1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct btrfs_end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 blk_status_t status;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
btrfs_end_io_wq_init(void)83 int __init btrfs_end_io_wq_init(void)
84 {
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
88 SLAB_MEM_SPREAD,
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93 }
94
btrfs_end_io_wq_exit(void)95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
111 struct async_submit_bio {
112 void *private_data;
113 struct bio *bio;
114 extent_submit_bio_start_t *submit_bio_start;
115 int mirror_num;
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
121 struct btrfs_work work;
122 blk_status_t status;
123 };
124
125 /*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
135 *
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
139 *
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
143 *
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
147 */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 # error
151 # endif
152
153 static struct btrfs_lockdep_keyset {
154 u64 id; /* root objectid */
155 const char *name_stem; /* lock name stem */
156 char names[BTRFS_MAX_LEVEL + 1][20];
157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171 { .id = 0, .name_stem = "tree" },
172 };
173
btrfs_init_lockdep(void)174 void __init btrfs_init_lockdep(void)
175 {
176 int i, j;
177
178 /* initialize lockdep class names */
179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 snprintf(ks->names[j], sizeof(ks->names[j]),
184 "btrfs-%s-%02d", ks->name_stem, j);
185 }
186 }
187
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190 {
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207 * Compute the csum of a btree block and store the result to provided buffer.
208 */
csum_tree_block(struct extent_buffer * buf,u8 * result)209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211 struct btrfs_fs_info *fs_info = buf->fs_info;
212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214 char *kaddr;
215 int i;
216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
219 kaddr = page_address(buf->pages[0]);
220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 PAGE_SIZE - BTRFS_CSUM_SIZE);
222
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226 }
227 memset(result, 0, BTRFS_CSUM_SIZE);
228 crypto_shash_final(shash, result);
229 }
230
231 /*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
240 {
241 struct extent_state *cached_state = NULL;
242 int ret;
243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
248 if (atomic)
249 return -EAGAIN;
250
251 if (need_lock) {
252 btrfs_tree_read_lock(eb);
253 btrfs_set_lock_blocking_read(eb);
254 }
255
256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257 &cached_state);
258 if (extent_buffer_uptodate(eb) &&
259 btrfs_header_generation(eb) == parent_transid) {
260 ret = 0;
261 goto out;
262 }
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
265 eb->start,
266 parent_transid, btrfs_header_generation(eb));
267 ret = 1;
268
269 /*
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
272 * block that has been freed and re-allocated. So don't clear uptodate
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
276 */
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
279 out:
280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281 &cached_state);
282 if (need_lock)
283 btrfs_tree_read_unlock_blocking(eb);
284 return ret;
285 }
286
btrfs_supported_super_csum(u16 csum_type)287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289 switch (csum_type) {
290 case BTRFS_CSUM_TYPE_CRC32:
291 case BTRFS_CSUM_TYPE_XXHASH:
292 case BTRFS_CSUM_TYPE_SHA256:
293 case BTRFS_CSUM_TYPE_BLAKE2:
294 return true;
295 default:
296 return false;
297 }
298 }
299
300 /*
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
303 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 char *raw_disk_sb)
306 {
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
309 char result[BTRFS_CSUM_SIZE];
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312 shash->tfm = fs_info->csum_shash;
313
314 /*
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
318 */
319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321
322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323 return 1;
324
325 return 0;
326 }
327
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329 struct btrfs_key *first_key, u64 parent_transid)
330 {
331 struct btrfs_fs_info *fs_info = eb->fs_info;
332 int found_level;
333 struct btrfs_key found_key;
334 int ret;
335
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
340 btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
343 return -EIO;
344 }
345
346 if (!first_key)
347 return 0;
348
349 /*
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
354 */
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 return 0;
357
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
360 btrfs_err(fs_info,
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 eb->start);
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 return -EUCLEAN;
365 }
366
367 if (found_level)
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
369 else
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
373 if (ret) {
374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
376 btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
381 found_key.offset);
382 }
383 return ret;
384 }
385
386 /*
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
389 *
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
393 */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
397 {
398 struct btrfs_fs_info *fs_info = eb->fs_info;
399 struct extent_io_tree *io_tree;
400 int failed = 0;
401 int ret;
402 int num_copies = 0;
403 int mirror_num = 0;
404 int failed_mirror = 0;
405
406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407 while (1) {
408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410 if (!ret) {
411 if (verify_parent_transid(io_tree, eb,
412 parent_transid, 0))
413 ret = -EIO;
414 else if (btrfs_verify_level_key(eb, level,
415 first_key, parent_transid))
416 ret = -EUCLEAN;
417 else
418 break;
419 }
420
421 num_copies = btrfs_num_copies(fs_info,
422 eb->start, eb->len);
423 if (num_copies == 1)
424 break;
425
426 if (!failed_mirror) {
427 failed = 1;
428 failed_mirror = eb->read_mirror;
429 }
430
431 mirror_num++;
432 if (mirror_num == failed_mirror)
433 mirror_num++;
434
435 if (mirror_num > num_copies)
436 break;
437 }
438
439 if (failed && !ret && failed_mirror)
440 btrfs_repair_eb_io_failure(eb, failed_mirror);
441
442 return ret;
443 }
444
445 /*
446 * checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
448 */
449
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451 {
452 u64 start = page_offset(page);
453 u64 found_start;
454 u8 result[BTRFS_CSUM_SIZE];
455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456 struct extent_buffer *eb;
457 int ret;
458
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
461 return 0;
462
463 found_start = btrfs_header_bytenr(eb);
464 /*
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
467 */
468 if (WARN_ON(found_start != start))
469 return -EUCLEAN;
470 if (WARN_ON(!PageUptodate(page)))
471 return -EUCLEAN;
472
473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
476
477 csum_tree_block(eb, result);
478
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
481 else
482 ret = btrfs_check_leaf_full(eb);
483
484 if (ret < 0) {
485 btrfs_print_tree(eb, 0);
486 btrfs_err(fs_info,
487 "block=%llu write time tree block corruption detected",
488 eb->start);
489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490 return ret;
491 }
492 write_extent_buffer(eb, result, 0, csum_size);
493
494 return 0;
495 }
496
check_tree_block_fsid(struct extent_buffer * eb)497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499 struct btrfs_fs_info *fs_info = eb->fs_info;
500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501 u8 fsid[BTRFS_FSID_SIZE];
502 u8 *metadata_uuid;
503
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 BTRFS_FSID_SIZE);
506 /*
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
510 */
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
513 else
514 metadata_uuid = fs_devices->fsid;
515
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 return 0;
518
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 return 0;
522
523 return 1;
524 }
525
btrfs_validate_metadata_buffer(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 struct page *page, u64 start, u64 end,
528 int mirror)
529 {
530 u64 found_start;
531 int found_level;
532 struct extent_buffer *eb;
533 struct btrfs_fs_info *fs_info;
534 u16 csum_size;
535 int ret = 0;
536 u8 result[BTRFS_CSUM_SIZE];
537 int reads_done;
538
539 if (!page->private)
540 goto out;
541
542 eb = (struct extent_buffer *)page->private;
543 fs_info = eb->fs_info;
544 csum_size = btrfs_super_csum_size(fs_info->super_copy);
545
546 /* the pending IO might have been the only thing that kept this buffer
547 * in memory. Make sure we have a ref for all this other checks
548 */
549 atomic_inc(&eb->refs);
550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
552 if (!reads_done)
553 goto err;
554
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 ret = -EIO;
558 goto err;
559 }
560
561 found_start = btrfs_header_bytenr(eb);
562 if (found_start != eb->start) {
563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 eb->start, found_start);
565 ret = -EIO;
566 goto err;
567 }
568 if (check_tree_block_fsid(eb)) {
569 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570 eb->start);
571 ret = -EIO;
572 goto err;
573 }
574 found_level = btrfs_header_level(eb);
575 if (found_level >= BTRFS_MAX_LEVEL) {
576 btrfs_err(fs_info, "bad tree block level %d on %llu",
577 (int)btrfs_header_level(eb), eb->start);
578 ret = -EIO;
579 goto err;
580 }
581
582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583 eb, found_level);
584
585 csum_tree_block(eb, result);
586
587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588 u8 val[BTRFS_CSUM_SIZE] = { 0 };
589
590 read_extent_buffer(eb, &val, 0, csum_size);
591 btrfs_warn_rl(fs_info,
592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593 fs_info->sb->s_id, eb->start,
594 CSUM_FMT_VALUE(csum_size, val),
595 CSUM_FMT_VALUE(csum_size, result),
596 btrfs_header_level(eb));
597 ret = -EUCLEAN;
598 goto err;
599 }
600
601 /*
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
604 * return -EIO.
605 */
606 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 ret = -EIO;
609 }
610
611 if (found_level > 0 && btrfs_check_node(eb))
612 ret = -EIO;
613
614 if (!ret)
615 set_extent_buffer_uptodate(eb);
616 else
617 btrfs_err(fs_info,
618 "block=%llu read time tree block corruption detected",
619 eb->start);
620 err:
621 if (reads_done &&
622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623 btree_readahead_hook(eb, ret);
624
625 if (ret) {
626 /*
627 * our io error hook is going to dec the io pages
628 * again, we have to make sure it has something
629 * to decrement
630 */
631 atomic_inc(&eb->io_pages);
632 clear_extent_buffer_uptodate(eb);
633 }
634 free_extent_buffer(eb);
635 out:
636 return ret;
637 }
638
end_workqueue_bio(struct bio * bio)639 static void end_workqueue_bio(struct bio *bio)
640 {
641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642 struct btrfs_fs_info *fs_info;
643 struct btrfs_workqueue *wq;
644
645 fs_info = end_io_wq->info;
646 end_io_wq->status = bio->bi_status;
647
648 if (bio_op(bio) == REQ_OP_WRITE) {
649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650 wq = fs_info->endio_meta_write_workers;
651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652 wq = fs_info->endio_freespace_worker;
653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654 wq = fs_info->endio_raid56_workers;
655 else
656 wq = fs_info->endio_write_workers;
657 } else {
658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659 wq = fs_info->endio_raid56_workers;
660 else if (end_io_wq->metadata)
661 wq = fs_info->endio_meta_workers;
662 else
663 wq = fs_info->endio_workers;
664 }
665
666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667 btrfs_queue_work(wq, &end_io_wq->work);
668 }
669
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671 enum btrfs_wq_endio_type metadata)
672 {
673 struct btrfs_end_io_wq *end_io_wq;
674
675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676 if (!end_io_wq)
677 return BLK_STS_RESOURCE;
678
679 end_io_wq->private = bio->bi_private;
680 end_io_wq->end_io = bio->bi_end_io;
681 end_io_wq->info = info;
682 end_io_wq->status = 0;
683 end_io_wq->bio = bio;
684 end_io_wq->metadata = metadata;
685
686 bio->bi_private = end_io_wq;
687 bio->bi_end_io = end_workqueue_bio;
688 return 0;
689 }
690
run_one_async_start(struct btrfs_work * work)691 static void run_one_async_start(struct btrfs_work *work)
692 {
693 struct async_submit_bio *async;
694 blk_status_t ret;
695
696 async = container_of(work, struct async_submit_bio, work);
697 ret = async->submit_bio_start(async->private_data, async->bio,
698 async->bio_offset);
699 if (ret)
700 async->status = ret;
701 }
702
703 /*
704 * In order to insert checksums into the metadata in large chunks, we wait
705 * until bio submission time. All the pages in the bio are checksummed and
706 * sums are attached onto the ordered extent record.
707 *
708 * At IO completion time the csums attached on the ordered extent record are
709 * inserted into the tree.
710 */
run_one_async_done(struct btrfs_work * work)711 static void run_one_async_done(struct btrfs_work *work)
712 {
713 struct async_submit_bio *async;
714 struct inode *inode;
715 blk_status_t ret;
716
717 async = container_of(work, struct async_submit_bio, work);
718 inode = async->private_data;
719
720 /* If an error occurred we just want to clean up the bio and move on */
721 if (async->status) {
722 async->bio->bi_status = async->status;
723 bio_endio(async->bio);
724 return;
725 }
726
727 /*
728 * All of the bios that pass through here are from async helpers.
729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 * This changes nothing when cgroups aren't in use.
731 */
732 async->bio->bi_opf |= REQ_CGROUP_PUNT;
733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734 if (ret) {
735 async->bio->bi_status = ret;
736 bio_endio(async->bio);
737 }
738 }
739
run_one_async_free(struct btrfs_work * work)740 static void run_one_async_free(struct btrfs_work *work)
741 {
742 struct async_submit_bio *async;
743
744 async = container_of(work, struct async_submit_bio, work);
745 kfree(async);
746 }
747
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 int mirror_num, unsigned long bio_flags,
750 u64 bio_offset, void *private_data,
751 extent_submit_bio_start_t *submit_bio_start)
752 {
753 struct async_submit_bio *async;
754
755 async = kmalloc(sizeof(*async), GFP_NOFS);
756 if (!async)
757 return BLK_STS_RESOURCE;
758
759 async->private_data = private_data;
760 async->bio = bio;
761 async->mirror_num = mirror_num;
762 async->submit_bio_start = submit_bio_start;
763
764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765 run_one_async_free);
766
767 async->bio_offset = bio_offset;
768
769 async->status = 0;
770
771 if (op_is_sync(bio->bi_opf))
772 btrfs_set_work_high_priority(&async->work);
773
774 btrfs_queue_work(fs_info->workers, &async->work);
775 return 0;
776 }
777
btree_csum_one_bio(struct bio * bio)778 static blk_status_t btree_csum_one_bio(struct bio *bio)
779 {
780 struct bio_vec *bvec;
781 struct btrfs_root *root;
782 int ret = 0;
783 struct bvec_iter_all iter_all;
784
785 ASSERT(!bio_flagged(bio, BIO_CLONED));
786 bio_for_each_segment_all(bvec, bio, iter_all) {
787 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789 if (ret)
790 break;
791 }
792
793 return errno_to_blk_status(ret);
794 }
795
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797 u64 bio_offset)
798 {
799 /*
800 * when we're called for a write, we're already in the async
801 * submission context. Just jump into btrfs_map_bio
802 */
803 return btree_csum_one_bio(bio);
804 }
805
check_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)806 static int check_async_write(struct btrfs_fs_info *fs_info,
807 struct btrfs_inode *bi)
808 {
809 if (atomic_read(&bi->sync_writers))
810 return 0;
811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812 return 0;
813 return 1;
814 }
815
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 int mirror_num, unsigned long bio_flags)
818 {
819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820 int async = check_async_write(fs_info, BTRFS_I(inode));
821 blk_status_t ret;
822
823 if (bio_op(bio) != REQ_OP_WRITE) {
824 /*
825 * called for a read, do the setup so that checksum validation
826 * can happen in the async kernel threads
827 */
828 ret = btrfs_bio_wq_end_io(fs_info, bio,
829 BTRFS_WQ_ENDIO_METADATA);
830 if (ret)
831 goto out_w_error;
832 ret = btrfs_map_bio(fs_info, bio, mirror_num);
833 } else if (!async) {
834 ret = btree_csum_one_bio(bio);
835 if (ret)
836 goto out_w_error;
837 ret = btrfs_map_bio(fs_info, bio, mirror_num);
838 } else {
839 /*
840 * kthread helpers are used to submit writes so that
841 * checksumming can happen in parallel across all CPUs
842 */
843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844 0, inode, btree_submit_bio_start);
845 }
846
847 if (ret)
848 goto out_w_error;
849 return 0;
850
851 out_w_error:
852 bio->bi_status = ret;
853 bio_endio(bio);
854 return ret;
855 }
856
857 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)858 static int btree_migratepage(struct address_space *mapping,
859 struct page *newpage, struct page *page,
860 enum migrate_mode mode)
861 {
862 /*
863 * we can't safely write a btree page from here,
864 * we haven't done the locking hook
865 */
866 if (PageDirty(page))
867 return -EAGAIN;
868 /*
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
871 */
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
874 return -EAGAIN;
875 return migrate_page(mapping, newpage, page, mode);
876 }
877 #endif
878
879
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)880 static int btree_writepages(struct address_space *mapping,
881 struct writeback_control *wbc)
882 {
883 struct btrfs_fs_info *fs_info;
884 int ret;
885
886 if (wbc->sync_mode == WB_SYNC_NONE) {
887
888 if (wbc->for_kupdate)
889 return 0;
890
891 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892 /* this is a bit racy, but that's ok */
893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 BTRFS_DIRTY_METADATA_THRESH,
895 fs_info->dirty_metadata_batch);
896 if (ret < 0)
897 return 0;
898 }
899 return btree_write_cache_pages(mapping, wbc);
900 }
901
btree_releasepage(struct page * page,gfp_t gfp_flags)902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903 {
904 if (PageWriteback(page) || PageDirty(page))
905 return 0;
906
907 return try_release_extent_buffer(page);
908 }
909
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)910 static void btree_invalidatepage(struct page *page, unsigned int offset,
911 unsigned int length)
912 {
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
915 extent_invalidatepage(tree, page, offset);
916 btree_releasepage(page, GFP_NOFS);
917 if (PagePrivate(page)) {
918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 "page private not zero on page %llu",
920 (unsigned long long)page_offset(page));
921 detach_page_private(page);
922 }
923 }
924
btree_set_page_dirty(struct page * page)925 static int btree_set_page_dirty(struct page *page)
926 {
927 #ifdef DEBUG
928 struct extent_buffer *eb;
929
930 BUG_ON(!PagePrivate(page));
931 eb = (struct extent_buffer *)page->private;
932 BUG_ON(!eb);
933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 BUG_ON(!atomic_read(&eb->refs));
935 btrfs_assert_tree_locked(eb);
936 #endif
937 return __set_page_dirty_nobuffers(page);
938 }
939
940 static const struct address_space_operations btree_aops = {
941 .writepages = btree_writepages,
942 .releasepage = btree_releasepage,
943 .invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945 .migratepage = btree_migratepage,
946 #endif
947 .set_page_dirty = btree_set_page_dirty,
948 };
949
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951 {
952 struct extent_buffer *buf = NULL;
953 int ret;
954
955 buf = btrfs_find_create_tree_block(fs_info, bytenr);
956 if (IS_ERR(buf))
957 return;
958
959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960 if (ret < 0)
961 free_extent_buffer_stale(buf);
962 else
963 free_extent_buffer(buf);
964 }
965
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)966 struct extent_buffer *btrfs_find_create_tree_block(
967 struct btrfs_fs_info *fs_info,
968 u64 bytenr)
969 {
970 if (btrfs_is_testing(fs_info))
971 return alloc_test_extent_buffer(fs_info, bytenr);
972 return alloc_extent_buffer(fs_info, bytenr);
973 }
974
975 /*
976 * Read tree block at logical address @bytenr and do variant basic but critical
977 * verification.
