1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 #include "block-group.h"
22 #include "space-info.h"
23
24 /* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
30 enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35 };
36
37 /*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
80 /*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89 enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94 };
95
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct btrfs_inode *inode,
98 int inode_only,
99 struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108
109 /*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
132 /*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root,
139 struct btrfs_log_ctx *ctx)
140 {
141 struct btrfs_fs_info *fs_info = root->fs_info;
142 int ret = 0;
143
144 mutex_lock(&root->log_mutex);
145
146 if (root->log_root) {
147 if (btrfs_need_log_full_commit(trans)) {
148 ret = -EAGAIN;
149 goto out;
150 }
151
152 if (!root->log_start_pid) {
153 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 root->log_start_pid = current->pid;
155 } else if (root->log_start_pid != current->pid) {
156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 }
158 } else {
159 mutex_lock(&fs_info->tree_log_mutex);
160 if (!fs_info->log_root_tree)
161 ret = btrfs_init_log_root_tree(trans, fs_info);
162 mutex_unlock(&fs_info->tree_log_mutex);
163 if (ret)
164 goto out;
165
166 ret = btrfs_add_log_tree(trans, root);
167 if (ret)
168 goto out;
169
170 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
171 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
172 root->log_start_pid = current->pid;
173 }
174
175 atomic_inc(&root->log_batch);
176 atomic_inc(&root->log_writers);
177 if (ctx && !ctx->logging_new_name) {
178 int index = root->log_transid % 2;
179 list_add_tail(&ctx->list, &root->log_ctxs[index]);
180 ctx->log_transid = root->log_transid;
181 }
182
183 out:
184 mutex_unlock(&root->log_mutex);
185 return ret;
186 }
187
188 /*
189 * returns 0 if there was a log transaction running and we were able
190 * to join, or returns -ENOENT if there were not transactions
191 * in progress
192 */
join_running_log_trans(struct btrfs_root * root)193 static int join_running_log_trans(struct btrfs_root *root)
194 {
195 int ret = -ENOENT;
196
197 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
198 return ret;
199
200 mutex_lock(&root->log_mutex);
201 if (root->log_root) {
202 ret = 0;
203 atomic_inc(&root->log_writers);
204 }
205 mutex_unlock(&root->log_mutex);
206 return ret;
207 }
208
209 /*
210 * This either makes the current running log transaction wait
211 * until you call btrfs_end_log_trans() or it makes any future
212 * log transactions wait until you call btrfs_end_log_trans()
213 */
btrfs_pin_log_trans(struct btrfs_root * root)214 void btrfs_pin_log_trans(struct btrfs_root *root)
215 {
216 atomic_inc(&root->log_writers);
217 }
218
219 /*
220 * indicate we're done making changes to the log tree
221 * and wake up anyone waiting to do a sync
222 */
btrfs_end_log_trans(struct btrfs_root * root)223 void btrfs_end_log_trans(struct btrfs_root *root)
224 {
225 if (atomic_dec_and_test(&root->log_writers)) {
226 /* atomic_dec_and_test implies a barrier */
227 cond_wake_up_nomb(&root->log_writer_wait);
228 }
229 }
230
btrfs_write_tree_block(struct extent_buffer * buf)231 static int btrfs_write_tree_block(struct extent_buffer *buf)
232 {
233 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
234 buf->start + buf->len - 1);
235 }
236
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)237 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
238 {
239 filemap_fdatawait_range(buf->pages[0]->mapping,
240 buf->start, buf->start + buf->len - 1);
241 }
242
243 /*
244 * the walk control struct is used to pass state down the chain when
245 * processing the log tree. The stage field tells us which part
246 * of the log tree processing we are currently doing. The others
247 * are state fields used for that specific part
248 */
249 struct walk_control {
250 /* should we free the extent on disk when done? This is used
251 * at transaction commit time while freeing a log tree
252 */
253 int free;
254
255 /* should we write out the extent buffer? This is used
256 * while flushing the log tree to disk during a sync
257 */
258 int write;
259
260 /* should we wait for the extent buffer io to finish? Also used
261 * while flushing the log tree to disk for a sync
262 */
263 int wait;
264
265 /* pin only walk, we record which extents on disk belong to the
266 * log trees
267 */
268 int pin;
269
270 /* what stage of the replay code we're currently in */
271 int stage;
272
273 /*
274 * Ignore any items from the inode currently being processed. Needs
275 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
276 * the LOG_WALK_REPLAY_INODES stage.
277 */
278 bool ignore_cur_inode;
279
280 /* the root we are currently replaying */
281 struct btrfs_root *replay_dest;
282
283 /* the trans handle for the current replay */
284 struct btrfs_trans_handle *trans;
285
286 /* the function that gets used to process blocks we find in the
287 * tree. Note the extent_buffer might not be up to date when it is
288 * passed in, and it must be checked or read if you need the data
289 * inside it
290 */
291 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
292 struct walk_control *wc, u64 gen, int level);
293 };
294
295 /*
296 * process_func used to pin down extents, write them or wait on them
297 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)298 static int process_one_buffer(struct btrfs_root *log,
299 struct extent_buffer *eb,
300 struct walk_control *wc, u64 gen, int level)
301 {
302 struct btrfs_fs_info *fs_info = log->fs_info;
303 int ret = 0;
304
305 /*
306 * If this fs is mixed then we need to be able to process the leaves to
307 * pin down any logged extents, so we have to read the block.
308 */
309 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
310 ret = btrfs_read_buffer(eb, gen, level, NULL);
311 if (ret)
312 return ret;
313 }
314
315 if (wc->pin)
316 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
317 eb->len);
318
319 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
320 if (wc->pin && btrfs_header_level(eb) == 0)
321 ret = btrfs_exclude_logged_extents(eb);
322 if (wc->write)
323 btrfs_write_tree_block(eb);
324 if (wc->wait)
325 btrfs_wait_tree_block_writeback(eb);
326 }
327 return ret;
328 }
329
330 /*
331 * Item overwrite used by replay and tree logging. eb, slot and key all refer
332 * to the src data we are copying out.
333 *
334 * root is the tree we are copying into, and path is a scratch
335 * path for use in this function (it should be released on entry and
336 * will be released on exit).
337 *
338 * If the key is already in the destination tree the existing item is
339 * overwritten. If the existing item isn't big enough, it is extended.
340 * If it is too large, it is truncated.
341 *
342 * If the key isn't in the destination yet, a new item is inserted.
343 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)344 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
345 struct btrfs_root *root,
346 struct btrfs_path *path,
347 struct extent_buffer *eb, int slot,
348 struct btrfs_key *key)
349 {
350 int ret;
351 u32 item_size;
352 u64 saved_i_size = 0;
353 int save_old_i_size = 0;
354 unsigned long src_ptr;
355 unsigned long dst_ptr;
356 int overwrite_root = 0;
357 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
358
359 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 overwrite_root = 1;
361
362 item_size = btrfs_item_size_nr(eb, slot);
363 src_ptr = btrfs_item_ptr_offset(eb, slot);
364
365 /* look for the key in the destination tree */
366 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
367 if (ret < 0)
368 return ret;
369
370 if (ret == 0) {
371 char *src_copy;
372 char *dst_copy;
373 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
374 path->slots[0]);
375 if (dst_size != item_size)
376 goto insert;
377
378 if (item_size == 0) {
379 btrfs_release_path(path);
380 return 0;
381 }
382 dst_copy = kmalloc(item_size, GFP_NOFS);
383 src_copy = kmalloc(item_size, GFP_NOFS);
384 if (!dst_copy || !src_copy) {
385 btrfs_release_path(path);
386 kfree(dst_copy);
387 kfree(src_copy);
388 return -ENOMEM;
389 }
390
391 read_extent_buffer(eb, src_copy, src_ptr, item_size);
392
393 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
394 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
395 item_size);
396 ret = memcmp(dst_copy, src_copy, item_size);
397
398 kfree(dst_copy);
399 kfree(src_copy);
400 /*
401 * they have the same contents, just return, this saves
402 * us from cowing blocks in the destination tree and doing
403 * extra writes that may not have been done by a previous
404 * sync
405 */
406 if (ret == 0) {
407 btrfs_release_path(path);
408 return 0;
409 }
410
411 /*
412 * We need to load the old nbytes into the inode so when we
413 * replay the extents we've logged we get the right nbytes.
414 */
415 if (inode_item) {
416 struct btrfs_inode_item *item;
417 u64 nbytes;
418 u32 mode;
419
420 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
421 struct btrfs_inode_item);
422 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
423 item = btrfs_item_ptr(eb, slot,
424 struct btrfs_inode_item);
425 btrfs_set_inode_nbytes(eb, item, nbytes);
426
427 /*
428 * If this is a directory we need to reset the i_size to
429 * 0 so that we can set it up properly when replaying
430 * the rest of the items in this log.
431 */
432 mode = btrfs_inode_mode(eb, item);
433 if (S_ISDIR(mode))
434 btrfs_set_inode_size(eb, item, 0);
435 }
436 } else if (inode_item) {
437 struct btrfs_inode_item *item;
438 u32 mode;
439
440 /*
441 * New inode, set nbytes to 0 so that the nbytes comes out
442 * properly when we replay the extents.
443 */
444 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
445 btrfs_set_inode_nbytes(eb, item, 0);
446
447 /*
448 * If this is a directory we need to reset the i_size to 0 so
449 * that we can set it up properly when replaying the rest of
450 * the items in this log.
451 */
452 mode = btrfs_inode_mode(eb, item);
453 if (S_ISDIR(mode))
454 btrfs_set_inode_size(eb, item, 0);
455 }
456 insert:
457 btrfs_release_path(path);
458 /* try to insert the key into the destination tree */
459 path->skip_release_on_error = 1;
460 ret = btrfs_insert_empty_item(trans, root, path,
461 key, item_size);
462 path->skip_release_on_error = 0;
463
464 /* make sure any existing item is the correct size */
465 if (ret == -EEXIST || ret == -EOVERFLOW) {
466 u32 found_size;
467 found_size = btrfs_item_size_nr(path->nodes[0],
468 path->slots[0]);
469 if (found_size > item_size)
470 btrfs_truncate_item(path, item_size, 1);
471 else if (found_size < item_size)
472 btrfs_extend_item(path, item_size - found_size);
473 } else if (ret) {
474 return ret;
475 }
476 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 path->slots[0]);
478
479 /* don't overwrite an existing inode if the generation number
480 * was logged as zero. This is done when the tree logging code
481 * is just logging an inode to make sure it exists after recovery.
482 *
483 * Also, don't overwrite i_size on directories during replay.
484 * log replay inserts and removes directory items based on the
485 * state of the tree found in the subvolume, and i_size is modified
486 * as it goes
487 */
488 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
489 struct btrfs_inode_item *src_item;
490 struct btrfs_inode_item *dst_item;
491
492 src_item = (struct btrfs_inode_item *)src_ptr;
493 dst_item = (struct btrfs_inode_item *)dst_ptr;
494
495 if (btrfs_inode_generation(eb, src_item) == 0) {
496 struct extent_buffer *dst_eb = path->nodes[0];
497 const u64 ino_size = btrfs_inode_size(eb, src_item);
498
499 /*
500 * For regular files an ino_size == 0 is used only when
501 * logging that an inode exists, as part of a directory
502 * fsync, and the inode wasn't fsynced before. In this
503 * case don't set the size of the inode in the fs/subvol
504 * tree, otherwise we would be throwing valid data away.
505 */
506 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
507 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
508 ino_size != 0)
509 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
510 goto no_copy;
511 }
512
513 if (overwrite_root &&
514 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
515 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
516 save_old_i_size = 1;
517 saved_i_size = btrfs_inode_size(path->nodes[0],
518 dst_item);
519 }
520 }
521
522 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
523 src_ptr, item_size);
524
525 if (save_old_i_size) {
526 struct btrfs_inode_item *dst_item;
527 dst_item = (struct btrfs_inode_item *)dst_ptr;
528 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
529 }
530
531 /* make sure the generation is filled in */
532 if (key->type == BTRFS_INODE_ITEM_KEY) {
533 struct btrfs_inode_item *dst_item;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
536 btrfs_set_inode_generation(path->nodes[0], dst_item,
537 trans->transid);
538 }
539 }
540 no_copy:
541 btrfs_mark_buffer_dirty(path->nodes[0]);
542 btrfs_release_path(path);
543 return 0;
544 }
545
546 /*
547 * simple helper to read an inode off the disk from a given root
548 * This can only be called for subvolume roots and not for the log
549 */
read_one_inode(struct btrfs_root * root,u64 objectid)550 static noinline struct inode *read_one_inode(struct btrfs_root *root,
551 u64 objectid)
552 {
553 struct inode *inode;
554
555 inode = btrfs_iget(root->fs_info->sb, objectid, root);
556 if (IS_ERR(inode))
557 inode = NULL;
558 return inode;
559 }
560
561 /* replays a single extent in 'eb' at 'slot' with 'key' into the
562 * subvolume 'root'. path is released on entry and should be released
563 * on exit.
564 *
565 * extents in the log tree have not been allocated out of the extent
566 * tree yet. So, this completes the allocation, taking a reference
567 * as required if the extent already exists or creating a new extent
568 * if it isn't in the extent allocation tree yet.
569 *
570 * The extent is inserted into the file, dropping any existing extents
571 * from the file that overlap the new one.
572 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)573 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
574 struct btrfs_root *root,
575 struct btrfs_path *path,
576 struct extent_buffer *eb, int slot,
577 struct btrfs_key *key)
578 {
579 struct btrfs_fs_info *fs_info = root->fs_info;
580 int found_type;
581 u64 extent_end;
582 u64 start = key->offset;
583 u64 nbytes = 0;
584 struct btrfs_file_extent_item *item;
585 struct inode *inode = NULL;
586 unsigned long size;
587 int ret = 0;
588
589 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
590 found_type = btrfs_file_extent_type(eb, item);
591
592 if (found_type == BTRFS_FILE_EXTENT_REG ||
593 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
594 nbytes = btrfs_file_extent_num_bytes(eb, item);
595 extent_end = start + nbytes;
596
597 /*
598 * We don't add to the inodes nbytes if we are prealloc or a
599 * hole.
600 */
601 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
602 nbytes = 0;
603 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
604 size = btrfs_file_extent_ram_bytes(eb, item);
605 nbytes = btrfs_file_extent_ram_bytes(eb, item);
606 extent_end = ALIGN(start + size,
607 fs_info->sectorsize);
608 } else {
609 ret = 0;
610 goto out;
611 }
612
613 inode = read_one_inode(root, key->objectid);
614 if (!inode) {
615 ret = -EIO;
616 goto out;
617 }
618
619 /*
620 * first check to see if we already have this extent in the
621 * file. This must be done before the btrfs_drop_extents run
622 * so we don't try to drop this extent.
623 */
624 ret = btrfs_lookup_file_extent(trans, root, path,
625 btrfs_ino(BTRFS_I(inode)), start, 0);
626
627 if (ret == 0 &&
628 (found_type == BTRFS_FILE_EXTENT_REG ||
629 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
630 struct btrfs_file_extent_item cmp1;
631 struct btrfs_file_extent_item cmp2;
632 struct btrfs_file_extent_item *existing;
633 struct extent_buffer *leaf;
634
635 leaf = path->nodes[0];
636 existing = btrfs_item_ptr(leaf, path->slots[0],
637 struct btrfs_file_extent_item);
638
639 read_extent_buffer(eb, &cmp1, (unsigned long)item,
640 sizeof(cmp1));
641 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
642 sizeof(cmp2));
643
644 /*
645 * we already have a pointer to this exact extent,
646 * we don't have to do anything
647 */
648 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
649 btrfs_release_path(path);
650 goto out;
651 }
652 }
653 btrfs_release_path(path);
654
655 /* drop any overlapping extents */
656 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
657 if (ret)
658 goto out;
659
660 if (found_type == BTRFS_FILE_EXTENT_REG ||
661 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 u64 offset;
663 unsigned long dest_offset;
664 struct btrfs_key ins;
665
666 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
667 btrfs_fs_incompat(fs_info, NO_HOLES))
668 goto update_inode;
669
670 ret = btrfs_insert_empty_item(trans, root, path, key,
671 sizeof(*item));
672 if (ret)
673 goto out;
674 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
675 path->slots[0]);
676 copy_extent_buffer(path->nodes[0], eb, dest_offset,
677 (unsigned long)item, sizeof(*item));
678
679 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
680 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
681 ins.type = BTRFS_EXTENT_ITEM_KEY;
682 offset = key->offset - btrfs_file_extent_offset(eb, item);
683
684 /*
685 * Manually record dirty extent, as here we did a shallow
686 * file extent item copy and skip normal backref update,
687 * but modifying extent tree all by ourselves.
688 * So need to manually record dirty extent for qgroup,
689 * as the owner of the file extent changed from log tree
690 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
691 */
692 ret = btrfs_qgroup_trace_extent(trans,
693 btrfs_file_extent_disk_bytenr(eb, item),
694 btrfs_file_extent_disk_num_bytes(eb, item),
695 GFP_NOFS);
696 if (ret < 0)
697 goto out;
698
699 if (ins.objectid > 0) {
700 struct btrfs_ref ref = { 0 };
701 u64 csum_start;
702 u64 csum_end;
703 LIST_HEAD(ordered_sums);
704
705 /*
706 * is this extent already allocated in the extent
707 * allocation tree? If so, just add a reference
708 */
709 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
710 ins.offset);
711 if (ret == 0) {
712 btrfs_init_generic_ref(&ref,
713 BTRFS_ADD_DELAYED_REF,
714 ins.objectid, ins.offset, 0);
715 btrfs_init_data_ref(&ref,
716 root->root_key.objectid,
717 key->objectid, offset);
718 ret = btrfs_inc_extent_ref(trans, &ref);
719 if (ret)
720 goto out;
721 } else {
722 /*
723 * insert the extent pointer in the extent
724 * allocation tree
725 */
726 ret = btrfs_alloc_logged_file_extent(trans,
727 root->root_key.objectid,
728 key->objectid, offset, &ins);
729 if (ret)
730 goto out;
731 }
732 btrfs_release_path(path);
733
734 if (btrfs_file_extent_compression(eb, item)) {
735 csum_start = ins.objectid;
736 csum_end = csum_start + ins.offset;
737 } else {
738 csum_start = ins.objectid +
739 btrfs_file_extent_offset(eb, item);
740 csum_end = csum_start +
741 btrfs_file_extent_num_bytes(eb, item);
742 }
743
744 ret = btrfs_lookup_csums_range(root->log_root,
745 csum_start, csum_end - 1,
746 &ordered_sums, 0);
747 if (ret)
748 goto out;
749 /*
750 * Now delete all existing cums in the csum root that
751 * cover our range. We do this because we can have an
752 * extent that is completely referenced by one file
753 * extent item and partially referenced by another
754 * file extent item (like after using the clone or
755 * extent_same ioctls). In this case if we end up doing
756 * the replay of the one that partially references the
757 * extent first, and we do not do the csum deletion
758 * below, we can get 2 csum items in the csum tree that
759 * overlap each other. For example, imagine our log has
760 * the two following file extent items:
761 *
762 * key (257 EXTENT_DATA 409600)
763 * extent data disk byte 12845056 nr 102400
764 * extent data offset 20480 nr 20480 ram 102400
765 *
766 * key (257 EXTENT_DATA 819200)
767 * extent data disk byte 12845056 nr 102400
768 * extent data offset 0 nr 102400 ram 102400
769 *
770 * Where the second one fully references the 100K extent
771 * that starts at disk byte 12845056, and the log tree
772 * has a single csum item that covers the entire range
773 * of the extent:
774 *
775 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
776 *
777 * After the first file extent item is replayed, the
778 * csum tree gets the following csum item:
779 *
780 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
781 *
782 * Which covers the 20K sub-range starting at offset 20K
783 * of our extent. Now when we replay the second file
784 * extent item, if we do not delete existing csum items
785 * that cover any of its blocks, we end up getting two
786 * csum items in our csum tree that overlap each other:
787 *
788 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
789 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
790 *
791 * Which is a problem, because after this anyone trying
792 * to lookup up for the checksum of any block of our
793 * extent starting at an offset of 40K or higher, will
794 * end up looking at the second csum item only, which
795 * does not contain the checksum for any block starting
796 * at offset 40K or higher of our extent.
797 */
798 while (!list_empty(&ordered_sums)) {
799 struct btrfs_ordered_sum *sums;
800 sums = list_entry(ordered_sums.next,
801 struct btrfs_ordered_sum,
802 list);
803 if (!ret)
804 ret = btrfs_del_csums(trans,
805 fs_info->csum_root,
806 sums->bytenr,
807 sums->len);
808 if (!ret)
809 ret = btrfs_csum_file_blocks(trans,
810 fs_info->csum_root, sums);
811 list_del(&sums->list);
812 kfree(sums);
813 }
814 if (ret)
815 goto out;
816 } else {
817 btrfs_release_path(path);
818 }
819 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
820 /* inline extents are easy, we just overwrite them */
821 ret = overwrite_item(trans, root, path, eb, slot, key);
822 if (ret)
823 goto out;
824 }
825
826 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
827 extent_end - start);
828 if (ret)
829 goto out;
830
831 inode_add_bytes(inode, nbytes);
832 update_inode:
833 ret = btrfs_update_inode(trans, root, inode);
834 out:
835 if (inode)
836 iput(inode);
837 return ret;
838 }
839
840 /*
841 * when cleaning up conflicts between the directory names in the
842 * subvolume, directory names in the log and directory names in the
843 * inode back references, we may have to unlink inodes from directories.
844 *
845 * This is a helper function to do the unlink of a specific directory
846 * item
847 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 struct btrfs_root *root,
850 struct btrfs_path *path,
851 struct btrfs_inode *dir,
852 struct btrfs_dir_item *di)
853 {
854 struct inode *inode;
855 char *name;
856 int name_len;
857 struct extent_buffer *leaf;
858 struct btrfs_key location;
859 int ret;
860
861 leaf = path->nodes[0];
862
863 btrfs_dir_item_key_to_cpu(leaf, di, &location);
864 name_len = btrfs_dir_name_len(leaf, di);
865 name = kmalloc(name_len, GFP_NOFS);
866 if (!name)
867 return -ENOMEM;
868
869 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
870 btrfs_release_path(path);
871
872 inode = read_one_inode(root, location.objectid);
873 if (!inode) {
874 ret = -EIO;
875 goto out;
876 }
877
878 ret = link_to_fixup_dir(trans, root, path, location.objectid);
879 if (ret)
880 goto out;
881
882 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
883 name_len);
884 if (ret)
885 goto out;
886 else
887 ret = btrfs_run_delayed_items(trans);
888 out:
889 kfree(name);
890 iput(inode);
891 return ret;
892 }
893
894 /*
895 * helper function to see if a given name and sequence number found
896 * in an inode back reference are already in a directory and correctly
897 * point to this inode
898 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)899 static noinline int inode_in_dir(struct btrfs_root *root,
900 struct btrfs_path *path,
901 u64 dirid, u64 objectid, u64 index,
902 const char *name, int name_len)
903 {
904 struct btrfs_dir_item *di;
905 struct btrfs_key location;
906 int match = 0;
907
908 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
909 index, name, name_len, 0);
910 if (di && !IS_ERR(di)) {
911 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
912 if (location.objectid != objectid)
913 goto out;
914 } else
915 goto out;
916 btrfs_release_path(path);
917
918 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
919 if (di && !IS_ERR(di)) {
920 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
921 if (location.objectid != objectid)
922 goto out;
923 } else
924 goto out;
925 match = 1;
926 out:
927 btrfs_release_path(path);
928 return match;
929 }
930
931 /*
932 * helper function to check a log tree for a named back reference in
933 * an inode. This is used to decide if a back reference that is
934 * found in the subvolume conflicts with what we find in the log.
935 *
936 * inode backreferences may have multiple refs in a single item,
937 * during replay we process one reference at a time, and we don't
938 * want to delete valid links to a file from the subvolume if that
939 * link is also in the log.
