1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35 
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 	[BTRFS_RAID_RAID10] = {
38 		.sub_stripes	= 2,
39 		.dev_stripes	= 1,
40 		.devs_max	= 0,	/* 0 == as many as possible */
41 		.devs_min	= 2,
42 		.tolerated_failures = 1,
43 		.devs_increment	= 2,
44 		.ncopies	= 2,
45 		.nparity        = 0,
46 		.raid_name	= "raid10",
47 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
48 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 	},
50 	[BTRFS_RAID_RAID1] = {
51 		.sub_stripes	= 1,
52 		.dev_stripes	= 1,
53 		.devs_max	= 2,
54 		.devs_min	= 2,
55 		.tolerated_failures = 1,
56 		.devs_increment	= 2,
57 		.ncopies	= 2,
58 		.nparity        = 0,
59 		.raid_name	= "raid1",
60 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
61 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 	},
63 	[BTRFS_RAID_RAID1C3] = {
64 		.sub_stripes	= 1,
65 		.dev_stripes	= 1,
66 		.devs_max	= 3,
67 		.devs_min	= 3,
68 		.tolerated_failures = 2,
69 		.devs_increment	= 3,
70 		.ncopies	= 3,
71 		.nparity        = 0,
72 		.raid_name	= "raid1c3",
73 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
74 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 	},
76 	[BTRFS_RAID_RAID1C4] = {
77 		.sub_stripes	= 1,
78 		.dev_stripes	= 1,
79 		.devs_max	= 4,
80 		.devs_min	= 4,
81 		.tolerated_failures = 3,
82 		.devs_increment	= 4,
83 		.ncopies	= 4,
84 		.nparity        = 0,
85 		.raid_name	= "raid1c4",
86 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
87 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 	},
89 	[BTRFS_RAID_DUP] = {
90 		.sub_stripes	= 1,
91 		.dev_stripes	= 2,
92 		.devs_max	= 1,
93 		.devs_min	= 1,
94 		.tolerated_failures = 0,
95 		.devs_increment	= 1,
96 		.ncopies	= 2,
97 		.nparity        = 0,
98 		.raid_name	= "dup",
99 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
100 		.mindev_error	= 0,
101 	},
102 	[BTRFS_RAID_RAID0] = {
103 		.sub_stripes	= 1,
104 		.dev_stripes	= 1,
105 		.devs_max	= 0,
106 		.devs_min	= 1,
107 		.tolerated_failures = 0,
108 		.devs_increment	= 1,
109 		.ncopies	= 1,
110 		.nparity        = 0,
111 		.raid_name	= "raid0",
112 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
113 		.mindev_error	= 0,
114 	},
115 	[BTRFS_RAID_SINGLE] = {
116 		.sub_stripes	= 1,
117 		.dev_stripes	= 1,
118 		.devs_max	= 1,
119 		.devs_min	= 1,
120 		.tolerated_failures = 0,
121 		.devs_increment	= 1,
122 		.ncopies	= 1,
123 		.nparity        = 0,
124 		.raid_name	= "single",
125 		.bg_flag	= 0,
126 		.mindev_error	= 0,
127 	},
128 	[BTRFS_RAID_RAID5] = {
129 		.sub_stripes	= 1,
130 		.dev_stripes	= 1,
131 		.devs_max	= 0,
132 		.devs_min	= 2,
133 		.tolerated_failures = 1,
134 		.devs_increment	= 1,
135 		.ncopies	= 1,
136 		.nparity        = 1,
137 		.raid_name	= "raid5",
138 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
139 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 	},
141 	[BTRFS_RAID_RAID6] = {
142 		.sub_stripes	= 1,
143 		.dev_stripes	= 1,
144 		.devs_max	= 0,
145 		.devs_min	= 3,
146 		.tolerated_failures = 2,
147 		.devs_increment	= 1,
148 		.ncopies	= 1,
149 		.nparity        = 2,
150 		.raid_name	= "raid6",
151 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
152 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 	},
154 };
155 
156 /*
157  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158  * can be used as index to access btrfs_raid_array[].
159  */
btrfs_bg_flags_to_raid_index(u64 flags)160 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161 {
162 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
163 		return BTRFS_RAID_RAID10;
164 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165 		return BTRFS_RAID_RAID1;
166 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167 		return BTRFS_RAID_RAID1C3;
168 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169 		return BTRFS_RAID_RAID1C4;
170 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
171 		return BTRFS_RAID_DUP;
172 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173 		return BTRFS_RAID_RAID0;
174 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175 		return BTRFS_RAID_RAID5;
176 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177 		return BTRFS_RAID_RAID6;
178 
179 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180 }
181 
btrfs_bg_type_to_raid_name(u64 flags)182 const char *btrfs_bg_type_to_raid_name(u64 flags)
183 {
184 	const int index = btrfs_bg_flags_to_raid_index(flags);
185 
186 	if (index >= BTRFS_NR_RAID_TYPES)
187 		return NULL;
188 
189 	return btrfs_raid_array[index].raid_name;
190 }
191 
192 /*
193  * Fill @buf with textual description of @bg_flags, no more than @size_buf
194  * bytes including terminating null byte.
195  */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)196 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197 {
198 	int i;
199 	int ret;
200 	char *bp = buf;
201 	u64 flags = bg_flags;
202 	u32 size_bp = size_buf;
203 
204 	if (!flags) {
205 		strcpy(bp, "NONE");
206 		return;
207 	}
208 
209 #define DESCRIBE_FLAG(flag, desc)						\
210 	do {								\
211 		if (flags & (flag)) {					\
212 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
213 			if (ret < 0 || ret >= size_bp)			\
214 				goto out_overflow;			\
215 			size_bp -= ret;					\
216 			bp += ret;					\
217 			flags &= ~(flag);				\
218 		}							\
219 	} while (0)
220 
221 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224 
225 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 			      btrfs_raid_array[i].raid_name);
229 #undef DESCRIBE_FLAG
230 
231 	if (flags) {
232 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
233 		size_bp -= ret;
234 	}
235 
236 	if (size_bp < size_buf)
237 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238 
239 	/*
240 	 * The text is trimmed, it's up to the caller to provide sufficiently
241 	 * large buffer
242 	 */
243 out_overflow:;
244 }
245 
246 static int init_first_rw_device(struct btrfs_trans_handle *trans);
247 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
249 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
250 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251 			     enum btrfs_map_op op,
252 			     u64 logical, u64 *length,
253 			     struct btrfs_bio **bbio_ret,
254 			     int mirror_num, int need_raid_map);
255 
256 /*
257  * Device locking
258  * ==============
259  *
260  * There are several mutexes that protect manipulation of devices and low-level
261  * structures like chunks but not block groups, extents or files
262  *
263  * uuid_mutex (global lock)
264  * ------------------------
265  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267  * device) or requested by the device= mount option
268  *
269  * the mutex can be very coarse and can cover long-running operations
270  *
271  * protects: updates to fs_devices counters like missing devices, rw devices,
272  * seeding, structure cloning, opening/closing devices at mount/umount time
273  *
274  * global::fs_devs - add, remove, updates to the global list
275  *
276  * does not protect: manipulation of the fs_devices::devices list in general
277  * but in mount context it could be used to exclude list modifications by eg.
278  * scan ioctl
279  *
280  * btrfs_device::name - renames (write side), read is RCU
281  *
282  * fs_devices::device_list_mutex (per-fs, with RCU)
283  * ------------------------------------------------
284  * protects updates to fs_devices::devices, ie. adding and deleting
285  *
286  * simple list traversal with read-only actions can be done with RCU protection
287  *
288  * may be used to exclude some operations from running concurrently without any
289  * modifications to the list (see write_all_supers)
290  *
291  * Is not required at mount and close times, because our device list is
292  * protected by the uuid_mutex at that point.
293  *
294  * balance_mutex
295  * -------------
296  * protects balance structures (status, state) and context accessed from
297  * several places (internally, ioctl)
298  *
299  * chunk_mutex
300  * -----------
301  * protects chunks, adding or removing during allocation, trim or when a new
302  * device is added/removed. Additionally it also protects post_commit_list of
303  * individual devices, since they can be added to the transaction's
304  * post_commit_list only with chunk_mutex held.
305  *
306  * cleaner_mutex
307  * -------------
308  * a big lock that is held by the cleaner thread and prevents running subvolume
309  * cleaning together with relocation or delayed iputs
310  *
311  *
312  * Lock nesting
313  * ============
314  *
315  * uuid_mutex
316  *   device_list_mutex
317  *     chunk_mutex
318  *   balance_mutex
319  *
320  *
321  * Exclusive operations
322  * ====================
323  *
324  * Maintains the exclusivity of the following operations that apply to the
325  * whole filesystem and cannot run in parallel.
326  *
327  * - Balance (*)
328  * - Device add
329  * - Device remove
330  * - Device replace (*)
331  * - Resize
332  *
333  * The device operations (as above) can be in one of the following states:
334  *
335  * - Running state
336  * - Paused state
337  * - Completed state
338  *
339  * Only device operations marked with (*) can go into the Paused state for the
340  * following reasons:
341  *
342  * - ioctl (only Balance can be Paused through ioctl)
343  * - filesystem remounted as read-only
344  * - filesystem unmounted and mounted as read-only
345  * - system power-cycle and filesystem mounted as read-only
346  * - filesystem or device errors leading to forced read-only
347  *
348  * The status of exclusive operation is set and cleared atomically.
349  * During the course of Paused state, fs_info::exclusive_operation remains set.
350  * A device operation in Paused or Running state can be canceled or resumed
351  * either by ioctl (Balance only) or when remounted as read-write.
352  * The exclusive status is cleared when the device operation is canceled or
353  * completed.
354  */
355 
356 DEFINE_MUTEX(uuid_mutex);
357 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)358 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
359 {
360 	return &fs_uuids;
361 }
362 
363 /*
364  * alloc_fs_devices - allocate struct btrfs_fs_devices
365  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
366  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
367  *
368  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369  * The returned struct is not linked onto any lists and can be destroyed with
370  * kfree() right away.
371  */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)372 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373 						 const u8 *metadata_fsid)
374 {
375 	struct btrfs_fs_devices *fs_devs;
376 
377 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
378 	if (!fs_devs)
379 		return ERR_PTR(-ENOMEM);
380 
381 	mutex_init(&fs_devs->device_list_mutex);
382 
383 	INIT_LIST_HEAD(&fs_devs->devices);
384 	INIT_LIST_HEAD(&fs_devs->alloc_list);
385 	INIT_LIST_HEAD(&fs_devs->fs_list);
386 	INIT_LIST_HEAD(&fs_devs->seed_list);
387 	if (fsid)
388 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
389 
390 	if (metadata_fsid)
391 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392 	else if (fsid)
393 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394 
395 	return fs_devs;
396 }
397 
btrfs_free_device(struct btrfs_device * device)398 void btrfs_free_device(struct btrfs_device *device)
399 {
400 	WARN_ON(!list_empty(&device->post_commit_list));
401 	rcu_string_free(device->name);
402 	extent_io_tree_release(&device->alloc_state);
403 	bio_put(device->flush_bio);
404 	btrfs_destroy_dev_zone_info(device);
405 	kfree(device);
406 }
407 
free_fs_devices(struct btrfs_fs_devices * fs_devices)408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409 {
410 	struct btrfs_device *device;
411 	WARN_ON(fs_devices->opened);
412 	while (!list_empty(&fs_devices->devices)) {
413 		device = list_entry(fs_devices->devices.next,
414 				    struct btrfs_device, dev_list);
415 		list_del(&device->dev_list);
416 		btrfs_free_device(device);
417 	}
418 	kfree(fs_devices);
419 }
420 
btrfs_cleanup_fs_uuids(void)421 void __exit btrfs_cleanup_fs_uuids(void)
422 {
423 	struct btrfs_fs_devices *fs_devices;
424 
425 	while (!list_empty(&fs_uuids)) {
426 		fs_devices = list_entry(fs_uuids.next,
427 					struct btrfs_fs_devices, fs_list);
428 		list_del(&fs_devices->fs_list);
429 		free_fs_devices(fs_devices);
430 	}
431 }
432 
find_fsid(const u8 * fsid,const u8 * metadata_fsid)433 static noinline struct btrfs_fs_devices *find_fsid(
434 		const u8 *fsid, const u8 *metadata_fsid)
435 {
436 	struct btrfs_fs_devices *fs_devices;
437 
438 	ASSERT(fsid);
439 
440 	/* Handle non-split brain cases */
441 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 		if (metadata_fsid) {
443 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 				      BTRFS_FSID_SIZE) == 0)
446 				return fs_devices;
447 		} else {
448 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 				return fs_devices;
450 		}
451 	}
452 	return NULL;
453 }
454 
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 				struct btrfs_super_block *disk_super)
457 {
458 
459 	struct btrfs_fs_devices *fs_devices;
460 
461 	/*
462 	 * Handle scanned device having completed its fsid change but
463 	 * belonging to a fs_devices that was created by first scanning
464 	 * a device which didn't have its fsid/metadata_uuid changed
465 	 * at all and the CHANGING_FSID_V2 flag set.
466 	 */
467 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 		if (fs_devices->fsid_change &&
469 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 			   BTRFS_FSID_SIZE) == 0 &&
471 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 			   BTRFS_FSID_SIZE) == 0) {
473 			return fs_devices;
474 		}
475 	}
476 	/*
477 	 * Handle scanned device having completed its fsid change but
478 	 * belonging to a fs_devices that was created by a device that
479 	 * has an outdated pair of fsid/metadata_uuid and
480 	 * CHANGING_FSID_V2 flag set.
481 	 */
482 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 		if (fs_devices->fsid_change &&
484 		    memcmp(fs_devices->metadata_uuid,
485 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 			   BTRFS_FSID_SIZE) == 0) {
488 			return fs_devices;
489 		}
490 	}
491 
492 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493 }
494 
495 
496 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 		      int flush, struct block_device **bdev,
499 		      struct btrfs_super_block **disk_super)
500 {
501 	int ret;
502 
503 	*bdev = blkdev_get_by_path(device_path, flags, holder);
504 
505 	if (IS_ERR(*bdev)) {
506 		ret = PTR_ERR(*bdev);
507 		goto error;
508 	}
509 
510 	if (flush)
511 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
512 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
513 	if (ret) {
514 		blkdev_put(*bdev, flags);
515 		goto error;
516 	}
517 	invalidate_bdev(*bdev);
518 	*disk_super = btrfs_read_dev_super(*bdev);
519 	if (IS_ERR(*disk_super)) {
520 		ret = PTR_ERR(*disk_super);
521 		blkdev_put(*bdev, flags);
522 		goto error;
523 	}
524 
525 	return 0;
526 
527 error:
528 	*bdev = NULL;
529 	return ret;
530 }
531 
device_path_matched(const char * path,struct btrfs_device * device)532 static bool device_path_matched(const char *path, struct btrfs_device *device)
533 {
534 	int found;
535 
536 	rcu_read_lock();
537 	found = strcmp(rcu_str_deref(device->name), path);
538 	rcu_read_unlock();
539 
540 	return found == 0;
541 }
542 
543 /*
544  *  Search and remove all stale (devices which are not mounted) devices.
545  *  When both inputs are NULL, it will search and release all stale devices.
546  *  path:	Optional. When provided will it release all unmounted devices
547  *		matching this path only.
548  *  skip_dev:	Optional. Will skip this device when searching for the stale
549  *		devices.
550  *  Return:	0 for success or if @path is NULL.
551  * 		-EBUSY if @path is a mounted device.
552  * 		-ENOENT if @path does not match any device in the list.
553  */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)554 static int btrfs_free_stale_devices(const char *path,
555 				     struct btrfs_device *skip_device)
556 {
557 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558 	struct btrfs_device *device, *tmp_device;
559 	int ret = 0;
560 
561 	lockdep_assert_held(&uuid_mutex);
562 
563 	if (path)
564 		ret = -ENOENT;
565 
566 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
567 
568 		mutex_lock(&fs_devices->device_list_mutex);
569 		list_for_each_entry_safe(device, tmp_device,
570 					 &fs_devices->devices, dev_list) {
571 			if (skip_device && skip_device == device)
572 				continue;
573 			if (path && !device->name)
574 				continue;
575 			if (path && !device_path_matched(path, device))
576 				continue;
577 			if (fs_devices->opened) {
578 				/* for an already deleted device return 0 */
579 				if (path && ret != 0)
580 					ret = -EBUSY;
581 				break;
582 			}
583 
584 			/* delete the stale device */
585 			fs_devices->num_devices--;
586 			list_del(&device->dev_list);
587 			btrfs_free_device(device);
588 
589 			ret = 0;
590 		}
591 		mutex_unlock(&fs_devices->device_list_mutex);
592 
593 		if (fs_devices->num_devices == 0) {
594 			btrfs_sysfs_remove_fsid(fs_devices);
595 			list_del(&fs_devices->fs_list);
596 			free_fs_devices(fs_devices);
597 		}
598 	}
599 
600 	return ret;
601 }
602 
603 /*
604  * This is only used on mount, and we are protected from competing things
605  * messing with our fs_devices by the uuid_mutex, thus we do not need the
606  * fs_devices->device_list_mutex here.
607  */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)608 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
609 			struct btrfs_device *device, fmode_t flags,
610 			void *holder)
611 {
612 	struct request_queue *q;
613 	struct block_device *bdev;
614 	struct btrfs_super_block *disk_super;
615 	u64 devid;
616 	int ret;
617 
618 	if (device->bdev)
619 		return -EINVAL;
620 	if (!device->name)
621 		return -EINVAL;
622 
623 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
624 				    &bdev, &disk_super);
625 	if (ret)
626 		return ret;
627 
628 	devid = btrfs_stack_device_id(&disk_super->dev_item);
629 	if (devid != device->devid)
630 		goto error_free_page;
631 
632 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
633 		goto error_free_page;
634 
635 	device->generation = btrfs_super_generation(disk_super);
636 
637 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
638 		if (btrfs_super_incompat_flags(disk_super) &
639 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
640 			pr_err(
641 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
642 			goto error_free_page;
643 		}
644 
645 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
646 		fs_devices->seeding = true;
647 	} else {
648 		if (bdev_read_only(bdev))
649 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
650 		else
651 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
652 	}
653 
654 	q = bdev_get_queue(bdev);
655 	if (!blk_queue_nonrot(q))
656 		fs_devices->rotating = true;
657 
658 	device->bdev = bdev;
659 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
660 	device->mode = flags;
661 
662 	fs_devices->open_devices++;
663 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
664 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
665 		fs_devices->rw_devices++;
666 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
667 	}
668 	btrfs_release_disk_super(disk_super);
669 
670 	return 0;
671 
672 error_free_page:
673 	btrfs_release_disk_super(disk_super);
674 	blkdev_put(bdev, flags);
675 
676 	return -EINVAL;
677 }
678 
679 /*
680  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
681  * being created with a disk that has already completed its fsid change. Such
682  * disk can belong to an fs which has its FSID changed or to one which doesn't.
683  * Handle both cases here.
684  */
find_fsid_inprogress(struct btrfs_super_block * disk_super)685 static struct btrfs_fs_devices *find_fsid_inprogress(
686 					struct btrfs_super_block *disk_super)
687 {
688 	struct btrfs_fs_devices *fs_devices;
689 
690 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
691 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
692 			   BTRFS_FSID_SIZE) != 0 &&
693 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
694 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
695 			return fs_devices;
696 		}
697 	}
698 
699 	return find_fsid(disk_super->fsid, NULL);
700 }
701 
702 
find_fsid_changed(struct btrfs_super_block * disk_super)703 static struct btrfs_fs_devices *find_fsid_changed(
704 					struct btrfs_super_block *disk_super)
705 {
706 	struct btrfs_fs_devices *fs_devices;
707 
708 	/*
709 	 * Handles the case where scanned device is part of an fs that had
710 	 * multiple successful changes of FSID but currently device didn't
711 	 * observe it. Meaning our fsid will be different than theirs. We need
712 	 * to handle two subcases :
713 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
714 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
715 	 *  are equal).
716 	 */
717 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
718 		/* Changed UUIDs */
719 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720 			   BTRFS_FSID_SIZE) != 0 &&
721 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
722 			   BTRFS_FSID_SIZE) == 0 &&
723 		    memcmp(fs_devices->fsid, disk_super->fsid,
724 			   BTRFS_FSID_SIZE) != 0)
725 			return fs_devices;
726 
727 		/* Unchanged UUIDs */
728 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
729 			   BTRFS_FSID_SIZE) == 0 &&
730 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
731 			   BTRFS_FSID_SIZE) == 0)
732 			return fs_devices;
733 	}
734 
735 	return NULL;
736 }
737 
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)738 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
739 				struct btrfs_super_block *disk_super)
740 {
741 	struct btrfs_fs_devices *fs_devices;
742 
743 	/*
744 	 * Handle the case where the scanned device is part of an fs whose last
745 	 * metadata UUID change reverted it to the original FSID. At the same
746 	 * time * fs_devices was first created by another constitutent device
747 	 * which didn't fully observe the operation. This results in an
748 	 * btrfs_fs_devices created with metadata/fsid different AND
749 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
750 	 * fs_devices equal to the FSID of the disk.
751 	 */
752 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
753 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
754 			   BTRFS_FSID_SIZE) != 0 &&
755 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
756 			   BTRFS_FSID_SIZE) == 0 &&
757 		    fs_devices->fsid_change)
758 			return fs_devices;
759 	}
760 
761 	return NULL;
762 }
763 /*
764  * Add new device to list of registered devices
765  *
766  * Returns:
767  * device pointer which was just added or updated when successful
768  * error pointer when failed
769  */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)770 static noinline struct btrfs_device *device_list_add(const char *path,
771 			   struct btrfs_super_block *disk_super,
772 			   bool *new_device_added)
773 {
774 	struct btrfs_device *device;
775 	struct btrfs_fs_devices *fs_devices = NULL;
776 	struct rcu_string *name;
777 	u64 found_transid = btrfs_super_generation(disk_super);
778 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
779 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
780 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
781 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
782 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
783 
784 	if (fsid_change_in_progress) {
785 		if (!has_metadata_uuid)
786 			fs_devices = find_fsid_inprogress(disk_super);
787 		else
788 			fs_devices = find_fsid_changed(disk_super);
789 	} else if (has_metadata_uuid) {
790 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
791 	} else {
792 		fs_devices = find_fsid_reverted_metadata(disk_super);
793 		if (!fs_devices)
794 			fs_devices = find_fsid(disk_super->fsid, NULL);
795 	}
796 
797 
798 	if (!fs_devices) {
799 		if (has_metadata_uuid)
800 			fs_devices = alloc_fs_devices(disk_super->fsid,
801 						      disk_super->metadata_uuid);
802 		else
803 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
804 
805 		if (IS_ERR(fs_devices))
806 			return ERR_CAST(fs_devices);
807 
808 		fs_devices->fsid_change = fsid_change_in_progress;
809 
810 		mutex_lock(&fs_devices->device_list_mutex);
811 		list_add(&fs_devices->fs_list, &fs_uuids);
812 
813 		device = NULL;
814 	} else {
815 		mutex_lock(&fs_devices->device_list_mutex);
816 		device = btrfs_find_device(fs_devices, devid,
817 				disk_super->dev_item.uuid, NULL);
818 
819 		/*
820 		 * If this disk has been pulled into an fs devices created by
821 		 * a device which had the CHANGING_FSID_V2 flag then replace the
822 		 * metadata_uuid/fsid values of the fs_devices.
823 		 */
824 		if (fs_devices->fsid_change &&
825 		    found_transid > fs_devices->latest_generation) {
826 			memcpy(fs_devices->fsid, disk_super->fsid,
827 					BTRFS_FSID_SIZE);
828 
829 			if (has_metadata_uuid)
830 				memcpy(fs_devices->metadata_uuid,
831 				       disk_super->metadata_uuid,
832 				       BTRFS_FSID_SIZE);
833 			else
834 				memcpy(fs_devices->metadata_uuid,
835 				       disk_super->fsid, BTRFS_FSID_SIZE);
836 
837 			fs_devices->fsid_change = false;
838 		}
839 	}
840 
841 	if (!device) {
842 		if (fs_devices->opened) {
843 			mutex_unlock(&fs_devices->device_list_mutex);
844 			return ERR_PTR(-EBUSY);
845 		}
846 
847 		device = btrfs_alloc_device(NULL, &devid,
848 					    disk_super->dev_item.uuid);
849 		if (IS_ERR(device)) {
850 			mutex_unlock(&fs_devices->device_list_mutex);
851 			/* we can safely leave the fs_devices entry around */
852 			return device;
853 		}
854 
855 		name = rcu_string_strdup(path, GFP_NOFS);
856 		if (!name) {
857 			btrfs_free_device(device);
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			return ERR_PTR(-ENOMEM);
860 		}
861 		rcu_assign_pointer(device->name, name);
862 
863 		list_add_rcu(&device->dev_list, &fs_devices->devices);
864 		fs_devices->num_devices++;
865 
866 		device->fs_devices = fs_devices;
867 		*new_device_added = true;
868 
869 		if (disk_super->label[0])
870 			pr_info(
871 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
872 				disk_super->label, devid, found_transid, path,
873 				current->comm, task_pid_nr(current));
874 		else
875 			pr_info(
876 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
877 				disk_super->fsid, devid, found_transid, path,
878 				current->comm, task_pid_nr(current));
879 
880 	} else if (!device->name || strcmp(device->name->str, path)) {
881 		/*
882 		 * When FS is already mounted.
883 		 * 1. If you are here and if the device->name is NULL that
884 		 *    means this device was missing at time of FS mount.
885 		 * 2. If you are here and if the device->name is different
886 		 *    from 'path' that means either
887 		 *      a. The same device disappeared and reappeared with
888 		 *         different name. or
889 		 *      b. The missing-disk-which-was-replaced, has
890 		 *         reappeared now.
891 		 *
892 		 * We must allow 1 and 2a above. But 2b would be a spurious
893 		 * and unintentional.
894 		 *
895 		 * Further in case of 1 and 2a above, the disk at 'path'
896 		 * would have missed some transaction when it was away and
897 		 * in case of 2a the stale bdev has to be updated as well.
898 		 * 2b must not be allowed at all time.
899 		 */
900 
901 		/*
902 		 * For now, we do allow update to btrfs_fs_device through the
903 		 * btrfs dev scan cli after FS has been mounted.  We're still
904 		 * tracking a problem where systems fail mount by subvolume id
905 		 * when we reject replacement on a mounted FS.
906 		 */
907 		if (!fs_devices->opened && found_transid < device->generation) {
908 			/*
909 			 * That is if the FS is _not_ mounted and if you
910 			 * are here, that means there is more than one
911 			 * disk with same uuid and devid.We keep the one
912 			 * with larger generation number or the last-in if
913 			 * generation are equal.
914 			 */
915 			mutex_unlock(&fs_devices->device_list_mutex);
916 			return ERR_PTR(-EEXIST);
917 		}
918 
919 		/*
920 		 * We are going to replace the device path for a given devid,
921 		 * make sure it's the same device if the device is mounted
922 		 */
923 		if (device->bdev) {
924 			int error;
925 			dev_t path_dev;
926 
927 			error = lookup_bdev(path, &path_dev);
928 			if (error) {
929 				mutex_unlock(&fs_devices->device_list_mutex);
930 				return ERR_PTR(error);
931 			}
932 
933 			if (device->bdev->bd_dev != path_dev) {
934 				mutex_unlock(&fs_devices->device_list_mutex);
935 				/*
936 				 * device->fs_info may not be reliable here, so
937 				 * pass in a NULL instead. This avoids a
938 				 * possible use-after-free when the fs_info and
939 				 * fs_info->sb are already torn down.
940 				 */
941 				btrfs_warn_in_rcu(NULL,
942 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
943 						  path, devid, found_transid,
944 						  current->comm,
945 						  task_pid_nr(current));
946 				return ERR_PTR(-EEXIST);
947 			}
948 			btrfs_info_in_rcu(device->fs_info,
949 	"devid %llu device path %s changed to %s scanned by %s (%d)",
950 					  devid, rcu_str_deref(device->name),
951 					  path, current->comm,
952 					  task_pid_nr(current));
953 		}
954 
955 		name = rcu_string_strdup(path, GFP_NOFS);
956 		if (!name) {
957 			mutex_unlock(&fs_devices->device_list_mutex);
958 			return ERR_PTR(-ENOMEM);
959 		}
960 		rcu_string_free(device->name);
961 		rcu_assign_pointer(device->name, name);
962 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
963 			fs_devices->missing_devices--;
964 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
965 		}
966 	}
967 
968 	/*
969 	 * Unmount does not free the btrfs_device struct but would zero
970 	 * generation along with most of the other members. So just update
971 	 * it back. We need it to pick the disk with largest generation
972 	 * (as above).
973 	 */
974 	if (!fs_devices->opened) {
975 		device->generation = found_transid;
976 		fs_devices->latest_generation = max_t(u64, found_transid,
977 						fs_devices->latest_generation);
978 	}
979 
980 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
981 
982 	mutex_unlock(&fs_devices->device_list_mutex);
983 	return device;
984 }
985 
clone_fs_devices(struct btrfs_fs_devices * orig)986 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
987 {
988 	struct btrfs_fs_devices *fs_devices;
989 	struct btrfs_device *device;
990 	struct btrfs_device *orig_dev;
991 	int ret = 0;
992 
993 	lockdep_assert_held(&uuid_mutex);
994 
995 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
996 	if (IS_ERR(fs_devices))
997 		return fs_devices;
998 
999 	fs_devices->total_devices = orig->total_devices;
1000 
1001 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002 		struct rcu_string *name;
1003 
1004 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 					    orig_dev->uuid);
1006 		if (IS_ERR(device)) {
1007 			ret = PTR_ERR(device);
1008 			goto error;
1009 		}
1010 
1011 		/*
1012 		 * This is ok to do without rcu read locked because we hold the
1013 		 * uuid mutex so nothing we touch in here is going to disappear.
1014 		 */
1015 		if (orig_dev->name) {
1016 			name = rcu_string_strdup(orig_dev->name->str,
1017 					GFP_KERNEL);
1018 			if (!name) {
1019 				btrfs_free_device(device);
1020 				ret = -ENOMEM;
1021 				goto error;
1022 			}
1023 			rcu_assign_pointer(device->name, name);
1024 		}
1025 
1026 		list_add(&device->dev_list, &fs_devices->devices);
1027 		device->fs_devices = fs_devices;
1028 		fs_devices->num_devices++;
1029 	}
1030 	return fs_devices;
1031 error:
1032 	free_fs_devices(fs_devices);
1033 	return ERR_PTR(ret);
1034 }
1035 
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1036 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1037 				      struct btrfs_device **latest_dev)
1038 {
1039 	struct btrfs_device *device, *next;
1040 
1041 	/* This is the initialized path, it is safe to release the devices. */
1042 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1043 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1044 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1045 				      &device->dev_state) &&
1046 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1047 				      &device->dev_state) &&
1048 			    (!*latest_dev ||
1049 			     device->generation > (*latest_dev)->generation)) {
1050 				*latest_dev = device;
1051 			}
1052 			continue;
1053 		}
1054 
1055 		/*
1056 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1057 		 * in btrfs_init_dev_replace() so just continue.
1058 		 */
1059 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1060 			continue;
1061 
1062 		if (device->bdev) {
1063 			blkdev_put(device->bdev, device->mode);
1064 			device->bdev = NULL;
1065 			fs_devices->open_devices--;
1066 		}
1067 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1068 			list_del_init(&device->dev_alloc_list);
1069 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1070 			fs_devices->rw_devices--;
1071 		}
1072 		list_del_init(&device->dev_list);
1073 		fs_devices->num_devices--;
1074 		btrfs_free_device(device);
1075 	}
1076 
1077 }
1078 
1079 /*
1080  * After we have read the system tree and know devids belonging to this
1081  * filesystem, remove the device which does not belong there.