978 *
979 * @parent_transid: expected transid of this tree block, skip check if 0
980 * @level: expected level, mandatory check
981 * @first_key: expected key in slot 0, skip check if NULL
982 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984 u64 parent_transid, int level,
985 struct btrfs_key *first_key)
986 {
987 struct extent_buffer *buf = NULL;
988 int ret;
989
990 buf = btrfs_find_create_tree_block(fs_info, bytenr);
991 if (IS_ERR(buf))
992 return buf;
993
994 ret = btree_read_extent_buffer_pages(buf, parent_transid,
995 level, first_key);
996 if (ret) {
997 free_extent_buffer_stale(buf);
998 return ERR_PTR(ret);
999 }
1000 return buf;
1001
1002 }
1003
btrfs_clean_tree_block(struct extent_buffer * buf)1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1005 {
1006 struct btrfs_fs_info *fs_info = buf->fs_info;
1007 if (btrfs_header_generation(buf) ==
1008 fs_info->running_transaction->transid) {
1009 btrfs_assert_tree_locked(buf);
1010
1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 -buf->len,
1014 fs_info->dirty_metadata_batch);
1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016 btrfs_set_lock_blocking_write(buf);
1017 clear_extent_buffer_dirty(buf);
1018 }
1019 }
1020 }
1021
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023 u64 objectid)
1024 {
1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026 root->fs_info = fs_info;
1027 root->node = NULL;
1028 root->commit_root = NULL;
1029 root->state = 0;
1030 root->orphan_cleanup_state = 0;
1031
1032 root->last_trans = 0;
1033 root->highest_objectid = 0;
1034 root->nr_delalloc_inodes = 0;
1035 root->nr_ordered_extents = 0;
1036 root->inode_tree = RB_ROOT;
1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038 root->block_rsv = NULL;
1039
1040 INIT_LIST_HEAD(&root->dirty_list);
1041 INIT_LIST_HEAD(&root->root_list);
1042 INIT_LIST_HEAD(&root->delalloc_inodes);
1043 INIT_LIST_HEAD(&root->delalloc_root);
1044 INIT_LIST_HEAD(&root->ordered_extents);
1045 INIT_LIST_HEAD(&root->ordered_root);
1046 INIT_LIST_HEAD(&root->reloc_dirty_list);
1047 INIT_LIST_HEAD(&root->logged_list[0]);
1048 INIT_LIST_HEAD(&root->logged_list[1]);
1049 spin_lock_init(&root->inode_lock);
1050 spin_lock_init(&root->delalloc_lock);
1051 spin_lock_init(&root->ordered_extent_lock);
1052 spin_lock_init(&root->accounting_lock);
1053 spin_lock_init(&root->log_extents_lock[0]);
1054 spin_lock_init(&root->log_extents_lock[1]);
1055 spin_lock_init(&root->qgroup_meta_rsv_lock);
1056 mutex_init(&root->objectid_mutex);
1057 mutex_init(&root->log_mutex);
1058 mutex_init(&root->ordered_extent_mutex);
1059 mutex_init(&root->delalloc_mutex);
1060 init_waitqueue_head(&root->qgroup_flush_wait);
1061 init_waitqueue_head(&root->log_writer_wait);
1062 init_waitqueue_head(&root->log_commit_wait[0]);
1063 init_waitqueue_head(&root->log_commit_wait[1]);
1064 INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 INIT_LIST_HEAD(&root->log_ctxs[1]);
1066 atomic_set(&root->log_commit[0], 0);
1067 atomic_set(&root->log_commit[1], 0);
1068 atomic_set(&root->log_writers, 0);
1069 atomic_set(&root->log_batch, 0);
1070 refcount_set(&root->refs, 1);
1071 atomic_set(&root->snapshot_force_cow, 0);
1072 atomic_set(&root->nr_swapfiles, 0);
1073 root->log_transid = 0;
1074 root->log_transid_committed = -1;
1075 root->last_log_commit = 0;
1076 if (!dummy) {
1077 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079 extent_io_tree_init(fs_info, &root->log_csum_range,
1080 IO_TREE_LOG_CSUM_RANGE, NULL);
1081 }
1082
1083 memset(&root->root_key, 0, sizeof(root->root_key));
1084 memset(&root->root_item, 0, sizeof(root->root_item));
1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086 root->root_key.objectid = objectid;
1087 root->anon_dev = 0;
1088
1089 spin_lock_init(&root->root_item_lock);
1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092 INIT_LIST_HEAD(&root->leak_list);
1093 spin_lock(&fs_info->fs_roots_radix_lock);
1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 spin_unlock(&fs_info->fs_roots_radix_lock);
1096 #endif
1097 }
1098
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100 u64 objectid, gfp_t flags)
1101 {
1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103 if (root)
1104 __setup_root(root, fs_info, objectid);
1105 return root;
1106 }
1107
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111 {
1112 struct btrfs_root *root;
1113
1114 if (!fs_info)
1115 return ERR_PTR(-EINVAL);
1116
1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118 if (!root)
1119 return ERR_PTR(-ENOMEM);
1120
1121 /* We don't use the stripesize in selftest, set it as sectorsize */
1122 root->alloc_bytenr = 0;
1123
1124 return root;
1125 }
1126 #endif
1127
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129 u64 objectid)
1130 {
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct extent_buffer *leaf;
1133 struct btrfs_root *tree_root = fs_info->tree_root;
1134 struct btrfs_root *root;
1135 struct btrfs_key key;
1136 unsigned int nofs_flag;
1137 int ret = 0;
1138
1139 /*
1140 * We're holding a transaction handle, so use a NOFS memory allocation
1141 * context to avoid deadlock if reclaim happens.
1142 */
1143 nofs_flag = memalloc_nofs_save();
1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145 memalloc_nofs_restore(nofs_flag);
1146 if (!root)
1147 return ERR_PTR(-ENOMEM);
1148
1149 root->root_key.objectid = objectid;
1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 root->root_key.offset = 0;
1152
1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 BTRFS_NESTING_NORMAL);
1155 if (IS_ERR(leaf)) {
1156 ret = PTR_ERR(leaf);
1157 leaf = NULL;
1158 goto fail;
1159 }
1160
1161 root->node = leaf;
1162 btrfs_mark_buffer_dirty(leaf);
1163
1164 root->commit_root = btrfs_root_node(root);
1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167 root->root_item.flags = 0;
1168 root->root_item.byte_limit = 0;
1169 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 btrfs_set_root_generation(&root->root_item, trans->transid);
1171 btrfs_set_root_level(&root->root_item, 0);
1172 btrfs_set_root_refs(&root->root_item, 1);
1173 btrfs_set_root_used(&root->root_item, leaf->len);
1174 btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 btrfs_set_root_dirid(&root->root_item, 0);
1176 if (is_fstree(objectid))
1177 generate_random_guid(root->root_item.uuid);
1178 else
1179 export_guid(root->root_item.uuid, &guid_null);
1180 root->root_item.drop_level = 0;
1181
1182 key.objectid = objectid;
1183 key.type = BTRFS_ROOT_ITEM_KEY;
1184 key.offset = 0;
1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186 if (ret)
1187 goto fail;
1188
1189 btrfs_tree_unlock(leaf);
1190
1191 return root;
1192
1193 fail:
1194 if (leaf)
1195 btrfs_tree_unlock(leaf);
1196 btrfs_put_root(root);
1197
1198 return ERR_PTR(ret);
1199 }
1200
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 struct btrfs_fs_info *fs_info)
1203 {
1204 struct btrfs_root *root;
1205 struct extent_buffer *leaf;
1206
1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208 if (!root)
1209 return ERR_PTR(-ENOMEM);
1210
1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215 /*
1216 * DON'T set SHAREABLE bit for log trees.
1217 *
1218 * Log trees are not exposed to user space thus can't be snapshotted,
1219 * and they go away before a real commit is actually done.
1220 *
1221 * They do store pointers to file data extents, and those reference
1222 * counts still get updated (along with back refs to the log tree).
1223 */
1224
1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227 if (IS_ERR(leaf)) {
1228 btrfs_put_root(root);
1229 return ERR_CAST(leaf);
1230 }
1231
1232 root->node = leaf;
1233
1234 btrfs_mark_buffer_dirty(root->node);
1235 btrfs_tree_unlock(root->node);
1236 return root;
1237 }
1238
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info)
1241 {
1242 struct btrfs_root *log_root;
1243
1244 log_root = alloc_log_tree(trans, fs_info);
1245 if (IS_ERR(log_root))
1246 return PTR_ERR(log_root);
1247 WARN_ON(fs_info->log_root_tree);
1248 fs_info->log_root_tree = log_root;
1249 return 0;
1250 }
1251
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_root *root)
1254 {
1255 struct btrfs_fs_info *fs_info = root->fs_info;
1256 struct btrfs_root *log_root;
1257 struct btrfs_inode_item *inode_item;
1258
1259 log_root = alloc_log_tree(trans, fs_info);
1260 if (IS_ERR(log_root))
1261 return PTR_ERR(log_root);
1262
1263 log_root->last_trans = trans->transid;
1264 log_root->root_key.offset = root->root_key.objectid;
1265
1266 inode_item = &log_root->root_item.inode;
1267 btrfs_set_stack_inode_generation(inode_item, 1);
1268 btrfs_set_stack_inode_size(inode_item, 3);
1269 btrfs_set_stack_inode_nlink(inode_item, 1);
1270 btrfs_set_stack_inode_nbytes(inode_item,
1271 fs_info->nodesize);
1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274 btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276 WARN_ON(root->log_root);
1277 root->log_root = log_root;
1278 root->log_transid = 0;
1279 root->log_transid_committed = -1;
1280 root->last_log_commit = 0;
1281 return 0;
1282 }
1283
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1284 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285 struct btrfs_path *path,
1286 struct btrfs_key *key)
1287 {
1288 struct btrfs_root *root;
1289 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1290 u64 generation;
1291 int ret;
1292 int level;
1293
1294 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295 if (!root)
1296 return ERR_PTR(-ENOMEM);
1297
1298 ret = btrfs_find_root(tree_root, key, path,
1299 &root->root_item, &root->root_key);
1300 if (ret) {
1301 if (ret > 0)
1302 ret = -ENOENT;
1303 goto fail;
1304 }
1305
1306 generation = btrfs_root_generation(&root->root_item);
1307 level = btrfs_root_level(&root->root_item);
1308 root->node = read_tree_block(fs_info,
1309 btrfs_root_bytenr(&root->root_item),
1310 generation, level, NULL);
1311 if (IS_ERR(root->node)) {
1312 ret = PTR_ERR(root->node);
1313 root->node = NULL;
1314 goto fail;
1315 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316 ret = -EIO;
1317 goto fail;
1318 }
1319 root->commit_root = btrfs_root_node(root);
1320 return root;
1321 fail:
1322 btrfs_put_root(root);
1323 return ERR_PTR(ret);
1324 }
1325
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1326 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327 struct btrfs_key *key)
1328 {
1329 struct btrfs_root *root;
1330 struct btrfs_path *path;
1331
1332 path = btrfs_alloc_path();
1333 if (!path)
1334 return ERR_PTR(-ENOMEM);
1335 root = read_tree_root_path(tree_root, path, key);
1336 btrfs_free_path(path);
1337
1338 return root;
1339 }
1340
1341 /*
1342 * Initialize subvolume root in-memory structure
1343 *
1344 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1345 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1346 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1347 {
1348 int ret;
1349 unsigned int nofs_flag;
1350
1351 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353 GFP_NOFS);
1354 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355 ret = -ENOMEM;
1356 goto fail;
1357 }
1358
1359 /*
1360 * We might be called under a transaction (e.g. indirect backref
1361 * resolution) which could deadlock if it triggers memory reclaim
1362 */
1363 nofs_flag = memalloc_nofs_save();
1364 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365 memalloc_nofs_restore(nofs_flag);
1366 if (ret)
1367 goto fail;
1368
1369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372 btrfs_check_and_init_root_item(&root->root_item);
1373 }
1374
1375 btrfs_init_free_ino_ctl(root);
1376 spin_lock_init(&root->ino_cache_lock);
1377 init_waitqueue_head(&root->ino_cache_wait);
1378
1379 /*
1380 * Don't assign anonymous block device to roots that are not exposed to
1381 * userspace, the id pool is limited to 1M
1382 */
1383 if (is_fstree(root->root_key.objectid) &&
1384 btrfs_root_refs(&root->root_item) > 0) {
1385 if (!anon_dev) {
1386 ret = get_anon_bdev(&root->anon_dev);
1387 if (ret)
1388 goto fail;
1389 } else {
1390 root->anon_dev = anon_dev;
1391 }
1392 }
1393
1394 mutex_lock(&root->objectid_mutex);
1395 ret = btrfs_find_highest_objectid(root,
1396 &root->highest_objectid);
1397 if (ret) {
1398 mutex_unlock(&root->objectid_mutex);
1399 goto fail;
1400 }
1401
1402 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404 mutex_unlock(&root->objectid_mutex);
1405
1406 return 0;
1407 fail:
1408 /* The caller is responsible to call btrfs_free_fs_root */
1409 return ret;
1410 }
1411
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1412 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413 u64 root_id)
1414 {
1415 struct btrfs_root *root;
1416
1417 spin_lock(&fs_info->fs_roots_radix_lock);
1418 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419 (unsigned long)root_id);
1420 if (root)
1421 root = btrfs_grab_root(root);
1422 spin_unlock(&fs_info->fs_roots_radix_lock);
1423 return root;
1424 }
1425
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1426 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427 u64 objectid)
1428 {
1429 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430 return btrfs_grab_root(fs_info->tree_root);
1431 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432 return btrfs_grab_root(fs_info->extent_root);
1433 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->chunk_root);
1435 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->dev_root);
1437 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->csum_root);
1439 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->quota_root) ?
1441 fs_info->quota_root : ERR_PTR(-ENOENT);
1442 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443 return btrfs_grab_root(fs_info->uuid_root) ?
1444 fs_info->uuid_root : ERR_PTR(-ENOENT);
1445 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446 return btrfs_grab_root(fs_info->free_space_root) ?
