1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
33
btrfs_compress_type2str(enum btrfs_compression_type type)34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
35 {
36 switch (type) {
37 case BTRFS_COMPRESS_ZLIB:
38 case BTRFS_COMPRESS_LZO:
39 case BTRFS_COMPRESS_ZSTD:
40 case BTRFS_COMPRESS_NONE:
41 return btrfs_compress_types[type];
42 default:
43 break;
44 }
45
46 return NULL;
47 }
48
btrfs_compress_is_valid_type(const char * str,size_t len)49 bool btrfs_compress_is_valid_type(const char *str, size_t len)
50 {
51 int i;
52
53 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54 size_t comp_len = strlen(btrfs_compress_types[i]);
55
56 if (len < comp_len)
57 continue;
58
59 if (!strncmp(btrfs_compress_types[i], str, comp_len))
60 return true;
61 }
62 return false;
63 }
64
compression_compress_pages(int type,struct list_head * ws,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)65 static int compression_compress_pages(int type, struct list_head *ws,
66 struct address_space *mapping, u64 start, struct page **pages,
67 unsigned long *out_pages, unsigned long *total_in,
68 unsigned long *total_out)
69 {
70 switch (type) {
71 case BTRFS_COMPRESS_ZLIB:
72 return zlib_compress_pages(ws, mapping, start, pages,
73 out_pages, total_in, total_out);
74 case BTRFS_COMPRESS_LZO:
75 return lzo_compress_pages(ws, mapping, start, pages,
76 out_pages, total_in, total_out);
77 case BTRFS_COMPRESS_ZSTD:
78 return zstd_compress_pages(ws, mapping, start, pages,
79 out_pages, total_in, total_out);
80 case BTRFS_COMPRESS_NONE:
81 default:
82 /*
83 * This can't happen, the type is validated several times
84 * before we get here. As a sane fallback, return what the
85 * callers will understand as 'no compression happened'.
86 */
87 return -E2BIG;
88 }
89 }
90
compression_decompress_bio(int type,struct list_head * ws,struct compressed_bio * cb)91 static int compression_decompress_bio(int type, struct list_head *ws,
92 struct compressed_bio *cb)
93 {
94 switch (type) {
95 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
96 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
97 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
98 case BTRFS_COMPRESS_NONE:
99 default:
100 /*
101 * This can't happen, the type is validated several times
102 * before we get here.
103 */
104 BUG();
105 }
106 }
107
compression_decompress(int type,struct list_head * ws,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)108 static int compression_decompress(int type, struct list_head *ws,
109 unsigned char *data_in, struct page *dest_page,
110 unsigned long start_byte, size_t srclen, size_t destlen)
111 {
112 switch (type) {
113 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
114 start_byte, srclen, destlen);
115 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
116 start_byte, srclen, destlen);
117 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
118 start_byte, srclen, destlen);
119 case BTRFS_COMPRESS_NONE:
120 default:
121 /*
122 * This can't happen, the type is validated several times
123 * before we get here.
124 */
125 BUG();
126 }
127 }
128
129 static int btrfs_decompress_bio(struct compressed_bio *cb);
130
compressed_bio_size(struct btrfs_fs_info * fs_info,unsigned long disk_size)131 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
132 unsigned long disk_size)
133 {
134 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
135
136 return sizeof(struct compressed_bio) +
137 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
138 }
139
check_compressed_csum(struct btrfs_inode * inode,struct bio * bio,u64 disk_start)140 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
141 u64 disk_start)
142 {
143 struct btrfs_fs_info *fs_info = inode->root->fs_info;
144 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
145 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
146 struct page *page;
147 unsigned long i;
148 char *kaddr;
149 u8 csum[BTRFS_CSUM_SIZE];
150 struct compressed_bio *cb = bio->bi_private;
151 u8 *cb_sum = cb->sums;
152
153 if (inode->flags & BTRFS_INODE_NODATASUM)
154 return 0;
155
156 shash->tfm = fs_info->csum_shash;
157
158 for (i = 0; i < cb->nr_pages; i++) {
159 page = cb->compressed_pages[i];
160
161 kaddr = kmap_atomic(page);
162 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
163 kunmap_atomic(kaddr);
164
165 if (memcmp(&csum, cb_sum, csum_size)) {
166 btrfs_print_data_csum_error(inode, disk_start,
167 csum, cb_sum, cb->mirror_num);
168 if (btrfs_io_bio(bio)->device)
169 btrfs_dev_stat_inc_and_print(
170 btrfs_io_bio(bio)->device,
171 BTRFS_DEV_STAT_CORRUPTION_ERRS);
172 return -EIO;
173 }
174 cb_sum += csum_size;
175 }
176 return 0;
177 }
178
179 /* when we finish reading compressed pages from the disk, we
180 * decompress them and then run the bio end_io routines on the
181 * decompressed pages (in the inode address space).
182 *
183 * This allows the checksumming and other IO error handling routines
184 * to work normally
185 *
186 * The compressed pages are freed here, and it must be run
187 * in process context
188 */
end_compressed_bio_read(struct bio * bio)189 static void end_compressed_bio_read(struct bio *bio)
190 {
191 struct compressed_bio *cb = bio->bi_private;
192 struct inode *inode;
193 struct page *page;
194 unsigned long index;
195 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
196 int ret = 0;
197
198 if (bio->bi_status)
199 cb->errors = 1;
200
201 /* if there are more bios still pending for this compressed
202 * extent, just exit
203 */
204 if (!refcount_dec_and_test(&cb->pending_bios))
205 goto out;
206
207 /*
208 * Record the correct mirror_num in cb->orig_bio so that
209 * read-repair can work properly.
210 */
211 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
212 cb->mirror_num = mirror;
213
214 /*
215 * Some IO in this cb have failed, just skip checksum as there
216 * is no way it could be correct.
217 */
218 if (cb->errors == 1)
219 goto csum_failed;
220
221 inode = cb->inode;
222 ret = check_compressed_csum(BTRFS_I(inode), bio,
223 (u64)bio->bi_iter.bi_sector << 9);
224 if (ret)
225 goto csum_failed;
226
227 /* ok, we're the last bio for this extent, lets start
228 * the decompression.
