1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31
32 #undef SCRAMBLE_DELAYED_REFS
33
34 /*
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
47 */
48 enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
52 };
53
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
70 int force);
71 static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
75 int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 u64 num_bytes);
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
80 u64 num_bytes);
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
84
85 static noinline int
block_group_cache_done(struct btrfs_block_group_cache * cache)86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
91 }
92
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94 {
95 return (cache->flags & bits) == bits;
96 }
97
btrfs_get_block_group(struct btrfs_block_group_cache * cache)98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
99 {
100 atomic_inc(&cache->count);
101 }
102
btrfs_put_block_group(struct btrfs_block_group_cache * cache)103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104 {
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
108
109 /*
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
114 *
115 * No better way to resolve, but only to warn.
116 */
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 kfree(cache->free_space_ctl);
119 kfree(cache);
120 }
121 }
122
123 /*
124 * this adds the block group to the fs_info rb tree for the block group
125 * cache
126 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 struct btrfs_block_group_cache *block_group)
129 {
130 struct rb_node **p;
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
133
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
136
137 while (*p) {
138 parent = *p;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
140 cache_node);
141 if (block_group->key.objectid < cache->key.objectid) {
142 p = &(*p)->rb_left;
143 } else if (block_group->key.objectid > cache->key.objectid) {
144 p = &(*p)->rb_right;
145 } else {
146 spin_unlock(&info->block_group_cache_lock);
147 return -EEXIST;
148 }
149 }
150
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
154
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
157
158 spin_unlock(&info->block_group_cache_lock);
159
160 return 0;
161 }
162
163 /*
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
166 */
167 static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 int contains)
170 {
171 struct btrfs_block_group_cache *cache, *ret = NULL;
172 struct rb_node *n;
173 u64 end, start;
174
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
177
178 while (n) {
179 cache = rb_entry(n, struct btrfs_block_group_cache,
180 cache_node);
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
183
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
186 ret = cache;
187 n = n->rb_left;
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
190 ret = cache;
191 break;
192 }
193 n = n->rb_right;
194 } else {
195 ret = cache;
196 break;
197 }
198 }
199 if (ret) {
200 btrfs_get_block_group(ret);
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
203 }
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207 }
208
add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 u64 start, u64 num_bytes)
211 {
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE);
215 set_extent_bits(&fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE);
217 return 0;
218 }
219
free_excluded_extents(struct btrfs_block_group_cache * cache)220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
221 {
222 struct btrfs_fs_info *fs_info = cache->fs_info;
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 clear_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
232 }
233
exclude_super_stripes(struct btrfs_block_group_cache * cache)234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
235 {
236 struct btrfs_fs_info *fs_info = cache->fs_info;
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(fs_info, cache->key.objectid,
246 stripe_len);
247 if (ret)
248 return ret;
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 bytenr, &logical, &nr, &stripe_len);
255 if (ret)
256 return ret;
257
258 while (nr--) {
259 u64 start, len;
260
261 if (logical[nr] > cache->key.objectid +
262 cache->key.offset)
263 continue;
264
265 if (logical[nr] + stripe_len <= cache->key.objectid)
266 continue;
267
268 start = logical[nr];
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
272 } else {
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
276 }
277
278 cache->bytes_super += len;
279 ret = add_excluded_extent(fs_info, start, len);
280 if (ret) {
281 kfree(logical);
282 return ret;
283 }
284 }
285
286 kfree(logical);
287 }
288 return 0;
289 }
290
291 static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache * cache)292 get_caching_control(struct btrfs_block_group_cache *cache)
293 {
294 struct btrfs_caching_control *ctl;
295
296 spin_lock(&cache->lock);
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
299 return NULL;
300 }
301
302 ctl = cache->caching_ctl;
303 refcount_inc(&ctl->count);
304 spin_unlock(&cache->lock);
305 return ctl;
306 }
307
put_caching_control(struct btrfs_caching_control * ctl)308 static void put_caching_control(struct btrfs_caching_control *ctl)
309 {
310 if (refcount_dec_and_test(&ctl->count))
311 kfree(ctl);
312 }
313
314 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group_cache * block_group)315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
316 {
317 struct btrfs_fs_info *fs_info = block_group->fs_info;
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 fs_info->nodesize : fs_info->sectorsize;
322 u64 step = chunk << 1;
323
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
326 start += step;
327 if (len < step)
328 len = 0;
329 else
330 len -= step;
331 }
332 }
333 #endif
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
add_new_free_space(struct btrfs_block_group_cache * block_group,u64 start,u64 end)340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 u64 start, u64 end)
342 {
343 struct btrfs_fs_info *info = block_group->fs_info;
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
380 {
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret;
391 bool wakeup = true;
392
393 path = btrfs_alloc_path();
394 if (!path)
395 return -ENOMEM;
396
397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
398
399 #ifdef CONFIG_BTRFS_DEBUG
400 /*
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
403 * the free space.
404 */
405 if (btrfs_should_fragment_free_space(block_group))
406 wakeup = false;
407 #endif
408 /*
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
413 */
414 path->skip_locking = 1;
415 path->search_commit_root = 1;
416 path->reada = READA_FORWARD;
417
418 key.objectid = last;
419 key.offset = 0;
420 key.type = BTRFS_EXTENT_ITEM_KEY;
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto out;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 if (wakeup)
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
453 goto next;
454 }
455
456 ret = btrfs_next_leaf(extent_root, path);
457 if (ret < 0)
458 goto out;
459 if (ret)
460 break;
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463 continue;
464 }
465
466 if (key.objectid < last) {
467 key.objectid = last;
468 key.offset = 0;
469 key.type = BTRFS_EXTENT_ITEM_KEY;
470
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 goto next;
475 }
476
477 if (key.objectid < block_group->key.objectid) {
478 path->slots[0]++;
479 continue;
480 }
481
482 if (key.objectid >= block_group->key.objectid +
483 block_group->key.offset)
484 break;
485
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
488 total_found += add_new_free_space(block_group, last,
489 key.objectid);
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
492 fs_info->nodesize;
493 else
494 last = key.objectid + key.offset;
495
496 if (total_found > CACHING_CTL_WAKE_UP) {
497 total_found = 0;
498 if (wakeup)
499 wake_up(&caching_ctl->wait);
500 }
501 }
502 path->slots[0]++;
503 }
504 ret = 0;
505
506 total_found += add_new_free_space(block_group, last,
507 block_group->key.objectid +
508 block_group->key.offset);
509 caching_ctl->progress = (u64)-1;
510
511 out:
512 btrfs_free_path(path);
513 return ret;
514 }
515
caching_thread(struct btrfs_work * work)516 static noinline void caching_thread(struct btrfs_work *work)
517 {
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
521 int ret;
522
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
526
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
529
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
532 else
533 ret = load_extent_tree_free(caching_ctl);
534
535 spin_lock(&block_group->lock);
536 block_group->caching_ctl = NULL;
537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 spin_unlock(&block_group->lock);
539
540 #ifdef CONFIG_BTRFS_DEBUG
541 if (btrfs_should_fragment_free_space(block_group)) {
542 u64 bytes_used;
543
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
551 fragment_free_space(block_group);
552 }
553 #endif
554
555 caching_ctl->progress = (u64)-1;
556
557 up_read(&fs_info->commit_root_sem);
558 free_excluded_extents(block_group);
559 mutex_unlock(&caching_ctl->mutex);
560
561 wake_up(&caching_ctl->wait);
562
563 put_caching_control(caching_ctl);
564 btrfs_put_block_group(block_group);
565 }
566
cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)567 static int cache_block_group(struct btrfs_block_group_cache *cache,
568 int load_cache_only)
569 {
570 DEFINE_WAIT(wait);
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
573 int ret = 0;
574
575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
576 if (!caching_ctl)
577 return -ENOMEM;
578
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
584 refcount_set(&caching_ctl->count, 1);
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
587
588 spin_lock(&cache->lock);
589 /*
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
599 * another.
600 */
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
603
604 ctl = cache->caching_ctl;
605 refcount_inc(&ctl->count);
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
608
609 schedule();
610
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
614 }
615
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
618 kfree(caching_ctl);
619 return 0;
620 }
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
625
626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 mutex_lock(&caching_ctl->mutex);
628 ret = load_free_space_cache(fs_info, cache);
629
630 spin_lock(&cache->lock);
631 if (ret == 1) {
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
635 caching_ctl->progress = (u64)-1;
636 } else {
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
640 } else {
641 cache->cached = BTRFS_CACHE_STARTED;
642 cache->has_caching_ctl = 1;
643 }
644 }
645 spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
647 if (ret == 1 &&
648 btrfs_should_fragment_free_space(cache)) {
649 u64 bytes_used;
650
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
658 fragment_free_space(cache);
659 }
660 #endif
661 mutex_unlock(&caching_ctl->mutex);
662
663 wake_up(&caching_ctl->wait);
664 if (ret == 1) {
665 put_caching_control(caching_ctl);
666 free_excluded_extents(cache);
667 return 0;
668 }
669 } else {
670 /*
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
673 */
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
678 } else {
679 cache->cached = BTRFS_CACHE_STARTED;
680 cache->has_caching_ctl = 1;
681 }
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
684 }
685
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
688 return 0;
689 }
690
691 down_write(&fs_info->commit_root_sem);
692 refcount_inc(&caching_ctl->count);
693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 up_write(&fs_info->commit_root_sem);
695
696 btrfs_get_block_group(cache);
697
698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
699
700 return ret;
701 }
702
703 /*
704 * return the block group that starts at or after bytenr
705 */
706 static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
708 {
709 return block_group_cache_tree_search(info, bytenr, 0);
710 }
711
712 /*
713 * return the block group that contains the given bytenr
714 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
717 u64 bytenr)
718 {
719 return block_group_cache_tree_search(info, bytenr, 1);
720 }
721
__find_space_info(struct btrfs_fs_info * info,u64 flags)722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 u64 flags)
724 {
725 struct list_head *head = &info->space_info;
726 struct btrfs_space_info *found;
727
728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
729
730 rcu_read_lock();
731 list_for_each_entry_rcu(found, head, list) {
732 if (found->flags & flags) {
733 rcu_read_unlock();
734 return found;
735 }
736 }
737 rcu_read_unlock();
738 return NULL;
739 }
740
add_pinned_bytes(struct btrfs_fs_info * fs_info,s64 num_bytes,bool metadata,u64 root_objectid)741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 bool metadata, u64 root_objectid)
743 {
744 struct btrfs_space_info *space_info;
745 u64 flags;
746
747 if (metadata) {
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 else
751 flags = BTRFS_BLOCK_GROUP_METADATA;
752 } else {
753 flags = BTRFS_BLOCK_GROUP_DATA;
754 }
755
756 space_info = __find_space_info(fs_info, flags);
757 ASSERT(space_info);
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
760 }
761
762 /*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767 {
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775 }
776
777 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
779 {
780 int ret;
781 struct btrfs_key key;
782 struct btrfs_path *path;
783
784 path = btrfs_alloc_path();
785 if (!path)
786 return -ENOMEM;
787
788 key.objectid = start;
789 key.offset = len;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 btrfs_free_path(path);
793 return ret;
794 }
795
796 /*
797 * helper function to lookup reference count and flags of a tree block.
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_fs_info *fs_info, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
826 metadata = 0;
827 }
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
837
838 search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
847 if (ret < 0)
848 goto out_free;
849
850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 if (path->slots[0]) {
852 path->slots[0]--;
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 path->slots[0]);
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == fs_info->nodesize)
858 ret = 0;
859 }
860 }
861
862 if (ret == 0) {
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
870 } else {
871 ret = -EINVAL;
872 btrfs_print_v0_err(fs_info);
873 if (trans)
874 btrfs_abort_transaction(trans, ret);
875 else
876 btrfs_handle_fs_error(fs_info, ret, NULL);
877
878 goto out_free;
879 }
880
881 BUG_ON(num_refs == 0);
882 } else {
883 num_refs = 0;
884 extent_flags = 0;
885 ret = 0;
886 }
887
888 if (!trans)
889 goto out;
890
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
894 if (head) {
895 if (!mutex_trylock(&head->mutex)) {
896 refcount_inc(&head->refs);
897 spin_unlock(&delayed_refs->lock);
898
899 btrfs_release_path(path);
900
901 /*
902 * Mutex was contended, block until it's released and try
903 * again
904 */
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
907 btrfs_put_delayed_ref_head(head);
908 goto search_again;
909 }
910 spin_lock(&head->lock);
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
913 else
914 BUG_ON(num_refs == 0);
915
916 num_refs += head->ref_mod;
917 spin_unlock(&head->lock);
918 mutex_unlock(&head->mutex);
919 }
920 spin_unlock(&delayed_refs->lock);
921 out:
922 WARN_ON(num_refs == 0);
923 if (refs)
924 *refs = num_refs;
925 if (flags)
926 *flags = extent_flags;
927 out_free:
928 btrfs_free_path(path);
929 return ret;
930 }
931
932 /*
933 * Back reference rules. Back refs have three main goals:
934 *
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
938 *
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
941 *
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
945 *
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
956 *
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
963 *
964 * When a tree block is COWed through a tree, there are four cases:
965 *
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
968 *
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
973 *
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
983 *
984 * Back Reference Key composing:
985 *
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
989 * of back refs.
990 *
991 * File extents can be referenced by:
992 *
993 * - multiple snapshots, subvolumes, or different generations in one subvol
994 * - different files inside a single subvolume
995 * - different offsets inside a file (bookend extents in file.c)
996 *
997 * The extent ref structure for the implicit back refs has fields for:
998 *
999 * - Objectid of the subvolume root
1000 * - objectid of the file holding the reference
1001 * - original offset in the file
1002 * - how many bookend extents
1003 *
1004 * The key offset for the implicit back refs is hash of the first
1005 * three fields.
1006 *
1007 * The extent ref structure for the full back refs has field for:
1008 *
1009 * - number of pointers in the tree leaf
1010 *
1011 * The key offset for the implicit back refs is the first byte of
1012 * the tree leaf
1013 *
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
1016 *
1017 * (root_key.objectid, inode objectid, offset in file, 1)
1018 *
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
1021 *
1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1023 *
1024 * Btree extents can be referenced by:
1025 *
1026 * - Different subvolumes
1027 *
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
1032 *
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
1036 */
1037
1038 /*
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1046 {
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1049
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1056 return type;
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1059 /*
1060 * Every shared one has parent tree
1061 * block, which must be aligned to
1062 * nodesize.
1063 */
1064 if (offset &&
1065 IS_ALIGNED(offset, eb->fs_info->nodesize))
1066 return type;
1067 }
1068 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1069 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1070 return type;
1071 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 ASSERT(eb->fs_info);
1073 /*
1074 * Every shared one has parent tree
1075 * block, which must be aligned to
1076 * nodesize.
1077 */
1078 if (offset &&
1079 IS_ALIGNED(offset, eb->fs_info->nodesize))
1080 return type;
1081 }
1082 } else {
1083 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1084 return type;
1085 }
1086 }
1087
1088 btrfs_print_leaf((struct extent_buffer *)eb);
1089 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1090 eb->start, type);
1091 WARN_ON(1);
1092
1093 return BTRFS_REF_TYPE_INVALID;
1094 }
1095
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)1096 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 u32 high_crc = ~(u32)0;
1099 u32 low_crc = ~(u32)0;
1100 __le64 lenum;
1101
1102 lenum = cpu_to_le64(root_objectid);
1103 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1104 lenum = cpu_to_le64(owner);
1105 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1106 lenum = cpu_to_le64(offset);
1107 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1108
1109 return ((u64)high_crc << 31) ^ (u64)low_crc;
1110 }
1111
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)1112 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 struct btrfs_extent_data_ref *ref)
1114 {
1115 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 btrfs_extent_data_ref_objectid(leaf, ref),
1117 btrfs_extent_data_ref_offset(leaf, ref));
1118 }
1119
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)1120 static int match_extent_data_ref(struct extent_buffer *leaf,
1121 struct btrfs_extent_data_ref *ref,
1122 u64 root_objectid, u64 owner, u64 offset)
1123 {
1124 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1127 return 0;
1128 return 1;
1129 }
1130
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)1131 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1132 struct btrfs_path *path,
1133 u64 bytenr, u64 parent,
1134 u64 root_objectid,
1135 u64 owner, u64 offset)
1136 {
1137 struct btrfs_root *root = trans->fs_info->extent_root;
1138 struct btrfs_key key;
1139 struct btrfs_extent_data_ref *ref;
1140 struct extent_buffer *leaf;
1141 u32 nritems;
1142 int ret;
1143 int recow;
1144 int err = -ENOENT;
1145
1146 key.objectid = bytenr;
1147 if (parent) {
1148 key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 key.offset = parent;
1150 } else {
1151 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 key.offset = hash_extent_data_ref(root_objectid,
1153 owner, offset);
1154 }
1155 again:
1156 recow = 0;
1157 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1158 if (ret < 0) {
1159 err = ret;
1160 goto fail;
1161 }
1162
1163 if (parent) {
1164 if (!ret)
1165 return 0;
1166 goto fail;
1167 }
1168
1169 leaf = path->nodes[0];
1170 nritems = btrfs_header_nritems(leaf);
1171 while (1) {
1172 if (path->slots[0] >= nritems) {
1173 ret = btrfs_next_leaf(root, path);
1174 if (ret < 0)
1175 err = ret;
1176 if (ret)
1177 goto fail;
1178
1179 leaf = path->nodes[0];
1180 nritems = btrfs_header_nritems(leaf);
1181 recow = 1;
1182 }
1183
1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 if (key.objectid != bytenr ||
1186 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1187 goto fail;
1188
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_extent_data_ref);
1191
1192 if (match_extent_data_ref(leaf, ref, root_objectid,
1193 owner, offset)) {
1194 if (recow) {
1195 btrfs_release_path(path);
1196 goto again;
1197 }
1198 err = 0;
1199 break;
1200 }
1201 path->slots[0]++;
1202 }
1203 fail:
1204 return err;
1205 }
1206
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1207 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1208 struct btrfs_path *path,
1209 u64 bytenr, u64 parent,
1210 u64 root_objectid, u64 owner,
1211 u64 offset, int refs_to_add)
1212 {
1213 struct btrfs_root *root = trans->fs_info->extent_root;
1214 struct btrfs_key key;
1215 struct extent_buffer *leaf;
1216 u32 size;
1217 u32 num_refs;
1218 int ret;
1219
1220 key.objectid = bytenr;
1221 if (parent) {
1222 key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 key.offset = parent;
1224 size = sizeof(struct btrfs_shared_data_ref);
1225 } else {
1226 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 key.offset = hash_extent_data_ref(root_objectid,
1228 owner, offset);
1229 size = sizeof(struct btrfs_extent_data_ref);
1230 }
1231
1232 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 if (ret && ret != -EEXIST)
1234 goto fail;
1235
1236 leaf = path->nodes[0];
1237 if (parent) {
1238 struct btrfs_shared_data_ref *ref;
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_shared_data_ref);
1241 if (ret == 0) {
1242 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1243 } else {
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 num_refs += refs_to_add;
1246 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1247 }
1248 } else {
1249 struct btrfs_extent_data_ref *ref;
1250 while (ret == -EEXIST) {
1251 ref = btrfs_item_ptr(leaf, path->slots[0],
1252 struct btrfs_extent_data_ref);
1253 if (match_extent_data_ref(leaf, ref, root_objectid,
1254 owner, offset))
1255 break;
1256 btrfs_release_path(path);
1257 key.offset++;
1258 ret = btrfs_insert_empty_item(trans, root, path, &key,
1259 size);
1260 if (ret && ret != -EEXIST)
1261 goto fail;
1262
1263 leaf = path->nodes[0];
1264 }
1265 ref = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_data_ref);
1267 if (ret == 0) {
1268 btrfs_set_extent_data_ref_root(leaf, ref,
1269 root_objectid);
1270 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1273 } else {
1274 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 num_refs += refs_to_add;
1276 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1277 }
1278 }
1279 btrfs_mark_buffer_dirty(leaf);
1280 ret = 0;
1281 fail:
1282 btrfs_release_path(path);
1283 return ret;
1284 }
1285
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,int refs_to_drop,int * last_ref)1286 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1287 struct btrfs_path *path,
1288 int refs_to_drop, int *last_ref)
1289 {
1290 struct btrfs_key key;
1291 struct btrfs_extent_data_ref *ref1 = NULL;
1292 struct btrfs_shared_data_ref *ref2 = NULL;
1293 struct extent_buffer *leaf;
1294 u32 num_refs = 0;
1295 int ret = 0;
1296
1297 leaf = path->nodes[0];
1298 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1299
1300 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1309 btrfs_print_v0_err(trans->fs_info);
1310 btrfs_abort_transaction(trans, -EINVAL);
1311 return -EINVAL;
1312 } else {
1313 BUG();
1314 }
1315
1316 BUG_ON(num_refs < refs_to_drop);
1317 num_refs -= refs_to_drop;
1318
1319 if (num_refs == 0) {
1320 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1321 *last_ref = 1;
1322 } else {
1323 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1327 btrfs_mark_buffer_dirty(leaf);
1328 }
1329 return ret;
1330 }
1331
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)1332 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1333 struct btrfs_extent_inline_ref *iref)
1334 {
1335 struct btrfs_key key;
1336 struct extent_buffer *leaf;
1337 struct btrfs_extent_data_ref *ref1;
1338 struct btrfs_shared_data_ref *ref2;
1339 u32 num_refs = 0;
1340 int type;
1341
1342 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344
1345 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1346 if (iref) {
1347 /*
1348 * If type is invalid, we should have bailed out earlier than
1349 * this call.