1082  */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1083 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1084 {
1085 	struct btrfs_device *latest_dev = NULL;
1086 	struct btrfs_fs_devices *seed_dev;
1087 
1088 	mutex_lock(&uuid_mutex);
1089 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1090 
1091 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1092 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1093 
1094 	fs_devices->latest_bdev = latest_dev->bdev;
1095 
1096 	mutex_unlock(&uuid_mutex);
1097 }
1098 
btrfs_close_bdev(struct btrfs_device * device)1099 static void btrfs_close_bdev(struct btrfs_device *device)
1100 {
1101 	if (!device->bdev)
1102 		return;
1103 
1104 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105 		sync_blockdev(device->bdev);
1106 		invalidate_bdev(device->bdev);
1107 	}
1108 
1109 	blkdev_put(device->bdev, device->mode);
1110 }
1111 
btrfs_close_one_device(struct btrfs_device * device)1112 static void btrfs_close_one_device(struct btrfs_device *device)
1113 {
1114 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1115 
1116 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118 		list_del_init(&device->dev_alloc_list);
1119 		fs_devices->rw_devices--;
1120 	}
1121 
1122 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1123 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1126 		fs_devices->missing_devices--;
1127 
1128 	btrfs_close_bdev(device);
1129 	if (device->bdev) {
1130 		fs_devices->open_devices--;
1131 		device->bdev = NULL;
1132 	}
1133 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1134 	btrfs_destroy_dev_zone_info(device);
1135 
1136 	device->fs_info = NULL;
1137 	atomic_set(&device->dev_stats_ccnt, 0);
1138 	extent_io_tree_release(&device->alloc_state);
1139 
1140 	/*
1141 	 * Reset the flush error record. We might have a transient flush error
1142 	 * in this mount, and if so we aborted the current transaction and set
1143 	 * the fs to an error state, guaranteeing no super blocks can be further
1144 	 * committed. However that error might be transient and if we unmount the
1145 	 * filesystem and mount it again, we should allow the mount to succeed
1146 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1147 	 * filesystem again we still get flush errors, then we will again abort
1148 	 * any transaction and set the error state, guaranteeing no commits of
1149 	 * unsafe super blocks.
1150 	 */
1151 	device->last_flush_error = 0;
1152 
1153 	/* Verify the device is back in a pristine state  */
1154 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1155 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1156 	ASSERT(list_empty(&device->dev_alloc_list));
1157 	ASSERT(list_empty(&device->post_commit_list));
1158 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1159 }
1160 
close_fs_devices(struct btrfs_fs_devices * fs_devices)1161 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1162 {
1163 	struct btrfs_device *device, *tmp;
1164 
1165 	lockdep_assert_held(&uuid_mutex);
1166 
1167 	if (--fs_devices->opened > 0)
1168 		return;
1169 
1170 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1171 		btrfs_close_one_device(device);
1172 
1173 	WARN_ON(fs_devices->open_devices);
1174 	WARN_ON(fs_devices->rw_devices);
1175 	fs_devices->opened = 0;
1176 	fs_devices->seeding = false;
1177 	fs_devices->fs_info = NULL;
1178 }
1179 
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1180 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1181 {
1182 	LIST_HEAD(list);
1183 	struct btrfs_fs_devices *tmp;
1184 
1185 	mutex_lock(&uuid_mutex);
1186 	close_fs_devices(fs_devices);
1187 	if (!fs_devices->opened)
1188 		list_splice_init(&fs_devices->seed_list, &list);
1189 
1190 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1191 		close_fs_devices(fs_devices);
1192 		list_del(&fs_devices->seed_list);
1193 		free_fs_devices(fs_devices);
1194 	}
1195 	mutex_unlock(&uuid_mutex);
1196 }
1197 
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1198 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1199 				fmode_t flags, void *holder)
1200 {
1201 	struct btrfs_device *device;
1202 	struct btrfs_device *latest_dev = NULL;
1203 	struct btrfs_device *tmp_device;
1204 
1205 	flags |= FMODE_EXCL;
1206 
1207 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1208 				 dev_list) {
1209 		int ret;
1210 
1211 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1212 		if (ret == 0 &&
1213 		    (!latest_dev || device->generation > latest_dev->generation)) {
1214 			latest_dev = device;
1215 		} else if (ret == -ENODATA) {
1216 			fs_devices->num_devices--;
1217 			list_del(&device->dev_list);
1218 			btrfs_free_device(device);
1219 		}
1220 	}
1221 	if (fs_devices->open_devices == 0)
1222 		return -EINVAL;
1223 
1224 	fs_devices->opened = 1;
1225 	fs_devices->latest_bdev = latest_dev->bdev;
1226 	fs_devices->total_rw_bytes = 0;
1227 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1228 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1229 
1230 	return 0;
1231 }
1232 
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1233 static int devid_cmp(void *priv, const struct list_head *a,
1234 		     const struct list_head *b)
1235 {
1236 	const struct btrfs_device *dev1, *dev2;
1237 
1238 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1239 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1240 
1241 	if (dev1->devid < dev2->devid)
1242 		return -1;
1243 	else if (dev1->devid > dev2->devid)
1244 		return 1;
1245 	return 0;
1246 }
1247 
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1248 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1249 		       fmode_t flags, void *holder)
1250 {
1251 	int ret;
1252 
1253 	lockdep_assert_held(&uuid_mutex);
1254 	/*
1255 	 * The device_list_mutex cannot be taken here in case opening the
1256 	 * underlying device takes further locks like open_mutex.
1257 	 *
1258 	 * We also don't need the lock here as this is called during mount and
1259 	 * exclusion is provided by uuid_mutex
1260 	 */
1261 
1262 	if (fs_devices->opened) {
1263 		fs_devices->opened++;
1264 		ret = 0;
1265 	} else {
1266 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1267 		ret = open_fs_devices(fs_devices, flags, holder);
1268 	}
1269 
1270 	return ret;
1271 }
1272 
btrfs_release_disk_super(struct btrfs_super_block * super)1273 void btrfs_release_disk_super(struct btrfs_super_block *super)
1274 {
1275 	struct page *page = virt_to_page(super);
1276 
1277 	put_page(page);
1278 }
1279 
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1280 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1281 						       u64 bytenr, u64 bytenr_orig)
1282 {
1283 	struct btrfs_super_block *disk_super;
1284 	struct page *page;
1285 	void *p;
1286 	pgoff_t index;
1287 
1288 	/* make sure our super fits in the device */
1289 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1290 		return ERR_PTR(-EINVAL);
1291 
1292 	/* make sure our super fits in the page */
1293 	if (sizeof(*disk_super) > PAGE_SIZE)
1294 		return ERR_PTR(-EINVAL);
1295 
1296 	/* make sure our super doesn't straddle pages on disk */
1297 	index = bytenr >> PAGE_SHIFT;
1298 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1299 		return ERR_PTR(-EINVAL);
1300 
1301 	/* pull in the page with our super */
1302 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1303 
1304 	if (IS_ERR(page))
1305 		return ERR_CAST(page);
1306 
1307 	p = page_address(page);
1308 
1309 	/* align our pointer to the offset of the super block */
1310 	disk_super = p + offset_in_page(bytenr);
1311 
1312 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1313 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1314 		btrfs_release_disk_super(p);
1315 		return ERR_PTR(-EINVAL);
1316 	}
1317 
1318 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1319 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1320 
1321 	return disk_super;
1322 }
1323 
btrfs_forget_devices(const char * path)1324 int btrfs_forget_devices(const char *path)
1325 {
1326 	int ret;
1327 
1328 	mutex_lock(&uuid_mutex);
1329 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1330 	mutex_unlock(&uuid_mutex);
1331 
1332 	return ret;
1333 }
1334 
1335 /*
1336  * Look for a btrfs signature on a device. This may be called out of the mount path
1337  * and we are not allowed to call set_blocksize during the scan. The superblock
1338  * is read via pagecache
1339  */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1340 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1341 					   void *holder)
1342 {
1343 	struct btrfs_super_block *disk_super;
1344 	bool new_device_added = false;
1345 	struct btrfs_device *device = NULL;
1346 	struct block_device *bdev;
1347 	u64 bytenr, bytenr_orig;
1348 	int ret;
1349 
1350 	lockdep_assert_held(&uuid_mutex);
1351 
1352 	/*
1353 	 * we would like to check all the supers, but that would make
1354 	 * a btrfs mount succeed after a mkfs from a different FS.
1355 	 * So, we need to add a special mount option to scan for
1356 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1357 	 */
1358 	flags |= FMODE_EXCL;
1359 
1360 	bdev = blkdev_get_by_path(path, flags, holder);
1361 	if (IS_ERR(bdev))
1362 		return ERR_CAST(bdev);
1363 
1364 	bytenr_orig = btrfs_sb_offset(0);
1365 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1366 	if (ret)
1367 		return ERR_PTR(ret);
1368 
1369 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1370 	if (IS_ERR(disk_super)) {
1371 		device = ERR_CAST(disk_super);
1372 		goto error_bdev_put;
1373 	}
1374 
1375 	device = device_list_add(path, disk_super, &new_device_added);
1376 	if (!IS_ERR(device)) {
1377 		if (new_device_added)
1378 			btrfs_free_stale_devices(path, device);
1379 	}
1380 
1381 	btrfs_release_disk_super(disk_super);
1382 
1383 error_bdev_put:
1384 	blkdev_put(bdev, flags);
1385 
1386 	return device;
1387 }
1388 
1389 /*
1390  * Try to find a chunk that intersects [start, start + len] range and when one
1391  * such is found, record the end of it in *start
1392  */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1393 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394 				    u64 len)
1395 {
1396 	u64 physical_start, physical_end;
1397 
1398 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1399 
1400 	if (!find_first_extent_bit(&device->alloc_state, *start,
1401 				   &physical_start, &physical_end,
1402 				   CHUNK_ALLOCATED, NULL)) {
1403 
1404 		if (in_range(physical_start, *start, len) ||
1405 		    in_range(*start, physical_start,
1406 			     physical_end - physical_start)) {
1407 			*start = physical_end + 1;
1408 			return true;
1409 		}
1410 	}
1411 	return false;
1412 }
1413 
dev_extent_search_start(struct btrfs_device * device,u64 start)1414 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1415 {
1416 	switch (device->fs_devices->chunk_alloc_policy) {
1417 	case BTRFS_CHUNK_ALLOC_REGULAR:
1418 		/*
1419 		 * We don't want to overwrite the superblock on the drive nor
1420 		 * any area used by the boot loader (grub for example), so we
1421 		 * make sure to start at an offset of at least 1MB.
1422 		 */
1423 		return max_t(u64, start, SZ_1M);
1424 	case BTRFS_CHUNK_ALLOC_ZONED:
1425 		/*
1426 		 * We don't care about the starting region like regular
1427 		 * allocator, because we anyway use/reserve the first two zones
1428 		 * for superblock logging.
1429 		 */
1430 		return ALIGN(start, device->zone_info->zone_size);
1431 	default:
1432 		BUG();
1433 	}
1434 }
1435 
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1436 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1437 					u64 *hole_start, u64 *hole_size,
1438 					u64 num_bytes)
1439 {
1440 	u64 zone_size = device->zone_info->zone_size;
1441 	u64 pos;
1442 	int ret;
1443 	bool changed = false;
1444 
1445 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1446 
1447 	while (*hole_size > 0) {
1448 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1449 						   *hole_start + *hole_size,
1450 						   num_bytes);
1451 		if (pos != *hole_start) {
1452 			*hole_size = *hole_start + *hole_size - pos;
1453 			*hole_start = pos;
1454 			changed = true;
1455 			if (*hole_size < num_bytes)
1456 				break;
1457 		}
1458 
1459 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1460 
1461 		/* Range is ensured to be empty */
1462 		if (!ret)
1463 			return changed;
1464 
1465 		/* Given hole range was invalid (outside of device) */
1466 		if (ret == -ERANGE) {
1467 			*hole_start += *hole_size;
1468 			*hole_size = 0;
1469 			return true;
1470 		}
1471 
1472 		*hole_start += zone_size;
1473 		*hole_size -= zone_size;
1474 		changed = true;
1475 	}
1476 
1477 	return changed;
1478 }
1479 
1480 /**
1481  * dev_extent_hole_check - check if specified hole is suitable for allocation
1482  * @device:	the device which we have the hole
1483  * @hole_start: starting position of the hole
1484  * @hole_size:	the size of the hole
1485  * @num_bytes:	the size of the free space that we need
1486  *
1487  * This function may modify @hole_start and @hole_size to reflect the suitable
1488  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1489  */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1490 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1491 				  u64 *hole_size, u64 num_bytes)
1492 {
1493 	bool changed = false;
1494 	u64 hole_end = *hole_start + *hole_size;
1495 
1496 	for (;;) {
1497 		/*
1498 		 * Check before we set max_hole_start, otherwise we could end up
1499 		 * sending back this offset anyway.
1500 		 */
1501 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1502 			if (hole_end >= *hole_start)
1503 				*hole_size = hole_end - *hole_start;
1504 			else
1505 				*hole_size = 0;
1506 			changed = true;
1507 		}
1508 
1509 		switch (device->fs_devices->chunk_alloc_policy) {
1510 		case BTRFS_CHUNK_ALLOC_REGULAR:
1511 			/* No extra check */
1512 			break;
1513 		case BTRFS_CHUNK_ALLOC_ZONED:
1514 			if (dev_extent_hole_check_zoned(device, hole_start,
1515 							hole_size, num_bytes)) {
1516 				changed = true;
1517 				/*
1518 				 * The changed hole can contain pending extent.
1519 				 * Loop again to check that.
1520 				 */
1521 				continue;
1522 			}
1523 			break;
1524 		default:
1525 			BUG();
1526 		}
1527 
1528 		break;
1529 	}
1530 
1531 	return changed;
1532 }
1533 
1534 /*
1535  * find_free_dev_extent_start - find free space in the specified device
1536  * @device:	  the device which we search the free space in
1537  * @num_bytes:	  the size of the free space that we need
1538  * @search_start: the position from which to begin the search
1539  * @start:	  store the start of the free space.
1540  * @len:	  the size of the free space. that we find, or the size
1541  *		  of the max free space if we don't find suitable free space
1542  *
1543  * this uses a pretty simple search, the expectation is that it is
1544  * called very infrequently and that a given device has a small number
1545  * of extents
1546  *
1547  * @start is used to store the start of the free space if we find. But if we
1548  * don't find suitable free space, it will be used to store the start position
1549  * of the max free space.
1550  *
1551  * @len is used to store the size of the free space that we find.
1552  * But if we don't find suitable free space, it is used to store the size of
1553  * the max free space.
1554  *
1555  * NOTE: This function will search *commit* root of device tree, and does extra
1556  * check to ensure dev extents are not double allocated.
1557  * This makes the function safe to allocate dev extents but may not report
1558  * correct usable device space, as device extent freed in current transaction
1559  * is not reported as available.
1560  */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1561 static int find_free_dev_extent_start(struct btrfs_device *device,
1562 				u64 num_bytes, u64 search_start, u64 *start,
1563 				u64 *len)
1564 {
1565 	struct btrfs_fs_info *fs_info = device->fs_info;
1566 	struct btrfs_root *root = fs_info->dev_root;
1567 	struct btrfs_key key;
1568 	struct btrfs_dev_extent *dev_extent;
1569 	struct btrfs_path *path;
1570 	u64 hole_size;
1571 	u64 max_hole_start;
1572 	u64 max_hole_size;
1573 	u64 extent_end;
1574 	u64 search_end = device->total_bytes;
1575 	int ret;
1576 	int slot;
1577 	struct extent_buffer *l;
1578 
1579 	search_start = dev_extent_search_start(device, search_start);
1580 
1581 	WARN_ON(device->zone_info &&
1582 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1583 
1584 	path = btrfs_alloc_path();
1585 	if (!path)
1586 		return -ENOMEM;
1587 
1588 	max_hole_start = search_start;
1589 	max_hole_size = 0;
1590 
1591 again:
1592 	if (search_start >= search_end ||
1593 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1594 		ret = -ENOSPC;
1595 		goto out;
1596 	}
1597 
1598 	path->reada = READA_FORWARD;
1599 	path->search_commit_root = 1;
1600 	path->skip_locking = 1;
1601 
1602 	key.objectid = device->devid;
1603 	key.offset = search_start;
1604 	key.type = BTRFS_DEV_EXTENT_KEY;
1605 
1606 	ret = btrfs_search_backwards(root, &key, path);
1607 	if (ret < 0)
1608 		goto out;
1609 
1610 	while (1) {
1611 		l = path->nodes[0];
1612 		slot = path->slots[0];
1613 		if (slot >= btrfs_header_nritems(l)) {
1614 			ret = btrfs_next_leaf(root, path);
1615 			if (ret == 0)
1616 				continue;
1617 			if (ret < 0)
1618 				goto out;
1619 
1620 			break;
1621 		}
1622 		btrfs_item_key_to_cpu(l, &key, slot);
1623 
1624 		if (key.objectid < device->devid)
1625 			goto next;
1626 
1627 		if (key.objectid > device->devid)
1628 			break;
1629 
1630 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1631 			goto next;
1632 
1633 		if (key.offset > search_start) {
1634 			hole_size = key.offset - search_start;
1635 			dev_extent_hole_check(device, &search_start, &hole_size,
1636 					      num_bytes);
1637 
1638 			if (hole_size > max_hole_size) {
1639 				max_hole_start = search_start;
1640 				max_hole_size = hole_size;
1641 			}
1642 
1643 			/*
1644 			 * If this free space is greater than which we need,
1645 			 * it must be the max free space that we have found
1646 			 * until now, so max_hole_start must point to the start
1647 			 * of this free space and the length of this free space
1648 			 * is stored in max_hole_size. Thus, we return
1649 			 * max_hole_start and max_hole_size and go back to the
1650 			 * caller.
1651 			 */
1652 			if (hole_size >= num_bytes) {
1653 				ret = 0;
1654 				goto out;
1655 			}
1656 		}
1657 
1658 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1659 		extent_end = key.offset + btrfs_dev_extent_length(l,
1660 								  dev_extent);
1661 		if (extent_end > search_start)
1662 			search_start = extent_end;
1663 next:
1664 		path->slots[0]++;
1665 		cond_resched();
1666 	}
1667 
1668 	/*
1669 	 * At this point, search_start should be the end of
1670 	 * allocated dev extents, and when shrinking the device,
1671 	 * search_end may be smaller than search_start.
1672 	 */
1673 	if (search_end > search_start) {
1674 		hole_size = search_end - search_start;
1675 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1676 					  num_bytes)) {
1677 			btrfs_release_path(path);
1678 			goto again;
1679 		}
1680 
1681 		if (hole_size > max_hole_size) {
1682 			max_hole_start = search_start;
1683 			max_hole_size = hole_size;
1684 		}
1685 	}
1686 
1687 	/* See above. */
1688 	if (max_hole_size < num_bytes)
1689 		ret = -ENOSPC;
1690 	else
1691 		ret = 0;
1692 
1693 out:
1694 	btrfs_free_path(path);
1695 	*start = max_hole_start;
1696 	if (len)
1697 		*len = max_hole_size;
1698 	return ret;
1699 }
1700 
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1701 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1702 			 u64 *start, u64 *len)
1703 {
1704 	/* FIXME use last free of some kind */
1705 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1706 }
1707 
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1708 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1709 			  struct btrfs_device *device,
1710 			  u64 start, u64 *dev_extent_len)
1711 {
1712 	struct btrfs_fs_info *fs_info = device->fs_info;
1713 	struct btrfs_root *root = fs_info->dev_root;
1714 	int ret;
1715 	struct btrfs_path *path;
1716 	struct btrfs_key key;
1717 	struct btrfs_key found_key;
1718 	struct extent_buffer *leaf = NULL;
1719 	struct btrfs_dev_extent *extent = NULL;
1720 
1721 	path = btrfs_alloc_path();
1722 	if (!path)
1723 		return -ENOMEM;
1724 
1725 	key.objectid = device->devid;
1726 	key.offset = start;
1727 	key.type = BTRFS_DEV_EXTENT_KEY;
1728 again:
1729 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1730 	if (ret > 0) {
1731 		ret = btrfs_previous_item(root, path, key.objectid,
1732 					  BTRFS_DEV_EXTENT_KEY);
1733 		if (ret)
1734 			goto out;
1735 		leaf = path->nodes[0];
1736 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1737 		extent = btrfs_item_ptr(leaf, path->slots[0],
1738 					struct btrfs_dev_extent);
1739 		BUG_ON(found_key.offset > start || found_key.offset +
1740 		       btrfs_dev_extent_length(leaf, extent) < start);
1741 		key = found_key;
1742 		btrfs_release_path(path);
1743 		goto again;
1744 	} else if (ret == 0) {
1745 		leaf = path->nodes[0];
1746 		extent = btrfs_item_ptr(leaf, path->slots[0],
1747 					struct btrfs_dev_extent);
1748 	} else {
1749 		goto out;
1750 	}
1751 
1752 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1753 
1754 	ret = btrfs_del_item(trans, root, path);
1755 	if (ret == 0)
1756 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1757 out:
1758 	btrfs_free_path(path);
1759 	return ret;
1760 }
1761 
find_next_chunk(struct btrfs_fs_info * fs_info)1762 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1763 {
1764 	struct extent_map_tree *em_tree;
1765 	struct extent_map *em;
1766 	struct rb_node *n;
1767 	u64 ret = 0;
1768 
1769 	em_tree = &fs_info->mapping_tree;
1770 	read_lock(&em_tree->lock);
1771 	n = rb_last(&em_tree->map.rb_root);
1772 	if (n) {
1773 		em = rb_entry(n, struct extent_map, rb_node);
1774 		ret = em->start + em->len;
1775 	}
1776 	read_unlock(&em_tree->lock);
1777 
1778 	return ret;
1779 }
1780 
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1781 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1782 				    u64 *devid_ret)
1783 {
1784 	int ret;
1785 	struct btrfs_key key;
1786 	struct btrfs_key found_key;
1787 	struct btrfs_path *path;
1788 
1789 	path = btrfs_alloc_path();
1790 	if (!path)
1791 		return -ENOMEM;
1792 
1793 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1794 	key.type = BTRFS_DEV_ITEM_KEY;
1795 	key.offset = (u64)-1;
1796 
1797 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1798 	if (ret < 0)
1799 		goto error;
1800 
1801 	if (ret == 0) {
1802 		/* Corruption */
1803 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1804 		ret = -EUCLEAN;
1805 		goto error;
1806 	}
1807 
1808 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1809 				  BTRFS_DEV_ITEMS_OBJECTID,
1810 				  BTRFS_DEV_ITEM_KEY);
1811 	if (ret) {
1812 		*devid_ret = 1;
1813 	} else {
1814 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1815 				      path->slots[0]);
1816 		*devid_ret = found_key.offset + 1;
1817 	}
1818 	ret = 0;
1819 error:
1820 	btrfs_free_path(path);
1821 	return ret;
1822 }
1823 
1824 /*
1825  * the device information is stored in the chunk root
1826  * the btrfs_device struct should be fully filled in
1827  */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1828 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1829 			    struct btrfs_device *device)
1830 {
1831 	int ret;
1832 	struct btrfs_path *path;
1833 	struct btrfs_dev_item *dev_item;
1834 	struct extent_buffer *leaf;
1835 	struct btrfs_key key;
1836 	unsigned long ptr;
1837 
1838 	path = btrfs_alloc_path();
1839 	if (!path)
1840 		return -ENOMEM;
1841 
1842 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1843 	key.type = BTRFS_DEV_ITEM_KEY;
1844 	key.offset = device->devid;
1845 
1846 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1847 				      &key, sizeof(*dev_item));
1848 	if (ret)
1849 		goto out;
1850 
1851 	leaf = path->nodes[0];
1852 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1853 
1854 	btrfs_set_device_id(leaf, dev_item, device->devid);
1855 	btrfs_set_device_generation(leaf, dev_item, 0);
1856 	btrfs_set_device_type(leaf, dev_item, device->type);
1857 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1858 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1859 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1860 	btrfs_set_device_total_bytes(leaf, dev_item,
1861 				     btrfs_device_get_disk_total_bytes(device));
1862 	btrfs_set_device_bytes_used(leaf, dev_item,
1863 				    btrfs_device_get_bytes_used(device));
1864 	btrfs_set_device_group(leaf, dev_item, 0);
1865 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1866 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1867 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1868 
1869 	ptr = btrfs_device_uuid(dev_item);
1870 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1871 	ptr = btrfs_device_fsid(dev_item);
1872 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1873 			    ptr, BTRFS_FSID_SIZE);
1874 	btrfs_mark_buffer_dirty(leaf);
1875 
1876 	ret = 0;
1877 out:
1878 	btrfs_free_path(path);
1879 	return ret;
1880 }
1881 
1882 /*
1883  * Function to update ctime/mtime for a given device path.
1884  * Mainly used for ctime/mtime based probe like libblkid.
1885  */
update_dev_time(struct block_device * bdev)1886 static void update_dev_time(struct block_device *bdev)
1887 {
1888 	struct inode *inode = bdev->bd_inode;
1889 	struct timespec64 now;
1890 
1891 	/* Shouldn't happen but just in case. */
1892 	if (!inode)
1893 		return;
1894 
1895 	now = current_time(inode);
1896 	generic_update_time(inode, &now, S_MTIME | S_CTIME);
1897 }
1898 
btrfs_rm_dev_item(struct btrfs_device * device)1899 static int btrfs_rm_dev_item(struct btrfs_device *device)
1900 {
1901 	struct btrfs_root *root = device->fs_info->chunk_root;
1902 	int ret;
1903 	struct btrfs_path *path;
1904 	struct btrfs_key key;
1905 	struct btrfs_trans_handle *trans;
1906 
1907 	path = btrfs_alloc_path();
1908 	if (!path)
1909 		return -ENOMEM;
1910 
1911 	trans = btrfs_start_transaction(root, 0);
1912 	if (IS_ERR(trans)) {
1913 		btrfs_free_path(path);
1914 		return PTR_ERR(trans);
1915 	}
1916 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1917 	key.type = BTRFS_DEV_ITEM_KEY;
1918 	key.offset = device->devid;
1919 
1920 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1921 	if (ret) {
1922 		if (ret > 0)
1923 			ret = -ENOENT;
1924 		btrfs_abort_transaction(trans, ret);
1925 		btrfs_end_transaction(trans);
1926 		goto out;
1927 	}
1928 
1929 	ret = btrfs_del_item(trans, root, path);
1930 	if (ret) {
1931 		btrfs_abort_transaction(trans, ret);
1932 		btrfs_end_transaction(trans);
1933 	}
1934 
1935 out:
1936 	btrfs_free_path(path);
1937 	if (!ret)
1938 		ret = btrfs_commit_transaction(trans);
1939 	return ret;
1940 }
1941 
1942 /*
1943  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1944  * filesystem. It's up to the caller to adjust that number regarding eg. device
1945  * replace.
1946  */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1947 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1948 		u64 num_devices)
1949 {
1950 	u64 all_avail;
1951 	unsigned seq;
1952 	int i;
1953 
1954 	do {
1955 		seq = read_seqbegin(&fs_info->profiles_lock);
1956 
1957 		all_avail = fs_info->avail_data_alloc_bits |
1958 			    fs_info->avail_system_alloc_bits |
1959 			    fs_info->avail_metadata_alloc_bits;
1960 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1961 
1962 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1963 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1964 			continue;
1965 
1966 		if (num_devices < btrfs_raid_array[i].devs_min)
1967 			return btrfs_raid_array[i].mindev_error;
1968 	}
1969 
1970 	return 0;
1971 }
1972 
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1973 static struct btrfs_device * btrfs_find_next_active_device(
1974 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1975 {
1976 	struct btrfs_device *next_device;
1977 
1978 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1979 		if (next_device != device &&
1980 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1981 		    && next_device->bdev)
1982 			return next_device;
1983 	}
1984 
1985 	return NULL;
1986 }
1987 
1988 /*
1989  * Helper function to check if the given device is part of s_bdev / latest_bdev
1990  * and replace it with the provided or the next active device, in the context
1991  * where this function called, there should be always be another device (or
1992  * this_dev) which is active.
1993  */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)1994 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1995 					    struct btrfs_device *next_device)
1996 {
1997 	struct btrfs_fs_info *fs_info = device->fs_info;
1998 
1999 	if (!next_device)
2000 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2001 							    device);
2002 	ASSERT(next_device);
2003 
2004 	if (fs_info->sb->s_bdev &&
2005 			(fs_info->sb->s_bdev == device->bdev))
2006 		fs_info->sb->s_bdev = next_device->bdev;
2007 
2008 	if (fs_info->fs_devices->latest_bdev == device->bdev)
2009 		fs_info->fs_devices->latest_bdev = next_device->bdev;
2010 }
2011 
2012 /*
2013  * Return btrfs_fs_devices::num_devices excluding the device that's being
2014  * currently replaced.
2015  */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2016 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2017 {
2018 	u64 num_devices = fs_info->fs_devices->num_devices;
2019 
2020 	down_read(&fs_info->dev_replace.rwsem);
2021 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2022 		ASSERT(num_devices > 1);
2023 		num_devices--;
2024 	}
2025 	up_read(&fs_info->dev_replace.rwsem);
2026 
2027 	return num_devices;
2028 }
2029 
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2030 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2031 			       struct block_device *bdev,
2032 			       const char *device_path)
2033 {
2034 	struct btrfs_super_block *disk_super;
2035 	int copy_num;
2036 
2037 	if (!bdev)
2038 		return;
2039 
2040 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2041 		struct page *page;
2042 		int ret;
2043 
2044 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2045 		if (IS_ERR(disk_super))
2046 			continue;
2047 
2048 		if (bdev_is_zoned(bdev)) {
2049 			btrfs_reset_sb_log_zones(bdev, copy_num);
2050 			continue;
2051 		}
2052 
2053 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2054 
2055 		page = virt_to_page(disk_super);
2056 		set_page_dirty(page);
2057 		lock_page(page);
2058 		/* write_on_page() unlocks the page */
2059 		ret = write_one_page(page);
2060 		if (ret)
2061 			btrfs_warn(fs_info,
2062 				"error clearing superblock number %d (%d)",
2063 				copy_num, ret);
2064 		btrfs_release_disk_super(disk_super);
2065 
2066 	}
2067 
2068 	/* Notify udev that device has changed */
2069 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2070 
2071 	/* Update ctime/mtime for device path for libblkid */
2072 	update_dev_time(bdev);
2073 }
2074 
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid,struct block_device ** bdev,fmode_t * mode)2075 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2076 		    u64 devid, struct block_device **bdev, fmode_t *mode)
2077 {
2078 	struct btrfs_device *device;
2079 	struct btrfs_fs_devices *cur_devices;
2080 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2081 	u64 num_devices;
2082 	int ret = 0;
2083 
2084 	mutex_lock(&uuid_mutex);
2085 
2086 	num_devices = btrfs_num_devices(fs_info);
2087 
2088 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2089 	if (ret)
2090 		goto out;
2091 
2092 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2093 
2094 	if (IS_ERR(device)) {
2095 		if (PTR_ERR(device) == -ENOENT &&
2096 		    device_path && strcmp(device_path, "missing") == 0)
2097 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2098 		else
2099 			ret = PTR_ERR(device);
2100 		goto out;
2101 	}
2102 
2103 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2104 		btrfs_warn_in_rcu(fs_info,
2105 		  "cannot remove device %s (devid %llu) due to active swapfile",
2106 				  rcu_str_deref(device->name), device->devid);
2107 		ret = -ETXTBSY;
2108 		goto out;
2109 	}
2110 
2111 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2112 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2113 		goto out;
2114 	}
2115 
2116 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2117 	    fs_info->fs_devices->rw_devices == 1) {
2118 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2119 		goto out;
2120 	}
2121 
2122 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2123 		mutex_lock(&fs_info->chunk_mutex);
2124 		list_del_init(&device->dev_alloc_list);
2125 		device->fs_devices->rw_devices--;
2126 		mutex_unlock(&fs_info->chunk_mutex);
2127 	}
2128 
2129 	mutex_unlock(&uuid_mutex);
2130 	ret = btrfs_shrink_device(device, 0);
2131 	if (!ret)
2132 		btrfs_reada_remove_dev(device);
2133 	mutex_lock(&uuid_mutex);
2134 	if (ret)
2135 		goto error_undo;
2136 
2137 	/*
2138 	 * TODO: the superblock still includes this device in its num_devices
2139 	 * counter although write_all_supers() is not locked out. This
2140 	 * could give a filesystem state which requires a degraded mount.