940 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)941 static noinline int backref_in_log(struct btrfs_root *log,
942 struct btrfs_key *key,
943 u64 ref_objectid,
944 const char *name, int namelen)
945 {
946 struct btrfs_path *path;
947 int ret;
948
949 path = btrfs_alloc_path();
950 if (!path)
951 return -ENOMEM;
952
953 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
954 if (ret < 0) {
955 goto out;
956 } else if (ret == 1) {
957 ret = 0;
958 goto out;
959 }
960
961 if (key->type == BTRFS_INODE_EXTREF_KEY)
962 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
963 path->slots[0],
964 ref_objectid,
965 name, namelen);
966 else
967 ret = !!btrfs_find_name_in_backref(path->nodes[0],
968 path->slots[0],
969 name, namelen);
970 out:
971 btrfs_free_path(path);
972 return ret;
973 }
974
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)975 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
976 struct btrfs_root *root,
977 struct btrfs_path *path,
978 struct btrfs_root *log_root,
979 struct btrfs_inode *dir,
980 struct btrfs_inode *inode,
981 u64 inode_objectid, u64 parent_objectid,
982 u64 ref_index, char *name, int namelen,
983 int *search_done)
984 {
985 int ret;
986 char *victim_name;
987 int victim_name_len;
988 struct extent_buffer *leaf;
989 struct btrfs_dir_item *di;
990 struct btrfs_key search_key;
991 struct btrfs_inode_extref *extref;
992
993 again:
994 /* Search old style refs */
995 search_key.objectid = inode_objectid;
996 search_key.type = BTRFS_INODE_REF_KEY;
997 search_key.offset = parent_objectid;
998 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
999 if (ret == 0) {
1000 struct btrfs_inode_ref *victim_ref;
1001 unsigned long ptr;
1002 unsigned long ptr_end;
1003
1004 leaf = path->nodes[0];
1005
1006 /* are we trying to overwrite a back ref for the root directory
1007 * if so, just jump out, we're done
1008 */
1009 if (search_key.objectid == search_key.offset)
1010 return 1;
1011
1012 /* check all the names in this back reference to see
1013 * if they are in the log. if so, we allow them to stay
1014 * otherwise they must be unlinked as a conflict
1015 */
1016 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1017 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1018 while (ptr < ptr_end) {
1019 victim_ref = (struct btrfs_inode_ref *)ptr;
1020 victim_name_len = btrfs_inode_ref_name_len(leaf,
1021 victim_ref);
1022 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1023 if (!victim_name)
1024 return -ENOMEM;
1025
1026 read_extent_buffer(leaf, victim_name,
1027 (unsigned long)(victim_ref + 1),
1028 victim_name_len);
1029
1030 ret = backref_in_log(log_root, &search_key,
1031 parent_objectid, victim_name,
1032 victim_name_len);
1033 if (ret < 0) {
1034 kfree(victim_name);
1035 return ret;
1036 } else if (!ret) {
1037 inc_nlink(&inode->vfs_inode);
1038 btrfs_release_path(path);
1039
1040 ret = btrfs_unlink_inode(trans, root, dir, inode,
1041 victim_name, victim_name_len);
1042 kfree(victim_name);
1043 if (ret)
1044 return ret;
1045 ret = btrfs_run_delayed_items(trans);
1046 if (ret)
1047 return ret;
1048 *search_done = 1;
1049 goto again;
1050 }
1051 kfree(victim_name);
1052
1053 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1054 }
1055
1056 /*
1057 * NOTE: we have searched root tree and checked the
1058 * corresponding ref, it does not need to check again.
1059 */
1060 *search_done = 1;
1061 }
1062 btrfs_release_path(path);
1063
1064 /* Same search but for extended refs */
1065 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1066 inode_objectid, parent_objectid, 0,
1067 0);
1068 if (!IS_ERR_OR_NULL(extref)) {
1069 u32 item_size;
1070 u32 cur_offset = 0;
1071 unsigned long base;
1072 struct inode *victim_parent;
1073
1074 leaf = path->nodes[0];
1075
1076 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1077 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1078
1079 while (cur_offset < item_size) {
1080 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1081
1082 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1083
1084 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1085 goto next;
1086
1087 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1088 if (!victim_name)
1089 return -ENOMEM;
1090 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1091 victim_name_len);
1092
1093 search_key.objectid = inode_objectid;
1094 search_key.type = BTRFS_INODE_EXTREF_KEY;
1095 search_key.offset = btrfs_extref_hash(parent_objectid,
1096 victim_name,
1097 victim_name_len);
1098 ret = backref_in_log(log_root, &search_key,
1099 parent_objectid, victim_name,
1100 victim_name_len);
1101 if (ret < 0) {
1102 return ret;
1103 } else if (!ret) {
1104 ret = -ENOENT;
1105 victim_parent = read_one_inode(root,
1106 parent_objectid);
1107 if (victim_parent) {
1108 inc_nlink(&inode->vfs_inode);
1109 btrfs_release_path(path);
1110
1111 ret = btrfs_unlink_inode(trans, root,
1112 BTRFS_I(victim_parent),
1113 inode,
1114 victim_name,
1115 victim_name_len);
1116 if (!ret)
1117 ret = btrfs_run_delayed_items(
1118 trans);
1119 }
1120 iput(victim_parent);
1121 kfree(victim_name);
1122 if (ret)
1123 return ret;
1124 *search_done = 1;
1125 goto again;
1126 }
1127 kfree(victim_name);
1128 next:
1129 cur_offset += victim_name_len + sizeof(*extref);
1130 }
1131 *search_done = 1;
1132 }
1133 btrfs_release_path(path);
1134
1135 /* look for a conflicting sequence number */
1136 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1137 ref_index, name, namelen, 0);
1138 if (di && !IS_ERR(di)) {
1139 ret = drop_one_dir_item(trans, root, path, dir, di);
1140 if (ret)
1141 return ret;
1142 }
1143 btrfs_release_path(path);
1144
1145 /* look for a conflicting name */
1146 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1147 name, namelen, 0);
1148 if (di && !IS_ERR(di)) {
1149 ret = drop_one_dir_item(trans, root, path, dir, di);
1150 if (ret)
1151 return ret;
1152 }
1153 btrfs_release_path(path);
1154
1155 return 0;
1156 }
1157
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1158 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1159 u32 *namelen, char **name, u64 *index,
1160 u64 *parent_objectid)
1161 {
1162 struct btrfs_inode_extref *extref;
1163
1164 extref = (struct btrfs_inode_extref *)ref_ptr;
1165
1166 *namelen = btrfs_inode_extref_name_len(eb, extref);
1167 *name = kmalloc(*namelen, GFP_NOFS);
1168 if (*name == NULL)
1169 return -ENOMEM;
1170
1171 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1172 *namelen);
1173
1174 if (index)
1175 *index = btrfs_inode_extref_index(eb, extref);
1176 if (parent_objectid)
1177 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1178
1179 return 0;
1180 }
1181
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1182 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1183 u32 *namelen, char **name, u64 *index)
1184 {
1185 struct btrfs_inode_ref *ref;
1186
1187 ref = (struct btrfs_inode_ref *)ref_ptr;
1188
1189 *namelen = btrfs_inode_ref_name_len(eb, ref);
1190 *name = kmalloc(*namelen, GFP_NOFS);
1191 if (*name == NULL)
1192 return -ENOMEM;
1193
1194 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1195
1196 if (index)
1197 *index = btrfs_inode_ref_index(eb, ref);
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * Take an inode reference item from the log tree and iterate all names from the
1204 * inode reference item in the subvolume tree with the same key (if it exists).
1205 * For any name that is not in the inode reference item from the log tree, do a
1206 * proper unlink of that name (that is, remove its entry from the inode
1207 * reference item and both dir index keys).
1208 */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1209 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1210 struct btrfs_root *root,
1211 struct btrfs_path *path,
1212 struct btrfs_inode *inode,
1213 struct extent_buffer *log_eb,
1214 int log_slot,
1215 struct btrfs_key *key)
1216 {
1217 int ret;
1218 unsigned long ref_ptr;
1219 unsigned long ref_end;
1220 struct extent_buffer *eb;
1221
1222 again:
1223 btrfs_release_path(path);
1224 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1225 if (ret > 0) {
1226 ret = 0;
1227 goto out;
1228 }
1229 if (ret < 0)
1230 goto out;
1231
1232 eb = path->nodes[0];
1233 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1234 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1235 while (ref_ptr < ref_end) {
1236 char *name = NULL;
1237 int namelen;
1238 u64 parent_id;
1239
1240 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1241 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1242 NULL, &parent_id);
1243 } else {
1244 parent_id = key->offset;
1245 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1246 NULL);
1247 }
1248 if (ret)
1249 goto out;
1250
1251 if (key->type == BTRFS_INODE_EXTREF_KEY)
1252 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1253 parent_id, name,
1254 namelen);
1255 else
1256 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1257 name, namelen);
1258
1259 if (!ret) {
1260 struct inode *dir;
1261
1262 btrfs_release_path(path);
1263 dir = read_one_inode(root, parent_id);
1264 if (!dir) {
1265 ret = -ENOENT;
1266 kfree(name);
1267 goto out;
1268 }
1269 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1270 inode, name, namelen);
1271 kfree(name);
1272 iput(dir);
1273 if (ret)
1274 goto out;
1275 goto again;
1276 }
1277
1278 kfree(name);
1279 ref_ptr += namelen;
1280 if (key->type == BTRFS_INODE_EXTREF_KEY)
1281 ref_ptr += sizeof(struct btrfs_inode_extref);
1282 else
1283 ref_ptr += sizeof(struct btrfs_inode_ref);
1284 }
1285 ret = 0;
1286 out:
1287 btrfs_release_path(path);
1288 return ret;
1289 }
1290
btrfs_inode_ref_exists(struct inode * inode,struct inode * dir,const u8 ref_type,const char * name,const int namelen)1291 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1292 const u8 ref_type, const char *name,
1293 const int namelen)
1294 {
1295 struct btrfs_key key;
1296 struct btrfs_path *path;
1297 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1298 int ret;
1299
1300 path = btrfs_alloc_path();
1301 if (!path)
1302 return -ENOMEM;
1303
1304 key.objectid = btrfs_ino(BTRFS_I(inode));
1305 key.type = ref_type;
1306 if (key.type == BTRFS_INODE_REF_KEY)
1307 key.offset = parent_id;
1308 else
1309 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1310
1311 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1312 if (ret < 0)
1313 goto out;
1314 if (ret > 0) {
1315 ret = 0;
1316 goto out;
1317 }
1318 if (key.type == BTRFS_INODE_EXTREF_KEY)
1319 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1320 path->slots[0], parent_id, name, namelen);
1321 else
1322 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1323 name, namelen);
1324
1325 out:
1326 btrfs_free_path(path);
1327 return ret;
1328 }
1329
add_link(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int namelen,u64 ref_index)1330 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1331 struct inode *dir, struct inode *inode, const char *name,
1332 int namelen, u64 ref_index)
1333 {
1334 struct btrfs_dir_item *dir_item;
1335 struct btrfs_key key;
1336 struct btrfs_path *path;
1337 struct inode *other_inode = NULL;
1338 int ret;
1339
1340 path = btrfs_alloc_path();
1341 if (!path)
1342 return -ENOMEM;
1343
1344 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1345 btrfs_ino(BTRFS_I(dir)),
1346 name, namelen, 0);
1347 if (!dir_item) {
1348 btrfs_release_path(path);
1349 goto add_link;
1350 } else if (IS_ERR(dir_item)) {
1351 ret = PTR_ERR(dir_item);
1352 goto out;
1353 }
1354
1355 /*
1356 * Our inode's dentry collides with the dentry of another inode which is
1357 * in the log but not yet processed since it has a higher inode number.
1358 * So delete that other dentry.
1359 */
1360 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1361 btrfs_release_path(path);
1362 other_inode = read_one_inode(root, key.objectid);
1363 if (!other_inode) {
1364 ret = -ENOENT;
1365 goto out;
1366 }
1367 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1368 name, namelen);
1369 if (ret)
1370 goto out;
1371 /*
1372 * If we dropped the link count to 0, bump it so that later the iput()
1373 * on the inode will not free it. We will fixup the link count later.
1374 */
1375 if (other_inode->i_nlink == 0)
1376 inc_nlink(other_inode);
1377
1378 ret = btrfs_run_delayed_items(trans);
1379 if (ret)
1380 goto out;
1381 add_link:
1382 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1383 name, namelen, 0, ref_index);
1384 out:
1385 iput(other_inode);
1386 btrfs_free_path(path);
1387
1388 return ret;
1389 }
1390
1391 /*
1392 * replay one inode back reference item found in the log tree.
1393 * eb, slot and key refer to the buffer and key found in the log tree.
1394 * root is the destination we are replaying into, and path is for temp
1395 * use by this function. (it should be released on return).
1396 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1397 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1398 struct btrfs_root *root,
1399 struct btrfs_root *log,
1400 struct btrfs_path *path,
1401 struct extent_buffer *eb, int slot,
1402 struct btrfs_key *key)
1403 {
1404 struct inode *dir = NULL;
1405 struct inode *inode = NULL;
1406 unsigned long ref_ptr;
1407 unsigned long ref_end;
1408 char *name = NULL;
1409 int namelen;
1410 int ret;
1411 int search_done = 0;
1412 int log_ref_ver = 0;
1413 u64 parent_objectid;
1414 u64 inode_objectid;
1415 u64 ref_index = 0;
1416 int ref_struct_size;
1417
1418 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1419 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1420
1421 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1422 struct btrfs_inode_extref *r;
1423
1424 ref_struct_size = sizeof(struct btrfs_inode_extref);
1425 log_ref_ver = 1;
1426 r = (struct btrfs_inode_extref *)ref_ptr;
1427 parent_objectid = btrfs_inode_extref_parent(eb, r);
1428 } else {
1429 ref_struct_size = sizeof(struct btrfs_inode_ref);
1430 parent_objectid = key->offset;
1431 }
1432 inode_objectid = key->objectid;
1433
1434 /*
1435 * it is possible that we didn't log all the parent directories
1436 * for a given inode. If we don't find the dir, just don't
1437 * copy the back ref in. The link count fixup code will take
1438 * care of the rest
1439 */
1440 dir = read_one_inode(root, parent_objectid);
1441 if (!dir) {
1442 ret = -ENOENT;
1443 goto out;
1444 }
1445
1446 inode = read_one_inode(root, inode_objectid);
1447 if (!inode) {
1448 ret = -EIO;
1449 goto out;
1450 }
1451
1452 while (ref_ptr < ref_end) {
1453 if (log_ref_ver) {
1454 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1455 &ref_index, &parent_objectid);
1456 /*
1457 * parent object can change from one array
1458 * item to another.
1459 */
1460 if (!dir)
1461 dir = read_one_inode(root, parent_objectid);
1462 if (!dir) {
1463 ret = -ENOENT;
1464 goto out;
1465 }
1466 } else {
1467 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1468 &ref_index);
1469 }
1470 if (ret)
1471 goto out;
1472
1473 /* if we already have a perfect match, we're done */
1474 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1475 btrfs_ino(BTRFS_I(inode)), ref_index,
1476 name, namelen)) {
1477 /*
1478 * look for a conflicting back reference in the
1479 * metadata. if we find one we have to unlink that name
1480 * of the file before we add our new link. Later on, we
1481 * overwrite any existing back reference, and we don't
1482 * want to create dangling pointers in the directory.
1483 */
1484
1485 if (!search_done) {
1486 ret = __add_inode_ref(trans, root, path, log,
1487 BTRFS_I(dir),
1488 BTRFS_I(inode),
1489 inode_objectid,
1490 parent_objectid,
1491 ref_index, name, namelen,
1492 &search_done);
1493 if (ret) {
1494 if (ret == 1)
1495 ret = 0;
1496 goto out;
1497 }
1498 }
1499
1500 /*
1501 * If a reference item already exists for this inode
1502 * with the same parent and name, but different index,
1503 * drop it and the corresponding directory index entries
1504 * from the parent before adding the new reference item
1505 * and dir index entries, otherwise we would fail with
1506 * -EEXIST returned from btrfs_add_link() below.
1507 */
1508 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1509 name, namelen);
1510 if (ret > 0) {
1511 ret = btrfs_unlink_inode(trans, root,
1512 BTRFS_I(dir),
1513 BTRFS_I(inode),
1514 name, namelen);
1515 /*
1516 * If we dropped the link count to 0, bump it so
1517 * that later the iput() on the inode will not
1518 * free it. We will fixup the link count later.
1519 */
1520 if (!ret && inode->i_nlink == 0)
1521 inc_nlink(inode);
1522 }
1523 if (ret < 0)
1524 goto out;
1525
1526 /* insert our name */
1527 ret = add_link(trans, root, dir, inode, name, namelen,
1528 ref_index);
1529 if (ret)
1530 goto out;
1531
1532 btrfs_update_inode(trans, root, inode);
1533 }
1534
1535 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1536 kfree(name);
1537 name = NULL;
1538 if (log_ref_ver) {
1539 iput(dir);
1540 dir = NULL;
1541 }
1542 }
1543
1544 /*
1545 * Before we overwrite the inode reference item in the subvolume tree
1546 * with the item from the log tree, we must unlink all names from the
1547 * parent directory that are in the subvolume's tree inode reference
1548 * item, otherwise we end up with an inconsistent subvolume tree where
1549 * dir index entries exist for a name but there is no inode reference
1550 * item with the same name.
1551 */
1552 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1553 key);
1554 if (ret)
1555 goto out;
1556
1557 /* finally write the back reference in the inode */
1558 ret = overwrite_item(trans, root, path, eb, slot, key);
1559 out:
1560 btrfs_release_path(path);
1561 kfree(name);
1562 iput(dir);
1563 iput(inode);
1564 return ret;
1565 }
1566
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 ino)1567 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1568 struct btrfs_root *root, u64 ino)
1569 {
1570 int ret;
1571
1572 ret = btrfs_insert_orphan_item(trans, root, ino);
1573 if (ret == -EEXIST)
1574 ret = 0;
1575
1576 return ret;
1577 }
1578
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1579 static int count_inode_extrefs(struct btrfs_root *root,
1580 struct btrfs_inode *inode, struct btrfs_path *path)
1581 {
1582 int ret = 0;
1583 int name_len;
1584 unsigned int nlink = 0;
1585 u32 item_size;
1586 u32 cur_offset = 0;
1587 u64 inode_objectid = btrfs_ino(inode);
1588 u64 offset = 0;
1589 unsigned long ptr;
1590 struct btrfs_inode_extref *extref;
1591 struct extent_buffer *leaf;
1592
1593 while (1) {
1594 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1595 &extref, &offset);
1596 if (ret)
1597 break;
1598
1599 leaf = path->nodes[0];
1600 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1601 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1602 cur_offset = 0;
1603
1604 while (cur_offset < item_size) {
1605 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1606 name_len = btrfs_inode_extref_name_len(leaf, extref);
1607
1608 nlink++;
1609
1610 cur_offset += name_len + sizeof(*extref);
1611 }
1612
1613 offset++;
1614 btrfs_release_path(path);
1615 }
1616 btrfs_release_path(path);
1617
1618 if (ret < 0 && ret != -ENOENT)
1619 return ret;
1620 return nlink;
1621 }
1622
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1623 static int count_inode_refs(struct btrfs_root *root,
1624 struct btrfs_inode *inode, struct btrfs_path *path)
1625 {
1626 int ret;
1627 struct btrfs_key key;
1628 unsigned int nlink = 0;
1629 unsigned long ptr;
1630 unsigned long ptr_end;
1631 int name_len;
1632 u64 ino = btrfs_ino(inode);
1633
1634 key.objectid = ino;
1635 key.type = BTRFS_INODE_REF_KEY;
1636 key.offset = (u64)-1;
1637
1638 while (1) {
1639 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1640 if (ret < 0)
1641 break;
1642 if (ret > 0) {
1643 if (path->slots[0] == 0)
1644 break;
1645 path->slots[0]--;
1646 }
1647 process_slot:
1648 btrfs_item_key_to_cpu(path->nodes[0], &key,
1649 path->slots[0]);
1650 if (key.objectid != ino ||
1651 key.type != BTRFS_INODE_REF_KEY)
1652 break;
1653 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1654 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1655 path->slots[0]);
1656 while (ptr < ptr_end) {
1657 struct btrfs_inode_ref *ref;
1658
1659 ref = (struct btrfs_inode_ref *)ptr;
1660 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1661 ref);
1662 ptr = (unsigned long)(ref + 1) + name_len;
1663 nlink++;
1664 }
1665
1666 if (key.offset == 0)
1667 break;
1668 if (path->slots[0] > 0) {
1669 path->slots[0]--;
1670 goto process_slot;
1671 }
1672 key.offset--;
1673 btrfs_release_path(path);
1674 }
1675 btrfs_release_path(path);
1676
1677 return nlink;
1678 }
1679
1680 /*
1681 * There are a few corners where the link count of the file can't
1682 * be properly maintained during replay. So, instead of adding
1683 * lots of complexity to the log code, we just scan the backrefs
1684 * for any file that has been through replay.
1685 *
1686 * The scan will update the link count on the inode to reflect the
1687 * number of back refs found. If it goes down to zero, the iput
1688 * will free the inode.
1689 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1690 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1691 struct btrfs_root *root,
1692 struct inode *inode)
1693 {
1694 struct btrfs_path *path;
1695 int ret;
1696 u64 nlink = 0;
1697 u64 ino = btrfs_ino(BTRFS_I(inode));
1698
1699 path = btrfs_alloc_path();
1700 if (!path)
1701 return -ENOMEM;
1702
1703 ret = count_inode_refs(root, BTRFS_I(inode), path);
1704 if (ret < 0)
1705 goto out;
1706
1707 nlink = ret;
1708
1709 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1710 if (ret < 0)
1711 goto out;
1712
1713 nlink += ret;
1714
1715 ret = 0;
1716
1717 if (nlink != inode->i_nlink) {
1718 set_nlink(inode, nlink);
1719 btrfs_update_inode(trans, root, inode);
1720 }
1721 BTRFS_I(inode)->index_cnt = (u64)-1;
1722
1723 if (inode->i_nlink == 0) {
1724 if (S_ISDIR(inode->i_mode)) {
1725 ret = replay_dir_deletes(trans, root, NULL, path,
1726 ino, 1);
1727 if (ret)
1728 goto out;
1729 }
1730 ret = insert_orphan_item(trans, root, ino);
1731 }
1732
1733 out:
1734 btrfs_free_path(path);
1735 return ret;
1736 }
1737
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1738 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1739 struct btrfs_root *root,
1740 struct btrfs_path *path)
1741 {
1742 int ret;
1743 struct btrfs_key key;
1744 struct inode *inode;
1745
1746 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1747 key.type = BTRFS_ORPHAN_ITEM_KEY;
1748 key.offset = (u64)-1;
1749 while (1) {
1750 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1751 if (ret < 0)
1752 break;
1753
1754 if (ret == 1) {
1755 if (path->slots[0] == 0)
1756 break;
1757 path->slots[0]--;
1758 }
1759
1760 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1761 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1762 key.type != BTRFS_ORPHAN_ITEM_KEY)
1763 break;
1764
1765 ret = btrfs_del_item(trans, root, path);
1766 if (ret)
1767 goto out;
1768
1769 btrfs_release_path(path);
1770 inode = read_one_inode(root, key.offset);
1771 if (!inode)
1772 return -EIO;
1773
1774 ret = fixup_inode_link_count(trans, root, inode);
1775 iput(inode);
1776 if (ret)
1777 goto out;
1778
1779 /*
1780 * fixup on a directory may create new entries,
1781 * make sure we always look for the highset possible
1782 * offset
1783 */
1784 key.offset = (u64)-1;
1785 }
1786 ret = 0;
1787 out:
1788 btrfs_release_path(path);
1789 return ret;
1790 }
1791
1792
1793 /*
1794 * record a given inode in the fixup dir so we can check its link
1795 * count when replay is done. The link count is incremented here
1796 * so the inode won't go away until we check it
1797 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1798 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1799 struct btrfs_root *root,
1800 struct btrfs_path *path,
1801 u64 objectid)
1802 {
1803 struct btrfs_key key;
1804 int ret = 0;
1805 struct inode *inode;
1806
1807 inode = read_one_inode(root, objectid);
1808 if (!inode)
1809 return -EIO;
1810
1811 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1812 key.type = BTRFS_ORPHAN_ITEM_KEY;
1813 key.offset = objectid;
1814
1815 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1816
1817 btrfs_release_path(path);
1818 if (ret == 0) {
1819 if (!inode->i_nlink)
1820 set_nlink(inode, 1);
1821 else
1822 inc_nlink(inode);
1823 ret = btrfs_update_inode(trans, root, inode);
1824 } else if (ret == -EEXIST) {
1825 ret = 0;
1826 } else {
1827 BUG(); /* Logic Error */
1828 }
1829 iput(inode);
1830
1831 return ret;
1832 }
1833
1834 /*
1835 * when replaying the log for a directory, we only insert names
1836 * for inodes that actually exist. This means an fsync on a directory
1837 * does not implicitly fsync all the new files in it
1838 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1839 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1840 struct btrfs_root *root,
1841 u64 dirid, u64 index,
1842 char *name, int name_len,
1843 struct btrfs_key *location)
1844 {
1845 struct inode *inode;
1846 struct inode *dir;
1847 int ret;
1848
1849 inode = read_one_inode(root, location->objectid);
1850 if (!inode)
1851 return -ENOENT;
1852
1853 dir = read_one_inode(root, dirid);
1854 if (!dir) {
1855 iput(inode);
1856 return -EIO;
1857 }
1858
1859 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1860 name_len, 1, index);
1861
1862 /* FIXME, put inode into FIXUP list */
1863
1864 iput(inode);
1865 iput(dir);
1866 return ret;
1867 }
1868
1869 /*
1870 * take a single entry in a log directory item and replay it into
1871 * the subvolume.