1447 fs_info->free_space_root : ERR_PTR(-ENOENT);
1448 return NULL;
1449 }
1450
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1451 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452 struct btrfs_root *root)
1453 {
1454 int ret;
1455
1456 ret = radix_tree_preload(GFP_NOFS);
1457 if (ret)
1458 return ret;
1459
1460 spin_lock(&fs_info->fs_roots_radix_lock);
1461 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462 (unsigned long)root->root_key.objectid,
1463 root);
1464 if (ret == 0) {
1465 btrfs_grab_root(root);
1466 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1467 }
1468 spin_unlock(&fs_info->fs_roots_radix_lock);
1469 radix_tree_preload_end();
1470
1471 return ret;
1472 }
1473
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1474 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475 {
1476 #ifdef CONFIG_BTRFS_DEBUG
1477 struct btrfs_root *root;
1478
1479 while (!list_empty(&fs_info->allocated_roots)) {
1480 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
1482 root = list_first_entry(&fs_info->allocated_roots,
1483 struct btrfs_root, leak_list);
1484 btrfs_err(fs_info, "leaked root %s refcount %d",
1485 btrfs_root_name(root->root_key.objectid, buf),
1486 refcount_read(&root->refs));
1487 while (refcount_read(&root->refs) > 1)
1488 btrfs_put_root(root);
1489 btrfs_put_root(root);
1490 }
1491 #endif
1492 }
1493
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1494 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495 {
1496 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497 percpu_counter_destroy(&fs_info->delalloc_bytes);
1498 percpu_counter_destroy(&fs_info->dio_bytes);
1499 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500 btrfs_free_csum_hash(fs_info);
1501 btrfs_free_stripe_hash_table(fs_info);
1502 btrfs_free_ref_cache(fs_info);
1503 kfree(fs_info->balance_ctl);
1504 kfree(fs_info->delayed_root);
1505 btrfs_put_root(fs_info->extent_root);
1506 btrfs_put_root(fs_info->tree_root);
1507 btrfs_put_root(fs_info->chunk_root);
1508 btrfs_put_root(fs_info->dev_root);
1509 btrfs_put_root(fs_info->csum_root);
1510 btrfs_put_root(fs_info->quota_root);
1511 btrfs_put_root(fs_info->uuid_root);
1512 btrfs_put_root(fs_info->free_space_root);
1513 btrfs_put_root(fs_info->fs_root);
1514 btrfs_put_root(fs_info->data_reloc_root);
1515 btrfs_check_leaked_roots(fs_info);
1516 btrfs_extent_buffer_leak_debug_check(fs_info);
1517 kfree(fs_info->super_copy);
1518 kfree(fs_info->super_for_commit);
1519 kvfree(fs_info);
1520 }
1521
1522
1523 /*
1524 * Get an in-memory reference of a root structure.
1525 *
1526 * For essential trees like root/extent tree, we grab it from fs_info directly.
1527 * For subvolume trees, we check the cached filesystem roots first. If not
1528 * found, then read it from disk and add it to cached fs roots.
1529 *
1530 * Caller should release the root by calling btrfs_put_root() after the usage.
1531 *
1532 * NOTE: Reloc and log trees can't be read by this function as they share the
1533 * same root objectid.
1534 *
1535 * @objectid: root id
1536 * @anon_dev: preallocated anonymous block device number for new roots,
1537 * pass 0 for new allocation.
1538 * @check_ref: whether to check root item references, If true, return -ENOENT
1539 * for orphan roots
1540 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1541 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542 u64 objectid, dev_t anon_dev,
1543 bool check_ref)
1544 {
1545 struct btrfs_root *root;
1546 struct btrfs_path *path;
1547 struct btrfs_key key;
1548 int ret;
1549
1550 root = btrfs_get_global_root(fs_info, objectid);
1551 if (root)
1552 return root;
1553 again:
1554 root = btrfs_lookup_fs_root(fs_info, objectid);
1555 if (root) {
1556 /* Shouldn't get preallocated anon_dev for cached roots */
1557 ASSERT(!anon_dev);
1558 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1559 btrfs_put_root(root);
1560 return ERR_PTR(-ENOENT);
1561 }
1562 return root;
1563 }
1564
1565 key.objectid = objectid;
1566 key.type = BTRFS_ROOT_ITEM_KEY;
1567 key.offset = (u64)-1;
1568 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1569 if (IS_ERR(root))
1570 return root;
1571
1572 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1573 ret = -ENOENT;
1574 goto fail;
1575 }
1576
1577 ret = btrfs_init_fs_root(root, anon_dev);
1578 if (ret)
1579 goto fail;
1580
1581 path = btrfs_alloc_path();
1582 if (!path) {
1583 ret = -ENOMEM;
1584 goto fail;
1585 }
1586 key.objectid = BTRFS_ORPHAN_OBJECTID;
1587 key.type = BTRFS_ORPHAN_ITEM_KEY;
1588 key.offset = objectid;
1589
1590 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1591 btrfs_free_path(path);
1592 if (ret < 0)
1593 goto fail;
1594 if (ret == 0)
1595 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1596
1597 ret = btrfs_insert_fs_root(fs_info, root);
1598 if (ret) {
1599 btrfs_put_root(root);
1600 if (ret == -EEXIST)
1601 goto again;
1602 goto fail;
1603 }
1604 return root;
1605 fail:
1606 btrfs_put_root(root);
1607 return ERR_PTR(ret);
1608 }
1609
1610 /*
1611 * Get in-memory reference of a root structure
1612 *
1613 * @objectid: tree objectid
1614 * @check_ref: if set, verify that the tree exists and the item has at least
1615 * one reference
1616 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1617 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1618 u64 objectid, bool check_ref)
1619 {
1620 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1621 }
1622
1623 /*
1624 * Get in-memory reference of a root structure, created as new, optionally pass
1625 * the anonymous block device id
1626 *
1627 * @objectid: tree objectid
1628 * @anon_dev: if zero, allocate a new anonymous block device or use the
1629 * parameter value
1630 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1631 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1632 u64 objectid, dev_t anon_dev)
1633 {
1634 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1635 }
1636
1637 /*
1638 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1639 * @fs_info: the fs_info
1640 * @objectid: the objectid we need to lookup
1641 *
1642 * This is exclusively used for backref walking, and exists specifically because
1643 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1644 * creation time, which means we may have to read the tree_root in order to look
1645 * up a fs root that is not in memory. If the root is not in memory we will
1646 * read the tree root commit root and look up the fs root from there. This is a
1647 * temporary root, it will not be inserted into the radix tree as it doesn't
1648 * have the most uptodate information, it'll simply be discarded once the
1649 * backref code is finished using the root.
1650 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1651 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1652 struct btrfs_path *path,
1653 u64 objectid)
1654 {
1655 struct btrfs_root *root;
1656 struct btrfs_key key;
1657
1658 ASSERT(path->search_commit_root && path->skip_locking);
1659
1660 /*
1661 * This can return -ENOENT if we ask for a root that doesn't exist, but
1662 * since this is called via the backref walking code we won't be looking
1663 * up a root that doesn't exist, unless there's corruption. So if root
1664 * != NULL just return it.
1665 */
1666 root = btrfs_get_global_root(fs_info, objectid);
1667 if (root)
1668 return root;
1669
1670 root = btrfs_lookup_fs_root(fs_info, objectid);
1671 if (root)
1672 return root;
1673
1674 key.objectid = objectid;
1675 key.type = BTRFS_ROOT_ITEM_KEY;
1676 key.offset = (u64)-1;
1677 root = read_tree_root_path(fs_info->tree_root, path, &key);
1678 btrfs_release_path(path);
1679
1680 return root;
1681 }
1682
1683 /*
1684 * called by the kthread helper functions to finally call the bio end_io
1685 * functions. This is where read checksum verification actually happens
1686 */
end_workqueue_fn(struct btrfs_work * work)1687 static void end_workqueue_fn(struct btrfs_work *work)
1688 {
1689 struct bio *bio;
1690 struct btrfs_end_io_wq *end_io_wq;
1691
1692 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1693 bio = end_io_wq->bio;
1694
1695 bio->bi_status = end_io_wq->status;
1696 bio->bi_private = end_io_wq->private;
1697 bio->bi_end_io = end_io_wq->end_io;
1698 bio_endio(bio);
1699 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1700 }
1701
cleaner_kthread(void * arg)1702 static int cleaner_kthread(void *arg)
1703 {
1704 struct btrfs_root *root = arg;
1705 struct btrfs_fs_info *fs_info = root->fs_info;
1706 int again;
1707
1708 while (1) {
1709 again = 0;
1710
1711 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1712
1713 /* Make the cleaner go to sleep early. */
1714 if (btrfs_need_cleaner_sleep(fs_info))
1715 goto sleep;
1716
1717 /*
1718 * Do not do anything if we might cause open_ctree() to block
1719 * before we have finished mounting the filesystem.
1720 */
1721 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1722 goto sleep;
1723
1724 if (!mutex_trylock(&fs_info->cleaner_mutex))
1725 goto sleep;
1726
1727 /*
1728 * Avoid the problem that we change the status of the fs
1729 * during the above check and trylock.
1730 */
1731 if (btrfs_need_cleaner_sleep(fs_info)) {
1732 mutex_unlock(&fs_info->cleaner_mutex);
1733 goto sleep;
1734 }
1735
1736 btrfs_run_delayed_iputs(fs_info);
1737
1738 again = btrfs_clean_one_deleted_snapshot(root);
1739 mutex_unlock(&fs_info->cleaner_mutex);
1740
1741 /*
1742 * The defragger has dealt with the R/O remount and umount,
1743 * needn't do anything special here.
1744 */
1745 btrfs_run_defrag_inodes(fs_info);
1746
1747 /*
1748 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1749 * with relocation (btrfs_relocate_chunk) and relocation
1750 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1751 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1752 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1753 * unused block groups.
1754 */
1755 btrfs_delete_unused_bgs(fs_info);
1756 sleep:
1757 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1758 if (kthread_should_park())
1759 kthread_parkme();
1760 if (kthread_should_stop())
1761 return 0;
1762 if (!again) {
1763 set_current_state(TASK_INTERRUPTIBLE);
1764 schedule();
1765 __set_current_state(TASK_RUNNING);
1766 }
1767 }
1768 }
1769
transaction_kthread(void * arg)1770 static int transaction_kthread(void *arg)
1771 {
1772 struct btrfs_root *root = arg;
1773 struct btrfs_fs_info *fs_info = root->fs_info;
1774 struct btrfs_trans_handle *trans;
1775 struct btrfs_transaction *cur;
1776 u64 transid;
1777 time64_t now;
1778 unsigned long delay;
1779 bool cannot_commit;
1780
1781 do {
1782 cannot_commit = false;
1783 delay = HZ * fs_info->commit_interval;
1784 mutex_lock(&fs_info->transaction_kthread_mutex);
1785
1786 spin_lock(&fs_info->trans_lock);
1787 cur = fs_info->running_transaction;
1788 if (!cur) {
1789 spin_unlock(&fs_info->trans_lock);
1790 goto sleep;
1791 }
1792
1793 now = ktime_get_seconds();
1794 if (cur->state < TRANS_STATE_COMMIT_START &&
1795 (now < cur->start_time ||
1796 now - cur->start_time < fs_info->commit_interval)) {
1797 spin_unlock(&fs_info->trans_lock);
1798 delay = HZ * 5;
1799 goto sleep;
1800 }
1801 transid = cur->transid;
1802 spin_unlock(&fs_info->trans_lock);
1803
1804 /* If the file system is aborted, this will always fail. */
1805 trans = btrfs_attach_transaction(root);
1806 if (IS_ERR(trans)) {
1807 if (PTR_ERR(trans) != -ENOENT)
1808 cannot_commit = true;
1809 goto sleep;
1810 }
1811 if (transid == trans->transid) {
1812 btrfs_commit_transaction(trans);
1813 } else {
1814 btrfs_end_transaction(trans);
1815 }
1816 sleep:
1817 wake_up_process(fs_info->cleaner_kthread);
1818 mutex_unlock(&fs_info->transaction_kthread_mutex);
1819
1820 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1821 &fs_info->fs_state)))
1822 btrfs_cleanup_transaction(fs_info);
1823 if (!kthread_should_stop() &&
1824 (!btrfs_transaction_blocked(fs_info) ||
1825 cannot_commit))
1826 schedule_timeout_interruptible(delay);
1827 } while (!kthread_should_stop());
1828 return 0;
1829 }
1830
1831 /*
1832 * This will find the highest generation in the array of root backups. The
1833 * index of the highest array is returned, or -EINVAL if we can't find
1834 * anything.
1835 *
1836 * We check to make sure the array is valid by comparing the
1837 * generation of the latest root in the array with the generation
1838 * in the super block. If they don't match we pitch it.
1839 */
find_newest_super_backup(struct btrfs_fs_info * info)1840 static int find_newest_super_backup(struct btrfs_fs_info *info)
1841 {
1842 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1843 u64 cur;
1844 struct btrfs_root_backup *root_backup;
1845 int i;
1846
1847 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1848 root_backup = info->super_copy->super_roots + i;
1849 cur = btrfs_backup_tree_root_gen(root_backup);
1850 if (cur == newest_gen)
1851 return i;
1852 }
1853
1854 return -EINVAL;
1855 }
1856
1857 /*
1858 * copy all the root pointers into the super backup array.
1859 * this will bump the backup pointer by one when it is
1860 * done
1861 */
backup_super_roots(struct btrfs_fs_info * info)1862 static void backup_super_roots(struct btrfs_fs_info *info)
1863 {
1864 const int next_backup = info->backup_root_index;
1865 struct btrfs_root_backup *root_backup;
1866
1867 root_backup = info->super_for_commit->super_roots + next_backup;
1868
1869 /*
1870 * make sure all of our padding and empty slots get zero filled
1871 * regardless of which ones we use today
1872 */
1873 memset(root_backup, 0, sizeof(*root_backup));
1874
1875 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1876
1877 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1878 btrfs_set_backup_tree_root_gen(root_backup,
1879 btrfs_header_generation(info->tree_root->node));
1880
1881 btrfs_set_backup_tree_root_level(root_backup,
1882 btrfs_header_level(info->tree_root->node));
1883
1884 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1885 btrfs_set_backup_chunk_root_gen(root_backup,
1886 btrfs_header_generation(info->chunk_root->node));
1887 btrfs_set_backup_chunk_root_level(root_backup,
1888 btrfs_header_level(info->chunk_root->node));
1889
1890 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1891 btrfs_set_backup_extent_root_gen(root_backup,
1892 btrfs_header_generation(info->extent_root->node));
1893 btrfs_set_backup_extent_root_level(root_backup,
1894 btrfs_header_level(info->extent_root->node));
1895
1896 /*
1897 * we might commit during log recovery, which happens before we set
1898 * the fs_root. Make sure it is valid before we fill it in.
1899 */
1900 if (info->fs_root && info->fs_root->node) {
1901 btrfs_set_backup_fs_root(root_backup,
1902 info->fs_root->node->start);
1903 btrfs_set_backup_fs_root_gen(root_backup,
1904 btrfs_header_generation(info->fs_root->node));
1905 btrfs_set_backup_fs_root_level(root_backup,
1906 btrfs_header_level(info->fs_root->node));
1907 }
1908
1909 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1910 btrfs_set_backup_dev_root_gen(root_backup,
1911 btrfs_header_generation(info->dev_root->node));
1912 btrfs_set_backup_dev_root_level(root_backup,
1913 btrfs_header_level(info->dev_root->node));
1914
1915 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1916 btrfs_set_backup_csum_root_gen(root_backup,
1917 btrfs_header_generation(info->csum_root->node));
1918 btrfs_set_backup_csum_root_level(root_backup,
1919 btrfs_header_level(info->csum_root->node));
1920
1921 btrfs_set_backup_total_bytes(root_backup,
1922 btrfs_super_total_bytes(info->super_copy));
1923 btrfs_set_backup_bytes_used(root_backup,
1924 btrfs_super_bytes_used(info->super_copy));
1925 btrfs_set_backup_num_devices(root_backup,
1926 btrfs_super_num_devices(info->super_copy));
1927
1928 /*
1929 * if we don't copy this out to the super_copy, it won't get remembered
1930 * for the next commit
1931 */
1932 memcpy(&info->super_copy->super_roots,
1933 &info->super_for_commit->super_roots,
1934 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1935 }
1936
1937 /*
1938 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1939 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1940 *
1941 * fs_info - filesystem whose backup roots need to be read
1942 * priority - priority of backup root required
1943 *
1944 * Returns backup root index on success and -EINVAL otherwise.
