ret = 0;
5553 struct btrfs_key key;
5554 struct btrfs_path *path = NULL;
5555 struct extent_buffer *eb;
5556 int slot;
5557 struct btrfs_key found_key;
5558 struct btrfs_file_extent_item *ei;
5559 u64 left_disknr;
5560 u64 right_disknr;
5561 u64 left_offset;
5562 u64 right_offset;
5563 u64 left_offset_fixed;
5564 u64 left_len;
5565 u64 right_len;
5566 u64 left_gen;
5567 u64 right_gen;
5568 u8 left_type;
5569 u8 right_type;
5570
5571 path = alloc_path_for_send();
5572 if (!path)
5573 return -ENOMEM;
5574
5575 eb = left_path->nodes[0];
5576 slot = left_path->slots[0];
5577 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5578 left_type = btrfs_file_extent_type(eb, ei);
5579
5580 if (left_type != BTRFS_FILE_EXTENT_REG) {
5581 ret = 0;
5582 goto out;
5583 }
5584 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5585 left_len = btrfs_file_extent_num_bytes(eb, ei);
5586 left_offset = btrfs_file_extent_offset(eb, ei);
5587 left_gen = btrfs_file_extent_generation(eb, ei);
5588
5589 /*
5590 * Following comments will refer to these graphics. L is the left
5591 * extents which we are checking at the moment. 1-8 are the right
5592 * extents that we iterate.
5593 *
5594 * |-----L-----|
5595 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5596 *
5597 * |-----L-----|
5598 * |--1--|-2b-|...(same as above)
5599 *
5600 * Alternative situation. Happens on files where extents got split.
5601 * |-----L-----|
5602 * |-----------7-----------|-6-|
5603 *
5604 * Alternative situation. Happens on files which got larger.
5605 * |-----L-----|
5606 * |-8-|
5607 * Nothing follows after 8.
5608 */
5609
5610 key.objectid = ekey->objectid;
5611 key.type = BTRFS_EXTENT_DATA_KEY;
5612 key.offset = ekey->offset;
5613 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5614 if (ret < 0)
5615 goto out;
5616 if (ret) {
5617 ret = 0;
5618 goto out;
5619 }
5620
5621 /*
5622 * Handle special case where the right side has no extents at all.
5623 */
5624 eb = path->nodes[0];
5625 slot = path->slots[0];
5626 btrfs_item_key_to_cpu(eb, &found_key, slot);
5627 if (found_key.objectid != key.objectid ||
5628 found_key.type != key.type) {
5629 /* If we're a hole then just pretend nothing changed */
5630 ret = (left_disknr) ? 0 : 1;
5631 goto out;
5632 }
5633
5634 /*
5635 * We're now on 2a, 2b or 7.
5636 */
5637 key = found_key;
5638 while (key.offset < ekey->offset + left_len) {
5639 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5640 right_type = btrfs_file_extent_type(eb, ei);
5641 if (right_type != BTRFS_FILE_EXTENT_REG &&
5642 right_type != BTRFS_FILE_EXTENT_INLINE) {
5643 ret = 0;
5644 goto out;
5645 }
5646
5647 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5648 right_len = btrfs_file_extent_ram_bytes(eb, ei);
5649 right_len = PAGE_ALIGN(right_len);
5650 } else {
5651 right_len = btrfs_file_extent_num_bytes(eb, ei);
5652 }
5653
5654 /*
5655 * Are we at extent 8? If yes, we know the extent is changed.
5656 * This may only happen on the first iteration.
5657 */
5658 if (found_key.offset + right_len <= ekey->offset) {
5659 /* If we're a hole just pretend nothing changed */
5660 ret = (left_disknr) ? 0 : 1;
5661 goto out;
5662 }
5663
5664 /*
5665 * We just wanted to see if when we have an inline extent, what
5666 * follows it is a regular extent (wanted to check the above
5667 * condition for inline extents too). This should normally not
5668 * happen but it's possible for example when we have an inline
5669 * compressed extent representing data with a size matching
5670 * the page size (currently the same as sector size).
5671 */
5672 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5673 ret = 0;
5674 goto out;
5675 }
5676
5677 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5678 right_offset = btrfs_file_extent_offset(eb, ei);
5679 right_gen = btrfs_file_extent_generation(eb, ei);
5680
5681 left_offset_fixed = left_offset;
5682 if (key.offset < ekey->offset) {
5683 /* Fix the right offset for 2a and 7. */
5684 right_offset += ekey->offset - key.offset;
5685 } else {
5686 /* Fix the left offset for all behind 2a and 2b */
5687 left_offset_fixed += key.offset - ekey->offset;
5688 }
5689
5690 /*
5691 * Check if we have the same extent.
5692 */
5693 if (left_disknr != right_disknr ||
5694 left_offset_fixed != right_offset ||
5695 left_gen != right_gen) {
5696 ret = 0;
5697 goto out;
5698 }
5699
5700 /*
5701 * Go to the next extent.
5702 */
5703 ret = btrfs_next_item(sctx->parent_root, path);
5704 if (ret < 0)
5705 goto out;
5706 if (!ret) {
5707 eb = path->nodes[0];
5708 slot = path->slots[0];
5709 btrfs_item_key_to_cpu(eb, &found_key, slot);
5710 }
5711 if (ret || found_key.objectid != key.objectid ||
5712 found_key.type != key.type) {
5713 key.offset += right_len;
5714 break;
5715 }
5716 if (found_key.offset != key.offset + right_len) {
5717 ret = 0;
5718 goto out;
5719 }
5720 key = found_key;
5721 }
5722
5723 /*
5724 * We're now behind the left extent (treat as unchanged) or at the end
5725 * of the right side (treat as changed).
5726 */
5727 if (key.offset >= ekey->offset + left_len)
5728 ret = 1;
5729 else
5730 ret = 0;
5731
5732
5733 out:
5734 btrfs_free_path(path);
5735 return ret;
5736 }
5737
get_last_extent(struct send_ctx * sctx,u64 offset)5738 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5739 {
5740 struct btrfs_path *path;
5741 struct btrfs_root *root = sctx->send_root;
5742 struct btrfs_key key;
5743 int ret;
5744
5745 path = alloc_path_for_send();
5746 if (!path)
5747 return -ENOMEM;
5748
5749 sctx->cur_inode_last_extent = 0;
5750
5751 key.objectid = sctx->cur_ino;
5752 key.type = BTRFS_EXTENT_DATA_KEY;
5753 key.offset = offset;
5754 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5755 if (ret < 0)
5756 goto out;
5757 ret = 0;
5758 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5759 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5760 goto out;
5761
5762 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5763 out:
5764 btrfs_free_path(path);
5765 return ret;
5766 }
5767
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)5768 static int range_is_hole_in_parent(struct send_ctx *sctx,
5769 const u64 start,
5770 const u64 end)
5771 {
5772 struct btrfs_path *path;
5773 struct btrfs_key key;
5774 struct btrfs_root *root = sctx->parent_root;
5775 u64 search_start = start;
5776 int ret;
5777
5778 path = alloc_path_for_send();
5779 if (!path)
5780 return -ENOMEM;
5781
5782 key.objectid = sctx->cur_ino;
5783 key.type = BTRFS_EXTENT_DATA_KEY;
5784 key.offset = search_start;
5785 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5786 if (ret < 0)
5787 goto out;
5788 if (ret > 0 && path->slots[0] > 0)
5789 path->slots[0]--;
5790
5791 while (search_start < end) {
5792 struct extent_buffer *leaf = path->nodes[0];
5793 int slot = path->slots[0];
5794 struct btrfs_file_extent_item *fi;
5795 u64 extent_end;
5796
5797 if (slot >= btrfs_header_nritems(leaf)) {
5798 ret = btrfs_next_leaf(root, path);
5799 if (ret < 0)
5800 goto out;
5801 else if (ret > 0)
5802 break;
5803 continue;
5804 }
5805
5806 btrfs_item_key_to_cpu(leaf, &key, slot);
5807 if (key.objectid < sctx->cur_ino ||
5808 key.type < BTRFS_EXTENT_DATA_KEY)
5809 goto next;
5810 if (key.objectid > sctx->cur_ino ||
5811 key.type > BTRFS_EXTENT_DATA_KEY ||
5812 key.offset >= end)
5813 break;
5814
5815 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5816 extent_end = btrfs_file_extent_end(path);
5817 if (extent_end <= start)
5818 goto next;
5819 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5820 search_start = extent_end;
5821 goto next;
5822 }
5823 ret = 0;
5824 goto out;
5825 next:
5826 path->slots[0]++;
5827 }
5828 ret = 1;
5829 out:
5830 btrfs_free_path(path);
5831 return ret;
5832 }
5833
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5834 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5835 struct btrfs_key *key)
5836 {
5837 int ret = 0;
5838
5839 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5840 return 0;
5841
5842 if (sctx->cur_inode_last_extent == (u64)-1) {
5843 ret = get_last_extent(sctx, key->offset - 1);
5844 if (ret)
5845 return ret;
5846 }
5847
5848 if (path->slots[0] == 0 &&
5849 sctx->cur_inode_last_extent < key->offset) {
5850 /*
5851 * We might have skipped entire leafs that contained only
5852 * file extent items for our current inode. These leafs have
5853 * a generation number smaller (older) than the one in the
5854 * current leaf and the leaf our last extent came from, and
5855 * are located between these 2 leafs.