2141 	 */
2142 	ret = btrfs_rm_dev_item(device);
2143 	if (ret)
2144 		goto error_undo;
2145 
2146 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2147 	btrfs_scrub_cancel_dev(device);
2148 
2149 	/*
2150 	 * the device list mutex makes sure that we don't change
2151 	 * the device list while someone else is writing out all
2152 	 * the device supers. Whoever is writing all supers, should
2153 	 * lock the device list mutex before getting the number of
2154 	 * devices in the super block (super_copy). Conversely,
2155 	 * whoever updates the number of devices in the super block
2156 	 * (super_copy) should hold the device list mutex.
2157 	 */
2158 
2159 	/*
2160 	 * In normal cases the cur_devices == fs_devices. But in case
2161 	 * of deleting a seed device, the cur_devices should point to
2162 	 * its own fs_devices listed under the fs_devices->seed.
2163 	 */
2164 	cur_devices = device->fs_devices;
2165 	mutex_lock(&fs_devices->device_list_mutex);
2166 	list_del_rcu(&device->dev_list);
2167 
2168 	cur_devices->num_devices--;
2169 	cur_devices->total_devices--;
2170 	/* Update total_devices of the parent fs_devices if it's seed */
2171 	if (cur_devices != fs_devices)
2172 		fs_devices->total_devices--;
2173 
2174 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2175 		cur_devices->missing_devices--;
2176 
2177 	btrfs_assign_next_active_device(device, NULL);
2178 
2179 	if (device->bdev) {
2180 		cur_devices->open_devices--;
2181 		/* remove sysfs entry */
2182 		btrfs_sysfs_remove_device(device);
2183 	}
2184 
2185 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2186 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2187 	mutex_unlock(&fs_devices->device_list_mutex);
2188 
2189 	/*
2190 	 * At this point, the device is zero sized and detached from the
2191 	 * devices list.  All that's left is to zero out the old supers and
2192 	 * free the device.
2193 	 *
2194 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2195 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2196 	 * block device and it's dependencies.  Instead just flush the device
2197 	 * and let the caller do the final blkdev_put.
2198 	 */
2199 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2200 		btrfs_scratch_superblocks(fs_info, device->bdev,
2201 					  device->name->str);
2202 		if (device->bdev) {
2203 			sync_blockdev(device->bdev);
2204 			invalidate_bdev(device->bdev);
2205 		}
2206 	}
2207 
2208 	*bdev = device->bdev;
2209 	*mode = device->mode;
2210 	synchronize_rcu();
2211 	btrfs_free_device(device);
2212 
2213 	if (cur_devices->open_devices == 0) {
2214 		list_del_init(&cur_devices->seed_list);
2215 		close_fs_devices(cur_devices);
2216 		free_fs_devices(cur_devices);
2217 	}
2218 
2219 out:
2220 	mutex_unlock(&uuid_mutex);
2221 	return ret;
2222 
2223 error_undo:
2224 	btrfs_reada_undo_remove_dev(device);
2225 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2226 		mutex_lock(&fs_info->chunk_mutex);
2227 		list_add(&device->dev_alloc_list,
2228 			 &fs_devices->alloc_list);
2229 		device->fs_devices->rw_devices++;
2230 		mutex_unlock(&fs_info->chunk_mutex);
2231 	}
2232 	goto out;
2233 }
2234 
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2235 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2236 {
2237 	struct btrfs_fs_devices *fs_devices;
2238 
2239 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2240 
2241 	/*
2242 	 * in case of fs with no seed, srcdev->fs_devices will point
2243 	 * to fs_devices of fs_info. However when the dev being replaced is
2244 	 * a seed dev it will point to the seed's local fs_devices. In short
2245 	 * srcdev will have its correct fs_devices in both the cases.
2246 	 */
2247 	fs_devices = srcdev->fs_devices;
2248 
2249 	list_del_rcu(&srcdev->dev_list);
2250 	list_del(&srcdev->dev_alloc_list);
2251 	fs_devices->num_devices--;
2252 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2253 		fs_devices->missing_devices--;
2254 
2255 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2256 		fs_devices->rw_devices--;
2257 
2258 	if (srcdev->bdev)
2259 		fs_devices->open_devices--;
2260 }
2261 
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2262 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2263 {
2264 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2265 
2266 	mutex_lock(&uuid_mutex);
2267 
2268 	btrfs_close_bdev(srcdev);
2269 	synchronize_rcu();
2270 	btrfs_free_device(srcdev);
2271 
2272 	/* if this is no devs we rather delete the fs_devices */
2273 	if (!fs_devices->num_devices) {
2274 		/*
2275 		 * On a mounted FS, num_devices can't be zero unless it's a
2276 		 * seed. In case of a seed device being replaced, the replace
2277 		 * target added to the sprout FS, so there will be no more
2278 		 * device left under the seed FS.
2279 		 */
2280 		ASSERT(fs_devices->seeding);
2281 
2282 		list_del_init(&fs_devices->seed_list);
2283 		close_fs_devices(fs_devices);
2284 		free_fs_devices(fs_devices);
2285 	}
2286 	mutex_unlock(&uuid_mutex);
2287 }
2288 
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2289 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2290 {
2291 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2292 
2293 	mutex_lock(&fs_devices->device_list_mutex);
2294 
2295 	btrfs_sysfs_remove_device(tgtdev);
2296 
2297 	if (tgtdev->bdev)
2298 		fs_devices->open_devices--;
2299 
2300 	fs_devices->num_devices--;
2301 
2302 	btrfs_assign_next_active_device(tgtdev, NULL);
2303 
2304 	list_del_rcu(&tgtdev->dev_list);
2305 
2306 	mutex_unlock(&fs_devices->device_list_mutex);
2307 
2308 	/*
2309 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2310 	 * may lead to a call to btrfs_show_devname() which will try
2311 	 * to hold device_list_mutex. And here this device
2312 	 * is already out of device list, so we don't have to hold
2313 	 * the device_list_mutex lock.
2314 	 */
2315 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2316 				  tgtdev->name->str);
2317 
2318 	btrfs_close_bdev(tgtdev);
2319 	synchronize_rcu();
2320 	btrfs_free_device(tgtdev);
2321 }
2322 
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path)2323 static struct btrfs_device *btrfs_find_device_by_path(
2324 		struct btrfs_fs_info *fs_info, const char *device_path)
2325 {
2326 	int ret = 0;
2327 	struct btrfs_super_block *disk_super;
2328 	u64 devid;
2329 	u8 *dev_uuid;
2330 	struct block_device *bdev;
2331 	struct btrfs_device *device;
2332 
2333 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2334 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2335 	if (ret)
2336 		return ERR_PTR(ret);
2337 
2338 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2339 	dev_uuid = disk_super->dev_item.uuid;
2340 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2341 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2342 					   disk_super->metadata_uuid);
2343 	else
2344 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2345 					   disk_super->fsid);
2346 
2347 	btrfs_release_disk_super(disk_super);
2348 	if (!device)
2349 		device = ERR_PTR(-ENOENT);
2350 	blkdev_put(bdev, FMODE_READ);
2351 	return device;
2352 }
2353 
2354 /*
2355  * Lookup a device given by device id, or the path if the id is 0.
2356  */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2357 struct btrfs_device *btrfs_find_device_by_devspec(
2358 		struct btrfs_fs_info *fs_info, u64 devid,
2359 		const char *device_path)
2360 {
2361 	struct btrfs_device *device;
2362 
2363 	if (devid) {
2364 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2365 					   NULL);
2366 		if (!device)
2367 			return ERR_PTR(-ENOENT);
2368 		return device;
2369 	}
2370 
2371 	if (!device_path || !device_path[0])
2372 		return ERR_PTR(-EINVAL);
2373 
2374 	if (strcmp(device_path, "missing") == 0) {
2375 		/* Find first missing device */
2376 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2377 				    dev_list) {
2378 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2379 				     &device->dev_state) && !device->bdev)
2380 				return device;
2381 		}
2382 		return ERR_PTR(-ENOENT);
2383 	}
2384 
2385 	return btrfs_find_device_by_path(fs_info, device_path);
2386 }
2387 
2388 /*
2389  * does all the dirty work required for changing file system's UUID.
2390  */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2391 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2392 {
2393 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2394 	struct btrfs_fs_devices *old_devices;
2395 	struct btrfs_fs_devices *seed_devices;
2396 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2397 	struct btrfs_device *device;
2398 	u64 super_flags;
2399 
2400 	lockdep_assert_held(&uuid_mutex);
2401 	if (!fs_devices->seeding)
2402 		return -EINVAL;
2403 
2404 	/*
2405 	 * Private copy of the seed devices, anchored at
2406 	 * fs_info->fs_devices->seed_list
2407 	 */
2408 	seed_devices = alloc_fs_devices(NULL, NULL);
2409 	if (IS_ERR(seed_devices))
2410 		return PTR_ERR(seed_devices);
2411 
2412 	/*
2413 	 * It's necessary to retain a copy of the original seed fs_devices in
2414 	 * fs_uuids so that filesystems which have been seeded can successfully
2415 	 * reference the seed device from open_seed_devices. This also supports
2416 	 * multiple fs seed.
2417 	 */
2418 	old_devices = clone_fs_devices(fs_devices);
2419 	if (IS_ERR(old_devices)) {
2420 		kfree(seed_devices);
2421 		return PTR_ERR(old_devices);
2422 	}
2423 
2424 	list_add(&old_devices->fs_list, &fs_uuids);
2425 
2426 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2427 	seed_devices->opened = 1;
2428 	INIT_LIST_HEAD(&seed_devices->devices);
2429 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2430 	mutex_init(&seed_devices->device_list_mutex);
2431 
2432 	mutex_lock(&fs_devices->device_list_mutex);
2433 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2434 			      synchronize_rcu);
2435 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2436 		device->fs_devices = seed_devices;
2437 
2438 	fs_devices->seeding = false;
2439 	fs_devices->num_devices = 0;
2440 	fs_devices->open_devices = 0;
2441 	fs_devices->missing_devices = 0;
2442 	fs_devices->rotating = false;
2443 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2444 
2445 	generate_random_uuid(fs_devices->fsid);
2446 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2447 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2448 	mutex_unlock(&fs_devices->device_list_mutex);
2449 
2450 	super_flags = btrfs_super_flags(disk_super) &
2451 		      ~BTRFS_SUPER_FLAG_SEEDING;
2452 	btrfs_set_super_flags(disk_super, super_flags);
2453 
2454 	return 0;
2455 }
2456 
2457 /*
2458  * Store the expected generation for seed devices in device items.
2459  */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2460 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2461 {
2462 	struct btrfs_fs_info *fs_info = trans->fs_info;
2463 	struct btrfs_root *root = fs_info->chunk_root;
2464 	struct btrfs_path *path;
2465 	struct extent_buffer *leaf;
2466 	struct btrfs_dev_item *dev_item;
2467 	struct btrfs_device *device;
2468 	struct btrfs_key key;
2469 	u8 fs_uuid[BTRFS_FSID_SIZE];
2470 	u8 dev_uuid[BTRFS_UUID_SIZE];
2471 	u64 devid;
2472 	int ret;
2473 
2474 	path = btrfs_alloc_path();
2475 	if (!path)
2476 		return -ENOMEM;
2477 
2478 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2479 	key.offset = 0;
2480 	key.type = BTRFS_DEV_ITEM_KEY;
2481 
2482 	while (1) {
2483 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2484 		if (ret < 0)
2485 			goto error;
2486 
2487 		leaf = path->nodes[0];
2488 next_slot:
2489 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2490 			ret = btrfs_next_leaf(root, path);
2491 			if (ret > 0)
2492 				break;
2493 			if (ret < 0)
2494 				goto error;
2495 			leaf = path->nodes[0];
2496 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2497 			btrfs_release_path(path);
2498 			continue;
2499 		}
2500 
2501 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2502 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2503 		    key.type != BTRFS_DEV_ITEM_KEY)
2504 			break;
2505 
2506 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2507 					  struct btrfs_dev_item);
2508 		devid = btrfs_device_id(leaf, dev_item);
2509 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2510 				   BTRFS_UUID_SIZE);
2511 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2512 				   BTRFS_FSID_SIZE);
2513 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2514 					   fs_uuid);
2515 		BUG_ON(!device); /* Logic error */
2516 
2517 		if (device->fs_devices->seeding) {
2518 			btrfs_set_device_generation(leaf, dev_item,
2519 						    device->generation);
2520 			btrfs_mark_buffer_dirty(leaf);
2521 		}
2522 
2523 		path->slots[0]++;
2524 		goto next_slot;
2525 	}
2526 	ret = 0;
2527 error:
2528 	btrfs_free_path(path);
2529 	return ret;
2530 }
2531 
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2532 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2533 {
2534 	struct btrfs_root *root = fs_info->dev_root;
2535 	struct request_queue *q;
2536 	struct btrfs_trans_handle *trans;
2537 	struct btrfs_device *device;
2538 	struct block_device *bdev;
2539 	struct super_block *sb = fs_info->sb;
2540 	struct rcu_string *name;
2541 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2542 	u64 orig_super_total_bytes;
2543 	u64 orig_super_num_devices;
2544 	int seeding_dev = 0;
2545 	int ret = 0;
2546 	bool locked = false;
2547 
2548 	if (sb_rdonly(sb) && !fs_devices->seeding)
2549 		return -EROFS;
2550 
2551 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2552 				  fs_info->bdev_holder);
2553 	if (IS_ERR(bdev))
2554 		return PTR_ERR(bdev);
2555 
2556 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2557 		ret = -EINVAL;
2558 		goto error;
2559 	}
2560 
2561 	if (fs_devices->seeding) {
2562 		seeding_dev = 1;
2563 		down_write(&sb->s_umount);
2564 		mutex_lock(&uuid_mutex);
2565 		locked = true;
2566 	}
2567 
2568 	sync_blockdev(bdev);
2569 
2570 	rcu_read_lock();
2571 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2572 		if (device->bdev == bdev) {
2573 			ret = -EEXIST;
2574 			rcu_read_unlock();
2575 			goto error;
2576 		}
2577 	}
2578 	rcu_read_unlock();
2579 
2580 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2581 	if (IS_ERR(device)) {
2582 		/* we can safely leave the fs_devices entry around */
2583 		ret = PTR_ERR(device);
2584 		goto error;
2585 	}
2586 
2587 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2588 	if (!name) {
2589 		ret = -ENOMEM;
2590 		goto error_free_device;
2591 	}
2592 	rcu_assign_pointer(device->name, name);
2593 
2594 	device->fs_info = fs_info;
2595 	device->bdev = bdev;
2596 
2597 	ret = btrfs_get_dev_zone_info(device);
2598 	if (ret)
2599 		goto error_free_device;
2600 
2601 	trans = btrfs_start_transaction(root, 0);
2602 	if (IS_ERR(trans)) {
2603 		ret = PTR_ERR(trans);
2604 		goto error_free_zone;
2605 	}
2606 
2607 	q = bdev_get_queue(bdev);
2608 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2609 	device->generation = trans->transid;
2610 	device->io_width = fs_info->sectorsize;
2611 	device->io_align = fs_info->sectorsize;
2612 	device->sector_size = fs_info->sectorsize;
2613 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2614 					 fs_info->sectorsize);
2615 	device->disk_total_bytes = device->total_bytes;
2616 	device->commit_total_bytes = device->total_bytes;
2617 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2618 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2619 	device->mode = FMODE_EXCL;
2620 	device->dev_stats_valid = 1;
2621 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2622 
2623 	if (seeding_dev) {
2624 		btrfs_clear_sb_rdonly(sb);
2625 		ret = btrfs_prepare_sprout(fs_info);
2626 		if (ret) {
2627 			btrfs_abort_transaction(trans, ret);
2628 			goto error_trans;
2629 		}
2630 	}
2631 
2632 	device->fs_devices = fs_devices;
2633 
2634 	mutex_lock(&fs_devices->device_list_mutex);
2635 	mutex_lock(&fs_info->chunk_mutex);
2636 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2637 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2638 	fs_devices->num_devices++;
2639 	fs_devices->open_devices++;
2640 	fs_devices->rw_devices++;
2641 	fs_devices->total_devices++;
2642 	fs_devices->total_rw_bytes += device->total_bytes;
2643 
2644 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2645 
2646 	if (!blk_queue_nonrot(q))
2647 		fs_devices->rotating = true;
2648 
2649 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2650 	btrfs_set_super_total_bytes(fs_info->super_copy,
2651 		round_down(orig_super_total_bytes + device->total_bytes,
2652 			   fs_info->sectorsize));
2653 
2654 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2655 	btrfs_set_super_num_devices(fs_info->super_copy,
2656 				    orig_super_num_devices + 1);
2657 
2658 	/*
2659 	 * we've got more storage, clear any full flags on the space
2660 	 * infos
2661 	 */
2662 	btrfs_clear_space_info_full(fs_info);
2663 
2664 	mutex_unlock(&fs_info->chunk_mutex);
2665 
2666 	/* Add sysfs device entry */
2667 	btrfs_sysfs_add_device(device);
2668 
2669 	mutex_unlock(&fs_devices->device_list_mutex);
2670 
2671 	if (seeding_dev) {
2672 		mutex_lock(&fs_info->chunk_mutex);
2673 		ret = init_first_rw_device(trans);
2674 		mutex_unlock(&fs_info->chunk_mutex);
2675 		if (ret) {
2676 			btrfs_abort_transaction(trans, ret);
2677 			goto error_sysfs;
2678 		}
2679 	}
2680 
2681 	ret = btrfs_add_dev_item(trans, device);
2682 	if (ret) {
2683 		btrfs_abort_transaction(trans, ret);
2684 		goto error_sysfs;
2685 	}
2686 
2687 	if (seeding_dev) {
2688 		ret = btrfs_finish_sprout(trans);
2689 		if (ret) {
2690 			btrfs_abort_transaction(trans, ret);
2691 			goto error_sysfs;
2692 		}
2693 
2694 		/*
2695 		 * fs_devices now represents the newly sprouted filesystem and
2696 		 * its fsid has been changed by btrfs_prepare_sprout
2697 		 */
2698 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2699 	}
2700 
2701 	ret = btrfs_commit_transaction(trans);
2702 
2703 	if (seeding_dev) {
2704 		mutex_unlock(&uuid_mutex);
2705 		up_write(&sb->s_umount);
2706 		locked = false;
2707 
2708 		if (ret) /* transaction commit */
2709 			return ret;
2710 
2711 		ret = btrfs_relocate_sys_chunks(fs_info);
2712 		if (ret < 0)
2713 			btrfs_handle_fs_error(fs_info, ret,
2714 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2715 		trans = btrfs_attach_transaction(root);
2716 		if (IS_ERR(trans)) {
2717 			if (PTR_ERR(trans) == -ENOENT)
2718 				return 0;
2719 			ret = PTR_ERR(trans);
2720 			trans = NULL;
2721 			goto error_sysfs;
2722 		}
2723 		ret = btrfs_commit_transaction(trans);
2724 	}
2725 
2726 	/*
2727 	 * Now that we have written a new super block to this device, check all
2728 	 * other fs_devices list if device_path alienates any other scanned
2729 	 * device.
2730 	 * We can ignore the return value as it typically returns -EINVAL and
2731 	 * only succeeds if the device was an alien.
2732 	 */
2733 	btrfs_forget_devices(device_path);
2734 
2735 	/* Update ctime/mtime for blkid or udev */
2736 	update_dev_time(bdev);
2737 
2738 	return ret;
2739 
2740 error_sysfs:
2741 	btrfs_sysfs_remove_device(device);
2742 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2743 	mutex_lock(&fs_info->chunk_mutex);
2744 	list_del_rcu(&device->dev_list);
2745 	list_del(&device->dev_alloc_list);
2746 	fs_info->fs_devices->num_devices--;
2747 	fs_info->fs_devices->open_devices--;
2748 	fs_info->fs_devices->rw_devices--;
2749 	fs_info->fs_devices->total_devices--;
2750 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2751 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2752 	btrfs_set_super_total_bytes(fs_info->super_copy,
2753 				    orig_super_total_bytes);
2754 	btrfs_set_super_num_devices(fs_info->super_copy,
2755 				    orig_super_num_devices);
2756 	mutex_unlock(&fs_info->chunk_mutex);
2757 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2758 error_trans:
2759 	if (seeding_dev)
2760 		btrfs_set_sb_rdonly(sb);
2761 	if (trans)
2762 		btrfs_end_transaction(trans);
2763 error_free_zone:
2764 	btrfs_destroy_dev_zone_info(device);
2765 error_free_device:
2766 	btrfs_free_device(device);
2767 error:
2768 	blkdev_put(bdev, FMODE_EXCL);
2769 	if (locked) {
2770 		mutex_unlock(&uuid_mutex);
2771 		up_write(&sb->s_umount);
2772 	}
2773 	return ret;
2774 }
2775 
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2776 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2777 					struct btrfs_device *device)
2778 {
2779 	int ret;
2780 	struct btrfs_path *path;
2781 	struct btrfs_root *root = device->fs_info->chunk_root;
2782 	struct btrfs_dev_item *dev_item;
2783 	struct extent_buffer *leaf;
2784 	struct btrfs_key key;
2785 
2786 	path = btrfs_alloc_path();
2787 	if (!path)
2788 		return -ENOMEM;
2789 
2790 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2791 	key.type = BTRFS_DEV_ITEM_KEY;
2792 	key.offset = device->devid;
2793 
2794 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2795 	if (ret < 0)
2796 		goto out;
2797 
2798 	if (ret > 0) {
2799 		ret = -ENOENT;
2800 		goto out;
2801 	}
2802 
2803 	leaf = path->nodes[0];
2804 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2805 
2806 	btrfs_set_device_id(leaf, dev_item, device->devid);
2807 	btrfs_set_device_type(leaf, dev_item, device->type);
2808 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2809 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2810 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2811 	btrfs_set_device_total_bytes(leaf, dev_item,
2812 				     btrfs_device_get_disk_total_bytes(device));
2813 	btrfs_set_device_bytes_used(leaf, dev_item,
2814 				    btrfs_device_get_bytes_used(device));
2815 	btrfs_mark_buffer_dirty(leaf);
2816 
2817 out:
2818 	btrfs_free_path(path);
2819 	return ret;
2820 }
2821 
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2822 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2823 		      struct btrfs_device *device, u64 new_size)
2824 {
2825 	struct btrfs_fs_info *fs_info = device->fs_info;
2826 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2827 	u64 old_total;
2828 	u64 diff;
2829 
2830 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2831 		return -EACCES;
2832 
2833 	new_size = round_down(new_size, fs_info->sectorsize);
2834 
2835 	mutex_lock(&fs_info->chunk_mutex);
2836 	old_total = btrfs_super_total_bytes(super_copy);
2837 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2838 
2839 	if (new_size <= device->total_bytes ||
2840 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2841 		mutex_unlock(&fs_info->chunk_mutex);
2842 		return -EINVAL;
2843 	}
2844 
2845 	btrfs_set_super_total_bytes(super_copy,
2846 			round_down(old_total + diff, fs_info->sectorsize));
2847 	device->fs_devices->total_rw_bytes += diff;
2848 
2849 	btrfs_device_set_total_bytes(device, new_size);
2850 	btrfs_device_set_disk_total_bytes(device, new_size);
2851 	btrfs_clear_space_info_full(device->fs_info);
2852 	if (list_empty(&device->post_commit_list))
2853 		list_add_tail(&device->post_commit_list,
2854 			      &trans->transaction->dev_update_list);
2855 	mutex_unlock(&fs_info->chunk_mutex);
2856 
2857 	return btrfs_update_device(trans, device);
2858 }
2859 
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2860 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2861 {
2862 	struct btrfs_fs_info *fs_info = trans->fs_info;
2863 	struct btrfs_root *root = fs_info->chunk_root;
2864 	int ret;
2865 	struct btrfs_path *path;
2866 	struct btrfs_key key;
2867 
2868 	path = btrfs_alloc_path();
2869 	if (!path)
2870 		return -ENOMEM;
2871 
2872 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2873 	key.offset = chunk_offset;
2874 	key.type = BTRFS_CHUNK_ITEM_KEY;
2875 
2876 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2877 	if (ret < 0)
2878 		goto out;
2879 	else if (ret > 0) { /* Logic error or corruption */
2880 		btrfs_handle_fs_error(fs_info, -ENOENT,
2881 				      "Failed lookup while freeing chunk.");
2882 		ret = -ENOENT;
2883 		goto out;
2884 	}
2885 
2886 	ret = btrfs_del_item(trans, root, path);
2887 	if (ret < 0)
2888 		btrfs_handle_fs_error(fs_info, ret,
2889 				      "Failed to delete chunk item.");
2890 out:
2891 	btrfs_free_path(path);
2892 	return ret;
2893 }
2894 
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2895 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2896 {
2897 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2898 	struct btrfs_disk_key *disk_key;
2899 	struct btrfs_chunk *chunk;
2900 	u8 *ptr;
2901 	int ret = 0;
2902 	u32 num_stripes;
2903 	u32 array_size;
2904 	u32 len = 0;
2905 	u32 cur;
2906 	struct btrfs_key key;
2907 
2908 	lockdep_assert_held(&fs_info->chunk_mutex);
2909 	array_size = btrfs_super_sys_array_size(super_copy);
2910 
2911 	ptr = super_copy->sys_chunk_array;
2912 	cur = 0;
2913 
2914 	while (cur < array_size) {
2915 		disk_key = (struct btrfs_disk_key *)ptr;
2916 		btrfs_disk_key_to_cpu(&key, disk_key);
2917 
2918 		len = sizeof(*disk_key);
2919 
2920 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2921 			chunk = (struct btrfs_chunk *)(ptr + len);
2922 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2923 			len += btrfs_chunk_item_size(num_stripes);
2924 		} else {
2925 			ret = -EIO;
2926 			break;
2927 		}
2928 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2929 		    key.offset == chunk_offset) {
2930 			memmove(ptr, ptr + len, array_size - (cur + len));
2931 			array_size -= len;
2932 			btrfs_set_super_sys_array_size(super_copy, array_size);
2933 		} else {
2934 			ptr += len;
2935 			cur += len;
2936 		}
2937 	}
2938 	return ret;
2939 }
2940 
2941 /*
2942  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2943  * @logical: Logical block offset in bytes.
2944  * @length: Length of extent in bytes.
2945  *
2946  * Return: Chunk mapping or ERR_PTR.
2947  */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2948 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2949 				       u64 logical, u64 length)
2950 {
2951 	struct extent_map_tree *em_tree;
2952 	struct extent_map *em;
2953 
2954 	em_tree = &fs_info->mapping_tree;
2955 	read_lock(&em_tree->lock);
2956 	em = lookup_extent_mapping(em_tree, logical, length);
2957 	read_unlock(&em_tree->lock);
2958 
2959 	if (!em) {
2960 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2961 			   logical, length);
2962 		return ERR_PTR(-EINVAL);
2963 	}
2964 
2965 	if (em->start > logical || em->start + em->len < logical) {
2966 		btrfs_crit(fs_info,
2967 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2968 			   logical, length, em->start, em->start + em->len);
2969 		free_extent_map(em);
2970 		return ERR_PTR(-EINVAL);
2971 	}
2972 
2973 	/* callers are responsible for dropping em's ref. */
2974 	return em;
2975 }
2976 
remove_chunk_item(struct btrfs_trans_handle * trans,struct map_lookup * map,u64 chunk_offset)2977 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2978 			     struct map_lookup *map, u64 chunk_offset)
2979 {
2980 	int i;
2981 
2982 	/*
2983 	 * Removing chunk items and updating the device items in the chunks btree
2984 	 * requires holding the chunk_mutex.
2985 	 * See the comment at btrfs_chunk_alloc() for the details.
2986 	 */
2987 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
2988 
2989 	for (i = 0; i < map->num_stripes; i++) {
2990 		int ret;
2991 
2992 		ret = btrfs_update_device(trans, map->stripes[i].dev);
2993 		if (ret)
2994 			return ret;
2995 	}
2996 
2997 	return btrfs_free_chunk(trans, chunk_offset);
2998 }
2999 
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3000 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3001 {
3002 	struct btrfs_fs_info *fs_info = trans->fs_info;
3003 	struct extent_map *em;
3004 	struct map_lookup *map;
3005 	u64 dev_extent_len = 0;
3006 	int i, ret = 0;
3007 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3008 
3009 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3010 	if (IS_ERR(em)) {
3011 		/*
3012 		 * This is a logic error, but we don't want to just rely on the
3013 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3014 		 * do anything we still error out.
3015 		 */
3016 		ASSERT(0);
3017 		return PTR_ERR(em);
3018 	}
3019 	map = em->map_lookup;
3020 
3021 	/*
3022 	 * First delete the device extent items from the devices btree.
3023 	 * We take the device_list_mutex to avoid racing with the finishing phase
3024 	 * of a device replace operation. See the comment below before acquiring
3025 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3026 	 * because that can result in a deadlock when deleting the device extent
3027 	 * items from the devices btree - COWing an extent buffer from the btree
3028 	 * may result in allocating a new metadata chunk, which would attempt to
3029 	 * lock again fs_info->chunk_mutex.
3030 	 */
3031 	mutex_lock(&fs_devices->device_list_mutex);
3032 	for (i = 0; i < map->num_stripes; i++) {
3033 		struct btrfs_device *device = map->stripes[i].dev;
3034 		ret = btrfs_free_dev_extent(trans, device,
3035 					    map->stripes[i].physical,
3036 					    &dev_extent_len);
3037 		if (ret) {
3038 			mutex_unlock(&fs_devices->device_list_mutex);
3039 			btrfs_abort_transaction(trans, ret);
3040 			goto out;
3041 		}
3042 
3043 		if (device->bytes_used > 0) {
3044 			mutex_lock(&fs_info->chunk_mutex);
3045 			btrfs_device_set_bytes_used(device,
3046 					device->bytes_used - dev_extent_len);
3047 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3048 			btrfs_clear_space_info_full(fs_info);
3049 			mutex_unlock(&fs_info->chunk_mutex);
3050 		}
3051 	}
3052 	mutex_unlock(&fs_devices->device_list_mutex);
3053 
3054 	/*
3055 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3056 	 *
3057 	 * 1) Just like with the first phase of the chunk allocation, we must
3058 	 *    reserve system space, do all chunk btree updates and deletions, and
3059 	 *    update the system chunk array in the superblock while holding this
3060 	 *    mutex. This is for similar reasons as explained on the comment at
3061 	 *    the top of btrfs_chunk_alloc();
3062 	 *
3063 	 * 2) Prevent races with the final phase of a device replace operation
3064 	 *    that replaces the device object associated with the map's stripes,
3065 	 *    because the device object's id can change at any time during that
3066 	 *    final phase of the device replace operation
3067 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3068 	 *    replaced device and then see it with an ID of
3069 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3070 	 *    the device item, which does not exists on the chunk btree.
