1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161 };
162
163 /*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
btrfs_bg_flags_to_raid_index(u64 flags)167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176
btrfs_bg_type_to_raid_name(u64 flags)177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185 }
186
btrfs_nr_parity_stripes(u64 type)187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192 }
193
194 /*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211 #define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245 out_overflow:;
246 }
247
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251
252 /*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
315 *
316 *
317 * Exclusive operations
318 * ====================
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
349 * completed.
350 */
351
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355 {
356 return &fs_uuids;
357 }
358
359 /*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
370 {
371 struct btrfs_fs_devices *fs_devs;
372
373 ASSERT(fsid || !metadata_fsid);
374
375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
376 if (!fs_devs)
377 return ERR_PTR(-ENOMEM);
378
379 mutex_init(&fs_devs->device_list_mutex);
380
381 INIT_LIST_HEAD(&fs_devs->devices);
382 INIT_LIST_HEAD(&fs_devs->alloc_list);
383 INIT_LIST_HEAD(&fs_devs->fs_list);
384 INIT_LIST_HEAD(&fs_devs->seed_list);
385
386 if (fsid) {
387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388 memcpy(fs_devs->metadata_uuid,
389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
390 }
391
392 return fs_devs;
393 }
394
btrfs_free_device(struct btrfs_device * device)395 static void btrfs_free_device(struct btrfs_device *device)
396 {
397 WARN_ON(!list_empty(&device->post_commit_list));
398 rcu_string_free(device->name);
399 extent_io_tree_release(&device->alloc_state);
400 btrfs_destroy_dev_zone_info(device);
401 kfree(device);
402 }
403
free_fs_devices(struct btrfs_fs_devices * fs_devices)404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
405 {
406 struct btrfs_device *device;
407
408 WARN_ON(fs_devices->opened);
409 while (!list_empty(&fs_devices->devices)) {
410 device = list_entry(fs_devices->devices.next,
411 struct btrfs_device, dev_list);
412 list_del(&device->dev_list);
413 btrfs_free_device(device);
414 }
415 kfree(fs_devices);
416 }
417
btrfs_cleanup_fs_uuids(void)418 void __exit btrfs_cleanup_fs_uuids(void)
419 {
420 struct btrfs_fs_devices *fs_devices;
421
422 while (!list_empty(&fs_uuids)) {
423 fs_devices = list_entry(fs_uuids.next,
424 struct btrfs_fs_devices, fs_list);
425 list_del(&fs_devices->fs_list);
426 free_fs_devices(fs_devices);
427 }
428 }
429
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
431 const u8 *fsid, const u8 *metadata_fsid)
432 {
433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
434 return false;
435
436 if (!metadata_fsid)
437 return true;
438
439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
440 return false;
441
442 return true;
443 }
444
find_fsid(const u8 * fsid,const u8 * metadata_fsid)445 static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
447 {
448 struct btrfs_fs_devices *fs_devices;
449
450 ASSERT(fsid);
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
455 return fs_devices;
456 }
457 return NULL;
458 }
459
460 /*
461 * First check if the metadata_uuid is different from the fsid in the given
462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid
463 * in the fs_devices. If it is, return true; otherwise, return false.
464 */
check_fsid_changed(const struct btrfs_fs_devices * fs_devices,const u8 * fsid)465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
466 const u8 *fsid)
467 {
468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
469 BTRFS_FSID_SIZE) != 0 &&
470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
471 }
472
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
474 struct btrfs_super_block *disk_super)
475 {
476
477 struct btrfs_fs_devices *fs_devices;
478
479 /*
480 * Handle scanned device having completed its fsid change but
481 * belonging to a fs_devices that was created by first scanning
482 * a device which didn't have its fsid/metadata_uuid changed
483 * at all and the CHANGING_FSID_V2 flag set.
484 */
485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486 if (!fs_devices->fsid_change)
487 continue;
488
489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
490 fs_devices->fsid))
491 return fs_devices;
492 }
493
494 /*
495 * Handle scanned device having completed its fsid change but
496 * belonging to a fs_devices that was created by a device that
497 * has an outdated pair of fsid/metadata_uuid and
498 * CHANGING_FSID_V2 flag set.
499 */
500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
501 if (!fs_devices->fsid_change)
502 continue;
503
504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
505 return fs_devices;
506 }
507
508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
509 }
510
511
512 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
514 int flush, struct block_device **bdev,
515 struct btrfs_super_block **disk_super)
516 {
517 int ret;
518
519 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
520
521 if (IS_ERR(*bdev)) {
522 ret = PTR_ERR(*bdev);
523 goto error;
524 }
525
526 if (flush)
527 sync_blockdev(*bdev);
528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
529 if (ret) {
530 blkdev_put(*bdev, holder);
531 goto error;
532 }
533 invalidate_bdev(*bdev);
534 *disk_super = btrfs_read_dev_super(*bdev);
535 if (IS_ERR(*disk_super)) {
536 ret = PTR_ERR(*disk_super);
537 blkdev_put(*bdev, holder);
538 goto error;
539 }
540
541 return 0;
542
543 error:
544 *bdev = NULL;
545 return ret;
546 }
547
548 /*
549 * Search and remove all stale devices (which are not mounted). When both
550 * inputs are NULL, it will search and release all stale devices.
551 *
552 * @devt: Optional. When provided will it release all unmounted devices
553 * matching this devt only.
554 * @skip_device: Optional. Will skip this device when searching for the stale
555 * devices.
556 *
557 * Return: 0 for success or if @devt is 0.
558 * -EBUSY if @devt is a mounted device.
559 * -ENOENT if @devt does not match any device in the list.
560 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
562 {
563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
564 struct btrfs_device *device, *tmp_device;
565 int ret = 0;
566
567 lockdep_assert_held(&uuid_mutex);
568
569 if (devt)
570 ret = -ENOENT;
571
572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573
574 mutex_lock(&fs_devices->device_list_mutex);
575 list_for_each_entry_safe(device, tmp_device,
576 &fs_devices->devices, dev_list) {
577 if (skip_device && skip_device == device)
578 continue;
579 if (devt && devt != device->devt)
580 continue;
581 if (fs_devices->opened) {
582 /* for an already deleted device return 0 */
583 if (devt && ret != 0)
584 ret = -EBUSY;
585 break;
586 }
587
588 /* delete the stale device */
589 fs_devices->num_devices--;
590 list_del(&device->dev_list);
591 btrfs_free_device(device);
592
593 ret = 0;
594 }
595 mutex_unlock(&fs_devices->device_list_mutex);
596
597 if (fs_devices->num_devices == 0) {
598 btrfs_sysfs_remove_fsid(fs_devices);
599 list_del(&fs_devices->fs_list);
600 free_fs_devices(fs_devices);
601 }
602 }
603
604 return ret;
605 }
606
607 /*
608 * This is only used on mount, and we are protected from competing things
609 * messing with our fs_devices by the uuid_mutex, thus we do not need the
610 * fs_devices->device_list_mutex here.
611 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
613 struct btrfs_device *device, blk_mode_t flags,
614 void *holder)
615 {
616 struct block_device *bdev;
617 struct btrfs_super_block *disk_super;
618 u64 devid;
619 int ret;
620
621 if (device->bdev)
622 return -EINVAL;
623 if (!device->name)
624 return -EINVAL;
625
626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
627 &bdev, &disk_super);
628 if (ret)
629 return ret;
630
631 devid = btrfs_stack_device_id(&disk_super->dev_item);
632 if (devid != device->devid)
633 goto error_free_page;
634
635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
636 goto error_free_page;
637
638 device->generation = btrfs_super_generation(disk_super);
639
640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
641 if (btrfs_super_incompat_flags(disk_super) &
642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
643 pr_err(
644 "BTRFS: Invalid seeding and uuid-changed device detected\n");
645 goto error_free_page;
646 }
647
648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
649 fs_devices->seeding = true;
650 } else {
651 if (bdev_read_only(bdev))
652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 else
654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655 }
656
657 if (!bdev_nonrot(bdev))
658 fs_devices->rotating = true;
659
660 if (bdev_max_discard_sectors(bdev))
661 fs_devices->discardable = true;
662
663 device->bdev = bdev;
664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665 device->holder = holder;
666
667 fs_devices->open_devices++;
668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 fs_devices->rw_devices++;
671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
672 }
673 btrfs_release_disk_super(disk_super);
674
675 return 0;
676
677 error_free_page:
678 btrfs_release_disk_super(disk_super);
679 blkdev_put(bdev, holder);
680
681 return -EINVAL;
682 }
683
btrfs_sb_fsid_ptr(struct btrfs_super_block * sb)684 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
685 {
686 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
687 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
688
689 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
690 }
691
692 /*
693 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
694 * being created with a disk that has already completed its fsid change. Such
695 * disk can belong to an fs which has its FSID changed or to one which doesn't.
696 * Handle both cases here.
697 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)698 static struct btrfs_fs_devices *find_fsid_inprogress(
699 struct btrfs_super_block *disk_super)
700 {
701 struct btrfs_fs_devices *fs_devices;
702
703 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
704 if (fs_devices->fsid_change)
705 continue;
706
707 if (check_fsid_changed(fs_devices, disk_super->fsid))
708 return fs_devices;
709 }
710
711 return find_fsid(disk_super->fsid, NULL);
712 }
713
find_fsid_changed(struct btrfs_super_block * disk_super)714 static struct btrfs_fs_devices *find_fsid_changed(
715 struct btrfs_super_block *disk_super)
716 {
717 struct btrfs_fs_devices *fs_devices;
718
719 /*
720 * Handles the case where scanned device is part of an fs that had
721 * multiple successful changes of FSID but currently device didn't
722 * observe it. Meaning our fsid will be different than theirs. We need
723 * to handle two subcases :
724 * 1 - The fs still continues to have different METADATA/FSID uuids.
725 * 2 - The fs is switched back to its original FSID (METADATA/FSID
726 * are equal).
727 */
728 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
729 /* Changed UUIDs */
730 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
731 memcmp(fs_devices->fsid, disk_super->fsid,
732 BTRFS_FSID_SIZE) != 0)
733 return fs_devices;
734
735 /* Unchanged UUIDs */
736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 BTRFS_FSID_SIZE) == 0 &&
738 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 BTRFS_FSID_SIZE) == 0)
740 return fs_devices;
741 }
742
743 return NULL;
744 }
745
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 struct btrfs_super_block *disk_super)
748 {
749 struct btrfs_fs_devices *fs_devices;
750
751 /*
752 * Handle the case where the scanned device is part of an fs whose last
753 * metadata UUID change reverted it to the original FSID. At the same
754 * time fs_devices was first created by another constituent device
755 * which didn't fully observe the operation. This results in an
756 * btrfs_fs_devices created with metadata/fsid different AND
757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 * fs_devices equal to the FSID of the disk.
759 */
760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 if (!fs_devices->fsid_change)
762 continue;
763
764 if (check_fsid_changed(fs_devices, disk_super->fsid))
765 return fs_devices;
766 }
767
768 return NULL;
769 }
770 /*
771 * Add new device to list of registered devices
772 *
773 * Returns:
774 * device pointer which was just added or updated when successful
775 * error pointer when failed
776 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)777 static noinline struct btrfs_device *device_list_add(const char *path,
778 struct btrfs_super_block *disk_super,
779 bool *new_device_added)
780 {
781 struct btrfs_device *device;
782 struct btrfs_fs_devices *fs_devices = NULL;
783 struct rcu_string *name;
784 u64 found_transid = btrfs_super_generation(disk_super);
785 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
786 dev_t path_devt;
787 int error;
788 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
789 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
790 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
791 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
792
793 error = lookup_bdev(path, &path_devt);
794 if (error) {
795 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
796 path, error);
797 return ERR_PTR(error);
798 }
799
800 if (fsid_change_in_progress) {
801 if (!has_metadata_uuid)
802 fs_devices = find_fsid_inprogress(disk_super);
803 else
804 fs_devices = find_fsid_changed(disk_super);
805 } else if (has_metadata_uuid) {
806 fs_devices = find_fsid_with_metadata_uuid(disk_super);
807 } else {
808 fs_devices = find_fsid_reverted_metadata(disk_super);
809 if (!fs_devices)
810 fs_devices = find_fsid(disk_super->fsid, NULL);
811 }
812
813
814 if (!fs_devices) {
815 fs_devices = alloc_fs_devices(disk_super->fsid,
816 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
817 if (IS_ERR(fs_devices))
818 return ERR_CAST(fs_devices);
819
820 fs_devices->fsid_change = fsid_change_in_progress;
821
822 mutex_lock(&fs_devices->device_list_mutex);
823 list_add(&fs_devices->fs_list, &fs_uuids);
824
825 device = NULL;
826 } else {
827 struct btrfs_dev_lookup_args args = {
828 .devid = devid,
829 .uuid = disk_super->dev_item.uuid,
830 };
831
832 mutex_lock(&fs_devices->device_list_mutex);
833 device = btrfs_find_device(fs_devices, &args);
834
835 /*
836 * If this disk has been pulled into an fs devices created by
837 * a device which had the CHANGING_FSID_V2 flag then replace the
838 * metadata_uuid/fsid values of the fs_devices.
839 */
840 if (fs_devices->fsid_change &&
841 found_transid > fs_devices->latest_generation) {
842 memcpy(fs_devices->fsid, disk_super->fsid,
843 BTRFS_FSID_SIZE);
844 memcpy(fs_devices->metadata_uuid,
845 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
846 fs_devices->fsid_change = false;
847 }
848 }
849
850 if (!device) {
851 unsigned int nofs_flag;
852
853 if (fs_devices->opened) {
854 btrfs_err(NULL,
855 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
856 path, fs_devices->fsid, current->comm,
857 task_pid_nr(current));
858 mutex_unlock(&fs_devices->device_list_mutex);
859 return ERR_PTR(-EBUSY);
860 }
861
862 nofs_flag = memalloc_nofs_save();
863 device = btrfs_alloc_device(NULL, &devid,
864 disk_super->dev_item.uuid, path);
865 memalloc_nofs_restore(nofs_flag);
866 if (IS_ERR(device)) {
867 mutex_unlock(&fs_devices->device_list_mutex);
868 /* we can safely leave the fs_devices entry around */
869 return device;
870 }
871
872 device->devt = path_devt;
873
874 list_add_rcu(&device->dev_list, &fs_devices->devices);
875 fs_devices->num_devices++;
876
877 device->fs_devices = fs_devices;
878 *new_device_added = true;
879
880 if (disk_super->label[0])
881 pr_info(
882 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
883 disk_super->label, devid, found_transid, path,
884 current->comm, task_pid_nr(current));
885 else
886 pr_info(
887 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
888 disk_super->fsid, devid, found_transid, path,
889 current->comm, task_pid_nr(current));
890
891 } else if (!device->name || strcmp(device->name->str, path)) {
892 /*
893 * When FS is already mounted.
894 * 1. If you are here and if the device->name is NULL that
895 * means this device was missing at time of FS mount.
896 * 2. If you are here and if the device->name is different
897 * from 'path' that means either
898 * a. The same device disappeared and reappeared with
899 * different name. or
900 * b. The missing-disk-which-was-replaced, has
901 * reappeared now.
902 *
903 * We must allow 1 and 2a above. But 2b would be a spurious
904 * and unintentional.
905 *
906 * Further in case of 1 and 2a above, the disk at 'path'
907 * would have missed some transaction when it was away and
908 * in case of 2a the stale bdev has to be updated as well.
909 * 2b must not be allowed at all time.
910 */
911
912 /*
913 * For now, we do allow update to btrfs_fs_device through the
914 * btrfs dev scan cli after FS has been mounted. We're still
915 * tracking a problem where systems fail mount by subvolume id
916 * when we reject replacement on a mounted FS.
917 */
918 if (!fs_devices->opened && found_transid < device->generation) {
919 /*
920 * That is if the FS is _not_ mounted and if you
921 * are here, that means there is more than one
922 * disk with same uuid and devid.We keep the one
923 * with larger generation number or the last-in if
924 * generation are equal.
925 */
926 mutex_unlock(&fs_devices->device_list_mutex);
927 btrfs_err(NULL,
928 "device %s already registered with a higher generation, found %llu expect %llu",
929 path, found_transid, device->generation);
930 return ERR_PTR(-EEXIST);
931 }
932
933 /*
934 * We are going to replace the device path for a given devid,
935 * make sure it's the same device if the device is mounted
936 *
937 * NOTE: the device->fs_info may not be reliable here so pass
938 * in a NULL to message helpers instead. This avoids a possible
939 * use-after-free when the fs_info and fs_info->sb are already
940 * torn down.
941 */
942 if (device->bdev) {
943 if (device->devt != path_devt) {
944 mutex_unlock(&fs_devices->device_list_mutex);
945 btrfs_warn_in_rcu(NULL,
946 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
947 path, devid, found_transid,
948 current->comm,
949 task_pid_nr(current));
950 return ERR_PTR(-EEXIST);
951 }
952 btrfs_info_in_rcu(NULL,
953 "devid %llu device path %s changed to %s scanned by %s (%d)",
954 devid, btrfs_dev_name(device),
955 path, current->comm,
956 task_pid_nr(current));
957 }
958
959 name = rcu_string_strdup(path, GFP_NOFS);
960 if (!name) {
961 mutex_unlock(&fs_devices->device_list_mutex);
962 return ERR_PTR(-ENOMEM);
963 }
964 rcu_string_free(device->name);
965 rcu_assign_pointer(device->name, name);
966 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
967 fs_devices->missing_devices--;
968 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
969 }
970 device->devt = path_devt;
971 }
972
973 /*
974 * Unmount does not free the btrfs_device struct but would zero
975 * generation along with most of the other members. So just update
976 * it back. We need it to pick the disk with largest generation
977 * (as above).
978 */
979 if (!fs_devices->opened) {
980 device->generation = found_transid;
981 fs_devices->latest_generation = max_t(u64, found_transid,
982 fs_devices->latest_generation);
983 }
984
985 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986
987 mutex_unlock(&fs_devices->device_list_mutex);
988 return device;
989 }
990
clone_fs_devices(struct btrfs_fs_devices * orig)991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 struct btrfs_fs_devices *fs_devices;
994 struct btrfs_device *device;
995 struct btrfs_device *orig_dev;
996 int ret = 0;
997
998 lockdep_assert_held(&uuid_mutex);
999
1000 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 if (IS_ERR(fs_devices))
1002 return fs_devices;
1003
1004 fs_devices->total_devices = orig->total_devices;
1005
1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 const char *dev_path = NULL;
1008
1009 /*
1010 * This is ok to do without RCU read locked because we hold the
1011 * uuid mutex so nothing we touch in here is going to disappear.
1012 */
1013 if (orig_dev->name)
1014 dev_path = orig_dev->name->str;
1015
1016 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1017 orig_dev->uuid, dev_path);
1018 if (IS_ERR(device)) {
1019 ret = PTR_ERR(device);
1020 goto error;
1021 }
1022
1023 if (orig_dev->zone_info) {
1024 struct btrfs_zoned_device_info *zone_info;
1025
1026 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1027 if (!zone_info) {
1028 btrfs_free_device(device);
1029 ret = -ENOMEM;
1030 goto error;
1031 }
1032 device->zone_info = zone_info;
1033 }
1034
1035 list_add(&device->dev_list, &fs_devices->devices);
1036 device->fs_devices = fs_devices;
1037 fs_devices->num_devices++;
1038 }
1039 return fs_devices;
1040 error:
1041 free_fs_devices(fs_devices);
1042 return ERR_PTR(ret);
1043 }
1044
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046 struct btrfs_device **latest_dev)
1047 {
1048 struct btrfs_device *device, *next;
1049
1050 /* This is the initialized path, it is safe to release the devices. */
1051 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 &device->dev_state) &&
1055 !test_bit(BTRFS_DEV_STATE_MISSING,
1056 &device->dev_state) &&
1057 (!*latest_dev ||
1058 device->generation > (*latest_dev)->generation)) {
1059 *latest_dev = device;
1060 }
1061 continue;
1062 }
1063
1064 /*
1065 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066 * in btrfs_init_dev_replace() so just continue.
1067 */
1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 continue;
1070
1071 if (device->bdev) {
1072 blkdev_put(device->bdev, device->holder);
1073 device->bdev = NULL;
1074 fs_devices->open_devices--;
1075 }
1076 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077 list_del_init(&device->dev_alloc_list);
1078 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1079 fs_devices->rw_devices--;
1080 }
1081 list_del_init(&device->dev_list);
1082 fs_devices->num_devices--;
1083 btrfs_free_device(device);
1084 }
1085
1086 }
1087
1088 /*
1089 * After we have read the system tree and know devids belonging to this
1090 * filesystem, remove the device which does not belong there.
1091 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1093 {
1094 struct btrfs_device *latest_dev = NULL;
1095 struct btrfs_fs_devices *seed_dev;
1096
1097 mutex_lock(&uuid_mutex);
1098 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1099
1100 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1102
1103 fs_devices->latest_dev = latest_dev;
1104
1105 mutex_unlock(&uuid_mutex);
1106 }
1107
btrfs_close_bdev(struct btrfs_device * device)1108 static void btrfs_close_bdev(struct btrfs_device *device)
1109 {
1110 if (!device->bdev)
1111 return;
1112
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 sync_blockdev(device->bdev);
1115 invalidate_bdev(device->bdev);
1116 }
1117
1118 blkdev_put(device->bdev, device->holder);
1119 }
1120
btrfs_close_one_device(struct btrfs_device * device)1121 static void btrfs_close_one_device(struct btrfs_device *device)
1122 {
1123 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124
1125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127 list_del_init(&device->dev_alloc_list);
1128 fs_devices->rw_devices--;
1129 }
1130
1131 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1132 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1133
1134 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1135 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1136 fs_devices->missing_devices--;
1137 }
1138
1139 btrfs_close_bdev(device);
1140 if (device->bdev) {
1141 fs_devices->open_devices--;
1142 device->bdev = NULL;
1143 }
1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 btrfs_destroy_dev_zone_info(device);
1146
1147 device->fs_info = NULL;
1148 atomic_set(&device->dev_stats_ccnt, 0);
1149 extent_io_tree_release(&device->alloc_state);
1150
1151 /*
1152 * Reset the flush error record. We might have a transient flush error
1153 * in this mount, and if so we aborted the current transaction and set
1154 * the fs to an error state, guaranteeing no super blocks can be further
1155 * committed. However that error might be transient and if we unmount the
1156 * filesystem and mount it again, we should allow the mount to succeed
1157 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1158 * filesystem again we still get flush errors, then we will again abort
1159 * any transaction and set the error state, guaranteeing no commits of
1160 * unsafe super blocks.
1161 */
1162 device->last_flush_error = 0;
1163
1164 /* Verify the device is back in a pristine state */
1165 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1166 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1167 WARN_ON(!list_empty(&device->dev_alloc_list));
1168 WARN_ON(!list_empty(&device->post_commit_list));
1169 }
1170
close_fs_devices(struct btrfs_fs_devices * fs_devices)1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1172 {
1173 struct btrfs_device *device, *tmp;
1174
1175 lockdep_assert_held(&uuid_mutex);
1176
1177 if (--fs_devices->opened > 0)
1178 return;
1179
1180 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1181 btrfs_close_one_device(device);
1182
1183 WARN_ON(fs_devices->open_devices);
1184 WARN_ON(fs_devices->rw_devices);
1185 fs_devices->opened = 0;
1186 fs_devices->seeding = false;
1187 fs_devices->fs_info = NULL;
1188 }
1189
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1191 {
1192 LIST_HEAD(list);
1193 struct btrfs_fs_devices *tmp;
1194
1195 mutex_lock(&uuid_mutex);
1196 close_fs_devices(fs_devices);
1197 if (!fs_devices->opened) {
1198 list_splice_init(&fs_devices->seed_list, &list);
1199
1200 /*
1201 * If the struct btrfs_fs_devices is not assembled with any
1202 * other device, it can be re-initialized during the next mount
1203 * without the needing device-scan step. Therefore, it can be
1204 * fully freed.
1205 */
1206 if (fs_devices->num_devices == 1) {
1207 list_del(&fs_devices->fs_list);
1208 free_fs_devices(fs_devices);
1209 }
1210 }
1211
1212
1213 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1214 close_fs_devices(fs_devices);
1215 list_del(&fs_devices->seed_list);
1216 free_fs_devices(fs_devices);
1217 }
1218 mutex_unlock(&uuid_mutex);
1219 }
1220
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1221 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1222 blk_mode_t flags, void *holder)
1223 {
1224 struct btrfs_device *device;
1225 struct btrfs_device *latest_dev = NULL;
1226 struct btrfs_device *tmp_device;
1227
1228 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1229 dev_list) {
1230 int ret;
1231
1232 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1233 if (ret == 0 &&
1234 (!latest_dev || device->generation > latest_dev->generation)) {
1235 latest_dev = device;
1236 } else if (ret == -ENODATA) {
1237 fs_devices->num_devices--;
1238 list_del(&device->dev_list);
1239 btrfs_free_device(device);
1240 }
1241 }
1242 if (fs_devices->open_devices == 0)
1243 return -EINVAL;
1244
1245 fs_devices->opened = 1;
1246 fs_devices->latest_dev = latest_dev;
1247 fs_devices->total_rw_bytes = 0;
1248 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1249 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1250
1251 return 0;
1252 }
1253
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1254 static int devid_cmp(void *priv, const struct list_head *a,
1255 const struct list_head *b)
1256 {
1257 const struct btrfs_device *dev1, *dev2;
1258
1259 dev1 = list_entry(a, struct btrfs_device, dev_list);
1260 dev2 = list_entry(b, struct btrfs_device, dev_list);
1261
1262 if (dev1->devid < dev2->devid)
1263 return -1;
1264 else if (dev1->devid > dev2->devid)
1265 return 1;
1266 return 0;
1267 }
1268
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1269 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1270 blk_mode_t flags, void *holder)
1271 {
1272 int ret;
1273
1274 lockdep_assert_held(&uuid_mutex);
1275 /*
1276 * The device_list_mutex cannot be taken here in case opening the
1277 * underlying device takes further locks like open_mutex.
1278 *
1279 * We also don't need the lock here as this is called during mount and
1280 * exclusion is provided by uuid_mutex
1281 */
1282
1283 if (fs_devices->opened) {
1284 fs_devices->opened++;
1285 ret = 0;
1286 } else {
1287 list_sort(NULL, &fs_devices->devices, devid_cmp);
1288 ret = open_fs_devices(fs_devices, flags, holder);
1289 }
1290
1291 return ret;
1292 }
1293
btrfs_release_disk_super(struct btrfs_super_block * super)1294 void btrfs_release_disk_super(struct btrfs_super_block *super)
1295 {
1296 struct page *page = virt_to_page(super);
1297
1298 put_page(page);
1299 }
1300
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1301 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1302 u64 bytenr, u64 bytenr_orig)
1303 {
1304 struct btrfs_super_block *disk_super;
1305 struct page *page;
1306 void *p;
1307 pgoff_t index;
1308
1309 /* make sure our super fits in the device */
1310 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1311 return ERR_PTR(-EINVAL);
1312
1313 /* make sure our super fits in the page */
1314 if (sizeof(*disk_super) > PAGE_SIZE)
1315 return ERR_PTR(-EINVAL);
1316
1317 /* make sure our super doesn't straddle pages on disk */
1318 index = bytenr >> PAGE_SHIFT;
1319 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1320 return ERR_PTR(-EINVAL);
1321
1322 /* pull in the page with our super */
1323 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1324
1325 if (IS_ERR(page))
1326 return ERR_CAST(page);
1327
1328 p = page_address(page);
1329
1330 /* align our pointer to the offset of the super block */
1331 disk_super = p + offset_in_page(bytenr);
1332
1333 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1334 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1335 btrfs_release_disk_super(p);
1336 return ERR_PTR(-EINVAL);
1337 }
1338
1339 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1340 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1341
1342 return disk_super;
1343 }
1344
btrfs_forget_devices(dev_t devt)1345 int btrfs_forget_devices(dev_t devt)
1346 {
1347 int ret;
1348
1349 mutex_lock(&uuid_mutex);
1350 ret = btrfs_free_stale_devices(devt, NULL);
1351 mutex_unlock(&uuid_mutex);
1352
1353 return ret;
1354 }
1355
1356 /*
1357 * Look for a btrfs signature on a device. This may be called out of the mount path
1358 * and we are not allowed to call set_blocksize during the scan. The superblock
1359 * is read via pagecache
1360 */
btrfs_scan_one_device(const char * path,blk_mode_t flags)1361 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
1362 {
1363 struct btrfs_super_block *disk_super;
1364 bool new_device_added = false;
1365 struct btrfs_device *device = NULL;
1366 struct block_device *bdev;
1367 u64 bytenr, bytenr_orig;
1368 int ret;
1369
1370 lockdep_assert_held(&uuid_mutex);
1371
1372 /*
1373 * we would like to check all the supers, but that would make
1374 * a btrfs mount succeed after a mkfs from a different FS.