1945 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1946 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1947 {
1948 int backup_index = find_newest_super_backup(fs_info);
1949 struct btrfs_super_block *super = fs_info->super_copy;
1950 struct btrfs_root_backup *root_backup;
1951
1952 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1953 if (priority == 0)
1954 return backup_index;
1955
1956 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1957 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1958 } else {
1959 return -EINVAL;
1960 }
1961
1962 root_backup = super->super_roots + backup_index;
1963
1964 btrfs_set_super_generation(super,
1965 btrfs_backup_tree_root_gen(root_backup));
1966 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1967 btrfs_set_super_root_level(super,
1968 btrfs_backup_tree_root_level(root_backup));
1969 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1970
1971 /*
1972 * Fixme: the total bytes and num_devices need to match or we should
1973 * need a fsck
1974 */
1975 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1976 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1977
1978 return backup_index;
1979 }
1980
1981 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1982 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1983 {
1984 btrfs_destroy_workqueue(fs_info->fixup_workers);
1985 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1986 btrfs_destroy_workqueue(fs_info->workers);
1987 btrfs_destroy_workqueue(fs_info->endio_workers);
1988 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1989 btrfs_destroy_workqueue(fs_info->rmw_workers);
1990 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1991 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1992 btrfs_destroy_workqueue(fs_info->delayed_workers);
1993 btrfs_destroy_workqueue(fs_info->caching_workers);
1994 btrfs_destroy_workqueue(fs_info->readahead_workers);
1995 btrfs_destroy_workqueue(fs_info->flush_workers);
1996 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1997 if (fs_info->discard_ctl.discard_workers)
1998 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1999 /*
2000 * Now that all other work queues are destroyed, we can safely destroy
2001 * the queues used for metadata I/O, since tasks from those other work
2002 * queues can do metadata I/O operations.
2003 */
2004 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2005 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2006 }
2007
free_root_extent_buffers(struct btrfs_root * root)2008 static void free_root_extent_buffers(struct btrfs_root *root)
2009 {
2010 if (root) {
2011 free_extent_buffer(root->node);
2012 free_extent_buffer(root->commit_root);
2013 root->node = NULL;
2014 root->commit_root = NULL;
2015 }
2016 }
2017
2018 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2019 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2020 {
2021 free_root_extent_buffers(info->tree_root);
2022
2023 free_root_extent_buffers(info->dev_root);
2024 free_root_extent_buffers(info->extent_root);
2025 free_root_extent_buffers(info->csum_root);
2026 free_root_extent_buffers(info->quota_root);
2027 free_root_extent_buffers(info->uuid_root);
2028 free_root_extent_buffers(info->fs_root);
2029 free_root_extent_buffers(info->data_reloc_root);
2030 if (free_chunk_root)
2031 free_root_extent_buffers(info->chunk_root);
2032 free_root_extent_buffers(info->free_space_root);
2033 }
2034
btrfs_put_root(struct btrfs_root * root)2035 void btrfs_put_root(struct btrfs_root *root)
2036 {
2037 if (!root)
2038 return;
2039
2040 if (refcount_dec_and_test(&root->refs)) {
2041 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2042 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2043 if (root->anon_dev)
2044 free_anon_bdev(root->anon_dev);
2045 btrfs_drew_lock_destroy(&root->snapshot_lock);
2046 free_root_extent_buffers(root);
2047 kfree(root->free_ino_ctl);
2048 kfree(root->free_ino_pinned);
2049 #ifdef CONFIG_BTRFS_DEBUG
2050 spin_lock(&root->fs_info->fs_roots_radix_lock);
2051 list_del_init(&root->leak_list);
2052 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2053 #endif
2054 kfree(root);
2055 }
2056 }
2057
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2058 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2059 {
2060 int ret;
2061 struct btrfs_root *gang[8];
2062 int i;
2063
2064 while (!list_empty(&fs_info->dead_roots)) {
2065 gang[0] = list_entry(fs_info->dead_roots.next,
2066 struct btrfs_root, root_list);
2067 list_del(&gang[0]->root_list);
2068
2069 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2070 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2071 btrfs_put_root(gang[0]);
2072 }
2073
2074 while (1) {
2075 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2076 (void **)gang, 0,
2077 ARRAY_SIZE(gang));
2078 if (!ret)
2079 break;
2080 for (i = 0; i < ret; i++)
2081 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2082 }
2083 }
2084
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2085 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2086 {
2087 mutex_init(&fs_info->scrub_lock);
2088 atomic_set(&fs_info->scrubs_running, 0);
2089 atomic_set(&fs_info->scrub_pause_req, 0);
2090 atomic_set(&fs_info->scrubs_paused, 0);
2091 atomic_set(&fs_info->scrub_cancel_req, 0);
2092 init_waitqueue_head(&fs_info->scrub_pause_wait);
2093 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2094 }
2095
btrfs_init_balance(struct btrfs_fs_info * fs_info)2096 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2097 {
2098 spin_lock_init(&fs_info->balance_lock);
2099 mutex_init(&fs_info->balance_mutex);
2100 atomic_set(&fs_info->balance_pause_req, 0);
2101 atomic_set(&fs_info->balance_cancel_req, 0);
2102 fs_info->balance_ctl = NULL;
2103 init_waitqueue_head(&fs_info->balance_wait_q);
2104 }
2105
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2106 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2107 {
2108 struct inode *inode = fs_info->btree_inode;
2109
2110 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2111 set_nlink(inode, 1);
2112 /*
2113 * we set the i_size on the btree inode to the max possible int.
2114 * the real end of the address space is determined by all of
2115 * the devices in the system
2116 */
2117 inode->i_size = OFFSET_MAX;
2118 inode->i_mapping->a_ops = &btree_aops;
2119
2120 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2121 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2122 IO_TREE_BTREE_INODE_IO, inode);
2123 BTRFS_I(inode)->io_tree.track_uptodate = false;
2124 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2125
2126 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2127 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2128 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2129 btrfs_insert_inode_hash(inode);
2130 }
2131
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2132 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2133 {
2134 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2135 init_rwsem(&fs_info->dev_replace.rwsem);
2136 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2137 }
2138
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2139 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2140 {
2141 spin_lock_init(&fs_info->qgroup_lock);
2142 mutex_init(&fs_info->qgroup_ioctl_lock);
2143 fs_info->qgroup_tree = RB_ROOT;
2144 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2145 fs_info->qgroup_seq = 1;
2146 fs_info->qgroup_ulist = NULL;
2147 fs_info->qgroup_rescan_running = false;
2148 mutex_init(&fs_info->qgroup_rescan_lock);
2149 }
2150
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2151 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2152 struct btrfs_fs_devices *fs_devices)
2153 {
2154 u32 max_active = fs_info->thread_pool_size;
2155 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2156
2157 fs_info->workers =
2158 btrfs_alloc_workqueue(fs_info, "worker",
2159 flags | WQ_HIGHPRI, max_active, 16);
2160
2161 fs_info->delalloc_workers =
2162 btrfs_alloc_workqueue(fs_info, "delalloc",
2163 flags, max_active, 2);
2164
2165 fs_info->flush_workers =
2166 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2167 flags, max_active, 0);
2168
2169 fs_info->caching_workers =
2170 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2171
2172 fs_info->fixup_workers =
2173 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2174
2175 /*
2176 * endios are largely parallel and should have a very
2177 * low idle thresh
2178 */
2179 fs_info->endio_workers =
2180 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2181 fs_info->endio_meta_workers =
2182 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2183 max_active, 4);
2184 fs_info->endio_meta_write_workers =
2185 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2186 max_active, 2);
2187 fs_info->endio_raid56_workers =
2188 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2189 max_active, 4);
2190 fs_info->rmw_workers =
2191 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2192 fs_info->endio_write_workers =
2193 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2194 max_active, 2);
2195 fs_info->endio_freespace_worker =
2196 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2197 max_active, 0);
2198 fs_info->delayed_workers =
2199 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2200 max_active, 0);
2201 fs_info->readahead_workers =
2202 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2203 max_active, 2);
2204 fs_info->qgroup_rescan_workers =
2205 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2206 fs_info->discard_ctl.discard_workers =
2207 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2208
2209 if (!(fs_info->workers && fs_info->delalloc_workers &&
2210 fs_info->flush_workers &&
2211 fs_info->endio_workers && fs_info->endio_meta_workers &&
2212 fs_info->endio_meta_write_workers &&
2213 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2214 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2215 fs_info->caching_workers && fs_info->readahead_workers &&
2216 fs_info->fixup_workers && fs_info->delayed_workers &&
2217 fs_info->qgroup_rescan_workers &&
2218 fs_info->discard_ctl.discard_workers)) {
2219 return -ENOMEM;
2220 }
2221
2222 return 0;
2223 }
2224
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2225 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2226 {
2227 struct crypto_shash *csum_shash;
2228 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2229
2230 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2231
2232 if (IS_ERR(csum_shash)) {
2233 btrfs_err(fs_info, "error allocating %s hash for checksum",
2234 csum_driver);
2235 return PTR_ERR(csum_shash);
2236 }
2237
2238 fs_info->csum_shash = csum_shash;
2239
2240 return 0;
2241 }
2242
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2243 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2244 struct btrfs_fs_devices *fs_devices)
2245 {
2246 int ret;
2247 struct btrfs_root *log_tree_root;
2248 struct btrfs_super_block *disk_super = fs_info->super_copy;
2249 u64 bytenr = btrfs_super_log_root(disk_super);
2250 int level = btrfs_super_log_root_level(disk_super);
2251
2252 if (fs_devices->rw_devices == 0) {
2253 btrfs_warn(fs_info, "log replay required on RO media");
2254 return -EIO;
2255 }
2256
2257 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2258 GFP_KERNEL);
2259 if (!log_tree_root)
2260 return -ENOMEM;
2261
2262 log_tree_root->node = read_tree_block(fs_info, bytenr,
2263 fs_info->generation + 1,
2264 level, NULL);
2265 if (IS_ERR(log_tree_root->node)) {
2266 btrfs_warn(fs_info, "failed to read log tree");
2267 ret = PTR_ERR(log_tree_root->node);
2268 log_tree_root->node = NULL;
2269 btrfs_put_root(log_tree_root);
2270 return ret;
2271 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2272 btrfs_err(fs_info, "failed to read log tree");
2273 btrfs_put_root(log_tree_root);
2274 return -EIO;
2275 }
2276 /* returns with log_tree_root freed on success */
2277 ret = btrfs_recover_log_trees(log_tree_root);
2278 if (ret) {
2279 btrfs_handle_fs_error(fs_info, ret,
2280 "Failed to recover log tree");
2281 btrfs_put_root(log_tree_root);
2282 return ret;
2283 }
2284
2285 if (sb_rdonly(fs_info->sb)) {
2286 ret = btrfs_commit_super(fs_info);
2287 if (ret)
2288 return ret;
2289 }
2290
2291 return 0;
2292 }
2293
btrfs_read_roots(struct btrfs_fs_info * fs_info)2294 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2295 {
2296 struct btrfs_root *tree_root = fs_info->tree_root;
2297 struct btrfs_root *root;
2298 struct btrfs_key location;
2299 int ret;
2300
2301 BUG_ON(!fs_info->tree_root);
2302
2303 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2304 location.type = BTRFS_ROOT_ITEM_KEY;
2305 location.offset = 0;
2306
2307 root = btrfs_read_tree_root(tree_root, &location);
2308 if (IS_ERR(root)) {
2309 ret = PTR_ERR(root);
2310 goto out;
2311 }
2312 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2313 fs_info->extent_root = root;
2314
2315 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2316 root = btrfs_read_tree_root(tree_root, &location);
2317 if (IS_ERR(root)) {
2318 ret = PTR_ERR(root);
2319 goto out;
2320 }
2321 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322 fs_info->dev_root = root;
2323 btrfs_init_devices_late(fs_info);
2324
2325 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2326 root = btrfs_read_tree_root(tree_root, &location);
2327 if (IS_ERR(root)) {
2328 ret = PTR_ERR(root);
2329 goto out;
2330 }
2331 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332 fs_info->csum_root = root;
2333
2334 /*
2335 * This tree can share blocks with some other fs tree during relocation
2336 * and we need a proper setup by btrfs_get_fs_root
2337 */
2338 root = btrfs_get_fs_root(tree_root->fs_info,
2339 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2340 if (IS_ERR(root)) {
2341 ret = PTR_ERR(root);
2342 goto out;
2343 }
2344 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2345 fs_info->data_reloc_root = root;
2346
2347 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2348 root = btrfs_read_tree_root(tree_root, &location);
2349 if (!IS_ERR(root)) {
2350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2352 fs_info->quota_root = root;
2353 }
2354
2355 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2356 root = btrfs_read_tree_root(tree_root, &location);
2357 if (IS_ERR(root)) {
2358 ret = PTR_ERR(root);
2359 if (ret != -ENOENT)
2360 goto out;
2361 } else {
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 fs_info->uuid_root = root;
2364 }
2365
2366 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2367 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2368 root = btrfs_read_tree_root(tree_root, &location);
2369 if (IS_ERR(root)) {
2370 ret = PTR_ERR(root);
2371 goto out;
2372 }
2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 fs_info->free_space_root = root;
2375 }
2376
2377 return 0;
2378 out:
2379 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2380 location.objectid, ret);
2381 return ret;
2382 }
2383
2384 /*
2385 * Real super block validation
2386 * NOTE: super csum type and incompat features will not be checked here.
2387 *
2388 * @sb: super block to check
2389 * @mirror_num: the super block number to check its bytenr:
2390 * 0 the primary (1st) sb
2391 * 1, 2 2nd and 3rd backup copy
2392 * -1 skip bytenr check
2393 */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2394 static int validate_super(struct btrfs_fs_info *fs_info,
2395 struct btrfs_super_block *sb, int mirror_num)
2396 {
2397 u64 nodesize = btrfs_super_nodesize(sb);
2398 u64 sectorsize = btrfs_super_sectorsize(sb);
2399 int ret = 0;
2400
2401 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2402 btrfs_err(fs_info, "no valid FS found");
2403 ret = -EINVAL;
2404 }
2405 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2406 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2407 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2408 ret = -EINVAL;
2409 }
2410 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2412 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2413 ret = -EINVAL;
2414 }
2415 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2417 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2418 ret = -EINVAL;
2419 }
2420 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2421 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2422 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2423 ret = -EINVAL;
2424 }
2425
2426 /*
2427 * Check sectorsize and nodesize first, other check will need it.
2428 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2429 */
2430 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2431 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2432 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2433 ret = -EINVAL;
2434 }
2435 /* Only PAGE SIZE is supported yet */
2436 if (sectorsize != PAGE_SIZE) {
2437 btrfs_err(fs_info,
2438 "sectorsize %llu not supported yet, only support %lu",
2439 sectorsize, PAGE_SIZE);
2440 ret = -EINVAL;
2441 }
2442 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2443 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2444 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2445 ret = -EINVAL;
2446 }
2447 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2448 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2449 le32_to_cpu(sb->__unused_leafsize), nodesize);
2450 ret = -EINVAL;
2451 }
2452
2453 /* Root alignment check */
2454 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2455 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2456 btrfs_super_root(sb));
2457 ret = -EINVAL;
2458 }
2459 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2460 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2461 btrfs_super_chunk_root(sb));
2462 ret = -EINVAL;
2463 }
2464 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2465 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2466 btrfs_super_log_root(sb));
2467 ret = -EINVAL;
2468 }
2469
2470 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2471 BTRFS_FSID_SIZE) != 0) {
2472 btrfs_err(fs_info,
2473 "dev_item UUID does not match metadata fsid: %pU != %pU",
2474 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2475 ret = -EINVAL;
2476 }
2477
2478 /*
2479 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2480 * done later
2481 */
2482 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2483 btrfs_err(fs_info, "bytes_used is too small %llu",
2484 btrfs_super_bytes_used(sb));
2485 ret = -EINVAL;
2486 }
2487 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2488 btrfs_err(fs_info, "invalid stripesize %u",
2489 btrfs_super_stripesize(sb));
2490 ret = -EINVAL;
2491 }
2492 if (btrfs_super_num_devices(sb) > (1UL << 31))
2493 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2494 btrfs_super_num_devices(sb));
2495 if (btrfs_super_num_devices(sb) == 0) {
2496 btrfs_err(fs_info, "number of devices is 0");
2497 ret = -EINVAL;
2498 }
2499
2500 if (mirror_num >= 0 &&
2501 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2502 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2503 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2504 ret = -EINVAL;
2505 }
2506
2507 /*
2508 * Obvious sys_chunk_array corruptions, it must hold at least one key
2509 * and one chunk
2510 */
2511 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2512 btrfs_err(fs_info, "system chunk array too big %u > %u",
2513 btrfs_super_sys_array_size(sb),
2514 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2515 ret = -EINVAL;
2516 }
2517 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2518 + sizeof(struct btrfs_chunk)) {
2519 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2520 btrfs_super_sys_array_size(sb),
2521 sizeof(struct btrfs_disk_key)
2522 + sizeof(struct btrfs_chunk));
2523 ret = -EINVAL;
2524 }
2525
2526 /*
2527 * The generation is a global counter, we'll trust it more than the others
2528 * but it's still possible that it's the one that's wrong.
