1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45 
46 #undef SCRAMBLE_DELAYED_REFS
47 
48 
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 			       struct btrfs_delayed_ref_node *node, u64 parent,
51 			       u64 root_objectid, u64 owner_objectid,
52 			       u64 owner_offset, int refs_to_drop,
53 			       struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 				    struct extent_buffer *leaf,
56 				    struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 				      u64 parent, u64 root_objectid,
59 				      u64 flags, u64 owner, u64 offset,
60 				      struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 				     struct btrfs_delayed_ref_node *node,
63 				     struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 			 struct btrfs_key *key);
66 
block_group_bits(struct btrfs_block_group * cache,u64 bits)67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 	return (cache->flags & bits) == bits;
70 }
71 
72 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
74 {
75 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
76 	int ret;
77 	struct btrfs_key key;
78 	struct btrfs_path *path;
79 
80 	path = btrfs_alloc_path();
81 	if (!path)
82 		return -ENOMEM;
83 
84 	key.objectid = start;
85 	key.offset = len;
86 	key.type = BTRFS_EXTENT_ITEM_KEY;
87 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88 	btrfs_free_path(path);
89 	return ret;
90 }
91 
92 /*
93  * helper function to lookup reference count and flags of a tree block.
94  *
95  * the head node for delayed ref is used to store the sum of all the
96  * reference count modifications queued up in the rbtree. the head
97  * node may also store the extent flags to set. This way you can check
98  * to see what the reference count and extent flags would be if all of
99  * the delayed refs are not processed.
100  */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
102 			     struct btrfs_fs_info *fs_info, u64 bytenr,
103 			     u64 offset, int metadata, u64 *refs, u64 *flags)
104 {
105 	struct btrfs_root *extent_root;
106 	struct btrfs_delayed_ref_head *head;
107 	struct btrfs_delayed_ref_root *delayed_refs;
108 	struct btrfs_path *path;
109 	struct btrfs_extent_item *ei;
110 	struct extent_buffer *leaf;
111 	struct btrfs_key key;
112 	u32 item_size;
113 	u64 num_refs;
114 	u64 extent_flags;
115 	int ret;
116 
117 	/*
118 	 * If we don't have skinny metadata, don't bother doing anything
119 	 * different
120 	 */
121 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
122 		offset = fs_info->nodesize;
123 		metadata = 0;
124 	}
125 
126 	path = btrfs_alloc_path();
127 	if (!path)
128 		return -ENOMEM;
129 
130 	if (!trans) {
131 		path->skip_locking = 1;
132 		path->search_commit_root = 1;
133 	}
134 
135 search_again:
136 	key.objectid = bytenr;
137 	key.offset = offset;
138 	if (metadata)
139 		key.type = BTRFS_METADATA_ITEM_KEY;
140 	else
141 		key.type = BTRFS_EXTENT_ITEM_KEY;
142 
143 	extent_root = btrfs_extent_root(fs_info, bytenr);
144 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
145 	if (ret < 0)
146 		goto out_free;
147 
148 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
149 		if (path->slots[0]) {
150 			path->slots[0]--;
151 			btrfs_item_key_to_cpu(path->nodes[0], &key,
152 					      path->slots[0]);
153 			if (key.objectid == bytenr &&
154 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
155 			    key.offset == fs_info->nodesize)
156 				ret = 0;
157 		}
158 	}
159 
160 	if (ret == 0) {
161 		leaf = path->nodes[0];
162 		item_size = btrfs_item_size(leaf, path->slots[0]);
163 		if (item_size >= sizeof(*ei)) {
164 			ei = btrfs_item_ptr(leaf, path->slots[0],
165 					    struct btrfs_extent_item);
166 			num_refs = btrfs_extent_refs(leaf, ei);
167 			extent_flags = btrfs_extent_flags(leaf, ei);
168 		} else {
169 			ret = -EUCLEAN;
170 			btrfs_err(fs_info,
171 			"unexpected extent item size, has %u expect >= %zu",
172 				  item_size, sizeof(*ei));
173 			if (trans)
174 				btrfs_abort_transaction(trans, ret);
175 			else
176 				btrfs_handle_fs_error(fs_info, ret, NULL);
177 
178 			goto out_free;
179 		}
180 
181 		BUG_ON(num_refs == 0);
182 	} else {
183 		num_refs = 0;
184 		extent_flags = 0;
185 		ret = 0;
186 	}
187 
188 	if (!trans)
189 		goto out;
190 
191 	delayed_refs = &trans->transaction->delayed_refs;
192 	spin_lock(&delayed_refs->lock);
193 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
194 	if (head) {
195 		if (!mutex_trylock(&head->mutex)) {
196 			refcount_inc(&head->refs);
197 			spin_unlock(&delayed_refs->lock);
198 
199 			btrfs_release_path(path);
200 
201 			/*
202 			 * Mutex was contended, block until it's released and try
203 			 * again
204 			 */
205 			mutex_lock(&head->mutex);
206 			mutex_unlock(&head->mutex);
207 			btrfs_put_delayed_ref_head(head);
208 			goto search_again;
209 		}
210 		spin_lock(&head->lock);
211 		if (head->extent_op && head->extent_op->update_flags)
212 			extent_flags |= head->extent_op->flags_to_set;
213 		else
214 			BUG_ON(num_refs == 0);
215 
216 		num_refs += head->ref_mod;
217 		spin_unlock(&head->lock);
218 		mutex_unlock(&head->mutex);
219 	}
220 	spin_unlock(&delayed_refs->lock);
221 out:
222 	WARN_ON(num_refs == 0);
223 	if (refs)
224 		*refs = num_refs;
225 	if (flags)
226 		*flags = extent_flags;
227 out_free:
228 	btrfs_free_path(path);
229 	return ret;
230 }
231 
232 /*
233  * Back reference rules.  Back refs have three main goals:
234  *
235  * 1) differentiate between all holders of references to an extent so that
236  *    when a reference is dropped we can make sure it was a valid reference
237  *    before freeing the extent.
238  *
239  * 2) Provide enough information to quickly find the holders of an extent
240  *    if we notice a given block is corrupted or bad.
241  *
242  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
243  *    maintenance.  This is actually the same as #2, but with a slightly
244  *    different use case.
245  *
246  * There are two kinds of back refs. The implicit back refs is optimized
247  * for pointers in non-shared tree blocks. For a given pointer in a block,
248  * back refs of this kind provide information about the block's owner tree
249  * and the pointer's key. These information allow us to find the block by
250  * b-tree searching. The full back refs is for pointers in tree blocks not
251  * referenced by their owner trees. The location of tree block is recorded
252  * in the back refs. Actually the full back refs is generic, and can be
253  * used in all cases the implicit back refs is used. The major shortcoming
254  * of the full back refs is its overhead. Every time a tree block gets
255  * COWed, we have to update back refs entry for all pointers in it.
256  *
257  * For a newly allocated tree block, we use implicit back refs for
258  * pointers in it. This means most tree related operations only involve
259  * implicit back refs. For a tree block created in old transaction, the
260  * only way to drop a reference to it is COW it. So we can detect the
261  * event that tree block loses its owner tree's reference and do the
262  * back refs conversion.
263  *
264  * When a tree block is COWed through a tree, there are four cases:
265  *
266  * The reference count of the block is one and the tree is the block's
267  * owner tree. Nothing to do in this case.
268  *
269  * The reference count of the block is one and the tree is not the
270  * block's owner tree. In this case, full back refs is used for pointers
271  * in the block. Remove these full back refs, add implicit back refs for
272  * every pointers in the new block.
273  *
274  * The reference count of the block is greater than one and the tree is
275  * the block's owner tree. In this case, implicit back refs is used for
276  * pointers in the block. Add full back refs for every pointers in the
277  * block, increase lower level extents' reference counts. The original
278  * implicit back refs are entailed to the new block.
279  *
280  * The reference count of the block is greater than one and the tree is
281  * not the block's owner tree. Add implicit back refs for every pointer in
282  * the new block, increase lower level extents' reference count.
283  *
284  * Back Reference Key composing:
285  *
286  * The key objectid corresponds to the first byte in the extent,
287  * The key type is used to differentiate between types of back refs.
288  * There are different meanings of the key offset for different types
289  * of back refs.
290  *
291  * File extents can be referenced by:
292  *
293  * - multiple snapshots, subvolumes, or different generations in one subvol
294  * - different files inside a single subvolume
295  * - different offsets inside a file (bookend extents in file.c)
296  *
297  * The extent ref structure for the implicit back refs has fields for:
298  *
299  * - Objectid of the subvolume root
300  * - objectid of the file holding the reference
301  * - original offset in the file
302  * - how many bookend extents
303  *
304  * The key offset for the implicit back refs is hash of the first
305  * three fields.
306  *
307  * The extent ref structure for the full back refs has field for:
308  *
309  * - number of pointers in the tree leaf
310  *
311  * The key offset for the implicit back refs is the first byte of
312  * the tree leaf
313  *
314  * When a file extent is allocated, The implicit back refs is used.
315  * the fields are filled in:
316  *
317  *     (root_key.objectid, inode objectid, offset in file, 1)
318  *
319  * When a file extent is removed file truncation, we find the
320  * corresponding implicit back refs and check the following fields:
321  *
322  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
323  *
324  * Btree extents can be referenced by:
325  *
326  * - Different subvolumes
327  *
328  * Both the implicit back refs and the full back refs for tree blocks
329  * only consist of key. The key offset for the implicit back refs is
330  * objectid of block's owner tree. The key offset for the full back refs
331  * is the first byte of parent block.
332  *
333  * When implicit back refs is used, information about the lowest key and
334  * level of the tree block are required. These information are stored in
335  * tree block info structure.
336  */
337 
338 /*
339  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
340  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
341  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
342  */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
344 				     struct btrfs_extent_inline_ref *iref,
345 				     enum btrfs_inline_ref_type is_data)
346 {
347 	int type = btrfs_extent_inline_ref_type(eb, iref);
348 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
349 
350 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
351 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
352 	    type == BTRFS_SHARED_DATA_REF_KEY ||
353 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
354 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
355 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
356 				return type;
357 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
358 				ASSERT(eb->fs_info);
359 				/*
360 				 * Every shared one has parent tree block,
361 				 * which must be aligned to sector size.
362 				 */
363 				if (offset &&
364 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
365 					return type;
366 			}
367 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
368 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
369 				return type;
370 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
371 				ASSERT(eb->fs_info);
372 				/*
373 				 * Every shared one has parent tree block,
374 				 * which must be aligned to sector size.
375 				 */
376 				if (offset &&
377 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 					return type;
379 			}
380 		} else {
381 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
382 			return type;
383 		}
384 	}
385 
386 	WARN_ON(1);
387 	btrfs_print_leaf(eb);
388 	btrfs_err(eb->fs_info,
389 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
390 		  eb->start, (unsigned long)iref, type);
391 
392 	return BTRFS_REF_TYPE_INVALID;
393 }
394 
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
396 {
397 	u32 high_crc = ~(u32)0;
398 	u32 low_crc = ~(u32)0;
399 	__le64 lenum;
400 
401 	lenum = cpu_to_le64(root_objectid);
402 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
403 	lenum = cpu_to_le64(owner);
404 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
405 	lenum = cpu_to_le64(offset);
406 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
407 
408 	return ((u64)high_crc << 31) ^ (u64)low_crc;
409 }
410 
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
412 				     struct btrfs_extent_data_ref *ref)
413 {
414 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
415 				    btrfs_extent_data_ref_objectid(leaf, ref),
416 				    btrfs_extent_data_ref_offset(leaf, ref));
417 }
418 
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)419 static int match_extent_data_ref(struct extent_buffer *leaf,
420 				 struct btrfs_extent_data_ref *ref,
421 				 u64 root_objectid, u64 owner, u64 offset)
422 {
423 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
424 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
425 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
426 		return 0;
427 	return 1;
428 }
429 
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
431 					   struct btrfs_path *path,
432 					   u64 bytenr, u64 parent,
433 					   u64 root_objectid,
434 					   u64 owner, u64 offset)
435 {
436 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
437 	struct btrfs_key key;
438 	struct btrfs_extent_data_ref *ref;
439 	struct extent_buffer *leaf;
440 	u32 nritems;
441 	int ret;
442 	int recow;
443 	int err = -ENOENT;
444 
445 	key.objectid = bytenr;
446 	if (parent) {
447 		key.type = BTRFS_SHARED_DATA_REF_KEY;
448 		key.offset = parent;
449 	} else {
450 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
451 		key.offset = hash_extent_data_ref(root_objectid,
452 						  owner, offset);
453 	}
454 again:
455 	recow = 0;
456 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
457 	if (ret < 0) {
458 		err = ret;
459 		goto fail;
460 	}
461 
462 	if (parent) {
463 		if (!ret)
464 			return 0;
465 		goto fail;
466 	}
467 
468 	leaf = path->nodes[0];
469 	nritems = btrfs_header_nritems(leaf);
470 	while (1) {
471 		if (path->slots[0] >= nritems) {
472 			ret = btrfs_next_leaf(root, path);
473 			if (ret < 0)
474 				err = ret;
475 			if (ret)
476 				goto fail;
477 
478 			leaf = path->nodes[0];
479 			nritems = btrfs_header_nritems(leaf);
480 			recow = 1;
481 		}
482 
483 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
484 		if (key.objectid != bytenr ||
485 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
486 			goto fail;
487 
488 		ref = btrfs_item_ptr(leaf, path->slots[0],
489 				     struct btrfs_extent_data_ref);
490 
491 		if (match_extent_data_ref(leaf, ref, root_objectid,
492 					  owner, offset)) {
493 			if (recow) {
494 				btrfs_release_path(path);
495 				goto again;
496 			}
497 			err = 0;
498 			break;
499 		}
500 		path->slots[0]++;
501 	}
502 fail:
503 	return err;
504 }
505 
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
507 					   struct btrfs_path *path,
508 					   u64 bytenr, u64 parent,
509 					   u64 root_objectid, u64 owner,
510 					   u64 offset, int refs_to_add)
511 {
512 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
513 	struct btrfs_key key;
514 	struct extent_buffer *leaf;
515 	u32 size;
516 	u32 num_refs;
517 	int ret;
518 
519 	key.objectid = bytenr;
520 	if (parent) {
521 		key.type = BTRFS_SHARED_DATA_REF_KEY;
522 		key.offset = parent;
523 		size = sizeof(struct btrfs_shared_data_ref);
524 	} else {
525 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
526 		key.offset = hash_extent_data_ref(root_objectid,
527 						  owner, offset);
528 		size = sizeof(struct btrfs_extent_data_ref);
529 	}
530 
531 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
532 	if (ret && ret != -EEXIST)
533 		goto fail;
534 
535 	leaf = path->nodes[0];
536 	if (parent) {
537 		struct btrfs_shared_data_ref *ref;
538 		ref = btrfs_item_ptr(leaf, path->slots[0],
539 				     struct btrfs_shared_data_ref);
540 		if (ret == 0) {
541 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
542 		} else {
543 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
544 			num_refs += refs_to_add;
545 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
546 		}
547 	} else {
548 		struct btrfs_extent_data_ref *ref;
549 		while (ret == -EEXIST) {
550 			ref = btrfs_item_ptr(leaf, path->slots[0],
551 					     struct btrfs_extent_data_ref);
552 			if (match_extent_data_ref(leaf, ref, root_objectid,
553 						  owner, offset))
554 				break;
555 			btrfs_release_path(path);
556 			key.offset++;
557 			ret = btrfs_insert_empty_item(trans, root, path, &key,
558 						      size);
559 			if (ret && ret != -EEXIST)
560 				goto fail;
561 
562 			leaf = path->nodes[0];
563 		}
564 		ref = btrfs_item_ptr(leaf, path->slots[0],
565 				     struct btrfs_extent_data_ref);
566 		if (ret == 0) {
567 			btrfs_set_extent_data_ref_root(leaf, ref,
568 						       root_objectid);
569 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
570 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
571 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
572 		} else {
573 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
574 			num_refs += refs_to_add;
575 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
576 		}
577 	}
578 	btrfs_mark_buffer_dirty(leaf);
579 	ret = 0;
580 fail:
581 	btrfs_release_path(path);
582 	return ret;
583 }
584 
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
586 					   struct btrfs_root *root,
587 					   struct btrfs_path *path,
588 					   int refs_to_drop)
589 {
590 	struct btrfs_key key;
591 	struct btrfs_extent_data_ref *ref1 = NULL;
592 	struct btrfs_shared_data_ref *ref2 = NULL;
593 	struct extent_buffer *leaf;
594 	u32 num_refs = 0;
595 	int ret = 0;
596 
597 	leaf = path->nodes[0];
598 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
599 
600 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
601 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
602 				      struct btrfs_extent_data_ref);
603 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
604 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
605 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
606 				      struct btrfs_shared_data_ref);
607 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
608 	} else {
609 		btrfs_err(trans->fs_info,
610 			  "unrecognized backref key (%llu %u %llu)",
611 			  key.objectid, key.type, key.offset);
612 		btrfs_abort_transaction(trans, -EUCLEAN);
613 		return -EUCLEAN;
614 	}
615 
616 	BUG_ON(num_refs < refs_to_drop);
617 	num_refs -= refs_to_drop;
618 
619 	if (num_refs == 0) {
620 		ret = btrfs_del_item(trans, root, path);
621 	} else {
622 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
623 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
624 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
625 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
626 		btrfs_mark_buffer_dirty(leaf);
627 	}
628 	return ret;
629 }
630 
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)631 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
632 					  struct btrfs_extent_inline_ref *iref)
633 {
634 	struct btrfs_key key;
635 	struct extent_buffer *leaf;
636 	struct btrfs_extent_data_ref *ref1;
637 	struct btrfs_shared_data_ref *ref2;
638 	u32 num_refs = 0;
639 	int type;
640 
641 	leaf = path->nodes[0];
642 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
643 
644 	if (iref) {
645 		/*
646 		 * If type is invalid, we should have bailed out earlier than
647 		 * this call.
648 		 */
649 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
650 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
651 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
652 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
653 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
654 		} else {
655 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
656 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
657 		}
658 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
659 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
660 				      struct btrfs_extent_data_ref);
661 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
662 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
663 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
664 				      struct btrfs_shared_data_ref);
665 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 	} else {
667 		WARN_ON(1);
668 	}
669 	return num_refs;
670 }
671 
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
673 					  struct btrfs_path *path,
674 					  u64 bytenr, u64 parent,
675 					  u64 root_objectid)
676 {
677 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
678 	struct btrfs_key key;
679 	int ret;
680 
681 	key.objectid = bytenr;
682 	if (parent) {
683 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
684 		key.offset = parent;
685 	} else {
686 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
687 		key.offset = root_objectid;
688 	}
689 
690 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
691 	if (ret > 0)
692 		ret = -ENOENT;
693 	return ret;
694 }
695 
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
697 					  struct btrfs_path *path,
698 					  u64 bytenr, u64 parent,
699 					  u64 root_objectid)
700 {
701 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
702 	struct btrfs_key key;
703 	int ret;
704 
705 	key.objectid = bytenr;
706 	if (parent) {
707 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
708 		key.offset = parent;
709 	} else {
710 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
711 		key.offset = root_objectid;
712 	}
713 
714 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
715 	btrfs_release_path(path);
716 	return ret;
717 }
718 
extent_ref_type(u64 parent,u64 owner)719 static inline int extent_ref_type(u64 parent, u64 owner)
720 {
721 	int type;
722 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
723 		if (parent > 0)
724 			type = BTRFS_SHARED_BLOCK_REF_KEY;
725 		else
726 			type = BTRFS_TREE_BLOCK_REF_KEY;
727 	} else {
728 		if (parent > 0)
729 			type = BTRFS_SHARED_DATA_REF_KEY;
730 		else
731 			type = BTRFS_EXTENT_DATA_REF_KEY;
732 	}
733 	return type;
734 }
735 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)736 static int find_next_key(struct btrfs_path *path, int level,
737 			 struct btrfs_key *key)
738 
739 {
740 	for (; level < BTRFS_MAX_LEVEL; level++) {
741 		if (!path->nodes[level])
742 			break;
743 		if (path->slots[level] + 1 >=
744 		    btrfs_header_nritems(path->nodes[level]))
745 			continue;
746 		if (level == 0)
747 			btrfs_item_key_to_cpu(path->nodes[level], key,
748 					      path->slots[level] + 1);
749 		else
750 			btrfs_node_key_to_cpu(path->nodes[level], key,
751 					      path->slots[level] + 1);
752 		return 0;
753 	}
754 	return 1;
755 }
756 
757 /*
758  * look for inline back ref. if back ref is found, *ref_ret is set
759  * to the address of inline back ref, and 0 is returned.
760  *
761  * if back ref isn't found, *ref_ret is set to the address where it
762  * should be inserted, and -ENOENT is returned.
763  *
764  * if insert is true and there are too many inline back refs, the path
765  * points to the extent item, and -EAGAIN is returned.
766  *
767  * NOTE: inline back refs are ordered in the same way that back ref
768  *	 items in the tree are ordered.
769  */
770 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
772 				 struct btrfs_path *path,
773 				 struct btrfs_extent_inline_ref **ref_ret,
774 				 u64 bytenr, u64 num_bytes,
775 				 u64 parent, u64 root_objectid,
776 				 u64 owner, u64 offset, int insert)
777 {
778 	struct btrfs_fs_info *fs_info = trans->fs_info;
779 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
780 	struct btrfs_key key;
781 	struct extent_buffer *leaf;
782 	struct btrfs_extent_item *ei;
783 	struct btrfs_extent_inline_ref *iref;
784 	u64 flags;
785 	u64 item_size;
786 	unsigned long ptr;
787 	unsigned long end;
788 	int extra_size;
789 	int type;
790 	int want;
791 	int ret;
792 	int err = 0;
793 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
794 	int needed;
795 
796 	key.objectid = bytenr;
797 	key.type = BTRFS_EXTENT_ITEM_KEY;
798 	key.offset = num_bytes;
799 
800 	want = extent_ref_type(parent, owner);
801 	if (insert) {
802 		extra_size = btrfs_extent_inline_ref_size(want);
803 		path->search_for_extension = 1;
804 		path->keep_locks = 1;
805 	} else
806 		extra_size = -1;
807 
808 	/*
809 	 * Owner is our level, so we can just add one to get the level for the
810 	 * block we are interested in.
811 	 */
812 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
813 		key.type = BTRFS_METADATA_ITEM_KEY;
814 		key.offset = owner;
815 	}
816 
817 again:
818 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
819 	if (ret < 0) {
820 		err = ret;
821 		goto out;
822 	}
823 
824 	/*
825 	 * We may be a newly converted file system which still has the old fat
826 	 * extent entries for metadata, so try and see if we have one of those.