3071 	 *    The finishing phase of device replace acquires both the
3072 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3073 	 *    safe by just acquiring the chunk_mutex.
3074 	 */
3075 	trans->removing_chunk = true;
3076 	mutex_lock(&fs_info->chunk_mutex);
3077 
3078 	check_system_chunk(trans, map->type);
3079 
3080 	ret = remove_chunk_item(trans, map, chunk_offset);
3081 	/*
3082 	 * Normally we should not get -ENOSPC since we reserved space before
3083 	 * through the call to check_system_chunk().
3084 	 *
3085 	 * Despite our system space_info having enough free space, we may not
3086 	 * be able to allocate extents from its block groups, because all have
3087 	 * an incompatible profile, which will force us to allocate a new system
3088 	 * block group with the right profile, or right after we called
3089 	 * check_system_space() above, a scrub turned the only system block group
3090 	 * with enough free space into RO mode.
3091 	 * This is explained with more detail at do_chunk_alloc().
3092 	 *
3093 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3094 	 */
3095 	if (ret == -ENOSPC) {
3096 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3097 		struct btrfs_block_group *sys_bg;
3098 
3099 		sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3100 		if (IS_ERR(sys_bg)) {
3101 			ret = PTR_ERR(sys_bg);
3102 			btrfs_abort_transaction(trans, ret);
3103 			goto out;
3104 		}
3105 
3106 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3107 		if (ret) {
3108 			btrfs_abort_transaction(trans, ret);
3109 			goto out;
3110 		}
3111 
3112 		ret = remove_chunk_item(trans, map, chunk_offset);
3113 		if (ret) {
3114 			btrfs_abort_transaction(trans, ret);
3115 			goto out;
3116 		}
3117 	} else if (ret) {
3118 		btrfs_abort_transaction(trans, ret);
3119 		goto out;
3120 	}
3121 
3122 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3123 
3124 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3125 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3126 		if (ret) {
3127 			btrfs_abort_transaction(trans, ret);
3128 			goto out;
3129 		}
3130 	}
3131 
3132 	mutex_unlock(&fs_info->chunk_mutex);
3133 	trans->removing_chunk = false;
3134 
3135 	/*
3136 	 * We are done with chunk btree updates and deletions, so release the
3137 	 * system space we previously reserved (with check_system_chunk()).
3138 	 */
3139 	btrfs_trans_release_chunk_metadata(trans);
3140 
3141 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3142 	if (ret) {
3143 		btrfs_abort_transaction(trans, ret);
3144 		goto out;
3145 	}
3146 
3147 out:
3148 	if (trans->removing_chunk) {
3149 		mutex_unlock(&fs_info->chunk_mutex);
3150 		trans->removing_chunk = false;
3151 	}
3152 	/* once for us */
3153 	free_extent_map(em);
3154 	return ret;
3155 }
3156 
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3157 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3158 {
3159 	struct btrfs_root *root = fs_info->chunk_root;
3160 	struct btrfs_trans_handle *trans;
3161 	struct btrfs_block_group *block_group;
3162 	u64 length;
3163 	int ret;
3164 
3165 	/*
3166 	 * Prevent races with automatic removal of unused block groups.
3167 	 * After we relocate and before we remove the chunk with offset
3168 	 * chunk_offset, automatic removal of the block group can kick in,
3169 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3170 	 *
3171 	 * Make sure to acquire this mutex before doing a tree search (dev
3172 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3173 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3174 	 * we release the path used to search the chunk/dev tree and before
3175 	 * the current task acquires this mutex and calls us.
3176 	 */
3177 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3178 
3179 	/* step one, relocate all the extents inside this chunk */
3180 	btrfs_scrub_pause(fs_info);
3181 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3182 	btrfs_scrub_continue(fs_info);
3183 	if (ret)
3184 		return ret;
3185 
3186 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3187 	if (!block_group)
3188 		return -ENOENT;
3189 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3190 	length = block_group->length;
3191 	btrfs_put_block_group(block_group);
3192 
3193 	/*
3194 	 * On a zoned file system, discard the whole block group, this will
3195 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3196 	 * resetting the zone fails, don't treat it as a fatal problem from the
3197 	 * filesystem's point of view.
3198 	 */
3199 	if (btrfs_is_zoned(fs_info)) {
3200 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3201 		if (ret)
3202 			btrfs_info(fs_info,
3203 				"failed to reset zone %llu after relocation",
3204 				chunk_offset);
3205 	}
3206 
3207 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3208 						     chunk_offset);
3209 	if (IS_ERR(trans)) {
3210 		ret = PTR_ERR(trans);
3211 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3212 		return ret;
3213 	}
3214 
3215 	/*
3216 	 * step two, delete the device extents and the
3217 	 * chunk tree entries
3218 	 */
3219 	ret = btrfs_remove_chunk(trans, chunk_offset);
3220 	btrfs_end_transaction(trans);
3221 	return ret;
3222 }
3223 
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3224 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3225 {
3226 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3227 	struct btrfs_path *path;
3228 	struct extent_buffer *leaf;
3229 	struct btrfs_chunk *chunk;
3230 	struct btrfs_key key;
3231 	struct btrfs_key found_key;
3232 	u64 chunk_type;
3233 	bool retried = false;
3234 	int failed = 0;
3235 	int ret;
3236 
3237 	path = btrfs_alloc_path();
3238 	if (!path)
3239 		return -ENOMEM;
3240 
3241 again:
3242 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3243 	key.offset = (u64)-1;
3244 	key.type = BTRFS_CHUNK_ITEM_KEY;
3245 
3246 	while (1) {
3247 		mutex_lock(&fs_info->reclaim_bgs_lock);
3248 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3249 		if (ret < 0) {
3250 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3251 			goto error;
3252 		}
3253 		BUG_ON(ret == 0); /* Corruption */
3254 
3255 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3256 					  key.type);
3257 		if (ret)
3258 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3259 		if (ret < 0)
3260 			goto error;
3261 		if (ret > 0)
3262 			break;
3263 
3264 		leaf = path->nodes[0];
3265 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3266 
3267 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3268 				       struct btrfs_chunk);
3269 		chunk_type = btrfs_chunk_type(leaf, chunk);
3270 		btrfs_release_path(path);
3271 
3272 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3273 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3274 			if (ret == -ENOSPC)
3275 				failed++;
3276 			else
3277 				BUG_ON(ret);
3278 		}
3279 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3280 
3281 		if (found_key.offset == 0)
3282 			break;
3283 		key.offset = found_key.offset - 1;
3284 	}
3285 	ret = 0;
3286 	if (failed && !retried) {
3287 		failed = 0;
3288 		retried = true;
3289 		goto again;
3290 	} else if (WARN_ON(failed && retried)) {
3291 		ret = -ENOSPC;
3292 	}
3293 error:
3294 	btrfs_free_path(path);
3295 	return ret;
3296 }
3297 
3298 /*
3299  * return 1 : allocate a data chunk successfully,
3300  * return <0: errors during allocating a data chunk,
3301  * return 0 : no need to allocate a data chunk.
3302  */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3303 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3304 				      u64 chunk_offset)
3305 {
3306 	struct btrfs_block_group *cache;
3307 	u64 bytes_used;
3308 	u64 chunk_type;
3309 
3310 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3311 	ASSERT(cache);
3312 	chunk_type = cache->flags;
3313 	btrfs_put_block_group(cache);
3314 
3315 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3316 		return 0;
3317 
3318 	spin_lock(&fs_info->data_sinfo->lock);
3319 	bytes_used = fs_info->data_sinfo->bytes_used;
3320 	spin_unlock(&fs_info->data_sinfo->lock);
3321 
3322 	if (!bytes_used) {
3323 		struct btrfs_trans_handle *trans;
3324 		int ret;
3325 
3326 		trans =	btrfs_join_transaction(fs_info->tree_root);
3327 		if (IS_ERR(trans))
3328 			return PTR_ERR(trans);
3329 
3330 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3331 		btrfs_end_transaction(trans);
3332 		if (ret < 0)
3333 			return ret;
3334 		return 1;
3335 	}
3336 
3337 	return 0;
3338 }
3339 
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3340 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3341 			       struct btrfs_balance_control *bctl)
3342 {
3343 	struct btrfs_root *root = fs_info->tree_root;
3344 	struct btrfs_trans_handle *trans;
3345 	struct btrfs_balance_item *item;
3346 	struct btrfs_disk_balance_args disk_bargs;
3347 	struct btrfs_path *path;
3348 	struct extent_buffer *leaf;
3349 	struct btrfs_key key;
3350 	int ret, err;
3351 
3352 	path = btrfs_alloc_path();
3353 	if (!path)
3354 		return -ENOMEM;
3355 
3356 	trans = btrfs_start_transaction(root, 0);
3357 	if (IS_ERR(trans)) {
3358 		btrfs_free_path(path);
3359 		return PTR_ERR(trans);
3360 	}
3361 
3362 	key.objectid = BTRFS_BALANCE_OBJECTID;
3363 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3364 	key.offset = 0;
3365 
3366 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3367 				      sizeof(*item));
3368 	if (ret)
3369 		goto out;
3370 
3371 	leaf = path->nodes[0];
3372 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3373 
3374 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3375 
3376 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3377 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3378 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3379 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3380 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3381 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3382 
3383 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3384 
3385 	btrfs_mark_buffer_dirty(leaf);
3386 out:
3387 	btrfs_free_path(path);
3388 	err = btrfs_commit_transaction(trans);
3389 	if (err && !ret)
3390 		ret = err;
3391 	return ret;
3392 }
3393 
del_balance_item(struct btrfs_fs_info * fs_info)3394 static int del_balance_item(struct btrfs_fs_info *fs_info)
3395 {
3396 	struct btrfs_root *root = fs_info->tree_root;
3397 	struct btrfs_trans_handle *trans;
3398 	struct btrfs_path *path;
3399 	struct btrfs_key key;
3400 	int ret, err;
3401 
3402 	path = btrfs_alloc_path();
3403 	if (!path)
3404 		return -ENOMEM;
3405 
3406 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3407 	if (IS_ERR(trans)) {
3408 		btrfs_free_path(path);
3409 		return PTR_ERR(trans);
3410 	}
3411 
3412 	key.objectid = BTRFS_BALANCE_OBJECTID;
3413 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3414 	key.offset = 0;
3415 
3416 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3417 	if (ret < 0)
3418 		goto out;
3419 	if (ret > 0) {
3420 		ret = -ENOENT;
3421 		goto out;
3422 	}
3423 
3424 	ret = btrfs_del_item(trans, root, path);
3425 out:
3426 	btrfs_free_path(path);
3427 	err = btrfs_commit_transaction(trans);
3428 	if (err && !ret)
3429 		ret = err;
3430 	return ret;
3431 }
3432 
3433 /*
3434  * This is a heuristic used to reduce the number of chunks balanced on
3435  * resume after balance was interrupted.
3436  */
update_balance_args(struct btrfs_balance_control * bctl)3437 static void update_balance_args(struct btrfs_balance_control *bctl)
3438 {
3439 	/*
3440 	 * Turn on soft mode for chunk types that were being converted.
3441 	 */
3442 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3443 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3444 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3445 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3446 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3447 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3448 
3449 	/*
3450 	 * Turn on usage filter if is not already used.  The idea is
3451 	 * that chunks that we have already balanced should be
3452 	 * reasonably full.  Don't do it for chunks that are being
3453 	 * converted - that will keep us from relocating unconverted
3454 	 * (albeit full) chunks.
3455 	 */
3456 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3457 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3458 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3459 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3460 		bctl->data.usage = 90;
3461 	}
3462 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3463 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3464 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3465 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3466 		bctl->sys.usage = 90;
3467 	}
3468 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3469 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3470 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3471 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3472 		bctl->meta.usage = 90;
3473 	}
3474 }
3475 
3476 /*
3477  * Clear the balance status in fs_info and delete the balance item from disk.
3478  */
reset_balance_state(struct btrfs_fs_info * fs_info)3479 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3480 {
3481 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3482 	int ret;
3483 
3484 	BUG_ON(!fs_info->balance_ctl);
3485 
3486 	spin_lock(&fs_info->balance_lock);
3487 	fs_info->balance_ctl = NULL;
3488 	spin_unlock(&fs_info->balance_lock);
3489 
3490 	kfree(bctl);
3491 	ret = del_balance_item(fs_info);
3492 	if (ret)
3493 		btrfs_handle_fs_error(fs_info, ret, NULL);
3494 }
3495 
3496 /*
3497  * Balance filters.  Return 1 if chunk should be filtered out
3498  * (should not be balanced).
3499  */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3500 static int chunk_profiles_filter(u64 chunk_type,
3501 				 struct btrfs_balance_args *bargs)
3502 {
3503 	chunk_type = chunk_to_extended(chunk_type) &
3504 				BTRFS_EXTENDED_PROFILE_MASK;
3505 
3506 	if (bargs->profiles & chunk_type)
3507 		return 0;
3508 
3509 	return 1;
3510 }
3511 
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3512 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3513 			      struct btrfs_balance_args *bargs)
3514 {
3515 	struct btrfs_block_group *cache;
3516 	u64 chunk_used;
3517 	u64 user_thresh_min;
3518 	u64 user_thresh_max;
3519 	int ret = 1;
3520 
3521 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3522 	chunk_used = cache->used;
3523 
3524 	if (bargs->usage_min == 0)
3525 		user_thresh_min = 0;
3526 	else
3527 		user_thresh_min = div_factor_fine(cache->length,
3528 						  bargs->usage_min);
3529 
3530 	if (bargs->usage_max == 0)
3531 		user_thresh_max = 1;
3532 	else if (bargs->usage_max > 100)
3533 		user_thresh_max = cache->length;
3534 	else
3535 		user_thresh_max = div_factor_fine(cache->length,
3536 						  bargs->usage_max);
3537 
3538 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3539 		ret = 0;
3540 
3541 	btrfs_put_block_group(cache);
3542 	return ret;
3543 }
3544 
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3545 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3546 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3547 {
3548 	struct btrfs_block_group *cache;
3549 	u64 chunk_used, user_thresh;
3550 	int ret = 1;
3551 
3552 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3553 	chunk_used = cache->used;
3554 
3555 	if (bargs->usage_min == 0)
3556 		user_thresh = 1;
3557 	else if (bargs->usage > 100)
3558 		user_thresh = cache->length;
3559 	else
3560 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3561 
3562 	if (chunk_used < user_thresh)
3563 		ret = 0;
3564 
3565 	btrfs_put_block_group(cache);
3566 	return ret;
3567 }
3568 
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3569 static int chunk_devid_filter(struct extent_buffer *leaf,
3570 			      struct btrfs_chunk *chunk,
3571 			      struct btrfs_balance_args *bargs)
3572 {
3573 	struct btrfs_stripe *stripe;
3574 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3575 	int i;
3576 
3577 	for (i = 0; i < num_stripes; i++) {
3578 		stripe = btrfs_stripe_nr(chunk, i);
3579 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3580 			return 0;
3581 	}
3582 
3583 	return 1;
3584 }
3585 
calc_data_stripes(u64 type,int num_stripes)3586 static u64 calc_data_stripes(u64 type, int num_stripes)
3587 {
3588 	const int index = btrfs_bg_flags_to_raid_index(type);
3589 	const int ncopies = btrfs_raid_array[index].ncopies;
3590 	const int nparity = btrfs_raid_array[index].nparity;
3591 
3592 	return (num_stripes - nparity) / ncopies;
3593 }
3594 
3595 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3596 static int chunk_drange_filter(struct extent_buffer *leaf,
3597 			       struct btrfs_chunk *chunk,
3598 			       struct btrfs_balance_args *bargs)
3599 {
3600 	struct btrfs_stripe *stripe;
3601 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3602 	u64 stripe_offset;
3603 	u64 stripe_length;
3604 	u64 type;
3605 	int factor;
3606 	int i;
3607 
3608 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3609 		return 0;
3610 
3611 	type = btrfs_chunk_type(leaf, chunk);
3612 	factor = calc_data_stripes(type, num_stripes);
3613 
3614 	for (i = 0; i < num_stripes; i++) {
3615 		stripe = btrfs_stripe_nr(chunk, i);
3616 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3617 			continue;
3618 
3619 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3620 		stripe_length = btrfs_chunk_length(leaf, chunk);
3621 		stripe_length = div_u64(stripe_length, factor);
3622 
3623 		if (stripe_offset < bargs->pend &&
3624 		    stripe_offset + stripe_length > bargs->pstart)
3625 			return 0;
3626 	}
3627 
3628 	return 1;
3629 }
3630 
3631 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3632 static int chunk_vrange_filter(struct extent_buffer *leaf,
3633 			       struct btrfs_chunk *chunk,
3634 			       u64 chunk_offset,
3635 			       struct btrfs_balance_args *bargs)
3636 {
3637 	if (chunk_offset < bargs->vend &&
3638 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3639 		/* at least part of the chunk is inside this vrange */
3640 		return 0;
3641 
3642 	return 1;
3643 }
3644 
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3645 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3646 			       struct btrfs_chunk *chunk,
3647 			       struct btrfs_balance_args *bargs)
3648 {
3649 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3650 
3651 	if (bargs->stripes_min <= num_stripes
3652 			&& num_stripes <= bargs->stripes_max)
3653 		return 0;
3654 
3655 	return 1;
3656 }
3657 
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3658 static int chunk_soft_convert_filter(u64 chunk_type,
3659 				     struct btrfs_balance_args *bargs)
3660 {
3661 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3662 		return 0;
3663 
3664 	chunk_type = chunk_to_extended(chunk_type) &
3665 				BTRFS_EXTENDED_PROFILE_MASK;
3666 
3667 	if (bargs->target == chunk_type)
3668 		return 1;
3669 
3670 	return 0;
3671 }
3672 
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3673 static int should_balance_chunk(struct extent_buffer *leaf,
3674 				struct btrfs_chunk *chunk, u64 chunk_offset)
3675 {
3676 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3677 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3678 	struct btrfs_balance_args *bargs = NULL;
3679 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3680 
3681 	/* type filter */
3682 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3683 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3684 		return 0;
3685 	}
3686 
3687 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3688 		bargs = &bctl->data;
3689 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3690 		bargs = &bctl->sys;
3691 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3692 		bargs = &bctl->meta;
3693 
3694 	/* profiles filter */
3695 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3696 	    chunk_profiles_filter(chunk_type, bargs)) {
3697 		return 0;
3698 	}
3699 
3700 	/* usage filter */
3701 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3702 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3703 		return 0;
3704 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3705 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3706 		return 0;
3707 	}
3708 
3709 	/* devid filter */
3710 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3711 	    chunk_devid_filter(leaf, chunk, bargs)) {
3712 		return 0;
3713 	}
3714 
3715 	/* drange filter, makes sense only with devid filter */
3716 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3717 	    chunk_drange_filter(leaf, chunk, bargs)) {
3718 		return 0;
3719 	}
3720 
3721 	/* vrange filter */
3722 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3723 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3724 		return 0;
3725 	}
3726 
3727 	/* stripes filter */
3728 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3729 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3730 		return 0;
3731 	}
3732 
3733 	/* soft profile changing mode */
3734 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3735 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3736 		return 0;
3737 	}
3738 
3739 	/*
3740 	 * limited by count, must be the last filter
3741 	 */
3742 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3743 		if (bargs->limit == 0)
3744 			return 0;
3745 		else
3746 			bargs->limit--;
3747 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3748 		/*
3749 		 * Same logic as the 'limit' filter; the minimum cannot be
3750 		 * determined here because we do not have the global information
3751 		 * about the count of all chunks that satisfy the filters.
3752 		 */
3753 		if (bargs->limit_max == 0)
3754 			return 0;
3755 		else
3756 			bargs->limit_max--;
3757 	}
3758 
3759 	return 1;
3760 }
3761 
__btrfs_balance(struct btrfs_fs_info * fs_info)3762 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3763 {
3764 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3765 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3766 	u64 chunk_type;
3767 	struct btrfs_chunk *chunk;
3768 	struct btrfs_path *path = NULL;
3769 	struct btrfs_key key;
3770 	struct btrfs_key found_key;
3771 	struct extent_buffer *leaf;
3772 	int slot;
3773 	int ret;
3774 	int enospc_errors = 0;
3775 	bool counting = true;
3776 	/* The single value limit and min/max limits use the same bytes in the */
3777 	u64 limit_data = bctl->data.limit;
3778 	u64 limit_meta = bctl->meta.limit;
3779 	u64 limit_sys = bctl->sys.limit;
3780 	u32 count_data = 0;
3781 	u32 count_meta = 0;
3782 	u32 count_sys = 0;
3783 	int chunk_reserved = 0;
3784 
3785 	path = btrfs_alloc_path();
3786 	if (!path) {
3787 		ret = -ENOMEM;
3788 		goto error;
3789 	}
3790 
3791 	/* zero out stat counters */
3792 	spin_lock(&fs_info->balance_lock);
3793 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3794 	spin_unlock(&fs_info->balance_lock);
3795 again:
3796 	if (!counting) {
3797 		/*
3798 		 * The single value limit and min/max limits use the same bytes
3799 		 * in the
3800 		 */
3801 		bctl->data.limit = limit_data;
3802 		bctl->meta.limit = limit_meta;
3803 		bctl->sys.limit = limit_sys;
3804 	}
3805 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3806 	key.offset = (u64)-1;
3807 	key.type = BTRFS_CHUNK_ITEM_KEY;
3808 
3809 	while (1) {
3810 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3811 		    atomic_read(&fs_info->balance_cancel_req)) {
3812 			ret = -ECANCELED;
3813 			goto error;
3814 		}
3815 
3816 		mutex_lock(&fs_info->reclaim_bgs_lock);
3817 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3818 		if (ret < 0) {
3819 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3820 			goto error;
3821 		}
3822 
3823 		/*
3824 		 * this shouldn't happen, it means the last relocate
3825 		 * failed
3826 		 */
3827 		if (ret == 0)
3828 			BUG(); /* FIXME break ? */
3829 
3830 		ret = btrfs_previous_item(chunk_root, path, 0,
3831 					  BTRFS_CHUNK_ITEM_KEY);
3832 		if (ret) {
3833 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3834 			ret = 0;
3835 			break;
3836 		}
3837 
3838 		leaf = path->nodes[0];
3839 		slot = path->slots[0];
3840 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3841 
3842 		if (found_key.objectid != key.objectid) {
3843 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3844 			break;
3845 		}
3846 
3847 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3848 		chunk_type = btrfs_chunk_type(leaf, chunk);
3849 
3850 		if (!counting) {
3851 			spin_lock(&fs_info->balance_lock);
3852 			bctl->stat.considered++;
3853 			spin_unlock(&fs_info->balance_lock);
3854 		}
3855 
3856 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3857 
3858 		btrfs_release_path(path);
3859 		if (!ret) {
3860 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3861 			goto loop;
3862 		}
3863 
3864 		if (counting) {
3865 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3866 			spin_lock(&fs_info->balance_lock);
3867 			bctl->stat.expected++;
3868 			spin_unlock(&fs_info->balance_lock);
3869 
3870 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3871 				count_data++;
3872 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3873 				count_sys++;
3874 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3875 				count_meta++;
3876 
3877 			goto loop;
3878 		}
3879 
3880 		/*
3881 		 * Apply limit_min filter, no need to check if the LIMITS
3882 		 * filter is used, limit_min is 0 by default
3883 		 */
3884 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3885 					count_data < bctl->data.limit_min)
3886 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3887 					count_meta < bctl->meta.limit_min)
3888 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3889 					count_sys < bctl->sys.limit_min)) {
3890 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3891 			goto loop;
3892 		}
3893 
3894 		if (!chunk_reserved) {
3895 			/*
3896 			 * We may be relocating the only data chunk we have,
3897 			 * which could potentially end up with losing data's
3898 			 * raid profile, so lets allocate an empty one in
3899 			 * advance.
3900 			 */
3901 			ret = btrfs_may_alloc_data_chunk(fs_info,
3902 							 found_key.offset);
3903 			if (ret < 0) {
3904 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3905 				goto error;
3906 			} else if (ret == 1) {
3907 				chunk_reserved = 1;
3908 			}
3909 		}
3910 
3911 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3912 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3913 		if (ret == -ENOSPC) {
3914 			enospc_errors++;
3915 		} else if (ret == -ETXTBSY) {
3916 			btrfs_info(fs_info,
3917 	   "skipping relocation of block group %llu due to active swapfile",
3918 				   found_key.offset);
3919 			ret = 0;
3920 		} else if (ret) {
3921 			goto error;
3922 		} else {
3923 			spin_lock(&fs_info->balance_lock);
3924 			bctl->stat.completed++;
3925 			spin_unlock(&fs_info->balance_lock);
3926 		}
3927 loop:
3928 		if (found_key.offset == 0)
3929 			break;
3930 		key.offset = found_key.offset - 1;
3931 	}
3932 
3933 	if (counting) {
3934 		btrfs_release_path(path);
3935 		counting = false;
3936 		goto again;
3937 	}
3938 error:
3939 	btrfs_free_path(path);
3940 	if (enospc_errors) {
3941 		btrfs_info(fs_info, "%d enospc errors during balance",
3942 			   enospc_errors);
3943 		if (!ret)
3944 			ret = -ENOSPC;
3945 	}
3946 
3947 	return ret;
3948 }
3949 
3950 /**
3951  * alloc_profile_is_valid - see if a given profile is valid and reduced
3952  * @flags: profile to validate
3953  * @extended: if true @flags is treated as an extended profile
3954  */
alloc_profile_is_valid(u64 flags,int extended)3955 static int alloc_profile_is_valid(u64 flags, int extended)
3956 {
3957 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3958 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3959 
3960 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3961 
3962 	/* 1) check that all other bits are zeroed */
3963 	if (flags & ~mask)
3964 		return 0;
3965 
3966 	/* 2) see if profile is reduced */
3967 	if (flags == 0)
3968 		return !extended; /* "0" is valid for usual profiles */
3969 
3970 	return has_single_bit_set(flags);
3971 }
3972 
balance_need_close(struct btrfs_fs_info * fs_info)3973 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3974 {
3975 	/* cancel requested || normal exit path */
3976 	return atomic_read(&fs_info->balance_cancel_req) ||
3977 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3978 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3979 }
3980 
3981 /*
3982  * Validate target profile against allowed profiles and return true if it's OK.
3983  * Otherwise print the error message and return false.
3984  */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)3985 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3986 		const struct btrfs_balance_args *bargs,
3987 		u64 allowed, const char *type)
3988 {
3989 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3990 		return true;
3991 
3992 	if (fs_info->sectorsize < PAGE_SIZE &&
3993 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3994 		btrfs_err(fs_info,
3995 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
3996 			  fs_info->sectorsize, PAGE_SIZE);
3997 		return false;
3998 	}
3999 	/* Profile is valid and does not have bits outside of the allowed set */
4000 	if (alloc_profile_is_valid(bargs->target, 1) &&
4001 	    (bargs->target & ~allowed) == 0)
4002 		return true;
4003 
4004 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4005 			type, btrfs_bg_type_to_raid_name(bargs->target));
4006 	return false;
4007 }
4008 
4009 /*
4010  * Fill @buf with textual description of balance filter flags @bargs, up to
4011  * @size_buf including the terminating null. The output may be trimmed if it
4012  * does not fit into the provided buffer.
4013  */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4014 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4015 				 u32 size_buf)
4016 {
4017 	int ret;
4018 	u32 size_bp = size_buf;
4019 	char *bp = buf;
4020 	u64 flags = bargs->flags;
4021 	char tmp_buf[128] = {'\0'};
4022 
4023 	if (!flags)
4024 		return;
4025 
4026 #define CHECK_APPEND_NOARG(a)						\
4027 	do {								\
4028 		ret = snprintf(bp, size_bp, (a));			\
4029 		if (ret < 0 || ret >= size_bp)				\
4030 			goto out_overflow;				\
4031 		size_bp -= ret;						\
4032 		bp += ret;						\
4033 	} while (0)
4034 
4035 #define CHECK_APPEND_1ARG(a, v1)					\
4036 	do {								\
4037 		ret = snprintf(bp, size_bp, (a), (v1));			\
4038 		if (ret < 0 || ret >= size_bp)				\
4039 			goto out_overflow;				\
4040 		size_bp -= ret;						\
4041 		bp += ret;						\
4042 	} while (0)
4043 
4044 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4045 	do {								\
4046 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4047 		if (ret < 0 || ret >= size_bp)				\
4048 			goto out_overflow;				\
4049 		size_bp -= ret;						\
4050 		bp += ret;						\
4051 	} while (0)
4052 
4053 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4054 		CHECK_APPEND_1ARG("convert=%s,",
4055 				  btrfs_bg_type_to_raid_name(bargs->target));
4056 
4057 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4058 		CHECK_APPEND_NOARG("soft,");
4059 
4060 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4061 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4062 					    sizeof(tmp_buf));
4063 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4064 	}
4065 
4066 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4067 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4068 
4069 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4070 		CHECK_APPEND_2ARG("usage=%u..%u,",
4071 				  bargs->usage_min, bargs->usage_max);
4072 
4073 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4074 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4075 
4076 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4077 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4078 				  bargs->pstart, bargs->pend);
4079 
4080 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4081 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4082 				  bargs->vstart, bargs->vend);
4083 
4084 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4085 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4086 
4087 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4088 		CHECK_APPEND_2ARG("limit=%u..%u,",
4089 				bargs->limit_min, bargs->limit_max);
4090 
4091 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4092 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4093 				  bargs->stripes_min, bargs->stripes_max);
4094 
4095 #undef CHECK_APPEND_2ARG
4096 #undef CHECK_APPEND_1ARG
4097 #undef CHECK_APPEND_NOARG
4098 
4099 out_overflow:
4100 
4101 	if (size_bp < size_buf)
4102 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4103 	else
4104 		buf[0] = '\0';
4105 }
4106 
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4107 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4108 {
4109 	u32 size_buf = 1024;
4110 	char tmp_buf[192] = {'\0'};
4111 	char *buf;
4112 	char *bp;
4113 	u32 size_bp = size_buf;
4114 	int ret;
4115 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4116 
4117 	buf = kzalloc(size_buf, GFP_KERNEL);
4118 	if (!buf)
4119 		return;
4120 
4121 	bp = buf;
4122 
4123 #define CHECK_APPEND_1ARG(a, v1)					\
4124 	do {								\
4125 		ret = snprintf(bp, size_bp, (a), (v1));			\
4126 		if (ret < 0 || ret >= size_bp)				\
4127 			goto out_overflow;				\
4128 		size_bp -= ret;						\
4129 		bp += ret;						\
4130 	} while (0)
4131 
4132 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4133 		CHECK_APPEND_1ARG("%s", "-f ");
4134 
4135 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4136 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4137 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4138 	}
4139 
4140 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4141 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4142 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4143 	}
4144 
4145 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4146 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4147 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4148 	}
4149 
4150 #undef CHECK_APPEND_1ARG
4151 
4152 out_overflow:
4153 
4154 	if (size_bp < size_buf)
4155 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4156 	btrfs_info(fs_info, "balance: %s %s",
4157 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4158 		   "resume" : "start", buf);
4159 
4160 	kfree(buf);
4161 }
4162 
4163 /*
4164  * Should be called with balance mutexe held
4165  */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4166 int btrfs_balance(struct btrfs_fs_info *fs_info,
4167 		  struct btrfs_balance_control *bctl,
4168 		  struct btrfs_ioctl_balance_args *bargs)
4169 {
4170 	u64 meta_target, data_target;
4171 	u64 allowed;
4172 	int mixed = 0;
4173 	int ret;
4174 	u64 num_devices;
4175 	unsigned seq;
4176 	bool reducing_redundancy;
4177 	int i;
4178 
4179 	if (btrfs_fs_closing(fs_info) ||
4180 	    atomic_read(&fs_info->balance_pause_req) ||
4181 	    btrfs_should_cancel_balance(fs_info)) {
4182 		ret = -EINVAL;
4183 		goto out;
4184 	}
4185 
4186 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4187 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4188 		mixed = 1;
4189 
4190 	/*
4191 	 * In case of mixed groups both data and meta should be picked,
4192 	 * and identical options should be given for both of them.
