1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32 [BTRFS_RAID_RAID10] = {
33 .sub_stripes = 2,
34 .dev_stripes = 1,
35 .devs_max = 0, /* 0 == as many as possible */
36 .devs_min = 4,
37 .tolerated_failures = 1,
38 .devs_increment = 2,
39 .ncopies = 2,
40 .raid_name = "raid10",
41 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
42 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
43 },
44 [BTRFS_RAID_RAID1] = {
45 .sub_stripes = 1,
46 .dev_stripes = 1,
47 .devs_max = 2,
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .raid_name = "raid1",
53 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
54 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
55 },
56 [BTRFS_RAID_DUP] = {
57 .sub_stripes = 1,
58 .dev_stripes = 2,
59 .devs_max = 1,
60 .devs_min = 1,
61 .tolerated_failures = 0,
62 .devs_increment = 1,
63 .ncopies = 2,
64 .raid_name = "dup",
65 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
66 .mindev_error = 0,
67 },
68 [BTRFS_RAID_RAID0] = {
69 .sub_stripes = 1,
70 .dev_stripes = 1,
71 .devs_max = 0,
72 .devs_min = 2,
73 .tolerated_failures = 0,
74 .devs_increment = 1,
75 .ncopies = 1,
76 .raid_name = "raid0",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
78 .mindev_error = 0,
79 },
80 [BTRFS_RAID_SINGLE] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 1,
84 .devs_min = 1,
85 .tolerated_failures = 0,
86 .devs_increment = 1,
87 .ncopies = 1,
88 .raid_name = "single",
89 .bg_flag = 0,
90 .mindev_error = 0,
91 },
92 [BTRFS_RAID_RAID5] = {
93 .sub_stripes = 1,
94 .dev_stripes = 1,
95 .devs_max = 0,
96 .devs_min = 2,
97 .tolerated_failures = 1,
98 .devs_increment = 1,
99 .ncopies = 2,
100 .raid_name = "raid5",
101 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
102 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
103 },
104 [BTRFS_RAID_RAID6] = {
105 .sub_stripes = 1,
106 .dev_stripes = 1,
107 .devs_max = 0,
108 .devs_min = 3,
109 .tolerated_failures = 2,
110 .devs_increment = 1,
111 .ncopies = 3,
112 .raid_name = "raid6",
113 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
114 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
115 },
116 };
117
get_raid_name(enum btrfs_raid_types type)118 const char *get_raid_name(enum btrfs_raid_types type)
119 {
120 if (type >= BTRFS_NR_RAID_TYPES)
121 return NULL;
122
123 return btrfs_raid_array[type].raid_name;
124 }
125
126 static int init_first_rw_device(struct btrfs_trans_handle *trans,
127 struct btrfs_fs_info *fs_info);
128 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
129 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
132 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
133 enum btrfs_map_op op,
134 u64 logical, u64 *length,
135 struct btrfs_bio **bbio_ret,
136 int mirror_num, int need_raid_map);
137
138 /*
139 * Device locking
140 * ==============
141 *
142 * There are several mutexes that protect manipulation of devices and low-level
143 * structures like chunks but not block groups, extents or files
144 *
145 * uuid_mutex (global lock)
146 * ------------------------
147 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
148 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
149 * device) or requested by the device= mount option
150 *
151 * the mutex can be very coarse and can cover long-running operations
152 *
153 * protects: updates to fs_devices counters like missing devices, rw devices,
154 * seeding, structure cloning, openning/closing devices at mount/umount time
155 *
156 * global::fs_devs - add, remove, updates to the global list
157 *
158 * does not protect: manipulation of the fs_devices::devices list!
159 *
160 * btrfs_device::name - renames (write side), read is RCU
161 *
162 * fs_devices::device_list_mutex (per-fs, with RCU)
163 * ------------------------------------------------
164 * protects updates to fs_devices::devices, ie. adding and deleting
165 *
166 * simple list traversal with read-only actions can be done with RCU protection
167 *
168 * may be used to exclude some operations from running concurrently without any
169 * modifications to the list (see write_all_supers)
170 *
171 * balance_mutex
172 * -------------
173 * protects balance structures (status, state) and context accessed from
174 * several places (internally, ioctl)
175 *
176 * chunk_mutex
177 * -----------
178 * protects chunks, adding or removing during allocation, trim or when a new
179 * device is added/removed
180 *
181 * cleaner_mutex
182 * -------------
183 * a big lock that is held by the cleaner thread and prevents running subvolume
184 * cleaning together with relocation or delayed iputs
185 *
186 *
187 * Lock nesting
188 * ============
189 *
190 * uuid_mutex
191 * volume_mutex
192 * device_list_mutex
193 * chunk_mutex
194 * balance_mutex
195 *
196 *
197 * Exclusive operations, BTRFS_FS_EXCL_OP
198 * ======================================
199 *
200 * Maintains the exclusivity of the following operations that apply to the
201 * whole filesystem and cannot run in parallel.
202 *
203 * - Balance (*)
204 * - Device add
205 * - Device remove
206 * - Device replace (*)
207 * - Resize
208 *
209 * The device operations (as above) can be in one of the following states:
210 *
211 * - Running state
212 * - Paused state
213 * - Completed state
214 *
215 * Only device operations marked with (*) can go into the Paused state for the
216 * following reasons:
217 *
218 * - ioctl (only Balance can be Paused through ioctl)
219 * - filesystem remounted as read-only
220 * - filesystem unmounted and mounted as read-only
221 * - system power-cycle and filesystem mounted as read-only
222 * - filesystem or device errors leading to forced read-only
223 *
224 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
225 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
226 * A device operation in Paused or Running state can be canceled or resumed
227 * either by ioctl (Balance only) or when remounted as read-write.
228 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
229 * completed.
230 */
231
232 DEFINE_MUTEX(uuid_mutex);
233 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)234 struct list_head *btrfs_get_fs_uuids(void)
235 {
236 return &fs_uuids;
237 }
238
239 /*
240 * alloc_fs_devices - allocate struct btrfs_fs_devices
241 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
242 *
243 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
244 * The returned struct is not linked onto any lists and can be destroyed with
245 * kfree() right away.
246 */
alloc_fs_devices(const u8 * fsid)247 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
248 {
249 struct btrfs_fs_devices *fs_devs;
250
251 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
252 if (!fs_devs)
253 return ERR_PTR(-ENOMEM);
254
255 mutex_init(&fs_devs->device_list_mutex);
256
257 INIT_LIST_HEAD(&fs_devs->devices);
258 INIT_LIST_HEAD(&fs_devs->resized_devices);
259 INIT_LIST_HEAD(&fs_devs->alloc_list);
260 INIT_LIST_HEAD(&fs_devs->fs_list);
261 if (fsid)
262 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
263
264 return fs_devs;
265 }
266
btrfs_free_device(struct btrfs_device * device)267 void btrfs_free_device(struct btrfs_device *device)
268 {
269 rcu_string_free(device->name);
270 bio_put(device->flush_bio);
271 kfree(device);
272 }
273
free_fs_devices(struct btrfs_fs_devices * fs_devices)274 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
275 {
276 struct btrfs_device *device;
277 WARN_ON(fs_devices->opened);
278 while (!list_empty(&fs_devices->devices)) {
279 device = list_entry(fs_devices->devices.next,
280 struct btrfs_device, dev_list);
281 list_del(&device->dev_list);
282 btrfs_free_device(device);
283 }
284 kfree(fs_devices);
285 }
286
btrfs_kobject_uevent(struct block_device * bdev,enum kobject_action action)287 static void btrfs_kobject_uevent(struct block_device *bdev,
288 enum kobject_action action)
289 {
290 int ret;
291
292 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
293 if (ret)
294 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
295 action,
296 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
297 &disk_to_dev(bdev->bd_disk)->kobj);
298 }
299
btrfs_cleanup_fs_uuids(void)300 void __exit btrfs_cleanup_fs_uuids(void)
301 {
302 struct btrfs_fs_devices *fs_devices;
303
304 while (!list_empty(&fs_uuids)) {
305 fs_devices = list_entry(fs_uuids.next,
306 struct btrfs_fs_devices, fs_list);
307 list_del(&fs_devices->fs_list);
308 free_fs_devices(fs_devices);
309 }
310 }
311
312 /*
313 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
314 * Returned struct is not linked onto any lists and must be destroyed using
315 * btrfs_free_device.
316 */
__alloc_device(void)317 static struct btrfs_device *__alloc_device(void)
318 {
319 struct btrfs_device *dev;
320
321 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322 if (!dev)
323 return ERR_PTR(-ENOMEM);
324
325 /*
326 * Preallocate a bio that's always going to be used for flushing device
327 * barriers and matches the device lifespan
328 */
329 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
330 if (!dev->flush_bio) {
331 kfree(dev);
332 return ERR_PTR(-ENOMEM);
333 }
334
335 INIT_LIST_HEAD(&dev->dev_list);
336 INIT_LIST_HEAD(&dev->dev_alloc_list);
337 INIT_LIST_HEAD(&dev->resized_list);
338
339 spin_lock_init(&dev->io_lock);
340
341 atomic_set(&dev->reada_in_flight, 0);
342 atomic_set(&dev->dev_stats_ccnt, 0);
343 btrfs_device_data_ordered_init(dev);
344 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
346
347 return dev;
348 }
349
350 /*
351 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
352 * return NULL.
353 *
354 * If devid and uuid are both specified, the match must be exact, otherwise
355 * only devid is used.
356 */
find_device(struct btrfs_fs_devices * fs_devices,u64 devid,const u8 * uuid)357 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
358 u64 devid, const u8 *uuid)
359 {
360 struct btrfs_device *dev;
361
362 list_for_each_entry(dev, &fs_devices->devices, dev_list) {
363 if (dev->devid == devid &&
364 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
365 return dev;
366 }
367 }
368 return NULL;
369 }
370
find_fsid(u8 * fsid)371 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
372 {
373 struct btrfs_fs_devices *fs_devices;
374
375 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
376 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
377 return fs_devices;
378 }
379 return NULL;
380 }
381
382 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)383 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
384 int flush, struct block_device **bdev,
385 struct buffer_head **bh)
386 {
387 int ret;
388
389 *bdev = blkdev_get_by_path(device_path, flags, holder);
390
391 if (IS_ERR(*bdev)) {
392 ret = PTR_ERR(*bdev);
393 goto error;
394 }
395
396 if (flush)
397 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
398 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
399 if (ret) {
400 blkdev_put(*bdev, flags);
401 goto error;
402 }
403 invalidate_bdev(*bdev);
404 *bh = btrfs_read_dev_super(*bdev);
405 if (IS_ERR(*bh)) {
406 ret = PTR_ERR(*bh);
407 blkdev_put(*bdev, flags);
408 goto error;
409 }
410
411 return 0;
412
413 error:
414 *bdev = NULL;
415 *bh = NULL;
416 return ret;
417 }
418
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)419 static void requeue_list(struct btrfs_pending_bios *pending_bios,
420 struct bio *head, struct bio *tail)
421 {
422
423 struct bio *old_head;
424
425 old_head = pending_bios->head;
426 pending_bios->head = head;
427 if (pending_bios->tail)
428 tail->bi_next = old_head;
429 else
430 pending_bios->tail = tail;
431 }
432
433 /*
434 * we try to collect pending bios for a device so we don't get a large
435 * number of procs sending bios down to the same device. This greatly
436 * improves the schedulers ability to collect and merge the bios.
437 *
438 * But, it also turns into a long list of bios to process and that is sure
439 * to eventually make the worker thread block. The solution here is to
440 * make some progress and then put this work struct back at the end of
441 * the list if the block device is congested. This way, multiple devices
442 * can make progress from a single worker thread.
443 */
run_scheduled_bios(struct btrfs_device * device)444 static noinline void run_scheduled_bios(struct btrfs_device *device)
445 {
446 struct btrfs_fs_info *fs_info = device->fs_info;
447 struct bio *pending;
448 struct backing_dev_info *bdi;
449 struct btrfs_pending_bios *pending_bios;
450 struct bio *tail;
451 struct bio *cur;
452 int again = 0;
453 unsigned long num_run;
454 unsigned long batch_run = 0;
455 unsigned long last_waited = 0;
456 int force_reg = 0;
457 int sync_pending = 0;
458 struct blk_plug plug;
459
460 /*
461 * this function runs all the bios we've collected for
462 * a particular device. We don't want to wander off to
463 * another device without first sending all of these down.
464 * So, setup a plug here and finish it off before we return
465 */
466 blk_start_plug(&plug);
467
468 bdi = device->bdev->bd_bdi;
469
470 loop:
471 spin_lock(&device->io_lock);
472
473 loop_lock:
474 num_run = 0;
475
476 /* take all the bios off the list at once and process them
477 * later on (without the lock held). But, remember the
478 * tail and other pointers so the bios can be properly reinserted
479 * into the list if we hit congestion
480 */
481 if (!force_reg && device->pending_sync_bios.head) {
482 pending_bios = &device->pending_sync_bios;
483 force_reg = 1;
484 } else {
485 pending_bios = &device->pending_bios;
486 force_reg = 0;
487 }
488
489 pending = pending_bios->head;
490 tail = pending_bios->tail;
491 WARN_ON(pending && !tail);
492
493 /*
494 * if pending was null this time around, no bios need processing
495 * at all and we can stop. Otherwise it'll loop back up again
496 * and do an additional check so no bios are missed.
497 *
498 * device->running_pending is used to synchronize with the
499 * schedule_bio code.
500 */
501 if (device->pending_sync_bios.head == NULL &&
502 device->pending_bios.head == NULL) {
503 again = 0;
504 device->running_pending = 0;
505 } else {
506 again = 1;
507 device->running_pending = 1;
508 }
509
510 pending_bios->head = NULL;
511 pending_bios->tail = NULL;
512
513 spin_unlock(&device->io_lock);
514
515 while (pending) {
516
517 rmb();
518 /* we want to work on both lists, but do more bios on the
519 * sync list than the regular list
520 */
521 if ((num_run > 32 &&
522 pending_bios != &device->pending_sync_bios &&
523 device->pending_sync_bios.head) ||
524 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
525 device->pending_bios.head)) {
526 spin_lock(&device->io_lock);
527 requeue_list(pending_bios, pending, tail);
528 goto loop_lock;
529 }
530
531 cur = pending;
532 pending = pending->bi_next;
533 cur->bi_next = NULL;
534
535 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
536
537 /*
538 * if we're doing the sync list, record that our
539 * plug has some sync requests on it
540 *
541 * If we're doing the regular list and there are
542 * sync requests sitting around, unplug before
543 * we add more
544 */
545 if (pending_bios == &device->pending_sync_bios) {
546 sync_pending = 1;
547 } else if (sync_pending) {
548 blk_finish_plug(&plug);
549 blk_start_plug(&plug);
550 sync_pending = 0;
551 }
552
553 btrfsic_submit_bio(cur);
554 num_run++;
555 batch_run++;
556
557 cond_resched();
558
559 /*
560 * we made progress, there is more work to do and the bdi
561 * is now congested. Back off and let other work structs
562 * run instead
563 */
564 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
565 fs_info->fs_devices->open_devices > 1) {
566 struct io_context *ioc;
567
568 ioc = current->io_context;
569
570 /*
571 * the main goal here is that we don't want to
572 * block if we're going to be able to submit
573 * more requests without blocking.
574 *
575 * This code does two great things, it pokes into
576 * the elevator code from a filesystem _and_
577 * it makes assumptions about how batching works.
578 */
579 if (ioc && ioc->nr_batch_requests > 0 &&
580 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
581 (last_waited == 0 ||
582 ioc->last_waited == last_waited)) {
583 /*
584 * we want to go through our batch of
585 * requests and stop. So, we copy out
586 * the ioc->last_waited time and test
587 * against it before looping
588 */
589 last_waited = ioc->last_waited;
590 cond_resched();
591 continue;
592 }
593 spin_lock(&device->io_lock);
594 requeue_list(pending_bios, pending, tail);
595 device->running_pending = 1;
596
597 spin_unlock(&device->io_lock);
598 btrfs_queue_work(fs_info->submit_workers,
599 &device->work);
600 goto done;
601 }
602 }
603
604 cond_resched();
605 if (again)
606 goto loop;
607
608 spin_lock(&device->io_lock);
609 if (device->pending_bios.head || device->pending_sync_bios.head)
610 goto loop_lock;
611 spin_unlock(&device->io_lock);
612
613 done:
614 blk_finish_plug(&plug);
615 }
616
pending_bios_fn(struct btrfs_work * work)617 static void pending_bios_fn(struct btrfs_work *work)
618 {
619 struct btrfs_device *device;
620
621 device = container_of(work, struct btrfs_device, work);
622 run_scheduled_bios(device);
623 }
624
625 /*
626 * Search and remove all stale (devices which are not mounted) devices.
627 * When both inputs are NULL, it will search and release all stale devices.
628 * path: Optional. When provided will it release all unmounted devices
629 * matching this path only.
630 * skip_dev: Optional. Will skip this device when searching for the stale
631 * devices.
632 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)633 static void btrfs_free_stale_devices(const char *path,
634 struct btrfs_device *skip_device)
635 {
636 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
637 struct btrfs_device *device, *tmp_device;
638
639 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
640 mutex_lock(&fs_devices->device_list_mutex);
641 if (fs_devices->opened) {
642 mutex_unlock(&fs_devices->device_list_mutex);
643 continue;
644 }
645
646 list_for_each_entry_safe(device, tmp_device,
647 &fs_devices->devices, dev_list) {
648 int not_found = 0;
649
650 if (skip_device && skip_device == device)
651 continue;
652 if (path && !device->name)
653 continue;
654
655 rcu_read_lock();
656 if (path)
657 not_found = strcmp(rcu_str_deref(device->name),
658 path);
659 rcu_read_unlock();
660 if (not_found)
661 continue;
662
663 /* delete the stale device */
664 fs_devices->num_devices--;
665 list_del(&device->dev_list);
666 btrfs_free_device(device);
667
668 if (fs_devices->num_devices == 0)
669 break;
670 }
671 mutex_unlock(&fs_devices->device_list_mutex);
672 if (fs_devices->num_devices == 0) {
673 btrfs_sysfs_remove_fsid(fs_devices);
674 list_del(&fs_devices->fs_list);
675 free_fs_devices(fs_devices);
676 }
677 }
678 }
679
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)680 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
681 struct btrfs_device *device, fmode_t flags,
682 void *holder)
683 {
684 struct request_queue *q;
685 struct block_device *bdev;
686 struct buffer_head *bh;
687 struct btrfs_super_block *disk_super;
688 u64 devid;
689 int ret;
690
691 if (device->bdev)
692 return -EINVAL;
693 if (!device->name)
694 return -EINVAL;
695
696 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
697 &bdev, &bh);
698 if (ret)
699 return ret;
700
701 disk_super = (struct btrfs_super_block *)bh->b_data;
702 devid = btrfs_stack_device_id(&disk_super->dev_item);
703 if (devid != device->devid)
704 goto error_brelse;
705
706 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
707 goto error_brelse;
708
709 device->generation = btrfs_super_generation(disk_super);
710
711 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
712 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
713 fs_devices->seeding = 1;
714 } else {
715 if (bdev_read_only(bdev))
716 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
717 else
718 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
719 }
720
721 q = bdev_get_queue(bdev);
722 if (!blk_queue_nonrot(q))
723 fs_devices->rotating = 1;
724
725 device->bdev = bdev;
726 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
727 device->mode = flags;
728
729 fs_devices->open_devices++;
730 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
731 device->devid != BTRFS_DEV_REPLACE_DEVID) {
732 fs_devices->rw_devices++;
733 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
734 }
735 brelse(bh);
736
737 return 0;
738
739 error_brelse:
740 brelse(bh);
741 blkdev_put(bdev, flags);
742
743 return -EINVAL;
744 }
745
746 /*
747 * Add new device to list of registered devices
748 *
749 * Returns:
750 * device pointer which was just added or updated when successful
751 * error pointer when failed
752 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)753 static noinline struct btrfs_device *device_list_add(const char *path,
754 struct btrfs_super_block *disk_super,
755 bool *new_device_added)
756 {
757 struct btrfs_device *device;
758 struct btrfs_fs_devices *fs_devices;
759 struct rcu_string *name;
760 u64 found_transid = btrfs_super_generation(disk_super);
761 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
762
763 fs_devices = find_fsid(disk_super->fsid);
764 if (!fs_devices) {
765 fs_devices = alloc_fs_devices(disk_super->fsid);
766 if (IS_ERR(fs_devices))
767 return ERR_CAST(fs_devices);
768
769 mutex_lock(&fs_devices->device_list_mutex);
770 list_add(&fs_devices->fs_list, &fs_uuids);
771
772 device = NULL;
773 } else {
774 mutex_lock(&fs_devices->device_list_mutex);
775 device = find_device(fs_devices, devid,
776 disk_super->dev_item.uuid);
777 }
778
779 if (!device) {
780 if (fs_devices->opened) {
781 mutex_unlock(&fs_devices->device_list_mutex);
782 return ERR_PTR(-EBUSY);
783 }
784
785 device = btrfs_alloc_device(NULL, &devid,
786 disk_super->dev_item.uuid);
787 if (IS_ERR(device)) {
788 mutex_unlock(&fs_devices->device_list_mutex);
789 /* we can safely leave the fs_devices entry around */
790 return device;
791 }
792
793 name = rcu_string_strdup(path, GFP_NOFS);
794 if (!name) {
795 btrfs_free_device(device);
796 mutex_unlock(&fs_devices->device_list_mutex);
797 return ERR_PTR(-ENOMEM);
798 }
799 rcu_assign_pointer(device->name, name);
800
801 list_add_rcu(&device->dev_list, &fs_devices->devices);
802 fs_devices->num_devices++;
803
804 device->fs_devices = fs_devices;
805 *new_device_added = true;
806
807 if (disk_super->label[0])
808 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
809 disk_super->label, devid, found_transid, path);
810 else
811 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
812 disk_super->fsid, devid, found_transid, path);
813
814 } else if (!device->name || strcmp(device->name->str, path)) {
815 /*
816 * When FS is already mounted.
817 * 1. If you are here and if the device->name is NULL that
818 * means this device was missing at time of FS mount.
819 * 2. If you are here and if the device->name is different
820 * from 'path' that means either
821 * a. The same device disappeared and reappeared with
822 * different name. or
823 * b. The missing-disk-which-was-replaced, has
824 * reappeared now.
825 *
826 * We must allow 1 and 2a above. But 2b would be a spurious
827 * and unintentional.
828 *
829 * Further in case of 1 and 2a above, the disk at 'path'
830 * would have missed some transaction when it was away and
831 * in case of 2a the stale bdev has to be updated as well.
832 * 2b must not be allowed at all time.
833 */
834
835 /*
836 * For now, we do allow update to btrfs_fs_device through the
837 * btrfs dev scan cli after FS has been mounted. We're still
838 * tracking a problem where systems fail mount by subvolume id
839 * when we reject replacement on a mounted FS.
840 */
841 if (!fs_devices->opened && found_transid < device->generation) {
842 /*
843 * That is if the FS is _not_ mounted and if you
844 * are here, that means there is more than one
845 * disk with same uuid and devid.We keep the one
846 * with larger generation number or the last-in if
847 * generation are equal.
848 */
849 mutex_unlock(&fs_devices->device_list_mutex);
850 return ERR_PTR(-EEXIST);
851 }
852
853 name = rcu_string_strdup(path, GFP_NOFS);
854 if (!name) {
855 mutex_unlock(&fs_devices->device_list_mutex);
856 return ERR_PTR(-ENOMEM);
857 }
858 rcu_string_free(device->name);
859 rcu_assign_pointer(device->name, name);
860 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
861 fs_devices->missing_devices--;
862 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
863 }
864 }
865
866 /*
867 * Unmount does not free the btrfs_device struct but would zero
868 * generation along with most of the other members. So just update
869 * it back. We need it to pick the disk with largest generation
870 * (as above).
871 */
872 if (!fs_devices->opened)
873 device->generation = found_transid;
874
875 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
876
877 mutex_unlock(&fs_devices->device_list_mutex);
878 return device;
879 }
880
clone_fs_devices(struct btrfs_fs_devices * orig)881 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
882 {
883 struct btrfs_fs_devices *fs_devices;
884 struct btrfs_device *device;
885 struct btrfs_device *orig_dev;
886
887 fs_devices = alloc_fs_devices(orig->fsid);
888 if (IS_ERR(fs_devices))
889 return fs_devices;
890
891 mutex_lock(&orig->device_list_mutex);
892 fs_devices->total_devices = orig->total_devices;
893
894 /* We have held the volume lock, it is safe to get the devices. */
895 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
896 struct rcu_string *name;
897
898 device = btrfs_alloc_device(NULL, &orig_dev->devid,
899 orig_dev->uuid);
900 if (IS_ERR(device))
901 goto error;
902
903 /*
904 * This is ok to do without rcu read locked because we hold the
905 * uuid mutex so nothing we touch in here is going to disappear.
906 */
907 if (orig_dev->name) {
908 name = rcu_string_strdup(orig_dev->name->str,
909 GFP_KERNEL);
910 if (!name) {
911 btrfs_free_device(device);
912 goto error;
913 }
914 rcu_assign_pointer(device->name, name);
915 }
916
917 list_add(&device->dev_list, &fs_devices->devices);
918 device->fs_devices = fs_devices;
919 fs_devices->num_devices++;
920 }
921 mutex_unlock(&orig->device_list_mutex);
922 return fs_devices;
923 error:
924 mutex_unlock(&orig->device_list_mutex);
925 free_fs_devices(fs_devices);
926 return ERR_PTR(-ENOMEM);
927 }
928
929 /*
930 * After we have read the system tree and know devids belonging to
931 * this filesystem, remove the device which does not belong there.
932 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step)933 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
934 {
935 struct btrfs_device *device, *next;
936 struct btrfs_device *latest_dev = NULL;
937
938 mutex_lock(&uuid_mutex);
939 again:
940 /* This is the initialized path, it is safe to release the devices. */
941 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
942 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
943 &device->dev_state)) {
944 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
945 &device->dev_state) &&
946 (!latest_dev ||
947 device->generation > latest_dev->generation)) {
948 latest_dev = device;
949 }
950 continue;
951 }
952
953 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
954 /*
955 * In the first step, keep the device which has
956 * the correct fsid and the devid that is used
957 * for the dev_replace procedure.
958 * In the second step, the dev_replace state is
959 * read from the device tree and it is known
960 * whether the procedure is really active or
961 * not, which means whether this device is
962 * used or whether it should be removed.