827 	 */
828 	if (ret > 0 && skinny_metadata) {
829 		skinny_metadata = false;
830 		if (path->slots[0]) {
831 			path->slots[0]--;
832 			btrfs_item_key_to_cpu(path->nodes[0], &key,
833 					      path->slots[0]);
834 			if (key.objectid == bytenr &&
835 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
836 			    key.offset == num_bytes)
837 				ret = 0;
838 		}
839 		if (ret) {
840 			key.objectid = bytenr;
841 			key.type = BTRFS_EXTENT_ITEM_KEY;
842 			key.offset = num_bytes;
843 			btrfs_release_path(path);
844 			goto again;
845 		}
846 	}
847 
848 	if (ret && !insert) {
849 		err = -ENOENT;
850 		goto out;
851 	} else if (WARN_ON(ret)) {
852 		btrfs_print_leaf(path->nodes[0]);
853 		btrfs_err(fs_info,
854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
855 			  bytenr, num_bytes, parent, root_objectid, owner,
856 			  offset);
857 		err = -EIO;
858 		goto out;
859 	}
860 
861 	leaf = path->nodes[0];
862 	item_size = btrfs_item_size(leaf, path->slots[0]);
863 	if (unlikely(item_size < sizeof(*ei))) {
864 		err = -EUCLEAN;
865 		btrfs_err(fs_info,
866 			  "unexpected extent item size, has %llu expect >= %zu",
867 			  item_size, sizeof(*ei));
868 		btrfs_abort_transaction(trans, err);
869 		goto out;
870 	}
871 
872 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
873 	flags = btrfs_extent_flags(leaf, ei);
874 
875 	ptr = (unsigned long)(ei + 1);
876 	end = (unsigned long)ei + item_size;
877 
878 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
879 		ptr += sizeof(struct btrfs_tree_block_info);
880 		BUG_ON(ptr > end);
881 	}
882 
883 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
884 		needed = BTRFS_REF_TYPE_DATA;
885 	else
886 		needed = BTRFS_REF_TYPE_BLOCK;
887 
888 	err = -ENOENT;
889 	while (1) {
890 		if (ptr >= end) {
891 			if (ptr > end) {
892 				err = -EUCLEAN;
893 				btrfs_print_leaf(path->nodes[0]);
894 				btrfs_crit(fs_info,
895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
896 					path->slots[0], root_objectid, owner, offset, parent);
897 			}
898 			break;
899 		}
900 		iref = (struct btrfs_extent_inline_ref *)ptr;
901 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 		if (type == BTRFS_REF_TYPE_INVALID) {
903 			err = -EUCLEAN;
904 			goto out;
905 		}
906 
907 		if (want < type)
908 			break;
909 		if (want > type) {
910 			ptr += btrfs_extent_inline_ref_size(type);
911 			continue;
912 		}
913 
914 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 			struct btrfs_extent_data_ref *dref;
916 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 			if (match_extent_data_ref(leaf, dref, root_objectid,
918 						  owner, offset)) {
919 				err = 0;
920 				break;
921 			}
922 			if (hash_extent_data_ref_item(leaf, dref) <
923 			    hash_extent_data_ref(root_objectid, owner, offset))
924 				break;
925 		} else {
926 			u64 ref_offset;
927 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 			if (parent > 0) {
929 				if (parent == ref_offset) {
930 					err = 0;
931 					break;
932 				}
933 				if (ref_offset < parent)
934 					break;
935 			} else {
936 				if (root_objectid == ref_offset) {
937 					err = 0;
938 					break;
939 				}
940 				if (ref_offset < root_objectid)
941 					break;
942 			}
943 		}
944 		ptr += btrfs_extent_inline_ref_size(type);
945 	}
946 	if (err == -ENOENT && insert) {
947 		if (item_size + extra_size >=
948 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 			err = -EAGAIN;
950 			goto out;
951 		}
952 		/*
953 		 * To add new inline back ref, we have to make sure
954 		 * there is no corresponding back ref item.
955 		 * For simplicity, we just do not add new inline back
956 		 * ref if there is any kind of item for this block
957 		 */
958 		if (find_next_key(path, 0, &key) == 0 &&
959 		    key.objectid == bytenr &&
960 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 			err = -EAGAIN;
962 			goto out;
963 		}
964 	}
965 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 	if (insert) {
968 		path->keep_locks = 0;
969 		path->search_for_extension = 0;
970 		btrfs_unlock_up_safe(path, 1);
971 	}
972 	return err;
973 }
974 
975 /*
976  * helper to add new inline back ref
977  */
978 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)979 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
980 				 struct btrfs_path *path,
981 				 struct btrfs_extent_inline_ref *iref,
982 				 u64 parent, u64 root_objectid,
983 				 u64 owner, u64 offset, int refs_to_add,
984 				 struct btrfs_delayed_extent_op *extent_op)
985 {
986 	struct extent_buffer *leaf;
987 	struct btrfs_extent_item *ei;
988 	unsigned long ptr;
989 	unsigned long end;
990 	unsigned long item_offset;
991 	u64 refs;
992 	int size;
993 	int type;
994 
995 	leaf = path->nodes[0];
996 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
997 	item_offset = (unsigned long)iref - (unsigned long)ei;
998 
999 	type = extent_ref_type(parent, owner);
1000 	size = btrfs_extent_inline_ref_size(type);
1001 
1002 	btrfs_extend_item(path, size);
1003 
1004 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1005 	refs = btrfs_extent_refs(leaf, ei);
1006 	refs += refs_to_add;
1007 	btrfs_set_extent_refs(leaf, ei, refs);
1008 	if (extent_op)
1009 		__run_delayed_extent_op(extent_op, leaf, ei);
1010 
1011 	ptr = (unsigned long)ei + item_offset;
1012 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1013 	if (ptr < end - size)
1014 		memmove_extent_buffer(leaf, ptr + size, ptr,
1015 				      end - size - ptr);
1016 
1017 	iref = (struct btrfs_extent_inline_ref *)ptr;
1018 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1019 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1020 		struct btrfs_extent_data_ref *dref;
1021 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1022 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1023 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1024 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1025 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1026 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1027 		struct btrfs_shared_data_ref *sref;
1028 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1029 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1030 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1032 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1033 	} else {
1034 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1035 	}
1036 	btrfs_mark_buffer_dirty(leaf);
1037 }
1038 
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1040 				 struct btrfs_path *path,
1041 				 struct btrfs_extent_inline_ref **ref_ret,
1042 				 u64 bytenr, u64 num_bytes, u64 parent,
1043 				 u64 root_objectid, u64 owner, u64 offset)
1044 {
1045 	int ret;
1046 
1047 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1048 					   num_bytes, parent, root_objectid,
1049 					   owner, offset, 0);
1050 	if (ret != -ENOENT)
1051 		return ret;
1052 
1053 	btrfs_release_path(path);
1054 	*ref_ret = NULL;
1055 
1056 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1057 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1058 					    root_objectid);
1059 	} else {
1060 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1061 					     root_objectid, owner, offset);
1062 	}
1063 	return ret;
1064 }
1065 
1066 /*
1067  * helper to update/remove inline back ref
1068  */
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1069 static noinline_for_stack int update_inline_extent_backref(struct btrfs_path *path,
1070 				  struct btrfs_extent_inline_ref *iref,
1071 				  int refs_to_mod,
1072 				  struct btrfs_delayed_extent_op *extent_op)
1073 {
1074 	struct extent_buffer *leaf = path->nodes[0];
1075 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1076 	struct btrfs_extent_item *ei;
1077 	struct btrfs_extent_data_ref *dref = NULL;
1078 	struct btrfs_shared_data_ref *sref = NULL;
1079 	unsigned long ptr;
1080 	unsigned long end;
1081 	u32 item_size;
1082 	int size;
1083 	int type;
1084 	u64 refs;
1085 
1086 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1087 	refs = btrfs_extent_refs(leaf, ei);
1088 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1089 		struct btrfs_key key;
1090 		u32 extent_size;
1091 
1092 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1093 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1094 			extent_size = fs_info->nodesize;
1095 		else
1096 			extent_size = key.offset;
1097 		btrfs_print_leaf(leaf);
1098 		btrfs_err(fs_info,
1099 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1100 			  key.objectid, extent_size, refs_to_mod, refs);
1101 		return -EUCLEAN;
1102 	}
1103 	refs += refs_to_mod;
1104 	btrfs_set_extent_refs(leaf, ei, refs);
1105 	if (extent_op)
1106 		__run_delayed_extent_op(extent_op, leaf, ei);
1107 
1108 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1109 	/*
1110 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1111 	 * error messages.
1112 	 */
1113 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1114 		return -EUCLEAN;
1115 
1116 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1117 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1118 		refs = btrfs_extent_data_ref_count(leaf, dref);
1119 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1120 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1121 		refs = btrfs_shared_data_ref_count(leaf, sref);
1122 	} else {
1123 		refs = 1;
1124 		/*
1125 		 * For tree blocks we can only drop one ref for it, and tree
1126 		 * blocks should not have refs > 1.
1127 		 *
1128 		 * Furthermore if we're inserting a new inline backref, we
1129 		 * won't reach this path either. That would be
1130 		 * setup_inline_extent_backref().
1131 		 */
1132 		if (unlikely(refs_to_mod != -1)) {
1133 			struct btrfs_key key;
1134 
1135 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136 
1137 			btrfs_print_leaf(leaf);
1138 			btrfs_err(fs_info,
1139 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1140 				  key.objectid, refs_to_mod);
1141 			return -EUCLEAN;
1142 		}
1143 	}
1144 
1145 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1146 		struct btrfs_key key;
1147 		u32 extent_size;
1148 
1149 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1150 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1151 			extent_size = fs_info->nodesize;
1152 		else
1153 			extent_size = key.offset;
1154 		btrfs_print_leaf(leaf);
1155 		btrfs_err(fs_info,
1156 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1157 			  (unsigned long)iref, key.objectid, extent_size,
1158 			  refs_to_mod, refs);
1159 		return -EUCLEAN;
1160 	}
1161 	refs += refs_to_mod;
1162 
1163 	if (refs > 0) {
1164 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1165 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1166 		else
1167 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1168 	} else {
1169 		size =  btrfs_extent_inline_ref_size(type);
1170 		item_size = btrfs_item_size(leaf, path->slots[0]);
1171 		ptr = (unsigned long)iref;
1172 		end = (unsigned long)ei + item_size;
1173 		if (ptr + size < end)
1174 			memmove_extent_buffer(leaf, ptr, ptr + size,
1175 					      end - ptr - size);
1176 		item_size -= size;
1177 		btrfs_truncate_item(path, item_size, 1);
1178 	}
1179 	btrfs_mark_buffer_dirty(leaf);
1180 	return 0;
1181 }
1182 
1183 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1184 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1185 				 struct btrfs_path *path,
1186 				 u64 bytenr, u64 num_bytes, u64 parent,
1187 				 u64 root_objectid, u64 owner,
1188 				 u64 offset, int refs_to_add,
1189 				 struct btrfs_delayed_extent_op *extent_op)
1190 {
1191 	struct btrfs_extent_inline_ref *iref;
1192 	int ret;
1193 
1194 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1195 					   num_bytes, parent, root_objectid,
1196 					   owner, offset, 1);
1197 	if (ret == 0) {
1198 		/*
1199 		 * We're adding refs to a tree block we already own, this
1200 		 * should not happen at all.
1201 		 */
1202 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1203 			btrfs_print_leaf(path->nodes[0]);
1204 			btrfs_crit(trans->fs_info,
1205 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1206 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1207 			return -EUCLEAN;
1208 		}
1209 		ret = update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1210 	} else if (ret == -ENOENT) {
1211 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1212 					    root_objectid, owner, offset,
1213 					    refs_to_add, extent_op);
1214 		ret = 0;
1215 	}
1216 	return ret;
1217 }
1218 
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1219 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1220 				 struct btrfs_root *root,
1221 				 struct btrfs_path *path,
1222 				 struct btrfs_extent_inline_ref *iref,
1223 				 int refs_to_drop, int is_data)
1224 {
1225 	int ret = 0;
1226 
1227 	BUG_ON(!is_data && refs_to_drop != 1);
1228 	if (iref)
1229 		ret = update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1230 	else if (is_data)
1231 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1232 	else
1233 		ret = btrfs_del_item(trans, root, path);
1234 	return ret;
1235 }
1236 
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1237 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1238 			       u64 *discarded_bytes)
1239 {
1240 	int j, ret = 0;
1241 	u64 bytes_left, end;
1242 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1243 
1244 	if (WARN_ON(start != aligned_start)) {
1245 		len -= aligned_start - start;
1246 		len = round_down(len, 1 << SECTOR_SHIFT);
1247 		start = aligned_start;
1248 	}
1249 
1250 	*discarded_bytes = 0;
1251 
1252 	if (!len)
1253 		return 0;
1254 
1255 	end = start + len;
1256 	bytes_left = len;
1257 
1258 	/* Skip any superblocks on this device. */
1259 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1260 		u64 sb_start = btrfs_sb_offset(j);
1261 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1262 		u64 size = sb_start - start;
1263 
1264 		if (!in_range(sb_start, start, bytes_left) &&
1265 		    !in_range(sb_end, start, bytes_left) &&
1266 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1267 			continue;
1268 
1269 		/*
1270 		 * Superblock spans beginning of range.  Adjust start and
1271 		 * try again.
1272 		 */
1273 		if (sb_start <= start) {
1274 			start += sb_end - start;
1275 			if (start > end) {
1276 				bytes_left = 0;
1277 				break;
1278 			}
1279 			bytes_left = end - start;
1280 			continue;
1281 		}
1282 
1283 		if (size) {
1284 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1285 						   size >> SECTOR_SHIFT,
1286 						   GFP_NOFS);
1287 			if (!ret)
1288 				*discarded_bytes += size;
1289 			else if (ret != -EOPNOTSUPP)
1290 				return ret;
1291 		}
1292 
1293 		start = sb_end;
1294 		if (start > end) {
1295 			bytes_left = 0;
1296 			break;
1297 		}
1298 		bytes_left = end - start;
1299 	}
1300 
1301 	if (bytes_left) {
1302 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1303 					   bytes_left >> SECTOR_SHIFT,
1304 					   GFP_NOFS);
1305 		if (!ret)
1306 			*discarded_bytes += bytes_left;
1307 	}
1308 	return ret;
1309 }
1310 
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1311 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1312 {
1313 	struct btrfs_device *dev = stripe->dev;
1314 	struct btrfs_fs_info *fs_info = dev->fs_info;
1315 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1316 	u64 phys = stripe->physical;
1317 	u64 len = stripe->length;
1318 	u64 discarded = 0;
1319 	int ret = 0;
1320 
1321 	/* Zone reset on a zoned filesystem */
1322 	if (btrfs_can_zone_reset(dev, phys, len)) {
1323 		u64 src_disc;
1324 
1325 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1326 		if (ret)
1327 			goto out;
1328 
1329 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1330 		    dev != dev_replace->srcdev)
1331 			goto out;
1332 
1333 		src_disc = discarded;
1334 
1335 		/* Send to replace target as well */
1336 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1337 					      &discarded);
1338 		discarded += src_disc;
1339 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1340 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1341 	} else {
1342 		ret = 0;
1343 		*bytes = 0;
1344 	}
1345 
1346 out:
1347 	*bytes = discarded;
1348 	return ret;
1349 }
1350 
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1351 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1352 			 u64 num_bytes, u64 *actual_bytes)
1353 {
1354 	int ret = 0;
1355 	u64 discarded_bytes = 0;
1356 	u64 end = bytenr + num_bytes;
1357 	u64 cur = bytenr;
1358 
1359 	/*
1360 	 * Avoid races with device replace and make sure the devices in the
1361 	 * stripes don't go away while we are discarding.
1362 	 */
1363 	btrfs_bio_counter_inc_blocked(fs_info);
1364 	while (cur < end) {
1365 		struct btrfs_discard_stripe *stripes;
1366 		unsigned int num_stripes;
1367 		int i;
1368 
1369 		num_bytes = end - cur;
1370 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1371 		if (IS_ERR(stripes)) {
1372 			ret = PTR_ERR(stripes);
1373 			if (ret == -EOPNOTSUPP)
1374 				ret = 0;
1375 			break;
1376 		}
1377 
1378 		for (i = 0; i < num_stripes; i++) {
1379 			struct btrfs_discard_stripe *stripe = stripes + i;
1380 			u64 bytes;
1381 
1382 			if (!stripe->dev->bdev) {
1383 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1384 				continue;
1385 			}
1386 
1387 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1388 					&stripe->dev->dev_state))
1389 				continue;
1390 
1391 			ret = do_discard_extent(stripe, &bytes);
1392 			if (ret) {
1393 				/*
1394 				 * Keep going if discard is not supported by the
1395 				 * device.
1396 				 */
1397 				if (ret != -EOPNOTSUPP)
1398 					break;
1399 				ret = 0;
1400 			} else {
1401 				discarded_bytes += bytes;
1402 			}
1403 		}
1404 		kfree(stripes);
1405 		if (ret)
1406 			break;
1407 		cur += num_bytes;
1408 	}
1409 	btrfs_bio_counter_dec(fs_info);
1410 	if (actual_bytes)
1411 		*actual_bytes = discarded_bytes;
1412 	return ret;
1413 }
1414 
1415 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1416 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1417 			 struct btrfs_ref *generic_ref)
1418 {
1419 	struct btrfs_fs_info *fs_info = trans->fs_info;
1420 	int ret;
1421 
1422 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1423 	       generic_ref->action);
1424 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1425 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1426 
1427 	if (generic_ref->type == BTRFS_REF_METADATA)
1428 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1429 	else
1430 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1431 
1432 	btrfs_ref_tree_mod(fs_info, generic_ref);
1433 
1434 	return ret;
1435 }
1436 
1437 /*
1438  * __btrfs_inc_extent_ref - insert backreference for a given extent
1439  *
1440  * The counterpart is in __btrfs_free_extent(), with examples and more details
1441  * how it works.
1442  *
1443  * @trans:	    Handle of transaction
1444  *
1445  * @node:	    The delayed ref node used to get the bytenr/length for
1446  *		    extent whose references are incremented.
1447  *
1448  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1449  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1450  *		    bytenr of the parent block. Since new extents are always
1451  *		    created with indirect references, this will only be the case
1452  *		    when relocating a shared extent. In that case, root_objectid
1453  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1454  *		    be 0
1455  *
1456  * @root_objectid:  The id of the root where this modification has originated,
1457  *		    this can be either one of the well-known metadata trees or
1458  *		    the subvolume id which references this extent.
1459  *
1460  * @owner:	    For data extents it is the inode number of the owning file.
1461  *		    For metadata extents this parameter holds the level in the
1462  *		    tree of the extent.
1463  *
1464  * @offset:	    For metadata extents the offset is ignored and is currently
1465  *		    always passed as 0. For data extents it is the fileoffset
1466  *		    this extent belongs to.
1467  *
1468  * @refs_to_add     Number of references to add
1469  *
1470  * @extent_op       Pointer to a structure, holding information necessary when
1471  *                  updating a tree block's flags
1472  *
1473  */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1474 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1475 				  struct btrfs_delayed_ref_node *node,
1476 				  u64 parent, u64 root_objectid,
1477 				  u64 owner, u64 offset, int refs_to_add,
1478 				  struct btrfs_delayed_extent_op *extent_op)
1479 {
1480 	struct btrfs_path *path;
1481 	struct extent_buffer *leaf;
1482 	struct btrfs_extent_item *item;
1483 	struct btrfs_key key;
1484 	u64 bytenr = node->bytenr;
1485 	u64 num_bytes = node->num_bytes;
1486 	u64 refs;
1487 	int ret;
1488 
1489 	path = btrfs_alloc_path();
1490 	if (!path)
1491 		return -ENOMEM;
1492 
1493 	/* this will setup the path even if it fails to insert the back ref */
1494 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1495 					   parent, root_objectid, owner,
1496 					   offset, refs_to_add, extent_op);
1497 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1498 		goto out;
1499 
1500 	/*
1501 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1502 	 * inline extent ref, so just update the reference count and add a
1503 	 * normal backref.
1504 	 */
1505 	leaf = path->nodes[0];
1506 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1507 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1508 	refs = btrfs_extent_refs(leaf, item);
1509 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1510 	if (extent_op)
1511 		__run_delayed_extent_op(extent_op, leaf, item);
1512 
1513 	btrfs_mark_buffer_dirty(leaf);
1514 	btrfs_release_path(path);
1515 
1516 	/* now insert the actual backref */
1517 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1518 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1519 					    root_objectid);
1520 	else
1521 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1522 					     root_objectid, owner, offset,
1523 					     refs_to_add);
1524 
1525 	if (ret)
1526 		btrfs_abort_transaction(trans, ret);
1527 out:
1528 	btrfs_free_path(path);
1529 	return ret;
1530 }
1531 
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1532 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1533 				struct btrfs_delayed_ref_node *node,
1534 				struct btrfs_delayed_extent_op *extent_op,
1535 				bool insert_reserved)
1536 {
1537 	int ret = 0;
1538 	struct btrfs_delayed_data_ref *ref;
1539 	struct btrfs_key ins;
1540 	u64 parent = 0;
1541 	u64 ref_root = 0;
1542 	u64 flags = 0;
1543 
1544 	ins.objectid = node->bytenr;
1545 	ins.offset = node->num_bytes;
1546 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1547 
1548 	ref = btrfs_delayed_node_to_data_ref(node);
1549 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1550 
1551 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1552 		parent = ref->parent;
1553 	ref_root = ref->root;
1554 
1555 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1556 		if (extent_op)
1557 			flags |= extent_op->flags_to_set;
1558 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1559 						 flags, ref->objectid,
1560 						 ref->offset, &ins,
1561 						 node->ref_mod);
1562 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1563 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1564 					     ref->objectid, ref->offset,
1565 					     node->ref_mod, extent_op);
1566 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1567 		ret = __btrfs_free_extent(trans, node, parent,
1568 					  ref_root, ref->objectid,
1569 					  ref->offset, node->ref_mod,
1570 					  extent_op);
1571 	} else {
1572 		BUG();
1573 	}
1574 	return ret;
1575 }
1576 
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1577 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1578 				    struct extent_buffer *leaf,
1579 				    struct btrfs_extent_item *ei)
1580 {
1581 	u64 flags = btrfs_extent_flags(leaf, ei);
1582 	if (extent_op->update_flags) {
1583 		flags |= extent_op->flags_to_set;
1584 		btrfs_set_extent_flags(leaf, ei, flags);
1585 	}
1586 
1587 	if (extent_op->update_key) {
1588 		struct btrfs_tree_block_info *bi;
1589 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1590 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1591 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1592 	}
1593 }
1594 
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1595 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1596 				 struct btrfs_delayed_ref_head *head,
1597 				 struct btrfs_delayed_extent_op *extent_op)
1598 {
1599 	struct btrfs_fs_info *fs_info = trans->fs_info;
1600 	struct btrfs_root *root;
1601 	struct btrfs_key key;
1602 	struct btrfs_path *path;
1603 	struct btrfs_extent_item *ei;
1604 	struct extent_buffer *leaf;
1605 	u32 item_size;
1606 	int ret;
1607 	int err = 0;
1608 	int metadata = 1;
1609 
1610 	if (TRANS_ABORTED(trans))
1611 		return 0;
1612 
1613 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1614 		metadata = 0;
1615 
1616 	path = btrfs_alloc_path();
1617 	if (!path)
1618 		return -ENOMEM;
1619 
1620 	key.objectid = head->bytenr;
1621 
1622 	if (metadata) {
1623 		key.type = BTRFS_METADATA_ITEM_KEY;
1624 		key.offset = extent_op->level;
1625 	} else {
1626 		key.type = BTRFS_EXTENT_ITEM_KEY;
1627 		key.offset = head->num_bytes;
1628 	}
1629 
1630 	root = btrfs_extent_root(fs_info, key.objectid);
1631 again:
1632 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1633 	if (ret < 0) {
1634 		err = ret;
1635 		goto out;
1636 	}
1637 	if (ret > 0) {
1638 		if (metadata) {
1639 			if (path->slots[0] > 0) {
1640 				path->slots[0]--;
1641 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1642 						      path->slots[0]);
1643 				if (key.objectid == head->bytenr &&
1644 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1645 				    key.offset == head->num_bytes)
1646 					ret = 0;
1647 			}
1648 			if (ret > 0) {
1649 				btrfs_release_path(path);
1650 				metadata = 0;
1651 
1652 				key.objectid = head->bytenr;
1653 				key.offset = head->num_bytes;
1654 				key.type = BTRFS_EXTENT_ITEM_KEY;
1655 				goto again;
1656 			}
1657 		} else {
1658 			err = -EUCLEAN;
1659 			btrfs_err(fs_info,
1660 		  "missing extent item for extent %llu num_bytes %llu level %d",
1661 				  head->bytenr, head->num_bytes, extent_op->level);
1662 			goto out;
1663 		}
1664 	}
1665 
1666 	leaf = path->nodes[0];
1667 	item_size = btrfs_item_size(leaf, path->slots[0]);
1668 
1669 	if (unlikely(item_size < sizeof(*ei))) {
1670 		err = -EUCLEAN;
1671 		btrfs_err(fs_info,
1672 			  "unexpected extent item size, has %u expect >= %zu",
1673 			  item_size, sizeof(*ei));
1674 		btrfs_abort_transaction(trans, err);
1675 		goto out;
1676 	}
1677 
1678 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 	__run_delayed_extent_op(extent_op, leaf, ei);
1680 
1681 	btrfs_mark_buffer_dirty(leaf);
1682 out:
1683 	btrfs_free_path(path);
1684 	return err;
1685 }
1686 
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1687 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1688 				struct btrfs_delayed_ref_node *node,
1689 				struct btrfs_delayed_extent_op *extent_op,
1690 				bool insert_reserved)
1691 {
1692 	int ret = 0;
1693 	struct btrfs_delayed_tree_ref *ref;
1694 	u64 parent = 0;
1695 	u64 ref_root = 0;
1696 
1697 	ref = btrfs_delayed_node_to_tree_ref(node);
1698 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1699 
1700 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1701 		parent = ref->parent;
1702 	ref_root = ref->root;
1703 
1704 	if (unlikely(node->ref_mod != 1)) {
1705 		btrfs_err(trans->fs_info,
1706 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1707 			  node->bytenr, node->ref_mod, node->action, ref_root,
1708 			  parent);
1709 		return -EUCLEAN;
1710 	}
1711 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1712 		BUG_ON(!extent_op || !extent_op->update_flags);
1713 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1714 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1715 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1716 					     ref->level, 0, 1, extent_op);
1717 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1718 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1719 					  ref->level, 0, 1, extent_op);
1720 	} else {
1721 		BUG();
1722 	}
1723 	return ret;
1724 }
1725 
1726 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1727 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1728 			       struct btrfs_delayed_ref_node *node,
1729 			       struct btrfs_delayed_extent_op *extent_op,
1730 			       bool insert_reserved)
1731 {
1732 	int ret = 0;
1733 
1734 	if (TRANS_ABORTED(trans)) {
1735 		if (insert_reserved)
1736 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1737 		return 0;
1738 	}
1739 
1740 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1741 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1742 		ret = run_delayed_tree_ref(trans, node, extent_op,
1743 					   insert_reserved);
1744 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1745 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1746 		ret = run_delayed_data_ref(trans, node, extent_op,
1747 					   insert_reserved);
1748 	else
1749 		BUG();
1750 	if (ret && insert_reserved)
1751 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1752 	if (ret < 0)
1753 		btrfs_err(trans->fs_info,
1754 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1755 			  node->bytenr, node->num_bytes, node->type,
1756 			  node->action, node->ref_mod, ret);
1757 	return ret;
1758 }
1759 
1760 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1761 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1762 {
1763 	struct btrfs_delayed_ref_node *ref;
1764 
1765 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1766 		return NULL;
1767 
1768 	/*
1769 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1770 	 * This is to prevent a ref count from going down to zero, which deletes
1771 	 * the extent item from the extent tree, when there still are references
1772 	 * to add, which would fail because they would not find the extent item.
