1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35
36 #undef SCRAMBLE_DELAYED_REFS
37
38
39 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
40 struct btrfs_delayed_ref_node *node, u64 parent,
41 u64 root_objectid, u64 owner_objectid,
42 u64 owner_offset, int refs_to_drop,
43 struct btrfs_delayed_extent_op *extra_op);
44 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
45 struct extent_buffer *leaf,
46 struct btrfs_extent_item *ei);
47 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
48 u64 parent, u64 root_objectid,
49 u64 flags, u64 owner, u64 offset,
50 struct btrfs_key *ins, int ref_mod);
51 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
52 struct btrfs_delayed_ref_node *node,
53 struct btrfs_delayed_extent_op *extent_op);
54 static int find_next_key(struct btrfs_path *path, int level,
55 struct btrfs_key *key);
56
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)57 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
58 {
59 return (cache->flags & bits) == bits;
60 }
61
btrfs_add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)62 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
63 u64 start, u64 num_bytes)
64 {
65 u64 end = start + num_bytes - 1;
66 set_extent_bits(&fs_info->freed_extents[0],
67 start, end, EXTENT_UPTODATE);
68 set_extent_bits(&fs_info->freed_extents[1],
69 start, end, EXTENT_UPTODATE);
70 return 0;
71 }
72
btrfs_free_excluded_extents(struct btrfs_block_group_cache * cache)73 void btrfs_free_excluded_extents(struct btrfs_block_group_cache *cache)
74 {
75 struct btrfs_fs_info *fs_info = cache->fs_info;
76 u64 start, end;
77
78 start = cache->key.objectid;
79 end = start + cache->key.offset - 1;
80
81 clear_extent_bits(&fs_info->freed_extents[0],
82 start, end, EXTENT_UPTODATE);
83 clear_extent_bits(&fs_info->freed_extents[1],
84 start, end, EXTENT_UPTODATE);
85 }
86
generic_ref_to_space_flags(struct btrfs_ref * ref)87 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
88 {
89 if (ref->type == BTRFS_REF_METADATA) {
90 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
91 return BTRFS_BLOCK_GROUP_SYSTEM;
92 else
93 return BTRFS_BLOCK_GROUP_METADATA;
94 }
95 return BTRFS_BLOCK_GROUP_DATA;
96 }
97
add_pinned_bytes(struct btrfs_fs_info * fs_info,struct btrfs_ref * ref)98 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_ref *ref)
100 {
101 struct btrfs_space_info *space_info;
102 u64 flags = generic_ref_to_space_flags(ref);
103
104 space_info = btrfs_find_space_info(fs_info, flags);
105 ASSERT(space_info);
106 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
107 BTRFS_TOTAL_BYTES_PINNED_BATCH);
108 }
109
sub_pinned_bytes(struct btrfs_fs_info * fs_info,struct btrfs_ref * ref)110 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
111 struct btrfs_ref *ref)
112 {
113 struct btrfs_space_info *space_info;
114 u64 flags = generic_ref_to_space_flags(ref);
115
116 space_info = btrfs_find_space_info(fs_info, flags);
117 ASSERT(space_info);
118 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
119 BTRFS_TOTAL_BYTES_PINNED_BATCH);
120 }
121
122 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)123 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
124 {
125 int ret;
126 struct btrfs_key key;
127 struct btrfs_path *path;
128
129 path = btrfs_alloc_path();
130 if (!path)
131 return -ENOMEM;
132
133 key.objectid = start;
134 key.offset = len;
135 key.type = BTRFS_EXTENT_ITEM_KEY;
136 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
137 btrfs_free_path(path);
138 return ret;
139 }
140
141 /*
142 * helper function to lookup reference count and flags of a tree block.
143 *
144 * the head node for delayed ref is used to store the sum of all the
145 * reference count modifications queued up in the rbtree. the head
146 * node may also store the extent flags to set. This way you can check
147 * to see what the reference count and extent flags would be if all of
148 * the delayed refs are not processed.
149 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)150 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
151 struct btrfs_fs_info *fs_info, u64 bytenr,
152 u64 offset, int metadata, u64 *refs, u64 *flags)
153 {
154 struct btrfs_delayed_ref_head *head;
155 struct btrfs_delayed_ref_root *delayed_refs;
156 struct btrfs_path *path;
157 struct btrfs_extent_item *ei;
158 struct extent_buffer *leaf;
159 struct btrfs_key key;
160 u32 item_size;
161 u64 num_refs;
162 u64 extent_flags;
163 int ret;
164
165 /*
166 * If we don't have skinny metadata, don't bother doing anything
167 * different
168 */
169 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
170 offset = fs_info->nodesize;
171 metadata = 0;
172 }
173
174 path = btrfs_alloc_path();
175 if (!path)
176 return -ENOMEM;
177
178 if (!trans) {
179 path->skip_locking = 1;
180 path->search_commit_root = 1;
181 }
182
183 search_again:
184 key.objectid = bytenr;
185 key.offset = offset;
186 if (metadata)
187 key.type = BTRFS_METADATA_ITEM_KEY;
188 else
189 key.type = BTRFS_EXTENT_ITEM_KEY;
190
191 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
192 if (ret < 0)
193 goto out_free;
194
195 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
196 if (path->slots[0]) {
197 path->slots[0]--;
198 btrfs_item_key_to_cpu(path->nodes[0], &key,
199 path->slots[0]);
200 if (key.objectid == bytenr &&
201 key.type == BTRFS_EXTENT_ITEM_KEY &&
202 key.offset == fs_info->nodesize)
203 ret = 0;
204 }
205 }
206
207 if (ret == 0) {
208 leaf = path->nodes[0];
209 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
210 if (item_size >= sizeof(*ei)) {
211 ei = btrfs_item_ptr(leaf, path->slots[0],
212 struct btrfs_extent_item);
213 num_refs = btrfs_extent_refs(leaf, ei);
214 extent_flags = btrfs_extent_flags(leaf, ei);
215 } else {
216 ret = -EINVAL;
217 btrfs_print_v0_err(fs_info);
218 if (trans)
219 btrfs_abort_transaction(trans, ret);
220 else
221 btrfs_handle_fs_error(fs_info, ret, NULL);
222
223 goto out_free;
224 }
225
226 BUG_ON(num_refs == 0);
227 } else {
228 num_refs = 0;
229 extent_flags = 0;
230 ret = 0;
231 }
232
233 if (!trans)
234 goto out;
235
236 delayed_refs = &trans->transaction->delayed_refs;
237 spin_lock(&delayed_refs->lock);
238 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
239 if (head) {
240 if (!mutex_trylock(&head->mutex)) {
241 refcount_inc(&head->refs);
242 spin_unlock(&delayed_refs->lock);
243
244 btrfs_release_path(path);
245
246 /*
247 * Mutex was contended, block until it's released and try
248 * again
249 */
250 mutex_lock(&head->mutex);
251 mutex_unlock(&head->mutex);
252 btrfs_put_delayed_ref_head(head);
253 goto search_again;
254 }
255 spin_lock(&head->lock);
256 if (head->extent_op && head->extent_op->update_flags)
257 extent_flags |= head->extent_op->flags_to_set;
258 else
259 BUG_ON(num_refs == 0);
260
261 num_refs += head->ref_mod;
262 spin_unlock(&head->lock);
263 mutex_unlock(&head->mutex);
264 }
265 spin_unlock(&delayed_refs->lock);
266 out:
267 WARN_ON(num_refs == 0);
268 if (refs)
269 *refs = num_refs;
270 if (flags)
271 *flags = extent_flags;
272 out_free:
273 btrfs_free_path(path);
274 return ret;
275 }
276
277 /*
278 * Back reference rules. Back refs have three main goals:
279 *
280 * 1) differentiate between all holders of references to an extent so that
281 * when a reference is dropped we can make sure it was a valid reference
282 * before freeing the extent.
283 *
284 * 2) Provide enough information to quickly find the holders of an extent
285 * if we notice a given block is corrupted or bad.
286 *
287 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
288 * maintenance. This is actually the same as #2, but with a slightly
289 * different use case.
290 *
291 * There are two kinds of back refs. The implicit back refs is optimized
292 * for pointers in non-shared tree blocks. For a given pointer in a block,
293 * back refs of this kind provide information about the block's owner tree
294 * and the pointer's key. These information allow us to find the block by
295 * b-tree searching. The full back refs is for pointers in tree blocks not
296 * referenced by their owner trees. The location of tree block is recorded
297 * in the back refs. Actually the full back refs is generic, and can be
298 * used in all cases the implicit back refs is used. The major shortcoming
299 * of the full back refs is its overhead. Every time a tree block gets
300 * COWed, we have to update back refs entry for all pointers in it.
301 *
302 * For a newly allocated tree block, we use implicit back refs for
303 * pointers in it. This means most tree related operations only involve
304 * implicit back refs. For a tree block created in old transaction, the
305 * only way to drop a reference to it is COW it. So we can detect the
306 * event that tree block loses its owner tree's reference and do the
307 * back refs conversion.
308 *
309 * When a tree block is COWed through a tree, there are four cases:
310 *
311 * The reference count of the block is one and the tree is the block's
312 * owner tree. Nothing to do in this case.
313 *
314 * The reference count of the block is one and the tree is not the
315 * block's owner tree. In this case, full back refs is used for pointers
316 * in the block. Remove these full back refs, add implicit back refs for
317 * every pointers in the new block.
318 *
319 * The reference count of the block is greater than one and the tree is
320 * the block's owner tree. In this case, implicit back refs is used for
321 * pointers in the block. Add full back refs for every pointers in the
322 * block, increase lower level extents' reference counts. The original
323 * implicit back refs are entailed to the new block.
324 *
325 * The reference count of the block is greater than one and the tree is
326 * not the block's owner tree. Add implicit back refs for every pointer in
327 * the new block, increase lower level extents' reference count.
328 *
329 * Back Reference Key composing:
330 *
331 * The key objectid corresponds to the first byte in the extent,
332 * The key type is used to differentiate between types of back refs.
333 * There are different meanings of the key offset for different types
334 * of back refs.
335 *
336 * File extents can be referenced by:
337 *
338 * - multiple snapshots, subvolumes, or different generations in one subvol
339 * - different files inside a single subvolume
340 * - different offsets inside a file (bookend extents in file.c)
341 *
342 * The extent ref structure for the implicit back refs has fields for:
343 *
344 * - Objectid of the subvolume root
345 * - objectid of the file holding the reference
346 * - original offset in the file
347 * - how many bookend extents
348 *
349 * The key offset for the implicit back refs is hash of the first
350 * three fields.
351 *
352 * The extent ref structure for the full back refs has field for:
353 *
354 * - number of pointers in the tree leaf
355 *
356 * The key offset for the implicit back refs is the first byte of
357 * the tree leaf
358 *
359 * When a file extent is allocated, The implicit back refs is used.
360 * the fields are filled in:
361 *
362 * (root_key.objectid, inode objectid, offset in file, 1)
363 *
364 * When a file extent is removed file truncation, we find the
365 * corresponding implicit back refs and check the following fields:
366 *
367 * (btrfs_header_owner(leaf), inode objectid, offset in file)
368 *
369 * Btree extents can be referenced by:
370 *
371 * - Different subvolumes
372 *
373 * Both the implicit back refs and the full back refs for tree blocks
374 * only consist of key. The key offset for the implicit back refs is
375 * objectid of block's owner tree. The key offset for the full back refs
376 * is the first byte of parent block.
377 *
378 * When implicit back refs is used, information about the lowest key and
379 * level of the tree block are required. These information are stored in
380 * tree block info structure.
381 */
382
383 /*
384 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
385 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
386 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
387 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)388 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
389 struct btrfs_extent_inline_ref *iref,
390 enum btrfs_inline_ref_type is_data)
391 {
392 int type = btrfs_extent_inline_ref_type(eb, iref);
393 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
394
395 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
396 type == BTRFS_SHARED_BLOCK_REF_KEY ||
397 type == BTRFS_SHARED_DATA_REF_KEY ||
398 type == BTRFS_EXTENT_DATA_REF_KEY) {
399 if (is_data == BTRFS_REF_TYPE_BLOCK) {
400 if (type == BTRFS_TREE_BLOCK_REF_KEY)
401 return type;
402 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
403 ASSERT(eb->fs_info);
404 /*
405 * Every shared one has parent tree
406 * block, which must be aligned to
407 * nodesize.
408 */
409 if (offset &&
410 IS_ALIGNED(offset, eb->fs_info->nodesize))
411 return type;
412 }
413 } else if (is_data == BTRFS_REF_TYPE_DATA) {
414 if (type == BTRFS_EXTENT_DATA_REF_KEY)
415 return type;
416 if (type == BTRFS_SHARED_DATA_REF_KEY) {
417 ASSERT(eb->fs_info);
418 /*
419 * Every shared one has parent tree
420 * block, which must be aligned to
421 * nodesize.
422 */
423 if (offset &&
424 IS_ALIGNED(offset, eb->fs_info->nodesize))
425 return type;
426 }
427 } else {
428 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
429 return type;
430 }
431 }
432
433 btrfs_print_leaf((struct extent_buffer *)eb);
434 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
435 eb->start, type);
436 WARN_ON(1);
437
438 return BTRFS_REF_TYPE_INVALID;
439 }
440
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)441 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
442 {
443 u32 high_crc = ~(u32)0;
444 u32 low_crc = ~(u32)0;
445 __le64 lenum;
446
447 lenum = cpu_to_le64(root_objectid);
448 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
449 lenum = cpu_to_le64(owner);
450 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
451 lenum = cpu_to_le64(offset);
452 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
453
454 return ((u64)high_crc << 31) ^ (u64)low_crc;
455 }
456
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)457 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
458 struct btrfs_extent_data_ref *ref)
459 {
460 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
461 btrfs_extent_data_ref_objectid(leaf, ref),
462 btrfs_extent_data_ref_offset(leaf, ref));
463 }
464
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)465 static int match_extent_data_ref(struct extent_buffer *leaf,
466 struct btrfs_extent_data_ref *ref,
467 u64 root_objectid, u64 owner, u64 offset)
468 {
469 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
470 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
471 btrfs_extent_data_ref_offset(leaf, ref) != offset)
472 return 0;
473 return 1;
474 }
475
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)476 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
477 struct btrfs_path *path,
478 u64 bytenr, u64 parent,
479 u64 root_objectid,
480 u64 owner, u64 offset)
481 {
482 struct btrfs_root *root = trans->fs_info->extent_root;
483 struct btrfs_key key;
484 struct btrfs_extent_data_ref *ref;
485 struct extent_buffer *leaf;
486 u32 nritems;
487 int ret;
488 int recow;
489 int err = -ENOENT;
490
491 key.objectid = bytenr;
492 if (parent) {
493 key.type = BTRFS_SHARED_DATA_REF_KEY;
494 key.offset = parent;
495 } else {
496 key.type = BTRFS_EXTENT_DATA_REF_KEY;
497 key.offset = hash_extent_data_ref(root_objectid,
498 owner, offset);
499 }
500 again:
501 recow = 0;
502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
503 if (ret < 0) {
504 err = ret;
505 goto fail;
506 }
507
508 if (parent) {
509 if (!ret)
510 return 0;
511 goto fail;
512 }
513
514 leaf = path->nodes[0];
515 nritems = btrfs_header_nritems(leaf);
516 while (1) {
517 if (path->slots[0] >= nritems) {
518 ret = btrfs_next_leaf(root, path);
519 if (ret < 0)
520 err = ret;
521 if (ret)
522 goto fail;
523
524 leaf = path->nodes[0];
525 nritems = btrfs_header_nritems(leaf);
526 recow = 1;
527 }
528
529 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
530 if (key.objectid != bytenr ||
531 key.type != BTRFS_EXTENT_DATA_REF_KEY)
532 goto fail;
533
534 ref = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_extent_data_ref);
536
537 if (match_extent_data_ref(leaf, ref, root_objectid,
538 owner, offset)) {
539 if (recow) {
540 btrfs_release_path(path);
541 goto again;
542 }
543 err = 0;
544 break;
545 }
546 path->slots[0]++;
547 }
548 fail:
549 return err;
550 }
551
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)552 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
553 struct btrfs_path *path,
554 u64 bytenr, u64 parent,
555 u64 root_objectid, u64 owner,
556 u64 offset, int refs_to_add)
557 {
558 struct btrfs_root *root = trans->fs_info->extent_root;
559 struct btrfs_key key;
560 struct extent_buffer *leaf;
561 u32 size;
562 u32 num_refs;
563 int ret;
564
565 key.objectid = bytenr;
566 if (parent) {
567 key.type = BTRFS_SHARED_DATA_REF_KEY;
568 key.offset = parent;
569 size = sizeof(struct btrfs_shared_data_ref);
570 } else {
571 key.type = BTRFS_EXTENT_DATA_REF_KEY;
572 key.offset = hash_extent_data_ref(root_objectid,
573 owner, offset);
574 size = sizeof(struct btrfs_extent_data_ref);
575 }
576
577 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
578 if (ret && ret != -EEXIST)
579 goto fail;
580
581 leaf = path->nodes[0];
582 if (parent) {
583 struct btrfs_shared_data_ref *ref;
584 ref = btrfs_item_ptr(leaf, path->slots[0],
585 struct btrfs_shared_data_ref);
586 if (ret == 0) {
587 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
588 } else {
589 num_refs = btrfs_shared_data_ref_count(leaf, ref);
590 num_refs += refs_to_add;
591 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
592 }
593 } else {
594 struct btrfs_extent_data_ref *ref;
595 while (ret == -EEXIST) {
596 ref = btrfs_item_ptr(leaf, path->slots[0],
597 struct btrfs_extent_data_ref);
598 if (match_extent_data_ref(leaf, ref, root_objectid,
599 owner, offset))
600 break;
601 btrfs_release_path(path);
602 key.offset++;
603 ret = btrfs_insert_empty_item(trans, root, path, &key,
604 size);
605 if (ret && ret != -EEXIST)
606 goto fail;
607
608 leaf = path->nodes[0];
609 }
610 ref = btrfs_item_ptr(leaf, path->slots[0],
611 struct btrfs_extent_data_ref);
612 if (ret == 0) {
613 btrfs_set_extent_data_ref_root(leaf, ref,
614 root_objectid);
615 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
616 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
617 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
618 } else {
619 num_refs = btrfs_extent_data_ref_count(leaf, ref);
620 num_refs += refs_to_add;
621 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
622 }
623 }
624 btrfs_mark_buffer_dirty(leaf);
625 ret = 0;
626 fail:
627 btrfs_release_path(path);
628 return ret;
629 }
630
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,int refs_to_drop,int * last_ref)631 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
632 struct btrfs_path *path,
633 int refs_to_drop, int *last_ref)
634 {
635 struct btrfs_key key;
636 struct btrfs_extent_data_ref *ref1 = NULL;
637 struct btrfs_shared_data_ref *ref2 = NULL;
638 struct extent_buffer *leaf;
639 u32 num_refs = 0;
640 int ret = 0;
641
642 leaf = path->nodes[0];
643 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
644
645 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
646 ref1 = btrfs_item_ptr(leaf, path->slots[0],
647 struct btrfs_extent_data_ref);
648 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
649 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
650 ref2 = btrfs_item_ptr(leaf, path->slots[0],
651 struct btrfs_shared_data_ref);
652 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
653 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
654 btrfs_print_v0_err(trans->fs_info);
655 btrfs_abort_transaction(trans, -EINVAL);
656 return -EINVAL;
657 } else {
658 BUG();
659 }
660
661 BUG_ON(num_refs < refs_to_drop);
662 num_refs -= refs_to_drop;
663
664 if (num_refs == 0) {
665 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
666 *last_ref = 1;
667 } else {
668 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
669 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
670 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
671 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
672 btrfs_mark_buffer_dirty(leaf);
673 }
674 return ret;
675 }
676
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)677 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
678 struct btrfs_extent_inline_ref *iref)
679 {
680 struct btrfs_key key;
681 struct extent_buffer *leaf;
682 struct btrfs_extent_data_ref *ref1;
683 struct btrfs_shared_data_ref *ref2;
684 u32 num_refs = 0;
685 int type;
686
687 leaf = path->nodes[0];
688 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
689
690 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
691 if (iref) {
692 /*
693 * If type is invalid, we should have bailed out earlier than
694 * this call.
695 */
696 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
697 ASSERT(type != BTRFS_REF_TYPE_INVALID);
698 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
699 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
700 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
701 } else {
702 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
703 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
704 }
705 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
706 ref1 = btrfs_item_ptr(leaf, path->slots[0],
707 struct btrfs_extent_data_ref);
708 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
709 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
710 ref2 = btrfs_item_ptr(leaf, path->slots[0],
711 struct btrfs_shared_data_ref);
712 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
713 } else {
714 WARN_ON(1);
715 }
716 return num_refs;
717 }
718
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)719 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
720 struct btrfs_path *path,
721 u64 bytenr, u64 parent,
722 u64 root_objectid)
723 {
724 struct btrfs_root *root = trans->fs_info->extent_root;
725 struct btrfs_key key;
726 int ret;
727
728 key.objectid = bytenr;
729 if (parent) {
730 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
731 key.offset = parent;
732 } else {
733 key.type = BTRFS_TREE_BLOCK_REF_KEY;
734 key.offset = root_objectid;
735 }
736
737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
738 if (ret > 0)
739 ret = -ENOENT;
740 return ret;
741 }
742
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)743 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
744 struct btrfs_path *path,
745 u64 bytenr, u64 parent,
746 u64 root_objectid)
747 {
748 struct btrfs_key key;
749 int ret;
750
751 key.objectid = bytenr;
752 if (parent) {
753 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
754 key.offset = parent;
755 } else {
756 key.type = BTRFS_TREE_BLOCK_REF_KEY;
757 key.offset = root_objectid;
758 }
759
760 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
761 path, &key, 0);
762 btrfs_release_path(path);
763 return ret;
764 }
765
extent_ref_type(u64 parent,u64 owner)766 static inline int extent_ref_type(u64 parent, u64 owner)
767 {
768 int type;
769 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
770 if (parent > 0)
771 type = BTRFS_SHARED_BLOCK_REF_KEY;
772 else
773 type = BTRFS_TREE_BLOCK_REF_KEY;
774 } else {
775 if (parent > 0)
776 type = BTRFS_SHARED_DATA_REF_KEY;
777 else
778 type = BTRFS_EXTENT_DATA_REF_KEY;
779 }
780 return type;
781 }
782
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)783 static int find_next_key(struct btrfs_path *path, int level,
784 struct btrfs_key *key)
785
786 {
787 for (; level < BTRFS_MAX_LEVEL; level++) {
788 if (!path->nodes[level])
789 break;
790 if (path->slots[level] + 1 >=
791 btrfs_header_nritems(path->nodes[level]))
792 continue;
793 if (level == 0)
794 btrfs_item_key_to_cpu(path->nodes[level], key,
795 path->slots[level] + 1);
796 else
797 btrfs_node_key_to_cpu(path->nodes[level], key,
798 path->slots[level] + 1);
799 return 0;
800 }
801 return 1;
802 }
803
804 /*
805 * look for inline back ref. if back ref is found, *ref_ret is set
806 * to the address of inline back ref, and 0 is returned.