1872 *
1873 * if a conflicting item exists in the subdirectory already,
1874 * the inode it points to is unlinked and put into the link count
1875 * fix up tree.
1876 *
1877 * If a name from the log points to a file or directory that does
1878 * not exist in the FS, it is skipped. fsyncs on directories
1879 * do not force down inodes inside that directory, just changes to the
1880 * names or unlinks in a directory.
1881 *
1882 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1883 * non-existing inode) and 1 if the name was replayed.
1884 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1885 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1886 struct btrfs_root *root,
1887 struct btrfs_path *path,
1888 struct extent_buffer *eb,
1889 struct btrfs_dir_item *di,
1890 struct btrfs_key *key)
1891 {
1892 char *name;
1893 int name_len;
1894 struct btrfs_dir_item *dst_di;
1895 struct btrfs_key found_key;
1896 struct btrfs_key log_key;
1897 struct inode *dir;
1898 u8 log_type;
1899 int exists;
1900 int ret = 0;
1901 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1902 bool name_added = false;
1903
1904 dir = read_one_inode(root, key->objectid);
1905 if (!dir)
1906 return -EIO;
1907
1908 name_len = btrfs_dir_name_len(eb, di);
1909 name = kmalloc(name_len, GFP_NOFS);
1910 if (!name) {
1911 ret = -ENOMEM;
1912 goto out;
1913 }
1914
1915 log_type = btrfs_dir_type(eb, di);
1916 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1917 name_len);
1918
1919 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1920 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1921 if (exists == 0)
1922 exists = 1;
1923 else
1924 exists = 0;
1925 btrfs_release_path(path);
1926
1927 if (key->type == BTRFS_DIR_ITEM_KEY) {
1928 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1929 name, name_len, 1);
1930 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1931 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1932 key->objectid,
1933 key->offset, name,
1934 name_len, 1);
1935 } else {
1936 /* Corruption */
1937 ret = -EINVAL;
1938 goto out;
1939 }
1940 if (IS_ERR_OR_NULL(dst_di)) {
1941 /* we need a sequence number to insert, so we only
1942 * do inserts for the BTRFS_DIR_INDEX_KEY types
1943 */
1944 if (key->type != BTRFS_DIR_INDEX_KEY)
1945 goto out;
1946 goto insert;
1947 }
1948
1949 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1950 /* the existing item matches the logged item */
1951 if (found_key.objectid == log_key.objectid &&
1952 found_key.type == log_key.type &&
1953 found_key.offset == log_key.offset &&
1954 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1955 update_size = false;
1956 goto out;
1957 }
1958
1959 /*
1960 * don't drop the conflicting directory entry if the inode
1961 * for the new entry doesn't exist
1962 */
1963 if (!exists)
1964 goto out;
1965
1966 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1967 if (ret)
1968 goto out;
1969
1970 if (key->type == BTRFS_DIR_INDEX_KEY)
1971 goto insert;
1972 out:
1973 btrfs_release_path(path);
1974 if (!ret && update_size) {
1975 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1976 ret = btrfs_update_inode(trans, root, dir);
1977 }
1978 kfree(name);
1979 iput(dir);
1980 if (!ret && name_added)
1981 ret = 1;
1982 return ret;
1983
1984 insert:
1985 /*
1986 * Check if the inode reference exists in the log for the given name,
1987 * inode and parent inode
1988 */
1989 found_key.objectid = log_key.objectid;
1990 found_key.type = BTRFS_INODE_REF_KEY;
1991 found_key.offset = key->objectid;
1992 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1993 if (ret < 0) {
1994 goto out;
1995 } else if (ret) {
1996 /* The dentry will be added later. */
1997 ret = 0;
1998 update_size = false;
1999 goto out;
2000 }
2001
2002 found_key.objectid = log_key.objectid;
2003 found_key.type = BTRFS_INODE_EXTREF_KEY;
2004 found_key.offset = key->objectid;
2005 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2006 name_len);
2007 if (ret < 0) {
2008 goto out;
2009 } else if (ret) {
2010 /* The dentry will be added later. */
2011 ret = 0;
2012 update_size = false;
2013 goto out;
2014 }
2015 btrfs_release_path(path);
2016 ret = insert_one_name(trans, root, key->objectid, key->offset,
2017 name, name_len, &log_key);
2018 if (ret && ret != -ENOENT && ret != -EEXIST)
2019 goto out;
2020 if (!ret)
2021 name_added = true;
2022 update_size = false;
2023 ret = 0;
2024 goto out;
2025 }
2026
2027 /*
2028 * find all the names in a directory item and reconcile them into
2029 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2030 * one name in a directory item, but the same code gets used for
2031 * both directory index types
2032 */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2033 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2034 struct btrfs_root *root,
2035 struct btrfs_path *path,
2036 struct extent_buffer *eb, int slot,
2037 struct btrfs_key *key)
2038 {
2039 int ret = 0;
2040 u32 item_size = btrfs_item_size_nr(eb, slot);
2041 struct btrfs_dir_item *di;
2042 int name_len;
2043 unsigned long ptr;
2044 unsigned long ptr_end;
2045 struct btrfs_path *fixup_path = NULL;
2046
2047 ptr = btrfs_item_ptr_offset(eb, slot);
2048 ptr_end = ptr + item_size;
2049 while (ptr < ptr_end) {
2050 di = (struct btrfs_dir_item *)ptr;
2051 name_len = btrfs_dir_name_len(eb, di);
2052 ret = replay_one_name(trans, root, path, eb, di, key);
2053 if (ret < 0)
2054 break;
2055 ptr = (unsigned long)(di + 1);
2056 ptr += name_len;
2057
2058 /*
2059 * If this entry refers to a non-directory (directories can not
2060 * have a link count > 1) and it was added in the transaction
2061 * that was not committed, make sure we fixup the link count of
2062 * the inode it the entry points to. Otherwise something like
2063 * the following would result in a directory pointing to an
2064 * inode with a wrong link that does not account for this dir
2065 * entry:
2066 *
2067 * mkdir testdir
2068 * touch testdir/foo
2069 * touch testdir/bar
2070 * sync
2071 *
2072 * ln testdir/bar testdir/bar_link
2073 * ln testdir/foo testdir/foo_link
2074 * xfs_io -c "fsync" testdir/bar
2075 *
2076 * <power failure>
2077 *
2078 * mount fs, log replay happens
2079 *
2080 * File foo would remain with a link count of 1 when it has two
2081 * entries pointing to it in the directory testdir. This would
2082 * make it impossible to ever delete the parent directory has
2083 * it would result in stale dentries that can never be deleted.
2084 */
2085 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2086 struct btrfs_key di_key;
2087
2088 if (!fixup_path) {
2089 fixup_path = btrfs_alloc_path();
2090 if (!fixup_path) {
2091 ret = -ENOMEM;
2092 break;
2093 }
2094 }
2095
2096 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2097 ret = link_to_fixup_dir(trans, root, fixup_path,
2098 di_key.objectid);
2099 if (ret)
2100 break;
2101 }
2102 ret = 0;
2103 }
2104 btrfs_free_path(fixup_path);
2105 return ret;
2106 }
2107
2108 /*
2109 * directory replay has two parts. There are the standard directory
2110 * items in the log copied from the subvolume, and range items
2111 * created in the log while the subvolume was logged.
2112 *
2113 * The range items tell us which parts of the key space the log
2114 * is authoritative for. During replay, if a key in the subvolume
2115 * directory is in a logged range item, but not actually in the log
2116 * that means it was deleted from the directory before the fsync
2117 * and should be removed.
2118 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)2119 static noinline int find_dir_range(struct btrfs_root *root,
2120 struct btrfs_path *path,
2121 u64 dirid, int key_type,
2122 u64 *start_ret, u64 *end_ret)
2123 {
2124 struct btrfs_key key;
2125 u64 found_end;
2126 struct btrfs_dir_log_item *item;
2127 int ret;
2128 int nritems;
2129
2130 if (*start_ret == (u64)-1)
2131 return 1;
2132
2133 key.objectid = dirid;
2134 key.type = key_type;
2135 key.offset = *start_ret;
2136
2137 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2138 if (ret < 0)
2139 goto out;
2140 if (ret > 0) {
2141 if (path->slots[0] == 0)
2142 goto out;
2143 path->slots[0]--;
2144 }
2145 if (ret != 0)
2146 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2147
2148 if (key.type != key_type || key.objectid != dirid) {
2149 ret = 1;
2150 goto next;
2151 }
2152 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2153 struct btrfs_dir_log_item);
2154 found_end = btrfs_dir_log_end(path->nodes[0], item);
2155
2156 if (*start_ret >= key.offset && *start_ret <= found_end) {
2157 ret = 0;
2158 *start_ret = key.offset;
2159 *end_ret = found_end;
2160 goto out;
2161 }
2162 ret = 1;
2163 next:
2164 /* check the next slot in the tree to see if it is a valid item */
2165 nritems = btrfs_header_nritems(path->nodes[0]);
2166 path->slots[0]++;
2167 if (path->slots[0] >= nritems) {
2168 ret = btrfs_next_leaf(root, path);
2169 if (ret)
2170 goto out;
2171 }
2172
2173 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2174
2175 if (key.type != key_type || key.objectid != dirid) {
2176 ret = 1;
2177 goto out;
2178 }
2179 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2180 struct btrfs_dir_log_item);
2181 found_end = btrfs_dir_log_end(path->nodes[0], item);
2182 *start_ret = key.offset;
2183 *end_ret = found_end;
2184 ret = 0;
2185 out:
2186 btrfs_release_path(path);
2187 return ret;
2188 }
2189
2190 /*
2191 * this looks for a given directory item in the log. If the directory
2192 * item is not in the log, the item is removed and the inode it points
2193 * to is unlinked
2194 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2195 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2196 struct btrfs_root *root,
2197 struct btrfs_root *log,
2198 struct btrfs_path *path,
2199 struct btrfs_path *log_path,
2200 struct inode *dir,
2201 struct btrfs_key *dir_key)
2202 {
2203 int ret;
2204 struct extent_buffer *eb;
2205 int slot;
2206 u32 item_size;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2209 int name_len;
2210 unsigned long ptr;
2211 unsigned long ptr_end;
2212 char *name;
2213 struct inode *inode;
2214 struct btrfs_key location;
2215
2216 again:
2217 eb = path->nodes[0];
2218 slot = path->slots[0];
2219 item_size = btrfs_item_size_nr(eb, slot);
2220 ptr = btrfs_item_ptr_offset(eb, slot);
2221 ptr_end = ptr + item_size;
2222 while (ptr < ptr_end) {
2223 di = (struct btrfs_dir_item *)ptr;
2224 name_len = btrfs_dir_name_len(eb, di);
2225 name = kmalloc(name_len, GFP_NOFS);
2226 if (!name) {
2227 ret = -ENOMEM;
2228 goto out;
2229 }
2230 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2231 name_len);
2232 log_di = NULL;
2233 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2234 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2235 dir_key->objectid,
2236 name, name_len, 0);
2237 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2238 log_di = btrfs_lookup_dir_index_item(trans, log,
2239 log_path,
2240 dir_key->objectid,
2241 dir_key->offset,
2242 name, name_len, 0);
2243 }
2244 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2245 btrfs_dir_item_key_to_cpu(eb, di, &location);
2246 btrfs_release_path(path);
2247 btrfs_release_path(log_path);
2248 inode = read_one_inode(root, location.objectid);
2249 if (!inode) {
2250 kfree(name);
2251 return -EIO;
2252 }
2253
2254 ret = link_to_fixup_dir(trans, root,
2255 path, location.objectid);
2256 if (ret) {
2257 kfree(name);
2258 iput(inode);
2259 goto out;
2260 }
2261
2262 inc_nlink(inode);
2263 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2264 BTRFS_I(inode), name, name_len);
2265 if (!ret)
2266 ret = btrfs_run_delayed_items(trans);
2267 kfree(name);
2268 iput(inode);
2269 if (ret)
2270 goto out;
2271
2272 /* there might still be more names under this key
2273 * check and repeat if required
2274 */
2275 ret = btrfs_search_slot(NULL, root, dir_key, path,
2276 0, 0);
2277 if (ret == 0)
2278 goto again;
2279 ret = 0;
2280 goto out;
2281 } else if (IS_ERR(log_di)) {
2282 kfree(name);
2283 return PTR_ERR(log_di);
2284 }
2285 btrfs_release_path(log_path);
2286 kfree(name);
2287
2288 ptr = (unsigned long)(di + 1);
2289 ptr += name_len;
2290 }
2291 ret = 0;
2292 out:
2293 btrfs_release_path(path);
2294 btrfs_release_path(log_path);
2295 return ret;
2296 }
2297
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2298 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2299 struct btrfs_root *root,
2300 struct btrfs_root *log,
2301 struct btrfs_path *path,
2302 const u64 ino)
2303 {
2304 struct btrfs_key search_key;
2305 struct btrfs_path *log_path;
2306 int i;
2307 int nritems;
2308 int ret;
2309
2310 log_path = btrfs_alloc_path();
2311 if (!log_path)
2312 return -ENOMEM;
2313
2314 search_key.objectid = ino;
2315 search_key.type = BTRFS_XATTR_ITEM_KEY;
2316 search_key.offset = 0;
2317 again:
2318 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2319 if (ret < 0)
2320 goto out;
2321 process_leaf:
2322 nritems = btrfs_header_nritems(path->nodes[0]);
2323 for (i = path->slots[0]; i < nritems; i++) {
2324 struct btrfs_key key;
2325 struct btrfs_dir_item *di;
2326 struct btrfs_dir_item *log_di;
2327 u32 total_size;
2328 u32 cur;
2329
2330 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2331 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2332 ret = 0;
2333 goto out;
2334 }
2335
2336 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2337 total_size = btrfs_item_size_nr(path->nodes[0], i);
2338 cur = 0;
2339 while (cur < total_size) {
2340 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2341 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2342 u32 this_len = sizeof(*di) + name_len + data_len;
2343 char *name;
2344
2345 name = kmalloc(name_len, GFP_NOFS);
2346 if (!name) {
2347 ret = -ENOMEM;
2348 goto out;
2349 }
2350 read_extent_buffer(path->nodes[0], name,
2351 (unsigned long)(di + 1), name_len);
2352
2353 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2354 name, name_len, 0);
2355 btrfs_release_path(log_path);
2356 if (!log_di) {
2357 /* Doesn't exist in log tree, so delete it. */
2358 btrfs_release_path(path);
2359 di = btrfs_lookup_xattr(trans, root, path, ino,
2360 name, name_len, -1);
2361 kfree(name);
2362 if (IS_ERR(di)) {
2363 ret = PTR_ERR(di);
2364 goto out;
2365 }
2366 ASSERT(di);
2367 ret = btrfs_delete_one_dir_name(trans, root,
2368 path, di);
2369 if (ret)
2370 goto out;
2371 btrfs_release_path(path);
2372 search_key = key;
2373 goto again;
2374 }
2375 kfree(name);
2376 if (IS_ERR(log_di)) {
2377 ret = PTR_ERR(log_di);
2378 goto out;
2379 }
2380 cur += this_len;
2381 di = (struct btrfs_dir_item *)((char *)di + this_len);
2382 }
2383 }
2384 ret = btrfs_next_leaf(root, path);
2385 if (ret > 0)
2386 ret = 0;
2387 else if (ret == 0)
2388 goto process_leaf;
2389 out:
2390 btrfs_free_path(log_path);
2391 btrfs_release_path(path);
2392 return ret;
2393 }
2394
2395
2396 /*
2397 * deletion replay happens before we copy any new directory items
2398 * out of the log or out of backreferences from inodes. It
2399 * scans the log to find ranges of keys that log is authoritative for,
2400 * and then scans the directory to find items in those ranges that are
2401 * not present in the log.
2402 *
2403 * Anything we don't find in the log is unlinked and removed from the
2404 * directory.
2405 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2406 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2407 struct btrfs_root *root,
2408 struct btrfs_root *log,
2409 struct btrfs_path *path,
2410 u64 dirid, int del_all)
2411 {
2412 u64 range_start;
2413 u64 range_end;
2414 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2415 int ret = 0;
2416 struct btrfs_key dir_key;
2417 struct btrfs_key found_key;
2418 struct btrfs_path *log_path;
2419 struct inode *dir;
2420
2421 dir_key.objectid = dirid;
2422 dir_key.type = BTRFS_DIR_ITEM_KEY;
2423 log_path = btrfs_alloc_path();
2424 if (!log_path)
2425 return -ENOMEM;
2426
2427 dir = read_one_inode(root, dirid);
2428 /* it isn't an error if the inode isn't there, that can happen
2429 * because we replay the deletes before we copy in the inode item
2430 * from the log
2431 */
2432 if (!dir) {
2433 btrfs_free_path(log_path);
2434 return 0;
2435 }
2436 again:
2437 range_start = 0;
2438 range_end = 0;
2439 while (1) {
2440 if (del_all)
2441 range_end = (u64)-1;
2442 else {
2443 ret = find_dir_range(log, path, dirid, key_type,
2444 &range_start, &range_end);
2445 if (ret != 0)
2446 break;
2447 }
2448
2449 dir_key.offset = range_start;
2450 while (1) {
2451 int nritems;
2452 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2453 0, 0);
2454 if (ret < 0)
2455 goto out;
2456
2457 nritems = btrfs_header_nritems(path->nodes[0]);
2458 if (path->slots[0] >= nritems) {
2459 ret = btrfs_next_leaf(root, path);
2460 if (ret == 1)
2461 break;
2462 else if (ret < 0)
2463 goto out;
2464 }
2465 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2466 path->slots[0]);
2467 if (found_key.objectid != dirid ||
2468 found_key.type != dir_key.type)
2469 goto next_type;
2470
2471 if (found_key.offset > range_end)
2472 break;
2473
2474 ret = check_item_in_log(trans, root, log, path,
2475 log_path, dir,
2476 &found_key);
2477 if (ret)
2478 goto out;
2479 if (found_key.offset == (u64)-1)
2480 break;
2481 dir_key.offset = found_key.offset + 1;
2482 }
2483 btrfs_release_path(path);
2484 if (range_end == (u64)-1)
2485 break;
2486 range_start = range_end + 1;
2487 }
2488
2489 next_type:
2490 ret = 0;
2491 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2492 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2493 dir_key.type = BTRFS_DIR_INDEX_KEY;
2494 btrfs_release_path(path);
2495 goto again;
2496 }
2497 out:
2498 btrfs_release_path(path);
2499 btrfs_free_path(log_path);
2500 iput(dir);
2501 return ret;
2502 }
2503
2504 /*
2505 * the process_func used to replay items from the log tree. This
2506 * gets called in two different stages. The first stage just looks
2507 * for inodes and makes sure they are all copied into the subvolume.
2508 *
2509 * The second stage copies all the other item types from the log into
2510 * the subvolume. The two stage approach is slower, but gets rid of
2511 * lots of complexity around inodes referencing other inodes that exist
2512 * only in the log (references come from either directory items or inode
2513 * back refs).
2514 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2515 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2516 struct walk_control *wc, u64 gen, int level)
2517 {
2518 int nritems;
2519 struct btrfs_path *path;
2520 struct btrfs_root *root = wc->replay_dest;
2521 struct btrfs_key key;
2522 int i;
2523 int ret;
2524
2525 ret = btrfs_read_buffer(eb, gen, level, NULL);
2526 if (ret)
2527 return ret;
2528
2529 level = btrfs_header_level(eb);
2530
2531 if (level != 0)
2532 return 0;
2533
2534 path = btrfs_alloc_path();
2535 if (!path)
2536 return -ENOMEM;
2537
2538 nritems = btrfs_header_nritems(eb);
2539 for (i = 0; i < nritems; i++) {
2540 btrfs_item_key_to_cpu(eb, &key, i);
2541
2542 /* inode keys are done during the first stage */
2543 if (key.type == BTRFS_INODE_ITEM_KEY &&
2544 wc->stage == LOG_WALK_REPLAY_INODES) {
2545 struct btrfs_inode_item *inode_item;
2546 u32 mode;
2547
2548 inode_item = btrfs_item_ptr(eb, i,
2549 struct btrfs_inode_item);
2550 /*
2551 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2552 * and never got linked before the fsync, skip it, as
2553 * replaying it is pointless since it would be deleted
2554 * later. We skip logging tmpfiles, but it's always
2555 * possible we are replaying a log created with a kernel
2556 * that used to log tmpfiles.
2557 */
2558 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2559 wc->ignore_cur_inode = true;
2560 continue;
2561 } else {
2562 wc->ignore_cur_inode = false;
2563 }
2564 ret = replay_xattr_deletes(wc->trans, root, log,
2565 path, key.objectid);
2566 if (ret)
2567 break;
2568 mode = btrfs_inode_mode(eb, inode_item);
2569 if (S_ISDIR(mode)) {
2570 ret = replay_dir_deletes(wc->trans,
2571 root, log, path, key.objectid, 0);
2572 if (ret)
2573 break;
2574 }
2575 ret = overwrite_item(wc->trans, root, path,
2576 eb, i, &key);
2577 if (ret)
2578 break;
2579
2580 /*
2581 * Before replaying extents, truncate the inode to its
2582 * size. We need to do it now and not after log replay
2583 * because before an fsync we can have prealloc extents
2584 * added beyond the inode's i_size. If we did it after,
2585 * through orphan cleanup for example, we would drop
2586 * those prealloc extents just after replaying them.