229 */
230 ret = btrfs_decompress_bio(cb);
231
232 csum_failed:
233 if (ret)
234 cb->errors = 1;
235
236 /* release the compressed pages */
237 index = 0;
238 for (index = 0; index < cb->nr_pages; index++) {
239 page = cb->compressed_pages[index];
240 page->mapping = NULL;
241 put_page(page);
242 }
243
244 /* do io completion on the original bio */
245 if (cb->errors) {
246 bio_io_error(cb->orig_bio);
247 } else {
248 struct bio_vec *bvec;
249 struct bvec_iter_all iter_all;
250
251 /*
252 * we have verified the checksum already, set page
253 * checked so the end_io handlers know about it
254 */
255 ASSERT(!bio_flagged(bio, BIO_CLONED));
256 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
257 SetPageChecked(bvec->bv_page);
258
259 bio_endio(cb->orig_bio);
260 }
261
262 /* finally free the cb struct */
263 kfree(cb->compressed_pages);
264 kfree(cb);
265 out:
266 bio_put(bio);
267 }
268
269 /*
270 * Clear the writeback bits on all of the file
271 * pages for a compressed write
272 */
end_compressed_writeback(struct inode * inode,const struct compressed_bio * cb)273 static noinline void end_compressed_writeback(struct inode *inode,
274 const struct compressed_bio *cb)
275 {
276 unsigned long index = cb->start >> PAGE_SHIFT;
277 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
278 struct page *pages[16];
279 unsigned long nr_pages = end_index - index + 1;
280 int i;
281 int ret;
282
283 if (cb->errors)
284 mapping_set_error(inode->i_mapping, -EIO);
285
286 while (nr_pages > 0) {
287 ret = find_get_pages_contig(inode->i_mapping, index,
288 min_t(unsigned long,
289 nr_pages, ARRAY_SIZE(pages)), pages);
290 if (ret == 0) {
291 nr_pages -= 1;
292 index += 1;
293 continue;
294 }
295 for (i = 0; i < ret; i++) {
296 if (cb->errors)
297 SetPageError(pages[i]);
298 end_page_writeback(pages[i]);
299 put_page(pages[i]);
300 }
301 nr_pages -= ret;
302 index += ret;
303 }
304 /* the inode may be gone now */
305 }
306
307 /*
308 * do the cleanup once all the compressed pages hit the disk.
309 * This will clear writeback on the file pages and free the compressed
310 * pages.
311 *
312 * This also calls the writeback end hooks for the file pages so that
313 * metadata and checksums can be updated in the file.
314 */
end_compressed_bio_write(struct bio * bio)315 static void end_compressed_bio_write(struct bio *bio)
316 {
317 struct compressed_bio *cb = bio->bi_private;
318 struct inode *inode;
319 struct page *page;
320 unsigned long index;
321
322 if (bio->bi_status)
323 cb->errors = 1;
324
325 /* if there are more bios still pending for this compressed
326 * extent, just exit
327 */
328 if (!refcount_dec_and_test(&cb->pending_bios))
329 goto out;
330
331 /* ok, we're the last bio for this extent, step one is to
332 * call back into the FS and do all the end_io operations
333 */
334 inode = cb->inode;
335 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
336 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
337 cb->start, cb->start + cb->len - 1,
338 bio->bi_status == BLK_STS_OK);
339 cb->compressed_pages[0]->mapping = NULL;
340
341 end_compressed_writeback(inode, cb);
342 /* note, our inode could be gone now */
343
344 /*
345 * release the compressed pages, these came from alloc_page and
346 * are not attached to the inode at all
347 */
348 index = 0;
349 for (index = 0; index < cb->nr_pages; index++) {
350 page = cb->compressed_pages[index];
351 page->mapping = NULL;
352 put_page(page);
353 }
354
355 /* finally free the cb struct */
356 kfree(cb->compressed_pages);
357 kfree(cb);
358 out:
359 bio_put(bio);
360 }
361
362 /*
363 * worker function to build and submit bios for previously compressed pages.
364 * The corresponding pages in the inode should be marked for writeback
365 * and the compressed pages should have a reference on them for dropping
366 * when the IO is complete.
367 *
368 * This also checksums the file bytes and gets things ready for
369 * the end io hooks.
370 */
btrfs_submit_compressed_write(struct btrfs_inode * inode,u64 start,unsigned long len,u64 disk_start,unsigned long compressed_len,struct page ** compressed_pages,unsigned long nr_pages,unsigned int write_flags,struct cgroup_subsys_state * blkcg_css)371 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
372 unsigned long len, u64 disk_start,
373 unsigned long compressed_len,
374 struct page **compressed_pages,
375 unsigned long nr_pages,
376 unsigned int write_flags,
377 struct cgroup_subsys_state *blkcg_css)
378 {
379 struct btrfs_fs_info *fs_info = inode->root->fs_info;
380 struct bio *bio = NULL;
381 struct compressed_bio *cb;
382 unsigned long bytes_left;
383 int pg_index = 0;
384 struct page *page;
385 u64 first_byte = disk_start;
386 blk_status_t ret;
387 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
388
389 WARN_ON(!PAGE_ALIGNED(start));
390 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
391 if (!cb)
392 return BLK_STS_RESOURCE;
393 refcount_set(&cb->pending_bios, 0);
394 cb->errors = 0;
395 cb->inode = &inode->vfs_inode;
396 cb->start = start;
397 cb->len = len;
398 cb->mirror_num = 0;
399 cb->compressed_pages = compressed_pages;
400 cb->compressed_len = compressed_len;
401 cb->orig_bio = NULL;
402 cb->nr_pages = nr_pages;
403
404 bio = btrfs_bio_alloc(first_byte);
405 bio->bi_opf = REQ_OP_WRITE | write_flags;