963 */
964 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
965 &device->dev_state)) {
966 continue;
967 }
968 }
969 if (device->bdev) {
970 blkdev_put(device->bdev, device->mode);
971 device->bdev = NULL;
972 fs_devices->open_devices--;
973 }
974 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975 list_del_init(&device->dev_alloc_list);
976 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
977 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
978 &device->dev_state))
979 fs_devices->rw_devices--;
980 }
981 list_del_init(&device->dev_list);
982 fs_devices->num_devices--;
983 btrfs_free_device(device);
984 }
985
986 if (fs_devices->seed) {
987 fs_devices = fs_devices->seed;
988 goto again;
989 }
990
991 fs_devices->latest_bdev = latest_dev->bdev;
992
993 mutex_unlock(&uuid_mutex);
994 }
995
free_device_rcu(struct rcu_head * head)996 static void free_device_rcu(struct rcu_head *head)
997 {
998 struct btrfs_device *device;
999
1000 device = container_of(head, struct btrfs_device, rcu);
1001 btrfs_free_device(device);
1002 }
1003
btrfs_close_bdev(struct btrfs_device * device)1004 static void btrfs_close_bdev(struct btrfs_device *device)
1005 {
1006 if (!device->bdev)
1007 return;
1008
1009 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1010 sync_blockdev(device->bdev);
1011 invalidate_bdev(device->bdev);
1012 }
1013
1014 blkdev_put(device->bdev, device->mode);
1015 }
1016
btrfs_close_one_device(struct btrfs_device * device)1017 static void btrfs_close_one_device(struct btrfs_device *device)
1018 {
1019 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1020 struct btrfs_device *new_device;
1021 struct rcu_string *name;
1022
1023 if (device->bdev)
1024 fs_devices->open_devices--;
1025
1026 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1027 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1028 list_del_init(&device->dev_alloc_list);
1029 fs_devices->rw_devices--;
1030 }
1031
1032 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1033 fs_devices->missing_devices--;
1034
1035 btrfs_close_bdev(device);
1036
1037 new_device = btrfs_alloc_device(NULL, &device->devid,
1038 device->uuid);
1039 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1040
1041 /* Safe because we are under uuid_mutex */
1042 if (device->name) {
1043 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1044 BUG_ON(!name); /* -ENOMEM */
1045 rcu_assign_pointer(new_device->name, name);
1046 }
1047
1048 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1049 new_device->fs_devices = device->fs_devices;
1050
1051 call_rcu(&device->rcu, free_device_rcu);
1052 }
1053
close_fs_devices(struct btrfs_fs_devices * fs_devices)1054 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056 struct btrfs_device *device, *tmp;
1057
1058 if (--fs_devices->opened > 0)
1059 return 0;
1060
1061 mutex_lock(&fs_devices->device_list_mutex);
1062 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1063 btrfs_close_one_device(device);
1064 }
1065 mutex_unlock(&fs_devices->device_list_mutex);
1066
1067 WARN_ON(fs_devices->open_devices);
1068 WARN_ON(fs_devices->rw_devices);
1069 fs_devices->opened = 0;
1070 fs_devices->seeding = 0;
1071
1072 return 0;
1073 }
1074
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1075 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1076 {
1077 struct btrfs_fs_devices *seed_devices = NULL;
1078 int ret;
1079
1080 mutex_lock(&uuid_mutex);
1081 ret = close_fs_devices(fs_devices);
1082 if (!fs_devices->opened) {
1083 seed_devices = fs_devices->seed;
1084 fs_devices->seed = NULL;
1085 }
1086 mutex_unlock(&uuid_mutex);
1087
1088 while (seed_devices) {
1089 fs_devices = seed_devices;
1090 seed_devices = fs_devices->seed;
1091 close_fs_devices(fs_devices);
1092 free_fs_devices(fs_devices);
1093 }
1094 return ret;
1095 }
1096
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1097 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1098 fmode_t flags, void *holder)
1099 {
1100 struct btrfs_device *device;
1101 struct btrfs_device *latest_dev = NULL;
1102 int ret = 0;
1103
1104 flags |= FMODE_EXCL;
1105
1106 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1107 /* Just open everything we can; ignore failures here */
1108 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1109 continue;
1110
1111 if (!latest_dev ||
1112 device->generation > latest_dev->generation)
1113 latest_dev = device;
1114 }
1115 if (fs_devices->open_devices == 0) {
1116 ret = -EINVAL;
1117 goto out;
1118 }
1119 fs_devices->opened = 1;
1120 fs_devices->latest_bdev = latest_dev->bdev;
1121 fs_devices->total_rw_bytes = 0;
1122 out:
1123 return ret;
1124 }
1125
devid_cmp(void * priv,struct list_head * a,struct list_head * b)1126 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1127 {
1128 struct btrfs_device *dev1, *dev2;
1129
1130 dev1 = list_entry(a, struct btrfs_device, dev_list);
1131 dev2 = list_entry(b, struct btrfs_device, dev_list);
1132
1133 if (dev1->devid < dev2->devid)
1134 return -1;
1135 else if (dev1->devid > dev2->devid)
1136 return 1;
1137 return 0;
1138 }
1139
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1140 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1141 fmode_t flags, void *holder)
1142 {
1143 int ret;
1144
1145 lockdep_assert_held(&uuid_mutex);
1146
1147 mutex_lock(&fs_devices->device_list_mutex);
1148 if (fs_devices->opened) {
1149 fs_devices->opened++;
1150 ret = 0;
1151 } else {
1152 list_sort(NULL, &fs_devices->devices, devid_cmp);
1153 ret = open_fs_devices(fs_devices, flags, holder);
1154 }
1155 mutex_unlock(&fs_devices->device_list_mutex);
1156
1157 return ret;
1158 }
1159
btrfs_release_disk_super(struct page * page)1160 static void btrfs_release_disk_super(struct page *page)
1161 {
1162 kunmap(page);
1163 put_page(page);
1164 }
1165
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,struct page ** page,struct btrfs_super_block ** disk_super)1166 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1167 struct page **page,
1168 struct btrfs_super_block **disk_super)
1169 {
1170 void *p;
1171 pgoff_t index;
1172
1173 /* make sure our super fits in the device */
1174 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1175 return 1;
1176
1177 /* make sure our super fits in the page */
1178 if (sizeof(**disk_super) > PAGE_SIZE)
1179 return 1;
1180
1181 /* make sure our super doesn't straddle pages on disk */
1182 index = bytenr >> PAGE_SHIFT;
1183 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1184 return 1;
1185
1186 /* pull in the page with our super */
1187 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1188 index, GFP_KERNEL);
1189
1190 if (IS_ERR_OR_NULL(*page))
1191 return 1;
1192
1193 p = kmap(*page);
1194
1195 /* align our pointer to the offset of the super block */
1196 *disk_super = p + (bytenr & ~PAGE_MASK);
1197
1198 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1199 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1200 btrfs_release_disk_super(*page);
1201 return 1;
1202 }
1203
1204 if ((*disk_super)->label[0] &&
1205 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1206 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1207
1208 return 0;
1209 }
1210
1211 /*
1212 * Look for a btrfs signature on a device. This may be called out of the mount path
1213 * and we are not allowed to call set_blocksize during the scan. The superblock
1214 * is read via pagecache
1215 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1216 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1217 void *holder)
1218 {
1219 struct btrfs_super_block *disk_super;
1220 bool new_device_added = false;
1221 struct btrfs_device *device = NULL;
1222 struct block_device *bdev;
1223 struct page *page;
1224 u64 bytenr;
1225
1226 lockdep_assert_held(&uuid_mutex);
1227
1228 /*
1229 * we would like to check all the supers, but that would make
1230 * a btrfs mount succeed after a mkfs from a different FS.
1231 * So, we need to add a special mount option to scan for
1232 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1233 */
1234 bytenr = btrfs_sb_offset(0);
1235 flags |= FMODE_EXCL;
1236
1237 bdev = blkdev_get_by_path(path, flags, holder);
1238 if (IS_ERR(bdev))
1239 return ERR_CAST(bdev);
1240
1241 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1242 device = ERR_PTR(-EINVAL);
1243 goto error_bdev_put;
1244 }
1245
1246 device = device_list_add(path, disk_super, &new_device_added);
1247 if (!IS_ERR(device)) {
1248 if (new_device_added)
1249 btrfs_free_stale_devices(path, device);
1250 }
1251
1252 btrfs_release_disk_super(page);
1253
1254 error_bdev_put:
1255 blkdev_put(bdev, flags);
1256
1257 return device;
1258 }
1259
contains_pending_extent(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 * start,u64 len)1260 static int contains_pending_extent(struct btrfs_transaction *transaction,
1261 struct btrfs_device *device,
1262 u64 *start, u64 len)
1263 {
1264 struct btrfs_fs_info *fs_info = device->fs_info;
1265 struct extent_map *em;
1266 struct list_head *search_list = &fs_info->pinned_chunks;
1267 int ret = 0;
1268 u64 physical_start = *start;
1269
1270 if (transaction)
1271 search_list = &transaction->pending_chunks;
1272 again:
1273 list_for_each_entry(em, search_list, list) {
1274 struct map_lookup *map;
1275 int i;
1276
1277 map = em->map_lookup;
1278 for (i = 0; i < map->num_stripes; i++) {
1279 u64 end;
1280
1281 if (map->stripes[i].dev != device)
1282 continue;
1283 if (map->stripes[i].physical >= physical_start + len ||
1284 map->stripes[i].physical + em->orig_block_len <=
1285 physical_start)
1286 continue;
1287 /*
1288 * Make sure that while processing the pinned list we do
1289 * not override our *start with a lower value, because
1290 * we can have pinned chunks that fall within this
1291 * device hole and that have lower physical addresses
1292 * than the pending chunks we processed before. If we
1293 * do not take this special care we can end up getting
1294 * 2 pending chunks that start at the same physical
1295 * device offsets because the end offset of a pinned
1296 * chunk can be equal to the start offset of some
1297 * pending chunk.
1298 */
1299 end = map->stripes[i].physical + em->orig_block_len;
1300 if (end > *start) {
1301 *start = end;
1302 ret = 1;
1303 }
1304 }
1305 }
1306 if (search_list != &fs_info->pinned_chunks) {
1307 search_list = &fs_info->pinned_chunks;
1308 goto again;
1309 }
1310
1311 return ret;
1312 }
1313
1314
1315 /*
1316 * find_free_dev_extent_start - find free space in the specified device
1317 * @device: the device which we search the free space in
1318 * @num_bytes: the size of the free space that we need
1319 * @search_start: the position from which to begin the search
1320 * @start: store the start of the free space.
1321 * @len: the size of the free space. that we find, or the size
1322 * of the max free space if we don't find suitable free space
1323 *
1324 * this uses a pretty simple search, the expectation is that it is
1325 * called very infrequently and that a given device has a small number
1326 * of extents
1327 *
1328 * @start is used to store the start of the free space if we find. But if we
1329 * don't find suitable free space, it will be used to store the start position
1330 * of the max free space.
1331 *
1332 * @len is used to store the size of the free space that we find.
1333 * But if we don't find suitable free space, it is used to store the size of
1334 * the max free space.
1335 */
find_free_dev_extent_start(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1336 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337 struct btrfs_device *device, u64 num_bytes,
1338 u64 search_start, u64 *start, u64 *len)
1339 {
1340 struct btrfs_fs_info *fs_info = device->fs_info;
1341 struct btrfs_root *root = fs_info->dev_root;
1342 struct btrfs_key key;
1343 struct btrfs_dev_extent *dev_extent;
1344 struct btrfs_path *path;
1345 u64 hole_size;
1346 u64 max_hole_start;
1347 u64 max_hole_size;
1348 u64 extent_end;
1349 u64 search_end = device->total_bytes;
1350 int ret;
1351 int slot;
1352 struct extent_buffer *l;
1353
1354 /*
1355 * We don't want to overwrite the superblock on the drive nor any area
1356 * used by the boot loader (grub for example), so we make sure to start
1357 * at an offset of at least 1MB.
1358 */
1359 search_start = max_t(u64, search_start, SZ_1M);
1360
1361 path = btrfs_alloc_path();
1362 if (!path)
1363 return -ENOMEM;
1364
1365 max_hole_start = search_start;
1366 max_hole_size = 0;
1367
1368 again:
1369 if (search_start >= search_end ||
1370 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1371 ret = -ENOSPC;
1372 goto out;
1373 }
1374
1375 path->reada = READA_FORWARD;
1376 path->search_commit_root = 1;
1377 path->skip_locking = 1;
1378
1379 key.objectid = device->devid;
1380 key.offset = search_start;
1381 key.type = BTRFS_DEV_EXTENT_KEY;
1382
1383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384 if (ret < 0)
1385 goto out;
1386 if (ret > 0) {
1387 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388 if (ret < 0)
1389 goto out;
1390 }
1391
1392 while (1) {
1393 l = path->nodes[0];
1394 slot = path->slots[0];
1395 if (slot >= btrfs_header_nritems(l)) {
1396 ret = btrfs_next_leaf(root, path);
1397 if (ret == 0)
1398 continue;
1399 if (ret < 0)
1400 goto out;
1401
1402 break;
1403 }
1404 btrfs_item_key_to_cpu(l, &key, slot);
1405
1406 if (key.objectid < device->devid)
1407 goto next;
1408
1409 if (key.objectid > device->devid)
1410 break;
1411
1412 if (key.type != BTRFS_DEV_EXTENT_KEY)
1413 goto next;
1414
1415 if (key.offset > search_start) {
1416 hole_size = key.offset - search_start;
1417
1418 /*
1419 * Have to check before we set max_hole_start, otherwise
1420 * we could end up sending back this offset anyway.
1421 */
1422 if (contains_pending_extent(transaction, device,
1423 &search_start,
1424 hole_size)) {
1425 if (key.offset >= search_start) {
1426 hole_size = key.offset - search_start;
1427 } else {
1428 WARN_ON_ONCE(1);
1429 hole_size = 0;
1430 }
1431 }
1432
1433 if (hole_size > max_hole_size) {
1434 max_hole_start = search_start;
1435 max_hole_size = hole_size;
1436 }
1437
1438 /*
1439 * If this free space is greater than which we need,
1440 * it must be the max free space that we have found
1441 * until now, so max_hole_start must point to the start
1442 * of this free space and the length of this free space
1443 * is stored in max_hole_size. Thus, we return
1444 * max_hole_start and max_hole_size and go back to the
1445 * caller.
1446 */
1447 if (hole_size >= num_bytes) {
1448 ret = 0;
1449 goto out;
1450 }
1451 }
1452
1453 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454 extent_end = key.offset + btrfs_dev_extent_length(l,
1455 dev_extent);
1456 if (extent_end > search_start)
1457 search_start = extent_end;
1458 next:
1459 path->slots[0]++;
1460 cond_resched();
1461 }
1462
1463 /*
1464 * At this point, search_start should be the end of
1465 * allocated dev extents, and when shrinking the device,
1466 * search_end may be smaller than search_start.
1467 */
1468 if (search_end > search_start) {
1469 hole_size = search_end - search_start;
1470
1471 if (contains_pending_extent(transaction, device, &search_start,
1472 hole_size)) {
1473 btrfs_release_path(path);
1474 goto again;
1475 }
1476
1477 if (hole_size > max_hole_size) {
1478 max_hole_start = search_start;
1479 max_hole_size = hole_size;
1480 }
1481 }
1482
1483 /* See above. */
1484 if (max_hole_size < num_bytes)
1485 ret = -ENOSPC;
1486 else
1487 ret = 0;
1488
1489 out:
1490 btrfs_free_path(path);
1491 *start = max_hole_start;
1492 if (len)
1493 *len = max_hole_size;
1494 return ret;
1495 }
1496
find_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498 struct btrfs_device *device, u64 num_bytes,
1499 u64 *start, u64 *len)
1500 {
1501 /* FIXME use last free of some kind */
1502 return find_free_dev_extent_start(trans->transaction, device,
1503 num_bytes, 0, start, len);
1504 }
1505
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507 struct btrfs_device *device,
1508 u64 start, u64 *dev_extent_len)
1509 {
1510 struct btrfs_fs_info *fs_info = device->fs_info;
1511 struct btrfs_root *root = fs_info->dev_root;
1512 int ret;
1513 struct btrfs_path *path;
1514 struct btrfs_key key;
1515 struct btrfs_key found_key;
1516 struct extent_buffer *leaf = NULL;
1517 struct btrfs_dev_extent *extent = NULL;
1518
1519 path = btrfs_alloc_path();
1520 if (!path)
1521 return -ENOMEM;
1522
1523 key.objectid = device->devid;
1524 key.offset = start;
1525 key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528 if (ret > 0) {
1529 ret = btrfs_previous_item(root, path, key.objectid,
1530 BTRFS_DEV_EXTENT_KEY);
1531 if (ret)
1532 goto out;
1533 leaf = path->nodes[0];
1534 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535 extent = btrfs_item_ptr(leaf, path->slots[0],
1536 struct btrfs_dev_extent);
1537 BUG_ON(found_key.offset > start || found_key.offset +
1538 btrfs_dev_extent_length(leaf, extent) < start);
1539 key = found_key;
1540 btrfs_release_path(path);
1541 goto again;
1542 } else if (ret == 0) {
1543 leaf = path->nodes[0];
1544 extent = btrfs_item_ptr(leaf, path->slots[0],
1545 struct btrfs_dev_extent);
1546 } else {
1547 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548 goto out;
1549 }
1550
1551 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553 ret = btrfs_del_item(trans, root, path);
1554 if (ret) {
1555 btrfs_handle_fs_error(fs_info, ret,
1556 "Failed to remove dev extent item");
1557 } else {
1558 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559 }
1560 out:
1561 btrfs_free_path(path);
1562 return ret;
1563 }
1564
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566 struct btrfs_device *device,
1567 u64 chunk_offset, u64 start, u64 num_bytes)
1568 {
1569 int ret;
1570 struct btrfs_path *path;
1571 struct btrfs_fs_info *fs_info = device->fs_info;
1572 struct btrfs_root *root = fs_info->dev_root;
1573 struct btrfs_dev_extent *extent;
1574 struct extent_buffer *leaf;
1575 struct btrfs_key key;
1576
1577 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1578 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1579 path = btrfs_alloc_path();
1580 if (!path)
1581 return -ENOMEM;
1582
1583 key.objectid = device->devid;
1584 key.offset = start;
1585 key.type = BTRFS_DEV_EXTENT_KEY;
1586 ret = btrfs_insert_empty_item(trans, root, path, &key,
1587 sizeof(*extent));
1588 if (ret)
1589 goto out;
1590
1591 leaf = path->nodes[0];
1592 extent = btrfs_item_ptr(leaf, path->slots[0],
1593 struct btrfs_dev_extent);
1594 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1595 BTRFS_CHUNK_TREE_OBJECTID);
1596 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1597 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1598 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
1600 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1601 btrfs_mark_buffer_dirty(leaf);
1602 out:
1603 btrfs_free_path(path);
1604 return ret;
1605 }
1606
find_next_chunk(struct btrfs_fs_info * fs_info)1607 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1608 {
1609 struct extent_map_tree *em_tree;
1610 struct extent_map *em;
1611 struct rb_node *n;
1612 u64 ret = 0;
1613
1614 em_tree = &fs_info->mapping_tree.map_tree;
1615 read_lock(&em_tree->lock);
1616 n = rb_last(&em_tree->map);
1617 if (n) {
1618 em = rb_entry(n, struct extent_map, rb_node);
1619 ret = em->start + em->len;
1620 }
1621 read_unlock(&em_tree->lock);
1622
1623 return ret;
1624 }
1625
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1626 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1627 u64 *devid_ret)
1628 {
1629 int ret;
1630 struct btrfs_key key;
1631 struct btrfs_key found_key;
1632 struct btrfs_path *path;
1633
1634 path = btrfs_alloc_path();
1635 if (!path)
1636 return -ENOMEM;
1637
1638 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1639 key.type = BTRFS_DEV_ITEM_KEY;
1640 key.offset = (u64)-1;
1641
1642 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1643 if (ret < 0)
1644 goto error;
1645
1646 BUG_ON(ret == 0); /* Corruption */
1647
1648 ret = btrfs_previous_item(fs_info->chunk_root, path,
1649 BTRFS_DEV_ITEMS_OBJECTID,
1650 BTRFS_DEV_ITEM_KEY);
1651 if (ret) {
1652 *devid_ret = 1;
1653 } else {
1654 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1655 path->slots[0]);
1656 *devid_ret = found_key.offset + 1;
1657 }
1658 ret = 0;
1659 error:
1660 btrfs_free_path(path);
1661 return ret;
1662 }
1663
1664 /*
1665 * the device information is stored in the chunk root
1666 * the btrfs_device struct should be fully filled in
1667 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1668 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1669 struct btrfs_device *device)
1670 {
1671 int ret;
1672 struct btrfs_path *path;
1673 struct btrfs_dev_item *dev_item;
1674 struct extent_buffer *leaf;
1675 struct btrfs_key key;
1676 unsigned long ptr;
1677
1678 path = btrfs_alloc_path();
1679 if (!path)
1680 return -ENOMEM;
1681
1682 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1683 key.type = BTRFS_DEV_ITEM_KEY;
1684 key.offset = device->devid;
1685
1686 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1687 &key, sizeof(*dev_item));
1688 if (ret)
1689 goto out;
1690
1691 leaf = path->nodes[0];
1692 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1693
1694 btrfs_set_device_id(leaf, dev_item, device->devid);
1695 btrfs_set_device_generation(leaf, dev_item, 0);
1696 btrfs_set_device_type(leaf, dev_item, device->type);
1697 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1698 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1699 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1700 btrfs_set_device_total_bytes(leaf, dev_item,
1701 btrfs_device_get_disk_total_bytes(device));
1702 btrfs_set_device_bytes_used(leaf, dev_item,
1703 btrfs_device_get_bytes_used(device));
1704 btrfs_set_device_group(leaf, dev_item, 0);
1705 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1706 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1707 btrfs_set_device_start_offset(leaf, dev_item, 0);
1708
1709 ptr = btrfs_device_uuid(dev_item);
1710 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1711 ptr = btrfs_device_fsid(dev_item);
1712 write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1713 btrfs_mark_buffer_dirty(leaf);
1714
1715 ret = 0;
1716 out:
1717 btrfs_free_path(path);
1718 return ret;
1719 }
1720
1721 /*
1722 * Function to update ctime/mtime for a given device path.
1723 * Mainly used for ctime/mtime based probe like libblkid.
1724 */
update_dev_time(const char * path_name)1725 static void update_dev_time(const char *path_name)
1726 {
1727 struct file *filp;
1728
1729 filp = filp_open(path_name, O_RDWR, 0);
1730 if (IS_ERR(filp))
1731 return;
1732 file_update_time(filp);
1733 filp_close(filp, NULL);
1734 }
1735
btrfs_rm_dev_item(struct btrfs_fs_info * fs_info,struct btrfs_device * device)1736 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1737 struct btrfs_device *device)
1738 {
1739 struct btrfs_root *root = fs_info->chunk_root;
1740 int ret;
1741 struct btrfs_path *path;
1742 struct btrfs_key key;
1743 struct btrfs_trans_handle *trans;
1744
1745 path = btrfs_alloc_path();
1746 if (!path)
1747 return -ENOMEM;
1748
1749 trans = btrfs_start_transaction(root, 0);
1750 if (IS_ERR(trans)) {
1751 btrfs_free_path(path);
1752 return PTR_ERR(trans);
1753 }
1754 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1755 key.type = BTRFS_DEV_ITEM_KEY;
1756 key.offset = device->devid;
1757
1758 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1759 if (ret) {
1760 if (ret > 0)
1761 ret = -ENOENT;
1762 btrfs_abort_transaction(trans, ret);
1763 btrfs_end_transaction(trans);
1764 goto out;
1765 }
1766
1767 ret = btrfs_del_item(trans, root, path);
1768 if (ret) {
1769 btrfs_abort_transaction(trans, ret);
1770 btrfs_end_transaction(trans);
1771 }
1772
1773 out:
1774 btrfs_free_path(path);
1775 if (!ret)
1776 ret = btrfs_commit_transaction(trans);
1777 return ret;
1778 }
1779
1780 /*
1781 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782 * filesystem. It's up to the caller to adjust that number regarding eg. device
1783 * replace.
1784 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786 u64 num_devices)
1787 {
1788 u64 all_avail;
1789 unsigned seq;
1790 int i;
1791
1792 do {
1793 seq = read_seqbegin(&fs_info->profiles_lock);
1794
1795 all_avail = fs_info->avail_data_alloc_bits |
1796 fs_info->avail_system_alloc_bits |
1797 fs_info->avail_metadata_alloc_bits;
1798 } while (read_seqretry(&fs_info->profiles_lock, seq));
1799
1800 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1802 continue;
1803
1804 if (num_devices < btrfs_raid_array[i].devs_min) {
1805 int ret = btrfs_raid_array[i].mindev_error;
1806
1807 if (ret)
1808 return ret;
1809 }
1810 }
1811
1812 return 0;
1813 }
1814
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1815 static struct btrfs_device * btrfs_find_next_active_device(
1816 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1817 {
1818 struct btrfs_device *next_device;
1819
1820 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821 if (next_device != device &&
1822 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1823 && next_device->bdev)
1824 return next_device;
1825 }
1826
1827 return NULL;
1828 }
1829
1830 /*
1831 * Helper function to check if the given device is part of s_bdev / latest_bdev
1832 * and replace it with the provided or the next active device, in the context
1833 * where this function called, there should be always be another device (or
1834 * this_dev) which is active.
1835 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * this_dev)1836 void btrfs_assign_next_active_device(struct btrfs_device *device,
1837 struct btrfs_device *this_dev)
1838 {
1839 struct btrfs_fs_info *fs_info = device->fs_info;
1840 struct btrfs_device *next_device;
1841
1842 if (this_dev)
1843 next_device = this_dev;
1844 else
1845 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1846 device);
1847 ASSERT(next_device);
1848
1849 if (fs_info->sb->s_bdev &&
1850 (fs_info->sb->s_bdev == device->bdev))
1851 fs_info->sb->s_bdev = next_device->bdev;
1852
1853 if (fs_info->fs_devices->latest_bdev == device->bdev)
1854 fs_info->fs_devices->latest_bdev = next_device->bdev;
1855 }
1856
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid)1857 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1858 u64 devid)
1859 {
1860 struct btrfs_device *device;
1861 struct btrfs_fs_devices *cur_devices;
1862 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1863 u64 num_devices;
1864 int ret = 0;
1865
1866 mutex_lock(&uuid_mutex);
1867
1868 num_devices = fs_devices->num_devices;
1869 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1870 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1871 WARN_ON(num_devices < 1);
1872 num_devices--;
1873 }
1874 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1875
1876 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1877 if (ret)
1878 goto out;
1879
1880 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1881 &device);
1882 if (ret)
1883 goto out;
1884
1885 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1886 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1887 goto out;
1888 }
1889
1890 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1891 fs_info->fs_devices->rw_devices == 1) {
1892 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1893 goto out;
1894 }
1895
1896 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1897 mutex_lock(&fs_info->chunk_mutex);
1898 list_del_init(&device->dev_alloc_list);
1899 device->fs_devices->rw_devices--;
1900 mutex_unlock(&fs_info->chunk_mutex);
1901 }
1902
1903 mutex_unlock(&uuid_mutex);
1904 ret = btrfs_shrink_device(device, 0);
1905 mutex_lock(&uuid_mutex);
1906 if (ret)
1907 goto error_undo;
1908
1909 /*
1910 * TODO: the superblock still includes this device in its num_devices
1911 * counter although write_all_supers() is not locked out. This
1912 * could give a filesystem state which requires a degraded mount.
1913 */
1914 ret = btrfs_rm_dev_item(fs_info, device);
1915 if (ret)
1916 goto error_undo;
1917
1918 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1919 btrfs_scrub_cancel_dev(fs_info, device);
1920
1921 /*
1922 * the device list mutex makes sure that we don't change
1923 * the device list while someone else is writing out all
1924 * the device supers. Whoever is writing all supers, should
1925 * lock the device list mutex before getting the number of
1926 * devices in the super block (super_copy). Conversely,
1927 * whoever updates the number of devices in the super block
1928 * (super_copy) should hold the device list mutex.
1929 */
1930
1931 /*
1932 * In normal cases the cur_devices == fs_devices. But in case
1933 * of deleting a seed device, the cur_devices should point to
1934 * its own fs_devices listed under the fs_devices->seed.
1935 */
1936 cur_devices = device->fs_devices;
1937 mutex_lock(&fs_devices->device_list_mutex);
1938 list_del_rcu(&device->dev_list);
1939
1940 cur_devices->num_devices--;
1941 cur_devices->total_devices--;
1942 /* Update total_devices of the parent fs_devices if it's seed */
1943 if (cur_devices != fs_devices)
1944 fs_devices->total_devices--;
1945
1946 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1947 cur_devices->missing_devices--;
1948
1949 btrfs_assign_next_active_device(device, NULL);
1950
1951 if (device->bdev) {
1952 cur_devices->open_devices--;
1953 /* remove sysfs entry */
1954 btrfs_sysfs_rm_device_link(fs_devices, device);
1955 }
1956
1957 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1958 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1959 mutex_unlock(&fs_devices->device_list_mutex);
1960
1961 /*
1962 * at this point, the device is zero sized and detached from
1963 * the devices list. All that's left is to zero out the old
1964 * supers and free the device.