2587 */
2588 if (S_ISREG(mode)) {
2589 struct inode *inode;
2590 u64 from;
2591
2592 inode = read_one_inode(root, key.objectid);
2593 if (!inode) {
2594 ret = -EIO;
2595 break;
2596 }
2597 from = ALIGN(i_size_read(inode),
2598 root->fs_info->sectorsize);
2599 ret = btrfs_drop_extents(wc->trans, root, inode,
2600 from, (u64)-1, 1);
2601 if (!ret) {
2602 /* Update the inode's nbytes. */
2603 ret = btrfs_update_inode(wc->trans,
2604 root, inode);
2605 }
2606 iput(inode);
2607 if (ret)
2608 break;
2609 }
2610
2611 ret = link_to_fixup_dir(wc->trans, root,
2612 path, key.objectid);
2613 if (ret)
2614 break;
2615 }
2616
2617 if (wc->ignore_cur_inode)
2618 continue;
2619
2620 if (key.type == BTRFS_DIR_INDEX_KEY &&
2621 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2622 ret = replay_one_dir_item(wc->trans, root, path,
2623 eb, i, &key);
2624 if (ret)
2625 break;
2626 }
2627
2628 if (wc->stage < LOG_WALK_REPLAY_ALL)
2629 continue;
2630
2631 /* these keys are simply copied */
2632 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2633 ret = overwrite_item(wc->trans, root, path,
2634 eb, i, &key);
2635 if (ret)
2636 break;
2637 } else if (key.type == BTRFS_INODE_REF_KEY ||
2638 key.type == BTRFS_INODE_EXTREF_KEY) {
2639 ret = add_inode_ref(wc->trans, root, log, path,
2640 eb, i, &key);
2641 if (ret && ret != -ENOENT)
2642 break;
2643 ret = 0;
2644 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2645 ret = replay_one_extent(wc->trans, root, path,
2646 eb, i, &key);
2647 if (ret)
2648 break;
2649 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2650 ret = replay_one_dir_item(wc->trans, root, path,
2651 eb, i, &key);
2652 if (ret)
2653 break;
2654 }
2655 }
2656 btrfs_free_path(path);
2657 return ret;
2658 }
2659
2660 /*
2661 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2662 */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2663 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2664 {
2665 struct btrfs_block_group *cache;
2666
2667 cache = btrfs_lookup_block_group(fs_info, start);
2668 if (!cache) {
2669 btrfs_err(fs_info, "unable to find block group for %llu", start);
2670 return;
2671 }
2672
2673 spin_lock(&cache->space_info->lock);
2674 spin_lock(&cache->lock);
2675 cache->reserved -= fs_info->nodesize;
2676 cache->space_info->bytes_reserved -= fs_info->nodesize;
2677 spin_unlock(&cache->lock);
2678 spin_unlock(&cache->space_info->lock);
2679
2680 btrfs_put_block_group(cache);
2681 }
2682
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2683 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2684 struct btrfs_root *root,
2685 struct btrfs_path *path, int *level,
2686 struct walk_control *wc)
2687 {
2688 struct btrfs_fs_info *fs_info = root->fs_info;
2689 u64 bytenr;
2690 u64 ptr_gen;
2691 struct extent_buffer *next;
2692 struct extent_buffer *cur;
2693 u32 blocksize;
2694 int ret = 0;
2695
2696 while (*level > 0) {
2697 struct btrfs_key first_key;
2698
2699 cur = path->nodes[*level];
2700
2701 WARN_ON(btrfs_header_level(cur) != *level);
2702
2703 if (path->slots[*level] >=
2704 btrfs_header_nritems(cur))
2705 break;
2706
2707 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2708 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2709 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2710 blocksize = fs_info->nodesize;
2711
2712 next = btrfs_find_create_tree_block(fs_info, bytenr);
2713 if (IS_ERR(next))
2714 return PTR_ERR(next);
2715
2716 if (*level == 1) {
2717 ret = wc->process_func(root, next, wc, ptr_gen,
2718 *level - 1);
2719 if (ret) {
2720 free_extent_buffer(next);
2721 return ret;
2722 }
2723
2724 path->slots[*level]++;
2725 if (wc->free) {
2726 ret = btrfs_read_buffer(next, ptr_gen,
2727 *level - 1, &first_key);
2728 if (ret) {
2729 free_extent_buffer(next);
2730 return ret;
2731 }
2732
2733 if (trans) {
2734 btrfs_tree_lock(next);
2735 btrfs_set_lock_blocking_write(next);
2736 btrfs_clean_tree_block(next);
2737 btrfs_wait_tree_block_writeback(next);
2738 btrfs_tree_unlock(next);
2739 ret = btrfs_pin_reserved_extent(trans,
2740 bytenr, blocksize);
2741 if (ret) {
2742 free_extent_buffer(next);
2743 return ret;
2744 }
2745 } else {
2746 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 clear_extent_buffer_dirty(next);
2748 unaccount_log_buffer(fs_info, bytenr);
2749 }
2750 }
2751 free_extent_buffer(next);
2752 continue;
2753 }
2754 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2755 if (ret) {
2756 free_extent_buffer(next);
2757 return ret;
2758 }
2759
2760 if (path->nodes[*level-1])
2761 free_extent_buffer(path->nodes[*level-1]);
2762 path->nodes[*level-1] = next;
2763 *level = btrfs_header_level(next);
2764 path->slots[*level] = 0;
2765 cond_resched();
2766 }
2767 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2768
2769 cond_resched();
2770 return 0;
2771 }
2772
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2773 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2774 struct btrfs_root *root,
2775 struct btrfs_path *path, int *level,
2776 struct walk_control *wc)
2777 {
2778 struct btrfs_fs_info *fs_info = root->fs_info;
2779 int i;
2780 int slot;
2781 int ret;
2782
2783 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2784 slot = path->slots[i];
2785 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2786 path->slots[i]++;
2787 *level = i;
2788 WARN_ON(*level == 0);
2789 return 0;
2790 } else {
2791 ret = wc->process_func(root, path->nodes[*level], wc,
2792 btrfs_header_generation(path->nodes[*level]),
2793 *level);
2794 if (ret)
2795 return ret;
2796
2797 if (wc->free) {
2798 struct extent_buffer *next;
2799
2800 next = path->nodes[*level];
2801
2802 if (trans) {
2803 btrfs_tree_lock(next);
2804 btrfs_set_lock_blocking_write(next);
2805 btrfs_clean_tree_block(next);
2806 btrfs_wait_tree_block_writeback(next);
2807 btrfs_tree_unlock(next);
2808 ret = btrfs_pin_reserved_extent(trans,
2809 path->nodes[*level]->start,
2810 path->nodes[*level]->len);
2811 if (ret)
2812 return ret;
2813 } else {
2814 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2815 clear_extent_buffer_dirty(next);
2816
2817 unaccount_log_buffer(fs_info,
2818 path->nodes[*level]->start);
2819 }
2820 }
2821 free_extent_buffer(path->nodes[*level]);
2822 path->nodes[*level] = NULL;
2823 *level = i + 1;
2824 }
2825 }
2826 return 1;
2827 }
2828
2829 /*
2830 * drop the reference count on the tree rooted at 'snap'. This traverses
2831 * the tree freeing any blocks that have a ref count of zero after being
2832 * decremented.
2833 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2834 static int walk_log_tree(struct btrfs_trans_handle *trans,
2835 struct btrfs_root *log, struct walk_control *wc)
2836 {
2837 struct btrfs_fs_info *fs_info = log->fs_info;
2838 int ret = 0;
2839 int wret;
2840 int level;
2841 struct btrfs_path *path;
2842 int orig_level;
2843
2844 path = btrfs_alloc_path();
2845 if (!path)
2846 return -ENOMEM;
2847
2848 level = btrfs_header_level(log->node);
2849 orig_level = level;
2850 path->nodes[level] = log->node;
2851 atomic_inc(&log->node->refs);
2852 path->slots[level] = 0;
2853
2854 while (1) {
2855 wret = walk_down_log_tree(trans, log, path, &level, wc);
2856 if (wret > 0)
2857 break;
2858 if (wret < 0) {
2859 ret = wret;
2860 goto out;
2861 }
2862
2863 wret = walk_up_log_tree(trans, log, path, &level, wc);
2864 if (wret > 0)
2865 break;
2866 if (wret < 0) {
2867 ret = wret;
2868 goto out;
2869 }
2870 }
2871
2872 /* was the root node processed? if not, catch it here */
2873 if (path->nodes[orig_level]) {
2874 ret = wc->process_func(log, path->nodes[orig_level], wc,
2875 btrfs_header_generation(path->nodes[orig_level]),
2876 orig_level);
2877 if (ret)
2878 goto out;
2879 if (wc->free) {
2880 struct extent_buffer *next;
2881
2882 next = path->nodes[orig_level];
2883
2884 if (trans) {
2885 btrfs_tree_lock(next);
2886 btrfs_set_lock_blocking_write(next);
2887 btrfs_clean_tree_block(next);
2888 btrfs_wait_tree_block_writeback(next);
2889 btrfs_tree_unlock(next);
2890 ret = btrfs_pin_reserved_extent(trans,
2891 next->start, next->len);
2892 if (ret)
2893 goto out;
2894 } else {
2895 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2896 clear_extent_buffer_dirty(next);
2897 unaccount_log_buffer(fs_info, next->start);
2898 }
2899 }
2900 }
2901
2902 out:
2903 btrfs_free_path(path);
2904 return ret;
2905 }
2906
2907 /*
2908 * helper function to update the item for a given subvolumes log root
2909 * in the tree of log roots
2910 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2911 static int update_log_root(struct btrfs_trans_handle *trans,
2912 struct btrfs_root *log,
2913 struct btrfs_root_item *root_item)
2914 {
2915 struct btrfs_fs_info *fs_info = log->fs_info;
2916 int ret;
2917
2918 if (log->log_transid == 1) {
2919 /* insert root item on the first sync */
2920 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2921 &log->root_key, root_item);
2922 } else {
2923 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2924 &log->root_key, root_item);
2925 }
2926 return ret;
2927 }
2928
wait_log_commit(struct btrfs_root * root,int transid)2929 static void wait_log_commit(struct btrfs_root *root, int transid)
2930 {
2931 DEFINE_WAIT(wait);
2932 int index = transid % 2;
2933
2934 /*
2935 * we only allow two pending log transactions at a time,
2936 * so we know that if ours is more than 2 older than the
2937 * current transaction, we're done
2938 */
2939 for (;;) {
2940 prepare_to_wait(&root->log_commit_wait[index],
2941 &wait, TASK_UNINTERRUPTIBLE);
2942
2943 if (!(root->log_transid_committed < transid &&
2944 atomic_read(&root->log_commit[index])))
2945 break;
2946
2947 mutex_unlock(&root->log_mutex);
2948 schedule();
2949 mutex_lock(&root->log_mutex);
2950 }
2951 finish_wait(&root->log_commit_wait[index], &wait);
2952 }
2953
wait_for_writer(struct btrfs_root * root)2954 static void wait_for_writer(struct btrfs_root *root)
2955 {
2956 DEFINE_WAIT(wait);
2957
2958 for (;;) {
2959 prepare_to_wait(&root->log_writer_wait, &wait,
2960 TASK_UNINTERRUPTIBLE);
2961 if (!atomic_read(&root->log_writers))
2962 break;
2963
2964 mutex_unlock(&root->log_mutex);
2965 schedule();
2966 mutex_lock(&root->log_mutex);
2967 }
2968 finish_wait(&root->log_writer_wait, &wait);
2969 }
2970
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2971 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2972 struct btrfs_log_ctx *ctx)
2973 {
2974 if (!ctx)
2975 return;
2976
2977 mutex_lock(&root->log_mutex);
2978 list_del_init(&ctx->list);
2979 mutex_unlock(&root->log_mutex);
2980 }
2981
2982 /*
2983 * Invoked in log mutex context, or be sure there is no other task which
2984 * can access the list.
2985 */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2986 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2987 int index, int error)
2988 {
2989 struct btrfs_log_ctx *ctx;
2990 struct btrfs_log_ctx *safe;
2991
2992 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2993 list_del_init(&ctx->list);
2994 ctx->log_ret = error;
2995 }
2996
2997 INIT_LIST_HEAD(&root->log_ctxs[index]);
2998 }
2999
3000 /*
3001 * btrfs_sync_log does sends a given tree log down to the disk and
3002 * updates the super blocks to record it. When this call is done,
3003 * you know that any inodes previously logged are safely on disk only
3004 * if it returns 0.
3005 *
3006 * Any other return value means you need to call btrfs_commit_transaction.
3007 * Some of the edge cases for fsyncing directories that have had unlinks
3008 * or renames done in the past mean that sometimes the only safe
3009 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3010 * that has happened.
3011 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)3012 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3013 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3014 {
3015 int index1;
3016 int index2;
3017 int mark;
3018 int ret;
3019 struct btrfs_fs_info *fs_info = root->fs_info;
3020 struct btrfs_root *log = root->log_root;
3021 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3022 struct btrfs_root_item new_root_item;
3023 int log_transid = 0;
3024 struct btrfs_log_ctx root_log_ctx;
3025 struct blk_plug plug;
3026
3027 mutex_lock(&root->log_mutex);
3028 log_transid = ctx->log_transid;
3029 if (root->log_transid_committed >= log_transid) {
3030 mutex_unlock(&root->log_mutex);
3031 return ctx->log_ret;
3032 }
3033
3034 index1 = log_transid % 2;
3035 if (atomic_read(&root->log_commit[index1])) {
3036 wait_log_commit(root, log_transid);
3037 mutex_unlock(&root->log_mutex);
3038 return ctx->log_ret;
3039 }
3040 ASSERT(log_transid == root->log_transid);
3041 atomic_set(&root->log_commit[index1], 1);
3042
3043 /* wait for previous tree log sync to complete */
3044 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3045 wait_log_commit(root, log_transid - 1);
3046
3047 while (1) {
3048 int batch = atomic_read(&root->log_batch);
3049 /* when we're on an ssd, just kick the log commit out */
3050 if (!btrfs_test_opt(fs_info, SSD) &&
3051 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3052 mutex_unlock(&root->log_mutex);
3053 schedule_timeout_uninterruptible(1);
3054 mutex_lock(&root->log_mutex);
3055 }
3056 wait_for_writer(root);
3057 if (batch == atomic_read(&root->log_batch))
3058 break;
3059 }
3060
3061 /* bail out if we need to do a full commit */
3062 if (btrfs_need_log_full_commit(trans)) {
3063 ret = -EAGAIN;
3064 mutex_unlock(&root->log_mutex);
3065 goto out;
3066 }
3067
3068 if (log_transid % 2 == 0)
3069 mark = EXTENT_DIRTY;
3070 else
3071 mark = EXTENT_NEW;
3072
3073 /* we start IO on all the marked extents here, but we don't actually
3074 * wait for them until later.
3075 */
3076 blk_start_plug(&plug);
3077 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3078 if (ret) {
3079 blk_finish_plug(&plug);
3080 btrfs_abort_transaction(trans, ret);
3081 btrfs_set_log_full_commit(trans);
3082 mutex_unlock(&root->log_mutex);
3083 goto out;
3084 }
3085
3086 /*
3087 * We _must_ update under the root->log_mutex in order to make sure we
3088 * have a consistent view of the log root we are trying to commit at
3089 * this moment.
3090 *
3091 * We _must_ copy this into a local copy, because we are not holding the
3092 * log_root_tree->log_mutex yet. This is important because when we
3093 * commit the log_root_tree we must have a consistent view of the
3094 * log_root_tree when we update the super block to point at the
3095 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3096 * with the commit and possibly point at the new block which we may not
3097 * have written out.
3098 */
3099 btrfs_set_root_node(&log->root_item, log->node);
3100 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3101
3102 root->log_transid++;
3103 log->log_transid = root->log_transid;
3104 root->log_start_pid = 0;
3105 /*
3106 * IO has been started, blocks of the log tree have WRITTEN flag set
3107 * in their headers. new modifications of the log will be written to
3108 * new positions. so it's safe to allow log writers to go in.
3109 */
3110 mutex_unlock(&root->log_mutex);
3111
3112 btrfs_init_log_ctx(&root_log_ctx, NULL);
3113
3114 mutex_lock(&log_root_tree->log_mutex);
3115
3116 index2 = log_root_tree->log_transid % 2;
3117 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3118 root_log_ctx.log_transid = log_root_tree->log_transid;
3119
3120 /*
3121 * Now we are safe to update the log_root_tree because we're under the
3122 * log_mutex, and we're a current writer so we're holding the commit
3123 * open until we drop the log_mutex.
3124 */
3125 ret = update_log_root(trans, log, &new_root_item);
3126 if (ret) {
3127 if (!list_empty(&root_log_ctx.list))
3128 list_del_init(&root_log_ctx.list);
3129
3130 blk_finish_plug(&plug);
3131 btrfs_set_log_full_commit(trans);
3132
3133 if (ret != -ENOSPC) {
3134 btrfs_abort_transaction(trans, ret);
3135 mutex_unlock(&log_root_tree->log_mutex);
3136 goto out;
3137 }
3138 btrfs_wait_tree_log_extents(log, mark);
3139 mutex_unlock(&log_root_tree->log_mutex);
3140 ret = -EAGAIN;
3141 goto out;
3142 }
3143
3144 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3145 blk_finish_plug(&plug);
3146 list_del_init(&root_log_ctx.list);
3147 mutex_unlock(&log_root_tree->log_mutex);
3148 ret = root_log_ctx.log_ret;
3149 goto out;
3150 }
3151
3152 index2 = root_log_ctx.log_transid % 2;
3153 if (atomic_read(&log_root_tree->log_commit[index2])) {
3154 blk_finish_plug(&plug);
3155 ret = btrfs_wait_tree_log_extents(log, mark);
3156 wait_log_commit(log_root_tree,
3157 root_log_ctx.log_transid);
3158 mutex_unlock(&log_root_tree->log_mutex);
3159 if (!ret)
3160 ret = root_log_ctx.log_ret;
3161 goto out;
3162 }
3163 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3164 atomic_set(&log_root_tree->log_commit[index2], 1);
3165
3166 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3167 wait_log_commit(log_root_tree,
3168 root_log_ctx.log_transid - 1);
3169 }
3170
3171 /*
3172 * now that we've moved on to the tree of log tree roots,
3173 * check the full commit flag again
3174 */
3175 if (btrfs_need_log_full_commit(trans)) {
3176 blk_finish_plug(&plug);
3177 btrfs_wait_tree_log_extents(log, mark);
3178 mutex_unlock(&log_root_tree->log_mutex);
3179 ret = -EAGAIN;
3180 goto out_wake_log_root;
3181 }
3182
3183 ret = btrfs_write_marked_extents(fs_info,
3184 &log_root_tree->dirty_log_pages,
3185 EXTENT_DIRTY | EXTENT_NEW);
3186 blk_finish_plug(&plug);
3187 if (ret) {
3188 btrfs_set_log_full_commit(trans);
3189 btrfs_abort_transaction(trans, ret);
3190 mutex_unlock(&log_root_tree->log_mutex);
3191 goto out_wake_log_root;
3192 }
3193 ret = btrfs_wait_tree_log_extents(log, mark);
3194 if (!ret)
3195 ret = btrfs_wait_tree_log_extents(log_root_tree,
3196 EXTENT_NEW | EXTENT_DIRTY);
3197 if (ret) {
3198 btrfs_set_log_full_commit(trans);
3199 mutex_unlock(&log_root_tree->log_mutex);
3200 goto out_wake_log_root;
3201 }
3202
3203 btrfs_set_super_log_root(fs_info->super_for_commit,
3204 log_root_tree->node->start);
3205 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3206 btrfs_header_level(log_root_tree->node));
3207
3208 log_root_tree->log_transid++;
3209 mutex_unlock(&log_root_tree->log_mutex);
3210
3211 /*
3212 * Nobody else is going to jump in and write the ctree
3213 * super here because the log_commit atomic below is protecting
3214 * us. We must be called with a transaction handle pinning
3215 * the running transaction open, so a full commit can't hop
3216 * in and cause problems either.
3217 */
3218 ret = write_all_supers(fs_info, 1);
3219 if (ret) {
3220 btrfs_set_log_full_commit(trans);
3221 btrfs_abort_transaction(trans, ret);
3222 goto out_wake_log_root;
3223 }
3224
3225 mutex_lock(&root->log_mutex);
3226 if (root->last_log_commit < log_transid)
3227 root->last_log_commit = log_transid;
3228 mutex_unlock(&root->log_mutex);
3229
3230 out_wake_log_root:
3231 mutex_lock(&log_root_tree->log_mutex);
3232 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3233
3234 log_root_tree->log_transid_committed++;
3235 atomic_set(&log_root_tree->log_commit[index2], 0);
3236 mutex_unlock(&log_root_tree->log_mutex);
3237
3238 /*
3239 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3240 * all the updates above are seen by the woken threads. It might not be
3241 * necessary, but proving that seems to be hard.
3242 */
3243 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3244 out:
3245 mutex_lock(&root->log_mutex);
3246 btrfs_remove_all_log_ctxs(root, index1, ret);
3247 root->log_transid_committed++;
3248 atomic_set(&root->log_commit[index1], 0);
3249 mutex_unlock(&root->log_mutex);
3250
3251 /*
3252 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3253 * all the updates above are seen by the woken threads. It might not be
3254 * necessary, but proving that seems to be hard.
3255 */
3256 cond_wake_up(&root->log_commit_wait[index1]);
3257 return ret;
3258 }
3259
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3260 static void free_log_tree(struct btrfs_trans_handle *trans,
3261 struct btrfs_root *log)
3262 {
3263 int ret;
3264 struct walk_control wc = {
3265 .free = 1,
3266 .process_func = process_one_buffer
3267 };
3268
3269 ret = walk_log_tree(trans, log, &wc);
3270 if (ret) {
3271 if (trans)
3272 btrfs_abort_transaction(trans, ret);
3273 else
3274 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3275 }
3276
3277 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3278 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3279 extent_io_tree_release(&log->log_csum_range);
3280 btrfs_put_root(log);
3281 }
3282
3283 /*
3284 * free all the extents used by the tree log. This should be called
3285 * at commit time of the full transaction
3286 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3287 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3288 {
3289 if (root->log_root) {
3290 free_log_tree(trans, root->log_root);
3291 root->log_root = NULL;
3292 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3293 }
3294 return 0;
3295 }
3296
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3297 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3298 struct btrfs_fs_info *fs_info)
3299 {
3300 if (fs_info->log_root_tree) {
3301 free_log_tree(trans, fs_info->log_root_tree);
3302 fs_info->log_root_tree = NULL;
3303 }
3304 return 0;
3305 }
3306
3307 /*
3308 * Check if an inode was logged in the current transaction. We can't always rely
3309 * on an inode's logged_trans value, because it's an in-memory only field and
3310 * therefore not persisted. This means that its value is lost if the inode gets
3311 * evicted and loaded again from disk (in which case it has a value of 0, and
3312 * certainly it is smaller then any possible transaction ID), when that happens
3313 * the full_sync flag is set in the inode's runtime flags, so on that case we
3314 * assume eviction happened and ignore the logged_trans value, assuming the
3315 * worst case, that the inode was logged before in the current transaction.
3316 */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3317 static bool inode_logged(struct btrfs_trans_handle *trans,
3318 struct btrfs_inode *inode)
3319 {
3320 if (inode->logged_trans == trans->transid)
3321 return true;
3322
3323 if (inode->last_trans == trans->transid &&
3324 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3325 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3326 return true;
3327
3328 return false;
3329 }
3330
3331 /*
3332 * If both a file and directory are logged, and unlinks or renames are
3333 * mixed in, we have a few interesting corners:
3334 *
3335 * create file X in dir Y
3336 * link file X to X.link in dir Y
3337 * fsync file X
3338 * unlink file X but leave X.link
3339 * fsync dir Y
3340 *
3341 * After a crash we would expect only X.link to exist. But file X
3342 * didn't get fsync'd again so the log has back refs for X and X.link.
3343 *
3344 * We solve this by removing directory entries and inode backrefs from the
3345 * log when a file that was logged in the current transaction is
3346 * unlinked. Any later fsync will include the updated log entries, and
3347 * we'll be able to reconstruct the proper directory items from backrefs.
3348 *
3349 * This optimizations allows us to avoid relogging the entire inode
3350 * or the entire directory.