1773 	 */
1774 	if (!list_empty(&head->ref_add_list))
1775 		return list_first_entry(&head->ref_add_list,
1776 				struct btrfs_delayed_ref_node, add_list);
1777 
1778 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1779 		       struct btrfs_delayed_ref_node, ref_node);
1780 	ASSERT(list_empty(&ref->add_list));
1781 	return ref;
1782 }
1783 
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1784 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1785 				      struct btrfs_delayed_ref_head *head)
1786 {
1787 	spin_lock(&delayed_refs->lock);
1788 	head->processing = false;
1789 	delayed_refs->num_heads_ready++;
1790 	spin_unlock(&delayed_refs->lock);
1791 	btrfs_delayed_ref_unlock(head);
1792 }
1793 
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1794 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1795 				struct btrfs_delayed_ref_head *head)
1796 {
1797 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1798 
1799 	if (!extent_op)
1800 		return NULL;
1801 
1802 	if (head->must_insert_reserved) {
1803 		head->extent_op = NULL;
1804 		btrfs_free_delayed_extent_op(extent_op);
1805 		return NULL;
1806 	}
1807 	return extent_op;
1808 }
1809 
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1810 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1811 				     struct btrfs_delayed_ref_head *head)
1812 {
1813 	struct btrfs_delayed_extent_op *extent_op;
1814 	int ret;
1815 
1816 	extent_op = cleanup_extent_op(head);
1817 	if (!extent_op)
1818 		return 0;
1819 	head->extent_op = NULL;
1820 	spin_unlock(&head->lock);
1821 	ret = run_delayed_extent_op(trans, head, extent_op);
1822 	btrfs_free_delayed_extent_op(extent_op);
1823 	return ret ? ret : 1;
1824 }
1825 
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1826 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1827 				  struct btrfs_delayed_ref_root *delayed_refs,
1828 				  struct btrfs_delayed_ref_head *head)
1829 {
1830 	int nr_items = 1;	/* Dropping this ref head update. */
1831 
1832 	/*
1833 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1834 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1835 	 */
1836 	if (head->total_ref_mod < 0 && head->is_data) {
1837 		spin_lock(&delayed_refs->lock);
1838 		delayed_refs->pending_csums -= head->num_bytes;
1839 		spin_unlock(&delayed_refs->lock);
1840 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1841 	}
1842 
1843 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1844 }
1845 
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1846 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1847 			    struct btrfs_delayed_ref_head *head)
1848 {
1849 
1850 	struct btrfs_fs_info *fs_info = trans->fs_info;
1851 	struct btrfs_delayed_ref_root *delayed_refs;
1852 	int ret;
1853 
1854 	delayed_refs = &trans->transaction->delayed_refs;
1855 
1856 	ret = run_and_cleanup_extent_op(trans, head);
1857 	if (ret < 0) {
1858 		unselect_delayed_ref_head(delayed_refs, head);
1859 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1860 		return ret;
1861 	} else if (ret) {
1862 		return ret;
1863 	}
1864 
1865 	/*
1866 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1867 	 * and then re-check to make sure nobody got added.
1868 	 */
1869 	spin_unlock(&head->lock);
1870 	spin_lock(&delayed_refs->lock);
1871 	spin_lock(&head->lock);
1872 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1873 		spin_unlock(&head->lock);
1874 		spin_unlock(&delayed_refs->lock);
1875 		return 1;
1876 	}
1877 	btrfs_delete_ref_head(delayed_refs, head);
1878 	spin_unlock(&head->lock);
1879 	spin_unlock(&delayed_refs->lock);
1880 
1881 	if (head->must_insert_reserved) {
1882 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1883 		if (head->is_data) {
1884 			struct btrfs_root *csum_root;
1885 
1886 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1887 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1888 					      head->num_bytes);
1889 		}
1890 	}
1891 
1892 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1893 
1894 	trace_run_delayed_ref_head(fs_info, head, 0);
1895 	btrfs_delayed_ref_unlock(head);
1896 	btrfs_put_delayed_ref_head(head);
1897 	return ret;
1898 }
1899 
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1900 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1901 					struct btrfs_trans_handle *trans)
1902 {
1903 	struct btrfs_delayed_ref_root *delayed_refs =
1904 		&trans->transaction->delayed_refs;
1905 	struct btrfs_delayed_ref_head *head = NULL;
1906 	int ret;
1907 
1908 	spin_lock(&delayed_refs->lock);
1909 	head = btrfs_select_ref_head(delayed_refs);
1910 	if (!head) {
1911 		spin_unlock(&delayed_refs->lock);
1912 		return head;
1913 	}
1914 
1915 	/*
1916 	 * Grab the lock that says we are going to process all the refs for
1917 	 * this head
1918 	 */
1919 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1920 	spin_unlock(&delayed_refs->lock);
1921 
1922 	/*
1923 	 * We may have dropped the spin lock to get the head mutex lock, and
1924 	 * that might have given someone else time to free the head.  If that's
1925 	 * true, it has been removed from our list and we can move on.
1926 	 */
1927 	if (ret == -EAGAIN)
1928 		head = ERR_PTR(-EAGAIN);
1929 
1930 	return head;
1931 }
1932 
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref)1933 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1934 					   struct btrfs_delayed_ref_head *locked_ref)
1935 {
1936 	struct btrfs_fs_info *fs_info = trans->fs_info;
1937 	struct btrfs_delayed_ref_root *delayed_refs;
1938 	struct btrfs_delayed_extent_op *extent_op;
1939 	struct btrfs_delayed_ref_node *ref;
1940 	bool must_insert_reserved;
1941 	int ret;
1942 
1943 	delayed_refs = &trans->transaction->delayed_refs;
1944 
1945 	lockdep_assert_held(&locked_ref->mutex);
1946 	lockdep_assert_held(&locked_ref->lock);
1947 
1948 	while ((ref = select_delayed_ref(locked_ref))) {
1949 		if (ref->seq &&
1950 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1951 			spin_unlock(&locked_ref->lock);
1952 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1953 			return -EAGAIN;
1954 		}
1955 
1956 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1957 		RB_CLEAR_NODE(&ref->ref_node);
1958 		if (!list_empty(&ref->add_list))
1959 			list_del(&ref->add_list);
1960 		/*
1961 		 * When we play the delayed ref, also correct the ref_mod on
1962 		 * head
1963 		 */
1964 		switch (ref->action) {
1965 		case BTRFS_ADD_DELAYED_REF:
1966 		case BTRFS_ADD_DELAYED_EXTENT:
1967 			locked_ref->ref_mod -= ref->ref_mod;
1968 			break;
1969 		case BTRFS_DROP_DELAYED_REF:
1970 			locked_ref->ref_mod += ref->ref_mod;
1971 			break;
1972 		default:
1973 			WARN_ON(1);
1974 		}
1975 		atomic_dec(&delayed_refs->num_entries);
1976 
1977 		/*
1978 		 * Record the must_insert_reserved flag before we drop the
1979 		 * spin lock.
1980 		 */
1981 		must_insert_reserved = locked_ref->must_insert_reserved;
1982 		locked_ref->must_insert_reserved = false;
1983 
1984 		extent_op = locked_ref->extent_op;
1985 		locked_ref->extent_op = NULL;
1986 		spin_unlock(&locked_ref->lock);
1987 
1988 		ret = run_one_delayed_ref(trans, ref, extent_op,
1989 					  must_insert_reserved);
1990 
1991 		btrfs_free_delayed_extent_op(extent_op);
1992 		if (ret) {
1993 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1994 			btrfs_put_delayed_ref(ref);
1995 			return ret;
1996 		}
1997 
1998 		btrfs_put_delayed_ref(ref);
1999 		cond_resched();
2000 
2001 		spin_lock(&locked_ref->lock);
2002 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2003 	}
2004 
2005 	return 0;
2006 }
2007 
2008 /*
2009  * Returns 0 on success or if called with an already aborted transaction.
2010  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2011  */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)2012 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2013 					     unsigned long nr)
2014 {
2015 	struct btrfs_fs_info *fs_info = trans->fs_info;
2016 	struct btrfs_delayed_ref_root *delayed_refs;
2017 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2018 	int ret;
2019 	unsigned long count = 0;
2020 
2021 	delayed_refs = &trans->transaction->delayed_refs;
2022 	do {
2023 		if (!locked_ref) {
2024 			locked_ref = btrfs_obtain_ref_head(trans);
2025 			if (IS_ERR_OR_NULL(locked_ref)) {
2026 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2027 					continue;
2028 				} else {
2029 					break;
2030 				}
2031 			}
2032 			count++;
2033 		}
2034 		/*
2035 		 * We need to try and merge add/drops of the same ref since we
2036 		 * can run into issues with relocate dropping the implicit ref
2037 		 * and then it being added back again before the drop can
2038 		 * finish.  If we merged anything we need to re-loop so we can
2039 		 * get a good ref.
2040 		 * Or we can get node references of the same type that weren't
2041 		 * merged when created due to bumps in the tree mod seq, and
2042 		 * we need to merge them to prevent adding an inline extent
2043 		 * backref before dropping it (triggering a BUG_ON at
2044 		 * insert_inline_extent_backref()).
2045 		 */
2046 		spin_lock(&locked_ref->lock);
2047 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2048 
2049 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2050 		if (ret < 0 && ret != -EAGAIN) {
2051 			/*
2052 			 * Error, btrfs_run_delayed_refs_for_head already
2053 			 * unlocked everything so just bail out
2054 			 */
2055 			return ret;
2056 		} else if (!ret) {
2057 			/*
2058 			 * Success, perform the usual cleanup of a processed
2059 			 * head
2060 			 */
2061 			ret = cleanup_ref_head(trans, locked_ref);
2062 			if (ret > 0 ) {
2063 				/* We dropped our lock, we need to loop. */
2064 				ret = 0;
2065 				continue;
2066 			} else if (ret) {
2067 				return ret;
2068 			}
2069 		}
2070 
2071 		/*
2072 		 * Either success case or btrfs_run_delayed_refs_for_head
2073 		 * returned -EAGAIN, meaning we need to select another head
2074 		 */
2075 
2076 		locked_ref = NULL;
2077 		cond_resched();
2078 	} while ((nr != -1 && count < nr) || locked_ref);
2079 
2080 	return 0;
2081 }
2082 
2083 #ifdef SCRAMBLE_DELAYED_REFS
2084 /*
2085  * Normally delayed refs get processed in ascending bytenr order. This
2086  * correlates in most cases to the order added. To expose dependencies on this
2087  * order, we start to process the tree in the middle instead of the beginning
2088  */
find_middle(struct rb_root * root)2089 static u64 find_middle(struct rb_root *root)
2090 {
2091 	struct rb_node *n = root->rb_node;
2092 	struct btrfs_delayed_ref_node *entry;
2093 	int alt = 1;
2094 	u64 middle;
2095 	u64 first = 0, last = 0;
2096 
2097 	n = rb_first(root);
2098 	if (n) {
2099 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2100 		first = entry->bytenr;
2101 	}
2102 	n = rb_last(root);
2103 	if (n) {
2104 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2105 		last = entry->bytenr;
2106 	}
2107 	n = root->rb_node;
2108 
2109 	while (n) {
2110 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2111 		WARN_ON(!entry->in_tree);
2112 
2113 		middle = entry->bytenr;
2114 
2115 		if (alt)
2116 			n = n->rb_left;
2117 		else
2118 			n = n->rb_right;
2119 
2120 		alt = 1 - alt;
2121 	}
2122 	return middle;
2123 }
2124 #endif
2125 
2126 /*
2127  * this starts processing the delayed reference count updates and
2128  * extent insertions we have queued up so far.  count can be
2129  * 0, which means to process everything in the tree at the start
2130  * of the run (but not newly added entries), or it can be some target
2131  * number you'd like to process.
2132  *
2133  * Returns 0 on success or if called with an aborted transaction
2134  * Returns <0 on error and aborts the transaction
2135  */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2136 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2137 			   unsigned long count)
2138 {
2139 	struct btrfs_fs_info *fs_info = trans->fs_info;
2140 	struct rb_node *node;
2141 	struct btrfs_delayed_ref_root *delayed_refs;
2142 	struct btrfs_delayed_ref_head *head;
2143 	int ret;
2144 	int run_all = count == (unsigned long)-1;
2145 
2146 	/* We'll clean this up in btrfs_cleanup_transaction */
2147 	if (TRANS_ABORTED(trans))
2148 		return 0;
2149 
2150 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2151 		return 0;
2152 
2153 	delayed_refs = &trans->transaction->delayed_refs;
2154 	if (count == 0)
2155 		count = delayed_refs->num_heads_ready;
2156 
2157 again:
2158 #ifdef SCRAMBLE_DELAYED_REFS
2159 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2160 #endif
2161 	ret = __btrfs_run_delayed_refs(trans, count);
2162 	if (ret < 0) {
2163 		btrfs_abort_transaction(trans, ret);
2164 		return ret;
2165 	}
2166 
2167 	if (run_all) {
2168 		btrfs_create_pending_block_groups(trans);
2169 
2170 		spin_lock(&delayed_refs->lock);
2171 		node = rb_first_cached(&delayed_refs->href_root);
2172 		if (!node) {
2173 			spin_unlock(&delayed_refs->lock);
2174 			goto out;
2175 		}
2176 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2177 				href_node);
2178 		refcount_inc(&head->refs);
2179 		spin_unlock(&delayed_refs->lock);
2180 
2181 		/* Mutex was contended, block until it's released and retry. */
2182 		mutex_lock(&head->mutex);
2183 		mutex_unlock(&head->mutex);
2184 
2185 		btrfs_put_delayed_ref_head(head);
2186 		cond_resched();
2187 		goto again;
2188 	}
2189 out:
2190 	return 0;
2191 }
2192 
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2193 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2194 				struct extent_buffer *eb, u64 flags)
2195 {
2196 	struct btrfs_delayed_extent_op *extent_op;
2197 	int level = btrfs_header_level(eb);
2198 	int ret;
2199 
2200 	extent_op = btrfs_alloc_delayed_extent_op();
2201 	if (!extent_op)
2202 		return -ENOMEM;
2203 
2204 	extent_op->flags_to_set = flags;
2205 	extent_op->update_flags = true;
2206 	extent_op->update_key = false;
2207 	extent_op->level = level;
2208 
2209 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2210 	if (ret)
2211 		btrfs_free_delayed_extent_op(extent_op);
2212 	return ret;
2213 }
2214 
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2215 static noinline int check_delayed_ref(struct btrfs_root *root,
2216 				      struct btrfs_path *path,
2217 				      u64 objectid, u64 offset, u64 bytenr)
2218 {
2219 	struct btrfs_delayed_ref_head *head;
2220 	struct btrfs_delayed_ref_node *ref;
2221 	struct btrfs_delayed_data_ref *data_ref;
2222 	struct btrfs_delayed_ref_root *delayed_refs;
2223 	struct btrfs_transaction *cur_trans;
2224 	struct rb_node *node;
2225 	int ret = 0;
2226 
2227 	spin_lock(&root->fs_info->trans_lock);
2228 	cur_trans = root->fs_info->running_transaction;
2229 	if (cur_trans)
2230 		refcount_inc(&cur_trans->use_count);
2231 	spin_unlock(&root->fs_info->trans_lock);
2232 	if (!cur_trans)
2233 		return 0;
2234 
2235 	delayed_refs = &cur_trans->delayed_refs;
2236 	spin_lock(&delayed_refs->lock);
2237 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2238 	if (!head) {
2239 		spin_unlock(&delayed_refs->lock);
2240 		btrfs_put_transaction(cur_trans);
2241 		return 0;
2242 	}
2243 
2244 	if (!mutex_trylock(&head->mutex)) {
2245 		if (path->nowait) {
2246 			spin_unlock(&delayed_refs->lock);
2247 			btrfs_put_transaction(cur_trans);
2248 			return -EAGAIN;
2249 		}
2250 
2251 		refcount_inc(&head->refs);
2252 		spin_unlock(&delayed_refs->lock);
2253 
2254 		btrfs_release_path(path);
2255 
2256 		/*
2257 		 * Mutex was contended, block until it's released and let
2258 		 * caller try again
2259 		 */
2260 		mutex_lock(&head->mutex);
2261 		mutex_unlock(&head->mutex);
2262 		btrfs_put_delayed_ref_head(head);
2263 		btrfs_put_transaction(cur_trans);
2264 		return -EAGAIN;
2265 	}
2266 	spin_unlock(&delayed_refs->lock);
2267 
2268 	spin_lock(&head->lock);
2269 	/*
2270 	 * XXX: We should replace this with a proper search function in the
2271 	 * future.
2272 	 */
2273 	for (node = rb_first_cached(&head->ref_tree); node;
2274 	     node = rb_next(node)) {
2275 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2276 		/* If it's a shared ref we know a cross reference exists */
2277 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2278 			ret = 1;
2279 			break;
2280 		}
2281 
2282 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2283 
2284 		/*
2285 		 * If our ref doesn't match the one we're currently looking at
2286 		 * then we have a cross reference.
2287 		 */
2288 		if (data_ref->root != root->root_key.objectid ||
2289 		    data_ref->objectid != objectid ||
2290 		    data_ref->offset != offset) {
2291 			ret = 1;
2292 			break;
2293 		}
2294 	}
2295 	spin_unlock(&head->lock);
2296 	mutex_unlock(&head->mutex);
2297 	btrfs_put_transaction(cur_trans);
2298 	return ret;
2299 }
2300 
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2301 static noinline int check_committed_ref(struct btrfs_root *root,
2302 					struct btrfs_path *path,
2303 					u64 objectid, u64 offset, u64 bytenr,
2304 					bool strict)
2305 {
2306 	struct btrfs_fs_info *fs_info = root->fs_info;
2307 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2308 	struct extent_buffer *leaf;
2309 	struct btrfs_extent_data_ref *ref;
2310 	struct btrfs_extent_inline_ref *iref;
2311 	struct btrfs_extent_item *ei;
2312 	struct btrfs_key key;
2313 	u32 item_size;
2314 	int type;
2315 	int ret;
2316 
2317 	key.objectid = bytenr;
2318 	key.offset = (u64)-1;
2319 	key.type = BTRFS_EXTENT_ITEM_KEY;
2320 
2321 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2322 	if (ret < 0)
2323 		goto out;
2324 	BUG_ON(ret == 0); /* Corruption */
2325 
2326 	ret = -ENOENT;
2327 	if (path->slots[0] == 0)
2328 		goto out;
2329 
2330 	path->slots[0]--;
2331 	leaf = path->nodes[0];
2332 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2333 
2334 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2335 		goto out;
2336 
2337 	ret = 1;
2338 	item_size = btrfs_item_size(leaf, path->slots[0]);
2339 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2340 
2341 	/* If extent item has more than 1 inline ref then it's shared */
2342 	if (item_size != sizeof(*ei) +
2343 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2344 		goto out;
2345 
2346 	/*
2347 	 * If extent created before last snapshot => it's shared unless the
2348 	 * snapshot has been deleted. Use the heuristic if strict is false.