406 bio->bi_private = cb;
407 bio->bi_end_io = end_compressed_bio_write;
408
409 if (blkcg_css) {
410 bio->bi_opf |= REQ_CGROUP_PUNT;
411 kthread_associate_blkcg(blkcg_css);
412 }
413 refcount_set(&cb->pending_bios, 1);
414
415 /* create and submit bios for the compressed pages */
416 bytes_left = compressed_len;
417 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
418 int submit = 0;
419
420 page = compressed_pages[pg_index];
421 page->mapping = inode->vfs_inode.i_mapping;
422 if (bio->bi_iter.bi_size)
423 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
424 0);
425
426 page->mapping = NULL;
427 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
428 PAGE_SIZE) {
429 /*
430 * inc the count before we submit the bio so
431 * we know the end IO handler won't happen before
432 * we inc the count. Otherwise, the cb might get
433 * freed before we're done setting it up
434 */
435 refcount_inc(&cb->pending_bios);
436 ret = btrfs_bio_wq_end_io(fs_info, bio,
437 BTRFS_WQ_ENDIO_DATA);
438 BUG_ON(ret); /* -ENOMEM */
439
440 if (!skip_sum) {
441 ret = btrfs_csum_one_bio(inode, bio, start, 1);
442 BUG_ON(ret); /* -ENOMEM */
443 }
444
445 ret = btrfs_map_bio(fs_info, bio, 0);
446 if (ret) {
447 bio->bi_status = ret;
448 bio_endio(bio);
449 }
450
451 bio = btrfs_bio_alloc(first_byte);
452 bio->bi_opf = REQ_OP_WRITE | write_flags;
453 bio->bi_private = cb;
454 bio->bi_end_io = end_compressed_bio_write;
455 if (blkcg_css)
456 bio->bi_opf |= REQ_CGROUP_PUNT;
457 bio_add_page(bio, page, PAGE_SIZE, 0);
458 }
459 if (bytes_left < PAGE_SIZE) {
460 btrfs_info(fs_info,
461 "bytes left %lu compress len %lu nr %lu",
462 bytes_left, cb->compressed_len, cb->nr_pages);
463 }
464 bytes_left -= PAGE_SIZE;
465 first_byte += PAGE_SIZE;
466 cond_resched();
467 }
468
469 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
470 BUG_ON(ret); /* -ENOMEM */
471
472 if (!skip_sum) {
473 ret = btrfs_csum_one_bio(inode, bio, start, 1);
474 BUG_ON(ret); /* -ENOMEM */
475 }
476
477 ret = btrfs_map_bio(fs_info, bio, 0);
478 if (ret) {
479 bio->bi_status = ret;
480 bio_endio(bio);
481 }
482
483 if (blkcg_css)
484 kthread_associate_blkcg(NULL);
485
486 return 0;
487 }
488
bio_end_offset(struct bio * bio)489 static u64 bio_end_offset(struct bio *bio)
490 {
491 struct bio_vec *last = bio_last_bvec_all(bio);
492
493 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
494 }
495
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb)496 static noinline int add_ra_bio_pages(struct inode *inode,
497 u64 compressed_end,
498 struct compressed_bio *cb)
499 {
500 unsigned long end_index;
501 unsigned long pg_index;
502 u64 last_offset;
503 u64 isize = i_size_read(inode);
504 int ret;
505 struct page *page;
506 unsigned long nr_pages = 0;
507 struct extent_map *em;
508 struct address_space *mapping = inode->i_mapping;
509 struct extent_map_tree *em_tree;
510 struct extent_io_tree *tree;
511 u64 end;
512 int misses = 0;
513
514 last_offset = bio_end_offset(cb->orig_bio);
515 em_tree = &BTRFS_I(inode)->extent_tree;
516 tree = &BTRFS_I(inode)->io_tree;
517
518 if (isize == 0)
519 return 0;
520
521 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
522
523 while (last_offset < compressed_end) {
524 pg_index = last_offset >> PAGE_SHIFT;
525
526 if (pg_index > end_index)
527 break;
528
529 page = xa_load(&mapping->i_pages, pg_index);
530 if (page && !xa_is_value(page)) {
531 misses++;
532 if (misses > 4)
533 break;
534 goto next;
535 }
536
537 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
538 ~__GFP_FS));
539 if (!page)
540 break;
541
542 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
543 put_page(page);
544 goto next;
545 }
546
547 end = last_offset + PAGE_SIZE - 1;
548 /*
549 * at this point, we have a locked page in the page cache
550 * for these bytes in the file. But, we have to make
551 * sure they map to this compressed extent on disk.
552 */
553 set_page_extent_mapped(page);
554 lock_extent(tree, last_offset, end);
555 read_lock(&em_tree->lock);
556 em = lookup_extent_mapping(em_tree, last_offset,
557 PAGE_SIZE);
558 read_unlock(&em_tree->lock);
559
560 if (!em || last_offset < em->start ||
561 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
562 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
563 free_extent_map(em);
564 unlock_extent(tree, last_offset, end);
565 unlock_page(page);
566 put_page(page);
567 break;
568 }
569 free_extent_map(em);
570
571 if (page->index == end_index) {
572 char *userpage;
573 size_t zero_offset = offset_in_page(isize);
574
575 if (zero_offset) {
576 int zeros;
577 zeros = PAGE_SIZE - zero_offset;
578 userpage = kmap_atomic(page);
579 memset(userpage + zero_offset, 0, zeros);
580 flush_dcache_page(page);
581 kunmap_atomic(userpage);
582 }
583 }
584
585 ret = bio_add_page(cb->orig_bio, page,
586 PAGE_SIZE, 0);
587
588 if (ret == PAGE_SIZE) {
589 nr_pages++;
590 put_page(page);
591 } else {
592 unlock_extent(tree, last_offset, end);
593 unlock_page(page);
594 put_page(page);
595 break;
596 }
597 next:
598 last_offset += PAGE_SIZE;
599 }
600 return 0;
601 }
602
603 /*
604 * for a compressed read, the bio we get passed has all the inode pages
605 * in it. We don't actually do IO on those pages but allocate new ones
606 * to hold the compressed pages on disk.