5856 */
5857 ret = get_last_extent(sctx, key->offset - 1);
5858 if (ret)
5859 return ret;
5860 }
5861
5862 if (sctx->cur_inode_last_extent < key->offset) {
5863 ret = range_is_hole_in_parent(sctx,
5864 sctx->cur_inode_last_extent,
5865 key->offset);
5866 if (ret < 0)
5867 return ret;
5868 else if (ret == 0)
5869 ret = send_hole(sctx, key->offset);
5870 else
5871 ret = 0;
5872 }
5873 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5874 return ret;
5875 }
5876
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5877 static int process_extent(struct send_ctx *sctx,
5878 struct btrfs_path *path,
5879 struct btrfs_key *key)
5880 {
5881 struct clone_root *found_clone = NULL;
5882 int ret = 0;
5883
5884 if (S_ISLNK(sctx->cur_inode_mode))
5885 return 0;
5886
5887 if (sctx->parent_root && !sctx->cur_inode_new) {
5888 ret = is_extent_unchanged(sctx, path, key);
5889 if (ret < 0)
5890 goto out;
5891 if (ret) {
5892 ret = 0;
5893 goto out_hole;
5894 }
5895 } else {
5896 struct btrfs_file_extent_item *ei;
5897 u8 type;
5898
5899 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5900 struct btrfs_file_extent_item);
5901 type = btrfs_file_extent_type(path->nodes[0], ei);
5902 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5903 type == BTRFS_FILE_EXTENT_REG) {
5904 /*
5905 * The send spec does not have a prealloc command yet,
5906 * so just leave a hole for prealloc'ed extents until
5907 * we have enough commands queued up to justify rev'ing
5908 * the send spec.
5909 */
5910 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5911 ret = 0;
5912 goto out;
5913 }
5914
5915 /* Have a hole, just skip it. */
5916 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5917 ret = 0;
5918 goto out;
5919 }
5920 }
5921 }
5922
5923 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5924 sctx->cur_inode_size, &found_clone);
5925 if (ret != -ENOENT && ret < 0)
5926 goto out;
5927
5928 ret = send_write_or_clone(sctx, path, key, found_clone);
5929 if (ret)
5930 goto out;
5931 out_hole:
5932 ret = maybe_send_hole(sctx, path, key);
5933 out:
5934 return ret;
5935 }
5936
process_all_extents(struct send_ctx * sctx)5937 static int process_all_extents(struct send_ctx *sctx)
5938 {
5939 int ret;
5940 struct btrfs_root *root;
5941 struct btrfs_path *path;
5942 struct btrfs_key key;
5943 struct btrfs_key found_key;
5944 struct extent_buffer *eb;
5945 int slot;
5946
5947 root = sctx->send_root;
5948 path = alloc_path_for_send();
5949 if (!path)
5950 return -ENOMEM;
5951
5952 key.objectid = sctx->cmp_key->objectid;
5953 key.type = BTRFS_EXTENT_DATA_KEY;
5954 key.offset = 0;
5955 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5956 if (ret < 0)
5957 goto out;
5958
5959 while (1) {
5960 eb = path->nodes[0];
5961 slot = path->slots[0];
5962
5963 if (slot >= btrfs_header_nritems(eb)) {
5964 ret = btrfs_next_leaf(root, path);
5965 if (ret < 0) {
5966 goto out;
5967 } else if (ret > 0) {
5968 ret = 0;
5969 break;
5970 }
5971 continue;
5972 }
5973
5974 btrfs_item_key_to_cpu(eb, &found_key, slot);
5975
5976 if (found_key.objectid != key.objectid ||
5977 found_key.type != key.type) {
5978 ret = 0;
5979 goto out;
5980 }
5981
5982 ret = process_extent(sctx, path, &found_key);
5983 if (ret < 0)
5984 goto out;
5985
5986 path->slots[0]++;
5987 }
5988
5989 out:
5990 btrfs_free_path(path);
5991 return ret;
5992 }
5993
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)5994 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5995 int *pending_move,
5996 int *refs_processed)
5997 {
5998 int ret = 0;
5999
6000 if (sctx->cur_ino == 0)
6001 goto out;
6002 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6003 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6004 goto out;
6005 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6006 goto out;
6007
6008 ret = process_recorded_refs(sctx, pending_move);
6009 if (ret < 0)
6010 goto out;
6011
6012 *refs_processed = 1;
6013 out:
6014 return ret;
6015 }
6016
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6017 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6018 {
6019 int ret = 0;
6020 u64 left_mode;
6021 u64 left_uid;
6022 u64 left_gid;
6023 u64 right_mode;
6024 u64 right_uid;
6025 u64 right_gid;
6026 int need_chmod = 0;
6027 int need_chown = 0;
6028 int need_truncate = 1;
6029 int pending_move = 0;
6030 int refs_processed = 0;
6031
6032 if (sctx->ignore_cur_inode)
6033 return 0;
6034
6035 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6036 &refs_processed);
6037 if (ret < 0)
6038 goto out;
6039
6040 /*
6041 * We have processed the refs and thus need to advance send_progress.
6042 * Now, calls to get_cur_xxx will take the updated refs of the current
6043 * inode into account.
6044 *
6045 * On the other hand, if our current inode is a directory and couldn't
6046 * be moved/renamed because its parent was renamed/moved too and it has
6047 * a higher inode number, we can only move/rename our current inode
6048 * after we moved/renamed its parent. Therefore in this case operate on
6049 * the old path (pre move/rename) of our current inode, and the
6050 * move/rename will be performed later.