1375 * So, we need to add a special mount option to scan for
1376 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1377 */
1378
1379 /*
1380 * Avoid an exclusive open here, as the systemd-udev may initiate the
1381 * device scan which may race with the user's mount or mkfs command,
1382 * resulting in failure.
1383 * Since the device scan is solely for reading purposes, there is no
1384 * need for an exclusive open. Additionally, the devices are read again
1385 * during the mount process. It is ok to get some inconsistent
1386 * values temporarily, as the device paths of the fsid are the only
1387 * required information for assembling the volume.
1388 */
1389 bdev = blkdev_get_by_path(path, flags, NULL, NULL);
1390 if (IS_ERR(bdev))
1391 return ERR_CAST(bdev);
1392
1393 bytenr_orig = btrfs_sb_offset(0);
1394 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1395 if (ret) {
1396 device = ERR_PTR(ret);
1397 goto error_bdev_put;
1398 }
1399
1400 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1401 if (IS_ERR(disk_super)) {
1402 device = ERR_CAST(disk_super);
1403 goto error_bdev_put;
1404 }
1405
1406 device = device_list_add(path, disk_super, &new_device_added);
1407 if (!IS_ERR(device) && new_device_added)
1408 btrfs_free_stale_devices(device->devt, device);
1409
1410 btrfs_release_disk_super(disk_super);
1411
1412 error_bdev_put:
1413 blkdev_put(bdev, NULL);
1414
1415 return device;
1416 }
1417
1418 /*
1419 * Try to find a chunk that intersects [start, start + len] range and when one
1420 * such is found, record the end of it in *start
1421 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1422 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1423 u64 len)
1424 {
1425 u64 physical_start, physical_end;
1426
1427 lockdep_assert_held(&device->fs_info->chunk_mutex);
1428
1429 if (find_first_extent_bit(&device->alloc_state, *start,
1430 &physical_start, &physical_end,
1431 CHUNK_ALLOCATED, NULL)) {
1432
1433 if (in_range(physical_start, *start, len) ||
1434 in_range(*start, physical_start,
1435 physical_end - physical_start)) {
1436 *start = physical_end + 1;
1437 return true;
1438 }
1439 }
1440 return false;
1441 }
1442
dev_extent_search_start(struct btrfs_device * device)1443 static u64 dev_extent_search_start(struct btrfs_device *device)
1444 {
1445 switch (device->fs_devices->chunk_alloc_policy) {
1446 case BTRFS_CHUNK_ALLOC_REGULAR:
1447 return BTRFS_DEVICE_RANGE_RESERVED;
1448 case BTRFS_CHUNK_ALLOC_ZONED:
1449 /*
1450 * We don't care about the starting region like regular
1451 * allocator, because we anyway use/reserve the first two zones
1452 * for superblock logging.
1453 */
1454 return 0;
1455 default:
1456 BUG();
1457 }
1458 }
1459
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1460 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1461 u64 *hole_start, u64 *hole_size,
1462 u64 num_bytes)
1463 {
1464 u64 zone_size = device->zone_info->zone_size;
1465 u64 pos;
1466 int ret;
1467 bool changed = false;
1468
1469 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1470
1471 while (*hole_size > 0) {
1472 pos = btrfs_find_allocatable_zones(device, *hole_start,
1473 *hole_start + *hole_size,
1474 num_bytes);
1475 if (pos != *hole_start) {
1476 *hole_size = *hole_start + *hole_size - pos;
1477 *hole_start = pos;
1478 changed = true;
1479 if (*hole_size < num_bytes)
1480 break;
1481 }
1482
1483 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1484
1485 /* Range is ensured to be empty */
1486 if (!ret)
1487 return changed;
1488
1489 /* Given hole range was invalid (outside of device) */
1490 if (ret == -ERANGE) {
1491 *hole_start += *hole_size;
1492 *hole_size = 0;
1493 return true;
1494 }
1495
1496 *hole_start += zone_size;
1497 *hole_size -= zone_size;
1498 changed = true;
1499 }
1500
1501 return changed;
1502 }
1503
1504 /*
1505 * Check if specified hole is suitable for allocation.
1506 *
1507 * @device: the device which we have the hole
1508 * @hole_start: starting position of the hole
1509 * @hole_size: the size of the hole
1510 * @num_bytes: the size of the free space that we need
1511 *
1512 * This function may modify @hole_start and @hole_size to reflect the suitable
1513 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1514 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1515 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1516 u64 *hole_size, u64 num_bytes)
1517 {
1518 bool changed = false;
1519 u64 hole_end = *hole_start + *hole_size;
1520
1521 for (;;) {
1522 /*
1523 * Check before we set max_hole_start, otherwise we could end up
1524 * sending back this offset anyway.
1525 */
1526 if (contains_pending_extent(device, hole_start, *hole_size)) {
1527 if (hole_end >= *hole_start)
1528 *hole_size = hole_end - *hole_start;
1529 else
1530 *hole_size = 0;
1531 changed = true;
1532 }
1533
1534 switch (device->fs_devices->chunk_alloc_policy) {
1535 case BTRFS_CHUNK_ALLOC_REGULAR:
1536 /* No extra check */
1537 break;
1538 case BTRFS_CHUNK_ALLOC_ZONED:
1539 if (dev_extent_hole_check_zoned(device, hole_start,
1540 hole_size, num_bytes)) {
1541 changed = true;
1542 /*
1543 * The changed hole can contain pending extent.
1544 * Loop again to check that.
1545 */
1546 continue;
1547 }
1548 break;
1549 default:
1550 BUG();
1551 }
1552
1553 break;
1554 }
1555
1556 return changed;
1557 }
1558
1559 /*
1560 * Find free space in the specified device.
1561 *
1562 * @device: the device which we search the free space in
1563 * @num_bytes: the size of the free space that we need
1564 * @search_start: the position from which to begin the search
1565 * @start: store the start of the free space.
1566 * @len: the size of the free space. that we find, or the size
1567 * of the max free space if we don't find suitable free space
1568 *
1569 * This does a pretty simple search, the expectation is that it is called very
1570 * infrequently and that a given device has a small number of extents.
1571 *
1572 * @start is used to store the start of the free space if we find. But if we
1573 * don't find suitable free space, it will be used to store the start position
1574 * of the max free space.
1575 *
1576 * @len is used to store the size of the free space that we find.
1577 * But if we don't find suitable free space, it is used to store the size of
1578 * the max free space.
1579 *
1580 * NOTE: This function will search *commit* root of device tree, and does extra
1581 * check to ensure dev extents are not double allocated.
1582 * This makes the function safe to allocate dev extents but may not report
1583 * correct usable device space, as device extent freed in current transaction
1584 * is not reported as available.
1585 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1586 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1587 u64 *start, u64 *len)
1588 {
1589 struct btrfs_fs_info *fs_info = device->fs_info;
1590 struct btrfs_root *root = fs_info->dev_root;
1591 struct btrfs_key key;
1592 struct btrfs_dev_extent *dev_extent;
1593 struct btrfs_path *path;
1594 u64 search_start;
1595 u64 hole_size;
1596 u64 max_hole_start;
1597 u64 max_hole_size = 0;
1598 u64 extent_end;
1599 u64 search_end = device->total_bytes;
1600 int ret;
1601 int slot;
1602 struct extent_buffer *l;
1603
1604 search_start = dev_extent_search_start(device);
1605 max_hole_start = search_start;
1606
1607 WARN_ON(device->zone_info &&
1608 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1609
1610 path = btrfs_alloc_path();
1611 if (!path) {
1612 ret = -ENOMEM;
1613 goto out;
1614 }
1615 again:
1616 if (search_start >= search_end ||
1617 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1618 ret = -ENOSPC;
1619 goto out;
1620 }
1621
1622 path->reada = READA_FORWARD;
1623 path->search_commit_root = 1;
1624 path->skip_locking = 1;
1625
1626 key.objectid = device->devid;
1627 key.offset = search_start;
1628 key.type = BTRFS_DEV_EXTENT_KEY;
1629
1630 ret = btrfs_search_backwards(root, &key, path);
1631 if (ret < 0)
1632 goto out;
1633
1634 while (search_start < search_end) {
1635 l = path->nodes[0];
1636 slot = path->slots[0];
1637 if (slot >= btrfs_header_nritems(l)) {
1638 ret = btrfs_next_leaf(root, path);
1639 if (ret == 0)
1640 continue;
1641 if (ret < 0)
1642 goto out;
1643
1644 break;
1645 }
1646 btrfs_item_key_to_cpu(l, &key, slot);
1647
1648 if (key.objectid < device->devid)
1649 goto next;
1650
1651 if (key.objectid > device->devid)
1652 break;
1653
1654 if (key.type != BTRFS_DEV_EXTENT_KEY)
1655 goto next;
1656
1657 if (key.offset > search_end)
1658 break;
1659
1660 if (key.offset > search_start) {
1661 hole_size = key.offset - search_start;
1662 dev_extent_hole_check(device, &search_start, &hole_size,
1663 num_bytes);
1664
1665 if (hole_size > max_hole_size) {
1666 max_hole_start = search_start;
1667 max_hole_size = hole_size;
1668 }
1669
1670 /*
1671 * If this free space is greater than which we need,
1672 * it must be the max free space that we have found
1673 * until now, so max_hole_start must point to the start
1674 * of this free space and the length of this free space
1675 * is stored in max_hole_size. Thus, we return
1676 * max_hole_start and max_hole_size and go back to the
1677 * caller.
1678 */
1679 if (hole_size >= num_bytes) {
1680 ret = 0;
1681 goto out;
1682 }
1683 }
1684
1685 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1686 extent_end = key.offset + btrfs_dev_extent_length(l,
1687 dev_extent);
1688 if (extent_end > search_start)
1689 search_start = extent_end;
1690 next:
1691 path->slots[0]++;
1692 cond_resched();
1693 }
1694
1695 /*
1696 * At this point, search_start should be the end of
1697 * allocated dev extents, and when shrinking the device,
1698 * search_end may be smaller than search_start.
1699 */
1700 if (search_end > search_start) {
1701 hole_size = search_end - search_start;
1702 if (dev_extent_hole_check(device, &search_start, &hole_size,
1703 num_bytes)) {
1704 btrfs_release_path(path);
1705 goto again;
1706 }
1707
1708 if (hole_size > max_hole_size) {
1709 max_hole_start = search_start;
1710 max_hole_size = hole_size;
1711 }
1712 }
1713
1714 /* See above. */
1715 if (max_hole_size < num_bytes)
1716 ret = -ENOSPC;
1717 else
1718 ret = 0;
1719
1720 ASSERT(max_hole_start + max_hole_size <= search_end);
1721 out:
1722 btrfs_free_path(path);
1723 *start = max_hole_start;
1724 if (len)
1725 *len = max_hole_size;
1726 return ret;
1727 }
1728
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1729 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1730 struct btrfs_device *device,
1731 u64 start, u64 *dev_extent_len)
1732 {
1733 struct btrfs_fs_info *fs_info = device->fs_info;
1734 struct btrfs_root *root = fs_info->dev_root;
1735 int ret;
1736 struct btrfs_path *path;
1737 struct btrfs_key key;
1738 struct btrfs_key found_key;
1739 struct extent_buffer *leaf = NULL;
1740 struct btrfs_dev_extent *extent = NULL;
1741
1742 path = btrfs_alloc_path();
1743 if (!path)
1744 return -ENOMEM;
1745
1746 key.objectid = device->devid;
1747 key.offset = start;
1748 key.type = BTRFS_DEV_EXTENT_KEY;
1749 again:
1750 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1751 if (ret > 0) {
1752 ret = btrfs_previous_item(root, path, key.objectid,
1753 BTRFS_DEV_EXTENT_KEY);
1754 if (ret)
1755 goto out;
1756 leaf = path->nodes[0];
1757 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1758 extent = btrfs_item_ptr(leaf, path->slots[0],
1759 struct btrfs_dev_extent);
1760 BUG_ON(found_key.offset > start || found_key.offset +
1761 btrfs_dev_extent_length(leaf, extent) < start);
1762 key = found_key;
1763 btrfs_release_path(path);
1764 goto again;
1765 } else if (ret == 0) {
1766 leaf = path->nodes[0];
1767 extent = btrfs_item_ptr(leaf, path->slots[0],
1768 struct btrfs_dev_extent);
1769 } else {
1770 goto out;
1771 }
1772
1773 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1774
1775 ret = btrfs_del_item(trans, root, path);
1776 if (ret == 0)
1777 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1778 out:
1779 btrfs_free_path(path);
1780 return ret;
1781 }
1782
find_next_chunk(struct btrfs_fs_info * fs_info)1783 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1784 {
1785 struct extent_map_tree *em_tree;
1786 struct extent_map *em;
1787 struct rb_node *n;
1788 u64 ret = 0;
1789
1790 em_tree = &fs_info->mapping_tree;
1791 read_lock(&em_tree->lock);
1792 n = rb_last(&em_tree->map.rb_root);
1793 if (n) {
1794 em = rb_entry(n, struct extent_map, rb_node);
1795 ret = em->start + em->len;
1796 }
1797 read_unlock(&em_tree->lock);
1798
1799 return ret;
1800 }
1801
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1802 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1803 u64 *devid_ret)
1804 {
1805 int ret;
1806 struct btrfs_key key;
1807 struct btrfs_key found_key;
1808 struct btrfs_path *path;
1809
1810 path = btrfs_alloc_path();
1811 if (!path)
1812 return -ENOMEM;
1813
1814 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1815 key.type = BTRFS_DEV_ITEM_KEY;
1816 key.offset = (u64)-1;
1817
1818 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1819 if (ret < 0)
1820 goto error;
1821
1822 if (ret == 0) {
1823 /* Corruption */
1824 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1825 ret = -EUCLEAN;
1826 goto error;
1827 }
1828
1829 ret = btrfs_previous_item(fs_info->chunk_root, path,
1830 BTRFS_DEV_ITEMS_OBJECTID,
1831 BTRFS_DEV_ITEM_KEY);
1832 if (ret) {
1833 *devid_ret = 1;
1834 } else {
1835 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1836 path->slots[0]);
1837 *devid_ret = found_key.offset + 1;
1838 }
1839 ret = 0;
1840 error:
1841 btrfs_free_path(path);
1842 return ret;
1843 }
1844
1845 /*
1846 * the device information is stored in the chunk root
1847 * the btrfs_device struct should be fully filled in
1848 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1849 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1850 struct btrfs_device *device)
1851 {
1852 int ret;
1853 struct btrfs_path *path;
1854 struct btrfs_dev_item *dev_item;
1855 struct extent_buffer *leaf;
1856 struct btrfs_key key;
1857 unsigned long ptr;
1858
1859 path = btrfs_alloc_path();
1860 if (!path)
1861 return -ENOMEM;
1862
1863 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1864 key.type = BTRFS_DEV_ITEM_KEY;
1865 key.offset = device->devid;
1866
1867 btrfs_reserve_chunk_metadata(trans, true);
1868 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1869 &key, sizeof(*dev_item));
1870 btrfs_trans_release_chunk_metadata(trans);
1871 if (ret)
1872 goto out;
1873
1874 leaf = path->nodes[0];
1875 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1876
1877 btrfs_set_device_id(leaf, dev_item, device->devid);
1878 btrfs_set_device_generation(leaf, dev_item, 0);
1879 btrfs_set_device_type(leaf, dev_item, device->type);
1880 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1881 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1882 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1883 btrfs_set_device_total_bytes(leaf, dev_item,
1884 btrfs_device_get_disk_total_bytes(device));
1885 btrfs_set_device_bytes_used(leaf, dev_item,
1886 btrfs_device_get_bytes_used(device));
1887 btrfs_set_device_group(leaf, dev_item, 0);
1888 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1889 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1890 btrfs_set_device_start_offset(leaf, dev_item, 0);
1891
1892 ptr = btrfs_device_uuid(dev_item);
1893 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1894 ptr = btrfs_device_fsid(dev_item);
1895 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1896 ptr, BTRFS_FSID_SIZE);
1897 btrfs_mark_buffer_dirty(leaf);
1898
1899 ret = 0;
1900 out:
1901 btrfs_free_path(path);
1902 return ret;
1903 }
1904
1905 /*
1906 * Function to update ctime/mtime for a given device path.
1907 * Mainly used for ctime/mtime based probe like libblkid.
1908 *
1909 * We don't care about errors here, this is just to be kind to userspace.
1910 */
update_dev_time(const char * device_path)1911 static void update_dev_time(const char *device_path)
1912 {
1913 struct path path;
1914 int ret;
1915
1916 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1917 if (ret)
1918 return;
1919
1920 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1921 path_put(&path);
1922 }
1923
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1924 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1925 struct btrfs_device *device)
1926 {
1927 struct btrfs_root *root = device->fs_info->chunk_root;
1928 int ret;
1929 struct btrfs_path *path;
1930 struct btrfs_key key;
1931
1932 path = btrfs_alloc_path();
1933 if (!path)
1934 return -ENOMEM;
1935
1936 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1937 key.type = BTRFS_DEV_ITEM_KEY;
1938 key.offset = device->devid;
1939
1940 btrfs_reserve_chunk_metadata(trans, false);
1941 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1942 btrfs_trans_release_chunk_metadata(trans);
1943 if (ret) {
1944 if (ret > 0)
1945 ret = -ENOENT;
1946 goto out;
1947 }
1948
1949 ret = btrfs_del_item(trans, root, path);
1950 out:
1951 btrfs_free_path(path);
1952 return ret;
1953 }
1954
1955 /*
1956 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1957 * filesystem. It's up to the caller to adjust that number regarding eg. device
1958 * replace.
1959 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1960 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1961 u64 num_devices)
1962 {
1963 u64 all_avail;
1964 unsigned seq;
1965 int i;
1966
1967 do {
1968 seq = read_seqbegin(&fs_info->profiles_lock);
1969
1970 all_avail = fs_info->avail_data_alloc_bits |
1971 fs_info->avail_system_alloc_bits |
1972 fs_info->avail_metadata_alloc_bits;
1973 } while (read_seqretry(&fs_info->profiles_lock, seq));
1974
1975 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1976 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1977 continue;
1978
1979 if (num_devices < btrfs_raid_array[i].devs_min)
1980 return btrfs_raid_array[i].mindev_error;
1981 }
1982
1983 return 0;
1984 }
1985
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1986 static struct btrfs_device * btrfs_find_next_active_device(
1987 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1988 {
1989 struct btrfs_device *next_device;
1990
1991 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1992 if (next_device != device &&
1993 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1994 && next_device->bdev)
1995 return next_device;
1996 }
1997
1998 return NULL;
1999 }
2000
2001 /*
2002 * Helper function to check if the given device is part of s_bdev / latest_dev
2003 * and replace it with the provided or the next active device, in the context
2004 * where this function called, there should be always be another device (or
2005 * this_dev) which is active.
2006 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2007 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2008 struct btrfs_device *next_device)
2009 {
2010 struct btrfs_fs_info *fs_info = device->fs_info;
2011
2012 if (!next_device)
2013 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2014 device);
2015 ASSERT(next_device);
2016
2017 if (fs_info->sb->s_bdev &&
2018 (fs_info->sb->s_bdev == device->bdev))
2019 fs_info->sb->s_bdev = next_device->bdev;
2020
2021 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2022 fs_info->fs_devices->latest_dev = next_device;
2023 }
2024
2025 /*
2026 * Return btrfs_fs_devices::num_devices excluding the device that's being
2027 * currently replaced.
2028 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2029 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2030 {
2031 u64 num_devices = fs_info->fs_devices->num_devices;
2032
2033 down_read(&fs_info->dev_replace.rwsem);
2034 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2035 ASSERT(num_devices > 1);
2036 num_devices--;
2037 }
2038 up_read(&fs_info->dev_replace.rwsem);
2039
2040 return num_devices;
2041 }
2042
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2043 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2044 struct block_device *bdev, int copy_num)
2045 {
2046 struct btrfs_super_block *disk_super;
2047 const size_t len = sizeof(disk_super->magic);
2048 const u64 bytenr = btrfs_sb_offset(copy_num);
2049 int ret;
2050
2051 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2052 if (IS_ERR(disk_super))
2053 return;
2054
2055 memset(&disk_super->magic, 0, len);
2056 folio_mark_dirty(virt_to_folio(disk_super));
2057 btrfs_release_disk_super(disk_super);
2058
2059 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2060 if (ret)
2061 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2062 copy_num, ret);
2063 }
2064
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2065 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2066 struct block_device *bdev,
2067 const char *device_path)
2068 {
2069 int copy_num;
2070
2071 if (!bdev)
2072 return;
2073
2074 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2075 if (bdev_is_zoned(bdev))
2076 btrfs_reset_sb_log_zones(bdev, copy_num);
2077 else
2078 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2079 }
2080
2081 /* Notify udev that device has changed */
2082 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2083
2084 /* Update ctime/mtime for device path for libblkid */
2085 update_dev_time(device_path);
2086 }
2087
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct block_device ** bdev,void ** holder)2088 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2089 struct btrfs_dev_lookup_args *args,
2090 struct block_device **bdev, void **holder)
2091 {
2092 struct btrfs_trans_handle *trans;
2093 struct btrfs_device *device;
2094 struct btrfs_fs_devices *cur_devices;
2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096 u64 num_devices;
2097 int ret = 0;
2098
2099 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2100 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2101 return -EINVAL;
2102 }
2103
2104 /*
2105 * The device list in fs_devices is accessed without locks (neither
2106 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2107 * filesystem and another device rm cannot run.
2108 */
2109 num_devices = btrfs_num_devices(fs_info);
2110
2111 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2112 if (ret)
2113 return ret;
2114
2115 device = btrfs_find_device(fs_info->fs_devices, args);
2116 if (!device) {
2117 if (args->missing)
2118 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2119 else
2120 ret = -ENOENT;
2121 return ret;
2122 }
2123
2124 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2125 btrfs_warn_in_rcu(fs_info,
2126 "cannot remove device %s (devid %llu) due to active swapfile",
2127 btrfs_dev_name(device), device->devid);
2128 return -ETXTBSY;
2129 }
2130
2131 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2132 return BTRFS_ERROR_DEV_TGT_REPLACE;
2133
2134 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2135 fs_info->fs_devices->rw_devices == 1)
2136 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2137
2138 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2139 mutex_lock(&fs_info->chunk_mutex);
2140 list_del_init(&device->dev_alloc_list);
2141 device->fs_devices->rw_devices--;
2142 mutex_unlock(&fs_info->chunk_mutex);
2143 }
2144
2145 ret = btrfs_shrink_device(device, 0);
2146 if (ret)
2147 goto error_undo;
2148
2149 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2150 if (IS_ERR(trans)) {
2151 ret = PTR_ERR(trans);
2152 goto error_undo;
2153 }
2154
2155 ret = btrfs_rm_dev_item(trans, device);
2156 if (ret) {
2157 /* Any error in dev item removal is critical */
2158 btrfs_crit(fs_info,
2159 "failed to remove device item for devid %llu: %d",
2160 device->devid, ret);
2161 btrfs_abort_transaction(trans, ret);
2162 btrfs_end_transaction(trans);
2163 return ret;
2164 }
2165
2166 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2167 btrfs_scrub_cancel_dev(device);
2168
2169 /*
2170 * the device list mutex makes sure that we don't change
2171 * the device list while someone else is writing out all
2172 * the device supers. Whoever is writing all supers, should
2173 * lock the device list mutex before getting the number of
2174 * devices in the super block (super_copy). Conversely,
2175 * whoever updates the number of devices in the super block
2176 * (super_copy) should hold the device list mutex.
2177 */
2178
2179 /*
2180 * In normal cases the cur_devices == fs_devices. But in case
2181 * of deleting a seed device, the cur_devices should point to
2182 * its own fs_devices listed under the fs_devices->seed_list.
2183 */
2184 cur_devices = device->fs_devices;
2185 mutex_lock(&fs_devices->device_list_mutex);
2186 list_del_rcu(&device->dev_list);
2187
2188 cur_devices->num_devices--;
2189 cur_devices->total_devices--;
2190 /* Update total_devices of the parent fs_devices if it's seed */
2191 if (cur_devices != fs_devices)
2192 fs_devices->total_devices--;
2193
2194 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2195 cur_devices->missing_devices--;
2196
2197 btrfs_assign_next_active_device(device, NULL);
2198
2199 if (device->bdev) {
2200 cur_devices->open_devices--;
2201 /* remove sysfs entry */
2202 btrfs_sysfs_remove_device(device);
2203 }
2204
2205 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2206 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2207 mutex_unlock(&fs_devices->device_list_mutex);
2208
2209 /*
2210 * At this point, the device is zero sized and detached from the
2211 * devices list. All that's left is to zero out the old supers and
2212 * free the device.
2213 *
2214 * We cannot call btrfs_close_bdev() here because we're holding the sb
2215 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2216 * block device and it's dependencies. Instead just flush the device
2217 * and let the caller do the final blkdev_put.
2218 */
2219 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2220 btrfs_scratch_superblocks(fs_info, device->bdev,
2221 device->name->str);
2222 if (device->bdev) {
2223 sync_blockdev(device->bdev);
2224 invalidate_bdev(device->bdev);
2225 }
2226 }
2227
2228 *bdev = device->bdev;
2229 *holder = device->holder;
2230 synchronize_rcu();
2231 btrfs_free_device(device);
2232
2233 /*
2234 * This can happen if cur_devices is the private seed devices list. We
2235 * cannot call close_fs_devices() here because it expects the uuid_mutex
2236 * to be held, but in fact we don't need that for the private
2237 * seed_devices, we can simply decrement cur_devices->opened and then
2238 * remove it from our list and free the fs_devices.
2239 */
2240 if (cur_devices->num_devices == 0) {
2241 list_del_init(&cur_devices->seed_list);
2242 ASSERT(cur_devices->opened == 1);
2243 cur_devices->opened--;
2244 free_fs_devices(cur_devices);
2245 }
2246
2247 ret = btrfs_commit_transaction(trans);
2248
2249 return ret;
2250
2251 error_undo:
2252 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2253 mutex_lock(&fs_info->chunk_mutex);
2254 list_add(&device->dev_alloc_list,
2255 &fs_devices->alloc_list);
2256 device->fs_devices->rw_devices++;
2257 mutex_unlock(&fs_info->chunk_mutex);
2258 }
2259 return ret;
2260 }
2261
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2262 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2263 {
2264 struct btrfs_fs_devices *fs_devices;
2265
2266 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2267
2268 /*
2269 * in case of fs with no seed, srcdev->fs_devices will point
2270 * to fs_devices of fs_info. However when the dev being replaced is
2271 * a seed dev it will point to the seed's local fs_devices. In short
2272 * srcdev will have its correct fs_devices in both the cases.
2273 */
2274 fs_devices = srcdev->fs_devices;
2275
2276 list_del_rcu(&srcdev->dev_list);
2277 list_del(&srcdev->dev_alloc_list);
2278 fs_devices->num_devices--;
2279 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2280 fs_devices->missing_devices--;
2281
2282 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2283 fs_devices->rw_devices--;
2284
2285 if (srcdev->bdev)
2286 fs_devices->open_devices--;
2287 }
2288
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2289 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2290 {
2291 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2292
2293 mutex_lock(&uuid_mutex);
2294
2295 btrfs_close_bdev(srcdev);
2296 synchronize_rcu();
2297 btrfs_free_device(srcdev);
2298
2299 /* if this is no devs we rather delete the fs_devices */
2300 if (!fs_devices->num_devices) {
2301 /*
2302 * On a mounted FS, num_devices can't be zero unless it's a
2303 * seed. In case of a seed device being replaced, the replace
2304 * target added to the sprout FS, so there will be no more
2305 * device left under the seed FS.
2306 */
2307 ASSERT(fs_devices->seeding);
2308
2309 list_del_init(&fs_devices->seed_list);
2310 close_fs_devices(fs_devices);
2311 free_fs_devices(fs_devices);
2312 }
2313 mutex_unlock(&uuid_mutex);
2314 }
2315
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2316 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2317 {
2318 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2319
2320 mutex_lock(&fs_devices->device_list_mutex);
2321
2322 btrfs_sysfs_remove_device(tgtdev);
2323
2324 if (tgtdev->bdev)
2325 fs_devices->open_devices--;
2326
2327 fs_devices->num_devices--;
2328
2329 btrfs_assign_next_active_device(tgtdev, NULL);
2330
2331 list_del_rcu(&tgtdev->dev_list);
2332
2333 mutex_unlock(&fs_devices->device_list_mutex);
2334
2335 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2336 tgtdev->name->str);
2337
2338 btrfs_close_bdev(tgtdev);
2339 synchronize_rcu();
2340 btrfs_free_device(tgtdev);
2341 }
2342
2343 /*
2344 * Populate args from device at path.