807 *
808 * if back ref isn't found, *ref_ret is set to the address where it
809 * should be inserted, and -ENOENT is returned.
810 *
811 * if insert is true and there are too many inline back refs, the path
812 * points to the extent item, and -EAGAIN is returned.
813 *
814 * NOTE: inline back refs are ordered in the same way that back ref
815 * items in the tree are ordered.
816 */
817 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)818 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
819 struct btrfs_path *path,
820 struct btrfs_extent_inline_ref **ref_ret,
821 u64 bytenr, u64 num_bytes,
822 u64 parent, u64 root_objectid,
823 u64 owner, u64 offset, int insert)
824 {
825 struct btrfs_fs_info *fs_info = trans->fs_info;
826 struct btrfs_root *root = fs_info->extent_root;
827 struct btrfs_key key;
828 struct extent_buffer *leaf;
829 struct btrfs_extent_item *ei;
830 struct btrfs_extent_inline_ref *iref;
831 u64 flags;
832 u64 item_size;
833 unsigned long ptr;
834 unsigned long end;
835 int extra_size;
836 int type;
837 int want;
838 int ret;
839 int err = 0;
840 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
841 int needed;
842
843 key.objectid = bytenr;
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845 key.offset = num_bytes;
846
847 want = extent_ref_type(parent, owner);
848 if (insert) {
849 extra_size = btrfs_extent_inline_ref_size(want);
850 path->keep_locks = 1;
851 } else
852 extra_size = -1;
853
854 /*
855 * Owner is our level, so we can just add one to get the level for the
856 * block we are interested in.
857 */
858 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
859 key.type = BTRFS_METADATA_ITEM_KEY;
860 key.offset = owner;
861 }
862
863 again:
864 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
865 if (ret < 0) {
866 err = ret;
867 goto out;
868 }
869
870 /*
871 * We may be a newly converted file system which still has the old fat
872 * extent entries for metadata, so try and see if we have one of those.
873 */
874 if (ret > 0 && skinny_metadata) {
875 skinny_metadata = false;
876 if (path->slots[0]) {
877 path->slots[0]--;
878 btrfs_item_key_to_cpu(path->nodes[0], &key,
879 path->slots[0]);
880 if (key.objectid == bytenr &&
881 key.type == BTRFS_EXTENT_ITEM_KEY &&
882 key.offset == num_bytes)
883 ret = 0;
884 }
885 if (ret) {
886 key.objectid = bytenr;
887 key.type = BTRFS_EXTENT_ITEM_KEY;
888 key.offset = num_bytes;
889 btrfs_release_path(path);
890 goto again;
891 }
892 }
893
894 if (ret && !insert) {
895 err = -ENOENT;
896 goto out;
897 } else if (WARN_ON(ret)) {
898 err = -EIO;
899 goto out;
900 }
901
902 leaf = path->nodes[0];
903 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
904 if (unlikely(item_size < sizeof(*ei))) {
905 err = -EINVAL;
906 btrfs_print_v0_err(fs_info);
907 btrfs_abort_transaction(trans, err);
908 goto out;
909 }
910
911 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
912 flags = btrfs_extent_flags(leaf, ei);
913
914 ptr = (unsigned long)(ei + 1);
915 end = (unsigned long)ei + item_size;
916
917 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
918 ptr += sizeof(struct btrfs_tree_block_info);
919 BUG_ON(ptr > end);
920 }
921
922 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
923 needed = BTRFS_REF_TYPE_DATA;
924 else
925 needed = BTRFS_REF_TYPE_BLOCK;
926
927 err = -ENOENT;
928 while (1) {
929 if (ptr >= end) {
930 WARN_ON(ptr > end);
931 break;
932 }
933 iref = (struct btrfs_extent_inline_ref *)ptr;
934 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
935 if (type == BTRFS_REF_TYPE_INVALID) {
936 err = -EUCLEAN;
937 goto out;
938 }
939
940 if (want < type)
941 break;
942 if (want > type) {
943 ptr += btrfs_extent_inline_ref_size(type);
944 continue;
945 }
946
947 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
948 struct btrfs_extent_data_ref *dref;
949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
950 if (match_extent_data_ref(leaf, dref, root_objectid,
951 owner, offset)) {
952 err = 0;
953 break;
954 }
955 if (hash_extent_data_ref_item(leaf, dref) <
956 hash_extent_data_ref(root_objectid, owner, offset))
957 break;
958 } else {
959 u64 ref_offset;
960 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
961 if (parent > 0) {
962 if (parent == ref_offset) {
963 err = 0;
964 break;
965 }
966 if (ref_offset < parent)
967 break;
968 } else {
969 if (root_objectid == ref_offset) {
970 err = 0;
971 break;
972 }
973 if (ref_offset < root_objectid)
974 break;
975 }
976 }
977 ptr += btrfs_extent_inline_ref_size(type);
978 }
979 if (err == -ENOENT && insert) {
980 if (item_size + extra_size >=
981 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
982 err = -EAGAIN;
983 goto out;
984 }
985 /*
986 * To add new inline back ref, we have to make sure
987 * there is no corresponding back ref item.
988 * For simplicity, we just do not add new inline back
989 * ref if there is any kind of item for this block
990 */
991 if (find_next_key(path, 0, &key) == 0 &&
992 key.objectid == bytenr &&
993 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
994 err = -EAGAIN;
995 goto out;
996 }
997 }
998 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
999 out:
1000 if (insert) {
1001 path->keep_locks = 0;
1002 btrfs_unlock_up_safe(path, 1);
1003 }
1004 return err;
1005 }
1006
1007 /*
1008 * helper to add new inline back ref
1009 */
1010 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1011 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1012 struct btrfs_path *path,
1013 struct btrfs_extent_inline_ref *iref,
1014 u64 parent, u64 root_objectid,
1015 u64 owner, u64 offset, int refs_to_add,
1016 struct btrfs_delayed_extent_op *extent_op)
1017 {
1018 struct extent_buffer *leaf;
1019 struct btrfs_extent_item *ei;
1020 unsigned long ptr;
1021 unsigned long end;
1022 unsigned long item_offset;
1023 u64 refs;
1024 int size;
1025 int type;
1026
1027 leaf = path->nodes[0];
1028 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1029 item_offset = (unsigned long)iref - (unsigned long)ei;
1030
1031 type = extent_ref_type(parent, owner);
1032 size = btrfs_extent_inline_ref_size(type);
1033
1034 btrfs_extend_item(path, size);
1035
1036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1037 refs = btrfs_extent_refs(leaf, ei);
1038 refs += refs_to_add;
1039 btrfs_set_extent_refs(leaf, ei, refs);
1040 if (extent_op)
1041 __run_delayed_extent_op(extent_op, leaf, ei);
1042
1043 ptr = (unsigned long)ei + item_offset;
1044 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1045 if (ptr < end - size)
1046 memmove_extent_buffer(leaf, ptr + size, ptr,
1047 end - size - ptr);
1048
1049 iref = (struct btrfs_extent_inline_ref *)ptr;
1050 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1051 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1052 struct btrfs_extent_data_ref *dref;
1053 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1054 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1055 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1056 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1057 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1058 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1059 struct btrfs_shared_data_ref *sref;
1060 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1061 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1062 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1063 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1064 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1065 } else {
1066 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1067 }
1068 btrfs_mark_buffer_dirty(leaf);
1069 }
1070
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1071 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1072 struct btrfs_path *path,
1073 struct btrfs_extent_inline_ref **ref_ret,
1074 u64 bytenr, u64 num_bytes, u64 parent,
1075 u64 root_objectid, u64 owner, u64 offset)
1076 {
1077 int ret;
1078
1079 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1080 num_bytes, parent, root_objectid,
1081 owner, offset, 0);
1082 if (ret != -ENOENT)
1083 return ret;
1084
1085 btrfs_release_path(path);
1086 *ref_ret = NULL;
1087
1088 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1089 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1090 root_objectid);
1091 } else {
1092 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1093 root_objectid, owner, offset);
1094 }
1095 return ret;
1096 }
1097
1098 /*
1099 * helper to update/remove inline back ref
1100 */
1101 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1102 void update_inline_extent_backref(struct btrfs_path *path,
1103 struct btrfs_extent_inline_ref *iref,
1104 int refs_to_mod,
1105 struct btrfs_delayed_extent_op *extent_op,
1106 int *last_ref)
1107 {
1108 struct extent_buffer *leaf = path->nodes[0];
1109 struct btrfs_extent_item *ei;
1110 struct btrfs_extent_data_ref *dref = NULL;
1111 struct btrfs_shared_data_ref *sref = NULL;
1112 unsigned long ptr;
1113 unsigned long end;
1114 u32 item_size;
1115 int size;
1116 int type;
1117 u64 refs;
1118
1119 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 refs = btrfs_extent_refs(leaf, ei);
1121 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1122 refs += refs_to_mod;
1123 btrfs_set_extent_refs(leaf, ei, refs);
1124 if (extent_op)
1125 __run_delayed_extent_op(extent_op, leaf, ei);
1126
1127 /*
1128 * If type is invalid, we should have bailed out after
1129 * lookup_inline_extent_backref().
1130 */
1131 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1132 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1133
1134 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1135 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1136 refs = btrfs_extent_data_ref_count(leaf, dref);
1137 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1138 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1139 refs = btrfs_shared_data_ref_count(leaf, sref);
1140 } else {
1141 refs = 1;
1142 BUG_ON(refs_to_mod != -1);
1143 }
1144
1145 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1146 refs += refs_to_mod;
1147
1148 if (refs > 0) {
1149 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1150 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1151 else
1152 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1153 } else {
1154 *last_ref = 1;
1155 size = btrfs_extent_inline_ref_size(type);
1156 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1157 ptr = (unsigned long)iref;
1158 end = (unsigned long)ei + item_size;
1159 if (ptr + size < end)
1160 memmove_extent_buffer(leaf, ptr, ptr + size,
1161 end - ptr - size);
1162 item_size -= size;
1163 btrfs_truncate_item(path, item_size, 1);
1164 }
1165 btrfs_mark_buffer_dirty(leaf);
1166 }
1167
1168 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1169 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1170 struct btrfs_path *path,
1171 u64 bytenr, u64 num_bytes, u64 parent,
1172 u64 root_objectid, u64 owner,
1173 u64 offset, int refs_to_add,
1174 struct btrfs_delayed_extent_op *extent_op)
1175 {
1176 struct btrfs_extent_inline_ref *iref;
1177 int ret;
1178
1179 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1180 num_bytes, parent, root_objectid,
1181 owner, offset, 1);
1182 if (ret == 0) {
1183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1184 update_inline_extent_backref(path, iref, refs_to_add,
1185 extent_op, NULL);
1186 } else if (ret == -ENOENT) {
1187 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1188 root_objectid, owner, offset,
1189 refs_to_add, extent_op);
1190 ret = 0;
1191 }
1192 return ret;
1193 }
1194
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1195 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1196 struct btrfs_path *path,
1197 u64 bytenr, u64 parent, u64 root_objectid,
1198 u64 owner, u64 offset, int refs_to_add)
1199 {
1200 int ret;
1201 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1202 BUG_ON(refs_to_add != 1);
1203 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1204 root_objectid);
1205 } else {
1206 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1207 root_objectid, owner, offset,
1208 refs_to_add);
1209 }
1210 return ret;
1211 }
1212
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1213 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1214 struct btrfs_path *path,
1215 struct btrfs_extent_inline_ref *iref,
1216 int refs_to_drop, int is_data, int *last_ref)
1217 {
1218 int ret = 0;
1219
1220 BUG_ON(!is_data && refs_to_drop != 1);
1221 if (iref) {
1222 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1223 last_ref);
1224 } else if (is_data) {
1225 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1226 last_ref);
1227 } else {
1228 *last_ref = 1;
1229 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1230 }
1231 return ret;
1232 }
1233
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1234 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1235 u64 *discarded_bytes)
1236 {
1237 int j, ret = 0;
1238 u64 bytes_left, end;
1239 u64 aligned_start = ALIGN(start, 1 << 9);
1240
1241 if (WARN_ON(start != aligned_start)) {
1242 len -= aligned_start - start;
1243 len = round_down(len, 1 << 9);
1244 start = aligned_start;
1245 }
1246
1247 *discarded_bytes = 0;
1248
1249 if (!len)
1250 return 0;
1251
1252 end = start + len;
1253 bytes_left = len;
1254
1255 /* Skip any superblocks on this device. */
1256 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1257 u64 sb_start = btrfs_sb_offset(j);
1258 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1259 u64 size = sb_start - start;
1260
1261 if (!in_range(sb_start, start, bytes_left) &&
1262 !in_range(sb_end, start, bytes_left) &&
1263 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1264 continue;
1265
1266 /*
1267 * Superblock spans beginning of range. Adjust start and
1268 * try again.
1269 */
1270 if (sb_start <= start) {
1271 start += sb_end - start;
1272 if (start > end) {
1273 bytes_left = 0;
1274 break;
1275 }
1276 bytes_left = end - start;
1277 continue;
1278 }
1279
1280 if (size) {
1281 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1282 GFP_NOFS, 0);
1283 if (!ret)
1284 *discarded_bytes += size;
1285 else if (ret != -EOPNOTSUPP)
1286 return ret;
1287 }
1288
1289 start = sb_end;
1290 if (start > end) {
1291 bytes_left = 0;
1292 break;
1293 }
1294 bytes_left = end - start;
1295 }
1296
1297 if (bytes_left) {
1298 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1299 GFP_NOFS, 0);
1300 if (!ret)
1301 *discarded_bytes += bytes_left;
1302 }
1303 return ret;
1304 }
1305
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1306 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1307 u64 num_bytes, u64 *actual_bytes)
1308 {
1309 int ret;
1310 u64 discarded_bytes = 0;
1311 struct btrfs_bio *bbio = NULL;
1312
1313
1314 /*
1315 * Avoid races with device replace and make sure our bbio has devices
1316 * associated to its stripes that don't go away while we are discarding.
1317 */
1318 btrfs_bio_counter_inc_blocked(fs_info);
1319 /* Tell the block device(s) that the sectors can be discarded */
1320 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1321 &bbio, 0);
1322 /* Error condition is -ENOMEM */
1323 if (!ret) {
1324 struct btrfs_bio_stripe *stripe = bbio->stripes;
1325 int i;
1326
1327
1328 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1329 u64 bytes;
1330 struct request_queue *req_q;
1331
1332 if (!stripe->dev->bdev) {
1333 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1334 continue;
1335 }
1336 req_q = bdev_get_queue(stripe->dev->bdev);
1337 if (!blk_queue_discard(req_q))
1338 continue;
1339
1340 ret = btrfs_issue_discard(stripe->dev->bdev,
1341 stripe->physical,
1342 stripe->length,
1343 &bytes);
1344 if (!ret)
1345 discarded_bytes += bytes;
1346 else if (ret != -EOPNOTSUPP)
1347 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1348
1349 /*
1350 * Just in case we get back EOPNOTSUPP for some reason,
1351 * just ignore the return value so we don't screw up
1352 * people calling discard_extent.
1353 */
1354 ret = 0;
1355 }
1356 btrfs_put_bbio(bbio);
1357 }
1358 btrfs_bio_counter_dec(fs_info);
1359
1360 if (actual_bytes)
1361 *actual_bytes = discarded_bytes;
1362
1363
1364 if (ret == -EOPNOTSUPP)
1365 ret = 0;
1366 return ret;
1367 }
1368
1369 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1370 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_ref *generic_ref)
1372 {
1373 struct btrfs_fs_info *fs_info = trans->fs_info;
1374 int old_ref_mod, new_ref_mod;
1375 int ret;
1376
1377 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1378 generic_ref->action);
1379 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1380 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1381
1382 if (generic_ref->type == BTRFS_REF_METADATA)
1383 ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1384 NULL, &old_ref_mod, &new_ref_mod);
1385 else
1386 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1387 &old_ref_mod, &new_ref_mod);
1388
1389 btrfs_ref_tree_mod(fs_info, generic_ref);
1390
1391 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1392 sub_pinned_bytes(fs_info, generic_ref);
1393
1394 return ret;
1395 }
1396
1397 /*
1398 * __btrfs_inc_extent_ref - insert backreference for a given extent
1399 *
1400 * @trans: Handle of transaction
1401 *
1402 * @node: The delayed ref node used to get the bytenr/length for
1403 * extent whose references are incremented.
1404 *
1405 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407 * bytenr of the parent block. Since new extents are always
1408 * created with indirect references, this will only be the case
1409 * when relocating a shared extent. In that case, root_objectid
1410 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1411 * be 0
1412 *
1413 * @root_objectid: The id of the root where this modification has originated,
1414 * this can be either one of the well-known metadata trees or
1415 * the subvolume id which references this extent.
1416 *
1417 * @owner: For data extents it is the inode number of the owning file.
1418 * For metadata extents this parameter holds the level in the
1419 * tree of the extent.
1420 *
1421 * @offset: For metadata extents the offset is ignored and is currently
1422 * always passed as 0. For data extents it is the fileoffset
1423 * this extent belongs to.
1424 *
1425 * @refs_to_add Number of references to add
1426 *
1427 * @extent_op Pointer to a structure, holding information necessary when
1428 * updating a tree block's flags
1429 *
1430 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1431 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1432 struct btrfs_delayed_ref_node *node,
1433 u64 parent, u64 root_objectid,
1434 u64 owner, u64 offset, int refs_to_add,
1435 struct btrfs_delayed_extent_op *extent_op)
1436 {
1437 struct btrfs_path *path;
1438 struct extent_buffer *leaf;
1439 struct btrfs_extent_item *item;
1440 struct btrfs_key key;
1441 u64 bytenr = node->bytenr;
1442 u64 num_bytes = node->num_bytes;
1443 u64 refs;
1444 int ret;
1445
1446 path = btrfs_alloc_path();
1447 if (!path)
1448 return -ENOMEM;
1449
1450 path->reada = READA_FORWARD;
1451 path->leave_spinning = 1;
1452 /* this will setup the path even if it fails to insert the back ref */
1453 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1454 parent, root_objectid, owner,
1455 offset, refs_to_add, extent_op);
1456 if ((ret < 0 && ret != -EAGAIN) || !ret)
1457 goto out;
1458
1459 /*
1460 * Ok we had -EAGAIN which means we didn't have space to insert and
1461 * inline extent ref, so just update the reference count and add a
1462 * normal backref.