2349 	 */
2350 	if (!strict &&
2351 	    (btrfs_extent_generation(leaf, ei) <=
2352 	     btrfs_root_last_snapshot(&root->root_item)))
2353 		goto out;
2354 
2355 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2356 
2357 	/* If this extent has SHARED_DATA_REF then it's shared */
2358 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2359 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2360 		goto out;
2361 
2362 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2363 	if (btrfs_extent_refs(leaf, ei) !=
2364 	    btrfs_extent_data_ref_count(leaf, ref) ||
2365 	    btrfs_extent_data_ref_root(leaf, ref) !=
2366 	    root->root_key.objectid ||
2367 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2368 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2369 		goto out;
2370 
2371 	ret = 0;
2372 out:
2373 	return ret;
2374 }
2375 
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict,struct btrfs_path * path)2376 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2377 			  u64 bytenr, bool strict, struct btrfs_path *path)
2378 {
2379 	int ret;
2380 
2381 	do {
2382 		ret = check_committed_ref(root, path, objectid,
2383 					  offset, bytenr, strict);
2384 		if (ret && ret != -ENOENT)
2385 			goto out;
2386 
2387 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2388 	} while (ret == -EAGAIN);
2389 
2390 out:
2391 	btrfs_release_path(path);
2392 	if (btrfs_is_data_reloc_root(root))
2393 		WARN_ON(ret > 0);
2394 	return ret;
2395 }
2396 
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2397 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2398 			   struct btrfs_root *root,
2399 			   struct extent_buffer *buf,
2400 			   int full_backref, int inc)
2401 {
2402 	struct btrfs_fs_info *fs_info = root->fs_info;
2403 	u64 bytenr;
2404 	u64 num_bytes;
2405 	u64 parent;
2406 	u64 ref_root;
2407 	u32 nritems;
2408 	struct btrfs_key key;
2409 	struct btrfs_file_extent_item *fi;
2410 	struct btrfs_ref generic_ref = { 0 };
2411 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2412 	int i;
2413 	int action;
2414 	int level;
2415 	int ret = 0;
2416 
2417 	if (btrfs_is_testing(fs_info))
2418 		return 0;
2419 
2420 	ref_root = btrfs_header_owner(buf);
2421 	nritems = btrfs_header_nritems(buf);
2422 	level = btrfs_header_level(buf);
2423 
2424 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2425 		return 0;
2426 
2427 	if (full_backref)
2428 		parent = buf->start;
2429 	else
2430 		parent = 0;
2431 	if (inc)
2432 		action = BTRFS_ADD_DELAYED_REF;
2433 	else
2434 		action = BTRFS_DROP_DELAYED_REF;
2435 
2436 	for (i = 0; i < nritems; i++) {
2437 		if (level == 0) {
2438 			btrfs_item_key_to_cpu(buf, &key, i);
2439 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2440 				continue;
2441 			fi = btrfs_item_ptr(buf, i,
2442 					    struct btrfs_file_extent_item);
2443 			if (btrfs_file_extent_type(buf, fi) ==
2444 			    BTRFS_FILE_EXTENT_INLINE)
2445 				continue;
2446 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2447 			if (bytenr == 0)
2448 				continue;
2449 
2450 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2451 			key.offset -= btrfs_file_extent_offset(buf, fi);
2452 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2453 					       num_bytes, parent);
2454 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2455 					    key.offset, root->root_key.objectid,
2456 					    for_reloc);
2457 			if (inc)
2458 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2459 			else
2460 				ret = btrfs_free_extent(trans, &generic_ref);
2461 			if (ret)
2462 				goto fail;
2463 		} else {
2464 			bytenr = btrfs_node_blockptr(buf, i);
2465 			num_bytes = fs_info->nodesize;
2466 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2467 					       num_bytes, parent);
2468 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2469 					    root->root_key.objectid, for_reloc);
2470 			if (inc)
2471 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2472 			else
2473 				ret = btrfs_free_extent(trans, &generic_ref);
2474 			if (ret)
2475 				goto fail;
2476 		}
2477 	}
2478 	return 0;
2479 fail:
2480 	return ret;
2481 }
2482 
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2483 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2484 		  struct extent_buffer *buf, int full_backref)
2485 {
2486 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2487 }
2488 
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2489 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2490 		  struct extent_buffer *buf, int full_backref)
2491 {
2492 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2493 }
2494 
get_alloc_profile_by_root(struct btrfs_root * root,int data)2495 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2496 {
2497 	struct btrfs_fs_info *fs_info = root->fs_info;
2498 	u64 flags;
2499 	u64 ret;
2500 
2501 	if (data)
2502 		flags = BTRFS_BLOCK_GROUP_DATA;
2503 	else if (root == fs_info->chunk_root)
2504 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2505 	else
2506 		flags = BTRFS_BLOCK_GROUP_METADATA;
2507 
2508 	ret = btrfs_get_alloc_profile(fs_info, flags);
2509 	return ret;
2510 }
2511 
first_logical_byte(struct btrfs_fs_info * fs_info)2512 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2513 {
2514 	struct rb_node *leftmost;
2515 	u64 bytenr = 0;
2516 
2517 	read_lock(&fs_info->block_group_cache_lock);
2518 	/* Get the block group with the lowest logical start address. */
2519 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2520 	if (leftmost) {
2521 		struct btrfs_block_group *bg;
2522 
2523 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2524 		bytenr = bg->start;
2525 	}
2526 	read_unlock(&fs_info->block_group_cache_lock);
2527 
2528 	return bytenr;
2529 }
2530 
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2531 static int pin_down_extent(struct btrfs_trans_handle *trans,
2532 			   struct btrfs_block_group *cache,
2533 			   u64 bytenr, u64 num_bytes, int reserved)
2534 {
2535 	struct btrfs_fs_info *fs_info = cache->fs_info;
2536 
2537 	spin_lock(&cache->space_info->lock);
2538 	spin_lock(&cache->lock);
2539 	cache->pinned += num_bytes;
2540 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2541 					     num_bytes);
2542 	if (reserved) {
2543 		cache->reserved -= num_bytes;
2544 		cache->space_info->bytes_reserved -= num_bytes;
2545 	}
2546 	spin_unlock(&cache->lock);
2547 	spin_unlock(&cache->space_info->lock);
2548 
2549 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2550 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2551 	return 0;
2552 }
2553 
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2554 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2555 		     u64 bytenr, u64 num_bytes, int reserved)
2556 {
2557 	struct btrfs_block_group *cache;
2558 
2559 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2560 	BUG_ON(!cache); /* Logic error */
2561 
2562 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2563 
2564 	btrfs_put_block_group(cache);
2565 	return 0;
2566 }
2567 
2568 /*
2569  * this function must be called within transaction
2570  */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2571 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2572 				    u64 bytenr, u64 num_bytes)
2573 {
2574 	struct btrfs_block_group *cache;
2575 	int ret;
2576 
2577 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2578 	if (!cache)
2579 		return -EINVAL;
2580 
2581 	/*
2582 	 * Fully cache the free space first so that our pin removes the free space
2583 	 * from the cache.
2584 	 */
2585 	ret = btrfs_cache_block_group(cache, true);
2586 	if (ret)
2587 		goto out;
2588 
2589 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2590 
2591 	/* remove us from the free space cache (if we're there at all) */
2592 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2593 out:
2594 	btrfs_put_block_group(cache);
2595 	return ret;
2596 }
2597 
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2598 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2599 				   u64 start, u64 num_bytes)
2600 {
2601 	int ret;
2602 	struct btrfs_block_group *block_group;
2603 
2604 	block_group = btrfs_lookup_block_group(fs_info, start);
2605 	if (!block_group)
2606 		return -EINVAL;
2607 
2608 	ret = btrfs_cache_block_group(block_group, true);
2609 	if (ret)
2610 		goto out;
2611 
2612 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2613 out:
2614 	btrfs_put_block_group(block_group);
2615 	return ret;
2616 }
2617 
btrfs_exclude_logged_extents(struct extent_buffer * eb)2618 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2619 {
2620 	struct btrfs_fs_info *fs_info = eb->fs_info;
2621 	struct btrfs_file_extent_item *item;
2622 	struct btrfs_key key;
2623 	int found_type;
2624 	int i;
2625 	int ret = 0;
2626 
2627 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2628 		return 0;
2629 
2630 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2631 		btrfs_item_key_to_cpu(eb, &key, i);
2632 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2633 			continue;
2634 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2635 		found_type = btrfs_file_extent_type(eb, item);
2636 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2637 			continue;
2638 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2639 			continue;
2640 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2641 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2642 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2643 		if (ret)
2644 			break;
2645 	}
2646 
2647 	return ret;
2648 }
2649 
2650 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2651 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2652 {
2653 	atomic_inc(&bg->reservations);
2654 }
2655 
2656 /*
2657  * Returns the free cluster for the given space info and sets empty_cluster to
2658  * what it should be based on the mount options.
2659  */
2660 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2661 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2662 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2663 {
2664 	struct btrfs_free_cluster *ret = NULL;
2665 
2666 	*empty_cluster = 0;
2667 	if (btrfs_mixed_space_info(space_info))
2668 		return ret;
2669 
2670 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2671 		ret = &fs_info->meta_alloc_cluster;
2672 		if (btrfs_test_opt(fs_info, SSD))
2673 			*empty_cluster = SZ_2M;
2674 		else
2675 			*empty_cluster = SZ_64K;
2676 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2677 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2678 		*empty_cluster = SZ_2M;
2679 		ret = &fs_info->data_alloc_cluster;
2680 	}
2681 
2682 	return ret;
2683 }
2684 
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2685 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2686 			      u64 start, u64 end,
2687 			      const bool return_free_space)
2688 {
2689 	struct btrfs_block_group *cache = NULL;
2690 	struct btrfs_space_info *space_info;
2691 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2692 	struct btrfs_free_cluster *cluster = NULL;
2693 	u64 len;
2694 	u64 total_unpinned = 0;
2695 	u64 empty_cluster = 0;
2696 	bool readonly;
2697 
2698 	while (start <= end) {
2699 		readonly = false;
2700 		if (!cache ||
2701 		    start >= cache->start + cache->length) {
2702 			if (cache)
2703 				btrfs_put_block_group(cache);
2704 			total_unpinned = 0;
2705 			cache = btrfs_lookup_block_group(fs_info, start);
2706 			BUG_ON(!cache); /* Logic error */
2707 
2708 			cluster = fetch_cluster_info(fs_info,
2709 						     cache->space_info,
2710 						     &empty_cluster);
2711 			empty_cluster <<= 1;
2712 		}
2713 
2714 		len = cache->start + cache->length - start;
2715 		len = min(len, end + 1 - start);
2716 
2717 		if (return_free_space)
2718 			btrfs_add_free_space(cache, start, len);
2719 
2720 		start += len;
2721 		total_unpinned += len;
2722 		space_info = cache->space_info;
2723 
2724 		/*
2725 		 * If this space cluster has been marked as fragmented and we've
2726 		 * unpinned enough in this block group to potentially allow a
2727 		 * cluster to be created inside of it go ahead and clear the
2728 		 * fragmented check.
2729 		 */
2730 		if (cluster && cluster->fragmented &&
2731 		    total_unpinned > empty_cluster) {
2732 			spin_lock(&cluster->lock);
2733 			cluster->fragmented = 0;
2734 			spin_unlock(&cluster->lock);
2735 		}
2736 
2737 		spin_lock(&space_info->lock);
2738 		spin_lock(&cache->lock);
2739 		cache->pinned -= len;
2740 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2741 		space_info->max_extent_size = 0;
2742 		if (cache->ro) {
2743 			space_info->bytes_readonly += len;
2744 			readonly = true;
2745 		} else if (btrfs_is_zoned(fs_info)) {
2746 			/* Need reset before reusing in a zoned block group */
2747 			space_info->bytes_zone_unusable += len;
2748 			readonly = true;
2749 		}
2750 		spin_unlock(&cache->lock);
2751 		if (!readonly && return_free_space &&
2752 		    global_rsv->space_info == space_info) {
2753 			spin_lock(&global_rsv->lock);
2754 			if (!global_rsv->full) {
2755 				u64 to_add = min(len, global_rsv->size -
2756 						      global_rsv->reserved);
2757 
2758 				global_rsv->reserved += to_add;
2759 				btrfs_space_info_update_bytes_may_use(fs_info,
2760 						space_info, to_add);
2761 				if (global_rsv->reserved >= global_rsv->size)
2762 					global_rsv->full = 1;
2763 				len -= to_add;
2764 			}
2765 			spin_unlock(&global_rsv->lock);
2766 		}
2767 		/* Add to any tickets we may have */
2768 		if (!readonly && return_free_space && len)
2769 			btrfs_try_granting_tickets(fs_info, space_info);
2770 		spin_unlock(&space_info->lock);
2771 	}
2772 
2773 	if (cache)
2774 		btrfs_put_block_group(cache);
2775 	return 0;
2776 }
2777 
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2778 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2779 {
2780 	struct btrfs_fs_info *fs_info = trans->fs_info;
2781 	struct btrfs_block_group *block_group, *tmp;
2782 	struct list_head *deleted_bgs;
2783 	struct extent_io_tree *unpin;
2784 	u64 start;
2785 	u64 end;
2786 	int ret;
2787 
2788 	unpin = &trans->transaction->pinned_extents;
2789 
2790 	while (!TRANS_ABORTED(trans)) {
2791 		struct extent_state *cached_state = NULL;
2792 
2793 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2794 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2795 					   EXTENT_DIRTY, &cached_state)) {
2796 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2797 			break;
2798 		}
2799 
2800 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2801 			ret = btrfs_discard_extent(fs_info, start,
2802 						   end + 1 - start, NULL);
2803 
2804 		clear_extent_dirty(unpin, start, end, &cached_state);
2805 		unpin_extent_range(fs_info, start, end, true);
2806 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2807 		free_extent_state(cached_state);
2808 		cond_resched();
2809 	}
2810 
2811 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2812 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2813 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2814 	}
2815 
2816 	/*
2817 	 * Transaction is finished.  We don't need the lock anymore.  We
2818 	 * do need to clean up the block groups in case of a transaction
2819 	 * abort.
2820 	 */
2821 	deleted_bgs = &trans->transaction->deleted_bgs;
2822 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2823 		u64 trimmed = 0;
2824 
2825 		ret = -EROFS;
2826 		if (!TRANS_ABORTED(trans))
2827 			ret = btrfs_discard_extent(fs_info,
2828 						   block_group->start,
2829 						   block_group->length,
2830 						   &trimmed);
2831 
2832 		list_del_init(&block_group->bg_list);
2833 		btrfs_unfreeze_block_group(block_group);
2834 		btrfs_put_block_group(block_group);
2835 
2836 		if (ret) {
2837 			const char *errstr = btrfs_decode_error(ret);
2838 			btrfs_warn(fs_info,
2839 			   "discard failed while removing blockgroup: errno=%d %s",
2840 				   ret, errstr);
2841 		}
2842 	}
2843 
2844 	return 0;
2845 }
2846 
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool is_data)2847 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2848 				     u64 bytenr, u64 num_bytes, bool is_data)
2849 {
2850 	int ret;
2851 
2852 	if (is_data) {
2853 		struct btrfs_root *csum_root;
2854 
2855 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2856 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2857 		if (ret) {
2858 			btrfs_abort_transaction(trans, ret);
2859 			return ret;
2860 		}
2861 	}
2862 
2863 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2864 	if (ret) {
2865 		btrfs_abort_transaction(trans, ret);
2866 		return ret;
2867 	}
2868 
2869 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2870 	if (ret)
2871 		btrfs_abort_transaction(trans, ret);
2872 
2873 	return ret;
2874 }
2875 
2876 #define abort_and_dump(trans, path, fmt, args...)	\
2877 ({							\
2878 	btrfs_abort_transaction(trans, -EUCLEAN);	\
2879 	btrfs_print_leaf(path->nodes[0]);		\
2880 	btrfs_crit(trans->fs_info, fmt, ##args);	\
2881 })
2882 
2883 /*
2884  * Drop one or more refs of @node.
2885  *
2886  * 1. Locate the extent refs.
2887  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2888  *    Locate it, then reduce the refs number or remove the ref line completely.
2889  *
2890  * 2. Update the refs count in EXTENT/METADATA_ITEM
2891  *
2892  * Inline backref case:
2893  *
2894  * in extent tree we have:
2895  *
2896  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2897  *		refs 2 gen 6 flags DATA
2898  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2899  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2900  *
2901  * This function gets called with:
2902  *
2903  *    node->bytenr = 13631488
2904  *    node->num_bytes = 1048576
2905  *    root_objectid = FS_TREE
2906  *    owner_objectid = 257
2907  *    owner_offset = 0
2908  *    refs_to_drop = 1
2909  *
2910  * Then we should get some like:
2911  *
2912  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2913  *		refs 1 gen 6 flags DATA
2914  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2915  *
2916  * Keyed backref case:
2917  *
2918  * in extent tree we have:
2919  *
2920  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2921  *		refs 754 gen 6 flags DATA
2922  *	[...]
2923  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2924  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2925  *
2926  * This function get called with:
2927  *
2928  *    node->bytenr = 13631488
2929  *    node->num_bytes = 1048576
2930  *    root_objectid = FS_TREE
2931  *    owner_objectid = 866
2932  *    owner_offset = 0
2933  *    refs_to_drop = 1
2934  *
2935  * Then we should get some like:
2936  *
2937  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2938  *		refs 753 gen 6 flags DATA
2939  *
2940  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2941  */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2942 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2943 			       struct btrfs_delayed_ref_node *node, u64 parent,
2944 			       u64 root_objectid, u64 owner_objectid,
2945 			       u64 owner_offset, int refs_to_drop,
2946 			       struct btrfs_delayed_extent_op *extent_op)
2947 {
2948 	struct btrfs_fs_info *info = trans->fs_info;
2949 	struct btrfs_key key;
2950 	struct btrfs_path *path;
2951 	struct btrfs_root *extent_root;
2952 	struct extent_buffer *leaf;
2953 	struct btrfs_extent_item *ei;
2954 	struct btrfs_extent_inline_ref *iref;
2955 	int ret;
2956 	int is_data;
2957 	int extent_slot = 0;
2958 	int found_extent = 0;
2959 	int num_to_del = 1;
2960 	u32 item_size;
2961 	u64 refs;
2962 	u64 bytenr = node->bytenr;
2963 	u64 num_bytes = node->num_bytes;
2964 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2965 
2966 	extent_root = btrfs_extent_root(info, bytenr);
2967 	ASSERT(extent_root);
2968 
2969 	path = btrfs_alloc_path();
2970 	if (!path)
2971 		return -ENOMEM;
2972 
2973 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2974 
2975 	if (!is_data && refs_to_drop != 1) {
2976 		btrfs_crit(info,
2977 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2978 			   node->bytenr, refs_to_drop);
2979 		ret = -EINVAL;
2980 		btrfs_abort_transaction(trans, ret);
2981 		goto out;
2982 	}
2983 
2984 	if (is_data)
2985 		skinny_metadata = false;
2986 
2987 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2988 				    parent, root_objectid, owner_objectid,
2989 				    owner_offset);
2990 	if (ret == 0) {
2991 		/*
2992 		 * Either the inline backref or the SHARED_DATA_REF/
2993 		 * SHARED_BLOCK_REF is found
2994 		 *
2995 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2996 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2997 		 */
2998 		extent_slot = path->slots[0];
2999 		while (extent_slot >= 0) {
3000 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3001 					      extent_slot);
3002 			if (key.objectid != bytenr)
3003 				break;
3004 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3005 			    key.offset == num_bytes) {
3006 				found_extent = 1;
3007 				break;
3008 			}
3009 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3010 			    key.offset == owner_objectid) {
3011 				found_extent = 1;
3012 				break;
3013 			}
3014 
3015 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3016 			if (path->slots[0] - extent_slot > 5)
3017 				break;
3018 			extent_slot--;
3019 		}
3020 
3021 		if (!found_extent) {
3022 			if (iref) {
3023 				abort_and_dump(trans, path,
3024 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3025 					   path->slots[0]);
3026 				ret = -EUCLEAN;
3027 				goto out;
3028 			}
3029 			/* Must be SHARED_* item, remove the backref first */
3030 			ret = remove_extent_backref(trans, extent_root, path,
3031 						    NULL, refs_to_drop, is_data);
3032 			if (ret) {
3033 				btrfs_abort_transaction(trans, ret);
3034 				goto out;
3035 			}
3036 			btrfs_release_path(path);
3037 
3038 			/* Slow path to locate EXTENT/METADATA_ITEM */
3039 			key.objectid = bytenr;
3040 			key.type = BTRFS_EXTENT_ITEM_KEY;
3041 			key.offset = num_bytes;
3042 
3043 			if (!is_data && skinny_metadata) {
3044 				key.type = BTRFS_METADATA_ITEM_KEY;
3045 				key.offset = owner_objectid;
3046 			}
3047 
3048 			ret = btrfs_search_slot(trans, extent_root,
3049 						&key, path, -1, 1);
3050 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3051 				/*
3052 				 * Couldn't find our skinny metadata item,
3053 				 * see if we have ye olde extent item.
3054 				 */
3055 				path->slots[0]--;
3056 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3057 						      path->slots[0]);
3058 				if (key.objectid == bytenr &&
3059 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3060 				    key.offset == num_bytes)
3061 					ret = 0;
3062 			}
3063 
3064 			if (ret > 0 && skinny_metadata) {
3065 				skinny_metadata = false;
3066 				key.objectid = bytenr;
3067 				key.type = BTRFS_EXTENT_ITEM_KEY;
3068 				key.offset = num_bytes;
3069 				btrfs_release_path(path);
3070 				ret = btrfs_search_slot(trans, extent_root,
3071 							&key, path, -1, 1);
3072 			}
3073 
3074 			if (ret) {
3075 				if (ret > 0)
3076 					btrfs_print_leaf(path->nodes[0]);
3077 				btrfs_err(info,
3078 			"umm, got %d back from search, was looking for %llu, slot %d",
3079 					  ret, bytenr, path->slots[0]);
3080 			}
3081 			if (ret < 0) {
3082 				btrfs_abort_transaction(trans, ret);
3083 				goto out;
3084 			}
3085 			extent_slot = path->slots[0];
3086 		}
3087 	} else if (WARN_ON(ret == -ENOENT)) {
3088 		abort_and_dump(trans, path,
3089 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3090 			       bytenr, parent, root_objectid, owner_objectid,
3091 			       owner_offset, path->slots[0]);
3092 		goto out;
3093 	} else {
3094 		btrfs_abort_transaction(trans, ret);
3095 		goto out;
3096 	}
3097 
3098 	leaf = path->nodes[0];
3099 	item_size = btrfs_item_size(leaf, extent_slot);
3100 	if (unlikely(item_size < sizeof(*ei))) {
3101 		ret = -EUCLEAN;
3102 		btrfs_err(trans->fs_info,
3103 			  "unexpected extent item size, has %u expect >= %zu",
3104 			  item_size, sizeof(*ei));
3105 		btrfs_abort_transaction(trans, ret);
3106 		goto out;
3107 	}
3108 	ei = btrfs_item_ptr(leaf, extent_slot,
3109 			    struct btrfs_extent_item);
3110 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3111 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3112 		struct btrfs_tree_block_info *bi;
3113 
3114 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3115 			abort_and_dump(trans, path,
3116 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3117 				       key.objectid, key.type, key.offset,
3118 				       path->slots[0], owner_objectid, item_size,
3119 				       sizeof(*ei) + sizeof(*bi));
3120 			ret = -EUCLEAN;
3121 			goto out;
3122 		}
3123 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3124 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3125 	}
3126 
3127 	refs = btrfs_extent_refs(leaf, ei);
3128 	if (refs < refs_to_drop) {
3129 		abort_and_dump(trans, path,
3130 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3131 			       refs_to_drop, refs, bytenr, path->slots[0]);
3132 		ret = -EUCLEAN;
3133 		goto out;
3134 	}
3135 	refs -= refs_to_drop;
3136 
3137 	if (refs > 0) {
3138 		if (extent_op)
3139 			__run_delayed_extent_op(extent_op, leaf, ei);
3140 		/*
3141 		 * In the case of inline back ref, reference count will
3142 		 * be updated by remove_extent_backref
3143 		 */
3144 		if (iref) {
3145 			if (!found_extent) {
3146 				abort_and_dump(trans, path,
3147 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3148 					       path->slots[0]);
3149 				ret = -EUCLEAN;
3150 				goto out;
3151 			}
3152 		} else {
3153 			btrfs_set_extent_refs(leaf, ei, refs);
3154 			btrfs_mark_buffer_dirty(leaf);
3155 		}
3156 		if (found_extent) {
3157 			ret = remove_extent_backref(trans, extent_root, path,
3158 						    iref, refs_to_drop, is_data);
3159 			if (ret) {
3160 				btrfs_abort_transaction(trans, ret);
3161 				goto out;
3162 			}
3163 		}
3164 	} else {
3165 		/* In this branch refs == 1 */
3166 		if (found_extent) {
3167 			if (is_data && refs_to_drop !=
3168 			    extent_data_ref_count(path, iref)) {
3169 				abort_and_dump(trans, path,
3170 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3171 					       extent_data_ref_count(path, iref),
3172 					       refs_to_drop, path->slots[0]);
3173 				ret = -EUCLEAN;
3174 				goto out;
3175 			}
3176 			if (iref) {
3177 				if (path->slots[0] != extent_slot) {
3178 					abort_and_dump(trans, path,
3179 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3180 						       key.objectid, key.type,
3181 						       key.offset, path->slots[0]);
3182 					ret = -EUCLEAN;
3183 					goto out;
3184 				}
3185 			} else {
3186 				/*
3187 				 * No inline ref, we must be at SHARED_* item,
3188 				 * And it's single ref, it must be:
3189 				 * |	extent_slot	  ||extent_slot + 1|
3190 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3191 				 */
3192 				if (path->slots[0] != extent_slot + 1) {
3193 					abort_and_dump(trans, path,
3194 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3195 						       path->slots[0]);
3196 					ret = -EUCLEAN;
3197 					goto out;
3198 				}
3199 				path->slots[0] = extent_slot;
3200 				num_to_del = 2;
3201 			}
3202 		}
3203 
3204 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3205 				      num_to_del);
3206 		if (ret) {
3207 			btrfs_abort_transaction(trans, ret);
3208 			goto out;
3209 		}
3210 		btrfs_release_path(path);
3211 
3212 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3213 	}
3214 	btrfs_release_path(path);
3215 
3216 out:
3217 	btrfs_free_path(path);
3218 	return ret;
3219 }
3220 
3221 /*
3222  * when we free an block, it is possible (and likely) that we free the last
3223  * delayed ref for that extent as well.  This searches the delayed ref tree for
3224  * a given extent, and if there are no other delayed refs to be processed, it
3225  * removes it from the tree.