2529 */
2530 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2531 btrfs_warn(fs_info,
2532 "suspicious: generation < chunk_root_generation: %llu < %llu",
2533 btrfs_super_generation(sb),
2534 btrfs_super_chunk_root_generation(sb));
2535 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2536 && btrfs_super_cache_generation(sb) != (u64)-1)
2537 btrfs_warn(fs_info,
2538 "suspicious: generation < cache_generation: %llu < %llu",
2539 btrfs_super_generation(sb),
2540 btrfs_super_cache_generation(sb));
2541
2542 return ret;
2543 }
2544
2545 /*
2546 * Validation of super block at mount time.
2547 * Some checks already done early at mount time, like csum type and incompat
2548 * flags will be skipped.
2549 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2550 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2551 {
2552 return validate_super(fs_info, fs_info->super_copy, 0);
2553 }
2554
2555 /*
2556 * Validation of super block at write time.
2557 * Some checks like bytenr check will be skipped as their values will be
2558 * overwritten soon.
2559 * Extra checks like csum type and incompat flags will be done here.
2560 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2561 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2562 struct btrfs_super_block *sb)
2563 {
2564 int ret;
2565
2566 ret = validate_super(fs_info, sb, -1);
2567 if (ret < 0)
2568 goto out;
2569 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2570 ret = -EUCLEAN;
2571 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2572 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2573 goto out;
2574 }
2575 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2576 ret = -EUCLEAN;
2577 btrfs_err(fs_info,
2578 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2579 btrfs_super_incompat_flags(sb),
2580 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2581 goto out;
2582 }
2583 out:
2584 if (ret < 0)
2585 btrfs_err(fs_info,
2586 "super block corruption detected before writing it to disk");
2587 return ret;
2588 }
2589
init_tree_roots(struct btrfs_fs_info * fs_info)2590 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2591 {
2592 int backup_index = find_newest_super_backup(fs_info);
2593 struct btrfs_super_block *sb = fs_info->super_copy;
2594 struct btrfs_root *tree_root = fs_info->tree_root;
2595 bool handle_error = false;
2596 int ret = 0;
2597 int i;
2598
2599 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2600 u64 generation;
2601 int level;
2602
2603 if (handle_error) {
2604 if (!IS_ERR(tree_root->node))
2605 free_extent_buffer(tree_root->node);
2606 tree_root->node = NULL;
2607
2608 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2609 break;
2610
2611 free_root_pointers(fs_info, 0);
2612
2613 /*
2614 * Don't use the log in recovery mode, it won't be
2615 * valid
2616 */
2617 btrfs_set_super_log_root(sb, 0);
2618
2619 /* We can't trust the free space cache either */
2620 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2621
2622 ret = read_backup_root(fs_info, i);
2623 backup_index = ret;
2624 if (ret < 0)
2625 return ret;
2626 }
2627 generation = btrfs_super_generation(sb);
2628 level = btrfs_super_root_level(sb);
2629 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2630 generation, level, NULL);
2631 if (IS_ERR(tree_root->node)) {
2632 handle_error = true;
2633 ret = PTR_ERR(tree_root->node);
2634 tree_root->node = NULL;
2635 btrfs_warn(fs_info, "couldn't read tree root");
2636 continue;
2637
2638 } else if (!extent_buffer_uptodate(tree_root->node)) {
2639 handle_error = true;
2640 ret = -EIO;
2641 btrfs_warn(fs_info, "error while reading tree root");
2642 continue;
2643 }
2644
2645 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2646 tree_root->commit_root = btrfs_root_node(tree_root);
2647 btrfs_set_root_refs(&tree_root->root_item, 1);
2648
2649 /*
2650 * No need to hold btrfs_root::objectid_mutex since the fs
2651 * hasn't been fully initialised and we are the only user
2652 */
2653 ret = btrfs_find_highest_objectid(tree_root,
2654 &tree_root->highest_objectid);
2655 if (ret < 0) {
2656 handle_error = true;
2657 continue;
2658 }
2659
2660 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2661
2662 ret = btrfs_read_roots(fs_info);
2663 if (ret < 0) {
2664 handle_error = true;
2665 continue;
2666 }
2667
2668 /* All successful */
2669 fs_info->generation = generation;
2670 fs_info->last_trans_committed = generation;
2671
2672 /* Always begin writing backup roots after the one being used */
2673 if (backup_index < 0) {
2674 fs_info->backup_root_index = 0;
2675 } else {
2676 fs_info->backup_root_index = backup_index + 1;
2677 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2678 }
2679 break;
2680 }
2681
2682 return ret;
2683 }
2684
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2685 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2686 {
2687 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2688 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2689 INIT_LIST_HEAD(&fs_info->trans_list);
2690 INIT_LIST_HEAD(&fs_info->dead_roots);
2691 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2692 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2693 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2694 spin_lock_init(&fs_info->delalloc_root_lock);
2695 spin_lock_init(&fs_info->trans_lock);
2696 spin_lock_init(&fs_info->fs_roots_radix_lock);
2697 spin_lock_init(&fs_info->delayed_iput_lock);
2698 spin_lock_init(&fs_info->defrag_inodes_lock);
2699 spin_lock_init(&fs_info->super_lock);
2700 spin_lock_init(&fs_info->buffer_lock);
2701 spin_lock_init(&fs_info->unused_bgs_lock);
2702 rwlock_init(&fs_info->tree_mod_log_lock);
2703 mutex_init(&fs_info->unused_bg_unpin_mutex);
2704 mutex_init(&fs_info->delete_unused_bgs_mutex);
2705 mutex_init(&fs_info->reloc_mutex);
2706 mutex_init(&fs_info->delalloc_root_mutex);
2707 seqlock_init(&fs_info->profiles_lock);
2708
2709 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2710 INIT_LIST_HEAD(&fs_info->space_info);
2711 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2712 INIT_LIST_HEAD(&fs_info->unused_bgs);
2713 #ifdef CONFIG_BTRFS_DEBUG
2714 INIT_LIST_HEAD(&fs_info->allocated_roots);
2715 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2716 spin_lock_init(&fs_info->eb_leak_lock);
2717 #endif
2718 extent_map_tree_init(&fs_info->mapping_tree);
2719 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2720 BTRFS_BLOCK_RSV_GLOBAL);
2721 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2722 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2723 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2724 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2725 BTRFS_BLOCK_RSV_DELOPS);
2726 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2727 BTRFS_BLOCK_RSV_DELREFS);
2728
2729 atomic_set(&fs_info->async_delalloc_pages, 0);
2730 atomic_set(&fs_info->defrag_running, 0);
2731 atomic_set(&fs_info->reada_works_cnt, 0);
2732 atomic_set(&fs_info->nr_delayed_iputs, 0);
2733 atomic64_set(&fs_info->tree_mod_seq, 0);
2734 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2735 fs_info->metadata_ratio = 0;
2736 fs_info->defrag_inodes = RB_ROOT;
2737 atomic64_set(&fs_info->free_chunk_space, 0);
2738 fs_info->tree_mod_log = RB_ROOT;
2739 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2740 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2741 /* readahead state */
2742 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2743 spin_lock_init(&fs_info->reada_lock);
2744 btrfs_init_ref_verify(fs_info);
2745
2746 fs_info->thread_pool_size = min_t(unsigned long,
2747 num_online_cpus() + 2, 8);
2748
2749 INIT_LIST_HEAD(&fs_info->ordered_roots);
2750 spin_lock_init(&fs_info->ordered_root_lock);
2751
2752 btrfs_init_scrub(fs_info);
2753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2754 fs_info->check_integrity_print_mask = 0;
2755 #endif
2756 btrfs_init_balance(fs_info);
2757 btrfs_init_async_reclaim_work(fs_info);
2758
2759 spin_lock_init(&fs_info->block_group_cache_lock);
2760 fs_info->block_group_cache_tree = RB_ROOT;
2761 fs_info->first_logical_byte = (u64)-1;
2762
2763 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2764 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2765 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2766
2767 mutex_init(&fs_info->ordered_operations_mutex);
2768 mutex_init(&fs_info->tree_log_mutex);
2769 mutex_init(&fs_info->chunk_mutex);
2770 mutex_init(&fs_info->transaction_kthread_mutex);
2771 mutex_init(&fs_info->cleaner_mutex);
2772 mutex_init(&fs_info->ro_block_group_mutex);
2773 init_rwsem(&fs_info->commit_root_sem);
2774 init_rwsem(&fs_info->cleanup_work_sem);
2775 init_rwsem(&fs_info->subvol_sem);
2776 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2777
2778 btrfs_init_dev_replace_locks(fs_info);
2779 btrfs_init_qgroup(fs_info);
2780 btrfs_discard_init(fs_info);
2781
2782 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2783 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2784
2785 init_waitqueue_head(&fs_info->transaction_throttle);
2786 init_waitqueue_head(&fs_info->transaction_wait);
2787 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2788 init_waitqueue_head(&fs_info->async_submit_wait);
2789 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2790
2791 /* Usable values until the real ones are cached from the superblock */
2792 fs_info->nodesize = 4096;
2793 fs_info->sectorsize = 4096;
2794 fs_info->stripesize = 4096;
2795
2796 spin_lock_init(&fs_info->swapfile_pins_lock);
2797 fs_info->swapfile_pins = RB_ROOT;
2798
2799 fs_info->send_in_progress = 0;
2800 }
2801
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2802 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2803 {
2804 int ret;
2805
2806 fs_info->sb = sb;
2807 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2808 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2809
2810 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2811 if (ret)
2812 return ret;
2813
2814 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2815 if (ret)
2816 return ret;
2817
2818 fs_info->dirty_metadata_batch = PAGE_SIZE *
2819 (1 + ilog2(nr_cpu_ids));
2820
2821 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2822 if (ret)
2823 return ret;
2824
2825 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2826 GFP_KERNEL);
2827 if (ret)
2828 return ret;
2829
2830 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2831 GFP_KERNEL);
2832 if (!fs_info->delayed_root)
2833 return -ENOMEM;
2834 btrfs_init_delayed_root(fs_info->delayed_root);
2835
2836 return btrfs_alloc_stripe_hash_table(fs_info);
2837 }
2838
btrfs_uuid_rescan_kthread(void * data)2839 static int btrfs_uuid_rescan_kthread(void *data)
2840 {
2841 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2842 int ret;
2843
2844 /*
2845 * 1st step is to iterate through the existing UUID tree and
2846 * to delete all entries that contain outdated data.
2847 * 2nd step is to add all missing entries to the UUID tree.
2848 */
2849 ret = btrfs_uuid_tree_iterate(fs_info);
2850 if (ret < 0) {
2851 if (ret != -EINTR)
2852 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2853 ret);
2854 up(&fs_info->uuid_tree_rescan_sem);
2855 return ret;
2856 }
2857 return btrfs_uuid_scan_kthread(data);
2858 }
2859
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2860 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2861 {
2862 struct task_struct *task;
2863
2864 down(&fs_info->uuid_tree_rescan_sem);
2865 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2866 if (IS_ERR(task)) {
2867 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2868 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2869 up(&fs_info->uuid_tree_rescan_sem);
2870 return PTR_ERR(task);
2871 }
2872
2873 return 0;
2874 }
2875
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2876 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2877 char *options)
2878 {
2879 u32 sectorsize;
2880 u32 nodesize;
2881 u32 stripesize;
2882 u64 generation;
2883 u64 features;
2884 u16 csum_type;
2885 struct btrfs_super_block *disk_super;
2886 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2887 struct btrfs_root *tree_root;
2888 struct btrfs_root *chunk_root;
2889 int ret;
2890 int err = -EINVAL;
2891 int clear_free_space_tree = 0;
2892 int level;
2893
2894 ret = init_mount_fs_info(fs_info, sb);
2895 if (ret) {
2896 err = ret;
2897 goto fail;
2898 }
2899
2900 /* These need to be init'ed before we start creating inodes and such. */
2901 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2902 GFP_KERNEL);
2903 fs_info->tree_root = tree_root;
2904 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2905 GFP_KERNEL);
2906 fs_info->chunk_root = chunk_root;
2907 if (!tree_root || !chunk_root) {
2908 err = -ENOMEM;
2909 goto fail;
2910 }
2911
2912 fs_info->btree_inode = new_inode(sb);
2913 if (!fs_info->btree_inode) {
2914 err = -ENOMEM;
2915 goto fail;
2916 }
2917 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2918 btrfs_init_btree_inode(fs_info);
2919
2920 invalidate_bdev(fs_devices->latest_bdev);
2921
2922 /*
2923 * Read super block and check the signature bytes only
2924 */
2925 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2926 if (IS_ERR(disk_super)) {
2927 err = PTR_ERR(disk_super);
2928 goto fail_alloc;
2929 }
2930
2931 /*
2932 * Verify the type first, if that or the checksum value are
2933 * corrupted, we'll find out
2934 */
2935 csum_type = btrfs_super_csum_type(disk_super);
2936 if (!btrfs_supported_super_csum(csum_type)) {
2937 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2938 csum_type);
2939 err = -EINVAL;
2940 btrfs_release_disk_super(disk_super);
2941 goto fail_alloc;
2942 }
2943
2944 ret = btrfs_init_csum_hash(fs_info, csum_type);
2945 if (ret) {
2946 err = ret;
2947 btrfs_release_disk_super(disk_super);
2948 goto fail_alloc;
2949 }
2950
2951 /*
2952 * We want to check superblock checksum, the type is stored inside.
2953 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2954 */
2955 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2956 btrfs_err(fs_info, "superblock checksum mismatch");
2957 err = -EINVAL;
2958 btrfs_release_disk_super(disk_super);
2959 goto fail_alloc;
2960 }
2961
2962 /*
2963 * super_copy is zeroed at allocation time and we never touch the
2964 * following bytes up to INFO_SIZE, the checksum is calculated from
2965 * the whole block of INFO_SIZE
2966 */
2967 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2968 btrfs_release_disk_super(disk_super);
2969
2970 disk_super = fs_info->super_copy;
2971
2972 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2973 BTRFS_FSID_SIZE));
2974
2975 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2976 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2977 fs_info->super_copy->metadata_uuid,
2978 BTRFS_FSID_SIZE));
2979 }
2980
2981 features = btrfs_super_flags(disk_super);
2982 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2983 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2984 btrfs_set_super_flags(disk_super, features);
2985 btrfs_info(fs_info,
2986 "found metadata UUID change in progress flag, clearing");
2987 }
2988
2989 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2990 sizeof(*fs_info->super_for_commit));
2991
2992 ret = btrfs_validate_mount_super(fs_info);
2993 if (ret) {
2994 btrfs_err(fs_info, "superblock contains fatal errors");
2995 err = -EINVAL;
2996 goto fail_alloc;
2997 }
2998
2999 if (!btrfs_super_root(disk_super))
3000 goto fail_alloc;
3001
3002 /* check FS state, whether FS is broken. */
3003 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3004 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3005
3006 /*
3007 * In the long term, we'll store the compression type in the super
3008 * block, and it'll be used for per file compression control.
3009 */
3010 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3011
3012 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3013 if (ret) {
3014 err = ret;
3015 goto fail_alloc;
3016 }
3017
3018 features = btrfs_super_incompat_flags(disk_super) &
3019 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3020 if (features) {
3021 btrfs_err(fs_info,
3022 "cannot mount because of unsupported optional features (%llx)",
3023 features);
3024 err = -EINVAL;
3025 goto fail_alloc;
3026 }
3027
3028 features = btrfs_super_incompat_flags(disk_super);
3029 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3030 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3031 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3032 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3033 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3034
3035 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3036 btrfs_info(fs_info, "has skinny extents");
3037
3038 /*
3039 * flag our filesystem as having big metadata blocks if
3040 * they are bigger than the page size
3041 */
3042 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3043 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3044 btrfs_info(fs_info,
3045 "flagging fs with big metadata feature");
3046 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3047 }
3048
3049 nodesize = btrfs_super_nodesize(disk_super);
3050 sectorsize = btrfs_super_sectorsize(disk_super);
3051 stripesize = sectorsize;
3052 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3053 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3054
3055 /* Cache block sizes */
3056 fs_info->nodesize = nodesize;
3057 fs_info->sectorsize = sectorsize;
3058 fs_info->stripesize = stripesize;
3059
3060 /*
3061 * mixed block groups end up with duplicate but slightly offset
3062 * extent buffers for the same range. It leads to corruptions
3063 */
3064 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3065 (sectorsize != nodesize)) {
3066 btrfs_err(fs_info,
3067 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3068 nodesize, sectorsize);
3069 goto fail_alloc;
3070 }
3071
3072 /*
3073 * Needn't use the lock because there is no other task which will
3074 * update the flag.