2345 *
2346 * @fs_info: the filesystem
2347 * @args: the args to populate
2348 * @path: the path to the device
2349 *
2350 * This will read the super block of the device at @path and populate @args with
2351 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2352 * lookup a device to operate on, but need to do it before we take any locks.
2353 * This properly handles the special case of "missing" that a user may pass in,
2354 * and does some basic sanity checks. The caller must make sure that @path is
2355 * properly NUL terminated before calling in, and must call
2356 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2357 * uuid buffers.
2358 *
2359 * Return: 0 for success, -errno for failure
2360 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2361 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2362 struct btrfs_dev_lookup_args *args,
2363 const char *path)
2364 {
2365 struct btrfs_super_block *disk_super;
2366 struct block_device *bdev;
2367 int ret;
2368
2369 if (!path || !path[0])
2370 return -EINVAL;
2371 if (!strcmp(path, "missing")) {
2372 args->missing = true;
2373 return 0;
2374 }
2375
2376 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2377 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2378 if (!args->uuid || !args->fsid) {
2379 btrfs_put_dev_args_from_path(args);
2380 return -ENOMEM;
2381 }
2382
2383 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2384 &bdev, &disk_super);
2385 if (ret) {
2386 btrfs_put_dev_args_from_path(args);
2387 return ret;
2388 }
2389
2390 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2391 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2392 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2393 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2394 else
2395 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2396 btrfs_release_disk_super(disk_super);
2397 blkdev_put(bdev, NULL);
2398 return 0;
2399 }
2400
2401 /*
2402 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2403 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2404 * that don't need to be freed.
2405 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2406 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2407 {
2408 kfree(args->uuid);
2409 kfree(args->fsid);
2410 args->uuid = NULL;
2411 args->fsid = NULL;
2412 }
2413
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2414 struct btrfs_device *btrfs_find_device_by_devspec(
2415 struct btrfs_fs_info *fs_info, u64 devid,
2416 const char *device_path)
2417 {
2418 BTRFS_DEV_LOOKUP_ARGS(args);
2419 struct btrfs_device *device;
2420 int ret;
2421
2422 if (devid) {
2423 args.devid = devid;
2424 device = btrfs_find_device(fs_info->fs_devices, &args);
2425 if (!device)
2426 return ERR_PTR(-ENOENT);
2427 return device;
2428 }
2429
2430 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2431 if (ret)
2432 return ERR_PTR(ret);
2433 device = btrfs_find_device(fs_info->fs_devices, &args);
2434 btrfs_put_dev_args_from_path(&args);
2435 if (!device)
2436 return ERR_PTR(-ENOENT);
2437 return device;
2438 }
2439
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2440 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2441 {
2442 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2443 struct btrfs_fs_devices *old_devices;
2444 struct btrfs_fs_devices *seed_devices;
2445
2446 lockdep_assert_held(&uuid_mutex);
2447 if (!fs_devices->seeding)
2448 return ERR_PTR(-EINVAL);
2449
2450 /*
2451 * Private copy of the seed devices, anchored at
2452 * fs_info->fs_devices->seed_list
2453 */
2454 seed_devices = alloc_fs_devices(NULL, NULL);
2455 if (IS_ERR(seed_devices))
2456 return seed_devices;
2457
2458 /*
2459 * It's necessary to retain a copy of the original seed fs_devices in
2460 * fs_uuids so that filesystems which have been seeded can successfully
2461 * reference the seed device from open_seed_devices. This also supports
2462 * multiple fs seed.
2463 */
2464 old_devices = clone_fs_devices(fs_devices);
2465 if (IS_ERR(old_devices)) {
2466 kfree(seed_devices);
2467 return old_devices;
2468 }
2469
2470 list_add(&old_devices->fs_list, &fs_uuids);
2471
2472 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2473 seed_devices->opened = 1;
2474 INIT_LIST_HEAD(&seed_devices->devices);
2475 INIT_LIST_HEAD(&seed_devices->alloc_list);
2476 mutex_init(&seed_devices->device_list_mutex);
2477
2478 return seed_devices;
2479 }
2480
2481 /*
2482 * Splice seed devices into the sprout fs_devices.
2483 * Generate a new fsid for the sprouted read-write filesystem.
2484 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2485 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2486 struct btrfs_fs_devices *seed_devices)
2487 {
2488 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2489 struct btrfs_super_block *disk_super = fs_info->super_copy;
2490 struct btrfs_device *device;
2491 u64 super_flags;
2492
2493 /*
2494 * We are updating the fsid, the thread leading to device_list_add()
2495 * could race, so uuid_mutex is needed.
2496 */
2497 lockdep_assert_held(&uuid_mutex);
2498
2499 /*
2500 * The threads listed below may traverse dev_list but can do that without
2501 * device_list_mutex:
2502 * - All device ops and balance - as we are in btrfs_exclop_start.
2503 * - Various dev_list readers - are using RCU.
2504 * - btrfs_ioctl_fitrim() - is using RCU.
2505 *
2506 * For-read threads as below are using device_list_mutex:
2507 * - Readonly scrub btrfs_scrub_dev()
2508 * - Readonly scrub btrfs_scrub_progress()
2509 * - btrfs_get_dev_stats()
2510 */
2511 lockdep_assert_held(&fs_devices->device_list_mutex);
2512
2513 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2514 synchronize_rcu);
2515 list_for_each_entry(device, &seed_devices->devices, dev_list)
2516 device->fs_devices = seed_devices;
2517
2518 fs_devices->seeding = false;
2519 fs_devices->num_devices = 0;
2520 fs_devices->open_devices = 0;
2521 fs_devices->missing_devices = 0;
2522 fs_devices->rotating = false;
2523 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2524
2525 generate_random_uuid(fs_devices->fsid);
2526 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2527 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2528
2529 super_flags = btrfs_super_flags(disk_super) &
2530 ~BTRFS_SUPER_FLAG_SEEDING;
2531 btrfs_set_super_flags(disk_super, super_flags);
2532 }
2533
2534 /*
2535 * Store the expected generation for seed devices in device items.
2536 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2537 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2538 {
2539 BTRFS_DEV_LOOKUP_ARGS(args);
2540 struct btrfs_fs_info *fs_info = trans->fs_info;
2541 struct btrfs_root *root = fs_info->chunk_root;
2542 struct btrfs_path *path;
2543 struct extent_buffer *leaf;
2544 struct btrfs_dev_item *dev_item;
2545 struct btrfs_device *device;
2546 struct btrfs_key key;
2547 u8 fs_uuid[BTRFS_FSID_SIZE];
2548 u8 dev_uuid[BTRFS_UUID_SIZE];
2549 int ret;
2550
2551 path = btrfs_alloc_path();
2552 if (!path)
2553 return -ENOMEM;
2554
2555 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2556 key.offset = 0;
2557 key.type = BTRFS_DEV_ITEM_KEY;
2558
2559 while (1) {
2560 btrfs_reserve_chunk_metadata(trans, false);
2561 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2562 btrfs_trans_release_chunk_metadata(trans);
2563 if (ret < 0)
2564 goto error;
2565
2566 leaf = path->nodes[0];
2567 next_slot:
2568 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2569 ret = btrfs_next_leaf(root, path);
2570 if (ret > 0)
2571 break;
2572 if (ret < 0)
2573 goto error;
2574 leaf = path->nodes[0];
2575 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576 btrfs_release_path(path);
2577 continue;
2578 }
2579
2580 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2581 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2582 key.type != BTRFS_DEV_ITEM_KEY)
2583 break;
2584
2585 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2586 struct btrfs_dev_item);
2587 args.devid = btrfs_device_id(leaf, dev_item);
2588 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2589 BTRFS_UUID_SIZE);
2590 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2591 BTRFS_FSID_SIZE);
2592 args.uuid = dev_uuid;
2593 args.fsid = fs_uuid;
2594 device = btrfs_find_device(fs_info->fs_devices, &args);
2595 BUG_ON(!device); /* Logic error */
2596
2597 if (device->fs_devices->seeding) {
2598 btrfs_set_device_generation(leaf, dev_item,
2599 device->generation);
2600 btrfs_mark_buffer_dirty(leaf);
2601 }
2602
2603 path->slots[0]++;
2604 goto next_slot;
2605 }
2606 ret = 0;
2607 error:
2608 btrfs_free_path(path);
2609 return ret;
2610 }
2611
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2612 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2613 {
2614 struct btrfs_root *root = fs_info->dev_root;
2615 struct btrfs_trans_handle *trans;
2616 struct btrfs_device *device;
2617 struct block_device *bdev;
2618 struct super_block *sb = fs_info->sb;
2619 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2620 struct btrfs_fs_devices *seed_devices = NULL;
2621 u64 orig_super_total_bytes;
2622 u64 orig_super_num_devices;
2623 int ret = 0;
2624 bool seeding_dev = false;
2625 bool locked = false;
2626
2627 if (sb_rdonly(sb) && !fs_devices->seeding)
2628 return -EROFS;
2629
2630 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
2631 fs_info->bdev_holder, NULL);
2632 if (IS_ERR(bdev))
2633 return PTR_ERR(bdev);
2634
2635 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2636 ret = -EINVAL;
2637 goto error;
2638 }
2639
2640 if (fs_devices->seeding) {
2641 seeding_dev = true;
2642 down_write(&sb->s_umount);
2643 mutex_lock(&uuid_mutex);
2644 locked = true;
2645 }
2646
2647 sync_blockdev(bdev);
2648
2649 rcu_read_lock();
2650 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2651 if (device->bdev == bdev) {
2652 ret = -EEXIST;
2653 rcu_read_unlock();
2654 goto error;
2655 }
2656 }
2657 rcu_read_unlock();
2658
2659 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2660 if (IS_ERR(device)) {
2661 /* we can safely leave the fs_devices entry around */
2662 ret = PTR_ERR(device);
2663 goto error;
2664 }
2665
2666 device->fs_info = fs_info;
2667 device->bdev = bdev;
2668 ret = lookup_bdev(device_path, &device->devt);
2669 if (ret)
2670 goto error_free_device;
2671
2672 ret = btrfs_get_dev_zone_info(device, false);
2673 if (ret)
2674 goto error_free_device;
2675
2676 trans = btrfs_start_transaction(root, 0);
2677 if (IS_ERR(trans)) {
2678 ret = PTR_ERR(trans);
2679 goto error_free_zone;
2680 }
2681
2682 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2683 device->generation = trans->transid;
2684 device->io_width = fs_info->sectorsize;
2685 device->io_align = fs_info->sectorsize;
2686 device->sector_size = fs_info->sectorsize;
2687 device->total_bytes =
2688 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2689 device->disk_total_bytes = device->total_bytes;
2690 device->commit_total_bytes = device->total_bytes;
2691 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2692 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2693 device->holder = fs_info->bdev_holder;
2694 device->dev_stats_valid = 1;
2695 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2696
2697 if (seeding_dev) {
2698 btrfs_clear_sb_rdonly(sb);
2699
2700 /* GFP_KERNEL allocation must not be under device_list_mutex */
2701 seed_devices = btrfs_init_sprout(fs_info);
2702 if (IS_ERR(seed_devices)) {
2703 ret = PTR_ERR(seed_devices);
2704 btrfs_abort_transaction(trans, ret);
2705 goto error_trans;
2706 }
2707 }
2708
2709 mutex_lock(&fs_devices->device_list_mutex);
2710 if (seeding_dev) {
2711 btrfs_setup_sprout(fs_info, seed_devices);
2712 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2713 device);
2714 }
2715
2716 device->fs_devices = fs_devices;
2717
2718 mutex_lock(&fs_info->chunk_mutex);
2719 list_add_rcu(&device->dev_list, &fs_devices->devices);
2720 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2721 fs_devices->num_devices++;
2722 fs_devices->open_devices++;
2723 fs_devices->rw_devices++;
2724 fs_devices->total_devices++;
2725 fs_devices->total_rw_bytes += device->total_bytes;
2726
2727 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2728
2729 if (!bdev_nonrot(bdev))
2730 fs_devices->rotating = true;
2731
2732 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2733 btrfs_set_super_total_bytes(fs_info->super_copy,
2734 round_down(orig_super_total_bytes + device->total_bytes,
2735 fs_info->sectorsize));
2736
2737 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2738 btrfs_set_super_num_devices(fs_info->super_copy,
2739 orig_super_num_devices + 1);
2740
2741 /*
2742 * we've got more storage, clear any full flags on the space
2743 * infos
2744 */
2745 btrfs_clear_space_info_full(fs_info);
2746
2747 mutex_unlock(&fs_info->chunk_mutex);
2748
2749 /* Add sysfs device entry */
2750 btrfs_sysfs_add_device(device);
2751
2752 mutex_unlock(&fs_devices->device_list_mutex);
2753
2754 if (seeding_dev) {
2755 mutex_lock(&fs_info->chunk_mutex);
2756 ret = init_first_rw_device(trans);
2757 mutex_unlock(&fs_info->chunk_mutex);
2758 if (ret) {
2759 btrfs_abort_transaction(trans, ret);
2760 goto error_sysfs;
2761 }
2762 }
2763
2764 ret = btrfs_add_dev_item(trans, device);
2765 if (ret) {
2766 btrfs_abort_transaction(trans, ret);
2767 goto error_sysfs;
2768 }
2769
2770 if (seeding_dev) {
2771 ret = btrfs_finish_sprout(trans);
2772 if (ret) {
2773 btrfs_abort_transaction(trans, ret);
2774 goto error_sysfs;
2775 }
2776
2777 /*
2778 * fs_devices now represents the newly sprouted filesystem and
2779 * its fsid has been changed by btrfs_sprout_splice().
2780 */
2781 btrfs_sysfs_update_sprout_fsid(fs_devices);
2782 }
2783
2784 ret = btrfs_commit_transaction(trans);
2785
2786 if (seeding_dev) {
2787 mutex_unlock(&uuid_mutex);
2788 up_write(&sb->s_umount);
2789 locked = false;
2790
2791 if (ret) /* transaction commit */
2792 return ret;
2793
2794 ret = btrfs_relocate_sys_chunks(fs_info);
2795 if (ret < 0)
2796 btrfs_handle_fs_error(fs_info, ret,
2797 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2798 trans = btrfs_attach_transaction(root);
2799 if (IS_ERR(trans)) {
2800 if (PTR_ERR(trans) == -ENOENT)
2801 return 0;
2802 ret = PTR_ERR(trans);
2803 trans = NULL;
2804 goto error_sysfs;
2805 }
2806 ret = btrfs_commit_transaction(trans);
2807 }
2808
2809 /*
2810 * Now that we have written a new super block to this device, check all
2811 * other fs_devices list if device_path alienates any other scanned
2812 * device.
2813 * We can ignore the return value as it typically returns -EINVAL and
2814 * only succeeds if the device was an alien.
2815 */
2816 btrfs_forget_devices(device->devt);
2817
2818 /* Update ctime/mtime for blkid or udev */
2819 update_dev_time(device_path);
2820
2821 return ret;
2822
2823 error_sysfs:
2824 btrfs_sysfs_remove_device(device);
2825 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2826 mutex_lock(&fs_info->chunk_mutex);
2827 list_del_rcu(&device->dev_list);
2828 list_del(&device->dev_alloc_list);
2829 fs_info->fs_devices->num_devices--;
2830 fs_info->fs_devices->open_devices--;
2831 fs_info->fs_devices->rw_devices--;
2832 fs_info->fs_devices->total_devices--;
2833 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2834 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2835 btrfs_set_super_total_bytes(fs_info->super_copy,
2836 orig_super_total_bytes);
2837 btrfs_set_super_num_devices(fs_info->super_copy,
2838 orig_super_num_devices);
2839 mutex_unlock(&fs_info->chunk_mutex);
2840 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2841 error_trans:
2842 if (seeding_dev)
2843 btrfs_set_sb_rdonly(sb);
2844 if (trans)
2845 btrfs_end_transaction(trans);
2846 error_free_zone:
2847 btrfs_destroy_dev_zone_info(device);
2848 error_free_device:
2849 btrfs_free_device(device);
2850 error:
2851 blkdev_put(bdev, fs_info->bdev_holder);
2852 if (locked) {
2853 mutex_unlock(&uuid_mutex);
2854 up_write(&sb->s_umount);
2855 }
2856 return ret;
2857 }
2858
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2859 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2860 struct btrfs_device *device)
2861 {
2862 int ret;
2863 struct btrfs_path *path;
2864 struct btrfs_root *root = device->fs_info->chunk_root;
2865 struct btrfs_dev_item *dev_item;
2866 struct extent_buffer *leaf;
2867 struct btrfs_key key;
2868
2869 path = btrfs_alloc_path();
2870 if (!path)
2871 return -ENOMEM;
2872
2873 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2874 key.type = BTRFS_DEV_ITEM_KEY;
2875 key.offset = device->devid;
2876
2877 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2878 if (ret < 0)
2879 goto out;
2880
2881 if (ret > 0) {
2882 ret = -ENOENT;
2883 goto out;
2884 }
2885
2886 leaf = path->nodes[0];
2887 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2888
2889 btrfs_set_device_id(leaf, dev_item, device->devid);
2890 btrfs_set_device_type(leaf, dev_item, device->type);
2891 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2892 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2893 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2894 btrfs_set_device_total_bytes(leaf, dev_item,
2895 btrfs_device_get_disk_total_bytes(device));
2896 btrfs_set_device_bytes_used(leaf, dev_item,
2897 btrfs_device_get_bytes_used(device));
2898 btrfs_mark_buffer_dirty(leaf);
2899
2900 out:
2901 btrfs_free_path(path);
2902 return ret;
2903 }
2904
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2905 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2906 struct btrfs_device *device, u64 new_size)
2907 {
2908 struct btrfs_fs_info *fs_info = device->fs_info;
2909 struct btrfs_super_block *super_copy = fs_info->super_copy;
2910 u64 old_total;
2911 u64 diff;
2912 int ret;
2913
2914 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2915 return -EACCES;
2916
2917 new_size = round_down(new_size, fs_info->sectorsize);
2918
2919 mutex_lock(&fs_info->chunk_mutex);
2920 old_total = btrfs_super_total_bytes(super_copy);
2921 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2922
2923 if (new_size <= device->total_bytes ||
2924 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2925 mutex_unlock(&fs_info->chunk_mutex);
2926 return -EINVAL;
2927 }
2928
2929 btrfs_set_super_total_bytes(super_copy,
2930 round_down(old_total + diff, fs_info->sectorsize));
2931 device->fs_devices->total_rw_bytes += diff;
2932
2933 btrfs_device_set_total_bytes(device, new_size);
2934 btrfs_device_set_disk_total_bytes(device, new_size);
2935 btrfs_clear_space_info_full(device->fs_info);
2936 if (list_empty(&device->post_commit_list))
2937 list_add_tail(&device->post_commit_list,
2938 &trans->transaction->dev_update_list);
2939 mutex_unlock(&fs_info->chunk_mutex);
2940
2941 btrfs_reserve_chunk_metadata(trans, false);
2942 ret = btrfs_update_device(trans, device);
2943 btrfs_trans_release_chunk_metadata(trans);
2944
2945 return ret;
2946 }
2947
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2948 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2949 {
2950 struct btrfs_fs_info *fs_info = trans->fs_info;
2951 struct btrfs_root *root = fs_info->chunk_root;
2952 int ret;
2953 struct btrfs_path *path;
2954 struct btrfs_key key;
2955
2956 path = btrfs_alloc_path();
2957 if (!path)
2958 return -ENOMEM;
2959
2960 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2961 key.offset = chunk_offset;
2962 key.type = BTRFS_CHUNK_ITEM_KEY;
2963
2964 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2965 if (ret < 0)
2966 goto out;
2967 else if (ret > 0) { /* Logic error or corruption */
2968 btrfs_handle_fs_error(fs_info, -ENOENT,
2969 "Failed lookup while freeing chunk.");
2970 ret = -ENOENT;
2971 goto out;
2972 }
2973
2974 ret = btrfs_del_item(trans, root, path);
2975 if (ret < 0)
2976 btrfs_handle_fs_error(fs_info, ret,
2977 "Failed to delete chunk item.");
2978 out:
2979 btrfs_free_path(path);
2980 return ret;
2981 }
2982
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2983 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2984 {
2985 struct btrfs_super_block *super_copy = fs_info->super_copy;
2986 struct btrfs_disk_key *disk_key;
2987 struct btrfs_chunk *chunk;
2988 u8 *ptr;
2989 int ret = 0;
2990 u32 num_stripes;
2991 u32 array_size;
2992 u32 len = 0;
2993 u32 cur;
2994 struct btrfs_key key;
2995
2996 lockdep_assert_held(&fs_info->chunk_mutex);
2997 array_size = btrfs_super_sys_array_size(super_copy);
2998
2999 ptr = super_copy->sys_chunk_array;
3000 cur = 0;
3001
3002 while (cur < array_size) {
3003 disk_key = (struct btrfs_disk_key *)ptr;
3004 btrfs_disk_key_to_cpu(&key, disk_key);
3005
3006 len = sizeof(*disk_key);
3007
3008 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3009 chunk = (struct btrfs_chunk *)(ptr + len);
3010 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3011 len += btrfs_chunk_item_size(num_stripes);
3012 } else {
3013 ret = -EIO;
3014 break;
3015 }
3016 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3017 key.offset == chunk_offset) {
3018 memmove(ptr, ptr + len, array_size - (cur + len));
3019 array_size -= len;
3020 btrfs_set_super_sys_array_size(super_copy, array_size);
3021 } else {
3022 ptr += len;
3023 cur += len;
3024 }
3025 }
3026 return ret;
3027 }
3028
3029 /*
3030 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3031 * @logical: Logical block offset in bytes.
3032 * @length: Length of extent in bytes.
3033 *
3034 * Return: Chunk mapping or ERR_PTR.
3035 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3036 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3037 u64 logical, u64 length)
3038 {
3039 struct extent_map_tree *em_tree;
3040 struct extent_map *em;
3041
3042 em_tree = &fs_info->mapping_tree;
3043 read_lock(&em_tree->lock);
3044 em = lookup_extent_mapping(em_tree, logical, length);
3045 read_unlock(&em_tree->lock);
3046
3047 if (!em) {
3048 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3049 logical, length);
3050 return ERR_PTR(-EINVAL);
3051 }
3052
3053 if (em->start > logical || em->start + em->len < logical) {
3054 btrfs_crit(fs_info,
3055 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3056 logical, length, em->start, em->start + em->len);
3057 free_extent_map(em);
3058 return ERR_PTR(-EINVAL);
3059 }
3060
3061 /* callers are responsible for dropping em's ref. */
3062 return em;
3063 }
3064
remove_chunk_item(struct btrfs_trans_handle * trans,struct map_lookup * map,u64 chunk_offset)3065 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3066 struct map_lookup *map, u64 chunk_offset)
3067 {
3068 int i;
3069
3070 /*
3071 * Removing chunk items and updating the device items in the chunks btree
3072 * requires holding the chunk_mutex.
3073 * See the comment at btrfs_chunk_alloc() for the details.
3074 */
3075 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3076
3077 for (i = 0; i < map->num_stripes; i++) {
3078 int ret;
3079
3080 ret = btrfs_update_device(trans, map->stripes[i].dev);
3081 if (ret)
3082 return ret;
3083 }
3084
3085 return btrfs_free_chunk(trans, chunk_offset);
3086 }
3087
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3088 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3089 {
3090 struct btrfs_fs_info *fs_info = trans->fs_info;
3091 struct extent_map *em;
3092 struct map_lookup *map;
3093 u64 dev_extent_len = 0;
3094 int i, ret = 0;
3095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3096
3097 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3098 if (IS_ERR(em)) {
3099 /*
3100 * This is a logic error, but we don't want to just rely on the
3101 * user having built with ASSERT enabled, so if ASSERT doesn't
3102 * do anything we still error out.
3103 */
3104 ASSERT(0);
3105 return PTR_ERR(em);
3106 }
3107 map = em->map_lookup;
3108
3109 /*
3110 * First delete the device extent items from the devices btree.
3111 * We take the device_list_mutex to avoid racing with the finishing phase
3112 * of a device replace operation. See the comment below before acquiring
3113 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3114 * because that can result in a deadlock when deleting the device extent
3115 * items from the devices btree - COWing an extent buffer from the btree
3116 * may result in allocating a new metadata chunk, which would attempt to
3117 * lock again fs_info->chunk_mutex.
3118 */
3119 mutex_lock(&fs_devices->device_list_mutex);
3120 for (i = 0; i < map->num_stripes; i++) {
3121 struct btrfs_device *device = map->stripes[i].dev;
3122 ret = btrfs_free_dev_extent(trans, device,
3123 map->stripes[i].physical,
3124 &dev_extent_len);
3125 if (ret) {
3126 mutex_unlock(&fs_devices->device_list_mutex);
3127 btrfs_abort_transaction(trans, ret);
3128 goto out;
3129 }
3130
3131 if (device->bytes_used > 0) {
3132 mutex_lock(&fs_info->chunk_mutex);
3133 btrfs_device_set_bytes_used(device,
3134 device->bytes_used - dev_extent_len);
3135 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3136 btrfs_clear_space_info_full(fs_info);
3137 mutex_unlock(&fs_info->chunk_mutex);
3138 }
3139 }
3140 mutex_unlock(&fs_devices->device_list_mutex);
3141
3142 /*
3143 * We acquire fs_info->chunk_mutex for 2 reasons:
3144 *
3145 * 1) Just like with the first phase of the chunk allocation, we must
3146 * reserve system space, do all chunk btree updates and deletions, and
3147 * update the system chunk array in the superblock while holding this
3148 * mutex. This is for similar reasons as explained on the comment at
3149 * the top of btrfs_chunk_alloc();
3150 *
3151 * 2) Prevent races with the final phase of a device replace operation
3152 * that replaces the device object associated with the map's stripes,
3153 * because the device object's id can change at any time during that
3154 * final phase of the device replace operation
3155 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3156 * replaced device and then see it with an ID of
3157 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3158 * the device item, which does not exists on the chunk btree.
3159 * The finishing phase of device replace acquires both the
3160 * device_list_mutex and the chunk_mutex, in that order, so we are
3161 * safe by just acquiring the chunk_mutex.
3162 */
3163 trans->removing_chunk = true;
3164 mutex_lock(&fs_info->chunk_mutex);
3165
3166 check_system_chunk(trans, map->type);
3167
3168 ret = remove_chunk_item(trans, map, chunk_offset);
3169 /*
3170 * Normally we should not get -ENOSPC since we reserved space before
3171 * through the call to check_system_chunk().
3172 *
3173 * Despite our system space_info having enough free space, we may not
3174 * be able to allocate extents from its block groups, because all have
3175 * an incompatible profile, which will force us to allocate a new system
3176 * block group with the right profile, or right after we called
3177 * check_system_space() above, a scrub turned the only system block group
3178 * with enough free space into RO mode.
3179 * This is explained with more detail at do_chunk_alloc().
3180 *
3181 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3182 */
3183 if (ret == -ENOSPC) {
3184 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3185 struct btrfs_block_group *sys_bg;
3186
3187 sys_bg = btrfs_create_chunk(trans, sys_flags);
3188 if (IS_ERR(sys_bg)) {
3189 ret = PTR_ERR(sys_bg);
3190 btrfs_abort_transaction(trans, ret);
3191 goto out;
3192 }
3193
3194 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3195 if (ret) {
3196 btrfs_abort_transaction(trans, ret);
3197 goto out;
3198 }
3199
3200 ret = remove_chunk_item(trans, map, chunk_offset);
3201 if (ret) {
3202 btrfs_abort_transaction(trans, ret);
3203 goto out;
3204 }
3205 } else if (ret) {
3206 btrfs_abort_transaction(trans, ret);
3207 goto out;
3208 }
3209
3210 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3211
3212 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3213 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3214 if (ret) {
3215 btrfs_abort_transaction(trans, ret);
3216 goto out;
3217 }
3218 }
3219
3220 mutex_unlock(&fs_info->chunk_mutex);
3221 trans->removing_chunk = false;
3222
3223 /*
3224 * We are done with chunk btree updates and deletions, so release the
3225 * system space we previously reserved (with check_system_chunk()).
3226 */
3227 btrfs_trans_release_chunk_metadata(trans);
3228
3229 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3230 if (ret) {
3231 btrfs_abort_transaction(trans, ret);
3232 goto out;
3233 }
3234
3235 out:
3236 if (trans->removing_chunk) {
3237 mutex_unlock(&fs_info->chunk_mutex);
3238 trans->removing_chunk = false;
3239 }
3240 /* once for us */
3241 free_extent_map(em);
3242 return ret;
3243 }
3244
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3245 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3246 {
3247 struct btrfs_root *root = fs_info->chunk_root;
3248 struct btrfs_trans_handle *trans;
3249 struct btrfs_block_group *block_group;
3250 u64 length;
3251 int ret;
3252
3253 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3254 btrfs_err(fs_info,
3255 "relocate: not supported on extent tree v2 yet");
3256 return -EINVAL;
3257 }
3258
3259 /*
3260 * Prevent races with automatic removal of unused block groups.