3226  */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3227 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3228 				      u64 bytenr)
3229 {
3230 	struct btrfs_delayed_ref_head *head;
3231 	struct btrfs_delayed_ref_root *delayed_refs;
3232 	int ret = 0;
3233 
3234 	delayed_refs = &trans->transaction->delayed_refs;
3235 	spin_lock(&delayed_refs->lock);
3236 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3237 	if (!head)
3238 		goto out_delayed_unlock;
3239 
3240 	spin_lock(&head->lock);
3241 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3242 		goto out;
3243 
3244 	if (cleanup_extent_op(head) != NULL)
3245 		goto out;
3246 
3247 	/*
3248 	 * waiting for the lock here would deadlock.  If someone else has it
3249 	 * locked they are already in the process of dropping it anyway
3250 	 */
3251 	if (!mutex_trylock(&head->mutex))
3252 		goto out;
3253 
3254 	btrfs_delete_ref_head(delayed_refs, head);
3255 	head->processing = false;
3256 
3257 	spin_unlock(&head->lock);
3258 	spin_unlock(&delayed_refs->lock);
3259 
3260 	BUG_ON(head->extent_op);
3261 	if (head->must_insert_reserved)
3262 		ret = 1;
3263 
3264 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3265 	mutex_unlock(&head->mutex);
3266 	btrfs_put_delayed_ref_head(head);
3267 	return ret;
3268 out:
3269 	spin_unlock(&head->lock);
3270 
3271 out_delayed_unlock:
3272 	spin_unlock(&delayed_refs->lock);
3273 	return 0;
3274 }
3275 
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3276 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3277 			   u64 root_id,
3278 			   struct extent_buffer *buf,
3279 			   u64 parent, int last_ref)
3280 {
3281 	struct btrfs_fs_info *fs_info = trans->fs_info;
3282 	struct btrfs_ref generic_ref = { 0 };
3283 	int ret;
3284 
3285 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3286 			       buf->start, buf->len, parent);
3287 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3288 			    root_id, 0, false);
3289 
3290 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3291 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3292 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3293 		BUG_ON(ret); /* -ENOMEM */
3294 	}
3295 
3296 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3297 		struct btrfs_block_group *cache;
3298 		bool must_pin = false;
3299 
3300 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3301 			ret = check_ref_cleanup(trans, buf->start);
3302 			if (!ret) {
3303 				btrfs_redirty_list_add(trans->transaction, buf);
3304 				goto out;
3305 			}
3306 		}
3307 
3308 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3309 
3310 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3311 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3312 			btrfs_put_block_group(cache);
3313 			goto out;
3314 		}
3315 
3316 		/*
3317 		 * If there are tree mod log users we may have recorded mod log
3318 		 * operations for this node.  If we re-allocate this node we
3319 		 * could replay operations on this node that happened when it
3320 		 * existed in a completely different root.  For example if it
3321 		 * was part of root A, then was reallocated to root B, and we
3322 		 * are doing a btrfs_old_search_slot(root b), we could replay
3323 		 * operations that happened when the block was part of root A,
3324 		 * giving us an inconsistent view of the btree.
3325 		 *
3326 		 * We are safe from races here because at this point no other
3327 		 * node or root points to this extent buffer, so if after this
3328 		 * check a new tree mod log user joins we will not have an
3329 		 * existing log of operations on this node that we have to
3330 		 * contend with.
3331 		 */
3332 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3333 			must_pin = true;
3334 
3335 		if (must_pin || btrfs_is_zoned(fs_info)) {
3336 			btrfs_redirty_list_add(trans->transaction, buf);
3337 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3338 			btrfs_put_block_group(cache);
3339 			goto out;
3340 		}
3341 
3342 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3343 
3344 		btrfs_add_free_space(cache, buf->start, buf->len);
3345 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3346 		btrfs_put_block_group(cache);
3347 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3348 	}
3349 out:
3350 	if (last_ref) {
3351 		/*
3352 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3353 		 * matter anymore.
3354 		 */
3355 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3356 	}
3357 }
3358 
3359 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3360 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3361 {
3362 	struct btrfs_fs_info *fs_info = trans->fs_info;
3363 	int ret;
3364 
3365 	if (btrfs_is_testing(fs_info))
3366 		return 0;
3367 
3368 	/*
3369 	 * tree log blocks never actually go into the extent allocation
3370 	 * tree, just update pinning info and exit early.
3371 	 */
3372 	if ((ref->type == BTRFS_REF_METADATA &&
3373 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3374 	    (ref->type == BTRFS_REF_DATA &&
3375 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3376 		/* unlocks the pinned mutex */
3377 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3378 		ret = 0;
3379 	} else if (ref->type == BTRFS_REF_METADATA) {
3380 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3381 	} else {
3382 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3383 	}
3384 
3385 	if (!((ref->type == BTRFS_REF_METADATA &&
3386 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3387 	      (ref->type == BTRFS_REF_DATA &&
3388 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3389 		btrfs_ref_tree_mod(fs_info, ref);
3390 
3391 	return ret;
3392 }
3393 
3394 enum btrfs_loop_type {
3395 	/*
3396 	 * Start caching block groups but do not wait for progress or for them
3397 	 * to be done.
3398 	 */
3399 	LOOP_CACHING_NOWAIT,
3400 
3401 	/*
3402 	 * Wait for the block group free_space >= the space we're waiting for if
3403 	 * the block group isn't cached.
3404 	 */
3405 	LOOP_CACHING_WAIT,
3406 
3407 	/*
3408 	 * Allow allocations to happen from block groups that do not yet have a
3409 	 * size classification.
3410 	 */
3411 	LOOP_UNSET_SIZE_CLASS,
3412 
3413 	/*
3414 	 * Allocate a chunk and then retry the allocation.
3415 	 */
3416 	LOOP_ALLOC_CHUNK,
3417 
3418 	/*
3419 	 * Ignore the size class restrictions for this allocation.
3420 	 */
3421 	LOOP_WRONG_SIZE_CLASS,
3422 
3423 	/*
3424 	 * Ignore the empty size, only try to allocate the number of bytes
3425 	 * needed for this allocation.
3426 	 */
3427 	LOOP_NO_EMPTY_SIZE,
3428 };
3429 
3430 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3431 btrfs_lock_block_group(struct btrfs_block_group *cache,
3432 		       int delalloc)
3433 {
3434 	if (delalloc)
3435 		down_read(&cache->data_rwsem);
3436 }
3437 
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3438 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3439 		       int delalloc)
3440 {
3441 	btrfs_get_block_group(cache);
3442 	if (delalloc)
3443 		down_read(&cache->data_rwsem);
3444 }
3445 
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3446 static struct btrfs_block_group *btrfs_lock_cluster(
3447 		   struct btrfs_block_group *block_group,
3448 		   struct btrfs_free_cluster *cluster,
3449 		   int delalloc)
3450 	__acquires(&cluster->refill_lock)
3451 {
3452 	struct btrfs_block_group *used_bg = NULL;
3453 
3454 	spin_lock(&cluster->refill_lock);
3455 	while (1) {
3456 		used_bg = cluster->block_group;
3457 		if (!used_bg)
3458 			return NULL;
3459 
3460 		if (used_bg == block_group)
3461 			return used_bg;
3462 
3463 		btrfs_get_block_group(used_bg);
3464 
3465 		if (!delalloc)
3466 			return used_bg;
3467 
3468 		if (down_read_trylock(&used_bg->data_rwsem))
3469 			return used_bg;
3470 
3471 		spin_unlock(&cluster->refill_lock);
3472 
3473 		/* We should only have one-level nested. */
3474 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3475 
3476 		spin_lock(&cluster->refill_lock);
3477 		if (used_bg == cluster->block_group)
3478 			return used_bg;
3479 
3480 		up_read(&used_bg->data_rwsem);
3481 		btrfs_put_block_group(used_bg);
3482 	}
3483 }
3484 
3485 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3486 btrfs_release_block_group(struct btrfs_block_group *cache,
3487 			 int delalloc)
3488 {
3489 	if (delalloc)
3490 		up_read(&cache->data_rwsem);
3491 	btrfs_put_block_group(cache);
3492 }
3493 
3494 /*
3495  * Helper function for find_free_extent().
3496  *
3497  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3498  * Return >0 to inform caller that we find nothing
3499  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3500  */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3501 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3502 				      struct find_free_extent_ctl *ffe_ctl,
3503 				      struct btrfs_block_group **cluster_bg_ret)
3504 {
3505 	struct btrfs_block_group *cluster_bg;
3506 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3507 	u64 aligned_cluster;
3508 	u64 offset;
3509 	int ret;
3510 
3511 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3512 	if (!cluster_bg)
3513 		goto refill_cluster;
3514 	if (cluster_bg != bg && (cluster_bg->ro ||
3515 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3516 		goto release_cluster;
3517 
3518 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3519 			ffe_ctl->num_bytes, cluster_bg->start,
3520 			&ffe_ctl->max_extent_size);
3521 	if (offset) {
3522 		/* We have a block, we're done */
3523 		spin_unlock(&last_ptr->refill_lock);
3524 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3525 		*cluster_bg_ret = cluster_bg;
3526 		ffe_ctl->found_offset = offset;
3527 		return 0;
3528 	}
3529 	WARN_ON(last_ptr->block_group != cluster_bg);
3530 
3531 release_cluster:
3532 	/*
3533 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3534 	 * lets just skip it and let the allocator find whatever block it can
3535 	 * find. If we reach this point, we will have tried the cluster
3536 	 * allocator plenty of times and not have found anything, so we are
3537 	 * likely way too fragmented for the clustering stuff to find anything.
3538 	 *
3539 	 * However, if the cluster is taken from the current block group,
3540 	 * release the cluster first, so that we stand a better chance of
3541 	 * succeeding in the unclustered allocation.
3542 	 */
3543 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3544 		spin_unlock(&last_ptr->refill_lock);
3545 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3546 		return -ENOENT;
3547 	}
3548 
3549 	/* This cluster didn't work out, free it and start over */
3550 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3551 
3552 	if (cluster_bg != bg)
3553 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3554 
3555 refill_cluster:
3556 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3557 		spin_unlock(&last_ptr->refill_lock);
3558 		return -ENOENT;
3559 	}
3560 
3561 	aligned_cluster = max_t(u64,
3562 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3563 			bg->full_stripe_len);
3564 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3565 			ffe_ctl->num_bytes, aligned_cluster);
3566 	if (ret == 0) {
3567 		/* Now pull our allocation out of this cluster */
3568 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3569 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3570 				&ffe_ctl->max_extent_size);
3571 		if (offset) {
3572 			/* We found one, proceed */
3573 			spin_unlock(&last_ptr->refill_lock);
3574 			ffe_ctl->found_offset = offset;
3575 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3576 			return 0;
3577 		}
3578 	}
3579 	/*
3580 	 * At this point we either didn't find a cluster or we weren't able to
3581 	 * allocate a block from our cluster.  Free the cluster we've been
3582 	 * trying to use, and go to the next block group.
3583 	 */
3584 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3585 	spin_unlock(&last_ptr->refill_lock);
3586 	return 1;
3587 }
3588 
3589 /*
3590  * Return >0 to inform caller that we find nothing
3591  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3592  */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3593 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3594 					struct find_free_extent_ctl *ffe_ctl)
3595 {
3596 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3597 	u64 offset;
3598 
3599 	/*
3600 	 * We are doing an unclustered allocation, set the fragmented flag so
3601 	 * we don't bother trying to setup a cluster again until we get more
3602 	 * space.
3603 	 */
3604 	if (unlikely(last_ptr)) {
3605 		spin_lock(&last_ptr->lock);
3606 		last_ptr->fragmented = 1;
3607 		spin_unlock(&last_ptr->lock);
3608 	}
3609 	if (ffe_ctl->cached) {
3610 		struct btrfs_free_space_ctl *free_space_ctl;
3611 
3612 		free_space_ctl = bg->free_space_ctl;
3613 		spin_lock(&free_space_ctl->tree_lock);
3614 		if (free_space_ctl->free_space <
3615 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3616 		    ffe_ctl->empty_size) {
3617 			ffe_ctl->total_free_space = max_t(u64,
3618 					ffe_ctl->total_free_space,
3619 					free_space_ctl->free_space);
3620 			spin_unlock(&free_space_ctl->tree_lock);
3621 			return 1;
3622 		}
3623 		spin_unlock(&free_space_ctl->tree_lock);
3624 	}
3625 
3626 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3627 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3628 			&ffe_ctl->max_extent_size);
3629 	if (!offset)
3630 		return 1;
3631 	ffe_ctl->found_offset = offset;
3632 	return 0;
3633 }
3634 
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3635 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3636 				   struct find_free_extent_ctl *ffe_ctl,
3637 				   struct btrfs_block_group **bg_ret)
3638 {
3639 	int ret;
3640 
3641 	/* We want to try and use the cluster allocator, so lets look there */
3642 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3643 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3644 		if (ret >= 0)
3645 			return ret;
3646 		/* ret == -ENOENT case falls through */
3647 	}
3648 
3649 	return find_free_extent_unclustered(block_group, ffe_ctl);
3650 }
3651 
3652 /*
3653  * Tree-log block group locking
3654  * ============================
3655  *
3656  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3657  * indicates the starting address of a block group, which is reserved only
3658  * for tree-log metadata.
3659  *
3660  * Lock nesting
3661  * ============
3662  *
3663  * space_info::lock
3664  *   block_group::lock
3665  *     fs_info::treelog_bg_lock
3666  */
3667 
3668 /*
3669  * Simple allocator for sequential-only block group. It only allows sequential
3670  * allocation. No need to play with trees. This function also reserves the
3671  * bytes as in btrfs_add_reserved_bytes.
3672  */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3673 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3674 			       struct find_free_extent_ctl *ffe_ctl,
3675 			       struct btrfs_block_group **bg_ret)
3676 {
3677 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3678 	struct btrfs_space_info *space_info = block_group->space_info;
3679 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3680 	u64 start = block_group->start;
3681 	u64 num_bytes = ffe_ctl->num_bytes;
3682 	u64 avail;
3683 	u64 bytenr = block_group->start;
3684 	u64 log_bytenr;
3685 	u64 data_reloc_bytenr;
3686 	int ret = 0;
3687 	bool skip = false;
3688 
3689 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3690 
3691 	/*
3692 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3693 	 * group, and vice versa.
3694 	 */
3695 	spin_lock(&fs_info->treelog_bg_lock);
3696 	log_bytenr = fs_info->treelog_bg;
3697 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3698 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3699 		skip = true;
3700 	spin_unlock(&fs_info->treelog_bg_lock);
3701 	if (skip)
3702 		return 1;
3703 
3704 	/*
3705 	 * Do not allow non-relocation blocks in the dedicated relocation block
3706 	 * group, and vice versa.
3707 	 */
3708 	spin_lock(&fs_info->relocation_bg_lock);
3709 	data_reloc_bytenr = fs_info->data_reloc_bg;
3710 	if (data_reloc_bytenr &&
3711 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3712 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3713 		skip = true;
3714 	spin_unlock(&fs_info->relocation_bg_lock);
3715 	if (skip)
3716 		return 1;
3717 
3718 	/* Check RO and no space case before trying to activate it */
3719 	spin_lock(&block_group->lock);
3720 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3721 		ret = 1;
3722 		/*
3723 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3724 		 * Return the error after taking the locks.
3725 		 */
3726 	}
3727 	spin_unlock(&block_group->lock);
3728 
3729 	/* Metadata block group is activated at write time. */
3730 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3731 	    !btrfs_zone_activate(block_group)) {
3732 		ret = 1;
3733 		/*
3734 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3735 		 * Return the error after taking the locks.
3736 		 */
3737 	}
3738 
3739 	spin_lock(&space_info->lock);
3740 	spin_lock(&block_group->lock);
3741 	spin_lock(&fs_info->treelog_bg_lock);
3742 	spin_lock(&fs_info->relocation_bg_lock);
3743 
3744 	if (ret)
3745 		goto out;
3746 
3747 	ASSERT(!ffe_ctl->for_treelog ||
3748 	       block_group->start == fs_info->treelog_bg ||
3749 	       fs_info->treelog_bg == 0);
3750 	ASSERT(!ffe_ctl->for_data_reloc ||
3751 	       block_group->start == fs_info->data_reloc_bg ||
3752 	       fs_info->data_reloc_bg == 0);
3753 
3754 	if (block_group->ro ||
3755 	    (!ffe_ctl->for_data_reloc &&
3756 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3757 		ret = 1;
3758 		goto out;
3759 	}
3760 
3761 	/*
3762 	 * Do not allow currently using block group to be tree-log dedicated
3763 	 * block group.
3764 	 */
3765 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3766 	    (block_group->used || block_group->reserved)) {
3767 		ret = 1;
3768 		goto out;
3769 	}
3770 
3771 	/*
3772 	 * Do not allow currently used block group to be the data relocation
3773 	 * dedicated block group.
3774 	 */
3775 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3776 	    (block_group->used || block_group->reserved)) {
3777 		ret = 1;
3778 		goto out;
3779 	}
3780 
3781 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3782 	avail = block_group->zone_capacity - block_group->alloc_offset;
3783 	if (avail < num_bytes) {
3784 		if (ffe_ctl->max_extent_size < avail) {
3785 			/*
3786 			 * With sequential allocator, free space is always
3787 			 * contiguous
3788 			 */
3789 			ffe_ctl->max_extent_size = avail;
3790 			ffe_ctl->total_free_space = avail;
3791 		}
3792 		ret = 1;
3793 		goto out;
3794 	}
3795 
3796 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3797 		fs_info->treelog_bg = block_group->start;
3798 
3799 	if (ffe_ctl->for_data_reloc) {
3800 		if (!fs_info->data_reloc_bg)
3801 			fs_info->data_reloc_bg = block_group->start;
3802 		/*
3803 		 * Do not allow allocations from this block group, unless it is
3804 		 * for data relocation. Compared to increasing the ->ro, setting
3805 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3806 		 * writers to come in. See btrfs_inc_nocow_writers().
3807 		 *
3808 		 * We need to disable an allocation to avoid an allocation of
3809 		 * regular (non-relocation data) extent. With mix of relocation
3810 		 * extents and regular extents, we can dispatch WRITE commands
3811 		 * (for relocation extents) and ZONE APPEND commands (for
3812 		 * regular extents) at the same time to the same zone, which
3813 		 * easily break the write pointer.
3814 		 *
3815 		 * Also, this flag avoids this block group to be zone finished.
3816 		 */
3817 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3818 	}
3819 
3820 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3821 	block_group->alloc_offset += num_bytes;
3822 	spin_lock(&ctl->tree_lock);
3823 	ctl->free_space -= num_bytes;
3824 	spin_unlock(&ctl->tree_lock);
3825 
3826 	/*
3827 	 * We do not check if found_offset is aligned to stripesize. The
3828 	 * address is anyway rewritten when using zone append writing.
3829 	 */
3830 
3831 	ffe_ctl->search_start = ffe_ctl->found_offset;
3832 
3833 out:
3834 	if (ret && ffe_ctl->for_treelog)
3835 		fs_info->treelog_bg = 0;
3836 	if (ret && ffe_ctl->for_data_reloc)
3837 		fs_info->data_reloc_bg = 0;
3838 	spin_unlock(&fs_info->relocation_bg_lock);
3839 	spin_unlock(&fs_info->treelog_bg_lock);
3840 	spin_unlock(&block_group->lock);
3841 	spin_unlock(&space_info->lock);
3842 	return ret;
3843 }
3844 
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3845 static int do_allocation(struct btrfs_block_group *block_group,
3846 			 struct find_free_extent_ctl *ffe_ctl,
3847 			 struct btrfs_block_group **bg_ret)
3848 {
3849 	switch (ffe_ctl->policy) {
3850 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3851 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3852 	case BTRFS_EXTENT_ALLOC_ZONED:
3853 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3854 	default:
3855 		BUG();
3856 	}
3857 }
3858 
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3859 static void release_block_group(struct btrfs_block_group *block_group,
3860 				struct find_free_extent_ctl *ffe_ctl,
3861 				int delalloc)
3862 {
3863 	switch (ffe_ctl->policy) {
3864 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3865 		ffe_ctl->retry_uncached = false;
3866 		break;
3867 	case BTRFS_EXTENT_ALLOC_ZONED:
3868 		/* Nothing to do */
3869 		break;
3870 	default:
3871 		BUG();
3872 	}
3873 
3874 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3875 	       ffe_ctl->index);
3876 	btrfs_release_block_group(block_group, delalloc);
3877 }
3878 
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3879 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3880 				   struct btrfs_key *ins)
3881 {
3882 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3883 
3884 	if (!ffe_ctl->use_cluster && last_ptr) {
3885 		spin_lock(&last_ptr->lock);
3886 		last_ptr->window_start = ins->objectid;
3887 		spin_unlock(&last_ptr->lock);
3888 	}
3889 }
3890 
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3891 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3892 			 struct btrfs_key *ins)
3893 {
3894 	switch (ffe_ctl->policy) {
3895 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3896 		found_extent_clustered(ffe_ctl, ins);
3897 		break;
3898 	case BTRFS_EXTENT_ALLOC_ZONED:
3899 		/* Nothing to do */
3900 		break;
3901 	default:
3902 		BUG();
3903 	}
3904 }
3905 
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3906 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3907 				    struct find_free_extent_ctl *ffe_ctl)
3908 {
3909 	/* Block group's activeness is not a requirement for METADATA block groups. */
3910 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
3911 		return 0;
3912 
3913 	/* If we can activate new zone, just allocate a chunk and use it */
3914 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3915 		return 0;
3916 
3917 	/*
3918 	 * We already reached the max active zones. Try to finish one block
3919 	 * group to make a room for a new block group. This is only possible
3920 	 * for a data block group because btrfs_zone_finish() may need to wait
3921 	 * for a running transaction which can cause a deadlock for metadata
3922 	 * allocation.