1350 */
1351 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1354 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 } else {
1357 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 }
1360 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_extent_data_ref);
1363 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1367 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1368 } else {
1369 WARN_ON(1);
1370 }
1371 return num_refs;
1372 }
1373
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1374 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1375 struct btrfs_path *path,
1376 u64 bytenr, u64 parent,
1377 u64 root_objectid)
1378 {
1379 struct btrfs_root *root = trans->fs_info->extent_root;
1380 struct btrfs_key key;
1381 int ret;
1382
1383 key.objectid = bytenr;
1384 if (parent) {
1385 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 key.offset = parent;
1387 } else {
1388 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 key.offset = root_objectid;
1390 }
1391
1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 if (ret > 0)
1394 ret = -ENOENT;
1395 return ret;
1396 }
1397
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1398 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1399 struct btrfs_path *path,
1400 u64 bytenr, u64 parent,
1401 u64 root_objectid)
1402 {
1403 struct btrfs_key key;
1404 int ret;
1405
1406 key.objectid = bytenr;
1407 if (parent) {
1408 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 key.offset = parent;
1410 } else {
1411 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 key.offset = root_objectid;
1413 }
1414
1415 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1416 path, &key, 0);
1417 btrfs_release_path(path);
1418 return ret;
1419 }
1420
extent_ref_type(u64 parent,u64 owner)1421 static inline int extent_ref_type(u64 parent, u64 owner)
1422 {
1423 int type;
1424 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 else
1428 type = BTRFS_TREE_BLOCK_REF_KEY;
1429 } else {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_DATA_REF_KEY;
1432 else
1433 type = BTRFS_EXTENT_DATA_REF_KEY;
1434 }
1435 return type;
1436 }
1437
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1438 static int find_next_key(struct btrfs_path *path, int level,
1439 struct btrfs_key *key)
1440
1441 {
1442 for (; level < BTRFS_MAX_LEVEL; level++) {
1443 if (!path->nodes[level])
1444 break;
1445 if (path->slots[level] + 1 >=
1446 btrfs_header_nritems(path->nodes[level]))
1447 continue;
1448 if (level == 0)
1449 btrfs_item_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 else
1452 btrfs_node_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1454 return 0;
1455 }
1456 return 1;
1457 }
1458
1459 /*
1460 * look for inline back ref. if back ref is found, *ref_ret is set
1461 * to the address of inline back ref, and 0 is returned.
1462 *
1463 * if back ref isn't found, *ref_ret is set to the address where it
1464 * should be inserted, and -ENOENT is returned.
1465 *
1466 * if insert is true and there are too many inline back refs, the path
1467 * points to the extent item, and -EAGAIN is returned.
1468 *
1469 * NOTE: inline back refs are ordered in the same way that back ref
1470 * items in the tree are ordered.
1471 */
1472 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)1473 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1474 struct btrfs_path *path,
1475 struct btrfs_extent_inline_ref **ref_ret,
1476 u64 bytenr, u64 num_bytes,
1477 u64 parent, u64 root_objectid,
1478 u64 owner, u64 offset, int insert)
1479 {
1480 struct btrfs_fs_info *fs_info = trans->fs_info;
1481 struct btrfs_root *root = fs_info->extent_root;
1482 struct btrfs_key key;
1483 struct extent_buffer *leaf;
1484 struct btrfs_extent_item *ei;
1485 struct btrfs_extent_inline_ref *iref;
1486 u64 flags;
1487 u64 item_size;
1488 unsigned long ptr;
1489 unsigned long end;
1490 int extra_size;
1491 int type;
1492 int want;
1493 int ret;
1494 int err = 0;
1495 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1496 int needed;
1497
1498 key.objectid = bytenr;
1499 key.type = BTRFS_EXTENT_ITEM_KEY;
1500 key.offset = num_bytes;
1501
1502 want = extent_ref_type(parent, owner);
1503 if (insert) {
1504 extra_size = btrfs_extent_inline_ref_size(want);
1505 path->keep_locks = 1;
1506 } else
1507 extra_size = -1;
1508
1509 /*
1510 * Owner is our level, so we can just add one to get the level for the
1511 * block we are interested in.
1512 */
1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 key.type = BTRFS_METADATA_ITEM_KEY;
1515 key.offset = owner;
1516 }
1517
1518 again:
1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1520 if (ret < 0) {
1521 err = ret;
1522 goto out;
1523 }
1524
1525 /*
1526 * We may be a newly converted file system which still has the old fat
1527 * extent entries for metadata, so try and see if we have one of those.
1528 */
1529 if (ret > 0 && skinny_metadata) {
1530 skinny_metadata = false;
1531 if (path->slots[0]) {
1532 path->slots[0]--;
1533 btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 path->slots[0]);
1535 if (key.objectid == bytenr &&
1536 key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 key.offset == num_bytes)
1538 ret = 0;
1539 }
1540 if (ret) {
1541 key.objectid = bytenr;
1542 key.type = BTRFS_EXTENT_ITEM_KEY;
1543 key.offset = num_bytes;
1544 btrfs_release_path(path);
1545 goto again;
1546 }
1547 }
1548
1549 if (ret && !insert) {
1550 err = -ENOENT;
1551 goto out;
1552 } else if (WARN_ON(ret)) {
1553 err = -EIO;
1554 goto out;
1555 }
1556
1557 leaf = path->nodes[0];
1558 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1559 if (unlikely(item_size < sizeof(*ei))) {
1560 err = -EINVAL;
1561 btrfs_print_v0_err(fs_info);
1562 btrfs_abort_transaction(trans, err);
1563 goto out;
1564 }
1565
1566 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 flags = btrfs_extent_flags(leaf, ei);
1568
1569 ptr = (unsigned long)(ei + 1);
1570 end = (unsigned long)ei + item_size;
1571
1572 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1573 ptr += sizeof(struct btrfs_tree_block_info);
1574 BUG_ON(ptr > end);
1575 }
1576
1577 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 needed = BTRFS_REF_TYPE_DATA;
1579 else
1580 needed = BTRFS_REF_TYPE_BLOCK;
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 if (type == BTRFS_REF_TYPE_INVALID) {
1591 err = -EUCLEAN;
1592 goto out;
1593 }
1594
1595 if (want < type)
1596 break;
1597 if (want > type) {
1598 ptr += btrfs_extent_inline_ref_size(type);
1599 continue;
1600 }
1601
1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 struct btrfs_extent_data_ref *dref;
1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 if (match_extent_data_ref(leaf, dref, root_objectid,
1606 owner, offset)) {
1607 err = 0;
1608 break;
1609 }
1610 if (hash_extent_data_ref_item(leaf, dref) <
1611 hash_extent_data_ref(root_objectid, owner, offset))
1612 break;
1613 } else {
1614 u64 ref_offset;
1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 if (parent > 0) {
1617 if (parent == ref_offset) {
1618 err = 0;
1619 break;
1620 }
1621 if (ref_offset < parent)
1622 break;
1623 } else {
1624 if (root_objectid == ref_offset) {
1625 err = 0;
1626 break;
1627 }
1628 if (ref_offset < root_objectid)
1629 break;
1630 }
1631 }
1632 ptr += btrfs_extent_inline_ref_size(type);
1633 }
1634 if (err == -ENOENT && insert) {
1635 if (item_size + extra_size >=
1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 err = -EAGAIN;
1638 goto out;
1639 }
1640 /*
1641 * To add new inline back ref, we have to make sure
1642 * there is no corresponding back ref item.
1643 * For simplicity, we just do not add new inline back
1644 * ref if there is any kind of item for this block
1645 */
1646 if (find_next_key(path, 0, &key) == 0 &&
1647 key.objectid == bytenr &&
1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1649 err = -EAGAIN;
1650 goto out;
1651 }
1652 }
1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654 out:
1655 if (insert) {
1656 path->keep_locks = 0;
1657 btrfs_unlock_up_safe(path, 1);
1658 }
1659 return err;
1660 }
1661
1662 /*
1663 * helper to add new inline back ref
1664 */
1665 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1666 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1667 struct btrfs_path *path,
1668 struct btrfs_extent_inline_ref *iref,
1669 u64 parent, u64 root_objectid,
1670 u64 owner, u64 offset, int refs_to_add,
1671 struct btrfs_delayed_extent_op *extent_op)
1672 {
1673 struct extent_buffer *leaf;
1674 struct btrfs_extent_item *ei;
1675 unsigned long ptr;
1676 unsigned long end;
1677 unsigned long item_offset;
1678 u64 refs;
1679 int size;
1680 int type;
1681
1682 leaf = path->nodes[0];
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 item_offset = (unsigned long)iref - (unsigned long)ei;
1685
1686 type = extent_ref_type(parent, owner);
1687 size = btrfs_extent_inline_ref_size(type);
1688
1689 btrfs_extend_item(fs_info, path, size);
1690
1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 refs = btrfs_extent_refs(leaf, ei);
1693 refs += refs_to_add;
1694 btrfs_set_extent_refs(leaf, ei, refs);
1695 if (extent_op)
1696 __run_delayed_extent_op(extent_op, leaf, ei);
1697
1698 ptr = (unsigned long)ei + item_offset;
1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 if (ptr < end - size)
1701 memmove_extent_buffer(leaf, ptr + size, ptr,
1702 end - size - ptr);
1703
1704 iref = (struct btrfs_extent_inline_ref *)ptr;
1705 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 struct btrfs_extent_data_ref *dref;
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 struct btrfs_shared_data_ref *sref;
1715 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 }
1723 btrfs_mark_buffer_dirty(leaf);
1724 }
1725
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1726 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1727 struct btrfs_path *path,
1728 struct btrfs_extent_inline_ref **ref_ret,
1729 u64 bytenr, u64 num_bytes, u64 parent,
1730 u64 root_objectid, u64 owner, u64 offset)
1731 {
1732 int ret;
1733
1734 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 num_bytes, parent, root_objectid,
1736 owner, offset, 0);
1737 if (ret != -ENOENT)
1738 return ret;
1739
1740 btrfs_release_path(path);
1741 *ref_ret = NULL;
1742
1743 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1744 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1745 root_objectid);
1746 } else {
1747 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 root_objectid, owner, offset);
1749 }
1750 return ret;
1751 }
1752
1753 /*
1754 * helper to update/remove inline back ref
1755 */
1756 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1757 void update_inline_extent_backref(struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 int refs_to_mod,
1760 struct btrfs_delayed_extent_op *extent_op,
1761 int *last_ref)
1762 {
1763 struct extent_buffer *leaf = path->nodes[0];
1764 struct btrfs_fs_info *fs_info = leaf->fs_info;
1765 struct btrfs_extent_item *ei;
1766 struct btrfs_extent_data_ref *dref = NULL;
1767 struct btrfs_shared_data_ref *sref = NULL;
1768 unsigned long ptr;
1769 unsigned long end;
1770 u32 item_size;
1771 int size;
1772 int type;
1773 u64 refs;
1774
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 refs += refs_to_mod;
1779 btrfs_set_extent_refs(leaf, ei, refs);
1780 if (extent_op)
1781 __run_delayed_extent_op(extent_op, leaf, ei);
1782
1783 /*
1784 * If type is invalid, we should have bailed out after
1785 * lookup_inline_extent_backref().
1786 */
1787 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 *last_ref = 1;
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1817 end - ptr - size);
1818 item_size -= size;
1819 btrfs_truncate_item(fs_info, path, item_size, 1);
1820 }
1821 btrfs_mark_buffer_dirty(leaf);
1822 }
1823
1824 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 num_bytes, parent, root_objectid,
1837 owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(path, iref, refs_to_add,
1841 extent_op, NULL);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_path *path,
1853 u64 bytenr, u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add)
1855 {
1856 int ret;
1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 BUG_ON(refs_to_add != 1);
1859 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1860 root_objectid);
1861 } else {
1862 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 root_objectid, owner, offset,
1864 refs_to_add);
1865 }
1866 return ret;
1867 }
1868
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1869 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
1872 int refs_to_drop, int is_data, int *last_ref)
1873 {
1874 int ret = 0;
1875
1876 BUG_ON(!is_data && refs_to_drop != 1);
1877 if (iref) {
1878 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1879 last_ref);
1880 } else if (is_data) {
1881 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1882 last_ref);
1883 } else {
1884 *last_ref = 1;
1885 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1886 }
1887 return ret;
1888 }
1889
1890 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1891 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 u64 *discarded_bytes)
1893 {
1894 int j, ret = 0;
1895 u64 bytes_left, end;
1896 u64 aligned_start = ALIGN(start, 1 << 9);
1897
1898 if (WARN_ON(start != aligned_start)) {
1899 len -= aligned_start - start;
1900 len = round_down(len, 1 << 9);
1901 start = aligned_start;
1902 }
1903
1904 *discarded_bytes = 0;
1905
1906 if (!len)
1907 return 0;
1908
1909 end = start + len;
1910 bytes_left = len;
1911
1912 /* Skip any superblocks on this device. */
1913 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 u64 sb_start = btrfs_sb_offset(j);
1915 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 u64 size = sb_start - start;
1917
1918 if (!in_range(sb_start, start, bytes_left) &&
1919 !in_range(sb_end, start, bytes_left) &&
1920 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1921 continue;
1922
1923 /*
1924 * Superblock spans beginning of range. Adjust start and
1925 * try again.
1926 */
1927 if (sb_start <= start) {
1928 start += sb_end - start;
1929 if (start > end) {
1930 bytes_left = 0;
1931 break;
1932 }
1933 bytes_left = end - start;
1934 continue;
1935 }
1936
1937 if (size) {
1938 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1939 GFP_NOFS, 0);
1940 if (!ret)
1941 *discarded_bytes += size;
1942 else if (ret != -EOPNOTSUPP)
1943 return ret;
1944 }
1945
1946 start = sb_end;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 }
1953
1954 if (bytes_left) {
1955 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1956 GFP_NOFS, 0);
1957 if (!ret)
1958 *discarded_bytes += bytes_left;
1959 }
1960 return ret;
1961 }
1962
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1963 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1964 u64 num_bytes, u64 *actual_bytes)
1965 {
1966 int ret;
1967 u64 discarded_bytes = 0;
1968 struct btrfs_bio *bbio = NULL;
1969
1970
1971 /*
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are discarding.
1974 */
1975 btrfs_bio_counter_inc_blocked(fs_info);
1976 /* Tell the block device(s) that the sectors can be discarded */
1977 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1978 &bbio, 0);
1979 /* Error condition is -ENOMEM */
1980 if (!ret) {
1981 struct btrfs_bio_stripe *stripe = bbio->stripes;
1982 int i;
1983
1984
1985 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1986 u64 bytes;
1987 struct request_queue *req_q;
1988
1989 if (!stripe->dev->bdev) {
1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1991 continue;
1992 }
1993 req_q = bdev_get_queue(stripe->dev->bdev);
1994 if (!blk_queue_discard(req_q))
1995 continue;
1996
1997 ret = btrfs_issue_discard(stripe->dev->bdev,
1998 stripe->physical,
1999 stripe->length,
2000 &bytes);
2001 if (!ret)
2002 discarded_bytes += bytes;
2003 else if (ret != -EOPNOTSUPP)
2004 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2005
2006 /*
2007 * Just in case we get back EOPNOTSUPP for some reason,
2008 * just ignore the return value so we don't screw up
2009 * people calling discard_extent.
2010 */
2011 ret = 0;
2012 }
2013 btrfs_put_bbio(bbio);
2014 }
2015 btrfs_bio_counter_dec(fs_info);
2016
2017 if (actual_bytes)
2018 *actual_bytes = discarded_bytes;
2019
2020
2021 if (ret == -EOPNOTSUPP)
2022 ret = 0;
2023 return ret;
2024 }
2025
2026 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)2027 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 u64 bytenr, u64 num_bytes, u64 parent,
2030 u64 root_objectid, u64 owner, u64 offset)
2031 {
2032 struct btrfs_fs_info *fs_info = root->fs_info;
2033 int old_ref_mod, new_ref_mod;
2034 int ret;
2035
2036 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2038
2039 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 owner, offset, BTRFS_ADD_DELAYED_REF);
2041
2042 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2043 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2044 num_bytes, parent,
2045 root_objectid, (int)owner,
2046 BTRFS_ADD_DELAYED_REF, NULL,
2047 &old_ref_mod, &new_ref_mod);
2048 } else {
2049 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2050 num_bytes, parent,
2051 root_objectid, owner, offset,
2052 0, BTRFS_ADD_DELAYED_REF,
2053 &old_ref_mod, &new_ref_mod);
2054 }
2055
2056 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2058
2059 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2060 }
2061
2062 return ret;
2063 }
2064
2065 /*
2066 * __btrfs_inc_extent_ref - insert backreference for a given extent
2067 *
2068 * @trans: Handle of transaction
2069 *
2070 * @node: The delayed ref node used to get the bytenr/length for
2071 * extent whose references are incremented.
2072 *
2073 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075 * bytenr of the parent block. Since new extents are always
2076 * created with indirect references, this will only be the case
2077 * when relocating a shared extent. In that case, root_objectid
2078 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2079 * be 0
2080 *
2081 * @root_objectid: The id of the root where this modification has originated,
2082 * this can be either one of the well-known metadata trees or
2083 * the subvolume id which references this extent.