3261 * After we relocate and before we remove the chunk with offset
3262 * chunk_offset, automatic removal of the block group can kick in,
3263 * resulting in a failure when calling btrfs_remove_chunk() below.
3264 *
3265 * Make sure to acquire this mutex before doing a tree search (dev
3266 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3267 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3268 * we release the path used to search the chunk/dev tree and before
3269 * the current task acquires this mutex and calls us.
3270 */
3271 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3272
3273 /* step one, relocate all the extents inside this chunk */
3274 btrfs_scrub_pause(fs_info);
3275 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3276 btrfs_scrub_continue(fs_info);
3277 if (ret) {
3278 /*
3279 * If we had a transaction abort, stop all running scrubs.
3280 * See transaction.c:cleanup_transaction() why we do it here.
3281 */
3282 if (BTRFS_FS_ERROR(fs_info))
3283 btrfs_scrub_cancel(fs_info);
3284 return ret;
3285 }
3286
3287 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3288 if (!block_group)
3289 return -ENOENT;
3290 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3291 length = block_group->length;
3292 btrfs_put_block_group(block_group);
3293
3294 /*
3295 * On a zoned file system, discard the whole block group, this will
3296 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3297 * resetting the zone fails, don't treat it as a fatal problem from the
3298 * filesystem's point of view.
3299 */
3300 if (btrfs_is_zoned(fs_info)) {
3301 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3302 if (ret)
3303 btrfs_info(fs_info,
3304 "failed to reset zone %llu after relocation",
3305 chunk_offset);
3306 }
3307
3308 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3309 chunk_offset);
3310 if (IS_ERR(trans)) {
3311 ret = PTR_ERR(trans);
3312 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3313 return ret;
3314 }
3315
3316 /*
3317 * step two, delete the device extents and the
3318 * chunk tree entries
3319 */
3320 ret = btrfs_remove_chunk(trans, chunk_offset);
3321 btrfs_end_transaction(trans);
3322 return ret;
3323 }
3324
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3325 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3326 {
3327 struct btrfs_root *chunk_root = fs_info->chunk_root;
3328 struct btrfs_path *path;
3329 struct extent_buffer *leaf;
3330 struct btrfs_chunk *chunk;
3331 struct btrfs_key key;
3332 struct btrfs_key found_key;
3333 u64 chunk_type;
3334 bool retried = false;
3335 int failed = 0;
3336 int ret;
3337
3338 path = btrfs_alloc_path();
3339 if (!path)
3340 return -ENOMEM;
3341
3342 again:
3343 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3344 key.offset = (u64)-1;
3345 key.type = BTRFS_CHUNK_ITEM_KEY;
3346
3347 while (1) {
3348 mutex_lock(&fs_info->reclaim_bgs_lock);
3349 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3350 if (ret < 0) {
3351 mutex_unlock(&fs_info->reclaim_bgs_lock);
3352 goto error;
3353 }
3354 BUG_ON(ret == 0); /* Corruption */
3355
3356 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3357 key.type);
3358 if (ret)
3359 mutex_unlock(&fs_info->reclaim_bgs_lock);
3360 if (ret < 0)
3361 goto error;
3362 if (ret > 0)
3363 break;
3364
3365 leaf = path->nodes[0];
3366 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3367
3368 chunk = btrfs_item_ptr(leaf, path->slots[0],
3369 struct btrfs_chunk);
3370 chunk_type = btrfs_chunk_type(leaf, chunk);
3371 btrfs_release_path(path);
3372
3373 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3374 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3375 if (ret == -ENOSPC)
3376 failed++;
3377 else
3378 BUG_ON(ret);
3379 }
3380 mutex_unlock(&fs_info->reclaim_bgs_lock);
3381
3382 if (found_key.offset == 0)
3383 break;
3384 key.offset = found_key.offset - 1;
3385 }
3386 ret = 0;
3387 if (failed && !retried) {
3388 failed = 0;
3389 retried = true;
3390 goto again;
3391 } else if (WARN_ON(failed && retried)) {
3392 ret = -ENOSPC;
3393 }
3394 error:
3395 btrfs_free_path(path);
3396 return ret;
3397 }
3398
3399 /*
3400 * return 1 : allocate a data chunk successfully,
3401 * return <0: errors during allocating a data chunk,
3402 * return 0 : no need to allocate a data chunk.
3403 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3404 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3405 u64 chunk_offset)
3406 {
3407 struct btrfs_block_group *cache;
3408 u64 bytes_used;
3409 u64 chunk_type;
3410
3411 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3412 ASSERT(cache);
3413 chunk_type = cache->flags;
3414 btrfs_put_block_group(cache);
3415
3416 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3417 return 0;
3418
3419 spin_lock(&fs_info->data_sinfo->lock);
3420 bytes_used = fs_info->data_sinfo->bytes_used;
3421 spin_unlock(&fs_info->data_sinfo->lock);
3422
3423 if (!bytes_used) {
3424 struct btrfs_trans_handle *trans;
3425 int ret;
3426
3427 trans = btrfs_join_transaction(fs_info->tree_root);
3428 if (IS_ERR(trans))
3429 return PTR_ERR(trans);
3430
3431 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3432 btrfs_end_transaction(trans);
3433 if (ret < 0)
3434 return ret;
3435 return 1;
3436 }
3437
3438 return 0;
3439 }
3440
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3441 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3442 struct btrfs_balance_control *bctl)
3443 {
3444 struct btrfs_root *root = fs_info->tree_root;
3445 struct btrfs_trans_handle *trans;
3446 struct btrfs_balance_item *item;
3447 struct btrfs_disk_balance_args disk_bargs;
3448 struct btrfs_path *path;
3449 struct extent_buffer *leaf;
3450 struct btrfs_key key;
3451 int ret, err;
3452
3453 path = btrfs_alloc_path();
3454 if (!path)
3455 return -ENOMEM;
3456
3457 trans = btrfs_start_transaction(root, 0);
3458 if (IS_ERR(trans)) {
3459 btrfs_free_path(path);
3460 return PTR_ERR(trans);
3461 }
3462
3463 key.objectid = BTRFS_BALANCE_OBJECTID;
3464 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3465 key.offset = 0;
3466
3467 ret = btrfs_insert_empty_item(trans, root, path, &key,
3468 sizeof(*item));
3469 if (ret)
3470 goto out;
3471
3472 leaf = path->nodes[0];
3473 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3474
3475 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3476
3477 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3478 btrfs_set_balance_data(leaf, item, &disk_bargs);
3479 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3480 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3481 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3482 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3483
3484 btrfs_set_balance_flags(leaf, item, bctl->flags);
3485
3486 btrfs_mark_buffer_dirty(leaf);
3487 out:
3488 btrfs_free_path(path);
3489 err = btrfs_commit_transaction(trans);
3490 if (err && !ret)
3491 ret = err;
3492 return ret;
3493 }
3494
del_balance_item(struct btrfs_fs_info * fs_info)3495 static int del_balance_item(struct btrfs_fs_info *fs_info)
3496 {
3497 struct btrfs_root *root = fs_info->tree_root;
3498 struct btrfs_trans_handle *trans;
3499 struct btrfs_path *path;
3500 struct btrfs_key key;
3501 int ret, err;
3502
3503 path = btrfs_alloc_path();
3504 if (!path)
3505 return -ENOMEM;
3506
3507 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3508 if (IS_ERR(trans)) {
3509 btrfs_free_path(path);
3510 return PTR_ERR(trans);
3511 }
3512
3513 key.objectid = BTRFS_BALANCE_OBJECTID;
3514 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3515 key.offset = 0;
3516
3517 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3518 if (ret < 0)
3519 goto out;
3520 if (ret > 0) {
3521 ret = -ENOENT;
3522 goto out;
3523 }
3524
3525 ret = btrfs_del_item(trans, root, path);
3526 out:
3527 btrfs_free_path(path);
3528 err = btrfs_commit_transaction(trans);
3529 if (err && !ret)
3530 ret = err;
3531 return ret;
3532 }
3533
3534 /*
3535 * This is a heuristic used to reduce the number of chunks balanced on
3536 * resume after balance was interrupted.
3537 */
update_balance_args(struct btrfs_balance_control * bctl)3538 static void update_balance_args(struct btrfs_balance_control *bctl)
3539 {
3540 /*
3541 * Turn on soft mode for chunk types that were being converted.
3542 */
3543 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3544 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3545 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3546 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3547 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3548 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3549
3550 /*
3551 * Turn on usage filter if is not already used. The idea is
3552 * that chunks that we have already balanced should be
3553 * reasonably full. Don't do it for chunks that are being
3554 * converted - that will keep us from relocating unconverted
3555 * (albeit full) chunks.
3556 */
3557 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3558 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3559 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3560 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3561 bctl->data.usage = 90;
3562 }
3563 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3564 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3565 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3566 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3567 bctl->sys.usage = 90;
3568 }
3569 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3570 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3571 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3572 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3573 bctl->meta.usage = 90;
3574 }
3575 }
3576
3577 /*
3578 * Clear the balance status in fs_info and delete the balance item from disk.
3579 */
reset_balance_state(struct btrfs_fs_info * fs_info)3580 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3581 {
3582 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3583 int ret;
3584
3585 BUG_ON(!fs_info->balance_ctl);
3586
3587 spin_lock(&fs_info->balance_lock);
3588 fs_info->balance_ctl = NULL;
3589 spin_unlock(&fs_info->balance_lock);
3590
3591 kfree(bctl);
3592 ret = del_balance_item(fs_info);
3593 if (ret)
3594 btrfs_handle_fs_error(fs_info, ret, NULL);
3595 }
3596
3597 /*
3598 * Balance filters. Return 1 if chunk should be filtered out
3599 * (should not be balanced).
3600 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3601 static int chunk_profiles_filter(u64 chunk_type,
3602 struct btrfs_balance_args *bargs)
3603 {
3604 chunk_type = chunk_to_extended(chunk_type) &
3605 BTRFS_EXTENDED_PROFILE_MASK;
3606
3607 if (bargs->profiles & chunk_type)
3608 return 0;
3609
3610 return 1;
3611 }
3612
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3613 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3614 struct btrfs_balance_args *bargs)
3615 {
3616 struct btrfs_block_group *cache;
3617 u64 chunk_used;
3618 u64 user_thresh_min;
3619 u64 user_thresh_max;
3620 int ret = 1;
3621
3622 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3623 chunk_used = cache->used;
3624
3625 if (bargs->usage_min == 0)
3626 user_thresh_min = 0;
3627 else
3628 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3629
3630 if (bargs->usage_max == 0)
3631 user_thresh_max = 1;
3632 else if (bargs->usage_max > 100)
3633 user_thresh_max = cache->length;
3634 else
3635 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3636
3637 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3638 ret = 0;
3639
3640 btrfs_put_block_group(cache);
3641 return ret;
3642 }
3643
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3644 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3645 u64 chunk_offset, struct btrfs_balance_args *bargs)
3646 {
3647 struct btrfs_block_group *cache;
3648 u64 chunk_used, user_thresh;
3649 int ret = 1;
3650
3651 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3652 chunk_used = cache->used;
3653
3654 if (bargs->usage_min == 0)
3655 user_thresh = 1;
3656 else if (bargs->usage > 100)
3657 user_thresh = cache->length;
3658 else
3659 user_thresh = mult_perc(cache->length, bargs->usage);
3660
3661 if (chunk_used < user_thresh)
3662 ret = 0;
3663
3664 btrfs_put_block_group(cache);
3665 return ret;
3666 }
3667
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3668 static int chunk_devid_filter(struct extent_buffer *leaf,
3669 struct btrfs_chunk *chunk,
3670 struct btrfs_balance_args *bargs)
3671 {
3672 struct btrfs_stripe *stripe;
3673 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3674 int i;
3675
3676 for (i = 0; i < num_stripes; i++) {
3677 stripe = btrfs_stripe_nr(chunk, i);
3678 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3679 return 0;
3680 }
3681
3682 return 1;
3683 }
3684
calc_data_stripes(u64 type,int num_stripes)3685 static u64 calc_data_stripes(u64 type, int num_stripes)
3686 {
3687 const int index = btrfs_bg_flags_to_raid_index(type);
3688 const int ncopies = btrfs_raid_array[index].ncopies;
3689 const int nparity = btrfs_raid_array[index].nparity;
3690
3691 return (num_stripes - nparity) / ncopies;
3692 }
3693
3694 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3695 static int chunk_drange_filter(struct extent_buffer *leaf,
3696 struct btrfs_chunk *chunk,
3697 struct btrfs_balance_args *bargs)
3698 {
3699 struct btrfs_stripe *stripe;
3700 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3701 u64 stripe_offset;
3702 u64 stripe_length;
3703 u64 type;
3704 int factor;
3705 int i;
3706
3707 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3708 return 0;
3709
3710 type = btrfs_chunk_type(leaf, chunk);
3711 factor = calc_data_stripes(type, num_stripes);
3712
3713 for (i = 0; i < num_stripes; i++) {
3714 stripe = btrfs_stripe_nr(chunk, i);
3715 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3716 continue;
3717
3718 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3719 stripe_length = btrfs_chunk_length(leaf, chunk);
3720 stripe_length = div_u64(stripe_length, factor);
3721
3722 if (stripe_offset < bargs->pend &&
3723 stripe_offset + stripe_length > bargs->pstart)
3724 return 0;
3725 }
3726
3727 return 1;
3728 }
3729
3730 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3731 static int chunk_vrange_filter(struct extent_buffer *leaf,
3732 struct btrfs_chunk *chunk,
3733 u64 chunk_offset,
3734 struct btrfs_balance_args *bargs)
3735 {
3736 if (chunk_offset < bargs->vend &&
3737 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3738 /* at least part of the chunk is inside this vrange */
3739 return 0;
3740
3741 return 1;
3742 }
3743
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3744 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3745 struct btrfs_chunk *chunk,
3746 struct btrfs_balance_args *bargs)
3747 {
3748 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3749
3750 if (bargs->stripes_min <= num_stripes
3751 && num_stripes <= bargs->stripes_max)
3752 return 0;
3753
3754 return 1;
3755 }
3756
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3757 static int chunk_soft_convert_filter(u64 chunk_type,
3758 struct btrfs_balance_args *bargs)
3759 {
3760 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3761 return 0;
3762
3763 chunk_type = chunk_to_extended(chunk_type) &
3764 BTRFS_EXTENDED_PROFILE_MASK;
3765
3766 if (bargs->target == chunk_type)
3767 return 1;
3768
3769 return 0;
3770 }
3771
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3772 static int should_balance_chunk(struct extent_buffer *leaf,
3773 struct btrfs_chunk *chunk, u64 chunk_offset)
3774 {
3775 struct btrfs_fs_info *fs_info = leaf->fs_info;
3776 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3777 struct btrfs_balance_args *bargs = NULL;
3778 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3779
3780 /* type filter */
3781 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3782 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3783 return 0;
3784 }
3785
3786 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3787 bargs = &bctl->data;
3788 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3789 bargs = &bctl->sys;
3790 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3791 bargs = &bctl->meta;
3792
3793 /* profiles filter */
3794 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3795 chunk_profiles_filter(chunk_type, bargs)) {
3796 return 0;
3797 }
3798
3799 /* usage filter */
3800 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3801 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3802 return 0;
3803 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3804 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3805 return 0;
3806 }
3807
3808 /* devid filter */
3809 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3810 chunk_devid_filter(leaf, chunk, bargs)) {
3811 return 0;
3812 }
3813
3814 /* drange filter, makes sense only with devid filter */
3815 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3816 chunk_drange_filter(leaf, chunk, bargs)) {
3817 return 0;
3818 }
3819
3820 /* vrange filter */
3821 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3822 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3823 return 0;
3824 }
3825
3826 /* stripes filter */
3827 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3828 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3829 return 0;
3830 }
3831
3832 /* soft profile changing mode */
3833 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3834 chunk_soft_convert_filter(chunk_type, bargs)) {
3835 return 0;
3836 }
3837
3838 /*
3839 * limited by count, must be the last filter
3840 */
3841 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3842 if (bargs->limit == 0)
3843 return 0;
3844 else
3845 bargs->limit--;
3846 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3847 /*
3848 * Same logic as the 'limit' filter; the minimum cannot be
3849 * determined here because we do not have the global information
3850 * about the count of all chunks that satisfy the filters.
3851 */
3852 if (bargs->limit_max == 0)
3853 return 0;
3854 else
3855 bargs->limit_max--;
3856 }
3857
3858 return 1;
3859 }
3860
__btrfs_balance(struct btrfs_fs_info * fs_info)3861 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3862 {
3863 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3864 struct btrfs_root *chunk_root = fs_info->chunk_root;
3865 u64 chunk_type;
3866 struct btrfs_chunk *chunk;
3867 struct btrfs_path *path = NULL;
3868 struct btrfs_key key;
3869 struct btrfs_key found_key;
3870 struct extent_buffer *leaf;
3871 int slot;
3872 int ret;
3873 int enospc_errors = 0;
3874 bool counting = true;
3875 /* The single value limit and min/max limits use the same bytes in the */
3876 u64 limit_data = bctl->data.limit;
3877 u64 limit_meta = bctl->meta.limit;
3878 u64 limit_sys = bctl->sys.limit;
3879 u32 count_data = 0;
3880 u32 count_meta = 0;
3881 u32 count_sys = 0;
3882 int chunk_reserved = 0;
3883
3884 path = btrfs_alloc_path();
3885 if (!path) {
3886 ret = -ENOMEM;
3887 goto error;
3888 }
3889
3890 /* zero out stat counters */
3891 spin_lock(&fs_info->balance_lock);
3892 memset(&bctl->stat, 0, sizeof(bctl->stat));
3893 spin_unlock(&fs_info->balance_lock);
3894 again:
3895 if (!counting) {
3896 /*
3897 * The single value limit and min/max limits use the same bytes
3898 * in the
3899 */
3900 bctl->data.limit = limit_data;
3901 bctl->meta.limit = limit_meta;
3902 bctl->sys.limit = limit_sys;
3903 }
3904 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3905 key.offset = (u64)-1;
3906 key.type = BTRFS_CHUNK_ITEM_KEY;
3907
3908 while (1) {
3909 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3910 atomic_read(&fs_info->balance_cancel_req)) {
3911 ret = -ECANCELED;
3912 goto error;
3913 }
3914
3915 mutex_lock(&fs_info->reclaim_bgs_lock);
3916 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3917 if (ret < 0) {
3918 mutex_unlock(&fs_info->reclaim_bgs_lock);
3919 goto error;
3920 }
3921
3922 /*
3923 * this shouldn't happen, it means the last relocate
3924 * failed
3925 */
3926 if (ret == 0)
3927 BUG(); /* FIXME break ? */
3928
3929 ret = btrfs_previous_item(chunk_root, path, 0,
3930 BTRFS_CHUNK_ITEM_KEY);
3931 if (ret) {
3932 mutex_unlock(&fs_info->reclaim_bgs_lock);
3933 ret = 0;
3934 break;
3935 }
3936
3937 leaf = path->nodes[0];
3938 slot = path->slots[0];
3939 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3940
3941 if (found_key.objectid != key.objectid) {
3942 mutex_unlock(&fs_info->reclaim_bgs_lock);
3943 break;
3944 }
3945
3946 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3947 chunk_type = btrfs_chunk_type(leaf, chunk);
3948
3949 if (!counting) {
3950 spin_lock(&fs_info->balance_lock);
3951 bctl->stat.considered++;
3952 spin_unlock(&fs_info->balance_lock);
3953 }
3954
3955 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3956
3957 btrfs_release_path(path);
3958 if (!ret) {
3959 mutex_unlock(&fs_info->reclaim_bgs_lock);
3960 goto loop;
3961 }
3962
3963 if (counting) {
3964 mutex_unlock(&fs_info->reclaim_bgs_lock);
3965 spin_lock(&fs_info->balance_lock);
3966 bctl->stat.expected++;
3967 spin_unlock(&fs_info->balance_lock);
3968
3969 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3970 count_data++;
3971 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3972 count_sys++;
3973 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3974 count_meta++;
3975
3976 goto loop;
3977 }
3978
3979 /*
3980 * Apply limit_min filter, no need to check if the LIMITS
3981 * filter is used, limit_min is 0 by default
3982 */
3983 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3984 count_data < bctl->data.limit_min)
3985 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3986 count_meta < bctl->meta.limit_min)
3987 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3988 count_sys < bctl->sys.limit_min)) {
3989 mutex_unlock(&fs_info->reclaim_bgs_lock);
3990 goto loop;
3991 }
3992
3993 if (!chunk_reserved) {
3994 /*
3995 * We may be relocating the only data chunk we have,
3996 * which could potentially end up with losing data's
3997 * raid profile, so lets allocate an empty one in
3998 * advance.
3999 */
4000 ret = btrfs_may_alloc_data_chunk(fs_info,
4001 found_key.offset);
4002 if (ret < 0) {
4003 mutex_unlock(&fs_info->reclaim_bgs_lock);
4004 goto error;
4005 } else if (ret == 1) {
4006 chunk_reserved = 1;
4007 }
4008 }
4009
4010 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4011 mutex_unlock(&fs_info->reclaim_bgs_lock);
4012 if (ret == -ENOSPC) {
4013 enospc_errors++;
4014 } else if (ret == -ETXTBSY) {
4015 btrfs_info(fs_info,
4016 "skipping relocation of block group %llu due to active swapfile",
4017 found_key.offset);
4018 ret = 0;
4019 } else if (ret) {
4020 goto error;
4021 } else {
4022 spin_lock(&fs_info->balance_lock);
4023 bctl->stat.completed++;
4024 spin_unlock(&fs_info->balance_lock);
4025 }
4026 loop:
4027 if (found_key.offset == 0)
4028 break;
4029 key.offset = found_key.offset - 1;
4030 }
4031
4032 if (counting) {
4033 btrfs_release_path(path);
4034 counting = false;
4035 goto again;
4036 }
4037 error:
4038 btrfs_free_path(path);
4039 if (enospc_errors) {
4040 btrfs_info(fs_info, "%d enospc errors during balance",
4041 enospc_errors);
4042 if (!ret)
4043 ret = -ENOSPC;
4044 }
4045
4046 return ret;
4047 }
4048
4049 /*
4050 * See if a given profile is valid and reduced.
4051 *
4052 * @flags: profile to validate
4053 * @extended: if true @flags is treated as an extended profile
4054 */
alloc_profile_is_valid(u64 flags,int extended)4055 static int alloc_profile_is_valid(u64 flags, int extended)
4056 {
4057 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4058 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4059
4060 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4061
4062 /* 1) check that all other bits are zeroed */
4063 if (flags & ~mask)
4064 return 0;
4065
4066 /* 2) see if profile is reduced */
4067 if (flags == 0)
4068 return !extended; /* "0" is valid for usual profiles */
4069
4070 return has_single_bit_set(flags);
4071 }
4072
4073 /*
4074 * Validate target profile against allowed profiles and return true if it's OK.
4075 * Otherwise print the error message and return false.
4076 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4077 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4078 const struct btrfs_balance_args *bargs,
4079 u64 allowed, const char *type)
4080 {
4081 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4082 return true;
4083
4084 /* Profile is valid and does not have bits outside of the allowed set */
4085 if (alloc_profile_is_valid(bargs->target, 1) &&
4086 (bargs->target & ~allowed) == 0)
4087 return true;
4088
4089 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4090 type, btrfs_bg_type_to_raid_name(bargs->target));
4091 return false;
4092 }
4093
4094 /*
4095 * Fill @buf with textual description of balance filter flags @bargs, up to
4096 * @size_buf including the terminating null. The output may be trimmed if it
4097 * does not fit into the provided buffer.
4098 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4099 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4100 u32 size_buf)
4101 {
4102 int ret;
4103 u32 size_bp = size_buf;
4104 char *bp = buf;
4105 u64 flags = bargs->flags;
4106 char tmp_buf[128] = {'\0'};
4107
4108 if (!flags)
4109 return;
4110
4111 #define CHECK_APPEND_NOARG(a) \
4112 do { \
4113 ret = snprintf(bp, size_bp, (a)); \
4114 if (ret < 0 || ret >= size_bp) \
4115 goto out_overflow; \
4116 size_bp -= ret; \
4117 bp += ret; \
4118 } while (0)
4119
4120 #define CHECK_APPEND_1ARG(a, v1) \
4121 do { \
4122 ret = snprintf(bp, size_bp, (a), (v1)); \
4123 if (ret < 0 || ret >= size_bp) \
4124 goto out_overflow; \
4125 size_bp -= ret; \
4126 bp += ret; \
4127 } while (0)
4128
4129 #define CHECK_APPEND_2ARG(a, v1, v2) \
4130 do { \
4131 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4132 if (ret < 0 || ret >= size_bp) \
4133 goto out_overflow; \
4134 size_bp -= ret; \
4135 bp += ret; \
4136 } while (0)
4137
4138 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4139 CHECK_APPEND_1ARG("convert=%s,",
4140 btrfs_bg_type_to_raid_name(bargs->target));
4141
4142 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4143 CHECK_APPEND_NOARG("soft,");
4144
4145 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4146 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4147 sizeof(tmp_buf));
4148 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4149 }
4150
4151 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4152 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4153
4154 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4155 CHECK_APPEND_2ARG("usage=%u..%u,",
4156 bargs->usage_min, bargs->usage_max);
4157
4158 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4159 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4160
4161 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4162 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4163 bargs->pstart, bargs->pend);
4164
4165 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4166 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4167 bargs->vstart, bargs->vend);
4168
4169 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4170 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4171
4172 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4173 CHECK_APPEND_2ARG("limit=%u..%u,",
4174 bargs->limit_min, bargs->limit_max);
4175
4176 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4177 CHECK_APPEND_2ARG("stripes=%u..%u,",
4178 bargs->stripes_min, bargs->stripes_max);
4179
4180 #undef CHECK_APPEND_2ARG
4181 #undef CHECK_APPEND_1ARG
4182 #undef CHECK_APPEND_NOARG
4183
4184 out_overflow:
4185
4186 if (size_bp < size_buf)
4187 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4188 else
4189 buf[0] = '\0';
4190 }
4191
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4192 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4193 {
4194 u32 size_buf = 1024;
4195 char tmp_buf[192] = {'\0'};
4196 char *buf;
4197 char *bp;
4198 u32 size_bp = size_buf;
4199 int ret;
4200 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4201
4202 buf = kzalloc(size_buf, GFP_KERNEL);
4203 if (!buf)
4204 return;
4205
4206 bp = buf;
4207
4208 #define CHECK_APPEND_1ARG(a, v1) \
4209 do { \
4210 ret = snprintf(bp, size_bp, (a), (v1)); \
4211 if (ret < 0 || ret >= size_bp) \
4212 goto out_overflow; \
4213 size_bp -= ret; \
4214 bp += ret; \
4215 } while (0)
4216
4217 if (bctl->flags & BTRFS_BALANCE_FORCE)
4218 CHECK_APPEND_1ARG("%s", "-f ");
4219
4220 if (bctl->flags & BTRFS_BALANCE_DATA) {
4221 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4222 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4223 }
4224
4225 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4226 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4227 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4228 }
4229
4230 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4231 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4232 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4233 }
4234
4235 #undef CHECK_APPEND_1ARG
4236
4237 out_overflow:
4238
4239 if (size_bp < size_buf)
4240 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4241 btrfs_info(fs_info, "balance: %s %s",
4242 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4243 "resume" : "start", buf);
4244
4245 kfree(buf);
4246 }
4247
4248 /*
4249 * Should be called with balance mutexe held
4250 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4251 int btrfs_balance(struct btrfs_fs_info *fs_info,
4252 struct btrfs_balance_control *bctl,
4253 struct btrfs_ioctl_balance_args *bargs)
4254 {
4255 u64 meta_target, data_target;
4256 u64 allowed;
4257 int mixed = 0;
4258 int ret;
4259 u64 num_devices;
4260 unsigned seq;
4261 bool reducing_redundancy;
4262 bool paused = false;
4263 int i;
4264
4265 if (btrfs_fs_closing(fs_info) ||
4266 atomic_read(&fs_info->balance_pause_req) ||
4267 btrfs_should_cancel_balance(fs_info)) {
4268 ret = -EINVAL;
4269 goto out;
4270 }
4271
4272 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4273 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4274 mixed = 1;
4275
4276 /*
4277 * In case of mixed groups both data and meta should be picked,
4278 * and identical options should be given for both of them.