4193 	 */
4194 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4195 	if (mixed && (bctl->flags & allowed)) {
4196 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4197 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4198 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4199 			btrfs_err(fs_info,
4200 	  "balance: mixed groups data and metadata options must be the same");
4201 			ret = -EINVAL;
4202 			goto out;
4203 		}
4204 	}
4205 
4206 	/*
4207 	 * rw_devices will not change at the moment, device add/delete/replace
4208 	 * are exclusive
4209 	 */
4210 	num_devices = fs_info->fs_devices->rw_devices;
4211 
4212 	/*
4213 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4214 	 * special bit for it, to make it easier to distinguish.  Thus we need
4215 	 * to set it manually, or balance would refuse the profile.
4216 	 */
4217 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4218 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4219 		if (num_devices >= btrfs_raid_array[i].devs_min)
4220 			allowed |= btrfs_raid_array[i].bg_flag;
4221 
4222 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4223 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4224 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4225 		ret = -EINVAL;
4226 		goto out;
4227 	}
4228 
4229 	/*
4230 	 * Allow to reduce metadata or system integrity only if force set for
4231 	 * profiles with redundancy (copies, parity)
4232 	 */
4233 	allowed = 0;
4234 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4235 		if (btrfs_raid_array[i].ncopies >= 2 ||
4236 		    btrfs_raid_array[i].tolerated_failures >= 1)
4237 			allowed |= btrfs_raid_array[i].bg_flag;
4238 	}
4239 	do {
4240 		seq = read_seqbegin(&fs_info->profiles_lock);
4241 
4242 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4243 		     (fs_info->avail_system_alloc_bits & allowed) &&
4244 		     !(bctl->sys.target & allowed)) ||
4245 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4246 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4247 		     !(bctl->meta.target & allowed)))
4248 			reducing_redundancy = true;
4249 		else
4250 			reducing_redundancy = false;
4251 
4252 		/* if we're not converting, the target field is uninitialized */
4253 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4254 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4255 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4256 			bctl->data.target : fs_info->avail_data_alloc_bits;
4257 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4258 
4259 	if (reducing_redundancy) {
4260 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4261 			btrfs_info(fs_info,
4262 			   "balance: force reducing metadata redundancy");
4263 		} else {
4264 			btrfs_err(fs_info,
4265 	"balance: reduces metadata redundancy, use --force if you want this");
4266 			ret = -EINVAL;
4267 			goto out;
4268 		}
4269 	}
4270 
4271 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4272 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4273 		btrfs_warn(fs_info,
4274 	"balance: metadata profile %s has lower redundancy than data profile %s",
4275 				btrfs_bg_type_to_raid_name(meta_target),
4276 				btrfs_bg_type_to_raid_name(data_target));
4277 	}
4278 
4279 	ret = insert_balance_item(fs_info, bctl);
4280 	if (ret && ret != -EEXIST)
4281 		goto out;
4282 
4283 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4284 		BUG_ON(ret == -EEXIST);
4285 		BUG_ON(fs_info->balance_ctl);
4286 		spin_lock(&fs_info->balance_lock);
4287 		fs_info->balance_ctl = bctl;
4288 		spin_unlock(&fs_info->balance_lock);
4289 	} else {
4290 		BUG_ON(ret != -EEXIST);
4291 		spin_lock(&fs_info->balance_lock);
4292 		update_balance_args(bctl);
4293 		spin_unlock(&fs_info->balance_lock);
4294 	}
4295 
4296 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4297 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4298 	describe_balance_start_or_resume(fs_info);
4299 	mutex_unlock(&fs_info->balance_mutex);
4300 
4301 	ret = __btrfs_balance(fs_info);
4302 
4303 	mutex_lock(&fs_info->balance_mutex);
4304 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4305 		btrfs_info(fs_info, "balance: paused");
4306 	/*
4307 	 * Balance can be canceled by:
4308 	 *
4309 	 * - Regular cancel request
4310 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4311 	 *
4312 	 * - Fatal signal to "btrfs" process
4313 	 *   Either the signal caught by wait_reserve_ticket() and callers
4314 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4315 	 *   got -ECANCELED.
4316 	 *   Either way, in this case balance_cancel_req = 0, and
4317 	 *   ret == -EINTR or ret == -ECANCELED.
4318 	 *
4319 	 * So here we only check the return value to catch canceled balance.
4320 	 */
4321 	else if (ret == -ECANCELED || ret == -EINTR)
4322 		btrfs_info(fs_info, "balance: canceled");
4323 	else
4324 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4325 
4326 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4327 
4328 	if (bargs) {
4329 		memset(bargs, 0, sizeof(*bargs));
4330 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4331 	}
4332 
4333 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4334 	    balance_need_close(fs_info)) {
4335 		reset_balance_state(fs_info);
4336 		btrfs_exclop_finish(fs_info);
4337 	}
4338 
4339 	wake_up(&fs_info->balance_wait_q);
4340 
4341 	return ret;
4342 out:
4343 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4344 		reset_balance_state(fs_info);
4345 	else
4346 		kfree(bctl);
4347 	btrfs_exclop_finish(fs_info);
4348 
4349 	return ret;
4350 }
4351 
balance_kthread(void * data)4352 static int balance_kthread(void *data)
4353 {
4354 	struct btrfs_fs_info *fs_info = data;
4355 	int ret = 0;
4356 
4357 	mutex_lock(&fs_info->balance_mutex);
4358 	if (fs_info->balance_ctl)
4359 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4360 	mutex_unlock(&fs_info->balance_mutex);
4361 
4362 	return ret;
4363 }
4364 
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4365 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4366 {
4367 	struct task_struct *tsk;
4368 
4369 	mutex_lock(&fs_info->balance_mutex);
4370 	if (!fs_info->balance_ctl) {
4371 		mutex_unlock(&fs_info->balance_mutex);
4372 		return 0;
4373 	}
4374 	mutex_unlock(&fs_info->balance_mutex);
4375 
4376 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4377 		btrfs_info(fs_info, "balance: resume skipped");
4378 		return 0;
4379 	}
4380 
4381 	/*
4382 	 * A ro->rw remount sequence should continue with the paused balance
4383 	 * regardless of who pauses it, system or the user as of now, so set
4384 	 * the resume flag.
4385 	 */
4386 	spin_lock(&fs_info->balance_lock);
4387 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4388 	spin_unlock(&fs_info->balance_lock);
4389 
4390 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4391 	return PTR_ERR_OR_ZERO(tsk);
4392 }
4393 
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4394 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4395 {
4396 	struct btrfs_balance_control *bctl;
4397 	struct btrfs_balance_item *item;
4398 	struct btrfs_disk_balance_args disk_bargs;
4399 	struct btrfs_path *path;
4400 	struct extent_buffer *leaf;
4401 	struct btrfs_key key;
4402 	int ret;
4403 
4404 	path = btrfs_alloc_path();
4405 	if (!path)
4406 		return -ENOMEM;
4407 
4408 	key.objectid = BTRFS_BALANCE_OBJECTID;
4409 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4410 	key.offset = 0;
4411 
4412 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4413 	if (ret < 0)
4414 		goto out;
4415 	if (ret > 0) { /* ret = -ENOENT; */
4416 		ret = 0;
4417 		goto out;
4418 	}
4419 
4420 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4421 	if (!bctl) {
4422 		ret = -ENOMEM;
4423 		goto out;
4424 	}
4425 
4426 	leaf = path->nodes[0];
4427 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4428 
4429 	bctl->flags = btrfs_balance_flags(leaf, item);
4430 	bctl->flags |= BTRFS_BALANCE_RESUME;
4431 
4432 	btrfs_balance_data(leaf, item, &disk_bargs);
4433 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4434 	btrfs_balance_meta(leaf, item, &disk_bargs);
4435 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4436 	btrfs_balance_sys(leaf, item, &disk_bargs);
4437 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4438 
4439 	/*
4440 	 * This should never happen, as the paused balance state is recovered
4441 	 * during mount without any chance of other exclusive ops to collide.
4442 	 *
4443 	 * This gives the exclusive op status to balance and keeps in paused
4444 	 * state until user intervention (cancel or umount). If the ownership
4445 	 * cannot be assigned, show a message but do not fail. The balance
4446 	 * is in a paused state and must have fs_info::balance_ctl properly
4447 	 * set up.
4448 	 */
4449 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4450 		btrfs_warn(fs_info,
4451 	"balance: cannot set exclusive op status, resume manually");
4452 
4453 	btrfs_release_path(path);
4454 
4455 	mutex_lock(&fs_info->balance_mutex);
4456 	BUG_ON(fs_info->balance_ctl);
4457 	spin_lock(&fs_info->balance_lock);
4458 	fs_info->balance_ctl = bctl;
4459 	spin_unlock(&fs_info->balance_lock);
4460 	mutex_unlock(&fs_info->balance_mutex);
4461 out:
4462 	btrfs_free_path(path);
4463 	return ret;
4464 }
4465 
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4466 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4467 {
4468 	int ret = 0;
4469 
4470 	mutex_lock(&fs_info->balance_mutex);
4471 	if (!fs_info->balance_ctl) {
4472 		mutex_unlock(&fs_info->balance_mutex);
4473 		return -ENOTCONN;
4474 	}
4475 
4476 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4477 		atomic_inc(&fs_info->balance_pause_req);
4478 		mutex_unlock(&fs_info->balance_mutex);
4479 
4480 		wait_event(fs_info->balance_wait_q,
4481 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4482 
4483 		mutex_lock(&fs_info->balance_mutex);
4484 		/* we are good with balance_ctl ripped off from under us */
4485 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4486 		atomic_dec(&fs_info->balance_pause_req);
4487 	} else {
4488 		ret = -ENOTCONN;
4489 	}
4490 
4491 	mutex_unlock(&fs_info->balance_mutex);
4492 	return ret;
4493 }
4494 
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4495 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4496 {
4497 	mutex_lock(&fs_info->balance_mutex);
4498 	if (!fs_info->balance_ctl) {
4499 		mutex_unlock(&fs_info->balance_mutex);
4500 		return -ENOTCONN;
4501 	}
4502 
4503 	/*
4504 	 * A paused balance with the item stored on disk can be resumed at
4505 	 * mount time if the mount is read-write. Otherwise it's still paused
4506 	 * and we must not allow cancelling as it deletes the item.
4507 	 */
4508 	if (sb_rdonly(fs_info->sb)) {
4509 		mutex_unlock(&fs_info->balance_mutex);
4510 		return -EROFS;
4511 	}
4512 
4513 	atomic_inc(&fs_info->balance_cancel_req);
4514 	/*
4515 	 * if we are running just wait and return, balance item is
4516 	 * deleted in btrfs_balance in this case
4517 	 */
4518 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4519 		mutex_unlock(&fs_info->balance_mutex);
4520 		wait_event(fs_info->balance_wait_q,
4521 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4522 		mutex_lock(&fs_info->balance_mutex);
4523 	} else {
4524 		mutex_unlock(&fs_info->balance_mutex);
4525 		/*
4526 		 * Lock released to allow other waiters to continue, we'll
4527 		 * reexamine the status again.
4528 		 */
4529 		mutex_lock(&fs_info->balance_mutex);
4530 
4531 		if (fs_info->balance_ctl) {
4532 			reset_balance_state(fs_info);
4533 			btrfs_exclop_finish(fs_info);
4534 			btrfs_info(fs_info, "balance: canceled");
4535 		}
4536 	}
4537 
4538 	BUG_ON(fs_info->balance_ctl ||
4539 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4540 	atomic_dec(&fs_info->balance_cancel_req);
4541 	mutex_unlock(&fs_info->balance_mutex);
4542 	return 0;
4543 }
4544 
btrfs_uuid_scan_kthread(void * data)4545 int btrfs_uuid_scan_kthread(void *data)
4546 {
4547 	struct btrfs_fs_info *fs_info = data;
4548 	struct btrfs_root *root = fs_info->tree_root;
4549 	struct btrfs_key key;
4550 	struct btrfs_path *path = NULL;
4551 	int ret = 0;
4552 	struct extent_buffer *eb;
4553 	int slot;
4554 	struct btrfs_root_item root_item;
4555 	u32 item_size;
4556 	struct btrfs_trans_handle *trans = NULL;
4557 	bool closing = false;
4558 
4559 	path = btrfs_alloc_path();
4560 	if (!path) {
4561 		ret = -ENOMEM;
4562 		goto out;
4563 	}
4564 
4565 	key.objectid = 0;
4566 	key.type = BTRFS_ROOT_ITEM_KEY;
4567 	key.offset = 0;
4568 
4569 	while (1) {
4570 		if (btrfs_fs_closing(fs_info)) {
4571 			closing = true;
4572 			break;
4573 		}
4574 		ret = btrfs_search_forward(root, &key, path,
4575 				BTRFS_OLDEST_GENERATION);
4576 		if (ret) {
4577 			if (ret > 0)
4578 				ret = 0;
4579 			break;
4580 		}
4581 
4582 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4583 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4584 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4585 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4586 			goto skip;
4587 
4588 		eb = path->nodes[0];
4589 		slot = path->slots[0];
4590 		item_size = btrfs_item_size_nr(eb, slot);
4591 		if (item_size < sizeof(root_item))
4592 			goto skip;
4593 
4594 		read_extent_buffer(eb, &root_item,
4595 				   btrfs_item_ptr_offset(eb, slot),
4596 				   (int)sizeof(root_item));
4597 		if (btrfs_root_refs(&root_item) == 0)
4598 			goto skip;
4599 
4600 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4601 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4602 			if (trans)
4603 				goto update_tree;
4604 
4605 			btrfs_release_path(path);
4606 			/*
4607 			 * 1 - subvol uuid item
4608 			 * 1 - received_subvol uuid item
4609 			 */
4610 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4611 			if (IS_ERR(trans)) {
4612 				ret = PTR_ERR(trans);
4613 				break;
4614 			}
4615 			continue;
4616 		} else {
4617 			goto skip;
4618 		}
4619 update_tree:
4620 		btrfs_release_path(path);
4621 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4622 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4623 						  BTRFS_UUID_KEY_SUBVOL,
4624 						  key.objectid);
4625 			if (ret < 0) {
4626 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4627 					ret);
4628 				break;
4629 			}
4630 		}
4631 
4632 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4633 			ret = btrfs_uuid_tree_add(trans,
4634 						  root_item.received_uuid,
4635 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4636 						  key.objectid);
4637 			if (ret < 0) {
4638 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4639 					ret);
4640 				break;
4641 			}
4642 		}
4643 
4644 skip:
4645 		btrfs_release_path(path);
4646 		if (trans) {
4647 			ret = btrfs_end_transaction(trans);
4648 			trans = NULL;
4649 			if (ret)
4650 				break;
4651 		}
4652 
4653 		if (key.offset < (u64)-1) {
4654 			key.offset++;
4655 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4656 			key.offset = 0;
4657 			key.type = BTRFS_ROOT_ITEM_KEY;
4658 		} else if (key.objectid < (u64)-1) {
4659 			key.offset = 0;
4660 			key.type = BTRFS_ROOT_ITEM_KEY;
4661 			key.objectid++;
4662 		} else {
4663 			break;
4664 		}
4665 		cond_resched();
4666 	}
4667 
4668 out:
4669 	btrfs_free_path(path);
4670 	if (trans && !IS_ERR(trans))
4671 		btrfs_end_transaction(trans);
4672 	if (ret)
4673 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4674 	else if (!closing)
4675 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4676 	up(&fs_info->uuid_tree_rescan_sem);
4677 	return 0;
4678 }
4679 
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4680 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4681 {
4682 	struct btrfs_trans_handle *trans;
4683 	struct btrfs_root *tree_root = fs_info->tree_root;
4684 	struct btrfs_root *uuid_root;
4685 	struct task_struct *task;
4686 	int ret;
4687 
4688 	/*
4689 	 * 1 - root node
4690 	 * 1 - root item
4691 	 */
4692 	trans = btrfs_start_transaction(tree_root, 2);
4693 	if (IS_ERR(trans))
4694 		return PTR_ERR(trans);
4695 
4696 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4697 	if (IS_ERR(uuid_root)) {
4698 		ret = PTR_ERR(uuid_root);
4699 		btrfs_abort_transaction(trans, ret);
4700 		btrfs_end_transaction(trans);
4701 		return ret;
4702 	}
4703 
4704 	fs_info->uuid_root = uuid_root;
4705 
4706 	ret = btrfs_commit_transaction(trans);
4707 	if (ret)
4708 		return ret;
4709 
4710 	down(&fs_info->uuid_tree_rescan_sem);
4711 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4712 	if (IS_ERR(task)) {
4713 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4714 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4715 		up(&fs_info->uuid_tree_rescan_sem);
4716 		return PTR_ERR(task);
4717 	}
4718 
4719 	return 0;
4720 }
4721 
4722 /*
4723  * shrinking a device means finding all of the device extents past
4724  * the new size, and then following the back refs to the chunks.
4725  * The chunk relocation code actually frees the device extent
4726  */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4727 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4728 {
4729 	struct btrfs_fs_info *fs_info = device->fs_info;
4730 	struct btrfs_root *root = fs_info->dev_root;
4731 	struct btrfs_trans_handle *trans;
4732 	struct btrfs_dev_extent *dev_extent = NULL;
4733 	struct btrfs_path *path;
4734 	u64 length;
4735 	u64 chunk_offset;
4736 	int ret;
4737 	int slot;
4738 	int failed = 0;
4739 	bool retried = false;
4740 	struct extent_buffer *l;
4741 	struct btrfs_key key;
4742 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4743 	u64 old_total = btrfs_super_total_bytes(super_copy);
4744 	u64 old_size = btrfs_device_get_total_bytes(device);
4745 	u64 diff;
4746 	u64 start;
4747 
4748 	new_size = round_down(new_size, fs_info->sectorsize);
4749 	start = new_size;
4750 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4751 
4752 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4753 		return -EINVAL;
4754 
4755 	path = btrfs_alloc_path();
4756 	if (!path)
4757 		return -ENOMEM;
4758 
4759 	path->reada = READA_BACK;
4760 
4761 	trans = btrfs_start_transaction(root, 0);
4762 	if (IS_ERR(trans)) {
4763 		btrfs_free_path(path);
4764 		return PTR_ERR(trans);
4765 	}
4766 
4767 	mutex_lock(&fs_info->chunk_mutex);
4768 
4769 	btrfs_device_set_total_bytes(device, new_size);
4770 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4771 		device->fs_devices->total_rw_bytes -= diff;
4772 		atomic64_sub(diff, &fs_info->free_chunk_space);
4773 	}
4774 
4775 	/*
4776 	 * Once the device's size has been set to the new size, ensure all
4777 	 * in-memory chunks are synced to disk so that the loop below sees them
4778 	 * and relocates them accordingly.
4779 	 */
4780 	if (contains_pending_extent(device, &start, diff)) {
4781 		mutex_unlock(&fs_info->chunk_mutex);
4782 		ret = btrfs_commit_transaction(trans);
4783 		if (ret)
4784 			goto done;
4785 	} else {
4786 		mutex_unlock(&fs_info->chunk_mutex);
4787 		btrfs_end_transaction(trans);
4788 	}
4789 
4790 again:
4791 	key.objectid = device->devid;
4792 	key.offset = (u64)-1;
4793 	key.type = BTRFS_DEV_EXTENT_KEY;
4794 
4795 	do {
4796 		mutex_lock(&fs_info->reclaim_bgs_lock);
4797 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4798 		if (ret < 0) {
4799 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4800 			goto done;
4801 		}
4802 
4803 		ret = btrfs_previous_item(root, path, 0, key.type);
4804 		if (ret) {
4805 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4806 			if (ret < 0)
4807 				goto done;
4808 			ret = 0;
4809 			btrfs_release_path(path);
4810 			break;
4811 		}
4812 
4813 		l = path->nodes[0];
4814 		slot = path->slots[0];
4815 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4816 
4817 		if (key.objectid != device->devid) {
4818 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4819 			btrfs_release_path(path);
4820 			break;
4821 		}
4822 
4823 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4824 		length = btrfs_dev_extent_length(l, dev_extent);
4825 
4826 		if (key.offset + length <= new_size) {
4827 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4828 			btrfs_release_path(path);
4829 			break;
4830 		}
4831 
4832 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4833 		btrfs_release_path(path);
4834 
4835 		/*
4836 		 * We may be relocating the only data chunk we have,
4837 		 * which could potentially end up with losing data's
4838 		 * raid profile, so lets allocate an empty one in
4839 		 * advance.
4840 		 */
4841 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4842 		if (ret < 0) {
4843 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4844 			goto done;
4845 		}
4846 
4847 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4848 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4849 		if (ret == -ENOSPC) {
4850 			failed++;
4851 		} else if (ret) {
4852 			if (ret == -ETXTBSY) {
4853 				btrfs_warn(fs_info,
4854 		   "could not shrink block group %llu due to active swapfile",
4855 					   chunk_offset);
4856 			}
4857 			goto done;
4858 		}
4859 	} while (key.offset-- > 0);
4860 
4861 	if (failed && !retried) {
4862 		failed = 0;
4863 		retried = true;
4864 		goto again;
4865 	} else if (failed && retried) {
4866 		ret = -ENOSPC;
4867 		goto done;
4868 	}
4869 
4870 	/* Shrinking succeeded, else we would be at "done". */
4871 	trans = btrfs_start_transaction(root, 0);
4872 	if (IS_ERR(trans)) {
4873 		ret = PTR_ERR(trans);
4874 		goto done;
4875 	}
4876 
4877 	mutex_lock(&fs_info->chunk_mutex);
4878 	/* Clear all state bits beyond the shrunk device size */
4879 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4880 			  CHUNK_STATE_MASK);
4881 
4882 	btrfs_device_set_disk_total_bytes(device, new_size);
4883 	if (list_empty(&device->post_commit_list))
4884 		list_add_tail(&device->post_commit_list,
4885 			      &trans->transaction->dev_update_list);
4886 
4887 	WARN_ON(diff > old_total);
4888 	btrfs_set_super_total_bytes(super_copy,
4889 			round_down(old_total - diff, fs_info->sectorsize));
4890 	mutex_unlock(&fs_info->chunk_mutex);
4891 
4892 	/* Now btrfs_update_device() will change the on-disk size. */
4893 	ret = btrfs_update_device(trans, device);
4894 	if (ret < 0) {
4895 		btrfs_abort_transaction(trans, ret);
4896 		btrfs_end_transaction(trans);
4897 	} else {
4898 		ret = btrfs_commit_transaction(trans);
4899 	}
4900 done:
4901 	btrfs_free_path(path);
4902 	if (ret) {
4903 		mutex_lock(&fs_info->chunk_mutex);
4904 		btrfs_device_set_total_bytes(device, old_size);
4905 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4906 			device->fs_devices->total_rw_bytes += diff;
4907 		atomic64_add(diff, &fs_info->free_chunk_space);
4908 		mutex_unlock(&fs_info->chunk_mutex);
4909 	}
4910 	return ret;
4911 }
4912 
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4913 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4914 			   struct btrfs_key *key,
4915 			   struct btrfs_chunk *chunk, int item_size)
4916 {
4917 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4918 	struct btrfs_disk_key disk_key;
4919 	u32 array_size;
4920 	u8 *ptr;
4921 
4922 	lockdep_assert_held(&fs_info->chunk_mutex);
4923 
4924 	array_size = btrfs_super_sys_array_size(super_copy);
4925 	if (array_size + item_size + sizeof(disk_key)
4926 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4927 		return -EFBIG;
4928 
4929 	ptr = super_copy->sys_chunk_array + array_size;
4930 	btrfs_cpu_key_to_disk(&disk_key, key);
4931 	memcpy(ptr, &disk_key, sizeof(disk_key));
4932 	ptr += sizeof(disk_key);
4933 	memcpy(ptr, chunk, item_size);
4934 	item_size += sizeof(disk_key);
4935 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4936 
4937 	return 0;
4938 }
4939 
4940 /*
4941  * sort the devices in descending order by max_avail, total_avail
4942  */
btrfs_cmp_device_info(const void * a,const void * b)4943 static int btrfs_cmp_device_info(const void *a, const void *b)
4944 {
4945 	const struct btrfs_device_info *di_a = a;
4946 	const struct btrfs_device_info *di_b = b;
4947 
4948 	if (di_a->max_avail > di_b->max_avail)
4949 		return -1;
4950 	if (di_a->max_avail < di_b->max_avail)
4951 		return 1;
4952 	if (di_a->total_avail > di_b->total_avail)
4953 		return -1;
4954 	if (di_a->total_avail < di_b->total_avail)
4955 		return 1;
4956 	return 0;
4957 }
4958 
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4959 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4960 {
4961 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4962 		return;
4963 
4964 	btrfs_set_fs_incompat(info, RAID56);
4965 }
4966 
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)4967 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4968 {
4969 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4970 		return;
4971 
4972 	btrfs_set_fs_incompat(info, RAID1C34);
4973 }
4974 
4975 /*
4976  * Structure used internally for __btrfs_alloc_chunk() function.
4977  * Wraps needed parameters.
4978  */
4979 struct alloc_chunk_ctl {
4980 	u64 start;
4981 	u64 type;
4982 	/* Total number of stripes to allocate */
4983 	int num_stripes;
4984 	/* sub_stripes info for map */
4985 	int sub_stripes;
4986 	/* Stripes per device */
4987 	int dev_stripes;
4988 	/* Maximum number of devices to use */
4989 	int devs_max;
4990 	/* Minimum number of devices to use */
4991 	int devs_min;
4992 	/* ndevs has to be a multiple of this */
4993 	int devs_increment;
4994 	/* Number of copies */
4995 	int ncopies;
4996 	/* Number of stripes worth of bytes to store parity information */
4997 	int nparity;
4998 	u64 max_stripe_size;
4999 	u64 max_chunk_size;
5000 	u64 dev_extent_min;
5001 	u64 stripe_size;
5002 	u64 chunk_size;
5003 	int ndevs;
5004 };
5005 
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5006 static void init_alloc_chunk_ctl_policy_regular(
5007 				struct btrfs_fs_devices *fs_devices,
5008 				struct alloc_chunk_ctl *ctl)
5009 {
5010 	u64 type = ctl->type;
5011 
5012 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5013 		ctl->max_stripe_size = SZ_1G;
5014 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5015 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5016 		/* For larger filesystems, use larger metadata chunks */
5017 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5018 			ctl->max_stripe_size = SZ_1G;
5019 		else
5020 			ctl->max_stripe_size = SZ_256M;
5021 		ctl->max_chunk_size = ctl->max_stripe_size;
5022 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5023 		ctl->max_stripe_size = SZ_32M;
5024 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5025 		ctl->devs_max = min_t(int, ctl->devs_max,
5026 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5027 	} else {
5028 		BUG();
5029 	}
5030 
5031 	/* We don't want a chunk larger than 10% of writable space */
5032 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5033 				  ctl->max_chunk_size);
5034 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5035 }
5036 
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5037 static void init_alloc_chunk_ctl_policy_zoned(
5038 				      struct btrfs_fs_devices *fs_devices,
5039 				      struct alloc_chunk_ctl *ctl)
5040 {
5041 	u64 zone_size = fs_devices->fs_info->zone_size;
5042 	u64 limit;
5043 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5044 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5045 	u64 min_chunk_size = min_data_stripes * zone_size;
5046 	u64 type = ctl->type;
5047 
5048 	ctl->max_stripe_size = zone_size;
5049 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5050 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5051 						 zone_size);
5052 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5053 		ctl->max_chunk_size = ctl->max_stripe_size;
5054 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5055 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5056 		ctl->devs_max = min_t(int, ctl->devs_max,
5057 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5058 	} else {
5059 		BUG();
5060 	}
5061 
5062 	/* We don't want a chunk larger than 10% of writable space */
5063 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5064 			       zone_size),
5065 		    min_chunk_size);
5066 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5067 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5068 }
5069 
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5070 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5071 				 struct alloc_chunk_ctl *ctl)
5072 {
5073 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5074 
5075 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5076 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5077 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5078 	if (!ctl->devs_max)
5079 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5080 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5081 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5082 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5083 	ctl->nparity = btrfs_raid_array[index].nparity;
5084 	ctl->ndevs = 0;
5085 
5086 	switch (fs_devices->chunk_alloc_policy) {
5087 	case BTRFS_CHUNK_ALLOC_REGULAR:
5088 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5089 		break;
5090 	case BTRFS_CHUNK_ALLOC_ZONED:
5091 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5092 		break;
5093 	default:
5094 		BUG();
5095 	}
5096 }
5097 
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5098 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5099 			      struct alloc_chunk_ctl *ctl,
5100 			      struct btrfs_device_info *devices_info)
5101 {
5102 	struct btrfs_fs_info *info = fs_devices->fs_info;
5103 	struct btrfs_device *device;
5104 	u64 total_avail;
5105 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5106 	int ret;
5107 	int ndevs = 0;
5108 	u64 max_avail;
5109 	u64 dev_offset;
5110 
5111 	/*
5112 	 * in the first pass through the devices list, we gather information
5113 	 * about the available holes on each device.
5114 	 */
5115 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5116 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5117 			WARN(1, KERN_ERR
5118 			       "BTRFS: read-only device in alloc_list\n");
5119 			continue;
5120 		}
5121 
5122 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5123 					&device->dev_state) ||
5124 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5125 			continue;
5126 
5127 		if (device->total_bytes > device->bytes_used)
5128 			total_avail = device->total_bytes - device->bytes_used;
5129 		else
5130 			total_avail = 0;
5131 
5132 		/* If there is no space on this device, skip it. */
5133 		if (total_avail < ctl->dev_extent_min)
5134 			continue;
5135 
5136 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5137 					   &max_avail);
5138 		if (ret && ret != -ENOSPC)
5139 			return ret;
5140 
5141 		if (ret == 0)
5142 			max_avail = dev_extent_want;
5143 
5144 		if (max_avail < ctl->dev_extent_min) {
5145 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5146 				btrfs_debug(info,
5147 			"%s: devid %llu has no free space, have=%llu want=%llu",
5148 					    __func__, device->devid, max_avail,
5149 					    ctl->dev_extent_min);
5150 			continue;
5151 		}
5152 
5153 		if (ndevs == fs_devices->rw_devices) {
5154 			WARN(1, "%s: found more than %llu devices\n",
5155 			     __func__, fs_devices->rw_devices);
5156 			break;
5157 		}
5158 		devices_info[ndevs].dev_offset = dev_offset;
5159 		devices_info[ndevs].max_avail = max_avail;
5160 		devices_info[ndevs].total_avail = total_avail;
5161 		devices_info[ndevs].dev = device;
5162 		++ndevs;
5163 	}
5164 	ctl->ndevs = ndevs;
5165 
5166 	/*
5167 	 * now sort the devices by hole size / available space
5168 	 */
5169 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5170 	     btrfs_cmp_device_info, NULL);
5171 
5172 	return 0;
5173 }
5174 
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5175 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5176 				      struct btrfs_device_info *devices_info)
5177 {
5178 	/* Number of stripes that count for block group size */
5179 	int data_stripes;
5180 
5181 	/*
5182 	 * The primary goal is to maximize the number of stripes, so use as
5183 	 * many devices as possible, even if the stripes are not maximum sized.
5184 	 *
5185 	 * The DUP profile stores more than one stripe per device, the
5186 	 * max_avail is the total size so we have to adjust.