3075 */
3076 btrfs_set_super_incompat_flags(disk_super, features);
3077
3078 features = btrfs_super_compat_ro_flags(disk_super) &
3079 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3080 if (!sb_rdonly(sb) && features) {
3081 btrfs_err(fs_info,
3082 "cannot mount read-write because of unsupported optional features (%llx)",
3083 features);
3084 err = -EINVAL;
3085 goto fail_alloc;
3086 }
3087
3088 ret = btrfs_init_workqueues(fs_info, fs_devices);
3089 if (ret) {
3090 err = ret;
3091 goto fail_sb_buffer;
3092 }
3093
3094 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3095 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3096
3097 sb->s_blocksize = sectorsize;
3098 sb->s_blocksize_bits = blksize_bits(sectorsize);
3099 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3100
3101 mutex_lock(&fs_info->chunk_mutex);
3102 ret = btrfs_read_sys_array(fs_info);
3103 mutex_unlock(&fs_info->chunk_mutex);
3104 if (ret) {
3105 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3106 goto fail_sb_buffer;
3107 }
3108
3109 generation = btrfs_super_chunk_root_generation(disk_super);
3110 level = btrfs_super_chunk_root_level(disk_super);
3111
3112 chunk_root->node = read_tree_block(fs_info,
3113 btrfs_super_chunk_root(disk_super),
3114 generation, level, NULL);
3115 if (IS_ERR(chunk_root->node) ||
3116 !extent_buffer_uptodate(chunk_root->node)) {
3117 btrfs_err(fs_info, "failed to read chunk root");
3118 if (!IS_ERR(chunk_root->node))
3119 free_extent_buffer(chunk_root->node);
3120 chunk_root->node = NULL;
3121 goto fail_tree_roots;
3122 }
3123 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3124 chunk_root->commit_root = btrfs_root_node(chunk_root);
3125
3126 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3127 offsetof(struct btrfs_header, chunk_tree_uuid),
3128 BTRFS_UUID_SIZE);
3129
3130 ret = btrfs_read_chunk_tree(fs_info);
3131 if (ret) {
3132 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3133 goto fail_tree_roots;
3134 }
3135
3136 /*
3137 * Keep the devid that is marked to be the target device for the
3138 * device replace procedure
3139 */
3140 btrfs_free_extra_devids(fs_devices, 0);
3141
3142 if (!fs_devices->latest_bdev) {
3143 btrfs_err(fs_info, "failed to read devices");
3144 goto fail_tree_roots;
3145 }
3146
3147 ret = init_tree_roots(fs_info);
3148 if (ret)
3149 goto fail_tree_roots;
3150
3151 /*
3152 * If we have a uuid root and we're not being told to rescan we need to
3153 * check the generation here so we can set the
3154 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3155 * transaction during a balance or the log replay without updating the
3156 * uuid generation, and then if we crash we would rescan the uuid tree,
3157 * even though it was perfectly fine.
3158 */
3159 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3160 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3161 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3162
3163 ret = btrfs_verify_dev_extents(fs_info);
3164 if (ret) {
3165 btrfs_err(fs_info,
3166 "failed to verify dev extents against chunks: %d",
3167 ret);
3168 goto fail_block_groups;
3169 }
3170 ret = btrfs_recover_balance(fs_info);
3171 if (ret) {
3172 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3173 goto fail_block_groups;
3174 }
3175
3176 ret = btrfs_init_dev_stats(fs_info);
3177 if (ret) {
3178 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3179 goto fail_block_groups;
3180 }
3181
3182 ret = btrfs_init_dev_replace(fs_info);
3183 if (ret) {
3184 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3185 goto fail_block_groups;
3186 }
3187
3188 btrfs_free_extra_devids(fs_devices, 1);
3189
3190 ret = btrfs_sysfs_add_fsid(fs_devices);
3191 if (ret) {
3192 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3193 ret);
3194 goto fail_block_groups;
3195 }
3196
3197 ret = btrfs_sysfs_add_mounted(fs_info);
3198 if (ret) {
3199 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3200 goto fail_fsdev_sysfs;
3201 }
3202
3203 ret = btrfs_init_space_info(fs_info);
3204 if (ret) {
3205 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3206 goto fail_sysfs;
3207 }
3208
3209 ret = btrfs_read_block_groups(fs_info);
3210 if (ret) {
3211 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3212 goto fail_sysfs;
3213 }
3214
3215 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3216 btrfs_warn(fs_info,
3217 "writable mount is not allowed due to too many missing devices");
3218 goto fail_sysfs;
3219 }
3220
3221 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3222 "btrfs-cleaner");
3223 if (IS_ERR(fs_info->cleaner_kthread))
3224 goto fail_sysfs;
3225
3226 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3227 tree_root,
3228 "btrfs-transaction");
3229 if (IS_ERR(fs_info->transaction_kthread))
3230 goto fail_cleaner;
3231
3232 if (!btrfs_test_opt(fs_info, NOSSD) &&
3233 !fs_info->fs_devices->rotating) {
3234 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3235 }
3236
3237 /*
3238 * Mount does not set all options immediately, we can do it now and do
3239 * not have to wait for transaction commit
3240 */
3241 btrfs_apply_pending_changes(fs_info);
3242
3243 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3244 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3245 ret = btrfsic_mount(fs_info, fs_devices,
3246 btrfs_test_opt(fs_info,
3247 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3248 1 : 0,
3249 fs_info->check_integrity_print_mask);
3250 if (ret)
3251 btrfs_warn(fs_info,
3252 "failed to initialize integrity check module: %d",
3253 ret);
3254 }
3255 #endif
3256 ret = btrfs_read_qgroup_config(fs_info);
3257 if (ret)
3258 goto fail_trans_kthread;
3259
3260 if (btrfs_build_ref_tree(fs_info))
3261 btrfs_err(fs_info, "couldn't build ref tree");
3262
3263 /* do not make disk changes in broken FS or nologreplay is given */
3264 if (btrfs_super_log_root(disk_super) != 0 &&
3265 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3266 btrfs_info(fs_info, "start tree-log replay");
3267 ret = btrfs_replay_log(fs_info, fs_devices);
3268 if (ret) {
3269 err = ret;
3270 goto fail_qgroup;
3271 }
3272 }
3273
3274 ret = btrfs_find_orphan_roots(fs_info);
3275 if (ret)
3276 goto fail_qgroup;
3277
3278 if (!sb_rdonly(sb)) {
3279 ret = btrfs_cleanup_fs_roots(fs_info);
3280 if (ret)
3281 goto fail_qgroup;
3282
3283 mutex_lock(&fs_info->cleaner_mutex);
3284 ret = btrfs_recover_relocation(tree_root);
3285 mutex_unlock(&fs_info->cleaner_mutex);
3286 if (ret < 0) {
3287 btrfs_warn(fs_info, "failed to recover relocation: %d",
3288 ret);
3289 err = -EINVAL;
3290 goto fail_qgroup;
3291 }
3292 }
3293
3294 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3295 if (IS_ERR(fs_info->fs_root)) {
3296 err = PTR_ERR(fs_info->fs_root);
3297 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3298 fs_info->fs_root = NULL;
3299 goto fail_qgroup;
3300 }
3301
3302 if (sb_rdonly(sb))
3303 return 0;
3304
3305 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3306 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3307 clear_free_space_tree = 1;
3308 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3309 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3310 btrfs_warn(fs_info, "free space tree is invalid");
3311 clear_free_space_tree = 1;
3312 }
3313
3314 if (clear_free_space_tree) {
3315 btrfs_info(fs_info, "clearing free space tree");
3316 ret = btrfs_clear_free_space_tree(fs_info);
3317 if (ret) {
3318 btrfs_warn(fs_info,
3319 "failed to clear free space tree: %d", ret);
3320 close_ctree(fs_info);
3321 return ret;
3322 }
3323 }
3324
3325 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3326 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3327 btrfs_info(fs_info, "creating free space tree");
3328 ret = btrfs_create_free_space_tree(fs_info);
3329 if (ret) {
3330 btrfs_warn(fs_info,
3331 "failed to create free space tree: %d", ret);
3332 close_ctree(fs_info);
3333 return ret;
3334 }
3335 }
3336
3337 down_read(&fs_info->cleanup_work_sem);
3338 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3339 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3340 up_read(&fs_info->cleanup_work_sem);
3341 close_ctree(fs_info);
3342 return ret;
3343 }
3344 up_read(&fs_info->cleanup_work_sem);
3345
3346 ret = btrfs_resume_balance_async(fs_info);
3347 if (ret) {
3348 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3349 close_ctree(fs_info);
3350 return ret;
3351 }
3352
3353 ret = btrfs_resume_dev_replace_async(fs_info);
3354 if (ret) {
3355 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3356 close_ctree(fs_info);
3357 return ret;
3358 }
3359
3360 btrfs_qgroup_rescan_resume(fs_info);
3361 btrfs_discard_resume(fs_info);
3362
3363 if (!fs_info->uuid_root) {
3364 btrfs_info(fs_info, "creating UUID tree");
3365 ret = btrfs_create_uuid_tree(fs_info);
3366 if (ret) {
3367 btrfs_warn(fs_info,
3368 "failed to create the UUID tree: %d", ret);
3369 close_ctree(fs_info);
3370 return ret;
3371 }
3372 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3373 fs_info->generation !=
3374 btrfs_super_uuid_tree_generation(disk_super)) {
3375 btrfs_info(fs_info, "checking UUID tree");
3376 ret = btrfs_check_uuid_tree(fs_info);
3377 if (ret) {
3378 btrfs_warn(fs_info,
3379 "failed to check the UUID tree: %d", ret);
3380 close_ctree(fs_info);
3381 return ret;
3382 }
3383 }
3384 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3385
3386 /*
3387 * backuproot only affect mount behavior, and if open_ctree succeeded,
3388 * no need to keep the flag
3389 */
3390 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3391
3392 return 0;
3393
3394 fail_qgroup:
3395 btrfs_free_qgroup_config(fs_info);
3396 fail_trans_kthread:
3397 kthread_stop(fs_info->transaction_kthread);
3398 btrfs_cleanup_transaction(fs_info);
3399 btrfs_free_fs_roots(fs_info);
3400 fail_cleaner:
3401 kthread_stop(fs_info->cleaner_kthread);
3402
3403 /*
3404 * make sure we're done with the btree inode before we stop our
3405 * kthreads
3406 */
3407 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3408
3409 fail_sysfs:
3410 btrfs_sysfs_remove_mounted(fs_info);
3411
3412 fail_fsdev_sysfs:
3413 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3414
3415 fail_block_groups:
3416 btrfs_put_block_group_cache(fs_info);
3417
3418 fail_tree_roots:
3419 if (fs_info->data_reloc_root)
3420 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3421 free_root_pointers(fs_info, true);
3422 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3423
3424 fail_sb_buffer:
3425 btrfs_stop_all_workers(fs_info);
3426 btrfs_free_block_groups(fs_info);
3427 fail_alloc:
3428 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3429
3430 iput(fs_info->btree_inode);
3431 fail:
3432 btrfs_close_devices(fs_info->fs_devices);
3433 return err;
3434 }
3435 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3436
btrfs_end_super_write(struct bio * bio)3437 static void btrfs_end_super_write(struct bio *bio)
3438 {
3439 struct btrfs_device *device = bio->bi_private;
3440 struct bio_vec *bvec;
3441 struct bvec_iter_all iter_all;
3442 struct page *page;
3443
3444 bio_for_each_segment_all(bvec, bio, iter_all) {
3445 page = bvec->bv_page;
3446
3447 if (bio->bi_status) {
3448 btrfs_warn_rl_in_rcu(device->fs_info,
3449 "lost page write due to IO error on %s (%d)",
3450 rcu_str_deref(device->name),
3451 blk_status_to_errno(bio->bi_status));
3452 ClearPageUptodate(page);
3453 SetPageError(page);
3454 btrfs_dev_stat_inc_and_print(device,
3455 BTRFS_DEV_STAT_WRITE_ERRS);
3456 } else {
3457 SetPageUptodate(page);
3458 }
3459
3460 put_page(page);
3461 unlock_page(page);
3462 }
3463
3464 bio_put(bio);
3465 }
3466
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num)3467 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3468 int copy_num)
3469 {
3470 struct btrfs_super_block *super;
3471 struct page *page;
3472 u64 bytenr;
3473 struct address_space *mapping = bdev->bd_inode->i_mapping;
3474
3475 bytenr = btrfs_sb_offset(copy_num);
3476 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3477 return ERR_PTR(-EINVAL);
3478
3479 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3480 if (IS_ERR(page))
3481 return ERR_CAST(page);
3482
3483 super = page_address(page);
3484 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3485 btrfs_release_disk_super(super);
3486 return ERR_PTR(-ENODATA);
3487 }
3488
3489 if (btrfs_super_bytenr(super) != bytenr) {
3490 btrfs_release_disk_super(super);
3491 return ERR_PTR(-EINVAL);
3492 }
3493
3494 return super;
3495 }
3496
3497
btrfs_read_dev_super(struct block_device * bdev)3498 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3499 {
3500 struct btrfs_super_block *super, *latest = NULL;
3501 int i;
3502 u64 transid = 0;
3503
3504 /* we would like to check all the supers, but that would make
3505 * a btrfs mount succeed after a mkfs from a different FS.
3506 * So, we need to add a special mount option to scan for
3507 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3508 */
3509 for (i = 0; i < 1; i++) {
3510 super = btrfs_read_dev_one_super(bdev, i);
3511 if (IS_ERR(super))
3512 continue;
3513
3514 if (!latest || btrfs_super_generation(super) > transid) {
3515 if (latest)
3516 btrfs_release_disk_super(super);
3517
3518 latest = super;
3519 transid = btrfs_super_generation(super);
3520 }
3521 }
3522
3523 return super;
3524 }
3525
3526 /*
3527 * Write superblock @sb to the @device. Do not wait for completion, all the
3528 * pages we use for writing are locked.
3529 *
3530 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3531 * the expected device size at commit time. Note that max_mirrors must be
3532 * same for write and wait phases.
3533 *
3534 * Return number of errors when page is not found or submission fails.
3535 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3536 static int write_dev_supers(struct btrfs_device *device,
3537 struct btrfs_super_block *sb, int max_mirrors)
3538 {
3539 struct btrfs_fs_info *fs_info = device->fs_info;
3540 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3541 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3542 int i;
3543 int errors = 0;
3544 u64 bytenr;
3545
3546 if (max_mirrors == 0)
3547 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3548
3549 shash->tfm = fs_info->csum_shash;
3550
3551 for (i = 0; i < max_mirrors; i++) {
3552 struct page *page;
3553 struct bio *bio;
3554 struct btrfs_super_block *disk_super;
3555
3556 bytenr = btrfs_sb_offset(i);
3557 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3558 device->commit_total_bytes)
3559 break;
3560
3561 btrfs_set_super_bytenr(sb, bytenr);
3562
3563 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3564 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3565 sb->csum);
3566
3567 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3568 GFP_NOFS);
3569 if (!page) {
3570 btrfs_err(device->fs_info,
3571 "couldn't get super block page for bytenr %llu",
3572 bytenr);
3573 errors++;
3574 continue;
3575 }
3576
3577 /* Bump the refcount for wait_dev_supers() */
3578 get_page(page);
3579
3580 disk_super = page_address(page);
3581 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3582
3583 /*
3584 * Directly use bios here instead of relying on the page cache
3585 * to do I/O, so we don't lose the ability to do integrity
3586 * checking.
3587 */
3588 bio = bio_alloc(GFP_NOFS, 1);
3589 bio_set_dev(bio, device->bdev);
3590 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3591 bio->bi_private = device;
3592 bio->bi_end_io = btrfs_end_super_write;
3593 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3594 offset_in_page(bytenr));
3595
3596 /*
3597 * We FUA only the first super block. The others we allow to
3598 * go down lazy and there's a short window where the on-disk
3599 * copies might still contain the older version.
3600 */
3601 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3602 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3603 bio->bi_opf |= REQ_FUA;
3604
3605 btrfsic_submit_bio(bio);
3606 }
3607 return errors < i ? 0 : -1;
3608 }
3609
3610 /*
3611 * Wait for write completion of superblocks done by write_dev_supers,
3612 * @max_mirrors same for write and wait phases.
3613 *
3614 * Return number of errors when page is not found or not marked up to
3615 * date.