1463 */
1464 leaf = path->nodes[0];
1465 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1466 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1467 refs = btrfs_extent_refs(leaf, item);
1468 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1469 if (extent_op)
1470 __run_delayed_extent_op(extent_op, leaf, item);
1471
1472 btrfs_mark_buffer_dirty(leaf);
1473 btrfs_release_path(path);
1474
1475 path->reada = READA_FORWARD;
1476 path->leave_spinning = 1;
1477 /* now insert the actual backref */
1478 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
1479 owner, offset, refs_to_add);
1480 if (ret)
1481 btrfs_abort_transaction(trans, ret);
1482 out:
1483 btrfs_free_path(path);
1484 return ret;
1485 }
1486
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1487 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1488 struct btrfs_delayed_ref_node *node,
1489 struct btrfs_delayed_extent_op *extent_op,
1490 int insert_reserved)
1491 {
1492 int ret = 0;
1493 struct btrfs_delayed_data_ref *ref;
1494 struct btrfs_key ins;
1495 u64 parent = 0;
1496 u64 ref_root = 0;
1497 u64 flags = 0;
1498
1499 ins.objectid = node->bytenr;
1500 ins.offset = node->num_bytes;
1501 ins.type = BTRFS_EXTENT_ITEM_KEY;
1502
1503 ref = btrfs_delayed_node_to_data_ref(node);
1504 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1505
1506 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1507 parent = ref->parent;
1508 ref_root = ref->root;
1509
1510 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1511 if (extent_op)
1512 flags |= extent_op->flags_to_set;
1513 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1514 flags, ref->objectid,
1515 ref->offset, &ins,
1516 node->ref_mod);
1517 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1518 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1519 ref->objectid, ref->offset,
1520 node->ref_mod, extent_op);
1521 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1522 ret = __btrfs_free_extent(trans, node, parent,
1523 ref_root, ref->objectid,
1524 ref->offset, node->ref_mod,
1525 extent_op);
1526 } else {
1527 BUG();
1528 }
1529 return ret;
1530 }
1531
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1532 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1533 struct extent_buffer *leaf,
1534 struct btrfs_extent_item *ei)
1535 {
1536 u64 flags = btrfs_extent_flags(leaf, ei);
1537 if (extent_op->update_flags) {
1538 flags |= extent_op->flags_to_set;
1539 btrfs_set_extent_flags(leaf, ei, flags);
1540 }
1541
1542 if (extent_op->update_key) {
1543 struct btrfs_tree_block_info *bi;
1544 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1545 bi = (struct btrfs_tree_block_info *)(ei + 1);
1546 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1547 }
1548 }
1549
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1550 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1551 struct btrfs_delayed_ref_head *head,
1552 struct btrfs_delayed_extent_op *extent_op)
1553 {
1554 struct btrfs_fs_info *fs_info = trans->fs_info;
1555 struct btrfs_key key;
1556 struct btrfs_path *path;
1557 struct btrfs_extent_item *ei;
1558 struct extent_buffer *leaf;
1559 u32 item_size;
1560 int ret;
1561 int err = 0;
1562 int metadata = !extent_op->is_data;
1563
1564 if (trans->aborted)
1565 return 0;
1566
1567 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1568 metadata = 0;
1569
1570 path = btrfs_alloc_path();
1571 if (!path)
1572 return -ENOMEM;
1573
1574 key.objectid = head->bytenr;
1575
1576 if (metadata) {
1577 key.type = BTRFS_METADATA_ITEM_KEY;
1578 key.offset = extent_op->level;
1579 } else {
1580 key.type = BTRFS_EXTENT_ITEM_KEY;
1581 key.offset = head->num_bytes;
1582 }
1583
1584 again:
1585 path->reada = READA_FORWARD;
1586 path->leave_spinning = 1;
1587 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1588 if (ret < 0) {
1589 err = ret;
1590 goto out;
1591 }
1592 if (ret > 0) {
1593 if (metadata) {
1594 if (path->slots[0] > 0) {
1595 path->slots[0]--;
1596 btrfs_item_key_to_cpu(path->nodes[0], &key,
1597 path->slots[0]);
1598 if (key.objectid == head->bytenr &&
1599 key.type == BTRFS_EXTENT_ITEM_KEY &&
1600 key.offset == head->num_bytes)
1601 ret = 0;
1602 }
1603 if (ret > 0) {
1604 btrfs_release_path(path);
1605 metadata = 0;
1606
1607 key.objectid = head->bytenr;
1608 key.offset = head->num_bytes;
1609 key.type = BTRFS_EXTENT_ITEM_KEY;
1610 goto again;
1611 }
1612 } else {
1613 err = -EIO;
1614 goto out;
1615 }
1616 }
1617
1618 leaf = path->nodes[0];
1619 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620
1621 if (unlikely(item_size < sizeof(*ei))) {
1622 err = -EINVAL;
1623 btrfs_print_v0_err(fs_info);
1624 btrfs_abort_transaction(trans, err);
1625 goto out;
1626 }
1627
1628 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1629 __run_delayed_extent_op(extent_op, leaf, ei);
1630
1631 btrfs_mark_buffer_dirty(leaf);
1632 out:
1633 btrfs_free_path(path);
1634 return err;
1635 }
1636
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1637 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1638 struct btrfs_delayed_ref_node *node,
1639 struct btrfs_delayed_extent_op *extent_op,
1640 int insert_reserved)
1641 {
1642 int ret = 0;
1643 struct btrfs_delayed_tree_ref *ref;
1644 u64 parent = 0;
1645 u64 ref_root = 0;
1646
1647 ref = btrfs_delayed_node_to_tree_ref(node);
1648 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1649
1650 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1651 parent = ref->parent;
1652 ref_root = ref->root;
1653
1654 if (node->ref_mod != 1) {
1655 btrfs_err(trans->fs_info,
1656 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1657 node->bytenr, node->ref_mod, node->action, ref_root,
1658 parent);
1659 return -EIO;
1660 }
1661 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1662 BUG_ON(!extent_op || !extent_op->update_flags);
1663 ret = alloc_reserved_tree_block(trans, node, extent_op);
1664 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1665 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1666 ref->level, 0, 1, extent_op);
1667 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1668 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1669 ref->level, 0, 1, extent_op);
1670 } else {
1671 BUG();
1672 }
1673 return ret;
1674 }
1675
1676 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1677 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1678 struct btrfs_delayed_ref_node *node,
1679 struct btrfs_delayed_extent_op *extent_op,
1680 int insert_reserved)
1681 {
1682 int ret = 0;
1683
1684 if (trans->aborted) {
1685 if (insert_reserved)
1686 btrfs_pin_extent(trans->fs_info, node->bytenr,
1687 node->num_bytes, 1);
1688 return 0;
1689 }
1690
1691 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1692 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1693 ret = run_delayed_tree_ref(trans, node, extent_op,
1694 insert_reserved);
1695 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1696 node->type == BTRFS_SHARED_DATA_REF_KEY)
1697 ret = run_delayed_data_ref(trans, node, extent_op,
1698 insert_reserved);
1699 else
1700 BUG();
1701 if (ret && insert_reserved)
1702 btrfs_pin_extent(trans->fs_info, node->bytenr,
1703 node->num_bytes, 1);
1704 return ret;
1705 }
1706
1707 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1708 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1709 {
1710 struct btrfs_delayed_ref_node *ref;
1711
1712 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1713 return NULL;
1714
1715 /*
1716 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1717 * This is to prevent a ref count from going down to zero, which deletes
1718 * the extent item from the extent tree, when there still are references
1719 * to add, which would fail because they would not find the extent item.
1720 */
1721 if (!list_empty(&head->ref_add_list))
1722 return list_first_entry(&head->ref_add_list,
1723 struct btrfs_delayed_ref_node, add_list);
1724
1725 ref = rb_entry(rb_first_cached(&head->ref_tree),
1726 struct btrfs_delayed_ref_node, ref_node);
1727 ASSERT(list_empty(&ref->add_list));
1728 return ref;
1729 }
1730
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1731 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1732 struct btrfs_delayed_ref_head *head)
1733 {
1734 spin_lock(&delayed_refs->lock);
1735 head->processing = 0;
1736 delayed_refs->num_heads_ready++;
1737 spin_unlock(&delayed_refs->lock);
1738 btrfs_delayed_ref_unlock(head);
1739 }
1740
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1741 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1742 struct btrfs_delayed_ref_head *head)
1743 {
1744 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1745
1746 if (!extent_op)
1747 return NULL;
1748
1749 if (head->must_insert_reserved) {
1750 head->extent_op = NULL;
1751 btrfs_free_delayed_extent_op(extent_op);
1752 return NULL;
1753 }
1754 return extent_op;
1755 }
1756
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1757 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1758 struct btrfs_delayed_ref_head *head)
1759 {
1760 struct btrfs_delayed_extent_op *extent_op;
1761 int ret;
1762
1763 extent_op = cleanup_extent_op(head);
1764 if (!extent_op)
1765 return 0;
1766 head->extent_op = NULL;
1767 spin_unlock(&head->lock);
1768 ret = run_delayed_extent_op(trans, head, extent_op);
1769 btrfs_free_delayed_extent_op(extent_op);
1770 return ret ? ret : 1;
1771 }
1772
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1773 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1774 struct btrfs_delayed_ref_root *delayed_refs,
1775 struct btrfs_delayed_ref_head *head)
1776 {
1777 int nr_items = 1; /* Dropping this ref head update. */
1778
1779 if (head->total_ref_mod < 0) {
1780 struct btrfs_space_info *space_info;
1781 u64 flags;
1782
1783 if (head->is_data)
1784 flags = BTRFS_BLOCK_GROUP_DATA;
1785 else if (head->is_system)
1786 flags = BTRFS_BLOCK_GROUP_SYSTEM;
1787 else
1788 flags = BTRFS_BLOCK_GROUP_METADATA;
1789 space_info = btrfs_find_space_info(fs_info, flags);
1790 ASSERT(space_info);
1791 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1792 -head->num_bytes,
1793 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1794
1795 /*
1796 * We had csum deletions accounted for in our delayed refs rsv,
1797 * we need to drop the csum leaves for this update from our
1798 * delayed_refs_rsv.
1799 */
1800 if (head->is_data) {
1801 spin_lock(&delayed_refs->lock);
1802 delayed_refs->pending_csums -= head->num_bytes;
1803 spin_unlock(&delayed_refs->lock);
1804 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1805 head->num_bytes);
1806 }
1807 }
1808
1809 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1810 }
1811
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1812 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1813 struct btrfs_delayed_ref_head *head)
1814 {
1815
1816 struct btrfs_fs_info *fs_info = trans->fs_info;
1817 struct btrfs_delayed_ref_root *delayed_refs;
1818 int ret;
1819
1820 delayed_refs = &trans->transaction->delayed_refs;
1821
1822 ret = run_and_cleanup_extent_op(trans, head);
1823 if (ret < 0) {
1824 unselect_delayed_ref_head(delayed_refs, head);
1825 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1826 return ret;
1827 } else if (ret) {
1828 return ret;
1829 }
1830
1831 /*
1832 * Need to drop our head ref lock and re-acquire the delayed ref lock
1833 * and then re-check to make sure nobody got added.
1834 */
1835 spin_unlock(&head->lock);
1836 spin_lock(&delayed_refs->lock);
1837 spin_lock(&head->lock);
1838 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1839 spin_unlock(&head->lock);
1840 spin_unlock(&delayed_refs->lock);
1841 return 1;
1842 }
1843 btrfs_delete_ref_head(delayed_refs, head);
1844 spin_unlock(&head->lock);
1845 spin_unlock(&delayed_refs->lock);
1846
1847 if (head->must_insert_reserved) {
1848 btrfs_pin_extent(fs_info, head->bytenr,
1849 head->num_bytes, 1);
1850 if (head->is_data) {
1851 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
1852 head->num_bytes);
1853 }
1854 }
1855
1856 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1857
1858 trace_run_delayed_ref_head(fs_info, head, 0);
1859 btrfs_delayed_ref_unlock(head);
1860 btrfs_put_delayed_ref_head(head);
1861 return 0;
1862 }
1863
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1864 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1865 struct btrfs_trans_handle *trans)
1866 {
1867 struct btrfs_delayed_ref_root *delayed_refs =
1868 &trans->transaction->delayed_refs;
1869 struct btrfs_delayed_ref_head *head = NULL;
1870 int ret;
1871
1872 spin_lock(&delayed_refs->lock);
1873 head = btrfs_select_ref_head(delayed_refs);
1874 if (!head) {
1875 spin_unlock(&delayed_refs->lock);
1876 return head;
1877 }
1878
1879 /*
1880 * Grab the lock that says we are going to process all the refs for
1881 * this head
1882 */
1883 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1884 spin_unlock(&delayed_refs->lock);
1885
1886 /*
1887 * We may have dropped the spin lock to get the head mutex lock, and
1888 * that might have given someone else time to free the head. If that's
1889 * true, it has been removed from our list and we can move on.
1890 */
1891 if (ret == -EAGAIN)
1892 head = ERR_PTR(-EAGAIN);
1893
1894 return head;
1895 }
1896
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,unsigned long * run_refs)1897 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1898 struct btrfs_delayed_ref_head *locked_ref,
1899 unsigned long *run_refs)
1900 {
1901 struct btrfs_fs_info *fs_info = trans->fs_info;
1902 struct btrfs_delayed_ref_root *delayed_refs;
1903 struct btrfs_delayed_extent_op *extent_op;
1904 struct btrfs_delayed_ref_node *ref;
1905 int must_insert_reserved = 0;
1906 int ret;
1907
1908 delayed_refs = &trans->transaction->delayed_refs;
1909
1910 lockdep_assert_held(&locked_ref->mutex);
1911 lockdep_assert_held(&locked_ref->lock);
1912
1913 while ((ref = select_delayed_ref(locked_ref))) {
1914 if (ref->seq &&
1915 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1916 spin_unlock(&locked_ref->lock);
1917 unselect_delayed_ref_head(delayed_refs, locked_ref);
1918 return -EAGAIN;
1919 }
1920
1921 (*run_refs)++;
1922 ref->in_tree = 0;
1923 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1924 RB_CLEAR_NODE(&ref->ref_node);
1925 if (!list_empty(&ref->add_list))
1926 list_del(&ref->add_list);
1927 /*
1928 * When we play the delayed ref, also correct the ref_mod on
1929 * head
1930 */
1931 switch (ref->action) {
1932 case BTRFS_ADD_DELAYED_REF:
1933 case BTRFS_ADD_DELAYED_EXTENT:
1934 locked_ref->ref_mod -= ref->ref_mod;
1935 break;
1936 case BTRFS_DROP_DELAYED_REF:
1937 locked_ref->ref_mod += ref->ref_mod;
1938 break;
1939 default:
1940 WARN_ON(1);
1941 }
1942 atomic_dec(&delayed_refs->num_entries);
1943
1944 /*
1945 * Record the must_insert_reserved flag before we drop the
1946 * spin lock.
1947 */
1948 must_insert_reserved = locked_ref->must_insert_reserved;
1949 locked_ref->must_insert_reserved = 0;
1950
1951 extent_op = locked_ref->extent_op;
1952 locked_ref->extent_op = NULL;
1953 spin_unlock(&locked_ref->lock);
1954
1955 ret = run_one_delayed_ref(trans, ref, extent_op,
1956 must_insert_reserved);
1957
1958 btrfs_free_delayed_extent_op(extent_op);
1959 if (ret) {
1960 unselect_delayed_ref_head(delayed_refs, locked_ref);
1961 btrfs_put_delayed_ref(ref);
1962 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1963 ret);
1964 return ret;
1965 }
1966
1967 btrfs_put_delayed_ref(ref);
1968 cond_resched();
1969
1970 spin_lock(&locked_ref->lock);
1971 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1972 }
1973
1974 return 0;
1975 }
1976
1977 /*
1978 * Returns 0 on success or if called with an already aborted transaction.
1979 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1980 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)1981 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1982 unsigned long nr)
1983 {
1984 struct btrfs_fs_info *fs_info = trans->fs_info;
1985 struct btrfs_delayed_ref_root *delayed_refs;
1986 struct btrfs_delayed_ref_head *locked_ref = NULL;
1987 ktime_t start = ktime_get();
1988 int ret;
1989 unsigned long count = 0;
1990 unsigned long actual_count = 0;
1991
1992 delayed_refs = &trans->transaction->delayed_refs;
1993 do {
1994 if (!locked_ref) {
1995 locked_ref = btrfs_obtain_ref_head(trans);
1996 if (IS_ERR_OR_NULL(locked_ref)) {
1997 if (PTR_ERR(locked_ref) == -EAGAIN) {
1998 continue;
1999 } else {
2000 break;
2001 }
2002 }
2003 count++;
2004 }
2005 /*
2006 * We need to try and merge add/drops of the same ref since we
2007 * can run into issues with relocate dropping the implicit ref
2008 * and then it being added back again before the drop can
2009 * finish. If we merged anything we need to re-loop so we can
2010 * get a good ref.
2011 * Or we can get node references of the same type that weren't
2012 * merged when created due to bumps in the tree mod seq, and
2013 * we need to merge them to prevent adding an inline extent
2014 * backref before dropping it (triggering a BUG_ON at
2015 * insert_inline_extent_backref()).
2016 */
2017 spin_lock(&locked_ref->lock);
2018 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2019
2020 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2021 &actual_count);
2022 if (ret < 0 && ret != -EAGAIN) {
2023 /*
2024 * Error, btrfs_run_delayed_refs_for_head already
2025 * unlocked everything so just bail out
2026 */
2027 return ret;
2028 } else if (!ret) {
2029 /*
2030 * Success, perform the usual cleanup of a processed
2031 * head
2032 */
2033 ret = cleanup_ref_head(trans, locked_ref);
2034 if (ret > 0 ) {
2035 /* We dropped our lock, we need to loop. */
2036 ret = 0;
2037 continue;
2038 } else if (ret) {
2039 return ret;
2040 }
2041 }
2042
2043 /*
2044 * Either success case or btrfs_run_delayed_refs_for_head
2045 * returned -EAGAIN, meaning we need to select another head
2046 */
2047
2048 locked_ref = NULL;
2049 cond_resched();
2050 } while ((nr != -1 && count < nr) || locked_ref);
2051
2052 /*
2053 * We don't want to include ref heads since we can have empty ref heads
2054 * and those will drastically skew our runtime down since we just do
2055 * accounting, no actual extent tree updates.
2056 */
2057 if (actual_count > 0) {
2058 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2059 u64 avg;
2060
2061 /*
2062 * We weigh the current average higher than our current runtime
2063 * to avoid large swings in the average.
2064 */
2065 spin_lock(&delayed_refs->lock);
2066 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2067 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2068 spin_unlock(&delayed_refs->lock);
2069 }
2070 return 0;
2071 }
2072
2073 #ifdef SCRAMBLE_DELAYED_REFS
2074 /*
2075 * Normally delayed refs get processed in ascending bytenr order. This
2076 * correlates in most cases to the order added. To expose dependencies on this
2077 * order, we start to process the tree in the middle instead of the beginning
2078 */
find_middle(struct rb_root * root)2079 static u64 find_middle(struct rb_root *root)
2080 {
2081 struct rb_node *n = root->rb_node;
2082 struct btrfs_delayed_ref_node *entry;
2083 int alt = 1;
2084 u64 middle;
2085 u64 first = 0, last = 0;
2086
2087 n = rb_first(root);
2088 if (n) {
2089 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2090 first = entry->bytenr;
2091 }
2092 n = rb_last(root);
2093 if (n) {
2094 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2095 last = entry->bytenr;
2096 }
2097 n = root->rb_node;
2098
2099 while (n) {
2100 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2101 WARN_ON(!entry->in_tree);
2102
2103 middle = entry->bytenr;
2104
2105 if (alt)
2106 n = n->rb_left;
2107 else
2108 n = n->rb_right;
2109
2110 alt = 1 - alt;
2111 }
2112 return middle;
2113 }
2114 #endif
2115
heads_to_leaves(struct btrfs_fs_info * fs_info,u64 heads)2116 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2117 {
2118 u64 num_bytes;
2119
2120 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2121 sizeof(struct btrfs_extent_inline_ref));
2122 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2123 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2124
2125 /*
2126 * We don't ever fill up leaves all the way so multiply by 2 just to be
2127 * closer to what we're really going to want to use.
2128 */
2129 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2130 }
2131
2132 /*
2133 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2134 * would require to store the csums for that many bytes.
2135 */
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info * fs_info,u64 csum_bytes)2136 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2137 {
2138 u64 csum_size;
2139 u64 num_csums_per_leaf;
2140 u64 num_csums;
2141
2142 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2143 num_csums_per_leaf = div64_u64(csum_size,
2144 (u64)btrfs_super_csum_size(fs_info->super_copy));
2145 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2146 num_csums += num_csums_per_leaf - 1;
2147 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2148 return num_csums;
2149 }
2150
2151 /*
2152 * this starts processing the delayed reference count updates and
2153 * extent insertions we have queued up so far. count can be
2154 * 0, which means to process everything in the tree at the start
2155 * of the run (but not newly added entries), or it can be some target
2156 * number you'd like to process.
2157 *
2158 * Returns 0 on success or if called with an aborted transaction
2159 * Returns <0 on error and aborts the transaction
2160 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2161 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2162 unsigned long count)
2163 {
2164 struct btrfs_fs_info *fs_info = trans->fs_info;
2165 struct rb_node *node;
2166 struct btrfs_delayed_ref_root *delayed_refs;
2167 struct btrfs_delayed_ref_head *head;
2168 int ret;
2169 int run_all = count == (unsigned long)-1;
2170
2171 /* We'll clean this up in btrfs_cleanup_transaction */
2172 if (trans->aborted)
2173 return 0;
2174
2175 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2176 return 0;
2177
2178 delayed_refs = &trans->transaction->delayed_refs;
2179 if (count == 0)
2180 count = atomic_read(&delayed_refs->num_entries) * 2;
2181
2182 again:
2183 #ifdef SCRAMBLE_DELAYED_REFS
2184 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2185 #endif
2186 ret = __btrfs_run_delayed_refs(trans, count);
2187 if (ret < 0) {
2188 btrfs_abort_transaction(trans, ret);
2189 return ret;
2190 }
2191
2192 if (run_all) {
2193 btrfs_create_pending_block_groups(trans);
2194
2195 spin_lock(&delayed_refs->lock);
2196 node = rb_first_cached(&delayed_refs->href_root);
2197 if (!node) {
2198 spin_unlock(&delayed_refs->lock);
2199 goto out;
2200 }
2201 head = rb_entry(node, struct btrfs_delayed_ref_head,
2202 href_node);
2203 refcount_inc(&head->refs);
2204 spin_unlock(&delayed_refs->lock);
2205
2206 /* Mutex was contended, block until it's released and retry. */
2207 mutex_lock(&head->mutex);
2208 mutex_unlock(&head->mutex);
2209
2210 btrfs_put_delayed_ref_head(head);
2211 cond_resched();
2212 goto again;
2213 }
2214 out:
2215 return 0;
2216 }
2217
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,u64 flags,int level,int is_data)2218 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2219 u64 bytenr, u64 num_bytes, u64 flags,
2220 int level, int is_data)
2221 {
2222 struct btrfs_delayed_extent_op *extent_op;
2223 int ret;
2224
2225 extent_op = btrfs_alloc_delayed_extent_op();
2226 if (!extent_op)
2227 return -ENOMEM;
2228
2229 extent_op->flags_to_set = flags;
2230 extent_op->update_flags = true;
2231 extent_op->update_key = false;
2232 extent_op->is_data = is_data ? true : false;
2233 extent_op->level = level;
2234
2235 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2236 if (ret)
2237 btrfs_free_delayed_extent_op(extent_op);
2238 return ret;
2239 }
2240
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2241 static noinline int check_delayed_ref(struct btrfs_root *root,
2242 struct btrfs_path *path,
2243 u64 objectid, u64 offset, u64 bytenr)
2244 {
2245 struct btrfs_delayed_ref_head *head;
2246 struct btrfs_delayed_ref_node *ref;
2247 struct btrfs_delayed_data_ref *data_ref;
2248 struct btrfs_delayed_ref_root *delayed_refs;
2249 struct btrfs_transaction *cur_trans;
2250 struct rb_node *node;
2251 int ret = 0;
2252
2253 spin_lock(&root->fs_info->trans_lock);
2254 cur_trans = root->fs_info->running_transaction;
2255 if (cur_trans)
2256 refcount_inc(&cur_trans->use_count);
2257 spin_unlock(&root->fs_info->trans_lock);
2258 if (!cur_trans)
2259 return 0;
2260
2261 delayed_refs = &cur_trans->delayed_refs;
2262 spin_lock(&delayed_refs->lock);
2263 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2264 if (!head) {
2265 spin_unlock(&delayed_refs->lock);
2266 btrfs_put_transaction(cur_trans);
2267 return 0;
2268 }
2269
2270 if (!mutex_trylock(&head->mutex)) {
2271 refcount_inc(&head->refs);
2272 spin_unlock(&delayed_refs->lock);
2273
2274 btrfs_release_path(path);
2275
2276 /*
2277 * Mutex was contended, block until it's released and let
2278 * caller try again
2279 */
2280 mutex_lock(&head->mutex);
2281 mutex_unlock(&head->mutex);
2282 btrfs_put_delayed_ref_head(head);
2283 btrfs_put_transaction(cur_trans);
2284 return -EAGAIN;
2285 }
2286 spin_unlock(&delayed_refs->lock);
2287
2288 spin_lock(&head->lock);
2289 /*
2290 * XXX: We should replace this with a proper search function in the
2291 * future.