3351 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * dir,u64 index)3352 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3353 struct btrfs_root *root,
3354 const char *name, int name_len,
3355 struct btrfs_inode *dir, u64 index)
3356 {
3357 struct btrfs_root *log;
3358 struct btrfs_dir_item *di;
3359 struct btrfs_path *path;
3360 int ret;
3361 int err = 0;
3362 int bytes_del = 0;
3363 u64 dir_ino = btrfs_ino(dir);
3364
3365 if (!inode_logged(trans, dir))
3366 return 0;
3367
3368 ret = join_running_log_trans(root);
3369 if (ret)
3370 return 0;
3371
3372 mutex_lock(&dir->log_mutex);
3373
3374 log = root->log_root;
3375 path = btrfs_alloc_path();
3376 if (!path) {
3377 err = -ENOMEM;
3378 goto out_unlock;
3379 }
3380
3381 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3382 name, name_len, -1);
3383 if (IS_ERR(di)) {
3384 err = PTR_ERR(di);
3385 goto fail;
3386 }
3387 if (di) {
3388 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3389 bytes_del += name_len;
3390 if (ret) {
3391 err = ret;
3392 goto fail;
3393 }
3394 }
3395 btrfs_release_path(path);
3396 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3397 index, name, name_len, -1);
3398 if (IS_ERR(di)) {
3399 err = PTR_ERR(di);
3400 goto fail;
3401 }
3402 if (di) {
3403 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3404 bytes_del += name_len;
3405 if (ret) {
3406 err = ret;
3407 goto fail;
3408 }
3409 }
3410
3411 /* update the directory size in the log to reflect the names
3412 * we have removed
3413 */
3414 if (bytes_del) {
3415 struct btrfs_key key;
3416
3417 key.objectid = dir_ino;
3418 key.offset = 0;
3419 key.type = BTRFS_INODE_ITEM_KEY;
3420 btrfs_release_path(path);
3421
3422 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3423 if (ret < 0) {
3424 err = ret;
3425 goto fail;
3426 }
3427 if (ret == 0) {
3428 struct btrfs_inode_item *item;
3429 u64 i_size;
3430
3431 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3432 struct btrfs_inode_item);
3433 i_size = btrfs_inode_size(path->nodes[0], item);
3434 if (i_size > bytes_del)
3435 i_size -= bytes_del;
3436 else
3437 i_size = 0;
3438 btrfs_set_inode_size(path->nodes[0], item, i_size);
3439 btrfs_mark_buffer_dirty(path->nodes[0]);
3440 } else
3441 ret = 0;
3442 btrfs_release_path(path);
3443 }
3444 fail:
3445 btrfs_free_path(path);
3446 out_unlock:
3447 mutex_unlock(&dir->log_mutex);
3448 if (err == -ENOSPC) {
3449 btrfs_set_log_full_commit(trans);
3450 err = 0;
3451 } else if (err < 0 && err != -ENOENT) {
3452 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3453 btrfs_abort_transaction(trans, err);
3454 }
3455
3456 btrfs_end_log_trans(root);
3457
3458 return err;
3459 }
3460
3461 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * inode,u64 dirid)3462 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3463 struct btrfs_root *root,
3464 const char *name, int name_len,
3465 struct btrfs_inode *inode, u64 dirid)
3466 {
3467 struct btrfs_root *log;
3468 u64 index;
3469 int ret;
3470
3471 if (!inode_logged(trans, inode))
3472 return 0;
3473
3474 ret = join_running_log_trans(root);
3475 if (ret)
3476 return 0;
3477 log = root->log_root;
3478 mutex_lock(&inode->log_mutex);
3479
3480 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3481 dirid, &index);
3482 mutex_unlock(&inode->log_mutex);
3483 if (ret == -ENOSPC) {
3484 btrfs_set_log_full_commit(trans);
3485 ret = 0;
3486 } else if (ret < 0 && ret != -ENOENT)
3487 btrfs_abort_transaction(trans, ret);
3488 btrfs_end_log_trans(root);
3489
3490 return ret;
3491 }
3492
3493 /*
3494 * creates a range item in the log for 'dirid'. first_offset and
3495 * last_offset tell us which parts of the key space the log should
3496 * be considered authoritative for.
3497 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3498 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *log,
3500 struct btrfs_path *path,
3501 int key_type, u64 dirid,
3502 u64 first_offset, u64 last_offset)
3503 {
3504 int ret;
3505 struct btrfs_key key;
3506 struct btrfs_dir_log_item *item;
3507
3508 key.objectid = dirid;
3509 key.offset = first_offset;
3510 if (key_type == BTRFS_DIR_ITEM_KEY)
3511 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3512 else
3513 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3514 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3515 if (ret)
3516 return ret;
3517
3518 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3519 struct btrfs_dir_log_item);
3520 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3521 btrfs_mark_buffer_dirty(path->nodes[0]);
3522 btrfs_release_path(path);
3523 return 0;
3524 }
3525
3526 /*
3527 * log all the items included in the current transaction for a given
3528 * directory. This also creates the range items in the log tree required
3529 * to replay anything deleted before the fsync
3530 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3531 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3532 struct btrfs_root *root, struct btrfs_inode *inode,
3533 struct btrfs_path *path,
3534 struct btrfs_path *dst_path, int key_type,
3535 struct btrfs_log_ctx *ctx,
3536 u64 min_offset, u64 *last_offset_ret)
3537 {
3538 struct btrfs_key min_key;
3539 struct btrfs_root *log = root->log_root;
3540 struct extent_buffer *src;
3541 int err = 0;
3542 int ret;
3543 int i;
3544 int nritems;
3545 u64 first_offset = min_offset;
3546 u64 last_offset = (u64)-1;
3547 u64 ino = btrfs_ino(inode);
3548
3549 log = root->log_root;
3550
3551 min_key.objectid = ino;
3552 min_key.type = key_type;
3553 min_key.offset = min_offset;
3554
3555 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3556
3557 /*
3558 * we didn't find anything from this transaction, see if there
3559 * is anything at all
3560 */
3561 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3562 min_key.objectid = ino;
3563 min_key.type = key_type;
3564 min_key.offset = (u64)-1;
3565 btrfs_release_path(path);
3566 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3567 if (ret < 0) {
3568 btrfs_release_path(path);
3569 return ret;
3570 }
3571 ret = btrfs_previous_item(root, path, ino, key_type);
3572
3573 /* if ret == 0 there are items for this type,
3574 * create a range to tell us the last key of this type.
3575 * otherwise, there are no items in this directory after
3576 * *min_offset, and we create a range to indicate that.
3577 */
3578 if (ret == 0) {
3579 struct btrfs_key tmp;
3580 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3581 path->slots[0]);
3582 if (key_type == tmp.type)
3583 first_offset = max(min_offset, tmp.offset) + 1;
3584 }
3585 goto done;
3586 }
3587
3588 /* go backward to find any previous key */
3589 ret = btrfs_previous_item(root, path, ino, key_type);
3590 if (ret == 0) {
3591 struct btrfs_key tmp;
3592 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3593 if (key_type == tmp.type) {
3594 first_offset = tmp.offset;
3595 ret = overwrite_item(trans, log, dst_path,
3596 path->nodes[0], path->slots[0],
3597 &tmp);
3598 if (ret) {
3599 err = ret;
3600 goto done;
3601 }
3602 }
3603 }
3604 btrfs_release_path(path);
3605
3606 /*
3607 * Find the first key from this transaction again. See the note for
3608 * log_new_dir_dentries, if we're logging a directory recursively we
3609 * won't be holding its i_mutex, which means we can modify the directory
3610 * while we're logging it. If we remove an entry between our first
3611 * search and this search we'll not find the key again and can just
3612 * bail.
3613 */
3614 search:
3615 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3616 if (ret != 0)
3617 goto done;
3618
3619 /*
3620 * we have a block from this transaction, log every item in it
3621 * from our directory
3622 */
3623 while (1) {
3624 struct btrfs_key tmp;
3625 src = path->nodes[0];
3626 nritems = btrfs_header_nritems(src);
3627 for (i = path->slots[0]; i < nritems; i++) {
3628 struct btrfs_dir_item *di;
3629
3630 btrfs_item_key_to_cpu(src, &min_key, i);
3631
3632 if (min_key.objectid != ino || min_key.type != key_type)
3633 goto done;
3634
3635 if (need_resched()) {
3636 btrfs_release_path(path);
3637 cond_resched();
3638 goto search;
3639 }
3640
3641 ret = overwrite_item(trans, log, dst_path, src, i,
3642 &min_key);
3643 if (ret) {
3644 err = ret;
3645 goto done;
3646 }
3647
3648 /*
3649 * We must make sure that when we log a directory entry,
3650 * the corresponding inode, after log replay, has a
3651 * matching link count. For example:
3652 *
3653 * touch foo
3654 * mkdir mydir
3655 * sync
3656 * ln foo mydir/bar
3657 * xfs_io -c "fsync" mydir
3658 * <crash>
3659 * <mount fs and log replay>
3660 *
3661 * Would result in a fsync log that when replayed, our
3662 * file inode would have a link count of 1, but we get
3663 * two directory entries pointing to the same inode.
3664 * After removing one of the names, it would not be
3665 * possible to remove the other name, which resulted
3666 * always in stale file handle errors, and would not
3667 * be possible to rmdir the parent directory, since
3668 * its i_size could never decrement to the value
3669 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3670 */
3671 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3672 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3673 if (ctx &&
3674 (btrfs_dir_transid(src, di) == trans->transid ||
3675 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3676 tmp.type != BTRFS_ROOT_ITEM_KEY)
3677 ctx->log_new_dentries = true;
3678 }
3679 path->slots[0] = nritems;
3680
3681 /*
3682 * look ahead to the next item and see if it is also
3683 * from this directory and from this transaction
3684 */
3685 ret = btrfs_next_leaf(root, path);
3686 if (ret) {
3687 if (ret == 1)
3688 last_offset = (u64)-1;
3689 else
3690 err = ret;
3691 goto done;
3692 }
3693 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3694 if (tmp.objectid != ino || tmp.type != key_type) {
3695 last_offset = (u64)-1;
3696 goto done;
3697 }
3698 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3699 ret = overwrite_item(trans, log, dst_path,
3700 path->nodes[0], path->slots[0],
3701 &tmp);
3702 if (ret)
3703 err = ret;
3704 else
3705 last_offset = tmp.offset;
3706 goto done;
3707 }
3708 }
3709 done:
3710 btrfs_release_path(path);
3711 btrfs_release_path(dst_path);
3712
3713 if (err == 0) {
3714 *last_offset_ret = last_offset;
3715 /*
3716 * insert the log range keys to indicate where the log
3717 * is valid
3718 */
3719 ret = insert_dir_log_key(trans, log, path, key_type,
3720 ino, first_offset, last_offset);
3721 if (ret)
3722 err = ret;
3723 }
3724 return err;
3725 }
3726
3727 /*
3728 * logging directories is very similar to logging inodes, We find all the items
3729 * from the current transaction and write them to the log.
3730 *
3731 * The recovery code scans the directory in the subvolume, and if it finds a
3732 * key in the range logged that is not present in the log tree, then it means
3733 * that dir entry was unlinked during the transaction.
3734 *
3735 * In order for that scan to work, we must include one key smaller than
3736 * the smallest logged by this transaction and one key larger than the largest
3737 * key logged by this transaction.
3738 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3739 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3740 struct btrfs_root *root, struct btrfs_inode *inode,
3741 struct btrfs_path *path,
3742 struct btrfs_path *dst_path,
3743 struct btrfs_log_ctx *ctx)
3744 {
3745 u64 min_key;
3746 u64 max_key;
3747 int ret;
3748 int key_type = BTRFS_DIR_ITEM_KEY;
3749
3750 again:
3751 min_key = 0;
3752 max_key = 0;
3753 while (1) {
3754 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3755 ctx, min_key, &max_key);
3756 if (ret)
3757 return ret;
3758 if (max_key == (u64)-1)
3759 break;
3760 min_key = max_key + 1;
3761 }
3762
3763 if (key_type == BTRFS_DIR_ITEM_KEY) {
3764 key_type = BTRFS_DIR_INDEX_KEY;
3765 goto again;
3766 }
3767 return 0;
3768 }
3769
3770 /*
3771 * a helper function to drop items from the log before we relog an
3772 * inode. max_key_type indicates the highest item type to remove.
3773 * This cannot be run for file data extents because it does not
3774 * free the extents they point to.
3775 */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3776 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3777 struct btrfs_root *log,
3778 struct btrfs_path *path,
3779 u64 objectid, int max_key_type)
3780 {
3781 int ret;
3782 struct btrfs_key key;
3783 struct btrfs_key found_key;
3784 int start_slot;
3785
3786 key.objectid = objectid;
3787 key.type = max_key_type;
3788 key.offset = (u64)-1;
3789
3790 while (1) {
3791 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3792 BUG_ON(ret == 0); /* Logic error */
3793 if (ret < 0)
3794 break;
3795
3796 if (path->slots[0] == 0)
3797 break;
3798
3799 path->slots[0]--;
3800 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3801 path->slots[0]);
3802
3803 if (found_key.objectid != objectid)
3804 break;
3805
3806 found_key.offset = 0;
3807 found_key.type = 0;
3808 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3809 if (ret < 0)
3810 break;
3811
3812 ret = btrfs_del_items(trans, log, path, start_slot,
3813 path->slots[0] - start_slot + 1);
3814 /*
3815 * If start slot isn't 0 then we don't need to re-search, we've
3816 * found the last guy with the objectid in this tree.
3817 */
3818 if (ret || start_slot != 0)
3819 break;
3820 btrfs_release_path(path);
3821 }
3822 btrfs_release_path(path);
3823 if (ret > 0)
3824 ret = 0;
3825 return ret;
3826 }
3827
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3828 static void fill_inode_item(struct btrfs_trans_handle *trans,
3829 struct extent_buffer *leaf,
3830 struct btrfs_inode_item *item,
3831 struct inode *inode, int log_inode_only,
3832 u64 logged_isize)
3833 {
3834 struct btrfs_map_token token;
3835
3836 btrfs_init_map_token(&token, leaf);
3837
3838 if (log_inode_only) {
3839 /* set the generation to zero so the recover code
3840 * can tell the difference between an logging
3841 * just to say 'this inode exists' and a logging
3842 * to say 'update this inode with these values'
3843 */
3844 btrfs_set_token_inode_generation(&token, item, 0);
3845 btrfs_set_token_inode_size(&token, item, logged_isize);
3846 } else {
3847 btrfs_set_token_inode_generation(&token, item,
3848 BTRFS_I(inode)->generation);
3849 btrfs_set_token_inode_size(&token, item, inode->i_size);
3850 }
3851
3852 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3853 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3854 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3855 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3856
3857 btrfs_set_token_timespec_sec(&token, &item->atime,
3858 inode->i_atime.tv_sec);
3859 btrfs_set_token_timespec_nsec(&token, &item->atime,
3860 inode->i_atime.tv_nsec);
3861
3862 btrfs_set_token_timespec_sec(&token, &item->mtime,
3863 inode->i_mtime.tv_sec);
3864 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3865 inode->i_mtime.tv_nsec);
3866
3867 btrfs_set_token_timespec_sec(&token, &item->ctime,
3868 inode->i_ctime.tv_sec);
3869 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3870 inode->i_ctime.tv_nsec);
3871
3872 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3873
3874 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3875 btrfs_set_token_inode_transid(&token, item, trans->transid);
3876 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3877 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3878 btrfs_set_token_inode_block_group(&token, item, 0);
3879 }
3880
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode)3881 static int log_inode_item(struct btrfs_trans_handle *trans,
3882 struct btrfs_root *log, struct btrfs_path *path,
3883 struct btrfs_inode *inode)
3884 {
3885 struct btrfs_inode_item *inode_item;
3886 int ret;
3887
3888 ret = btrfs_insert_empty_item(trans, log, path,
3889 &inode->location, sizeof(*inode_item));
3890 if (ret && ret != -EEXIST)
3891 return ret;
3892 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3893 struct btrfs_inode_item);
3894 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3895 0, 0);
3896 btrfs_release_path(path);
3897 return 0;
3898 }
3899
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)3900 static int log_csums(struct btrfs_trans_handle *trans,
3901 struct btrfs_inode *inode,
3902 struct btrfs_root *log_root,
3903 struct btrfs_ordered_sum *sums)
3904 {
3905 const u64 lock_end = sums->bytenr + sums->len - 1;
3906 struct extent_state *cached_state = NULL;
3907 int ret;
3908
3909 /*
3910 * If this inode was not used for reflink operations in the current
3911 * transaction with new extents, then do the fast path, no need to
3912 * worry about logging checksum items with overlapping ranges.
3913 */
3914 if (inode->last_reflink_trans < trans->transid)
3915 return btrfs_csum_file_blocks(trans, log_root, sums);
3916
3917 /*
3918 * Serialize logging for checksums. This is to avoid racing with the
3919 * same checksum being logged by another task that is logging another
3920 * file which happens to refer to the same extent as well. Such races
3921 * can leave checksum items in the log with overlapping ranges.
3922 */
3923 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3924 lock_end, &cached_state);
3925 if (ret)
3926 return ret;
3927 /*
3928 * Due to extent cloning, we might have logged a csum item that covers a
3929 * subrange of a cloned extent, and later we can end up logging a csum
3930 * item for a larger subrange of the same extent or the entire range.
3931 * This would leave csum items in the log tree that cover the same range
3932 * and break the searches for checksums in the log tree, resulting in
3933 * some checksums missing in the fs/subvolume tree. So just delete (or
3934 * trim and adjust) any existing csum items in the log for this range.
3935 */
3936 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3937 if (!ret)
3938 ret = btrfs_csum_file_blocks(trans, log_root, sums);
3939
3940 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3941 &cached_state);
3942
3943 return ret;
3944 }
3945
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)3946 static noinline int copy_items(struct btrfs_trans_handle *trans,
3947 struct btrfs_inode *inode,
3948 struct btrfs_path *dst_path,
3949 struct btrfs_path *src_path,
3950 int start_slot, int nr, int inode_only,
3951 u64 logged_isize)
3952 {
3953 struct btrfs_fs_info *fs_info = trans->fs_info;
3954 unsigned long src_offset;
3955 unsigned long dst_offset;
3956 struct btrfs_root *log = inode->root->log_root;
3957 struct btrfs_file_extent_item *extent;
3958 struct btrfs_inode_item *inode_item;
3959 struct extent_buffer *src = src_path->nodes[0];
3960 int ret;
3961 struct btrfs_key *ins_keys;
3962 u32 *ins_sizes;
3963 char *ins_data;
3964 int i;
3965 struct list_head ordered_sums;
3966 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3967
3968 INIT_LIST_HEAD(&ordered_sums);
3969
3970 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3971 nr * sizeof(u32), GFP_NOFS);
3972 if (!ins_data)
3973 return -ENOMEM;
3974
3975 ins_sizes = (u32 *)ins_data;
3976 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3977
3978 for (i = 0; i < nr; i++) {
3979 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3980 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3981 }
3982 ret = btrfs_insert_empty_items(trans, log, dst_path,
3983 ins_keys, ins_sizes, nr);
3984 if (ret) {
3985 kfree(ins_data);
3986 return ret;
3987 }
3988
3989 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3990 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3991 dst_path->slots[0]);
3992
3993 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3994
3995 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3996 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3997 dst_path->slots[0],
3998 struct btrfs_inode_item);
3999 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4000 &inode->vfs_inode,
4001 inode_only == LOG_INODE_EXISTS,
4002 logged_isize);
4003 } else {
4004 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4005 src_offset, ins_sizes[i]);
4006 }
4007
4008 /* take a reference on file data extents so that truncates
4009 * or deletes of this inode don't have to relog the inode
4010 * again
4011 */
4012 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4013 !skip_csum) {
4014 int found_type;
4015 extent = btrfs_item_ptr(src, start_slot + i,
4016 struct btrfs_file_extent_item);
4017
4018 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4019 continue;
4020
4021 found_type = btrfs_file_extent_type(src, extent);
4022 if (found_type == BTRFS_FILE_EXTENT_REG) {
4023 u64 ds, dl, cs, cl;
4024 ds = btrfs_file_extent_disk_bytenr(src,
4025 extent);
4026 /* ds == 0 is a hole */
4027 if (ds == 0)
4028 continue;
4029
4030 dl = btrfs_file_extent_disk_num_bytes(src,
4031 extent);
4032 cs = btrfs_file_extent_offset(src, extent);
4033 cl = btrfs_file_extent_num_bytes(src,
4034 extent);
4035 if (btrfs_file_extent_compression(src,
4036 extent)) {
4037 cs = 0;
4038 cl = dl;
4039 }
4040
4041 ret = btrfs_lookup_csums_range(
4042 fs_info->csum_root,
4043 ds + cs, ds + cs + cl - 1,
4044 &ordered_sums, 0);
4045 if (ret)
4046 break;
4047 }
4048 }
4049 }
4050
4051 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4052 btrfs_release_path(dst_path);
4053 kfree(ins_data);
4054
4055 /*
4056 * we have to do this after the loop above to avoid changing the
4057 * log tree while trying to change the log tree.
4058 */
4059 while (!list_empty(&ordered_sums)) {
4060 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4061 struct btrfs_ordered_sum,
4062 list);
4063 if (!ret)
4064 ret = log_csums(trans, inode, log, sums);
4065 list_del(&sums->list);
4066 kfree(sums);
4067 }
4068
4069 return ret;
4070 }
4071
extent_cmp(void * priv,struct list_head * a,struct list_head * b)4072 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4073 {
4074 struct extent_map *em1, *em2;
4075
4076 em1 = list_entry(a, struct extent_map, list);
4077 em2 = list_entry(b, struct extent_map, list);
4078
4079 if (em1->start < em2->start)
4080 return -1;
4081 else if (em1->start > em2->start)
4082 return 1;
4083 return 0;
4084 }
4085
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4086 static int log_extent_csums(struct btrfs_trans_handle *trans,
4087 struct btrfs_inode *inode,
4088 struct btrfs_root *log_root,
4089 const struct extent_map *em,
4090 struct btrfs_log_ctx *ctx)
4091 {
4092 struct btrfs_ordered_extent *ordered;
4093 u64 csum_offset;
4094 u64 csum_len;
4095 u64 mod_start = em->mod_start;
4096 u64 mod_len = em->mod_len;
4097 LIST_HEAD(ordered_sums);
4098 int ret = 0;
4099
4100 if (inode->flags & BTRFS_INODE_NODATASUM ||
4101 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4102 em->block_start == EXTENT_MAP_HOLE)
4103 return 0;
4104
4105 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4106 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4107 const u64 mod_end = mod_start + mod_len;
4108 struct btrfs_ordered_sum *sums;
4109
4110 if (mod_len == 0)
4111 break;
4112
4113 if (ordered_end <= mod_start)
4114 continue;
4115 if (mod_end <= ordered->file_offset)
4116 break;
4117
4118 /*
4119 * We are going to copy all the csums on this ordered extent, so
4120 * go ahead and adjust mod_start and mod_len in case this ordered
4121 * extent has already been logged.
4122 */
4123 if (ordered->file_offset > mod_start) {
4124 if (ordered_end >= mod_end)
4125 mod_len = ordered->file_offset - mod_start;
4126 /*
4127 * If we have this case
4128 *
4129 * |--------- logged extent ---------|
4130 * |----- ordered extent ----|
4131 *
4132 * Just don't mess with mod_start and mod_len, we'll
4133 * just end up logging more csums than we need and it
4134 * will be ok.
4135 */
4136 } else {
4137 if (ordered_end < mod_end) {
4138 mod_len = mod_end - ordered_end;
4139 mod_start = ordered_end;
4140 } else {
4141 mod_len = 0;
4142 }
4143 }
4144
4145 /*
4146 * To keep us from looping for the above case of an ordered
4147 * extent that falls inside of the logged extent.