2084 *
2085 * @owner: For data extents it is the inode number of the owning file.
2086 * For metadata extents this parameter holds the level in the
2087 * tree of the extent.
2088 *
2089 * @offset: For metadata extents the offset is ignored and is currently
2090 * always passed as 0. For data extents it is the fileoffset
2091 * this extent belongs to.
2092 *
2093 * @refs_to_add Number of references to add
2094 *
2095 * @extent_op Pointer to a structure, holding information necessary when
2096 * updating a tree block's flags
2097 *
2098 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)2099 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_delayed_ref_node *node,
2101 u64 parent, u64 root_objectid,
2102 u64 owner, u64 offset, int refs_to_add,
2103 struct btrfs_delayed_extent_op *extent_op)
2104 {
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
2108 struct btrfs_key key;
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
2111 u64 refs;
2112 int ret;
2113
2114 path = btrfs_alloc_path();
2115 if (!path)
2116 return -ENOMEM;
2117
2118 path->reada = READA_FORWARD;
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
2121 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 parent, root_objectid, owner,
2123 offset, refs_to_add, extent_op);
2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
2125 goto out;
2126
2127 /*
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2130 * normal backref.
2131 */
2132 leaf = path->nodes[0];
2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 if (extent_op)
2138 __run_delayed_extent_op(extent_op, leaf, item);
2139
2140 btrfs_mark_buffer_dirty(leaf);
2141 btrfs_release_path(path);
2142
2143 path->reada = READA_FORWARD;
2144 path->leave_spinning = 1;
2145 /* now insert the actual backref */
2146 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 owner, offset, refs_to_add);
2148 if (ret)
2149 btrfs_abort_transaction(trans, ret);
2150 out:
2151 btrfs_free_path(path);
2152 return ret;
2153 }
2154
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2155 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2156 struct btrfs_delayed_ref_node *node,
2157 struct btrfs_delayed_extent_op *extent_op,
2158 int insert_reserved)
2159 {
2160 int ret = 0;
2161 struct btrfs_delayed_data_ref *ref;
2162 struct btrfs_key ins;
2163 u64 parent = 0;
2164 u64 ref_root = 0;
2165 u64 flags = 0;
2166
2167 ins.objectid = node->bytenr;
2168 ins.offset = node->num_bytes;
2169 ins.type = BTRFS_EXTENT_ITEM_KEY;
2170
2171 ref = btrfs_delayed_node_to_data_ref(node);
2172 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2173
2174 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 parent = ref->parent;
2176 ref_root = ref->root;
2177
2178 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2179 if (extent_op)
2180 flags |= extent_op->flags_to_set;
2181 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 flags, ref->objectid,
2183 ref->offset, &ins,
2184 node->ref_mod);
2185 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2186 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 ref->objectid, ref->offset,
2188 node->ref_mod, extent_op);
2189 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2190 ret = __btrfs_free_extent(trans, node, parent,
2191 ref_root, ref->objectid,
2192 ref->offset, node->ref_mod,
2193 extent_op);
2194 } else {
2195 BUG();
2196 }
2197 return ret;
2198 }
2199
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)2200 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 struct extent_buffer *leaf,
2202 struct btrfs_extent_item *ei)
2203 {
2204 u64 flags = btrfs_extent_flags(leaf, ei);
2205 if (extent_op->update_flags) {
2206 flags |= extent_op->flags_to_set;
2207 btrfs_set_extent_flags(leaf, ei, flags);
2208 }
2209
2210 if (extent_op->update_key) {
2211 struct btrfs_tree_block_info *bi;
2212 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2215 }
2216 }
2217
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)2218 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2219 struct btrfs_delayed_ref_head *head,
2220 struct btrfs_delayed_extent_op *extent_op)
2221 {
2222 struct btrfs_fs_info *fs_info = trans->fs_info;
2223 struct btrfs_key key;
2224 struct btrfs_path *path;
2225 struct btrfs_extent_item *ei;
2226 struct extent_buffer *leaf;
2227 u32 item_size;
2228 int ret;
2229 int err = 0;
2230 int metadata = !extent_op->is_data;
2231
2232 if (trans->aborted)
2233 return 0;
2234
2235 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2236 metadata = 0;
2237
2238 path = btrfs_alloc_path();
2239 if (!path)
2240 return -ENOMEM;
2241
2242 key.objectid = head->bytenr;
2243
2244 if (metadata) {
2245 key.type = BTRFS_METADATA_ITEM_KEY;
2246 key.offset = extent_op->level;
2247 } else {
2248 key.type = BTRFS_EXTENT_ITEM_KEY;
2249 key.offset = head->num_bytes;
2250 }
2251
2252 again:
2253 path->reada = READA_FORWARD;
2254 path->leave_spinning = 1;
2255 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2256 if (ret < 0) {
2257 err = ret;
2258 goto out;
2259 }
2260 if (ret > 0) {
2261 if (metadata) {
2262 if (path->slots[0] > 0) {
2263 path->slots[0]--;
2264 btrfs_item_key_to_cpu(path->nodes[0], &key,
2265 path->slots[0]);
2266 if (key.objectid == head->bytenr &&
2267 key.type == BTRFS_EXTENT_ITEM_KEY &&
2268 key.offset == head->num_bytes)
2269 ret = 0;
2270 }
2271 if (ret > 0) {
2272 btrfs_release_path(path);
2273 metadata = 0;
2274
2275 key.objectid = head->bytenr;
2276 key.offset = head->num_bytes;
2277 key.type = BTRFS_EXTENT_ITEM_KEY;
2278 goto again;
2279 }
2280 } else {
2281 err = -EIO;
2282 goto out;
2283 }
2284 }
2285
2286 leaf = path->nodes[0];
2287 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2288
2289 if (unlikely(item_size < sizeof(*ei))) {
2290 err = -EINVAL;
2291 btrfs_print_v0_err(fs_info);
2292 btrfs_abort_transaction(trans, err);
2293 goto out;
2294 }
2295
2296 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 __run_delayed_extent_op(extent_op, leaf, ei);
2298
2299 btrfs_mark_buffer_dirty(leaf);
2300 out:
2301 btrfs_free_path(path);
2302 return err;
2303 }
2304
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2305 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2306 struct btrfs_delayed_ref_node *node,
2307 struct btrfs_delayed_extent_op *extent_op,
2308 int insert_reserved)
2309 {
2310 int ret = 0;
2311 struct btrfs_delayed_tree_ref *ref;
2312 u64 parent = 0;
2313 u64 ref_root = 0;
2314
2315 ref = btrfs_delayed_node_to_tree_ref(node);
2316 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2317
2318 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 parent = ref->parent;
2320 ref_root = ref->root;
2321
2322 if (node->ref_mod != 1) {
2323 btrfs_err(trans->fs_info,
2324 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 node->bytenr, node->ref_mod, node->action, ref_root,
2326 parent);
2327 return -EIO;
2328 }
2329 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2330 BUG_ON(!extent_op || !extent_op->update_flags);
2331 ret = alloc_reserved_tree_block(trans, node, extent_op);
2332 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2333 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 ref->level, 0, 1, extent_op);
2335 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2336 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2337 ref->level, 0, 1, extent_op);
2338 } else {
2339 BUG();
2340 }
2341 return ret;
2342 }
2343
2344 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2345 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2346 struct btrfs_delayed_ref_node *node,
2347 struct btrfs_delayed_extent_op *extent_op,
2348 int insert_reserved)
2349 {
2350 int ret = 0;
2351
2352 if (trans->aborted) {
2353 if (insert_reserved)
2354 btrfs_pin_extent(trans->fs_info, node->bytenr,
2355 node->num_bytes, 1);
2356 return 0;
2357 }
2358
2359 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2361 ret = run_delayed_tree_ref(trans, node, extent_op,
2362 insert_reserved);
2363 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 node->type == BTRFS_SHARED_DATA_REF_KEY)
2365 ret = run_delayed_data_ref(trans, node, extent_op,
2366 insert_reserved);
2367 else
2368 BUG();
2369 return ret;
2370 }
2371
2372 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)2373 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2374 {
2375 struct btrfs_delayed_ref_node *ref;
2376
2377 if (RB_EMPTY_ROOT(&head->ref_tree))
2378 return NULL;
2379
2380 /*
2381 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2382 * This is to prevent a ref count from going down to zero, which deletes
2383 * the extent item from the extent tree, when there still are references
2384 * to add, which would fail because they would not find the extent item.
2385 */
2386 if (!list_empty(&head->ref_add_list))
2387 return list_first_entry(&head->ref_add_list,
2388 struct btrfs_delayed_ref_node, add_list);
2389
2390 ref = rb_entry(rb_first(&head->ref_tree),
2391 struct btrfs_delayed_ref_node, ref_node);
2392 ASSERT(list_empty(&ref->add_list));
2393 return ref;
2394 }
2395
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)2396 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2397 struct btrfs_delayed_ref_head *head)
2398 {
2399 spin_lock(&delayed_refs->lock);
2400 head->processing = 0;
2401 delayed_refs->num_heads_ready++;
2402 spin_unlock(&delayed_refs->lock);
2403 btrfs_delayed_ref_unlock(head);
2404 }
2405
cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)2406 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2407 struct btrfs_delayed_ref_head *head)
2408 {
2409 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2410 int ret;
2411
2412 if (!extent_op)
2413 return 0;
2414 head->extent_op = NULL;
2415 if (head->must_insert_reserved) {
2416 btrfs_free_delayed_extent_op(extent_op);
2417 return 0;
2418 }
2419 spin_unlock(&head->lock);
2420 ret = run_delayed_extent_op(trans, head, extent_op);
2421 btrfs_free_delayed_extent_op(extent_op);
2422 return ret ? ret : 1;
2423 }
2424
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)2425 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2426 struct btrfs_delayed_ref_head *head)
2427 {
2428
2429 struct btrfs_fs_info *fs_info = trans->fs_info;
2430 struct btrfs_delayed_ref_root *delayed_refs;
2431 int ret;
2432
2433 delayed_refs = &trans->transaction->delayed_refs;
2434
2435 ret = cleanup_extent_op(trans, head);
2436 if (ret < 0) {
2437 unselect_delayed_ref_head(delayed_refs, head);
2438 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2439 return ret;
2440 } else if (ret) {
2441 return ret;
2442 }
2443
2444 /*
2445 * Need to drop our head ref lock and re-acquire the delayed ref lock
2446 * and then re-check to make sure nobody got added.
2447 */
2448 spin_unlock(&head->lock);
2449 spin_lock(&delayed_refs->lock);
2450 spin_lock(&head->lock);
2451 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2452 spin_unlock(&head->lock);
2453 spin_unlock(&delayed_refs->lock);
2454 return 1;
2455 }
2456 delayed_refs->num_heads--;
2457 rb_erase(&head->href_node, &delayed_refs->href_root);
2458 RB_CLEAR_NODE(&head->href_node);
2459 spin_unlock(&head->lock);
2460 spin_unlock(&delayed_refs->lock);
2461 atomic_dec(&delayed_refs->num_entries);
2462
2463 trace_run_delayed_ref_head(fs_info, head, 0);
2464
2465 if (head->total_ref_mod < 0) {
2466 struct btrfs_space_info *space_info;
2467 u64 flags;
2468
2469 if (head->is_data)
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 else
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2476 ASSERT(space_info);
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 -head->num_bytes,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2480
2481 if (head->is_data) {
2482 spin_lock(&delayed_refs->lock);
2483 delayed_refs->pending_csums -= head->num_bytes;
2484 spin_unlock(&delayed_refs->lock);
2485 }
2486 }
2487
2488 if (head->must_insert_reserved) {
2489 btrfs_pin_extent(fs_info, head->bytenr,
2490 head->num_bytes, 1);
2491 if (head->is_data) {
2492 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2493 head->num_bytes);
2494 }
2495 }
2496
2497 /* Also free its reserved qgroup space */
2498 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2499 head->qgroup_reserved);
2500 btrfs_delayed_ref_unlock(head);
2501 btrfs_put_delayed_ref_head(head);
2502 return 0;
2503 }
2504
2505 /*
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)2509 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2510 unsigned long nr)
2511 {
2512 struct btrfs_fs_info *fs_info = trans->fs_info;
2513 struct btrfs_delayed_ref_root *delayed_refs;
2514 struct btrfs_delayed_ref_node *ref;
2515 struct btrfs_delayed_ref_head *locked_ref = NULL;
2516 struct btrfs_delayed_extent_op *extent_op;
2517 ktime_t start = ktime_get();
2518 int ret;
2519 unsigned long count = 0;
2520 unsigned long actual_count = 0;
2521 int must_insert_reserved = 0;
2522
2523 delayed_refs = &trans->transaction->delayed_refs;
2524 while (1) {
2525 if (!locked_ref) {
2526 if (count >= nr)
2527 break;
2528
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref = btrfs_select_ref_head(trans);
2531 if (!locked_ref) {
2532 spin_unlock(&delayed_refs->lock);
2533 break;
2534 }
2535
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2539 spin_unlock(&delayed_refs->lock);
2540 /*
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2545 */
2546 if (ret == -EAGAIN) {
2547 locked_ref = NULL;
2548 count++;
2549 continue;
2550 }
2551 }
2552
2553 /*
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2558 * get a good ref.
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2564 */
2565 spin_lock(&locked_ref->lock);
2566 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2567
2568 ref = select_delayed_ref(locked_ref);
2569
2570 if (ref && ref->seq &&
2571 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2572 spin_unlock(&locked_ref->lock);
2573 unselect_delayed_ref_head(delayed_refs, locked_ref);
2574 locked_ref = NULL;
2575 cond_resched();
2576 count++;
2577 continue;
2578 }
2579
2580 /*
2581 * We're done processing refs in this ref_head, clean everything
2582 * up and move on to the next ref_head.
2583 */
2584 if (!ref) {
2585 ret = cleanup_ref_head(trans, locked_ref);
2586 if (ret > 0 ) {
2587 /* We dropped our lock, we need to loop. */
2588 ret = 0;
2589 continue;
2590 } else if (ret) {
2591 return ret;
2592 }
2593 locked_ref = NULL;
2594 count++;
2595 continue;
2596 }
2597
2598 actual_count++;
2599 ref->in_tree = 0;
2600 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2601 RB_CLEAR_NODE(&ref->ref_node);
2602 if (!list_empty(&ref->add_list))
2603 list_del(&ref->add_list);
2604 /*
2605 * When we play the delayed ref, also correct the ref_mod on
2606 * head
2607 */
2608 switch (ref->action) {
2609 case BTRFS_ADD_DELAYED_REF:
2610 case BTRFS_ADD_DELAYED_EXTENT:
2611 locked_ref->ref_mod -= ref->ref_mod;
2612 break;
2613 case BTRFS_DROP_DELAYED_REF:
2614 locked_ref->ref_mod += ref->ref_mod;
2615 break;
2616 default:
2617 WARN_ON(1);
2618 }
2619 atomic_dec(&delayed_refs->num_entries);
2620
2621 /*
2622 * Record the must-insert_reserved flag before we drop the spin
2623 * lock.
2624 */
2625 must_insert_reserved = locked_ref->must_insert_reserved;
2626 locked_ref->must_insert_reserved = 0;
2627
2628 extent_op = locked_ref->extent_op;
2629 locked_ref->extent_op = NULL;
2630 spin_unlock(&locked_ref->lock);
2631
2632 ret = run_one_delayed_ref(trans, ref, extent_op,
2633 must_insert_reserved);
2634
2635 btrfs_free_delayed_extent_op(extent_op);
2636 if (ret) {
2637 unselect_delayed_ref_head(delayed_refs, locked_ref);
2638 btrfs_put_delayed_ref(ref);
2639 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2640 ret);
2641 return ret;
2642 }
2643
2644 btrfs_put_delayed_ref(ref);
2645 count++;
2646 cond_resched();
2647 }
2648
2649 /*
2650 * We don't want to include ref heads since we can have empty ref heads
2651 * and those will drastically skew our runtime down since we just do
2652 * accounting, no actual extent tree updates.
2653 */
2654 if (actual_count > 0) {
2655 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2656 u64 avg;
2657
2658 /*
2659 * We weigh the current average higher than our current runtime
2660 * to avoid large swings in the average.
2661 */
2662 spin_lock(&delayed_refs->lock);
2663 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2664 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2665 spin_unlock(&delayed_refs->lock);
2666 }
2667 return 0;
2668 }
2669
2670 #ifdef SCRAMBLE_DELAYED_REFS
2671 /*
2672 * Normally delayed refs get processed in ascending bytenr order. This
2673 * correlates in most cases to the order added. To expose dependencies on this
2674 * order, we start to process the tree in the middle instead of the beginning
2675 */
find_middle(struct rb_root * root)2676 static u64 find_middle(struct rb_root *root)
2677 {
2678 struct rb_node *n = root->rb_node;
2679 struct btrfs_delayed_ref_node *entry;
2680 int alt = 1;
2681 u64 middle;
2682 u64 first = 0, last = 0;
2683
2684 n = rb_first(root);
2685 if (n) {
2686 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2687 first = entry->bytenr;
2688 }
2689 n = rb_last(root);
2690 if (n) {
2691 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2692 last = entry->bytenr;
2693 }
2694 n = root->rb_node;
2695
2696 while (n) {
2697 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2698 WARN_ON(!entry->in_tree);
2699
2700 middle = entry->bytenr;
2701
2702 if (alt)
2703 n = n->rb_left;
2704 else
2705 n = n->rb_right;
2706
2707 alt = 1 - alt;
2708 }
2709 return middle;
2710 }
2711 #endif
2712
heads_to_leaves(struct btrfs_fs_info * fs_info,u64 heads)2713 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2714 {
2715 u64 num_bytes;
2716
2717 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2718 sizeof(struct btrfs_extent_inline_ref));
2719 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2720 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2721
2722 /*
2723 * We don't ever fill up leaves all the way so multiply by 2 just to be
2724 * closer to what we're really going to want to use.
2725 */
2726 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2727 }
2728
2729 /*
2730 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2731 * would require to store the csums for that many bytes.
2732 */
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info * fs_info,u64 csum_bytes)2733 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2734 {
2735 u64 csum_size;
2736 u64 num_csums_per_leaf;
2737 u64 num_csums;
2738
2739 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2740 num_csums_per_leaf = div64_u64(csum_size,
2741 (u64)btrfs_super_csum_size(fs_info->super_copy));
2742 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2743 num_csums += num_csums_per_leaf - 1;
2744 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2745 return num_csums;
2746 }
2747
btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2748 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2749 struct btrfs_fs_info *fs_info)
2750 {
2751 struct btrfs_block_rsv *global_rsv;
2752 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2753 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2754 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2755 u64 num_bytes, num_dirty_bgs_bytes;
2756 int ret = 0;
2757
2758 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2759 num_heads = heads_to_leaves(fs_info, num_heads);
2760 if (num_heads > 1)
2761 num_bytes += (num_heads - 1) * fs_info->nodesize;
2762 num_bytes <<= 1;
2763 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2764 fs_info->nodesize;
2765 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2766 num_dirty_bgs);
2767 global_rsv = &fs_info->global_block_rsv;
2768
2769 /*
2770 * If we can't allocate any more chunks lets make sure we have _lots_ of
2771 * wiggle room since running delayed refs can create more delayed refs.