2292 */
2293 for (node = rb_first_cached(&head->ref_tree); node;
2294 node = rb_next(node)) {
2295 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296 /* If it's a shared ref we know a cross reference exists */
2297 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298 ret = 1;
2299 break;
2300 }
2301
2302 data_ref = btrfs_delayed_node_to_data_ref(ref);
2303
2304 /*
2305 * If our ref doesn't match the one we're currently looking at
2306 * then we have a cross reference.
2307 */
2308 if (data_ref->root != root->root_key.objectid ||
2309 data_ref->objectid != objectid ||
2310 data_ref->offset != offset) {
2311 ret = 1;
2312 break;
2313 }
2314 }
2315 spin_unlock(&head->lock);
2316 mutex_unlock(&head->mutex);
2317 btrfs_put_transaction(cur_trans);
2318 return ret;
2319 }
2320
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2321 static noinline int check_committed_ref(struct btrfs_root *root,
2322 struct btrfs_path *path,
2323 u64 objectid, u64 offset, u64 bytenr)
2324 {
2325 struct btrfs_fs_info *fs_info = root->fs_info;
2326 struct btrfs_root *extent_root = fs_info->extent_root;
2327 struct extent_buffer *leaf;
2328 struct btrfs_extent_data_ref *ref;
2329 struct btrfs_extent_inline_ref *iref;
2330 struct btrfs_extent_item *ei;
2331 struct btrfs_key key;
2332 u32 item_size;
2333 int type;
2334 int ret;
2335
2336 key.objectid = bytenr;
2337 key.offset = (u64)-1;
2338 key.type = BTRFS_EXTENT_ITEM_KEY;
2339
2340 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2341 if (ret < 0)
2342 goto out;
2343 BUG_ON(ret == 0); /* Corruption */
2344
2345 ret = -ENOENT;
2346 if (path->slots[0] == 0)
2347 goto out;
2348
2349 path->slots[0]--;
2350 leaf = path->nodes[0];
2351 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2352
2353 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2354 goto out;
2355
2356 ret = 1;
2357 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2358 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2359
2360 /* If extent item has more than 1 inline ref then it's shared */
2361 if (item_size != sizeof(*ei) +
2362 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2363 goto out;
2364
2365 /* If extent created before last snapshot => it's definitely shared */
2366 if (btrfs_extent_generation(leaf, ei) <=
2367 btrfs_root_last_snapshot(&root->root_item))
2368 goto out;
2369
2370 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2371
2372 /* If this extent has SHARED_DATA_REF then it's shared */
2373 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2374 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2375 goto out;
2376
2377 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2378 if (btrfs_extent_refs(leaf, ei) !=
2379 btrfs_extent_data_ref_count(leaf, ref) ||
2380 btrfs_extent_data_ref_root(leaf, ref) !=
2381 root->root_key.objectid ||
2382 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2383 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2384 goto out;
2385
2386 ret = 0;
2387 out:
2388 return ret;
2389 }
2390
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)2391 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2392 u64 bytenr)
2393 {
2394 struct btrfs_path *path;
2395 int ret;
2396
2397 path = btrfs_alloc_path();
2398 if (!path)
2399 return -ENOMEM;
2400
2401 do {
2402 ret = check_committed_ref(root, path, objectid,
2403 offset, bytenr);
2404 if (ret && ret != -ENOENT)
2405 goto out;
2406
2407 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2408 } while (ret == -EAGAIN);
2409
2410 out:
2411 btrfs_free_path(path);
2412 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2413 WARN_ON(ret > 0);
2414 return ret;
2415 }
2416
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2417 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2418 struct btrfs_root *root,
2419 struct extent_buffer *buf,
2420 int full_backref, int inc)
2421 {
2422 struct btrfs_fs_info *fs_info = root->fs_info;
2423 u64 bytenr;
2424 u64 num_bytes;
2425 u64 parent;
2426 u64 ref_root;
2427 u32 nritems;
2428 struct btrfs_key key;
2429 struct btrfs_file_extent_item *fi;
2430 struct btrfs_ref generic_ref = { 0 };
2431 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2432 int i;
2433 int action;
2434 int level;
2435 int ret = 0;
2436
2437 if (btrfs_is_testing(fs_info))
2438 return 0;
2439
2440 ref_root = btrfs_header_owner(buf);
2441 nritems = btrfs_header_nritems(buf);
2442 level = btrfs_header_level(buf);
2443
2444 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2445 return 0;
2446
2447 if (full_backref)
2448 parent = buf->start;
2449 else
2450 parent = 0;
2451 if (inc)
2452 action = BTRFS_ADD_DELAYED_REF;
2453 else
2454 action = BTRFS_DROP_DELAYED_REF;
2455
2456 for (i = 0; i < nritems; i++) {
2457 if (level == 0) {
2458 btrfs_item_key_to_cpu(buf, &key, i);
2459 if (key.type != BTRFS_EXTENT_DATA_KEY)
2460 continue;
2461 fi = btrfs_item_ptr(buf, i,
2462 struct btrfs_file_extent_item);
2463 if (btrfs_file_extent_type(buf, fi) ==
2464 BTRFS_FILE_EXTENT_INLINE)
2465 continue;
2466 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2467 if (bytenr == 0)
2468 continue;
2469
2470 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2471 key.offset -= btrfs_file_extent_offset(buf, fi);
2472 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2473 num_bytes, parent);
2474 generic_ref.real_root = root->root_key.objectid;
2475 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2476 key.offset);
2477 generic_ref.skip_qgroup = for_reloc;
2478 if (inc)
2479 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2480 else
2481 ret = btrfs_free_extent(trans, &generic_ref);
2482 if (ret)
2483 goto fail;
2484 } else {
2485 bytenr = btrfs_node_blockptr(buf, i);
2486 num_bytes = fs_info->nodesize;
2487 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2488 num_bytes, parent);
2489 generic_ref.real_root = root->root_key.objectid;
2490 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2491 generic_ref.skip_qgroup = for_reloc;
2492 if (inc)
2493 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2494 else
2495 ret = btrfs_free_extent(trans, &generic_ref);
2496 if (ret)
2497 goto fail;
2498 }
2499 }
2500 return 0;
2501 fail:
2502 return ret;
2503 }
2504
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2505 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2506 struct extent_buffer *buf, int full_backref)
2507 {
2508 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2509 }
2510
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2511 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2512 struct extent_buffer *buf, int full_backref)
2513 {
2514 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2515 }
2516
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)2517 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2518 {
2519 struct btrfs_block_group_cache *block_group;
2520 int readonly = 0;
2521
2522 block_group = btrfs_lookup_block_group(fs_info, bytenr);
2523 if (!block_group || block_group->ro)
2524 readonly = 1;
2525 if (block_group)
2526 btrfs_put_block_group(block_group);
2527 return readonly;
2528 }
2529
get_alloc_profile_by_root(struct btrfs_root * root,int data)2530 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2531 {
2532 struct btrfs_fs_info *fs_info = root->fs_info;
2533 u64 flags;
2534 u64 ret;
2535
2536 if (data)
2537 flags = BTRFS_BLOCK_GROUP_DATA;
2538 else if (root == fs_info->chunk_root)
2539 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2540 else
2541 flags = BTRFS_BLOCK_GROUP_METADATA;
2542
2543 ret = btrfs_get_alloc_profile(fs_info, flags);
2544 return ret;
2545 }
2546
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)2547 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2548 {
2549 struct btrfs_block_group_cache *cache;
2550 u64 bytenr;
2551
2552 spin_lock(&fs_info->block_group_cache_lock);
2553 bytenr = fs_info->first_logical_byte;
2554 spin_unlock(&fs_info->block_group_cache_lock);
2555
2556 if (bytenr < (u64)-1)
2557 return bytenr;
2558
2559 cache = btrfs_lookup_first_block_group(fs_info, search_start);
2560 if (!cache)
2561 return 0;
2562
2563 bytenr = cache->key.objectid;
2564 btrfs_put_block_group(cache);
2565
2566 return bytenr;
2567 }
2568
pin_down_extent(struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)2569 static int pin_down_extent(struct btrfs_block_group_cache *cache,
2570 u64 bytenr, u64 num_bytes, int reserved)
2571 {
2572 struct btrfs_fs_info *fs_info = cache->fs_info;
2573
2574 spin_lock(&cache->space_info->lock);
2575 spin_lock(&cache->lock);
2576 cache->pinned += num_bytes;
2577 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2578 num_bytes);
2579 if (reserved) {
2580 cache->reserved -= num_bytes;
2581 cache->space_info->bytes_reserved -= num_bytes;
2582 }
2583 spin_unlock(&cache->lock);
2584 spin_unlock(&cache->space_info->lock);
2585
2586 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2587 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2588 set_extent_dirty(fs_info->pinned_extents, bytenr,
2589 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2590 return 0;
2591 }
2592
2593 /*
2594 * this function must be called within transaction
2595 */
btrfs_pin_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,int reserved)2596 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2597 u64 bytenr, u64 num_bytes, int reserved)
2598 {
2599 struct btrfs_block_group_cache *cache;
2600
2601 cache = btrfs_lookup_block_group(fs_info, bytenr);
2602 BUG_ON(!cache); /* Logic error */
2603
2604 pin_down_extent(cache, bytenr, num_bytes, reserved);
2605
2606 btrfs_put_block_group(cache);
2607 return 0;
2608 }
2609
2610 /*
2611 * this function must be called within transaction
2612 */
btrfs_pin_extent_for_log_replay(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)2613 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2614 u64 bytenr, u64 num_bytes)
2615 {
2616 struct btrfs_block_group_cache *cache;
2617 int ret;
2618
2619 cache = btrfs_lookup_block_group(fs_info, bytenr);
2620 if (!cache)
2621 return -EINVAL;
2622
2623 /*
2624 * pull in the free space cache (if any) so that our pin
2625 * removes the free space from the cache. We have load_only set
2626 * to one because the slow code to read in the free extents does check
2627 * the pinned extents.
2628 */
2629 btrfs_cache_block_group(cache, 1);
2630
2631 pin_down_extent(cache, bytenr, num_bytes, 0);
2632
2633 /* remove us from the free space cache (if we're there at all) */
2634 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2635 btrfs_put_block_group(cache);
2636 return ret;
2637 }
2638
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2639 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2640 u64 start, u64 num_bytes)
2641 {
2642 int ret;
2643 struct btrfs_block_group_cache *block_group;
2644 struct btrfs_caching_control *caching_ctl;
2645
2646 block_group = btrfs_lookup_block_group(fs_info, start);
2647 if (!block_group)
2648 return -EINVAL;
2649
2650 btrfs_cache_block_group(block_group, 0);
2651 caching_ctl = btrfs_get_caching_control(block_group);
2652
2653 if (!caching_ctl) {
2654 /* Logic error */
2655 BUG_ON(!btrfs_block_group_cache_done(block_group));
2656 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2657 } else {
2658 mutex_lock(&caching_ctl->mutex);
2659
2660 if (start >= caching_ctl->progress) {
2661 ret = btrfs_add_excluded_extent(fs_info, start,
2662 num_bytes);
2663 } else if (start + num_bytes <= caching_ctl->progress) {
2664 ret = btrfs_remove_free_space(block_group,
2665 start, num_bytes);
2666 } else {
2667 num_bytes = caching_ctl->progress - start;
2668 ret = btrfs_remove_free_space(block_group,
2669 start, num_bytes);
2670 if (ret)
2671 goto out_lock;
2672
2673 num_bytes = (start + num_bytes) -
2674 caching_ctl->progress;
2675 start = caching_ctl->progress;
2676 ret = btrfs_add_excluded_extent(fs_info, start,
2677 num_bytes);
2678 }
2679 out_lock:
2680 mutex_unlock(&caching_ctl->mutex);
2681 btrfs_put_caching_control(caching_ctl);
2682 }
2683 btrfs_put_block_group(block_group);
2684 return ret;
2685 }
2686
btrfs_exclude_logged_extents(struct extent_buffer * eb)2687 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2688 {
2689 struct btrfs_fs_info *fs_info = eb->fs_info;
2690 struct btrfs_file_extent_item *item;
2691 struct btrfs_key key;
2692 int found_type;
2693 int i;
2694 int ret = 0;
2695
2696 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2697 return 0;
2698
2699 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2700 btrfs_item_key_to_cpu(eb, &key, i);
2701 if (key.type != BTRFS_EXTENT_DATA_KEY)
2702 continue;
2703 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2704 found_type = btrfs_file_extent_type(eb, item);
2705 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2706 continue;
2707 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2708 continue;
2709 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2710 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2711 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2712 if (ret)
2713 break;
2714 }
2715
2716 return ret;
2717 }
2718
2719 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group_cache * bg)2720 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
2721 {
2722 atomic_inc(&bg->reservations);
2723 }
2724
btrfs_prepare_extent_commit(struct btrfs_fs_info * fs_info)2725 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
2726 {
2727 struct btrfs_caching_control *next;
2728 struct btrfs_caching_control *caching_ctl;
2729 struct btrfs_block_group_cache *cache;
2730
2731 down_write(&fs_info->commit_root_sem);
2732
2733 list_for_each_entry_safe(caching_ctl, next,
2734 &fs_info->caching_block_groups, list) {
2735 cache = caching_ctl->block_group;
2736 if (btrfs_block_group_cache_done(cache)) {
2737 cache->last_byte_to_unpin = (u64)-1;
2738 list_del_init(&caching_ctl->list);
2739 btrfs_put_caching_control(caching_ctl);
2740 } else {
2741 cache->last_byte_to_unpin = caching_ctl->progress;
2742 }
2743 }
2744
2745 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2746 fs_info->pinned_extents = &fs_info->freed_extents[1];
2747 else
2748 fs_info->pinned_extents = &fs_info->freed_extents[0];
2749
2750 up_write(&fs_info->commit_root_sem);
2751
2752 btrfs_update_global_block_rsv(fs_info);
2753 }
2754
2755 /*
2756 * Returns the free cluster for the given space info and sets empty_cluster to
2757 * what it should be based on the mount options.
2758 */
2759 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2760 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2761 struct btrfs_space_info *space_info, u64 *empty_cluster)
2762 {
2763 struct btrfs_free_cluster *ret = NULL;
2764
2765 *empty_cluster = 0;
2766 if (btrfs_mixed_space_info(space_info))
2767 return ret;
2768
2769 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2770 ret = &fs_info->meta_alloc_cluster;
2771 if (btrfs_test_opt(fs_info, SSD))
2772 *empty_cluster = SZ_2M;
2773 else
2774 *empty_cluster = SZ_64K;
2775 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2776 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2777 *empty_cluster = SZ_2M;
2778 ret = &fs_info->data_alloc_cluster;
2779 }
2780
2781 return ret;
2782 }
2783
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2784 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2785 u64 start, u64 end,
2786 const bool return_free_space)
2787 {
2788 struct btrfs_block_group_cache *cache = NULL;
2789 struct btrfs_space_info *space_info;
2790 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2791 struct btrfs_free_cluster *cluster = NULL;
2792 u64 len;
2793 u64 total_unpinned = 0;
2794 u64 empty_cluster = 0;
2795 bool readonly;
2796
2797 while (start <= end) {
2798 readonly = false;
2799 if (!cache ||
2800 start >= cache->key.objectid + cache->key.offset) {
2801 if (cache)
2802 btrfs_put_block_group(cache);
2803 total_unpinned = 0;
2804 cache = btrfs_lookup_block_group(fs_info, start);
2805 BUG_ON(!cache); /* Logic error */
2806
2807 cluster = fetch_cluster_info(fs_info,
2808 cache->space_info,
2809 &empty_cluster);
2810 empty_cluster <<= 1;
2811 }
2812
2813 len = cache->key.objectid + cache->key.offset - start;
2814 len = min(len, end + 1 - start);
2815
2816 if (start < cache->last_byte_to_unpin) {
2817 len = min(len, cache->last_byte_to_unpin - start);
2818 if (return_free_space)
2819 btrfs_add_free_space(cache, start, len);
2820 }
2821
2822 start += len;
2823 total_unpinned += len;
2824 space_info = cache->space_info;
2825
2826 /*
2827 * If this space cluster has been marked as fragmented and we've
2828 * unpinned enough in this block group to potentially allow a
2829 * cluster to be created inside of it go ahead and clear the
2830 * fragmented check.
2831 */
2832 if (cluster && cluster->fragmented &&
2833 total_unpinned > empty_cluster) {
2834 spin_lock(&cluster->lock);
2835 cluster->fragmented = 0;
2836 spin_unlock(&cluster->lock);
2837 }
2838
2839 spin_lock(&space_info->lock);
2840 spin_lock(&cache->lock);
2841 cache->pinned -= len;
2842 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2843 space_info->max_extent_size = 0;
2844 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2845 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2846 if (cache->ro) {
2847 space_info->bytes_readonly += len;
2848 readonly = true;
2849 }
2850 spin_unlock(&cache->lock);
2851 if (!readonly && return_free_space &&
2852 global_rsv->space_info == space_info) {
2853 u64 to_add = len;
2854
2855 spin_lock(&global_rsv->lock);
2856 if (!global_rsv->full) {
2857 to_add = min(len, global_rsv->size -
2858 global_rsv->reserved);
2859 global_rsv->reserved += to_add;
2860 btrfs_space_info_update_bytes_may_use(fs_info,
2861 space_info, to_add);
2862 if (global_rsv->reserved >= global_rsv->size)
2863 global_rsv->full = 1;
2864 len -= to_add;
2865 }
2866 spin_unlock(&global_rsv->lock);
2867 /* Add to any tickets we may have */
2868 if (len)
2869 btrfs_try_granting_tickets(fs_info,
2870 space_info);
2871 }
2872 spin_unlock(&space_info->lock);
2873 }
2874
2875 if (cache)
2876 btrfs_put_block_group(cache);
2877 return 0;
2878 }
2879
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2880 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2881 {
2882 struct btrfs_fs_info *fs_info = trans->fs_info;
2883 struct btrfs_block_group_cache *block_group, *tmp;
2884 struct list_head *deleted_bgs;
2885 struct extent_io_tree *unpin;
2886 u64 start;
2887 u64 end;
2888 int ret;
2889
2890 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2891 unpin = &fs_info->freed_extents[1];
2892 else
2893 unpin = &fs_info->freed_extents[0];
2894
2895 while (!trans->aborted) {
2896 struct extent_state *cached_state = NULL;
2897
2898 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2899 ret = find_first_extent_bit(unpin, 0, &start, &end,
2900 EXTENT_DIRTY, &cached_state);
2901 if (ret) {
2902 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2903 break;
2904 }
2905
2906 if (btrfs_test_opt(fs_info, DISCARD))
2907 ret = btrfs_discard_extent(fs_info, start,
2908 end + 1 - start, NULL);
2909
2910 clear_extent_dirty(unpin, start, end, &cached_state);
2911 unpin_extent_range(fs_info, start, end, true);
2912 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2913 free_extent_state(cached_state);
2914 cond_resched();
2915 }
2916
2917 /*
2918 * Transaction is finished. We don't need the lock anymore. We
2919 * do need to clean up the block groups in case of a transaction
2920 * abort.