4148 */
4149 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4150 continue;
4151
4152 list_for_each_entry(sums, &ordered->list, list) {
4153 ret = log_csums(trans, inode, log_root, sums);
4154 if (ret)
4155 return ret;
4156 }
4157 }
4158
4159 /* We're done, found all csums in the ordered extents. */
4160 if (mod_len == 0)
4161 return 0;
4162
4163 /* If we're compressed we have to save the entire range of csums. */
4164 if (em->compress_type) {
4165 csum_offset = 0;
4166 csum_len = max(em->block_len, em->orig_block_len);
4167 } else {
4168 csum_offset = mod_start - em->start;
4169 csum_len = mod_len;
4170 }
4171
4172 /* block start is already adjusted for the file extent offset. */
4173 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4174 em->block_start + csum_offset,
4175 em->block_start + csum_offset +
4176 csum_len - 1, &ordered_sums, 0);
4177 if (ret)
4178 return ret;
4179
4180 while (!list_empty(&ordered_sums)) {
4181 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4182 struct btrfs_ordered_sum,
4183 list);
4184 if (!ret)
4185 ret = log_csums(trans, inode, log_root, sums);
4186 list_del(&sums->list);
4187 kfree(sums);
4188 }
4189
4190 return ret;
4191 }
4192
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4193 static int log_one_extent(struct btrfs_trans_handle *trans,
4194 struct btrfs_inode *inode, struct btrfs_root *root,
4195 const struct extent_map *em,
4196 struct btrfs_path *path,
4197 struct btrfs_log_ctx *ctx)
4198 {
4199 struct btrfs_root *log = root->log_root;
4200 struct btrfs_file_extent_item *fi;
4201 struct extent_buffer *leaf;
4202 struct btrfs_map_token token;
4203 struct btrfs_key key;
4204 u64 extent_offset = em->start - em->orig_start;
4205 u64 block_len;
4206 int ret;
4207 int extent_inserted = 0;
4208
4209 ret = log_extent_csums(trans, inode, log, em, ctx);
4210 if (ret)
4211 return ret;
4212
4213 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4214 em->start + em->len, NULL, 0, 1,
4215 sizeof(*fi), &extent_inserted);
4216 if (ret)
4217 return ret;
4218
4219 if (!extent_inserted) {
4220 key.objectid = btrfs_ino(inode);
4221 key.type = BTRFS_EXTENT_DATA_KEY;
4222 key.offset = em->start;
4223
4224 ret = btrfs_insert_empty_item(trans, log, path, &key,
4225 sizeof(*fi));
4226 if (ret)
4227 return ret;
4228 }
4229 leaf = path->nodes[0];
4230 btrfs_init_map_token(&token, leaf);
4231 fi = btrfs_item_ptr(leaf, path->slots[0],
4232 struct btrfs_file_extent_item);
4233
4234 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4235 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4236 btrfs_set_token_file_extent_type(&token, fi,
4237 BTRFS_FILE_EXTENT_PREALLOC);
4238 else
4239 btrfs_set_token_file_extent_type(&token, fi,
4240 BTRFS_FILE_EXTENT_REG);
4241
4242 block_len = max(em->block_len, em->orig_block_len);
4243 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4244 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4245 em->block_start);
4246 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4247 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4248 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4249 em->block_start -
4250 extent_offset);
4251 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4252 } else {
4253 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4254 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4255 }
4256
4257 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4258 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4259 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4260 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4261 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4262 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4263 btrfs_mark_buffer_dirty(leaf);
4264
4265 btrfs_release_path(path);
4266
4267 return ret;
4268 }
4269
4270 /*
4271 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4272 * lose them after doing a fast fsync and replaying the log. We scan the
4273 * subvolume's root instead of iterating the inode's extent map tree because
4274 * otherwise we can log incorrect extent items based on extent map conversion.
4275 * That can happen due to the fact that extent maps are merged when they
4276 * are not in the extent map tree's list of modified extents.
4277 */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4278 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4279 struct btrfs_inode *inode,
4280 struct btrfs_path *path)
4281 {
4282 struct btrfs_root *root = inode->root;
4283 struct btrfs_key key;
4284 const u64 i_size = i_size_read(&inode->vfs_inode);
4285 const u64 ino = btrfs_ino(inode);
4286 struct btrfs_path *dst_path = NULL;
4287 bool dropped_extents = false;
4288 u64 truncate_offset = i_size;
4289 struct extent_buffer *leaf;
4290 int slot;
4291 int ins_nr = 0;
4292 int start_slot;
4293 int ret;
4294
4295 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4296 return 0;
4297
4298 key.objectid = ino;
4299 key.type = BTRFS_EXTENT_DATA_KEY;
4300 key.offset = i_size;
4301 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4302 if (ret < 0)
4303 goto out;
4304
4305 /*
4306 * We must check if there is a prealloc extent that starts before the
4307 * i_size and crosses the i_size boundary. This is to ensure later we
4308 * truncate down to the end of that extent and not to the i_size, as
4309 * otherwise we end up losing part of the prealloc extent after a log
4310 * replay and with an implicit hole if there is another prealloc extent
4311 * that starts at an offset beyond i_size.
4312 */
4313 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4314 if (ret < 0)
4315 goto out;
4316
4317 if (ret == 0) {
4318 struct btrfs_file_extent_item *ei;
4319
4320 leaf = path->nodes[0];
4321 slot = path->slots[0];
4322 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4323
4324 if (btrfs_file_extent_type(leaf, ei) ==
4325 BTRFS_FILE_EXTENT_PREALLOC) {
4326 u64 extent_end;
4327
4328 btrfs_item_key_to_cpu(leaf, &key, slot);
4329 extent_end = key.offset +
4330 btrfs_file_extent_num_bytes(leaf, ei);
4331
4332 if (extent_end > i_size)
4333 truncate_offset = extent_end;
4334 }
4335 } else {
4336 ret = 0;
4337 }
4338
4339 while (true) {
4340 leaf = path->nodes[0];
4341 slot = path->slots[0];
4342
4343 if (slot >= btrfs_header_nritems(leaf)) {
4344 if (ins_nr > 0) {
4345 ret = copy_items(trans, inode, dst_path, path,
4346 start_slot, ins_nr, 1, 0);
4347 if (ret < 0)
4348 goto out;
4349 ins_nr = 0;
4350 }
4351 ret = btrfs_next_leaf(root, path);
4352 if (ret < 0)
4353 goto out;
4354 if (ret > 0) {
4355 ret = 0;
4356 break;
4357 }
4358 continue;
4359 }
4360
4361 btrfs_item_key_to_cpu(leaf, &key, slot);
4362 if (key.objectid > ino)
4363 break;
4364 if (WARN_ON_ONCE(key.objectid < ino) ||
4365 key.type < BTRFS_EXTENT_DATA_KEY ||
4366 key.offset < i_size) {
4367 path->slots[0]++;
4368 continue;
4369 }
4370 if (!dropped_extents) {
4371 /*
4372 * Avoid logging extent items logged in past fsync calls
4373 * and leading to duplicate keys in the log tree.
4374 */
4375 do {
4376 ret = btrfs_truncate_inode_items(trans,
4377 root->log_root,
4378 &inode->vfs_inode,
4379 truncate_offset,
4380 BTRFS_EXTENT_DATA_KEY);
4381 } while (ret == -EAGAIN);
4382 if (ret)
4383 goto out;
4384 dropped_extents = true;
4385 }
4386 if (ins_nr == 0)
4387 start_slot = slot;
4388 ins_nr++;
4389 path->slots[0]++;
4390 if (!dst_path) {
4391 dst_path = btrfs_alloc_path();
4392 if (!dst_path) {
4393 ret = -ENOMEM;
4394 goto out;
4395 }
4396 }
4397 }
4398 if (ins_nr > 0)
4399 ret = copy_items(trans, inode, dst_path, path,
4400 start_slot, ins_nr, 1, 0);
4401 out:
4402 btrfs_release_path(path);
4403 btrfs_free_path(dst_path);
4404 return ret;
4405 }
4406
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4407 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4408 struct btrfs_root *root,
4409 struct btrfs_inode *inode,
4410 struct btrfs_path *path,
4411 struct btrfs_log_ctx *ctx)
4412 {
4413 struct btrfs_ordered_extent *ordered;
4414 struct btrfs_ordered_extent *tmp;
4415 struct extent_map *em, *n;
4416 struct list_head extents;
4417 struct extent_map_tree *tree = &inode->extent_tree;
4418 u64 test_gen;
4419 int ret = 0;
4420 int num = 0;
4421
4422 INIT_LIST_HEAD(&extents);
4423
4424 write_lock(&tree->lock);
4425 test_gen = root->fs_info->last_trans_committed;
4426
4427 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4428 list_del_init(&em->list);
4429 /*
4430 * Just an arbitrary number, this can be really CPU intensive
4431 * once we start getting a lot of extents, and really once we
4432 * have a bunch of extents we just want to commit since it will
4433 * be faster.
4434 */
4435 if (++num > 32768) {
4436 list_del_init(&tree->modified_extents);
4437 ret = -EFBIG;
4438 goto process;
4439 }
4440
4441 if (em->generation <= test_gen)
4442 continue;
4443
4444 /* We log prealloc extents beyond eof later. */
4445 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4446 em->start >= i_size_read(&inode->vfs_inode))
4447 continue;
4448
4449 /* Need a ref to keep it from getting evicted from cache */
4450 refcount_inc(&em->refs);
4451 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4452 list_add_tail(&em->list, &extents);
4453 num++;
4454 }
4455
4456 list_sort(NULL, &extents, extent_cmp);
4457 process:
4458 while (!list_empty(&extents)) {
4459 em = list_entry(extents.next, struct extent_map, list);
4460
4461 list_del_init(&em->list);
4462
4463 /*
4464 * If we had an error we just need to delete everybody from our
4465 * private list.
4466 */
4467 if (ret) {
4468 clear_em_logging(tree, em);
4469 free_extent_map(em);
4470 continue;
4471 }
4472
4473 write_unlock(&tree->lock);
4474
4475 ret = log_one_extent(trans, inode, root, em, path, ctx);
4476 write_lock(&tree->lock);
4477 clear_em_logging(tree, em);
4478 free_extent_map(em);
4479 }
4480 WARN_ON(!list_empty(&extents));
4481 write_unlock(&tree->lock);
4482
4483 btrfs_release_path(path);
4484 if (!ret)
4485 ret = btrfs_log_prealloc_extents(trans, inode, path);
4486 if (ret)
4487 return ret;
4488
4489 /*
4490 * We have logged all extents successfully, now make sure the commit of
4491 * the current transaction waits for the ordered extents to complete
4492 * before it commits and wipes out the log trees, otherwise we would
4493 * lose data if an ordered extents completes after the transaction
4494 * commits and a power failure happens after the transaction commit.
4495 */
4496 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4497 list_del_init(&ordered->log_list);
4498 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4499
4500 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4501 spin_lock_irq(&inode->ordered_tree.lock);
4502 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4503 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4504 atomic_inc(&trans->transaction->pending_ordered);
4505 }
4506 spin_unlock_irq(&inode->ordered_tree.lock);
4507 }
4508 btrfs_put_ordered_extent(ordered);
4509 }
4510
4511 return 0;
4512 }
4513
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4514 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4515 struct btrfs_path *path, u64 *size_ret)
4516 {
4517 struct btrfs_key key;
4518 int ret;
4519
4520 key.objectid = btrfs_ino(inode);
4521 key.type = BTRFS_INODE_ITEM_KEY;
4522 key.offset = 0;
4523
4524 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4525 if (ret < 0) {
4526 return ret;
4527 } else if (ret > 0) {
4528 *size_ret = 0;
4529 } else {
4530 struct btrfs_inode_item *item;
4531
4532 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4533 struct btrfs_inode_item);
4534 *size_ret = btrfs_inode_size(path->nodes[0], item);
4535 /*
4536 * If the in-memory inode's i_size is smaller then the inode
4537 * size stored in the btree, return the inode's i_size, so
4538 * that we get a correct inode size after replaying the log
4539 * when before a power failure we had a shrinking truncate
4540 * followed by addition of a new name (rename / new hard link).
4541 * Otherwise return the inode size from the btree, to avoid
4542 * data loss when replaying a log due to previously doing a
4543 * write that expands the inode's size and logging a new name
4544 * immediately after.
4545 */
4546 if (*size_ret > inode->vfs_inode.i_size)
4547 *size_ret = inode->vfs_inode.i_size;
4548 }
4549
4550 btrfs_release_path(path);
4551 return 0;
4552 }
4553
4554 /*
4555 * At the moment we always log all xattrs. This is to figure out at log replay
4556 * time which xattrs must have their deletion replayed. If a xattr is missing
4557 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4558 * because if a xattr is deleted, the inode is fsynced and a power failure
4559 * happens, causing the log to be replayed the next time the fs is mounted,
4560 * we want the xattr to not exist anymore (same behaviour as other filesystems
4561 * with a journal, ext3/4, xfs, f2fs, etc).
4562 */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4563 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4564 struct btrfs_root *root,
4565 struct btrfs_inode *inode,
4566 struct btrfs_path *path,
4567 struct btrfs_path *dst_path)
4568 {
4569 int ret;
4570 struct btrfs_key key;
4571 const u64 ino = btrfs_ino(inode);
4572 int ins_nr = 0;
4573 int start_slot = 0;
4574
4575 key.objectid = ino;
4576 key.type = BTRFS_XATTR_ITEM_KEY;
4577 key.offset = 0;
4578
4579 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4580 if (ret < 0)
4581 return ret;
4582
4583 while (true) {
4584 int slot = path->slots[0];
4585 struct extent_buffer *leaf = path->nodes[0];
4586 int nritems = btrfs_header_nritems(leaf);
4587
4588 if (slot >= nritems) {
4589 if (ins_nr > 0) {
4590 ret = copy_items(trans, inode, dst_path, path,
4591 start_slot, ins_nr, 1, 0);
4592 if (ret < 0)
4593 return ret;
4594 ins_nr = 0;
4595 }
4596 ret = btrfs_next_leaf(root, path);
4597 if (ret < 0)
4598 return ret;
4599 else if (ret > 0)
4600 break;
4601 continue;
4602 }
4603
4604 btrfs_item_key_to_cpu(leaf, &key, slot);
4605 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4606 break;
4607
4608 if (ins_nr == 0)
4609 start_slot = slot;
4610 ins_nr++;
4611 path->slots[0]++;
4612 cond_resched();
4613 }
4614 if (ins_nr > 0) {
4615 ret = copy_items(trans, inode, dst_path, path,
4616 start_slot, ins_nr, 1, 0);
4617 if (ret < 0)
4618 return ret;
4619 }
4620
4621 return 0;
4622 }
4623
4624 /*
4625 * When using the NO_HOLES feature if we punched a hole that causes the
4626 * deletion of entire leafs or all the extent items of the first leaf (the one
4627 * that contains the inode item and references) we may end up not processing
4628 * any extents, because there are no leafs with a generation matching the
4629 * current transaction that have extent items for our inode. So we need to find
4630 * if any holes exist and then log them. We also need to log holes after any
4631 * truncate operation that changes the inode's size.
4632 */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)4633 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4634 struct btrfs_root *root,
4635 struct btrfs_inode *inode,
4636 struct btrfs_path *path)
4637 {
4638 struct btrfs_fs_info *fs_info = root->fs_info;
4639 struct btrfs_key key;
4640 const u64 ino = btrfs_ino(inode);
4641 const u64 i_size = i_size_read(&inode->vfs_inode);
4642 u64 prev_extent_end = 0;
4643 int ret;
4644
4645 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4646 return 0;
4647
4648 key.objectid = ino;
4649 key.type = BTRFS_EXTENT_DATA_KEY;
4650 key.offset = 0;
4651
4652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4653 if (ret < 0)
4654 return ret;
4655
4656 while (true) {
4657 struct extent_buffer *leaf = path->nodes[0];
4658
4659 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4660 ret = btrfs_next_leaf(root, path);
4661 if (ret < 0)
4662 return ret;
4663 if (ret > 0) {
4664 ret = 0;
4665 break;
4666 }
4667 leaf = path->nodes[0];
4668 }
4669
4670 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4671 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4672 break;
4673
4674 /* We have a hole, log it. */
4675 if (prev_extent_end < key.offset) {
4676 const u64 hole_len = key.offset - prev_extent_end;
4677
4678 /*
4679 * Release the path to avoid deadlocks with other code
4680 * paths that search the root while holding locks on
4681 * leafs from the log root.
4682 */
4683 btrfs_release_path(path);
4684 ret = btrfs_insert_file_extent(trans, root->log_root,
4685 ino, prev_extent_end, 0,
4686 0, hole_len, 0, hole_len,
4687 0, 0, 0);
4688 if (ret < 0)
4689 return ret;
4690
4691 /*
4692 * Search for the same key again in the root. Since it's
4693 * an extent item and we are holding the inode lock, the
4694 * key must still exist. If it doesn't just emit warning
4695 * and return an error to fall back to a transaction
4696 * commit.
4697 */
4698 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4699 if (ret < 0)
4700 return ret;
4701 if (WARN_ON(ret > 0))
4702 return -ENOENT;
4703 leaf = path->nodes[0];
4704 }
4705
4706 prev_extent_end = btrfs_file_extent_end(path);
4707 path->slots[0]++;
4708 cond_resched();
4709 }
4710
4711 if (prev_extent_end < i_size) {
4712 u64 hole_len;
4713
4714 btrfs_release_path(path);
4715 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4716 ret = btrfs_insert_file_extent(trans, root->log_root,
4717 ino, prev_extent_end, 0, 0,
4718 hole_len, 0, hole_len,
4719 0, 0, 0);
4720 if (ret < 0)
4721 return ret;
4722 }
4723
4724 return 0;
4725 }
4726
4727 /*
4728 * When we are logging a new inode X, check if it doesn't have a reference that
4729 * matches the reference from some other inode Y created in a past transaction
4730 * and that was renamed in the current transaction. If we don't do this, then at
4731 * log replay time we can lose inode Y (and all its files if it's a directory):
4732 *
4733 * mkdir /mnt/x
4734 * echo "hello world" > /mnt/x/foobar
4735 * sync
4736 * mv /mnt/x /mnt/y
4737 * mkdir /mnt/x # or touch /mnt/x
4738 * xfs_io -c fsync /mnt/x
4739 * <power fail>
4740 * mount fs, trigger log replay
4741 *
4742 * After the log replay procedure, we would lose the first directory and all its
4743 * files (file foobar).
4744 * For the case where inode Y is not a directory we simply end up losing it:
4745 *
4746 * echo "123" > /mnt/foo
4747 * sync
4748 * mv /mnt/foo /mnt/bar
4749 * echo "abc" > /mnt/foo
4750 * xfs_io -c fsync /mnt/foo
4751 * <power fail>
4752 *
4753 * We also need this for cases where a snapshot entry is replaced by some other
4754 * entry (file or directory) otherwise we end up with an unreplayable log due to
4755 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4756 * if it were a regular entry:
4757 *
4758 * mkdir /mnt/x
4759 * btrfs subvolume snapshot /mnt /mnt/x/snap
4760 * btrfs subvolume delete /mnt/x/snap
4761 * rmdir /mnt/x
4762 * mkdir /mnt/x
4763 * fsync /mnt/x or fsync some new file inside it
4764 * <power fail>
4765 *
4766 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4767 * the same transaction.
4768 */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)4769 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4770 const int slot,
4771 const struct btrfs_key *key,
4772 struct btrfs_inode *inode,
4773 u64 *other_ino, u64 *other_parent)
4774 {
4775 int ret;
4776 struct btrfs_path *search_path;
4777 char *name = NULL;
4778 u32 name_len = 0;
4779 u32 item_size = btrfs_item_size_nr(eb, slot);
4780 u32 cur_offset = 0;
4781 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4782
4783 search_path = btrfs_alloc_path();
4784 if (!search_path)
4785 return -ENOMEM;
4786 search_path->search_commit_root = 1;
4787 search_path->skip_locking = 1;
4788
4789 while (cur_offset < item_size) {
4790 u64 parent;
4791 u32 this_name_len;
4792 u32 this_len;
4793 unsigned long name_ptr;
4794 struct btrfs_dir_item *di;
4795
4796 if (key->type == BTRFS_INODE_REF_KEY) {
4797 struct btrfs_inode_ref *iref;
4798
4799 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4800 parent = key->offset;
4801 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4802 name_ptr = (unsigned long)(iref + 1);
4803 this_len = sizeof(*iref) + this_name_len;
4804 } else {
4805 struct btrfs_inode_extref *extref;
4806
4807 extref = (struct btrfs_inode_extref *)(ptr +
4808 cur_offset);
4809 parent = btrfs_inode_extref_parent(eb, extref);
4810 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4811 name_ptr = (unsigned long)&extref->name;
4812 this_len = sizeof(*extref) + this_name_len;
4813 }
4814
4815 if (this_name_len > name_len) {
4816 char *new_name;
4817
4818 new_name = krealloc(name, this_name_len, GFP_NOFS);
4819 if (!new_name) {
4820 ret = -ENOMEM;
4821 goto out;
4822 }
4823 name_len = this_name_len;
4824 name = new_name;
4825 }
4826
4827 read_extent_buffer(eb, name, name_ptr, this_name_len);
4828 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4829 parent, name, this_name_len, 0);
4830 if (di && !IS_ERR(di)) {
4831 struct btrfs_key di_key;
4832
4833 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4834 di, &di_key);
4835 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4836 if (di_key.objectid != key->objectid) {
4837 ret = 1;
4838 *other_ino = di_key.objectid;
4839 *other_parent = parent;
4840 } else {
4841 ret = 0;
4842 }
4843 } else {
4844 ret = -EAGAIN;
4845 }
4846 goto out;
4847 } else if (IS_ERR(di)) {
4848 ret = PTR_ERR(di);
4849 goto out;
4850 }
4851 btrfs_release_path(search_path);
4852
4853 cur_offset += this_len;
4854 }
4855 ret = 0;
4856 out:
4857 btrfs_free_path(search_path);
4858 kfree(name);
4859 return ret;
4860 }
4861
4862 struct btrfs_ino_list {
4863 u64 ino;
4864 u64 parent;
4865 struct list_head list;
4866 };
4867
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx,u64 ino,u64 parent)4868 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4869 struct btrfs_root *root,
4870 struct btrfs_path *path,
4871 struct btrfs_log_ctx *ctx,
4872 u64 ino, u64 parent)
4873 {
4874 struct btrfs_ino_list *ino_elem;
4875 LIST_HEAD(inode_list);
4876 int ret = 0;
4877
4878 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4879 if (!ino_elem)
4880 return -ENOMEM;
4881 ino_elem->ino = ino;
4882 ino_elem->parent = parent;
4883 list_add_tail(&ino_elem->list, &inode_list);
4884
4885 while (!list_empty(&inode_list)) {
4886 struct btrfs_fs_info *fs_info = root->fs_info;
4887 struct btrfs_key key;
4888 struct inode *inode;
4889
4890 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4891 list);
4892 ino = ino_elem->ino;
4893 parent = ino_elem->parent;
4894 list_del(&ino_elem->list);
4895 kfree(ino_elem);
4896 if (ret)
4897 continue;
4898
4899 btrfs_release_path(path);
4900
4901 inode = btrfs_iget(fs_info->sb, ino, root);
4902 /*
4903 * If the other inode that had a conflicting dir entry was
4904 * deleted in the current transaction, we need to log its parent
4905 * directory.
4906 */
4907 if (IS_ERR(inode)) {
4908 ret = PTR_ERR(inode);
4909 if (ret == -ENOENT) {
4910 inode = btrfs_iget(fs_info->sb, parent, root);
4911 if (IS_ERR(inode)) {
4912 ret = PTR_ERR(inode);
4913 } else {
4914 ret = btrfs_log_inode(trans, root,
4915 BTRFS_I(inode),
4916 LOG_OTHER_INODE_ALL,
4917 ctx);
4918 btrfs_add_delayed_iput(inode);
4919 }
4920 }
4921 continue;
4922 }
4923 /*
4924 * If the inode was already logged skip it - otherwise we can
4925 * hit an infinite loop. Example:
4926 *
4927 * From the commit root (previous transaction) we have the
4928 * following inodes:
4929 *
4930 * inode 257 a directory
4931 * inode 258 with references "zz" and "zz_link" on inode 257
4932 * inode 259 with reference "a" on inode 257
4933 *
4934 * And in the current (uncommitted) transaction we have:
4935 *
4936 * inode 257 a directory, unchanged
4937 * inode 258 with references "a" and "a2" on inode 257
4938 * inode 259 with reference "zz_link" on inode 257
4939 * inode 261 with reference "zz" on inode 257
4940 *
4941 * When logging inode 261 the following infinite loop could
4942 * happen if we don't skip already logged inodes:
4943 *
4944 * - we detect inode 258 as a conflicting inode, with inode 261
4945 * on reference "zz", and log it;
4946 *
4947 * - we detect inode 259 as a conflicting inode, with inode 258
4948 * on reference "a", and log it;
4949 *
4950 * - we detect inode 258 as a conflicting inode, with inode 259
4951 * on reference "zz_link", and log it - again! After this we
4952 * repeat the above steps forever.
