1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8
9 #include <linux/hash.h>
10 #include "extent_map.h"
11 #include "extent_io.h"
12 #include "ordered-data.h"
13 #include "delayed-inode.h"
14
15 /*
16 * ordered_data_close is set by truncate when a file that used
17 * to have good data has been truncated to zero. When it is set
18 * the btrfs file release call will add this inode to the
19 * ordered operations list so that we make sure to flush out any
20 * new data the application may have written before commit.
21 */
22 enum {
23 BTRFS_INODE_ORDERED_DATA_CLOSE,
24 BTRFS_INODE_DUMMY,
25 BTRFS_INODE_IN_DEFRAG,
26 BTRFS_INODE_HAS_ASYNC_EXTENT,
27 BTRFS_INODE_NEEDS_FULL_SYNC,
28 BTRFS_INODE_COPY_EVERYTHING,
29 BTRFS_INODE_IN_DELALLOC_LIST,
30 BTRFS_INODE_READDIO_NEED_LOCK,
31 BTRFS_INODE_HAS_PROPS,
32 BTRFS_INODE_SNAPSHOT_FLUSH,
33 };
34
35 /* in memory btrfs inode */
36 struct btrfs_inode {
37 /* which subvolume this inode belongs to */
38 struct btrfs_root *root;
39
40 /* key used to find this inode on disk. This is used by the code
41 * to read in roots of subvolumes
42 */
43 struct btrfs_key location;
44
45 /*
46 * Lock for counters and all fields used to determine if the inode is in
47 * the log or not (last_trans, last_sub_trans, last_log_commit,
48 * logged_trans).
49 */
50 spinlock_t lock;
51
52 /* the extent_tree has caches of all the extent mappings to disk */
53 struct extent_map_tree extent_tree;
54
55 /* the io_tree does range state (DIRTY, LOCKED etc) */
56 struct extent_io_tree io_tree;
57
58 /* special utility tree used to record which mirrors have already been
59 * tried when checksums fail for a given block
60 */
61 struct extent_io_tree io_failure_tree;
62
63 /* held while logging the inode in tree-log.c */
64 struct mutex log_mutex;
65
66 /* held while doing delalloc reservations */
67 struct mutex delalloc_mutex;
68
69 /* used to order data wrt metadata */
70 struct btrfs_ordered_inode_tree ordered_tree;
71
72 /* list of all the delalloc inodes in the FS. There are times we need
73 * to write all the delalloc pages to disk, and this list is used
74 * to walk them all.
75 */
76 struct list_head delalloc_inodes;
77
78 /* node for the red-black tree that links inodes in subvolume root */
79 struct rb_node rb_node;
80
81 unsigned long runtime_flags;
82
83 /* Keep track of who's O_SYNC/fsyncing currently */
84 atomic_t sync_writers;
85
86 /* full 64 bit generation number, struct vfs_inode doesn't have a big
87 * enough field for this.
88 */
89 u64 generation;
90
91 /*
92 * transid of the trans_handle that last modified this inode
93 */
94 u64 last_trans;
95
96 /*
97 * transid that last logged this inode
98 */
99 u64 logged_trans;
100
101 /*
102 * log transid when this inode was last modified
103 */
104 int last_sub_trans;
105
106 /* a local copy of root's last_log_commit */
107 int last_log_commit;
108
109 /* total number of bytes pending delalloc, used by stat to calc the
110 * real block usage of the file
111 */
112 u64 delalloc_bytes;
113
114 /*
115 * Total number of bytes pending delalloc that fall within a file
116 * range that is either a hole or beyond EOF (and no prealloc extent
117 * exists in the range). This is always <= delalloc_bytes.
118 */
119 u64 new_delalloc_bytes;
120
121 /*
122 * total number of bytes pending defrag, used by stat to check whether
123 * it needs COW.
124 */
125 u64 defrag_bytes;
126
127 /*
128 * the size of the file stored in the metadata on disk. data=ordered
129 * means the in-memory i_size might be larger than the size on disk
130 * because not all the blocks are written yet.
131 */
132 u64 disk_i_size;
133
134 /*
135 * if this is a directory then index_cnt is the counter for the index
136 * number for new files that are created
137 */
138 u64 index_cnt;
139
140 /* Cache the directory index number to speed the dir/file remove */
141 u64 dir_index;
142
143 /* the fsync log has some corner cases that mean we have to check
144 * directories to see if any unlinks have been done before
145 * the directory was logged. See tree-log.c for all the
146 * details
147 */
148 u64 last_unlink_trans;
149
150 /*
151 * Number of bytes outstanding that are going to need csums. This is
152 * used in ENOSPC accounting.
153 */
154 u64 csum_bytes;
155
156 /* flags field from the on disk inode */
157 u32 flags;
158
159 /*
160 * Counters to keep track of the number of extent item's we may use due
161 * to delalloc and such. outstanding_extents is the number of extent
162 * items we think we'll end up using, and reserved_extents is the number
163 * of extent items we've reserved metadata for.