2921 */
2922 deleted_bgs = &trans->transaction->deleted_bgs;
2923 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2924 u64 trimmed = 0;
2925
2926 ret = -EROFS;
2927 if (!trans->aborted)
2928 ret = btrfs_discard_extent(fs_info,
2929 block_group->key.objectid,
2930 block_group->key.offset,
2931 &trimmed);
2932
2933 list_del_init(&block_group->bg_list);
2934 btrfs_put_block_group_trimming(block_group);
2935 btrfs_put_block_group(block_group);
2936
2937 if (ret) {
2938 const char *errstr = btrfs_decode_error(ret);
2939 btrfs_warn(fs_info,
2940 "discard failed while removing blockgroup: errno=%d %s",
2941 ret, errstr);
2942 }
2943 }
2944
2945 return 0;
2946 }
2947
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2948 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2949 struct btrfs_delayed_ref_node *node, u64 parent,
2950 u64 root_objectid, u64 owner_objectid,
2951 u64 owner_offset, int refs_to_drop,
2952 struct btrfs_delayed_extent_op *extent_op)
2953 {
2954 struct btrfs_fs_info *info = trans->fs_info;
2955 struct btrfs_key key;
2956 struct btrfs_path *path;
2957 struct btrfs_root *extent_root = info->extent_root;
2958 struct extent_buffer *leaf;
2959 struct btrfs_extent_item *ei;
2960 struct btrfs_extent_inline_ref *iref;
2961 int ret;
2962 int is_data;
2963 int extent_slot = 0;
2964 int found_extent = 0;
2965 int num_to_del = 1;
2966 u32 item_size;
2967 u64 refs;
2968 u64 bytenr = node->bytenr;
2969 u64 num_bytes = node->num_bytes;
2970 int last_ref = 0;
2971 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2972
2973 path = btrfs_alloc_path();
2974 if (!path)
2975 return -ENOMEM;
2976
2977 path->reada = READA_FORWARD;
2978 path->leave_spinning = 1;
2979
2980 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2981 BUG_ON(!is_data && refs_to_drop != 1);
2982
2983 if (is_data)
2984 skinny_metadata = false;
2985
2986 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2987 parent, root_objectid, owner_objectid,
2988 owner_offset);
2989 if (ret == 0) {
2990 extent_slot = path->slots[0];
2991 while (extent_slot >= 0) {
2992 btrfs_item_key_to_cpu(path->nodes[0], &key,
2993 extent_slot);
2994 if (key.objectid != bytenr)
2995 break;
2996 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2997 key.offset == num_bytes) {
2998 found_extent = 1;
2999 break;
3000 }
3001 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3002 key.offset == owner_objectid) {
3003 found_extent = 1;
3004 break;
3005 }
3006 if (path->slots[0] - extent_slot > 5)
3007 break;
3008 extent_slot--;
3009 }
3010
3011 if (!found_extent) {
3012 BUG_ON(iref);
3013 ret = remove_extent_backref(trans, path, NULL,
3014 refs_to_drop,
3015 is_data, &last_ref);
3016 if (ret) {
3017 btrfs_abort_transaction(trans, ret);
3018 goto out;
3019 }
3020 btrfs_release_path(path);
3021 path->leave_spinning = 1;
3022
3023 key.objectid = bytenr;
3024 key.type = BTRFS_EXTENT_ITEM_KEY;
3025 key.offset = num_bytes;
3026
3027 if (!is_data && skinny_metadata) {
3028 key.type = BTRFS_METADATA_ITEM_KEY;
3029 key.offset = owner_objectid;
3030 }
3031
3032 ret = btrfs_search_slot(trans, extent_root,
3033 &key, path, -1, 1);
3034 if (ret > 0 && skinny_metadata && path->slots[0]) {
3035 /*
3036 * Couldn't find our skinny metadata item,
3037 * see if we have ye olde extent item.
3038 */
3039 path->slots[0]--;
3040 btrfs_item_key_to_cpu(path->nodes[0], &key,
3041 path->slots[0]);
3042 if (key.objectid == bytenr &&
3043 key.type == BTRFS_EXTENT_ITEM_KEY &&
3044 key.offset == num_bytes)
3045 ret = 0;
3046 }
3047
3048 if (ret > 0 && skinny_metadata) {
3049 skinny_metadata = false;
3050 key.objectid = bytenr;
3051 key.type = BTRFS_EXTENT_ITEM_KEY;
3052 key.offset = num_bytes;
3053 btrfs_release_path(path);
3054 ret = btrfs_search_slot(trans, extent_root,
3055 &key, path, -1, 1);
3056 }
3057
3058 if (ret) {
3059 btrfs_err(info,
3060 "umm, got %d back from search, was looking for %llu",
3061 ret, bytenr);
3062 if (ret > 0)
3063 btrfs_print_leaf(path->nodes[0]);
3064 }
3065 if (ret < 0) {
3066 btrfs_abort_transaction(trans, ret);
3067 goto out;
3068 }
3069 extent_slot = path->slots[0];
3070 }
3071 } else if (WARN_ON(ret == -ENOENT)) {
3072 btrfs_print_leaf(path->nodes[0]);
3073 btrfs_err(info,
3074 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3075 bytenr, parent, root_objectid, owner_objectid,
3076 owner_offset);
3077 btrfs_abort_transaction(trans, ret);
3078 goto out;
3079 } else {
3080 btrfs_abort_transaction(trans, ret);
3081 goto out;
3082 }
3083
3084 leaf = path->nodes[0];
3085 item_size = btrfs_item_size_nr(leaf, extent_slot);
3086 if (unlikely(item_size < sizeof(*ei))) {
3087 ret = -EINVAL;
3088 btrfs_print_v0_err(info);
3089 btrfs_abort_transaction(trans, ret);
3090 goto out;
3091 }
3092 ei = btrfs_item_ptr(leaf, extent_slot,
3093 struct btrfs_extent_item);
3094 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3095 key.type == BTRFS_EXTENT_ITEM_KEY) {
3096 struct btrfs_tree_block_info *bi;
3097 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3098 bi = (struct btrfs_tree_block_info *)(ei + 1);
3099 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3100 }
3101
3102 refs = btrfs_extent_refs(leaf, ei);
3103 if (refs < refs_to_drop) {
3104 btrfs_err(info,
3105 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3106 refs_to_drop, refs, bytenr);
3107 ret = -EINVAL;
3108 btrfs_abort_transaction(trans, ret);
3109 goto out;
3110 }
3111 refs -= refs_to_drop;
3112
3113 if (refs > 0) {
3114 if (extent_op)
3115 __run_delayed_extent_op(extent_op, leaf, ei);
3116 /*
3117 * In the case of inline back ref, reference count will
3118 * be updated by remove_extent_backref
3119 */
3120 if (iref) {
3121 BUG_ON(!found_extent);
3122 } else {
3123 btrfs_set_extent_refs(leaf, ei, refs);
3124 btrfs_mark_buffer_dirty(leaf);
3125 }
3126 if (found_extent) {
3127 ret = remove_extent_backref(trans, path, iref,
3128 refs_to_drop, is_data,
3129 &last_ref);
3130 if (ret) {
3131 btrfs_abort_transaction(trans, ret);
3132 goto out;
3133 }
3134 }
3135 } else {
3136 if (found_extent) {
3137 BUG_ON(is_data && refs_to_drop !=
3138 extent_data_ref_count(path, iref));
3139 if (iref) {
3140 BUG_ON(path->slots[0] != extent_slot);
3141 } else {
3142 BUG_ON(path->slots[0] != extent_slot + 1);
3143 path->slots[0] = extent_slot;
3144 num_to_del = 2;
3145 }
3146 }
3147
3148 last_ref = 1;
3149 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3150 num_to_del);
3151 if (ret) {
3152 btrfs_abort_transaction(trans, ret);
3153 goto out;
3154 }
3155 btrfs_release_path(path);
3156
3157 if (is_data) {
3158 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
3159 if (ret) {
3160 btrfs_abort_transaction(trans, ret);
3161 goto out;
3162 }
3163 }
3164
3165 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3166 if (ret) {
3167 btrfs_abort_transaction(trans, ret);
3168 goto out;
3169 }
3170
3171 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3172 if (ret) {
3173 btrfs_abort_transaction(trans, ret);
3174 goto out;
3175 }
3176 }
3177 btrfs_release_path(path);
3178
3179 out:
3180 btrfs_free_path(path);
3181 return ret;
3182 }
3183
3184 /*
3185 * when we free an block, it is possible (and likely) that we free the last
3186 * delayed ref for that extent as well. This searches the delayed ref tree for
3187 * a given extent, and if there are no other delayed refs to be processed, it
3188 * removes it from the tree.
3189 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3190 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3191 u64 bytenr)
3192 {
3193 struct btrfs_delayed_ref_head *head;
3194 struct btrfs_delayed_ref_root *delayed_refs;
3195 int ret = 0;
3196
3197 delayed_refs = &trans->transaction->delayed_refs;
3198 spin_lock(&delayed_refs->lock);
3199 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3200 if (!head)
3201 goto out_delayed_unlock;
3202
3203 spin_lock(&head->lock);
3204 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3205 goto out;
3206
3207 if (cleanup_extent_op(head) != NULL)
3208 goto out;
3209
3210 /*
3211 * waiting for the lock here would deadlock. If someone else has it
3212 * locked they are already in the process of dropping it anyway
3213 */
3214 if (!mutex_trylock(&head->mutex))
3215 goto out;
3216
3217 btrfs_delete_ref_head(delayed_refs, head);
3218 head->processing = 0;
3219
3220 spin_unlock(&head->lock);
3221 spin_unlock(&delayed_refs->lock);
3222
3223 BUG_ON(head->extent_op);
3224 if (head->must_insert_reserved)
3225 ret = 1;
3226
3227 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3228 mutex_unlock(&head->mutex);
3229 btrfs_put_delayed_ref_head(head);
3230 return ret;
3231 out:
3232 spin_unlock(&head->lock);
3233
3234 out_delayed_unlock:
3235 spin_unlock(&delayed_refs->lock);
3236 return 0;
3237 }
3238
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)3239 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3240 struct btrfs_root *root,
3241 struct extent_buffer *buf,
3242 u64 parent, int last_ref)
3243 {
3244 struct btrfs_fs_info *fs_info = root->fs_info;
3245 struct btrfs_ref generic_ref = { 0 };
3246 int pin = 1;
3247 int ret;
3248
3249 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3250 buf->start, buf->len, parent);
3251 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3252 root->root_key.objectid);
3253
3254 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3255 int old_ref_mod, new_ref_mod;
3256
3257 btrfs_ref_tree_mod(fs_info, &generic_ref);
3258 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3259 &old_ref_mod, &new_ref_mod);
3260 BUG_ON(ret); /* -ENOMEM */
3261 pin = old_ref_mod >= 0 && new_ref_mod < 0;
3262 }
3263
3264 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3265 struct btrfs_block_group_cache *cache;
3266
3267 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3268 ret = check_ref_cleanup(trans, buf->start);
3269 if (!ret)
3270 goto out;
3271 }
3272
3273 pin = 0;
3274 cache = btrfs_lookup_block_group(fs_info, buf->start);
3275
3276 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3277 pin_down_extent(cache, buf->start, buf->len, 1);
3278 btrfs_put_block_group(cache);
3279 goto out;
3280 }
3281
3282 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3283
3284 btrfs_add_free_space(cache, buf->start, buf->len);
3285 btrfs_free_reserved_bytes(cache, buf->len, 0);
3286 btrfs_put_block_group(cache);
3287 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3288 }
3289 out:
3290 if (pin)
3291 add_pinned_bytes(fs_info, &generic_ref);
3292
3293 if (last_ref) {
3294 /*
3295 * Deleting the buffer, clear the corrupt flag since it doesn't
3296 * matter anymore.
3297 */
3298 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3299 }
3300 }
3301
3302 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3303 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3304 {
3305 struct btrfs_fs_info *fs_info = trans->fs_info;
3306 int old_ref_mod, new_ref_mod;
3307 int ret;
3308
3309 if (btrfs_is_testing(fs_info))
3310 return 0;
3311
3312 /*
3313 * tree log blocks never actually go into the extent allocation
3314 * tree, just update pinning info and exit early.
3315 */
3316 if ((ref->type == BTRFS_REF_METADATA &&
3317 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3318 (ref->type == BTRFS_REF_DATA &&
3319 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3320 /* unlocks the pinned mutex */
3321 btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
3322 old_ref_mod = new_ref_mod = 0;
3323 ret = 0;
3324 } else if (ref->type == BTRFS_REF_METADATA) {
3325 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3326 &old_ref_mod, &new_ref_mod);
3327 } else {
3328 ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3329 &old_ref_mod, &new_ref_mod);
3330 }
3331
3332 if (!((ref->type == BTRFS_REF_METADATA &&
3333 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3334 (ref->type == BTRFS_REF_DATA &&
3335 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3336 btrfs_ref_tree_mod(fs_info, ref);
3337
3338 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3339 add_pinned_bytes(fs_info, ref);
3340
3341 return ret;
3342 }
3343
3344 enum btrfs_loop_type {
3345 LOOP_CACHING_NOWAIT,
3346 LOOP_CACHING_WAIT,
3347 LOOP_ALLOC_CHUNK,
3348 LOOP_NO_EMPTY_SIZE,
3349 };
3350
3351 static inline void
btrfs_lock_block_group(struct btrfs_block_group_cache * cache,int delalloc)3352 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
3353 int delalloc)
3354 {
3355 if (delalloc)
3356 down_read(&cache->data_rwsem);
3357 }
3358
3359 static inline void
btrfs_grab_block_group(struct btrfs_block_group_cache * cache,int delalloc)3360 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
3361 int delalloc)
3362 {
3363 btrfs_get_block_group(cache);
3364 if (delalloc)
3365 down_read(&cache->data_rwsem);
3366 }
3367
3368 static struct btrfs_block_group_cache *
btrfs_lock_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,int delalloc)3369 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
3370 struct btrfs_free_cluster *cluster,
3371 int delalloc)
3372 {
3373 struct btrfs_block_group_cache *used_bg = NULL;
3374
3375 spin_lock(&cluster->refill_lock);
3376 while (1) {
3377 used_bg = cluster->block_group;
3378 if (!used_bg)
3379 return NULL;
3380
3381 if (used_bg == block_group)
3382 return used_bg;
3383
3384 btrfs_get_block_group(used_bg);
3385
3386 if (!delalloc)
3387 return used_bg;
3388
3389 if (down_read_trylock(&used_bg->data_rwsem))
3390 return used_bg;
3391
3392 spin_unlock(&cluster->refill_lock);
3393
3394 /* We should only have one-level nested. */
3395 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3396
3397 spin_lock(&cluster->refill_lock);
3398 if (used_bg == cluster->block_group)
3399 return used_bg;
3400
3401 up_read(&used_bg->data_rwsem);
3402 btrfs_put_block_group(used_bg);
3403 }
3404 }
3405
3406 static inline void
btrfs_release_block_group(struct btrfs_block_group_cache * cache,int delalloc)3407 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
3408 int delalloc)
3409 {
3410 if (delalloc)
3411 up_read(&cache->data_rwsem);
3412 btrfs_put_block_group(cache);
3413 }
3414
3415 /*
3416 * Structure used internally for find_free_extent() function. Wraps needed
3417 * parameters.
3418 */
3419 struct find_free_extent_ctl {
3420 /* Basic allocation info */
3421 u64 ram_bytes;
3422 u64 num_bytes;
3423 u64 empty_size;
3424 u64 flags;
3425 int delalloc;
3426
3427 /* Where to start the search inside the bg */
3428 u64 search_start;
3429
3430 /* For clustered allocation */
3431 u64 empty_cluster;
3432
3433 bool have_caching_bg;
3434 bool orig_have_caching_bg;
3435
3436 /* RAID index, converted from flags */
3437 int index;
3438
3439 /*
3440 * Current loop number, check find_free_extent_update_loop() for details
3441 */
3442 int loop;
3443
3444 /*
3445 * Whether we're refilling a cluster, if true we need to re-search
3446 * current block group but don't try to refill the cluster again.
3447 */
3448 bool retry_clustered;
3449
3450 /*
3451 * Whether we're updating free space cache, if true we need to re-search
3452 * current block group but don't try updating free space cache again.
3453 */
3454 bool retry_unclustered;
3455
3456 /* If current block group is cached */
3457 int cached;
3458
3459 /* Max contiguous hole found */
3460 u64 max_extent_size;
3461
3462 /* Total free space from free space cache, not always contiguous */
3463 u64 total_free_space;
3464
3465 /* Found result */
3466 u64 found_offset;
3467 };
3468
3469
3470 /*
3471 * Helper function for find_free_extent().
3472 *
3473 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3474 * Return -EAGAIN to inform caller that we need to re-search this block group
3475 * Return >0 to inform caller that we find nothing
3476 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3477 */
find_free_extent_clustered(struct btrfs_block_group_cache * bg,struct btrfs_free_cluster * last_ptr,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group_cache ** cluster_bg_ret)3478 static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
3479 struct btrfs_free_cluster *last_ptr,
3480 struct find_free_extent_ctl *ffe_ctl,
3481 struct btrfs_block_group_cache **cluster_bg_ret)
3482 {
3483 struct btrfs_block_group_cache *cluster_bg;
3484 u64 aligned_cluster;
3485 u64 offset;
3486 int ret;
3487
3488 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3489 if (!cluster_bg)
3490 goto refill_cluster;
3491 if (cluster_bg != bg && (cluster_bg->ro ||
3492 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3493 goto release_cluster;
3494
3495 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3496 ffe_ctl->num_bytes, cluster_bg->key.objectid,
3497 &ffe_ctl->max_extent_size);
3498 if (offset) {
3499 /* We have a block, we're done */
3500 spin_unlock(&last_ptr->refill_lock);
3501 trace_btrfs_reserve_extent_cluster(cluster_bg,
3502 ffe_ctl->search_start, ffe_ctl->num_bytes);
3503 *cluster_bg_ret = cluster_bg;
3504 ffe_ctl->found_offset = offset;
3505 return 0;
3506 }
3507 WARN_ON(last_ptr->block_group != cluster_bg);
3508
3509 release_cluster:
3510 /*
3511 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3512 * lets just skip it and let the allocator find whatever block it can
3513 * find. If we reach this point, we will have tried the cluster
3514 * allocator plenty of times and not have found anything, so we are
3515 * likely way too fragmented for the clustering stuff to find anything.
3516 *
3517 * However, if the cluster is taken from the current block group,
3518 * release the cluster first, so that we stand a better chance of
3519 * succeeding in the unclustered allocation.
3520 */
3521 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3522 spin_unlock(&last_ptr->refill_lock);
3523 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3524 return -ENOENT;
3525 }
3526
3527 /* This cluster didn't work out, free it and start over */
3528 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3529
3530 if (cluster_bg != bg)
3531 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3532
3533 refill_cluster:
3534 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3535 spin_unlock(&last_ptr->refill_lock);
3536 return -ENOENT;
3537 }
3538
3539 aligned_cluster = max_t(u64,
3540 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3541 bg->full_stripe_len);
3542 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3543 ffe_ctl->num_bytes, aligned_cluster);
3544 if (ret == 0) {
3545 /* Now pull our allocation out of this cluster */
3546 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3547 ffe_ctl->num_bytes, ffe_ctl->search_start,
3548 &ffe_ctl->max_extent_size);
3549 if (offset) {
3550 /* We found one, proceed */
3551 spin_unlock(&last_ptr->refill_lock);
3552 trace_btrfs_reserve_extent_cluster(bg,
3553 ffe_ctl->search_start,
3554 ffe_ctl->num_bytes);
3555 ffe_ctl->found_offset = offset;
3556 return 0;
3557 }
3558 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3559 !ffe_ctl->retry_clustered) {
3560 spin_unlock(&last_ptr->refill_lock);
3561
3562 ffe_ctl->retry_clustered = true;
3563 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3564 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3565 return -EAGAIN;
3566 }
3567 /*
3568 * At this point we either didn't find a cluster or we weren't able to
3569 * allocate a block from our cluster. Free the cluster we've been
3570 * trying to use, and go to the next block group.
3571 */
3572 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3573 spin_unlock(&last_ptr->refill_lock);
3574 return 1;
3575 }
3576
3577 /*
3578 * Return >0 to inform caller that we find nothing
3579 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3580 * Return -EAGAIN to inform caller that we need to re-search this block group
3581 */
find_free_extent_unclustered(struct btrfs_block_group_cache * bg,struct btrfs_free_cluster * last_ptr,struct find_free_extent_ctl * ffe_ctl)3582 static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
3583 struct btrfs_free_cluster *last_ptr,
3584 struct find_free_extent_ctl *ffe_ctl)
3585 {
3586 u64 offset;
3587
3588 /*
3589 * We are doing an unclustered allocation, set the fragmented flag so
3590 * we don't bother trying to setup a cluster again until we get more
3591 * space.
3592 */
3593 if (unlikely(last_ptr)) {
3594 spin_lock(&last_ptr->lock);
3595 last_ptr->fragmented = 1;
3596 spin_unlock(&last_ptr->lock);
3597 }
3598 if (ffe_ctl->cached) {
3599 struct btrfs_free_space_ctl *free_space_ctl;
3600
3601 free_space_ctl = bg->free_space_ctl;
3602 spin_lock(&free_space_ctl->tree_lock);
3603 if (free_space_ctl->free_space <
3604 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3605 ffe_ctl->empty_size) {
3606 ffe_ctl->total_free_space = max_t(u64,
3607 ffe_ctl->total_free_space,
3608 free_space_ctl->free_space);
3609 spin_unlock(&free_space_ctl->tree_lock);
3610 return 1;
3611 }
3612 spin_unlock(&free_space_ctl->tree_lock);
3613 }
3614
3615 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3616 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3617 &ffe_ctl->max_extent_size);
3618
3619 /*
3620 * If we didn't find a chunk, and we haven't failed on this block group
3621 * before, and this block group is in the middle of caching and we are
3622 * ok with waiting, then go ahead and wait for progress to be made, and
3623 * set @retry_unclustered to true.
3624 *
3625 * If @retry_unclustered is true then we've already waited on this
3626 * block group once and should move on to the next block group.
3627 */
3628 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3629 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3630 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3631 ffe_ctl->empty_size);
3632 ffe_ctl->retry_unclustered = true;
3633 return -EAGAIN;
3634 } else if (!offset) {
3635 return 1;
3636 }
3637 ffe_ctl->found_offset = offset;
3638 return 0;
3639 }
3640
3641 /*
3642 * Return >0 means caller needs to re-search for free extent
3643 * Return 0 means we have the needed free extent.
3644 * Return <0 means we failed to locate any free extent.