4279 */
4280 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4281 if (mixed && (bctl->flags & allowed)) {
4282 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4283 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4284 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4285 btrfs_err(fs_info,
4286 "balance: mixed groups data and metadata options must be the same");
4287 ret = -EINVAL;
4288 goto out;
4289 }
4290 }
4291
4292 /*
4293 * rw_devices will not change at the moment, device add/delete/replace
4294 * are exclusive
4295 */
4296 num_devices = fs_info->fs_devices->rw_devices;
4297
4298 /*
4299 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4300 * special bit for it, to make it easier to distinguish. Thus we need
4301 * to set it manually, or balance would refuse the profile.
4302 */
4303 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4304 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4305 if (num_devices >= btrfs_raid_array[i].devs_min)
4306 allowed |= btrfs_raid_array[i].bg_flag;
4307
4308 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4309 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4310 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4311 ret = -EINVAL;
4312 goto out;
4313 }
4314
4315 /*
4316 * Allow to reduce metadata or system integrity only if force set for
4317 * profiles with redundancy (copies, parity)
4318 */
4319 allowed = 0;
4320 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4321 if (btrfs_raid_array[i].ncopies >= 2 ||
4322 btrfs_raid_array[i].tolerated_failures >= 1)
4323 allowed |= btrfs_raid_array[i].bg_flag;
4324 }
4325 do {
4326 seq = read_seqbegin(&fs_info->profiles_lock);
4327
4328 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4329 (fs_info->avail_system_alloc_bits & allowed) &&
4330 !(bctl->sys.target & allowed)) ||
4331 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4332 (fs_info->avail_metadata_alloc_bits & allowed) &&
4333 !(bctl->meta.target & allowed)))
4334 reducing_redundancy = true;
4335 else
4336 reducing_redundancy = false;
4337
4338 /* if we're not converting, the target field is uninitialized */
4339 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4340 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4341 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4342 bctl->data.target : fs_info->avail_data_alloc_bits;
4343 } while (read_seqretry(&fs_info->profiles_lock, seq));
4344
4345 if (reducing_redundancy) {
4346 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4347 btrfs_info(fs_info,
4348 "balance: force reducing metadata redundancy");
4349 } else {
4350 btrfs_err(fs_info,
4351 "balance: reduces metadata redundancy, use --force if you want this");
4352 ret = -EINVAL;
4353 goto out;
4354 }
4355 }
4356
4357 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4358 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4359 btrfs_warn(fs_info,
4360 "balance: metadata profile %s has lower redundancy than data profile %s",
4361 btrfs_bg_type_to_raid_name(meta_target),
4362 btrfs_bg_type_to_raid_name(data_target));
4363 }
4364
4365 ret = insert_balance_item(fs_info, bctl);
4366 if (ret && ret != -EEXIST)
4367 goto out;
4368
4369 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4370 BUG_ON(ret == -EEXIST);
4371 BUG_ON(fs_info->balance_ctl);
4372 spin_lock(&fs_info->balance_lock);
4373 fs_info->balance_ctl = bctl;
4374 spin_unlock(&fs_info->balance_lock);
4375 } else {
4376 BUG_ON(ret != -EEXIST);
4377 spin_lock(&fs_info->balance_lock);
4378 update_balance_args(bctl);
4379 spin_unlock(&fs_info->balance_lock);
4380 }
4381
4382 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4383 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4384 describe_balance_start_or_resume(fs_info);
4385 mutex_unlock(&fs_info->balance_mutex);
4386
4387 ret = __btrfs_balance(fs_info);
4388
4389 mutex_lock(&fs_info->balance_mutex);
4390 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4391 btrfs_info(fs_info, "balance: paused");
4392 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4393 paused = true;
4394 }
4395 /*
4396 * Balance can be canceled by:
4397 *
4398 * - Regular cancel request
4399 * Then ret == -ECANCELED and balance_cancel_req > 0
4400 *
4401 * - Fatal signal to "btrfs" process
4402 * Either the signal caught by wait_reserve_ticket() and callers
4403 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4404 * got -ECANCELED.
4405 * Either way, in this case balance_cancel_req = 0, and
4406 * ret == -EINTR or ret == -ECANCELED.
4407 *
4408 * So here we only check the return value to catch canceled balance.
4409 */
4410 else if (ret == -ECANCELED || ret == -EINTR)
4411 btrfs_info(fs_info, "balance: canceled");
4412 else
4413 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4414
4415 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4416
4417 if (bargs) {
4418 memset(bargs, 0, sizeof(*bargs));
4419 btrfs_update_ioctl_balance_args(fs_info, bargs);
4420 }
4421
4422 /* We didn't pause, we can clean everything up. */
4423 if (!paused) {
4424 reset_balance_state(fs_info);
4425 btrfs_exclop_finish(fs_info);
4426 }
4427
4428 wake_up(&fs_info->balance_wait_q);
4429
4430 return ret;
4431 out:
4432 if (bctl->flags & BTRFS_BALANCE_RESUME)
4433 reset_balance_state(fs_info);
4434 else
4435 kfree(bctl);
4436 btrfs_exclop_finish(fs_info);
4437
4438 return ret;
4439 }
4440
balance_kthread(void * data)4441 static int balance_kthread(void *data)
4442 {
4443 struct btrfs_fs_info *fs_info = data;
4444 int ret = 0;
4445
4446 sb_start_write(fs_info->sb);
4447 mutex_lock(&fs_info->balance_mutex);
4448 if (fs_info->balance_ctl)
4449 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4450 mutex_unlock(&fs_info->balance_mutex);
4451 sb_end_write(fs_info->sb);
4452
4453 return ret;
4454 }
4455
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4456 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4457 {
4458 struct task_struct *tsk;
4459
4460 mutex_lock(&fs_info->balance_mutex);
4461 if (!fs_info->balance_ctl) {
4462 mutex_unlock(&fs_info->balance_mutex);
4463 return 0;
4464 }
4465 mutex_unlock(&fs_info->balance_mutex);
4466
4467 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4468 btrfs_info(fs_info, "balance: resume skipped");
4469 return 0;
4470 }
4471
4472 spin_lock(&fs_info->super_lock);
4473 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4474 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4475 spin_unlock(&fs_info->super_lock);
4476 /*
4477 * A ro->rw remount sequence should continue with the paused balance
4478 * regardless of who pauses it, system or the user as of now, so set
4479 * the resume flag.
4480 */
4481 spin_lock(&fs_info->balance_lock);
4482 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4483 spin_unlock(&fs_info->balance_lock);
4484
4485 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4486 return PTR_ERR_OR_ZERO(tsk);
4487 }
4488
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4489 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4490 {
4491 struct btrfs_balance_control *bctl;
4492 struct btrfs_balance_item *item;
4493 struct btrfs_disk_balance_args disk_bargs;
4494 struct btrfs_path *path;
4495 struct extent_buffer *leaf;
4496 struct btrfs_key key;
4497 int ret;
4498
4499 path = btrfs_alloc_path();
4500 if (!path)
4501 return -ENOMEM;
4502
4503 key.objectid = BTRFS_BALANCE_OBJECTID;
4504 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4505 key.offset = 0;
4506
4507 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4508 if (ret < 0)
4509 goto out;
4510 if (ret > 0) { /* ret = -ENOENT; */
4511 ret = 0;
4512 goto out;
4513 }
4514
4515 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4516 if (!bctl) {
4517 ret = -ENOMEM;
4518 goto out;
4519 }
4520
4521 leaf = path->nodes[0];
4522 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4523
4524 bctl->flags = btrfs_balance_flags(leaf, item);
4525 bctl->flags |= BTRFS_BALANCE_RESUME;
4526
4527 btrfs_balance_data(leaf, item, &disk_bargs);
4528 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4529 btrfs_balance_meta(leaf, item, &disk_bargs);
4530 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4531 btrfs_balance_sys(leaf, item, &disk_bargs);
4532 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4533
4534 /*
4535 * This should never happen, as the paused balance state is recovered
4536 * during mount without any chance of other exclusive ops to collide.
4537 *
4538 * This gives the exclusive op status to balance and keeps in paused
4539 * state until user intervention (cancel or umount). If the ownership
4540 * cannot be assigned, show a message but do not fail. The balance
4541 * is in a paused state and must have fs_info::balance_ctl properly
4542 * set up.
4543 */
4544 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4545 btrfs_warn(fs_info,
4546 "balance: cannot set exclusive op status, resume manually");
4547
4548 btrfs_release_path(path);
4549
4550 mutex_lock(&fs_info->balance_mutex);
4551 BUG_ON(fs_info->balance_ctl);
4552 spin_lock(&fs_info->balance_lock);
4553 fs_info->balance_ctl = bctl;
4554 spin_unlock(&fs_info->balance_lock);
4555 mutex_unlock(&fs_info->balance_mutex);
4556 out:
4557 btrfs_free_path(path);
4558 return ret;
4559 }
4560
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4561 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4562 {
4563 int ret = 0;
4564
4565 mutex_lock(&fs_info->balance_mutex);
4566 if (!fs_info->balance_ctl) {
4567 mutex_unlock(&fs_info->balance_mutex);
4568 return -ENOTCONN;
4569 }
4570
4571 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4572 atomic_inc(&fs_info->balance_pause_req);
4573 mutex_unlock(&fs_info->balance_mutex);
4574
4575 wait_event(fs_info->balance_wait_q,
4576 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4577
4578 mutex_lock(&fs_info->balance_mutex);
4579 /* we are good with balance_ctl ripped off from under us */
4580 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4581 atomic_dec(&fs_info->balance_pause_req);
4582 } else {
4583 ret = -ENOTCONN;
4584 }
4585
4586 mutex_unlock(&fs_info->balance_mutex);
4587 return ret;
4588 }
4589
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4590 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4591 {
4592 mutex_lock(&fs_info->balance_mutex);
4593 if (!fs_info->balance_ctl) {
4594 mutex_unlock(&fs_info->balance_mutex);
4595 return -ENOTCONN;
4596 }
4597
4598 /*
4599 * A paused balance with the item stored on disk can be resumed at
4600 * mount time if the mount is read-write. Otherwise it's still paused
4601 * and we must not allow cancelling as it deletes the item.
4602 */
4603 if (sb_rdonly(fs_info->sb)) {
4604 mutex_unlock(&fs_info->balance_mutex);
4605 return -EROFS;
4606 }
4607
4608 atomic_inc(&fs_info->balance_cancel_req);
4609 /*
4610 * if we are running just wait and return, balance item is
4611 * deleted in btrfs_balance in this case
4612 */
4613 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4614 mutex_unlock(&fs_info->balance_mutex);
4615 wait_event(fs_info->balance_wait_q,
4616 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4617 mutex_lock(&fs_info->balance_mutex);
4618 } else {
4619 mutex_unlock(&fs_info->balance_mutex);
4620 /*
4621 * Lock released to allow other waiters to continue, we'll
4622 * reexamine the status again.
4623 */
4624 mutex_lock(&fs_info->balance_mutex);
4625
4626 if (fs_info->balance_ctl) {
4627 reset_balance_state(fs_info);
4628 btrfs_exclop_finish(fs_info);
4629 btrfs_info(fs_info, "balance: canceled");
4630 }
4631 }
4632
4633 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4634 atomic_dec(&fs_info->balance_cancel_req);
4635 mutex_unlock(&fs_info->balance_mutex);
4636 return 0;
4637 }
4638
btrfs_uuid_scan_kthread(void * data)4639 int btrfs_uuid_scan_kthread(void *data)
4640 {
4641 struct btrfs_fs_info *fs_info = data;
4642 struct btrfs_root *root = fs_info->tree_root;
4643 struct btrfs_key key;
4644 struct btrfs_path *path = NULL;
4645 int ret = 0;
4646 struct extent_buffer *eb;
4647 int slot;
4648 struct btrfs_root_item root_item;
4649 u32 item_size;
4650 struct btrfs_trans_handle *trans = NULL;
4651 bool closing = false;
4652
4653 path = btrfs_alloc_path();
4654 if (!path) {
4655 ret = -ENOMEM;
4656 goto out;
4657 }
4658
4659 key.objectid = 0;
4660 key.type = BTRFS_ROOT_ITEM_KEY;
4661 key.offset = 0;
4662
4663 while (1) {
4664 if (btrfs_fs_closing(fs_info)) {
4665 closing = true;
4666 break;
4667 }
4668 ret = btrfs_search_forward(root, &key, path,
4669 BTRFS_OLDEST_GENERATION);
4670 if (ret) {
4671 if (ret > 0)
4672 ret = 0;
4673 break;
4674 }
4675
4676 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4677 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4678 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4679 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4680 goto skip;
4681
4682 eb = path->nodes[0];
4683 slot = path->slots[0];
4684 item_size = btrfs_item_size(eb, slot);
4685 if (item_size < sizeof(root_item))
4686 goto skip;
4687
4688 read_extent_buffer(eb, &root_item,
4689 btrfs_item_ptr_offset(eb, slot),
4690 (int)sizeof(root_item));
4691 if (btrfs_root_refs(&root_item) == 0)
4692 goto skip;
4693
4694 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4695 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4696 if (trans)
4697 goto update_tree;
4698
4699 btrfs_release_path(path);
4700 /*
4701 * 1 - subvol uuid item
4702 * 1 - received_subvol uuid item
4703 */
4704 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4705 if (IS_ERR(trans)) {
4706 ret = PTR_ERR(trans);
4707 break;
4708 }
4709 continue;
4710 } else {
4711 goto skip;
4712 }
4713 update_tree:
4714 btrfs_release_path(path);
4715 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4716 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4717 BTRFS_UUID_KEY_SUBVOL,
4718 key.objectid);
4719 if (ret < 0) {
4720 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4721 ret);
4722 break;
4723 }
4724 }
4725
4726 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4727 ret = btrfs_uuid_tree_add(trans,
4728 root_item.received_uuid,
4729 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4730 key.objectid);
4731 if (ret < 0) {
4732 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4733 ret);
4734 break;
4735 }
4736 }
4737
4738 skip:
4739 btrfs_release_path(path);
4740 if (trans) {
4741 ret = btrfs_end_transaction(trans);
4742 trans = NULL;
4743 if (ret)
4744 break;
4745 }
4746
4747 if (key.offset < (u64)-1) {
4748 key.offset++;
4749 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4750 key.offset = 0;
4751 key.type = BTRFS_ROOT_ITEM_KEY;
4752 } else if (key.objectid < (u64)-1) {
4753 key.offset = 0;
4754 key.type = BTRFS_ROOT_ITEM_KEY;
4755 key.objectid++;
4756 } else {
4757 break;
4758 }
4759 cond_resched();
4760 }
4761
4762 out:
4763 btrfs_free_path(path);
4764 if (trans && !IS_ERR(trans))
4765 btrfs_end_transaction(trans);
4766 if (ret)
4767 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4768 else if (!closing)
4769 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4770 up(&fs_info->uuid_tree_rescan_sem);
4771 return 0;
4772 }
4773
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4774 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4775 {
4776 struct btrfs_trans_handle *trans;
4777 struct btrfs_root *tree_root = fs_info->tree_root;
4778 struct btrfs_root *uuid_root;
4779 struct task_struct *task;
4780 int ret;
4781
4782 /*
4783 * 1 - root node
4784 * 1 - root item
4785 */
4786 trans = btrfs_start_transaction(tree_root, 2);
4787 if (IS_ERR(trans))
4788 return PTR_ERR(trans);
4789
4790 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4791 if (IS_ERR(uuid_root)) {
4792 ret = PTR_ERR(uuid_root);
4793 btrfs_abort_transaction(trans, ret);
4794 btrfs_end_transaction(trans);
4795 return ret;
4796 }
4797
4798 fs_info->uuid_root = uuid_root;
4799
4800 ret = btrfs_commit_transaction(trans);
4801 if (ret)
4802 return ret;
4803
4804 down(&fs_info->uuid_tree_rescan_sem);
4805 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4806 if (IS_ERR(task)) {
4807 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4808 btrfs_warn(fs_info, "failed to start uuid_scan task");
4809 up(&fs_info->uuid_tree_rescan_sem);
4810 return PTR_ERR(task);
4811 }
4812
4813 return 0;
4814 }
4815
4816 /*
4817 * shrinking a device means finding all of the device extents past
4818 * the new size, and then following the back refs to the chunks.
4819 * The chunk relocation code actually frees the device extent
4820 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4821 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4822 {
4823 struct btrfs_fs_info *fs_info = device->fs_info;
4824 struct btrfs_root *root = fs_info->dev_root;
4825 struct btrfs_trans_handle *trans;
4826 struct btrfs_dev_extent *dev_extent = NULL;
4827 struct btrfs_path *path;
4828 u64 length;
4829 u64 chunk_offset;
4830 int ret;
4831 int slot;
4832 int failed = 0;
4833 bool retried = false;
4834 struct extent_buffer *l;
4835 struct btrfs_key key;
4836 struct btrfs_super_block *super_copy = fs_info->super_copy;
4837 u64 old_total = btrfs_super_total_bytes(super_copy);
4838 u64 old_size = btrfs_device_get_total_bytes(device);
4839 u64 diff;
4840 u64 start;
4841
4842 new_size = round_down(new_size, fs_info->sectorsize);
4843 start = new_size;
4844 diff = round_down(old_size - new_size, fs_info->sectorsize);
4845
4846 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4847 return -EINVAL;
4848
4849 path = btrfs_alloc_path();
4850 if (!path)
4851 return -ENOMEM;
4852
4853 path->reada = READA_BACK;
4854
4855 trans = btrfs_start_transaction(root, 0);
4856 if (IS_ERR(trans)) {
4857 btrfs_free_path(path);
4858 return PTR_ERR(trans);
4859 }
4860
4861 mutex_lock(&fs_info->chunk_mutex);
4862
4863 btrfs_device_set_total_bytes(device, new_size);
4864 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4865 device->fs_devices->total_rw_bytes -= diff;
4866 atomic64_sub(diff, &fs_info->free_chunk_space);
4867 }
4868
4869 /*
4870 * Once the device's size has been set to the new size, ensure all
4871 * in-memory chunks are synced to disk so that the loop below sees them
4872 * and relocates them accordingly.
4873 */
4874 if (contains_pending_extent(device, &start, diff)) {
4875 mutex_unlock(&fs_info->chunk_mutex);
4876 ret = btrfs_commit_transaction(trans);
4877 if (ret)
4878 goto done;
4879 } else {
4880 mutex_unlock(&fs_info->chunk_mutex);
4881 btrfs_end_transaction(trans);
4882 }
4883
4884 again:
4885 key.objectid = device->devid;
4886 key.offset = (u64)-1;
4887 key.type = BTRFS_DEV_EXTENT_KEY;
4888
4889 do {
4890 mutex_lock(&fs_info->reclaim_bgs_lock);
4891 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4892 if (ret < 0) {
4893 mutex_unlock(&fs_info->reclaim_bgs_lock);
4894 goto done;
4895 }
4896
4897 ret = btrfs_previous_item(root, path, 0, key.type);
4898 if (ret) {
4899 mutex_unlock(&fs_info->reclaim_bgs_lock);
4900 if (ret < 0)
4901 goto done;
4902 ret = 0;
4903 btrfs_release_path(path);
4904 break;
4905 }
4906
4907 l = path->nodes[0];
4908 slot = path->slots[0];
4909 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4910
4911 if (key.objectid != device->devid) {
4912 mutex_unlock(&fs_info->reclaim_bgs_lock);
4913 btrfs_release_path(path);
4914 break;
4915 }
4916
4917 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4918 length = btrfs_dev_extent_length(l, dev_extent);
4919
4920 if (key.offset + length <= new_size) {
4921 mutex_unlock(&fs_info->reclaim_bgs_lock);
4922 btrfs_release_path(path);
4923 break;
4924 }
4925
4926 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4927 btrfs_release_path(path);
4928
4929 /*
4930 * We may be relocating the only data chunk we have,
4931 * which could potentially end up with losing data's
4932 * raid profile, so lets allocate an empty one in
4933 * advance.
4934 */
4935 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4936 if (ret < 0) {
4937 mutex_unlock(&fs_info->reclaim_bgs_lock);
4938 goto done;
4939 }
4940
4941 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4942 mutex_unlock(&fs_info->reclaim_bgs_lock);
4943 if (ret == -ENOSPC) {
4944 failed++;
4945 } else if (ret) {
4946 if (ret == -ETXTBSY) {
4947 btrfs_warn(fs_info,
4948 "could not shrink block group %llu due to active swapfile",
4949 chunk_offset);
4950 }
4951 goto done;
4952 }
4953 } while (key.offset-- > 0);
4954
4955 if (failed && !retried) {
4956 failed = 0;
4957 retried = true;
4958 goto again;
4959 } else if (failed && retried) {
4960 ret = -ENOSPC;
4961 goto done;
4962 }
4963
4964 /* Shrinking succeeded, else we would be at "done". */
4965 trans = btrfs_start_transaction(root, 0);
4966 if (IS_ERR(trans)) {
4967 ret = PTR_ERR(trans);
4968 goto done;
4969 }
4970
4971 mutex_lock(&fs_info->chunk_mutex);
4972 /* Clear all state bits beyond the shrunk device size */
4973 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4974 CHUNK_STATE_MASK);
4975
4976 btrfs_device_set_disk_total_bytes(device, new_size);
4977 if (list_empty(&device->post_commit_list))
4978 list_add_tail(&device->post_commit_list,
4979 &trans->transaction->dev_update_list);
4980
4981 WARN_ON(diff > old_total);
4982 btrfs_set_super_total_bytes(super_copy,
4983 round_down(old_total - diff, fs_info->sectorsize));
4984 mutex_unlock(&fs_info->chunk_mutex);
4985
4986 btrfs_reserve_chunk_metadata(trans, false);
4987 /* Now btrfs_update_device() will change the on-disk size. */
4988 ret = btrfs_update_device(trans, device);
4989 btrfs_trans_release_chunk_metadata(trans);
4990 if (ret < 0) {
4991 btrfs_abort_transaction(trans, ret);
4992 btrfs_end_transaction(trans);
4993 } else {
4994 ret = btrfs_commit_transaction(trans);
4995 }
4996 done:
4997 btrfs_free_path(path);
4998 if (ret) {
4999 mutex_lock(&fs_info->chunk_mutex);
5000 btrfs_device_set_total_bytes(device, old_size);
5001 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5002 device->fs_devices->total_rw_bytes += diff;
5003 atomic64_add(diff, &fs_info->free_chunk_space);
5004 mutex_unlock(&fs_info->chunk_mutex);
5005 }
5006 return ret;
5007 }
5008
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5009 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5010 struct btrfs_key *key,
5011 struct btrfs_chunk *chunk, int item_size)
5012 {
5013 struct btrfs_super_block *super_copy = fs_info->super_copy;
5014 struct btrfs_disk_key disk_key;
5015 u32 array_size;
5016 u8 *ptr;
5017
5018 lockdep_assert_held(&fs_info->chunk_mutex);
5019
5020 array_size = btrfs_super_sys_array_size(super_copy);
5021 if (array_size + item_size + sizeof(disk_key)
5022 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5023 return -EFBIG;
5024
5025 ptr = super_copy->sys_chunk_array + array_size;
5026 btrfs_cpu_key_to_disk(&disk_key, key);
5027 memcpy(ptr, &disk_key, sizeof(disk_key));
5028 ptr += sizeof(disk_key);
5029 memcpy(ptr, chunk, item_size);
5030 item_size += sizeof(disk_key);
5031 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5032
5033 return 0;
5034 }
5035
5036 /*
5037 * sort the devices in descending order by max_avail, total_avail
5038 */
btrfs_cmp_device_info(const void * a,const void * b)5039 static int btrfs_cmp_device_info(const void *a, const void *b)
5040 {
5041 const struct btrfs_device_info *di_a = a;
5042 const struct btrfs_device_info *di_b = b;
5043
5044 if (di_a->max_avail > di_b->max_avail)
5045 return -1;
5046 if (di_a->max_avail < di_b->max_avail)
5047 return 1;
5048 if (di_a->total_avail > di_b->total_avail)
5049 return -1;
5050 if (di_a->total_avail < di_b->total_avail)
5051 return 1;
5052 return 0;
5053 }
5054
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5055 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056 {
5057 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5058 return;
5059
5060 btrfs_set_fs_incompat(info, RAID56);
5061 }
5062
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5063 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5064 {
5065 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5066 return;
5067
5068 btrfs_set_fs_incompat(info, RAID1C34);
5069 }
5070
5071 /*
5072 * Structure used internally for btrfs_create_chunk() function.
5073 * Wraps needed parameters.
5074 */
5075 struct alloc_chunk_ctl {
5076 u64 start;
5077 u64 type;
5078 /* Total number of stripes to allocate */
5079 int num_stripes;
5080 /* sub_stripes info for map */
5081 int sub_stripes;
5082 /* Stripes per device */
5083 int dev_stripes;
5084 /* Maximum number of devices to use */
5085 int devs_max;
5086 /* Minimum number of devices to use */
5087 int devs_min;
5088 /* ndevs has to be a multiple of this */
5089 int devs_increment;
5090 /* Number of copies */
5091 int ncopies;
5092 /* Number of stripes worth of bytes to store parity information */
5093 int nparity;
5094 u64 max_stripe_size;
5095 u64 max_chunk_size;
5096 u64 dev_extent_min;
5097 u64 stripe_size;
5098 u64 chunk_size;
5099 int ndevs;
5100 };
5101
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5102 static void init_alloc_chunk_ctl_policy_regular(
5103 struct btrfs_fs_devices *fs_devices,
5104 struct alloc_chunk_ctl *ctl)
5105 {
5106 struct btrfs_space_info *space_info;
5107
5108 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5109 ASSERT(space_info);
5110
5111 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5112 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5113
5114 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5115 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5116
5117 /* We don't want a chunk larger than 10% of writable space */
5118 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5119 ctl->max_chunk_size);
5120 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5121 }
5122
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5123 static void init_alloc_chunk_ctl_policy_zoned(
5124 struct btrfs_fs_devices *fs_devices,
5125 struct alloc_chunk_ctl *ctl)
5126 {
5127 u64 zone_size = fs_devices->fs_info->zone_size;
5128 u64 limit;
5129 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5130 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5131 u64 min_chunk_size = min_data_stripes * zone_size;
5132 u64 type = ctl->type;
5133
5134 ctl->max_stripe_size = zone_size;
5135 if (type & BTRFS_BLOCK_GROUP_DATA) {
5136 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5137 zone_size);
5138 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5139 ctl->max_chunk_size = ctl->max_stripe_size;
5140 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5141 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5142 ctl->devs_max = min_t(int, ctl->devs_max,
5143 BTRFS_MAX_DEVS_SYS_CHUNK);
5144 } else {
5145 BUG();
5146 }
5147
5148 /* We don't want a chunk larger than 10% of writable space */
5149 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5150 zone_size),
5151 min_chunk_size);
5152 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5153 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5154 }
5155
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5156 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5157 struct alloc_chunk_ctl *ctl)
5158 {
5159 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5160
5161 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5162 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5163 ctl->devs_max = btrfs_raid_array[index].devs_max;
5164 if (!ctl->devs_max)
5165 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5166 ctl->devs_min = btrfs_raid_array[index].devs_min;
5167 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5168 ctl->ncopies = btrfs_raid_array[index].ncopies;
5169 ctl->nparity = btrfs_raid_array[index].nparity;
5170 ctl->ndevs = 0;
5171
5172 switch (fs_devices->chunk_alloc_policy) {
5173 case BTRFS_CHUNK_ALLOC_REGULAR:
5174 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5175 break;
5176 case BTRFS_CHUNK_ALLOC_ZONED:
5177 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5178 break;
5179 default:
5180 BUG();
5181 }
5182 }
5183
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5184 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5185 struct alloc_chunk_ctl *ctl,
5186 struct btrfs_device_info *devices_info)
5187 {
5188 struct btrfs_fs_info *info = fs_devices->fs_info;
5189 struct btrfs_device *device;
5190 u64 total_avail;
5191 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5192 int ret;
5193 int ndevs = 0;
5194 u64 max_avail;
5195 u64 dev_offset;
5196
5197 /*
5198 * in the first pass through the devices list, we gather information
5199 * about the available holes on each device.