4953 */
4954 spin_lock(&BTRFS_I(inode)->lock);
4955 /*
4956 * Check the inode's logged_trans only instead of
4957 * btrfs_inode_in_log(). This is because the last_log_commit of
4958 * the inode is not updated when we only log that it exists and
4959 * it has the full sync bit set (see btrfs_log_inode()).
4960 */
4961 if (BTRFS_I(inode)->logged_trans == trans->transid) {
4962 spin_unlock(&BTRFS_I(inode)->lock);
4963 btrfs_add_delayed_iput(inode);
4964 continue;
4965 }
4966 spin_unlock(&BTRFS_I(inode)->lock);
4967 /*
4968 * We are safe logging the other inode without acquiring its
4969 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4970 * are safe against concurrent renames of the other inode as
4971 * well because during a rename we pin the log and update the
4972 * log with the new name before we unpin it.
4973 */
4974 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4975 LOG_OTHER_INODE, ctx);
4976 if (ret) {
4977 btrfs_add_delayed_iput(inode);
4978 continue;
4979 }
4980
4981 key.objectid = ino;
4982 key.type = BTRFS_INODE_REF_KEY;
4983 key.offset = 0;
4984 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4985 if (ret < 0) {
4986 btrfs_add_delayed_iput(inode);
4987 continue;
4988 }
4989
4990 while (true) {
4991 struct extent_buffer *leaf = path->nodes[0];
4992 int slot = path->slots[0];
4993 u64 other_ino = 0;
4994 u64 other_parent = 0;
4995
4996 if (slot >= btrfs_header_nritems(leaf)) {
4997 ret = btrfs_next_leaf(root, path);
4998 if (ret < 0) {
4999 break;
5000 } else if (ret > 0) {
5001 ret = 0;
5002 break;
5003 }
5004 continue;
5005 }
5006
5007 btrfs_item_key_to_cpu(leaf, &key, slot);
5008 if (key.objectid != ino ||
5009 (key.type != BTRFS_INODE_REF_KEY &&
5010 key.type != BTRFS_INODE_EXTREF_KEY)) {
5011 ret = 0;
5012 break;
5013 }
5014
5015 ret = btrfs_check_ref_name_override(leaf, slot, &key,
5016 BTRFS_I(inode), &other_ino,
5017 &other_parent);
5018 if (ret < 0)
5019 break;
5020 if (ret > 0) {
5021 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5022 if (!ino_elem) {
5023 ret = -ENOMEM;
5024 break;
5025 }
5026 ino_elem->ino = other_ino;
5027 ino_elem->parent = other_parent;
5028 list_add_tail(&ino_elem->list, &inode_list);
5029 ret = 0;
5030 }
5031 path->slots[0]++;
5032 }
5033 btrfs_add_delayed_iput(inode);
5034 }
5035
5036 return ret;
5037 }
5038
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const bool recursive_logging,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5039 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5040 struct btrfs_inode *inode,
5041 struct btrfs_key *min_key,
5042 const struct btrfs_key *max_key,
5043 struct btrfs_path *path,
5044 struct btrfs_path *dst_path,
5045 const u64 logged_isize,
5046 const bool recursive_logging,
5047 const int inode_only,
5048 struct btrfs_log_ctx *ctx,
5049 bool *need_log_inode_item)
5050 {
5051 struct btrfs_root *root = inode->root;
5052 int ins_start_slot = 0;
5053 int ins_nr = 0;
5054 int ret;
5055
5056 while (1) {
5057 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5058 if (ret < 0)
5059 return ret;
5060 if (ret > 0) {
5061 ret = 0;
5062 break;
5063 }
5064 again:
5065 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5066 if (min_key->objectid != max_key->objectid)
5067 break;
5068 if (min_key->type > max_key->type)
5069 break;
5070
5071 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5072 *need_log_inode_item = false;
5073
5074 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5075 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5076 inode->generation == trans->transid &&
5077 !recursive_logging) {
5078 u64 other_ino = 0;
5079 u64 other_parent = 0;
5080
5081 ret = btrfs_check_ref_name_override(path->nodes[0],
5082 path->slots[0], min_key, inode,
5083 &other_ino, &other_parent);
5084 if (ret < 0) {
5085 return ret;
5086 } else if (ret > 0 && ctx &&
5087 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5088 if (ins_nr > 0) {
5089 ins_nr++;
5090 } else {
5091 ins_nr = 1;
5092 ins_start_slot = path->slots[0];
5093 }
5094 ret = copy_items(trans, inode, dst_path, path,
5095 ins_start_slot, ins_nr,
5096 inode_only, logged_isize);
5097 if (ret < 0)
5098 return ret;
5099 ins_nr = 0;
5100
5101 ret = log_conflicting_inodes(trans, root, path,
5102 ctx, other_ino, other_parent);
5103 if (ret)
5104 return ret;
5105 btrfs_release_path(path);
5106 goto next_key;
5107 }
5108 }
5109
5110 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5111 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5112 if (ins_nr == 0)
5113 goto next_slot;
5114 ret = copy_items(trans, inode, dst_path, path,
5115 ins_start_slot,
5116 ins_nr, inode_only, logged_isize);
5117 if (ret < 0)
5118 return ret;
5119 ins_nr = 0;
5120 goto next_slot;
5121 }
5122
5123 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5124 ins_nr++;
5125 goto next_slot;
5126 } else if (!ins_nr) {
5127 ins_start_slot = path->slots[0];
5128 ins_nr = 1;
5129 goto next_slot;
5130 }
5131
5132 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5133 ins_nr, inode_only, logged_isize);
5134 if (ret < 0)
5135 return ret;
5136 ins_nr = 1;
5137 ins_start_slot = path->slots[0];
5138 next_slot:
5139 path->slots[0]++;
5140 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5141 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5142 path->slots[0]);
5143 goto again;
5144 }
5145 if (ins_nr) {
5146 ret = copy_items(trans, inode, dst_path, path,
5147 ins_start_slot, ins_nr, inode_only,
5148 logged_isize);
5149 if (ret < 0)
5150 return ret;
5151 ins_nr = 0;
5152 }
5153 btrfs_release_path(path);
5154 next_key:
5155 if (min_key->offset < (u64)-1) {
5156 min_key->offset++;
5157 } else if (min_key->type < max_key->type) {
5158 min_key->type++;
5159 min_key->offset = 0;
5160 } else {
5161 break;
5162 }
5163 }
5164 if (ins_nr)
5165 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5166 ins_nr, inode_only, logged_isize);
5167
5168 return ret;
5169 }
5170
5171 /* log a single inode in the tree log.
5172 * At least one parent directory for this inode must exist in the tree
5173 * or be logged already.
5174 *
5175 * Any items from this inode changed by the current transaction are copied
5176 * to the log tree. An extra reference is taken on any extents in this
5177 * file, allowing us to avoid a whole pile of corner cases around logging
5178 * blocks that have been removed from the tree.
5179 *
5180 * See LOG_INODE_ALL and related defines for a description of what inode_only
5181 * does.
5182 *
5183 * This handles both files and directories.
5184 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)5185 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5186 struct btrfs_root *root, struct btrfs_inode *inode,
5187 int inode_only,
5188 struct btrfs_log_ctx *ctx)
5189 {
5190 struct btrfs_path *path;
5191 struct btrfs_path *dst_path;
5192 struct btrfs_key min_key;
5193 struct btrfs_key max_key;
5194 struct btrfs_root *log = root->log_root;
5195 int err = 0;
5196 int ret = 0;
5197 bool fast_search = false;
5198 u64 ino = btrfs_ino(inode);
5199 struct extent_map_tree *em_tree = &inode->extent_tree;
5200 u64 logged_isize = 0;
5201 bool need_log_inode_item = true;
5202 bool xattrs_logged = false;
5203 bool recursive_logging = false;
5204
5205 path = btrfs_alloc_path();
5206 if (!path)
5207 return -ENOMEM;
5208 dst_path = btrfs_alloc_path();
5209 if (!dst_path) {
5210 btrfs_free_path(path);
5211 return -ENOMEM;
5212 }
5213
5214 min_key.objectid = ino;
5215 min_key.type = BTRFS_INODE_ITEM_KEY;
5216 min_key.offset = 0;
5217
5218 max_key.objectid = ino;
5219
5220
5221 /* today the code can only do partial logging of directories */
5222 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5223 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5224 &inode->runtime_flags) &&
5225 inode_only >= LOG_INODE_EXISTS))
5226 max_key.type = BTRFS_XATTR_ITEM_KEY;
5227 else
5228 max_key.type = (u8)-1;
5229 max_key.offset = (u64)-1;
5230
5231 /*
5232 * Only run delayed items if we are a directory. We want to make sure
5233 * all directory indexes hit the fs/subvolume tree so we can find them
5234 * and figure out which index ranges have to be logged.
5235 *
5236 * Otherwise commit the delayed inode only if the full sync flag is set,
5237 * as we want to make sure an up to date version is in the subvolume
5238 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5239 * it to the log tree. For a non full sync, we always log the inode item
5240 * based on the in-memory struct btrfs_inode which is always up to date.
5241 */
5242 if (S_ISDIR(inode->vfs_inode.i_mode))
5243 ret = btrfs_commit_inode_delayed_items(trans, inode);
5244 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5245 ret = btrfs_commit_inode_delayed_inode(inode);
5246
5247 if (ret) {
5248 btrfs_free_path(path);
5249 btrfs_free_path(dst_path);
5250 return ret;
5251 }
5252
5253 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5254 recursive_logging = true;
5255 if (inode_only == LOG_OTHER_INODE)
5256 inode_only = LOG_INODE_EXISTS;
5257 else
5258 inode_only = LOG_INODE_ALL;
5259 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5260 } else {
5261 mutex_lock(&inode->log_mutex);
5262 }
5263
5264 /*
5265 * a brute force approach to making sure we get the most uptodate
5266 * copies of everything.
5267 */
5268 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5269 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5270
5271 if (inode_only == LOG_INODE_EXISTS)
5272 max_key_type = BTRFS_XATTR_ITEM_KEY;
5273 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5274 } else {
5275 if (inode_only == LOG_INODE_EXISTS) {
5276 /*
5277 * Make sure the new inode item we write to the log has
5278 * the same isize as the current one (if it exists).
5279 * This is necessary to prevent data loss after log
5280 * replay, and also to prevent doing a wrong expanding
5281 * truncate - for e.g. create file, write 4K into offset
5282 * 0, fsync, write 4K into offset 4096, add hard link,
5283 * fsync some other file (to sync log), power fail - if
5284 * we use the inode's current i_size, after log replay
5285 * we get a 8Kb file, with the last 4Kb extent as a hole
5286 * (zeroes), as if an expanding truncate happened,
5287 * instead of getting a file of 4Kb only.
5288 */
5289 err = logged_inode_size(log, inode, path, &logged_isize);
5290 if (err)
5291 goto out_unlock;
5292 }
5293 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5294 &inode->runtime_flags)) {
5295 if (inode_only == LOG_INODE_EXISTS) {
5296 max_key.type = BTRFS_XATTR_ITEM_KEY;
5297 ret = drop_objectid_items(trans, log, path, ino,
5298 max_key.type);
5299 } else {
5300 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5301 &inode->runtime_flags);
5302 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5303 &inode->runtime_flags);
5304 while(1) {
5305 ret = btrfs_truncate_inode_items(trans,
5306 log, &inode->vfs_inode, 0, 0);
5307 if (ret != -EAGAIN)
5308 break;
5309 }
5310 }
5311 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5312 &inode->runtime_flags) ||
5313 inode_only == LOG_INODE_EXISTS) {
5314 if (inode_only == LOG_INODE_ALL)
5315 fast_search = true;
5316 max_key.type = BTRFS_XATTR_ITEM_KEY;
5317 ret = drop_objectid_items(trans, log, path, ino,
5318 max_key.type);
5319 } else {
5320 if (inode_only == LOG_INODE_ALL)
5321 fast_search = true;
5322 goto log_extents;
5323 }
5324
5325 }
5326 if (ret) {
5327 err = ret;
5328 goto out_unlock;
5329 }
5330
5331 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5332 path, dst_path, logged_isize,
5333 recursive_logging, inode_only, ctx,
5334 &need_log_inode_item);
5335 if (err)
5336 goto out_unlock;
5337
5338 btrfs_release_path(path);
5339 btrfs_release_path(dst_path);
5340 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5341 if (err)
5342 goto out_unlock;
5343 xattrs_logged = true;
5344 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5345 btrfs_release_path(path);
5346 btrfs_release_path(dst_path);
5347 err = btrfs_log_holes(trans, root, inode, path);
5348 if (err)
5349 goto out_unlock;
5350 }
5351 log_extents:
5352 btrfs_release_path(path);
5353 btrfs_release_path(dst_path);
5354 if (need_log_inode_item) {
5355 err = log_inode_item(trans, log, dst_path, inode);
5356 if (!err && !xattrs_logged) {
5357 err = btrfs_log_all_xattrs(trans, root, inode, path,
5358 dst_path);
5359 btrfs_release_path(path);
5360 }
5361 if (err)
5362 goto out_unlock;
5363 }
5364 if (fast_search) {
5365 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5366 ctx);
5367 if (ret) {
5368 err = ret;
5369 goto out_unlock;
5370 }
5371 } else if (inode_only == LOG_INODE_ALL) {
5372 struct extent_map *em, *n;
5373
5374 write_lock(&em_tree->lock);
5375 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5376 list_del_init(&em->list);
5377 write_unlock(&em_tree->lock);
5378 }
5379
5380 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5381 ret = log_directory_changes(trans, root, inode, path, dst_path,
5382 ctx);
5383 if (ret) {
5384 err = ret;
5385 goto out_unlock;
5386 }
5387 }
5388
5389 /*
5390 * If we are logging that an ancestor inode exists as part of logging a
5391 * new name from a link or rename operation, don't mark the inode as
5392 * logged - otherwise if an explicit fsync is made against an ancestor,
5393 * the fsync considers the inode in the log and doesn't sync the log,
5394 * resulting in the ancestor missing after a power failure unless the
5395 * log was synced as part of an fsync against any other unrelated inode.
5396 * So keep it simple for this case and just don't flag the ancestors as
5397 * logged.
5398 */
5399 if (!ctx ||
5400 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5401 &inode->vfs_inode != ctx->inode)) {
5402 spin_lock(&inode->lock);
5403 inode->logged_trans = trans->transid;
5404 /*
5405 * Don't update last_log_commit if we logged that an inode exists
5406 * after it was loaded to memory (full_sync bit set).
5407 * This is to prevent data loss when we do a write to the inode,
5408 * then the inode gets evicted after all delalloc was flushed,
5409 * then we log it exists (due to a rename for example) and then
5410 * fsync it. This last fsync would do nothing (not logging the
5411 * extents previously written).
5412 */
5413 if (inode_only != LOG_INODE_EXISTS ||
5414 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5415 inode->last_log_commit = inode->last_sub_trans;
5416 spin_unlock(&inode->lock);
5417 }
5418 out_unlock:
5419 mutex_unlock(&inode->log_mutex);
5420
5421 btrfs_free_path(path);
5422 btrfs_free_path(dst_path);
5423 return err;
5424 }
5425
5426 /*
5427 * Check if we must fallback to a transaction commit when logging an inode.
5428 * This must be called after logging the inode and is used only in the context
5429 * when fsyncing an inode requires the need to log some other inode - in which
5430 * case we can't lock the i_mutex of each other inode we need to log as that
5431 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5432 * log inodes up or down in the hierarchy) or rename operations for example. So
5433 * we take the log_mutex of the inode after we have logged it and then check for
5434 * its last_unlink_trans value - this is safe because any task setting
5435 * last_unlink_trans must take the log_mutex and it must do this before it does
5436 * the actual unlink operation, so if we do this check before a concurrent task
5437 * sets last_unlink_trans it means we've logged a consistent version/state of
5438 * all the inode items, otherwise we are not sure and must do a transaction
5439 * commit (the concurrent task might have only updated last_unlink_trans before
5440 * we logged the inode or it might have also done the unlink).
5441 */
btrfs_must_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5442 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5443 struct btrfs_inode *inode)
5444 {
5445 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5446 bool ret = false;
5447
5448 mutex_lock(&inode->log_mutex);
5449 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5450 /*
5451 * Make sure any commits to the log are forced to be full
5452 * commits.
5453 */
5454 btrfs_set_log_full_commit(trans);
5455 ret = true;
5456 }
5457 mutex_unlock(&inode->log_mutex);
5458
5459 return ret;
5460 }
5461
5462 /*
5463 * follow the dentry parent pointers up the chain and see if any
5464 * of the directories in it require a full commit before they can
5465 * be logged. Returns zero if nothing special needs to be done or 1 if
5466 * a full commit is required.
5467 */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)5468 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5469 struct btrfs_inode *inode,
5470 struct dentry *parent,
5471 struct super_block *sb,
5472 u64 last_committed)
5473 {
5474 int ret = 0;
5475 struct dentry *old_parent = NULL;
5476
5477 /*
5478 * for regular files, if its inode is already on disk, we don't
5479 * have to worry about the parents at all. This is because
5480 * we can use the last_unlink_trans field to record renames
5481 * and other fun in this file.
5482 */
5483 if (S_ISREG(inode->vfs_inode.i_mode) &&
5484 inode->generation <= last_committed &&
5485 inode->last_unlink_trans <= last_committed)
5486 goto out;
5487
5488 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5489 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5490 goto out;
5491 inode = BTRFS_I(d_inode(parent));
5492 }
5493
5494 while (1) {
5495 if (btrfs_must_commit_transaction(trans, inode)) {
5496 ret = 1;
5497 break;
5498 }
5499
5500 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5501 break;
5502
5503 if (IS_ROOT(parent)) {
5504 inode = BTRFS_I(d_inode(parent));
5505 if (btrfs_must_commit_transaction(trans, inode))
5506 ret = 1;
5507 break;
5508 }
5509
5510 parent = dget_parent(parent);
5511 dput(old_parent);
5512 old_parent = parent;
5513 inode = BTRFS_I(d_inode(parent));
5514
5515 }
5516 dput(old_parent);
5517 out:
5518 return ret;
5519 }
5520
5521 struct btrfs_dir_list {
5522 u64 ino;
5523 struct list_head list;
5524 };
5525
5526 /*
5527 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5528 * details about the why it is needed.
5529 * This is a recursive operation - if an existing dentry corresponds to a
5530 * directory, that directory's new entries are logged too (same behaviour as
5531 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5532 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5533 * complains about the following circular lock dependency / possible deadlock:
5534 *
5535 * CPU0 CPU1
5536 * ---- ----
5537 * lock(&type->i_mutex_dir_key#3/2);
5538 * lock(sb_internal#2);
5539 * lock(&type->i_mutex_dir_key#3/2);
5540 * lock(&sb->s_type->i_mutex_key#14);
5541 *
5542 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5543 * sb_start_intwrite() in btrfs_start_transaction().
5544 * Not locking i_mutex of the inodes is still safe because:
5545 *
5546 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5547 * that while logging the inode new references (names) are added or removed
5548 * from the inode, leaving the logged inode item with a link count that does
5549 * not match the number of logged inode reference items. This is fine because
5550 * at log replay time we compute the real number of links and correct the
5551 * link count in the inode item (see replay_one_buffer() and
5552 * link_to_fixup_dir());
5553 *
5554 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5555 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5556 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5557 * has a size that doesn't match the sum of the lengths of all the logged
5558 * names. This does not result in a problem because if a dir_item key is
5559 * logged but its matching dir_index key is not logged, at log replay time we
5560 * don't use it to replay the respective name (see replay_one_name()). On the
5561 * other hand if only the dir_index key ends up being logged, the respective
5562 * name is added to the fs/subvol tree with both the dir_item and dir_index
5563 * keys created (see replay_one_name()).
5564 * The directory's inode item with a wrong i_size is not a problem as well,
5565 * since we don't use it at log replay time to set the i_size in the inode
5566 * item of the fs/subvol tree (see overwrite_item()).
5567 */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5568 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5569 struct btrfs_root *root,
5570 struct btrfs_inode *start_inode,
5571 struct btrfs_log_ctx *ctx)
5572 {
5573 struct btrfs_fs_info *fs_info = root->fs_info;
5574 struct btrfs_root *log = root->log_root;
5575 struct btrfs_path *path;
5576 LIST_HEAD(dir_list);
5577 struct btrfs_dir_list *dir_elem;
5578 int ret = 0;
5579
5580 path = btrfs_alloc_path();
5581 if (!path)
5582 return -ENOMEM;
5583
5584 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5585 if (!dir_elem) {
5586 btrfs_free_path(path);
5587 return -ENOMEM;
5588 }
5589 dir_elem->ino = btrfs_ino(start_inode);
5590 list_add_tail(&dir_elem->list, &dir_list);
5591
5592 while (!list_empty(&dir_list)) {
5593 struct extent_buffer *leaf;
5594 struct btrfs_key min_key;
5595 int nritems;
5596 int i;
5597
5598 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5599 list);
5600 if (ret)
5601 goto next_dir_inode;
5602
5603 min_key.objectid = dir_elem->ino;
5604 min_key.type = BTRFS_DIR_ITEM_KEY;
5605 min_key.offset = 0;
5606 again:
5607 btrfs_release_path(path);
5608 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5609 if (ret < 0) {
5610 goto next_dir_inode;
5611 } else if (ret > 0) {
5612 ret = 0;
5613 goto next_dir_inode;
5614 }
5615
5616 process_leaf:
5617 leaf = path->nodes[0];
5618 nritems = btrfs_header_nritems(leaf);
5619 for (i = path->slots[0]; i < nritems; i++) {
5620 struct btrfs_dir_item *di;
5621 struct btrfs_key di_key;
5622 struct inode *di_inode;
5623 struct btrfs_dir_list *new_dir_elem;
5624 int log_mode = LOG_INODE_EXISTS;
5625 int type;
5626
5627 btrfs_item_key_to_cpu(leaf, &min_key, i);
5628 if (min_key.objectid != dir_elem->ino ||
5629 min_key.type != BTRFS_DIR_ITEM_KEY)
5630 goto next_dir_inode;
5631
5632 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5633 type = btrfs_dir_type(leaf, di);
5634 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5635 type != BTRFS_FT_DIR)
5636 continue;
5637 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5638 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5639 continue;
5640
5641 btrfs_release_path(path);
5642 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5643 if (IS_ERR(di_inode)) {
5644 ret = PTR_ERR(di_inode);
5645 goto next_dir_inode;
5646 }
5647
5648 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5649 btrfs_add_delayed_iput(di_inode);
5650 break;
5651 }
5652
5653 ctx->log_new_dentries = false;
5654 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5655 log_mode = LOG_INODE_ALL;
5656 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5657 log_mode, ctx);
5658 if (!ret &&
5659 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5660 ret = 1;
5661 btrfs_add_delayed_iput(di_inode);
5662 if (ret)
5663 goto next_dir_inode;
5664 if (ctx->log_new_dentries) {
5665 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5666 GFP_NOFS);
5667 if (!new_dir_elem) {
5668 ret = -ENOMEM;
5669 goto next_dir_inode;
5670 }
5671 new_dir_elem->ino = di_key.objectid;
5672 list_add_tail(&new_dir_elem->list, &dir_list);
5673 }
5674 break;
5675 }
5676 if (i == nritems) {
5677 ret = btrfs_next_leaf(log, path);
5678 if (ret < 0) {
5679 goto next_dir_inode;
5680 } else if (ret > 0) {
5681 ret = 0;
5682 goto next_dir_inode;
5683 }
5684 goto process_leaf;
5685 }
5686 if (min_key.offset < (u64)-1) {
5687 min_key.offset++;
5688 goto again;
5689 }
5690 next_dir_inode:
5691 list_del(&dir_elem->list);
5692 kfree(dir_elem);
5693 }
5694
5695 btrfs_free_path(path);
5696 return ret;
5697 }
5698
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)5699 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5700 struct btrfs_inode *inode,
5701 struct btrfs_log_ctx *ctx)
5702 {
5703 struct btrfs_fs_info *fs_info = trans->fs_info;
5704 int ret;
5705 struct btrfs_path *path;
5706 struct btrfs_key key;
5707 struct btrfs_root *root = inode->root;
5708 const u64 ino = btrfs_ino(inode);
5709
5710 path = btrfs_alloc_path();
5711 if (!path)
5712 return -ENOMEM;
5713 path->skip_locking = 1;
5714 path->search_commit_root = 1;
5715
5716 key.objectid = ino;
5717 key.type = BTRFS_INODE_REF_KEY;
5718 key.offset = 0;
5719 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5720 if (ret < 0)
5721 goto out;
5722
5723 while (true) {
5724 struct extent_buffer *leaf = path->nodes[0];
5725 int slot = path->slots[0];
5726 u32 cur_offset = 0;
5727 u32 item_size;
5728 unsigned long ptr;
5729
5730 if (slot >= btrfs_header_nritems(leaf)) {
5731 ret = btrfs_next_leaf(root, path);
5732 if (ret < 0)
5733 goto out;
5734 else if (ret > 0)
5735 break;
5736 continue;
5737 }
5738
5739 btrfs_item_key_to_cpu(leaf, &key, slot);
5740 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5741 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5742 break;
5743
5744 item_size = btrfs_item_size_nr(leaf, slot);
5745 ptr = btrfs_item_ptr_offset(leaf, slot);
5746 while (cur_offset < item_size) {
5747 struct btrfs_key inode_key;
5748 struct inode *dir_inode;
5749
5750 inode_key.type = BTRFS_INODE_ITEM_KEY;
5751 inode_key.offset = 0;
5752
5753 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5754 struct btrfs_inode_extref *extref;
5755
5756 extref = (struct btrfs_inode_extref *)
5757 (ptr + cur_offset);
5758 inode_key.objectid = btrfs_inode_extref_parent(
5759 leaf, extref);
5760 cur_offset += sizeof(*extref);
5761 cur_offset += btrfs_inode_extref_name_len(leaf,
5762 extref);
5763 } else {
5764 inode_key.objectid = key.offset;
5765 cur_offset = item_size;
5766 }
5767
5768 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5769 root);
5770 /*
5771 * If the parent inode was deleted, return an error to
5772 * fallback to a transaction commit. This is to prevent
5773 * getting an inode that was moved from one parent A to
5774 * a parent B, got its former parent A deleted and then
5775 * it got fsync'ed, from existing at both parents after
5776 * a log replay (and the old parent still existing).