164 */
165 unsigned outstanding_extents;
166
167 struct btrfs_block_rsv block_rsv;
168
169 /*
170 * Cached values of inode properties
171 */
172 unsigned prop_compress; /* per-file compression algorithm */
173 /*
174 * Force compression on the file using the defrag ioctl, could be
175 * different from prop_compress and takes precedence if set
176 */
177 unsigned defrag_compress;
178
179 struct btrfs_delayed_node *delayed_node;
180
181 /* File creation time. */
182 struct timespec64 i_otime;
183
184 /* Hook into fs_info->delayed_iputs */
185 struct list_head delayed_iput;
186
187 /*
188 * To avoid races between lockless (i_mutex not held) direct IO writes
189 * and concurrent fsync requests. Direct IO writes must acquire read
190 * access on this semaphore for creating an extent map and its
191 * corresponding ordered extent. The fast fsync path must acquire write
192 * access on this semaphore before it collects ordered extents and
193 * extent maps.
194 */
195 struct rw_semaphore dio_sem;
196
197 struct inode vfs_inode;
198 };
199
BTRFS_I(const struct inode * inode)200 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
201 {
202 return container_of(inode, struct btrfs_inode, vfs_inode);
203 }
204
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)205 static inline unsigned long btrfs_inode_hash(u64 objectid,
206 const struct btrfs_root *root)
207 {
208 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
209
210 #if BITS_PER_LONG == 32
211 h = (h >> 32) ^ (h & 0xffffffff);
212 #endif
213
214 return (unsigned long)h;
215 }
216
btrfs_insert_inode_hash(struct inode * inode)217 static inline void btrfs_insert_inode_hash(struct inode *inode)
218 {
219 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
220
221 __insert_inode_hash(inode, h);
222 }
223
btrfs_ino(const struct btrfs_inode * inode)224 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
225 {
226 u64 ino = inode->location.objectid;
227
228 /*
229 * !ino: btree_inode
230 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
231 */
232 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
233 ino = inode->vfs_inode.i_ino;
234 return ino;
235 }
236
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)237 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
238 {
239 i_size_write(&inode->vfs_inode, size);
240 inode->disk_i_size = size;
241 }
242
btrfs_is_free_space_inode(struct btrfs_inode * inode)243 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
244 {
245 struct btrfs_root *root = inode->root;
246
247 if (root == root->fs_info->tree_root &&
248 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
249 return true;
250 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
251 return true;
252 return false;
253 }
254
is_data_inode(struct inode * inode)255 static inline bool is_data_inode(struct inode *inode)
256 {
257 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
258 }
259
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)260 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
261 int mod)
262 {
263 lockdep_assert_held(&inode->lock);
264 inode->outstanding_extents += mod;
265 if (btrfs_is_free_space_inode(inode))
266 return;
267 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
268 mod);
269 }
270
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)271 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
272 {
273 int ret = 0;
274
275 spin_lock(&inode->lock);
276 if (inode->logged_trans == generation &&
277 inode->last_sub_trans <= inode->last_log_commit &&
278 inode->last_sub_trans <= inode->root->last_log_commit) {
279 /*
280 * After a ranged fsync we might have left some extent maps
281 * (that fall outside the fsync's range). So return false
282 * here if the list isn't empty, to make sure btrfs_log_inode()
283 * will be called and process those extent maps.
284 */
285 smp_mb();
286 if (list_empty(&inode->extent_tree.modified_extents))
287 ret = 1;
288 }
289 spin_unlock(&inode->lock);
290 return ret;
291 }
292
293 #define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1
294
295 struct btrfs_dio_private {
296 struct inode *inode;
297 unsigned long flags;
298 u64 logical_offset;
299 u64 disk_bytenr;
300 u64 bytes;
301 void *private;
302
303 /* number of bios pending for this dio */
304 atomic_t pending_bios;
305
306 /* IO errors */
307 int errors;
308
309 /* orig_bio is our btrfs_io_bio */
310 struct bio *orig_bio;
311
312 /* dio_bio came from fs/direct-io.c */
313 struct bio *dio_bio;
314
315 /*
316 * The original bio may be split to several sub-bios, this is
317 * done during endio of sub-bios
318 */
319 blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
320 blk_status_t);
321 };
322
323 /*
324 * Disable DIO read nolock optimization, so new dio readers will be forced
325 * to grab i_mutex. It is used to avoid the endless truncate due to
326 * nonlocked dio read.
327 */
btrfs_inode_block_unlocked_dio(struct btrfs_inode * inode)328 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
329 {
330 set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
331 smp_mb();
332 }
333
btrfs_inode_resume_unlocked_dio(struct btrfs_inode * inode)334 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
335 {
336 smp_mb__before_atomic();
337 clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
338 }
339
340 /* Array of bytes with variable length, hexadecimal format 0x1234 */
341 #define CSUM_FMT "0x%*phN"
342 #define CSUM_FMT_VALUE(size, bytes) size, bytes
343
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)344 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
345 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
346 {
347 struct btrfs_root *root = inode->root;
348 struct btrfs_super_block *sb = root->fs_info->super_copy;
349 const u16 csum_size = btrfs_super_csum_size(sb);
350
351 /* Output minus objectid, which is more meaningful */
352 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
353 btrfs_warn_rl(root->fs_info,
354 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
355 root->root_key.objectid, btrfs_ino(inode),
356 logical_start,
357 CSUM_FMT_VALUE(csum_size, csum),
358 CSUM_FMT_VALUE(csum_size, csum_expected),
359 mirror_num);
360 else
361 btrfs_warn_rl(root->fs_info,
362 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
363 root->root_key.objectid, btrfs_ino(inode),
364 logical_start,
365 CSUM_FMT_VALUE(csum_size, csum),
366 CSUM_FMT_VALUE(csum_size, csum_expected),
367 mirror_num);
368 }
369
370 #endif
371