3923 	 */
3924 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3925 		int ret = btrfs_zone_finish_one_bg(fs_info);
3926 
3927 		if (ret == 1)
3928 			return 0;
3929 		else if (ret < 0)
3930 			return ret;
3931 	}
3932 
3933 	/*
3934 	 * If we have enough free space left in an already active block group
3935 	 * and we can't activate any other zone now, do not allow allocating a
3936 	 * new chunk and let find_free_extent() retry with a smaller size.
3937 	 */
3938 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3939 		return -ENOSPC;
3940 
3941 	/*
3942 	 * Even min_alloc_size is not left in any block groups. Since we cannot
3943 	 * activate a new block group, allocating it may not help. Let's tell a
3944 	 * caller to try again and hope it progress something by writing some
3945 	 * parts of the region. That is only possible for data block groups,
3946 	 * where a part of the region can be written.
3947 	 */
3948 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3949 		return -EAGAIN;
3950 
3951 	/*
3952 	 * We cannot activate a new block group and no enough space left in any
3953 	 * block groups. So, allocating a new block group may not help. But,
3954 	 * there is nothing to do anyway, so let's go with it.
3955 	 */
3956 	return 0;
3957 }
3958 
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3959 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3960 			      struct find_free_extent_ctl *ffe_ctl)
3961 {
3962 	switch (ffe_ctl->policy) {
3963 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3964 		return 0;
3965 	case BTRFS_EXTENT_ALLOC_ZONED:
3966 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3967 	default:
3968 		BUG();
3969 	}
3970 }
3971 
3972 /*
3973  * Return >0 means caller needs to re-search for free extent
3974  * Return 0 means we have the needed free extent.
3975  * Return <0 means we failed to locate any free extent.
3976  */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)3977 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3978 					struct btrfs_key *ins,
3979 					struct find_free_extent_ctl *ffe_ctl,
3980 					bool full_search)
3981 {
3982 	struct btrfs_root *root = fs_info->chunk_root;
3983 	int ret;
3984 
3985 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3986 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3987 		ffe_ctl->orig_have_caching_bg = true;
3988 
3989 	if (ins->objectid) {
3990 		found_extent(ffe_ctl, ins);
3991 		return 0;
3992 	}
3993 
3994 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
3995 		return 1;
3996 
3997 	ffe_ctl->index++;
3998 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
3999 		return 1;
4000 
4001 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4002 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4003 		ffe_ctl->index = 0;
4004 		/*
4005 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4006 		 * any uncached bgs and we've already done a full search
4007 		 * through.
4008 		 */
4009 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4010 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4011 			ffe_ctl->loop++;
4012 		ffe_ctl->loop++;
4013 
4014 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4015 			struct btrfs_trans_handle *trans;
4016 			int exist = 0;
4017 
4018 			/* Check if allocation policy allows to create a new chunk */
4019 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4020 			if (ret)
4021 				return ret;
4022 
4023 			trans = current->journal_info;
4024 			if (trans)
4025 				exist = 1;
4026 			else
4027 				trans = btrfs_join_transaction(root);
4028 
4029 			if (IS_ERR(trans)) {
4030 				ret = PTR_ERR(trans);
4031 				return ret;
4032 			}
4033 
4034 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4035 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4036 
4037 			/* Do not bail out on ENOSPC since we can do more. */
4038 			if (ret == -ENOSPC) {
4039 				ret = 0;
4040 				ffe_ctl->loop++;
4041 			}
4042 			else if (ret < 0)
4043 				btrfs_abort_transaction(trans, ret);
4044 			else
4045 				ret = 0;
4046 			if (!exist)
4047 				btrfs_end_transaction(trans);
4048 			if (ret)
4049 				return ret;
4050 		}
4051 
4052 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4053 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4054 				return -ENOSPC;
4055 
4056 			/*
4057 			 * Don't loop again if we already have no empty_size and
4058 			 * no empty_cluster.
4059 			 */
4060 			if (ffe_ctl->empty_size == 0 &&
4061 			    ffe_ctl->empty_cluster == 0)
4062 				return -ENOSPC;
4063 			ffe_ctl->empty_size = 0;
4064 			ffe_ctl->empty_cluster = 0;
4065 		}
4066 		return 1;
4067 	}
4068 	return -ENOSPC;
4069 }
4070 
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4071 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4072 					      struct btrfs_block_group *bg)
4073 {
4074 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4075 		return true;
4076 	if (!btrfs_block_group_should_use_size_class(bg))
4077 		return true;
4078 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4079 		return true;
4080 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4081 	    bg->size_class == BTRFS_BG_SZ_NONE)
4082 		return true;
4083 	return ffe_ctl->size_class == bg->size_class;
4084 }
4085 
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4086 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4087 					struct find_free_extent_ctl *ffe_ctl,
4088 					struct btrfs_space_info *space_info,
4089 					struct btrfs_key *ins)
4090 {
4091 	/*
4092 	 * If our free space is heavily fragmented we may not be able to make
4093 	 * big contiguous allocations, so instead of doing the expensive search
4094 	 * for free space, simply return ENOSPC with our max_extent_size so we
4095 	 * can go ahead and search for a more manageable chunk.
4096 	 *
4097 	 * If our max_extent_size is large enough for our allocation simply
4098 	 * disable clustering since we will likely not be able to find enough
4099 	 * space to create a cluster and induce latency trying.
4100 	 */
4101 	if (space_info->max_extent_size) {
4102 		spin_lock(&space_info->lock);
4103 		if (space_info->max_extent_size &&
4104 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4105 			ins->offset = space_info->max_extent_size;
4106 			spin_unlock(&space_info->lock);
4107 			return -ENOSPC;
4108 		} else if (space_info->max_extent_size) {
4109 			ffe_ctl->use_cluster = false;
4110 		}
4111 		spin_unlock(&space_info->lock);
4112 	}
4113 
4114 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4115 					       &ffe_ctl->empty_cluster);
4116 	if (ffe_ctl->last_ptr) {
4117 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4118 
4119 		spin_lock(&last_ptr->lock);
4120 		if (last_ptr->block_group)
4121 			ffe_ctl->hint_byte = last_ptr->window_start;
4122 		if (last_ptr->fragmented) {
4123 			/*
4124 			 * We still set window_start so we can keep track of the
4125 			 * last place we found an allocation to try and save
4126 			 * some time.
4127 			 */
4128 			ffe_ctl->hint_byte = last_ptr->window_start;
4129 			ffe_ctl->use_cluster = false;
4130 		}
4131 		spin_unlock(&last_ptr->lock);
4132 	}
4133 
4134 	return 0;
4135 }
4136 
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4137 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4138 			      struct find_free_extent_ctl *ffe_ctl,
4139 			      struct btrfs_space_info *space_info,
4140 			      struct btrfs_key *ins)
4141 {
4142 	switch (ffe_ctl->policy) {
4143 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4144 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4145 						    space_info, ins);
4146 	case BTRFS_EXTENT_ALLOC_ZONED:
4147 		if (ffe_ctl->for_treelog) {
4148 			spin_lock(&fs_info->treelog_bg_lock);
4149 			if (fs_info->treelog_bg)
4150 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4151 			spin_unlock(&fs_info->treelog_bg_lock);
4152 		}
4153 		if (ffe_ctl->for_data_reloc) {
4154 			spin_lock(&fs_info->relocation_bg_lock);
4155 			if (fs_info->data_reloc_bg)
4156 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4157 			spin_unlock(&fs_info->relocation_bg_lock);
4158 		}
4159 		return 0;
4160 	default:
4161 		BUG();
4162 	}
4163 }
4164 
4165 /*
4166  * walks the btree of allocated extents and find a hole of a given size.
4167  * The key ins is changed to record the hole:
4168  * ins->objectid == start position
4169  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4170  * ins->offset == the size of the hole.
4171  * Any available blocks before search_start are skipped.
4172  *
4173  * If there is no suitable free space, we will record the max size of
4174  * the free space extent currently.
4175  *
4176  * The overall logic and call chain:
4177  *
4178  * find_free_extent()
4179  * |- Iterate through all block groups
4180  * |  |- Get a valid block group
4181  * |  |- Try to do clustered allocation in that block group
4182  * |  |- Try to do unclustered allocation in that block group
4183  * |  |- Check if the result is valid
4184  * |  |  |- If valid, then exit
4185  * |  |- Jump to next block group
4186  * |
4187  * |- Push harder to find free extents
4188  *    |- If not found, re-iterate all block groups
4189  */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4190 static noinline int find_free_extent(struct btrfs_root *root,
4191 				     struct btrfs_key *ins,
4192 				     struct find_free_extent_ctl *ffe_ctl)
4193 {
4194 	struct btrfs_fs_info *fs_info = root->fs_info;
4195 	int ret = 0;
4196 	int cache_block_group_error = 0;
4197 	struct btrfs_block_group *block_group = NULL;
4198 	struct btrfs_space_info *space_info;
4199 	bool full_search = false;
4200 
4201 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4202 
4203 	ffe_ctl->search_start = 0;
4204 	/* For clustered allocation */
4205 	ffe_ctl->empty_cluster = 0;
4206 	ffe_ctl->last_ptr = NULL;
4207 	ffe_ctl->use_cluster = true;
4208 	ffe_ctl->have_caching_bg = false;
4209 	ffe_ctl->orig_have_caching_bg = false;
4210 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4211 	ffe_ctl->loop = 0;
4212 	ffe_ctl->retry_uncached = false;
4213 	ffe_ctl->cached = 0;
4214 	ffe_ctl->max_extent_size = 0;
4215 	ffe_ctl->total_free_space = 0;
4216 	ffe_ctl->found_offset = 0;
4217 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4218 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4219 
4220 	if (btrfs_is_zoned(fs_info))
4221 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4222 
4223 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4224 	ins->objectid = 0;
4225 	ins->offset = 0;
4226 
4227 	trace_find_free_extent(root, ffe_ctl);
4228 
4229 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4230 	if (!space_info) {
4231 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4232 		return -ENOSPC;
4233 	}
4234 
4235 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4236 	if (ret < 0)
4237 		return ret;
4238 
4239 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4240 				    first_logical_byte(fs_info));
4241 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4242 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4243 		block_group = btrfs_lookup_block_group(fs_info,
4244 						       ffe_ctl->search_start);
4245 		/*
4246 		 * we don't want to use the block group if it doesn't match our
4247 		 * allocation bits, or if its not cached.
4248 		 *
4249 		 * However if we are re-searching with an ideal block group
4250 		 * picked out then we don't care that the block group is cached.
4251 		 */
4252 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4253 		    block_group->cached != BTRFS_CACHE_NO) {
4254 			down_read(&space_info->groups_sem);
4255 			if (list_empty(&block_group->list) ||
4256 			    block_group->ro) {
4257 				/*
4258 				 * someone is removing this block group,
4259 				 * we can't jump into the have_block_group
4260 				 * target because our list pointers are not
4261 				 * valid
4262 				 */
4263 				btrfs_put_block_group(block_group);
4264 				up_read(&space_info->groups_sem);
4265 			} else {
4266 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4267 							block_group->flags);
4268 				btrfs_lock_block_group(block_group,
4269 						       ffe_ctl->delalloc);
4270 				ffe_ctl->hinted = true;
4271 				goto have_block_group;
4272 			}
4273 		} else if (block_group) {
4274 			btrfs_put_block_group(block_group);
4275 		}
4276 	}
4277 search:
4278 	trace_find_free_extent_search_loop(root, ffe_ctl);
4279 	ffe_ctl->have_caching_bg = false;
4280 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4281 	    ffe_ctl->index == 0)
4282 		full_search = true;
4283 	down_read(&space_info->groups_sem);
4284 	list_for_each_entry(block_group,
4285 			    &space_info->block_groups[ffe_ctl->index], list) {
4286 		struct btrfs_block_group *bg_ret;
4287 
4288 		ffe_ctl->hinted = false;
4289 		/* If the block group is read-only, we can skip it entirely. */
4290 		if (unlikely(block_group->ro)) {
4291 			if (ffe_ctl->for_treelog)
4292 				btrfs_clear_treelog_bg(block_group);
4293 			if (ffe_ctl->for_data_reloc)
4294 				btrfs_clear_data_reloc_bg(block_group);
4295 			continue;
4296 		}
4297 
4298 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4299 		ffe_ctl->search_start = block_group->start;
4300 
4301 		/*
4302 		 * this can happen if we end up cycling through all the
4303 		 * raid types, but we want to make sure we only allocate
4304 		 * for the proper type.
4305 		 */
4306 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4307 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4308 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4309 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4310 				BTRFS_BLOCK_GROUP_RAID10;
4311 
4312 			/*
4313 			 * if they asked for extra copies and this block group
4314 			 * doesn't provide them, bail.  This does allow us to
4315 			 * fill raid0 from raid1.
4316 			 */
4317 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4318 				goto loop;
4319 
4320 			/*
4321 			 * This block group has different flags than we want.
4322 			 * It's possible that we have MIXED_GROUP flag but no
4323 			 * block group is mixed.  Just skip such block group.
4324 			 */
4325 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4326 			continue;
4327 		}
4328 
4329 have_block_group:
4330 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4331 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4332 		if (unlikely(!ffe_ctl->cached)) {
4333 			ffe_ctl->have_caching_bg = true;
4334 			ret = btrfs_cache_block_group(block_group, false);
4335 
4336 			/*
4337 			 * If we get ENOMEM here or something else we want to
4338 			 * try other block groups, because it may not be fatal.
4339 			 * However if we can't find anything else we need to
4340 			 * save our return here so that we return the actual
4341 			 * error that caused problems, not ENOSPC.
4342 			 */
4343 			if (ret < 0) {
4344 				if (!cache_block_group_error)
4345 					cache_block_group_error = ret;
4346 				ret = 0;
4347 				goto loop;
4348 			}
4349 			ret = 0;
4350 		}
4351 
4352 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4353 			if (!cache_block_group_error)
4354 				cache_block_group_error = -EIO;
4355 			goto loop;
4356 		}
4357 
4358 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4359 			goto loop;
4360 
4361 		bg_ret = NULL;
4362 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4363 		if (ret > 0)
4364 			goto loop;
4365 
4366 		if (bg_ret && bg_ret != block_group) {
4367 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4368 			block_group = bg_ret;
4369 		}
4370 
4371 		/* Checks */
4372 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4373 						 fs_info->stripesize);
4374 
4375 		/* move on to the next group */
4376 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4377 		    block_group->start + block_group->length) {
4378 			btrfs_add_free_space_unused(block_group,
4379 					    ffe_ctl->found_offset,
4380 					    ffe_ctl->num_bytes);
4381 			goto loop;
4382 		}
4383 
4384 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4385 			btrfs_add_free_space_unused(block_group,
4386 					ffe_ctl->found_offset,
4387 					ffe_ctl->search_start - ffe_ctl->found_offset);
4388 
4389 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4390 					       ffe_ctl->num_bytes,
4391 					       ffe_ctl->delalloc,
4392 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4393 		if (ret == -EAGAIN) {
4394 			btrfs_add_free_space_unused(block_group,
4395 					ffe_ctl->found_offset,
4396 					ffe_ctl->num_bytes);
4397 			goto loop;
4398 		}
4399 		btrfs_inc_block_group_reservations(block_group);
4400 
4401 		/* we are all good, lets return */
4402 		ins->objectid = ffe_ctl->search_start;
4403 		ins->offset = ffe_ctl->num_bytes;
4404 
4405 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4406 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4407 		break;
4408 loop:
4409 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4410 		    !ffe_ctl->retry_uncached) {
4411 			ffe_ctl->retry_uncached = true;
4412 			btrfs_wait_block_group_cache_progress(block_group,
4413 						ffe_ctl->num_bytes +
4414 						ffe_ctl->empty_cluster +
4415 						ffe_ctl->empty_size);
4416 			goto have_block_group;
4417 		}
4418 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4419 		cond_resched();
4420 	}
4421 	up_read(&space_info->groups_sem);
4422 
4423 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4424 	if (ret > 0)
4425 		goto search;
4426 
4427 	if (ret == -ENOSPC && !cache_block_group_error) {
4428 		/*
4429 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4430 		 * any contiguous hole.
4431 		 */
4432 		if (!ffe_ctl->max_extent_size)
4433 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4434 		spin_lock(&space_info->lock);
4435 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4436 		spin_unlock(&space_info->lock);
4437 		ins->offset = ffe_ctl->max_extent_size;
4438 	} else if (ret == -ENOSPC) {
4439 		ret = cache_block_group_error;
4440 	}
4441 	return ret;
4442 }
4443 
4444 /*
4445  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4446  *			  hole that is at least as big as @num_bytes.
4447  *
4448  * @root           -	The root that will contain this extent
4449  *
4450  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4451  *			is used for accounting purposes. This value differs
4452  *			from @num_bytes only in the case of compressed extents.
4453  *
4454  * @num_bytes      -	Number of bytes to allocate on-disk.
4455  *
4456  * @min_alloc_size -	Indicates the minimum amount of space that the
4457  *			allocator should try to satisfy. In some cases
4458  *			@num_bytes may be larger than what is required and if
4459  *			the filesystem is fragmented then allocation fails.
4460  *			However, the presence of @min_alloc_size gives a
4461  *			chance to try and satisfy the smaller allocation.
4462  *
4463  * @empty_size     -	A hint that you plan on doing more COW. This is the
4464  *			size in bytes the allocator should try to find free
4465  *			next to the block it returns.  This is just a hint and
4466  *			may be ignored by the allocator.
4467  *
4468  * @hint_byte      -	Hint to the allocator to start searching above the byte
4469  *			address passed. It might be ignored.
4470  *
4471  * @ins            -	This key is modified to record the found hole. It will
4472  *			have the following values:
4473  *			ins->objectid == start position
4474  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4475  *			ins->offset == the size of the hole.
4476  *
4477  * @is_data        -	Boolean flag indicating whether an extent is
4478  *			allocated for data (true) or metadata (false)
4479  *
4480  * @delalloc       -	Boolean flag indicating whether this allocation is for
4481  *			delalloc or not. If 'true' data_rwsem of block groups
4482  *			is going to be acquired.
4483  *
4484  *
4485  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4486  * case -ENOSPC is returned then @ins->offset will contain the size of the
4487  * largest available hole the allocator managed to find.
4488  */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4489 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4490 			 u64 num_bytes, u64 min_alloc_size,
4491 			 u64 empty_size, u64 hint_byte,
4492 			 struct btrfs_key *ins, int is_data, int delalloc)
4493 {
4494 	struct btrfs_fs_info *fs_info = root->fs_info;
4495 	struct find_free_extent_ctl ffe_ctl = {};
4496 	bool final_tried = num_bytes == min_alloc_size;
4497 	u64 flags;
4498 	int ret;
4499 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4500 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4501 
4502 	flags = get_alloc_profile_by_root(root, is_data);
4503 again:
4504 	WARN_ON(num_bytes < fs_info->sectorsize);
4505 
4506 	ffe_ctl.ram_bytes = ram_bytes;
4507 	ffe_ctl.num_bytes = num_bytes;
4508 	ffe_ctl.min_alloc_size = min_alloc_size;
4509 	ffe_ctl.empty_size = empty_size;
4510 	ffe_ctl.flags = flags;
4511 	ffe_ctl.delalloc = delalloc;
4512 	ffe_ctl.hint_byte = hint_byte;
4513 	ffe_ctl.for_treelog = for_treelog;
4514 	ffe_ctl.for_data_reloc = for_data_reloc;
4515 
4516 	ret = find_free_extent(root, ins, &ffe_ctl);
4517 	if (!ret && !is_data) {
4518 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4519 	} else if (ret == -ENOSPC) {
4520 		if (!final_tried && ins->offset) {
4521 			num_bytes = min(num_bytes >> 1, ins->offset);
4522 			num_bytes = round_down(num_bytes,
4523 					       fs_info->sectorsize);
4524 			num_bytes = max(num_bytes, min_alloc_size);
4525 			ram_bytes = num_bytes;
4526 			if (num_bytes == min_alloc_size)
4527 				final_tried = true;
4528 			goto again;
4529 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4530 			struct btrfs_space_info *sinfo;
4531 
4532 			sinfo = btrfs_find_space_info(fs_info, flags);
4533 			btrfs_err(fs_info,
4534 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4535 				  flags, num_bytes, for_treelog, for_data_reloc);
4536 			if (sinfo)
4537 				btrfs_dump_space_info(fs_info, sinfo,
4538 						      num_bytes, 1);
4539 		}
4540 	}
4541 
4542 	return ret;
4543 }
4544 
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4545 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4546 			       u64 start, u64 len, int delalloc)
4547 {
4548 	struct btrfs_block_group *cache;
4549 
4550 	cache = btrfs_lookup_block_group(fs_info, start);
4551 	if (!cache) {
4552 		btrfs_err(fs_info, "Unable to find block group for %llu",
4553 			  start);
4554 		return -ENOSPC;
4555 	}
4556 
4557 	btrfs_add_free_space(cache, start, len);
4558 	btrfs_free_reserved_bytes(cache, len, delalloc);
4559 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4560 
4561 	btrfs_put_block_group(cache);
4562 	return 0;
4563 }
4564 
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4565 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4566 			      u64 len)
4567 {
4568 	struct btrfs_block_group *cache;
4569 	int ret = 0;
4570 
4571 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4572 	if (!cache) {
4573 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4574 			  start);
4575 		return -ENOSPC;
4576 	}
4577 
4578 	ret = pin_down_extent(trans, cache, start, len, 1);
4579 	btrfs_put_block_group(cache);
4580 	return ret;
4581 }
4582 
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4583 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4584 				 u64 num_bytes)
4585 {
4586 	struct btrfs_fs_info *fs_info = trans->fs_info;
4587 	int ret;
4588 
4589 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4590 	if (ret)
4591 		return ret;
4592 
4593 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4594 	if (ret) {
4595 		ASSERT(!ret);
4596 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4597 			  bytenr, num_bytes);
4598 		return ret;
4599 	}
4600 
4601 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4602 	return 0;
4603 }
4604 
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4605 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4606 				      u64 parent, u64 root_objectid,
4607 				      u64 flags, u64 owner, u64 offset,
4608 				      struct btrfs_key *ins, int ref_mod)
4609 {
4610 	struct btrfs_fs_info *fs_info = trans->fs_info;
4611 	struct btrfs_root *extent_root;
4612 	int ret;
4613 	struct btrfs_extent_item *extent_item;
4614 	struct btrfs_extent_inline_ref *iref;
4615 	struct btrfs_path *path;
4616 	struct extent_buffer *leaf;
4617 	int type;
4618 	u32 size;
4619 
4620 	if (parent > 0)
4621 		type = BTRFS_SHARED_DATA_REF_KEY;
4622 	else
4623 		type = BTRFS_EXTENT_DATA_REF_KEY;
4624 
4625 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4626 
4627 	path = btrfs_alloc_path();
4628 	if (!path)
4629 		return -ENOMEM;
4630 
4631 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4632 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4633 	if (ret) {
4634 		btrfs_free_path(path);
4635 		return ret;
4636 	}
4637 
4638 	leaf = path->nodes[0];
4639 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4640 				     struct btrfs_extent_item);
4641 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4642 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4643 	btrfs_set_extent_flags(leaf, extent_item,
4644 			       flags | BTRFS_EXTENT_FLAG_DATA);
4645 
4646 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4647 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4648 	if (parent > 0) {
4649 		struct btrfs_shared_data_ref *ref;
4650 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4651 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4652 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4653 	} else {
4654 		struct btrfs_extent_data_ref *ref;
4655 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4656 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4657 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4658 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4659 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4660 	}
4661 
4662 	btrfs_mark_buffer_dirty(path->nodes[0]);
4663 	btrfs_free_path(path);
4664 
4665 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4666 }
4667 
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4668 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4669 				     struct btrfs_delayed_ref_node *node,
4670 				     struct btrfs_delayed_extent_op *extent_op)
4671 {
4672 	struct btrfs_fs_info *fs_info = trans->fs_info;
4673 	struct btrfs_root *extent_root;
4674 	int ret;
4675 	struct btrfs_extent_item *extent_item;
4676 	struct btrfs_key extent_key;
4677 	struct btrfs_tree_block_info *block_info;
4678 	struct btrfs_extent_inline_ref *iref;
4679 	struct btrfs_path *path;
4680 	struct extent_buffer *leaf;
4681 	struct btrfs_delayed_tree_ref *ref;
4682 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4683 	u64 flags = extent_op->flags_to_set;
4684 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4685 
4686 	ref = btrfs_delayed_node_to_tree_ref(node);
4687 
4688 	extent_key.objectid = node->bytenr;
4689 	if (skinny_metadata) {
4690 		extent_key.offset = ref->level;
4691 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4692 	} else {
4693 		extent_key.offset = node->num_bytes;
4694 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4695 		size += sizeof(*block_info);
4696 	}
4697 
4698 	path = btrfs_alloc_path();
4699 	if (!path)
4700 		return -ENOMEM;
4701 
4702 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4703 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4704 				      size);
4705 	if (ret) {
4706 		btrfs_free_path(path);
4707 		return ret;
4708 	}
4709 
4710 	leaf = path->nodes[0];
4711 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4712 				     struct btrfs_extent_item);
4713 	btrfs_set_extent_refs(leaf, extent_item, 1);
4714 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4715 	btrfs_set_extent_flags(leaf, extent_item,
4716 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4717 
4718 	if (skinny_metadata) {
4719 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4720 	} else {
4721 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4722 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4723 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4724 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4725 	}
4726 
4727 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4728 		btrfs_set_extent_inline_ref_type(leaf, iref,
4729 						 BTRFS_SHARED_BLOCK_REF_KEY);
4730 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4731 	} else {
4732 		btrfs_set_extent_inline_ref_type(leaf, iref,
4733 						 BTRFS_TREE_BLOCK_REF_KEY);
4734 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4735 	}
4736 
4737 	btrfs_mark_buffer_dirty(leaf);
4738 	btrfs_free_path(path);
4739 
4740 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4741 }
4742 
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4743 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4744 				     struct btrfs_root *root, u64 owner,
4745 				     u64 offset, u64 ram_bytes,
4746 				     struct btrfs_key *ins)
4747 {
4748 	struct btrfs_ref generic_ref = { 0 };
4749 
4750 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4751 
4752 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4753 			       ins->objectid, ins->offset, 0);
4754 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4755 			    offset, 0, false);
4756 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4757 
4758 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4759 }
4760 
4761 /*
4762  * this is used by the tree logging recovery code.  It records that
4763  * an extent has been allocated and makes sure to clear the free
4764  * space cache bits as well
4765  */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4766 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4767 				   u64 root_objectid, u64 owner, u64 offset,
4768 				   struct btrfs_key *ins)
4769 {
4770 	struct btrfs_fs_info *fs_info = trans->fs_info;
4771 	int ret;
4772 	struct btrfs_block_group *block_group;
4773 	struct btrfs_space_info *space_info;
4774 
4775 	/*
4776 	 * Mixed block groups will exclude before processing the log so we only
4777 	 * need to do the exclude dance if this fs isn't mixed.