5200 */
5201 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5202 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5203 WARN(1, KERN_ERR
5204 "BTRFS: read-only device in alloc_list\n");
5205 continue;
5206 }
5207
5208 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5209 &device->dev_state) ||
5210 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5211 continue;
5212
5213 if (device->total_bytes > device->bytes_used)
5214 total_avail = device->total_bytes - device->bytes_used;
5215 else
5216 total_avail = 0;
5217
5218 /* If there is no space on this device, skip it. */
5219 if (total_avail < ctl->dev_extent_min)
5220 continue;
5221
5222 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5223 &max_avail);
5224 if (ret && ret != -ENOSPC)
5225 return ret;
5226
5227 if (ret == 0)
5228 max_avail = dev_extent_want;
5229
5230 if (max_avail < ctl->dev_extent_min) {
5231 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5232 btrfs_debug(info,
5233 "%s: devid %llu has no free space, have=%llu want=%llu",
5234 __func__, device->devid, max_avail,
5235 ctl->dev_extent_min);
5236 continue;
5237 }
5238
5239 if (ndevs == fs_devices->rw_devices) {
5240 WARN(1, "%s: found more than %llu devices\n",
5241 __func__, fs_devices->rw_devices);
5242 break;
5243 }
5244 devices_info[ndevs].dev_offset = dev_offset;
5245 devices_info[ndevs].max_avail = max_avail;
5246 devices_info[ndevs].total_avail = total_avail;
5247 devices_info[ndevs].dev = device;
5248 ++ndevs;
5249 }
5250 ctl->ndevs = ndevs;
5251
5252 /*
5253 * now sort the devices by hole size / available space
5254 */
5255 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5256 btrfs_cmp_device_info, NULL);
5257
5258 return 0;
5259 }
5260
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5261 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5262 struct btrfs_device_info *devices_info)
5263 {
5264 /* Number of stripes that count for block group size */
5265 int data_stripes;
5266
5267 /*
5268 * The primary goal is to maximize the number of stripes, so use as
5269 * many devices as possible, even if the stripes are not maximum sized.
5270 *
5271 * The DUP profile stores more than one stripe per device, the
5272 * max_avail is the total size so we have to adjust.
5273 */
5274 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5275 ctl->dev_stripes);
5276 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5277
5278 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5279 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5280
5281 /*
5282 * Use the number of data stripes to figure out how big this chunk is
5283 * really going to be in terms of logical address space, and compare
5284 * that answer with the max chunk size. If it's higher, we try to
5285 * reduce stripe_size.
5286 */
5287 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5288 /*
5289 * Reduce stripe_size, round it up to a 16MB boundary again and
5290 * then use it, unless it ends up being even bigger than the
5291 * previous value we had already.
5292 */
5293 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5294 data_stripes), SZ_16M),
5295 ctl->stripe_size);
5296 }
5297
5298 /* Stripe size should not go beyond 1G. */
5299 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5300
5301 /* Align to BTRFS_STRIPE_LEN */
5302 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5303 ctl->chunk_size = ctl->stripe_size * data_stripes;
5304
5305 return 0;
5306 }
5307
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5308 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5309 struct btrfs_device_info *devices_info)
5310 {
5311 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5312 /* Number of stripes that count for block group size */
5313 int data_stripes;
5314
5315 /*
5316 * It should hold because:
5317 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5318 */
5319 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5320
5321 ctl->stripe_size = zone_size;
5322 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324
5325 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5326 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5327 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5328 ctl->stripe_size) + ctl->nparity,
5329 ctl->dev_stripes);
5330 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5331 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5332 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5333 }
5334
5335 ctl->chunk_size = ctl->stripe_size * data_stripes;
5336
5337 return 0;
5338 }
5339
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5340 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5341 struct alloc_chunk_ctl *ctl,
5342 struct btrfs_device_info *devices_info)
5343 {
5344 struct btrfs_fs_info *info = fs_devices->fs_info;
5345
5346 /*
5347 * Round down to number of usable stripes, devs_increment can be any
5348 * number so we can't use round_down() that requires power of 2, while
5349 * rounddown is safe.
5350 */
5351 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5352
5353 if (ctl->ndevs < ctl->devs_min) {
5354 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5355 btrfs_debug(info,
5356 "%s: not enough devices with free space: have=%d minimum required=%d",
5357 __func__, ctl->ndevs, ctl->devs_min);
5358 }
5359 return -ENOSPC;
5360 }
5361
5362 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5363
5364 switch (fs_devices->chunk_alloc_policy) {
5365 case BTRFS_CHUNK_ALLOC_REGULAR:
5366 return decide_stripe_size_regular(ctl, devices_info);
5367 case BTRFS_CHUNK_ALLOC_ZONED:
5368 return decide_stripe_size_zoned(ctl, devices_info);
5369 default:
5370 BUG();
5371 }
5372 }
5373
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5374 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5375 struct alloc_chunk_ctl *ctl,
5376 struct btrfs_device_info *devices_info)
5377 {
5378 struct btrfs_fs_info *info = trans->fs_info;
5379 struct map_lookup *map = NULL;
5380 struct extent_map_tree *em_tree;
5381 struct btrfs_block_group *block_group;
5382 struct extent_map *em;
5383 u64 start = ctl->start;
5384 u64 type = ctl->type;
5385 int ret;
5386 int i;
5387 int j;
5388
5389 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5390 if (!map)
5391 return ERR_PTR(-ENOMEM);
5392 map->num_stripes = ctl->num_stripes;
5393
5394 for (i = 0; i < ctl->ndevs; ++i) {
5395 for (j = 0; j < ctl->dev_stripes; ++j) {
5396 int s = i * ctl->dev_stripes + j;
5397 map->stripes[s].dev = devices_info[i].dev;
5398 map->stripes[s].physical = devices_info[i].dev_offset +
5399 j * ctl->stripe_size;
5400 }
5401 }
5402 map->io_align = BTRFS_STRIPE_LEN;
5403 map->io_width = BTRFS_STRIPE_LEN;
5404 map->type = type;
5405 map->sub_stripes = ctl->sub_stripes;
5406
5407 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5408
5409 em = alloc_extent_map();
5410 if (!em) {
5411 kfree(map);
5412 return ERR_PTR(-ENOMEM);
5413 }
5414 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5415 em->map_lookup = map;
5416 em->start = start;
5417 em->len = ctl->chunk_size;
5418 em->block_start = 0;
5419 em->block_len = em->len;
5420 em->orig_block_len = ctl->stripe_size;
5421
5422 em_tree = &info->mapping_tree;
5423 write_lock(&em_tree->lock);
5424 ret = add_extent_mapping(em_tree, em, 0);
5425 if (ret) {
5426 write_unlock(&em_tree->lock);
5427 free_extent_map(em);
5428 return ERR_PTR(ret);
5429 }
5430 write_unlock(&em_tree->lock);
5431
5432 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5433 if (IS_ERR(block_group))
5434 goto error_del_extent;
5435
5436 for (i = 0; i < map->num_stripes; i++) {
5437 struct btrfs_device *dev = map->stripes[i].dev;
5438
5439 btrfs_device_set_bytes_used(dev,
5440 dev->bytes_used + ctl->stripe_size);
5441 if (list_empty(&dev->post_commit_list))
5442 list_add_tail(&dev->post_commit_list,
5443 &trans->transaction->dev_update_list);
5444 }
5445
5446 atomic64_sub(ctl->stripe_size * map->num_stripes,
5447 &info->free_chunk_space);
5448
5449 free_extent_map(em);
5450 check_raid56_incompat_flag(info, type);
5451 check_raid1c34_incompat_flag(info, type);
5452
5453 return block_group;
5454
5455 error_del_extent:
5456 write_lock(&em_tree->lock);
5457 remove_extent_mapping(em_tree, em);
5458 write_unlock(&em_tree->lock);
5459
5460 /* One for our allocation */
5461 free_extent_map(em);
5462 /* One for the tree reference */
5463 free_extent_map(em);
5464
5465 return block_group;
5466 }
5467
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5468 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5469 u64 type)
5470 {
5471 struct btrfs_fs_info *info = trans->fs_info;
5472 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5473 struct btrfs_device_info *devices_info = NULL;
5474 struct alloc_chunk_ctl ctl;
5475 struct btrfs_block_group *block_group;
5476 int ret;
5477
5478 lockdep_assert_held(&info->chunk_mutex);
5479
5480 if (!alloc_profile_is_valid(type, 0)) {
5481 ASSERT(0);
5482 return ERR_PTR(-EINVAL);
5483 }
5484
5485 if (list_empty(&fs_devices->alloc_list)) {
5486 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5487 btrfs_debug(info, "%s: no writable device", __func__);
5488 return ERR_PTR(-ENOSPC);
5489 }
5490
5491 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5492 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5493 ASSERT(0);
5494 return ERR_PTR(-EINVAL);
5495 }
5496
5497 ctl.start = find_next_chunk(info);
5498 ctl.type = type;
5499 init_alloc_chunk_ctl(fs_devices, &ctl);
5500
5501 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5502 GFP_NOFS);
5503 if (!devices_info)
5504 return ERR_PTR(-ENOMEM);
5505
5506 ret = gather_device_info(fs_devices, &ctl, devices_info);
5507 if (ret < 0) {
5508 block_group = ERR_PTR(ret);
5509 goto out;
5510 }
5511
5512 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5513 if (ret < 0) {
5514 block_group = ERR_PTR(ret);
5515 goto out;
5516 }
5517
5518 block_group = create_chunk(trans, &ctl, devices_info);
5519
5520 out:
5521 kfree(devices_info);
5522 return block_group;
5523 }
5524
5525 /*
5526 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5527 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5528 * chunks.
5529 *
5530 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5531 * phases.
5532 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5533 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5534 struct btrfs_block_group *bg)
5535 {
5536 struct btrfs_fs_info *fs_info = trans->fs_info;
5537 struct btrfs_root *chunk_root = fs_info->chunk_root;
5538 struct btrfs_key key;
5539 struct btrfs_chunk *chunk;
5540 struct btrfs_stripe *stripe;
5541 struct extent_map *em;
5542 struct map_lookup *map;
5543 size_t item_size;
5544 int i;
5545 int ret;
5546
5547 /*
5548 * We take the chunk_mutex for 2 reasons:
5549 *
5550 * 1) Updates and insertions in the chunk btree must be done while holding
5551 * the chunk_mutex, as well as updating the system chunk array in the
5552 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5553 * details;
5554 *
5555 * 2) To prevent races with the final phase of a device replace operation
5556 * that replaces the device object associated with the map's stripes,
5557 * because the device object's id can change at any time during that
5558 * final phase of the device replace operation
5559 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5560 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5561 * which would cause a failure when updating the device item, which does
5562 * not exists, or persisting a stripe of the chunk item with such ID.
5563 * Here we can't use the device_list_mutex because our caller already
5564 * has locked the chunk_mutex, and the final phase of device replace
5565 * acquires both mutexes - first the device_list_mutex and then the
5566 * chunk_mutex. Using any of those two mutexes protects us from a
5567 * concurrent device replace.
5568 */
5569 lockdep_assert_held(&fs_info->chunk_mutex);
5570
5571 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5572 if (IS_ERR(em)) {
5573 ret = PTR_ERR(em);
5574 btrfs_abort_transaction(trans, ret);
5575 return ret;
5576 }
5577
5578 map = em->map_lookup;
5579 item_size = btrfs_chunk_item_size(map->num_stripes);
5580
5581 chunk = kzalloc(item_size, GFP_NOFS);
5582 if (!chunk) {
5583 ret = -ENOMEM;
5584 btrfs_abort_transaction(trans, ret);
5585 goto out;
5586 }
5587
5588 for (i = 0; i < map->num_stripes; i++) {
5589 struct btrfs_device *device = map->stripes[i].dev;
5590
5591 ret = btrfs_update_device(trans, device);
5592 if (ret)
5593 goto out;
5594 }
5595
5596 stripe = &chunk->stripe;
5597 for (i = 0; i < map->num_stripes; i++) {
5598 struct btrfs_device *device = map->stripes[i].dev;
5599 const u64 dev_offset = map->stripes[i].physical;
5600
5601 btrfs_set_stack_stripe_devid(stripe, device->devid);
5602 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5603 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5604 stripe++;
5605 }
5606
5607 btrfs_set_stack_chunk_length(chunk, bg->length);
5608 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5609 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5610 btrfs_set_stack_chunk_type(chunk, map->type);
5611 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5612 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5613 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5614 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5615 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5616
5617 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5618 key.type = BTRFS_CHUNK_ITEM_KEY;
5619 key.offset = bg->start;
5620
5621 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5622 if (ret)
5623 goto out;
5624
5625 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5626
5627 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5628 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5629 if (ret)
5630 goto out;
5631 }
5632
5633 out:
5634 kfree(chunk);
5635 free_extent_map(em);
5636 return ret;
5637 }
5638
init_first_rw_device(struct btrfs_trans_handle * trans)5639 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5640 {
5641 struct btrfs_fs_info *fs_info = trans->fs_info;
5642 u64 alloc_profile;
5643 struct btrfs_block_group *meta_bg;
5644 struct btrfs_block_group *sys_bg;
5645
5646 /*
5647 * When adding a new device for sprouting, the seed device is read-only
5648 * so we must first allocate a metadata and a system chunk. But before
5649 * adding the block group items to the extent, device and chunk btrees,
5650 * we must first:
5651 *
5652 * 1) Create both chunks without doing any changes to the btrees, as
5653 * otherwise we would get -ENOSPC since the block groups from the
5654 * seed device are read-only;
5655 *
5656 * 2) Add the device item for the new sprout device - finishing the setup
5657 * of a new block group requires updating the device item in the chunk
5658 * btree, so it must exist when we attempt to do it. The previous step
5659 * ensures this does not fail with -ENOSPC.
5660 *
5661 * After that we can add the block group items to their btrees:
5662 * update existing device item in the chunk btree, add a new block group
5663 * item to the extent btree, add a new chunk item to the chunk btree and
5664 * finally add the new device extent items to the devices btree.
5665 */
5666
5667 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5668 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5669 if (IS_ERR(meta_bg))
5670 return PTR_ERR(meta_bg);
5671
5672 alloc_profile = btrfs_system_alloc_profile(fs_info);
5673 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5674 if (IS_ERR(sys_bg))
5675 return PTR_ERR(sys_bg);
5676
5677 return 0;
5678 }
5679
btrfs_chunk_max_errors(struct map_lookup * map)5680 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5681 {
5682 const int index = btrfs_bg_flags_to_raid_index(map->type);
5683
5684 return btrfs_raid_array[index].tolerated_failures;
5685 }
5686
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5687 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5688 {
5689 struct extent_map *em;
5690 struct map_lookup *map;
5691 int miss_ndevs = 0;
5692 int i;
5693 bool ret = true;
5694
5695 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5696 if (IS_ERR(em))
5697 return false;
5698
5699 map = em->map_lookup;
5700 for (i = 0; i < map->num_stripes; i++) {
5701 if (test_bit(BTRFS_DEV_STATE_MISSING,
5702 &map->stripes[i].dev->dev_state)) {
5703 miss_ndevs++;
5704 continue;
5705 }
5706 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5707 &map->stripes[i].dev->dev_state)) {
5708 ret = false;
5709 goto end;
5710 }
5711 }
5712
5713 /*
5714 * If the number of missing devices is larger than max errors, we can
5715 * not write the data into that chunk successfully.
5716 */
5717 if (miss_ndevs > btrfs_chunk_max_errors(map))
5718 ret = false;
5719 end:
5720 free_extent_map(em);
5721 return ret;
5722 }
5723
btrfs_mapping_tree_free(struct extent_map_tree * tree)5724 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5725 {
5726 struct extent_map *em;
5727
5728 while (1) {
5729 write_lock(&tree->lock);
5730 em = lookup_extent_mapping(tree, 0, (u64)-1);
5731 if (em)
5732 remove_extent_mapping(tree, em);
5733 write_unlock(&tree->lock);
5734 if (!em)
5735 break;
5736 /* once for us */
5737 free_extent_map(em);
5738 /* once for the tree */
5739 free_extent_map(em);
5740 }
5741 }
5742
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5743 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5744 {
5745 struct extent_map *em;
5746 struct map_lookup *map;
5747 enum btrfs_raid_types index;
5748 int ret = 1;
5749
5750 em = btrfs_get_chunk_map(fs_info, logical, len);
5751 if (IS_ERR(em))
5752 /*
5753 * We could return errors for these cases, but that could get
5754 * ugly and we'd probably do the same thing which is just not do
5755 * anything else and exit, so return 1 so the callers don't try
5756 * to use other copies.
5757 */
5758 return 1;
5759
5760 map = em->map_lookup;
5761 index = btrfs_bg_flags_to_raid_index(map->type);
5762
5763 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5764 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5765 ret = btrfs_raid_array[index].ncopies;
5766 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5767 ret = 2;
5768 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5769 /*
5770 * There could be two corrupted data stripes, we need
5771 * to loop retry in order to rebuild the correct data.
5772 *
5773 * Fail a stripe at a time on every retry except the
5774 * stripe under reconstruction.
5775 */
5776 ret = map->num_stripes;
5777 free_extent_map(em);
5778 return ret;
5779 }
5780
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5781 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782 u64 logical)
5783 {
5784 struct extent_map *em;
5785 struct map_lookup *map;
5786 unsigned long len = fs_info->sectorsize;
5787
5788 if (!btrfs_fs_incompat(fs_info, RAID56))
5789 return len;
5790
5791 em = btrfs_get_chunk_map(fs_info, logical, len);
5792
5793 if (!WARN_ON(IS_ERR(em))) {
5794 map = em->map_lookup;
5795 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5797 free_extent_map(em);
5798 }
5799 return len;
5800 }
5801
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5802 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803 {
5804 struct extent_map *em;
5805 struct map_lookup *map;
5806 int ret = 0;
5807
5808 if (!btrfs_fs_incompat(fs_info, RAID56))
5809 return 0;
5810
5811 em = btrfs_get_chunk_map(fs_info, logical, len);
5812
5813 if(!WARN_ON(IS_ERR(em))) {
5814 map = em->map_lookup;
5815 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816 ret = 1;
5817 free_extent_map(em);
5818 }
5819 return ret;
5820 }
5821
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5822 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823 struct map_lookup *map, int first,
5824 int dev_replace_is_ongoing)
5825 {
5826 int i;
5827 int num_stripes;
5828 int preferred_mirror;
5829 int tolerance;
5830 struct btrfs_device *srcdev;
5831
5832 ASSERT((map->type &
5833 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834
5835 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836 num_stripes = map->sub_stripes;
5837 else
5838 num_stripes = map->num_stripes;
5839
5840 switch (fs_info->fs_devices->read_policy) {
5841 default:
5842 /* Shouldn't happen, just warn and use pid instead of failing */
5843 btrfs_warn_rl(fs_info,
5844 "unknown read_policy type %u, reset to pid",
5845 fs_info->fs_devices->read_policy);
5846 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847 fallthrough;
5848 case BTRFS_READ_POLICY_PID:
5849 preferred_mirror = first + (current->pid % num_stripes);
5850 break;
5851 }
5852
5853 if (dev_replace_is_ongoing &&
5854 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856 srcdev = fs_info->dev_replace.srcdev;
5857 else
5858 srcdev = NULL;
5859
5860 /*
5861 * try to avoid the drive that is the source drive for a
5862 * dev-replace procedure, only choose it if no other non-missing
5863 * mirror is available
5864 */
5865 for (tolerance = 0; tolerance < 2; tolerance++) {
5866 if (map->stripes[preferred_mirror].dev->bdev &&
5867 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868 return preferred_mirror;
5869 for (i = first; i < first + num_stripes; i++) {
5870 if (map->stripes[i].dev->bdev &&
5871 (tolerance || map->stripes[i].dev != srcdev))
5872 return i;
5873 }
5874 }
5875
5876 /* we couldn't find one that doesn't fail. Just return something
5877 * and the io error handling code will clean up eventually
5878 */
5879 return preferred_mirror;
5880 }
5881
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u16 total_stripes)5882 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5883 u16 total_stripes)
5884 {
5885 struct btrfs_io_context *bioc;
5886
5887 bioc = kzalloc(
5888 /* The size of btrfs_io_context */
5889 sizeof(struct btrfs_io_context) +
5890 /* Plus the variable array for the stripes */
5891 sizeof(struct btrfs_io_stripe) * (total_stripes),
5892 GFP_NOFS);
5893
5894 if (!bioc)
5895 return NULL;
5896
5897 refcount_set(&bioc->refs, 1);
5898
5899 bioc->fs_info = fs_info;
5900 bioc->replace_stripe_src = -1;
5901 bioc->full_stripe_logical = (u64)-1;
5902
5903 return bioc;
5904 }
5905
btrfs_get_bioc(struct btrfs_io_context * bioc)5906 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5907 {
5908 WARN_ON(!refcount_read(&bioc->refs));
5909 refcount_inc(&bioc->refs);
5910 }
5911
btrfs_put_bioc(struct btrfs_io_context * bioc)5912 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5913 {
5914 if (!bioc)
5915 return;
5916 if (refcount_dec_and_test(&bioc->refs))
5917 kfree(bioc);
5918 }
5919
5920 /*
5921 * Please note that, discard won't be sent to target device of device
5922 * replace.
5923 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)5924 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5925 u64 logical, u64 *length_ret,
5926 u32 *num_stripes)
5927 {
5928 struct extent_map *em;
5929 struct map_lookup *map;
5930 struct btrfs_discard_stripe *stripes;
5931 u64 length = *length_ret;
5932 u64 offset;
5933 u32 stripe_nr;
5934 u32 stripe_nr_end;
5935 u32 stripe_cnt;
5936 u64 stripe_end_offset;
5937 u64 stripe_offset;
5938 u32 stripe_index;
5939 u32 factor = 0;
5940 u32 sub_stripes = 0;
5941 u32 stripes_per_dev = 0;
5942 u32 remaining_stripes = 0;
5943 u32 last_stripe = 0;
5944 int ret;
5945 int i;
5946
5947 em = btrfs_get_chunk_map(fs_info, logical, length);
5948 if (IS_ERR(em))
5949 return ERR_CAST(em);
5950
5951 map = em->map_lookup;
5952
5953 /* we don't discard raid56 yet */
5954 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5955 ret = -EOPNOTSUPP;
5956 goto out_free_map;
5957 }
5958
5959 offset = logical - em->start;
5960 length = min_t(u64, em->start + em->len - logical, length);
5961 *length_ret = length;
5962
5963 /*
5964 * stripe_nr counts the total number of stripes we have to stride
5965 * to get to this block
5966 */
5967 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5968
5969 /* stripe_offset is the offset of this block in its stripe */
5970 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5971
5972 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5973 BTRFS_STRIPE_LEN_SHIFT;
5974 stripe_cnt = stripe_nr_end - stripe_nr;
5975 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
5976 (offset + length);
5977 /*
5978 * after this, stripe_nr is the number of stripes on this
5979 * device we have to walk to find the data, and stripe_index is
5980 * the number of our device in the stripe array
5981 */
5982 *num_stripes = 1;
5983 stripe_index = 0;
5984 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5985 BTRFS_BLOCK_GROUP_RAID10)) {
5986 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5987 sub_stripes = 1;
5988 else
5989 sub_stripes = map->sub_stripes;
5990
5991 factor = map->num_stripes / sub_stripes;
5992 *num_stripes = min_t(u64, map->num_stripes,
5993 sub_stripes * stripe_cnt);
5994 stripe_index = stripe_nr % factor;
5995 stripe_nr /= factor;
5996 stripe_index *= sub_stripes;
5997
5998 remaining_stripes = stripe_cnt % factor;
5999 stripes_per_dev = stripe_cnt / factor;
6000 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6001 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6002 BTRFS_BLOCK_GROUP_DUP)) {
6003 *num_stripes = map->num_stripes;
6004 } else {
6005 stripe_index = stripe_nr % map->num_stripes;
6006 stripe_nr /= map->num_stripes;
6007 }
6008
6009 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6010 if (!stripes) {
6011 ret = -ENOMEM;
6012 goto out_free_map;
6013 }
6014
6015 for (i = 0; i < *num_stripes; i++) {
6016 stripes[i].physical =
6017 map->stripes[stripe_index].physical +
6018 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6019 stripes[i].dev = map->stripes[stripe_index].dev;
6020
6021 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6022 BTRFS_BLOCK_GROUP_RAID10)) {
6023 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6024
6025 if (i / sub_stripes < remaining_stripes)
6026 stripes[i].length += BTRFS_STRIPE_LEN;
6027
6028 /*
6029 * Special for the first stripe and
6030 * the last stripe:
6031 *
6032 * |-------|...|-------|
6033 * |----------|
6034 * off end_off
6035 */
6036 if (i < sub_stripes)
6037 stripes[i].length -= stripe_offset;
6038
6039 if (stripe_index >= last_stripe &&
6040 stripe_index <= (last_stripe +
6041 sub_stripes - 1))
6042 stripes[i].length -= stripe_end_offset;
6043
6044 if (i == sub_stripes - 1)
6045 stripe_offset = 0;
6046 } else {
6047 stripes[i].length = length;
6048 }
6049
6050 stripe_index++;
6051 if (stripe_index == map->num_stripes) {
6052 stripe_index = 0;
6053 stripe_nr++;
6054 }
6055 }
6056
6057 free_extent_map(em);
6058 return stripes;
6059 out_free_map:
6060 free_extent_map(em);
6061 return ERR_PTR(ret);
6062 }
6063
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6064 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6065 {
6066 struct btrfs_block_group *cache;
6067 bool ret;
6068
6069 /* Non zoned filesystem does not use "to_copy" flag */
6070 if (!btrfs_is_zoned(fs_info))
6071 return false;
6072
6073 cache = btrfs_lookup_block_group(fs_info, logical);
6074
6075 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6076
6077 btrfs_put_block_group(cache);
6078 return ret;
6079 }
6080
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,int * num_stripes_ret,int * max_errors_ret)6081 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6082 struct btrfs_io_context *bioc,
6083 struct btrfs_dev_replace *dev_replace,
6084 u64 logical,
6085 int *num_stripes_ret, int *max_errors_ret)
6086 {
6087 u64 srcdev_devid = dev_replace->srcdev->devid;
6088 /*
6089 * At this stage, num_stripes is still the real number of stripes,
6090 * excluding the duplicated stripes.
6091 */
6092 int num_stripes = *num_stripes_ret;
6093 int nr_extra_stripes = 0;
6094 int max_errors = *max_errors_ret;
6095 int i;
6096
6097 /*
6098 * A block group which has "to_copy" set will eventually be copied by
6099 * the dev-replace process. We can avoid cloning IO here.
6100 */
6101 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6102 return;
6103
6104 /*
6105 * Duplicate the write operations while the dev-replace procedure is
6106 * running. Since the copying of the old disk to the new disk takes
6107 * place at run time while the filesystem is mounted writable, the
6108 * regular write operations to the old disk have to be duplicated to go
6109 * to the new disk as well.
6110 *
6111 * Note that device->missing is handled by the caller, and that the
6112 * write to the old disk is already set up in the stripes array.
6113 */
6114 for (i = 0; i < num_stripes; i++) {
6115 struct btrfs_io_stripe *old = &bioc->stripes[i];
6116 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6117
6118 if (old->dev->devid != srcdev_devid)
6119 continue;
6120
6121 new->physical = old->physical;
6122 new->dev = dev_replace->tgtdev;
6123 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6124 bioc->replace_stripe_src = i;
6125 nr_extra_stripes++;
6126 }
6127
6128 /* We can only have at most 2 extra nr_stripes (for DUP). */
6129 ASSERT(nr_extra_stripes <= 2);
6130 /*
6131 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6132 * replace.
6133 * If we have 2 extra stripes, only choose the one with smaller physical.
6134 */
6135 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6136 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6137 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6138
6139 /* Only DUP can have two extra stripes. */
6140 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6141
6142 /*
6143 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6144 * The extra stripe would still be there, but won't be accessed.
6145 */
6146 if (first->physical > second->physical) {
6147 swap(second->physical, first->physical);
6148 swap(second->dev, first->dev);
6149 nr_extra_stripes--;
6150 }
6151 }
6152
6153 *num_stripes_ret = num_stripes + nr_extra_stripes;
6154 *max_errors_ret = max_errors + nr_extra_stripes;
6155 bioc->replace_nr_stripes = nr_extra_stripes;
6156 }
6157
btrfs_max_io_len(struct map_lookup * map,enum btrfs_map_op op,u64 offset,u32 * stripe_nr,u64 * stripe_offset,u64 * full_stripe_start)6158 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6159 u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6160 u64 *full_stripe_start)
6161 {
6162 /*
6163 * Stripe_nr is the stripe where this block falls. stripe_offset is
6164 * the offset of this block in its stripe.
6165 */
6166 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6167 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6168 ASSERT(*stripe_offset < U32_MAX);
6169
6170 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6171 unsigned long full_stripe_len =
6172 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6173
6174 /*
6175 * For full stripe start, we use previously calculated
6176 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6177 * STRIPE_LEN.
6178 *
6179 * By this we can avoid u64 division completely. And we have
6180 * to go rounddown(), not round_down(), as nr_data_stripes is
6181 * not ensured to be power of 2.