2772 */
2773 if (global_rsv->space_info->full) {
2774 num_dirty_bgs_bytes <<= 1;
2775 num_bytes <<= 1;
2776 }
2777
2778 spin_lock(&global_rsv->lock);
2779 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2780 ret = 1;
2781 spin_unlock(&global_rsv->lock);
2782 return ret;
2783 }
2784
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2785 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2786 struct btrfs_fs_info *fs_info)
2787 {
2788 u64 num_entries =
2789 atomic_read(&trans->transaction->delayed_refs.num_entries);
2790 u64 avg_runtime;
2791 u64 val;
2792
2793 smp_mb();
2794 avg_runtime = fs_info->avg_delayed_ref_runtime;
2795 val = num_entries * avg_runtime;
2796 if (val >= NSEC_PER_SEC)
2797 return 1;
2798 if (val >= NSEC_PER_SEC / 2)
2799 return 2;
2800
2801 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2802 }
2803
2804 struct async_delayed_refs {
2805 struct btrfs_root *root;
2806 u64 transid;
2807 int count;
2808 int error;
2809 int sync;
2810 struct completion wait;
2811 struct btrfs_work work;
2812 };
2813
2814 static inline struct async_delayed_refs *
to_async_delayed_refs(struct btrfs_work * work)2815 to_async_delayed_refs(struct btrfs_work *work)
2816 {
2817 return container_of(work, struct async_delayed_refs, work);
2818 }
2819
delayed_ref_async_start(struct btrfs_work * work)2820 static void delayed_ref_async_start(struct btrfs_work *work)
2821 {
2822 struct async_delayed_refs *async = to_async_delayed_refs(work);
2823 struct btrfs_trans_handle *trans;
2824 struct btrfs_fs_info *fs_info = async->root->fs_info;
2825 int ret;
2826
2827 /* if the commit is already started, we don't need to wait here */
2828 if (btrfs_transaction_blocked(fs_info))
2829 goto done;
2830
2831 trans = btrfs_join_transaction(async->root);
2832 if (IS_ERR(trans)) {
2833 async->error = PTR_ERR(trans);
2834 goto done;
2835 }
2836
2837 /*
2838 * trans->sync means that when we call end_transaction, we won't
2839 * wait on delayed refs
2840 */
2841 trans->sync = true;
2842
2843 /* Don't bother flushing if we got into a different transaction */
2844 if (trans->transid > async->transid)
2845 goto end;
2846
2847 ret = btrfs_run_delayed_refs(trans, async->count);
2848 if (ret)
2849 async->error = ret;
2850 end:
2851 ret = btrfs_end_transaction(trans);
2852 if (ret && !async->error)
2853 async->error = ret;
2854 done:
2855 if (async->sync)
2856 complete(&async->wait);
2857 else
2858 kfree(async);
2859 }
2860
btrfs_async_run_delayed_refs(struct btrfs_fs_info * fs_info,unsigned long count,u64 transid,int wait)2861 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2862 unsigned long count, u64 transid, int wait)
2863 {
2864 struct async_delayed_refs *async;
2865 int ret;
2866
2867 async = kmalloc(sizeof(*async), GFP_NOFS);
2868 if (!async)
2869 return -ENOMEM;
2870
2871 async->root = fs_info->tree_root;
2872 async->count = count;
2873 async->error = 0;
2874 async->transid = transid;
2875 if (wait)
2876 async->sync = 1;
2877 else
2878 async->sync = 0;
2879 init_completion(&async->wait);
2880
2881 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2882 delayed_ref_async_start, NULL, NULL);
2883
2884 btrfs_queue_work(fs_info->extent_workers, &async->work);
2885
2886 if (wait) {
2887 wait_for_completion(&async->wait);
2888 ret = async->error;
2889 kfree(async);
2890 return ret;
2891 }
2892 return 0;
2893 }
2894
2895 /*
2896 * this starts processing the delayed reference count updates and
2897 * extent insertions we have queued up so far. count can be
2898 * 0, which means to process everything in the tree at the start
2899 * of the run (but not newly added entries), or it can be some target
2900 * number you'd like to process.
2901 *
2902 * Returns 0 on success or if called with an aborted transaction
2903 * Returns <0 on error and aborts the transaction
2904 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2905 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2906 unsigned long count)
2907 {
2908 struct btrfs_fs_info *fs_info = trans->fs_info;
2909 struct rb_node *node;
2910 struct btrfs_delayed_ref_root *delayed_refs;
2911 struct btrfs_delayed_ref_head *head;
2912 int ret;
2913 int run_all = count == (unsigned long)-1;
2914 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2915
2916 /* We'll clean this up in btrfs_cleanup_transaction */
2917 if (trans->aborted)
2918 return 0;
2919
2920 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2921 return 0;
2922
2923 delayed_refs = &trans->transaction->delayed_refs;
2924 if (count == 0)
2925 count = atomic_read(&delayed_refs->num_entries) * 2;
2926
2927 again:
2928 #ifdef SCRAMBLE_DELAYED_REFS
2929 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2930 #endif
2931 trans->can_flush_pending_bgs = false;
2932 ret = __btrfs_run_delayed_refs(trans, count);
2933 if (ret < 0) {
2934 btrfs_abort_transaction(trans, ret);
2935 return ret;
2936 }
2937
2938 if (run_all) {
2939 if (!list_empty(&trans->new_bgs))
2940 btrfs_create_pending_block_groups(trans);
2941
2942 spin_lock(&delayed_refs->lock);
2943 node = rb_first(&delayed_refs->href_root);
2944 if (!node) {
2945 spin_unlock(&delayed_refs->lock);
2946 goto out;
2947 }
2948 head = rb_entry(node, struct btrfs_delayed_ref_head,
2949 href_node);
2950 refcount_inc(&head->refs);
2951 spin_unlock(&delayed_refs->lock);
2952
2953 /* Mutex was contended, block until it's released and retry. */
2954 mutex_lock(&head->mutex);
2955 mutex_unlock(&head->mutex);
2956
2957 btrfs_put_delayed_ref_head(head);
2958 cond_resched();
2959 goto again;
2960 }
2961 out:
2962 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2963 return 0;
2964 }
2965
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 flags,int level,int is_data)2966 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2967 struct btrfs_fs_info *fs_info,
2968 u64 bytenr, u64 num_bytes, u64 flags,
2969 int level, int is_data)
2970 {
2971 struct btrfs_delayed_extent_op *extent_op;
2972 int ret;
2973
2974 extent_op = btrfs_alloc_delayed_extent_op();
2975 if (!extent_op)
2976 return -ENOMEM;
2977
2978 extent_op->flags_to_set = flags;
2979 extent_op->update_flags = true;
2980 extent_op->update_key = false;
2981 extent_op->is_data = is_data ? true : false;
2982 extent_op->level = level;
2983
2984 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
2985 num_bytes, extent_op);
2986 if (ret)
2987 btrfs_free_delayed_extent_op(extent_op);
2988 return ret;
2989 }
2990
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2991 static noinline int check_delayed_ref(struct btrfs_root *root,
2992 struct btrfs_path *path,
2993 u64 objectid, u64 offset, u64 bytenr)
2994 {
2995 struct btrfs_delayed_ref_head *head;
2996 struct btrfs_delayed_ref_node *ref;
2997 struct btrfs_delayed_data_ref *data_ref;
2998 struct btrfs_delayed_ref_root *delayed_refs;
2999 struct btrfs_transaction *cur_trans;
3000 struct rb_node *node;
3001 int ret = 0;
3002
3003 spin_lock(&root->fs_info->trans_lock);
3004 cur_trans = root->fs_info->running_transaction;
3005 if (cur_trans)
3006 refcount_inc(&cur_trans->use_count);
3007 spin_unlock(&root->fs_info->trans_lock);
3008 if (!cur_trans)
3009 return 0;
3010
3011 delayed_refs = &cur_trans->delayed_refs;
3012 spin_lock(&delayed_refs->lock);
3013 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3014 if (!head) {
3015 spin_unlock(&delayed_refs->lock);
3016 btrfs_put_transaction(cur_trans);
3017 return 0;
3018 }
3019
3020 if (!mutex_trylock(&head->mutex)) {
3021 refcount_inc(&head->refs);
3022 spin_unlock(&delayed_refs->lock);
3023
3024 btrfs_release_path(path);
3025
3026 /*
3027 * Mutex was contended, block until it's released and let
3028 * caller try again
3029 */
3030 mutex_lock(&head->mutex);
3031 mutex_unlock(&head->mutex);
3032 btrfs_put_delayed_ref_head(head);
3033 btrfs_put_transaction(cur_trans);
3034 return -EAGAIN;
3035 }
3036 spin_unlock(&delayed_refs->lock);
3037
3038 spin_lock(&head->lock);
3039 /*
3040 * XXX: We should replace this with a proper search function in the
3041 * future.
3042 */
3043 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3044 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3045 /* If it's a shared ref we know a cross reference exists */
3046 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3047 ret = 1;
3048 break;
3049 }
3050
3051 data_ref = btrfs_delayed_node_to_data_ref(ref);
3052
3053 /*
3054 * If our ref doesn't match the one we're currently looking at
3055 * then we have a cross reference.
3056 */
3057 if (data_ref->root != root->root_key.objectid ||
3058 data_ref->objectid != objectid ||
3059 data_ref->offset != offset) {
3060 ret = 1;
3061 break;
3062 }
3063 }
3064 spin_unlock(&head->lock);
3065 mutex_unlock(&head->mutex);
3066 btrfs_put_transaction(cur_trans);
3067 return ret;
3068 }
3069
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3070 static noinline int check_committed_ref(struct btrfs_root *root,
3071 struct btrfs_path *path,
3072 u64 objectid, u64 offset, u64 bytenr)
3073 {
3074 struct btrfs_fs_info *fs_info = root->fs_info;
3075 struct btrfs_root *extent_root = fs_info->extent_root;
3076 struct extent_buffer *leaf;
3077 struct btrfs_extent_data_ref *ref;
3078 struct btrfs_extent_inline_ref *iref;
3079 struct btrfs_extent_item *ei;
3080 struct btrfs_key key;
3081 u32 item_size;
3082 int type;
3083 int ret;
3084
3085 key.objectid = bytenr;
3086 key.offset = (u64)-1;
3087 key.type = BTRFS_EXTENT_ITEM_KEY;
3088
3089 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3090 if (ret < 0)
3091 goto out;
3092 BUG_ON(ret == 0); /* Corruption */
3093
3094 ret = -ENOENT;
3095 if (path->slots[0] == 0)
3096 goto out;
3097
3098 path->slots[0]--;
3099 leaf = path->nodes[0];
3100 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3101
3102 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3103 goto out;
3104
3105 ret = 1;
3106 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3107 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3108
3109 if (item_size != sizeof(*ei) +
3110 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 goto out;
3112
3113 if (btrfs_extent_generation(leaf, ei) <=
3114 btrfs_root_last_snapshot(&root->root_item))
3115 goto out;
3116
3117 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3118
3119 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3120 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3121 goto out;
3122
3123 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3124 if (btrfs_extent_refs(leaf, ei) !=
3125 btrfs_extent_data_ref_count(leaf, ref) ||
3126 btrfs_extent_data_ref_root(leaf, ref) !=
3127 root->root_key.objectid ||
3128 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3129 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3130 goto out;
3131
3132 ret = 0;
3133 out:
3134 return ret;
3135 }
3136
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)3137 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3138 u64 bytenr)
3139 {
3140 struct btrfs_path *path;
3141 int ret;
3142 int ret2;
3143
3144 path = btrfs_alloc_path();
3145 if (!path)
3146 return -ENOMEM;
3147
3148 do {
3149 ret = check_committed_ref(root, path, objectid,
3150 offset, bytenr);
3151 if (ret && ret != -ENOENT)
3152 goto out;
3153
3154 ret2 = check_delayed_ref(root, path, objectid,
3155 offset, bytenr);
3156 } while (ret2 == -EAGAIN);
3157
3158 if (ret2 && ret2 != -ENOENT) {
3159 ret = ret2;
3160 goto out;
3161 }
3162
3163 if (ret != -ENOENT || ret2 != -ENOENT)
3164 ret = 0;
3165 out:
3166 btrfs_free_path(path);
3167 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168 WARN_ON(ret > 0);
3169 return ret;
3170 }
3171
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)3172 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 struct extent_buffer *buf,
3175 int full_backref, int inc)
3176 {
3177 struct btrfs_fs_info *fs_info = root->fs_info;
3178 u64 bytenr;
3179 u64 num_bytes;
3180 u64 parent;
3181 u64 ref_root;
3182 u32 nritems;
3183 struct btrfs_key key;
3184 struct btrfs_file_extent_item *fi;
3185 int i;
3186 int level;
3187 int ret = 0;
3188 int (*process_func)(struct btrfs_trans_handle *,
3189 struct btrfs_root *,
3190 u64, u64, u64, u64, u64, u64);
3191
3192
3193 if (btrfs_is_testing(fs_info))
3194 return 0;
3195
3196 ref_root = btrfs_header_owner(buf);
3197 nritems = btrfs_header_nritems(buf);
3198 level = btrfs_header_level(buf);
3199
3200 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3201 return 0;
3202
3203 if (inc)
3204 process_func = btrfs_inc_extent_ref;
3205 else
3206 process_func = btrfs_free_extent;
3207
3208 if (full_backref)
3209 parent = buf->start;
3210 else
3211 parent = 0;
3212
3213 for (i = 0; i < nritems; i++) {
3214 if (level == 0) {
3215 btrfs_item_key_to_cpu(buf, &key, i);
3216 if (key.type != BTRFS_EXTENT_DATA_KEY)
3217 continue;
3218 fi = btrfs_item_ptr(buf, i,
3219 struct btrfs_file_extent_item);
3220 if (btrfs_file_extent_type(buf, fi) ==
3221 BTRFS_FILE_EXTENT_INLINE)
3222 continue;
3223 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3224 if (bytenr == 0)
3225 continue;
3226
3227 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3228 key.offset -= btrfs_file_extent_offset(buf, fi);
3229 ret = process_func(trans, root, bytenr, num_bytes,
3230 parent, ref_root, key.objectid,
3231 key.offset);
3232 if (ret)
3233 goto fail;
3234 } else {
3235 bytenr = btrfs_node_blockptr(buf, i);
3236 num_bytes = fs_info->nodesize;
3237 ret = process_func(trans, root, bytenr, num_bytes,
3238 parent, ref_root, level - 1, 0);
3239 if (ret)
3240 goto fail;
3241 }
3242 }
3243 return 0;
3244 fail:
3245 return ret;
3246 }
3247
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3248 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3249 struct extent_buffer *buf, int full_backref)
3250 {
3251 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3252 }
3253
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3254 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3255 struct extent_buffer *buf, int full_backref)
3256 {
3257 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3258 }
3259
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_block_group_cache * cache)3260 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3261 struct btrfs_fs_info *fs_info,
3262 struct btrfs_path *path,
3263 struct btrfs_block_group_cache *cache)
3264 {
3265 int ret;
3266 struct btrfs_root *extent_root = fs_info->extent_root;
3267 unsigned long bi;
3268 struct extent_buffer *leaf;
3269
3270 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3271 if (ret) {
3272 if (ret > 0)
3273 ret = -ENOENT;
3274 goto fail;
3275 }
3276
3277 leaf = path->nodes[0];
3278 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3279 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3280 btrfs_mark_buffer_dirty(leaf);
3281 fail:
3282 btrfs_release_path(path);
3283 return ret;
3284
3285 }
3286
3287 static struct btrfs_block_group_cache *
next_block_group(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache)3288 next_block_group(struct btrfs_fs_info *fs_info,
3289 struct btrfs_block_group_cache *cache)
3290 {
3291 struct rb_node *node;
3292
3293 spin_lock(&fs_info->block_group_cache_lock);
3294
3295 /* If our block group was removed, we need a full search. */
3296 if (RB_EMPTY_NODE(&cache->cache_node)) {
3297 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3298
3299 spin_unlock(&fs_info->block_group_cache_lock);
3300 btrfs_put_block_group(cache);
3301 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3302 }
3303 node = rb_next(&cache->cache_node);
3304 btrfs_put_block_group(cache);
3305 if (node) {
3306 cache = rb_entry(node, struct btrfs_block_group_cache,
3307 cache_node);
3308 btrfs_get_block_group(cache);
3309 } else
3310 cache = NULL;
3311 spin_unlock(&fs_info->block_group_cache_lock);
3312 return cache;
3313 }
3314
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3315 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316 struct btrfs_trans_handle *trans,
3317 struct btrfs_path *path)
3318 {
3319 struct btrfs_fs_info *fs_info = block_group->fs_info;
3320 struct btrfs_root *root = fs_info->tree_root;
3321 struct inode *inode = NULL;
3322 struct extent_changeset *data_reserved = NULL;
3323 u64 alloc_hint = 0;
3324 int dcs = BTRFS_DC_ERROR;
3325 u64 num_pages = 0;
3326 int retries = 0;
3327 int ret = 0;
3328
3329 /*
3330 * If this block group is smaller than 100 megs don't bother caching the
3331 * block group.
3332 */
3333 if (block_group->key.offset < (100 * SZ_1M)) {
3334 spin_lock(&block_group->lock);
3335 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3336 spin_unlock(&block_group->lock);
3337 return 0;
3338 }
3339
3340 if (trans->aborted)
3341 return 0;
3342 again:
3343 inode = lookup_free_space_inode(fs_info, block_group, path);
3344 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3345 ret = PTR_ERR(inode);
3346 btrfs_release_path(path);
3347 goto out;
3348 }
3349
3350 if (IS_ERR(inode)) {
3351 BUG_ON(retries);
3352 retries++;
3353
3354 if (block_group->ro)
3355 goto out_free;
3356
3357 ret = create_free_space_inode(fs_info, trans, block_group,
3358 path);
3359 if (ret)
3360 goto out_free;
3361 goto again;
3362 }
3363
3364 /*
3365 * We want to set the generation to 0, that way if anything goes wrong
3366 * from here on out we know not to trust this cache when we load up next
3367 * time.
3368 */
3369 BTRFS_I(inode)->generation = 0;
3370 ret = btrfs_update_inode(trans, root, inode);
3371 if (ret) {
3372 /*
3373 * So theoretically we could recover from this, simply set the
3374 * super cache generation to 0 so we know to invalidate the
3375 * cache, but then we'd have to keep track of the block groups
3376 * that fail this way so we know we _have_ to reset this cache
3377 * before the next commit or risk reading stale cache. So to
3378 * limit our exposure to horrible edge cases lets just abort the
3379 * transaction, this only happens in really bad situations
3380 * anyway.