1965 */
1966 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1967 btrfs_scratch_superblocks(device->bdev, device->name->str);
1968
1969 btrfs_close_bdev(device);
1970 call_rcu(&device->rcu, free_device_rcu);
1971
1972 if (cur_devices->open_devices == 0) {
1973 while (fs_devices) {
1974 if (fs_devices->seed == cur_devices) {
1975 fs_devices->seed = cur_devices->seed;
1976 break;
1977 }
1978 fs_devices = fs_devices->seed;
1979 }
1980 cur_devices->seed = NULL;
1981 close_fs_devices(cur_devices);
1982 free_fs_devices(cur_devices);
1983 }
1984
1985 out:
1986 mutex_unlock(&uuid_mutex);
1987 return ret;
1988
1989 error_undo:
1990 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1991 mutex_lock(&fs_info->chunk_mutex);
1992 list_add(&device->dev_alloc_list,
1993 &fs_devices->alloc_list);
1994 device->fs_devices->rw_devices++;
1995 mutex_unlock(&fs_info->chunk_mutex);
1996 }
1997 goto out;
1998 }
1999
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2000 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2001 {
2002 struct btrfs_fs_devices *fs_devices;
2003
2004 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2005
2006 /*
2007 * in case of fs with no seed, srcdev->fs_devices will point
2008 * to fs_devices of fs_info. However when the dev being replaced is
2009 * a seed dev it will point to the seed's local fs_devices. In short
2010 * srcdev will have its correct fs_devices in both the cases.
2011 */
2012 fs_devices = srcdev->fs_devices;
2013
2014 list_del_rcu(&srcdev->dev_list);
2015 list_del(&srcdev->dev_alloc_list);
2016 fs_devices->num_devices--;
2017 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2018 fs_devices->missing_devices--;
2019
2020 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2021 fs_devices->rw_devices--;
2022
2023 if (srcdev->bdev)
2024 fs_devices->open_devices--;
2025 }
2026
btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)2027 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2028 struct btrfs_device *srcdev)
2029 {
2030 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2031
2032 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2033 /* zero out the old super if it is writable */
2034 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2035 }
2036
2037 btrfs_close_bdev(srcdev);
2038 call_rcu(&srcdev->rcu, free_device_rcu);
2039
2040 /* if this is no devs we rather delete the fs_devices */
2041 if (!fs_devices->num_devices) {
2042 struct btrfs_fs_devices *tmp_fs_devices;
2043
2044 /*
2045 * On a mounted FS, num_devices can't be zero unless it's a
2046 * seed. In case of a seed device being replaced, the replace
2047 * target added to the sprout FS, so there will be no more
2048 * device left under the seed FS.
2049 */
2050 ASSERT(fs_devices->seeding);
2051
2052 tmp_fs_devices = fs_info->fs_devices;
2053 while (tmp_fs_devices) {
2054 if (tmp_fs_devices->seed == fs_devices) {
2055 tmp_fs_devices->seed = fs_devices->seed;
2056 break;
2057 }
2058 tmp_fs_devices = tmp_fs_devices->seed;
2059 }
2060 fs_devices->seed = NULL;
2061 close_fs_devices(fs_devices);
2062 free_fs_devices(fs_devices);
2063 }
2064 }
2065
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2066 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2067 {
2068 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2069
2070 WARN_ON(!tgtdev);
2071 mutex_lock(&fs_devices->device_list_mutex);
2072
2073 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2074
2075 if (tgtdev->bdev)
2076 fs_devices->open_devices--;
2077
2078 fs_devices->num_devices--;
2079
2080 btrfs_assign_next_active_device(tgtdev, NULL);
2081
2082 list_del_rcu(&tgtdev->dev_list);
2083
2084 mutex_unlock(&fs_devices->device_list_mutex);
2085
2086 /*
2087 * The update_dev_time() with in btrfs_scratch_superblocks()
2088 * may lead to a call to btrfs_show_devname() which will try
2089 * to hold device_list_mutex. And here this device
2090 * is already out of device list, so we don't have to hold
2091 * the device_list_mutex lock.
2092 */
2093 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2094
2095 btrfs_close_bdev(tgtdev);
2096 call_rcu(&tgtdev->rcu, free_device_rcu);
2097 }
2098
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path,struct btrfs_device ** device)2099 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2100 const char *device_path,
2101 struct btrfs_device **device)
2102 {
2103 int ret = 0;
2104 struct btrfs_super_block *disk_super;
2105 u64 devid;
2106 u8 *dev_uuid;
2107 struct block_device *bdev;
2108 struct buffer_head *bh;
2109
2110 *device = NULL;
2111 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2112 fs_info->bdev_holder, 0, &bdev, &bh);
2113 if (ret)
2114 return ret;
2115 disk_super = (struct btrfs_super_block *)bh->b_data;
2116 devid = btrfs_stack_device_id(&disk_super->dev_item);
2117 dev_uuid = disk_super->dev_item.uuid;
2118 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2119 brelse(bh);
2120 if (!*device)
2121 ret = -ENOENT;
2122 blkdev_put(bdev, FMODE_READ);
2123 return ret;
2124 }
2125
btrfs_find_device_missing_or_by_path(struct btrfs_fs_info * fs_info,const char * device_path,struct btrfs_device ** device)2126 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2127 const char *device_path,
2128 struct btrfs_device **device)
2129 {
2130 *device = NULL;
2131 if (strcmp(device_path, "missing") == 0) {
2132 struct list_head *devices;
2133 struct btrfs_device *tmp;
2134
2135 devices = &fs_info->fs_devices->devices;
2136 list_for_each_entry(tmp, devices, dev_list) {
2137 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2138 &tmp->dev_state) && !tmp->bdev) {
2139 *device = tmp;
2140 break;
2141 }
2142 }
2143
2144 if (!*device)
2145 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2146
2147 return 0;
2148 } else {
2149 return btrfs_find_device_by_path(fs_info, device_path, device);
2150 }
2151 }
2152
2153 /*
2154 * Lookup a device given by device id, or the path if the id is 0.
2155 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * devpath,struct btrfs_device ** device)2156 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2157 const char *devpath,
2158 struct btrfs_device **device)
2159 {
2160 int ret;
2161
2162 if (devid) {
2163 ret = 0;
2164 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2165 if (!*device)
2166 ret = -ENOENT;
2167 } else {
2168 if (!devpath || !devpath[0])
2169 return -EINVAL;
2170
2171 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2172 device);
2173 }
2174 return ret;
2175 }
2176
2177 /*
2178 * does all the dirty work required for changing file system's UUID.
2179 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2180 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2181 {
2182 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2183 struct btrfs_fs_devices *old_devices;
2184 struct btrfs_fs_devices *seed_devices;
2185 struct btrfs_super_block *disk_super = fs_info->super_copy;
2186 struct btrfs_device *device;
2187 u64 super_flags;
2188
2189 lockdep_assert_held(&uuid_mutex);
2190 if (!fs_devices->seeding)
2191 return -EINVAL;
2192
2193 seed_devices = alloc_fs_devices(NULL);
2194 if (IS_ERR(seed_devices))
2195 return PTR_ERR(seed_devices);
2196
2197 old_devices = clone_fs_devices(fs_devices);
2198 if (IS_ERR(old_devices)) {
2199 kfree(seed_devices);
2200 return PTR_ERR(old_devices);
2201 }
2202
2203 list_add(&old_devices->fs_list, &fs_uuids);
2204
2205 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2206 seed_devices->opened = 1;
2207 INIT_LIST_HEAD(&seed_devices->devices);
2208 INIT_LIST_HEAD(&seed_devices->alloc_list);
2209 mutex_init(&seed_devices->device_list_mutex);
2210
2211 mutex_lock(&fs_devices->device_list_mutex);
2212 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2213 synchronize_rcu);
2214 list_for_each_entry(device, &seed_devices->devices, dev_list)
2215 device->fs_devices = seed_devices;
2216
2217 mutex_lock(&fs_info->chunk_mutex);
2218 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2219 mutex_unlock(&fs_info->chunk_mutex);
2220
2221 fs_devices->seeding = 0;
2222 fs_devices->num_devices = 0;
2223 fs_devices->open_devices = 0;
2224 fs_devices->missing_devices = 0;
2225 fs_devices->rotating = 0;
2226 fs_devices->seed = seed_devices;
2227
2228 generate_random_uuid(fs_devices->fsid);
2229 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231 mutex_unlock(&fs_devices->device_list_mutex);
2232
2233 super_flags = btrfs_super_flags(disk_super) &
2234 ~BTRFS_SUPER_FLAG_SEEDING;
2235 btrfs_set_super_flags(disk_super, super_flags);
2236
2237 return 0;
2238 }
2239
2240 /*
2241 * Store the expected generation for seed devices in device items.
2242 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2243 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2244 struct btrfs_fs_info *fs_info)
2245 {
2246 struct btrfs_root *root = fs_info->chunk_root;
2247 struct btrfs_path *path;
2248 struct extent_buffer *leaf;
2249 struct btrfs_dev_item *dev_item;
2250 struct btrfs_device *device;
2251 struct btrfs_key key;
2252 u8 fs_uuid[BTRFS_FSID_SIZE];
2253 u8 dev_uuid[BTRFS_UUID_SIZE];
2254 u64 devid;
2255 int ret;
2256
2257 path = btrfs_alloc_path();
2258 if (!path)
2259 return -ENOMEM;
2260
2261 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2262 key.offset = 0;
2263 key.type = BTRFS_DEV_ITEM_KEY;
2264
2265 while (1) {
2266 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2267 if (ret < 0)
2268 goto error;
2269
2270 leaf = path->nodes[0];
2271 next_slot:
2272 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2273 ret = btrfs_next_leaf(root, path);
2274 if (ret > 0)
2275 break;
2276 if (ret < 0)
2277 goto error;
2278 leaf = path->nodes[0];
2279 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2280 btrfs_release_path(path);
2281 continue;
2282 }
2283
2284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2285 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2286 key.type != BTRFS_DEV_ITEM_KEY)
2287 break;
2288
2289 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2290 struct btrfs_dev_item);
2291 devid = btrfs_device_id(leaf, dev_item);
2292 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2293 BTRFS_UUID_SIZE);
2294 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2295 BTRFS_FSID_SIZE);
2296 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2297 BUG_ON(!device); /* Logic error */
2298
2299 if (device->fs_devices->seeding) {
2300 btrfs_set_device_generation(leaf, dev_item,
2301 device->generation);
2302 btrfs_mark_buffer_dirty(leaf);
2303 }
2304
2305 path->slots[0]++;
2306 goto next_slot;
2307 }
2308 ret = 0;
2309 error:
2310 btrfs_free_path(path);
2311 return ret;
2312 }
2313
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2314 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2315 {
2316 struct btrfs_root *root = fs_info->dev_root;
2317 struct request_queue *q;
2318 struct btrfs_trans_handle *trans;
2319 struct btrfs_device *device;
2320 struct block_device *bdev;
2321 struct super_block *sb = fs_info->sb;
2322 struct rcu_string *name;
2323 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2324 u64 orig_super_total_bytes;
2325 u64 orig_super_num_devices;
2326 int seeding_dev = 0;
2327 int ret = 0;
2328 bool unlocked = false;
2329
2330 if (sb_rdonly(sb) && !fs_devices->seeding)
2331 return -EROFS;
2332
2333 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2334 fs_info->bdev_holder);
2335 if (IS_ERR(bdev))
2336 return PTR_ERR(bdev);
2337
2338 if (fs_devices->seeding) {
2339 seeding_dev = 1;
2340 down_write(&sb->s_umount);
2341 mutex_lock(&uuid_mutex);
2342 }
2343
2344 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2345
2346 mutex_lock(&fs_devices->device_list_mutex);
2347 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2348 if (device->bdev == bdev) {
2349 ret = -EEXIST;
2350 mutex_unlock(
2351 &fs_devices->device_list_mutex);
2352 goto error;
2353 }
2354 }
2355 mutex_unlock(&fs_devices->device_list_mutex);
2356
2357 device = btrfs_alloc_device(fs_info, NULL, NULL);
2358 if (IS_ERR(device)) {
2359 /* we can safely leave the fs_devices entry around */
2360 ret = PTR_ERR(device);
2361 goto error;
2362 }
2363
2364 name = rcu_string_strdup(device_path, GFP_KERNEL);
2365 if (!name) {
2366 ret = -ENOMEM;
2367 goto error_free_device;
2368 }
2369 rcu_assign_pointer(device->name, name);
2370
2371 trans = btrfs_start_transaction(root, 0);
2372 if (IS_ERR(trans)) {
2373 ret = PTR_ERR(trans);
2374 goto error_free_device;
2375 }
2376
2377 q = bdev_get_queue(bdev);
2378 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2379 device->generation = trans->transid;
2380 device->io_width = fs_info->sectorsize;
2381 device->io_align = fs_info->sectorsize;
2382 device->sector_size = fs_info->sectorsize;
2383 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2384 fs_info->sectorsize);
2385 device->disk_total_bytes = device->total_bytes;
2386 device->commit_total_bytes = device->total_bytes;
2387 device->fs_info = fs_info;
2388 device->bdev = bdev;
2389 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2390 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2391 device->mode = FMODE_EXCL;
2392 device->dev_stats_valid = 1;
2393 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2394
2395 if (seeding_dev) {
2396 sb->s_flags &= ~SB_RDONLY;
2397 ret = btrfs_prepare_sprout(fs_info);
2398 if (ret) {
2399 btrfs_abort_transaction(trans, ret);
2400 goto error_trans;
2401 }
2402 }
2403
2404 device->fs_devices = fs_devices;
2405
2406 mutex_lock(&fs_devices->device_list_mutex);
2407 mutex_lock(&fs_info->chunk_mutex);
2408 list_add_rcu(&device->dev_list, &fs_devices->devices);
2409 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2410 fs_devices->num_devices++;
2411 fs_devices->open_devices++;
2412 fs_devices->rw_devices++;
2413 fs_devices->total_devices++;
2414 fs_devices->total_rw_bytes += device->total_bytes;
2415
2416 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2417
2418 if (!blk_queue_nonrot(q))
2419 fs_devices->rotating = 1;
2420
2421 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2422 btrfs_set_super_total_bytes(fs_info->super_copy,
2423 round_down(orig_super_total_bytes + device->total_bytes,
2424 fs_info->sectorsize));
2425
2426 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2427 btrfs_set_super_num_devices(fs_info->super_copy,
2428 orig_super_num_devices + 1);
2429
2430 /* add sysfs device entry */
2431 btrfs_sysfs_add_device_link(fs_devices, device);
2432
2433 /*
2434 * we've got more storage, clear any full flags on the space
2435 * infos
2436 */
2437 btrfs_clear_space_info_full(fs_info);
2438
2439 mutex_unlock(&fs_info->chunk_mutex);
2440 mutex_unlock(&fs_devices->device_list_mutex);
2441
2442 if (seeding_dev) {
2443 mutex_lock(&fs_info->chunk_mutex);
2444 ret = init_first_rw_device(trans, fs_info);
2445 mutex_unlock(&fs_info->chunk_mutex);
2446 if (ret) {
2447 btrfs_abort_transaction(trans, ret);
2448 goto error_sysfs;
2449 }
2450 }
2451
2452 ret = btrfs_add_dev_item(trans, device);
2453 if (ret) {
2454 btrfs_abort_transaction(trans, ret);
2455 goto error_sysfs;
2456 }
2457
2458 if (seeding_dev) {
2459 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2460
2461 ret = btrfs_finish_sprout(trans, fs_info);
2462 if (ret) {
2463 btrfs_abort_transaction(trans, ret);
2464 goto error_sysfs;
2465 }
2466
2467 /* Sprouting would change fsid of the mounted root,
2468 * so rename the fsid on the sysfs
2469 */
2470 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2471 fs_info->fsid);
2472 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2473 btrfs_warn(fs_info,
2474 "sysfs: failed to create fsid for sprout");
2475 }
2476
2477 ret = btrfs_commit_transaction(trans);
2478
2479 if (seeding_dev) {
2480 mutex_unlock(&uuid_mutex);
2481 up_write(&sb->s_umount);
2482 unlocked = true;
2483
2484 if (ret) /* transaction commit */
2485 return ret;
2486
2487 ret = btrfs_relocate_sys_chunks(fs_info);
2488 if (ret < 0)
2489 btrfs_handle_fs_error(fs_info, ret,
2490 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2491 trans = btrfs_attach_transaction(root);
2492 if (IS_ERR(trans)) {
2493 if (PTR_ERR(trans) == -ENOENT)
2494 return 0;
2495 ret = PTR_ERR(trans);
2496 trans = NULL;
2497 goto error_sysfs;
2498 }
2499 ret = btrfs_commit_transaction(trans);
2500 }
2501
2502 /* Update ctime/mtime for libblkid */
2503 update_dev_time(device_path);
2504 return ret;
2505
2506 error_sysfs:
2507 btrfs_sysfs_rm_device_link(fs_devices, device);
2508 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2509 mutex_lock(&fs_info->chunk_mutex);
2510 list_del_rcu(&device->dev_list);
2511 list_del(&device->dev_alloc_list);
2512 fs_info->fs_devices->num_devices--;
2513 fs_info->fs_devices->open_devices--;
2514 fs_info->fs_devices->rw_devices--;
2515 fs_info->fs_devices->total_devices--;
2516 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2517 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2518 btrfs_set_super_total_bytes(fs_info->super_copy,
2519 orig_super_total_bytes);
2520 btrfs_set_super_num_devices(fs_info->super_copy,
2521 orig_super_num_devices);
2522 mutex_unlock(&fs_info->chunk_mutex);
2523 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2524 error_trans:
2525 if (seeding_dev)
2526 sb->s_flags |= SB_RDONLY;
2527 if (trans)
2528 btrfs_end_transaction(trans);
2529 error_free_device:
2530 btrfs_free_device(device);
2531 error:
2532 blkdev_put(bdev, FMODE_EXCL);
2533 if (seeding_dev && !unlocked) {
2534 mutex_unlock(&uuid_mutex);
2535 up_write(&sb->s_umount);
2536 }
2537 return ret;
2538 }
2539
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2540 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2541 struct btrfs_device *device)
2542 {
2543 int ret;
2544 struct btrfs_path *path;
2545 struct btrfs_root *root = device->fs_info->chunk_root;
2546 struct btrfs_dev_item *dev_item;
2547 struct extent_buffer *leaf;
2548 struct btrfs_key key;
2549
2550 path = btrfs_alloc_path();
2551 if (!path)
2552 return -ENOMEM;
2553
2554 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2555 key.type = BTRFS_DEV_ITEM_KEY;
2556 key.offset = device->devid;
2557
2558 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2559 if (ret < 0)
2560 goto out;
2561
2562 if (ret > 0) {
2563 ret = -ENOENT;
2564 goto out;
2565 }
2566
2567 leaf = path->nodes[0];
2568 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2569
2570 btrfs_set_device_id(leaf, dev_item, device->devid);
2571 btrfs_set_device_type(leaf, dev_item, device->type);
2572 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2573 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2574 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2575 btrfs_set_device_total_bytes(leaf, dev_item,
2576 btrfs_device_get_disk_total_bytes(device));
2577 btrfs_set_device_bytes_used(leaf, dev_item,
2578 btrfs_device_get_bytes_used(device));
2579 btrfs_mark_buffer_dirty(leaf);
2580
2581 out:
2582 btrfs_free_path(path);
2583 return ret;
2584 }
2585
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2586 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2587 struct btrfs_device *device, u64 new_size)
2588 {
2589 struct btrfs_fs_info *fs_info = device->fs_info;
2590 struct btrfs_super_block *super_copy = fs_info->super_copy;
2591 struct btrfs_fs_devices *fs_devices;
2592 u64 old_total;
2593 u64 diff;
2594
2595 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2596 return -EACCES;
2597
2598 new_size = round_down(new_size, fs_info->sectorsize);
2599
2600 mutex_lock(&fs_info->chunk_mutex);
2601 old_total = btrfs_super_total_bytes(super_copy);
2602 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2603
2604 if (new_size <= device->total_bytes ||
2605 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2606 mutex_unlock(&fs_info->chunk_mutex);
2607 return -EINVAL;
2608 }
2609
2610 fs_devices = fs_info->fs_devices;
2611
2612 btrfs_set_super_total_bytes(super_copy,
2613 round_down(old_total + diff, fs_info->sectorsize));
2614 device->fs_devices->total_rw_bytes += diff;
2615
2616 btrfs_device_set_total_bytes(device, new_size);
2617 btrfs_device_set_disk_total_bytes(device, new_size);
2618 btrfs_clear_space_info_full(device->fs_info);
2619 if (list_empty(&device->resized_list))
2620 list_add_tail(&device->resized_list,
2621 &fs_devices->resized_devices);
2622 mutex_unlock(&fs_info->chunk_mutex);
2623
2624 return btrfs_update_device(trans, device);
2625 }
2626
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2627 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2628 {
2629 struct btrfs_fs_info *fs_info = trans->fs_info;
2630 struct btrfs_root *root = fs_info->chunk_root;
2631 int ret;
2632 struct btrfs_path *path;
2633 struct btrfs_key key;
2634
2635 path = btrfs_alloc_path();
2636 if (!path)
2637 return -ENOMEM;
2638
2639 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2640 key.offset = chunk_offset;
2641 key.type = BTRFS_CHUNK_ITEM_KEY;
2642
2643 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2644 if (ret < 0)
2645 goto out;
2646 else if (ret > 0) { /* Logic error or corruption */
2647 btrfs_handle_fs_error(fs_info, -ENOENT,
2648 "Failed lookup while freeing chunk.");
2649 ret = -ENOENT;
2650 goto out;
2651 }
2652
2653 ret = btrfs_del_item(trans, root, path);
2654 if (ret < 0)
2655 btrfs_handle_fs_error(fs_info, ret,
2656 "Failed to delete chunk item.");
2657 out:
2658 btrfs_free_path(path);
2659 return ret;
2660 }
2661
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2662 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2663 {
2664 struct btrfs_super_block *super_copy = fs_info->super_copy;
2665 struct btrfs_disk_key *disk_key;
2666 struct btrfs_chunk *chunk;
2667 u8 *ptr;
2668 int ret = 0;
2669 u32 num_stripes;
2670 u32 array_size;
2671 u32 len = 0;
2672 u32 cur;
2673 struct btrfs_key key;
2674
2675 mutex_lock(&fs_info->chunk_mutex);
2676 array_size = btrfs_super_sys_array_size(super_copy);
2677
2678 ptr = super_copy->sys_chunk_array;
2679 cur = 0;
2680
2681 while (cur < array_size) {
2682 disk_key = (struct btrfs_disk_key *)ptr;
2683 btrfs_disk_key_to_cpu(&key, disk_key);
2684
2685 len = sizeof(*disk_key);
2686
2687 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2688 chunk = (struct btrfs_chunk *)(ptr + len);
2689 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2690 len += btrfs_chunk_item_size(num_stripes);
2691 } else {
2692 ret = -EIO;
2693 break;
2694 }
2695 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2696 key.offset == chunk_offset) {
2697 memmove(ptr, ptr + len, array_size - (cur + len));
2698 array_size -= len;
2699 btrfs_set_super_sys_array_size(super_copy, array_size);
2700 } else {
2701 ptr += len;
2702 cur += len;
2703 }
2704 }
2705 mutex_unlock(&fs_info->chunk_mutex);
2706 return ret;
2707 }
2708
get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2709 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2710 u64 logical, u64 length)
2711 {
2712 struct extent_map_tree *em_tree;
2713 struct extent_map *em;
2714
2715 em_tree = &fs_info->mapping_tree.map_tree;
2716 read_lock(&em_tree->lock);
2717 em = lookup_extent_mapping(em_tree, logical, length);
2718 read_unlock(&em_tree->lock);
2719
2720 if (!em) {
2721 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2722 logical, length);
2723 return ERR_PTR(-EINVAL);
2724 }
2725
2726 if (em->start > logical || em->start + em->len < logical) {
2727 btrfs_crit(fs_info,
2728 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2729 logical, length, em->start, em->start + em->len);
2730 free_extent_map(em);
2731 return ERR_PTR(-EINVAL);
2732 }
2733
2734 /* callers are responsible for dropping em's ref. */
2735 return em;
2736 }
2737
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2738 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2739 {
2740 struct btrfs_fs_info *fs_info = trans->fs_info;
2741 struct extent_map *em;
2742 struct map_lookup *map;
2743 u64 dev_extent_len = 0;
2744 int i, ret = 0;
2745 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2746
2747 em = get_chunk_map(fs_info, chunk_offset, 1);
2748 if (IS_ERR(em)) {
2749 /*
2750 * This is a logic error, but we don't want to just rely on the
2751 * user having built with ASSERT enabled, so if ASSERT doesn't
2752 * do anything we still error out.
2753 */
2754 ASSERT(0);
2755 return PTR_ERR(em);
2756 }
2757 map = em->map_lookup;
2758 mutex_lock(&fs_info->chunk_mutex);
2759 check_system_chunk(trans, map->type);
2760 mutex_unlock(&fs_info->chunk_mutex);
2761
2762 /*
2763 * Take the device list mutex to prevent races with the final phase of
2764 * a device replace operation that replaces the device object associated
2765 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2766 */
2767 mutex_lock(&fs_devices->device_list_mutex);
2768 for (i = 0; i < map->num_stripes; i++) {
2769 struct btrfs_device *device = map->stripes[i].dev;
2770 ret = btrfs_free_dev_extent(trans, device,
2771 map->stripes[i].physical,
2772 &dev_extent_len);
2773 if (ret) {
2774 mutex_unlock(&fs_devices->device_list_mutex);
2775 btrfs_abort_transaction(trans, ret);
2776 goto out;
2777 }
2778
2779 if (device->bytes_used > 0) {
2780 mutex_lock(&fs_info->chunk_mutex);
2781 btrfs_device_set_bytes_used(device,
2782 device->bytes_used - dev_extent_len);
2783 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2784 btrfs_clear_space_info_full(fs_info);
2785 mutex_unlock(&fs_info->chunk_mutex);
2786 }
2787
2788 if (map->stripes[i].dev) {
2789 ret = btrfs_update_device(trans, map->stripes[i].dev);
2790 if (ret) {
2791 mutex_unlock(&fs_devices->device_list_mutex);
2792 btrfs_abort_transaction(trans, ret);
2793 goto out;
2794 }
2795 }
2796 }
2797 mutex_unlock(&fs_devices->device_list_mutex);
2798
2799 ret = btrfs_free_chunk(trans, chunk_offset);
2800 if (ret) {
2801 btrfs_abort_transaction(trans, ret);
2802 goto out;
2803 }
2804
2805 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2806
2807 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2808 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2809 if (ret) {
2810 btrfs_abort_transaction(trans, ret);
2811 goto out;
2812 }
2813 }
2814
2815 ret = btrfs_remove_block_group(trans, chunk_offset, em);
2816 if (ret) {
2817 btrfs_abort_transaction(trans, ret);
2818 goto out;
2819 }
2820
2821 out:
2822 /* once for us */
2823 free_extent_map(em);
2824 return ret;
2825 }
2826
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2827 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2828 {
2829 struct btrfs_root *root = fs_info->chunk_root;
2830 struct btrfs_trans_handle *trans;
2831 int ret;
2832
2833 /*
2834 * Prevent races with automatic removal of unused block groups.
2835 * After we relocate and before we remove the chunk with offset
2836 * chunk_offset, automatic removal of the block group can kick in,
2837 * resulting in a failure when calling btrfs_remove_chunk() below.