4778 	 */
4779 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4780 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4781 					      ins->offset);
4782 		if (ret)
4783 			return ret;
4784 	}
4785 
4786 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4787 	if (!block_group)
4788 		return -EINVAL;
4789 
4790 	space_info = block_group->space_info;
4791 	spin_lock(&space_info->lock);
4792 	spin_lock(&block_group->lock);
4793 	space_info->bytes_reserved += ins->offset;
4794 	block_group->reserved += ins->offset;
4795 	spin_unlock(&block_group->lock);
4796 	spin_unlock(&space_info->lock);
4797 
4798 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4799 					 offset, ins, 1);
4800 	if (ret)
4801 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4802 	btrfs_put_block_group(block_group);
4803 	return ret;
4804 }
4805 
4806 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4807 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4808 		      u64 bytenr, int level, u64 owner,
4809 		      enum btrfs_lock_nesting nest)
4810 {
4811 	struct btrfs_fs_info *fs_info = root->fs_info;
4812 	struct extent_buffer *buf;
4813 	u64 lockdep_owner = owner;
4814 
4815 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4816 	if (IS_ERR(buf))
4817 		return buf;
4818 
4819 	/*
4820 	 * Extra safety check in case the extent tree is corrupted and extent
4821 	 * allocator chooses to use a tree block which is already used and
4822 	 * locked.
4823 	 */
4824 	if (buf->lock_owner == current->pid) {
4825 		btrfs_err_rl(fs_info,
4826 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4827 			buf->start, btrfs_header_owner(buf), current->pid);
4828 		free_extent_buffer(buf);
4829 		return ERR_PTR(-EUCLEAN);
4830 	}
4831 
4832 	/*
4833 	 * The reloc trees are just snapshots, so we need them to appear to be
4834 	 * just like any other fs tree WRT lockdep.
4835 	 *
4836 	 * The exception however is in replace_path() in relocation, where we
4837 	 * hold the lock on the original fs root and then search for the reloc
4838 	 * root.  At that point we need to make sure any reloc root buffers are
4839 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4840 	 * lockdep happy.
4841 	 */
4842 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4843 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4844 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4845 
4846 	/* btrfs_clear_buffer_dirty() accesses generation field. */
4847 	btrfs_set_header_generation(buf, trans->transid);
4848 
4849 	/*
4850 	 * This needs to stay, because we could allocate a freed block from an
4851 	 * old tree into a new tree, so we need to make sure this new block is
4852 	 * set to the appropriate level and owner.
4853 	 */
4854 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4855 
4856 	__btrfs_tree_lock(buf, nest);
4857 	btrfs_clear_buffer_dirty(trans, buf);
4858 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4859 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4860 
4861 	set_extent_buffer_uptodate(buf);
4862 
4863 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4864 	btrfs_set_header_level(buf, level);
4865 	btrfs_set_header_bytenr(buf, buf->start);
4866 	btrfs_set_header_generation(buf, trans->transid);
4867 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4868 	btrfs_set_header_owner(buf, owner);
4869 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4870 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4871 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4872 		buf->log_index = root->log_transid % 2;
4873 		/*
4874 		 * we allow two log transactions at a time, use different
4875 		 * EXTENT bit to differentiate dirty pages.
4876 		 */
4877 		if (buf->log_index == 0)
4878 			set_extent_bit(&root->dirty_log_pages, buf->start,
4879 				       buf->start + buf->len - 1,
4880 				       EXTENT_DIRTY, NULL);
4881 		else
4882 			set_extent_bit(&root->dirty_log_pages, buf->start,
4883 				       buf->start + buf->len - 1,
4884 				       EXTENT_NEW, NULL);
4885 	} else {
4886 		buf->log_index = -1;
4887 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4888 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4889 	}
4890 	/* this returns a buffer locked for blocking */
4891 	return buf;
4892 }
4893 
4894 /*
4895  * finds a free extent and does all the dirty work required for allocation
4896  * returns the tree buffer or an ERR_PTR on error.
4897  */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4898 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4899 					     struct btrfs_root *root,
4900 					     u64 parent, u64 root_objectid,
4901 					     const struct btrfs_disk_key *key,
4902 					     int level, u64 hint,
4903 					     u64 empty_size,
4904 					     enum btrfs_lock_nesting nest)
4905 {
4906 	struct btrfs_fs_info *fs_info = root->fs_info;
4907 	struct btrfs_key ins;
4908 	struct btrfs_block_rsv *block_rsv;
4909 	struct extent_buffer *buf;
4910 	struct btrfs_delayed_extent_op *extent_op;
4911 	struct btrfs_ref generic_ref = { 0 };
4912 	u64 flags = 0;
4913 	int ret;
4914 	u32 blocksize = fs_info->nodesize;
4915 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4916 
4917 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4918 	if (btrfs_is_testing(fs_info)) {
4919 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4920 					    level, root_objectid, nest);
4921 		if (!IS_ERR(buf))
4922 			root->alloc_bytenr += blocksize;
4923 		return buf;
4924 	}
4925 #endif
4926 
4927 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4928 	if (IS_ERR(block_rsv))
4929 		return ERR_CAST(block_rsv);
4930 
4931 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4932 				   empty_size, hint, &ins, 0, 0);
4933 	if (ret)
4934 		goto out_unuse;
4935 
4936 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4937 				    root_objectid, nest);
4938 	if (IS_ERR(buf)) {
4939 		ret = PTR_ERR(buf);
4940 		goto out_free_reserved;
4941 	}
4942 
4943 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4944 		if (parent == 0)
4945 			parent = ins.objectid;
4946 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4947 	} else
4948 		BUG_ON(parent > 0);
4949 
4950 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4951 		extent_op = btrfs_alloc_delayed_extent_op();
4952 		if (!extent_op) {
4953 			ret = -ENOMEM;
4954 			goto out_free_buf;
4955 		}
4956 		if (key)
4957 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4958 		else
4959 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4960 		extent_op->flags_to_set = flags;
4961 		extent_op->update_key = skinny_metadata ? false : true;
4962 		extent_op->update_flags = true;
4963 		extent_op->level = level;
4964 
4965 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4966 				       ins.objectid, ins.offset, parent);
4967 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4968 				    root->root_key.objectid, false);
4969 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4970 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4971 		if (ret)
4972 			goto out_free_delayed;
4973 	}
4974 	return buf;
4975 
4976 out_free_delayed:
4977 	btrfs_free_delayed_extent_op(extent_op);
4978 out_free_buf:
4979 	btrfs_tree_unlock(buf);
4980 	free_extent_buffer(buf);
4981 out_free_reserved:
4982 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4983 out_unuse:
4984 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4985 	return ERR_PTR(ret);
4986 }
4987 
4988 struct walk_control {
4989 	u64 refs[BTRFS_MAX_LEVEL];
4990 	u64 flags[BTRFS_MAX_LEVEL];
4991 	struct btrfs_key update_progress;
4992 	struct btrfs_key drop_progress;
4993 	int drop_level;
4994 	int stage;
4995 	int level;
4996 	int shared_level;
4997 	int update_ref;
4998 	int keep_locks;
4999 	int reada_slot;
5000 	int reada_count;
5001 	int restarted;
5002 };
5003 
5004 #define DROP_REFERENCE	1
5005 #define UPDATE_BACKREF	2
5006 
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5007 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5008 				     struct btrfs_root *root,
5009 				     struct walk_control *wc,
5010 				     struct btrfs_path *path)
5011 {
5012 	struct btrfs_fs_info *fs_info = root->fs_info;
5013 	u64 bytenr;
5014 	u64 generation;
5015 	u64 refs;
5016 	u64 flags;
5017 	u32 nritems;
5018 	struct btrfs_key key;
5019 	struct extent_buffer *eb;
5020 	int ret;
5021 	int slot;
5022 	int nread = 0;
5023 
5024 	if (path->slots[wc->level] < wc->reada_slot) {
5025 		wc->reada_count = wc->reada_count * 2 / 3;
5026 		wc->reada_count = max(wc->reada_count, 2);
5027 	} else {
5028 		wc->reada_count = wc->reada_count * 3 / 2;
5029 		wc->reada_count = min_t(int, wc->reada_count,
5030 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5031 	}
5032 
5033 	eb = path->nodes[wc->level];
5034 	nritems = btrfs_header_nritems(eb);
5035 
5036 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5037 		if (nread >= wc->reada_count)
5038 			break;
5039 
5040 		cond_resched();
5041 		bytenr = btrfs_node_blockptr(eb, slot);
5042 		generation = btrfs_node_ptr_generation(eb, slot);
5043 
5044 		if (slot == path->slots[wc->level])
5045 			goto reada;
5046 
5047 		if (wc->stage == UPDATE_BACKREF &&
5048 		    generation <= root->root_key.offset)
5049 			continue;
5050 
5051 		/* We don't lock the tree block, it's OK to be racy here */
5052 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5053 					       wc->level - 1, 1, &refs,
5054 					       &flags);
5055 		/* We don't care about errors in readahead. */
5056 		if (ret < 0)
5057 			continue;
5058 		BUG_ON(refs == 0);
5059 
5060 		if (wc->stage == DROP_REFERENCE) {
5061 			if (refs == 1)
5062 				goto reada;
5063 
5064 			if (wc->level == 1 &&
5065 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5066 				continue;
5067 			if (!wc->update_ref ||
5068 			    generation <= root->root_key.offset)
5069 				continue;
5070 			btrfs_node_key_to_cpu(eb, &key, slot);
5071 			ret = btrfs_comp_cpu_keys(&key,
5072 						  &wc->update_progress);
5073 			if (ret < 0)
5074 				continue;
5075 		} else {
5076 			if (wc->level == 1 &&
5077 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5078 				continue;
5079 		}
5080 reada:
5081 		btrfs_readahead_node_child(eb, slot);
5082 		nread++;
5083 	}
5084 	wc->reada_slot = slot;
5085 }
5086 
5087 /*
5088  * helper to process tree block while walking down the tree.
5089  *
5090  * when wc->stage == UPDATE_BACKREF, this function updates
5091  * back refs for pointers in the block.
5092  *
5093  * NOTE: return value 1 means we should stop walking down.
5094  */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)5095 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5096 				   struct btrfs_root *root,
5097 				   struct btrfs_path *path,
5098 				   struct walk_control *wc, int lookup_info)
5099 {
5100 	struct btrfs_fs_info *fs_info = root->fs_info;
5101 	int level = wc->level;
5102 	struct extent_buffer *eb = path->nodes[level];
5103 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5104 	int ret;
5105 
5106 	if (wc->stage == UPDATE_BACKREF &&
5107 	    btrfs_header_owner(eb) != root->root_key.objectid)
5108 		return 1;
5109 
5110 	/*
5111 	 * when reference count of tree block is 1, it won't increase
5112 	 * again. once full backref flag is set, we never clear it.
5113 	 */
5114 	if (lookup_info &&
5115 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5116 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5117 		BUG_ON(!path->locks[level]);
5118 		ret = btrfs_lookup_extent_info(trans, fs_info,
5119 					       eb->start, level, 1,
5120 					       &wc->refs[level],
5121 					       &wc->flags[level]);
5122 		BUG_ON(ret == -ENOMEM);
5123 		if (ret)
5124 			return ret;
5125 		BUG_ON(wc->refs[level] == 0);
5126 	}
5127 
5128 	if (wc->stage == DROP_REFERENCE) {
5129 		if (wc->refs[level] > 1)
5130 			return 1;
5131 
5132 		if (path->locks[level] && !wc->keep_locks) {
5133 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5134 			path->locks[level] = 0;
5135 		}
5136 		return 0;
5137 	}
5138 
5139 	/* wc->stage == UPDATE_BACKREF */
5140 	if (!(wc->flags[level] & flag)) {
5141 		BUG_ON(!path->locks[level]);
5142 		ret = btrfs_inc_ref(trans, root, eb, 1);
5143 		BUG_ON(ret); /* -ENOMEM */
5144 		ret = btrfs_dec_ref(trans, root, eb, 0);
5145 		BUG_ON(ret); /* -ENOMEM */
5146 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5147 		BUG_ON(ret); /* -ENOMEM */
5148 		wc->flags[level] |= flag;
5149 	}
5150 
5151 	/*
5152 	 * the block is shared by multiple trees, so it's not good to
5153 	 * keep the tree lock
5154 	 */
5155 	if (path->locks[level] && level > 0) {
5156 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5157 		path->locks[level] = 0;
5158 	}
5159 	return 0;
5160 }
5161 
5162 /*
5163  * This is used to verify a ref exists for this root to deal with a bug where we
5164  * would have a drop_progress key that hadn't been updated properly.
5165  */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5166 static int check_ref_exists(struct btrfs_trans_handle *trans,
5167 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5168 			    int level)
5169 {
5170 	struct btrfs_path *path;
5171 	struct btrfs_extent_inline_ref *iref;
5172 	int ret;
5173 
5174 	path = btrfs_alloc_path();
5175 	if (!path)
5176 		return -ENOMEM;
5177 
5178 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5179 				    root->fs_info->nodesize, parent,
5180 				    root->root_key.objectid, level, 0);
5181 	btrfs_free_path(path);
5182 	if (ret == -ENOENT)
5183 		return 0;
5184 	if (ret < 0)
5185 		return ret;
5186 	return 1;
5187 }
5188 
5189 /*
5190  * helper to process tree block pointer.
5191  *
5192  * when wc->stage == DROP_REFERENCE, this function checks
5193  * reference count of the block pointed to. if the block
5194  * is shared and we need update back refs for the subtree
5195  * rooted at the block, this function changes wc->stage to
5196  * UPDATE_BACKREF. if the block is shared and there is no
5197  * need to update back, this function drops the reference
5198  * to the block.
5199  *
5200  * NOTE: return value 1 means we should stop walking down.
5201  */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)5202 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5203 				 struct btrfs_root *root,
5204 				 struct btrfs_path *path,
5205 				 struct walk_control *wc, int *lookup_info)
5206 {
5207 	struct btrfs_fs_info *fs_info = root->fs_info;
5208 	u64 bytenr;
5209 	u64 generation;
5210 	u64 parent;
5211 	struct btrfs_tree_parent_check check = { 0 };
5212 	struct btrfs_key key;
5213 	struct btrfs_ref ref = { 0 };
5214 	struct extent_buffer *next;
5215 	int level = wc->level;
5216 	int reada = 0;
5217 	int ret = 0;
5218 	bool need_account = false;
5219 
5220 	generation = btrfs_node_ptr_generation(path->nodes[level],
5221 					       path->slots[level]);
5222 	/*
5223 	 * if the lower level block was created before the snapshot
5224 	 * was created, we know there is no need to update back refs
5225 	 * for the subtree
5226 	 */
5227 	if (wc->stage == UPDATE_BACKREF &&
5228 	    generation <= root->root_key.offset) {
5229 		*lookup_info = 1;
5230 		return 1;
5231 	}
5232 
5233 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5234 
5235 	check.level = level - 1;
5236 	check.transid = generation;
5237 	check.owner_root = root->root_key.objectid;
5238 	check.has_first_key = true;
5239 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5240 			      path->slots[level]);
5241 
5242 	next = find_extent_buffer(fs_info, bytenr);
5243 	if (!next) {
5244 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5245 				root->root_key.objectid, level - 1);
5246 		if (IS_ERR(next))
5247 			return PTR_ERR(next);
5248 		reada = 1;
5249 	}
5250 	btrfs_tree_lock(next);
5251 
5252 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5253 				       &wc->refs[level - 1],
5254 				       &wc->flags[level - 1]);
5255 	if (ret < 0)
5256 		goto out_unlock;
5257 
5258 	if (unlikely(wc->refs[level - 1] == 0)) {
5259 		btrfs_err(fs_info, "Missing references.");
5260 		ret = -EIO;
5261 		goto out_unlock;
5262 	}
5263 	*lookup_info = 0;
5264 
5265 	if (wc->stage == DROP_REFERENCE) {
5266 		if (wc->refs[level - 1] > 1) {
5267 			need_account = true;
5268 			if (level == 1 &&
5269 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5270 				goto skip;
5271 
5272 			if (!wc->update_ref ||
5273 			    generation <= root->root_key.offset)
5274 				goto skip;
5275 
5276 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5277 					      path->slots[level]);
5278 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5279 			if (ret < 0)
5280 				goto skip;
5281 
5282 			wc->stage = UPDATE_BACKREF;
5283 			wc->shared_level = level - 1;
5284 		}
5285 	} else {
5286 		if (level == 1 &&
5287 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5288 			goto skip;
5289 	}
5290 
5291 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5292 		btrfs_tree_unlock(next);
5293 		free_extent_buffer(next);
5294 		next = NULL;
5295 		*lookup_info = 1;
5296 	}
5297 
5298 	if (!next) {
5299 		if (reada && level == 1)
5300 			reada_walk_down(trans, root, wc, path);
5301 		next = read_tree_block(fs_info, bytenr, &check);
5302 		if (IS_ERR(next)) {
5303 			return PTR_ERR(next);
5304 		} else if (!extent_buffer_uptodate(next)) {
5305 			free_extent_buffer(next);
5306 			return -EIO;
5307 		}
5308 		btrfs_tree_lock(next);
5309 	}
5310 
5311 	level--;
5312 	ASSERT(level == btrfs_header_level(next));
5313 	if (level != btrfs_header_level(next)) {
5314 		btrfs_err(root->fs_info, "mismatched level");
5315 		ret = -EIO;
5316 		goto out_unlock;
5317 	}
5318 	path->nodes[level] = next;
5319 	path->slots[level] = 0;
5320 	path->locks[level] = BTRFS_WRITE_LOCK;
5321 	wc->level = level;
5322 	if (wc->level == 1)
5323 		wc->reada_slot = 0;
5324 	return 0;
5325 skip:
5326 	wc->refs[level - 1] = 0;
5327 	wc->flags[level - 1] = 0;
5328 	if (wc->stage == DROP_REFERENCE) {
5329 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5330 			parent = path->nodes[level]->start;
5331 		} else {
5332 			ASSERT(root->root_key.objectid ==
5333 			       btrfs_header_owner(path->nodes[level]));
5334 			if (root->root_key.objectid !=
5335 			    btrfs_header_owner(path->nodes[level])) {
5336 				btrfs_err(root->fs_info,
5337 						"mismatched block owner");
5338 				ret = -EIO;
5339 				goto out_unlock;
5340 			}
5341 			parent = 0;
5342 		}
5343 
5344 		/*
5345 		 * If we had a drop_progress we need to verify the refs are set
5346 		 * as expected.  If we find our ref then we know that from here
5347 		 * on out everything should be correct, and we can clear the
5348 		 * ->restarted flag.
5349 		 */
5350 		if (wc->restarted) {
5351 			ret = check_ref_exists(trans, root, bytenr, parent,
5352 					       level - 1);
5353 			if (ret < 0)
5354 				goto out_unlock;
5355 			if (ret == 0)
5356 				goto no_delete;
5357 			ret = 0;
5358 			wc->restarted = 0;
5359 		}
5360 
5361 		/*
5362 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5363 		 * already accounted them at merge time (replace_path),
5364 		 * thus we could skip expensive subtree trace here.
5365 		 */
5366 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5367 		    need_account) {
5368 			ret = btrfs_qgroup_trace_subtree(trans, next,
5369 							 generation, level - 1);
5370 			if (ret) {
5371 				btrfs_err_rl(fs_info,
5372 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5373 					     ret);
5374 			}
5375 		}
5376 
5377 		/*
5378 		 * We need to update the next key in our walk control so we can
5379 		 * update the drop_progress key accordingly.  We don't care if
5380 		 * find_next_key doesn't find a key because that means we're at
5381 		 * the end and are going to clean up now.