3381 */
3382 btrfs_abort_transaction(trans, ret);
3383 goto out_put;
3384 }
3385 WARN_ON(ret);
3386
3387 /* We've already setup this transaction, go ahead and exit */
3388 if (block_group->cache_generation == trans->transid &&
3389 i_size_read(inode)) {
3390 dcs = BTRFS_DC_SETUP;
3391 goto out_put;
3392 }
3393
3394 if (i_size_read(inode) > 0) {
3395 ret = btrfs_check_trunc_cache_free_space(fs_info,
3396 &fs_info->global_block_rsv);
3397 if (ret)
3398 goto out_put;
3399
3400 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3401 if (ret)
3402 goto out_put;
3403 }
3404
3405 spin_lock(&block_group->lock);
3406 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3407 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3408 /*
3409 * don't bother trying to write stuff out _if_
3410 * a) we're not cached,
3411 * b) we're with nospace_cache mount option,
3412 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3413 */
3414 dcs = BTRFS_DC_WRITTEN;
3415 spin_unlock(&block_group->lock);
3416 goto out_put;
3417 }
3418 spin_unlock(&block_group->lock);
3419
3420 /*
3421 * We hit an ENOSPC when setting up the cache in this transaction, just
3422 * skip doing the setup, we've already cleared the cache so we're safe.
3423 */
3424 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3425 ret = -ENOSPC;
3426 goto out_put;
3427 }
3428
3429 /*
3430 * Try to preallocate enough space based on how big the block group is.
3431 * Keep in mind this has to include any pinned space which could end up
3432 * taking up quite a bit since it's not folded into the other space
3433 * cache.
3434 */
3435 num_pages = div_u64(block_group->key.offset, SZ_256M);
3436 if (!num_pages)
3437 num_pages = 1;
3438
3439 num_pages *= 16;
3440 num_pages *= PAGE_SIZE;
3441
3442 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3443 if (ret)
3444 goto out_put;
3445
3446 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3447 num_pages, num_pages,
3448 &alloc_hint);
3449 /*
3450 * Our cache requires contiguous chunks so that we don't modify a bunch
3451 * of metadata or split extents when writing the cache out, which means
3452 * we can enospc if we are heavily fragmented in addition to just normal
3453 * out of space conditions. So if we hit this just skip setting up any
3454 * other block groups for this transaction, maybe we'll unpin enough
3455 * space the next time around.
3456 */
3457 if (!ret)
3458 dcs = BTRFS_DC_SETUP;
3459 else if (ret == -ENOSPC)
3460 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3461
3462 out_put:
3463 iput(inode);
3464 out_free:
3465 btrfs_release_path(path);
3466 out:
3467 spin_lock(&block_group->lock);
3468 if (!ret && dcs == BTRFS_DC_SETUP)
3469 block_group->cache_generation = trans->transid;
3470 block_group->disk_cache_state = dcs;
3471 spin_unlock(&block_group->lock);
3472
3473 extent_changeset_free(data_reserved);
3474 return ret;
3475 }
3476
btrfs_setup_space_cache(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3477 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3478 struct btrfs_fs_info *fs_info)
3479 {
3480 struct btrfs_block_group_cache *cache, *tmp;
3481 struct btrfs_transaction *cur_trans = trans->transaction;
3482 struct btrfs_path *path;
3483
3484 if (list_empty(&cur_trans->dirty_bgs) ||
3485 !btrfs_test_opt(fs_info, SPACE_CACHE))
3486 return 0;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3492 /* Could add new block groups, use _safe just in case */
3493 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3494 dirty_list) {
3495 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3496 cache_save_setup(cache, trans, path);
3497 }
3498
3499 btrfs_free_path(path);
3500 return 0;
3501 }
3502
3503 /*
3504 * transaction commit does final block group cache writeback during a
3505 * critical section where nothing is allowed to change the FS. This is
3506 * required in order for the cache to actually match the block group,
3507 * but can introduce a lot of latency into the commit.
3508 *
3509 * So, btrfs_start_dirty_block_groups is here to kick off block group
3510 * cache IO. There's a chance we'll have to redo some of it if the
3511 * block group changes again during the commit, but it greatly reduces
3512 * the commit latency by getting rid of the easy block groups while
3513 * we're still allowing others to join the commit.
3514 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3515 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3516 {
3517 struct btrfs_fs_info *fs_info = trans->fs_info;
3518 struct btrfs_block_group_cache *cache;
3519 struct btrfs_transaction *cur_trans = trans->transaction;
3520 int ret = 0;
3521 int should_put;
3522 struct btrfs_path *path = NULL;
3523 LIST_HEAD(dirty);
3524 struct list_head *io = &cur_trans->io_bgs;
3525 int num_started = 0;
3526 int loops = 0;
3527
3528 spin_lock(&cur_trans->dirty_bgs_lock);
3529 if (list_empty(&cur_trans->dirty_bgs)) {
3530 spin_unlock(&cur_trans->dirty_bgs_lock);
3531 return 0;
3532 }
3533 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3534 spin_unlock(&cur_trans->dirty_bgs_lock);
3535
3536 again:
3537 /*
3538 * make sure all the block groups on our dirty list actually
3539 * exist
3540 */
3541 btrfs_create_pending_block_groups(trans);
3542
3543 if (!path) {
3544 path = btrfs_alloc_path();
3545 if (!path)
3546 return -ENOMEM;
3547 }
3548
3549 /*
3550 * cache_write_mutex is here only to save us from balance or automatic
3551 * removal of empty block groups deleting this block group while we are
3552 * writing out the cache
3553 */
3554 mutex_lock(&trans->transaction->cache_write_mutex);
3555 while (!list_empty(&dirty)) {
3556 cache = list_first_entry(&dirty,
3557 struct btrfs_block_group_cache,
3558 dirty_list);
3559 /*
3560 * this can happen if something re-dirties a block
3561 * group that is already under IO. Just wait for it to
3562 * finish and then do it all again
3563 */
3564 if (!list_empty(&cache->io_list)) {
3565 list_del_init(&cache->io_list);
3566 btrfs_wait_cache_io(trans, cache, path);
3567 btrfs_put_block_group(cache);
3568 }
3569
3570
3571 /*
3572 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3573 * if it should update the cache_state. Don't delete
3574 * until after we wait.
3575 *
3576 * Since we're not running in the commit critical section
3577 * we need the dirty_bgs_lock to protect from update_block_group
3578 */
3579 spin_lock(&cur_trans->dirty_bgs_lock);
3580 list_del_init(&cache->dirty_list);
3581 spin_unlock(&cur_trans->dirty_bgs_lock);
3582
3583 should_put = 1;
3584
3585 cache_save_setup(cache, trans, path);
3586
3587 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3588 cache->io_ctl.inode = NULL;
3589 ret = btrfs_write_out_cache(fs_info, trans,
3590 cache, path);
3591 if (ret == 0 && cache->io_ctl.inode) {
3592 num_started++;
3593 should_put = 0;
3594
3595 /*
3596 * The cache_write_mutex is protecting the
3597 * io_list, also refer to the definition of
3598 * btrfs_transaction::io_bgs for more details
3599 */
3600 list_add_tail(&cache->io_list, io);
3601 } else {
3602 /*
3603 * if we failed to write the cache, the
3604 * generation will be bad and life goes on
3605 */
3606 ret = 0;
3607 }
3608 }
3609 if (!ret) {
3610 ret = write_one_cache_group(trans, fs_info,
3611 path, cache);
3612 /*
3613 * Our block group might still be attached to the list
3614 * of new block groups in the transaction handle of some
3615 * other task (struct btrfs_trans_handle->new_bgs). This
3616 * means its block group item isn't yet in the extent
3617 * tree. If this happens ignore the error, as we will
3618 * try again later in the critical section of the
3619 * transaction commit.
3620 */
3621 if (ret == -ENOENT) {
3622 ret = 0;
3623 spin_lock(&cur_trans->dirty_bgs_lock);
3624 if (list_empty(&cache->dirty_list)) {
3625 list_add_tail(&cache->dirty_list,
3626 &cur_trans->dirty_bgs);
3627 btrfs_get_block_group(cache);
3628 }
3629 spin_unlock(&cur_trans->dirty_bgs_lock);
3630 } else if (ret) {
3631 btrfs_abort_transaction(trans, ret);
3632 }
3633 }
3634
3635 /* if its not on the io list, we need to put the block group */
3636 if (should_put)
3637 btrfs_put_block_group(cache);
3638
3639 if (ret)
3640 break;
3641
3642 /*
3643 * Avoid blocking other tasks for too long. It might even save
3644 * us from writing caches for block groups that are going to be
3645 * removed.
3646 */
3647 mutex_unlock(&trans->transaction->cache_write_mutex);
3648 mutex_lock(&trans->transaction->cache_write_mutex);
3649 }
3650 mutex_unlock(&trans->transaction->cache_write_mutex);
3651
3652 /*
3653 * go through delayed refs for all the stuff we've just kicked off
3654 * and then loop back (just once)
3655 */
3656 ret = btrfs_run_delayed_refs(trans, 0);
3657 if (!ret && loops == 0) {
3658 loops++;
3659 spin_lock(&cur_trans->dirty_bgs_lock);
3660 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3661 /*
3662 * dirty_bgs_lock protects us from concurrent block group
3663 * deletes too (not just cache_write_mutex).
3664 */
3665 if (!list_empty(&dirty)) {
3666 spin_unlock(&cur_trans->dirty_bgs_lock);
3667 goto again;
3668 }
3669 spin_unlock(&cur_trans->dirty_bgs_lock);
3670 } else if (ret < 0) {
3671 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3672 }
3673
3674 btrfs_free_path(path);
3675 return ret;
3676 }
3677
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3678 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3679 struct btrfs_fs_info *fs_info)
3680 {
3681 struct btrfs_block_group_cache *cache;
3682 struct btrfs_transaction *cur_trans = trans->transaction;
3683 int ret = 0;
3684 int should_put;
3685 struct btrfs_path *path;
3686 struct list_head *io = &cur_trans->io_bgs;
3687 int num_started = 0;
3688
3689 path = btrfs_alloc_path();
3690 if (!path)
3691 return -ENOMEM;
3692
3693 /*
3694 * Even though we are in the critical section of the transaction commit,
3695 * we can still have concurrent tasks adding elements to this
3696 * transaction's list of dirty block groups. These tasks correspond to
3697 * endio free space workers started when writeback finishes for a
3698 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3699 * allocate new block groups as a result of COWing nodes of the root
3700 * tree when updating the free space inode. The writeback for the space
3701 * caches is triggered by an earlier call to
3702 * btrfs_start_dirty_block_groups() and iterations of the following
3703 * loop.
3704 * Also we want to do the cache_save_setup first and then run the
3705 * delayed refs to make sure we have the best chance at doing this all
3706 * in one shot.
3707 */
3708 spin_lock(&cur_trans->dirty_bgs_lock);
3709 while (!list_empty(&cur_trans->dirty_bgs)) {
3710 cache = list_first_entry(&cur_trans->dirty_bgs,
3711 struct btrfs_block_group_cache,
3712 dirty_list);
3713
3714 /*
3715 * this can happen if cache_save_setup re-dirties a block
3716 * group that is already under IO. Just wait for it to
3717 * finish and then do it all again
3718 */
3719 if (!list_empty(&cache->io_list)) {
3720 spin_unlock(&cur_trans->dirty_bgs_lock);
3721 list_del_init(&cache->io_list);
3722 btrfs_wait_cache_io(trans, cache, path);
3723 btrfs_put_block_group(cache);
3724 spin_lock(&cur_trans->dirty_bgs_lock);
3725 }
3726
3727 /*
3728 * don't remove from the dirty list until after we've waited
3729 * on any pending IO
3730 */
3731 list_del_init(&cache->dirty_list);
3732 spin_unlock(&cur_trans->dirty_bgs_lock);
3733 should_put = 1;
3734
3735 cache_save_setup(cache, trans, path);
3736
3737 if (!ret)
3738 ret = btrfs_run_delayed_refs(trans,
3739 (unsigned long) -1);
3740
3741 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3742 cache->io_ctl.inode = NULL;
3743 ret = btrfs_write_out_cache(fs_info, trans,
3744 cache, path);
3745 if (ret == 0 && cache->io_ctl.inode) {
3746 num_started++;
3747 should_put = 0;
3748 list_add_tail(&cache->io_list, io);
3749 } else {
3750 /*
3751 * if we failed to write the cache, the
3752 * generation will be bad and life goes on
3753 */
3754 ret = 0;
3755 }
3756 }
3757 if (!ret) {
3758 ret = write_one_cache_group(trans, fs_info,
3759 path, cache);
3760 /*
3761 * One of the free space endio workers might have
3762 * created a new block group while updating a free space
3763 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3764 * and hasn't released its transaction handle yet, in
3765 * which case the new block group is still attached to
3766 * its transaction handle and its creation has not
3767 * finished yet (no block group item in the extent tree
3768 * yet, etc). If this is the case, wait for all free
3769 * space endio workers to finish and retry. This is a
3770 * a very rare case so no need for a more efficient and
3771 * complex approach.
3772 */
3773 if (ret == -ENOENT) {
3774 wait_event(cur_trans->writer_wait,
3775 atomic_read(&cur_trans->num_writers) == 1);
3776 ret = write_one_cache_group(trans, fs_info,
3777 path, cache);
3778 }
3779 if (ret)
3780 btrfs_abort_transaction(trans, ret);
3781 }
3782
3783 /* if its not on the io list, we need to put the block group */
3784 if (should_put)
3785 btrfs_put_block_group(cache);
3786 spin_lock(&cur_trans->dirty_bgs_lock);
3787 }
3788 spin_unlock(&cur_trans->dirty_bgs_lock);
3789
3790 /*
3791 * Refer to the definition of io_bgs member for details why it's safe
3792 * to use it without any locking
3793 */
3794 while (!list_empty(io)) {
3795 cache = list_first_entry(io, struct btrfs_block_group_cache,
3796 io_list);
3797 list_del_init(&cache->io_list);
3798 btrfs_wait_cache_io(trans, cache, path);
3799 btrfs_put_block_group(cache);
3800 }
3801
3802 btrfs_free_path(path);
3803 return ret;
3804 }
3805
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)3806 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3807 {
3808 struct btrfs_block_group_cache *block_group;
3809 int readonly = 0;
3810
3811 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3812 if (!block_group || block_group->ro)
3813 readonly = 1;
3814 if (block_group)
3815 btrfs_put_block_group(block_group);
3816 return readonly;
3817 }
3818
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3819 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3820 {
3821 struct btrfs_block_group_cache *bg;
3822 bool ret = true;
3823
3824 bg = btrfs_lookup_block_group(fs_info, bytenr);
3825 if (!bg)
3826 return false;
3827
3828 spin_lock(&bg->lock);
3829 if (bg->ro)
3830 ret = false;
3831 else
3832 atomic_inc(&bg->nocow_writers);
3833 spin_unlock(&bg->lock);
3834
3835 /* no put on block group, done by btrfs_dec_nocow_writers */
3836 if (!ret)
3837 btrfs_put_block_group(bg);
3838
3839 return ret;
3840
3841 }
3842
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3843 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3844 {
3845 struct btrfs_block_group_cache *bg;
3846
3847 bg = btrfs_lookup_block_group(fs_info, bytenr);
3848 ASSERT(bg);
3849 if (atomic_dec_and_test(&bg->nocow_writers))
3850 wake_up_var(&bg->nocow_writers);
3851 /*
3852 * Once for our lookup and once for the lookup done by a previous call
3853 * to btrfs_inc_nocow_writers()
3854 */
3855 btrfs_put_block_group(bg);
3856 btrfs_put_block_group(bg);
3857 }
3858
btrfs_wait_nocow_writers(struct btrfs_block_group_cache * bg)3859 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3860 {
3861 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3862 }
3863
alloc_name(u64 flags)3864 static const char *alloc_name(u64 flags)
3865 {
3866 switch (flags) {
3867 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3868 return "mixed";
3869 case BTRFS_BLOCK_GROUP_METADATA:
3870 return "metadata";
3871 case BTRFS_BLOCK_GROUP_DATA:
3872 return "data";
3873 case BTRFS_BLOCK_GROUP_SYSTEM:
3874 return "system";
3875 default:
3876 WARN_ON(1);
3877 return "invalid-combination";
3878 };
3879 }
3880
create_space_info(struct btrfs_fs_info * info,u64 flags)3881 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3882 {
3883
3884 struct btrfs_space_info *space_info;
3885 int i;
3886 int ret;
3887
3888 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3889 if (!space_info)
3890 return -ENOMEM;
3891
3892 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3893 GFP_KERNEL);
3894 if (ret) {
3895 kfree(space_info);
3896 return ret;
3897 }
3898
3899 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3900 INIT_LIST_HEAD(&space_info->block_groups[i]);
3901 init_rwsem(&space_info->groups_sem);
3902 spin_lock_init(&space_info->lock);
3903 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3904 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3905 init_waitqueue_head(&space_info->wait);
3906 INIT_LIST_HEAD(&space_info->ro_bgs);
3907 INIT_LIST_HEAD(&space_info->tickets);
3908 INIT_LIST_HEAD(&space_info->priority_tickets);
3909
3910 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3911 info->space_info_kobj, "%s",
3912 alloc_name(space_info->flags));
3913 if (ret) {
3914 percpu_counter_destroy(&space_info->total_bytes_pinned);
3915 kfree(space_info);
3916 return ret;
3917 }
3918
3919 list_add_rcu(&space_info->list, &info->space_info);
3920 if (flags & BTRFS_BLOCK_GROUP_DATA)
3921 info->data_sinfo = space_info;
3922
3923 return ret;
3924 }
3925
update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,u64 bytes_readonly,struct btrfs_space_info ** space_info)3926 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3927 u64 total_bytes, u64 bytes_used,
3928 u64 bytes_readonly,
3929 struct btrfs_space_info **space_info)
3930 {
3931 struct btrfs_space_info *found;
3932 int factor;
3933
3934 factor = btrfs_bg_type_to_factor(flags);
3935
3936 found = __find_space_info(info, flags);
3937 ASSERT(found);
3938 spin_lock(&found->lock);
3939 found->total_bytes += total_bytes;
3940 found->disk_total += total_bytes * factor;
3941 found->bytes_used += bytes_used;
3942 found->disk_used += bytes_used * factor;
3943 found->bytes_readonly += bytes_readonly;
3944 if (total_bytes > 0)
3945 found->full = 0;
3946 space_info_add_new_bytes(info, found, total_bytes -
3947 bytes_used - bytes_readonly);
3948 spin_unlock(&found->lock);
3949 *space_info = found;
3950 }
3951
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)3952 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3953 {
3954 u64 extra_flags = chunk_to_extended(flags) &
3955 BTRFS_EXTENDED_PROFILE_MASK;
3956
3957 write_seqlock(&fs_info->profiles_lock);
3958 if (flags & BTRFS_BLOCK_GROUP_DATA)
3959 fs_info->avail_data_alloc_bits |= extra_flags;
3960 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3961 fs_info->avail_metadata_alloc_bits |= extra_flags;
3962 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3963 fs_info->avail_system_alloc_bits |= extra_flags;
3964 write_sequnlock(&fs_info->profiles_lock);
3965 }
3966
3967 /*
3968 * returns target flags in extended format or 0 if restripe for this
3969 * chunk_type is not in progress
3970 *
3971 * should be called with balance_lock held
3972 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)3973 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3974 {
3975 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3976 u64 target = 0;
3977
3978 if (!bctl)
3979 return 0;
3980
3981 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3982 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3983 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3984 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3985 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3986 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3987 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3988 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3989 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3990 }
3991
3992 return target;
3993 }
3994
3995 /*
3996 * @flags: available profiles in extended format (see ctree.h)
3997 *
3998 * Returns reduced profile in chunk format. If profile changing is in
3999 * progress (either running or paused) picks the target profile (if it's
4000 * already available), otherwise falls back to plain reducing.