2838 *
2839 * Make sure to acquire this mutex before doing a tree search (dev
2840 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2841 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2842 * we release the path used to search the chunk/dev tree and before
2843 * the current task acquires this mutex and calls us.
2844 */
2845 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2846
2847 ret = btrfs_can_relocate(fs_info, chunk_offset);
2848 if (ret)
2849 return -ENOSPC;
2850
2851 /* step one, relocate all the extents inside this chunk */
2852 btrfs_scrub_pause(fs_info);
2853 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2854 btrfs_scrub_continue(fs_info);
2855 if (ret)
2856 return ret;
2857
2858 /*
2859 * We add the kobjects here (and after forcing data chunk creation)
2860 * since relocation is the only place we'll create chunks of a new
2861 * type at runtime. The only place where we'll remove the last
2862 * chunk of a type is the call immediately below this one. Even
2863 * so, we're protected against races with the cleaner thread since
2864 * we're covered by the delete_unused_bgs_mutex.
2865 */
2866 btrfs_add_raid_kobjects(fs_info);
2867
2868 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2869 chunk_offset);
2870 if (IS_ERR(trans)) {
2871 ret = PTR_ERR(trans);
2872 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2873 return ret;
2874 }
2875
2876 /*
2877 * step two, delete the device extents and the
2878 * chunk tree entries
2879 */
2880 ret = btrfs_remove_chunk(trans, chunk_offset);
2881 btrfs_end_transaction(trans);
2882 return ret;
2883 }
2884
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)2885 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2886 {
2887 struct btrfs_root *chunk_root = fs_info->chunk_root;
2888 struct btrfs_path *path;
2889 struct extent_buffer *leaf;
2890 struct btrfs_chunk *chunk;
2891 struct btrfs_key key;
2892 struct btrfs_key found_key;
2893 u64 chunk_type;
2894 bool retried = false;
2895 int failed = 0;
2896 int ret;
2897
2898 path = btrfs_alloc_path();
2899 if (!path)
2900 return -ENOMEM;
2901
2902 again:
2903 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2904 key.offset = (u64)-1;
2905 key.type = BTRFS_CHUNK_ITEM_KEY;
2906
2907 while (1) {
2908 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2909 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2910 if (ret < 0) {
2911 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2912 goto error;
2913 }
2914 BUG_ON(ret == 0); /* Corruption */
2915
2916 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2917 key.type);
2918 if (ret)
2919 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2920 if (ret < 0)
2921 goto error;
2922 if (ret > 0)
2923 break;
2924
2925 leaf = path->nodes[0];
2926 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2927
2928 chunk = btrfs_item_ptr(leaf, path->slots[0],
2929 struct btrfs_chunk);
2930 chunk_type = btrfs_chunk_type(leaf, chunk);
2931 btrfs_release_path(path);
2932
2933 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2934 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2935 if (ret == -ENOSPC)
2936 failed++;
2937 else
2938 BUG_ON(ret);
2939 }
2940 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2941
2942 if (found_key.offset == 0)
2943 break;
2944 key.offset = found_key.offset - 1;
2945 }
2946 ret = 0;
2947 if (failed && !retried) {
2948 failed = 0;
2949 retried = true;
2950 goto again;
2951 } else if (WARN_ON(failed && retried)) {
2952 ret = -ENOSPC;
2953 }
2954 error:
2955 btrfs_free_path(path);
2956 return ret;
2957 }
2958
2959 /*
2960 * return 1 : allocate a data chunk successfully,
2961 * return <0: errors during allocating a data chunk,
2962 * return 0 : no need to allocate a data chunk.
2963 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2964 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2965 u64 chunk_offset)
2966 {
2967 struct btrfs_block_group_cache *cache;
2968 u64 bytes_used;
2969 u64 chunk_type;
2970
2971 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2972 ASSERT(cache);
2973 chunk_type = cache->flags;
2974 btrfs_put_block_group(cache);
2975
2976 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
2977 spin_lock(&fs_info->data_sinfo->lock);
2978 bytes_used = fs_info->data_sinfo->bytes_used;
2979 spin_unlock(&fs_info->data_sinfo->lock);
2980
2981 if (!bytes_used) {
2982 struct btrfs_trans_handle *trans;
2983 int ret;
2984
2985 trans = btrfs_join_transaction(fs_info->tree_root);
2986 if (IS_ERR(trans))
2987 return PTR_ERR(trans);
2988
2989 ret = btrfs_force_chunk_alloc(trans,
2990 BTRFS_BLOCK_GROUP_DATA);
2991 btrfs_end_transaction(trans);
2992 if (ret < 0)
2993 return ret;
2994
2995 btrfs_add_raid_kobjects(fs_info);
2996
2997 return 1;
2998 }
2999 }
3000 return 0;
3001 }
3002
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3003 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3004 struct btrfs_balance_control *bctl)
3005 {
3006 struct btrfs_root *root = fs_info->tree_root;
3007 struct btrfs_trans_handle *trans;
3008 struct btrfs_balance_item *item;
3009 struct btrfs_disk_balance_args disk_bargs;
3010 struct btrfs_path *path;
3011 struct extent_buffer *leaf;
3012 struct btrfs_key key;
3013 int ret, err;
3014
3015 path = btrfs_alloc_path();
3016 if (!path)
3017 return -ENOMEM;
3018
3019 trans = btrfs_start_transaction(root, 0);
3020 if (IS_ERR(trans)) {
3021 btrfs_free_path(path);
3022 return PTR_ERR(trans);
3023 }
3024
3025 key.objectid = BTRFS_BALANCE_OBJECTID;
3026 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3027 key.offset = 0;
3028
3029 ret = btrfs_insert_empty_item(trans, root, path, &key,
3030 sizeof(*item));
3031 if (ret)
3032 goto out;
3033
3034 leaf = path->nodes[0];
3035 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3036
3037 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3038
3039 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3040 btrfs_set_balance_data(leaf, item, &disk_bargs);
3041 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3042 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3043 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3044 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3045
3046 btrfs_set_balance_flags(leaf, item, bctl->flags);
3047
3048 btrfs_mark_buffer_dirty(leaf);
3049 out:
3050 btrfs_free_path(path);
3051 err = btrfs_commit_transaction(trans);
3052 if (err && !ret)
3053 ret = err;
3054 return ret;
3055 }
3056
del_balance_item(struct btrfs_fs_info * fs_info)3057 static int del_balance_item(struct btrfs_fs_info *fs_info)
3058 {
3059 struct btrfs_root *root = fs_info->tree_root;
3060 struct btrfs_trans_handle *trans;
3061 struct btrfs_path *path;
3062 struct btrfs_key key;
3063 int ret, err;
3064
3065 path = btrfs_alloc_path();
3066 if (!path)
3067 return -ENOMEM;
3068
3069 trans = btrfs_start_transaction(root, 0);
3070 if (IS_ERR(trans)) {
3071 btrfs_free_path(path);
3072 return PTR_ERR(trans);
3073 }
3074
3075 key.objectid = BTRFS_BALANCE_OBJECTID;
3076 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3077 key.offset = 0;
3078
3079 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3080 if (ret < 0)
3081 goto out;
3082 if (ret > 0) {
3083 ret = -ENOENT;
3084 goto out;
3085 }
3086
3087 ret = btrfs_del_item(trans, root, path);
3088 out:
3089 btrfs_free_path(path);
3090 err = btrfs_commit_transaction(trans);
3091 if (err && !ret)
3092 ret = err;
3093 return ret;
3094 }
3095
3096 /*
3097 * This is a heuristic used to reduce the number of chunks balanced on
3098 * resume after balance was interrupted.
3099 */
update_balance_args(struct btrfs_balance_control * bctl)3100 static void update_balance_args(struct btrfs_balance_control *bctl)
3101 {
3102 /*
3103 * Turn on soft mode for chunk types that were being converted.
3104 */
3105 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3106 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3107 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3108 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3109 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3110 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3111
3112 /*
3113 * Turn on usage filter if is not already used. The idea is
3114 * that chunks that we have already balanced should be
3115 * reasonably full. Don't do it for chunks that are being
3116 * converted - that will keep us from relocating unconverted
3117 * (albeit full) chunks.
3118 */
3119 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3120 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3121 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3122 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3123 bctl->data.usage = 90;
3124 }
3125 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3126 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3127 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3128 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3129 bctl->sys.usage = 90;
3130 }
3131 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3132 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3133 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3134 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3135 bctl->meta.usage = 90;
3136 }
3137 }
3138
3139 /*
3140 * Clear the balance status in fs_info and delete the balance item from disk.
3141 */
reset_balance_state(struct btrfs_fs_info * fs_info)3142 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3143 {
3144 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3145 int ret;
3146
3147 BUG_ON(!fs_info->balance_ctl);
3148
3149 spin_lock(&fs_info->balance_lock);
3150 fs_info->balance_ctl = NULL;
3151 spin_unlock(&fs_info->balance_lock);
3152
3153 kfree(bctl);
3154 ret = del_balance_item(fs_info);
3155 if (ret)
3156 btrfs_handle_fs_error(fs_info, ret, NULL);
3157 }
3158
3159 /*
3160 * Balance filters. Return 1 if chunk should be filtered out
3161 * (should not be balanced).
3162 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3163 static int chunk_profiles_filter(u64 chunk_type,
3164 struct btrfs_balance_args *bargs)
3165 {
3166 chunk_type = chunk_to_extended(chunk_type) &
3167 BTRFS_EXTENDED_PROFILE_MASK;
3168
3169 if (bargs->profiles & chunk_type)
3170 return 0;
3171
3172 return 1;
3173 }
3174
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3175 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3176 struct btrfs_balance_args *bargs)
3177 {
3178 struct btrfs_block_group_cache *cache;
3179 u64 chunk_used;
3180 u64 user_thresh_min;
3181 u64 user_thresh_max;
3182 int ret = 1;
3183
3184 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3185 chunk_used = btrfs_block_group_used(&cache->item);
3186
3187 if (bargs->usage_min == 0)
3188 user_thresh_min = 0;
3189 else
3190 user_thresh_min = div_factor_fine(cache->key.offset,
3191 bargs->usage_min);
3192
3193 if (bargs->usage_max == 0)
3194 user_thresh_max = 1;
3195 else if (bargs->usage_max > 100)
3196 user_thresh_max = cache->key.offset;
3197 else
3198 user_thresh_max = div_factor_fine(cache->key.offset,
3199 bargs->usage_max);
3200
3201 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3202 ret = 0;
3203
3204 btrfs_put_block_group(cache);
3205 return ret;
3206 }
3207
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3208 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3209 u64 chunk_offset, struct btrfs_balance_args *bargs)
3210 {
3211 struct btrfs_block_group_cache *cache;
3212 u64 chunk_used, user_thresh;
3213 int ret = 1;
3214
3215 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3216 chunk_used = btrfs_block_group_used(&cache->item);
3217
3218 if (bargs->usage_min == 0)
3219 user_thresh = 1;
3220 else if (bargs->usage > 100)
3221 user_thresh = cache->key.offset;
3222 else
3223 user_thresh = div_factor_fine(cache->key.offset,
3224 bargs->usage);
3225
3226 if (chunk_used < user_thresh)
3227 ret = 0;
3228
3229 btrfs_put_block_group(cache);
3230 return ret;
3231 }
3232
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3233 static int chunk_devid_filter(struct extent_buffer *leaf,
3234 struct btrfs_chunk *chunk,
3235 struct btrfs_balance_args *bargs)
3236 {
3237 struct btrfs_stripe *stripe;
3238 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3239 int i;
3240
3241 for (i = 0; i < num_stripes; i++) {
3242 stripe = btrfs_stripe_nr(chunk, i);
3243 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3244 return 0;
3245 }
3246
3247 return 1;
3248 }
3249
3250 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3251 static int chunk_drange_filter(struct extent_buffer *leaf,
3252 struct btrfs_chunk *chunk,
3253 struct btrfs_balance_args *bargs)
3254 {
3255 struct btrfs_stripe *stripe;
3256 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3257 u64 stripe_offset;
3258 u64 stripe_length;
3259 int factor;
3260 int i;
3261
3262 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3263 return 0;
3264
3265 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3266 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3267 factor = num_stripes / 2;
3268 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3269 factor = num_stripes - 1;
3270 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3271 factor = num_stripes - 2;
3272 } else {
3273 factor = num_stripes;
3274 }
3275
3276 for (i = 0; i < num_stripes; i++) {
3277 stripe = btrfs_stripe_nr(chunk, i);
3278 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3279 continue;
3280
3281 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3282 stripe_length = btrfs_chunk_length(leaf, chunk);
3283 stripe_length = div_u64(stripe_length, factor);
3284
3285 if (stripe_offset < bargs->pend &&
3286 stripe_offset + stripe_length > bargs->pstart)
3287 return 0;
3288 }
3289
3290 return 1;
3291 }
3292
3293 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3294 static int chunk_vrange_filter(struct extent_buffer *leaf,
3295 struct btrfs_chunk *chunk,
3296 u64 chunk_offset,
3297 struct btrfs_balance_args *bargs)
3298 {
3299 if (chunk_offset < bargs->vend &&
3300 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3301 /* at least part of the chunk is inside this vrange */
3302 return 0;
3303
3304 return 1;
3305 }
3306
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3307 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3308 struct btrfs_chunk *chunk,
3309 struct btrfs_balance_args *bargs)
3310 {
3311 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3312
3313 if (bargs->stripes_min <= num_stripes
3314 && num_stripes <= bargs->stripes_max)
3315 return 0;
3316
3317 return 1;
3318 }
3319
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3320 static int chunk_soft_convert_filter(u64 chunk_type,
3321 struct btrfs_balance_args *bargs)
3322 {
3323 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3324 return 0;
3325
3326 chunk_type = chunk_to_extended(chunk_type) &
3327 BTRFS_EXTENDED_PROFILE_MASK;
3328
3329 if (bargs->target == chunk_type)
3330 return 1;
3331
3332 return 0;
3333 }
3334
should_balance_chunk(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3335 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3336 struct extent_buffer *leaf,
3337 struct btrfs_chunk *chunk, u64 chunk_offset)
3338 {
3339 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3340 struct btrfs_balance_args *bargs = NULL;
3341 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3342
3343 /* type filter */
3344 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3345 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3346 return 0;
3347 }
3348
3349 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3350 bargs = &bctl->data;
3351 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3352 bargs = &bctl->sys;
3353 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3354 bargs = &bctl->meta;
3355
3356 /* profiles filter */
3357 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3358 chunk_profiles_filter(chunk_type, bargs)) {
3359 return 0;
3360 }
3361
3362 /* usage filter */
3363 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3364 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3365 return 0;
3366 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3367 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3368 return 0;
3369 }
3370
3371 /* devid filter */
3372 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3373 chunk_devid_filter(leaf, chunk, bargs)) {
3374 return 0;
3375 }
3376
3377 /* drange filter, makes sense only with devid filter */
3378 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3379 chunk_drange_filter(leaf, chunk, bargs)) {
3380 return 0;
3381 }
3382
3383 /* vrange filter */
3384 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3385 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3386 return 0;
3387 }
3388
3389 /* stripes filter */
3390 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3391 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3392 return 0;
3393 }
3394
3395 /* soft profile changing mode */
3396 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3397 chunk_soft_convert_filter(chunk_type, bargs)) {
3398 return 0;
3399 }
3400
3401 /*
3402 * limited by count, must be the last filter
3403 */
3404 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3405 if (bargs->limit == 0)
3406 return 0;
3407 else
3408 bargs->limit--;
3409 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3410 /*
3411 * Same logic as the 'limit' filter; the minimum cannot be
3412 * determined here because we do not have the global information
3413 * about the count of all chunks that satisfy the filters.
3414 */
3415 if (bargs->limit_max == 0)
3416 return 0;
3417 else
3418 bargs->limit_max--;
3419 }
3420
3421 return 1;
3422 }
3423
__btrfs_balance(struct btrfs_fs_info * fs_info)3424 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3425 {
3426 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3427 struct btrfs_root *chunk_root = fs_info->chunk_root;
3428 struct btrfs_root *dev_root = fs_info->dev_root;
3429 struct list_head *devices;
3430 struct btrfs_device *device;
3431 u64 old_size;
3432 u64 size_to_free;
3433 u64 chunk_type;
3434 struct btrfs_chunk *chunk;
3435 struct btrfs_path *path = NULL;
3436 struct btrfs_key key;
3437 struct btrfs_key found_key;
3438 struct btrfs_trans_handle *trans;
3439 struct extent_buffer *leaf;
3440 int slot;
3441 int ret;
3442 int enospc_errors = 0;
3443 bool counting = true;
3444 /* The single value limit and min/max limits use the same bytes in the */
3445 u64 limit_data = bctl->data.limit;
3446 u64 limit_meta = bctl->meta.limit;
3447 u64 limit_sys = bctl->sys.limit;
3448 u32 count_data = 0;
3449 u32 count_meta = 0;
3450 u32 count_sys = 0;
3451 int chunk_reserved = 0;
3452
3453 /* step one make some room on all the devices */
3454 devices = &fs_info->fs_devices->devices;
3455 list_for_each_entry(device, devices, dev_list) {
3456 old_size = btrfs_device_get_total_bytes(device);
3457 size_to_free = div_factor(old_size, 1);
3458 size_to_free = min_t(u64, size_to_free, SZ_1M);
3459 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3460 btrfs_device_get_total_bytes(device) -
3461 btrfs_device_get_bytes_used(device) > size_to_free ||
3462 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3463 continue;
3464
3465 ret = btrfs_shrink_device(device, old_size - size_to_free);
3466 if (ret == -ENOSPC)
3467 break;
3468 if (ret) {
3469 /* btrfs_shrink_device never returns ret > 0 */
3470 WARN_ON(ret > 0);
3471 goto error;
3472 }
3473
3474 trans = btrfs_start_transaction(dev_root, 0);
3475 if (IS_ERR(trans)) {
3476 ret = PTR_ERR(trans);
3477 btrfs_info_in_rcu(fs_info,
3478 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3479 rcu_str_deref(device->name), ret,
3480 old_size, old_size - size_to_free);
3481 goto error;
3482 }
3483
3484 ret = btrfs_grow_device(trans, device, old_size);
3485 if (ret) {
3486 btrfs_end_transaction(trans);
3487 /* btrfs_grow_device never returns ret > 0 */
3488 WARN_ON(ret > 0);
3489 btrfs_info_in_rcu(fs_info,
3490 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3491 rcu_str_deref(device->name), ret,
3492 old_size, old_size - size_to_free);
3493 goto error;
3494 }
3495
3496 btrfs_end_transaction(trans);
3497 }
3498
3499 /* step two, relocate all the chunks */
3500 path = btrfs_alloc_path();
3501 if (!path) {
3502 ret = -ENOMEM;
3503 goto error;
3504 }
3505
3506 /* zero out stat counters */
3507 spin_lock(&fs_info->balance_lock);
3508 memset(&bctl->stat, 0, sizeof(bctl->stat));
3509 spin_unlock(&fs_info->balance_lock);
3510 again:
3511 if (!counting) {
3512 /*
3513 * The single value limit and min/max limits use the same bytes
3514 * in the
3515 */
3516 bctl->data.limit = limit_data;
3517 bctl->meta.limit = limit_meta;
3518 bctl->sys.limit = limit_sys;
3519 }
3520 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3521 key.offset = (u64)-1;
3522 key.type = BTRFS_CHUNK_ITEM_KEY;
3523
3524 while (1) {
3525 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3526 atomic_read(&fs_info->balance_cancel_req)) {
3527 ret = -ECANCELED;
3528 goto error;
3529 }
3530
3531 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3532 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3533 if (ret < 0) {
3534 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3535 goto error;
3536 }
3537
3538 /*
3539 * this shouldn't happen, it means the last relocate
3540 * failed
3541 */
3542 if (ret == 0)
3543 BUG(); /* FIXME break ? */
3544
3545 ret = btrfs_previous_item(chunk_root, path, 0,
3546 BTRFS_CHUNK_ITEM_KEY);
3547 if (ret) {
3548 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3549 ret = 0;
3550 break;
3551 }
3552
3553 leaf = path->nodes[0];
3554 slot = path->slots[0];
3555 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3556
3557 if (found_key.objectid != key.objectid) {
3558 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3559 break;
3560 }
3561
3562 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3563 chunk_type = btrfs_chunk_type(leaf, chunk);
3564
3565 if (!counting) {
3566 spin_lock(&fs_info->balance_lock);
3567 bctl->stat.considered++;
3568 spin_unlock(&fs_info->balance_lock);
3569 }
3570
3571 ret = should_balance_chunk(fs_info, leaf, chunk,
3572 found_key.offset);
3573
3574 btrfs_release_path(path);
3575 if (!ret) {
3576 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3577 goto loop;
3578 }
3579
3580 if (counting) {
3581 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3582 spin_lock(&fs_info->balance_lock);
3583 bctl->stat.expected++;
3584 spin_unlock(&fs_info->balance_lock);
3585
3586 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3587 count_data++;
3588 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3589 count_sys++;
3590 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3591 count_meta++;
3592
3593 goto loop;
3594 }
3595
3596 /*
3597 * Apply limit_min filter, no need to check if the LIMITS
3598 * filter is used, limit_min is 0 by default
3599 */
3600 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3601 count_data < bctl->data.limit_min)
3602 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3603 count_meta < bctl->meta.limit_min)
3604 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3605 count_sys < bctl->sys.limit_min)) {
3606 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3607 goto loop;
3608 }
3609
3610 if (!chunk_reserved) {
3611 /*
3612 * We may be relocating the only data chunk we have,
3613 * which could potentially end up with losing data's
3614 * raid profile, so lets allocate an empty one in
3615 * advance.
3616 */
3617 ret = btrfs_may_alloc_data_chunk(fs_info,
3618 found_key.offset);
3619 if (ret < 0) {
3620 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621 goto error;
3622 } else if (ret == 1) {
3623 chunk_reserved = 1;
3624 }
3625 }
3626
3627 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3628 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3629 if (ret && ret != -ENOSPC)
3630 goto error;
3631 if (ret == -ENOSPC) {
3632 enospc_errors++;
3633 } else {
3634 spin_lock(&fs_info->balance_lock);
3635 bctl->stat.completed++;
3636 spin_unlock(&fs_info->balance_lock);
3637 }
3638 loop:
3639 if (found_key.offset == 0)
3640 break;
3641 key.offset = found_key.offset - 1;
3642 }
3643
3644 if (counting) {
3645 btrfs_release_path(path);
3646 counting = false;
3647 goto again;
3648 }
3649 error:
3650 btrfs_free_path(path);
3651 if (enospc_errors) {
3652 btrfs_info(fs_info, "%d enospc errors during balance",
3653 enospc_errors);
3654 if (!ret)
3655 ret = -ENOSPC;
3656 }
3657
3658 return ret;
3659 }
3660
3661 /**
3662 * alloc_profile_is_valid - see if a given profile is valid and reduced
3663 * @flags: profile to validate
3664 * @extended: if true @flags is treated as an extended profile
3665 */
alloc_profile_is_valid(u64 flags,int extended)3666 static int alloc_profile_is_valid(u64 flags, int extended)
3667 {
3668 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3669 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3670
3671 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3672
3673 /* 1) check that all other bits are zeroed */
3674 if (flags & ~mask)
3675 return 0;
3676
3677 /* 2) see if profile is reduced */
3678 if (flags == 0)
3679 return !extended; /* "0" is valid for usual profiles */
3680
3681 /* true if exactly one bit set */
3682 return (flags & (flags - 1)) == 0;
3683 }
3684
balance_need_close(struct btrfs_fs_info * fs_info)3685 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3686 {
3687 /* cancel requested || normal exit path */
3688 return atomic_read(&fs_info->balance_cancel_req) ||
3689 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3690 atomic_read(&fs_info->balance_cancel_req) == 0);
3691 }
3692
3693 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)3694 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3695 u64 allowed)
3696 {
3697 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3698 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3699 (bctl_arg->target & ~allowed)));
3700 }
3701
3702 /*
3703 * Should be called with balance mutexe held
3704 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)3705 int btrfs_balance(struct btrfs_fs_info *fs_info,
3706 struct btrfs_balance_control *bctl,
3707 struct btrfs_ioctl_balance_args *bargs)
3708 {
3709 u64 meta_target, data_target;
3710 u64 allowed;
3711 int mixed = 0;
3712 int ret;
3713 u64 num_devices;
3714 unsigned seq;
3715
3716 if (btrfs_fs_closing(fs_info) ||
3717 atomic_read(&fs_info->balance_pause_req) ||
3718 atomic_read(&fs_info->balance_cancel_req)) {
3719 ret = -EINVAL;
3720 goto out;
3721 }
3722
3723 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3724 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3725 mixed = 1;
3726
3727 /*
3728 * In case of mixed groups both data and meta should be picked,
3729 * and identical options should be given for both of them.
3730 */
3731 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3732 if (mixed && (bctl->flags & allowed)) {
3733 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3734 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3735 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3736 btrfs_err(fs_info,
3737 "balance: mixed groups data and metadata options must be the same");
3738 ret = -EINVAL;
3739 goto out;
3740 }
3741 }
3742
3743 num_devices = fs_info->fs_devices->num_devices;
3744 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3745 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3746 BUG_ON(num_devices < 1);
3747 num_devices--;
3748 }
3749 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3750 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3751 if (num_devices > 1)
3752 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3753 if (num_devices > 2)
3754 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3755 if (num_devices > 3)
3756 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3757 BTRFS_BLOCK_GROUP_RAID6);
3758 if (validate_convert_profile(&bctl->data, allowed)) {
3759 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3760
3761 btrfs_err(fs_info,
3762 "balance: invalid convert data profile %s",
3763 get_raid_name(index));
3764 ret = -EINVAL;
3765 goto out;
3766 }
3767 if (validate_convert_profile(&bctl->meta, allowed)) {
3768 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3769
3770 btrfs_err(fs_info,
3771 "balance: invalid convert metadata profile %s",
3772 get_raid_name(index));
3773 ret = -EINVAL;
3774 goto out;
3775 }
3776 if (validate_convert_profile(&bctl->sys, allowed)) {
3777 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3778
3779 btrfs_err(fs_info,
3780 "balance: invalid convert system profile %s",
3781 get_raid_name(index));
3782 ret = -EINVAL;
3783 goto out;
3784 }
3785
3786 /* allow to reduce meta or sys integrity only if force set */
3787 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3788 BTRFS_BLOCK_GROUP_RAID10 |
3789 BTRFS_BLOCK_GROUP_RAID5 |
3790 BTRFS_BLOCK_GROUP_RAID6;
3791 do {
3792 seq = read_seqbegin(&fs_info->profiles_lock);
3793
3794 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3795 (fs_info->avail_system_alloc_bits & allowed) &&
3796 !(bctl->sys.target & allowed)) ||
3797 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3798 (fs_info->avail_metadata_alloc_bits & allowed) &&
3799 !(bctl->meta.target & allowed))) {
3800 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3801 btrfs_info(fs_info,
3802 "balance: force reducing metadata integrity");
3803 } else {
3804 btrfs_err(fs_info,
3805 "balance: reduces metadata integrity, use --force if you want this");
3806 ret = -EINVAL;
3807 goto out;
3808 }
3809 }
3810 } while (read_seqretry(&fs_info->profiles_lock, seq));
3811
3812 /* if we're not converting, the target field is uninitialized */
3813 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3814 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3815 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3816 bctl->data.target : fs_info->avail_data_alloc_bits;
3817 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3818 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3819 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3820 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3821
3822 btrfs_warn(fs_info,
3823 "balance: metadata profile %s has lower redundancy than data profile %s",
3824 get_raid_name(meta_index), get_raid_name(data_index));
3825 }
3826
3827 ret = insert_balance_item(fs_info, bctl);
3828 if (ret && ret != -EEXIST)
3829 goto out;
3830
3831 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3832 BUG_ON(ret == -EEXIST);
3833 BUG_ON(fs_info->balance_ctl);
3834 spin_lock(&fs_info->balance_lock);
3835 fs_info->balance_ctl = bctl;
3836 spin_unlock(&fs_info->balance_lock);
3837 } else {
3838 BUG_ON(ret != -EEXIST);
3839 spin_lock(&fs_info->balance_lock);
3840 update_balance_args(bctl);
3841 spin_unlock(&fs_info->balance_lock);
3842 }
3843
3844 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3845 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3846 mutex_unlock(&fs_info->balance_mutex);
3847
3848 ret = __btrfs_balance(fs_info);
3849
3850 mutex_lock(&fs_info->balance_mutex);
3851 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3852
3853 if (bargs) {
3854 memset(bargs, 0, sizeof(*bargs));
3855 btrfs_update_ioctl_balance_args(fs_info, bargs);
3856 }
3857
3858 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3859 balance_need_close(fs_info)) {
3860 reset_balance_state(fs_info);
3861 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3862 }
3863
3864 wake_up(&fs_info->balance_wait_q);
3865
3866 return ret;
3867 out:
3868 if (bctl->flags & BTRFS_BALANCE_RESUME)
3869 reset_balance_state(fs_info);
3870 else
3871 kfree(bctl);
3872 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3873
3874 return ret;
3875 }
3876
balance_kthread(void * data)3877 static int balance_kthread(void *data)
3878 {
3879 struct btrfs_fs_info *fs_info = data;
3880 int ret = 0;
3881
3882 mutex_lock(&fs_info->balance_mutex);
3883 if (fs_info->balance_ctl) {
3884 btrfs_info(fs_info, "balance: resuming");
3885 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3886 }
3887 mutex_unlock(&fs_info->balance_mutex);
3888
3889 return ret;
3890 }
3891
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)3892 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3893 {
3894 struct task_struct *tsk;
3895
3896 mutex_lock(&fs_info->balance_mutex);
3897 if (!fs_info->balance_ctl) {
3898 mutex_unlock(&fs_info->balance_mutex);
3899 return 0;
3900 }
3901 mutex_unlock(&fs_info->balance_mutex);
3902
3903 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3904 btrfs_info(fs_info, "balance: resume skipped");
3905 return 0;
3906 }
3907
3908 /*
3909 * A ro->rw remount sequence should continue with the paused balance
3910 * regardless of who pauses it, system or the user as of now, so set
3911 * the resume flag.