6051 */
6052 if (refs_processed && !pending_move)
6053 sctx->send_progress = sctx->cur_ino + 1;
6054
6055 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6056 goto out;
6057 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6058 goto out;
6059
6060 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6061 &left_mode, &left_uid, &left_gid, NULL);
6062 if (ret < 0)
6063 goto out;
6064
6065 if (!sctx->parent_root || sctx->cur_inode_new) {
6066 need_chown = 1;
6067 if (!S_ISLNK(sctx->cur_inode_mode))
6068 need_chmod = 1;
6069 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6070 need_truncate = 0;
6071 } else {
6072 u64 old_size;
6073
6074 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6075 &old_size, NULL, &right_mode, &right_uid,
6076 &right_gid, NULL);
6077 if (ret < 0)
6078 goto out;
6079
6080 if (left_uid != right_uid || left_gid != right_gid)
6081 need_chown = 1;
6082 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6083 need_chmod = 1;
6084 if ((old_size == sctx->cur_inode_size) ||
6085 (sctx->cur_inode_size > old_size &&
6086 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6087 need_truncate = 0;
6088 }
6089
6090 if (S_ISREG(sctx->cur_inode_mode)) {
6091 if (need_send_hole(sctx)) {
6092 if (sctx->cur_inode_last_extent == (u64)-1 ||
6093 sctx->cur_inode_last_extent <
6094 sctx->cur_inode_size) {
6095 ret = get_last_extent(sctx, (u64)-1);
6096 if (ret)
6097 goto out;
6098 }
6099 if (sctx->cur_inode_last_extent <
6100 sctx->cur_inode_size) {
6101 ret = send_hole(sctx, sctx->cur_inode_size);
6102 if (ret)
6103 goto out;
6104 }
6105 }
6106 if (need_truncate) {
6107 ret = send_truncate(sctx, sctx->cur_ino,
6108 sctx->cur_inode_gen,
6109 sctx->cur_inode_size);
6110 if (ret < 0)
6111 goto out;
6112 }
6113 }
6114
6115 if (need_chown) {
6116 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6117 left_uid, left_gid);
6118 if (ret < 0)
6119 goto out;
6120 }
6121 if (need_chmod) {
6122 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6123 left_mode);
6124 if (ret < 0)
6125 goto out;
6126 }
6127
6128 ret = send_capabilities(sctx);
6129 if (ret < 0)
6130 goto out;
6131
6132 /*
6133 * If other directory inodes depended on our current directory
6134 * inode's move/rename, now do their move/rename operations.
6135 */
6136 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6137 ret = apply_children_dir_moves(sctx);
6138 if (ret)
6139 goto out;
6140 /*
6141 * Need to send that every time, no matter if it actually
6142 * changed between the two trees as we have done changes to
6143 * the inode before. If our inode is a directory and it's
6144 * waiting to be moved/renamed, we will send its utimes when
6145 * it's moved/renamed, therefore we don't need to do it here.
6146 */
6147 sctx->send_progress = sctx->cur_ino + 1;
6148 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6149 if (ret < 0)
6150 goto out;
6151 }
6152
6153 out:
6154 return ret;
6155 }
6156
6157 struct parent_paths_ctx {
6158 struct list_head *refs;
6159 struct send_ctx *sctx;
6160 };
6161
record_parent_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)6162 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6163 void *ctx)
6164 {
6165 struct parent_paths_ctx *ppctx = ctx;
6166
6167 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6168 ppctx->refs);
6169 }
6170
6171 /*
6172 * Issue unlink operations for all paths of the current inode found in the
6173 * parent snapshot.
6174 */
btrfs_unlink_all_paths(struct send_ctx * sctx)6175 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6176 {
6177 LIST_HEAD(deleted_refs);
6178 struct btrfs_path *path;
6179 struct btrfs_key key;
6180 struct parent_paths_ctx ctx;
6181 int ret;
6182
6183 path = alloc_path_for_send();
6184 if (!path)
6185 return -ENOMEM;
6186
6187 key.objectid = sctx->cur_ino;
6188 key.type = BTRFS_INODE_REF_KEY;
6189 key.offset = 0;
6190 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6191 if (ret < 0)
6192 goto out;
6193
6194 ctx.refs = &deleted_refs;
6195 ctx.sctx = sctx;
6196
6197 while (true) {
6198 struct extent_buffer *eb = path->nodes[0];
6199 int slot = path->slots[0];
6200
6201 if (slot >= btrfs_header_nritems(eb)) {
6202 ret = btrfs_next_leaf(sctx->parent_root, path);
6203 if (ret < 0)
6204 goto out;
6205 else if (ret > 0)
6206 break;
6207 continue;
6208 }
6209
6210 btrfs_item_key_to_cpu(eb, &key, slot);
6211 if (key.objectid != sctx->cur_ino)
6212 break;
6213 if (key.type != BTRFS_INODE_REF_KEY &&
6214 key.type != BTRFS_INODE_EXTREF_KEY)
6215 break;
6216
6217 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6218 record_parent_ref, &ctx);
6219 if (ret < 0)
6220 goto out;
6221
6222 path->slots[0]++;
6223 }
6224
6225 while (!list_empty(&deleted_refs)) {
6226 struct recorded_ref *ref;
6227
6228 ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6229 ret = send_unlink(sctx, ref->full_path);
6230 if (ret < 0)
6231 goto out;
6232 fs_path_free(ref->full_path);
6233 list_del(&ref->list);
6234 kfree(ref);
6235 }
6236 ret = 0;
6237 out:
6238 btrfs_free_path(path);
6239 if (ret)
6240 __free_recorded_refs(&deleted_refs);
6241 return ret;
6242 }
6243
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6244 static int changed_inode(struct send_ctx *sctx,
6245 enum btrfs_compare_tree_result result)
6246 {
6247 int ret = 0;
6248 struct btrfs_key *key = sctx->cmp_key;
6249 struct btrfs_inode_item *left_ii = NULL;
6250 struct btrfs_inode_item *right_ii = NULL;
6251 u64 left_gen = 0;
6252 u64 right_gen = 0;
6253
6254 sctx->cur_ino = key->objectid;
6255 sctx->cur_inode_new_gen = 0;
6256 sctx->cur_inode_last_extent = (u64)-1;
6257 sctx->cur_inode_next_write_offset = 0;
6258 sctx->ignore_cur_inode = false;
6259
6260 /*
6261 * Set send_progress to current inode. This will tell all get_cur_xxx
6262 * functions that the current inode's refs are not updated yet. Later,
6263 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6264 */
6265 sctx->send_progress = sctx->cur_ino;
6266
6267 if (result == BTRFS_COMPARE_TREE_NEW ||
6268 result == BTRFS_COMPARE_TREE_CHANGED) {
6269 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6270 sctx->left_path->slots[0],
6271 struct btrfs_inode_item);
6272 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6273 left_ii);
6274 } else {
6275 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6276 sctx->right_path->slots[0],
6277 struct btrfs_inode_item);
6278 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6279 right_ii);
6280 }
6281 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6282 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6283 sctx->right_path->slots[0],
6284 struct btrfs_inode_item);
6285
6286 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6287 right_ii);
6288
6289 /*
6290 * The cur_ino = root dir case is special here. We can't treat
6291 * the inode as deleted+reused because it would generate a
6292 * stream that tries to delete/mkdir the root dir.
6293 */
6294 if (left_gen != right_gen &&
6295 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6296 sctx->cur_inode_new_gen = 1;
6297 }
6298
6299 /*
6300 * Normally we do not find inodes with a link count of zero (orphans)
6301 * because the most common case is to create a snapshot and use it
6302 * for a send operation. However other less common use cases involve
6303 * using a subvolume and send it after turning it to RO mode just
6304 * after deleting all hard links of a file while holding an open
6305 * file descriptor against it or turning a RO snapshot into RW mode,
6306 * keep an open file descriptor against a file, delete it and then
6307 * turn the snapshot back to RO mode before using it for a send
6308 * operation. So if we find such cases, ignore the inode and all its
6309 * items completely if it's a new inode, or if it's a changed inode
6310 * make sure all its previous paths (from the parent snapshot) are all
6311 * unlinked and all other the inode items are ignored.