4001 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)4002 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4003 {
4004 u64 num_devices = fs_info->fs_devices->rw_devices;
4005 u64 target;
4006 u64 raid_type;
4007 u64 allowed = 0;
4008
4009 /*
4010 * see if restripe for this chunk_type is in progress, if so
4011 * try to reduce to the target profile
4012 */
4013 spin_lock(&fs_info->balance_lock);
4014 target = get_restripe_target(fs_info, flags);
4015 if (target) {
4016 /* pick target profile only if it's already available */
4017 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4018 spin_unlock(&fs_info->balance_lock);
4019 return extended_to_chunk(target);
4020 }
4021 }
4022 spin_unlock(&fs_info->balance_lock);
4023
4024 /* First, mask out the RAID levels which aren't possible */
4025 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4026 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4027 allowed |= btrfs_raid_array[raid_type].bg_flag;
4028 }
4029 allowed &= flags;
4030
4031 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4032 allowed = BTRFS_BLOCK_GROUP_RAID6;
4033 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4034 allowed = BTRFS_BLOCK_GROUP_RAID5;
4035 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4036 allowed = BTRFS_BLOCK_GROUP_RAID10;
4037 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4038 allowed = BTRFS_BLOCK_GROUP_RAID1;
4039 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4040 allowed = BTRFS_BLOCK_GROUP_RAID0;
4041
4042 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4043
4044 return extended_to_chunk(flags | allowed);
4045 }
4046
get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)4047 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4048 {
4049 unsigned seq;
4050 u64 flags;
4051
4052 do {
4053 flags = orig_flags;
4054 seq = read_seqbegin(&fs_info->profiles_lock);
4055
4056 if (flags & BTRFS_BLOCK_GROUP_DATA)
4057 flags |= fs_info->avail_data_alloc_bits;
4058 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4059 flags |= fs_info->avail_system_alloc_bits;
4060 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4061 flags |= fs_info->avail_metadata_alloc_bits;
4062 } while (read_seqretry(&fs_info->profiles_lock, seq));
4063
4064 return btrfs_reduce_alloc_profile(fs_info, flags);
4065 }
4066
get_alloc_profile_by_root(struct btrfs_root * root,int data)4067 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4068 {
4069 struct btrfs_fs_info *fs_info = root->fs_info;
4070 u64 flags;
4071 u64 ret;
4072
4073 if (data)
4074 flags = BTRFS_BLOCK_GROUP_DATA;
4075 else if (root == fs_info->chunk_root)
4076 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4077 else
4078 flags = BTRFS_BLOCK_GROUP_METADATA;
4079
4080 ret = get_alloc_profile(fs_info, flags);
4081 return ret;
4082 }
4083
btrfs_data_alloc_profile(struct btrfs_fs_info * fs_info)4084 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4085 {
4086 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4087 }
4088
btrfs_metadata_alloc_profile(struct btrfs_fs_info * fs_info)4089 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4090 {
4091 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4092 }
4093
btrfs_system_alloc_profile(struct btrfs_fs_info * fs_info)4094 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4095 {
4096 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4097 }
4098
btrfs_space_info_used(struct btrfs_space_info * s_info,bool may_use_included)4099 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4100 bool may_use_included)
4101 {
4102 ASSERT(s_info);
4103 return s_info->bytes_used + s_info->bytes_reserved +
4104 s_info->bytes_pinned + s_info->bytes_readonly +
4105 (may_use_included ? s_info->bytes_may_use : 0);
4106 }
4107
btrfs_alloc_data_chunk_ondemand(struct btrfs_inode * inode,u64 bytes)4108 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4109 {
4110 struct btrfs_root *root = inode->root;
4111 struct btrfs_fs_info *fs_info = root->fs_info;
4112 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4113 u64 used;
4114 int ret = 0;
4115 int need_commit = 2;
4116 int have_pinned_space;
4117
4118 /* make sure bytes are sectorsize aligned */
4119 bytes = ALIGN(bytes, fs_info->sectorsize);
4120
4121 if (btrfs_is_free_space_inode(inode)) {
4122 need_commit = 0;
4123 ASSERT(current->journal_info);
4124 }
4125
4126 again:
4127 /* make sure we have enough space to handle the data first */
4128 spin_lock(&data_sinfo->lock);
4129 used = btrfs_space_info_used(data_sinfo, true);
4130
4131 if (used + bytes > data_sinfo->total_bytes) {
4132 struct btrfs_trans_handle *trans;
4133
4134 /*
4135 * if we don't have enough free bytes in this space then we need
4136 * to alloc a new chunk.
4137 */
4138 if (!data_sinfo->full) {
4139 u64 alloc_target;
4140
4141 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4142 spin_unlock(&data_sinfo->lock);
4143
4144 alloc_target = btrfs_data_alloc_profile(fs_info);
4145 /*
4146 * It is ugly that we don't call nolock join
4147 * transaction for the free space inode case here.
4148 * But it is safe because we only do the data space
4149 * reservation for the free space cache in the
4150 * transaction context, the common join transaction
4151 * just increase the counter of the current transaction
4152 * handler, doesn't try to acquire the trans_lock of
4153 * the fs.
4154 */
4155 trans = btrfs_join_transaction(root);
4156 if (IS_ERR(trans))
4157 return PTR_ERR(trans);
4158
4159 ret = do_chunk_alloc(trans, alloc_target,
4160 CHUNK_ALLOC_NO_FORCE);
4161 btrfs_end_transaction(trans);
4162 if (ret < 0) {
4163 if (ret != -ENOSPC)
4164 return ret;
4165 else {
4166 have_pinned_space = 1;
4167 goto commit_trans;
4168 }
4169 }
4170
4171 goto again;
4172 }
4173
4174 /*
4175 * If we don't have enough pinned space to deal with this
4176 * allocation, and no removed chunk in current transaction,
4177 * don't bother committing the transaction.
4178 */
4179 have_pinned_space = __percpu_counter_compare(
4180 &data_sinfo->total_bytes_pinned,
4181 used + bytes - data_sinfo->total_bytes,
4182 BTRFS_TOTAL_BYTES_PINNED_BATCH);
4183 spin_unlock(&data_sinfo->lock);
4184
4185 /* commit the current transaction and try again */
4186 commit_trans:
4187 if (need_commit) {
4188 need_commit--;
4189
4190 if (need_commit > 0) {
4191 btrfs_start_delalloc_roots(fs_info, -1);
4192 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4193 (u64)-1);
4194 }
4195
4196 trans = btrfs_join_transaction(root);
4197 if (IS_ERR(trans))
4198 return PTR_ERR(trans);
4199 if (have_pinned_space >= 0 ||
4200 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4201 &trans->transaction->flags) ||
4202 need_commit > 0) {
4203 ret = btrfs_commit_transaction(trans);
4204 if (ret)
4205 return ret;
4206 /*
4207 * The cleaner kthread might still be doing iput
4208 * operations. Wait for it to finish so that
4209 * more space is released.
4210 */
4211 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4212 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4213 goto again;
4214 } else {
4215 btrfs_end_transaction(trans);
4216 }
4217 }
4218
4219 trace_btrfs_space_reservation(fs_info,
4220 "space_info:enospc",
4221 data_sinfo->flags, bytes, 1);
4222 return -ENOSPC;
4223 }
4224 data_sinfo->bytes_may_use += bytes;
4225 trace_btrfs_space_reservation(fs_info, "space_info",
4226 data_sinfo->flags, bytes, 1);
4227 spin_unlock(&data_sinfo->lock);
4228
4229 return 0;
4230 }
4231
btrfs_check_data_free_space(struct inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)4232 int btrfs_check_data_free_space(struct inode *inode,
4233 struct extent_changeset **reserved, u64 start, u64 len)
4234 {
4235 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4236 int ret;
4237
4238 /* align the range */
4239 len = round_up(start + len, fs_info->sectorsize) -
4240 round_down(start, fs_info->sectorsize);
4241 start = round_down(start, fs_info->sectorsize);
4242
4243 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4244 if (ret < 0)
4245 return ret;
4246
4247 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4248 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4249 if (ret < 0)
4250 btrfs_free_reserved_data_space_noquota(inode, start, len);
4251 else
4252 ret = 0;
4253 return ret;
4254 }
4255
4256 /*
4257 * Called if we need to clear a data reservation for this inode
4258 * Normally in a error case.
4259 *
4260 * This one will *NOT* use accurate qgroup reserved space API, just for case
4261 * which we can't sleep and is sure it won't affect qgroup reserved space.
4262 * Like clear_bit_hook().
4263 */
btrfs_free_reserved_data_space_noquota(struct inode * inode,u64 start,u64 len)4264 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4265 u64 len)
4266 {
4267 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4268 struct btrfs_space_info *data_sinfo;
4269
4270 /* Make sure the range is aligned to sectorsize */
4271 len = round_up(start + len, fs_info->sectorsize) -
4272 round_down(start, fs_info->sectorsize);
4273 start = round_down(start, fs_info->sectorsize);
4274
4275 data_sinfo = fs_info->data_sinfo;
4276 spin_lock(&data_sinfo->lock);
4277 if (WARN_ON(data_sinfo->bytes_may_use < len))
4278 data_sinfo->bytes_may_use = 0;
4279 else
4280 data_sinfo->bytes_may_use -= len;
4281 trace_btrfs_space_reservation(fs_info, "space_info",
4282 data_sinfo->flags, len, 0);
4283 spin_unlock(&data_sinfo->lock);
4284 }
4285
4286 /*
4287 * Called if we need to clear a data reservation for this inode
4288 * Normally in a error case.
4289 *
4290 * This one will handle the per-inode data rsv map for accurate reserved
4291 * space framework.
4292 */
btrfs_free_reserved_data_space(struct inode * inode,struct extent_changeset * reserved,u64 start,u64 len)4293 void btrfs_free_reserved_data_space(struct inode *inode,
4294 struct extent_changeset *reserved, u64 start, u64 len)
4295 {
4296 struct btrfs_root *root = BTRFS_I(inode)->root;
4297
4298 /* Make sure the range is aligned to sectorsize */
4299 len = round_up(start + len, root->fs_info->sectorsize) -
4300 round_down(start, root->fs_info->sectorsize);
4301 start = round_down(start, root->fs_info->sectorsize);
4302
4303 btrfs_free_reserved_data_space_noquota(inode, start, len);
4304 btrfs_qgroup_free_data(inode, reserved, start, len);
4305 }
4306
force_metadata_allocation(struct btrfs_fs_info * info)4307 static void force_metadata_allocation(struct btrfs_fs_info *info)
4308 {
4309 struct list_head *head = &info->space_info;
4310 struct btrfs_space_info *found;
4311
4312 rcu_read_lock();
4313 list_for_each_entry_rcu(found, head, list) {
4314 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4315 found->force_alloc = CHUNK_ALLOC_FORCE;
4316 }
4317 rcu_read_unlock();
4318 }
4319
calc_global_rsv_need_space(struct btrfs_block_rsv * global)4320 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4321 {
4322 return (global->size << 1);
4323 }
4324
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)4325 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4326 struct btrfs_space_info *sinfo, int force)
4327 {
4328 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4329 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4330 u64 thresh;
4331
4332 if (force == CHUNK_ALLOC_FORCE)
4333 return 1;
4334
4335 /*
4336 * We need to take into account the global rsv because for all intents
4337 * and purposes it's used space. Don't worry about locking the
4338 * global_rsv, it doesn't change except when the transaction commits.
4339 */
4340 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4341 bytes_used += calc_global_rsv_need_space(global_rsv);
4342
4343 /*
4344 * in limited mode, we want to have some free space up to
4345 * about 1% of the FS size.
4346 */
4347 if (force == CHUNK_ALLOC_LIMITED) {
4348 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4349 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4350
4351 if (sinfo->total_bytes - bytes_used < thresh)
4352 return 1;
4353 }
4354
4355 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4356 return 0;
4357 return 1;
4358 }
4359
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)4360 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4361 {
4362 u64 num_dev;
4363
4364 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4365 BTRFS_BLOCK_GROUP_RAID0 |
4366 BTRFS_BLOCK_GROUP_RAID5 |
4367 BTRFS_BLOCK_GROUP_RAID6))
4368 num_dev = fs_info->fs_devices->rw_devices;
4369 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4370 num_dev = 2;
4371 else
4372 num_dev = 1; /* DUP or single */
4373
4374 return num_dev;
4375 }
4376
4377 /*
4378 * If @is_allocation is true, reserve space in the system space info necessary
4379 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4380 * removing a chunk.
4381 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4382 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4383 {
4384 struct btrfs_fs_info *fs_info = trans->fs_info;
4385 struct btrfs_space_info *info;
4386 u64 left;
4387 u64 thresh;
4388 int ret = 0;
4389 u64 num_devs;
4390
4391 /*
4392 * Needed because we can end up allocating a system chunk and for an
4393 * atomic and race free space reservation in the chunk block reserve.
4394 */
4395 lockdep_assert_held(&fs_info->chunk_mutex);
4396
4397 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4398 spin_lock(&info->lock);
4399 left = info->total_bytes - btrfs_space_info_used(info, true);
4400 spin_unlock(&info->lock);
4401
4402 num_devs = get_profile_num_devs(fs_info, type);
4403
4404 /* num_devs device items to update and 1 chunk item to add or remove */
4405 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4406 btrfs_calc_trans_metadata_size(fs_info, 1);
4407
4408 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4409 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4410 left, thresh, type);
4411 dump_space_info(fs_info, info, 0, 0);
4412 }
4413
4414 if (left < thresh) {
4415 u64 flags = btrfs_system_alloc_profile(fs_info);
4416
4417 /*
4418 * Ignore failure to create system chunk. We might end up not
4419 * needing it, as we might not need to COW all nodes/leafs from
4420 * the paths we visit in the chunk tree (they were already COWed
4421 * or created in the current transaction for example).
4422 */
4423 ret = btrfs_alloc_chunk(trans, flags);
4424 }
4425
4426 if (!ret) {
4427 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4428 &fs_info->chunk_block_rsv,
4429 thresh, BTRFS_RESERVE_NO_FLUSH);
4430 if (!ret)
4431 trans->chunk_bytes_reserved += thresh;
4432 }
4433 }
4434
4435 /*
4436 * If force is CHUNK_ALLOC_FORCE:
4437 * - return 1 if it successfully allocates a chunk,
4438 * - return errors including -ENOSPC otherwise.
4439 * If force is NOT CHUNK_ALLOC_FORCE:
4440 * - return 0 if it doesn't need to allocate a new chunk,
4441 * - return 1 if it successfully allocates a chunk,
4442 * - return errors including -ENOSPC otherwise.
4443 */
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,int force)4444 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4445 int force)
4446 {
4447 struct btrfs_fs_info *fs_info = trans->fs_info;
4448 struct btrfs_space_info *space_info;
4449 bool wait_for_alloc = false;
4450 bool should_alloc = false;
4451 int ret = 0;
4452
4453 /* Don't re-enter if we're already allocating a chunk */
4454 if (trans->allocating_chunk)
4455 return -ENOSPC;
4456
4457 space_info = __find_space_info(fs_info, flags);
4458 ASSERT(space_info);
4459
4460 do {
4461 spin_lock(&space_info->lock);
4462 if (force < space_info->force_alloc)
4463 force = space_info->force_alloc;
4464 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4465 if (space_info->full) {
4466 /* No more free physical space */
4467 if (should_alloc)
4468 ret = -ENOSPC;
4469 else
4470 ret = 0;
4471 spin_unlock(&space_info->lock);
4472 return ret;
4473 } else if (!should_alloc) {
4474 spin_unlock(&space_info->lock);
4475 return 0;
4476 } else if (space_info->chunk_alloc) {
4477 /*
4478 * Someone is already allocating, so we need to block
4479 * until this someone is finished and then loop to
4480 * recheck if we should continue with our allocation
4481 * attempt.
4482 */
4483 wait_for_alloc = true;
4484 spin_unlock(&space_info->lock);
4485 mutex_lock(&fs_info->chunk_mutex);
4486 mutex_unlock(&fs_info->chunk_mutex);
4487 } else {
4488 /* Proceed with allocation */
4489 space_info->chunk_alloc = 1;
4490 wait_for_alloc = false;
4491 spin_unlock(&space_info->lock);
4492 }
4493
4494 cond_resched();
4495 } while (wait_for_alloc);
4496
4497 mutex_lock(&fs_info->chunk_mutex);
4498 trans->allocating_chunk = true;
4499
4500 /*
4501 * If we have mixed data/metadata chunks we want to make sure we keep
4502 * allocating mixed chunks instead of individual chunks.
4503 */
4504 if (btrfs_mixed_space_info(space_info))
4505 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4506
4507 /*
4508 * if we're doing a data chunk, go ahead and make sure that
4509 * we keep a reasonable number of metadata chunks allocated in the
4510 * FS as well.
4511 */
4512 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4513 fs_info->data_chunk_allocations++;
4514 if (!(fs_info->data_chunk_allocations %
4515 fs_info->metadata_ratio))
4516 force_metadata_allocation(fs_info);
4517 }
4518
4519 /*
4520 * Check if we have enough space in SYSTEM chunk because we may need
4521 * to update devices.
4522 */
4523 check_system_chunk(trans, flags);
4524
4525 ret = btrfs_alloc_chunk(trans, flags);
4526 trans->allocating_chunk = false;
4527
4528 spin_lock(&space_info->lock);
4529 if (ret < 0) {
4530 if (ret == -ENOSPC)
4531 space_info->full = 1;
4532 else
4533 goto out;
4534 } else {
4535 ret = 1;
4536 }
4537
4538 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4539 out:
4540 space_info->chunk_alloc = 0;
4541 spin_unlock(&space_info->lock);
4542 mutex_unlock(&fs_info->chunk_mutex);
4543 /*
4544 * When we allocate a new chunk we reserve space in the chunk block
4545 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4546 * add new nodes/leafs to it if we end up needing to do it when
4547 * inserting the chunk item and updating device items as part of the
4548 * second phase of chunk allocation, performed by
4549 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4550 * large number of new block groups to create in our transaction
4551 * handle's new_bgs list to avoid exhausting the chunk block reserve
4552 * in extreme cases - like having a single transaction create many new
4553 * block groups when starting to write out the free space caches of all
4554 * the block groups that were made dirty during the lifetime of the
4555 * transaction.
4556 */
4557 if (trans->can_flush_pending_bgs &&
4558 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4559 btrfs_create_pending_block_groups(trans);
4560 btrfs_trans_release_chunk_metadata(trans);
4561 }
4562 return ret;
4563 }
4564
can_overcommit(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush,bool system_chunk)4565 static int can_overcommit(struct btrfs_fs_info *fs_info,
4566 struct btrfs_space_info *space_info, u64 bytes,
4567 enum btrfs_reserve_flush_enum flush,
4568 bool system_chunk)
4569 {
4570 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4571 u64 profile;
4572 u64 space_size;
4573 u64 avail;
4574 u64 used;
4575 int factor;
4576
4577 /* Don't overcommit when in mixed mode. */
4578 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4579 return 0;
4580
4581 if (system_chunk)
4582 profile = btrfs_system_alloc_profile(fs_info);
4583 else
4584 profile = btrfs_metadata_alloc_profile(fs_info);
4585
4586 used = btrfs_space_info_used(space_info, false);
4587
4588 /*
4589 * We only want to allow over committing if we have lots of actual space
4590 * free, but if we don't have enough space to handle the global reserve
4591 * space then we could end up having a real enospc problem when trying
4592 * to allocate a chunk or some other such important allocation.