607 *
608 * bio->bi_iter.bi_sector points to the compressed extent on disk
609 * bio->bi_io_vec points to all of the inode pages
610 *
611 * After the compressed pages are read, we copy the bytes into the
612 * bio we were passed and then call the bio end_io calls
613 */
btrfs_submit_compressed_read(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)614 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
615 int mirror_num, unsigned long bio_flags)
616 {
617 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
618 struct extent_map_tree *em_tree;
619 struct compressed_bio *cb;
620 unsigned long compressed_len;
621 unsigned long nr_pages;
622 unsigned long pg_index;
623 struct page *page;
624 struct bio *comp_bio;
625 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
626 u64 em_len;
627 u64 em_start;
628 struct extent_map *em;
629 blk_status_t ret = BLK_STS_RESOURCE;
630 int faili = 0;
631 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
632 u8 *sums;
633
634 em_tree = &BTRFS_I(inode)->extent_tree;
635
636 /* we need the actual starting offset of this extent in the file */
637 read_lock(&em_tree->lock);
638 em = lookup_extent_mapping(em_tree,
639 page_offset(bio_first_page_all(bio)),
640 PAGE_SIZE);
641 read_unlock(&em_tree->lock);
642 if (!em)
643 return BLK_STS_IOERR;
644
645 compressed_len = em->block_len;
646 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
647 if (!cb)
648 goto out;
649
650 refcount_set(&cb->pending_bios, 0);
651 cb->errors = 0;
652 cb->inode = inode;
653 cb->mirror_num = mirror_num;
654 sums = cb->sums;
655
656 cb->start = em->orig_start;
657 em_len = em->len;
658 em_start = em->start;
659
660 free_extent_map(em);
661 em = NULL;
662
663 cb->len = bio->bi_iter.bi_size;
664 cb->compressed_len = compressed_len;
665 cb->compress_type = extent_compress_type(bio_flags);
666 cb->orig_bio = bio;
667
668 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
669 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
670 GFP_NOFS);
671 if (!cb->compressed_pages)
672 goto fail1;
673
674 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
675 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
676 __GFP_HIGHMEM);
677 if (!cb->compressed_pages[pg_index]) {
678 faili = pg_index - 1;
679 ret = BLK_STS_RESOURCE;
680 goto fail2;
681 }
682 }
683 faili = nr_pages - 1;
684 cb->nr_pages = nr_pages;
685
686 add_ra_bio_pages(inode, em_start + em_len, cb);
687
688 /* include any pages we added in add_ra-bio_pages */
689 cb->len = bio->bi_iter.bi_size;
690
691 comp_bio = btrfs_bio_alloc(cur_disk_byte);
692 comp_bio->bi_opf = REQ_OP_READ;
693 comp_bio->bi_private = cb;
694 comp_bio->bi_end_io = end_compressed_bio_read;
695 refcount_set(&cb->pending_bios, 1);
696
697 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
698 int submit = 0;
699
700 page = cb->compressed_pages[pg_index];
701 page->mapping = inode->i_mapping;
702 page->index = em_start >> PAGE_SHIFT;
703
704 if (comp_bio->bi_iter.bi_size)
705 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
706 comp_bio, 0);
707
708 page->mapping = NULL;
709 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
710 PAGE_SIZE) {
711 unsigned int nr_sectors;
712
713 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
714 BTRFS_WQ_ENDIO_DATA);
715 BUG_ON(ret); /* -ENOMEM */
716
717 /*
718 * inc the count before we submit the bio so
719 * we know the end IO handler won't happen before
720 * we inc the count. Otherwise, the cb might get
721 * freed before we're done setting it up
722 */
723 refcount_inc(&cb->pending_bios);
724
725 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
726 ret = btrfs_lookup_bio_sums(inode, comp_bio,
727 (u64)-1, sums);
728 BUG_ON(ret); /* -ENOMEM */
729 }
730
731 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
732 fs_info->sectorsize);
733 sums += csum_size * nr_sectors;
734
735 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
736 if (ret) {
737 comp_bio->bi_status = ret;
738 bio_endio(comp_bio);
739 }
740
741 comp_bio = btrfs_bio_alloc(cur_disk_byte);
742 comp_bio->bi_opf = REQ_OP_READ;
743 comp_bio->bi_private = cb;
744 comp_bio->bi_end_io = end_compressed_bio_read;
745
746 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
747 }
748 cur_disk_byte += PAGE_SIZE;
749 }
750
751 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
752 BUG_ON(ret); /* -ENOMEM */
753
754 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
755 ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
756 BUG_ON(ret); /* -ENOMEM */
757 }
758
759 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
760 if (ret) {
761 comp_bio->bi_status = ret;
762 bio_endio(comp_bio);
763 }
764
765 return 0;
766
767 fail2:
768 while (faili >= 0) {
769 __free_page(cb->compressed_pages[faili]);
770 faili--;
771 }
772
773 kfree(cb->compressed_pages);
774 fail1:
775 kfree(cb);
776 out:
777 free_extent_map(em);
778 return ret;
779 }
780
781 /*
782 * Heuristic uses systematic sampling to collect data from the input data
783 * range, the logic can be tuned by the following constants:
784 *
785 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
786 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
787 */
788 #define SAMPLING_READ_SIZE (16)
789 #define SAMPLING_INTERVAL (256)
790
791 /*
792 * For statistical analysis of the input data we consider bytes that form a
793 * Galois Field of 256 objects. Each object has an attribute count, ie. how
794 * many times the object appeared in the sample.
795 */
796 #define BUCKET_SIZE (256)
797
798 /*
799 * The size of the sample is based on a statistical sampling rule of thumb.
800 * The common way is to perform sampling tests as long as the number of
801 * elements in each cell is at least 5.
802 *
803 * Instead of 5, we choose 32 to obtain more accurate results.
804 * If the data contain the maximum number of symbols, which is 256, we obtain a
805 * sample size bound by 8192.
806 *
807 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
808 * from up to 512 locations.
809 */
810 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
811 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
812
813 struct bucket_item {
814 u32 count;
815 };
816
817 struct heuristic_ws {
818 /* Partial copy of input data */
819 u8 *sample;
820 u32 sample_size;
821 /* Buckets store counters for each byte value */
822 struct bucket_item *bucket;
823 /* Sorting buffer */
824 struct bucket_item *bucket_b;
825 struct list_head list;
826 };
827
828 static struct workspace_manager heuristic_wsm;
829
free_heuristic_ws(struct list_head * ws)830 static void free_heuristic_ws(struct list_head *ws)
831 {
832 struct heuristic_ws *workspace;
833
834 workspace = list_entry(ws, struct heuristic_ws, list);
835
836 kvfree(workspace->sample);
837 kfree(workspace->bucket);
838 kfree(workspace->bucket_b);
839 kfree(workspace);
840 }
841
alloc_heuristic_ws(unsigned int level)842 static struct list_head *alloc_heuristic_ws(unsigned int level)
843 {
844 struct heuristic_ws *ws;
845
846 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
847 if (!ws)
848 return ERR_PTR(-ENOMEM);
849
850 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
851 if (!ws->sample)
852 goto fail;
853
854 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
855 if (!ws->bucket)
856 goto fail;
857
858 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
859 if (!ws->bucket_b)
860 goto fail;
861
862 INIT_LIST_HEAD(&ws->list);
863 return &ws->list;
864 fail:
865 free_heuristic_ws(&ws->list);
866 return ERR_PTR(-ENOMEM);
867 }
868
869 const struct btrfs_compress_op btrfs_heuristic_compress = {
870 .workspace_manager = &heuristic_wsm,
871 };
872
873 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
874 /* The heuristic is represented as compression type 0 */
875 &btrfs_heuristic_compress,
876 &btrfs_zlib_compress,
877 &btrfs_lzo_compress,
878 &btrfs_zstd_compress,
879 };
880
alloc_workspace(int type,unsigned int level)881 static struct list_head *alloc_workspace(int type, unsigned int level)
882 {
883 switch (type) {
884 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
885 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
886 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
887 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
888 default:
889 /*
890 * This can't happen, the type is validated several times
891 * before we get here.