6312 */
6313 if (result == BTRFS_COMPARE_TREE_NEW ||
6314 result == BTRFS_COMPARE_TREE_CHANGED) {
6315 u32 nlinks;
6316
6317 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6318 if (nlinks == 0) {
6319 sctx->ignore_cur_inode = true;
6320 if (result == BTRFS_COMPARE_TREE_CHANGED)
6321 ret = btrfs_unlink_all_paths(sctx);
6322 goto out;
6323 }
6324 }
6325
6326 if (result == BTRFS_COMPARE_TREE_NEW) {
6327 sctx->cur_inode_gen = left_gen;
6328 sctx->cur_inode_new = 1;
6329 sctx->cur_inode_deleted = 0;
6330 sctx->cur_inode_size = btrfs_inode_size(
6331 sctx->left_path->nodes[0], left_ii);
6332 sctx->cur_inode_mode = btrfs_inode_mode(
6333 sctx->left_path->nodes[0], left_ii);
6334 sctx->cur_inode_rdev = btrfs_inode_rdev(
6335 sctx->left_path->nodes[0], left_ii);
6336 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6337 ret = send_create_inode_if_needed(sctx);
6338 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6339 sctx->cur_inode_gen = right_gen;
6340 sctx->cur_inode_new = 0;
6341 sctx->cur_inode_deleted = 1;
6342 sctx->cur_inode_size = btrfs_inode_size(
6343 sctx->right_path->nodes[0], right_ii);
6344 sctx->cur_inode_mode = btrfs_inode_mode(
6345 sctx->right_path->nodes[0], right_ii);
6346 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6347 /*
6348 * We need to do some special handling in case the inode was
6349 * reported as changed with a changed generation number. This
6350 * means that the original inode was deleted and new inode
6351 * reused the same inum. So we have to treat the old inode as
6352 * deleted and the new one as new.
6353 */
6354 if (sctx->cur_inode_new_gen) {
6355 /*
6356 * First, process the inode as if it was deleted.
6357 */
6358 sctx->cur_inode_gen = right_gen;
6359 sctx->cur_inode_new = 0;
6360 sctx->cur_inode_deleted = 1;
6361 sctx->cur_inode_size = btrfs_inode_size(
6362 sctx->right_path->nodes[0], right_ii);
6363 sctx->cur_inode_mode = btrfs_inode_mode(
6364 sctx->right_path->nodes[0], right_ii);
6365 ret = process_all_refs(sctx,
6366 BTRFS_COMPARE_TREE_DELETED);
6367 if (ret < 0)
6368 goto out;
6369
6370 /*
6371 * Now process the inode as if it was new.
6372 */
6373 sctx->cur_inode_gen = left_gen;
6374 sctx->cur_inode_new = 1;
6375 sctx->cur_inode_deleted = 0;
6376 sctx->cur_inode_size = btrfs_inode_size(
6377 sctx->left_path->nodes[0], left_ii);
6378 sctx->cur_inode_mode = btrfs_inode_mode(
6379 sctx->left_path->nodes[0], left_ii);
6380 sctx->cur_inode_rdev = btrfs_inode_rdev(
6381 sctx->left_path->nodes[0], left_ii);
6382 ret = send_create_inode_if_needed(sctx);
6383 if (ret < 0)
6384 goto out;
6385
6386 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6387 if (ret < 0)
6388 goto out;
6389 /*
6390 * Advance send_progress now as we did not get into
6391 * process_recorded_refs_if_needed in the new_gen case.
6392 */
6393 sctx->send_progress = sctx->cur_ino + 1;
6394
6395 /*
6396 * Now process all extents and xattrs of the inode as if
6397 * they were all new.
6398 */
6399 ret = process_all_extents(sctx);
6400 if (ret < 0)
6401 goto out;
6402 ret = process_all_new_xattrs(sctx);
6403 if (ret < 0)
6404 goto out;
6405 } else {
6406 sctx->cur_inode_gen = left_gen;
6407 sctx->cur_inode_new = 0;
6408 sctx->cur_inode_new_gen = 0;
6409 sctx->cur_inode_deleted = 0;
6410 sctx->cur_inode_size = btrfs_inode_size(
6411 sctx->left_path->nodes[0], left_ii);
6412 sctx->cur_inode_mode = btrfs_inode_mode(
6413 sctx->left_path->nodes[0], left_ii);
6414 }
6415 }
6416
6417 out:
6418 return ret;
6419 }
6420
6421 /*
6422 * We have to process new refs before deleted refs, but compare_trees gives us
6423 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6424 * first and later process them in process_recorded_refs.
6425 * For the cur_inode_new_gen case, we skip recording completely because
6426 * changed_inode did already initiate processing of refs. The reason for this is
6427 * that in this case, compare_tree actually compares the refs of 2 different
6428 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6429 * refs of the right tree as deleted and all refs of the left tree as new.
6430 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6431 static int changed_ref(struct send_ctx *sctx,
6432 enum btrfs_compare_tree_result result)
6433 {
6434 int ret = 0;
6435
6436 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6437 inconsistent_snapshot_error(sctx, result, "reference");
6438 return -EIO;
6439 }
6440
6441 if (!sctx->cur_inode_new_gen &&
6442 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6443 if (result == BTRFS_COMPARE_TREE_NEW)
6444 ret = record_new_ref(sctx);
6445 else if (result == BTRFS_COMPARE_TREE_DELETED)
6446 ret = record_deleted_ref(sctx);
6447 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6448 ret = record_changed_ref(sctx);
6449 }
6450
6451 return ret;
6452 }
6453
6454 /*
6455 * Process new/deleted/changed xattrs. We skip processing in the
6456 * cur_inode_new_gen case because changed_inode did already initiate processing
6457 * of xattrs. The reason is the same as in changed_ref
6458 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6459 static int changed_xattr(struct send_ctx *sctx,
6460 enum btrfs_compare_tree_result result)
6461 {
6462 int ret = 0;
6463
6464 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6465 inconsistent_snapshot_error(sctx, result, "xattr");
6466 return -EIO;
6467 }
6468
6469 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6470 if (result == BTRFS_COMPARE_TREE_NEW)
6471 ret = process_new_xattr(sctx);
6472 else if (result == BTRFS_COMPARE_TREE_DELETED)
6473 ret = process_deleted_xattr(sctx);
6474 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6475 ret = process_changed_xattr(sctx);
6476 }
6477
6478 return ret;
6479 }
6480
6481 /*
6482 * Process new/deleted/changed extents. We skip processing in the
6483 * cur_inode_new_gen case because changed_inode did already initiate processing
6484 * of extents. The reason is the same as in changed_ref
6485 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6486 static int changed_extent(struct send_ctx *sctx,
6487 enum btrfs_compare_tree_result result)
6488 {
6489 int ret = 0;
6490
6491 /*
6492 * We have found an extent item that changed without the inode item
6493 * having changed. This can happen either after relocation (where the
6494 * disk_bytenr of an extent item is replaced at
6495 * relocation.c:replace_file_extents()) or after deduplication into a
6496 * file in both the parent and send snapshots (where an extent item can
6497 * get modified or replaced with a new one). Note that deduplication
6498 * updates the inode item, but it only changes the iversion (sequence
6499 * field in the inode item) of the inode, so if a file is deduplicated
6500 * the same amount of times in both the parent and send snapshots, its
6501 * iversion becames the same in both snapshots, whence the inode item is
6502 * the same on both snapshots.