4593 */
4594 spin_lock(&global_rsv->lock);
4595 space_size = calc_global_rsv_need_space(global_rsv);
4596 spin_unlock(&global_rsv->lock);
4597 if (used + space_size >= space_info->total_bytes)
4598 return 0;
4599
4600 used += space_info->bytes_may_use;
4601
4602 avail = atomic64_read(&fs_info->free_chunk_space);
4603
4604 /*
4605 * If we have dup, raid1 or raid10 then only half of the free
4606 * space is actually useable. For raid56, the space info used
4607 * doesn't include the parity drive, so we don't have to
4608 * change the math
4609 */
4610 factor = btrfs_bg_type_to_factor(profile);
4611 avail = div_u64(avail, factor);
4612
4613 /*
4614 * If we aren't flushing all things, let us overcommit up to
4615 * 1/2th of the space. If we can flush, don't let us overcommit
4616 * too much, let it overcommit up to 1/8 of the space.
4617 */
4618 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4619 avail >>= 3;
4620 else
4621 avail >>= 1;
4622
4623 if (used + bytes < space_info->total_bytes + avail)
4624 return 1;
4625 return 0;
4626 }
4627
btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info * fs_info,unsigned long nr_pages,int nr_items)4628 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4629 unsigned long nr_pages, int nr_items)
4630 {
4631 struct super_block *sb = fs_info->sb;
4632
4633 if (down_read_trylock(&sb->s_umount)) {
4634 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4635 up_read(&sb->s_umount);
4636 } else {
4637 /*
4638 * We needn't worry the filesystem going from r/w to r/o though
4639 * we don't acquire ->s_umount mutex, because the filesystem
4640 * should guarantee the delalloc inodes list be empty after
4641 * the filesystem is readonly(all dirty pages are written to
4642 * the disk).
4643 */
4644 btrfs_start_delalloc_roots(fs_info, nr_items);
4645 if (!current->journal_info)
4646 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4647 }
4648 }
4649
calc_reclaim_items_nr(struct btrfs_fs_info * fs_info,u64 to_reclaim)4650 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4651 u64 to_reclaim)
4652 {
4653 u64 bytes;
4654 u64 nr;
4655
4656 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4657 nr = div64_u64(to_reclaim, bytes);
4658 if (!nr)
4659 nr = 1;
4660 return nr;
4661 }
4662
4663 #define EXTENT_SIZE_PER_ITEM SZ_256K
4664
4665 /*
4666 * shrink metadata reservation for delalloc
4667 */
shrink_delalloc(struct btrfs_fs_info * fs_info,u64 to_reclaim,u64 orig,bool wait_ordered)4668 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4669 u64 orig, bool wait_ordered)
4670 {
4671 struct btrfs_space_info *space_info;
4672 struct btrfs_trans_handle *trans;
4673 u64 delalloc_bytes;
4674 u64 max_reclaim;
4675 u64 items;
4676 long time_left;
4677 unsigned long nr_pages;
4678 int loops;
4679
4680 /* Calc the number of the pages we need flush for space reservation */
4681 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4682 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4683
4684 trans = (struct btrfs_trans_handle *)current->journal_info;
4685 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4686
4687 delalloc_bytes = percpu_counter_sum_positive(
4688 &fs_info->delalloc_bytes);
4689 if (delalloc_bytes == 0) {
4690 if (trans)
4691 return;
4692 if (wait_ordered)
4693 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4694 return;
4695 }
4696
4697 loops = 0;
4698 while (delalloc_bytes && loops < 3) {
4699 max_reclaim = min(delalloc_bytes, to_reclaim);
4700 nr_pages = max_reclaim >> PAGE_SHIFT;
4701 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4702 /*
4703 * We need to wait for the async pages to actually start before
4704 * we do anything.
4705 */
4706 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4707 if (!max_reclaim)
4708 goto skip_async;
4709
4710 if (max_reclaim <= nr_pages)
4711 max_reclaim = 0;
4712 else
4713 max_reclaim -= nr_pages;
4714
4715 wait_event(fs_info->async_submit_wait,
4716 atomic_read(&fs_info->async_delalloc_pages) <=
4717 (int)max_reclaim);
4718 skip_async:
4719 spin_lock(&space_info->lock);
4720 if (list_empty(&space_info->tickets) &&
4721 list_empty(&space_info->priority_tickets)) {
4722 spin_unlock(&space_info->lock);
4723 break;
4724 }
4725 spin_unlock(&space_info->lock);
4726
4727 loops++;
4728 if (wait_ordered && !trans) {
4729 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4730 } else {
4731 time_left = schedule_timeout_killable(1);
4732 if (time_left)
4733 break;
4734 }
4735 delalloc_bytes = percpu_counter_sum_positive(
4736 &fs_info->delalloc_bytes);
4737 }
4738 }
4739
4740 struct reserve_ticket {
4741 u64 bytes;
4742 int error;
4743 struct list_head list;
4744 wait_queue_head_t wait;
4745 };
4746
4747 /**
4748 * maybe_commit_transaction - possibly commit the transaction if its ok to
4749 * @root - the root we're allocating for
4750 * @bytes - the number of bytes we want to reserve
4751 * @force - force the commit
4752 *
4753 * This will check to make sure that committing the transaction will actually
4754 * get us somewhere and then commit the transaction if it does. Otherwise it
4755 * will return -ENOSPC.
4756 */
may_commit_transaction(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)4757 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4758 struct btrfs_space_info *space_info)
4759 {
4760 struct reserve_ticket *ticket = NULL;
4761 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4762 struct btrfs_trans_handle *trans;
4763 u64 bytes;
4764
4765 trans = (struct btrfs_trans_handle *)current->journal_info;
4766 if (trans)
4767 return -EAGAIN;
4768
4769 spin_lock(&space_info->lock);
4770 if (!list_empty(&space_info->priority_tickets))
4771 ticket = list_first_entry(&space_info->priority_tickets,
4772 struct reserve_ticket, list);
4773 else if (!list_empty(&space_info->tickets))
4774 ticket = list_first_entry(&space_info->tickets,
4775 struct reserve_ticket, list);
4776 bytes = (ticket) ? ticket->bytes : 0;
4777 spin_unlock(&space_info->lock);
4778
4779 if (!bytes)
4780 return 0;
4781
4782 /* See if there is enough pinned space to make this reservation */
4783 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4784 bytes,
4785 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4786 goto commit;
4787
4788 /*
4789 * See if there is some space in the delayed insertion reservation for
4790 * this reservation.
4791 */
4792 if (space_info != delayed_rsv->space_info)
4793 return -ENOSPC;
4794
4795 spin_lock(&delayed_rsv->lock);
4796 if (delayed_rsv->size > bytes)
4797 bytes = 0;
4798 else
4799 bytes -= delayed_rsv->size;
4800 spin_unlock(&delayed_rsv->lock);
4801
4802 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4803 bytes,
4804 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4805 return -ENOSPC;
4806 }
4807
4808 commit:
4809 trans = btrfs_join_transaction(fs_info->extent_root);
4810 if (IS_ERR(trans))
4811 return -ENOSPC;
4812
4813 return btrfs_commit_transaction(trans);
4814 }
4815
4816 /*
4817 * Try to flush some data based on policy set by @state. This is only advisory
4818 * and may fail for various reasons. The caller is supposed to examine the
4819 * state of @space_info to detect the outcome.
4820 */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,int state)4821 static void flush_space(struct btrfs_fs_info *fs_info,
4822 struct btrfs_space_info *space_info, u64 num_bytes,
4823 int state)
4824 {
4825 struct btrfs_root *root = fs_info->extent_root;
4826 struct btrfs_trans_handle *trans;
4827 int nr;
4828 int ret = 0;
4829
4830 switch (state) {
4831 case FLUSH_DELAYED_ITEMS_NR:
4832 case FLUSH_DELAYED_ITEMS:
4833 if (state == FLUSH_DELAYED_ITEMS_NR)
4834 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4835 else
4836 nr = -1;
4837
4838 trans = btrfs_join_transaction(root);
4839 if (IS_ERR(trans)) {
4840 ret = PTR_ERR(trans);
4841 break;
4842 }
4843 ret = btrfs_run_delayed_items_nr(trans, nr);
4844 btrfs_end_transaction(trans);
4845 break;
4846 case FLUSH_DELALLOC:
4847 case FLUSH_DELALLOC_WAIT:
4848 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4849 state == FLUSH_DELALLOC_WAIT);
4850 break;
4851 case ALLOC_CHUNK:
4852 trans = btrfs_join_transaction(root);
4853 if (IS_ERR(trans)) {
4854 ret = PTR_ERR(trans);
4855 break;
4856 }
4857 ret = do_chunk_alloc(trans,
4858 btrfs_metadata_alloc_profile(fs_info),
4859 CHUNK_ALLOC_NO_FORCE);
4860 btrfs_end_transaction(trans);
4861 if (ret > 0 || ret == -ENOSPC)
4862 ret = 0;
4863 break;
4864 case COMMIT_TRANS:
4865 ret = may_commit_transaction(fs_info, space_info);
4866 break;
4867 default:
4868 ret = -ENOSPC;
4869 break;
4870 }
4871
4872 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4873 ret);
4874 return;
4875 }
4876
4877 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool system_chunk)4878 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4879 struct btrfs_space_info *space_info,
4880 bool system_chunk)
4881 {
4882 struct reserve_ticket *ticket;
4883 u64 used;
4884 u64 expected;
4885 u64 to_reclaim = 0;
4886
4887 list_for_each_entry(ticket, &space_info->tickets, list)
4888 to_reclaim += ticket->bytes;
4889 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4890 to_reclaim += ticket->bytes;
4891 if (to_reclaim)
4892 return to_reclaim;
4893
4894 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4895 if (can_overcommit(fs_info, space_info, to_reclaim,
4896 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4897 return 0;
4898
4899 used = btrfs_space_info_used(space_info, true);
4900
4901 if (can_overcommit(fs_info, space_info, SZ_1M,
4902 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4903 expected = div_factor_fine(space_info->total_bytes, 95);
4904 else
4905 expected = div_factor_fine(space_info->total_bytes, 90);
4906
4907 if (used > expected)
4908 to_reclaim = used - expected;
4909 else
4910 to_reclaim = 0;
4911 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4912 space_info->bytes_reserved);
4913 return to_reclaim;
4914 }
4915
need_do_async_reclaim(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 used,bool system_chunk)4916 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4917 struct btrfs_space_info *space_info,
4918 u64 used, bool system_chunk)
4919 {
4920 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4921
4922 /* If we're just plain full then async reclaim just slows us down. */
4923 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4924 return 0;
4925
4926 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4927 system_chunk))
4928 return 0;
4929
4930 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4931 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4932 }
4933
wake_all_tickets(struct list_head * head)4934 static void wake_all_tickets(struct list_head *head)
4935 {
4936 struct reserve_ticket *ticket;
4937
4938 while (!list_empty(head)) {
4939 ticket = list_first_entry(head, struct reserve_ticket, list);
4940 list_del_init(&ticket->list);
4941 ticket->error = -ENOSPC;
4942 wake_up(&ticket->wait);
4943 }
4944 }
4945
4946 /*
4947 * This is for normal flushers, we can wait all goddamned day if we want to. We
4948 * will loop and continuously try to flush as long as we are making progress.
4949 * We count progress as clearing off tickets each time we have to loop.
4950 */
btrfs_async_reclaim_metadata_space(struct work_struct * work)4951 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4952 {
4953 struct btrfs_fs_info *fs_info;
4954 struct btrfs_space_info *space_info;
4955 u64 to_reclaim;
4956 int flush_state;
4957 int commit_cycles = 0;
4958 u64 last_tickets_id;
4959
4960 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4961 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4962
4963 spin_lock(&space_info->lock);
4964 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4965 false);
4966 if (!to_reclaim) {
4967 space_info->flush = 0;
4968 spin_unlock(&space_info->lock);
4969 return;
4970 }
4971 last_tickets_id = space_info->tickets_id;
4972 spin_unlock(&space_info->lock);
4973
4974 flush_state = FLUSH_DELAYED_ITEMS_NR;
4975 do {
4976 flush_space(fs_info, space_info, to_reclaim, flush_state);
4977 spin_lock(&space_info->lock);
4978 if (list_empty(&space_info->tickets)) {
4979 space_info->flush = 0;
4980 spin_unlock(&space_info->lock);
4981 return;
4982 }
4983 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4984 space_info,
4985 false);
4986 if (last_tickets_id == space_info->tickets_id) {
4987 flush_state++;
4988 } else {
4989 last_tickets_id = space_info->tickets_id;
4990 flush_state = FLUSH_DELAYED_ITEMS_NR;
4991 if (commit_cycles)
4992 commit_cycles--;
4993 }
4994
4995 if (flush_state > COMMIT_TRANS) {
4996 commit_cycles++;
4997 if (commit_cycles > 2) {
4998 wake_all_tickets(&space_info->tickets);
4999 space_info->flush = 0;
5000 } else {
5001 flush_state = FLUSH_DELAYED_ITEMS_NR;
5002 }
5003 }
5004 spin_unlock(&space_info->lock);
5005 } while (flush_state <= COMMIT_TRANS);
5006 }
5007
btrfs_init_async_reclaim_work(struct work_struct * work)5008 void btrfs_init_async_reclaim_work(struct work_struct *work)
5009 {
5010 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5011 }
5012
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)5013 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5014 struct btrfs_space_info *space_info,
5015 struct reserve_ticket *ticket)
5016 {
5017 u64 to_reclaim;
5018 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5019
5020 spin_lock(&space_info->lock);
5021 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5022 false);
5023 if (!to_reclaim) {
5024 spin_unlock(&space_info->lock);
5025 return;
5026 }
5027 spin_unlock(&space_info->lock);
5028
5029 do {
5030 flush_space(fs_info, space_info, to_reclaim, flush_state);
5031 flush_state++;
5032 spin_lock(&space_info->lock);
5033 if (ticket->bytes == 0) {
5034 spin_unlock(&space_info->lock);
5035 return;
5036 }
5037 spin_unlock(&space_info->lock);
5038
5039 /*
5040 * Priority flushers can't wait on delalloc without
5041 * deadlocking.
5042 */
5043 if (flush_state == FLUSH_DELALLOC ||
5044 flush_state == FLUSH_DELALLOC_WAIT)
5045 flush_state = ALLOC_CHUNK;
5046 } while (flush_state < COMMIT_TRANS);
5047 }
5048
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 orig_bytes)5049 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5050 struct btrfs_space_info *space_info,
5051 struct reserve_ticket *ticket, u64 orig_bytes)
5052
5053 {
5054 DEFINE_WAIT(wait);
5055 int ret = 0;
5056
5057 spin_lock(&space_info->lock);
5058 while (ticket->bytes > 0 && ticket->error == 0) {
5059 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5060 if (ret) {
5061 ret = -EINTR;
5062 break;
5063 }
5064 spin_unlock(&space_info->lock);
5065
5066 schedule();
5067
5068 finish_wait(&ticket->wait, &wait);
5069 spin_lock(&space_info->lock);
5070 }
5071 if (!ret)
5072 ret = ticket->error;
5073 if (!list_empty(&ticket->list))
5074 list_del_init(&ticket->list);
5075 if (ticket->bytes && ticket->bytes < orig_bytes) {
5076 u64 num_bytes = orig_bytes - ticket->bytes;
5077 space_info->bytes_may_use -= num_bytes;
5078 trace_btrfs_space_reservation(fs_info, "space_info",
5079 space_info->flags, num_bytes, 0);
5080 }
5081 spin_unlock(&space_info->lock);
5082
5083 return ret;
5084 }
5085
5086 /**
5087 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5088 * @root - the root we're allocating for
5089 * @space_info - the space info we want to allocate from
5090 * @orig_bytes - the number of bytes we want
5091 * @flush - whether or not we can flush to make our reservation
5092 *
5093 * This will reserve orig_bytes number of bytes from the space info associated
5094 * with the block_rsv. If there is not enough space it will make an attempt to
5095 * flush out space to make room. It will do this by flushing delalloc if
5096 * possible or committing the transaction. If flush is 0 then no attempts to
5097 * regain reservations will be made and this will fail if there is not enough
5098 * space already.
5099 */
__reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush,bool system_chunk)5100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5101 struct btrfs_space_info *space_info,
5102 u64 orig_bytes,
5103 enum btrfs_reserve_flush_enum flush,
5104 bool system_chunk)
5105 {
5106 struct reserve_ticket ticket;
5107 u64 used;
5108 int ret = 0;
5109
5110 ASSERT(orig_bytes);
5111 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5112
5113 spin_lock(&space_info->lock);
5114 ret = -ENOSPC;
5115 used = btrfs_space_info_used(space_info, true);
5116
5117 /*
5118 * If we have enough space then hooray, make our reservation and carry
5119 * on. If not see if we can overcommit, and if we can, hooray carry on.
5120 * If not things get more complicated.
5121 */
5122 if (used + orig_bytes <= space_info->total_bytes) {
5123 space_info->bytes_may_use += orig_bytes;
5124 trace_btrfs_space_reservation(fs_info, "space_info",
5125 space_info->flags, orig_bytes, 1);
5126 ret = 0;
5127 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5128 system_chunk)) {
5129 space_info->bytes_may_use += orig_bytes;
5130 trace_btrfs_space_reservation(fs_info, "space_info",
5131 space_info->flags, orig_bytes, 1);
5132 ret = 0;
5133 }
5134
5135 /*
5136 * If we couldn't make a reservation then setup our reservation ticket
5137 * and kick the async worker if it's not already running.
5138 *
5139 * If we are a priority flusher then we just need to add our ticket to
5140 * the list and we will do our own flushing further down.
5141 */
5142 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5143 ticket.bytes = orig_bytes;
5144 ticket.error = 0;
5145 init_waitqueue_head(&ticket.wait);
5146 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5147 list_add_tail(&ticket.list, &space_info->tickets);
5148 if (!space_info->flush) {
5149 space_info->flush = 1;
5150 trace_btrfs_trigger_flush(fs_info,
5151 space_info->flags,
5152 orig_bytes, flush,
5153 "enospc");
5154 queue_work(system_unbound_wq,
5155 &fs_info->async_reclaim_work);
5156 }
5157 } else {
5158 list_add_tail(&ticket.list,
5159 &space_info->priority_tickets);
5160 }
5161 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5162 used += orig_bytes;
5163 /*
5164 * We will do the space reservation dance during log replay,
5165 * which means we won't have fs_info->fs_root set, so don't do
5166 * the async reclaim as we will panic.