3616 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3617 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3618 {
3619 int i;
3620 int errors = 0;
3621 bool primary_failed = false;
3622 u64 bytenr;
3623
3624 if (max_mirrors == 0)
3625 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3626
3627 for (i = 0; i < max_mirrors; i++) {
3628 struct page *page;
3629
3630 bytenr = btrfs_sb_offset(i);
3631 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3632 device->commit_total_bytes)
3633 break;
3634
3635 page = find_get_page(device->bdev->bd_inode->i_mapping,
3636 bytenr >> PAGE_SHIFT);
3637 if (!page) {
3638 errors++;
3639 if (i == 0)
3640 primary_failed = true;
3641 continue;
3642 }
3643 /* Page is submitted locked and unlocked once the IO completes */
3644 wait_on_page_locked(page);
3645 if (PageError(page)) {
3646 errors++;
3647 if (i == 0)
3648 primary_failed = true;
3649 }
3650
3651 /* Drop our reference */
3652 put_page(page);
3653
3654 /* Drop the reference from the writing run */
3655 put_page(page);
3656 }
3657
3658 /* log error, force error return */
3659 if (primary_failed) {
3660 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3661 device->devid);
3662 return -1;
3663 }
3664
3665 return errors < i ? 0 : -1;
3666 }
3667
3668 /*
3669 * endio for the write_dev_flush, this will wake anyone waiting
3670 * for the barrier when it is done
3671 */
btrfs_end_empty_barrier(struct bio * bio)3672 static void btrfs_end_empty_barrier(struct bio *bio)
3673 {
3674 complete(bio->bi_private);
3675 }
3676
3677 /*
3678 * Submit a flush request to the device if it supports it. Error handling is
3679 * done in the waiting counterpart.
3680 */
write_dev_flush(struct btrfs_device * device)3681 static void write_dev_flush(struct btrfs_device *device)
3682 {
3683 struct request_queue *q = bdev_get_queue(device->bdev);
3684 struct bio *bio = device->flush_bio;
3685
3686 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3687 return;
3688
3689 bio_reset(bio);
3690 bio->bi_end_io = btrfs_end_empty_barrier;
3691 bio_set_dev(bio, device->bdev);
3692 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3693 init_completion(&device->flush_wait);
3694 bio->bi_private = &device->flush_wait;
3695
3696 btrfsic_submit_bio(bio);
3697 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3698 }
3699
3700 /*
3701 * If the flush bio has been submitted by write_dev_flush, wait for it.
3702 */
wait_dev_flush(struct btrfs_device * device)3703 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3704 {
3705 struct bio *bio = device->flush_bio;
3706
3707 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3708 return BLK_STS_OK;
3709
3710 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3711 wait_for_completion_io(&device->flush_wait);
3712
3713 return bio->bi_status;
3714 }
3715
check_barrier_error(struct btrfs_fs_info * fs_info)3716 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3717 {
3718 if (!btrfs_check_rw_degradable(fs_info, NULL))
3719 return -EIO;
3720 return 0;
3721 }
3722
3723 /*
3724 * send an empty flush down to each device in parallel,
3725 * then wait for them
3726 */
barrier_all_devices(struct btrfs_fs_info * info)3727 static int barrier_all_devices(struct btrfs_fs_info *info)
3728 {
3729 struct list_head *head;
3730 struct btrfs_device *dev;
3731 int errors_wait = 0;
3732 blk_status_t ret;
3733
3734 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3735 /* send down all the barriers */
3736 head = &info->fs_devices->devices;
3737 list_for_each_entry(dev, head, dev_list) {
3738 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3739 continue;
3740 if (!dev->bdev)
3741 continue;
3742 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3743 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3744 continue;
3745
3746 write_dev_flush(dev);
3747 dev->last_flush_error = BLK_STS_OK;
3748 }
3749
3750 /* wait for all the barriers */
3751 list_for_each_entry(dev, head, dev_list) {
3752 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3753 continue;
3754 if (!dev->bdev) {
3755 errors_wait++;
3756 continue;
3757 }
3758 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3759 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3760 continue;
3761
3762 ret = wait_dev_flush(dev);
3763 if (ret) {
3764 dev->last_flush_error = ret;
3765 btrfs_dev_stat_inc_and_print(dev,
3766 BTRFS_DEV_STAT_FLUSH_ERRS);
3767 errors_wait++;
3768 }
3769 }
3770
3771 if (errors_wait) {
3772 /*
3773 * At some point we need the status of all disks
3774 * to arrive at the volume status. So error checking
3775 * is being pushed to a separate loop.
3776 */
3777 return check_barrier_error(info);
3778 }
3779 return 0;
3780 }
3781
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3782 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3783 {
3784 int raid_type;
3785 int min_tolerated = INT_MAX;
3786
3787 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3788 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3789 min_tolerated = min_t(int, min_tolerated,
3790 btrfs_raid_array[BTRFS_RAID_SINGLE].
3791 tolerated_failures);
3792
3793 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3794 if (raid_type == BTRFS_RAID_SINGLE)
3795 continue;
3796 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3797 continue;
3798 min_tolerated = min_t(int, min_tolerated,
3799 btrfs_raid_array[raid_type].
3800 tolerated_failures);
3801 }
3802
3803 if (min_tolerated == INT_MAX) {
3804 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3805 min_tolerated = 0;
3806 }
3807
3808 return min_tolerated;
3809 }
3810
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3811 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3812 {
3813 struct list_head *head;
3814 struct btrfs_device *dev;
3815 struct btrfs_super_block *sb;
3816 struct btrfs_dev_item *dev_item;
3817 int ret;
3818 int do_barriers;
3819 int max_errors;
3820 int total_errors = 0;
3821 u64 flags;
3822
3823 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3824
3825 /*
3826 * max_mirrors == 0 indicates we're from commit_transaction,
3827 * not from fsync where the tree roots in fs_info have not
3828 * been consistent on disk.
3829 */
3830 if (max_mirrors == 0)
3831 backup_super_roots(fs_info);
3832
3833 sb = fs_info->super_for_commit;
3834 dev_item = &sb->dev_item;
3835
3836 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3837 head = &fs_info->fs_devices->devices;
3838 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3839
3840 if (do_barriers) {
3841 ret = barrier_all_devices(fs_info);
3842 if (ret) {
3843 mutex_unlock(
3844 &fs_info->fs_devices->device_list_mutex);
3845 btrfs_handle_fs_error(fs_info, ret,
3846 "errors while submitting device barriers.");
3847 return ret;
3848 }
3849 }
3850
3851 list_for_each_entry(dev, head, dev_list) {
3852 if (!dev->bdev) {
3853 total_errors++;
3854 continue;
3855 }
3856 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3857 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3858 continue;
3859
3860 btrfs_set_stack_device_generation(dev_item, 0);
3861 btrfs_set_stack_device_type(dev_item, dev->type);
3862 btrfs_set_stack_device_id(dev_item, dev->devid);
3863 btrfs_set_stack_device_total_bytes(dev_item,
3864 dev->commit_total_bytes);
3865 btrfs_set_stack_device_bytes_used(dev_item,
3866 dev->commit_bytes_used);
3867 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3868 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3869 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3870 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3871 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3872 BTRFS_FSID_SIZE);
3873
3874 flags = btrfs_super_flags(sb);
3875 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3876
3877 ret = btrfs_validate_write_super(fs_info, sb);
3878 if (ret < 0) {
3879 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3880 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3881 "unexpected superblock corruption detected");
3882 return -EUCLEAN;
3883 }
3884
3885 ret = write_dev_supers(dev, sb, max_mirrors);
3886 if (ret)
3887 total_errors++;
3888 }
3889 if (total_errors > max_errors) {
3890 btrfs_err(fs_info, "%d errors while writing supers",
3891 total_errors);
3892 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893
3894 /* FUA is masked off if unsupported and can't be the reason */
3895 btrfs_handle_fs_error(fs_info, -EIO,
3896 "%d errors while writing supers",
3897 total_errors);
3898 return -EIO;
3899 }
3900
3901 total_errors = 0;
3902 list_for_each_entry(dev, head, dev_list) {
3903 if (!dev->bdev)
3904 continue;
3905 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3906 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3907 continue;
3908
3909 ret = wait_dev_supers(dev, max_mirrors);
3910 if (ret)
3911 total_errors++;
3912 }
3913 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3914 if (total_errors > max_errors) {
3915 btrfs_handle_fs_error(fs_info, -EIO,
3916 "%d errors while writing supers",
3917 total_errors);
3918 return -EIO;
3919 }
3920 return 0;
3921 }
3922
3923 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3924 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3925 struct btrfs_root *root)
3926 {
3927 bool drop_ref = false;
3928
3929 spin_lock(&fs_info->fs_roots_radix_lock);
3930 radix_tree_delete(&fs_info->fs_roots_radix,
3931 (unsigned long)root->root_key.objectid);
3932 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3933 drop_ref = true;
3934 spin_unlock(&fs_info->fs_roots_radix_lock);
3935
3936 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3937 ASSERT(root->log_root == NULL);
3938 if (root->reloc_root) {
3939 btrfs_put_root(root->reloc_root);
3940 root->reloc_root = NULL;
3941 }
3942 }
3943
3944 if (root->free_ino_pinned)
3945 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3946 if (root->free_ino_ctl)
3947 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3948 if (root->ino_cache_inode) {
3949 iput(root->ino_cache_inode);
3950 root->ino_cache_inode = NULL;
3951 }
3952 if (drop_ref)
3953 btrfs_put_root(root);
3954 }
3955
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3956 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3957 {
3958 u64 root_objectid = 0;
3959 struct btrfs_root *gang[8];
3960 int i = 0;
3961 int err = 0;
3962 unsigned int ret = 0;
3963
3964 while (1) {
3965 spin_lock(&fs_info->fs_roots_radix_lock);
3966 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3967 (void **)gang, root_objectid,
3968 ARRAY_SIZE(gang));
3969 if (!ret) {
3970 spin_unlock(&fs_info->fs_roots_radix_lock);
3971 break;
3972 }
3973 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3974
3975 for (i = 0; i < ret; i++) {
3976 /* Avoid to grab roots in dead_roots */
3977 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3978 gang[i] = NULL;
3979 continue;
3980 }
3981 /* grab all the search result for later use */
3982 gang[i] = btrfs_grab_root(gang[i]);
3983 }
3984 spin_unlock(&fs_info->fs_roots_radix_lock);
3985
3986 for (i = 0; i < ret; i++) {
3987 if (!gang[i])
3988 continue;
3989 root_objectid = gang[i]->root_key.objectid;
3990 err = btrfs_orphan_cleanup(gang[i]);
3991 if (err)
3992 break;
3993 btrfs_put_root(gang[i]);
3994 }
3995 root_objectid++;
3996 }
3997
3998 /* release the uncleaned roots due to error */
3999 for (; i < ret; i++) {
4000 if (gang[i])
4001 btrfs_put_root(gang[i]);
4002 }
4003 return err;
4004 }
4005
btrfs_commit_super(struct btrfs_fs_info * fs_info)4006 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4007 {
4008 struct btrfs_root *root = fs_info->tree_root;
4009 struct btrfs_trans_handle *trans;
4010
4011 mutex_lock(&fs_info->cleaner_mutex);
4012 btrfs_run_delayed_iputs(fs_info);
4013 mutex_unlock(&fs_info->cleaner_mutex);
4014 wake_up_process(fs_info->cleaner_kthread);
4015
4016 /* wait until ongoing cleanup work done */
4017 down_write(&fs_info->cleanup_work_sem);
4018 up_write(&fs_info->cleanup_work_sem);
4019
4020 trans = btrfs_join_transaction(root);
4021 if (IS_ERR(trans))
4022 return PTR_ERR(trans);
4023 return btrfs_commit_transaction(trans);
4024 }
4025
close_ctree(struct btrfs_fs_info * fs_info)4026 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4027 {
4028 int ret;
4029
4030 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4031 /*
4032 * We don't want the cleaner to start new transactions, add more delayed
4033 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4034 * because that frees the task_struct, and the transaction kthread might
4035 * still try to wake up the cleaner.
4036 */
4037 kthread_park(fs_info->cleaner_kthread);
4038
4039 /* wait for the qgroup rescan worker to stop */
4040 btrfs_qgroup_wait_for_completion(fs_info, false);
4041
4042 /* wait for the uuid_scan task to finish */
4043 down(&fs_info->uuid_tree_rescan_sem);
4044 /* avoid complains from lockdep et al., set sem back to initial state */
4045 up(&fs_info->uuid_tree_rescan_sem);
4046
4047 /* pause restriper - we want to resume on mount */
4048 btrfs_pause_balance(fs_info);
4049
4050 btrfs_dev_replace_suspend_for_unmount(fs_info);
4051
4052 btrfs_scrub_cancel(fs_info);
4053
4054 /* wait for any defraggers to finish */
4055 wait_event(fs_info->transaction_wait,
4056 (atomic_read(&fs_info->defrag_running) == 0));
4057
4058 /* clear out the rbtree of defraggable inodes */
4059 btrfs_cleanup_defrag_inodes(fs_info);
4060
4061 cancel_work_sync(&fs_info->async_reclaim_work);
4062 cancel_work_sync(&fs_info->async_data_reclaim_work);
4063
4064 /* Cancel or finish ongoing discard work */
4065 btrfs_discard_cleanup(fs_info);
4066
4067 if (!sb_rdonly(fs_info->sb)) {
4068 /*
4069 * The cleaner kthread is stopped, so do one final pass over
4070 * unused block groups.
4071 */
4072 btrfs_delete_unused_bgs(fs_info);
4073
4074 /*
4075 * There might be existing delayed inode workers still running
4076 * and holding an empty delayed inode item. We must wait for
4077 * them to complete first because they can create a transaction.
4078 * This happens when someone calls btrfs_balance_delayed_items()
4079 * and then a transaction commit runs the same delayed nodes
4080 * before any delayed worker has done something with the nodes.
4081 * We must wait for any worker here and not at transaction
4082 * commit time since that could cause a deadlock.
4083 * This is a very rare case.
4084 */
4085 btrfs_flush_workqueue(fs_info->delayed_workers);
4086
4087 ret = btrfs_commit_super(fs_info);
4088 if (ret)
4089 btrfs_err(fs_info, "commit super ret %d", ret);
4090 }
4091
4092 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4093 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4094 btrfs_error_commit_super(fs_info);
4095
4096 kthread_stop(fs_info->transaction_kthread);
4097 kthread_stop(fs_info->cleaner_kthread);
4098
4099 ASSERT(list_empty(&fs_info->delayed_iputs));
4100 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4101
4102 if (btrfs_check_quota_leak(fs_info)) {
4103 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4104 btrfs_err(fs_info, "qgroup reserved space leaked");
4105 }
4106
4107 btrfs_free_qgroup_config(fs_info);
4108 ASSERT(list_empty(&fs_info->delalloc_roots));
4109
4110 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4111 btrfs_info(fs_info, "at unmount delalloc count %lld",
4112 percpu_counter_sum(&fs_info->delalloc_bytes));
4113 }
4114
4115 if (percpu_counter_sum(&fs_info->dio_bytes))
4116 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4117 percpu_counter_sum(&fs_info->dio_bytes));
4118
4119 btrfs_sysfs_remove_mounted(fs_info);
4120 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4121
4122 btrfs_put_block_group_cache(fs_info);
4123
4124 /*
4125 * we must make sure there is not any read request to
4126 * submit after we stopping all workers.
4127 */
4128 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4129 btrfs_stop_all_workers(fs_info);
4130
4131 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4132 free_root_pointers(fs_info, true);
4133 btrfs_free_fs_roots(fs_info);
4134
4135 /*
4136 * We must free the block groups after dropping the fs_roots as we could
4137 * have had an IO error and have left over tree log blocks that aren't
4138 * cleaned up until the fs roots are freed. This makes the block group
4139 * accounting appear to be wrong because there's pending reserved bytes,
4140 * so make sure we do the block group cleanup afterwards.
4141 */
4142 btrfs_free_block_groups(fs_info);
4143
4144 iput(fs_info->btree_inode);
4145
4146 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4147 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4148 btrfsic_unmount(fs_info->fs_devices);
4149 #endif
4150
4151 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4152 btrfs_close_devices(fs_info->fs_devices);
4153 }
4154
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4155 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4156 int atomic)
4157 {
4158 int ret;
4159 struct inode *btree_inode = buf->pages[0]->mapping->host;
4160
4161 ret = extent_buffer_uptodate(buf);
4162 if (!ret)
4163 return ret;
4164
4165 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4166 parent_transid, atomic);
4167 if (ret == -EAGAIN)
4168 return ret;
4169 return !ret;
4170 }
4171
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4172 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4173 {
4174 struct btrfs_fs_info *fs_info;
4175 struct btrfs_root *root;
4176 u64 transid = btrfs_header_generation(buf);
4177 int was_dirty;
4178
4179 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4180 /*
4181 * This is a fast path so only do this check if we have sanity tests
4182 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4183 * outside of the sanity tests.