6503 */
6504 if (sctx->cur_ino != sctx->cmp_key->objectid)
6505 return 0;
6506
6507 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6508 if (result != BTRFS_COMPARE_TREE_DELETED)
6509 ret = process_extent(sctx, sctx->left_path,
6510 sctx->cmp_key);
6511 }
6512
6513 return ret;
6514 }
6515
dir_changed(struct send_ctx * sctx,u64 dir)6516 static int dir_changed(struct send_ctx *sctx, u64 dir)
6517 {
6518 u64 orig_gen, new_gen;
6519 int ret;
6520
6521 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6522 NULL, NULL);
6523 if (ret)
6524 return ret;
6525
6526 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6527 NULL, NULL, NULL);
6528 if (ret)
6529 return ret;
6530
6531 return (orig_gen != new_gen) ? 1 : 0;
6532 }
6533
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6534 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6535 struct btrfs_key *key)
6536 {
6537 struct btrfs_inode_extref *extref;
6538 struct extent_buffer *leaf;
6539 u64 dirid = 0, last_dirid = 0;
6540 unsigned long ptr;
6541 u32 item_size;
6542 u32 cur_offset = 0;
6543 int ref_name_len;
6544 int ret = 0;
6545
6546 /* Easy case, just check this one dirid */
6547 if (key->type == BTRFS_INODE_REF_KEY) {
6548 dirid = key->offset;
6549
6550 ret = dir_changed(sctx, dirid);
6551 goto out;
6552 }
6553
6554 leaf = path->nodes[0];
6555 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6556 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6557 while (cur_offset < item_size) {
6558 extref = (struct btrfs_inode_extref *)(ptr +
6559 cur_offset);
6560 dirid = btrfs_inode_extref_parent(leaf, extref);
6561 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6562 cur_offset += ref_name_len + sizeof(*extref);
6563 if (dirid == last_dirid)
6564 continue;
6565 ret = dir_changed(sctx, dirid);
6566 if (ret)
6567 break;
6568 last_dirid = dirid;
6569 }
6570 out:
6571 return ret;
6572 }
6573
6574 /*
6575 * Updates compare related fields in sctx and simply forwards to the actual
6576 * changed_xxx functions.
6577 */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,void * ctx)6578 static int changed_cb(struct btrfs_path *left_path,
6579 struct btrfs_path *right_path,
6580 struct btrfs_key *key,
6581 enum btrfs_compare_tree_result result,
6582 void *ctx)
6583 {
6584 int ret = 0;
6585 struct send_ctx *sctx = ctx;
6586
6587 if (result == BTRFS_COMPARE_TREE_SAME) {
6588 if (key->type == BTRFS_INODE_REF_KEY ||
6589 key->type == BTRFS_INODE_EXTREF_KEY) {
6590 ret = compare_refs(sctx, left_path, key);
6591 if (!ret)
6592 return 0;
6593 if (ret < 0)
6594 return ret;
6595 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6596 return maybe_send_hole(sctx, left_path, key);
6597 } else {
6598 return 0;
6599 }
6600 result = BTRFS_COMPARE_TREE_CHANGED;
6601 ret = 0;
6602 }
6603
6604 sctx->left_path = left_path;
6605 sctx->right_path = right_path;
6606 sctx->cmp_key = key;
6607
6608 ret = finish_inode_if_needed(sctx, 0);
6609 if (ret < 0)
6610 goto out;
6611
6612 /* Ignore non-FS objects */
6613 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6614 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6615 goto out;
6616
6617 if (key->type == BTRFS_INODE_ITEM_KEY) {
6618 ret = changed_inode(sctx, result);
6619 } else if (!sctx->ignore_cur_inode) {
6620 if (key->type == BTRFS_INODE_REF_KEY ||
6621 key->type == BTRFS_INODE_EXTREF_KEY)
6622 ret = changed_ref(sctx, result);
6623 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6624 ret = changed_xattr(sctx, result);
6625 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6626 ret = changed_extent(sctx, result);
6627 }
6628
6629 out:
6630 return ret;
6631 }
6632
full_send_tree(struct send_ctx * sctx)6633 static int full_send_tree(struct send_ctx *sctx)
6634 {
6635 int ret;
6636 struct btrfs_root *send_root = sctx->send_root;
6637 struct btrfs_key key;
6638 struct btrfs_path *path;
6639 struct extent_buffer *eb;
6640 int slot;
6641
6642 path = alloc_path_for_send();
6643 if (!path)
6644 return -ENOMEM;
6645
6646 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6647 key.type = BTRFS_INODE_ITEM_KEY;
6648 key.offset = 0;
6649
6650 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6651 if (ret < 0)
6652 goto out;
6653 if (ret)
6654 goto out_finish;
6655
6656 while (1) {
6657 eb = path->nodes[0];
6658 slot = path->slots[0];
6659 btrfs_item_key_to_cpu(eb, &key, slot);
6660
6661 ret = changed_cb(path, NULL, &key,
6662 BTRFS_COMPARE_TREE_NEW, sctx);
6663 if (ret < 0)
6664 goto out;
6665
6666 ret = btrfs_next_item(send_root, path);
6667 if (ret < 0)
6668 goto out;
6669 if (ret) {
6670 ret = 0;
6671 break;
6672 }
6673 }
6674
6675 out_finish:
6676 ret = finish_inode_if_needed(sctx, 1);
6677
6678 out:
6679 btrfs_free_path(path);
6680 return ret;
6681 }
6682
tree_move_down(struct btrfs_path * path,int * level)6683 static int tree_move_down(struct btrfs_path *path, int *level)
6684 {
6685 struct extent_buffer *eb;
6686
6687 BUG_ON(*level == 0);
6688 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6689 if (IS_ERR(eb))
6690 return PTR_ERR(eb);
6691
6692 path->nodes[*level - 1] = eb;
6693 path->slots[*level - 1] = 0;
6694 (*level)--;
6695 return 0;
6696 }
6697
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)6698 static int tree_move_next_or_upnext(struct btrfs_path *path,
6699 int *level, int root_level)
6700 {
6701 int ret = 0;
6702 int nritems;
6703 nritems = btrfs_header_nritems(path->nodes[*level]);
6704
6705 path->slots[*level]++;
6706
6707 while (path->slots[*level] >= nritems) {
6708 if (*level == root_level)
6709 return -1;
6710
6711 /* move upnext */
6712 path->slots[*level] = 0;
6713 free_extent_buffer(path->nodes[*level]);
6714 path->nodes[*level] = NULL;
6715 (*level)++;
6716 path->slots[*level]++;
6717
6718 nritems = btrfs_header_nritems(path->nodes[*level]);
6719 ret = 1;
6720 }
6721 return ret;
6722 }
6723
6724 /*
6725 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6726 * or down.
6727 */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key)6728 static int tree_advance(struct btrfs_path *path,
6729 int *level, int root_level,
6730 int allow_down,
6731 struct btrfs_key *key)
6732 {
6733 int ret;
6734
6735 if (*level == 0 || !allow_down) {
6736 ret = tree_move_next_or_upnext(path, level, root_level);
6737 } else {
6738 ret = tree_move_down(path, level);
6739 }
6740 if (ret >= 0) {
6741 if (*level == 0)
6742 btrfs_item_key_to_cpu(path->nodes[*level], key,
6743 path->slots[*level]);
6744 else
6745 btrfs_node_key_to_cpu(path->nodes[*level], key,
6746 path->slots[*level]);
6747 }
6748 return ret;
6749 }
6750
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)6751 static int tree_compare_item(struct btrfs_path *left_path,
6752 struct btrfs_path *right_path,
6753 char *tmp_buf)
6754 {
6755 int cmp;
6756 int len1, len2;
6757 unsigned long off1, off2;
6758
6759 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6760 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6761 if (len1 != len2)
6762 return 1;
6763
6764 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6765 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6766 right_path->slots[0]);
6767
6768 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6769
6770 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6771 if (cmp)
6772 return 1;
6773 return 0;
6774 }
6775
6776 /*
6777 * This function compares two trees and calls the provided callback for
6778 * every changed/new/deleted item it finds.
6779 * If shared tree blocks are encountered, whole subtrees are skipped, making
6780 * the compare pretty fast on snapshotted subvolumes.
6781 *
6782 * This currently works on commit roots only. As commit roots are read only,
6783 * we don't do any locking. The commit roots are protected with transactions.