5187 	 */
5188 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5189 				   ctl->dev_stripes);
5190 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5191 
5192 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5193 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5194 
5195 	/*
5196 	 * Use the number of data stripes to figure out how big this chunk is
5197 	 * really going to be in terms of logical address space, and compare
5198 	 * that answer with the max chunk size. If it's higher, we try to
5199 	 * reduce stripe_size.
5200 	 */
5201 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5202 		/*
5203 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5204 		 * then use it, unless it ends up being even bigger than the
5205 		 * previous value we had already.
5206 		 */
5207 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5208 							data_stripes), SZ_16M),
5209 				       ctl->stripe_size);
5210 	}
5211 
5212 	/* Align to BTRFS_STRIPE_LEN */
5213 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5214 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5215 
5216 	return 0;
5217 }
5218 
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5219 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5220 				    struct btrfs_device_info *devices_info)
5221 {
5222 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5223 	/* Number of stripes that count for block group size */
5224 	int data_stripes;
5225 
5226 	/*
5227 	 * It should hold because:
5228 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5229 	 */
5230 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5231 
5232 	ctl->stripe_size = zone_size;
5233 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5234 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5235 
5236 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5237 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5238 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5239 					     ctl->stripe_size) + ctl->nparity,
5240 				     ctl->dev_stripes);
5241 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5242 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5243 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5244 	}
5245 
5246 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5247 
5248 	return 0;
5249 }
5250 
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5251 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5252 			      struct alloc_chunk_ctl *ctl,
5253 			      struct btrfs_device_info *devices_info)
5254 {
5255 	struct btrfs_fs_info *info = fs_devices->fs_info;
5256 
5257 	/*
5258 	 * Round down to number of usable stripes, devs_increment can be any
5259 	 * number so we can't use round_down() that requires power of 2, while
5260 	 * rounddown is safe.
5261 	 */
5262 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5263 
5264 	if (ctl->ndevs < ctl->devs_min) {
5265 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5266 			btrfs_debug(info,
5267 	"%s: not enough devices with free space: have=%d minimum required=%d",
5268 				    __func__, ctl->ndevs, ctl->devs_min);
5269 		}
5270 		return -ENOSPC;
5271 	}
5272 
5273 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5274 
5275 	switch (fs_devices->chunk_alloc_policy) {
5276 	case BTRFS_CHUNK_ALLOC_REGULAR:
5277 		return decide_stripe_size_regular(ctl, devices_info);
5278 	case BTRFS_CHUNK_ALLOC_ZONED:
5279 		return decide_stripe_size_zoned(ctl, devices_info);
5280 	default:
5281 		BUG();
5282 	}
5283 }
5284 
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5285 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5286 			struct alloc_chunk_ctl *ctl,
5287 			struct btrfs_device_info *devices_info)
5288 {
5289 	struct btrfs_fs_info *info = trans->fs_info;
5290 	struct map_lookup *map = NULL;
5291 	struct extent_map_tree *em_tree;
5292 	struct btrfs_block_group *block_group;
5293 	struct extent_map *em;
5294 	u64 start = ctl->start;
5295 	u64 type = ctl->type;
5296 	int ret;
5297 	int i;
5298 	int j;
5299 
5300 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5301 	if (!map)
5302 		return ERR_PTR(-ENOMEM);
5303 	map->num_stripes = ctl->num_stripes;
5304 
5305 	for (i = 0; i < ctl->ndevs; ++i) {
5306 		for (j = 0; j < ctl->dev_stripes; ++j) {
5307 			int s = i * ctl->dev_stripes + j;
5308 			map->stripes[s].dev = devices_info[i].dev;
5309 			map->stripes[s].physical = devices_info[i].dev_offset +
5310 						   j * ctl->stripe_size;
5311 		}
5312 	}
5313 	map->stripe_len = BTRFS_STRIPE_LEN;
5314 	map->io_align = BTRFS_STRIPE_LEN;
5315 	map->io_width = BTRFS_STRIPE_LEN;
5316 	map->type = type;
5317 	map->sub_stripes = ctl->sub_stripes;
5318 
5319 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5320 
5321 	em = alloc_extent_map();
5322 	if (!em) {
5323 		kfree(map);
5324 		return ERR_PTR(-ENOMEM);
5325 	}
5326 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5327 	em->map_lookup = map;
5328 	em->start = start;
5329 	em->len = ctl->chunk_size;
5330 	em->block_start = 0;
5331 	em->block_len = em->len;
5332 	em->orig_block_len = ctl->stripe_size;
5333 
5334 	em_tree = &info->mapping_tree;
5335 	write_lock(&em_tree->lock);
5336 	ret = add_extent_mapping(em_tree, em, 0);
5337 	if (ret) {
5338 		write_unlock(&em_tree->lock);
5339 		free_extent_map(em);
5340 		return ERR_PTR(ret);
5341 	}
5342 	write_unlock(&em_tree->lock);
5343 
5344 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5345 	if (IS_ERR(block_group))
5346 		goto error_del_extent;
5347 
5348 	for (i = 0; i < map->num_stripes; i++) {
5349 		struct btrfs_device *dev = map->stripes[i].dev;
5350 
5351 		btrfs_device_set_bytes_used(dev,
5352 					    dev->bytes_used + ctl->stripe_size);
5353 		if (list_empty(&dev->post_commit_list))
5354 			list_add_tail(&dev->post_commit_list,
5355 				      &trans->transaction->dev_update_list);
5356 	}
5357 
5358 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5359 		     &info->free_chunk_space);
5360 
5361 	free_extent_map(em);
5362 	check_raid56_incompat_flag(info, type);
5363 	check_raid1c34_incompat_flag(info, type);
5364 
5365 	return block_group;
5366 
5367 error_del_extent:
5368 	write_lock(&em_tree->lock);
5369 	remove_extent_mapping(em_tree, em);
5370 	write_unlock(&em_tree->lock);
5371 
5372 	/* One for our allocation */
5373 	free_extent_map(em);
5374 	/* One for the tree reference */
5375 	free_extent_map(em);
5376 
5377 	return block_group;
5378 }
5379 
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)5380 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5381 					    u64 type)
5382 {
5383 	struct btrfs_fs_info *info = trans->fs_info;
5384 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5385 	struct btrfs_device_info *devices_info = NULL;
5386 	struct alloc_chunk_ctl ctl;
5387 	struct btrfs_block_group *block_group;
5388 	int ret;
5389 
5390 	lockdep_assert_held(&info->chunk_mutex);
5391 
5392 	if (!alloc_profile_is_valid(type, 0)) {
5393 		ASSERT(0);
5394 		return ERR_PTR(-EINVAL);
5395 	}
5396 
5397 	if (list_empty(&fs_devices->alloc_list)) {
5398 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5399 			btrfs_debug(info, "%s: no writable device", __func__);
5400 		return ERR_PTR(-ENOSPC);
5401 	}
5402 
5403 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5404 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5405 		ASSERT(0);
5406 		return ERR_PTR(-EINVAL);
5407 	}
5408 
5409 	ctl.start = find_next_chunk(info);
5410 	ctl.type = type;
5411 	init_alloc_chunk_ctl(fs_devices, &ctl);
5412 
5413 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5414 			       GFP_NOFS);
5415 	if (!devices_info)
5416 		return ERR_PTR(-ENOMEM);
5417 
5418 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5419 	if (ret < 0) {
5420 		block_group = ERR_PTR(ret);
5421 		goto out;
5422 	}
5423 
5424 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5425 	if (ret < 0) {
5426 		block_group = ERR_PTR(ret);
5427 		goto out;
5428 	}
5429 
5430 	block_group = create_chunk(trans, &ctl, devices_info);
5431 
5432 out:
5433 	kfree(devices_info);
5434 	return block_group;
5435 }
5436 
5437 /*
5438  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5439  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5440  * chunks.
5441  *
5442  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5443  * phases.
5444  */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5445 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5446 				     struct btrfs_block_group *bg)
5447 {
5448 	struct btrfs_fs_info *fs_info = trans->fs_info;
5449 	struct btrfs_root *extent_root = fs_info->extent_root;
5450 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5451 	struct btrfs_key key;
5452 	struct btrfs_chunk *chunk;
5453 	struct btrfs_stripe *stripe;
5454 	struct extent_map *em;
5455 	struct map_lookup *map;
5456 	size_t item_size;
5457 	int i;
5458 	int ret;
5459 
5460 	/*
5461 	 * We take the chunk_mutex for 2 reasons:
5462 	 *
5463 	 * 1) Updates and insertions in the chunk btree must be done while holding
5464 	 *    the chunk_mutex, as well as updating the system chunk array in the
5465 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5466 	 *    details;
5467 	 *
5468 	 * 2) To prevent races with the final phase of a device replace operation
5469 	 *    that replaces the device object associated with the map's stripes,
5470 	 *    because the device object's id can change at any time during that
5471 	 *    final phase of the device replace operation
5472 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5473 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5474 	 *    which would cause a failure when updating the device item, which does
5475 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5476 	 *    Here we can't use the device_list_mutex because our caller already
5477 	 *    has locked the chunk_mutex, and the final phase of device replace
5478 	 *    acquires both mutexes - first the device_list_mutex and then the
5479 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5480 	 *    concurrent device replace.
5481 	 */
5482 	lockdep_assert_held(&fs_info->chunk_mutex);
5483 
5484 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5485 	if (IS_ERR(em)) {
5486 		ret = PTR_ERR(em);
5487 		btrfs_abort_transaction(trans, ret);
5488 		return ret;
5489 	}
5490 
5491 	map = em->map_lookup;
5492 	item_size = btrfs_chunk_item_size(map->num_stripes);
5493 
5494 	chunk = kzalloc(item_size, GFP_NOFS);
5495 	if (!chunk) {
5496 		ret = -ENOMEM;
5497 		btrfs_abort_transaction(trans, ret);
5498 		goto out;
5499 	}
5500 
5501 	for (i = 0; i < map->num_stripes; i++) {
5502 		struct btrfs_device *device = map->stripes[i].dev;
5503 
5504 		ret = btrfs_update_device(trans, device);
5505 		if (ret)
5506 			goto out;
5507 	}
5508 
5509 	stripe = &chunk->stripe;
5510 	for (i = 0; i < map->num_stripes; i++) {
5511 		struct btrfs_device *device = map->stripes[i].dev;
5512 		const u64 dev_offset = map->stripes[i].physical;
5513 
5514 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5515 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5516 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5517 		stripe++;
5518 	}
5519 
5520 	btrfs_set_stack_chunk_length(chunk, bg->length);
5521 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5522 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5523 	btrfs_set_stack_chunk_type(chunk, map->type);
5524 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5525 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5526 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5527 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5528 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5529 
5530 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5531 	key.type = BTRFS_CHUNK_ITEM_KEY;
5532 	key.offset = bg->start;
5533 
5534 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5535 	if (ret)
5536 		goto out;
5537 
5538 	bg->chunk_item_inserted = 1;
5539 
5540 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5541 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5542 		if (ret)
5543 			goto out;
5544 	}
5545 
5546 out:
5547 	kfree(chunk);
5548 	free_extent_map(em);
5549 	return ret;
5550 }
5551 
init_first_rw_device(struct btrfs_trans_handle * trans)5552 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5553 {
5554 	struct btrfs_fs_info *fs_info = trans->fs_info;
5555 	u64 alloc_profile;
5556 	struct btrfs_block_group *meta_bg;
5557 	struct btrfs_block_group *sys_bg;
5558 
5559 	/*
5560 	 * When adding a new device for sprouting, the seed device is read-only
5561 	 * so we must first allocate a metadata and a system chunk. But before
5562 	 * adding the block group items to the extent, device and chunk btrees,
5563 	 * we must first:
5564 	 *
5565 	 * 1) Create both chunks without doing any changes to the btrees, as
5566 	 *    otherwise we would get -ENOSPC since the block groups from the
5567 	 *    seed device are read-only;
5568 	 *
5569 	 * 2) Add the device item for the new sprout device - finishing the setup
5570 	 *    of a new block group requires updating the device item in the chunk
5571 	 *    btree, so it must exist when we attempt to do it. The previous step
5572 	 *    ensures this does not fail with -ENOSPC.
5573 	 *
5574 	 * After that we can add the block group items to their btrees:
5575 	 * update existing device item in the chunk btree, add a new block group
5576 	 * item to the extent btree, add a new chunk item to the chunk btree and
5577 	 * finally add the new device extent items to the devices btree.
5578 	 */
5579 
5580 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5581 	meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5582 	if (IS_ERR(meta_bg))
5583 		return PTR_ERR(meta_bg);
5584 
5585 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5586 	sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5587 	if (IS_ERR(sys_bg))
5588 		return PTR_ERR(sys_bg);
5589 
5590 	return 0;
5591 }
5592 
btrfs_chunk_max_errors(struct map_lookup * map)5593 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5594 {
5595 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5596 
5597 	return btrfs_raid_array[index].tolerated_failures;
5598 }
5599 
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5600 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5601 {
5602 	struct extent_map *em;
5603 	struct map_lookup *map;
5604 	int readonly = 0;
5605 	int miss_ndevs = 0;
5606 	int i;
5607 
5608 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5609 	if (IS_ERR(em))
5610 		return 1;
5611 
5612 	map = em->map_lookup;
5613 	for (i = 0; i < map->num_stripes; i++) {
5614 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5615 					&map->stripes[i].dev->dev_state)) {
5616 			miss_ndevs++;
5617 			continue;
5618 		}
5619 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5620 					&map->stripes[i].dev->dev_state)) {
5621 			readonly = 1;
5622 			goto end;
5623 		}
5624 	}
5625 
5626 	/*
5627 	 * If the number of missing devices is larger than max errors,
5628 	 * we can not write the data into that chunk successfully, so
5629 	 * set it readonly.
5630 	 */
5631 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5632 		readonly = 1;
5633 end:
5634 	free_extent_map(em);
5635 	return readonly;
5636 }
5637 
btrfs_mapping_tree_free(struct extent_map_tree * tree)5638 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5639 {
5640 	struct extent_map *em;
5641 
5642 	while (1) {
5643 		write_lock(&tree->lock);
5644 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5645 		if (em)
5646 			remove_extent_mapping(tree, em);
5647 		write_unlock(&tree->lock);
5648 		if (!em)
5649 			break;
5650 		/* once for us */
5651 		free_extent_map(em);
5652 		/* once for the tree */
5653 		free_extent_map(em);
5654 	}
5655 }
5656 
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5657 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5658 {
5659 	struct extent_map *em;
5660 	struct map_lookup *map;
5661 	int ret;
5662 
5663 	em = btrfs_get_chunk_map(fs_info, logical, len);
5664 	if (IS_ERR(em))
5665 		/*
5666 		 * We could return errors for these cases, but that could get
5667 		 * ugly and we'd probably do the same thing which is just not do
5668 		 * anything else and exit, so return 1 so the callers don't try
5669 		 * to use other copies.
5670 		 */
5671 		return 1;
5672 
5673 	map = em->map_lookup;
5674 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5675 		ret = map->num_stripes;
5676 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5677 		ret = map->sub_stripes;
5678 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5679 		ret = 2;
5680 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5681 		/*
5682 		 * There could be two corrupted data stripes, we need
5683 		 * to loop retry in order to rebuild the correct data.
5684 		 *
5685 		 * Fail a stripe at a time on every retry except the
5686 		 * stripe under reconstruction.
5687 		 */
5688 		ret = map->num_stripes;
5689 	else
5690 		ret = 1;
5691 	free_extent_map(em);
5692 
5693 	down_read(&fs_info->dev_replace.rwsem);
5694 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5695 	    fs_info->dev_replace.tgtdev)
5696 		ret++;
5697 	up_read(&fs_info->dev_replace.rwsem);
5698 
5699 	return ret;
5700 }
5701 
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5702 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5703 				    u64 logical)
5704 {
5705 	struct extent_map *em;
5706 	struct map_lookup *map;
5707 	unsigned long len = fs_info->sectorsize;
5708 
5709 	em = btrfs_get_chunk_map(fs_info, logical, len);
5710 
5711 	if (!WARN_ON(IS_ERR(em))) {
5712 		map = em->map_lookup;
5713 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5714 			len = map->stripe_len * nr_data_stripes(map);
5715 		free_extent_map(em);
5716 	}
5717 	return len;
5718 }
5719 
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5720 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5721 {
5722 	struct extent_map *em;
5723 	struct map_lookup *map;
5724 	int ret = 0;
5725 
5726 	em = btrfs_get_chunk_map(fs_info, logical, len);
5727 
5728 	if(!WARN_ON(IS_ERR(em))) {
5729 		map = em->map_lookup;
5730 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5731 			ret = 1;
5732 		free_extent_map(em);
5733 	}
5734 	return ret;
5735 }
5736 
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5737 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5738 			    struct map_lookup *map, int first,
5739 			    int dev_replace_is_ongoing)
5740 {
5741 	int i;
5742 	int num_stripes;
5743 	int preferred_mirror;
5744 	int tolerance;
5745 	struct btrfs_device *srcdev;
5746 
5747 	ASSERT((map->type &
5748 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5749 
5750 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5751 		num_stripes = map->sub_stripes;
5752 	else
5753 		num_stripes = map->num_stripes;
5754 
5755 	switch (fs_info->fs_devices->read_policy) {
5756 	default:
5757 		/* Shouldn't happen, just warn and use pid instead of failing */
5758 		btrfs_warn_rl(fs_info,
5759 			      "unknown read_policy type %u, reset to pid",
5760 			      fs_info->fs_devices->read_policy);
5761 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5762 		fallthrough;
5763 	case BTRFS_READ_POLICY_PID:
5764 		preferred_mirror = first + (current->pid % num_stripes);
5765 		break;
5766 	}
5767 
5768 	if (dev_replace_is_ongoing &&
5769 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5770 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5771 		srcdev = fs_info->dev_replace.srcdev;
5772 	else
5773 		srcdev = NULL;
5774 
5775 	/*
5776 	 * try to avoid the drive that is the source drive for a
5777 	 * dev-replace procedure, only choose it if no other non-missing
5778 	 * mirror is available
5779 	 */
5780 	for (tolerance = 0; tolerance < 2; tolerance++) {
5781 		if (map->stripes[preferred_mirror].dev->bdev &&
5782 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5783 			return preferred_mirror;
5784 		for (i = first; i < first + num_stripes; i++) {
5785 			if (map->stripes[i].dev->bdev &&
5786 			    (tolerance || map->stripes[i].dev != srcdev))
5787 				return i;
5788 		}
5789 	}
5790 
5791 	/* we couldn't find one that doesn't fail.  Just return something
5792 	 * and the io error handling code will clean up eventually
5793 	 */
5794 	return preferred_mirror;
5795 }
5796 
5797 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5798 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5799 {
5800 	int i;
5801 	int again = 1;
5802 
5803 	while (again) {
5804 		again = 0;
5805 		for (i = 0; i < num_stripes - 1; i++) {
5806 			/* Swap if parity is on a smaller index */
5807 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5808 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5809 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5810 				again = 1;
5811 			}
5812 		}
5813 	}
5814 }
5815 
alloc_btrfs_bio(int total_stripes,int real_stripes)5816 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5817 {
5818 	struct btrfs_bio *bbio = kzalloc(
5819 		 /* the size of the btrfs_bio */
5820 		sizeof(struct btrfs_bio) +
5821 		/* plus the variable array for the stripes */
5822 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5823 		/* plus the variable array for the tgt dev */
5824 		sizeof(int) * (real_stripes) +
5825 		/*
5826 		 * plus the raid_map, which includes both the tgt dev
5827 		 * and the stripes
5828 		 */
5829 		sizeof(u64) * (total_stripes),
5830 		GFP_NOFS|__GFP_NOFAIL);
5831 
5832 	atomic_set(&bbio->error, 0);
5833 	refcount_set(&bbio->refs, 1);
5834 
5835 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5836 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5837 
5838 	return bbio;
5839 }
5840 
btrfs_get_bbio(struct btrfs_bio * bbio)5841 void btrfs_get_bbio(struct btrfs_bio *bbio)
5842 {
5843 	WARN_ON(!refcount_read(&bbio->refs));
5844 	refcount_inc(&bbio->refs);
5845 }
5846 
btrfs_put_bbio(struct btrfs_bio * bbio)5847 void btrfs_put_bbio(struct btrfs_bio *bbio)
5848 {
5849 	if (!bbio)
5850 		return;
5851 	if (refcount_dec_and_test(&bbio->refs))
5852 		kfree(bbio);
5853 }
5854 
5855 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5856 /*
5857  * Please note that, discard won't be sent to target device of device
5858  * replace.
5859  */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,struct btrfs_bio ** bbio_ret)5860 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5861 					 u64 logical, u64 *length_ret,
5862 					 struct btrfs_bio **bbio_ret)
5863 {
5864 	struct extent_map *em;
5865 	struct map_lookup *map;
5866 	struct btrfs_bio *bbio;
5867 	u64 length = *length_ret;
5868 	u64 offset;
5869 	u64 stripe_nr;
5870 	u64 stripe_nr_end;
5871 	u64 stripe_end_offset;
5872 	u64 stripe_cnt;
5873 	u64 stripe_len;
5874 	u64 stripe_offset;
5875 	u64 num_stripes;
5876 	u32 stripe_index;
5877 	u32 factor = 0;
5878 	u32 sub_stripes = 0;
5879 	u64 stripes_per_dev = 0;
5880 	u32 remaining_stripes = 0;
5881 	u32 last_stripe = 0;
5882 	int ret = 0;
5883 	int i;
5884 
5885 	/* discard always return a bbio */
5886 	ASSERT(bbio_ret);
5887 
5888 	em = btrfs_get_chunk_map(fs_info, logical, length);
5889 	if (IS_ERR(em))
5890 		return PTR_ERR(em);
5891 
5892 	map = em->map_lookup;
5893 	/* we don't discard raid56 yet */
5894 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5895 		ret = -EOPNOTSUPP;
5896 		goto out;
5897 	}
5898 
5899 	offset = logical - em->start;
5900 	length = min_t(u64, em->start + em->len - logical, length);
5901 	*length_ret = length;
5902 
5903 	stripe_len = map->stripe_len;
5904 	/*
5905 	 * stripe_nr counts the total number of stripes we have to stride
5906 	 * to get to this block
5907 	 */
5908 	stripe_nr = div64_u64(offset, stripe_len);
5909 
5910 	/* stripe_offset is the offset of this block in its stripe */
5911 	stripe_offset = offset - stripe_nr * stripe_len;
5912 
5913 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5914 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5915 	stripe_cnt = stripe_nr_end - stripe_nr;
5916 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5917 			    (offset + length);
5918 	/*
5919 	 * after this, stripe_nr is the number of stripes on this
5920 	 * device we have to walk to find the data, and stripe_index is
5921 	 * the number of our device in the stripe array
5922 	 */
5923 	num_stripes = 1;
5924 	stripe_index = 0;
5925 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5926 			 BTRFS_BLOCK_GROUP_RAID10)) {
5927 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5928 			sub_stripes = 1;
5929 		else
5930 			sub_stripes = map->sub_stripes;
5931 
5932 		factor = map->num_stripes / sub_stripes;
5933 		num_stripes = min_t(u64, map->num_stripes,
5934 				    sub_stripes * stripe_cnt);
5935 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5936 		stripe_index *= sub_stripes;
5937 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5938 					      &remaining_stripes);
5939 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5940 		last_stripe *= sub_stripes;
5941 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5942 				BTRFS_BLOCK_GROUP_DUP)) {
5943 		num_stripes = map->num_stripes;
5944 	} else {
5945 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5946 					&stripe_index);
5947 	}
5948 
5949 	bbio = alloc_btrfs_bio(num_stripes, 0);
5950 	if (!bbio) {
5951 		ret = -ENOMEM;
5952 		goto out;
5953 	}
5954 
5955 	for (i = 0; i < num_stripes; i++) {
5956 		bbio->stripes[i].physical =
5957 			map->stripes[stripe_index].physical +
5958 			stripe_offset + stripe_nr * map->stripe_len;
5959 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5960 
5961 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5962 				 BTRFS_BLOCK_GROUP_RAID10)) {
5963 			bbio->stripes[i].length = stripes_per_dev *
5964 				map->stripe_len;
5965 
5966 			if (i / sub_stripes < remaining_stripes)
5967 				bbio->stripes[i].length +=
5968 					map->stripe_len;
5969 
5970 			/*
5971 			 * Special for the first stripe and
5972 			 * the last stripe:
5973 			 *
5974 			 * |-------|...|-------|
5975 			 *     |----------|
5976 			 *    off     end_off
5977 			 */
5978 			if (i < sub_stripes)
5979 				bbio->stripes[i].length -=
5980 					stripe_offset;
5981 
5982 			if (stripe_index >= last_stripe &&
5983 			    stripe_index <= (last_stripe +
5984 					     sub_stripes - 1))
5985 				bbio->stripes[i].length -=
5986 					stripe_end_offset;
5987 
5988 			if (i == sub_stripes - 1)
5989 				stripe_offset = 0;
5990 		} else {
5991 			bbio->stripes[i].length = length;
5992 		}
5993 
5994 		stripe_index++;
5995 		if (stripe_index == map->num_stripes) {
5996 			stripe_index = 0;
5997 			stripe_nr++;
5998 		}
5999 	}
6000 
6001 	*bbio_ret = bbio;
6002 	bbio->map_type = map->type;
6003 	bbio->num_stripes = num_stripes;
6004 out:
6005 	free_extent_map(em);
6006 	return ret;
6007 }
6008 
6009 /*
6010  * In dev-replace case, for repair case (that's the only case where the mirror
6011  * is selected explicitly when calling btrfs_map_block), blocks left of the
6012  * left cursor can also be read from the target drive.
6013  *
6014  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6015  * array of stripes.
6016  * For READ, it also needs to be supported using the same mirror number.
6017  *
6018  * If the requested block is not left of the left cursor, EIO is returned. This
6019  * can happen because btrfs_num_copies() returns one more in the dev-replace
6020  * case.
6021  */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)6022 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6023 					 u64 logical, u64 length,
6024 					 u64 srcdev_devid, int *mirror_num,
6025 					 u64 *physical)
6026 {
6027 	struct btrfs_bio *bbio = NULL;
6028 	int num_stripes;
6029 	int index_srcdev = 0;
6030 	int found = 0;
6031 	u64 physical_of_found = 0;
6032 	int i;
6033 	int ret = 0;
6034 
6035 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6036 				logical, &length, &bbio, 0, 0);
6037 	if (ret) {
6038 		ASSERT(bbio == NULL);
6039 		return ret;
6040 	}
6041 
6042 	num_stripes = bbio->num_stripes;
6043 	if (*mirror_num > num_stripes) {
6044 		/*
6045 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6046 		 * that means that the requested area is not left of the left
6047 		 * cursor
6048 		 */
6049 		btrfs_put_bbio(bbio);
6050 		return -EIO;
6051 	}
6052 
6053 	/*
6054 	 * process the rest of the function using the mirror_num of the source
6055 	 * drive. Therefore look it up first.  At the end, patch the device
6056 	 * pointer to the one of the target drive.
6057 	 */
6058 	for (i = 0; i < num_stripes; i++) {
6059 		if (bbio->stripes[i].dev->devid != srcdev_devid)
6060 			continue;
6061 
6062 		/*
6063 		 * In case of DUP, in order to keep it simple, only add the
6064 		 * mirror with the lowest physical address
6065 		 */
6066 		if (found &&
6067 		    physical_of_found <= bbio->stripes[i].physical)
6068 			continue;
6069 
6070 		index_srcdev = i;
6071 		found = 1;
6072 		physical_of_found = bbio->stripes[i].physical;
6073 	}
6074 
6075 	btrfs_put_bbio(bbio);
6076 
6077 	ASSERT(found);
6078 	if (!found)
6079 		return -EIO;
6080 
6081 	*mirror_num = index_srcdev + 1;
6082 	*physical = physical_of_found;
6083 	return ret;
6084 }
6085 
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6086 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6087 {
6088 	struct btrfs_block_group *cache;
6089 	bool ret;
6090 
6091 	/* Non zoned filesystem does not use "to_copy" flag */
6092 	if (!btrfs_is_zoned(fs_info))
6093 		return false;
6094 
6095 	cache = btrfs_lookup_block_group(fs_info, logical);
6096 
6097 	spin_lock(&cache->lock);
6098 	ret = cache->to_copy;
6099 	spin_unlock(&cache->lock);
6100 
6101 	btrfs_put_block_group(cache);
6102 	return ret;
6103 }
6104 
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,u64 logical,int * num_stripes_ret,int * max_errors_ret)6105 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6106 				      struct btrfs_bio **bbio_ret,
6107 				      struct btrfs_dev_replace *dev_replace,
6108 				      u64 logical,
6109 				      int *num_stripes_ret, int *max_errors_ret)
6110 {
6111 	struct btrfs_bio *bbio = *bbio_ret;
6112 	u64 srcdev_devid = dev_replace->srcdev->devid;
6113 	int tgtdev_indexes = 0;
6114 	int num_stripes = *num_stripes_ret;
6115 	int max_errors = *max_errors_ret;
6116 	int i;
6117 
6118 	if (op == BTRFS_MAP_WRITE) {
6119 		int index_where_to_add;
6120 
6121 		/*
6122 		 * A block group which have "to_copy" set will eventually
6123 		 * copied by dev-replace process. We can avoid cloning IO here.
6124 		 */
6125 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6126 			return;
6127 
6128 		/*
6129 		 * duplicate the write operations while the dev replace
6130 		 * procedure is running. Since the copying of the old disk to
6131 		 * the new disk takes place at run time while the filesystem is
6132 		 * mounted writable, the regular write operations to the old
6133 		 * disk have to be duplicated to go to the new disk as well.
6134 		 *
6135 		 * Note that device->missing is handled by the caller, and that
6136 		 * the write to the old disk is already set up in the stripes
6137 		 * array.
6138 		 */
6139 		index_where_to_add = num_stripes;
6140 		for (i = 0; i < num_stripes; i++) {
6141 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6142 				/* write to new disk, too */
6143 				struct btrfs_bio_stripe *new =
6144 					bbio->stripes + index_where_to_add;
6145 				struct btrfs_bio_stripe *old =
6146 					bbio->stripes + i;
6147 
6148 				new->physical = old->physical;
6149 				new->length = old->length;
6150 				new->dev = dev_replace->tgtdev;
6151 				bbio->tgtdev_map[i] = index_where_to_add;
6152 				index_where_to_add++;
6153 				max_errors++;
6154 				tgtdev_indexes++;
6155 			}
6156 		}
6157 		num_stripes = index_where_to_add;
6158 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6159 		int index_srcdev = 0;
6160 		int found = 0;
6161 		u64 physical_of_found = 0;
6162 
6163 		/*
6164 		 * During the dev-replace procedure, the target drive can also
6165 		 * be used to read data in case it is needed to repair a corrupt
6166 		 * block elsewhere. This is possible if the requested area is
6167 		 * left of the left cursor. In this area, the target drive is a
6168 		 * full copy of the source drive.
6169 		 */
6170 		for (i = 0; i < num_stripes; i++) {
6171 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6172 				/*
6173 				 * In case of DUP, in order to keep it simple,
6174 				 * only add the mirror with the lowest physical
6175 				 * address
6176 				 */
6177 				if (found &&
6178 				    physical_of_found <=
6179 				     bbio->stripes[i].physical)
6180 					continue;
6181 				index_srcdev = i;
6182 				found = 1;
6183 				physical_of_found = bbio->stripes[i].physical;
6184 			}
6185 		}
6186 		if (found) {
6187 			struct btrfs_bio_stripe *tgtdev_stripe =
6188 				bbio->stripes + num_stripes;
6189 
6190 			tgtdev_stripe->physical = physical_of_found;
6191 			tgtdev_stripe->length =
6192 				bbio->stripes[index_srcdev].length;
6193 			tgtdev_stripe->dev = dev_replace->tgtdev;
6194 			bbio->tgtdev_map[index_srcdev] = num_stripes;
6195 
6196 			tgtdev_indexes++;
6197 			num_stripes++;
6198 		}
6199 	}
6200 
6201 	*num_stripes_ret = num_stripes;
6202 	*max_errors_ret = max_errors;
6203 	bbio->num_tgtdevs = tgtdev_indexes;
6204 	*bbio_ret = bbio;
6205 }
6206 
need_full_stripe(enum btrfs_map_op op)6207 static bool need_full_stripe(enum btrfs_map_op op)
6208 {
6209 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6210 }
6211 
6212 /*
6213  * Calculate the geometry of a particular (address, len) tuple. This
6214  * information is used to calculate how big a particular bio can get before it
6215  * straddles a stripe.