3645 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_free_cluster * last_ptr,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,int full_search,bool use_cluster)3646 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3647 struct btrfs_free_cluster *last_ptr,
3648 struct btrfs_key *ins,
3649 struct find_free_extent_ctl *ffe_ctl,
3650 int full_search, bool use_cluster)
3651 {
3652 struct btrfs_root *root = fs_info->extent_root;
3653 int ret;
3654
3655 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3656 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3657 ffe_ctl->orig_have_caching_bg = true;
3658
3659 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3660 ffe_ctl->have_caching_bg)
3661 return 1;
3662
3663 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3664 return 1;
3665
3666 if (ins->objectid) {
3667 if (!use_cluster && last_ptr) {
3668 spin_lock(&last_ptr->lock);
3669 last_ptr->window_start = ins->objectid;
3670 spin_unlock(&last_ptr->lock);
3671 }
3672 return 0;
3673 }
3674
3675 /*
3676 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3677 * caching kthreads as we move along
3678 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3679 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3680 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3681 * again
3682 */
3683 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3684 ffe_ctl->index = 0;
3685 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3686 /*
3687 * We want to skip the LOOP_CACHING_WAIT step if we
3688 * don't have any uncached bgs and we've already done a
3689 * full search through.
3690 */
3691 if (ffe_ctl->orig_have_caching_bg || !full_search)
3692 ffe_ctl->loop = LOOP_CACHING_WAIT;
3693 else
3694 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3695 } else {
3696 ffe_ctl->loop++;
3697 }
3698
3699 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3700 struct btrfs_trans_handle *trans;
3701 int exist = 0;
3702
3703 trans = current->journal_info;
3704 if (trans)
3705 exist = 1;
3706 else
3707 trans = btrfs_join_transaction(root);
3708
3709 if (IS_ERR(trans)) {
3710 ret = PTR_ERR(trans);
3711 return ret;
3712 }
3713
3714 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3715 CHUNK_ALLOC_FORCE);
3716
3717 /*
3718 * If we can't allocate a new chunk we've already looped
3719 * through at least once, move on to the NO_EMPTY_SIZE
3720 * case.
3721 */
3722 if (ret == -ENOSPC)
3723 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3724
3725 /* Do not bail out on ENOSPC since we can do more. */
3726 if (ret < 0 && ret != -ENOSPC)
3727 btrfs_abort_transaction(trans, ret);
3728 else
3729 ret = 0;
3730 if (!exist)
3731 btrfs_end_transaction(trans);
3732 if (ret)
3733 return ret;
3734 }
3735
3736 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3737 /*
3738 * Don't loop again if we already have no empty_size and
3739 * no empty_cluster.
3740 */
3741 if (ffe_ctl->empty_size == 0 &&
3742 ffe_ctl->empty_cluster == 0)
3743 return -ENOSPC;
3744 ffe_ctl->empty_size = 0;
3745 ffe_ctl->empty_cluster = 0;
3746 }
3747 return 1;
3748 }
3749 return -ENOSPC;
3750 }
3751
3752 /*
3753 * walks the btree of allocated extents and find a hole of a given size.
3754 * The key ins is changed to record the hole:
3755 * ins->objectid == start position
3756 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3757 * ins->offset == the size of the hole.
3758 * Any available blocks before search_start are skipped.
3759 *
3760 * If there is no suitable free space, we will record the max size of
3761 * the free space extent currently.
3762 *
3763 * The overall logic and call chain:
3764 *
3765 * find_free_extent()
3766 * |- Iterate through all block groups
3767 * | |- Get a valid block group
3768 * | |- Try to do clustered allocation in that block group
3769 * | |- Try to do unclustered allocation in that block group
3770 * | |- Check if the result is valid
3771 * | | |- If valid, then exit
3772 * | |- Jump to next block group
3773 * |
3774 * |- Push harder to find free extents
3775 * |- If not found, re-iterate all block groups
3776 */
find_free_extent(struct btrfs_fs_info * fs_info,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 flags,int delalloc)3777 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3778 u64 ram_bytes, u64 num_bytes, u64 empty_size,
3779 u64 hint_byte, struct btrfs_key *ins,
3780 u64 flags, int delalloc)
3781 {
3782 int ret = 0;
3783 struct btrfs_free_cluster *last_ptr = NULL;
3784 struct btrfs_block_group_cache *block_group = NULL;
3785 struct find_free_extent_ctl ffe_ctl = {0};
3786 struct btrfs_space_info *space_info;
3787 bool use_cluster = true;
3788 bool full_search = false;
3789
3790 WARN_ON(num_bytes < fs_info->sectorsize);
3791
3792 ffe_ctl.ram_bytes = ram_bytes;
3793 ffe_ctl.num_bytes = num_bytes;
3794 ffe_ctl.empty_size = empty_size;
3795 ffe_ctl.flags = flags;
3796 ffe_ctl.search_start = 0;
3797 ffe_ctl.retry_clustered = false;
3798 ffe_ctl.retry_unclustered = false;
3799 ffe_ctl.delalloc = delalloc;
3800 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3801 ffe_ctl.have_caching_bg = false;
3802 ffe_ctl.orig_have_caching_bg = false;
3803 ffe_ctl.found_offset = 0;
3804
3805 ins->type = BTRFS_EXTENT_ITEM_KEY;
3806 ins->objectid = 0;
3807 ins->offset = 0;
3808
3809 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3810
3811 space_info = btrfs_find_space_info(fs_info, flags);
3812 if (!space_info) {
3813 btrfs_err(fs_info, "No space info for %llu", flags);
3814 return -ENOSPC;
3815 }
3816
3817 /*
3818 * If our free space is heavily fragmented we may not be able to make
3819 * big contiguous allocations, so instead of doing the expensive search
3820 * for free space, simply return ENOSPC with our max_extent_size so we
3821 * can go ahead and search for a more manageable chunk.
3822 *
3823 * If our max_extent_size is large enough for our allocation simply
3824 * disable clustering since we will likely not be able to find enough
3825 * space to create a cluster and induce latency trying.
3826 */
3827 if (unlikely(space_info->max_extent_size)) {
3828 spin_lock(&space_info->lock);
3829 if (space_info->max_extent_size &&
3830 num_bytes > space_info->max_extent_size) {
3831 ins->offset = space_info->max_extent_size;
3832 spin_unlock(&space_info->lock);
3833 return -ENOSPC;
3834 } else if (space_info->max_extent_size) {
3835 use_cluster = false;
3836 }
3837 spin_unlock(&space_info->lock);
3838 }
3839
3840 last_ptr = fetch_cluster_info(fs_info, space_info,
3841 &ffe_ctl.empty_cluster);
3842 if (last_ptr) {
3843 spin_lock(&last_ptr->lock);
3844 if (last_ptr->block_group)
3845 hint_byte = last_ptr->window_start;
3846 if (last_ptr->fragmented) {
3847 /*
3848 * We still set window_start so we can keep track of the
3849 * last place we found an allocation to try and save
3850 * some time.
3851 */
3852 hint_byte = last_ptr->window_start;
3853 use_cluster = false;
3854 }
3855 spin_unlock(&last_ptr->lock);
3856 }
3857
3858 ffe_ctl.search_start = max(ffe_ctl.search_start,
3859 first_logical_byte(fs_info, 0));
3860 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
3861 if (ffe_ctl.search_start == hint_byte) {
3862 block_group = btrfs_lookup_block_group(fs_info,
3863 ffe_ctl.search_start);
3864 /*
3865 * we don't want to use the block group if it doesn't match our
3866 * allocation bits, or if its not cached.
3867 *
3868 * However if we are re-searching with an ideal block group
3869 * picked out then we don't care that the block group is cached.
3870 */
3871 if (block_group && block_group_bits(block_group, flags) &&
3872 block_group->cached != BTRFS_CACHE_NO) {
3873 down_read(&space_info->groups_sem);
3874 if (list_empty(&block_group->list) ||
3875 block_group->ro) {
3876 /*
3877 * someone is removing this block group,
3878 * we can't jump into the have_block_group
3879 * target because our list pointers are not
3880 * valid
3881 */
3882 btrfs_put_block_group(block_group);
3883 up_read(&space_info->groups_sem);
3884 } else {
3885 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3886 block_group->flags);
3887 btrfs_lock_block_group(block_group, delalloc);
3888 goto have_block_group;
3889 }
3890 } else if (block_group) {
3891 btrfs_put_block_group(block_group);
3892 }
3893 }
3894 search:
3895 ffe_ctl.have_caching_bg = false;
3896 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
3897 ffe_ctl.index == 0)
3898 full_search = true;
3899 down_read(&space_info->groups_sem);
3900 list_for_each_entry(block_group,
3901 &space_info->block_groups[ffe_ctl.index], list) {
3902 /* If the block group is read-only, we can skip it entirely. */
3903 if (unlikely(block_group->ro))
3904 continue;
3905
3906 btrfs_grab_block_group(block_group, delalloc);
3907 ffe_ctl.search_start = block_group->key.objectid;
3908
3909 /*
3910 * this can happen if we end up cycling through all the
3911 * raid types, but we want to make sure we only allocate
3912 * for the proper type.
3913 */
3914 if (!block_group_bits(block_group, flags)) {
3915 u64 extra = BTRFS_BLOCK_GROUP_DUP |
3916 BTRFS_BLOCK_GROUP_RAID1_MASK |
3917 BTRFS_BLOCK_GROUP_RAID56_MASK |
3918 BTRFS_BLOCK_GROUP_RAID10;
3919
3920 /*
3921 * if they asked for extra copies and this block group
3922 * doesn't provide them, bail. This does allow us to
3923 * fill raid0 from raid1.
3924 */
3925 if ((flags & extra) && !(block_group->flags & extra))
3926 goto loop;
3927
3928 /*
3929 * This block group has different flags than we want.
3930 * It's possible that we have MIXED_GROUP flag but no
3931 * block group is mixed. Just skip such block group.
3932 */
3933 btrfs_release_block_group(block_group, delalloc);
3934 continue;
3935 }
3936
3937 have_block_group:
3938 ffe_ctl.cached = btrfs_block_group_cache_done(block_group);
3939 if (unlikely(!ffe_ctl.cached)) {
3940 ffe_ctl.have_caching_bg = true;
3941 ret = btrfs_cache_block_group(block_group, 0);
3942 BUG_ON(ret < 0);
3943 ret = 0;
3944 }
3945
3946 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
3947 goto loop;
3948
3949 /*
3950 * Ok we want to try and use the cluster allocator, so
3951 * lets look there
3952 */
3953 if (last_ptr && use_cluster) {
3954 struct btrfs_block_group_cache *cluster_bg = NULL;
3955
3956 ret = find_free_extent_clustered(block_group, last_ptr,
3957 &ffe_ctl, &cluster_bg);
3958
3959 if (ret == 0) {
3960 if (cluster_bg && cluster_bg != block_group) {
3961 btrfs_release_block_group(block_group,
3962 delalloc);
3963 block_group = cluster_bg;
3964 }
3965 goto checks;
3966 } else if (ret == -EAGAIN) {
3967 goto have_block_group;
3968 } else if (ret > 0) {
3969 goto loop;
3970 }
3971 /* ret == -ENOENT case falls through */
3972 }
3973
3974 ret = find_free_extent_unclustered(block_group, last_ptr,
3975 &ffe_ctl);
3976 if (ret == -EAGAIN)
3977 goto have_block_group;
3978 else if (ret > 0)
3979 goto loop;
3980 /* ret == 0 case falls through */
3981 checks:
3982 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
3983 fs_info->stripesize);
3984
3985 /* move on to the next group */
3986 if (ffe_ctl.search_start + num_bytes >
3987 block_group->key.objectid + block_group->key.offset) {
3988 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3989 num_bytes);
3990 goto loop;
3991 }
3992
3993 if (ffe_ctl.found_offset < ffe_ctl.search_start)
3994 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3995 ffe_ctl.search_start - ffe_ctl.found_offset);
3996
3997 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
3998 num_bytes, delalloc);
3999 if (ret == -EAGAIN) {
4000 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4001 num_bytes);
4002 goto loop;
4003 }
4004 btrfs_inc_block_group_reservations(block_group);
4005
4006 /* we are all good, lets return */
4007 ins->objectid = ffe_ctl.search_start;
4008 ins->offset = num_bytes;
4009
4010 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4011 num_bytes);
4012 btrfs_release_block_group(block_group, delalloc);
4013 break;
4014 loop:
4015 ffe_ctl.retry_clustered = false;
4016 ffe_ctl.retry_unclustered = false;
4017 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4018 ffe_ctl.index);
4019 btrfs_release_block_group(block_group, delalloc);
4020 cond_resched();
4021 }
4022 up_read(&space_info->groups_sem);
4023
4024 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
4025 full_search, use_cluster);
4026 if (ret > 0)
4027 goto search;
4028
4029 if (ret == -ENOSPC) {
4030 /*
4031 * Use ffe_ctl->total_free_space as fallback if we can't find
4032 * any contiguous hole.
4033 */
4034 if (!ffe_ctl.max_extent_size)
4035 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4036 spin_lock(&space_info->lock);
4037 space_info->max_extent_size = ffe_ctl.max_extent_size;
4038 spin_unlock(&space_info->lock);
4039 ins->offset = ffe_ctl.max_extent_size;
4040 }
4041 return ret;
4042 }
4043
4044 /*
4045 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4046 * hole that is at least as big as @num_bytes.
4047 *
4048 * @root - The root that will contain this extent
4049 *
4050 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4051 * is used for accounting purposes. This value differs
4052 * from @num_bytes only in the case of compressed extents.
4053 *
4054 * @num_bytes - Number of bytes to allocate on-disk.
4055 *
4056 * @min_alloc_size - Indicates the minimum amount of space that the
4057 * allocator should try to satisfy. In some cases
4058 * @num_bytes may be larger than what is required and if
4059 * the filesystem is fragmented then allocation fails.
4060 * However, the presence of @min_alloc_size gives a
4061 * chance to try and satisfy the smaller allocation.
4062 *
4063 * @empty_size - A hint that you plan on doing more COW. This is the
4064 * size in bytes the allocator should try to find free
4065 * next to the block it returns. This is just a hint and
4066 * may be ignored by the allocator.
4067 *
4068 * @hint_byte - Hint to the allocator to start searching above the byte
4069 * address passed. It might be ignored.
4070 *
4071 * @ins - This key is modified to record the found hole. It will
4072 * have the following values:
4073 * ins->objectid == start position
4074 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4075 * ins->offset == the size of the hole.
4076 *
4077 * @is_data - Boolean flag indicating whether an extent is
4078 * allocated for data (true) or metadata (false)
4079 *
4080 * @delalloc - Boolean flag indicating whether this allocation is for
4081 * delalloc or not. If 'true' data_rwsem of block groups
4082 * is going to be acquired.
4083 *
4084 *
4085 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4086 * case -ENOSPC is returned then @ins->offset will contain the size of the
4087 * largest available hole the allocator managed to find.
4088 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4089 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4090 u64 num_bytes, u64 min_alloc_size,
4091 u64 empty_size, u64 hint_byte,
4092 struct btrfs_key *ins, int is_data, int delalloc)
4093 {
4094 struct btrfs_fs_info *fs_info = root->fs_info;
4095 bool final_tried = num_bytes == min_alloc_size;
4096 u64 flags;
4097 int ret;
4098
4099 flags = get_alloc_profile_by_root(root, is_data);
4100 again:
4101 WARN_ON(num_bytes < fs_info->sectorsize);
4102 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4103 hint_byte, ins, flags, delalloc);
4104 if (!ret && !is_data) {
4105 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4106 } else if (ret == -ENOSPC) {
4107 if (!final_tried && ins->offset) {
4108 num_bytes = min(num_bytes >> 1, ins->offset);
4109 num_bytes = round_down(num_bytes,
4110 fs_info->sectorsize);
4111 num_bytes = max(num_bytes, min_alloc_size);
4112 ram_bytes = num_bytes;
4113 if (num_bytes == min_alloc_size)
4114 final_tried = true;
4115 goto again;
4116 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4117 struct btrfs_space_info *sinfo;
4118
4119 sinfo = btrfs_find_space_info(fs_info, flags);
4120 btrfs_err(fs_info,
4121 "allocation failed flags %llu, wanted %llu",
4122 flags, num_bytes);
4123 if (sinfo)
4124 btrfs_dump_space_info(fs_info, sinfo,
4125 num_bytes, 1);
4126 }
4127 }
4128
4129 return ret;
4130 }
4131
__btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int pin,int delalloc)4132 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4133 u64 start, u64 len,
4134 int pin, int delalloc)
4135 {
4136 struct btrfs_block_group_cache *cache;
4137 int ret = 0;
4138
4139 cache = btrfs_lookup_block_group(fs_info, start);
4140 if (!cache) {
4141 btrfs_err(fs_info, "Unable to find block group for %llu",
4142 start);
4143 return -ENOSPC;
4144 }
4145
4146 if (pin)
4147 pin_down_extent(cache, start, len, 1);
4148 else {
4149 if (btrfs_test_opt(fs_info, DISCARD))
4150 ret = btrfs_discard_extent(fs_info, start, len, NULL);
4151 btrfs_add_free_space(cache, start, len);
4152 btrfs_free_reserved_bytes(cache, len, delalloc);
4153 trace_btrfs_reserved_extent_free(fs_info, start, len);
4154 }
4155
4156 btrfs_put_block_group(cache);
4157 return ret;
4158 }
4159
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4160 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4161 u64 start, u64 len, int delalloc)
4162 {
4163 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
4164 }
4165
btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)4166 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
4167 u64 start, u64 len)
4168 {
4169 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
4170 }
4171
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4172 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4173 u64 parent, u64 root_objectid,
4174 u64 flags, u64 owner, u64 offset,
4175 struct btrfs_key *ins, int ref_mod)
4176 {
4177 struct btrfs_fs_info *fs_info = trans->fs_info;
4178 int ret;
4179 struct btrfs_extent_item *extent_item;
4180 struct btrfs_extent_inline_ref *iref;
4181 struct btrfs_path *path;
4182 struct extent_buffer *leaf;
4183 int type;
4184 u32 size;
4185
4186 if (parent > 0)
4187 type = BTRFS_SHARED_DATA_REF_KEY;
4188 else
4189 type = BTRFS_EXTENT_DATA_REF_KEY;
4190
4191 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4192
4193 path = btrfs_alloc_path();
4194 if (!path)
4195 return -ENOMEM;
4196
4197 path->leave_spinning = 1;
4198 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4199 ins, size);
4200 if (ret) {
4201 btrfs_free_path(path);
4202 return ret;
4203 }
4204
4205 leaf = path->nodes[0];
4206 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4207 struct btrfs_extent_item);
4208 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4209 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4210 btrfs_set_extent_flags(leaf, extent_item,
4211 flags | BTRFS_EXTENT_FLAG_DATA);
4212
4213 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4214 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4215 if (parent > 0) {
4216 struct btrfs_shared_data_ref *ref;
4217 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4218 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4219 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4220 } else {
4221 struct btrfs_extent_data_ref *ref;
4222 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4223 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4224 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4225 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4226 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4227 }
4228
4229 btrfs_mark_buffer_dirty(path->nodes[0]);
4230 btrfs_free_path(path);
4231
4232 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4233 if (ret)
4234 return ret;
4235
4236 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4237 if (ret) { /* -ENOENT, logic error */
4238 btrfs_err(fs_info, "update block group failed for %llu %llu",
4239 ins->objectid, ins->offset);
4240 BUG();
4241 }
4242 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4243 return ret;
4244 }
4245
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4246 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4247 struct btrfs_delayed_ref_node *node,
4248 struct btrfs_delayed_extent_op *extent_op)
4249 {
4250 struct btrfs_fs_info *fs_info = trans->fs_info;
4251 int ret;
4252 struct btrfs_extent_item *extent_item;
4253 struct btrfs_key extent_key;
4254 struct btrfs_tree_block_info *block_info;
4255 struct btrfs_extent_inline_ref *iref;
4256 struct btrfs_path *path;
4257 struct extent_buffer *leaf;
4258 struct btrfs_delayed_tree_ref *ref;
4259 u32 size = sizeof(*extent_item) + sizeof(*iref);
4260 u64 num_bytes;
4261 u64 flags = extent_op->flags_to_set;
4262 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4263
4264 ref = btrfs_delayed_node_to_tree_ref(node);
4265
4266 extent_key.objectid = node->bytenr;
4267 if (skinny_metadata) {
4268 extent_key.offset = ref->level;
4269 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4270 num_bytes = fs_info->nodesize;
4271 } else {
4272 extent_key.offset = node->num_bytes;
4273 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4274 size += sizeof(*block_info);
4275 num_bytes = node->num_bytes;
4276 }
4277
4278 path = btrfs_alloc_path();
4279 if (!path)
4280 return -ENOMEM;
4281
4282 path->leave_spinning = 1;
4283 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4284 &extent_key, size);
4285 if (ret) {
4286 btrfs_free_path(path);
4287 return ret;
4288 }
4289
4290 leaf = path->nodes[0];
4291 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4292 struct btrfs_extent_item);
4293 btrfs_set_extent_refs(leaf, extent_item, 1);
4294 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4295 btrfs_set_extent_flags(leaf, extent_item,
4296 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4297
4298 if (skinny_metadata) {
4299 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4300 } else {
4301 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4302 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4303 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4304 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4305 }
4306
4307 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4308 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4309 btrfs_set_extent_inline_ref_type(leaf, iref,
4310 BTRFS_SHARED_BLOCK_REF_KEY);
4311 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4312 } else {
4313 btrfs_set_extent_inline_ref_type(leaf, iref,
4314 BTRFS_TREE_BLOCK_REF_KEY);
4315 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4316 }
4317
4318 btrfs_mark_buffer_dirty(leaf);
4319 btrfs_free_path(path);
4320
4321 ret = remove_from_free_space_tree(trans, extent_key.objectid,
4322 num_bytes);
4323 if (ret)
4324 return ret;
4325
4326 ret = btrfs_update_block_group(trans, extent_key.objectid,
4327 fs_info->nodesize, 1);
4328 if (ret) { /* -ENOENT, logic error */
4329 btrfs_err(fs_info, "update block group failed for %llu %llu",
4330 extent_key.objectid, extent_key.offset);
4331 BUG();
4332 }
4333
4334 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4335 fs_info->nodesize);
4336 return ret;
4337 }
4338
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4339 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4340 struct btrfs_root *root, u64 owner,
4341 u64 offset, u64 ram_bytes,
4342 struct btrfs_key *ins)
4343 {
4344 struct btrfs_ref generic_ref = { 0 };
4345 int ret;
4346
4347 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4348
4349 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4350 ins->objectid, ins->offset, 0);
4351 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4352 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4353 ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4354 ram_bytes, NULL, NULL);
4355 return ret;
4356 }
4357
4358 /*
4359 * this is used by the tree logging recovery code. It records that
4360 * an extent has been allocated and makes sure to clear the free
4361 * space cache bits as well
4362 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4363 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4364 u64 root_objectid, u64 owner, u64 offset,
4365 struct btrfs_key *ins)
4366 {
4367 struct btrfs_fs_info *fs_info = trans->fs_info;
4368 int ret;
4369 struct btrfs_block_group_cache *block_group;
4370 struct btrfs_space_info *space_info;
4371
4372 /*
4373 * Mixed block groups will exclude before processing the log so we only
4374 * need to do the exclude dance if this fs isn't mixed.