6182 */
6183 *full_stripe_start =
6184 btrfs_stripe_nr_to_offset(
6185 rounddown(*stripe_nr, nr_data_stripes(map)));
6186
6187 ASSERT(*full_stripe_start + full_stripe_len > offset);
6188 ASSERT(*full_stripe_start <= offset);
6189 /*
6190 * For writes to RAID56, allow to write a full stripe set, but
6191 * no straddling of stripe sets.
6192 */
6193 if (op == BTRFS_MAP_WRITE)
6194 return full_stripe_len - (offset - *full_stripe_start);
6195 }
6196
6197 /*
6198 * For other RAID types and for RAID56 reads, allow a single stripe (on
6199 * a single disk).
6200 */
6201 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6202 return BTRFS_STRIPE_LEN - *stripe_offset;
6203 return U64_MAX;
6204 }
6205
set_io_stripe(struct btrfs_io_stripe * dst,const struct map_lookup * map,u32 stripe_index,u64 stripe_offset,u32 stripe_nr)6206 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6207 u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
6208 {
6209 dst->dev = map->stripes[stripe_index].dev;
6210 dst->physical = map->stripes[stripe_index].physical +
6211 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6212 }
6213
6214 /*
6215 * Map one logical range to one or more physical ranges.
6216 *
6217 * @length: (Mandatory) mapped length of this run.
6218 * One logical range can be split into different segments
6219 * due to factors like zones and RAID0/5/6/10 stripe
6220 * boundaries.
6221 *
6222 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6223 * which has one or more physical ranges (btrfs_io_stripe)
6224 * recorded inside.
6225 * Caller should call btrfs_put_bioc() to free it after use.
6226 *
6227 * @smap: (Optional) single physical range optimization.
6228 * If the map request can be fulfilled by one single
6229 * physical range, and this is parameter is not NULL,
6230 * then @bioc_ret would be NULL, and @smap would be
6231 * updated.
6232 *
6233 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6234 * value is 0.
6235 *
6236 * Mirror number 0 means to choose any live mirrors.
6237 *
6238 * For non-RAID56 profiles, non-zero mirror_num means
6239 * the Nth mirror. (e.g. mirror_num 1 means the first
6240 * copy).
6241 *
6242 * For RAID56 profile, mirror 1 means rebuild from P and
6243 * the remaining data stripes.
6244 *
6245 * For RAID6 profile, mirror > 2 means mark another
6246 * data/P stripe error and rebuild from the remaining
6247 * stripes..
6248 *
6249 * @need_raid_map: (Used only for integrity checker) whether the map wants
6250 * a full stripe map (including all data and P/Q stripes)
6251 * for RAID56. Should always be 1 except integrity checker.
6252 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret,int need_raid_map)6253 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6254 u64 logical, u64 *length,
6255 struct btrfs_io_context **bioc_ret,
6256 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6257 int need_raid_map)
6258 {
6259 struct extent_map *em;
6260 struct map_lookup *map;
6261 u64 map_offset;
6262 u64 stripe_offset;
6263 u32 stripe_nr;
6264 u32 stripe_index;
6265 int data_stripes;
6266 int i;
6267 int ret = 0;
6268 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6269 int num_stripes;
6270 int num_copies;
6271 int max_errors = 0;
6272 struct btrfs_io_context *bioc = NULL;
6273 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6274 int dev_replace_is_ongoing = 0;
6275 u16 num_alloc_stripes;
6276 u64 raid56_full_stripe_start = (u64)-1;
6277 u64 max_len;
6278
6279 ASSERT(bioc_ret);
6280
6281 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6282 if (mirror_num > num_copies)
6283 return -EINVAL;
6284
6285 em = btrfs_get_chunk_map(fs_info, logical, *length);
6286 if (IS_ERR(em))
6287 return PTR_ERR(em);
6288
6289 map = em->map_lookup;
6290 data_stripes = nr_data_stripes(map);
6291
6292 map_offset = logical - em->start;
6293 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6294 &stripe_offset, &raid56_full_stripe_start);
6295 *length = min_t(u64, em->len - map_offset, max_len);
6296
6297 down_read(&dev_replace->rwsem);
6298 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6299 /*
6300 * Hold the semaphore for read during the whole operation, write is
6301 * requested at commit time but must wait.
6302 */
6303 if (!dev_replace_is_ongoing)
6304 up_read(&dev_replace->rwsem);
6305
6306 num_stripes = 1;
6307 stripe_index = 0;
6308 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6309 stripe_index = stripe_nr % map->num_stripes;
6310 stripe_nr /= map->num_stripes;
6311 if (op == BTRFS_MAP_READ)
6312 mirror_num = 1;
6313 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6314 if (op != BTRFS_MAP_READ) {
6315 num_stripes = map->num_stripes;
6316 } else if (mirror_num) {
6317 stripe_index = mirror_num - 1;
6318 } else {
6319 stripe_index = find_live_mirror(fs_info, map, 0,
6320 dev_replace_is_ongoing);
6321 mirror_num = stripe_index + 1;
6322 }
6323
6324 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6325 if (op != BTRFS_MAP_READ) {
6326 num_stripes = map->num_stripes;
6327 } else if (mirror_num) {
6328 stripe_index = mirror_num - 1;
6329 } else {
6330 mirror_num = 1;
6331 }
6332
6333 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6334 u32 factor = map->num_stripes / map->sub_stripes;
6335
6336 stripe_index = (stripe_nr % factor) * map->sub_stripes;
6337 stripe_nr /= factor;
6338
6339 if (op != BTRFS_MAP_READ)
6340 num_stripes = map->sub_stripes;
6341 else if (mirror_num)
6342 stripe_index += mirror_num - 1;
6343 else {
6344 int old_stripe_index = stripe_index;
6345 stripe_index = find_live_mirror(fs_info, map,
6346 stripe_index,
6347 dev_replace_is_ongoing);
6348 mirror_num = stripe_index - old_stripe_index + 1;
6349 }
6350
6351 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6352 if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
6353 /*
6354 * Push stripe_nr back to the start of the full stripe
6355 * For those cases needing a full stripe, @stripe_nr
6356 * is the full stripe number.
6357 *
6358 * Originally we go raid56_full_stripe_start / full_stripe_len,
6359 * but that can be expensive. Here we just divide
6360 * @stripe_nr with @data_stripes.
6361 */
6362 stripe_nr /= data_stripes;
6363
6364 /* RAID[56] write or recovery. Return all stripes */
6365 num_stripes = map->num_stripes;
6366 max_errors = btrfs_chunk_max_errors(map);
6367
6368 /* Return the length to the full stripe end */
6369 *length = min(logical + *length,
6370 raid56_full_stripe_start + em->start +
6371 btrfs_stripe_nr_to_offset(data_stripes)) -
6372 logical;
6373 stripe_index = 0;
6374 stripe_offset = 0;
6375 } else {
6376 /*
6377 * Mirror #0 or #1 means the original data block.
6378 * Mirror #2 is RAID5 parity block.
6379 * Mirror #3 is RAID6 Q block.
6380 */
6381 stripe_index = stripe_nr % data_stripes;
6382 stripe_nr /= data_stripes;
6383 if (mirror_num > 1)
6384 stripe_index = data_stripes + mirror_num - 2;
6385
6386 /* We distribute the parity blocks across stripes */
6387 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6388 if (op == BTRFS_MAP_READ && mirror_num <= 1)
6389 mirror_num = 1;
6390 }
6391 } else {
6392 /*
6393 * After this, stripe_nr is the number of stripes on this
6394 * device we have to walk to find the data, and stripe_index is
6395 * the number of our device in the stripe array
6396 */
6397 stripe_index = stripe_nr % map->num_stripes;
6398 stripe_nr /= map->num_stripes;
6399 mirror_num = stripe_index + 1;
6400 }
6401 if (stripe_index >= map->num_stripes) {
6402 btrfs_crit(fs_info,
6403 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6404 stripe_index, map->num_stripes);
6405 ret = -EINVAL;
6406 goto out;
6407 }
6408
6409 num_alloc_stripes = num_stripes;
6410 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6411 op != BTRFS_MAP_READ)
6412 /*
6413 * For replace case, we need to add extra stripes for extra
6414 * duplicated stripes.
6415 *
6416 * For both WRITE and GET_READ_MIRRORS, we may have at most
6417 * 2 more stripes (DUP types, otherwise 1).
6418 */
6419 num_alloc_stripes += 2;
6420
6421 /*
6422 * If this I/O maps to a single device, try to return the device and
6423 * physical block information on the stack instead of allocating an
6424 * I/O context structure.
6425 */
6426 if (smap && num_alloc_stripes == 1 &&
6427 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6428 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6429 if (mirror_num_ret)
6430 *mirror_num_ret = mirror_num;
6431 *bioc_ret = NULL;
6432 ret = 0;
6433 goto out;
6434 }
6435
6436 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
6437 if (!bioc) {
6438 ret = -ENOMEM;
6439 goto out;
6440 }
6441 bioc->map_type = map->type;
6442
6443 /*
6444 * For RAID56 full map, we need to make sure the stripes[] follows the
6445 * rule that data stripes are all ordered, then followed with P and Q
6446 * (if we have).
6447 *
6448 * It's still mostly the same as other profiles, just with extra rotation.
6449 */
6450 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6451 (op != BTRFS_MAP_READ || mirror_num > 1)) {
6452 /*
6453 * For RAID56 @stripe_nr is already the number of full stripes
6454 * before us, which is also the rotation value (needs to modulo
6455 * with num_stripes).
6456 *
6457 * In this case, we just add @stripe_nr with @i, then do the
6458 * modulo, to reduce one modulo call.
6459 */
6460 bioc->full_stripe_logical = em->start +
6461 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6462 for (i = 0; i < num_stripes; i++)
6463 set_io_stripe(&bioc->stripes[i], map,
6464 (i + stripe_nr) % num_stripes,
6465 stripe_offset, stripe_nr);
6466 } else {
6467 /*
6468 * For all other non-RAID56 profiles, just copy the target
6469 * stripe into the bioc.
6470 */
6471 for (i = 0; i < num_stripes; i++) {
6472 set_io_stripe(&bioc->stripes[i], map, stripe_index,
6473 stripe_offset, stripe_nr);
6474 stripe_index++;
6475 }
6476 }
6477
6478 if (op != BTRFS_MAP_READ)
6479 max_errors = btrfs_chunk_max_errors(map);
6480
6481 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6482 op != BTRFS_MAP_READ) {
6483 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6484 &num_stripes, &max_errors);
6485 }
6486
6487 *bioc_ret = bioc;
6488 bioc->num_stripes = num_stripes;
6489 bioc->max_errors = max_errors;
6490 bioc->mirror_num = mirror_num;
6491
6492 out:
6493 if (dev_replace_is_ongoing) {
6494 lockdep_assert_held(&dev_replace->rwsem);
6495 /* Unlock and let waiting writers proceed */
6496 up_read(&dev_replace->rwsem);
6497 }
6498 free_extent_map(em);
6499 return ret;
6500 }
6501
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6502 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6503 const struct btrfs_fs_devices *fs_devices)
6504 {
6505 if (args->fsid == NULL)
6506 return true;
6507 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6508 return true;
6509 return false;
6510 }
6511
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6512 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6513 const struct btrfs_device *device)
6514 {
6515 if (args->missing) {
6516 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6517 !device->bdev)
6518 return true;
6519 return false;
6520 }
6521
6522 if (device->devid != args->devid)
6523 return false;
6524 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6525 return false;
6526 return true;
6527 }
6528
6529 /*
6530 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6531 * return NULL.
6532 *
6533 * If devid and uuid are both specified, the match must be exact, otherwise
6534 * only devid is used.
6535 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6536 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6537 const struct btrfs_dev_lookup_args *args)
6538 {
6539 struct btrfs_device *device;
6540 struct btrfs_fs_devices *seed_devs;
6541
6542 if (dev_args_match_fs_devices(args, fs_devices)) {
6543 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6544 if (dev_args_match_device(args, device))
6545 return device;
6546 }
6547 }
6548
6549 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6550 if (!dev_args_match_fs_devices(args, seed_devs))
6551 continue;
6552 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6553 if (dev_args_match_device(args, device))
6554 return device;
6555 }
6556 }
6557
6558 return NULL;
6559 }
6560
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6561 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6562 u64 devid, u8 *dev_uuid)
6563 {
6564 struct btrfs_device *device;
6565 unsigned int nofs_flag;
6566
6567 /*
6568 * We call this under the chunk_mutex, so we want to use NOFS for this
6569 * allocation, however we don't want to change btrfs_alloc_device() to
6570 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6571 * places.
6572 */
6573
6574 nofs_flag = memalloc_nofs_save();
6575 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6576 memalloc_nofs_restore(nofs_flag);
6577 if (IS_ERR(device))
6578 return device;
6579
6580 list_add(&device->dev_list, &fs_devices->devices);
6581 device->fs_devices = fs_devices;
6582 fs_devices->num_devices++;
6583
6584 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6585 fs_devices->missing_devices++;
6586
6587 return device;
6588 }
6589
6590 /*
6591 * Allocate new device struct, set up devid and UUID.
6592 *
6593 * @fs_info: used only for generating a new devid, can be NULL if
6594 * devid is provided (i.e. @devid != NULL).
6595 * @devid: a pointer to devid for this device. If NULL a new devid
6596 * is generated.
6597 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6598 * is generated.
6599 * @path: a pointer to device path if available, NULL otherwise.
6600 *
6601 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6602 * on error. Returned struct is not linked onto any lists and must be
6603 * destroyed with btrfs_free_device.
6604 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6605 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6606 const u64 *devid, const u8 *uuid,
6607 const char *path)
6608 {
6609 struct btrfs_device *dev;
6610 u64 tmp;
6611
6612 if (WARN_ON(!devid && !fs_info))
6613 return ERR_PTR(-EINVAL);
6614
6615 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6616 if (!dev)
6617 return ERR_PTR(-ENOMEM);
6618
6619 INIT_LIST_HEAD(&dev->dev_list);
6620 INIT_LIST_HEAD(&dev->dev_alloc_list);
6621 INIT_LIST_HEAD(&dev->post_commit_list);
6622
6623 atomic_set(&dev->dev_stats_ccnt, 0);
6624 btrfs_device_data_ordered_init(dev);
6625 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6626
6627 if (devid)
6628 tmp = *devid;
6629 else {
6630 int ret;
6631
6632 ret = find_next_devid(fs_info, &tmp);
6633 if (ret) {
6634 btrfs_free_device(dev);
6635 return ERR_PTR(ret);
6636 }
6637 }
6638 dev->devid = tmp;
6639
6640 if (uuid)
6641 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6642 else
6643 generate_random_uuid(dev->uuid);
6644
6645 if (path) {
6646 struct rcu_string *name;
6647
6648 name = rcu_string_strdup(path, GFP_KERNEL);
6649 if (!name) {
6650 btrfs_free_device(dev);
6651 return ERR_PTR(-ENOMEM);
6652 }
6653 rcu_assign_pointer(dev->name, name);
6654 }
6655
6656 return dev;
6657 }
6658
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6659 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6660 u64 devid, u8 *uuid, bool error)
6661 {
6662 if (error)
6663 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6664 devid, uuid);
6665 else
6666 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6667 devid, uuid);
6668 }
6669
btrfs_calc_stripe_length(const struct extent_map * em)6670 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6671 {
6672 const struct map_lookup *map = em->map_lookup;
6673 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6674
6675 return div_u64(em->len, data_stripes);
6676 }
6677
6678 #if BITS_PER_LONG == 32
6679 /*
6680 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6681 * can't be accessed on 32bit systems.
6682 *
6683 * This function do mount time check to reject the fs if it already has
6684 * metadata chunk beyond that limit.
6685 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6686 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6687 u64 logical, u64 length, u64 type)
6688 {
6689 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6690 return 0;
6691
6692 if (logical + length < MAX_LFS_FILESIZE)
6693 return 0;
6694
6695 btrfs_err_32bit_limit(fs_info);
6696 return -EOVERFLOW;
6697 }
6698
6699 /*
6700 * This is to give early warning for any metadata chunk reaching
6701 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6702 * Although we can still access the metadata, it's not going to be possible
6703 * once the limit is reached.
6704 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6705 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6706 u64 logical, u64 length, u64 type)
6707 {
6708 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6709 return;
6710
6711 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6712 return;
6713
6714 btrfs_warn_32bit_limit(fs_info);
6715 }
6716 #endif
6717
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6718 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6719 u64 devid, u8 *uuid)
6720 {
6721 struct btrfs_device *dev;
6722
6723 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6724 btrfs_report_missing_device(fs_info, devid, uuid, true);
6725 return ERR_PTR(-ENOENT);
6726 }
6727
6728 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6729 if (IS_ERR(dev)) {
6730 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6731 devid, PTR_ERR(dev));
6732 return dev;
6733 }
6734 btrfs_report_missing_device(fs_info, devid, uuid, false);
6735
6736 return dev;
6737 }
6738
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6739 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6740 struct btrfs_chunk *chunk)
6741 {
6742 BTRFS_DEV_LOOKUP_ARGS(args);
6743 struct btrfs_fs_info *fs_info = leaf->fs_info;
6744 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6745 struct map_lookup *map;
6746 struct extent_map *em;
6747 u64 logical;
6748 u64 length;
6749 u64 devid;
6750 u64 type;
6751 u8 uuid[BTRFS_UUID_SIZE];
6752 int index;
6753 int num_stripes;
6754 int ret;
6755 int i;
6756
6757 logical = key->offset;
6758 length = btrfs_chunk_length(leaf, chunk);
6759 type = btrfs_chunk_type(leaf, chunk);
6760 index = btrfs_bg_flags_to_raid_index(type);
6761 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6762
6763 #if BITS_PER_LONG == 32
6764 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6765 if (ret < 0)
6766 return ret;
6767 warn_32bit_meta_chunk(fs_info, logical, length, type);
6768 #endif
6769
6770 /*
6771 * Only need to verify chunk item if we're reading from sys chunk array,
6772 * as chunk item in tree block is already verified by tree-checker.
6773 */
6774 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6775 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6776 if (ret)
6777 return ret;
6778 }
6779
6780 read_lock(&map_tree->lock);
6781 em = lookup_extent_mapping(map_tree, logical, 1);
6782 read_unlock(&map_tree->lock);
6783
6784 /* already mapped? */
6785 if (em && em->start <= logical && em->start + em->len > logical) {
6786 free_extent_map(em);
6787 return 0;
6788 } else if (em) {
6789 free_extent_map(em);
6790 }
6791
6792 em = alloc_extent_map();
6793 if (!em)
6794 return -ENOMEM;
6795 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6796 if (!map) {
6797 free_extent_map(em);
6798 return -ENOMEM;
6799 }
6800
6801 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6802 em->map_lookup = map;
6803 em->start = logical;
6804 em->len = length;
6805 em->orig_start = 0;
6806 em->block_start = 0;
6807 em->block_len = em->len;
6808
6809 map->num_stripes = num_stripes;
6810 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6811 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6812 map->type = type;
6813 /*
6814 * We can't use the sub_stripes value, as for profiles other than
6815 * RAID10, they may have 0 as sub_stripes for filesystems created by
6816 * older mkfs (<v5.4).
6817 * In that case, it can cause divide-by-zero errors later.
6818 * Since currently sub_stripes is fixed for each profile, let's
6819 * use the trusted value instead.
6820 */
6821 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6822 map->verified_stripes = 0;
6823 em->orig_block_len = btrfs_calc_stripe_length(em);
6824 for (i = 0; i < num_stripes; i++) {
6825 map->stripes[i].physical =
6826 btrfs_stripe_offset_nr(leaf, chunk, i);
6827 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6828 args.devid = devid;
6829 read_extent_buffer(leaf, uuid, (unsigned long)
6830 btrfs_stripe_dev_uuid_nr(chunk, i),
6831 BTRFS_UUID_SIZE);
6832 args.uuid = uuid;
6833 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6834 if (!map->stripes[i].dev) {
6835 map->stripes[i].dev = handle_missing_device(fs_info,
6836 devid, uuid);
6837 if (IS_ERR(map->stripes[i].dev)) {
6838 ret = PTR_ERR(map->stripes[i].dev);
6839 free_extent_map(em);
6840 return ret;
6841 }
6842 }
6843
6844 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6845 &(map->stripes[i].dev->dev_state));
6846 }
6847
6848 write_lock(&map_tree->lock);
6849 ret = add_extent_mapping(map_tree, em, 0);
6850 write_unlock(&map_tree->lock);
6851 if (ret < 0) {
6852 btrfs_err(fs_info,
6853 "failed to add chunk map, start=%llu len=%llu: %d",
6854 em->start, em->len, ret);
6855 }
6856 free_extent_map(em);
6857
6858 return ret;
6859 }
6860
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6861 static void fill_device_from_item(struct extent_buffer *leaf,
6862 struct btrfs_dev_item *dev_item,
6863 struct btrfs_device *device)
6864 {
6865 unsigned long ptr;
6866
6867 device->devid = btrfs_device_id(leaf, dev_item);
6868 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6869 device->total_bytes = device->disk_total_bytes;
6870 device->commit_total_bytes = device->disk_total_bytes;
6871 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6872 device->commit_bytes_used = device->bytes_used;
6873 device->type = btrfs_device_type(leaf, dev_item);
6874 device->io_align = btrfs_device_io_align(leaf, dev_item);
6875 device->io_width = btrfs_device_io_width(leaf, dev_item);
6876 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6877 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6878 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6879
6880 ptr = btrfs_device_uuid(dev_item);
6881 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6882 }
6883
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6884 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6885 u8 *fsid)
6886 {
6887 struct btrfs_fs_devices *fs_devices;
6888 int ret;
6889
6890 lockdep_assert_held(&uuid_mutex);
6891 ASSERT(fsid);
6892
6893 /* This will match only for multi-device seed fs */
6894 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6895 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6896 return fs_devices;
6897
6898
6899 fs_devices = find_fsid(fsid, NULL);
6900 if (!fs_devices) {
6901 if (!btrfs_test_opt(fs_info, DEGRADED))
6902 return ERR_PTR(-ENOENT);
6903
6904 fs_devices = alloc_fs_devices(fsid, NULL);
6905 if (IS_ERR(fs_devices))
6906 return fs_devices;
6907
6908 fs_devices->seeding = true;
6909 fs_devices->opened = 1;
6910 return fs_devices;
6911 }
6912
6913 /*
6914 * Upon first call for a seed fs fsid, just create a private copy of the
6915 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6916 */
6917 fs_devices = clone_fs_devices(fs_devices);
6918 if (IS_ERR(fs_devices))
6919 return fs_devices;
6920
6921 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6922 if (ret) {
6923 free_fs_devices(fs_devices);
6924 return ERR_PTR(ret);
6925 }
6926
6927 if (!fs_devices->seeding) {
6928 close_fs_devices(fs_devices);
6929 free_fs_devices(fs_devices);
6930 return ERR_PTR(-EINVAL);
6931 }
6932
6933 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6934
6935 return fs_devices;
6936 }
6937
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6938 static int read_one_dev(struct extent_buffer *leaf,
6939 struct btrfs_dev_item *dev_item)
6940 {
6941 BTRFS_DEV_LOOKUP_ARGS(args);
6942 struct btrfs_fs_info *fs_info = leaf->fs_info;
6943 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6944 struct btrfs_device *device;
6945 u64 devid;
6946 int ret;
6947 u8 fs_uuid[BTRFS_FSID_SIZE];
6948 u8 dev_uuid[BTRFS_UUID_SIZE];
6949
6950 devid = btrfs_device_id(leaf, dev_item);
6951 args.devid = devid;
6952 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6953 BTRFS_UUID_SIZE);
6954 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6955 BTRFS_FSID_SIZE);
6956 args.uuid = dev_uuid;
6957 args.fsid = fs_uuid;
6958
6959 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6960 fs_devices = open_seed_devices(fs_info, fs_uuid);
6961 if (IS_ERR(fs_devices))
6962 return PTR_ERR(fs_devices);
6963 }
6964
6965 device = btrfs_find_device(fs_info->fs_devices, &args);
6966 if (!device) {
6967 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6968 btrfs_report_missing_device(fs_info, devid,
6969 dev_uuid, true);
6970 return -ENOENT;
6971 }
6972
6973 device = add_missing_dev(fs_devices, devid, dev_uuid);
6974 if (IS_ERR(device)) {
6975 btrfs_err(fs_info,
6976 "failed to add missing dev %llu: %ld",
6977 devid, PTR_ERR(device));
6978 return PTR_ERR(device);
6979 }
6980 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6981 } else {
6982 if (!device->bdev) {
6983 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6984 btrfs_report_missing_device(fs_info,
6985 devid, dev_uuid, true);
6986 return -ENOENT;
6987 }
6988 btrfs_report_missing_device(fs_info, devid,
6989 dev_uuid, false);
6990 }
6991
6992 if (!device->bdev &&
6993 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6994 /*
6995 * this happens when a device that was properly setup
6996 * in the device info lists suddenly goes bad.
6997 * device->bdev is NULL, and so we have to set
6998 * device->missing to one here
6999 */
7000 device->fs_devices->missing_devices++;
7001 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7002 }
7003
7004 /* Move the device to its own fs_devices */
7005 if (device->fs_devices != fs_devices) {
7006 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7007 &device->dev_state));
7008
7009 list_move(&device->dev_list, &fs_devices->devices);
7010 device->fs_devices->num_devices--;
7011 fs_devices->num_devices++;
7012
7013 device->fs_devices->missing_devices--;
7014 fs_devices->missing_devices++;
7015
7016 device->fs_devices = fs_devices;
7017 }
7018 }
7019
7020 if (device->fs_devices != fs_info->fs_devices) {
7021 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7022 if (device->generation !=
7023 btrfs_device_generation(leaf, dev_item))
7024 return -EINVAL;
7025 }
7026
7027 fill_device_from_item(leaf, dev_item, device);
7028 if (device->bdev) {
7029 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7030
7031 if (device->total_bytes > max_total_bytes) {
7032 btrfs_err(fs_info,
7033 "device total_bytes should be at most %llu but found %llu",
7034 max_total_bytes, device->total_bytes);
7035 return -EINVAL;
7036 }
7037 }
7038 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7039 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7040 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7041 device->fs_devices->total_rw_bytes += device->total_bytes;
7042 atomic64_add(device->total_bytes - device->bytes_used,
7043 &fs_info->free_chunk_space);
7044 }
7045 ret = 0;
7046 return ret;
7047 }
7048
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7049 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7050 {
7051 struct btrfs_super_block *super_copy = fs_info->super_copy;
7052 struct extent_buffer *sb;
7053 struct btrfs_disk_key *disk_key;
7054 struct btrfs_chunk *chunk;
7055 u8 *array_ptr;
7056 unsigned long sb_array_offset;
7057 int ret = 0;
7058 u32 num_stripes;
7059 u32 array_size;
7060 u32 len = 0;
7061 u32 cur_offset;
7062 u64 type;
7063 struct btrfs_key key;
7064
7065 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7066
7067 /*
7068 * We allocated a dummy extent, just to use extent buffer accessors.
7069 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7070 * that's fine, we will not go beyond system chunk array anyway.
7071 */
7072 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7073 if (!sb)
7074 return -ENOMEM;
7075 set_extent_buffer_uptodate(sb);
7076
7077 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7078 array_size = btrfs_super_sys_array_size(super_copy);
7079
7080 array_ptr = super_copy->sys_chunk_array;
7081 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7082 cur_offset = 0;
7083
7084 while (cur_offset < array_size) {
7085 disk_key = (struct btrfs_disk_key *)array_ptr;
7086 len = sizeof(*disk_key);
7087 if (cur_offset + len > array_size)
7088 goto out_short_read;
7089
7090 btrfs_disk_key_to_cpu(&key, disk_key);
7091
7092 array_ptr += len;
7093 sb_array_offset += len;
7094 cur_offset += len;
7095
7096 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7097 btrfs_err(fs_info,
7098 "unexpected item type %u in sys_array at offset %u",
7099 (u32)key.type, cur_offset);
7100 ret = -EIO;
7101 break;
7102 }
7103
7104 chunk = (struct btrfs_chunk *)sb_array_offset;
7105 /*
7106 * At least one btrfs_chunk with one stripe must be present,
7107 * exact stripe count check comes afterwards
7108 */
7109 len = btrfs_chunk_item_size(1);
7110 if (cur_offset + len > array_size)
7111 goto out_short_read;
7112
7113 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7114 if (!num_stripes) {
7115 btrfs_err(fs_info,
7116 "invalid number of stripes %u in sys_array at offset %u",
7117 num_stripes, cur_offset);
7118 ret = -EIO;
7119 break;
7120 }
7121
7122 type = btrfs_chunk_type(sb, chunk);
7123 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7124 btrfs_err(fs_info,
7125 "invalid chunk type %llu in sys_array at offset %u",
7126 type, cur_offset);
7127 ret = -EIO;
7128 break;
7129 }
7130
7131 len = btrfs_chunk_item_size(num_stripes);
7132 if (cur_offset + len > array_size)
7133 goto out_short_read;
7134
7135 ret = read_one_chunk(&key, sb, chunk);
7136 if (ret)
7137 break;
7138
7139 array_ptr += len;
7140 sb_array_offset += len;
7141 cur_offset += len;
7142 }
7143 clear_extent_buffer_uptodate(sb);
7144 free_extent_buffer_stale(sb);
7145 return ret;
7146
7147 out_short_read:
7148 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7149 len, cur_offset);
7150 clear_extent_buffer_uptodate(sb);
7151 free_extent_buffer_stale(sb);
7152 return -EIO;
7153 }
7154
7155 /*
7156 * Check if all chunks in the fs are OK for read-write degraded mount
7157 *
7158 * If the @failing_dev is specified, it's accounted as missing.