5777 * Example:
5778 *
5779 * mkdir /mnt/A
5780 * mkdir /mnt/B
5781 * touch /mnt/B/bar
5782 * sync
5783 * mv /mnt/B/bar /mnt/A/bar
5784 * mv -T /mnt/A /mnt/B
5785 * fsync /mnt/B/bar
5786 * <power fail>
5787 *
5788 * If we ignore the old parent B which got deleted,
5789 * after a log replay we would have file bar linked
5790 * at both parents and the old parent B would still
5791 * exist.
5792 */
5793 if (IS_ERR(dir_inode)) {
5794 ret = PTR_ERR(dir_inode);
5795 goto out;
5796 }
5797
5798 if (ctx)
5799 ctx->log_new_dentries = false;
5800 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5801 LOG_INODE_ALL, ctx);
5802 if (!ret &&
5803 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5804 ret = 1;
5805 if (!ret && ctx && ctx->log_new_dentries)
5806 ret = log_new_dir_dentries(trans, root,
5807 BTRFS_I(dir_inode), ctx);
5808 btrfs_add_delayed_iput(dir_inode);
5809 if (ret)
5810 goto out;
5811 }
5812 path->slots[0]++;
5813 }
5814 ret = 0;
5815 out:
5816 btrfs_free_path(path);
5817 return ret;
5818 }
5819
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5820 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5821 struct btrfs_root *root,
5822 struct btrfs_path *path,
5823 struct btrfs_log_ctx *ctx)
5824 {
5825 struct btrfs_key found_key;
5826
5827 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5828
5829 while (true) {
5830 struct btrfs_fs_info *fs_info = root->fs_info;
5831 const u64 last_committed = fs_info->last_trans_committed;
5832 struct extent_buffer *leaf = path->nodes[0];
5833 int slot = path->slots[0];
5834 struct btrfs_key search_key;
5835 struct inode *inode;
5836 u64 ino;
5837 int ret = 0;
5838
5839 btrfs_release_path(path);
5840
5841 ino = found_key.offset;
5842
5843 search_key.objectid = found_key.offset;
5844 search_key.type = BTRFS_INODE_ITEM_KEY;
5845 search_key.offset = 0;
5846 inode = btrfs_iget(fs_info->sb, ino, root);
5847 if (IS_ERR(inode))
5848 return PTR_ERR(inode);
5849
5850 if (BTRFS_I(inode)->generation > last_committed)
5851 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5852 LOG_INODE_EXISTS, ctx);
5853 btrfs_add_delayed_iput(inode);
5854 if (ret)
5855 return ret;
5856
5857 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5858 break;
5859
5860 search_key.type = BTRFS_INODE_REF_KEY;
5861 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5862 if (ret < 0)
5863 return ret;
5864
5865 leaf = path->nodes[0];
5866 slot = path->slots[0];
5867 if (slot >= btrfs_header_nritems(leaf)) {
5868 ret = btrfs_next_leaf(root, path);
5869 if (ret < 0)
5870 return ret;
5871 else if (ret > 0)
5872 return -ENOENT;
5873 leaf = path->nodes[0];
5874 slot = path->slots[0];
5875 }
5876
5877 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5878 if (found_key.objectid != search_key.objectid ||
5879 found_key.type != BTRFS_INODE_REF_KEY)
5880 return -ENOENT;
5881 }
5882 return 0;
5883 }
5884
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)5885 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5886 struct btrfs_inode *inode,
5887 struct dentry *parent,
5888 struct btrfs_log_ctx *ctx)
5889 {
5890 struct btrfs_root *root = inode->root;
5891 struct btrfs_fs_info *fs_info = root->fs_info;
5892 struct dentry *old_parent = NULL;
5893 struct super_block *sb = inode->vfs_inode.i_sb;
5894 int ret = 0;
5895
5896 while (true) {
5897 if (!parent || d_really_is_negative(parent) ||
5898 sb != parent->d_sb)
5899 break;
5900
5901 inode = BTRFS_I(d_inode(parent));
5902 if (root != inode->root)
5903 break;
5904
5905 if (inode->generation > fs_info->last_trans_committed) {
5906 ret = btrfs_log_inode(trans, root, inode,
5907 LOG_INODE_EXISTS, ctx);
5908 if (ret)
5909 break;
5910 }
5911 if (IS_ROOT(parent))
5912 break;
5913
5914 parent = dget_parent(parent);
5915 dput(old_parent);
5916 old_parent = parent;
5917 }
5918 dput(old_parent);
5919
5920 return ret;
5921 }
5922
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)5923 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5924 struct btrfs_inode *inode,
5925 struct dentry *parent,
5926 struct btrfs_log_ctx *ctx)
5927 {
5928 struct btrfs_root *root = inode->root;
5929 const u64 ino = btrfs_ino(inode);
5930 struct btrfs_path *path;
5931 struct btrfs_key search_key;
5932 int ret;
5933
5934 /*
5935 * For a single hard link case, go through a fast path that does not
5936 * need to iterate the fs/subvolume tree.
5937 */
5938 if (inode->vfs_inode.i_nlink < 2)
5939 return log_new_ancestors_fast(trans, inode, parent, ctx);
5940
5941 path = btrfs_alloc_path();
5942 if (!path)
5943 return -ENOMEM;
5944
5945 search_key.objectid = ino;
5946 search_key.type = BTRFS_INODE_REF_KEY;
5947 search_key.offset = 0;
5948 again:
5949 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5950 if (ret < 0)
5951 goto out;
5952 if (ret == 0)
5953 path->slots[0]++;
5954
5955 while (true) {
5956 struct extent_buffer *leaf = path->nodes[0];
5957 int slot = path->slots[0];
5958 struct btrfs_key found_key;
5959
5960 if (slot >= btrfs_header_nritems(leaf)) {
5961 ret = btrfs_next_leaf(root, path);
5962 if (ret < 0)
5963 goto out;
5964 else if (ret > 0)
5965 break;
5966 continue;
5967 }
5968
5969 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5970 if (found_key.objectid != ino ||
5971 found_key.type > BTRFS_INODE_EXTREF_KEY)
5972 break;
5973
5974 /*
5975 * Don't deal with extended references because they are rare
5976 * cases and too complex to deal with (we would need to keep
5977 * track of which subitem we are processing for each item in
5978 * this loop, etc). So just return some error to fallback to
5979 * a transaction commit.
5980 */
5981 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5982 ret = -EMLINK;
5983 goto out;
5984 }
5985
5986 /*
5987 * Logging ancestors needs to do more searches on the fs/subvol
5988 * tree, so it releases the path as needed to avoid deadlocks.
5989 * Keep track of the last inode ref key and resume from that key
5990 * after logging all new ancestors for the current hard link.
5991 */
5992 memcpy(&search_key, &found_key, sizeof(search_key));
5993
5994 ret = log_new_ancestors(trans, root, path, ctx);
5995 if (ret)
5996 goto out;
5997 btrfs_release_path(path);
5998 goto again;
5999 }
6000 ret = 0;
6001 out:
6002 btrfs_free_path(path);
6003 return ret;
6004 }
6005
6006 /*
6007 * helper function around btrfs_log_inode to make sure newly created
6008 * parent directories also end up in the log. A minimal inode and backref
6009 * only logging is done of any parent directories that are older than
6010 * the last committed transaction
6011 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)6012 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6013 struct btrfs_inode *inode,
6014 struct dentry *parent,
6015 int inode_only,
6016 struct btrfs_log_ctx *ctx)
6017 {
6018 struct btrfs_root *root = inode->root;
6019 struct btrfs_fs_info *fs_info = root->fs_info;
6020 struct super_block *sb;
6021 int ret = 0;
6022 u64 last_committed = fs_info->last_trans_committed;
6023 bool log_dentries = false;
6024
6025 sb = inode->vfs_inode.i_sb;
6026
6027 if (btrfs_test_opt(fs_info, NOTREELOG)) {
6028 ret = 1;
6029 goto end_no_trans;
6030 }
6031
6032 /*
6033 * The prev transaction commit doesn't complete, we need do
6034 * full commit by ourselves.
6035 */
6036 if (fs_info->last_trans_log_full_commit >
6037 fs_info->last_trans_committed) {
6038 ret = 1;
6039 goto end_no_trans;
6040 }
6041
6042 if (btrfs_root_refs(&root->root_item) == 0) {
6043 ret = 1;
6044 goto end_no_trans;
6045 }
6046
6047 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6048 last_committed);
6049 if (ret)
6050 goto end_no_trans;
6051
6052 /*
6053 * Skip already logged inodes or inodes corresponding to tmpfiles
6054 * (since logging them is pointless, a link count of 0 means they
6055 * will never be accessible).
6056 */
6057 if (btrfs_inode_in_log(inode, trans->transid) ||
6058 inode->vfs_inode.i_nlink == 0) {
6059 ret = BTRFS_NO_LOG_SYNC;
6060 goto end_no_trans;
6061 }
6062
6063 ret = start_log_trans(trans, root, ctx);
6064 if (ret)
6065 goto end_no_trans;
6066
6067 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6068 if (ret)
6069 goto end_trans;
6070
6071 /*
6072 * for regular files, if its inode is already on disk, we don't
6073 * have to worry about the parents at all. This is because
6074 * we can use the last_unlink_trans field to record renames
6075 * and other fun in this file.
6076 */
6077 if (S_ISREG(inode->vfs_inode.i_mode) &&
6078 inode->generation <= last_committed &&
6079 inode->last_unlink_trans <= last_committed) {
6080 ret = 0;
6081 goto end_trans;
6082 }
6083
6084 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6085 log_dentries = true;
6086
6087 /*
6088 * On unlink we must make sure all our current and old parent directory
6089 * inodes are fully logged. This is to prevent leaving dangling
6090 * directory index entries in directories that were our parents but are
6091 * not anymore. Not doing this results in old parent directory being
6092 * impossible to delete after log replay (rmdir will always fail with
6093 * error -ENOTEMPTY).
6094 *
6095 * Example 1:
6096 *
6097 * mkdir testdir
6098 * touch testdir/foo
6099 * ln testdir/foo testdir/bar
6100 * sync
6101 * unlink testdir/bar
6102 * xfs_io -c fsync testdir/foo
6103 * <power failure>
6104 * mount fs, triggers log replay
6105 *
6106 * If we don't log the parent directory (testdir), after log replay the
6107 * directory still has an entry pointing to the file inode using the bar
6108 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6109 * the file inode has a link count of 1.
6110 *
6111 * Example 2:
6112 *
6113 * mkdir testdir
6114 * touch foo
6115 * ln foo testdir/foo2
6116 * ln foo testdir/foo3
6117 * sync
6118 * unlink testdir/foo3
6119 * xfs_io -c fsync foo
6120 * <power failure>
6121 * mount fs, triggers log replay
6122 *
6123 * Similar as the first example, after log replay the parent directory
6124 * testdir still has an entry pointing to the inode file with name foo3
6125 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6126 * and has a link count of 2.
6127 */
6128 if (inode->last_unlink_trans > last_committed) {
6129 ret = btrfs_log_all_parents(trans, inode, ctx);
6130 if (ret)
6131 goto end_trans;
6132 }
6133
6134 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6135 if (ret)
6136 goto end_trans;
6137
6138 if (log_dentries)
6139 ret = log_new_dir_dentries(trans, root, inode, ctx);
6140 else
6141 ret = 0;
6142 end_trans:
6143 if (ret < 0) {
6144 btrfs_set_log_full_commit(trans);
6145 ret = 1;
6146 }
6147
6148 if (ret)
6149 btrfs_remove_log_ctx(root, ctx);
6150 btrfs_end_log_trans(root);
6151 end_no_trans:
6152 return ret;
6153 }
6154
6155 /*
6156 * it is not safe to log dentry if the chunk root has added new
6157 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6158 * If this returns 1, you must commit the transaction to safely get your
6159 * data on disk.
6160 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)6161 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6162 struct dentry *dentry,
6163 struct btrfs_log_ctx *ctx)
6164 {
6165 struct dentry *parent = dget_parent(dentry);
6166 int ret;
6167
6168 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6169 LOG_INODE_ALL, ctx);
6170 dput(parent);
6171
6172 return ret;
6173 }
6174
6175 /*
6176 * should be called during mount to recover any replay any log trees
6177 * from the FS
6178 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)6179 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6180 {
6181 int ret;
6182 struct btrfs_path *path;
6183 struct btrfs_trans_handle *trans;
6184 struct btrfs_key key;
6185 struct btrfs_key found_key;
6186 struct btrfs_root *log;
6187 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6188 struct walk_control wc = {
6189 .process_func = process_one_buffer,
6190 .stage = LOG_WALK_PIN_ONLY,
6191 };
6192
6193 path = btrfs_alloc_path();
6194 if (!path)
6195 return -ENOMEM;
6196
6197 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6198
6199 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6200 if (IS_ERR(trans)) {
6201 ret = PTR_ERR(trans);
6202 goto error;
6203 }
6204
6205 wc.trans = trans;
6206 wc.pin = 1;
6207
6208 ret = walk_log_tree(trans, log_root_tree, &wc);
6209 if (ret) {
6210 btrfs_handle_fs_error(fs_info, ret,
6211 "Failed to pin buffers while recovering log root tree.");
6212 goto error;
6213 }
6214
6215 again:
6216 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6217 key.offset = (u64)-1;
6218 key.type = BTRFS_ROOT_ITEM_KEY;
6219
6220 while (1) {
6221 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6222
6223 if (ret < 0) {
6224 btrfs_handle_fs_error(fs_info, ret,
6225 "Couldn't find tree log root.");
6226 goto error;
6227 }
6228 if (ret > 0) {
6229 if (path->slots[0] == 0)
6230 break;
6231 path->slots[0]--;
6232 }
6233 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6234 path->slots[0]);
6235 btrfs_release_path(path);
6236 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6237 break;
6238
6239 log = btrfs_read_tree_root(log_root_tree, &found_key);
6240 if (IS_ERR(log)) {
6241 ret = PTR_ERR(log);
6242 btrfs_handle_fs_error(fs_info, ret,
6243 "Couldn't read tree log root.");
6244 goto error;
6245 }
6246
6247 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6248 true);
6249 if (IS_ERR(wc.replay_dest)) {
6250 ret = PTR_ERR(wc.replay_dest);
6251
6252 /*
6253 * We didn't find the subvol, likely because it was
6254 * deleted. This is ok, simply skip this log and go to
6255 * the next one.
6256 *
6257 * We need to exclude the root because we can't have
6258 * other log replays overwriting this log as we'll read
6259 * it back in a few more times. This will keep our
6260 * block from being modified, and we'll just bail for
6261 * each subsequent pass.
6262 */
6263 if (ret == -ENOENT)
6264 ret = btrfs_pin_extent_for_log_replay(trans,
6265 log->node->start,
6266 log->node->len);
6267 btrfs_put_root(log);
6268
6269 if (!ret)
6270 goto next;
6271 btrfs_handle_fs_error(fs_info, ret,
6272 "Couldn't read target root for tree log recovery.");
6273 goto error;
6274 }
6275
6276 wc.replay_dest->log_root = log;
6277 btrfs_record_root_in_trans(trans, wc.replay_dest);
6278 ret = walk_log_tree(trans, log, &wc);
6279
6280 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6281 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6282 path);
6283 }
6284
6285 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6286 struct btrfs_root *root = wc.replay_dest;
6287
6288 btrfs_release_path(path);
6289
6290 /*
6291 * We have just replayed everything, and the highest
6292 * objectid of fs roots probably has changed in case
6293 * some inode_item's got replayed.
6294 *
6295 * root->objectid_mutex is not acquired as log replay
6296 * could only happen during mount.
6297 */
6298 ret = btrfs_find_highest_objectid(root,
6299 &root->highest_objectid);
6300 }
6301
6302 wc.replay_dest->log_root = NULL;
6303 btrfs_put_root(wc.replay_dest);
6304 btrfs_put_root(log);
6305
6306 if (ret)
6307 goto error;
6308 next:
6309 if (found_key.offset == 0)
6310 break;
6311 key.offset = found_key.offset - 1;
6312 }
6313 btrfs_release_path(path);
6314
6315 /* step one is to pin it all, step two is to replay just inodes */
6316 if (wc.pin) {
6317 wc.pin = 0;
6318 wc.process_func = replay_one_buffer;
6319 wc.stage = LOG_WALK_REPLAY_INODES;
6320 goto again;
6321 }
6322 /* step three is to replay everything */
6323 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6324 wc.stage++;
6325 goto again;
6326 }
6327
6328 btrfs_free_path(path);
6329
6330 /* step 4: commit the transaction, which also unpins the blocks */
6331 ret = btrfs_commit_transaction(trans);
6332 if (ret)
6333 return ret;
6334
6335 log_root_tree->log_root = NULL;
6336 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6337 btrfs_put_root(log_root_tree);
6338
6339 return 0;
6340 error:
6341 if (wc.trans)
6342 btrfs_end_transaction(wc.trans);
6343 btrfs_free_path(path);
6344 return ret;
6345 }
6346
6347 /*
6348 * there are some corner cases where we want to force a full
6349 * commit instead of allowing a directory to be logged.
6350 *
6351 * They revolve around files there were unlinked from the directory, and
6352 * this function updates the parent directory so that a full commit is
6353 * properly done if it is fsync'd later after the unlinks are done.
6354 *
6355 * Must be called before the unlink operations (updates to the subvolume tree,
6356 * inodes, etc) are done.
6357 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)6358 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6359 struct btrfs_inode *dir, struct btrfs_inode *inode,
6360 int for_rename)
6361 {
6362 /*
6363 * when we're logging a file, if it hasn't been renamed
6364 * or unlinked, and its inode is fully committed on disk,
6365 * we don't have to worry about walking up the directory chain
6366 * to log its parents.
6367 *
6368 * So, we use the last_unlink_trans field to put this transid
6369 * into the file. When the file is logged we check it and
6370 * don't log the parents if the file is fully on disk.
6371 */
6372 mutex_lock(&inode->log_mutex);
6373 inode->last_unlink_trans = trans->transid;
6374 mutex_unlock(&inode->log_mutex);
6375
6376 /*
6377 * if this directory was already logged any new
6378 * names for this file/dir will get recorded
6379 */
6380 if (dir->logged_trans == trans->transid)
6381 return;
6382
6383 /*
6384 * if the inode we're about to unlink was logged,
6385 * the log will be properly updated for any new names
6386 */
6387 if (inode->logged_trans == trans->transid)
6388 return;
6389
6390 /*
6391 * when renaming files across directories, if the directory
6392 * there we're unlinking from gets fsync'd later on, there's
6393 * no way to find the destination directory later and fsync it
6394 * properly. So, we have to be conservative and force commits
6395 * so the new name gets discovered.
6396 */
6397 if (for_rename)
6398 goto record;
6399
6400 /* we can safely do the unlink without any special recording */
6401 return;
6402
6403 record:
6404 mutex_lock(&dir->log_mutex);
6405 dir->last_unlink_trans = trans->transid;
6406 mutex_unlock(&dir->log_mutex);
6407 }
6408
6409 /*
6410 * Make sure that if someone attempts to fsync the parent directory of a deleted
6411 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6412 * that after replaying the log tree of the parent directory's root we will not
6413 * see the snapshot anymore and at log replay time we will not see any log tree
6414 * corresponding to the deleted snapshot's root, which could lead to replaying
6415 * it after replaying the log tree of the parent directory (which would replay
6416 * the snapshot delete operation).
6417 *
6418 * Must be called before the actual snapshot destroy operation (updates to the
6419 * parent root and tree of tree roots trees, etc) are done.
6420 */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)6421 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6422 struct btrfs_inode *dir)
6423 {
6424 mutex_lock(&dir->log_mutex);
6425 dir->last_unlink_trans = trans->transid;
6426 mutex_unlock(&dir->log_mutex);
6427 }
6428
6429 /*
6430 * Call this after adding a new name for a file and it will properly
6431 * update the log to reflect the new name.
6432 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_inode * old_dir,struct dentry * parent)6433 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6434 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6435 struct dentry *parent)
6436 {
6437 struct btrfs_fs_info *fs_info = trans->fs_info;
6438 struct btrfs_log_ctx ctx;
6439
6440 /*
6441 * this will force the logging code to walk the dentry chain
6442 * up for the file
6443 */
6444 if (!S_ISDIR(inode->vfs_inode.i_mode))
6445 inode->last_unlink_trans = trans->transid;
6446
6447 /*
6448 * if this inode hasn't been logged and directory we're renaming it
6449 * from hasn't been logged, we don't need to log it
6450 */
6451 if (inode->logged_trans <= fs_info->last_trans_committed &&
6452 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6453 return;
6454
6455 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6456 ctx.logging_new_name = true;
6457 /*
6458 * We don't care about the return value. If we fail to log the new name
6459 * then we know the next attempt to sync the log will fallback to a full
6460 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6461 * we don't need to worry about getting a log committed that has an
6462 * inconsistent state after a rename operation.
6463 */
6464 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6465 }
6466
6467