3912 */
3913 spin_lock(&fs_info->balance_lock);
3914 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3915 spin_unlock(&fs_info->balance_lock);
3916
3917 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3918 return PTR_ERR_OR_ZERO(tsk);
3919 }
3920
btrfs_recover_balance(struct btrfs_fs_info * fs_info)3921 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3922 {
3923 struct btrfs_balance_control *bctl;
3924 struct btrfs_balance_item *item;
3925 struct btrfs_disk_balance_args disk_bargs;
3926 struct btrfs_path *path;
3927 struct extent_buffer *leaf;
3928 struct btrfs_key key;
3929 int ret;
3930
3931 path = btrfs_alloc_path();
3932 if (!path)
3933 return -ENOMEM;
3934
3935 key.objectid = BTRFS_BALANCE_OBJECTID;
3936 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3937 key.offset = 0;
3938
3939 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3940 if (ret < 0)
3941 goto out;
3942 if (ret > 0) { /* ret = -ENOENT; */
3943 ret = 0;
3944 goto out;
3945 }
3946
3947 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3948 if (!bctl) {
3949 ret = -ENOMEM;
3950 goto out;
3951 }
3952
3953 leaf = path->nodes[0];
3954 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3955
3956 bctl->flags = btrfs_balance_flags(leaf, item);
3957 bctl->flags |= BTRFS_BALANCE_RESUME;
3958
3959 btrfs_balance_data(leaf, item, &disk_bargs);
3960 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3961 btrfs_balance_meta(leaf, item, &disk_bargs);
3962 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3963 btrfs_balance_sys(leaf, item, &disk_bargs);
3964 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3965
3966 /*
3967 * This should never happen, as the paused balance state is recovered
3968 * during mount without any chance of other exclusive ops to collide.
3969 *
3970 * This gives the exclusive op status to balance and keeps in paused
3971 * state until user intervention (cancel or umount). If the ownership
3972 * cannot be assigned, show a message but do not fail. The balance
3973 * is in a paused state and must have fs_info::balance_ctl properly
3974 * set up.
3975 */
3976 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3977 btrfs_warn(fs_info,
3978 "balance: cannot set exclusive op status, resume manually");
3979
3980 mutex_lock(&fs_info->balance_mutex);
3981 BUG_ON(fs_info->balance_ctl);
3982 spin_lock(&fs_info->balance_lock);
3983 fs_info->balance_ctl = bctl;
3984 spin_unlock(&fs_info->balance_lock);
3985 mutex_unlock(&fs_info->balance_mutex);
3986 out:
3987 btrfs_free_path(path);
3988 return ret;
3989 }
3990
btrfs_pause_balance(struct btrfs_fs_info * fs_info)3991 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3992 {
3993 int ret = 0;
3994
3995 mutex_lock(&fs_info->balance_mutex);
3996 if (!fs_info->balance_ctl) {
3997 mutex_unlock(&fs_info->balance_mutex);
3998 return -ENOTCONN;
3999 }
4000
4001 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4002 atomic_inc(&fs_info->balance_pause_req);
4003 mutex_unlock(&fs_info->balance_mutex);
4004
4005 wait_event(fs_info->balance_wait_q,
4006 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4007
4008 mutex_lock(&fs_info->balance_mutex);
4009 /* we are good with balance_ctl ripped off from under us */
4010 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4011 atomic_dec(&fs_info->balance_pause_req);
4012 } else {
4013 ret = -ENOTCONN;
4014 }
4015
4016 mutex_unlock(&fs_info->balance_mutex);
4017 return ret;
4018 }
4019
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4020 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4021 {
4022 mutex_lock(&fs_info->balance_mutex);
4023 if (!fs_info->balance_ctl) {
4024 mutex_unlock(&fs_info->balance_mutex);
4025 return -ENOTCONN;
4026 }
4027
4028 /*
4029 * A paused balance with the item stored on disk can be resumed at
4030 * mount time if the mount is read-write. Otherwise it's still paused
4031 * and we must not allow cancelling as it deletes the item.
4032 */
4033 if (sb_rdonly(fs_info->sb)) {
4034 mutex_unlock(&fs_info->balance_mutex);
4035 return -EROFS;
4036 }
4037
4038 atomic_inc(&fs_info->balance_cancel_req);
4039 /*
4040 * if we are running just wait and return, balance item is
4041 * deleted in btrfs_balance in this case
4042 */
4043 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4044 mutex_unlock(&fs_info->balance_mutex);
4045 wait_event(fs_info->balance_wait_q,
4046 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4047 mutex_lock(&fs_info->balance_mutex);
4048 } else {
4049 mutex_unlock(&fs_info->balance_mutex);
4050 /*
4051 * Lock released to allow other waiters to continue, we'll
4052 * reexamine the status again.
4053 */
4054 mutex_lock(&fs_info->balance_mutex);
4055
4056 if (fs_info->balance_ctl) {
4057 reset_balance_state(fs_info);
4058 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4059 btrfs_info(fs_info, "balance: canceled");
4060 }
4061 }
4062
4063 BUG_ON(fs_info->balance_ctl ||
4064 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4065 atomic_dec(&fs_info->balance_cancel_req);
4066 mutex_unlock(&fs_info->balance_mutex);
4067 return 0;
4068 }
4069
btrfs_uuid_scan_kthread(void * data)4070 static int btrfs_uuid_scan_kthread(void *data)
4071 {
4072 struct btrfs_fs_info *fs_info = data;
4073 struct btrfs_root *root = fs_info->tree_root;
4074 struct btrfs_key key;
4075 struct btrfs_path *path = NULL;
4076 int ret = 0;
4077 struct extent_buffer *eb;
4078 int slot;
4079 struct btrfs_root_item root_item;
4080 u32 item_size;
4081 struct btrfs_trans_handle *trans = NULL;
4082
4083 path = btrfs_alloc_path();
4084 if (!path) {
4085 ret = -ENOMEM;
4086 goto out;
4087 }
4088
4089 key.objectid = 0;
4090 key.type = BTRFS_ROOT_ITEM_KEY;
4091 key.offset = 0;
4092
4093 while (1) {
4094 ret = btrfs_search_forward(root, &key, path,
4095 BTRFS_OLDEST_GENERATION);
4096 if (ret) {
4097 if (ret > 0)
4098 ret = 0;
4099 break;
4100 }
4101
4102 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4103 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4104 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4105 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4106 goto skip;
4107
4108 eb = path->nodes[0];
4109 slot = path->slots[0];
4110 item_size = btrfs_item_size_nr(eb, slot);
4111 if (item_size < sizeof(root_item))
4112 goto skip;
4113
4114 read_extent_buffer(eb, &root_item,
4115 btrfs_item_ptr_offset(eb, slot),
4116 (int)sizeof(root_item));
4117 if (btrfs_root_refs(&root_item) == 0)
4118 goto skip;
4119
4120 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4121 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4122 if (trans)
4123 goto update_tree;
4124
4125 btrfs_release_path(path);
4126 /*
4127 * 1 - subvol uuid item
4128 * 1 - received_subvol uuid item
4129 */
4130 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4131 if (IS_ERR(trans)) {
4132 ret = PTR_ERR(trans);
4133 break;
4134 }
4135 continue;
4136 } else {
4137 goto skip;
4138 }
4139 update_tree:
4140 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4141 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4142 BTRFS_UUID_KEY_SUBVOL,
4143 key.objectid);
4144 if (ret < 0) {
4145 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4146 ret);
4147 break;
4148 }
4149 }
4150
4151 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4152 ret = btrfs_uuid_tree_add(trans,
4153 root_item.received_uuid,
4154 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4155 key.objectid);
4156 if (ret < 0) {
4157 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4158 ret);
4159 break;
4160 }
4161 }
4162
4163 skip:
4164 if (trans) {
4165 ret = btrfs_end_transaction(trans);
4166 trans = NULL;
4167 if (ret)
4168 break;
4169 }
4170
4171 btrfs_release_path(path);
4172 if (key.offset < (u64)-1) {
4173 key.offset++;
4174 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4175 key.offset = 0;
4176 key.type = BTRFS_ROOT_ITEM_KEY;
4177 } else if (key.objectid < (u64)-1) {
4178 key.offset = 0;
4179 key.type = BTRFS_ROOT_ITEM_KEY;
4180 key.objectid++;
4181 } else {
4182 break;
4183 }
4184 cond_resched();
4185 }
4186
4187 out:
4188 btrfs_free_path(path);
4189 if (trans && !IS_ERR(trans))
4190 btrfs_end_transaction(trans);
4191 if (ret)
4192 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4193 else
4194 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4195 up(&fs_info->uuid_tree_rescan_sem);
4196 return 0;
4197 }
4198
4199 /*
4200 * Callback for btrfs_uuid_tree_iterate().
4201 * returns:
4202 * 0 check succeeded, the entry is not outdated.
4203 * < 0 if an error occurred.
4204 * > 0 if the check failed, which means the caller shall remove the entry.
4205 */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4206 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4207 u8 *uuid, u8 type, u64 subid)
4208 {
4209 struct btrfs_key key;
4210 int ret = 0;
4211 struct btrfs_root *subvol_root;
4212
4213 if (type != BTRFS_UUID_KEY_SUBVOL &&
4214 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4215 goto out;
4216
4217 key.objectid = subid;
4218 key.type = BTRFS_ROOT_ITEM_KEY;
4219 key.offset = (u64)-1;
4220 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4221 if (IS_ERR(subvol_root)) {
4222 ret = PTR_ERR(subvol_root);
4223 if (ret == -ENOENT)
4224 ret = 1;
4225 goto out;
4226 }
4227
4228 switch (type) {
4229 case BTRFS_UUID_KEY_SUBVOL:
4230 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4231 ret = 1;
4232 break;
4233 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4234 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4235 BTRFS_UUID_SIZE))
4236 ret = 1;
4237 break;
4238 }
4239
4240 out:
4241 return ret;
4242 }
4243
btrfs_uuid_rescan_kthread(void * data)4244 static int btrfs_uuid_rescan_kthread(void *data)
4245 {
4246 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4247 int ret;
4248
4249 /*
4250 * 1st step is to iterate through the existing UUID tree and
4251 * to delete all entries that contain outdated data.
4252 * 2nd step is to add all missing entries to the UUID tree.
4253 */
4254 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4255 if (ret < 0) {
4256 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4257 up(&fs_info->uuid_tree_rescan_sem);
4258 return ret;
4259 }
4260 return btrfs_uuid_scan_kthread(data);
4261 }
4262
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4263 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4264 {
4265 struct btrfs_trans_handle *trans;
4266 struct btrfs_root *tree_root = fs_info->tree_root;
4267 struct btrfs_root *uuid_root;
4268 struct task_struct *task;
4269 int ret;
4270
4271 /*
4272 * 1 - root node
4273 * 1 - root item
4274 */
4275 trans = btrfs_start_transaction(tree_root, 2);
4276 if (IS_ERR(trans))
4277 return PTR_ERR(trans);
4278
4279 uuid_root = btrfs_create_tree(trans, fs_info,
4280 BTRFS_UUID_TREE_OBJECTID);
4281 if (IS_ERR(uuid_root)) {
4282 ret = PTR_ERR(uuid_root);
4283 btrfs_abort_transaction(trans, ret);
4284 btrfs_end_transaction(trans);
4285 return ret;
4286 }
4287
4288 fs_info->uuid_root = uuid_root;
4289
4290 ret = btrfs_commit_transaction(trans);
4291 if (ret)
4292 return ret;
4293
4294 down(&fs_info->uuid_tree_rescan_sem);
4295 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4296 if (IS_ERR(task)) {
4297 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4298 btrfs_warn(fs_info, "failed to start uuid_scan task");
4299 up(&fs_info->uuid_tree_rescan_sem);
4300 return PTR_ERR(task);
4301 }
4302
4303 return 0;
4304 }
4305
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4306 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4307 {
4308 struct task_struct *task;
4309
4310 down(&fs_info->uuid_tree_rescan_sem);
4311 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4312 if (IS_ERR(task)) {
4313 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4314 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4315 up(&fs_info->uuid_tree_rescan_sem);
4316 return PTR_ERR(task);
4317 }
4318
4319 return 0;
4320 }
4321
4322 /*
4323 * shrinking a device means finding all of the device extents past
4324 * the new size, and then following the back refs to the chunks.
4325 * The chunk relocation code actually frees the device extent
4326 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4327 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4328 {
4329 struct btrfs_fs_info *fs_info = device->fs_info;
4330 struct btrfs_root *root = fs_info->dev_root;
4331 struct btrfs_trans_handle *trans;
4332 struct btrfs_dev_extent *dev_extent = NULL;
4333 struct btrfs_path *path;
4334 u64 length;
4335 u64 chunk_offset;
4336 int ret;
4337 int slot;
4338 int failed = 0;
4339 bool retried = false;
4340 bool checked_pending_chunks = false;
4341 struct extent_buffer *l;
4342 struct btrfs_key key;
4343 struct btrfs_super_block *super_copy = fs_info->super_copy;
4344 u64 old_total = btrfs_super_total_bytes(super_copy);
4345 u64 old_size = btrfs_device_get_total_bytes(device);
4346 u64 diff;
4347
4348 new_size = round_down(new_size, fs_info->sectorsize);
4349 diff = round_down(old_size - new_size, fs_info->sectorsize);
4350
4351 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4352 return -EINVAL;
4353
4354 path = btrfs_alloc_path();
4355 if (!path)
4356 return -ENOMEM;
4357
4358 path->reada = READA_BACK;
4359
4360 mutex_lock(&fs_info->chunk_mutex);
4361
4362 btrfs_device_set_total_bytes(device, new_size);
4363 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4364 device->fs_devices->total_rw_bytes -= diff;
4365 atomic64_sub(diff, &fs_info->free_chunk_space);
4366 }
4367 mutex_unlock(&fs_info->chunk_mutex);
4368
4369 again:
4370 key.objectid = device->devid;
4371 key.offset = (u64)-1;
4372 key.type = BTRFS_DEV_EXTENT_KEY;
4373
4374 do {
4375 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4376 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4377 if (ret < 0) {
4378 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4379 goto done;
4380 }
4381
4382 ret = btrfs_previous_item(root, path, 0, key.type);
4383 if (ret)
4384 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4385 if (ret < 0)
4386 goto done;
4387 if (ret) {
4388 ret = 0;
4389 btrfs_release_path(path);
4390 break;
4391 }
4392
4393 l = path->nodes[0];
4394 slot = path->slots[0];
4395 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4396
4397 if (key.objectid != device->devid) {
4398 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4399 btrfs_release_path(path);
4400 break;
4401 }
4402
4403 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4404 length = btrfs_dev_extent_length(l, dev_extent);
4405
4406 if (key.offset + length <= new_size) {
4407 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4408 btrfs_release_path(path);
4409 break;
4410 }
4411
4412 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4413 btrfs_release_path(path);
4414
4415 /*
4416 * We may be relocating the only data chunk we have,
4417 * which could potentially end up with losing data's
4418 * raid profile, so lets allocate an empty one in
4419 * advance.
4420 */
4421 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4422 if (ret < 0) {
4423 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4424 goto done;
4425 }
4426
4427 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4428 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4429 if (ret && ret != -ENOSPC)
4430 goto done;
4431 if (ret == -ENOSPC)
4432 failed++;
4433 } while (key.offset-- > 0);
4434
4435 if (failed && !retried) {
4436 failed = 0;
4437 retried = true;
4438 goto again;
4439 } else if (failed && retried) {
4440 ret = -ENOSPC;
4441 goto done;
4442 }
4443
4444 /* Shrinking succeeded, else we would be at "done". */
4445 trans = btrfs_start_transaction(root, 0);
4446 if (IS_ERR(trans)) {
4447 ret = PTR_ERR(trans);
4448 goto done;
4449 }
4450
4451 mutex_lock(&fs_info->chunk_mutex);
4452
4453 /*
4454 * We checked in the above loop all device extents that were already in
4455 * the device tree. However before we have updated the device's
4456 * total_bytes to the new size, we might have had chunk allocations that
4457 * have not complete yet (new block groups attached to transaction
4458 * handles), and therefore their device extents were not yet in the
4459 * device tree and we missed them in the loop above. So if we have any
4460 * pending chunk using a device extent that overlaps the device range
4461 * that we can not use anymore, commit the current transaction and
4462 * repeat the search on the device tree - this way we guarantee we will
4463 * not have chunks using device extents that end beyond 'new_size'.
4464 */
4465 if (!checked_pending_chunks) {
4466 u64 start = new_size;
4467 u64 len = old_size - new_size;
4468
4469 if (contains_pending_extent(trans->transaction, device,
4470 &start, len)) {
4471 mutex_unlock(&fs_info->chunk_mutex);
4472 checked_pending_chunks = true;
4473 failed = 0;
4474 retried = false;
4475 ret = btrfs_commit_transaction(trans);
4476 if (ret)
4477 goto done;
4478 goto again;
4479 }
4480 }
4481
4482 btrfs_device_set_disk_total_bytes(device, new_size);
4483 if (list_empty(&device->resized_list))
4484 list_add_tail(&device->resized_list,
4485 &fs_info->fs_devices->resized_devices);
4486
4487 WARN_ON(diff > old_total);
4488 btrfs_set_super_total_bytes(super_copy,
4489 round_down(old_total - diff, fs_info->sectorsize));
4490 mutex_unlock(&fs_info->chunk_mutex);
4491
4492 /* Now btrfs_update_device() will change the on-disk size. */
4493 ret = btrfs_update_device(trans, device);
4494 if (ret < 0) {
4495 btrfs_abort_transaction(trans, ret);
4496 btrfs_end_transaction(trans);
4497 } else {
4498 ret = btrfs_commit_transaction(trans);
4499 }
4500 done:
4501 btrfs_free_path(path);
4502 if (ret) {
4503 mutex_lock(&fs_info->chunk_mutex);
4504 btrfs_device_set_total_bytes(device, old_size);
4505 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4506 device->fs_devices->total_rw_bytes += diff;
4507 atomic64_add(diff, &fs_info->free_chunk_space);
4508 mutex_unlock(&fs_info->chunk_mutex);
4509 }
4510 return ret;
4511 }
4512
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4513 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4514 struct btrfs_key *key,
4515 struct btrfs_chunk *chunk, int item_size)
4516 {
4517 struct btrfs_super_block *super_copy = fs_info->super_copy;
4518 struct btrfs_disk_key disk_key;
4519 u32 array_size;
4520 u8 *ptr;
4521
4522 mutex_lock(&fs_info->chunk_mutex);
4523 array_size = btrfs_super_sys_array_size(super_copy);
4524 if (array_size + item_size + sizeof(disk_key)
4525 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4526 mutex_unlock(&fs_info->chunk_mutex);
4527 return -EFBIG;
4528 }
4529
4530 ptr = super_copy->sys_chunk_array + array_size;
4531 btrfs_cpu_key_to_disk(&disk_key, key);
4532 memcpy(ptr, &disk_key, sizeof(disk_key));
4533 ptr += sizeof(disk_key);
4534 memcpy(ptr, chunk, item_size);
4535 item_size += sizeof(disk_key);
4536 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4537 mutex_unlock(&fs_info->chunk_mutex);
4538
4539 return 0;
4540 }
4541
4542 /*
4543 * sort the devices in descending order by max_avail, total_avail
4544 */
btrfs_cmp_device_info(const void * a,const void * b)4545 static int btrfs_cmp_device_info(const void *a, const void *b)
4546 {
4547 const struct btrfs_device_info *di_a = a;
4548 const struct btrfs_device_info *di_b = b;
4549
4550 if (di_a->max_avail > di_b->max_avail)
4551 return -1;
4552 if (di_a->max_avail < di_b->max_avail)
4553 return 1;
4554 if (di_a->total_avail > di_b->total_avail)
4555 return -1;
4556 if (di_a->total_avail < di_b->total_avail)
4557 return 1;
4558 return 0;
4559 }
4560
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4561 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4562 {
4563 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4564 return;
4565
4566 btrfs_set_fs_incompat(info, RAID56);
4567 }
4568
4569 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
4570 - sizeof(struct btrfs_chunk)) \
4571 / sizeof(struct btrfs_stripe) + 1)
4572
4573 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4574 - 2 * sizeof(struct btrfs_disk_key) \
4575 - 2 * sizeof(struct btrfs_chunk)) \
4576 / sizeof(struct btrfs_stripe) + 1)
4577
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 start,u64 type)4578 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4579 u64 start, u64 type)
4580 {
4581 struct btrfs_fs_info *info = trans->fs_info;
4582 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4583 struct btrfs_device *device;
4584 struct map_lookup *map = NULL;
4585 struct extent_map_tree *em_tree;
4586 struct extent_map *em;
4587 struct btrfs_device_info *devices_info = NULL;
4588 u64 total_avail;
4589 int num_stripes; /* total number of stripes to allocate */
4590 int data_stripes; /* number of stripes that count for
4591 block group size */
4592 int sub_stripes; /* sub_stripes info for map */
4593 int dev_stripes; /* stripes per dev */
4594 int devs_max; /* max devs to use */
4595 int devs_min; /* min devs needed */
4596 int devs_increment; /* ndevs has to be a multiple of this */
4597 int ncopies; /* how many copies to data has */
4598 int ret;
4599 u64 max_stripe_size;
4600 u64 max_chunk_size;
4601 u64 stripe_size;
4602 u64 num_bytes;
4603 int ndevs;
4604 int i;
4605 int j;
4606 int index;
4607
4608 BUG_ON(!alloc_profile_is_valid(type, 0));
4609
4610 if (list_empty(&fs_devices->alloc_list)) {
4611 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4612 btrfs_debug(info, "%s: no writable device", __func__);
4613 return -ENOSPC;
4614 }
4615
4616 index = btrfs_bg_flags_to_raid_index(type);
4617
4618 sub_stripes = btrfs_raid_array[index].sub_stripes;
4619 dev_stripes = btrfs_raid_array[index].dev_stripes;
4620 devs_max = btrfs_raid_array[index].devs_max;
4621 devs_min = btrfs_raid_array[index].devs_min;
4622 devs_increment = btrfs_raid_array[index].devs_increment;
4623 ncopies = btrfs_raid_array[index].ncopies;
4624
4625 if (type & BTRFS_BLOCK_GROUP_DATA) {
4626 max_stripe_size = SZ_1G;
4627 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4628 if (!devs_max)
4629 devs_max = BTRFS_MAX_DEVS(info);
4630 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4631 /* for larger filesystems, use larger metadata chunks */
4632 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4633 max_stripe_size = SZ_1G;
4634 else
4635 max_stripe_size = SZ_256M;
4636 max_chunk_size = max_stripe_size;
4637 if (!devs_max)
4638 devs_max = BTRFS_MAX_DEVS(info);
4639 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4640 max_stripe_size = SZ_32M;
4641 max_chunk_size = 2 * max_stripe_size;
4642 if (!devs_max)
4643 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4644 } else {
4645 btrfs_err(info, "invalid chunk type 0x%llx requested",
4646 type);
4647 BUG_ON(1);
4648 }
4649
4650 /* we don't want a chunk larger than 10% of writeable space */
4651 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4652 max_chunk_size);
4653
4654 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4655 GFP_NOFS);
4656 if (!devices_info)
4657 return -ENOMEM;
4658
4659 /*
4660 * in the first pass through the devices list, we gather information
4661 * about the available holes on each device.
4662 */
4663 ndevs = 0;
4664 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4665 u64 max_avail;
4666 u64 dev_offset;
4667
4668 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4669 WARN(1, KERN_ERR
4670 "BTRFS: read-only device in alloc_list\n");
4671 continue;
4672 }
4673
4674 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4675 &device->dev_state) ||
4676 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4677 continue;
4678
4679 if (device->total_bytes > device->bytes_used)
4680 total_avail = device->total_bytes - device->bytes_used;
4681 else
4682 total_avail = 0;
4683
4684 /* If there is no space on this device, skip it. */
4685 if (total_avail == 0)
4686 continue;
4687
4688 ret = find_free_dev_extent(trans, device,
4689 max_stripe_size * dev_stripes,
4690 &dev_offset, &max_avail);
4691 if (ret && ret != -ENOSPC)
4692 goto error;
4693
4694 if (ret == 0)
4695 max_avail = max_stripe_size * dev_stripes;
4696
4697 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4698 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4699 btrfs_debug(info,
4700 "%s: devid %llu has no free space, have=%llu want=%u",
4701 __func__, device->devid, max_avail,
4702 BTRFS_STRIPE_LEN * dev_stripes);
4703 continue;
4704 }
4705
4706 if (ndevs == fs_devices->rw_devices) {
4707 WARN(1, "%s: found more than %llu devices\n",
4708 __func__, fs_devices->rw_devices);
4709 break;
4710 }
4711 devices_info[ndevs].dev_offset = dev_offset;
4712 devices_info[ndevs].max_avail = max_avail;
4713 devices_info[ndevs].total_avail = total_avail;
4714 devices_info[ndevs].dev = device;
4715 ++ndevs;
4716 }
4717
4718 /*
4719 * now sort the devices by hole size / available space
4720 */
4721 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4722 btrfs_cmp_device_info, NULL);
4723
4724 /* round down to number of usable stripes */
4725 ndevs = round_down(ndevs, devs_increment);
4726
4727 if (ndevs < devs_min) {
4728 ret = -ENOSPC;
4729 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4730 btrfs_debug(info,
4731 "%s: not enough devices with free space: have=%d minimum required=%d",
4732 __func__, ndevs, devs_min);
4733 }
4734 goto error;
4735 }
4736
4737 ndevs = min(ndevs, devs_max);
4738
4739 /*
4740 * The primary goal is to maximize the number of stripes, so use as
4741 * many devices as possible, even if the stripes are not maximum sized.