5382 		 */
5383 		wc->drop_level = level;
5384 		find_next_key(path, level, &wc->drop_progress);
5385 
5386 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5387 				       fs_info->nodesize, parent);
5388 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5389 				    0, false);
5390 		ret = btrfs_free_extent(trans, &ref);
5391 		if (ret)
5392 			goto out_unlock;
5393 	}
5394 no_delete:
5395 	*lookup_info = 1;
5396 	ret = 1;
5397 
5398 out_unlock:
5399 	btrfs_tree_unlock(next);
5400 	free_extent_buffer(next);
5401 
5402 	return ret;
5403 }
5404 
5405 /*
5406  * helper to process tree block while walking up the tree.
5407  *
5408  * when wc->stage == DROP_REFERENCE, this function drops
5409  * reference count on the block.
5410  *
5411  * when wc->stage == UPDATE_BACKREF, this function changes
5412  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5413  * to UPDATE_BACKREF previously while processing the block.
5414  *
5415  * NOTE: return value 1 means we should stop walking up.
5416  */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5417 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5418 				 struct btrfs_root *root,
5419 				 struct btrfs_path *path,
5420 				 struct walk_control *wc)
5421 {
5422 	struct btrfs_fs_info *fs_info = root->fs_info;
5423 	int ret;
5424 	int level = wc->level;
5425 	struct extent_buffer *eb = path->nodes[level];
5426 	u64 parent = 0;
5427 
5428 	if (wc->stage == UPDATE_BACKREF) {
5429 		BUG_ON(wc->shared_level < level);
5430 		if (level < wc->shared_level)
5431 			goto out;
5432 
5433 		ret = find_next_key(path, level + 1, &wc->update_progress);
5434 		if (ret > 0)
5435 			wc->update_ref = 0;
5436 
5437 		wc->stage = DROP_REFERENCE;
5438 		wc->shared_level = -1;
5439 		path->slots[level] = 0;
5440 
5441 		/*
5442 		 * check reference count again if the block isn't locked.
5443 		 * we should start walking down the tree again if reference
5444 		 * count is one.
5445 		 */
5446 		if (!path->locks[level]) {
5447 			BUG_ON(level == 0);
5448 			btrfs_tree_lock(eb);
5449 			path->locks[level] = BTRFS_WRITE_LOCK;
5450 
5451 			ret = btrfs_lookup_extent_info(trans, fs_info,
5452 						       eb->start, level, 1,
5453 						       &wc->refs[level],
5454 						       &wc->flags[level]);
5455 			if (ret < 0) {
5456 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5457 				path->locks[level] = 0;
5458 				return ret;
5459 			}
5460 			BUG_ON(wc->refs[level] == 0);
5461 			if (wc->refs[level] == 1) {
5462 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5463 				path->locks[level] = 0;
5464 				return 1;
5465 			}
5466 		}
5467 	}
5468 
5469 	/* wc->stage == DROP_REFERENCE */
5470 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5471 
5472 	if (wc->refs[level] == 1) {
5473 		if (level == 0) {
5474 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5475 				ret = btrfs_dec_ref(trans, root, eb, 1);
5476 			else
5477 				ret = btrfs_dec_ref(trans, root, eb, 0);
5478 			BUG_ON(ret); /* -ENOMEM */
5479 			if (is_fstree(root->root_key.objectid)) {
5480 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5481 				if (ret) {
5482 					btrfs_err_rl(fs_info,
5483 	"error %d accounting leaf items, quota is out of sync, rescan required",
5484 					     ret);
5485 				}
5486 			}
5487 		}
5488 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5489 		if (!path->locks[level]) {
5490 			btrfs_tree_lock(eb);
5491 			path->locks[level] = BTRFS_WRITE_LOCK;
5492 		}
5493 		btrfs_clear_buffer_dirty(trans, eb);
5494 	}
5495 
5496 	if (eb == root->node) {
5497 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5498 			parent = eb->start;
5499 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5500 			goto owner_mismatch;
5501 	} else {
5502 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5503 			parent = path->nodes[level + 1]->start;
5504 		else if (root->root_key.objectid !=
5505 			 btrfs_header_owner(path->nodes[level + 1]))
5506 			goto owner_mismatch;
5507 	}
5508 
5509 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5510 			      wc->refs[level] == 1);
5511 out:
5512 	wc->refs[level] = 0;
5513 	wc->flags[level] = 0;
5514 	return 0;
5515 
5516 owner_mismatch:
5517 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5518 		     btrfs_header_owner(eb), root->root_key.objectid);
5519 	return -EUCLEAN;
5520 }
5521 
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5522 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5523 				   struct btrfs_root *root,
5524 				   struct btrfs_path *path,
5525 				   struct walk_control *wc)
5526 {
5527 	int level = wc->level;
5528 	int lookup_info = 1;
5529 	int ret = 0;
5530 
5531 	while (level >= 0) {
5532 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5533 		if (ret)
5534 			break;
5535 
5536 		if (level == 0)
5537 			break;
5538 
5539 		if (path->slots[level] >=
5540 		    btrfs_header_nritems(path->nodes[level]))
5541 			break;
5542 
5543 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5544 		if (ret > 0) {
5545 			path->slots[level]++;
5546 			continue;
5547 		} else if (ret < 0)
5548 			break;
5549 		level = wc->level;
5550 	}
5551 	return (ret == 1) ? 0 : ret;
5552 }
5553 
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5554 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5555 				 struct btrfs_root *root,
5556 				 struct btrfs_path *path,
5557 				 struct walk_control *wc, int max_level)
5558 {
5559 	int level = wc->level;
5560 	int ret;
5561 
5562 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5563 	while (level < max_level && path->nodes[level]) {
5564 		wc->level = level;
5565 		if (path->slots[level] + 1 <
5566 		    btrfs_header_nritems(path->nodes[level])) {
5567 			path->slots[level]++;
5568 			return 0;
5569 		} else {
5570 			ret = walk_up_proc(trans, root, path, wc);
5571 			if (ret > 0)
5572 				return 0;
5573 			if (ret < 0)
5574 				return ret;
5575 
5576 			if (path->locks[level]) {
5577 				btrfs_tree_unlock_rw(path->nodes[level],
5578 						     path->locks[level]);
5579 				path->locks[level] = 0;
5580 			}
5581 			free_extent_buffer(path->nodes[level]);
5582 			path->nodes[level] = NULL;
5583 			level++;
5584 		}
5585 	}
5586 	return 1;
5587 }
5588 
5589 /*
5590  * drop a subvolume tree.
5591  *
5592  * this function traverses the tree freeing any blocks that only
5593  * referenced by the tree.
5594  *
5595  * when a shared tree block is found. this function decreases its
5596  * reference count by one. if update_ref is true, this function
5597  * also make sure backrefs for the shared block and all lower level
5598  * blocks are properly updated.
5599  *
5600  * If called with for_reloc == 0, may exit early with -EAGAIN
5601  */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5602 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5603 {
5604 	const bool is_reloc_root = (root->root_key.objectid ==
5605 				    BTRFS_TREE_RELOC_OBJECTID);
5606 	struct btrfs_fs_info *fs_info = root->fs_info;
5607 	struct btrfs_path *path;
5608 	struct btrfs_trans_handle *trans;
5609 	struct btrfs_root *tree_root = fs_info->tree_root;
5610 	struct btrfs_root_item *root_item = &root->root_item;
5611 	struct walk_control *wc;
5612 	struct btrfs_key key;
5613 	int err = 0;
5614 	int ret;
5615 	int level;
5616 	bool root_dropped = false;
5617 	bool unfinished_drop = false;
5618 
5619 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5620 
5621 	path = btrfs_alloc_path();
5622 	if (!path) {
5623 		err = -ENOMEM;
5624 		goto out;
5625 	}
5626 
5627 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5628 	if (!wc) {
5629 		btrfs_free_path(path);
5630 		err = -ENOMEM;
5631 		goto out;
5632 	}
5633 
5634 	/*
5635 	 * Use join to avoid potential EINTR from transaction start. See
5636 	 * wait_reserve_ticket and the whole reservation callchain.
5637 	 */
5638 	if (for_reloc)
5639 		trans = btrfs_join_transaction(tree_root);
5640 	else
5641 		trans = btrfs_start_transaction(tree_root, 0);
5642 	if (IS_ERR(trans)) {
5643 		err = PTR_ERR(trans);
5644 		goto out_free;
5645 	}
5646 
5647 	err = btrfs_run_delayed_items(trans);
5648 	if (err)
5649 		goto out_end_trans;
5650 
5651 	/*
5652 	 * This will help us catch people modifying the fs tree while we're
5653 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5654 	 * dropped as we unlock the root node and parent nodes as we walk down
5655 	 * the tree, assuming nothing will change.  If something does change
5656 	 * then we'll have stale information and drop references to blocks we've
5657 	 * already dropped.
5658 	 */
5659 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5660 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5661 
5662 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5663 		level = btrfs_header_level(root->node);
5664 		path->nodes[level] = btrfs_lock_root_node(root);
5665 		path->slots[level] = 0;
5666 		path->locks[level] = BTRFS_WRITE_LOCK;
5667 		memset(&wc->update_progress, 0,
5668 		       sizeof(wc->update_progress));
5669 	} else {
5670 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5671 		memcpy(&wc->update_progress, &key,
5672 		       sizeof(wc->update_progress));
5673 
5674 		level = btrfs_root_drop_level(root_item);
5675 		BUG_ON(level == 0);
5676 		path->lowest_level = level;
5677 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5678 		path->lowest_level = 0;
5679 		if (ret < 0) {
5680 			err = ret;
5681 			goto out_end_trans;
5682 		}
5683 		WARN_ON(ret > 0);
5684 
5685 		/*
5686 		 * unlock our path, this is safe because only this
5687 		 * function is allowed to delete this snapshot
5688 		 */
5689 		btrfs_unlock_up_safe(path, 0);
5690 
5691 		level = btrfs_header_level(root->node);
5692 		while (1) {
5693 			btrfs_tree_lock(path->nodes[level]);
5694 			path->locks[level] = BTRFS_WRITE_LOCK;
5695 
5696 			ret = btrfs_lookup_extent_info(trans, fs_info,
5697 						path->nodes[level]->start,
5698 						level, 1, &wc->refs[level],
5699 						&wc->flags[level]);
5700 			if (ret < 0) {
5701 				err = ret;
5702 				goto out_end_trans;
5703 			}
5704 			BUG_ON(wc->refs[level] == 0);
5705 
5706 			if (level == btrfs_root_drop_level(root_item))
5707 				break;
5708 
5709 			btrfs_tree_unlock(path->nodes[level]);
5710 			path->locks[level] = 0;
5711 			WARN_ON(wc->refs[level] != 1);
5712 			level--;
5713 		}
5714 	}
5715 
5716 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5717 	wc->level = level;
5718 	wc->shared_level = -1;
5719 	wc->stage = DROP_REFERENCE;
5720 	wc->update_ref = update_ref;
5721 	wc->keep_locks = 0;
5722 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5723 
5724 	while (1) {
5725 
5726 		ret = walk_down_tree(trans, root, path, wc);
5727 		if (ret < 0) {
5728 			btrfs_abort_transaction(trans, ret);
5729 			err = ret;
5730 			break;
5731 		}
5732 
5733 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5734 		if (ret < 0) {
5735 			btrfs_abort_transaction(trans, ret);
5736 			err = ret;
5737 			break;
5738 		}
5739 
5740 		if (ret > 0) {
5741 			BUG_ON(wc->stage != DROP_REFERENCE);
5742 			break;
5743 		}
5744 
5745 		if (wc->stage == DROP_REFERENCE) {
5746 			wc->drop_level = wc->level;
5747 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5748 					      &wc->drop_progress,
5749 					      path->slots[wc->drop_level]);
5750 		}
5751 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5752 				      &wc->drop_progress);
5753 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5754 
5755 		BUG_ON(wc->level == 0);
5756 		if (btrfs_should_end_transaction(trans) ||
5757 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5758 			ret = btrfs_update_root(trans, tree_root,
5759 						&root->root_key,
5760 						root_item);
5761 			if (ret) {
5762 				btrfs_abort_transaction(trans, ret);
5763 				err = ret;
5764 				goto out_end_trans;
5765 			}
5766 
5767 			if (!is_reloc_root)
5768 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5769 
5770 			btrfs_end_transaction_throttle(trans);
5771 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5772 				btrfs_debug(fs_info,
5773 					    "drop snapshot early exit");
5774 				err = -EAGAIN;
5775 				goto out_free;
5776 			}
5777 
5778 		       /*
5779 			* Use join to avoid potential EINTR from transaction
5780 			* start. See wait_reserve_ticket and the whole
5781 			* reservation callchain.
5782 			*/
5783 			if (for_reloc)
5784 				trans = btrfs_join_transaction(tree_root);
5785 			else
5786 				trans = btrfs_start_transaction(tree_root, 0);
5787 			if (IS_ERR(trans)) {
5788 				err = PTR_ERR(trans);
5789 				goto out_free;
5790 			}
5791 		}
5792 	}
5793 	btrfs_release_path(path);
5794 	if (err)
5795 		goto out_end_trans;
5796 
5797 	ret = btrfs_del_root(trans, &root->root_key);
5798 	if (ret) {
5799 		btrfs_abort_transaction(trans, ret);
5800 		err = ret;
5801 		goto out_end_trans;
5802 	}
5803 
5804 	if (!is_reloc_root) {
5805 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5806 				      NULL, NULL);
5807 		if (ret < 0) {
5808 			btrfs_abort_transaction(trans, ret);
5809 			err = ret;
5810 			goto out_end_trans;
5811 		} else if (ret > 0) {
5812 			/* if we fail to delete the orphan item this time
5813 			 * around, it'll get picked up the next time.
5814 			 *
5815 			 * The most common failure here is just -ENOENT.
5816 			 */
5817 			btrfs_del_orphan_item(trans, tree_root,
5818 					      root->root_key.objectid);
5819 		}
5820 	}
5821 
5822 	/*
5823 	 * This subvolume is going to be completely dropped, and won't be
5824 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5825 	 * commit transaction time.  So free it here manually.
5826 	 */
5827 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5828 	btrfs_qgroup_free_meta_all_pertrans(root);
5829 
5830 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5831 		btrfs_add_dropped_root(trans, root);
5832 	else
5833 		btrfs_put_root(root);
5834 	root_dropped = true;
5835 out_end_trans:
5836 	if (!is_reloc_root)
5837 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5838 
5839 	btrfs_end_transaction_throttle(trans);
5840 out_free:
5841 	kfree(wc);
5842 	btrfs_free_path(path);
5843 out:
5844 	/*
5845 	 * We were an unfinished drop root, check to see if there are any
5846 	 * pending, and if not clear and wake up any waiters.
5847 	 */
5848 	if (!err && unfinished_drop)
5849 		btrfs_maybe_wake_unfinished_drop(fs_info);
5850 
5851 	/*
5852 	 * So if we need to stop dropping the snapshot for whatever reason we
5853 	 * need to make sure to add it back to the dead root list so that we
5854 	 * keep trying to do the work later.  This also cleans up roots if we
5855 	 * don't have it in the radix (like when we recover after a power fail
5856 	 * or unmount) so we don't leak memory.
5857 	 */
5858 	if (!for_reloc && !root_dropped)
5859 		btrfs_add_dead_root(root);
5860 	return err;
5861 }
5862 
5863 /*
5864  * drop subtree rooted at tree block 'node'.
5865  *
5866  * NOTE: this function will unlock and release tree block 'node'
5867  * only used by relocation code
5868  */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5869 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5870 			struct btrfs_root *root,
5871 			struct extent_buffer *node,
5872 			struct extent_buffer *parent)
5873 {
5874 	struct btrfs_fs_info *fs_info = root->fs_info;
5875 	struct btrfs_path *path;
5876 	struct walk_control *wc;
5877 	int level;
5878 	int parent_level;
5879 	int ret = 0;
5880 	int wret;
5881 
5882 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5883 
5884 	path = btrfs_alloc_path();
5885 	if (!path)
5886 		return -ENOMEM;
5887 
5888 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5889 	if (!wc) {
5890 		btrfs_free_path(path);
5891 		return -ENOMEM;
5892 	}
5893 
5894 	btrfs_assert_tree_write_locked(parent);
5895 	parent_level = btrfs_header_level(parent);
5896 	atomic_inc(&parent->refs);
5897 	path->nodes[parent_level] = parent;
5898 	path->slots[parent_level] = btrfs_header_nritems(parent);
5899 
5900 	btrfs_assert_tree_write_locked(node);
5901 	level = btrfs_header_level(node);
5902 	path->nodes[level] = node;
5903 	path->slots[level] = 0;
5904 	path->locks[level] = BTRFS_WRITE_LOCK;
5905 
5906 	wc->refs[parent_level] = 1;
5907 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5908 	wc->level = level;
5909 	wc->shared_level = -1;
5910 	wc->stage = DROP_REFERENCE;
5911 	wc->update_ref = 0;
5912 	wc->keep_locks = 1;
5913 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5914 
5915 	while (1) {
5916 		wret = walk_down_tree(trans, root, path, wc);
5917 		if (wret < 0) {
5918 			ret = wret;
5919 			break;
5920 		}
5921 
5922 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5923 		if (wret < 0)
5924 			ret = wret;
5925 		if (wret != 0)
5926 			break;
5927 	}
5928 
5929 	kfree(wc);
5930 	btrfs_free_path(path);
5931 	return ret;
5932 }
5933 
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)5934 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5935 				   u64 start, u64 end)
5936 {
5937 	return unpin_extent_range(fs_info, start, end, false);
5938 }
5939 
5940 /*
5941  * It used to be that old block groups would be left around forever.
5942  * Iterating over them would be enough to trim unused space.  Since we
5943  * now automatically remove them, we also need to iterate over unallocated
5944  * space.
5945  *
5946  * We don't want a transaction for this since the discard may take a
5947  * substantial amount of time.  We don't require that a transaction be
5948  * running, but we do need to take a running transaction into account
5949  * to ensure that we're not discarding chunks that were released or
5950  * allocated in the current transaction.
5951  *
5952  * Holding the chunks lock will prevent other threads from allocating
5953  * or releasing chunks, but it won't prevent a running transaction
5954  * from committing and releasing the memory that the pending chunks
5955  * list head uses.  For that, we need to take a reference to the
5956  * transaction and hold the commit root sem.  We only need to hold
5957  * it while performing the free space search since we have already
5958  * held back allocations.
5959  */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)5960 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5961 {
5962 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5963 	int ret;
5964 
5965 	*trimmed = 0;
5966 
5967 	/* Discard not supported = nothing to do. */
5968 	if (!bdev_max_discard_sectors(device->bdev))
5969 		return 0;
5970 
5971 	/* Not writable = nothing to do. */
5972 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5973 		return 0;
5974 
5975 	/* No free space = nothing to do. */
5976 	if (device->total_bytes <= device->bytes_used)
5977 		return 0;
5978 
5979 	ret = 0;
5980 
5981 	while (1) {
5982 		struct btrfs_fs_info *fs_info = device->fs_info;
5983 		u64 bytes;
5984 
5985 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5986 		if (ret)
5987 			break;
5988 
5989 		find_first_clear_extent_bit(&device->alloc_state, start,
5990 					    &start, &end,
5991 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5992 
5993 		/* Check if there are any CHUNK_* bits left */
5994 		if (start > device->total_bytes) {
5995 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5996 			btrfs_warn_in_rcu(fs_info,
5997 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5998 					  start, end - start + 1,
5999 					  btrfs_dev_name(device),
6000 					  device->total_bytes);
6001 			mutex_unlock(&fs_info->chunk_mutex);
6002 			ret = 0;
6003 			break;
6004 		}
6005 
6006 		/* Ensure we skip the reserved space on each device. */
6007 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6008 
6009 		/*
6010 		 * If find_first_clear_extent_bit find a range that spans the
6011 		 * end of the device it will set end to -1, in this case it's up
6012 		 * to the caller to trim the value to the size of the device.
6013 		 */
6014 		end = min(end, device->total_bytes - 1);
6015 
6016 		len = end - start + 1;
6017 
6018 		/* We didn't find any extents */
6019 		if (!len) {
6020 			mutex_unlock(&fs_info->chunk_mutex);
6021 			ret = 0;
6022 			break;
6023 		}
6024 
6025 		ret = btrfs_issue_discard(device->bdev, start, len,
6026 					  &bytes);
6027 		if (!ret)
6028 			set_extent_bit(&device->alloc_state, start,
6029 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6030 		mutex_unlock(&fs_info->chunk_mutex);
6031 
6032 		if (ret)
6033 			break;
6034 
6035 		start += len;
6036 		*trimmed += bytes;
6037 
6038 		if (fatal_signal_pending(current)) {
6039 			ret = -ERESTARTSYS;
6040 			break;
6041 		}
6042 
6043 		cond_resched();
6044 	}
6045 
6046 	return ret;
6047 }
6048 
6049 /*
6050  * Trim the whole filesystem by:
6051  * 1) trimming the free space in each block group
6052  * 2) trimming the unallocated space on each device
6053  *
6054  * This will also continue trimming even if a block group or device encounters
6055  * an error.  The return value will be the last error, or 0 if nothing bad
6056  * happens.
6057  */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6058 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6059 {
6060 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6061 	struct btrfs_block_group *cache = NULL;
6062 	struct btrfs_device *device;
6063 	u64 group_trimmed;
6064 	u64 range_end = U64_MAX;
6065 	u64 start;
6066 	u64 end;
6067 	u64 trimmed = 0;
6068 	u64 bg_failed = 0;
6069 	u64 dev_failed = 0;
6070 	int bg_ret = 0;
6071 	int dev_ret = 0;
6072 	int ret = 0;
6073 
6074 	if (range->start == U64_MAX)
6075 		return -EINVAL;
6076 
6077 	/*
6078 	 * Check range overflow if range->len is set.
6079 	 * The default range->len is U64_MAX.
6080 	 */
6081 	if (range->len != U64_MAX &&
6082 	    check_add_overflow(range->start, range->len, &range_end))
6083 		return -EINVAL;
6084 
6085 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6086 	for (; cache; cache = btrfs_next_block_group(cache)) {
6087 		if (cache->start >= range_end) {
6088 			btrfs_put_block_group(cache);
6089 			break;
6090 		}
6091 
6092 		start = max(range->start, cache->start);
6093 		end = min(range_end, cache->start + cache->length);
6094 
6095 		if (end - start >= range->minlen) {
6096 			if (!btrfs_block_group_done(cache)) {
6097 				ret = btrfs_cache_block_group(cache, true);
6098 				if (ret) {
6099 					bg_failed++;
6100 					bg_ret = ret;
6101 					continue;
6102 				}
6103 			}
6104 			ret = btrfs_trim_block_group(cache,
6105 						     &group_trimmed,
6106 						     start,
6107 						     end,
6108 						     range->minlen);
6109 
6110 			trimmed += group_trimmed;
6111 			if (ret) {
6112 				bg_failed++;
6113 				bg_ret = ret;
6114 				continue;
6115 			}
6116 		}
6117 	}
6118 
6119 	if (bg_failed)
6120 		btrfs_warn(fs_info,
6121 			"failed to trim %llu block group(s), last error %d",
6122 			bg_failed, bg_ret);
6123 
6124 	mutex_lock(&fs_devices->device_list_mutex);
6125 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6126 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6127 			continue;
6128 
6129 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6130 		if (ret) {
6131 			dev_failed++;
6132 			dev_ret = ret;
6133 			break;
6134 		}
6135 
6136 		trimmed += group_trimmed;
6137 	}
6138 	mutex_unlock(&fs_devices->device_list_mutex);
6139 
6140 	if (dev_failed)
6141 		btrfs_warn(fs_info,
6142 			"failed to trim %llu device(s), last error %d",
6143 			dev_failed, dev_ret);
6144 	range->len = trimmed;
6145 	if (bg_ret)
6146 		return bg_ret;
6147 	return dev_ret;
6148 }
6149