6216  *
6217  * @fs_info: the filesystem
6218  * @em:      mapping containing the logical extent
6219  * @op:      type of operation - write or read
6220  * @logical: address that we want to figure out the geometry of
6221  * @io_geom: pointer used to return values
6222  *
6223  * Returns < 0 in case a chunk for the given logical address cannot be found,
6224  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6225  */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,struct extent_map * em,enum btrfs_map_op op,u64 logical,struct btrfs_io_geometry * io_geom)6226 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6227 			  enum btrfs_map_op op, u64 logical,
6228 			  struct btrfs_io_geometry *io_geom)
6229 {
6230 	struct map_lookup *map;
6231 	u64 len;
6232 	u64 offset;
6233 	u64 stripe_offset;
6234 	u64 stripe_nr;
6235 	u64 stripe_len;
6236 	u64 raid56_full_stripe_start = (u64)-1;
6237 	int data_stripes;
6238 
6239 	ASSERT(op != BTRFS_MAP_DISCARD);
6240 
6241 	map = em->map_lookup;
6242 	/* Offset of this logical address in the chunk */
6243 	offset = logical - em->start;
6244 	/* Len of a stripe in a chunk */
6245 	stripe_len = map->stripe_len;
6246 	/* Stripe where this block falls in */
6247 	stripe_nr = div64_u64(offset, stripe_len);
6248 	/* Offset of stripe in the chunk */
6249 	stripe_offset = stripe_nr * stripe_len;
6250 	if (offset < stripe_offset) {
6251 		btrfs_crit(fs_info,
6252 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6253 			stripe_offset, offset, em->start, logical, stripe_len);
6254 		return -EINVAL;
6255 	}
6256 
6257 	/* stripe_offset is the offset of this block in its stripe */
6258 	stripe_offset = offset - stripe_offset;
6259 	data_stripes = nr_data_stripes(map);
6260 
6261 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6262 		u64 max_len = stripe_len - stripe_offset;
6263 
6264 		/*
6265 		 * In case of raid56, we need to know the stripe aligned start
6266 		 */
6267 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6268 			unsigned long full_stripe_len = stripe_len * data_stripes;
6269 			raid56_full_stripe_start = offset;
6270 
6271 			/*
6272 			 * Allow a write of a full stripe, but make sure we
6273 			 * don't allow straddling of stripes
6274 			 */
6275 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6276 					full_stripe_len);
6277 			raid56_full_stripe_start *= full_stripe_len;
6278 
6279 			/*
6280 			 * For writes to RAID[56], allow a full stripeset across
6281 			 * all disks. For other RAID types and for RAID[56]
6282 			 * reads, just allow a single stripe (on a single disk).
6283 			 */
6284 			if (op == BTRFS_MAP_WRITE) {
6285 				max_len = stripe_len * data_stripes -
6286 					  (offset - raid56_full_stripe_start);
6287 			}
6288 		}
6289 		len = min_t(u64, em->len - offset, max_len);
6290 	} else {
6291 		len = em->len - offset;
6292 	}
6293 
6294 	io_geom->len = len;
6295 	io_geom->offset = offset;
6296 	io_geom->stripe_len = stripe_len;
6297 	io_geom->stripe_nr = stripe_nr;
6298 	io_geom->stripe_offset = stripe_offset;
6299 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6300 
6301 	return 0;
6302 }
6303 
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)6304 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6305 			     enum btrfs_map_op op,
6306 			     u64 logical, u64 *length,
6307 			     struct btrfs_bio **bbio_ret,
6308 			     int mirror_num, int need_raid_map)
6309 {
6310 	struct extent_map *em;
6311 	struct map_lookup *map;
6312 	u64 stripe_offset;
6313 	u64 stripe_nr;
6314 	u64 stripe_len;
6315 	u32 stripe_index;
6316 	int data_stripes;
6317 	int i;
6318 	int ret = 0;
6319 	int num_stripes;
6320 	int max_errors = 0;
6321 	int tgtdev_indexes = 0;
6322 	struct btrfs_bio *bbio = NULL;
6323 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6324 	int dev_replace_is_ongoing = 0;
6325 	int num_alloc_stripes;
6326 	int patch_the_first_stripe_for_dev_replace = 0;
6327 	u64 physical_to_patch_in_first_stripe = 0;
6328 	u64 raid56_full_stripe_start = (u64)-1;
6329 	struct btrfs_io_geometry geom;
6330 
6331 	ASSERT(bbio_ret);
6332 	ASSERT(op != BTRFS_MAP_DISCARD);
6333 
6334 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6335 	ASSERT(!IS_ERR(em));
6336 
6337 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6338 	if (ret < 0)
6339 		return ret;
6340 
6341 	map = em->map_lookup;
6342 
6343 	*length = geom.len;
6344 	stripe_len = geom.stripe_len;
6345 	stripe_nr = geom.stripe_nr;
6346 	stripe_offset = geom.stripe_offset;
6347 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6348 	data_stripes = nr_data_stripes(map);
6349 
6350 	down_read(&dev_replace->rwsem);
6351 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6352 	/*
6353 	 * Hold the semaphore for read during the whole operation, write is
6354 	 * requested at commit time but must wait.
6355 	 */
6356 	if (!dev_replace_is_ongoing)
6357 		up_read(&dev_replace->rwsem);
6358 
6359 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6360 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6361 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6362 						    dev_replace->srcdev->devid,
6363 						    &mirror_num,
6364 					    &physical_to_patch_in_first_stripe);
6365 		if (ret)
6366 			goto out;
6367 		else
6368 			patch_the_first_stripe_for_dev_replace = 1;
6369 	} else if (mirror_num > map->num_stripes) {
6370 		mirror_num = 0;
6371 	}
6372 
6373 	num_stripes = 1;
6374 	stripe_index = 0;
6375 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6376 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6377 				&stripe_index);
6378 		if (!need_full_stripe(op))
6379 			mirror_num = 1;
6380 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6381 		if (need_full_stripe(op))
6382 			num_stripes = map->num_stripes;
6383 		else if (mirror_num)
6384 			stripe_index = mirror_num - 1;
6385 		else {
6386 			stripe_index = find_live_mirror(fs_info, map, 0,
6387 					    dev_replace_is_ongoing);
6388 			mirror_num = stripe_index + 1;
6389 		}
6390 
6391 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6392 		if (need_full_stripe(op)) {
6393 			num_stripes = map->num_stripes;
6394 		} else if (mirror_num) {
6395 			stripe_index = mirror_num - 1;
6396 		} else {
6397 			mirror_num = 1;
6398 		}
6399 
6400 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6401 		u32 factor = map->num_stripes / map->sub_stripes;
6402 
6403 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6404 		stripe_index *= map->sub_stripes;
6405 
6406 		if (need_full_stripe(op))
6407 			num_stripes = map->sub_stripes;
6408 		else if (mirror_num)
6409 			stripe_index += mirror_num - 1;
6410 		else {
6411 			int old_stripe_index = stripe_index;
6412 			stripe_index = find_live_mirror(fs_info, map,
6413 					      stripe_index,
6414 					      dev_replace_is_ongoing);
6415 			mirror_num = stripe_index - old_stripe_index + 1;
6416 		}
6417 
6418 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6419 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6420 			/* push stripe_nr back to the start of the full stripe */
6421 			stripe_nr = div64_u64(raid56_full_stripe_start,
6422 					stripe_len * data_stripes);
6423 
6424 			/* RAID[56] write or recovery. Return all stripes */
6425 			num_stripes = map->num_stripes;
6426 			max_errors = nr_parity_stripes(map);
6427 
6428 			*length = map->stripe_len;
6429 			stripe_index = 0;
6430 			stripe_offset = 0;
6431 		} else {
6432 			/*
6433 			 * Mirror #0 or #1 means the original data block.
6434 			 * Mirror #2 is RAID5 parity block.
6435 			 * Mirror #3 is RAID6 Q block.
6436 			 */
6437 			stripe_nr = div_u64_rem(stripe_nr,
6438 					data_stripes, &stripe_index);
6439 			if (mirror_num > 1)
6440 				stripe_index = data_stripes + mirror_num - 2;
6441 
6442 			/* We distribute the parity blocks across stripes */
6443 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6444 					&stripe_index);
6445 			if (!need_full_stripe(op) && mirror_num <= 1)
6446 				mirror_num = 1;
6447 		}
6448 	} else {
6449 		/*
6450 		 * after this, stripe_nr is the number of stripes on this
6451 		 * device we have to walk to find the data, and stripe_index is
6452 		 * the number of our device in the stripe array
6453 		 */
6454 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6455 				&stripe_index);
6456 		mirror_num = stripe_index + 1;
6457 	}
6458 	if (stripe_index >= map->num_stripes) {
6459 		btrfs_crit(fs_info,
6460 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6461 			   stripe_index, map->num_stripes);
6462 		ret = -EINVAL;
6463 		goto out;
6464 	}
6465 
6466 	num_alloc_stripes = num_stripes;
6467 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6468 		if (op == BTRFS_MAP_WRITE)
6469 			num_alloc_stripes <<= 1;
6470 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6471 			num_alloc_stripes++;
6472 		tgtdev_indexes = num_stripes;
6473 	}
6474 
6475 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6476 	if (!bbio) {
6477 		ret = -ENOMEM;
6478 		goto out;
6479 	}
6480 
6481 	for (i = 0; i < num_stripes; i++) {
6482 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6483 			stripe_offset + stripe_nr * map->stripe_len;
6484 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6485 		stripe_index++;
6486 	}
6487 
6488 	/* build raid_map */
6489 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6490 	    (need_full_stripe(op) || mirror_num > 1)) {
6491 		u64 tmp;
6492 		unsigned rot;
6493 
6494 		/* Work out the disk rotation on this stripe-set */
6495 		div_u64_rem(stripe_nr, num_stripes, &rot);
6496 
6497 		/* Fill in the logical address of each stripe */
6498 		tmp = stripe_nr * data_stripes;
6499 		for (i = 0; i < data_stripes; i++)
6500 			bbio->raid_map[(i+rot) % num_stripes] =
6501 				em->start + (tmp + i) * map->stripe_len;
6502 
6503 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6504 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6505 			bbio->raid_map[(i+rot+1) % num_stripes] =
6506 				RAID6_Q_STRIPE;
6507 
6508 		sort_parity_stripes(bbio, num_stripes);
6509 	}
6510 
6511 	if (need_full_stripe(op))
6512 		max_errors = btrfs_chunk_max_errors(map);
6513 
6514 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6515 	    need_full_stripe(op)) {
6516 		handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6517 					  &num_stripes, &max_errors);
6518 	}
6519 
6520 	*bbio_ret = bbio;
6521 	bbio->map_type = map->type;
6522 	bbio->num_stripes = num_stripes;
6523 	bbio->max_errors = max_errors;
6524 	bbio->mirror_num = mirror_num;
6525 
6526 	/*
6527 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6528 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6529 	 * available as a mirror
6530 	 */
6531 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6532 		WARN_ON(num_stripes > 1);
6533 		bbio->stripes[0].dev = dev_replace->tgtdev;
6534 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6535 		bbio->mirror_num = map->num_stripes + 1;
6536 	}
6537 out:
6538 	if (dev_replace_is_ongoing) {
6539 		lockdep_assert_held(&dev_replace->rwsem);
6540 		/* Unlock and let waiting writers proceed */
6541 		up_read(&dev_replace->rwsem);
6542 	}
6543 	free_extent_map(em);
6544 	return ret;
6545 }
6546 
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)6547 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6548 		      u64 logical, u64 *length,
6549 		      struct btrfs_bio **bbio_ret, int mirror_num)
6550 {
6551 	if (op == BTRFS_MAP_DISCARD)
6552 		return __btrfs_map_block_for_discard(fs_info, logical,
6553 						     length, bbio_ret);
6554 
6555 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6556 				 mirror_num, 0);
6557 }
6558 
6559 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)6560 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6561 		     u64 logical, u64 *length,
6562 		     struct btrfs_bio **bbio_ret)
6563 {
6564 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6565 }
6566 
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6567 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6568 {
6569 	bio->bi_private = bbio->private;
6570 	bio->bi_end_io = bbio->end_io;
6571 	bio_endio(bio);
6572 
6573 	btrfs_put_bbio(bbio);
6574 }
6575 
btrfs_end_bio(struct bio * bio)6576 static void btrfs_end_bio(struct bio *bio)
6577 {
6578 	struct btrfs_bio *bbio = bio->bi_private;
6579 	int is_orig_bio = 0;
6580 
6581 	if (bio->bi_status) {
6582 		atomic_inc(&bbio->error);
6583 		if (bio->bi_status == BLK_STS_IOERR ||
6584 		    bio->bi_status == BLK_STS_TARGET) {
6585 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6586 
6587 			ASSERT(dev->bdev);
6588 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6589 				btrfs_dev_stat_inc_and_print(dev,
6590 						BTRFS_DEV_STAT_WRITE_ERRS);
6591 			else if (!(bio->bi_opf & REQ_RAHEAD))
6592 				btrfs_dev_stat_inc_and_print(dev,
6593 						BTRFS_DEV_STAT_READ_ERRS);
6594 			if (bio->bi_opf & REQ_PREFLUSH)
6595 				btrfs_dev_stat_inc_and_print(dev,
6596 						BTRFS_DEV_STAT_FLUSH_ERRS);
6597 		}
6598 	}
6599 
6600 	if (bio == bbio->orig_bio)
6601 		is_orig_bio = 1;
6602 
6603 	btrfs_bio_counter_dec(bbio->fs_info);
6604 
6605 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6606 		if (!is_orig_bio) {
6607 			bio_put(bio);
6608 			bio = bbio->orig_bio;
6609 		}
6610 
6611 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6612 		/* only send an error to the higher layers if it is
6613 		 * beyond the tolerance of the btrfs bio
6614 		 */
6615 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6616 			bio->bi_status = BLK_STS_IOERR;
6617 		} else {
6618 			/*
6619 			 * this bio is actually up to date, we didn't
6620 			 * go over the max number of errors
6621 			 */
6622 			bio->bi_status = BLK_STS_OK;
6623 		}
6624 
6625 		btrfs_end_bbio(bbio, bio);
6626 	} else if (!is_orig_bio) {
6627 		bio_put(bio);
6628 	}
6629 }
6630 
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,struct btrfs_device * dev)6631 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6632 			      u64 physical, struct btrfs_device *dev)
6633 {
6634 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6635 
6636 	bio->bi_private = bbio;
6637 	btrfs_io_bio(bio)->device = dev;
6638 	bio->bi_end_io = btrfs_end_bio;
6639 	bio->bi_iter.bi_sector = physical >> 9;
6640 	/*
6641 	 * For zone append writing, bi_sector must point the beginning of the
6642 	 * zone
6643 	 */
6644 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6645 		if (btrfs_dev_is_sequential(dev, physical)) {
6646 			u64 zone_start = round_down(physical, fs_info->zone_size);
6647 
6648 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6649 		} else {
6650 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6651 			bio->bi_opf |= REQ_OP_WRITE;
6652 		}
6653 	}
6654 	btrfs_debug_in_rcu(fs_info,
6655 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6656 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6657 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6658 		dev->devid, bio->bi_iter.bi_size);
6659 	bio_set_dev(bio, dev->bdev);
6660 
6661 	btrfs_bio_counter_inc_noblocked(fs_info);
6662 
6663 	btrfsic_submit_bio(bio);
6664 }
6665 
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6666 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6667 {
6668 	atomic_inc(&bbio->error);
6669 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6670 		/* Should be the original bio. */
6671 		WARN_ON(bio != bbio->orig_bio);
6672 
6673 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6674 		bio->bi_iter.bi_sector = logical >> 9;
6675 		if (atomic_read(&bbio->error) > bbio->max_errors)
6676 			bio->bi_status = BLK_STS_IOERR;
6677 		else
6678 			bio->bi_status = BLK_STS_OK;
6679 		btrfs_end_bbio(bbio, bio);
6680 	}
6681 }
6682 
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num)6683 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6684 			   int mirror_num)
6685 {
6686 	struct btrfs_device *dev;
6687 	struct bio *first_bio = bio;
6688 	u64 logical = bio->bi_iter.bi_sector << 9;
6689 	u64 length = 0;
6690 	u64 map_length;
6691 	int ret;
6692 	int dev_nr;
6693 	int total_devs;
6694 	struct btrfs_bio *bbio = NULL;
6695 
6696 	length = bio->bi_iter.bi_size;
6697 	map_length = length;
6698 
6699 	btrfs_bio_counter_inc_blocked(fs_info);
6700 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6701 				&map_length, &bbio, mirror_num, 1);
6702 	if (ret) {
6703 		btrfs_bio_counter_dec(fs_info);
6704 		return errno_to_blk_status(ret);
6705 	}
6706 
6707 	total_devs = bbio->num_stripes;
6708 	bbio->orig_bio = first_bio;
6709 	bbio->private = first_bio->bi_private;
6710 	bbio->end_io = first_bio->bi_end_io;
6711 	bbio->fs_info = fs_info;
6712 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6713 
6714 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6715 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6716 		/* In this case, map_length has been set to the length of
6717 		   a single stripe; not the whole write */
6718 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6719 			ret = raid56_parity_write(fs_info, bio, bbio,
6720 						  map_length);
6721 		} else {
6722 			ret = raid56_parity_recover(fs_info, bio, bbio,
6723 						    map_length, mirror_num, 1);
6724 		}
6725 
6726 		btrfs_bio_counter_dec(fs_info);
6727 		return errno_to_blk_status(ret);
6728 	}
6729 
6730 	if (map_length < length) {
6731 		btrfs_crit(fs_info,
6732 			   "mapping failed logical %llu bio len %llu len %llu",
6733 			   logical, length, map_length);
6734 		BUG();
6735 	}
6736 
6737 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6738 		dev = bbio->stripes[dev_nr].dev;
6739 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6740 						   &dev->dev_state) ||
6741 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6742 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6743 			bbio_error(bbio, first_bio, logical);
6744 			continue;
6745 		}
6746 
6747 		if (dev_nr < total_devs - 1)
6748 			bio = btrfs_bio_clone(first_bio);
6749 		else
6750 			bio = first_bio;
6751 
6752 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6753 	}
6754 	btrfs_bio_counter_dec(fs_info);
6755 	return BLK_STS_OK;
6756 }
6757 
6758 /*
6759  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6760  * return NULL.
6761  *
6762  * If devid and uuid are both specified, the match must be exact, otherwise
6763  * only devid is used.
6764  */
btrfs_find_device(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * uuid,u8 * fsid)6765 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6766 				       u64 devid, u8 *uuid, u8 *fsid)
6767 {
6768 	struct btrfs_device *device;
6769 	struct btrfs_fs_devices *seed_devs;
6770 
6771 	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6772 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6773 			if (device->devid == devid &&
6774 			    (!uuid || memcmp(device->uuid, uuid,
6775 					     BTRFS_UUID_SIZE) == 0))
6776 				return device;
6777 		}
6778 	}
6779 
6780 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6781 		if (!fsid ||
6782 		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6783 			list_for_each_entry(device, &seed_devs->devices,
6784 					    dev_list) {
6785 				if (device->devid == devid &&
6786 				    (!uuid || memcmp(device->uuid, uuid,
6787 						     BTRFS_UUID_SIZE) == 0))
6788 					return device;
6789 			}
6790 		}
6791 	}
6792 
6793 	return NULL;
6794 }
6795 
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6796 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6797 					    u64 devid, u8 *dev_uuid)
6798 {
6799 	struct btrfs_device *device;
6800 	unsigned int nofs_flag;
6801 
6802 	/*
6803 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6804 	 * allocation, however we don't want to change btrfs_alloc_device() to
6805 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6806 	 * places.
6807 	 */
6808 	nofs_flag = memalloc_nofs_save();
6809 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6810 	memalloc_nofs_restore(nofs_flag);
6811 	if (IS_ERR(device))
6812 		return device;
6813 
6814 	list_add(&device->dev_list, &fs_devices->devices);
6815 	device->fs_devices = fs_devices;
6816 	fs_devices->num_devices++;
6817 
6818 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6819 	fs_devices->missing_devices++;
6820 
6821 	return device;
6822 }
6823 
6824 /**
6825  * btrfs_alloc_device - allocate struct btrfs_device
6826  * @fs_info:	used only for generating a new devid, can be NULL if
6827  *		devid is provided (i.e. @devid != NULL).
6828  * @devid:	a pointer to devid for this device.  If NULL a new devid
6829  *		is generated.
6830  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6831  *		is generated.
6832  *
6833  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6834  * on error.  Returned struct is not linked onto any lists and must be
6835  * destroyed with btrfs_free_device.
6836  */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6837 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6838 					const u64 *devid,
6839 					const u8 *uuid)
6840 {
6841 	struct btrfs_device *dev;
6842 	u64 tmp;
6843 
6844 	if (WARN_ON(!devid && !fs_info))
6845 		return ERR_PTR(-EINVAL);
6846 
6847 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6848 	if (!dev)
6849 		return ERR_PTR(-ENOMEM);
6850 
6851 	/*
6852 	 * Preallocate a bio that's always going to be used for flushing device
6853 	 * barriers and matches the device lifespan
6854 	 */
6855 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6856 	if (!dev->flush_bio) {
6857 		kfree(dev);
6858 		return ERR_PTR(-ENOMEM);
6859 	}
6860 
6861 	INIT_LIST_HEAD(&dev->dev_list);
6862 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6863 	INIT_LIST_HEAD(&dev->post_commit_list);
6864 
6865 	atomic_set(&dev->reada_in_flight, 0);
6866 	atomic_set(&dev->dev_stats_ccnt, 0);
6867 	btrfs_device_data_ordered_init(dev);
6868 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6869 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6870 	extent_io_tree_init(fs_info, &dev->alloc_state,
6871 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6872 
6873 	if (devid)
6874 		tmp = *devid;
6875 	else {
6876 		int ret;
6877 
6878 		ret = find_next_devid(fs_info, &tmp);
6879 		if (ret) {
6880 			btrfs_free_device(dev);
6881 			return ERR_PTR(ret);
6882 		}
6883 	}
6884 	dev->devid = tmp;
6885 
6886 	if (uuid)
6887 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6888 	else
6889 		generate_random_uuid(dev->uuid);
6890 
6891 	return dev;
6892 }
6893 
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6894 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6895 					u64 devid, u8 *uuid, bool error)
6896 {
6897 	if (error)
6898 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6899 			      devid, uuid);
6900 	else
6901 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6902 			      devid, uuid);
6903 }
6904 
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)6905 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6906 {
6907 	const int data_stripes = calc_data_stripes(type, num_stripes);
6908 
6909 	return div_u64(chunk_len, data_stripes);
6910 }
6911 
6912 #if BITS_PER_LONG == 32
6913 /*
6914  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6915  * can't be accessed on 32bit systems.
6916  *
6917  * This function do mount time check to reject the fs if it already has
6918  * metadata chunk beyond that limit.
6919  */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6920 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6921 				  u64 logical, u64 length, u64 type)
6922 {
6923 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6924 		return 0;
6925 
6926 	if (logical + length < MAX_LFS_FILESIZE)
6927 		return 0;
6928 
6929 	btrfs_err_32bit_limit(fs_info);
6930 	return -EOVERFLOW;
6931 }
6932 
6933 /*
6934  * This is to give early warning for any metadata chunk reaching
6935  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6936  * Although we can still access the metadata, it's not going to be possible
6937  * once the limit is reached.
6938  */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6939 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6940 				  u64 logical, u64 length, u64 type)
6941 {
6942 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6943 		return;
6944 
6945 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6946 		return;
6947 
6948 	btrfs_warn_32bit_limit(fs_info);
6949 }
6950 #endif
6951 
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6952 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6953 			  struct btrfs_chunk *chunk)
6954 {
6955 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6956 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6957 	struct map_lookup *map;
6958 	struct extent_map *em;
6959 	u64 logical;
6960 	u64 length;
6961 	u64 devid;
6962 	u64 type;
6963 	u8 uuid[BTRFS_UUID_SIZE];
6964 	int num_stripes;
6965 	int ret;
6966 	int i;
6967 
6968 	logical = key->offset;
6969 	length = btrfs_chunk_length(leaf, chunk);
6970 	type = btrfs_chunk_type(leaf, chunk);
6971 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6972 
6973 #if BITS_PER_LONG == 32
6974 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6975 	if (ret < 0)
6976 		return ret;
6977 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6978 #endif
6979 
6980 	/*
6981 	 * Only need to verify chunk item if we're reading from sys chunk array,
6982 	 * as chunk item in tree block is already verified by tree-checker.
6983 	 */
6984 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6985 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6986 		if (ret)
6987 			return ret;
6988 	}
6989 
6990 	read_lock(&map_tree->lock);
6991 	em = lookup_extent_mapping(map_tree, logical, 1);
6992 	read_unlock(&map_tree->lock);
6993 
6994 	/* already mapped? */
6995 	if (em && em->start <= logical && em->start + em->len > logical) {
6996 		free_extent_map(em);
6997 		return 0;
6998 	} else if (em) {
6999 		free_extent_map(em);
7000 	}
7001 
7002 	em = alloc_extent_map();
7003 	if (!em)
7004 		return -ENOMEM;
7005 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7006 	if (!map) {
7007 		free_extent_map(em);
7008 		return -ENOMEM;
7009 	}
7010 
7011 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7012 	em->map_lookup = map;
7013 	em->start = logical;
7014 	em->len = length;
7015 	em->orig_start = 0;
7016 	em->block_start = 0;
7017 	em->block_len = em->len;
7018 
7019 	map->num_stripes = num_stripes;
7020 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7021 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7022 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7023 	map->type = type;
7024 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7025 	map->verified_stripes = 0;
7026 	em->orig_block_len = calc_stripe_length(type, em->len,
7027 						map->num_stripes);
7028 	for (i = 0; i < num_stripes; i++) {
7029 		map->stripes[i].physical =
7030 			btrfs_stripe_offset_nr(leaf, chunk, i);
7031 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7032 		read_extent_buffer(leaf, uuid, (unsigned long)
7033 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7034 				   BTRFS_UUID_SIZE);
7035 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7036 							devid, uuid, NULL);
7037 		if (!map->stripes[i].dev &&
7038 		    !btrfs_test_opt(fs_info, DEGRADED)) {
7039 			free_extent_map(em);
7040 			btrfs_report_missing_device(fs_info, devid, uuid, true);
7041 			return -ENOENT;
7042 		}
7043 		if (!map->stripes[i].dev) {
7044 			map->stripes[i].dev =
7045 				add_missing_dev(fs_info->fs_devices, devid,
7046 						uuid);
7047 			if (IS_ERR(map->stripes[i].dev)) {
7048 				free_extent_map(em);
7049 				btrfs_err(fs_info,
7050 					"failed to init missing dev %llu: %ld",
7051 					devid, PTR_ERR(map->stripes[i].dev));
7052 				return PTR_ERR(map->stripes[i].dev);
7053 			}
7054 			btrfs_report_missing_device(fs_info, devid, uuid, false);
7055 		}
7056 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7057 				&(map->stripes[i].dev->dev_state));
7058 
7059 	}
7060 
7061 	write_lock(&map_tree->lock);
7062 	ret = add_extent_mapping(map_tree, em, 0);
7063 	write_unlock(&map_tree->lock);
7064 	if (ret < 0) {
7065 		btrfs_err(fs_info,
7066 			  "failed to add chunk map, start=%llu len=%llu: %d",
7067 			  em->start, em->len, ret);
7068 	}
7069 	free_extent_map(em);
7070 
7071 	return ret;
7072 }
7073 
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7074 static void fill_device_from_item(struct extent_buffer *leaf,
7075 				 struct btrfs_dev_item *dev_item,
7076 				 struct btrfs_device *device)
7077 {
7078 	unsigned long ptr;
7079 
7080 	device->devid = btrfs_device_id(leaf, dev_item);
7081 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7082 	device->total_bytes = device->disk_total_bytes;
7083 	device->commit_total_bytes = device->disk_total_bytes;
7084 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7085 	device->commit_bytes_used = device->bytes_used;
7086 	device->type = btrfs_device_type(leaf, dev_item);
7087 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7088 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7089 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7090 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7091 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7092 
7093 	ptr = btrfs_device_uuid(dev_item);
7094 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7095 }
7096 
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7097 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7098 						  u8 *fsid)
7099 {
7100 	struct btrfs_fs_devices *fs_devices;
7101 	int ret;
7102 
7103 	lockdep_assert_held(&uuid_mutex);
7104 	ASSERT(fsid);
7105 
7106 	/* This will match only for multi-device seed fs */
7107 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7108 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7109 			return fs_devices;
7110 
7111 
7112 	fs_devices = find_fsid(fsid, NULL);
7113 	if (!fs_devices) {
7114 		if (!btrfs_test_opt(fs_info, DEGRADED))
7115 			return ERR_PTR(-ENOENT);
7116 
7117 		fs_devices = alloc_fs_devices(fsid, NULL);
7118 		if (IS_ERR(fs_devices))
7119 			return fs_devices;
7120 
7121 		fs_devices->seeding = true;
7122 		fs_devices->opened = 1;
7123 		return fs_devices;
7124 	}
7125 
7126 	/*
7127 	 * Upon first call for a seed fs fsid, just create a private copy of the
7128 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7129 	 */
7130 	fs_devices = clone_fs_devices(fs_devices);
7131 	if (IS_ERR(fs_devices))
7132 		return fs_devices;
7133 
7134 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7135 	if (ret) {
7136 		free_fs_devices(fs_devices);
7137 		return ERR_PTR(ret);
7138 	}
7139 
7140 	if (!fs_devices->seeding) {
7141 		close_fs_devices(fs_devices);
7142 		free_fs_devices(fs_devices);
7143 		return ERR_PTR(-EINVAL);
7144 	}
7145 
7146 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7147 
7148 	return fs_devices;
7149 }
7150 
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7151 static int read_one_dev(struct extent_buffer *leaf,
7152 			struct btrfs_dev_item *dev_item)
7153 {
7154 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7155 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7156 	struct btrfs_device *device;
7157 	u64 devid;
7158 	int ret;
7159 	u8 fs_uuid[BTRFS_FSID_SIZE];
7160 	u8 dev_uuid[BTRFS_UUID_SIZE];
7161 
7162 	devid = btrfs_device_id(leaf, dev_item);
7163 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7164 			   BTRFS_UUID_SIZE);
7165 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7166 			   BTRFS_FSID_SIZE);
7167 
7168 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7169 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7170 		if (IS_ERR(fs_devices))
7171 			return PTR_ERR(fs_devices);
7172 	}
7173 
7174 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7175 				   fs_uuid);
7176 	if (!device) {
7177 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7178 			btrfs_report_missing_device(fs_info, devid,
7179 							dev_uuid, true);
7180 			return -ENOENT;
7181 		}
7182 
7183 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7184 		if (IS_ERR(device)) {
7185 			btrfs_err(fs_info,
7186 				"failed to add missing dev %llu: %ld",
7187 				devid, PTR_ERR(device));
7188 			return PTR_ERR(device);
7189 		}
7190 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7191 	} else {
7192 		if (!device->bdev) {
7193 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7194 				btrfs_report_missing_device(fs_info,
7195 						devid, dev_uuid, true);
7196 				return -ENOENT;
7197 			}
7198 			btrfs_report_missing_device(fs_info, devid,
7199 							dev_uuid, false);
7200 		}
7201 
7202 		if (!device->bdev &&
7203 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7204 			/*
7205 			 * this happens when a device that was properly setup
7206 			 * in the device info lists suddenly goes bad.