892 */
893 BUG();
894 }
895 }
896
free_workspace(int type,struct list_head * ws)897 static void free_workspace(int type, struct list_head *ws)
898 {
899 switch (type) {
900 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
901 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
902 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
903 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
904 default:
905 /*
906 * This can't happen, the type is validated several times
907 * before we get here.
908 */
909 BUG();
910 }
911 }
912
btrfs_init_workspace_manager(int type)913 static void btrfs_init_workspace_manager(int type)
914 {
915 struct workspace_manager *wsm;
916 struct list_head *workspace;
917
918 wsm = btrfs_compress_op[type]->workspace_manager;
919 INIT_LIST_HEAD(&wsm->idle_ws);
920 spin_lock_init(&wsm->ws_lock);
921 atomic_set(&wsm->total_ws, 0);
922 init_waitqueue_head(&wsm->ws_wait);
923
924 /*
925 * Preallocate one workspace for each compression type so we can
926 * guarantee forward progress in the worst case
927 */
928 workspace = alloc_workspace(type, 0);
929 if (IS_ERR(workspace)) {
930 pr_warn(
931 "BTRFS: cannot preallocate compression workspace, will try later\n");
932 } else {
933 atomic_set(&wsm->total_ws, 1);
934 wsm->free_ws = 1;
935 list_add(workspace, &wsm->idle_ws);
936 }
937 }
938
btrfs_cleanup_workspace_manager(int type)939 static void btrfs_cleanup_workspace_manager(int type)
940 {
941 struct workspace_manager *wsman;
942 struct list_head *ws;
943
944 wsman = btrfs_compress_op[type]->workspace_manager;
945 while (!list_empty(&wsman->idle_ws)) {
946 ws = wsman->idle_ws.next;
947 list_del(ws);
948 free_workspace(type, ws);
949 atomic_dec(&wsman->total_ws);
950 }
951 }
952
953 /*
954 * This finds an available workspace or allocates a new one.
955 * If it's not possible to allocate a new one, waits until there's one.
956 * Preallocation makes a forward progress guarantees and we do not return
957 * errors.
958 */
btrfs_get_workspace(int type,unsigned int level)959 struct list_head *btrfs_get_workspace(int type, unsigned int level)
960 {
961 struct workspace_manager *wsm;
962 struct list_head *workspace;
963 int cpus = num_online_cpus();
964 unsigned nofs_flag;
965 struct list_head *idle_ws;
966 spinlock_t *ws_lock;
967 atomic_t *total_ws;
968 wait_queue_head_t *ws_wait;
969 int *free_ws;
970
971 wsm = btrfs_compress_op[type]->workspace_manager;
972 idle_ws = &wsm->idle_ws;
973 ws_lock = &wsm->ws_lock;
974 total_ws = &wsm->total_ws;
975 ws_wait = &wsm->ws_wait;
976 free_ws = &wsm->free_ws;
977
978 again:
979 spin_lock(ws_lock);
980 if (!list_empty(idle_ws)) {
981 workspace = idle_ws->next;
982 list_del(workspace);
983 (*free_ws)--;
984 spin_unlock(ws_lock);
985 return workspace;
986
987 }
988 if (atomic_read(total_ws) > cpus) {
989 DEFINE_WAIT(wait);
990
991 spin_unlock(ws_lock);
992 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
993 if (atomic_read(total_ws) > cpus && !*free_ws)
994 schedule();
995 finish_wait(ws_wait, &wait);
996 goto again;
997 }
998 atomic_inc(total_ws);
999 spin_unlock(ws_lock);
1000
1001 /*
1002 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1003 * to turn it off here because we might get called from the restricted
1004 * context of btrfs_compress_bio/btrfs_compress_pages
1005 */
1006 nofs_flag = memalloc_nofs_save();
1007 workspace = alloc_workspace(type, level);
1008 memalloc_nofs_restore(nofs_flag);
1009
1010 if (IS_ERR(workspace)) {
1011 atomic_dec(total_ws);
1012 wake_up(ws_wait);
1013
1014 /*
1015 * Do not return the error but go back to waiting. There's a
1016 * workspace preallocated for each type and the compression
1017 * time is bounded so we get to a workspace eventually. This
1018 * makes our caller's life easier.
1019 *
1020 * To prevent silent and low-probability deadlocks (when the
1021 * initial preallocation fails), check if there are any
1022 * workspaces at all.
1023 */
1024 if (atomic_read(total_ws) == 0) {
1025 static DEFINE_RATELIMIT_STATE(_rs,
1026 /* once per minute */ 60 * HZ,
1027 /* no burst */ 1);
1028
1029 if (__ratelimit(&_rs)) {
1030 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1031 }
1032 }
1033 goto again;
1034 }
1035 return workspace;
1036 }
1037
get_workspace(int type,int level)1038 static struct list_head *get_workspace(int type, int level)
1039 {
1040 switch (type) {
1041 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1042 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1043 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1044 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1045 default:
1046 /*
1047 * This can't happen, the type is validated several times
1048 * before we get here.
1049 */
1050 BUG();
1051 }
1052 }
1053
1054 /*
1055 * put a workspace struct back on the list or free it if we have enough
1056 * idle ones sitting around
1057 */
btrfs_put_workspace(int type,struct list_head * ws)1058 void btrfs_put_workspace(int type, struct list_head *ws)
1059 {
1060 struct workspace_manager *wsm;
1061 struct list_head *idle_ws;
1062 spinlock_t *ws_lock;
1063 atomic_t *total_ws;
1064 wait_queue_head_t *ws_wait;
1065 int *free_ws;
1066
1067 wsm = btrfs_compress_op[type]->workspace_manager;
1068 idle_ws = &wsm->idle_ws;
1069 ws_lock = &wsm->ws_lock;
1070 total_ws = &wsm->total_ws;
1071 ws_wait = &wsm->ws_wait;
1072 free_ws = &wsm->free_ws;
1073
1074 spin_lock(ws_lock);
1075 if (*free_ws <= num_online_cpus()) {
1076 list_add(ws, idle_ws);
1077 (*free_ws)++;
1078 spin_unlock(ws_lock);
1079 goto wake;
1080 }
1081 spin_unlock(ws_lock);
1082
1083 free_workspace(type, ws);
1084 atomic_dec(total_ws);
1085 wake:
1086 cond_wake_up(ws_wait);
1087 }
1088
put_workspace(int type,struct list_head * ws)1089 static void put_workspace(int type, struct list_head *ws)
1090 {
1091 switch (type) {
1092 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1093 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1094 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1095 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1096 default:
1097 /*
1098 * This can't happen, the type is validated several times
1099 * before we get here.