4742 *
4743 * The DUP profile stores more than one stripe per device, the
4744 * max_avail is the total size so we have to adjust.
4745 */
4746 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4747 num_stripes = ndevs * dev_stripes;
4748
4749 /*
4750 * this will have to be fixed for RAID1 and RAID10 over
4751 * more drives
4752 */
4753 data_stripes = num_stripes / ncopies;
4754
4755 if (type & BTRFS_BLOCK_GROUP_RAID5)
4756 data_stripes = num_stripes - 1;
4757
4758 if (type & BTRFS_BLOCK_GROUP_RAID6)
4759 data_stripes = num_stripes - 2;
4760
4761 /*
4762 * Use the number of data stripes to figure out how big this chunk
4763 * is really going to be in terms of logical address space,
4764 * and compare that answer with the max chunk size
4765 */
4766 if (stripe_size * data_stripes > max_chunk_size) {
4767 stripe_size = div_u64(max_chunk_size, data_stripes);
4768
4769 /* bump the answer up to a 16MB boundary */
4770 stripe_size = round_up(stripe_size, SZ_16M);
4771
4772 /*
4773 * But don't go higher than the limits we found while searching
4774 * for free extents
4775 */
4776 stripe_size = min(devices_info[ndevs - 1].max_avail,
4777 stripe_size);
4778 }
4779
4780 /* align to BTRFS_STRIPE_LEN */
4781 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4782
4783 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4784 if (!map) {
4785 ret = -ENOMEM;
4786 goto error;
4787 }
4788 map->num_stripes = num_stripes;
4789
4790 for (i = 0; i < ndevs; ++i) {
4791 for (j = 0; j < dev_stripes; ++j) {
4792 int s = i * dev_stripes + j;
4793 map->stripes[s].dev = devices_info[i].dev;
4794 map->stripes[s].physical = devices_info[i].dev_offset +
4795 j * stripe_size;
4796 }
4797 }
4798 map->stripe_len = BTRFS_STRIPE_LEN;
4799 map->io_align = BTRFS_STRIPE_LEN;
4800 map->io_width = BTRFS_STRIPE_LEN;
4801 map->type = type;
4802 map->sub_stripes = sub_stripes;
4803
4804 num_bytes = stripe_size * data_stripes;
4805
4806 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4807
4808 em = alloc_extent_map();
4809 if (!em) {
4810 kfree(map);
4811 ret = -ENOMEM;
4812 goto error;
4813 }
4814 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4815 em->map_lookup = map;
4816 em->start = start;
4817 em->len = num_bytes;
4818 em->block_start = 0;
4819 em->block_len = em->len;
4820 em->orig_block_len = stripe_size;
4821
4822 em_tree = &info->mapping_tree.map_tree;
4823 write_lock(&em_tree->lock);
4824 ret = add_extent_mapping(em_tree, em, 0);
4825 if (ret) {
4826 write_unlock(&em_tree->lock);
4827 free_extent_map(em);
4828 goto error;
4829 }
4830
4831 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4832 refcount_inc(&em->refs);
4833 write_unlock(&em_tree->lock);
4834
4835 ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4836 if (ret)
4837 goto error_del_extent;
4838
4839 for (i = 0; i < map->num_stripes; i++) {
4840 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4841 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4842 }
4843
4844 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4845
4846 free_extent_map(em);
4847 check_raid56_incompat_flag(info, type);
4848
4849 kfree(devices_info);
4850 return 0;
4851
4852 error_del_extent:
4853 write_lock(&em_tree->lock);
4854 remove_extent_mapping(em_tree, em);
4855 write_unlock(&em_tree->lock);
4856
4857 /* One for our allocation */
4858 free_extent_map(em);
4859 /* One for the tree reference */
4860 free_extent_map(em);
4861 /* One for the pending_chunks list reference */
4862 free_extent_map(em);
4863 error:
4864 kfree(devices_info);
4865 return ret;
4866 }
4867
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)4868 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4869 u64 chunk_offset, u64 chunk_size)
4870 {
4871 struct btrfs_fs_info *fs_info = trans->fs_info;
4872 struct btrfs_root *extent_root = fs_info->extent_root;
4873 struct btrfs_root *chunk_root = fs_info->chunk_root;
4874 struct btrfs_key key;
4875 struct btrfs_device *device;
4876 struct btrfs_chunk *chunk;
4877 struct btrfs_stripe *stripe;
4878 struct extent_map *em;
4879 struct map_lookup *map;
4880 size_t item_size;
4881 u64 dev_offset;
4882 u64 stripe_size;
4883 int i = 0;
4884 int ret = 0;
4885
4886 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4887 if (IS_ERR(em))
4888 return PTR_ERR(em);
4889
4890 map = em->map_lookup;
4891 item_size = btrfs_chunk_item_size(map->num_stripes);
4892 stripe_size = em->orig_block_len;
4893
4894 chunk = kzalloc(item_size, GFP_NOFS);
4895 if (!chunk) {
4896 ret = -ENOMEM;
4897 goto out;
4898 }
4899
4900 /*
4901 * Take the device list mutex to prevent races with the final phase of
4902 * a device replace operation that replaces the device object associated
4903 * with the map's stripes, because the device object's id can change
4904 * at any time during that final phase of the device replace operation
4905 * (dev-replace.c:btrfs_dev_replace_finishing()).
4906 */
4907 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4908 for (i = 0; i < map->num_stripes; i++) {
4909 device = map->stripes[i].dev;
4910 dev_offset = map->stripes[i].physical;
4911
4912 ret = btrfs_update_device(trans, device);
4913 if (ret)
4914 break;
4915 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4916 dev_offset, stripe_size);
4917 if (ret)
4918 break;
4919 }
4920 if (ret) {
4921 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4922 goto out;
4923 }
4924
4925 stripe = &chunk->stripe;
4926 for (i = 0; i < map->num_stripes; i++) {
4927 device = map->stripes[i].dev;
4928 dev_offset = map->stripes[i].physical;
4929
4930 btrfs_set_stack_stripe_devid(stripe, device->devid);
4931 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4932 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4933 stripe++;
4934 }
4935 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4936
4937 btrfs_set_stack_chunk_length(chunk, chunk_size);
4938 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4939 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4940 btrfs_set_stack_chunk_type(chunk, map->type);
4941 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4942 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4943 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4944 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4945 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4946
4947 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4948 key.type = BTRFS_CHUNK_ITEM_KEY;
4949 key.offset = chunk_offset;
4950
4951 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4952 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4953 /*
4954 * TODO: Cleanup of inserted chunk root in case of
4955 * failure.
4956 */
4957 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4958 }
4959
4960 out:
4961 kfree(chunk);
4962 free_extent_map(em);
4963 return ret;
4964 }
4965
4966 /*
4967 * Chunk allocation falls into two parts. The first part does works
4968 * that make the new allocated chunk useable, but not do any operation
4969 * that modifies the chunk tree. The second part does the works that
4970 * require modifying the chunk tree. This division is important for the
4971 * bootstrap process of adding storage to a seed btrfs.
4972 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)4973 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
4974 {
4975 u64 chunk_offset;
4976
4977 lockdep_assert_held(&trans->fs_info->chunk_mutex);
4978 chunk_offset = find_next_chunk(trans->fs_info);
4979 return __btrfs_alloc_chunk(trans, chunk_offset, type);
4980 }
4981
init_first_rw_device(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)4982 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4983 struct btrfs_fs_info *fs_info)
4984 {
4985 u64 chunk_offset;
4986 u64 sys_chunk_offset;
4987 u64 alloc_profile;
4988 int ret;
4989
4990 chunk_offset = find_next_chunk(fs_info);
4991 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4992 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4993 if (ret)
4994 return ret;
4995
4996 sys_chunk_offset = find_next_chunk(fs_info);
4997 alloc_profile = btrfs_system_alloc_profile(fs_info);
4998 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4999 return ret;
5000 }
5001
btrfs_chunk_max_errors(struct map_lookup * map)5002 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5003 {
5004 int max_errors;
5005
5006 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5007 BTRFS_BLOCK_GROUP_RAID10 |
5008 BTRFS_BLOCK_GROUP_RAID5 |
5009 BTRFS_BLOCK_GROUP_DUP)) {
5010 max_errors = 1;
5011 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5012 max_errors = 2;
5013 } else {
5014 max_errors = 0;
5015 }
5016
5017 return max_errors;
5018 }
5019
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5020 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5021 {
5022 struct extent_map *em;
5023 struct map_lookup *map;
5024 int readonly = 0;
5025 int miss_ndevs = 0;
5026 int i;
5027
5028 em = get_chunk_map(fs_info, chunk_offset, 1);
5029 if (IS_ERR(em))
5030 return 1;
5031
5032 map = em->map_lookup;
5033 for (i = 0; i < map->num_stripes; i++) {
5034 if (test_bit(BTRFS_DEV_STATE_MISSING,
5035 &map->stripes[i].dev->dev_state)) {
5036 miss_ndevs++;
5037 continue;
5038 }
5039 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5040 &map->stripes[i].dev->dev_state)) {
5041 readonly = 1;
5042 goto end;
5043 }
5044 }
5045
5046 /*
5047 * If the number of missing devices is larger than max errors,
5048 * we can not write the data into that chunk successfully, so
5049 * set it readonly.
5050 */
5051 if (miss_ndevs > btrfs_chunk_max_errors(map))
5052 readonly = 1;
5053 end:
5054 free_extent_map(em);
5055 return readonly;
5056 }
5057
btrfs_mapping_init(struct btrfs_mapping_tree * tree)5058 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5059 {
5060 extent_map_tree_init(&tree->map_tree);
5061 }
5062
btrfs_mapping_tree_free(struct btrfs_mapping_tree * tree)5063 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5064 {
5065 struct extent_map *em;
5066
5067 while (1) {
5068 write_lock(&tree->map_tree.lock);
5069 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5070 if (em)
5071 remove_extent_mapping(&tree->map_tree, em);
5072 write_unlock(&tree->map_tree.lock);
5073 if (!em)
5074 break;
5075 /* once for us */
5076 free_extent_map(em);
5077 /* once for the tree */
5078 free_extent_map(em);
5079 }
5080 }
5081
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5082 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5083 {
5084 struct extent_map *em;
5085 struct map_lookup *map;
5086 int ret;
5087
5088 em = get_chunk_map(fs_info, logical, len);
5089 if (IS_ERR(em))
5090 /*
5091 * We could return errors for these cases, but that could get
5092 * ugly and we'd probably do the same thing which is just not do
5093 * anything else and exit, so return 1 so the callers don't try
5094 * to use other copies.
5095 */
5096 return 1;
5097
5098 map = em->map_lookup;
5099 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5100 ret = map->num_stripes;
5101 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5102 ret = map->sub_stripes;
5103 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5104 ret = 2;
5105 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5106 /*
5107 * There could be two corrupted data stripes, we need
5108 * to loop retry in order to rebuild the correct data.
5109 *
5110 * Fail a stripe at a time on every retry except the
5111 * stripe under reconstruction.
5112 */
5113 ret = map->num_stripes;
5114 else
5115 ret = 1;
5116 free_extent_map(em);
5117
5118 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5119 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5120 fs_info->dev_replace.tgtdev)
5121 ret++;
5122 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5123
5124 return ret;
5125 }
5126
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5127 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5128 u64 logical)
5129 {
5130 struct extent_map *em;
5131 struct map_lookup *map;
5132 unsigned long len = fs_info->sectorsize;
5133
5134 em = get_chunk_map(fs_info, logical, len);
5135
5136 if (!WARN_ON(IS_ERR(em))) {
5137 map = em->map_lookup;
5138 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5139 len = map->stripe_len * nr_data_stripes(map);
5140 free_extent_map(em);
5141 }
5142 return len;
5143 }
5144
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5145 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5146 {
5147 struct extent_map *em;
5148 struct map_lookup *map;
5149 int ret = 0;
5150
5151 em = get_chunk_map(fs_info, logical, len);
5152
5153 if(!WARN_ON(IS_ERR(em))) {
5154 map = em->map_lookup;
5155 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5156 ret = 1;
5157 free_extent_map(em);
5158 }
5159 return ret;
5160 }
5161
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5162 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5163 struct map_lookup *map, int first,
5164 int dev_replace_is_ongoing)
5165 {
5166 int i;
5167 int num_stripes;
5168 int preferred_mirror;
5169 int tolerance;
5170 struct btrfs_device *srcdev;
5171
5172 ASSERT((map->type &
5173 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5174
5175 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5176 num_stripes = map->sub_stripes;
5177 else
5178 num_stripes = map->num_stripes;
5179
5180 preferred_mirror = first + current->pid % num_stripes;
5181
5182 if (dev_replace_is_ongoing &&
5183 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5184 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5185 srcdev = fs_info->dev_replace.srcdev;
5186 else
5187 srcdev = NULL;
5188
5189 /*
5190 * try to avoid the drive that is the source drive for a
5191 * dev-replace procedure, only choose it if no other non-missing
5192 * mirror is available
5193 */
5194 for (tolerance = 0; tolerance < 2; tolerance++) {
5195 if (map->stripes[preferred_mirror].dev->bdev &&
5196 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5197 return preferred_mirror;
5198 for (i = first; i < first + num_stripes; i++) {
5199 if (map->stripes[i].dev->bdev &&
5200 (tolerance || map->stripes[i].dev != srcdev))
5201 return i;
5202 }
5203 }
5204
5205 /* we couldn't find one that doesn't fail. Just return something
5206 * and the io error handling code will clean up eventually
5207 */
5208 return preferred_mirror;
5209 }
5210
parity_smaller(u64 a,u64 b)5211 static inline int parity_smaller(u64 a, u64 b)
5212 {
5213 return a > b;
5214 }
5215
5216 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5217 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5218 {
5219 struct btrfs_bio_stripe s;
5220 int i;
5221 u64 l;
5222 int again = 1;
5223
5224 while (again) {
5225 again = 0;
5226 for (i = 0; i < num_stripes - 1; i++) {
5227 if (parity_smaller(bbio->raid_map[i],
5228 bbio->raid_map[i+1])) {
5229 s = bbio->stripes[i];
5230 l = bbio->raid_map[i];
5231 bbio->stripes[i] = bbio->stripes[i+1];
5232 bbio->raid_map[i] = bbio->raid_map[i+1];
5233 bbio->stripes[i+1] = s;
5234 bbio->raid_map[i+1] = l;
5235
5236 again = 1;
5237 }
5238 }
5239 }
5240 }
5241
alloc_btrfs_bio(int total_stripes,int real_stripes)5242 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5243 {
5244 struct btrfs_bio *bbio = kzalloc(
5245 /* the size of the btrfs_bio */
5246 sizeof(struct btrfs_bio) +
5247 /* plus the variable array for the stripes */
5248 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5249 /* plus the variable array for the tgt dev */
5250 sizeof(int) * (real_stripes) +
5251 /*
5252 * plus the raid_map, which includes both the tgt dev
5253 * and the stripes
5254 */
5255 sizeof(u64) * (total_stripes),
5256 GFP_NOFS|__GFP_NOFAIL);
5257
5258 atomic_set(&bbio->error, 0);
5259 refcount_set(&bbio->refs, 1);
5260
5261 return bbio;
5262 }
5263
btrfs_get_bbio(struct btrfs_bio * bbio)5264 void btrfs_get_bbio(struct btrfs_bio *bbio)
5265 {
5266 WARN_ON(!refcount_read(&bbio->refs));
5267 refcount_inc(&bbio->refs);
5268 }
5269
btrfs_put_bbio(struct btrfs_bio * bbio)5270 void btrfs_put_bbio(struct btrfs_bio *bbio)
5271 {
5272 if (!bbio)
5273 return;
5274 if (refcount_dec_and_test(&bbio->refs))
5275 kfree(bbio);
5276 }
5277
5278 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5279 /*
5280 * Please note that, discard won't be sent to target device of device
5281 * replace.
5282 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 length,struct btrfs_bio ** bbio_ret)5283 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5284 u64 logical, u64 length,
5285 struct btrfs_bio **bbio_ret)
5286 {
5287 struct extent_map *em;
5288 struct map_lookup *map;
5289 struct btrfs_bio *bbio;
5290 u64 offset;
5291 u64 stripe_nr;
5292 u64 stripe_nr_end;
5293 u64 stripe_end_offset;
5294 u64 stripe_cnt;
5295 u64 stripe_len;
5296 u64 stripe_offset;
5297 u64 num_stripes;
5298 u32 stripe_index;
5299 u32 factor = 0;
5300 u32 sub_stripes = 0;
5301 u64 stripes_per_dev = 0;
5302 u32 remaining_stripes = 0;
5303 u32 last_stripe = 0;
5304 int ret = 0;
5305 int i;
5306
5307 /* discard always return a bbio */
5308 ASSERT(bbio_ret);
5309
5310 em = get_chunk_map(fs_info, logical, length);
5311 if (IS_ERR(em))
5312 return PTR_ERR(em);
5313
5314 map = em->map_lookup;
5315 /* we don't discard raid56 yet */
5316 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5317 ret = -EOPNOTSUPP;
5318 goto out;
5319 }
5320
5321 offset = logical - em->start;
5322 length = min_t(u64, em->len - offset, length);
5323
5324 stripe_len = map->stripe_len;
5325 /*
5326 * stripe_nr counts the total number of stripes we have to stride
5327 * to get to this block
5328 */
5329 stripe_nr = div64_u64(offset, stripe_len);
5330
5331 /* stripe_offset is the offset of this block in its stripe */
5332 stripe_offset = offset - stripe_nr * stripe_len;
5333
5334 stripe_nr_end = round_up(offset + length, map->stripe_len);
5335 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5336 stripe_cnt = stripe_nr_end - stripe_nr;
5337 stripe_end_offset = stripe_nr_end * map->stripe_len -
5338 (offset + length);
5339 /*
5340 * after this, stripe_nr is the number of stripes on this
5341 * device we have to walk to find the data, and stripe_index is
5342 * the number of our device in the stripe array
5343 */
5344 num_stripes = 1;
5345 stripe_index = 0;
5346 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5347 BTRFS_BLOCK_GROUP_RAID10)) {
5348 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5349 sub_stripes = 1;
5350 else
5351 sub_stripes = map->sub_stripes;
5352
5353 factor = map->num_stripes / sub_stripes;
5354 num_stripes = min_t(u64, map->num_stripes,
5355 sub_stripes * stripe_cnt);
5356 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5357 stripe_index *= sub_stripes;
5358 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5359 &remaining_stripes);
5360 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5361 last_stripe *= sub_stripes;
5362 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5363 BTRFS_BLOCK_GROUP_DUP)) {
5364 num_stripes = map->num_stripes;
5365 } else {
5366 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5367 &stripe_index);
5368 }
5369
5370 bbio = alloc_btrfs_bio(num_stripes, 0);
5371 if (!bbio) {
5372 ret = -ENOMEM;
5373 goto out;
5374 }
5375
5376 for (i = 0; i < num_stripes; i++) {
5377 bbio->stripes[i].physical =
5378 map->stripes[stripe_index].physical +
5379 stripe_offset + stripe_nr * map->stripe_len;
5380 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5381
5382 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5383 BTRFS_BLOCK_GROUP_RAID10)) {
5384 bbio->stripes[i].length = stripes_per_dev *
5385 map->stripe_len;
5386
5387 if (i / sub_stripes < remaining_stripes)
5388 bbio->stripes[i].length +=
5389 map->stripe_len;
5390
5391 /*
5392 * Special for the first stripe and
5393 * the last stripe:
5394 *
5395 * |-------|...|-------|
5396 * |----------|
5397 * off end_off
5398 */
5399 if (i < sub_stripes)
5400 bbio->stripes[i].length -=
5401 stripe_offset;
5402
5403 if (stripe_index >= last_stripe &&
5404 stripe_index <= (last_stripe +
5405 sub_stripes - 1))
5406 bbio->stripes[i].length -=
5407 stripe_end_offset;
5408
5409 if (i == sub_stripes - 1)
5410 stripe_offset = 0;
5411 } else {
5412 bbio->stripes[i].length = length;
5413 }
5414
5415 stripe_index++;
5416 if (stripe_index == map->num_stripes) {
5417 stripe_index = 0;
5418 stripe_nr++;
5419 }
5420 }
5421
5422 *bbio_ret = bbio;
5423 bbio->map_type = map->type;
5424 bbio->num_stripes = num_stripes;
5425 out:
5426 free_extent_map(em);
5427 return ret;
5428 }
5429
5430 /*
5431 * In dev-replace case, for repair case (that's the only case where the mirror
5432 * is selected explicitly when calling btrfs_map_block), blocks left of the
5433 * left cursor can also be read from the target drive.
5434 *
5435 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5436 * array of stripes.
5437 * For READ, it also needs to be supported using the same mirror number.
5438 *
5439 * If the requested block is not left of the left cursor, EIO is returned. This
5440 * can happen because btrfs_num_copies() returns one more in the dev-replace
5441 * case.
5442 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)5443 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5444 u64 logical, u64 length,
5445 u64 srcdev_devid, int *mirror_num,
5446 u64 *physical)
5447 {
5448 struct btrfs_bio *bbio = NULL;
5449 int num_stripes;
5450 int index_srcdev = 0;
5451 int found = 0;
5452 u64 physical_of_found = 0;
5453 int i;
5454 int ret = 0;
5455
5456 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5457 logical, &length, &bbio, 0, 0);
5458 if (ret) {
5459 ASSERT(bbio == NULL);
5460 return ret;
5461 }
5462
5463 num_stripes = bbio->num_stripes;
5464 if (*mirror_num > num_stripes) {
5465 /*
5466 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5467 * that means that the requested area is not left of the left
5468 * cursor
5469 */
5470 btrfs_put_bbio(bbio);
5471 return -EIO;
5472 }
5473
5474 /*
5475 * process the rest of the function using the mirror_num of the source
5476 * drive. Therefore look it up first. At the end, patch the device
5477 * pointer to the one of the target drive.
5478 */
5479 for (i = 0; i < num_stripes; i++) {
5480 if (bbio->stripes[i].dev->devid != srcdev_devid)
5481 continue;
5482
5483 /*
5484 * In case of DUP, in order to keep it simple, only add the
5485 * mirror with the lowest physical address
5486 */
5487 if (found &&
5488 physical_of_found <= bbio->stripes[i].physical)
5489 continue;
5490
5491 index_srcdev = i;
5492 found = 1;
5493 physical_of_found = bbio->stripes[i].physical;
5494 }
5495
5496 btrfs_put_bbio(bbio);
5497
5498 ASSERT(found);
5499 if (!found)
5500 return -EIO;
5501
5502 *mirror_num = index_srcdev + 1;
5503 *physical = physical_of_found;
5504 return ret;
5505 }
5506
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,int * num_stripes_ret,int * max_errors_ret)5507 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5508 struct btrfs_bio **bbio_ret,
5509 struct btrfs_dev_replace *dev_replace,
5510 int *num_stripes_ret, int *max_errors_ret)
5511 {
5512 struct btrfs_bio *bbio = *bbio_ret;
5513 u64 srcdev_devid = dev_replace->srcdev->devid;
5514 int tgtdev_indexes = 0;
5515 int num_stripes = *num_stripes_ret;
5516 int max_errors = *max_errors_ret;
5517 int i;
5518
5519 if (op == BTRFS_MAP_WRITE) {
5520 int index_where_to_add;
5521
5522 /*
5523 * duplicate the write operations while the dev replace
5524 * procedure is running. Since the copying of the old disk to
5525 * the new disk takes place at run time while the filesystem is
5526 * mounted writable, the regular write operations to the old
5527 * disk have to be duplicated to go to the new disk as well.
5528 *
5529 * Note that device->missing is handled by the caller, and that
5530 * the write to the old disk is already set up in the stripes
5531 * array.
5532 */
5533 index_where_to_add = num_stripes;
5534 for (i = 0; i < num_stripes; i++) {
5535 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5536 /* write to new disk, too */
5537 struct btrfs_bio_stripe *new =
5538 bbio->stripes + index_where_to_add;
5539 struct btrfs_bio_stripe *old =
5540 bbio->stripes + i;
5541
5542 new->physical = old->physical;
5543 new->length = old->length;
5544 new->dev = dev_replace->tgtdev;
5545 bbio->tgtdev_map[i] = index_where_to_add;
5546 index_where_to_add++;
5547 max_errors++;
5548 tgtdev_indexes++;
5549 }
5550 }
5551 num_stripes = index_where_to_add;
5552 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5553 int index_srcdev = 0;
5554 int found = 0;
5555 u64 physical_of_found = 0;
5556
5557 /*
5558 * During the dev-replace procedure, the target drive can also
5559 * be used to read data in case it is needed to repair a corrupt
5560 * block elsewhere. This is possible if the requested area is
5561 * left of the left cursor. In this area, the target drive is a
5562 * full copy of the source drive.
5563 */
5564 for (i = 0; i < num_stripes; i++) {
5565 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5566 /*
5567 * In case of DUP, in order to keep it simple,
5568 * only add the mirror with the lowest physical
5569 * address
5570 */
5571 if (found &&
5572 physical_of_found <=
5573 bbio->stripes[i].physical)
5574 continue;
5575 index_srcdev = i;
5576 found = 1;
5577 physical_of_found = bbio->stripes[i].physical;
5578 }
5579 }
5580 if (found) {
5581 struct btrfs_bio_stripe *tgtdev_stripe =
5582 bbio->stripes + num_stripes;
5583
5584 tgtdev_stripe->physical = physical_of_found;
5585 tgtdev_stripe->length =
5586 bbio->stripes[index_srcdev].length;
5587 tgtdev_stripe->dev = dev_replace->tgtdev;
5588 bbio->tgtdev_map[index_srcdev] = num_stripes;
5589
5590 tgtdev_indexes++;
5591 num_stripes++;
5592 }
5593 }
5594
5595 *num_stripes_ret = num_stripes;
5596 *max_errors_ret = max_errors;
5597 bbio->num_tgtdevs = tgtdev_indexes;
5598 *bbio_ret = bbio;
5599 }
5600
need_full_stripe(enum btrfs_map_op op)5601 static bool need_full_stripe(enum btrfs_map_op op)
5602 {
5603 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5604 }
5605
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5606 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5607 enum btrfs_map_op op,
5608 u64 logical, u64 *length,
5609 struct btrfs_bio **bbio_ret,
5610 int mirror_num, int need_raid_map)
5611 {
5612 struct extent_map *em;
5613 struct map_lookup *map;
5614 u64 offset;
5615 u64 stripe_offset;
5616 u64 stripe_nr;
5617 u64 stripe_len;
5618 u32 stripe_index;
5619 int i;
5620 int ret = 0;
5621 int num_stripes;
5622 int max_errors = 0;
5623 int tgtdev_indexes = 0;
5624 struct btrfs_bio *bbio = NULL;
5625 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5626 int dev_replace_is_ongoing = 0;
5627 int num_alloc_stripes;
5628 int patch_the_first_stripe_for_dev_replace = 0;
5629 u64 physical_to_patch_in_first_stripe = 0;
5630 u64 raid56_full_stripe_start = (u64)-1;
5631
5632 if (op == BTRFS_MAP_DISCARD)
5633 return __btrfs_map_block_for_discard(fs_info, logical,
5634 *length, bbio_ret);
5635
5636 em = get_chunk_map(fs_info, logical, *length);
5637 if (IS_ERR(em))
5638 return PTR_ERR(em);
5639
5640 map = em->map_lookup;
5641 offset = logical - em->start;
5642
5643 stripe_len = map->stripe_len;
5644 stripe_nr = offset;
5645 /*
5646 * stripe_nr counts the total number of stripes we have to stride
5647 * to get to this block
5648 */
5649 stripe_nr = div64_u64(stripe_nr, stripe_len);
5650
5651 stripe_offset = stripe_nr * stripe_len;
5652 if (offset < stripe_offset) {
5653 btrfs_crit(fs_info,
5654 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5655 stripe_offset, offset, em->start, logical,
5656 stripe_len);
5657 free_extent_map(em);
5658 return -EINVAL;
5659 }
5660
5661 /* stripe_offset is the offset of this block in its stripe*/
5662 stripe_offset = offset - stripe_offset;
5663
5664 /* if we're here for raid56, we need to know the stripe aligned start */
5665 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5666 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5667 raid56_full_stripe_start = offset;
5668
5669 /* allow a write of a full stripe, but make sure we don't
5670 * allow straddling of stripes
5671 */
5672 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5673 full_stripe_len);
5674 raid56_full_stripe_start *= full_stripe_len;
5675 }
5676
5677 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5678 u64 max_len;
5679 /* For writes to RAID[56], allow a full stripeset across all disks.