4184 */
4185 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4186 return;
4187 #endif
4188 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4189 fs_info = root->fs_info;
4190 btrfs_assert_tree_locked(buf);
4191 if (transid != fs_info->generation)
4192 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4193 buf->start, transid, fs_info->generation);
4194 was_dirty = set_extent_buffer_dirty(buf);
4195 if (!was_dirty)
4196 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4197 buf->len,
4198 fs_info->dirty_metadata_batch);
4199 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4200 /*
4201 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4202 * but item data not updated.
4203 * So here we should only check item pointers, not item data.
4204 */
4205 if (btrfs_header_level(buf) == 0 &&
4206 btrfs_check_leaf_relaxed(buf)) {
4207 btrfs_print_leaf(buf);
4208 ASSERT(0);
4209 }
4210 #endif
4211 }
4212
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4213 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4214 int flush_delayed)
4215 {
4216 /*
4217 * looks as though older kernels can get into trouble with
4218 * this code, they end up stuck in balance_dirty_pages forever
4219 */
4220 int ret;
4221
4222 if (current->flags & PF_MEMALLOC)
4223 return;
4224
4225 if (flush_delayed)
4226 btrfs_balance_delayed_items(fs_info);
4227
4228 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4229 BTRFS_DIRTY_METADATA_THRESH,
4230 fs_info->dirty_metadata_batch);
4231 if (ret > 0) {
4232 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4233 }
4234 }
4235
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4236 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4237 {
4238 __btrfs_btree_balance_dirty(fs_info, 1);
4239 }
4240
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4241 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4242 {
4243 __btrfs_btree_balance_dirty(fs_info, 0);
4244 }
4245
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4246 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4247 struct btrfs_key *first_key)
4248 {
4249 return btree_read_extent_buffer_pages(buf, parent_transid,
4250 level, first_key);
4251 }
4252
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4253 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4254 {
4255 /* cleanup FS via transaction */
4256 btrfs_cleanup_transaction(fs_info);
4257
4258 mutex_lock(&fs_info->cleaner_mutex);
4259 btrfs_run_delayed_iputs(fs_info);
4260 mutex_unlock(&fs_info->cleaner_mutex);
4261
4262 down_write(&fs_info->cleanup_work_sem);
4263 up_write(&fs_info->cleanup_work_sem);
4264 }
4265
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4266 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4267 {
4268 struct btrfs_root *gang[8];
4269 u64 root_objectid = 0;
4270 int ret;
4271
4272 spin_lock(&fs_info->fs_roots_radix_lock);
4273 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4274 (void **)gang, root_objectid,
4275 ARRAY_SIZE(gang))) != 0) {
4276 int i;
4277
4278 for (i = 0; i < ret; i++)
4279 gang[i] = btrfs_grab_root(gang[i]);
4280 spin_unlock(&fs_info->fs_roots_radix_lock);
4281
4282 for (i = 0; i < ret; i++) {
4283 if (!gang[i])
4284 continue;
4285 root_objectid = gang[i]->root_key.objectid;
4286 btrfs_free_log(NULL, gang[i]);
4287 btrfs_put_root(gang[i]);
4288 }
4289 root_objectid++;
4290 spin_lock(&fs_info->fs_roots_radix_lock);
4291 }
4292 spin_unlock(&fs_info->fs_roots_radix_lock);
4293 btrfs_free_log_root_tree(NULL, fs_info);
4294 }
4295
btrfs_destroy_ordered_extents(struct btrfs_root * root)4296 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4297 {
4298 struct btrfs_ordered_extent *ordered;
4299
4300 spin_lock(&root->ordered_extent_lock);
4301 /*
4302 * This will just short circuit the ordered completion stuff which will
4303 * make sure the ordered extent gets properly cleaned up.
4304 */
4305 list_for_each_entry(ordered, &root->ordered_extents,
4306 root_extent_list)
4307 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4308 spin_unlock(&root->ordered_extent_lock);
4309 }
4310
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4311 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4312 {
4313 struct btrfs_root *root;
4314 struct list_head splice;
4315
4316 INIT_LIST_HEAD(&splice);
4317
4318 spin_lock(&fs_info->ordered_root_lock);
4319 list_splice_init(&fs_info->ordered_roots, &splice);
4320 while (!list_empty(&splice)) {
4321 root = list_first_entry(&splice, struct btrfs_root,
4322 ordered_root);
4323 list_move_tail(&root->ordered_root,
4324 &fs_info->ordered_roots);
4325
4326 spin_unlock(&fs_info->ordered_root_lock);
4327 btrfs_destroy_ordered_extents(root);
4328
4329 cond_resched();
4330 spin_lock(&fs_info->ordered_root_lock);
4331 }
4332 spin_unlock(&fs_info->ordered_root_lock);
4333
4334 /*
4335 * We need this here because if we've been flipped read-only we won't
4336 * get sync() from the umount, so we need to make sure any ordered
4337 * extents that haven't had their dirty pages IO start writeout yet
4338 * actually get run and error out properly.
4339 */
4340 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4341 }
4342
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4343 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4344 struct btrfs_fs_info *fs_info)
4345 {
4346 struct rb_node *node;
4347 struct btrfs_delayed_ref_root *delayed_refs;
4348 struct btrfs_delayed_ref_node *ref;
4349 int ret = 0;
4350
4351 delayed_refs = &trans->delayed_refs;
4352
4353 spin_lock(&delayed_refs->lock);
4354 if (atomic_read(&delayed_refs->num_entries) == 0) {
4355 spin_unlock(&delayed_refs->lock);
4356 btrfs_debug(fs_info, "delayed_refs has NO entry");
4357 return ret;
4358 }
4359
4360 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4361 struct btrfs_delayed_ref_head *head;
4362 struct rb_node *n;
4363 bool pin_bytes = false;
4364
4365 head = rb_entry(node, struct btrfs_delayed_ref_head,
4366 href_node);
4367 if (btrfs_delayed_ref_lock(delayed_refs, head))
4368 continue;
4369
4370 spin_lock(&head->lock);
4371 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4372 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4373 ref_node);
4374 ref->in_tree = 0;
4375 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4376 RB_CLEAR_NODE(&ref->ref_node);
4377 if (!list_empty(&ref->add_list))
4378 list_del(&ref->add_list);
4379 atomic_dec(&delayed_refs->num_entries);
4380 btrfs_put_delayed_ref(ref);
4381 }
4382 if (head->must_insert_reserved)
4383 pin_bytes = true;
4384 btrfs_free_delayed_extent_op(head->extent_op);
4385 btrfs_delete_ref_head(delayed_refs, head);
4386 spin_unlock(&head->lock);
4387 spin_unlock(&delayed_refs->lock);
4388 mutex_unlock(&head->mutex);
4389
4390 if (pin_bytes) {
4391 struct btrfs_block_group *cache;
4392
4393 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4394 BUG_ON(!cache);
4395
4396 spin_lock(&cache->space_info->lock);
4397 spin_lock(&cache->lock);
4398 cache->pinned += head->num_bytes;
4399 btrfs_space_info_update_bytes_pinned(fs_info,
4400 cache->space_info, head->num_bytes);
4401 cache->reserved -= head->num_bytes;
4402 cache->space_info->bytes_reserved -= head->num_bytes;
4403 spin_unlock(&cache->lock);
4404 spin_unlock(&cache->space_info->lock);
4405 percpu_counter_add_batch(
4406 &cache->space_info->total_bytes_pinned,
4407 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4408
4409 btrfs_put_block_group(cache);
4410
4411 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4412 head->bytenr + head->num_bytes - 1);
4413 }
4414 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4415 btrfs_put_delayed_ref_head(head);
4416 cond_resched();
4417 spin_lock(&delayed_refs->lock);
4418 }
4419 btrfs_qgroup_destroy_extent_records(trans);
4420
4421 spin_unlock(&delayed_refs->lock);
4422
4423 return ret;
4424 }
4425
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4426 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4427 {
4428 struct btrfs_inode *btrfs_inode;
4429 struct list_head splice;
4430
4431 INIT_LIST_HEAD(&splice);
4432
4433 spin_lock(&root->delalloc_lock);
4434 list_splice_init(&root->delalloc_inodes, &splice);
4435
4436 while (!list_empty(&splice)) {
4437 struct inode *inode = NULL;
4438 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4439 delalloc_inodes);
4440 __btrfs_del_delalloc_inode(root, btrfs_inode);
4441 spin_unlock(&root->delalloc_lock);
4442
4443 /*
4444 * Make sure we get a live inode and that it'll not disappear
4445 * meanwhile.
4446 */
4447 inode = igrab(&btrfs_inode->vfs_inode);
4448 if (inode) {
4449 invalidate_inode_pages2(inode->i_mapping);
4450 iput(inode);
4451 }
4452 spin_lock(&root->delalloc_lock);
4453 }
4454 spin_unlock(&root->delalloc_lock);
4455 }
4456
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4457 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4458 {
4459 struct btrfs_root *root;
4460 struct list_head splice;
4461
4462 INIT_LIST_HEAD(&splice);
4463
4464 spin_lock(&fs_info->delalloc_root_lock);
4465 list_splice_init(&fs_info->delalloc_roots, &splice);
4466 while (!list_empty(&splice)) {
4467 root = list_first_entry(&splice, struct btrfs_root,
4468 delalloc_root);
4469 root = btrfs_grab_root(root);
4470 BUG_ON(!root);
4471 spin_unlock(&fs_info->delalloc_root_lock);
4472
4473 btrfs_destroy_delalloc_inodes(root);
4474 btrfs_put_root(root);
4475
4476 spin_lock(&fs_info->delalloc_root_lock);
4477 }
4478 spin_unlock(&fs_info->delalloc_root_lock);
4479 }
4480
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4481 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4482 struct extent_io_tree *dirty_pages,
4483 int mark)
4484 {
4485 int ret;
4486 struct extent_buffer *eb;
4487 u64 start = 0;
4488 u64 end;
4489
4490 while (1) {
4491 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4492 mark, NULL);
4493 if (ret)
4494 break;
4495
4496 clear_extent_bits(dirty_pages, start, end, mark);
4497 while (start <= end) {
4498 eb = find_extent_buffer(fs_info, start);
4499 start += fs_info->nodesize;
4500 if (!eb)
4501 continue;
4502 wait_on_extent_buffer_writeback(eb);
4503
4504 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4505 &eb->bflags))
4506 clear_extent_buffer_dirty(eb);
4507 free_extent_buffer_stale(eb);
4508 }
4509 }
4510
4511 return ret;
4512 }
4513
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4514 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4515 struct extent_io_tree *unpin)
4516 {
4517 u64 start;
4518 u64 end;
4519 int ret;
4520
4521 while (1) {
4522 struct extent_state *cached_state = NULL;
4523
4524 /*
4525 * The btrfs_finish_extent_commit() may get the same range as
4526 * ours between find_first_extent_bit and clear_extent_dirty.
4527 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4528 * the same extent range.
4529 */
4530 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4531 ret = find_first_extent_bit(unpin, 0, &start, &end,
4532 EXTENT_DIRTY, &cached_state);
4533 if (ret) {
4534 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4535 break;
4536 }
4537
4538 clear_extent_dirty(unpin, start, end, &cached_state);
4539 free_extent_state(cached_state);
4540 btrfs_error_unpin_extent_range(fs_info, start, end);
4541 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4542 cond_resched();
4543 }
4544
4545 return 0;
4546 }
4547
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4548 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4549 {
4550 struct inode *inode;
4551
4552 inode = cache->io_ctl.inode;
4553 if (inode) {
4554 invalidate_inode_pages2(inode->i_mapping);
4555 BTRFS_I(inode)->generation = 0;
4556 cache->io_ctl.inode = NULL;
4557 iput(inode);
4558 }
4559 ASSERT(cache->io_ctl.pages == NULL);
4560 btrfs_put_block_group(cache);
4561 }
4562
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4563 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4564 struct btrfs_fs_info *fs_info)
4565 {
4566 struct btrfs_block_group *cache;
4567
4568 spin_lock(&cur_trans->dirty_bgs_lock);
4569 while (!list_empty(&cur_trans->dirty_bgs)) {
4570 cache = list_first_entry(&cur_trans->dirty_bgs,
4571 struct btrfs_block_group,
4572 dirty_list);
4573
4574 if (!list_empty(&cache->io_list)) {
4575 spin_unlock(&cur_trans->dirty_bgs_lock);
4576 list_del_init(&cache->io_list);
4577 btrfs_cleanup_bg_io(cache);
4578 spin_lock(&cur_trans->dirty_bgs_lock);
4579 }
4580
4581 list_del_init(&cache->dirty_list);
4582 spin_lock(&cache->lock);
4583 cache->disk_cache_state = BTRFS_DC_ERROR;
4584 spin_unlock(&cache->lock);
4585
4586 spin_unlock(&cur_trans->dirty_bgs_lock);
4587 btrfs_put_block_group(cache);
4588 btrfs_delayed_refs_rsv_release(fs_info, 1);
4589 spin_lock(&cur_trans->dirty_bgs_lock);
4590 }
4591 spin_unlock(&cur_trans->dirty_bgs_lock);
4592
4593 /*
4594 * Refer to the definition of io_bgs member for details why it's safe
4595 * to use it without any locking
4596 */
4597 while (!list_empty(&cur_trans->io_bgs)) {
4598 cache = list_first_entry(&cur_trans->io_bgs,
4599 struct btrfs_block_group,
4600 io_list);
4601
4602 list_del_init(&cache->io_list);
4603 spin_lock(&cache->lock);
4604 cache->disk_cache_state = BTRFS_DC_ERROR;
4605 spin_unlock(&cache->lock);
4606 btrfs_cleanup_bg_io(cache);
4607 }
4608 }
4609
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4610 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4611 struct btrfs_fs_info *fs_info)
4612 {
4613 struct btrfs_device *dev, *tmp;
4614
4615 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4616 ASSERT(list_empty(&cur_trans->dirty_bgs));
4617 ASSERT(list_empty(&cur_trans->io_bgs));
4618
4619 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4620 post_commit_list) {
4621 list_del_init(&dev->post_commit_list);
4622 }
4623
4624 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4625
4626 cur_trans->state = TRANS_STATE_COMMIT_START;
4627 wake_up(&fs_info->transaction_blocked_wait);
4628
4629 cur_trans->state = TRANS_STATE_UNBLOCKED;
4630 wake_up(&fs_info->transaction_wait);
4631
4632 btrfs_destroy_delayed_inodes(fs_info);
4633
4634 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4635 EXTENT_DIRTY);
4636 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4637
4638 cur_trans->state =TRANS_STATE_COMPLETED;
4639 wake_up(&cur_trans->commit_wait);
4640 }
4641
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4642 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4643 {
4644 struct btrfs_transaction *t;
4645
4646 mutex_lock(&fs_info->transaction_kthread_mutex);
4647
4648 spin_lock(&fs_info->trans_lock);
4649 while (!list_empty(&fs_info->trans_list)) {
4650 t = list_first_entry(&fs_info->trans_list,
4651 struct btrfs_transaction, list);
4652 if (t->state >= TRANS_STATE_COMMIT_START) {
4653 refcount_inc(&t->use_count);
4654 spin_unlock(&fs_info->trans_lock);
4655 btrfs_wait_for_commit(fs_info, t->transid);
4656 btrfs_put_transaction(t);
4657 spin_lock(&fs_info->trans_lock);
4658 continue;
4659 }
4660 if (t == fs_info->running_transaction) {
4661 t->state = TRANS_STATE_COMMIT_DOING;
4662 spin_unlock(&fs_info->trans_lock);
4663 /*
4664 * We wait for 0 num_writers since we don't hold a trans
4665 * handle open currently for this transaction.
4666 */
4667 wait_event(t->writer_wait,
4668 atomic_read(&t->num_writers) == 0);
4669 } else {
4670 spin_unlock(&fs_info->trans_lock);
4671 }
4672 btrfs_cleanup_one_transaction(t, fs_info);
4673
4674 spin_lock(&fs_info->trans_lock);
4675 if (t == fs_info->running_transaction)
4676 fs_info->running_transaction = NULL;
4677 list_del_init(&t->list);
4678 spin_unlock(&fs_info->trans_lock);
4679
4680 btrfs_put_transaction(t);
4681 trace_btrfs_transaction_commit(fs_info->tree_root);
4682 spin_lock(&fs_info->trans_lock);
4683 }
4684 spin_unlock(&fs_info->trans_lock);
4685 btrfs_destroy_all_ordered_extents(fs_info);
4686 btrfs_destroy_delayed_inodes(fs_info);
4687 btrfs_assert_delayed_root_empty(fs_info);
4688 btrfs_destroy_all_delalloc_inodes(fs_info);
4689 btrfs_drop_all_logs(fs_info);
4690 mutex_unlock(&fs_info->transaction_kthread_mutex);
4691
4692 return 0;
4693 }
4694