1100 */
1101 BUG();
1102 }
1103 }
1104
1105 /*
1106 * Adjust @level according to the limits of the compression algorithm or
1107 * fallback to default
1108 */
btrfs_compress_set_level(int type,unsigned level)1109 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1110 {
1111 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1112
1113 if (level == 0)
1114 level = ops->default_level;
1115 else
1116 level = min(level, ops->max_level);
1117
1118 return level;
1119 }
1120
1121 /*
1122 * Given an address space and start and length, compress the bytes into @pages
1123 * that are allocated on demand.
1124 *
1125 * @type_level is encoded algorithm and level, where level 0 means whatever
1126 * default the algorithm chooses and is opaque here;
1127 * - compression algo are 0-3
1128 * - the level are bits 4-7
1129 *
1130 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1131 * and returns number of actually allocated pages
1132 *
1133 * @total_in is used to return the number of bytes actually read. It
1134 * may be smaller than the input length if we had to exit early because we
1135 * ran out of room in the pages array or because we cross the
1136 * max_out threshold.
1137 *
1138 * @total_out is an in/out parameter, must be set to the input length and will
1139 * be also used to return the total number of compressed bytes
1140 *
1141 * @max_out tells us the max number of bytes that we're allowed to
1142 * stuff into pages
1143 */
btrfs_compress_pages(unsigned int type_level,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)1144 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1145 u64 start, struct page **pages,
1146 unsigned long *out_pages,
1147 unsigned long *total_in,
1148 unsigned long *total_out)
1149 {
1150 int type = btrfs_compress_type(type_level);
1151 int level = btrfs_compress_level(type_level);
1152 struct list_head *workspace;
1153 int ret;
1154
1155 level = btrfs_compress_set_level(type, level);
1156 workspace = get_workspace(type, level);
1157 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1158 out_pages, total_in, total_out);
1159 put_workspace(type, workspace);
1160 return ret;
1161 }
1162
1163 /*
1164 * pages_in is an array of pages with compressed data.
1165 *
1166 * disk_start is the starting logical offset of this array in the file
1167 *
1168 * orig_bio contains the pages from the file that we want to decompress into
1169 *
1170 * srclen is the number of bytes in pages_in
1171 *
1172 * The basic idea is that we have a bio that was created by readpages.
1173 * The pages in the bio are for the uncompressed data, and they may not
1174 * be contiguous. They all correspond to the range of bytes covered by
1175 * the compressed extent.
1176 */
btrfs_decompress_bio(struct compressed_bio * cb)1177 static int btrfs_decompress_bio(struct compressed_bio *cb)
1178 {
1179 struct list_head *workspace;
1180 int ret;
1181 int type = cb->compress_type;
1182
1183 workspace = get_workspace(type, 0);
1184 ret = compression_decompress_bio(type, workspace, cb);
1185 put_workspace(type, workspace);
1186
1187 return ret;
1188 }
1189
1190 /*
1191 * a less complex decompression routine. Our compressed data fits in a
1192 * single page, and we want to read a single page out of it.
1193 * start_byte tells us the offset into the compressed data we're interested in
1194 */
btrfs_decompress(int type,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)1195 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1196 unsigned long start_byte, size_t srclen, size_t destlen)
1197 {
1198 struct list_head *workspace;
1199 int ret;
1200
1201 workspace = get_workspace(type, 0);
1202 ret = compression_decompress(type, workspace, data_in, dest_page,
1203 start_byte, srclen, destlen);
1204 put_workspace(type, workspace);
1205
1206 return ret;
1207 }
1208
btrfs_init_compress(void)1209 void __init btrfs_init_compress(void)
1210 {
1211 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1212 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1213 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1214 zstd_init_workspace_manager();
1215 }
1216
btrfs_exit_compress(void)1217 void __cold btrfs_exit_compress(void)
1218 {
1219 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1220 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1221 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1222 zstd_cleanup_workspace_manager();
1223 }
1224
1225 /*
1226 * Copy uncompressed data from working buffer to pages.
1227 *
1228 * buf_start is the byte offset we're of the start of our workspace buffer.
1229 *
1230 * total_out is the last byte of the buffer
1231 */
btrfs_decompress_buf2page(const char * buf,unsigned long buf_start,unsigned long total_out,u64 disk_start,struct bio * bio)1232 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1233 unsigned long total_out, u64 disk_start,
1234 struct bio *bio)
1235 {
1236 unsigned long buf_offset;
1237 unsigned long current_buf_start;
1238 unsigned long start_byte;
1239 unsigned long prev_start_byte;
1240 unsigned long working_bytes = total_out - buf_start;
1241 unsigned long bytes;
1242 char *kaddr;
1243 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1244
1245 /*
1246 * start byte is the first byte of the page we're currently
1247 * copying into relative to the start of the compressed data.
1248 */
1249 start_byte = page_offset(bvec.bv_page) - disk_start;
1250
1251 /* we haven't yet hit data corresponding to this page */
1252 if (total_out <= start_byte)
1253 return 1;
1254
1255 /*
1256 * the start of the data we care about is offset into
1257 * the middle of our working buffer
1258 */
1259 if (total_out > start_byte && buf_start < start_byte) {
1260 buf_offset = start_byte - buf_start;
1261 working_bytes -= buf_offset;
1262 } else {
1263 buf_offset = 0;
1264 }
1265 current_buf_start = buf_start;
1266
1267 /* copy bytes from the working buffer into the pages */
1268 while (working_bytes > 0) {
1269 bytes = min_t(unsigned long, bvec.bv_len,
1270 PAGE_SIZE - (buf_offset % PAGE_SIZE));
1271 bytes = min(bytes, working_bytes);
1272
1273 kaddr = kmap_atomic(bvec.bv_page);
1274 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1275 kunmap_atomic(kaddr);
1276 flush_dcache_page(bvec.bv_page);
1277
1278 buf_offset += bytes;
1279 working_bytes -= bytes;
1280 current_buf_start += bytes;
1281
1282 /* check if we need to pick another page */
1283 bio_advance(bio, bytes);
1284 if (!bio->bi_iter.bi_size)
1285 return 0;
1286 bvec = bio_iter_iovec(bio, bio->bi_iter);
1287 prev_start_byte = start_byte;
1288 start_byte = page_offset(bvec.bv_page) - disk_start;
1289
1290 /*
1291 * We need to make sure we're only adjusting
1292 * our offset into compression working buffer when
1293 * we're switching pages. Otherwise we can incorrectly
1294 * keep copying when we were actually done.