6784 * Transactions are ended and rejoined when a commit is tried in between.
6785 *
6786 * This function checks for modifications done to the trees while comparing.
6787 * If it detects a change, it aborts immediately.
6788 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,void * ctx)6789 static int btrfs_compare_trees(struct btrfs_root *left_root,
6790 struct btrfs_root *right_root, void *ctx)
6791 {
6792 struct btrfs_fs_info *fs_info = left_root->fs_info;
6793 int ret;
6794 int cmp;
6795 struct btrfs_path *left_path = NULL;
6796 struct btrfs_path *right_path = NULL;
6797 struct btrfs_key left_key;
6798 struct btrfs_key right_key;
6799 char *tmp_buf = NULL;
6800 int left_root_level;
6801 int right_root_level;
6802 int left_level;
6803 int right_level;
6804 int left_end_reached;
6805 int right_end_reached;
6806 int advance_left;
6807 int advance_right;
6808 u64 left_blockptr;
6809 u64 right_blockptr;
6810 u64 left_gen;
6811 u64 right_gen;
6812
6813 left_path = btrfs_alloc_path();
6814 if (!left_path) {
6815 ret = -ENOMEM;
6816 goto out;
6817 }
6818 right_path = btrfs_alloc_path();
6819 if (!right_path) {
6820 ret = -ENOMEM;
6821 goto out;
6822 }
6823
6824 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6825 if (!tmp_buf) {
6826 ret = -ENOMEM;
6827 goto out;
6828 }
6829
6830 left_path->search_commit_root = 1;
6831 left_path->skip_locking = 1;
6832 right_path->search_commit_root = 1;
6833 right_path->skip_locking = 1;
6834
6835 /*
6836 * Strategy: Go to the first items of both trees. Then do
6837 *
6838 * If both trees are at level 0
6839 * Compare keys of current items
6840 * If left < right treat left item as new, advance left tree
6841 * and repeat
6842 * If left > right treat right item as deleted, advance right tree
6843 * and repeat
6844 * If left == right do deep compare of items, treat as changed if
6845 * needed, advance both trees and repeat
6846 * If both trees are at the same level but not at level 0
6847 * Compare keys of current nodes/leafs
6848 * If left < right advance left tree and repeat
6849 * If left > right advance right tree and repeat
6850 * If left == right compare blockptrs of the next nodes/leafs
6851 * If they match advance both trees but stay at the same level
6852 * and repeat
6853 * If they don't match advance both trees while allowing to go
6854 * deeper and repeat
6855 * If tree levels are different
6856 * Advance the tree that needs it and repeat
6857 *
6858 * Advancing a tree means:
6859 * If we are at level 0, try to go to the next slot. If that's not
6860 * possible, go one level up and repeat. Stop when we found a level
6861 * where we could go to the next slot. We may at this point be on a
6862 * node or a leaf.
6863 *
6864 * If we are not at level 0 and not on shared tree blocks, go one
6865 * level deeper.
6866 *
6867 * If we are not at level 0 and on shared tree blocks, go one slot to
6868 * the right if possible or go up and right.
6869 */
6870
6871 down_read(&fs_info->commit_root_sem);
6872 left_level = btrfs_header_level(left_root->commit_root);
6873 left_root_level = left_level;
6874 left_path->nodes[left_level] =
6875 btrfs_clone_extent_buffer(left_root->commit_root);
6876 if (!left_path->nodes[left_level]) {
6877 up_read(&fs_info->commit_root_sem);
6878 ret = -ENOMEM;
6879 goto out;
6880 }
6881
6882 right_level = btrfs_header_level(right_root->commit_root);
6883 right_root_level = right_level;
6884 right_path->nodes[right_level] =
6885 btrfs_clone_extent_buffer(right_root->commit_root);
6886 if (!right_path->nodes[right_level]) {
6887 up_read(&fs_info->commit_root_sem);
6888 ret = -ENOMEM;
6889 goto out;
6890 }
6891 up_read(&fs_info->commit_root_sem);
6892
6893 if (left_level == 0)
6894 btrfs_item_key_to_cpu(left_path->nodes[left_level],
6895 &left_key, left_path->slots[left_level]);
6896 else
6897 btrfs_node_key_to_cpu(left_path->nodes[left_level],
6898 &left_key, left_path->slots[left_level]);
6899 if (right_level == 0)
6900 btrfs_item_key_to_cpu(right_path->nodes[right_level],
6901 &right_key, right_path->slots[right_level]);
6902 else
6903 btrfs_node_key_to_cpu(right_path->nodes[right_level],
6904 &right_key, right_path->slots[right_level]);
6905
6906 left_end_reached = right_end_reached = 0;
6907 advance_left = advance_right = 0;
6908
6909 while (1) {
6910 cond_resched();
6911 if (advance_left && !left_end_reached) {
6912 ret = tree_advance(left_path, &left_level,
6913 left_root_level,
6914 advance_left != ADVANCE_ONLY_NEXT,
6915 &left_key);
6916 if (ret == -1)
6917 left_end_reached = ADVANCE;
6918 else if (ret < 0)
6919 goto out;
6920 advance_left = 0;
6921 }
6922 if (advance_right && !right_end_reached) {
6923 ret = tree_advance(right_path, &right_level,
6924 right_root_level,
6925 advance_right != ADVANCE_ONLY_NEXT,
6926 &right_key);
6927 if (ret == -1)
6928 right_end_reached = ADVANCE;
6929 else if (ret < 0)
6930 goto out;
6931 advance_right = 0;
6932 }
6933
6934 if (left_end_reached && right_end_reached) {
6935 ret = 0;
6936 goto out;
6937 } else if (left_end_reached) {
6938 if (right_level == 0) {
6939 ret = changed_cb(left_path, right_path,
6940 &right_key,
6941 BTRFS_COMPARE_TREE_DELETED,
6942 ctx);
6943 if (ret < 0)
6944 goto out;
6945 }
6946 advance_right = ADVANCE;
6947 continue;
6948 } else if (right_end_reached) {
6949 if (left_level == 0) {
6950 ret = changed_cb(left_path, right_path,
6951 &left_key,
6952 BTRFS_COMPARE_TREE_NEW,
6953 ctx);
6954 if (ret < 0)
6955 goto out;
6956 }
6957 advance_left = ADVANCE;
6958 continue;
6959 }
6960
6961 if (left_level == 0 && right_level == 0) {
6962 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6963 if (cmp < 0) {
6964 ret = changed_cb(left_path, right_path,
6965 &left_key,
6966 BTRFS_COMPARE_TREE_NEW,
6967 ctx);
6968 if (ret < 0)
6969 goto out;
6970 advance_left = ADVANCE;
6971 } else if (cmp > 0) {
6972 ret = changed_cb(left_path, right_path,
6973 &right_key,
6974 BTRFS_COMPARE_TREE_DELETED,
6975 ctx);
6976 if (ret < 0)
6977 goto out;
6978 advance_right = ADVANCE;
6979 } else {
6980 enum btrfs_compare_tree_result result;
6981
6982 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6983 ret = tree_compare_item(left_path, right_path,
6984 tmp_buf);
6985 if (ret)
6986 result = BTRFS_COMPARE_TREE_CHANGED;
6987 else
6988 result = BTRFS_COMPARE_TREE_SAME;
6989 ret = changed_cb(left_path, right_path,
6990 &left_key, result, ctx);
6991 if (ret < 0)
6992 goto out;
6993 advance_left = ADVANCE;
6994 advance_right = ADVANCE;
6995 }
6996 } else if (left_level == right_level) {
6997 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6998 if (cmp < 0) {
6999 advance_left = ADVANCE;
7000 } else if (cmp > 0) {
7001 advance_right = ADVANCE;
7002 } else {
7003 left_blockptr = btrfs_node_blockptr(
7004 left_path->nodes[left_level],
7005 left_path->slots[left_level]);
7006 right_blockptr = btrfs_node_blockptr(
7007 right_path->nodes[right_level],
7008 right_path->slots[right_level]);
7009 left_gen = btrfs_node_ptr_generation(
7010 left_path->nodes[left_level],
7011 left_path->slots[left_level]);
7012 right_gen = btrfs_node_ptr_generation(
7013 right_path->nodes[right_level],
7014 right_path->slots[right_level]);
7015 if (left_blockptr == right_blockptr &&
7016 left_gen == right_gen) {
7017 /*
7018 * As we're on a shared block, don't
7019 * allow to go deeper.