5680 For other RAID types and for RAID[56] reads, just allow a single
5681 stripe (on a single disk). */
5682 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5683 (op == BTRFS_MAP_WRITE)) {
5684 max_len = stripe_len * nr_data_stripes(map) -
5685 (offset - raid56_full_stripe_start);
5686 } else {
5687 /* we limit the length of each bio to what fits in a stripe */
5688 max_len = stripe_len - stripe_offset;
5689 }
5690 *length = min_t(u64, em->len - offset, max_len);
5691 } else {
5692 *length = em->len - offset;
5693 }
5694
5695 /* This is for when we're called from btrfs_merge_bio_hook() and all
5696 it cares about is the length */
5697 if (!bbio_ret)
5698 goto out;
5699
5700 btrfs_dev_replace_read_lock(dev_replace);
5701 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5702 if (!dev_replace_is_ongoing)
5703 btrfs_dev_replace_read_unlock(dev_replace);
5704 else
5705 btrfs_dev_replace_set_lock_blocking(dev_replace);
5706
5707 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5708 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5709 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5710 dev_replace->srcdev->devid,
5711 &mirror_num,
5712 &physical_to_patch_in_first_stripe);
5713 if (ret)
5714 goto out;
5715 else
5716 patch_the_first_stripe_for_dev_replace = 1;
5717 } else if (mirror_num > map->num_stripes) {
5718 mirror_num = 0;
5719 }
5720
5721 num_stripes = 1;
5722 stripe_index = 0;
5723 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5724 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5725 &stripe_index);
5726 if (!need_full_stripe(op))
5727 mirror_num = 1;
5728 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5729 if (need_full_stripe(op))
5730 num_stripes = map->num_stripes;
5731 else if (mirror_num)
5732 stripe_index = mirror_num - 1;
5733 else {
5734 stripe_index = find_live_mirror(fs_info, map, 0,
5735 dev_replace_is_ongoing);
5736 mirror_num = stripe_index + 1;
5737 }
5738
5739 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5740 if (need_full_stripe(op)) {
5741 num_stripes = map->num_stripes;
5742 } else if (mirror_num) {
5743 stripe_index = mirror_num - 1;
5744 } else {
5745 mirror_num = 1;
5746 }
5747
5748 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5749 u32 factor = map->num_stripes / map->sub_stripes;
5750
5751 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5752 stripe_index *= map->sub_stripes;
5753
5754 if (need_full_stripe(op))
5755 num_stripes = map->sub_stripes;
5756 else if (mirror_num)
5757 stripe_index += mirror_num - 1;
5758 else {
5759 int old_stripe_index = stripe_index;
5760 stripe_index = find_live_mirror(fs_info, map,
5761 stripe_index,
5762 dev_replace_is_ongoing);
5763 mirror_num = stripe_index - old_stripe_index + 1;
5764 }
5765
5766 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5767 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5768 /* push stripe_nr back to the start of the full stripe */
5769 stripe_nr = div64_u64(raid56_full_stripe_start,
5770 stripe_len * nr_data_stripes(map));
5771
5772 /* RAID[56] write or recovery. Return all stripes */
5773 num_stripes = map->num_stripes;
5774 max_errors = nr_parity_stripes(map);
5775
5776 *length = map->stripe_len;
5777 stripe_index = 0;
5778 stripe_offset = 0;
5779 } else {
5780 /*
5781 * Mirror #0 or #1 means the original data block.
5782 * Mirror #2 is RAID5 parity block.
5783 * Mirror #3 is RAID6 Q block.
5784 */
5785 stripe_nr = div_u64_rem(stripe_nr,
5786 nr_data_stripes(map), &stripe_index);
5787 if (mirror_num > 1)
5788 stripe_index = nr_data_stripes(map) +
5789 mirror_num - 2;
5790
5791 /* We distribute the parity blocks across stripes */
5792 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5793 &stripe_index);
5794 if (!need_full_stripe(op) && mirror_num <= 1)
5795 mirror_num = 1;
5796 }
5797 } else {
5798 /*
5799 * after this, stripe_nr is the number of stripes on this
5800 * device we have to walk to find the data, and stripe_index is
5801 * the number of our device in the stripe array
5802 */
5803 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5804 &stripe_index);
5805 mirror_num = stripe_index + 1;
5806 }
5807 if (stripe_index >= map->num_stripes) {
5808 btrfs_crit(fs_info,
5809 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5810 stripe_index, map->num_stripes);
5811 ret = -EINVAL;
5812 goto out;
5813 }
5814
5815 num_alloc_stripes = num_stripes;
5816 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5817 if (op == BTRFS_MAP_WRITE)
5818 num_alloc_stripes <<= 1;
5819 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5820 num_alloc_stripes++;
5821 tgtdev_indexes = num_stripes;
5822 }
5823
5824 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5825 if (!bbio) {
5826 ret = -ENOMEM;
5827 goto out;
5828 }
5829 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5830 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5831
5832 /* build raid_map */
5833 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5834 (need_full_stripe(op) || mirror_num > 1)) {
5835 u64 tmp;
5836 unsigned rot;
5837
5838 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5839 sizeof(struct btrfs_bio_stripe) *
5840 num_alloc_stripes +
5841 sizeof(int) * tgtdev_indexes);
5842
5843 /* Work out the disk rotation on this stripe-set */
5844 div_u64_rem(stripe_nr, num_stripes, &rot);
5845
5846 /* Fill in the logical address of each stripe */
5847 tmp = stripe_nr * nr_data_stripes(map);
5848 for (i = 0; i < nr_data_stripes(map); i++)
5849 bbio->raid_map[(i+rot) % num_stripes] =
5850 em->start + (tmp + i) * map->stripe_len;
5851
5852 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5853 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5854 bbio->raid_map[(i+rot+1) % num_stripes] =
5855 RAID6_Q_STRIPE;
5856 }
5857
5858
5859 for (i = 0; i < num_stripes; i++) {
5860 bbio->stripes[i].physical =
5861 map->stripes[stripe_index].physical +
5862 stripe_offset +
5863 stripe_nr * map->stripe_len;
5864 bbio->stripes[i].dev =
5865 map->stripes[stripe_index].dev;
5866 stripe_index++;
5867 }
5868
5869 if (need_full_stripe(op))
5870 max_errors = btrfs_chunk_max_errors(map);
5871
5872 if (bbio->raid_map)
5873 sort_parity_stripes(bbio, num_stripes);
5874
5875 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5876 need_full_stripe(op)) {
5877 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5878 &max_errors);
5879 }
5880
5881 *bbio_ret = bbio;
5882 bbio->map_type = map->type;
5883 bbio->num_stripes = num_stripes;
5884 bbio->max_errors = max_errors;
5885 bbio->mirror_num = mirror_num;
5886
5887 /*
5888 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5889 * mirror_num == num_stripes + 1 && dev_replace target drive is
5890 * available as a mirror
5891 */
5892 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5893 WARN_ON(num_stripes > 1);
5894 bbio->stripes[0].dev = dev_replace->tgtdev;
5895 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5896 bbio->mirror_num = map->num_stripes + 1;
5897 }
5898 out:
5899 if (dev_replace_is_ongoing) {
5900 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5901 btrfs_dev_replace_read_unlock(dev_replace);
5902 }
5903 free_extent_map(em);
5904 return ret;
5905 }
5906
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)5907 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5908 u64 logical, u64 *length,
5909 struct btrfs_bio **bbio_ret, int mirror_num)
5910 {
5911 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5912 mirror_num, 0);
5913 }
5914
5915 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)5916 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5917 u64 logical, u64 *length,
5918 struct btrfs_bio **bbio_ret)
5919 {
5920 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5921 }
5922
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)5923 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5924 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5925 {
5926 struct extent_map *em;
5927 struct map_lookup *map;
5928 u64 *buf;
5929 u64 bytenr;
5930 u64 length;
5931 u64 stripe_nr;
5932 u64 rmap_len;
5933 int i, j, nr = 0;
5934
5935 em = get_chunk_map(fs_info, chunk_start, 1);
5936 if (IS_ERR(em))
5937 return -EIO;
5938
5939 map = em->map_lookup;
5940 length = em->len;
5941 rmap_len = map->stripe_len;
5942
5943 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5944 length = div_u64(length, map->num_stripes / map->sub_stripes);
5945 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5946 length = div_u64(length, map->num_stripes);
5947 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5948 length = div_u64(length, nr_data_stripes(map));
5949 rmap_len = map->stripe_len * nr_data_stripes(map);
5950 }
5951
5952 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5953 BUG_ON(!buf); /* -ENOMEM */
5954
5955 for (i = 0; i < map->num_stripes; i++) {
5956 if (map->stripes[i].physical > physical ||
5957 map->stripes[i].physical + length <= physical)
5958 continue;
5959
5960 stripe_nr = physical - map->stripes[i].physical;
5961 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5962
5963 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5964 stripe_nr = stripe_nr * map->num_stripes + i;
5965 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5966 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5967 stripe_nr = stripe_nr * map->num_stripes + i;
5968 } /* else if RAID[56], multiply by nr_data_stripes().
5969 * Alternatively, just use rmap_len below instead of
5970 * map->stripe_len */
5971
5972 bytenr = chunk_start + stripe_nr * rmap_len;
5973 WARN_ON(nr >= map->num_stripes);
5974 for (j = 0; j < nr; j++) {
5975 if (buf[j] == bytenr)
5976 break;
5977 }
5978 if (j == nr) {
5979 WARN_ON(nr >= map->num_stripes);
5980 buf[nr++] = bytenr;
5981 }
5982 }
5983
5984 *logical = buf;
5985 *naddrs = nr;
5986 *stripe_len = rmap_len;
5987
5988 free_extent_map(em);
5989 return 0;
5990 }
5991
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)5992 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5993 {
5994 bio->bi_private = bbio->private;
5995 bio->bi_end_io = bbio->end_io;
5996 bio_endio(bio);
5997
5998 btrfs_put_bbio(bbio);
5999 }
6000
btrfs_end_bio(struct bio * bio)6001 static void btrfs_end_bio(struct bio *bio)
6002 {
6003 struct btrfs_bio *bbio = bio->bi_private;
6004 int is_orig_bio = 0;
6005
6006 if (bio->bi_status) {
6007 atomic_inc(&bbio->error);
6008 if (bio->bi_status == BLK_STS_IOERR ||
6009 bio->bi_status == BLK_STS_TARGET) {
6010 unsigned int stripe_index =
6011 btrfs_io_bio(bio)->stripe_index;
6012 struct btrfs_device *dev;
6013
6014 BUG_ON(stripe_index >= bbio->num_stripes);
6015 dev = bbio->stripes[stripe_index].dev;
6016 if (dev->bdev) {
6017 if (bio_op(bio) == REQ_OP_WRITE)
6018 btrfs_dev_stat_inc_and_print(dev,
6019 BTRFS_DEV_STAT_WRITE_ERRS);
6020 else
6021 btrfs_dev_stat_inc_and_print(dev,
6022 BTRFS_DEV_STAT_READ_ERRS);
6023 if (bio->bi_opf & REQ_PREFLUSH)
6024 btrfs_dev_stat_inc_and_print(dev,
6025 BTRFS_DEV_STAT_FLUSH_ERRS);
6026 }
6027 }
6028 }
6029
6030 if (bio == bbio->orig_bio)
6031 is_orig_bio = 1;
6032
6033 btrfs_bio_counter_dec(bbio->fs_info);
6034
6035 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6036 if (!is_orig_bio) {
6037 bio_put(bio);
6038 bio = bbio->orig_bio;
6039 }
6040
6041 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6042 /* only send an error to the higher layers if it is
6043 * beyond the tolerance of the btrfs bio
6044 */
6045 if (atomic_read(&bbio->error) > bbio->max_errors) {
6046 bio->bi_status = BLK_STS_IOERR;
6047 } else {
6048 /*
6049 * this bio is actually up to date, we didn't
6050 * go over the max number of errors
6051 */
6052 bio->bi_status = BLK_STS_OK;
6053 }
6054
6055 btrfs_end_bbio(bbio, bio);
6056 } else if (!is_orig_bio) {
6057 bio_put(bio);
6058 }
6059 }
6060
6061 /*
6062 * see run_scheduled_bios for a description of why bios are collected for
6063 * async submit.
6064 *
6065 * This will add one bio to the pending list for a device and make sure
6066 * the work struct is scheduled.
6067 */
btrfs_schedule_bio(struct btrfs_device * device,struct bio * bio)6068 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6069 struct bio *bio)
6070 {
6071 struct btrfs_fs_info *fs_info = device->fs_info;
6072 int should_queue = 1;
6073 struct btrfs_pending_bios *pending_bios;
6074
6075 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6076 !device->bdev) {
6077 bio_io_error(bio);
6078 return;
6079 }
6080
6081 /* don't bother with additional async steps for reads, right now */
6082 if (bio_op(bio) == REQ_OP_READ) {
6083 btrfsic_submit_bio(bio);
6084 return;
6085 }
6086
6087 WARN_ON(bio->bi_next);
6088 bio->bi_next = NULL;
6089
6090 spin_lock(&device->io_lock);
6091 if (op_is_sync(bio->bi_opf))
6092 pending_bios = &device->pending_sync_bios;
6093 else
6094 pending_bios = &device->pending_bios;
6095
6096 if (pending_bios->tail)
6097 pending_bios->tail->bi_next = bio;
6098
6099 pending_bios->tail = bio;
6100 if (!pending_bios->head)
6101 pending_bios->head = bio;
6102 if (device->running_pending)
6103 should_queue = 0;
6104
6105 spin_unlock(&device->io_lock);
6106
6107 if (should_queue)
6108 btrfs_queue_work(fs_info->submit_workers, &device->work);
6109 }
6110
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int async)6111 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6112 u64 physical, int dev_nr, int async)
6113 {
6114 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6115 struct btrfs_fs_info *fs_info = bbio->fs_info;
6116
6117 bio->bi_private = bbio;
6118 btrfs_io_bio(bio)->stripe_index = dev_nr;
6119 bio->bi_end_io = btrfs_end_bio;
6120 bio->bi_iter.bi_sector = physical >> 9;
6121 btrfs_debug_in_rcu(fs_info,
6122 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6123 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6124 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6125 bio->bi_iter.bi_size);
6126 bio_set_dev(bio, dev->bdev);
6127
6128 btrfs_bio_counter_inc_noblocked(fs_info);
6129
6130 if (async)
6131 btrfs_schedule_bio(dev, bio);
6132 else
6133 btrfsic_submit_bio(bio);
6134 }
6135
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6136 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6137 {
6138 atomic_inc(&bbio->error);
6139 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6140 /* Should be the original bio. */
6141 WARN_ON(bio != bbio->orig_bio);
6142
6143 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6144 bio->bi_iter.bi_sector = logical >> 9;
6145 if (atomic_read(&bbio->error) > bbio->max_errors)
6146 bio->bi_status = BLK_STS_IOERR;
6147 else
6148 bio->bi_status = BLK_STS_OK;
6149 btrfs_end_bbio(bbio, bio);
6150 }
6151 }
6152
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,int async_submit)6153 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6154 int mirror_num, int async_submit)
6155 {
6156 struct btrfs_device *dev;
6157 struct bio *first_bio = bio;
6158 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6159 u64 length = 0;
6160 u64 map_length;
6161 int ret;
6162 int dev_nr;
6163 int total_devs;
6164 struct btrfs_bio *bbio = NULL;
6165
6166 length = bio->bi_iter.bi_size;
6167 map_length = length;
6168
6169 btrfs_bio_counter_inc_blocked(fs_info);
6170 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6171 &map_length, &bbio, mirror_num, 1);
6172 if (ret) {
6173 btrfs_bio_counter_dec(fs_info);
6174 return errno_to_blk_status(ret);
6175 }
6176
6177 total_devs = bbio->num_stripes;
6178 bbio->orig_bio = first_bio;
6179 bbio->private = first_bio->bi_private;
6180 bbio->end_io = first_bio->bi_end_io;
6181 bbio->fs_info = fs_info;
6182 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6183
6184 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6185 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6186 /* In this case, map_length has been set to the length of
6187 a single stripe; not the whole write */
6188 if (bio_op(bio) == REQ_OP_WRITE) {
6189 ret = raid56_parity_write(fs_info, bio, bbio,
6190 map_length);
6191 } else {
6192 ret = raid56_parity_recover(fs_info, bio, bbio,
6193 map_length, mirror_num, 1);
6194 }
6195
6196 btrfs_bio_counter_dec(fs_info);
6197 return errno_to_blk_status(ret);
6198 }
6199
6200 if (map_length < length) {
6201 btrfs_crit(fs_info,
6202 "mapping failed logical %llu bio len %llu len %llu",
6203 logical, length, map_length);
6204 BUG();
6205 }
6206
6207 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6208 dev = bbio->stripes[dev_nr].dev;
6209 if (!dev || !dev->bdev ||
6210 (bio_op(first_bio) == REQ_OP_WRITE &&
6211 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6212 bbio_error(bbio, first_bio, logical);
6213 continue;
6214 }
6215
6216 if (dev_nr < total_devs - 1)
6217 bio = btrfs_bio_clone(first_bio);
6218 else
6219 bio = first_bio;
6220
6221 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6222 dev_nr, async_submit);
6223 }
6224 btrfs_bio_counter_dec(fs_info);
6225 return BLK_STS_OK;
6226 }
6227
btrfs_find_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,u8 * fsid)6228 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6229 u8 *uuid, u8 *fsid)
6230 {
6231 struct btrfs_device *device;
6232 struct btrfs_fs_devices *cur_devices;
6233
6234 cur_devices = fs_info->fs_devices;
6235 while (cur_devices) {
6236 if (!fsid ||
6237 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6238 device = find_device(cur_devices, devid, uuid);
6239 if (device)
6240 return device;
6241 }
6242 cur_devices = cur_devices->seed;
6243 }
6244 return NULL;
6245 }
6246
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6247 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6248 u64 devid, u8 *dev_uuid)
6249 {
6250 struct btrfs_device *device;
6251
6252 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6253 if (IS_ERR(device))
6254 return device;
6255
6256 list_add(&device->dev_list, &fs_devices->devices);
6257 device->fs_devices = fs_devices;
6258 fs_devices->num_devices++;
6259
6260 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6261 fs_devices->missing_devices++;
6262
6263 return device;
6264 }
6265
6266 /**
6267 * btrfs_alloc_device - allocate struct btrfs_device
6268 * @fs_info: used only for generating a new devid, can be NULL if
6269 * devid is provided (i.e. @devid != NULL).
6270 * @devid: a pointer to devid for this device. If NULL a new devid
6271 * is generated.
6272 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6273 * is generated.
6274 *
6275 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6276 * on error. Returned struct is not linked onto any lists and must be
6277 * destroyed with btrfs_free_device.
6278 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6279 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6280 const u64 *devid,
6281 const u8 *uuid)
6282 {
6283 struct btrfs_device *dev;
6284 u64 tmp;
6285
6286 if (WARN_ON(!devid && !fs_info))
6287 return ERR_PTR(-EINVAL);
6288
6289 dev = __alloc_device();
6290 if (IS_ERR(dev))
6291 return dev;
6292
6293 if (devid)
6294 tmp = *devid;
6295 else {
6296 int ret;
6297
6298 ret = find_next_devid(fs_info, &tmp);
6299 if (ret) {
6300 btrfs_free_device(dev);
6301 return ERR_PTR(ret);
6302 }
6303 }
6304 dev->devid = tmp;
6305
6306 if (uuid)
6307 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6308 else
6309 generate_random_uuid(dev->uuid);
6310
6311 btrfs_init_work(&dev->work, btrfs_submit_helper,
6312 pending_bios_fn, NULL, NULL);
6313
6314 return dev;
6315 }
6316
6317 /* Return -EIO if any error, otherwise return 0. */
btrfs_check_chunk_valid(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 logical)6318 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6319 struct extent_buffer *leaf,
6320 struct btrfs_chunk *chunk, u64 logical)
6321 {
6322 u64 length;
6323 u64 stripe_len;
6324 u16 num_stripes;
6325 u16 sub_stripes;
6326 u64 type;
6327 u64 features;
6328 bool mixed = false;
6329
6330 length = btrfs_chunk_length(leaf, chunk);
6331 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6332 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6333 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6334 type = btrfs_chunk_type(leaf, chunk);
6335
6336 if (!num_stripes) {
6337 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6338 num_stripes);
6339 return -EIO;
6340 }
6341 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6342 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6343 return -EIO;
6344 }
6345 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6346 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6347 btrfs_chunk_sector_size(leaf, chunk));
6348 return -EIO;
6349 }
6350 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6351 btrfs_err(fs_info, "invalid chunk length %llu", length);
6352 return -EIO;
6353 }
6354 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6355 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6356 stripe_len);
6357 return -EIO;
6358 }
6359 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6360 type) {
6361 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6362 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6363 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6364 btrfs_chunk_type(leaf, chunk));
6365 return -EIO;
6366 }
6367
6368 if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6369 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6370 return -EIO;
6371 }
6372
6373 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6374 (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6375 btrfs_err(fs_info,
6376 "system chunk with data or metadata type: 0x%llx", type);
6377 return -EIO;
6378 }
6379
6380 features = btrfs_super_incompat_flags(fs_info->super_copy);
6381 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6382 mixed = true;
6383
6384 if (!mixed) {
6385 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6386 (type & BTRFS_BLOCK_GROUP_DATA)) {
6387 btrfs_err(fs_info,
6388 "mixed chunk type in non-mixed mode: 0x%llx", type);
6389 return -EIO;
6390 }
6391 }
6392
6393 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6394 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6395 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6396 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6397 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6398 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6399 num_stripes != 1)) {
6400 btrfs_err(fs_info,
6401 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6402 num_stripes, sub_stripes,
6403 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6404 return -EIO;
6405 }
6406
6407 return 0;
6408 }
6409
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6410 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6411 u64 devid, u8 *uuid, bool error)
6412 {
6413 if (error)
6414 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6415 devid, uuid);
6416 else
6417 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6418 devid, uuid);
6419 }
6420
read_one_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6421 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6422 struct extent_buffer *leaf,
6423 struct btrfs_chunk *chunk)
6424 {
6425 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6426 struct map_lookup *map;
6427 struct extent_map *em;
6428 u64 logical;
6429 u64 length;
6430 u64 devid;
6431 u8 uuid[BTRFS_UUID_SIZE];
6432 int num_stripes;
6433 int ret;
6434 int i;
6435
6436 logical = key->offset;
6437 length = btrfs_chunk_length(leaf, chunk);
6438 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6439
6440 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6441 if (ret)
6442 return ret;
6443
6444 read_lock(&map_tree->map_tree.lock);
6445 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6446 read_unlock(&map_tree->map_tree.lock);
6447
6448 /* already mapped? */
6449 if (em && em->start <= logical && em->start + em->len > logical) {
6450 free_extent_map(em);
6451 return 0;
6452 } else if (em) {
6453 free_extent_map(em);
6454 }
6455
6456 em = alloc_extent_map();
6457 if (!em)
6458 return -ENOMEM;
6459 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6460 if (!map) {
6461 free_extent_map(em);
6462 return -ENOMEM;
6463 }
6464
6465 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6466 em->map_lookup = map;
6467 em->start = logical;
6468 em->len = length;
6469 em->orig_start = 0;
6470 em->block_start = 0;
6471 em->block_len = em->len;
6472
6473 map->num_stripes = num_stripes;
6474 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6475 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6476 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6477 map->type = btrfs_chunk_type(leaf, chunk);
6478 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6479 map->verified_stripes = 0;
6480 for (i = 0; i < num_stripes; i++) {
6481 map->stripes[i].physical =
6482 btrfs_stripe_offset_nr(leaf, chunk, i);
6483 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6484 read_extent_buffer(leaf, uuid, (unsigned long)
6485 btrfs_stripe_dev_uuid_nr(chunk, i),
6486 BTRFS_UUID_SIZE);
6487 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6488 uuid, NULL);
6489 if (!map->stripes[i].dev &&
6490 !btrfs_test_opt(fs_info, DEGRADED)) {
6491 free_extent_map(em);
6492 btrfs_report_missing_device(fs_info, devid, uuid, true);
6493 return -ENOENT;
6494 }
6495 if (!map->stripes[i].dev) {
6496 map->stripes[i].dev =
6497 add_missing_dev(fs_info->fs_devices, devid,
6498 uuid);
6499 if (IS_ERR(map->stripes[i].dev)) {
6500 free_extent_map(em);
6501 btrfs_err(fs_info,
6502 "failed to init missing dev %llu: %ld",
6503 devid, PTR_ERR(map->stripes[i].dev));
6504 return PTR_ERR(map->stripes[i].dev);
6505 }
6506 btrfs_report_missing_device(fs_info, devid, uuid, false);
6507 }
6508 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6509 &(map->stripes[i].dev->dev_state));
6510
6511 }
6512
6513 write_lock(&map_tree->map_tree.lock);
6514 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6515 write_unlock(&map_tree->map_tree.lock);
6516 if (ret < 0) {
6517 btrfs_err(fs_info,
6518 "failed to add chunk map, start=%llu len=%llu: %d",
6519 em->start, em->len, ret);
6520 }
6521 free_extent_map(em);
6522
6523 return ret;
6524 }
6525
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6526 static void fill_device_from_item(struct extent_buffer *leaf,
6527 struct btrfs_dev_item *dev_item,
6528 struct btrfs_device *device)
6529 {
6530 unsigned long ptr;
6531
6532 device->devid = btrfs_device_id(leaf, dev_item);
6533 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6534 device->total_bytes = device->disk_total_bytes;
6535 device->commit_total_bytes = device->disk_total_bytes;
6536 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6537 device->commit_bytes_used = device->bytes_used;
6538 device->type = btrfs_device_type(leaf, dev_item);
6539 device->io_align = btrfs_device_io_align(leaf, dev_item);
6540 device->io_width = btrfs_device_io_width(leaf, dev_item);
6541 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6542 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6543 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6544
6545 ptr = btrfs_device_uuid(dev_item);
6546 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6547 }
6548
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6549 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6550 u8 *fsid)
6551 {
6552 struct btrfs_fs_devices *fs_devices;
6553 int ret;
6554
6555 lockdep_assert_held(&uuid_mutex);
6556 ASSERT(fsid);
6557
6558 fs_devices = fs_info->fs_devices->seed;
6559 while (fs_devices) {
6560 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6561 return fs_devices;
6562
6563 fs_devices = fs_devices->seed;
6564 }
6565
6566 fs_devices = find_fsid(fsid);
6567 if (!fs_devices) {
6568 if (!btrfs_test_opt(fs_info, DEGRADED))
6569 return ERR_PTR(-ENOENT);
6570
6571 fs_devices = alloc_fs_devices(fsid);
6572 if (IS_ERR(fs_devices))
6573 return fs_devices;
6574
6575 fs_devices->seeding = 1;
6576 fs_devices->opened = 1;
6577 return fs_devices;
6578 }
6579
6580 fs_devices = clone_fs_devices(fs_devices);
6581 if (IS_ERR(fs_devices))
6582 return fs_devices;
6583
6584 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6585 if (ret) {
6586 free_fs_devices(fs_devices);
6587 fs_devices = ERR_PTR(ret);
6588 goto out;
6589 }
6590
6591 if (!fs_devices->seeding) {
6592 close_fs_devices(fs_devices);
6593 free_fs_devices(fs_devices);
6594 fs_devices = ERR_PTR(-EINVAL);
6595 goto out;
6596 }
6597
6598 fs_devices->seed = fs_info->fs_devices->seed;
6599 fs_info->fs_devices->seed = fs_devices;
6600 out:
6601 return fs_devices;
6602 }
6603
read_one_dev(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6604 static int read_one_dev(struct btrfs_fs_info *fs_info,
6605 struct extent_buffer *leaf,
6606 struct btrfs_dev_item *dev_item)
6607 {
6608 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6609 struct btrfs_device *device;
6610 u64 devid;
6611 int ret;
6612 u8 fs_uuid[BTRFS_FSID_SIZE];
6613 u8 dev_uuid[BTRFS_UUID_SIZE];
6614
6615 devid = btrfs_device_id(leaf, dev_item);
6616 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6617 BTRFS_UUID_SIZE);
6618 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6619 BTRFS_FSID_SIZE);
6620
6621 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6622 fs_devices = open_seed_devices(fs_info, fs_uuid);
6623 if (IS_ERR(fs_devices))
6624 return PTR_ERR(fs_devices);
6625 }
6626
6627 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6628 if (!device) {
6629 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6630 btrfs_report_missing_device(fs_info, devid,
6631 dev_uuid, true);
6632 return -ENOENT;
6633 }
6634
6635 device = add_missing_dev(fs_devices, devid, dev_uuid);
6636 if (IS_ERR(device)) {
6637 btrfs_err(fs_info,
6638 "failed to add missing dev %llu: %ld",
6639 devid, PTR_ERR(device));
6640 return PTR_ERR(device);
6641 }
6642 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6643 } else {
6644 if (!device->bdev) {
6645 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6646 btrfs_report_missing_device(fs_info,
6647 devid, dev_uuid, true);
6648 return -ENOENT;
6649 }
6650 btrfs_report_missing_device(fs_info, devid,
6651 dev_uuid, false);
6652 }
6653
6654 if (!device->bdev &&
6655 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6656 /*
6657 * this happens when a device that was properly setup
6658 * in the device info lists suddenly goes bad.