7159 *
7160 * Return true if all chunks meet the minimal RW mount requirements.
7161 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7162 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7163 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7164 struct btrfs_device *failing_dev)
7165 {
7166 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7167 struct extent_map *em;
7168 u64 next_start = 0;
7169 bool ret = true;
7170
7171 read_lock(&map_tree->lock);
7172 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7173 read_unlock(&map_tree->lock);
7174 /* No chunk at all? Return false anyway */
7175 if (!em) {
7176 ret = false;
7177 goto out;
7178 }
7179 while (em) {
7180 struct map_lookup *map;
7181 int missing = 0;
7182 int max_tolerated;
7183 int i;
7184
7185 map = em->map_lookup;
7186 max_tolerated =
7187 btrfs_get_num_tolerated_disk_barrier_failures(
7188 map->type);
7189 for (i = 0; i < map->num_stripes; i++) {
7190 struct btrfs_device *dev = map->stripes[i].dev;
7191
7192 if (!dev || !dev->bdev ||
7193 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7194 dev->last_flush_error)
7195 missing++;
7196 else if (failing_dev && failing_dev == dev)
7197 missing++;
7198 }
7199 if (missing > max_tolerated) {
7200 if (!failing_dev)
7201 btrfs_warn(fs_info,
7202 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7203 em->start, missing, max_tolerated);
7204 free_extent_map(em);
7205 ret = false;
7206 goto out;
7207 }
7208 next_start = extent_map_end(em);
7209 free_extent_map(em);
7210
7211 read_lock(&map_tree->lock);
7212 em = lookup_extent_mapping(map_tree, next_start,
7213 (u64)(-1) - next_start);
7214 read_unlock(&map_tree->lock);
7215 }
7216 out:
7217 return ret;
7218 }
7219
readahead_tree_node_children(struct extent_buffer * node)7220 static void readahead_tree_node_children(struct extent_buffer *node)
7221 {
7222 int i;
7223 const int nr_items = btrfs_header_nritems(node);
7224
7225 for (i = 0; i < nr_items; i++)
7226 btrfs_readahead_node_child(node, i);
7227 }
7228
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7229 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7230 {
7231 struct btrfs_root *root = fs_info->chunk_root;
7232 struct btrfs_path *path;
7233 struct extent_buffer *leaf;
7234 struct btrfs_key key;
7235 struct btrfs_key found_key;
7236 int ret;
7237 int slot;
7238 int iter_ret = 0;
7239 u64 total_dev = 0;
7240 u64 last_ra_node = 0;
7241
7242 path = btrfs_alloc_path();
7243 if (!path)
7244 return -ENOMEM;
7245
7246 /*
7247 * uuid_mutex is needed only if we are mounting a sprout FS
7248 * otherwise we don't need it.
7249 */
7250 mutex_lock(&uuid_mutex);
7251
7252 /*
7253 * It is possible for mount and umount to race in such a way that
7254 * we execute this code path, but open_fs_devices failed to clear
7255 * total_rw_bytes. We certainly want it cleared before reading the
7256 * device items, so clear it here.
7257 */
7258 fs_info->fs_devices->total_rw_bytes = 0;
7259
7260 /*
7261 * Lockdep complains about possible circular locking dependency between
7262 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7263 * used for freeze procection of a fs (struct super_block.s_writers),
7264 * which we take when starting a transaction, and extent buffers of the
7265 * chunk tree if we call read_one_dev() while holding a lock on an
7266 * extent buffer of the chunk tree. Since we are mounting the filesystem
7267 * and at this point there can't be any concurrent task modifying the
7268 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7269 */
7270 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7271 path->skip_locking = 1;
7272
7273 /*
7274 * Read all device items, and then all the chunk items. All
7275 * device items are found before any chunk item (their object id
7276 * is smaller than the lowest possible object id for a chunk
7277 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7278 */
7279 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7280 key.offset = 0;
7281 key.type = 0;
7282 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7283 struct extent_buffer *node = path->nodes[1];
7284
7285 leaf = path->nodes[0];
7286 slot = path->slots[0];
7287
7288 if (node) {
7289 if (last_ra_node != node->start) {
7290 readahead_tree_node_children(node);
7291 last_ra_node = node->start;
7292 }
7293 }
7294 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7295 struct btrfs_dev_item *dev_item;
7296 dev_item = btrfs_item_ptr(leaf, slot,
7297 struct btrfs_dev_item);
7298 ret = read_one_dev(leaf, dev_item);
7299 if (ret)
7300 goto error;
7301 total_dev++;
7302 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7303 struct btrfs_chunk *chunk;
7304
7305 /*
7306 * We are only called at mount time, so no need to take
7307 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7308 * we always lock first fs_info->chunk_mutex before
7309 * acquiring any locks on the chunk tree. This is a
7310 * requirement for chunk allocation, see the comment on
7311 * top of btrfs_chunk_alloc() for details.
7312 */
7313 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7314 ret = read_one_chunk(&found_key, leaf, chunk);
7315 if (ret)
7316 goto error;
7317 }
7318 }
7319 /* Catch error found during iteration */
7320 if (iter_ret < 0) {
7321 ret = iter_ret;
7322 goto error;
7323 }
7324
7325 /*
7326 * After loading chunk tree, we've got all device information,
7327 * do another round of validation checks.
7328 */
7329 if (total_dev != fs_info->fs_devices->total_devices) {
7330 btrfs_warn(fs_info,
7331 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7332 btrfs_super_num_devices(fs_info->super_copy),
7333 total_dev);
7334 fs_info->fs_devices->total_devices = total_dev;
7335 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7336 }
7337 if (btrfs_super_total_bytes(fs_info->super_copy) <
7338 fs_info->fs_devices->total_rw_bytes) {
7339 btrfs_err(fs_info,
7340 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7341 btrfs_super_total_bytes(fs_info->super_copy),
7342 fs_info->fs_devices->total_rw_bytes);
7343 ret = -EINVAL;
7344 goto error;
7345 }
7346 ret = 0;
7347 error:
7348 mutex_unlock(&uuid_mutex);
7349
7350 btrfs_free_path(path);
7351 return ret;
7352 }
7353
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7354 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7355 {
7356 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7357 struct btrfs_device *device;
7358 int ret = 0;
7359
7360 fs_devices->fs_info = fs_info;
7361
7362 mutex_lock(&fs_devices->device_list_mutex);
7363 list_for_each_entry(device, &fs_devices->devices, dev_list)
7364 device->fs_info = fs_info;
7365
7366 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7367 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7368 device->fs_info = fs_info;
7369 ret = btrfs_get_dev_zone_info(device, false);
7370 if (ret)
7371 break;
7372 }
7373
7374 seed_devs->fs_info = fs_info;
7375 }
7376 mutex_unlock(&fs_devices->device_list_mutex);
7377
7378 return ret;
7379 }
7380
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7381 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7382 const struct btrfs_dev_stats_item *ptr,
7383 int index)
7384 {
7385 u64 val;
7386
7387 read_extent_buffer(eb, &val,
7388 offsetof(struct btrfs_dev_stats_item, values) +
7389 ((unsigned long)ptr) + (index * sizeof(u64)),
7390 sizeof(val));
7391 return val;
7392 }
7393
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7394 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7395 struct btrfs_dev_stats_item *ptr,
7396 int index, u64 val)
7397 {
7398 write_extent_buffer(eb, &val,
7399 offsetof(struct btrfs_dev_stats_item, values) +
7400 ((unsigned long)ptr) + (index * sizeof(u64)),
7401 sizeof(val));
7402 }
7403
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7404 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7405 struct btrfs_path *path)
7406 {
7407 struct btrfs_dev_stats_item *ptr;
7408 struct extent_buffer *eb;
7409 struct btrfs_key key;
7410 int item_size;
7411 int i, ret, slot;
7412
7413 if (!device->fs_info->dev_root)
7414 return 0;
7415
7416 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7417 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7418 key.offset = device->devid;
7419 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7420 if (ret) {
7421 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7422 btrfs_dev_stat_set(device, i, 0);
7423 device->dev_stats_valid = 1;
7424 btrfs_release_path(path);
7425 return ret < 0 ? ret : 0;
7426 }
7427 slot = path->slots[0];
7428 eb = path->nodes[0];
7429 item_size = btrfs_item_size(eb, slot);
7430
7431 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7432
7433 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7434 if (item_size >= (1 + i) * sizeof(__le64))
7435 btrfs_dev_stat_set(device, i,
7436 btrfs_dev_stats_value(eb, ptr, i));
7437 else
7438 btrfs_dev_stat_set(device, i, 0);
7439 }
7440
7441 device->dev_stats_valid = 1;
7442 btrfs_dev_stat_print_on_load(device);
7443 btrfs_release_path(path);
7444
7445 return 0;
7446 }
7447
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7448 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7449 {
7450 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7451 struct btrfs_device *device;
7452 struct btrfs_path *path = NULL;
7453 int ret = 0;
7454
7455 path = btrfs_alloc_path();
7456 if (!path)
7457 return -ENOMEM;
7458
7459 mutex_lock(&fs_devices->device_list_mutex);
7460 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7461 ret = btrfs_device_init_dev_stats(device, path);
7462 if (ret)
7463 goto out;
7464 }
7465 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7466 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7467 ret = btrfs_device_init_dev_stats(device, path);
7468 if (ret)
7469 goto out;
7470 }
7471 }
7472 out:
7473 mutex_unlock(&fs_devices->device_list_mutex);
7474
7475 btrfs_free_path(path);
7476 return ret;
7477 }
7478
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7479 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7480 struct btrfs_device *device)
7481 {
7482 struct btrfs_fs_info *fs_info = trans->fs_info;
7483 struct btrfs_root *dev_root = fs_info->dev_root;
7484 struct btrfs_path *path;
7485 struct btrfs_key key;
7486 struct extent_buffer *eb;
7487 struct btrfs_dev_stats_item *ptr;
7488 int ret;
7489 int i;
7490
7491 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7492 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7493 key.offset = device->devid;
7494
7495 path = btrfs_alloc_path();
7496 if (!path)
7497 return -ENOMEM;
7498 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7499 if (ret < 0) {
7500 btrfs_warn_in_rcu(fs_info,
7501 "error %d while searching for dev_stats item for device %s",
7502 ret, btrfs_dev_name(device));
7503 goto out;
7504 }
7505
7506 if (ret == 0 &&
7507 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7508 /* need to delete old one and insert a new one */
7509 ret = btrfs_del_item(trans, dev_root, path);
7510 if (ret != 0) {
7511 btrfs_warn_in_rcu(fs_info,
7512 "delete too small dev_stats item for device %s failed %d",
7513 btrfs_dev_name(device), ret);
7514 goto out;
7515 }
7516 ret = 1;
7517 }
7518
7519 if (ret == 1) {
7520 /* need to insert a new item */
7521 btrfs_release_path(path);
7522 ret = btrfs_insert_empty_item(trans, dev_root, path,
7523 &key, sizeof(*ptr));
7524 if (ret < 0) {
7525 btrfs_warn_in_rcu(fs_info,
7526 "insert dev_stats item for device %s failed %d",
7527 btrfs_dev_name(device), ret);
7528 goto out;
7529 }
7530 }
7531
7532 eb = path->nodes[0];
7533 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7534 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7535 btrfs_set_dev_stats_value(eb, ptr, i,
7536 btrfs_dev_stat_read(device, i));
7537 btrfs_mark_buffer_dirty(eb);
7538
7539 out:
7540 btrfs_free_path(path);
7541 return ret;
7542 }
7543
7544 /*
7545 * called from commit_transaction. Writes all changed device stats to disk.
7546 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7547 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7548 {
7549 struct btrfs_fs_info *fs_info = trans->fs_info;
7550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7551 struct btrfs_device *device;
7552 int stats_cnt;
7553 int ret = 0;
7554
7555 mutex_lock(&fs_devices->device_list_mutex);
7556 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7557 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7558 if (!device->dev_stats_valid || stats_cnt == 0)
7559 continue;
7560
7561
7562 /*
7563 * There is a LOAD-LOAD control dependency between the value of
7564 * dev_stats_ccnt and updating the on-disk values which requires
7565 * reading the in-memory counters. Such control dependencies
7566 * require explicit read memory barriers.
7567 *
7568 * This memory barriers pairs with smp_mb__before_atomic in
7569 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7570 * barrier implied by atomic_xchg in
7571 * btrfs_dev_stats_read_and_reset
7572 */
7573 smp_rmb();
7574
7575 ret = update_dev_stat_item(trans, device);
7576 if (!ret)
7577 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7578 }
7579 mutex_unlock(&fs_devices->device_list_mutex);
7580
7581 return ret;
7582 }
7583
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7584 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7585 {
7586 btrfs_dev_stat_inc(dev, index);
7587
7588 if (!dev->dev_stats_valid)
7589 return;
7590 btrfs_err_rl_in_rcu(dev->fs_info,
7591 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7592 btrfs_dev_name(dev),
7593 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7594 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7595 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7596 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7597 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7598 }
7599
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7600 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7601 {
7602 int i;
7603
7604 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7605 if (btrfs_dev_stat_read(dev, i) != 0)
7606 break;
7607 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7608 return; /* all values == 0, suppress message */
7609
7610 btrfs_info_in_rcu(dev->fs_info,
7611 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7612 btrfs_dev_name(dev),
7613 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7614 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7615 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7616 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7617 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7618 }
7619
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7620 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7621 struct btrfs_ioctl_get_dev_stats *stats)
7622 {
7623 BTRFS_DEV_LOOKUP_ARGS(args);
7624 struct btrfs_device *dev;
7625 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7626 int i;
7627
7628 mutex_lock(&fs_devices->device_list_mutex);
7629 args.devid = stats->devid;
7630 dev = btrfs_find_device(fs_info->fs_devices, &args);
7631 mutex_unlock(&fs_devices->device_list_mutex);
7632
7633 if (!dev) {
7634 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7635 return -ENODEV;
7636 } else if (!dev->dev_stats_valid) {
7637 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7638 return -ENODEV;
7639 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7640 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7641 if (stats->nr_items > i)
7642 stats->values[i] =
7643 btrfs_dev_stat_read_and_reset(dev, i);
7644 else
7645 btrfs_dev_stat_set(dev, i, 0);
7646 }
7647 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7648 current->comm, task_pid_nr(current));
7649 } else {
7650 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7651 if (stats->nr_items > i)
7652 stats->values[i] = btrfs_dev_stat_read(dev, i);
7653 }
7654 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7655 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7656 return 0;
7657 }
7658
7659 /*
7660 * Update the size and bytes used for each device where it changed. This is
7661 * delayed since we would otherwise get errors while writing out the
7662 * superblocks.
7663 *
7664 * Must be invoked during transaction commit.
7665 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7666 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7667 {
7668 struct btrfs_device *curr, *next;
7669
7670 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7671
7672 if (list_empty(&trans->dev_update_list))
7673 return;
7674
7675 /*
7676 * We don't need the device_list_mutex here. This list is owned by the
7677 * transaction and the transaction must complete before the device is
7678 * released.
7679 */
7680 mutex_lock(&trans->fs_info->chunk_mutex);
7681 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7682 post_commit_list) {
7683 list_del_init(&curr->post_commit_list);
7684 curr->commit_total_bytes = curr->disk_total_bytes;
7685 curr->commit_bytes_used = curr->bytes_used;
7686 }
7687 mutex_unlock(&trans->fs_info->chunk_mutex);
7688 }
7689
7690 /*
7691 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7692 */
btrfs_bg_type_to_factor(u64 flags)7693 int btrfs_bg_type_to_factor(u64 flags)
7694 {
7695 const int index = btrfs_bg_flags_to_raid_index(flags);
7696
7697 return btrfs_raid_array[index].ncopies;
7698 }
7699
7700
7701
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7702 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7703 u64 chunk_offset, u64 devid,
7704 u64 physical_offset, u64 physical_len)
7705 {
7706 struct btrfs_dev_lookup_args args = { .devid = devid };
7707 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7708 struct extent_map *em;
7709 struct map_lookup *map;
7710 struct btrfs_device *dev;
7711 u64 stripe_len;
7712 bool found = false;
7713 int ret = 0;
7714 int i;
7715
7716 read_lock(&em_tree->lock);
7717 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7718 read_unlock(&em_tree->lock);
7719
7720 if (!em) {
7721 btrfs_err(fs_info,
7722 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7723 physical_offset, devid);
7724 ret = -EUCLEAN;
7725 goto out;
7726 }
7727
7728 map = em->map_lookup;
7729 stripe_len = btrfs_calc_stripe_length(em);
7730 if (physical_len != stripe_len) {
7731 btrfs_err(fs_info,
7732 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7733 physical_offset, devid, em->start, physical_len,
7734 stripe_len);
7735 ret = -EUCLEAN;
7736 goto out;
7737 }
7738
7739 /*
7740 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7741 * space. Although kernel can handle it without problem, better to warn
7742 * the users.
7743 */
7744 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7745 btrfs_warn(fs_info,
7746 "devid %llu physical %llu len %llu inside the reserved space",
7747 devid, physical_offset, physical_len);
7748
7749 for (i = 0; i < map->num_stripes; i++) {
7750 if (map->stripes[i].dev->devid == devid &&
7751 map->stripes[i].physical == physical_offset) {
7752 found = true;
7753 if (map->verified_stripes >= map->num_stripes) {
7754 btrfs_err(fs_info,
7755 "too many dev extents for chunk %llu found",
7756 em->start);
7757 ret = -EUCLEAN;
7758 goto out;
7759 }
7760 map->verified_stripes++;
7761 break;
7762 }
7763 }
7764 if (!found) {
7765 btrfs_err(fs_info,
7766 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7767 physical_offset, devid);
7768 ret = -EUCLEAN;
7769 }
7770
7771 /* Make sure no dev extent is beyond device boundary */
7772 dev = btrfs_find_device(fs_info->fs_devices, &args);
7773 if (!dev) {
7774 btrfs_err(fs_info, "failed to find devid %llu", devid);
7775 ret = -EUCLEAN;
7776 goto out;
7777 }
7778
7779 if (physical_offset + physical_len > dev->disk_total_bytes) {
7780 btrfs_err(fs_info,
7781 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7782 devid, physical_offset, physical_len,
7783 dev->disk_total_bytes);
7784 ret = -EUCLEAN;
7785 goto out;
7786 }
7787
7788 if (dev->zone_info) {
7789 u64 zone_size = dev->zone_info->zone_size;
7790
7791 if (!IS_ALIGNED(physical_offset, zone_size) ||
7792 !IS_ALIGNED(physical_len, zone_size)) {
7793 btrfs_err(fs_info,
7794 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7795 devid, physical_offset, physical_len);
7796 ret = -EUCLEAN;
7797 goto out;
7798 }
7799 }
7800
7801 out:
7802 free_extent_map(em);
7803 return ret;
7804 }
7805
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7806 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7807 {
7808 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7809 struct extent_map *em;
7810 struct rb_node *node;
7811 int ret = 0;
7812
7813 read_lock(&em_tree->lock);
7814 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7815 em = rb_entry(node, struct extent_map, rb_node);
7816 if (em->map_lookup->num_stripes !=
7817 em->map_lookup->verified_stripes) {
7818 btrfs_err(fs_info,
7819 "chunk %llu has missing dev extent, have %d expect %d",
7820 em->start, em->map_lookup->verified_stripes,
7821 em->map_lookup->num_stripes);
7822 ret = -EUCLEAN;
7823 goto out;
7824 }
7825 }
7826 out:
7827 read_unlock(&em_tree->lock);
7828 return ret;
7829 }
7830
7831 /*
7832 * Ensure that all dev extents are mapped to correct chunk, otherwise
7833 * later chunk allocation/free would cause unexpected behavior.
7834 *
7835 * NOTE: This will iterate through the whole device tree, which should be of
7836 * the same size level as the chunk tree. This slightly increases mount time.
7837 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7838 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7839 {
7840 struct btrfs_path *path;
7841 struct btrfs_root *root = fs_info->dev_root;
7842 struct btrfs_key key;
7843 u64 prev_devid = 0;
7844 u64 prev_dev_ext_end = 0;
7845 int ret = 0;
7846
7847 /*
7848 * We don't have a dev_root because we mounted with ignorebadroots and
7849 * failed to load the root, so we want to skip the verification in this
7850 * case for sure.
7851 *
7852 * However if the dev root is fine, but the tree itself is corrupted
7853 * we'd still fail to mount. This verification is only to make sure
7854 * writes can happen safely, so instead just bypass this check
7855 * completely in the case of IGNOREBADROOTS.
7856 */
7857 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7858 return 0;
7859
7860 key.objectid = 1;
7861 key.type = BTRFS_DEV_EXTENT_KEY;
7862 key.offset = 0;
7863
7864 path = btrfs_alloc_path();
7865 if (!path)
7866 return -ENOMEM;
7867
7868 path->reada = READA_FORWARD;
7869 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7870 if (ret < 0)
7871 goto out;
7872
7873 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7874 ret = btrfs_next_leaf(root, path);
7875 if (ret < 0)
7876 goto out;
7877 /* No dev extents at all? Not good */
7878 if (ret > 0) {
7879 ret = -EUCLEAN;
7880 goto out;
7881 }
7882 }
7883 while (1) {
7884 struct extent_buffer *leaf = path->nodes[0];
7885 struct btrfs_dev_extent *dext;
7886 int slot = path->slots[0];
7887 u64 chunk_offset;
7888 u64 physical_offset;
7889 u64 physical_len;
7890 u64 devid;
7891
7892 btrfs_item_key_to_cpu(leaf, &key, slot);
7893 if (key.type != BTRFS_DEV_EXTENT_KEY)
7894 break;
7895 devid = key.objectid;
7896 physical_offset = key.offset;
7897
7898 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7899 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7900 physical_len = btrfs_dev_extent_length(leaf, dext);
7901
7902 /* Check if this dev extent overlaps with the previous one */
7903 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7904 btrfs_err(fs_info,
7905 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7906 devid, physical_offset, prev_dev_ext_end);
7907 ret = -EUCLEAN;
7908 goto out;
7909 }
7910
7911 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7912 physical_offset, physical_len);
7913 if (ret < 0)
7914 goto out;
7915 prev_devid = devid;
7916 prev_dev_ext_end = physical_offset + physical_len;
7917
7918 ret = btrfs_next_item(root, path);
7919 if (ret < 0)
7920 goto out;
7921 if (ret > 0) {
7922 ret = 0;
7923 break;
7924 }
7925 }
7926
7927 /* Ensure all chunks have corresponding dev extents */
7928 ret = verify_chunk_dev_extent_mapping(fs_info);
7929 out:
7930 btrfs_free_path(path);
7931 return ret;
7932 }
7933
7934 /*
7935 * Check whether the given block group or device is pinned by any inode being
7936 * used as a swapfile.
7937 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)7938 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7939 {
7940 struct btrfs_swapfile_pin *sp;
7941 struct rb_node *node;
7942
7943 spin_lock(&fs_info->swapfile_pins_lock);
7944 node = fs_info->swapfile_pins.rb_node;
7945 while (node) {
7946 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7947 if (ptr < sp->ptr)
7948 node = node->rb_left;
7949 else if (ptr > sp->ptr)
7950 node = node->rb_right;
7951 else
7952 break;
7953 }
7954 spin_unlock(&fs_info->swapfile_pins_lock);
7955 return node != NULL;
7956 }
7957
relocating_repair_kthread(void * data)7958 static int relocating_repair_kthread(void *data)
7959 {
7960 struct btrfs_block_group *cache = data;
7961 struct btrfs_fs_info *fs_info = cache->fs_info;
7962 u64 target;
7963 int ret = 0;
7964
7965 target = cache->start;
7966 btrfs_put_block_group(cache);
7967
7968 sb_start_write(fs_info->sb);
7969 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7970 btrfs_info(fs_info,
7971 "zoned: skip relocating block group %llu to repair: EBUSY",
7972 target);
7973 sb_end_write(fs_info->sb);
7974 return -EBUSY;
7975 }
7976
7977 mutex_lock(&fs_info->reclaim_bgs_lock);
7978
7979 /* Ensure block group still exists */
7980 cache = btrfs_lookup_block_group(fs_info, target);
7981 if (!cache)
7982 goto out;
7983
7984 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
7985 goto out;
7986
7987 ret = btrfs_may_alloc_data_chunk(fs_info, target);
7988 if (ret < 0)
7989 goto out;
7990
7991 btrfs_info(fs_info,
7992 "zoned: relocating block group %llu to repair IO failure",
7993 target);
7994 ret = btrfs_relocate_chunk(fs_info, target);
7995
7996 out:
7997 if (cache)
7998 btrfs_put_block_group(cache);
7999 mutex_unlock(&fs_info->reclaim_bgs_lock);
8000 btrfs_exclop_finish(fs_info);
8001 sb_end_write(fs_info->sb);
8002
8003 return ret;
8004 }
8005
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8006 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8007 {
8008 struct btrfs_block_group *cache;
8009
8010 if (!btrfs_is_zoned(fs_info))
8011 return false;
8012
8013 /* Do not attempt to repair in degraded state */
8014 if (btrfs_test_opt(fs_info, DEGRADED))
8015 return true;
8016
8017 cache = btrfs_lookup_block_group(fs_info, logical);
8018 if (!cache)
8019 return true;
8020
8021 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8022 btrfs_put_block_group(cache);
8023 return true;
8024 }
8025
8026 kthread_run(relocating_repair_kthread, cache,
8027 "btrfs-relocating-repair");
8028
8029 return true;
8030 }
8031
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8032 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8033 struct btrfs_io_stripe *smap,
8034 u64 logical)
8035 {
8036 int data_stripes = nr_bioc_data_stripes(bioc);
8037 int i;
8038
8039 for (i = 0; i < data_stripes; i++) {
8040 u64 stripe_start = bioc->full_stripe_logical +
8041 btrfs_stripe_nr_to_offset(i);
8042
8043 if (logical >= stripe_start &&
8044 logical < stripe_start + BTRFS_STRIPE_LEN)
8045 break;
8046 }
8047 ASSERT(i < data_stripes);
8048 smap->dev = bioc->stripes[i].dev;
8049 smap->physical = bioc->stripes[i].physical +
8050 ((logical - bioc->full_stripe_logical) &
8051 BTRFS_STRIPE_LEN_MASK);
8052 }
8053
8054 /*
8055 * Map a repair write into a single device.
8056 *
8057 * A repair write is triggered by read time repair or scrub, which would only
8058 * update the contents of a single device.
8059 * Not update any other mirrors nor go through RMW path.
8060 *
8061 * Callers should ensure:
8062 *
8063 * - Call btrfs_bio_counter_inc_blocked() first
8064 * - The range does not cross stripe boundary
8065 * - Has a valid @mirror_num passed in.
8066 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8067 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8068 struct btrfs_io_stripe *smap, u64 logical,
8069 u32 length, int mirror_num)
8070 {
8071 struct btrfs_io_context *bioc = NULL;
8072 u64 map_length = length;
8073 int mirror_ret = mirror_num;
8074 int ret;
8075
8076 ASSERT(mirror_num > 0);
8077
8078 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8079 &bioc, smap, &mirror_ret, true);
8080 if (ret < 0)
8081 return ret;
8082
8083 /* The map range should not cross stripe boundary. */
8084 ASSERT(map_length >= length);
8085
8086 /* Already mapped to single stripe. */
8087 if (!bioc)
8088 goto out;
8089
8090 /* Map the RAID56 multi-stripe writes to a single one. */
8091 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8092 map_raid56_repair_block(bioc, smap, logical);
8093 goto out;
8094 }
8095
8096 ASSERT(mirror_num <= bioc->num_stripes);
8097 smap->dev = bioc->stripes[mirror_num - 1].dev;
8098 smap->physical = bioc->stripes[mirror_num - 1].physical;
8099 out:
8100 btrfs_put_bioc(bioc);
8101 ASSERT(smap->dev);
8102 return 0;
8103 }
8104