7020 */
7021 advance_left = ADVANCE_ONLY_NEXT;
7022 advance_right = ADVANCE_ONLY_NEXT;
7023 } else {
7024 advance_left = ADVANCE;
7025 advance_right = ADVANCE;
7026 }
7027 }
7028 } else if (left_level < right_level) {
7029 advance_right = ADVANCE;
7030 } else {
7031 advance_left = ADVANCE;
7032 }
7033 }
7034
7035 out:
7036 btrfs_free_path(left_path);
7037 btrfs_free_path(right_path);
7038 kvfree(tmp_buf);
7039 return ret;
7040 }
7041
send_subvol(struct send_ctx * sctx)7042 static int send_subvol(struct send_ctx *sctx)
7043 {
7044 int ret;
7045
7046 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7047 ret = send_header(sctx);
7048 if (ret < 0)
7049 goto out;
7050 }
7051
7052 ret = send_subvol_begin(sctx);
7053 if (ret < 0)
7054 goto out;
7055
7056 if (sctx->parent_root) {
7057 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7058 if (ret < 0)
7059 goto out;
7060 ret = finish_inode_if_needed(sctx, 1);
7061 if (ret < 0)
7062 goto out;
7063 } else {
7064 ret = full_send_tree(sctx);
7065 if (ret < 0)
7066 goto out;
7067 }
7068
7069 out:
7070 free_recorded_refs(sctx);
7071 return ret;
7072 }
7073
7074 /*
7075 * If orphan cleanup did remove any orphans from a root, it means the tree
7076 * was modified and therefore the commit root is not the same as the current
7077 * root anymore. This is a problem, because send uses the commit root and
7078 * therefore can see inode items that don't exist in the current root anymore,
7079 * and for example make calls to btrfs_iget, which will do tree lookups based
7080 * on the current root and not on the commit root. Those lookups will fail,
7081 * returning a -ESTALE error, and making send fail with that error. So make
7082 * sure a send does not see any orphans we have just removed, and that it will
7083 * see the same inodes regardless of whether a transaction commit happened
7084 * before it started (meaning that the commit root will be the same as the
7085 * current root) or not.
7086 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)7087 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7088 {
7089 int i;
7090 struct btrfs_trans_handle *trans = NULL;
7091
7092 again:
7093 if (sctx->parent_root &&
7094 sctx->parent_root->node != sctx->parent_root->commit_root)
7095 goto commit_trans;
7096
7097 for (i = 0; i < sctx->clone_roots_cnt; i++)
7098 if (sctx->clone_roots[i].root->node !=
7099 sctx->clone_roots[i].root->commit_root)
7100 goto commit_trans;
7101
7102 if (trans)
7103 return btrfs_end_transaction(trans);
7104
7105 return 0;
7106
7107 commit_trans:
7108 /* Use any root, all fs roots will get their commit roots updated. */
7109 if (!trans) {
7110 trans = btrfs_join_transaction(sctx->send_root);
7111 if (IS_ERR(trans))
7112 return PTR_ERR(trans);
7113 goto again;
7114 }
7115
7116 return btrfs_commit_transaction(trans);
7117 }
7118
7119 /*
7120 * Make sure any existing dellaloc is flushed for any root used by a send
7121 * operation so that we do not miss any data and we do not race with writeback
7122 * finishing and changing a tree while send is using the tree. This could
7123 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7124 * a send operation then uses the subvolume.
7125 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7126 */
flush_delalloc_roots(struct send_ctx * sctx)7127 static int flush_delalloc_roots(struct send_ctx *sctx)
7128 {
7129 struct btrfs_root *root = sctx->parent_root;
7130 int ret;
7131 int i;
7132
7133 if (root) {
7134 ret = btrfs_start_delalloc_snapshot(root);
7135 if (ret)
7136 return ret;
7137 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7138 }
7139
7140 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7141 root = sctx->clone_roots[i].root;
7142 ret = btrfs_start_delalloc_snapshot(root);
7143 if (ret)
7144 return ret;
7145 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7146 }
7147
7148 return 0;
7149 }
7150
btrfs_root_dec_send_in_progress(struct btrfs_root * root)7151 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7152 {
7153 spin_lock(&root->root_item_lock);
7154 root->send_in_progress--;
7155 /*
7156 * Not much left to do, we don't know why it's unbalanced and
7157 * can't blindly reset it to 0.
7158 */
7159 if (root->send_in_progress < 0)
7160 btrfs_err(root->fs_info,
7161 "send_in_progress unbalanced %d root %llu",
7162 root->send_in_progress, root->root_key.objectid);
7163 spin_unlock(&root->root_item_lock);
7164 }
7165
dedupe_in_progress_warn(const struct btrfs_root * root)7166 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7167 {
7168 btrfs_warn_rl(root->fs_info,
7169 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7170 root->root_key.objectid, root->dedupe_in_progress);
7171 }
7172
btrfs_ioctl_send(struct file * mnt_file,struct btrfs_ioctl_send_args * arg)7173 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7174 {
7175 int ret = 0;
7176 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7177 struct btrfs_fs_info *fs_info = send_root->fs_info;
7178 struct btrfs_root *clone_root;
7179 struct send_ctx *sctx = NULL;
7180 u32 i;
7181 u64 *clone_sources_tmp = NULL;
7182 int clone_sources_to_rollback = 0;
7183 size_t alloc_size;
7184 int sort_clone_roots = 0;
7185
7186 if (!capable(CAP_SYS_ADMIN))
7187 return -EPERM;
7188
7189 /*
7190 * The subvolume must remain read-only during send, protect against
7191 * making it RW. This also protects against deletion.
7192 */
7193 spin_lock(&send_root->root_item_lock);
7194 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7195 dedupe_in_progress_warn(send_root);
7196 spin_unlock(&send_root->root_item_lock);
7197 return -EAGAIN;
7198 }
7199 send_root->send_in_progress++;
7200 spin_unlock(&send_root->root_item_lock);
7201
7202 /*
7203 * Userspace tools do the checks and warn the user if it's
7204 * not RO.
7205 */
7206 if (!btrfs_root_readonly(send_root)) {
7207 ret = -EPERM;
7208 goto out;
7209 }
7210
7211 /*
7212 * Check that we don't overflow at later allocations, we request
7213 * clone_sources_count + 1 items, and compare to unsigned long inside
7214 * access_ok.