6659 * device->bdev is NULL, and so we have to set
6660 * device->missing to one here
6661 */
6662 device->fs_devices->missing_devices++;
6663 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6664 }
6665
6666 /* Move the device to its own fs_devices */
6667 if (device->fs_devices != fs_devices) {
6668 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6669 &device->dev_state));
6670
6671 list_move(&device->dev_list, &fs_devices->devices);
6672 device->fs_devices->num_devices--;
6673 fs_devices->num_devices++;
6674
6675 device->fs_devices->missing_devices--;
6676 fs_devices->missing_devices++;
6677
6678 device->fs_devices = fs_devices;
6679 }
6680 }
6681
6682 if (device->fs_devices != fs_info->fs_devices) {
6683 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6684 if (device->generation !=
6685 btrfs_device_generation(leaf, dev_item))
6686 return -EINVAL;
6687 }
6688
6689 fill_device_from_item(leaf, dev_item, device);
6690 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6691 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6692 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6693 device->fs_devices->total_rw_bytes += device->total_bytes;
6694 atomic64_add(device->total_bytes - device->bytes_used,
6695 &fs_info->free_chunk_space);
6696 }
6697 ret = 0;
6698 return ret;
6699 }
6700
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)6701 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6702 {
6703 struct btrfs_root *root = fs_info->tree_root;
6704 struct btrfs_super_block *super_copy = fs_info->super_copy;
6705 struct extent_buffer *sb;
6706 struct btrfs_disk_key *disk_key;
6707 struct btrfs_chunk *chunk;
6708 u8 *array_ptr;
6709 unsigned long sb_array_offset;
6710 int ret = 0;
6711 u32 num_stripes;
6712 u32 array_size;
6713 u32 len = 0;
6714 u32 cur_offset;
6715 u64 type;
6716 struct btrfs_key key;
6717
6718 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6719 /*
6720 * This will create extent buffer of nodesize, superblock size is
6721 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6722 * overallocate but we can keep it as-is, only the first page is used.
6723 */
6724 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6725 if (IS_ERR(sb))
6726 return PTR_ERR(sb);
6727 set_extent_buffer_uptodate(sb);
6728 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6729 /*
6730 * The sb extent buffer is artificial and just used to read the system array.
6731 * set_extent_buffer_uptodate() call does not properly mark all it's
6732 * pages up-to-date when the page is larger: extent does not cover the
6733 * whole page and consequently check_page_uptodate does not find all
6734 * the page's extents up-to-date (the hole beyond sb),
6735 * write_extent_buffer then triggers a WARN_ON.
6736 *
6737 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6738 * but sb spans only this function. Add an explicit SetPageUptodate call
6739 * to silence the warning eg. on PowerPC 64.
6740 */
6741 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6742 SetPageUptodate(sb->pages[0]);
6743
6744 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6745 array_size = btrfs_super_sys_array_size(super_copy);
6746
6747 array_ptr = super_copy->sys_chunk_array;
6748 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6749 cur_offset = 0;
6750
6751 while (cur_offset < array_size) {
6752 disk_key = (struct btrfs_disk_key *)array_ptr;
6753 len = sizeof(*disk_key);
6754 if (cur_offset + len > array_size)
6755 goto out_short_read;
6756
6757 btrfs_disk_key_to_cpu(&key, disk_key);
6758
6759 array_ptr += len;
6760 sb_array_offset += len;
6761 cur_offset += len;
6762
6763 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6764 chunk = (struct btrfs_chunk *)sb_array_offset;
6765 /*
6766 * At least one btrfs_chunk with one stripe must be
6767 * present, exact stripe count check comes afterwards
6768 */
6769 len = btrfs_chunk_item_size(1);
6770 if (cur_offset + len > array_size)
6771 goto out_short_read;
6772
6773 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6774 if (!num_stripes) {
6775 btrfs_err(fs_info,
6776 "invalid number of stripes %u in sys_array at offset %u",
6777 num_stripes, cur_offset);
6778 ret = -EIO;
6779 break;
6780 }
6781
6782 type = btrfs_chunk_type(sb, chunk);
6783 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6784 btrfs_err(fs_info,
6785 "invalid chunk type %llu in sys_array at offset %u",
6786 type, cur_offset);
6787 ret = -EIO;
6788 break;
6789 }
6790
6791 len = btrfs_chunk_item_size(num_stripes);
6792 if (cur_offset + len > array_size)
6793 goto out_short_read;
6794
6795 ret = read_one_chunk(fs_info, &key, sb, chunk);
6796 if (ret)
6797 break;
6798 } else {
6799 btrfs_err(fs_info,
6800 "unexpected item type %u in sys_array at offset %u",
6801 (u32)key.type, cur_offset);
6802 ret = -EIO;
6803 break;
6804 }
6805 array_ptr += len;
6806 sb_array_offset += len;
6807 cur_offset += len;
6808 }
6809 clear_extent_buffer_uptodate(sb);
6810 free_extent_buffer_stale(sb);
6811 return ret;
6812
6813 out_short_read:
6814 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6815 len, cur_offset);
6816 clear_extent_buffer_uptodate(sb);
6817 free_extent_buffer_stale(sb);
6818 return -EIO;
6819 }
6820
6821 /*
6822 * Check if all chunks in the fs are OK for read-write degraded mount
6823 *
6824 * If the @failing_dev is specified, it's accounted as missing.
6825 *
6826 * Return true if all chunks meet the minimal RW mount requirements.
6827 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6828 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)6829 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6830 struct btrfs_device *failing_dev)
6831 {
6832 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6833 struct extent_map *em;
6834 u64 next_start = 0;
6835 bool ret = true;
6836
6837 read_lock(&map_tree->map_tree.lock);
6838 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6839 read_unlock(&map_tree->map_tree.lock);
6840 /* No chunk at all? Return false anyway */
6841 if (!em) {
6842 ret = false;
6843 goto out;
6844 }
6845 while (em) {
6846 struct map_lookup *map;
6847 int missing = 0;
6848 int max_tolerated;
6849 int i;
6850
6851 map = em->map_lookup;
6852 max_tolerated =
6853 btrfs_get_num_tolerated_disk_barrier_failures(
6854 map->type);
6855 for (i = 0; i < map->num_stripes; i++) {
6856 struct btrfs_device *dev = map->stripes[i].dev;
6857
6858 if (!dev || !dev->bdev ||
6859 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6860 dev->last_flush_error)
6861 missing++;
6862 else if (failing_dev && failing_dev == dev)
6863 missing++;
6864 }
6865 if (missing > max_tolerated) {
6866 if (!failing_dev)
6867 btrfs_warn(fs_info,
6868 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6869 em->start, missing, max_tolerated);
6870 free_extent_map(em);
6871 ret = false;
6872 goto out;
6873 }
6874 next_start = extent_map_end(em);
6875 free_extent_map(em);
6876
6877 read_lock(&map_tree->map_tree.lock);
6878 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6879 (u64)(-1) - next_start);
6880 read_unlock(&map_tree->map_tree.lock);
6881 }
6882 out:
6883 return ret;
6884 }
6885
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)6886 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6887 {
6888 struct btrfs_root *root = fs_info->chunk_root;
6889 struct btrfs_path *path;
6890 struct extent_buffer *leaf;
6891 struct btrfs_key key;
6892 struct btrfs_key found_key;
6893 int ret;
6894 int slot;
6895 u64 total_dev = 0;
6896
6897 path = btrfs_alloc_path();
6898 if (!path)
6899 return -ENOMEM;
6900
6901 /*
6902 * uuid_mutex is needed only if we are mounting a sprout FS
6903 * otherwise we don't need it.
6904 */
6905 mutex_lock(&uuid_mutex);
6906 mutex_lock(&fs_info->chunk_mutex);
6907
6908 /*
6909 * Read all device items, and then all the chunk items. All
6910 * device items are found before any chunk item (their object id
6911 * is smaller than the lowest possible object id for a chunk
6912 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6913 */
6914 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6915 key.offset = 0;
6916 key.type = 0;
6917 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6918 if (ret < 0)
6919 goto error;
6920 while (1) {
6921 leaf = path->nodes[0];
6922 slot = path->slots[0];
6923 if (slot >= btrfs_header_nritems(leaf)) {
6924 ret = btrfs_next_leaf(root, path);
6925 if (ret == 0)
6926 continue;
6927 if (ret < 0)
6928 goto error;
6929 break;
6930 }
6931 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6932 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6933 struct btrfs_dev_item *dev_item;
6934 dev_item = btrfs_item_ptr(leaf, slot,
6935 struct btrfs_dev_item);
6936 ret = read_one_dev(fs_info, leaf, dev_item);
6937 if (ret)
6938 goto error;
6939 total_dev++;
6940 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6941 struct btrfs_chunk *chunk;
6942 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6943 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6944 if (ret)
6945 goto error;
6946 }
6947 path->slots[0]++;
6948 }
6949
6950 /*
6951 * After loading chunk tree, we've got all device information,
6952 * do another round of validation checks.
6953 */
6954 if (total_dev != fs_info->fs_devices->total_devices) {
6955 btrfs_err(fs_info,
6956 "super_num_devices %llu mismatch with num_devices %llu found here",
6957 btrfs_super_num_devices(fs_info->super_copy),
6958 total_dev);
6959 ret = -EINVAL;
6960 goto error;
6961 }
6962 if (btrfs_super_total_bytes(fs_info->super_copy) <
6963 fs_info->fs_devices->total_rw_bytes) {
6964 btrfs_err(fs_info,
6965 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6966 btrfs_super_total_bytes(fs_info->super_copy),
6967 fs_info->fs_devices->total_rw_bytes);
6968 ret = -EINVAL;
6969 goto error;
6970 }
6971 ret = 0;
6972 error:
6973 mutex_unlock(&fs_info->chunk_mutex);
6974 mutex_unlock(&uuid_mutex);
6975
6976 btrfs_free_path(path);
6977 return ret;
6978 }
6979
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)6980 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6981 {
6982 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6983 struct btrfs_device *device;
6984
6985 while (fs_devices) {
6986 mutex_lock(&fs_devices->device_list_mutex);
6987 list_for_each_entry(device, &fs_devices->devices, dev_list)
6988 device->fs_info = fs_info;
6989 mutex_unlock(&fs_devices->device_list_mutex);
6990
6991 fs_devices = fs_devices->seed;
6992 }
6993 }
6994
__btrfs_reset_dev_stats(struct btrfs_device * dev)6995 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6996 {
6997 int i;
6998
6999 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7000 btrfs_dev_stat_reset(dev, i);
7001 }
7002
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7003 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7004 {
7005 struct btrfs_key key;
7006 struct btrfs_key found_key;
7007 struct btrfs_root *dev_root = fs_info->dev_root;
7008 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7009 struct extent_buffer *eb;
7010 int slot;
7011 int ret = 0;
7012 struct btrfs_device *device;
7013 struct btrfs_path *path = NULL;
7014 int i;
7015
7016 path = btrfs_alloc_path();
7017 if (!path) {
7018 ret = -ENOMEM;
7019 goto out;
7020 }
7021
7022 mutex_lock(&fs_devices->device_list_mutex);
7023 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7024 int item_size;
7025 struct btrfs_dev_stats_item *ptr;
7026
7027 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7028 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7029 key.offset = device->devid;
7030 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7031 if (ret) {
7032 __btrfs_reset_dev_stats(device);
7033 device->dev_stats_valid = 1;
7034 btrfs_release_path(path);
7035 continue;
7036 }
7037 slot = path->slots[0];
7038 eb = path->nodes[0];
7039 btrfs_item_key_to_cpu(eb, &found_key, slot);
7040 item_size = btrfs_item_size_nr(eb, slot);
7041
7042 ptr = btrfs_item_ptr(eb, slot,
7043 struct btrfs_dev_stats_item);
7044
7045 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7046 if (item_size >= (1 + i) * sizeof(__le64))
7047 btrfs_dev_stat_set(device, i,
7048 btrfs_dev_stats_value(eb, ptr, i));
7049 else
7050 btrfs_dev_stat_reset(device, i);
7051 }
7052
7053 device->dev_stats_valid = 1;
7054 btrfs_dev_stat_print_on_load(device);
7055 btrfs_release_path(path);
7056 }
7057 mutex_unlock(&fs_devices->device_list_mutex);
7058
7059 out:
7060 btrfs_free_path(path);
7061 return ret < 0 ? ret : 0;
7062 }
7063
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7064 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7065 struct btrfs_device *device)
7066 {
7067 struct btrfs_fs_info *fs_info = trans->fs_info;
7068 struct btrfs_root *dev_root = fs_info->dev_root;
7069 struct btrfs_path *path;
7070 struct btrfs_key key;
7071 struct extent_buffer *eb;
7072 struct btrfs_dev_stats_item *ptr;
7073 int ret;
7074 int i;
7075
7076 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7077 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7078 key.offset = device->devid;
7079
7080 path = btrfs_alloc_path();
7081 if (!path)
7082 return -ENOMEM;
7083 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7084 if (ret < 0) {
7085 btrfs_warn_in_rcu(fs_info,
7086 "error %d while searching for dev_stats item for device %s",
7087 ret, rcu_str_deref(device->name));
7088 goto out;
7089 }
7090
7091 if (ret == 0 &&
7092 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7093 /* need to delete old one and insert a new one */
7094 ret = btrfs_del_item(trans, dev_root, path);
7095 if (ret != 0) {
7096 btrfs_warn_in_rcu(fs_info,
7097 "delete too small dev_stats item for device %s failed %d",
7098 rcu_str_deref(device->name), ret);
7099 goto out;
7100 }
7101 ret = 1;
7102 }
7103
7104 if (ret == 1) {
7105 /* need to insert a new item */
7106 btrfs_release_path(path);
7107 ret = btrfs_insert_empty_item(trans, dev_root, path,
7108 &key, sizeof(*ptr));
7109 if (ret < 0) {
7110 btrfs_warn_in_rcu(fs_info,
7111 "insert dev_stats item for device %s failed %d",
7112 rcu_str_deref(device->name), ret);
7113 goto out;
7114 }
7115 }
7116
7117 eb = path->nodes[0];
7118 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7119 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7120 btrfs_set_dev_stats_value(eb, ptr, i,
7121 btrfs_dev_stat_read(device, i));
7122 btrfs_mark_buffer_dirty(eb);
7123
7124 out:
7125 btrfs_free_path(path);
7126 return ret;
7127 }
7128
7129 /*
7130 * called from commit_transaction. Writes all changed device stats to disk.
7131 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)7132 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7133 struct btrfs_fs_info *fs_info)
7134 {
7135 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7136 struct btrfs_device *device;
7137 int stats_cnt;
7138 int ret = 0;
7139
7140 mutex_lock(&fs_devices->device_list_mutex);
7141 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7142 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7143 if (!device->dev_stats_valid || stats_cnt == 0)
7144 continue;
7145
7146
7147 /*
7148 * There is a LOAD-LOAD control dependency between the value of
7149 * dev_stats_ccnt and updating the on-disk values which requires
7150 * reading the in-memory counters. Such control dependencies
7151 * require explicit read memory barriers.
7152 *
7153 * This memory barriers pairs with smp_mb__before_atomic in
7154 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7155 * barrier implied by atomic_xchg in
7156 * btrfs_dev_stats_read_and_reset
7157 */
7158 smp_rmb();
7159
7160 ret = update_dev_stat_item(trans, device);
7161 if (!ret)
7162 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7163 }
7164 mutex_unlock(&fs_devices->device_list_mutex);
7165
7166 return ret;
7167 }
7168
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7169 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7170 {
7171 btrfs_dev_stat_inc(dev, index);
7172 btrfs_dev_stat_print_on_error(dev);
7173 }
7174
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7175 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7176 {
7177 if (!dev->dev_stats_valid)
7178 return;
7179 btrfs_err_rl_in_rcu(dev->fs_info,
7180 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7181 rcu_str_deref(dev->name),
7182 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7183 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7184 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7185 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7186 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7187 }
7188
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7189 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7190 {
7191 int i;
7192
7193 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7194 if (btrfs_dev_stat_read(dev, i) != 0)
7195 break;
7196 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7197 return; /* all values == 0, suppress message */
7198
7199 btrfs_info_in_rcu(dev->fs_info,
7200 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7201 rcu_str_deref(dev->name),
7202 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7203 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7204 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7205 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7206 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7207 }
7208
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7209 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7210 struct btrfs_ioctl_get_dev_stats *stats)
7211 {
7212 struct btrfs_device *dev;
7213 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7214 int i;
7215
7216 mutex_lock(&fs_devices->device_list_mutex);
7217 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7218 mutex_unlock(&fs_devices->device_list_mutex);
7219
7220 if (!dev) {
7221 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7222 return -ENODEV;
7223 } else if (!dev->dev_stats_valid) {
7224 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7225 return -ENODEV;
7226 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7227 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7228 if (stats->nr_items > i)
7229 stats->values[i] =
7230 btrfs_dev_stat_read_and_reset(dev, i);
7231 else
7232 btrfs_dev_stat_reset(dev, i);
7233 }
7234 } else {
7235 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7236 if (stats->nr_items > i)
7237 stats->values[i] = btrfs_dev_stat_read(dev, i);
7238 }
7239 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7240 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7241 return 0;
7242 }
7243
btrfs_scratch_superblocks(struct block_device * bdev,const char * device_path)7244 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7245 {
7246 struct buffer_head *bh;
7247 struct btrfs_super_block *disk_super;
7248 int copy_num;
7249
7250 if (!bdev)
7251 return;
7252
7253 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7254 copy_num++) {
7255
7256 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7257 continue;
7258
7259 disk_super = (struct btrfs_super_block *)bh->b_data;
7260
7261 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7262 set_buffer_dirty(bh);
7263 sync_dirty_buffer(bh);
7264 brelse(bh);
7265 }
7266
7267 /* Notify udev that device has changed */
7268 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7269
7270 /* Update ctime/mtime for device path for libblkid */
7271 update_dev_time(device_path);
7272 }
7273
7274 /*
7275 * Update the size of all devices, which is used for writing out the
7276 * super blocks.
7277 */
btrfs_update_commit_device_size(struct btrfs_fs_info * fs_info)7278 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7279 {
7280 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7281 struct btrfs_device *curr, *next;
7282
7283 if (list_empty(&fs_devices->resized_devices))
7284 return;
7285
7286 mutex_lock(&fs_devices->device_list_mutex);
7287 mutex_lock(&fs_info->chunk_mutex);
7288 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7289 resized_list) {
7290 list_del_init(&curr->resized_list);
7291 curr->commit_total_bytes = curr->disk_total_bytes;
7292 }
7293 mutex_unlock(&fs_info->chunk_mutex);
7294 mutex_unlock(&fs_devices->device_list_mutex);
7295 }
7296
7297 /* Must be invoked during the transaction commit */
btrfs_update_commit_device_bytes_used(struct btrfs_transaction * trans)7298 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7299 {
7300 struct btrfs_fs_info *fs_info = trans->fs_info;
7301 struct extent_map *em;
7302 struct map_lookup *map;
7303 struct btrfs_device *dev;
7304 int i;
7305
7306 if (list_empty(&trans->pending_chunks))
7307 return;
7308
7309 /* In order to kick the device replace finish process */
7310 mutex_lock(&fs_info->chunk_mutex);
7311 list_for_each_entry(em, &trans->pending_chunks, list) {
7312 map = em->map_lookup;
7313
7314 for (i = 0; i < map->num_stripes; i++) {
7315 dev = map->stripes[i].dev;
7316 dev->commit_bytes_used = dev->bytes_used;
7317 }
7318 }
7319 mutex_unlock(&fs_info->chunk_mutex);
7320 }
7321
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7322 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7323 {
7324 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7325 while (fs_devices) {
7326 fs_devices->fs_info = fs_info;
7327 fs_devices = fs_devices->seed;
7328 }
7329 }
7330
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7331 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7332 {
7333 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7334 while (fs_devices) {
7335 fs_devices->fs_info = NULL;
7336 fs_devices = fs_devices->seed;
7337 }
7338 }
7339
7340 /*
7341 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7342 */
btrfs_bg_type_to_factor(u64 flags)7343 int btrfs_bg_type_to_factor(u64 flags)
7344 {
7345 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7346 BTRFS_BLOCK_GROUP_RAID10))
7347 return 2;
7348 return 1;
7349 }
7350
7351
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)7352 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7353 {
7354 int index = btrfs_bg_flags_to_raid_index(type);
7355 int ncopies = btrfs_raid_array[index].ncopies;
7356 int data_stripes;
7357
7358 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7359 case BTRFS_BLOCK_GROUP_RAID5:
7360 data_stripes = num_stripes - 1;
7361 break;
7362 case BTRFS_BLOCK_GROUP_RAID6:
7363 data_stripes = num_stripes - 2;
7364 break;
7365 default:
7366 data_stripes = num_stripes / ncopies;
7367 break;
7368 }
7369 return div_u64(chunk_len, data_stripes);
7370 }
7371
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7372 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7373 u64 chunk_offset, u64 devid,
7374 u64 physical_offset, u64 physical_len)
7375 {
7376 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7377 struct extent_map *em;
7378 struct map_lookup *map;
7379 u64 stripe_len;
7380 bool found = false;
7381 int ret = 0;
7382 int i;
7383
7384 read_lock(&em_tree->lock);
7385 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7386 read_unlock(&em_tree->lock);
7387
7388 if (!em) {
7389 btrfs_err(fs_info,
7390 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7391 physical_offset, devid);
7392 ret = -EUCLEAN;
7393 goto out;
7394 }
7395
7396 map = em->map_lookup;
7397 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7398 if (physical_len != stripe_len) {
7399 btrfs_err(fs_info,
7400 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7401 physical_offset, devid, em->start, physical_len,
7402 stripe_len);
7403 ret = -EUCLEAN;
7404 goto out;
7405 }
7406
7407 for (i = 0; i < map->num_stripes; i++) {
7408 if (map->stripes[i].dev->devid == devid &&
7409 map->stripes[i].physical == physical_offset) {
7410 found = true;
7411 if (map->verified_stripes >= map->num_stripes) {
7412 btrfs_err(fs_info,
7413 "too many dev extents for chunk %llu found",
7414 em->start);
7415 ret = -EUCLEAN;
7416 goto out;
7417 }
7418 map->verified_stripes++;
7419 break;
7420 }
7421 }
7422 if (!found) {
7423 btrfs_err(fs_info,
7424 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7425 physical_offset, devid);
7426 ret = -EUCLEAN;
7427 }
7428 out:
7429 free_extent_map(em);
7430 return ret;
7431 }
7432
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7433 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7434 {
7435 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7436 struct extent_map *em;
7437 struct rb_node *node;
7438 int ret = 0;
7439
7440 read_lock(&em_tree->lock);
7441 for (node = rb_first(&em_tree->map); node; node = rb_next(node)) {
7442 em = rb_entry(node, struct extent_map, rb_node);
7443 if (em->map_lookup->num_stripes !=
7444 em->map_lookup->verified_stripes) {
7445 btrfs_err(fs_info,
7446 "chunk %llu has missing dev extent, have %d expect %d",
7447 em->start, em->map_lookup->verified_stripes,
7448 em->map_lookup->num_stripes);
7449 ret = -EUCLEAN;
7450 goto out;
7451 }
7452 }
7453 out:
7454 read_unlock(&em_tree->lock);
7455 return ret;
7456 }
7457
7458 /*
7459 * Ensure that all dev extents are mapped to correct chunk, otherwise
7460 * later chunk allocation/free would cause unexpected behavior.
7461 *
7462 * NOTE: This will iterate through the whole device tree, which should be of
7463 * the same size level as the chunk tree. This slightly increases mount time.
7464 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7465 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7466 {
7467 struct btrfs_path *path;
7468 struct btrfs_root *root = fs_info->dev_root;
7469 struct btrfs_key key;
7470 int ret = 0;
7471
7472 key.objectid = 1;
7473 key.type = BTRFS_DEV_EXTENT_KEY;
7474 key.offset = 0;
7475
7476 path = btrfs_alloc_path();
7477 if (!path)
7478 return -ENOMEM;
7479
7480 path->reada = READA_FORWARD;
7481 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7482 if (ret < 0)
7483 goto out;
7484
7485 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7486 ret = btrfs_next_item(root, path);
7487 if (ret < 0)
7488 goto out;
7489 /* No dev extents at all? Not good */
7490 if (ret > 0) {
7491 ret = -EUCLEAN;
7492 goto out;
7493 }
7494 }
7495 while (1) {
7496 struct extent_buffer *leaf = path->nodes[0];
7497 struct btrfs_dev_extent *dext;
7498 int slot = path->slots[0];
7499 u64 chunk_offset;
7500 u64 physical_offset;
7501 u64 physical_len;
7502 u64 devid;
7503
7504 btrfs_item_key_to_cpu(leaf, &key, slot);
7505 if (key.type != BTRFS_DEV_EXTENT_KEY)
7506 break;
7507 devid = key.objectid;
7508 physical_offset = key.offset;
7509
7510 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7511 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7512 physical_len = btrfs_dev_extent_length(leaf, dext);
7513
7514 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7515 physical_offset, physical_len);
7516 if (ret < 0)
7517 goto out;
7518 ret = btrfs_next_item(root, path);
7519 if (ret < 0)
7520 goto out;
7521 if (ret > 0) {
7522 ret = 0;
7523 break;
7524 }
7525 }
7526
7527 /* Ensure all chunks have corresponding dev extents */
7528 ret = verify_chunk_dev_extent_mapping(fs_info);
7529 out:
7530 btrfs_free_path(path);
7531 return ret;
7532 }
7533