4375 */
4376 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4377 ret = __exclude_logged_extent(fs_info, ins->objectid,
4378 ins->offset);
4379 if (ret)
4380 return ret;
4381 }
4382
4383 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4384 if (!block_group)
4385 return -EINVAL;
4386
4387 space_info = block_group->space_info;
4388 spin_lock(&space_info->lock);
4389 spin_lock(&block_group->lock);
4390 space_info->bytes_reserved += ins->offset;
4391 block_group->reserved += ins->offset;
4392 spin_unlock(&block_group->lock);
4393 spin_unlock(&space_info->lock);
4394
4395 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4396 offset, ins, 1);
4397 btrfs_put_block_group(block_group);
4398 return ret;
4399 }
4400
4401 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner)4402 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4403 u64 bytenr, int level, u64 owner)
4404 {
4405 struct btrfs_fs_info *fs_info = root->fs_info;
4406 struct extent_buffer *buf;
4407
4408 buf = btrfs_find_create_tree_block(fs_info, bytenr);
4409 if (IS_ERR(buf))
4410 return buf;
4411
4412 /*
4413 * Extra safety check in case the extent tree is corrupted and extent
4414 * allocator chooses to use a tree block which is already used and
4415 * locked.
4416 */
4417 if (buf->lock_owner == current->pid) {
4418 btrfs_err_rl(fs_info,
4419 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4420 buf->start, btrfs_header_owner(buf), current->pid);
4421 free_extent_buffer(buf);
4422 return ERR_PTR(-EUCLEAN);
4423 }
4424
4425 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
4426 btrfs_tree_lock(buf);
4427 btrfs_clean_tree_block(buf);
4428 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4429
4430 btrfs_set_lock_blocking_write(buf);
4431 set_extent_buffer_uptodate(buf);
4432
4433 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4434 btrfs_set_header_level(buf, level);
4435 btrfs_set_header_bytenr(buf, buf->start);
4436 btrfs_set_header_generation(buf, trans->transid);
4437 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4438 btrfs_set_header_owner(buf, owner);
4439 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4440 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4441 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4442 buf->log_index = root->log_transid % 2;
4443 /*
4444 * we allow two log transactions at a time, use different
4445 * EXTENT bit to differentiate dirty pages.
4446 */
4447 if (buf->log_index == 0)
4448 set_extent_dirty(&root->dirty_log_pages, buf->start,
4449 buf->start + buf->len - 1, GFP_NOFS);
4450 else
4451 set_extent_new(&root->dirty_log_pages, buf->start,
4452 buf->start + buf->len - 1);
4453 } else {
4454 buf->log_index = -1;
4455 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4456 buf->start + buf->len - 1, GFP_NOFS);
4457 }
4458 trans->dirty = true;
4459 /* this returns a buffer locked for blocking */
4460 return buf;
4461 }
4462
4463 /*
4464 * finds a free extent and does all the dirty work required for allocation
4465 * returns the tree buffer or an ERR_PTR on error.
4466 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size)4467 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4468 struct btrfs_root *root,
4469 u64 parent, u64 root_objectid,
4470 const struct btrfs_disk_key *key,
4471 int level, u64 hint,
4472 u64 empty_size)
4473 {
4474 struct btrfs_fs_info *fs_info = root->fs_info;
4475 struct btrfs_key ins;
4476 struct btrfs_block_rsv *block_rsv;
4477 struct extent_buffer *buf;
4478 struct btrfs_delayed_extent_op *extent_op;
4479 struct btrfs_ref generic_ref = { 0 };
4480 u64 flags = 0;
4481 int ret;
4482 u32 blocksize = fs_info->nodesize;
4483 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4484
4485 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4486 if (btrfs_is_testing(fs_info)) {
4487 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4488 level, root_objectid);
4489 if (!IS_ERR(buf))
4490 root->alloc_bytenr += blocksize;
4491 return buf;
4492 }
4493 #endif
4494
4495 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4496 if (IS_ERR(block_rsv))
4497 return ERR_CAST(block_rsv);
4498
4499 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4500 empty_size, hint, &ins, 0, 0);
4501 if (ret)
4502 goto out_unuse;
4503
4504 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4505 root_objectid);
4506 if (IS_ERR(buf)) {
4507 ret = PTR_ERR(buf);
4508 goto out_free_reserved;
4509 }
4510
4511 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4512 if (parent == 0)
4513 parent = ins.objectid;
4514 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4515 } else
4516 BUG_ON(parent > 0);
4517
4518 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4519 extent_op = btrfs_alloc_delayed_extent_op();
4520 if (!extent_op) {
4521 ret = -ENOMEM;
4522 goto out_free_buf;
4523 }
4524 if (key)
4525 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4526 else
4527 memset(&extent_op->key, 0, sizeof(extent_op->key));
4528 extent_op->flags_to_set = flags;
4529 extent_op->update_key = skinny_metadata ? false : true;
4530 extent_op->update_flags = true;
4531 extent_op->is_data = false;
4532 extent_op->level = level;
4533
4534 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4535 ins.objectid, ins.offset, parent);
4536 generic_ref.real_root = root->root_key.objectid;
4537 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4538 btrfs_ref_tree_mod(fs_info, &generic_ref);
4539 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4540 extent_op, NULL, NULL);
4541 if (ret)
4542 goto out_free_delayed;
4543 }
4544 return buf;
4545
4546 out_free_delayed:
4547 btrfs_free_delayed_extent_op(extent_op);
4548 out_free_buf:
4549 free_extent_buffer(buf);
4550 out_free_reserved:
4551 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4552 out_unuse:
4553 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4554 return ERR_PTR(ret);
4555 }
4556
4557 struct walk_control {
4558 u64 refs[BTRFS_MAX_LEVEL];
4559 u64 flags[BTRFS_MAX_LEVEL];
4560 struct btrfs_key update_progress;
4561 struct btrfs_key drop_progress;
4562 int drop_level;
4563 int stage;
4564 int level;
4565 int shared_level;
4566 int update_ref;
4567 int keep_locks;
4568 int reada_slot;
4569 int reada_count;
4570 int restarted;
4571 };
4572
4573 #define DROP_REFERENCE 1
4574 #define UPDATE_BACKREF 2
4575
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)4576 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4577 struct btrfs_root *root,
4578 struct walk_control *wc,
4579 struct btrfs_path *path)
4580 {
4581 struct btrfs_fs_info *fs_info = root->fs_info;
4582 u64 bytenr;
4583 u64 generation;
4584 u64 refs;
4585 u64 flags;
4586 u32 nritems;
4587 struct btrfs_key key;
4588 struct extent_buffer *eb;
4589 int ret;
4590 int slot;
4591 int nread = 0;
4592
4593 if (path->slots[wc->level] < wc->reada_slot) {
4594 wc->reada_count = wc->reada_count * 2 / 3;
4595 wc->reada_count = max(wc->reada_count, 2);
4596 } else {
4597 wc->reada_count = wc->reada_count * 3 / 2;
4598 wc->reada_count = min_t(int, wc->reada_count,
4599 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4600 }
4601
4602 eb = path->nodes[wc->level];
4603 nritems = btrfs_header_nritems(eb);
4604
4605 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4606 if (nread >= wc->reada_count)
4607 break;
4608
4609 cond_resched();
4610 bytenr = btrfs_node_blockptr(eb, slot);
4611 generation = btrfs_node_ptr_generation(eb, slot);
4612
4613 if (slot == path->slots[wc->level])
4614 goto reada;
4615
4616 if (wc->stage == UPDATE_BACKREF &&
4617 generation <= root->root_key.offset)
4618 continue;
4619
4620 /* We don't lock the tree block, it's OK to be racy here */
4621 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4622 wc->level - 1, 1, &refs,
4623 &flags);
4624 /* We don't care about errors in readahead. */
4625 if (ret < 0)
4626 continue;
4627 BUG_ON(refs == 0);
4628
4629 if (wc->stage == DROP_REFERENCE) {
4630 if (refs == 1)
4631 goto reada;
4632
4633 if (wc->level == 1 &&
4634 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4635 continue;
4636 if (!wc->update_ref ||
4637 generation <= root->root_key.offset)
4638 continue;
4639 btrfs_node_key_to_cpu(eb, &key, slot);
4640 ret = btrfs_comp_cpu_keys(&key,
4641 &wc->update_progress);
4642 if (ret < 0)
4643 continue;
4644 } else {
4645 if (wc->level == 1 &&
4646 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4647 continue;
4648 }
4649 reada:
4650 readahead_tree_block(fs_info, bytenr);
4651 nread++;
4652 }
4653 wc->reada_slot = slot;
4654 }
4655
4656 /*
4657 * helper to process tree block while walking down the tree.
4658 *
4659 * when wc->stage == UPDATE_BACKREF, this function updates
4660 * back refs for pointers in the block.
4661 *
4662 * NOTE: return value 1 means we should stop walking down.
4663 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)4664 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4665 struct btrfs_root *root,
4666 struct btrfs_path *path,
4667 struct walk_control *wc, int lookup_info)
4668 {
4669 struct btrfs_fs_info *fs_info = root->fs_info;
4670 int level = wc->level;
4671 struct extent_buffer *eb = path->nodes[level];
4672 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4673 int ret;
4674
4675 if (wc->stage == UPDATE_BACKREF &&
4676 btrfs_header_owner(eb) != root->root_key.objectid)
4677 return 1;
4678
4679 /*
4680 * when reference count of tree block is 1, it won't increase
4681 * again. once full backref flag is set, we never clear it.
4682 */
4683 if (lookup_info &&
4684 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4685 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4686 BUG_ON(!path->locks[level]);
4687 ret = btrfs_lookup_extent_info(trans, fs_info,
4688 eb->start, level, 1,
4689 &wc->refs[level],
4690 &wc->flags[level]);
4691 BUG_ON(ret == -ENOMEM);
4692 if (ret)
4693 return ret;
4694 BUG_ON(wc->refs[level] == 0);
4695 }
4696
4697 if (wc->stage == DROP_REFERENCE) {
4698 if (wc->refs[level] > 1)
4699 return 1;
4700
4701 if (path->locks[level] && !wc->keep_locks) {
4702 btrfs_tree_unlock_rw(eb, path->locks[level]);
4703 path->locks[level] = 0;
4704 }
4705 return 0;
4706 }
4707
4708 /* wc->stage == UPDATE_BACKREF */
4709 if (!(wc->flags[level] & flag)) {
4710 BUG_ON(!path->locks[level]);
4711 ret = btrfs_inc_ref(trans, root, eb, 1);
4712 BUG_ON(ret); /* -ENOMEM */
4713 ret = btrfs_dec_ref(trans, root, eb, 0);
4714 BUG_ON(ret); /* -ENOMEM */
4715 ret = btrfs_set_disk_extent_flags(trans, eb->start,
4716 eb->len, flag,
4717 btrfs_header_level(eb), 0);
4718 BUG_ON(ret); /* -ENOMEM */
4719 wc->flags[level] |= flag;
4720 }
4721
4722 /*
4723 * the block is shared by multiple trees, so it's not good to
4724 * keep the tree lock
4725 */
4726 if (path->locks[level] && level > 0) {
4727 btrfs_tree_unlock_rw(eb, path->locks[level]);
4728 path->locks[level] = 0;
4729 }
4730 return 0;
4731 }
4732
4733 /*
4734 * This is used to verify a ref exists for this root to deal with a bug where we
4735 * would have a drop_progress key that hadn't been updated properly.
4736 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)4737 static int check_ref_exists(struct btrfs_trans_handle *trans,
4738 struct btrfs_root *root, u64 bytenr, u64 parent,
4739 int level)
4740 {
4741 struct btrfs_path *path;
4742 struct btrfs_extent_inline_ref *iref;
4743 int ret;
4744
4745 path = btrfs_alloc_path();
4746 if (!path)
4747 return -ENOMEM;
4748
4749 ret = lookup_extent_backref(trans, path, &iref, bytenr,
4750 root->fs_info->nodesize, parent,
4751 root->root_key.objectid, level, 0);
4752 btrfs_free_path(path);
4753 if (ret == -ENOENT)
4754 return 0;
4755 if (ret < 0)
4756 return ret;
4757 return 1;
4758 }
4759
4760 /*
4761 * helper to process tree block pointer.
4762 *
4763 * when wc->stage == DROP_REFERENCE, this function checks
4764 * reference count of the block pointed to. if the block
4765 * is shared and we need update back refs for the subtree
4766 * rooted at the block, this function changes wc->stage to
4767 * UPDATE_BACKREF. if the block is shared and there is no
4768 * need to update back, this function drops the reference
4769 * to the block.
4770 *
4771 * NOTE: return value 1 means we should stop walking down.
4772 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)4773 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4774 struct btrfs_root *root,
4775 struct btrfs_path *path,
4776 struct walk_control *wc, int *lookup_info)
4777 {
4778 struct btrfs_fs_info *fs_info = root->fs_info;
4779 u64 bytenr;
4780 u64 generation;
4781 u64 parent;
4782 struct btrfs_key key;
4783 struct btrfs_key first_key;
4784 struct btrfs_ref ref = { 0 };
4785 struct extent_buffer *next;
4786 int level = wc->level;
4787 int reada = 0;
4788 int ret = 0;
4789 bool need_account = false;
4790
4791 generation = btrfs_node_ptr_generation(path->nodes[level],
4792 path->slots[level]);
4793 /*
4794 * if the lower level block was created before the snapshot
4795 * was created, we know there is no need to update back refs
4796 * for the subtree
4797 */
4798 if (wc->stage == UPDATE_BACKREF &&
4799 generation <= root->root_key.offset) {
4800 *lookup_info = 1;
4801 return 1;
4802 }
4803
4804 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4805 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4806 path->slots[level]);
4807
4808 next = find_extent_buffer(fs_info, bytenr);
4809 if (!next) {
4810 next = btrfs_find_create_tree_block(fs_info, bytenr);
4811 if (IS_ERR(next))
4812 return PTR_ERR(next);
4813
4814 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4815 level - 1);
4816 reada = 1;
4817 }
4818 btrfs_tree_lock(next);
4819 btrfs_set_lock_blocking_write(next);
4820
4821 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4822 &wc->refs[level - 1],
4823 &wc->flags[level - 1]);
4824 if (ret < 0)
4825 goto out_unlock;
4826
4827 if (unlikely(wc->refs[level - 1] == 0)) {
4828 btrfs_err(fs_info, "Missing references.");
4829 ret = -EIO;
4830 goto out_unlock;
4831 }
4832 *lookup_info = 0;
4833
4834 if (wc->stage == DROP_REFERENCE) {
4835 if (wc->refs[level - 1] > 1) {
4836 need_account = true;
4837 if (level == 1 &&
4838 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4839 goto skip;
4840
4841 if (!wc->update_ref ||
4842 generation <= root->root_key.offset)
4843 goto skip;
4844
4845 btrfs_node_key_to_cpu(path->nodes[level], &key,
4846 path->slots[level]);
4847 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4848 if (ret < 0)
4849 goto skip;
4850
4851 wc->stage = UPDATE_BACKREF;
4852 wc->shared_level = level - 1;
4853 }
4854 } else {
4855 if (level == 1 &&
4856 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4857 goto skip;
4858 }
4859
4860 if (!btrfs_buffer_uptodate(next, generation, 0)) {
4861 btrfs_tree_unlock(next);
4862 free_extent_buffer(next);
4863 next = NULL;
4864 *lookup_info = 1;
4865 }
4866
4867 if (!next) {
4868 if (reada && level == 1)
4869 reada_walk_down(trans, root, wc, path);
4870 next = read_tree_block(fs_info, bytenr, generation, level - 1,
4871 &first_key);
4872 if (IS_ERR(next)) {
4873 return PTR_ERR(next);
4874 } else if (!extent_buffer_uptodate(next)) {
4875 free_extent_buffer(next);
4876 return -EIO;
4877 }
4878 btrfs_tree_lock(next);
4879 btrfs_set_lock_blocking_write(next);
4880 }
4881
4882 level--;
4883 ASSERT(level == btrfs_header_level(next));
4884 if (level != btrfs_header_level(next)) {
4885 btrfs_err(root->fs_info, "mismatched level");
4886 ret = -EIO;
4887 goto out_unlock;
4888 }
4889 path->nodes[level] = next;
4890 path->slots[level] = 0;
4891 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
4892 wc->level = level;
4893 if (wc->level == 1)
4894 wc->reada_slot = 0;
4895 return 0;
4896 skip:
4897 wc->refs[level - 1] = 0;
4898 wc->flags[level - 1] = 0;
4899 if (wc->stage == DROP_REFERENCE) {
4900 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
4901 parent = path->nodes[level]->start;
4902 } else {
4903 ASSERT(root->root_key.objectid ==
4904 btrfs_header_owner(path->nodes[level]));
4905 if (root->root_key.objectid !=
4906 btrfs_header_owner(path->nodes[level])) {
4907 btrfs_err(root->fs_info,
4908 "mismatched block owner");
4909 ret = -EIO;
4910 goto out_unlock;
4911 }
4912 parent = 0;
4913 }
4914
4915 /*
4916 * If we had a drop_progress we need to verify the refs are set
4917 * as expected. If we find our ref then we know that from here
4918 * on out everything should be correct, and we can clear the
4919 * ->restarted flag.
4920 */
4921 if (wc->restarted) {
4922 ret = check_ref_exists(trans, root, bytenr, parent,
4923 level - 1);
4924 if (ret < 0)
4925 goto out_unlock;
4926 if (ret == 0)
4927 goto no_delete;
4928 ret = 0;
4929 wc->restarted = 0;
4930 }
4931
4932 /*
4933 * Reloc tree doesn't contribute to qgroup numbers, and we have
4934 * already accounted them at merge time (replace_path),
4935 * thus we could skip expensive subtree trace here.
4936 */
4937 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
4938 need_account) {
4939 ret = btrfs_qgroup_trace_subtree(trans, next,
4940 generation, level - 1);
4941 if (ret) {
4942 btrfs_err_rl(fs_info,
4943 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
4944 ret);
4945 }
4946 }
4947
4948 /*
4949 * We need to update the next key in our walk control so we can
4950 * update the drop_progress key accordingly. We don't care if
4951 * find_next_key doesn't find a key because that means we're at
4952 * the end and are going to clean up now.
4953 */
4954 wc->drop_level = level;
4955 find_next_key(path, level, &wc->drop_progress);
4956
4957 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
4958 fs_info->nodesize, parent);
4959 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
4960 ret = btrfs_free_extent(trans, &ref);
4961 if (ret)
4962 goto out_unlock;
4963 }
4964 no_delete:
4965 *lookup_info = 1;
4966 ret = 1;
4967
4968 out_unlock:
4969 btrfs_tree_unlock(next);
4970 free_extent_buffer(next);
4971
4972 return ret;
4973 }
4974
4975 /*
4976 * helper to process tree block while walking up the tree.
4977 *
4978 * when wc->stage == DROP_REFERENCE, this function drops
4979 * reference count on the block.
4980 *
4981 * when wc->stage == UPDATE_BACKREF, this function changes
4982 * wc->stage back to DROP_REFERENCE if we changed wc->stage
4983 * to UPDATE_BACKREF previously while processing the block.
4984 *
4985 * NOTE: return value 1 means we should stop walking up.
4986 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)4987 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
4988 struct btrfs_root *root,
4989 struct btrfs_path *path,
4990 struct walk_control *wc)
4991 {
4992 struct btrfs_fs_info *fs_info = root->fs_info;
4993 int ret;
4994 int level = wc->level;
4995 struct extent_buffer *eb = path->nodes[level];
4996 u64 parent = 0;
4997
4998 if (wc->stage == UPDATE_BACKREF) {
4999 BUG_ON(wc->shared_level < level);
5000 if (level < wc->shared_level)
5001 goto out;
5002
5003 ret = find_next_key(path, level + 1, &wc->update_progress);
5004 if (ret > 0)
5005 wc->update_ref = 0;
5006
5007 wc->stage = DROP_REFERENCE;
5008 wc->shared_level = -1;
5009 path->slots[level] = 0;
5010
5011 /*
5012 * check reference count again if the block isn't locked.
5013 * we should start walking down the tree again if reference
5014 * count is one.