1295 */
1296 if (start_byte != prev_start_byte) {
1297 /*
1298 * make sure our new page is covered by this
1299 * working buffer
1300 */
1301 if (total_out <= start_byte)
1302 return 1;
1303
1304 /*
1305 * the next page in the biovec might not be adjacent
1306 * to the last page, but it might still be found
1307 * inside this working buffer. bump our offset pointer
1308 */
1309 if (total_out > start_byte &&
1310 current_buf_start < start_byte) {
1311 buf_offset = start_byte - buf_start;
1312 working_bytes = total_out - start_byte;
1313 current_buf_start = buf_start + buf_offset;
1314 }
1315 }
1316 }
1317
1318 return 1;
1319 }
1320
1321 /*
1322 * Shannon Entropy calculation
1323 *
1324 * Pure byte distribution analysis fails to determine compressibility of data.
1325 * Try calculating entropy to estimate the average minimum number of bits
1326 * needed to encode the sampled data.
1327 *
1328 * For convenience, return the percentage of needed bits, instead of amount of
1329 * bits directly.
1330 *
1331 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1332 * and can be compressible with high probability
1333 *
1334 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1335 *
1336 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1337 */
1338 #define ENTROPY_LVL_ACEPTABLE (65)
1339 #define ENTROPY_LVL_HIGH (80)
1340
1341 /*
1342 * For increasead precision in shannon_entropy calculation,
1343 * let's do pow(n, M) to save more digits after comma:
1344 *
1345 * - maximum int bit length is 64
1346 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1347 * - 13 * 4 = 52 < 64 -> M = 4
1348 *
1349 * So use pow(n, 4).
1350 */
ilog2_w(u64 n)1351 static inline u32 ilog2_w(u64 n)
1352 {
1353 return ilog2(n * n * n * n);
1354 }
1355
shannon_entropy(struct heuristic_ws * ws)1356 static u32 shannon_entropy(struct heuristic_ws *ws)
1357 {
1358 const u32 entropy_max = 8 * ilog2_w(2);
1359 u32 entropy_sum = 0;
1360 u32 p, p_base, sz_base;
1361 u32 i;
1362
1363 sz_base = ilog2_w(ws->sample_size);
1364 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1365 p = ws->bucket[i].count;
1366 p_base = ilog2_w(p);
1367 entropy_sum += p * (sz_base - p_base);
1368 }
1369
1370 entropy_sum /= ws->sample_size;
1371 return entropy_sum * 100 / entropy_max;
1372 }
1373
1374 #define RADIX_BASE 4U
1375 #define COUNTERS_SIZE (1U << RADIX_BASE)
1376
get4bits(u64 num,int shift)1377 static u8 get4bits(u64 num, int shift) {
1378 u8 low4bits;
1379
1380 num >>= shift;
1381 /* Reverse order */
1382 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1383 return low4bits;
1384 }
1385
1386 /*
1387 * Use 4 bits as radix base
1388 * Use 16 u32 counters for calculating new position in buf array
1389 *
1390 * @array - array that will be sorted
1391 * @array_buf - buffer array to store sorting results
1392 * must be equal in size to @array
1393 * @num - array size
1394 */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1395 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1396 int num)
1397 {
1398 u64 max_num;
1399 u64 buf_num;
1400 u32 counters[COUNTERS_SIZE];
1401 u32 new_addr;
1402 u32 addr;
1403 int bitlen;
1404 int shift;
1405 int i;
1406
1407 /*
1408 * Try avoid useless loop iterations for small numbers stored in big
1409 * counters. Example: 48 33 4 ... in 64bit array
1410 */
1411 max_num = array[0].count;
1412 for (i = 1; i < num; i++) {
1413 buf_num = array[i].count;
1414 if (buf_num > max_num)
1415 max_num = buf_num;
1416 }
1417
1418 buf_num = ilog2(max_num);
1419 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1420
1421 shift = 0;
1422 while (shift < bitlen) {
1423 memset(counters, 0, sizeof(counters));
1424
1425 for (i = 0; i < num; i++) {
1426 buf_num = array[i].count;
1427 addr = get4bits(buf_num, shift);
1428 counters[addr]++;
1429 }
1430
1431 for (i = 1; i < COUNTERS_SIZE; i++)
1432 counters[i] += counters[i - 1];
1433
1434 for (i = num - 1; i >= 0; i--) {
1435 buf_num = array[i].count;
1436 addr = get4bits(buf_num, shift);
1437 counters[addr]--;
1438 new_addr = counters[addr];
1439 array_buf[new_addr] = array[i];
1440 }
1441
1442 shift += RADIX_BASE;
1443
1444 /*
1445 * Normal radix expects to move data from a temporary array, to
1446 * the main one. But that requires some CPU time. Avoid that
1447 * by doing another sort iteration to original array instead of
1448 * memcpy()
1449 */
1450 memset(counters, 0, sizeof(counters));
1451
1452 for (i = 0; i < num; i ++) {
1453 buf_num = array_buf[i].count;
1454 addr = get4bits(buf_num, shift);
1455 counters[addr]++;
1456 }
1457
1458 for (i = 1; i < COUNTERS_SIZE; i++)
1459 counters[i] += counters[i - 1];
1460
1461 for (i = num - 1; i >= 0; i--) {
1462 buf_num = array_buf[i].count;
1463 addr = get4bits(buf_num, shift);
1464 counters[addr]--;
1465 new_addr = counters[addr];
1466 array[new_addr] = array_buf[i];
1467 }
1468
1469 shift += RADIX_BASE;
1470 }
1471 }
1472
1473 /*
1474 * Size of the core byte set - how many bytes cover 90% of the sample
1475 *
1476 * There are several types of structured binary data that use nearly all byte
1477 * values. The distribution can be uniform and counts in all buckets will be
1478 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1479 *
1480 * Other possibility is normal (Gaussian) distribution, where the data could
1481 * be potentially compressible, but we have to take a few more steps to decide
1482 * how much.
1483 *
1484 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1485 * compression algo can easy fix that
1486 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1487 * probability is not compressible
1488 */
1489 #define BYTE_CORE_SET_LOW (64)
1490 #define BYTE_CORE_SET_HIGH (200)
1491
byte_core_set_size(struct heuristic_ws * ws)1492 static int byte_core_set_size(struct heuristic_ws *ws)
1493 {
1494 u32 i;
1495 u32 coreset_sum = 0;
1496 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1497 struct bucket_item *bucket = ws->bucket;
1498
1499 /* Sort in reverse order */
1500 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1501
1502 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1503 coreset_sum += bucket[i].count;
1504
1505 if (coreset_sum > core_set_threshold)
1506 return i;
1507
1508 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1509 coreset_sum += bucket[i].count;
1510 if (coreset_sum > core_set_threshold)
1511 break;
1512 }
1513
1514 return i;
1515 }
1516
1517 /*
1518 * Count byte values in buckets.