7207 			 * device->bdev is NULL, and so we have to set
7208 			 * device->missing to one here
7209 			 */
7210 			device->fs_devices->missing_devices++;
7211 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7212 		}
7213 
7214 		/* Move the device to its own fs_devices */
7215 		if (device->fs_devices != fs_devices) {
7216 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7217 							&device->dev_state));
7218 
7219 			list_move(&device->dev_list, &fs_devices->devices);
7220 			device->fs_devices->num_devices--;
7221 			fs_devices->num_devices++;
7222 
7223 			device->fs_devices->missing_devices--;
7224 			fs_devices->missing_devices++;
7225 
7226 			device->fs_devices = fs_devices;
7227 		}
7228 	}
7229 
7230 	if (device->fs_devices != fs_info->fs_devices) {
7231 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7232 		if (device->generation !=
7233 		    btrfs_device_generation(leaf, dev_item))
7234 			return -EINVAL;
7235 	}
7236 
7237 	fill_device_from_item(leaf, dev_item, device);
7238 	if (device->bdev) {
7239 		u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7240 
7241 		if (device->total_bytes > max_total_bytes) {
7242 			btrfs_err(fs_info,
7243 			"device total_bytes should be at most %llu but found %llu",
7244 				  max_total_bytes, device->total_bytes);
7245 			return -EINVAL;
7246 		}
7247 	}
7248 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7249 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7250 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7251 		device->fs_devices->total_rw_bytes += device->total_bytes;
7252 		atomic64_add(device->total_bytes - device->bytes_used,
7253 				&fs_info->free_chunk_space);
7254 	}
7255 	ret = 0;
7256 	return ret;
7257 }
7258 
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7259 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7260 {
7261 	struct btrfs_root *root = fs_info->tree_root;
7262 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7263 	struct extent_buffer *sb;
7264 	struct btrfs_disk_key *disk_key;
7265 	struct btrfs_chunk *chunk;
7266 	u8 *array_ptr;
7267 	unsigned long sb_array_offset;
7268 	int ret = 0;
7269 	u32 num_stripes;
7270 	u32 array_size;
7271 	u32 len = 0;
7272 	u32 cur_offset;
7273 	u64 type;
7274 	struct btrfs_key key;
7275 
7276 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7277 	/*
7278 	 * This will create extent buffer of nodesize, superblock size is
7279 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7280 	 * overallocate but we can keep it as-is, only the first page is used.
7281 	 */
7282 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7283 					  root->root_key.objectid, 0);
7284 	if (IS_ERR(sb))
7285 		return PTR_ERR(sb);
7286 	set_extent_buffer_uptodate(sb);
7287 	/*
7288 	 * The sb extent buffer is artificial and just used to read the system array.
7289 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7290 	 * pages up-to-date when the page is larger: extent does not cover the
7291 	 * whole page and consequently check_page_uptodate does not find all
7292 	 * the page's extents up-to-date (the hole beyond sb),
7293 	 * write_extent_buffer then triggers a WARN_ON.
7294 	 *
7295 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7296 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7297 	 * to silence the warning eg. on PowerPC 64.
7298 	 */
7299 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7300 		SetPageUptodate(sb->pages[0]);
7301 
7302 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7303 	array_size = btrfs_super_sys_array_size(super_copy);
7304 
7305 	array_ptr = super_copy->sys_chunk_array;
7306 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7307 	cur_offset = 0;
7308 
7309 	while (cur_offset < array_size) {
7310 		disk_key = (struct btrfs_disk_key *)array_ptr;
7311 		len = sizeof(*disk_key);
7312 		if (cur_offset + len > array_size)
7313 			goto out_short_read;
7314 
7315 		btrfs_disk_key_to_cpu(&key, disk_key);
7316 
7317 		array_ptr += len;
7318 		sb_array_offset += len;
7319 		cur_offset += len;
7320 
7321 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7322 			btrfs_err(fs_info,
7323 			    "unexpected item type %u in sys_array at offset %u",
7324 				  (u32)key.type, cur_offset);
7325 			ret = -EIO;
7326 			break;
7327 		}
7328 
7329 		chunk = (struct btrfs_chunk *)sb_array_offset;
7330 		/*
7331 		 * At least one btrfs_chunk with one stripe must be present,
7332 		 * exact stripe count check comes afterwards
7333 		 */
7334 		len = btrfs_chunk_item_size(1);
7335 		if (cur_offset + len > array_size)
7336 			goto out_short_read;
7337 
7338 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7339 		if (!num_stripes) {
7340 			btrfs_err(fs_info,
7341 			"invalid number of stripes %u in sys_array at offset %u",
7342 				  num_stripes, cur_offset);
7343 			ret = -EIO;
7344 			break;
7345 		}
7346 
7347 		type = btrfs_chunk_type(sb, chunk);
7348 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7349 			btrfs_err(fs_info,
7350 			"invalid chunk type %llu in sys_array at offset %u",
7351 				  type, cur_offset);
7352 			ret = -EIO;
7353 			break;
7354 		}
7355 
7356 		len = btrfs_chunk_item_size(num_stripes);
7357 		if (cur_offset + len > array_size)
7358 			goto out_short_read;
7359 
7360 		ret = read_one_chunk(&key, sb, chunk);
7361 		if (ret)
7362 			break;
7363 
7364 		array_ptr += len;
7365 		sb_array_offset += len;
7366 		cur_offset += len;
7367 	}
7368 	clear_extent_buffer_uptodate(sb);
7369 	free_extent_buffer_stale(sb);
7370 	return ret;
7371 
7372 out_short_read:
7373 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7374 			len, cur_offset);
7375 	clear_extent_buffer_uptodate(sb);
7376 	free_extent_buffer_stale(sb);
7377 	return -EIO;
7378 }
7379 
7380 /*
7381  * Check if all chunks in the fs are OK for read-write degraded mount
7382  *
7383  * If the @failing_dev is specified, it's accounted as missing.
7384  *
7385  * Return true if all chunks meet the minimal RW mount requirements.
7386  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7387  */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7388 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7389 					struct btrfs_device *failing_dev)
7390 {
7391 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7392 	struct extent_map *em;
7393 	u64 next_start = 0;
7394 	bool ret = true;
7395 
7396 	read_lock(&map_tree->lock);
7397 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7398 	read_unlock(&map_tree->lock);
7399 	/* No chunk at all? Return false anyway */
7400 	if (!em) {
7401 		ret = false;
7402 		goto out;
7403 	}
7404 	while (em) {
7405 		struct map_lookup *map;
7406 		int missing = 0;
7407 		int max_tolerated;
7408 		int i;
7409 
7410 		map = em->map_lookup;
7411 		max_tolerated =
7412 			btrfs_get_num_tolerated_disk_barrier_failures(
7413 					map->type);
7414 		for (i = 0; i < map->num_stripes; i++) {
7415 			struct btrfs_device *dev = map->stripes[i].dev;
7416 
7417 			if (!dev || !dev->bdev ||
7418 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7419 			    dev->last_flush_error)
7420 				missing++;
7421 			else if (failing_dev && failing_dev == dev)
7422 				missing++;
7423 		}
7424 		if (missing > max_tolerated) {
7425 			if (!failing_dev)
7426 				btrfs_warn(fs_info,
7427 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7428 				   em->start, missing, max_tolerated);
7429 			free_extent_map(em);
7430 			ret = false;
7431 			goto out;
7432 		}
7433 		next_start = extent_map_end(em);
7434 		free_extent_map(em);
7435 
7436 		read_lock(&map_tree->lock);
7437 		em = lookup_extent_mapping(map_tree, next_start,
7438 					   (u64)(-1) - next_start);
7439 		read_unlock(&map_tree->lock);
7440 	}
7441 out:
7442 	return ret;
7443 }
7444 
readahead_tree_node_children(struct extent_buffer * node)7445 static void readahead_tree_node_children(struct extent_buffer *node)
7446 {
7447 	int i;
7448 	const int nr_items = btrfs_header_nritems(node);
7449 
7450 	for (i = 0; i < nr_items; i++)
7451 		btrfs_readahead_node_child(node, i);
7452 }
7453 
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7454 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7455 {
7456 	struct btrfs_root *root = fs_info->chunk_root;
7457 	struct btrfs_path *path;
7458 	struct extent_buffer *leaf;
7459 	struct btrfs_key key;
7460 	struct btrfs_key found_key;
7461 	int ret;
7462 	int slot;
7463 	u64 total_dev = 0;
7464 	u64 last_ra_node = 0;
7465 
7466 	path = btrfs_alloc_path();
7467 	if (!path)
7468 		return -ENOMEM;
7469 
7470 	/*
7471 	 * uuid_mutex is needed only if we are mounting a sprout FS
7472 	 * otherwise we don't need it.
7473 	 */
7474 	mutex_lock(&uuid_mutex);
7475 
7476 	/*
7477 	 * It is possible for mount and umount to race in such a way that
7478 	 * we execute this code path, but open_fs_devices failed to clear
7479 	 * total_rw_bytes. We certainly want it cleared before reading the
7480 	 * device items, so clear it here.
7481 	 */
7482 	fs_info->fs_devices->total_rw_bytes = 0;
7483 
7484 	/*
7485 	 * Read all device items, and then all the chunk items. All
7486 	 * device items are found before any chunk item (their object id
7487 	 * is smaller than the lowest possible object id for a chunk
7488 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7489 	 */
7490 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7491 	key.offset = 0;
7492 	key.type = 0;
7493 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7494 	if (ret < 0)
7495 		goto error;
7496 	while (1) {
7497 		struct extent_buffer *node;
7498 
7499 		leaf = path->nodes[0];
7500 		slot = path->slots[0];
7501 		if (slot >= btrfs_header_nritems(leaf)) {
7502 			ret = btrfs_next_leaf(root, path);
7503 			if (ret == 0)
7504 				continue;
7505 			if (ret < 0)
7506 				goto error;
7507 			break;
7508 		}
7509 		/*
7510 		 * The nodes on level 1 are not locked but we don't need to do
7511 		 * that during mount time as nothing else can access the tree
7512 		 */
7513 		node = path->nodes[1];
7514 		if (node) {
7515 			if (last_ra_node != node->start) {
7516 				readahead_tree_node_children(node);
7517 				last_ra_node = node->start;
7518 			}
7519 		}
7520 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7521 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7522 			struct btrfs_dev_item *dev_item;
7523 			dev_item = btrfs_item_ptr(leaf, slot,
7524 						  struct btrfs_dev_item);
7525 			ret = read_one_dev(leaf, dev_item);
7526 			if (ret)
7527 				goto error;
7528 			total_dev++;
7529 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7530 			struct btrfs_chunk *chunk;
7531 
7532 			/*
7533 			 * We are only called at mount time, so no need to take
7534 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7535 			 * we always lock first fs_info->chunk_mutex before
7536 			 * acquiring any locks on the chunk tree. This is a
7537 			 * requirement for chunk allocation, see the comment on
7538 			 * top of btrfs_chunk_alloc() for details.
7539 			 */
7540 			ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7541 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7542 			ret = read_one_chunk(&found_key, leaf, chunk);
7543 			if (ret)
7544 				goto error;
7545 		}
7546 		path->slots[0]++;
7547 	}
7548 
7549 	/*
7550 	 * After loading chunk tree, we've got all device information,
7551 	 * do another round of validation checks.
7552 	 */
7553 	if (total_dev != fs_info->fs_devices->total_devices) {
7554 		btrfs_err(fs_info,
7555 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7556 			  btrfs_super_num_devices(fs_info->super_copy),
7557 			  total_dev);
7558 		ret = -EINVAL;
7559 		goto error;
7560 	}
7561 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7562 	    fs_info->fs_devices->total_rw_bytes) {
7563 		btrfs_err(fs_info,
7564 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7565 			  btrfs_super_total_bytes(fs_info->super_copy),
7566 			  fs_info->fs_devices->total_rw_bytes);
7567 		ret = -EINVAL;
7568 		goto error;
7569 	}
7570 	ret = 0;
7571 error:
7572 	mutex_unlock(&uuid_mutex);
7573 
7574 	btrfs_free_path(path);
7575 	return ret;
7576 }
7577 
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7578 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7579 {
7580 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7581 	struct btrfs_device *device;
7582 
7583 	fs_devices->fs_info = fs_info;
7584 
7585 	mutex_lock(&fs_devices->device_list_mutex);
7586 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7587 		device->fs_info = fs_info;
7588 
7589 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7590 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7591 			device->fs_info = fs_info;
7592 
7593 		seed_devs->fs_info = fs_info;
7594 	}
7595 	mutex_unlock(&fs_devices->device_list_mutex);
7596 }
7597 
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7598 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7599 				 const struct btrfs_dev_stats_item *ptr,
7600 				 int index)
7601 {
7602 	u64 val;
7603 
7604 	read_extent_buffer(eb, &val,
7605 			   offsetof(struct btrfs_dev_stats_item, values) +
7606 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7607 			   sizeof(val));
7608 	return val;
7609 }
7610 
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7611 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7612 				      struct btrfs_dev_stats_item *ptr,
7613 				      int index, u64 val)
7614 {
7615 	write_extent_buffer(eb, &val,
7616 			    offsetof(struct btrfs_dev_stats_item, values) +
7617 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7618 			    sizeof(val));
7619 }
7620 
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7621 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7622 				       struct btrfs_path *path)
7623 {
7624 	struct btrfs_dev_stats_item *ptr;
7625 	struct extent_buffer *eb;
7626 	struct btrfs_key key;
7627 	int item_size;
7628 	int i, ret, slot;
7629 
7630 	if (!device->fs_info->dev_root)
7631 		return 0;
7632 
7633 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7634 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7635 	key.offset = device->devid;
7636 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7637 	if (ret) {
7638 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7639 			btrfs_dev_stat_set(device, i, 0);
7640 		device->dev_stats_valid = 1;
7641 		btrfs_release_path(path);
7642 		return ret < 0 ? ret : 0;
7643 	}
7644 	slot = path->slots[0];
7645 	eb = path->nodes[0];
7646 	item_size = btrfs_item_size_nr(eb, slot);
7647 
7648 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7649 
7650 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7651 		if (item_size >= (1 + i) * sizeof(__le64))
7652 			btrfs_dev_stat_set(device, i,
7653 					   btrfs_dev_stats_value(eb, ptr, i));
7654 		else
7655 			btrfs_dev_stat_set(device, i, 0);
7656 	}
7657 
7658 	device->dev_stats_valid = 1;
7659 	btrfs_dev_stat_print_on_load(device);
7660 	btrfs_release_path(path);
7661 
7662 	return 0;
7663 }
7664 
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7665 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7666 {
7667 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7668 	struct btrfs_device *device;
7669 	struct btrfs_path *path = NULL;
7670 	int ret = 0;
7671 
7672 	path = btrfs_alloc_path();
7673 	if (!path)
7674 		return -ENOMEM;
7675 
7676 	mutex_lock(&fs_devices->device_list_mutex);
7677 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7678 		ret = btrfs_device_init_dev_stats(device, path);
7679 		if (ret)
7680 			goto out;
7681 	}
7682 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7683 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7684 			ret = btrfs_device_init_dev_stats(device, path);
7685 			if (ret)
7686 				goto out;
7687 		}
7688 	}
7689 out:
7690 	mutex_unlock(&fs_devices->device_list_mutex);
7691 
7692 	btrfs_free_path(path);
7693 	return ret;
7694 }
7695 
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7696 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7697 				struct btrfs_device *device)
7698 {
7699 	struct btrfs_fs_info *fs_info = trans->fs_info;
7700 	struct btrfs_root *dev_root = fs_info->dev_root;
7701 	struct btrfs_path *path;
7702 	struct btrfs_key key;
7703 	struct extent_buffer *eb;
7704 	struct btrfs_dev_stats_item *ptr;
7705 	int ret;
7706 	int i;
7707 
7708 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7709 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7710 	key.offset = device->devid;
7711 
7712 	path = btrfs_alloc_path();
7713 	if (!path)
7714 		return -ENOMEM;
7715 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7716 	if (ret < 0) {
7717 		btrfs_warn_in_rcu(fs_info,
7718 			"error %d while searching for dev_stats item for device %s",
7719 			      ret, rcu_str_deref(device->name));
7720 		goto out;
7721 	}
7722 
7723 	if (ret == 0 &&
7724 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7725 		/* need to delete old one and insert a new one */
7726 		ret = btrfs_del_item(trans, dev_root, path);
7727 		if (ret != 0) {
7728 			btrfs_warn_in_rcu(fs_info,
7729 				"delete too small dev_stats item for device %s failed %d",
7730 				      rcu_str_deref(device->name), ret);
7731 			goto out;
7732 		}
7733 		ret = 1;
7734 	}
7735 
7736 	if (ret == 1) {
7737 		/* need to insert a new item */
7738 		btrfs_release_path(path);
7739 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7740 					      &key, sizeof(*ptr));
7741 		if (ret < 0) {
7742 			btrfs_warn_in_rcu(fs_info,
7743 				"insert dev_stats item for device %s failed %d",
7744 				rcu_str_deref(device->name), ret);
7745 			goto out;
7746 		}
7747 	}
7748 
7749 	eb = path->nodes[0];
7750 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7751 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7752 		btrfs_set_dev_stats_value(eb, ptr, i,
7753 					  btrfs_dev_stat_read(device, i));
7754 	btrfs_mark_buffer_dirty(eb);
7755 
7756 out:
7757 	btrfs_free_path(path);
7758 	return ret;
7759 }
7760 
7761 /*
7762  * called from commit_transaction. Writes all changed device stats to disk.
7763  */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7764 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7765 {
7766 	struct btrfs_fs_info *fs_info = trans->fs_info;
7767 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7768 	struct btrfs_device *device;
7769 	int stats_cnt;
7770 	int ret = 0;
7771 
7772 	mutex_lock(&fs_devices->device_list_mutex);
7773 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7774 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7775 		if (!device->dev_stats_valid || stats_cnt == 0)
7776 			continue;
7777 
7778 
7779 		/*
7780 		 * There is a LOAD-LOAD control dependency between the value of
7781 		 * dev_stats_ccnt and updating the on-disk values which requires
7782 		 * reading the in-memory counters. Such control dependencies
7783 		 * require explicit read memory barriers.
7784 		 *
7785 		 * This memory barriers pairs with smp_mb__before_atomic in
7786 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7787 		 * barrier implied by atomic_xchg in
7788 		 * btrfs_dev_stats_read_and_reset
7789 		 */
7790 		smp_rmb();
7791 
7792 		ret = update_dev_stat_item(trans, device);
7793 		if (!ret)
7794 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7795 	}
7796 	mutex_unlock(&fs_devices->device_list_mutex);
7797 
7798 	return ret;
7799 }
7800 
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7801 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7802 {
7803 	btrfs_dev_stat_inc(dev, index);
7804 	btrfs_dev_stat_print_on_error(dev);
7805 }
7806 
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7807 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7808 {
7809 	if (!dev->dev_stats_valid)
7810 		return;
7811 	btrfs_err_rl_in_rcu(dev->fs_info,
7812 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7813 			   rcu_str_deref(dev->name),
7814 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7815 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7816 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7817 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7818 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7819 }
7820 
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7821 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7822 {
7823 	int i;
7824 
7825 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7826 		if (btrfs_dev_stat_read(dev, i) != 0)
7827 			break;
7828 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7829 		return; /* all values == 0, suppress message */
7830 
7831 	btrfs_info_in_rcu(dev->fs_info,
7832 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7833 	       rcu_str_deref(dev->name),
7834 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7835 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7836 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7837 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7838 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7839 }
7840 
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7841 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7842 			struct btrfs_ioctl_get_dev_stats *stats)
7843 {
7844 	struct btrfs_device *dev;
7845 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7846 	int i;
7847 
7848 	mutex_lock(&fs_devices->device_list_mutex);
7849 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7850 	mutex_unlock(&fs_devices->device_list_mutex);
7851 
7852 	if (!dev) {
7853 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7854 		return -ENODEV;
7855 	} else if (!dev->dev_stats_valid) {
7856 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7857 		return -ENODEV;
7858 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7859 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7860 			if (stats->nr_items > i)
7861 				stats->values[i] =
7862 					btrfs_dev_stat_read_and_reset(dev, i);
7863 			else
7864 				btrfs_dev_stat_set(dev, i, 0);
7865 		}
7866 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7867 			   current->comm, task_pid_nr(current));
7868 	} else {
7869 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7870 			if (stats->nr_items > i)
7871 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7872 	}
7873 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7874 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7875 	return 0;
7876 }
7877 
7878 /*
7879  * Update the size and bytes used for each device where it changed.  This is
7880  * delayed since we would otherwise get errors while writing out the
7881  * superblocks.
7882  *
7883  * Must be invoked during transaction commit.
7884  */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7885 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7886 {
7887 	struct btrfs_device *curr, *next;
7888 
7889 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7890 
7891 	if (list_empty(&trans->dev_update_list))
7892 		return;
7893 
7894 	/*
7895 	 * We don't need the device_list_mutex here.  This list is owned by the
7896 	 * transaction and the transaction must complete before the device is
7897 	 * released.
7898 	 */
7899 	mutex_lock(&trans->fs_info->chunk_mutex);
7900 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7901 				 post_commit_list) {
7902 		list_del_init(&curr->post_commit_list);
7903 		curr->commit_total_bytes = curr->disk_total_bytes;
7904 		curr->commit_bytes_used = curr->bytes_used;
7905 	}
7906 	mutex_unlock(&trans->fs_info->chunk_mutex);
7907 }
7908 
7909 /*
7910  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7911  */
btrfs_bg_type_to_factor(u64 flags)7912 int btrfs_bg_type_to_factor(u64 flags)
7913 {
7914 	const int index = btrfs_bg_flags_to_raid_index(flags);
7915 
7916 	return btrfs_raid_array[index].ncopies;
7917 }
7918 
7919 
7920 
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7921 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7922 				 u64 chunk_offset, u64 devid,
7923 				 u64 physical_offset, u64 physical_len)
7924 {
7925 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7926 	struct extent_map *em;
7927 	struct map_lookup *map;
7928 	struct btrfs_device *dev;
7929 	u64 stripe_len;
7930 	bool found = false;
7931 	int ret = 0;
7932 	int i;
7933 
7934 	read_lock(&em_tree->lock);
7935 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7936 	read_unlock(&em_tree->lock);
7937 
7938 	if (!em) {
7939 		btrfs_err(fs_info,
7940 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7941 			  physical_offset, devid);
7942 		ret = -EUCLEAN;
7943 		goto out;
7944 	}
7945 
7946 	map = em->map_lookup;
7947 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7948 	if (physical_len != stripe_len) {
7949 		btrfs_err(fs_info,
7950 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7951 			  physical_offset, devid, em->start, physical_len,
7952 			  stripe_len);
7953 		ret = -EUCLEAN;
7954 		goto out;
7955 	}
7956 
7957 	for (i = 0; i < map->num_stripes; i++) {
7958 		if (map->stripes[i].dev->devid == devid &&
7959 		    map->stripes[i].physical == physical_offset) {
7960 			found = true;
7961 			if (map->verified_stripes >= map->num_stripes) {
7962 				btrfs_err(fs_info,
7963 				"too many dev extents for chunk %llu found",
7964 					  em->start);
7965 				ret = -EUCLEAN;
7966 				goto out;
7967 			}
7968 			map->verified_stripes++;
7969 			break;
7970 		}
7971 	}
7972 	if (!found) {
7973 		btrfs_err(fs_info,
7974 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7975 			physical_offset, devid);
7976 		ret = -EUCLEAN;
7977 	}
7978 
7979 	/* Make sure no dev extent is beyond device boundary */
7980 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7981 	if (!dev) {
7982 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7983 		ret = -EUCLEAN;
7984 		goto out;
7985 	}
7986 
7987 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7988 		btrfs_err(fs_info,
7989 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7990 			  devid, physical_offset, physical_len,
7991 			  dev->disk_total_bytes);
7992 		ret = -EUCLEAN;
7993 		goto out;
7994 	}
7995 
7996 	if (dev->zone_info) {
7997 		u64 zone_size = dev->zone_info->zone_size;
7998 
7999 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8000 		    !IS_ALIGNED(physical_len, zone_size)) {
8001 			btrfs_err(fs_info,
8002 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8003 				  devid, physical_offset, physical_len);
8004 			ret = -EUCLEAN;
8005 			goto out;
8006 		}
8007 	}
8008 
8009 out:
8010 	free_extent_map(em);
8011 	return ret;
8012 }
8013 
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8014 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8015 {
8016 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8017 	struct extent_map *em;
8018 	struct rb_node *node;
8019 	int ret = 0;
8020 
8021 	read_lock(&em_tree->lock);
8022 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8023 		em = rb_entry(node, struct extent_map, rb_node);
8024 		if (em->map_lookup->num_stripes !=
8025 		    em->map_lookup->verified_stripes) {
8026 			btrfs_err(fs_info,
8027 			"chunk %llu has missing dev extent, have %d expect %d",
8028 				  em->start, em->map_lookup->verified_stripes,
8029 				  em->map_lookup->num_stripes);
8030 			ret = -EUCLEAN;
8031 			goto out;
8032 		}
8033 	}
8034 out:
8035 	read_unlock(&em_tree->lock);
8036 	return ret;
8037 }
8038 
8039 /*
8040  * Ensure that all dev extents are mapped to correct chunk, otherwise
8041  * later chunk allocation/free would cause unexpected behavior.
8042  *
8043  * NOTE: This will iterate through the whole device tree, which should be of
8044  * the same size level as the chunk tree.  This slightly increases mount time.
8045  */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8046 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8047 {
8048 	struct btrfs_path *path;
8049 	struct btrfs_root *root = fs_info->dev_root;
8050 	struct btrfs_key key;
8051 	u64 prev_devid = 0;
8052 	u64 prev_dev_ext_end = 0;
8053 	int ret = 0;
8054 
8055 	/*
8056 	 * We don't have a dev_root because we mounted with ignorebadroots and
8057 	 * failed to load the root, so we want to skip the verification in this
8058 	 * case for sure.
8059 	 *
8060 	 * However if the dev root is fine, but the tree itself is corrupted
8061 	 * we'd still fail to mount.  This verification is only to make sure
8062 	 * writes can happen safely, so instead just bypass this check
8063 	 * completely in the case of IGNOREBADROOTS.
8064 	 */
8065 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8066 		return 0;
8067 
8068 	key.objectid = 1;
8069 	key.type = BTRFS_DEV_EXTENT_KEY;
8070 	key.offset = 0;
8071 
8072 	path = btrfs_alloc_path();
8073 	if (!path)
8074 		return -ENOMEM;
8075 
8076 	path->reada = READA_FORWARD;
8077 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8078 	if (ret < 0)
8079 		goto out;
8080 
8081 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8082 		ret = btrfs_next_leaf(root, path);
8083 		if (ret < 0)
8084 			goto out;
8085 		/* No dev extents at all? Not good */
8086 		if (ret > 0) {
8087 			ret = -EUCLEAN;
8088 			goto out;
8089 		}
8090 	}
8091 	while (1) {
8092 		struct extent_buffer *leaf = path->nodes[0];
8093 		struct btrfs_dev_extent *dext;
8094 		int slot = path->slots[0];
8095 		u64 chunk_offset;
8096 		u64 physical_offset;
8097 		u64 physical_len;
8098 		u64 devid;
8099 
8100 		btrfs_item_key_to_cpu(leaf, &key, slot);
8101 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8102 			break;
8103 		devid = key.objectid;
8104 		physical_offset = key.offset;
8105 
8106 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8107 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8108 		physical_len = btrfs_dev_extent_length(leaf, dext);
8109 
8110 		/* Check if this dev extent overlaps with the previous one */
8111 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8112 			btrfs_err(fs_info,
8113 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8114 				  devid, physical_offset, prev_dev_ext_end);
8115 			ret = -EUCLEAN;
8116 			goto out;
8117 		}
8118 
8119 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8120 					    physical_offset, physical_len);
8121 		if (ret < 0)
8122 			goto out;
8123 		prev_devid = devid;
8124 		prev_dev_ext_end = physical_offset + physical_len;
8125 
8126 		ret = btrfs_next_item(root, path);
8127 		if (ret < 0)
8128 			goto out;
8129 		if (ret > 0) {
8130 			ret = 0;
8131 			break;
8132 		}
8133 	}
8134 
8135 	/* Ensure all chunks have corresponding dev extents */
8136 	ret = verify_chunk_dev_extent_mapping(fs_info);
8137 out:
8138 	btrfs_free_path(path);
8139 	return ret;
8140 }
8141 
8142 /*
8143  * Check whether the given block group or device is pinned by any inode being
8144  * used as a swapfile.
8145  */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8146 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8147 {
8148 	struct btrfs_swapfile_pin *sp;
8149 	struct rb_node *node;
8150 
8151 	spin_lock(&fs_info->swapfile_pins_lock);
8152 	node = fs_info->swapfile_pins.rb_node;
8153 	while (node) {
8154 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8155 		if (ptr < sp->ptr)
8156 			node = node->rb_left;
8157 		else if (ptr > sp->ptr)
8158 			node = node->rb_right;
8159 		else
8160 			break;
8161 	}
8162 	spin_unlock(&fs_info->swapfile_pins_lock);
8163 	return node != NULL;
8164 }
8165 
relocating_repair_kthread(void * data)8166 static int relocating_repair_kthread(void *data)
8167 {
8168 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8169 	struct btrfs_fs_info *fs_info = cache->fs_info;
8170 	u64 target;
8171 	int ret = 0;
8172 
8173 	target = cache->start;
8174 	btrfs_put_block_group(cache);
8175 
8176 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8177 		btrfs_info(fs_info,
8178 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8179 			   target);
8180 		return -EBUSY;
8181 	}
8182 
8183 	mutex_lock(&fs_info->reclaim_bgs_lock);
8184 
8185 	/* Ensure block group still exists */
8186 	cache = btrfs_lookup_block_group(fs_info, target);
8187 	if (!cache)
8188 		goto out;
8189 
8190 	if (!cache->relocating_repair)
8191 		goto out;
8192 
8193 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8194 	if (ret < 0)
8195 		goto out;
8196 
8197 	btrfs_info(fs_info,
8198 		   "zoned: relocating block group %llu to repair IO failure",
8199 		   target);
8200 	ret = btrfs_relocate_chunk(fs_info, target);
8201 
8202 out:
8203 	if (cache)
8204 		btrfs_put_block_group(cache);
8205 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8206 	btrfs_exclop_finish(fs_info);
8207 
8208 	return ret;
8209 }
8210 
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8211 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8212 {
8213 	struct btrfs_block_group *cache;
8214 
8215 	/* Do not attempt to repair in degraded state */
8216 	if (btrfs_test_opt(fs_info, DEGRADED))
8217 		return 0;
8218 
8219 	cache = btrfs_lookup_block_group(fs_info, logical);
8220 	if (!cache)
8221 		return 0;
8222 
8223 	spin_lock(&cache->lock);
8224 	if (cache->relocating_repair) {
8225 		spin_unlock(&cache->lock);
8226 		btrfs_put_block_group(cache);
8227 		return 0;
8228 	}
8229 	cache->relocating_repair = 1;
8230 	spin_unlock(&cache->lock);
8231 
8232 	kthread_run(relocating_repair_kthread, cache,
8233 		    "btrfs-relocating-repair");
8234 
8235 	return 0;
8236 }
8237