5015 */
5016 if (!path->locks[level]) {
5017 BUG_ON(level == 0);
5018 btrfs_tree_lock(eb);
5019 btrfs_set_lock_blocking_write(eb);
5020 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5021
5022 ret = btrfs_lookup_extent_info(trans, fs_info,
5023 eb->start, level, 1,
5024 &wc->refs[level],
5025 &wc->flags[level]);
5026 if (ret < 0) {
5027 btrfs_tree_unlock_rw(eb, path->locks[level]);
5028 path->locks[level] = 0;
5029 return ret;
5030 }
5031 BUG_ON(wc->refs[level] == 0);
5032 if (wc->refs[level] == 1) {
5033 btrfs_tree_unlock_rw(eb, path->locks[level]);
5034 path->locks[level] = 0;
5035 return 1;
5036 }
5037 }
5038 }
5039
5040 /* wc->stage == DROP_REFERENCE */
5041 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5042
5043 if (wc->refs[level] == 1) {
5044 if (level == 0) {
5045 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5046 ret = btrfs_dec_ref(trans, root, eb, 1);
5047 else
5048 ret = btrfs_dec_ref(trans, root, eb, 0);
5049 BUG_ON(ret); /* -ENOMEM */
5050 if (is_fstree(root->root_key.objectid)) {
5051 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5052 if (ret) {
5053 btrfs_err_rl(fs_info,
5054 "error %d accounting leaf items, quota is out of sync, rescan required",
5055 ret);
5056 }
5057 }
5058 }
5059 /* make block locked assertion in btrfs_clean_tree_block happy */
5060 if (!path->locks[level] &&
5061 btrfs_header_generation(eb) == trans->transid) {
5062 btrfs_tree_lock(eb);
5063 btrfs_set_lock_blocking_write(eb);
5064 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5065 }
5066 btrfs_clean_tree_block(eb);
5067 }
5068
5069 if (eb == root->node) {
5070 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5071 parent = eb->start;
5072 else if (root->root_key.objectid != btrfs_header_owner(eb))
5073 goto owner_mismatch;
5074 } else {
5075 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5076 parent = path->nodes[level + 1]->start;
5077 else if (root->root_key.objectid !=
5078 btrfs_header_owner(path->nodes[level + 1]))
5079 goto owner_mismatch;
5080 }
5081
5082 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5083 out:
5084 wc->refs[level] = 0;
5085 wc->flags[level] = 0;
5086 return 0;
5087
5088 owner_mismatch:
5089 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5090 btrfs_header_owner(eb), root->root_key.objectid);
5091 return -EUCLEAN;
5092 }
5093
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5094 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5095 struct btrfs_root *root,
5096 struct btrfs_path *path,
5097 struct walk_control *wc)
5098 {
5099 int level = wc->level;
5100 int lookup_info = 1;
5101 int ret;
5102
5103 while (level >= 0) {
5104 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5105 if (ret > 0)
5106 break;
5107
5108 if (level == 0)
5109 break;
5110
5111 if (path->slots[level] >=
5112 btrfs_header_nritems(path->nodes[level]))
5113 break;
5114
5115 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5116 if (ret > 0) {
5117 path->slots[level]++;
5118 continue;
5119 } else if (ret < 0)
5120 return ret;
5121 level = wc->level;
5122 }
5123 return 0;
5124 }
5125
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5126 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5127 struct btrfs_root *root,
5128 struct btrfs_path *path,
5129 struct walk_control *wc, int max_level)
5130 {
5131 int level = wc->level;
5132 int ret;
5133
5134 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5135 while (level < max_level && path->nodes[level]) {
5136 wc->level = level;
5137 if (path->slots[level] + 1 <
5138 btrfs_header_nritems(path->nodes[level])) {
5139 path->slots[level]++;
5140 return 0;
5141 } else {
5142 ret = walk_up_proc(trans, root, path, wc);
5143 if (ret > 0)
5144 return 0;
5145 if (ret < 0)
5146 return ret;
5147
5148 if (path->locks[level]) {
5149 btrfs_tree_unlock_rw(path->nodes[level],
5150 path->locks[level]);
5151 path->locks[level] = 0;
5152 }
5153 free_extent_buffer(path->nodes[level]);
5154 path->nodes[level] = NULL;
5155 level++;
5156 }
5157 }
5158 return 1;
5159 }
5160
5161 /*
5162 * drop a subvolume tree.
5163 *
5164 * this function traverses the tree freeing any blocks that only
5165 * referenced by the tree.
5166 *
5167 * when a shared tree block is found. this function decreases its
5168 * reference count by one. if update_ref is true, this function
5169 * also make sure backrefs for the shared block and all lower level
5170 * blocks are properly updated.
5171 *
5172 * If called with for_reloc == 0, may exit early with -EAGAIN
5173 */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)5174 int btrfs_drop_snapshot(struct btrfs_root *root,
5175 struct btrfs_block_rsv *block_rsv, int update_ref,
5176 int for_reloc)
5177 {
5178 struct btrfs_fs_info *fs_info = root->fs_info;
5179 struct btrfs_path *path;
5180 struct btrfs_trans_handle *trans;
5181 struct btrfs_root *tree_root = fs_info->tree_root;
5182 struct btrfs_root_item *root_item = &root->root_item;
5183 struct walk_control *wc;
5184 struct btrfs_key key;
5185 int err = 0;
5186 int ret;
5187 int level;
5188 bool root_dropped = false;
5189
5190 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5191
5192 path = btrfs_alloc_path();
5193 if (!path) {
5194 err = -ENOMEM;
5195 goto out;
5196 }
5197
5198 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5199 if (!wc) {
5200 btrfs_free_path(path);
5201 err = -ENOMEM;
5202 goto out;
5203 }
5204
5205 trans = btrfs_start_transaction(tree_root, 0);
5206 if (IS_ERR(trans)) {
5207 err = PTR_ERR(trans);
5208 goto out_free;
5209 }
5210
5211 err = btrfs_run_delayed_items(trans);
5212 if (err)
5213 goto out_end_trans;
5214
5215 if (block_rsv)
5216 trans->block_rsv = block_rsv;
5217
5218 /*
5219 * This will help us catch people modifying the fs tree while we're
5220 * dropping it. It is unsafe to mess with the fs tree while it's being
5221 * dropped as we unlock the root node and parent nodes as we walk down
5222 * the tree, assuming nothing will change. If something does change
5223 * then we'll have stale information and drop references to blocks we've
5224 * already dropped.
5225 */
5226 set_bit(BTRFS_ROOT_DELETING, &root->state);
5227 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5228 level = btrfs_header_level(root->node);
5229 path->nodes[level] = btrfs_lock_root_node(root);
5230 btrfs_set_lock_blocking_write(path->nodes[level]);
5231 path->slots[level] = 0;
5232 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5233 memset(&wc->update_progress, 0,
5234 sizeof(wc->update_progress));
5235 } else {
5236 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5237 memcpy(&wc->update_progress, &key,
5238 sizeof(wc->update_progress));
5239
5240 level = root_item->drop_level;
5241 BUG_ON(level == 0);
5242 path->lowest_level = level;
5243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5244 path->lowest_level = 0;
5245 if (ret < 0) {
5246 err = ret;
5247 goto out_end_trans;
5248 }
5249 WARN_ON(ret > 0);
5250
5251 /*
5252 * unlock our path, this is safe because only this
5253 * function is allowed to delete this snapshot
5254 */
5255 btrfs_unlock_up_safe(path, 0);
5256
5257 level = btrfs_header_level(root->node);
5258 while (1) {
5259 btrfs_tree_lock(path->nodes[level]);
5260 btrfs_set_lock_blocking_write(path->nodes[level]);
5261 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5262
5263 ret = btrfs_lookup_extent_info(trans, fs_info,
5264 path->nodes[level]->start,
5265 level, 1, &wc->refs[level],
5266 &wc->flags[level]);
5267 if (ret < 0) {
5268 err = ret;
5269 goto out_end_trans;
5270 }
5271 BUG_ON(wc->refs[level] == 0);
5272
5273 if (level == root_item->drop_level)
5274 break;
5275
5276 btrfs_tree_unlock(path->nodes[level]);
5277 path->locks[level] = 0;
5278 WARN_ON(wc->refs[level] != 1);
5279 level--;
5280 }
5281 }
5282
5283 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5284 wc->level = level;
5285 wc->shared_level = -1;
5286 wc->stage = DROP_REFERENCE;
5287 wc->update_ref = update_ref;
5288 wc->keep_locks = 0;
5289 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5290
5291 while (1) {
5292
5293 ret = walk_down_tree(trans, root, path, wc);
5294 if (ret < 0) {
5295 err = ret;
5296 break;
5297 }
5298
5299 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5300 if (ret < 0) {
5301 err = ret;
5302 break;
5303 }
5304
5305 if (ret > 0) {
5306 BUG_ON(wc->stage != DROP_REFERENCE);
5307 break;
5308 }
5309
5310 if (wc->stage == DROP_REFERENCE) {
5311 wc->drop_level = wc->level;
5312 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5313 &wc->drop_progress,
5314 path->slots[wc->drop_level]);
5315 }
5316 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5317 &wc->drop_progress);
5318 root_item->drop_level = wc->drop_level;
5319
5320 BUG_ON(wc->level == 0);
5321 if (btrfs_should_end_transaction(trans) ||
5322 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5323 ret = btrfs_update_root(trans, tree_root,
5324 &root->root_key,
5325 root_item);
5326 if (ret) {
5327 btrfs_abort_transaction(trans, ret);
5328 err = ret;
5329 goto out_end_trans;
5330 }
5331
5332 btrfs_end_transaction_throttle(trans);
5333 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5334 btrfs_debug(fs_info,
5335 "drop snapshot early exit");
5336 err = -EAGAIN;
5337 goto out_free;
5338 }
5339
5340 trans = btrfs_start_transaction(tree_root, 0);
5341 if (IS_ERR(trans)) {
5342 err = PTR_ERR(trans);
5343 goto out_free;
5344 }
5345 if (block_rsv)
5346 trans->block_rsv = block_rsv;
5347 }
5348 }
5349 btrfs_release_path(path);
5350 if (err)
5351 goto out_end_trans;
5352
5353 ret = btrfs_del_root(trans, &root->root_key);
5354 if (ret) {
5355 btrfs_abort_transaction(trans, ret);
5356 err = ret;
5357 goto out_end_trans;
5358 }
5359
5360 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5361 ret = btrfs_find_root(tree_root, &root->root_key, path,
5362 NULL, NULL);
5363 if (ret < 0) {
5364 btrfs_abort_transaction(trans, ret);
5365 err = ret;
5366 goto out_end_trans;
5367 } else if (ret > 0) {
5368 /* if we fail to delete the orphan item this time
5369 * around, it'll get picked up the next time.
5370 *
5371 * The most common failure here is just -ENOENT.
5372 */
5373 btrfs_del_orphan_item(trans, tree_root,
5374 root->root_key.objectid);
5375 }
5376 }
5377
5378 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
5379 btrfs_add_dropped_root(trans, root);
5380 } else {
5381 free_extent_buffer(root->node);
5382 free_extent_buffer(root->commit_root);
5383 btrfs_put_fs_root(root);
5384 }
5385 root_dropped = true;
5386 out_end_trans:
5387 btrfs_end_transaction_throttle(trans);
5388 out_free:
5389 kfree(wc);
5390 btrfs_free_path(path);
5391 out:
5392 /*
5393 * So if we need to stop dropping the snapshot for whatever reason we
5394 * need to make sure to add it back to the dead root list so that we
5395 * keep trying to do the work later. This also cleans up roots if we
5396 * don't have it in the radix (like when we recover after a power fail
5397 * or unmount) so we don't leak memory.
5398 */
5399 if (!for_reloc && !root_dropped)
5400 btrfs_add_dead_root(root);
5401 if (err && err != -EAGAIN)
5402 btrfs_handle_fs_error(fs_info, err, NULL);
5403 return err;
5404 }
5405
5406 /*
5407 * drop subtree rooted at tree block 'node'.
5408 *
5409 * NOTE: this function will unlock and release tree block 'node'
5410 * only used by relocation code
5411 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5412 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5413 struct btrfs_root *root,
5414 struct extent_buffer *node,
5415 struct extent_buffer *parent)
5416 {
5417 struct btrfs_fs_info *fs_info = root->fs_info;
5418 struct btrfs_path *path;
5419 struct walk_control *wc;
5420 int level;
5421 int parent_level;
5422 int ret = 0;
5423 int wret;
5424
5425 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5426
5427 path = btrfs_alloc_path();
5428 if (!path)
5429 return -ENOMEM;
5430
5431 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5432 if (!wc) {
5433 btrfs_free_path(path);
5434 return -ENOMEM;
5435 }
5436
5437 btrfs_assert_tree_locked(parent);
5438 parent_level = btrfs_header_level(parent);
5439 extent_buffer_get(parent);
5440 path->nodes[parent_level] = parent;
5441 path->slots[parent_level] = btrfs_header_nritems(parent);
5442
5443 btrfs_assert_tree_locked(node);
5444 level = btrfs_header_level(node);
5445 path->nodes[level] = node;
5446 path->slots[level] = 0;
5447 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5448
5449 wc->refs[parent_level] = 1;
5450 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5451 wc->level = level;
5452 wc->shared_level = -1;
5453 wc->stage = DROP_REFERENCE;
5454 wc->update_ref = 0;
5455 wc->keep_locks = 1;
5456 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5457
5458 while (1) {
5459 wret = walk_down_tree(trans, root, path, wc);
5460 if (wret < 0) {
5461 ret = wret;
5462 break;
5463 }
5464
5465 wret = walk_up_tree(trans, root, path, wc, parent_level);
5466 if (wret < 0)
5467 ret = wret;
5468 if (wret != 0)
5469 break;
5470 }
5471
5472 kfree(wc);
5473 btrfs_free_path(path);
5474 return ret;
5475 }
5476
5477 /*
5478 * helper to account the unused space of all the readonly block group in the
5479 * space_info. takes mirrors into account.
5480 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)5481 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5482 {
5483 struct btrfs_block_group_cache *block_group;
5484 u64 free_bytes = 0;
5485 int factor;
5486
5487 /* It's df, we don't care if it's racy */
5488 if (list_empty(&sinfo->ro_bgs))
5489 return 0;
5490
5491 spin_lock(&sinfo->lock);
5492 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5493 spin_lock(&block_group->lock);
5494
5495 if (!block_group->ro) {
5496 spin_unlock(&block_group->lock);
5497 continue;
5498 }
5499
5500 factor = btrfs_bg_type_to_factor(block_group->flags);
5501 free_bytes += (block_group->key.offset -
5502 btrfs_block_group_used(&block_group->item)) *
5503 factor;
5504
5505 spin_unlock(&block_group->lock);
5506 }
5507 spin_unlock(&sinfo->lock);
5508
5509 return free_bytes;
5510 }
5511
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)5512 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5513 u64 start, u64 end)
5514 {
5515 return unpin_extent_range(fs_info, start, end, false);
5516 }
5517
5518 /*
5519 * It used to be that old block groups would be left around forever.
5520 * Iterating over them would be enough to trim unused space. Since we
5521 * now automatically remove them, we also need to iterate over unallocated
5522 * space.
5523 *
5524 * We don't want a transaction for this since the discard may take a
5525 * substantial amount of time. We don't require that a transaction be
5526 * running, but we do need to take a running transaction into account
5527 * to ensure that we're not discarding chunks that were released or
5528 * allocated in the current transaction.
5529 *
5530 * Holding the chunks lock will prevent other threads from allocating
5531 * or releasing chunks, but it won't prevent a running transaction
5532 * from committing and releasing the memory that the pending chunks
5533 * list head uses. For that, we need to take a reference to the
5534 * transaction and hold the commit root sem. We only need to hold
5535 * it while performing the free space search since we have already
5536 * held back allocations.
5537 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)5538 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5539 {
5540 u64 start = SZ_1M, len = 0, end = 0;
5541 int ret;
5542
5543 *trimmed = 0;
5544
5545 /* Discard not supported = nothing to do. */
5546 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5547 return 0;
5548
5549 /* Not writable = nothing to do. */
5550 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5551 return 0;
5552
5553 /* No free space = nothing to do. */
5554 if (device->total_bytes <= device->bytes_used)
5555 return 0;
5556
5557 ret = 0;
5558
5559 while (1) {
5560 struct btrfs_fs_info *fs_info = device->fs_info;
5561 u64 bytes;
5562
5563 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5564 if (ret)
5565 break;
5566
5567 find_first_clear_extent_bit(&device->alloc_state, start,
5568 &start, &end,
5569 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5570
5571 /* Ensure we skip the reserved area in the first 1M */
5572 start = max_t(u64, start, SZ_1M);
5573
5574 /*
5575 * If find_first_clear_extent_bit find a range that spans the
5576 * end of the device it will set end to -1, in this case it's up
5577 * to the caller to trim the value to the size of the device.
5578 */
5579 end = min(end, device->total_bytes - 1);
5580
5581 len = end - start + 1;
5582
5583 /* We didn't find any extents */
5584 if (!len) {
5585 mutex_unlock(&fs_info->chunk_mutex);
5586 ret = 0;
5587 break;
5588 }
5589
5590 ret = btrfs_issue_discard(device->bdev, start, len,
5591 &bytes);
5592 if (!ret)
5593 set_extent_bits(&device->alloc_state, start,
5594 start + bytes - 1,
5595 CHUNK_TRIMMED);
5596 mutex_unlock(&fs_info->chunk_mutex);
5597
5598 if (ret)
5599 break;
5600
5601 start += len;
5602 *trimmed += bytes;
5603
5604 if (fatal_signal_pending(current)) {
5605 ret = -ERESTARTSYS;
5606 break;
5607 }
5608
5609 cond_resched();
5610 }
5611
5612 return ret;
5613 }
5614
5615 /*
5616 * Trim the whole filesystem by:
5617 * 1) trimming the free space in each block group
5618 * 2) trimming the unallocated space on each device
5619 *
5620 * This will also continue trimming even if a block group or device encounters
5621 * an error. The return value will be the last error, or 0 if nothing bad
5622 * happens.
5623 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)5624 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5625 {
5626 struct btrfs_block_group_cache *cache = NULL;
5627 struct btrfs_device *device;
5628 struct list_head *devices;
5629 u64 group_trimmed;
5630 u64 range_end = U64_MAX;
5631 u64 start;
5632 u64 end;
5633 u64 trimmed = 0;
5634 u64 bg_failed = 0;
5635 u64 dev_failed = 0;
5636 int bg_ret = 0;
5637 int dev_ret = 0;
5638 int ret = 0;
5639
5640 /*
5641 * Check range overflow if range->len is set.
5642 * The default range->len is U64_MAX.
5643 */
5644 if (range->len != U64_MAX &&
5645 check_add_overflow(range->start, range->len, &range_end))
5646 return -EINVAL;
5647
5648 cache = btrfs_lookup_first_block_group(fs_info, range->start);
5649 for (; cache; cache = btrfs_next_block_group(cache)) {
5650 if (cache->key.objectid >= range_end) {
5651 btrfs_put_block_group(cache);
5652 break;
5653 }
5654
5655 start = max(range->start, cache->key.objectid);
5656 end = min(range_end, cache->key.objectid + cache->key.offset);
5657
5658 if (end - start >= range->minlen) {
5659 if (!btrfs_block_group_cache_done(cache)) {
5660 ret = btrfs_cache_block_group(cache, 0);
5661 if (ret) {
5662 bg_failed++;
5663 bg_ret = ret;
5664 continue;
5665 }
5666 ret = btrfs_wait_block_group_cache_done(cache);
5667 if (ret) {
5668 bg_failed++;
5669 bg_ret = ret;
5670 continue;
5671 }
5672 }
5673 ret = btrfs_trim_block_group(cache,
5674 &group_trimmed,
5675 start,
5676 end,
5677 range->minlen);
5678
5679 trimmed += group_trimmed;
5680 if (ret) {
5681 bg_failed++;
5682 bg_ret = ret;
5683 continue;
5684 }
5685 }
5686 }
5687
5688 if (bg_failed)
5689 btrfs_warn(fs_info,
5690 "failed to trim %llu block group(s), last error %d",
5691 bg_failed, bg_ret);
5692 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5693 devices = &fs_info->fs_devices->devices;
5694 list_for_each_entry(device, devices, dev_list) {
5695 ret = btrfs_trim_free_extents(device, &group_trimmed);
5696 if (ret) {
5697 dev_failed++;
5698 dev_ret = ret;
5699 break;
5700 }
5701
5702 trimmed += group_trimmed;
5703 }
5704 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5705
5706 if (dev_failed)
5707 btrfs_warn(fs_info,
5708 "failed to trim %llu device(s), last error %d",
5709 dev_failed, dev_ret);
5710 range->len = trimmed;
5711 if (bg_ret)
5712 return bg_ret;
5713 return dev_ret;
5714 }
5715
5716 /*
5717 * btrfs_{start,end}_write_no_snapshotting() are similar to
5718 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
5719 * data into the page cache through nocow before the subvolume is snapshoted,
5720 * but flush the data into disk after the snapshot creation, or to prevent
5721 * operations while snapshotting is ongoing and that cause the snapshot to be
5722 * inconsistent (writes followed by expanding truncates for example).
5723 */
btrfs_end_write_no_snapshotting(struct btrfs_root * root)5724 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
5725 {
5726 percpu_counter_dec(&root->subv_writers->counter);
5727 cond_wake_up(&root->subv_writers->wait);
5728 }
5729
btrfs_start_write_no_snapshotting(struct btrfs_root * root)5730 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
5731 {
5732 if (atomic_read(&root->will_be_snapshotted))
5733 return 0;
5734
5735 percpu_counter_inc(&root->subv_writers->counter);
5736 /*
5737 * Make sure counter is updated before we check for snapshot creation.
5738 */
5739 smp_mb();
5740 if (atomic_read(&root->will_be_snapshotted)) {
5741 btrfs_end_write_no_snapshotting(root);
5742 return 0;
5743 }
5744 return 1;
5745 }
5746
btrfs_wait_for_snapshot_creation(struct btrfs_root * root)5747 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
5748 {
5749 while (true) {
5750 int ret;
5751
5752 ret = btrfs_start_write_no_snapshotting(root);
5753 if (ret)
5754 break;
5755 wait_var_event(&root->will_be_snapshotted,
5756 !atomic_read(&root->will_be_snapshotted));
5757 }
5758 }
5759