1519 * This heuristic can detect textual data (configs, xml, json, html, etc).
1520 * Because in most text-like data byte set is restricted to limited number of
1521 * possible characters, and that restriction in most cases makes data easy to
1522 * compress.
1523 *
1524 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1525 * less - compressible
1526 * more - need additional analysis
1527 */
1528 #define BYTE_SET_THRESHOLD (64)
1529
byte_set_size(const struct heuristic_ws * ws)1530 static u32 byte_set_size(const struct heuristic_ws *ws)
1531 {
1532 u32 i;
1533 u32 byte_set_size = 0;
1534
1535 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1536 if (ws->bucket[i].count > 0)
1537 byte_set_size++;
1538 }
1539
1540 /*
1541 * Continue collecting count of byte values in buckets. If the byte
1542 * set size is bigger then the threshold, it's pointless to continue,
1543 * the detection technique would fail for this type of data.
1544 */
1545 for (; i < BUCKET_SIZE; i++) {
1546 if (ws->bucket[i].count > 0) {
1547 byte_set_size++;
1548 if (byte_set_size > BYTE_SET_THRESHOLD)
1549 return byte_set_size;
1550 }
1551 }
1552
1553 return byte_set_size;
1554 }
1555
sample_repeated_patterns(struct heuristic_ws * ws)1556 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1557 {
1558 const u32 half_of_sample = ws->sample_size / 2;
1559 const u8 *data = ws->sample;
1560
1561 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1562 }
1563
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1564 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1565 struct heuristic_ws *ws)
1566 {
1567 struct page *page;
1568 u64 index, index_end;
1569 u32 i, curr_sample_pos;
1570 u8 *in_data;
1571
1572 /*
1573 * Compression handles the input data by chunks of 128KiB
1574 * (defined by BTRFS_MAX_UNCOMPRESSED)
1575 *
1576 * We do the same for the heuristic and loop over the whole range.
1577 *
1578 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1579 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1580 */
1581 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1582 end = start + BTRFS_MAX_UNCOMPRESSED;
1583
1584 index = start >> PAGE_SHIFT;
1585 index_end = end >> PAGE_SHIFT;
1586
1587 /* Don't miss unaligned end */
1588 if (!IS_ALIGNED(end, PAGE_SIZE))
1589 index_end++;
1590
1591 curr_sample_pos = 0;
1592 while (index < index_end) {
1593 page = find_get_page(inode->i_mapping, index);
1594 in_data = kmap(page);
1595 /* Handle case where the start is not aligned to PAGE_SIZE */
1596 i = start % PAGE_SIZE;
1597 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1598 /* Don't sample any garbage from the last page */
1599 if (start > end - SAMPLING_READ_SIZE)
1600 break;
1601 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1602 SAMPLING_READ_SIZE);
1603 i += SAMPLING_INTERVAL;
1604 start += SAMPLING_INTERVAL;
1605 curr_sample_pos += SAMPLING_READ_SIZE;
1606 }
1607 kunmap(page);
1608 put_page(page);
1609
1610 index++;
1611 }
1612
1613 ws->sample_size = curr_sample_pos;
1614 }
1615
1616 /*
1617 * Compression heuristic.
1618 *
1619 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1620 * quickly (compared to direct compression) detect data characteristics
1621 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1622 * data.
1623 *
1624 * The following types of analysis can be performed:
1625 * - detect mostly zero data
1626 * - detect data with low "byte set" size (text, etc)
1627 * - detect data with low/high "core byte" set
1628 *
1629 * Return non-zero if the compression should be done, 0 otherwise.
1630 */
btrfs_compress_heuristic(struct inode * inode,u64 start,u64 end)1631 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1632 {
1633 struct list_head *ws_list = get_workspace(0, 0);
1634 struct heuristic_ws *ws;
1635 u32 i;
1636 u8 byte;
1637 int ret = 0;
1638
1639 ws = list_entry(ws_list, struct heuristic_ws, list);
1640
1641 heuristic_collect_sample(inode, start, end, ws);
1642
1643 if (sample_repeated_patterns(ws)) {
1644 ret = 1;
1645 goto out;
1646 }
1647
1648 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1649
1650 for (i = 0; i < ws->sample_size; i++) {
1651 byte = ws->sample[i];
1652 ws->bucket[byte].count++;
1653 }
1654
1655 i = byte_set_size(ws);
1656 if (i < BYTE_SET_THRESHOLD) {
1657 ret = 2;
1658 goto out;
1659 }
1660
1661 i = byte_core_set_size(ws);
1662 if (i <= BYTE_CORE_SET_LOW) {
1663 ret = 3;
1664 goto out;
1665 }
1666
1667 if (i >= BYTE_CORE_SET_HIGH) {
1668 ret = 0;
1669 goto out;
1670 }
1671
1672 i = shannon_entropy(ws);
1673 if (i <= ENTROPY_LVL_ACEPTABLE) {
1674 ret = 4;
1675 goto out;
1676 }
1677
1678 /*
1679 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1680 * needed to give green light to compression.
1681 *
1682 * For now just assume that compression at that level is not worth the
1683 * resources because:
1684 *
1685 * 1. it is possible to defrag the data later
1686 *
1687 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1688 * values, every bucket has counter at level ~54. The heuristic would
1689 * be confused. This can happen when data have some internal repeated
1690 * patterns like "abbacbbc...". This can be detected by analyzing
1691 * pairs of bytes, which is too costly.
1692 */
1693 if (i < ENTROPY_LVL_HIGH) {
1694 ret = 5;
1695 goto out;
1696 } else {
1697 ret = 0;
1698 goto out;
1699 }
1700
1701 out:
1702 put_workspace(0, ws_list);
1703 return ret;
1704 }
1705
1706 /*
1707 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1708 * level, unrecognized string will set the default level
1709 */
btrfs_compress_str2level(unsigned int type,const char * str)1710 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1711 {
1712 unsigned int level = 0;
1713 int ret;
1714
1715 if (!type)
1716 return 0;
1717
1718 if (str[0] == ':') {
1719 ret = kstrtouint(str + 1, 10, &level);
1720 if (ret)
1721 level = 0;
1722 }
1723
1724 level = btrfs_compress_set_level(type, level);
1725
1726 return level;
1727 }
1728