7215 */
7216 if (arg->clone_sources_count >
7217 ULONG_MAX / sizeof(struct clone_root) - 1) {
7218 ret = -EINVAL;
7219 goto out;
7220 }
7221
7222 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7223 ret = -EINVAL;
7224 goto out;
7225 }
7226
7227 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7228 if (!sctx) {
7229 ret = -ENOMEM;
7230 goto out;
7231 }
7232
7233 INIT_LIST_HEAD(&sctx->new_refs);
7234 INIT_LIST_HEAD(&sctx->deleted_refs);
7235 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7236 INIT_LIST_HEAD(&sctx->name_cache_list);
7237
7238 sctx->flags = arg->flags;
7239
7240 sctx->send_filp = fget(arg->send_fd);
7241 if (!sctx->send_filp) {
7242 ret = -EBADF;
7243 goto out;
7244 }
7245
7246 sctx->send_root = send_root;
7247 /*
7248 * Unlikely but possible, if the subvolume is marked for deletion but
7249 * is slow to remove the directory entry, send can still be started
7250 */
7251 if (btrfs_root_dead(sctx->send_root)) {
7252 ret = -EPERM;
7253 goto out;
7254 }
7255
7256 sctx->clone_roots_cnt = arg->clone_sources_count;
7257
7258 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7259 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7260 if (!sctx->send_buf) {
7261 ret = -ENOMEM;
7262 goto out;
7263 }
7264
7265 sctx->pending_dir_moves = RB_ROOT;
7266 sctx->waiting_dir_moves = RB_ROOT;
7267 sctx->orphan_dirs = RB_ROOT;
7268
7269 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7270 arg->clone_sources_count + 1,
7271 GFP_KERNEL);
7272 if (!sctx->clone_roots) {
7273 ret = -ENOMEM;
7274 goto out;
7275 }
7276
7277 alloc_size = array_size(sizeof(*arg->clone_sources),
7278 arg->clone_sources_count);
7279
7280 if (arg->clone_sources_count) {
7281 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7282 if (!clone_sources_tmp) {
7283 ret = -ENOMEM;
7284 goto out;
7285 }
7286
7287 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7288 alloc_size);
7289 if (ret) {
7290 ret = -EFAULT;
7291 goto out;
7292 }
7293
7294 for (i = 0; i < arg->clone_sources_count; i++) {
7295 clone_root = btrfs_get_fs_root(fs_info,
7296 clone_sources_tmp[i], true);
7297 if (IS_ERR(clone_root)) {
7298 ret = PTR_ERR(clone_root);
7299 goto out;
7300 }
7301 spin_lock(&clone_root->root_item_lock);
7302 if (!btrfs_root_readonly(clone_root) ||
7303 btrfs_root_dead(clone_root)) {
7304 spin_unlock(&clone_root->root_item_lock);
7305 btrfs_put_root(clone_root);
7306 ret = -EPERM;
7307 goto out;
7308 }
7309 if (clone_root->dedupe_in_progress) {
7310 dedupe_in_progress_warn(clone_root);
7311 spin_unlock(&clone_root->root_item_lock);
7312 btrfs_put_root(clone_root);
7313 ret = -EAGAIN;
7314 goto out;
7315 }
7316 clone_root->send_in_progress++;
7317 spin_unlock(&clone_root->root_item_lock);
7318
7319 sctx->clone_roots[i].root = clone_root;
7320 clone_sources_to_rollback = i + 1;
7321 }
7322 kvfree(clone_sources_tmp);
7323 clone_sources_tmp = NULL;
7324 }
7325
7326 if (arg->parent_root) {
7327 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7328 true);
7329 if (IS_ERR(sctx->parent_root)) {
7330 ret = PTR_ERR(sctx->parent_root);
7331 goto out;
7332 }
7333
7334 spin_lock(&sctx->parent_root->root_item_lock);
7335 sctx->parent_root->send_in_progress++;
7336 if (!btrfs_root_readonly(sctx->parent_root) ||
7337 btrfs_root_dead(sctx->parent_root)) {
7338 spin_unlock(&sctx->parent_root->root_item_lock);
7339 ret = -EPERM;
7340 goto out;
7341 }
7342 if (sctx->parent_root->dedupe_in_progress) {
7343 dedupe_in_progress_warn(sctx->parent_root);
7344 spin_unlock(&sctx->parent_root->root_item_lock);
7345 ret = -EAGAIN;
7346 goto out;
7347 }
7348 spin_unlock(&sctx->parent_root->root_item_lock);
7349 }
7350
7351 /*
7352 * Clones from send_root are allowed, but only if the clone source
7353 * is behind the current send position. This is checked while searching
7354 * for possible clone sources.
7355 */
7356 sctx->clone_roots[sctx->clone_roots_cnt++].root =
7357 btrfs_grab_root(sctx->send_root);
7358
7359 /* We do a bsearch later */
7360 sort(sctx->clone_roots, sctx->clone_roots_cnt,
7361 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7362 NULL);
7363 sort_clone_roots = 1;
7364
7365 ret = flush_delalloc_roots(sctx);
7366 if (ret)
7367 goto out;
7368
7369 ret = ensure_commit_roots_uptodate(sctx);
7370 if (ret)
7371 goto out;
7372
7373 mutex_lock(&fs_info->balance_mutex);
7374 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7375 mutex_unlock(&fs_info->balance_mutex);
7376 btrfs_warn_rl(fs_info,
7377 "cannot run send because a balance operation is in progress");
7378 ret = -EAGAIN;
7379 goto out;
7380 }
7381 fs_info->send_in_progress++;
7382 mutex_unlock(&fs_info->balance_mutex);
7383
7384 current->journal_info = BTRFS_SEND_TRANS_STUB;
7385 ret = send_subvol(sctx);
7386 current->journal_info = NULL;
7387 mutex_lock(&fs_info->balance_mutex);
7388 fs_info->send_in_progress--;
7389 mutex_unlock(&fs_info->balance_mutex);
7390 if (ret < 0)
7391 goto out;
7392
7393 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7394 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7395 if (ret < 0)
7396 goto out;
7397 ret = send_cmd(sctx);
7398 if (ret < 0)
7399 goto out;
7400 }
7401
7402 out:
7403 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7404 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7405 struct rb_node *n;
7406 struct pending_dir_move *pm;
7407
7408 n = rb_first(&sctx->pending_dir_moves);
7409 pm = rb_entry(n, struct pending_dir_move, node);
7410 while (!list_empty(&pm->list)) {
7411 struct pending_dir_move *pm2;
7412
7413 pm2 = list_first_entry(&pm->list,
7414 struct pending_dir_move, list);
7415 free_pending_move(sctx, pm2);
7416 }
7417 free_pending_move(sctx, pm);
7418 }
7419
7420 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7421 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7422 struct rb_node *n;
7423 struct waiting_dir_move *dm;
7424
7425 n = rb_first(&sctx->waiting_dir_moves);
7426 dm = rb_entry(n, struct waiting_dir_move, node);
7427 rb_erase(&dm->node, &sctx->waiting_dir_moves);
7428 kfree(dm);
7429 }
7430
7431 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7432 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7433 struct rb_node *n;
7434 struct orphan_dir_info *odi;
7435
7436 n = rb_first(&sctx->orphan_dirs);
7437 odi = rb_entry(n, struct orphan_dir_info, node);
7438 free_orphan_dir_info(sctx, odi);
7439 }
7440
7441 if (sort_clone_roots) {
7442 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7443 btrfs_root_dec_send_in_progress(
7444 sctx->clone_roots[i].root);
7445 btrfs_put_root(sctx->clone_roots[i].root);
7446 }
7447 } else {
7448 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7449 btrfs_root_dec_send_in_progress(
7450 sctx->clone_roots[i].root);
7451 btrfs_put_root(sctx->clone_roots[i].root);
7452 }
7453
7454 btrfs_root_dec_send_in_progress(send_root);
7455 }
7456 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7457 btrfs_root_dec_send_in_progress(sctx->parent_root);
7458 btrfs_put_root(sctx->parent_root);
7459 }
7460
7461 kvfree(clone_sources_tmp);
7462
7463 if (sctx) {
7464 if (sctx->send_filp)
7465 fput(sctx->send_filp);
7466
7467 kvfree(sctx->clone_roots);
7468 kvfree(sctx->send_buf);
7469
7470 name_cache_free(sctx);
7471
7472 kfree(sctx);
7473 }
7474
7475 return ret;
7476 }
7477