5167 */
5168 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5169 need_do_async_reclaim(fs_info, space_info,
5170 used, system_chunk) &&
5171 !work_busy(&fs_info->async_reclaim_work)) {
5172 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5173 orig_bytes, flush, "preempt");
5174 queue_work(system_unbound_wq,
5175 &fs_info->async_reclaim_work);
5176 }
5177 }
5178 spin_unlock(&space_info->lock);
5179 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5180 return ret;
5181
5182 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5183 return wait_reserve_ticket(fs_info, space_info, &ticket,
5184 orig_bytes);
5185
5186 ret = 0;
5187 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5188 spin_lock(&space_info->lock);
5189 if (ticket.bytes) {
5190 if (ticket.bytes < orig_bytes) {
5191 u64 num_bytes = orig_bytes - ticket.bytes;
5192 space_info->bytes_may_use -= num_bytes;
5193 trace_btrfs_space_reservation(fs_info, "space_info",
5194 space_info->flags,
5195 num_bytes, 0);
5196
5197 }
5198 list_del_init(&ticket.list);
5199 ret = -ENOSPC;
5200 }
5201 spin_unlock(&space_info->lock);
5202 ASSERT(list_empty(&ticket.list));
5203 return ret;
5204 }
5205
5206 /**
5207 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5208 * @root - the root we're allocating for
5209 * @block_rsv - the block_rsv we're allocating for
5210 * @orig_bytes - the number of bytes we want
5211 * @flush - whether or not we can flush to make our reservation
5212 *
5213 * This will reserve orgi_bytes number of bytes from the space info associated
5214 * with the block_rsv. If there is not enough space it will make an attempt to
5215 * flush out space to make room. It will do this by flushing delalloc if
5216 * possible or committing the transaction. If flush is 0 then no attempts to
5217 * regain reservations will be made and this will fail if there is not enough
5218 * space already.
5219 */
reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)5220 static int reserve_metadata_bytes(struct btrfs_root *root,
5221 struct btrfs_block_rsv *block_rsv,
5222 u64 orig_bytes,
5223 enum btrfs_reserve_flush_enum flush)
5224 {
5225 struct btrfs_fs_info *fs_info = root->fs_info;
5226 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5227 int ret;
5228 bool system_chunk = (root == fs_info->chunk_root);
5229
5230 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5231 orig_bytes, flush, system_chunk);
5232 if (ret == -ENOSPC &&
5233 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5234 if (block_rsv != global_rsv &&
5235 !block_rsv_use_bytes(global_rsv, orig_bytes))
5236 ret = 0;
5237 }
5238 if (ret == -ENOSPC) {
5239 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5240 block_rsv->space_info->flags,
5241 orig_bytes, 1);
5242
5243 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5244 dump_space_info(fs_info, block_rsv->space_info,
5245 orig_bytes, 0);
5246 }
5247 return ret;
5248 }
5249
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)5250 static struct btrfs_block_rsv *get_block_rsv(
5251 const struct btrfs_trans_handle *trans,
5252 const struct btrfs_root *root)
5253 {
5254 struct btrfs_fs_info *fs_info = root->fs_info;
5255 struct btrfs_block_rsv *block_rsv = NULL;
5256
5257 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5258 (root == fs_info->csum_root && trans->adding_csums) ||
5259 (root == fs_info->uuid_root))
5260 block_rsv = trans->block_rsv;
5261
5262 if (!block_rsv)
5263 block_rsv = root->block_rsv;
5264
5265 if (!block_rsv)
5266 block_rsv = &fs_info->empty_block_rsv;
5267
5268 return block_rsv;
5269 }
5270
block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)5271 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5272 u64 num_bytes)
5273 {
5274 int ret = -ENOSPC;
5275 spin_lock(&block_rsv->lock);
5276 if (block_rsv->reserved >= num_bytes) {
5277 block_rsv->reserved -= num_bytes;
5278 if (block_rsv->reserved < block_rsv->size)
5279 block_rsv->full = 0;
5280 ret = 0;
5281 }
5282 spin_unlock(&block_rsv->lock);
5283 return ret;
5284 }
5285
block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,int update_size)5286 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5287 u64 num_bytes, int update_size)
5288 {
5289 spin_lock(&block_rsv->lock);
5290 block_rsv->reserved += num_bytes;
5291 if (update_size)
5292 block_rsv->size += num_bytes;
5293 else if (block_rsv->reserved >= block_rsv->size)
5294 block_rsv->full = 1;
5295 spin_unlock(&block_rsv->lock);
5296 }
5297
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)5298 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5299 struct btrfs_block_rsv *dest, u64 num_bytes,
5300 int min_factor)
5301 {
5302 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5303 u64 min_bytes;
5304
5305 if (global_rsv->space_info != dest->space_info)
5306 return -ENOSPC;
5307
5308 spin_lock(&global_rsv->lock);
5309 min_bytes = div_factor(global_rsv->size, min_factor);
5310 if (global_rsv->reserved < min_bytes + num_bytes) {
5311 spin_unlock(&global_rsv->lock);
5312 return -ENOSPC;
5313 }
5314 global_rsv->reserved -= num_bytes;
5315 if (global_rsv->reserved < global_rsv->size)
5316 global_rsv->full = 0;
5317 spin_unlock(&global_rsv->lock);
5318
5319 block_rsv_add_bytes(dest, num_bytes, 1);
5320 return 0;
5321 }
5322
5323 /*
5324 * This is for space we already have accounted in space_info->bytes_may_use, so
5325 * basically when we're returning space from block_rsv's.
5326 */
space_info_add_old_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5327 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5328 struct btrfs_space_info *space_info,
5329 u64 num_bytes)
5330 {
5331 struct reserve_ticket *ticket;
5332 struct list_head *head;
5333 u64 used;
5334 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5335 bool check_overcommit = false;
5336
5337 spin_lock(&space_info->lock);
5338 head = &space_info->priority_tickets;
5339
5340 /*
5341 * If we are over our limit then we need to check and see if we can
5342 * overcommit, and if we can't then we just need to free up our space
5343 * and not satisfy any requests.
5344 */
5345 used = btrfs_space_info_used(space_info, true);
5346 if (used - num_bytes >= space_info->total_bytes)
5347 check_overcommit = true;
5348 again:
5349 while (!list_empty(head) && num_bytes) {
5350 ticket = list_first_entry(head, struct reserve_ticket,
5351 list);
5352 /*
5353 * We use 0 bytes because this space is already reserved, so
5354 * adding the ticket space would be a double count.
5355 */
5356 if (check_overcommit &&
5357 !can_overcommit(fs_info, space_info, 0, flush, false))
5358 break;
5359 if (num_bytes >= ticket->bytes) {
5360 list_del_init(&ticket->list);
5361 num_bytes -= ticket->bytes;
5362 ticket->bytes = 0;
5363 space_info->tickets_id++;
5364 wake_up(&ticket->wait);
5365 } else {
5366 ticket->bytes -= num_bytes;
5367 num_bytes = 0;
5368 }
5369 }
5370
5371 if (num_bytes && head == &space_info->priority_tickets) {
5372 head = &space_info->tickets;
5373 flush = BTRFS_RESERVE_FLUSH_ALL;
5374 goto again;
5375 }
5376 space_info->bytes_may_use -= num_bytes;
5377 trace_btrfs_space_reservation(fs_info, "space_info",
5378 space_info->flags, num_bytes, 0);
5379 spin_unlock(&space_info->lock);
5380 }
5381
5382 /*
5383 * This is for newly allocated space that isn't accounted in
5384 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5385 * we use this helper.
5386 */
space_info_add_new_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5387 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5388 struct btrfs_space_info *space_info,
5389 u64 num_bytes)
5390 {
5391 struct reserve_ticket *ticket;
5392 struct list_head *head = &space_info->priority_tickets;
5393
5394 again:
5395 while (!list_empty(head) && num_bytes) {
5396 ticket = list_first_entry(head, struct reserve_ticket,
5397 list);
5398 if (num_bytes >= ticket->bytes) {
5399 trace_btrfs_space_reservation(fs_info, "space_info",
5400 space_info->flags,
5401 ticket->bytes, 1);
5402 list_del_init(&ticket->list);
5403 num_bytes -= ticket->bytes;
5404 space_info->bytes_may_use += ticket->bytes;
5405 ticket->bytes = 0;
5406 space_info->tickets_id++;
5407 wake_up(&ticket->wait);
5408 } else {
5409 trace_btrfs_space_reservation(fs_info, "space_info",
5410 space_info->flags,
5411 num_bytes, 1);
5412 space_info->bytes_may_use += num_bytes;
5413 ticket->bytes -= num_bytes;
5414 num_bytes = 0;
5415 }
5416 }
5417
5418 if (num_bytes && head == &space_info->priority_tickets) {
5419 head = &space_info->tickets;
5420 goto again;
5421 }
5422 }
5423
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes,u64 * qgroup_to_release_ret)5424 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5425 struct btrfs_block_rsv *block_rsv,
5426 struct btrfs_block_rsv *dest, u64 num_bytes,
5427 u64 *qgroup_to_release_ret)
5428 {
5429 struct btrfs_space_info *space_info = block_rsv->space_info;
5430 u64 qgroup_to_release = 0;
5431 u64 ret;
5432
5433 spin_lock(&block_rsv->lock);
5434 if (num_bytes == (u64)-1) {
5435 num_bytes = block_rsv->size;
5436 qgroup_to_release = block_rsv->qgroup_rsv_size;
5437 }
5438 block_rsv->size -= num_bytes;
5439 if (block_rsv->reserved >= block_rsv->size) {
5440 num_bytes = block_rsv->reserved - block_rsv->size;
5441 block_rsv->reserved = block_rsv->size;
5442 block_rsv->full = 1;
5443 } else {
5444 num_bytes = 0;
5445 }
5446 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5447 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5448 block_rsv->qgroup_rsv_size;
5449 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5450 } else {
5451 qgroup_to_release = 0;
5452 }
5453 spin_unlock(&block_rsv->lock);
5454
5455 ret = num_bytes;
5456 if (num_bytes > 0) {
5457 if (dest) {
5458 spin_lock(&dest->lock);
5459 if (!dest->full) {
5460 u64 bytes_to_add;
5461
5462 bytes_to_add = dest->size - dest->reserved;
5463 bytes_to_add = min(num_bytes, bytes_to_add);
5464 dest->reserved += bytes_to_add;
5465 if (dest->reserved >= dest->size)
5466 dest->full = 1;
5467 num_bytes -= bytes_to_add;
5468 }
5469 spin_unlock(&dest->lock);
5470 }
5471 if (num_bytes)
5472 space_info_add_old_bytes(fs_info, space_info,
5473 num_bytes);
5474 }
5475 if (qgroup_to_release_ret)
5476 *qgroup_to_release_ret = qgroup_to_release;
5477 return ret;
5478 }
5479
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes,int update_size)5480 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5481 struct btrfs_block_rsv *dst, u64 num_bytes,
5482 int update_size)
5483 {
5484 int ret;
5485
5486 ret = block_rsv_use_bytes(src, num_bytes);
5487 if (ret)
5488 return ret;
5489
5490 block_rsv_add_bytes(dst, num_bytes, update_size);
5491 return 0;
5492 }
5493
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,unsigned short type)5494 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5495 {
5496 memset(rsv, 0, sizeof(*rsv));
5497 spin_lock_init(&rsv->lock);
5498 rsv->type = type;
5499 }
5500
btrfs_init_metadata_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv,unsigned short type)5501 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5502 struct btrfs_block_rsv *rsv,
5503 unsigned short type)
5504 {
5505 btrfs_init_block_rsv(rsv, type);
5506 rsv->space_info = __find_space_info(fs_info,
5507 BTRFS_BLOCK_GROUP_METADATA);
5508 }
5509
btrfs_alloc_block_rsv(struct btrfs_fs_info * fs_info,unsigned short type)5510 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5511 unsigned short type)
5512 {
5513 struct btrfs_block_rsv *block_rsv;
5514
5515 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5516 if (!block_rsv)
5517 return NULL;
5518
5519 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5520 return block_rsv;
5521 }
5522
btrfs_free_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)5523 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5524 struct btrfs_block_rsv *rsv)
5525 {
5526 if (!rsv)
5527 return;
5528 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5529 kfree(rsv);
5530 }
5531
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)5532 int btrfs_block_rsv_add(struct btrfs_root *root,
5533 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5534 enum btrfs_reserve_flush_enum flush)
5535 {
5536 int ret;
5537
5538 if (num_bytes == 0)
5539 return 0;
5540
5541 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5542 if (!ret) {
5543 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5544 return 0;
5545 }
5546
5547 return ret;
5548 }
5549
btrfs_block_rsv_check(struct btrfs_block_rsv * block_rsv,int min_factor)5550 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5551 {
5552 u64 num_bytes = 0;
5553 int ret = -ENOSPC;
5554
5555 if (!block_rsv)
5556 return 0;
5557
5558 spin_lock(&block_rsv->lock);
5559 num_bytes = div_factor(block_rsv->size, min_factor);
5560 if (block_rsv->reserved >= num_bytes)
5561 ret = 0;
5562 spin_unlock(&block_rsv->lock);
5563
5564 return ret;
5565 }
5566
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)5567 int btrfs_block_rsv_refill(struct btrfs_root *root,
5568 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5569 enum btrfs_reserve_flush_enum flush)
5570 {
5571 u64 num_bytes = 0;
5572 int ret = -ENOSPC;
5573
5574 if (!block_rsv)
5575 return 0;
5576
5577 spin_lock(&block_rsv->lock);
5578 num_bytes = min_reserved;
5579 if (block_rsv->reserved >= num_bytes)
5580 ret = 0;
5581 else
5582 num_bytes -= block_rsv->reserved;
5583 spin_unlock(&block_rsv->lock);
5584
5585 if (!ret)
5586 return 0;
5587
5588 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5589 if (!ret) {
5590 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5591 return 0;
5592 }
5593
5594 return ret;
5595 }
5596
5597 /**
5598 * btrfs_inode_rsv_refill - refill the inode block rsv.
5599 * @inode - the inode we are refilling.
5600 * @flush - the flusing restriction.
5601 *
5602 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5603 * block_rsv->size as the minimum size. We'll either refill the missing amount
5604 * or return if we already have enough space. This will also handle the resreve
5605 * tracepoint for the reserved amount.
5606 */
btrfs_inode_rsv_refill(struct btrfs_inode * inode,enum btrfs_reserve_flush_enum flush)5607 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5608 enum btrfs_reserve_flush_enum flush)
5609 {
5610 struct btrfs_root *root = inode->root;
5611 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5612 u64 num_bytes = 0;
5613 u64 qgroup_num_bytes = 0;
5614 int ret = -ENOSPC;
5615
5616 spin_lock(&block_rsv->lock);
5617 if (block_rsv->reserved < block_rsv->size)
5618 num_bytes = block_rsv->size - block_rsv->reserved;
5619 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5620 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5621 block_rsv->qgroup_rsv_reserved;
5622 spin_unlock(&block_rsv->lock);
5623
5624 if (num_bytes == 0)
5625 return 0;
5626
5627 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5628 if (ret)
5629 return ret;
5630 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5631 if (!ret) {
5632 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5633 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5634 btrfs_ino(inode), num_bytes, 1);
5635
5636 /* Don't forget to increase qgroup_rsv_reserved */
5637 spin_lock(&block_rsv->lock);
5638 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5639 spin_unlock(&block_rsv->lock);
5640 } else
5641 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5642 return ret;
5643 }
5644
5645 /**
5646 * btrfs_inode_rsv_release - release any excessive reservation.
5647 * @inode - the inode we need to release from.
5648 * @qgroup_free - free or convert qgroup meta.
5649 * Unlike normal operation, qgroup meta reservation needs to know if we are
5650 * freeing qgroup reservation or just converting it into per-trans. Normally
5651 * @qgroup_free is true for error handling, and false for normal release.
5652 *
5653 * This is the same as btrfs_block_rsv_release, except that it handles the
5654 * tracepoint for the reservation.
5655 */
btrfs_inode_rsv_release(struct btrfs_inode * inode,bool qgroup_free)5656 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5657 {
5658 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5659 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5660 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5661 u64 released = 0;
5662 u64 qgroup_to_release = 0;
5663
5664 /*
5665 * Since we statically set the block_rsv->size we just want to say we
5666 * are releasing 0 bytes, and then we'll just get the reservation over
5667 * the size free'd.
5668 */
5669 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5670 &qgroup_to_release);
5671 if (released > 0)
5672 trace_btrfs_space_reservation(fs_info, "delalloc",
5673 btrfs_ino(inode), released, 0);
5674 if (qgroup_free)
5675 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5676 else
5677 btrfs_qgroup_convert_reserved_meta(inode->root,
5678 qgroup_to_release);
5679 }
5680
btrfs_block_rsv_release(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes)5681 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5682 struct btrfs_block_rsv *block_rsv,
5683 u64 num_bytes)
5684 {
5685 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5686
5687 if (global_rsv == block_rsv ||
5688 block_rsv->space_info != global_rsv->space_info)
5689 global_rsv = NULL;
5690 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5691 }
5692
update_global_block_rsv(struct btrfs_fs_info * fs_info)5693 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5694 {
5695 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5696 struct btrfs_space_info *sinfo = block_rsv->space_info;
5697 u64 num_bytes;
5698
5699 /*
5700 * The global block rsv is based on the size of the extent tree, the
5701 * checksum tree and the root tree. If the fs is empty we want to set
5702 * it to a minimal amount for safety.
5703 */
5704 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5705 btrfs_root_used(&fs_info->csum_root->root_item) +
5706 btrfs_root_used(&fs_info->tree_root->root_item);
5707 num_bytes = max_t(u64, num_bytes, SZ_16M);
5708
5709 spin_lock(&sinfo->lock);
5710 spin_lock(&block_rsv->lock);
5711
5712 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5713
5714 if (block_rsv->reserved < block_rsv->size) {
5715 num_bytes = btrfs_space_info_used(sinfo, true);
5716 if (sinfo->total_bytes > num_bytes) {
5717 num_bytes = sinfo->total_bytes - num_bytes;
5718 num_bytes = min(num_bytes,
5719 block_rsv->size - block_rsv->reserved);
5720 block_rsv->reserved += num_bytes;
5721 sinfo->bytes_may_use += num_bytes;
5722 trace_btrfs_space_reservation(fs_info, "space_info",
5723 sinfo->flags, num_bytes,
5724 1);
5725 }
5726 } else if (block_rsv->reserved > block_rsv->size) {
5727 num_bytes = block_rsv->reserved - block_rsv->size;
5728 sinfo->bytes_may_use -= num_bytes;
5729 trace_btrfs_space_reservation(fs_info, "space_info",
5730 sinfo->flags, num_bytes, 0);
5731 block_rsv->reserved = block_rsv->size;
5732 }
5733
5734 if (block_rsv->reserved == block_rsv->size)
5735 block_rsv->full = 1;
5736 else
5737 block_rsv->full = 0;
5738
5739 spin_unlock(&block_rsv->lock);
5740 spin_unlock(&sinfo->lock);
5741 }
5742
init_global_block_rsv(struct btrfs_fs_info * fs_info)5743 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5744 {
5745 struct btrfs_space_info *space_info;
5746
5747 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5748 fs_info->chunk_block_rsv.space_info = space_info;
5749
5750 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5751 fs_info->global_block_rsv.space_info = space_info;
5752 fs_info->trans_block_rsv.space_info = space_info;
5753 fs_info->empty_block_rsv.space_info = space_info;
5754 fs_info->delayed_block_rsv.space_info = space_info;
5755
5756 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5757 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5758 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5759 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5760 if (fs_info->quota_root)
5761 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5762 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5763
5764 update_global_block_rsv(fs_info);
5765 }
5766
release_global_block_rsv(struct btrfs_fs_info * fs_info)5767 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5768 {
5769 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5770 (u64)-1, NULL);
5771 WARN_ON(fs_info->trans_block_rsv.size > 0);
5772 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5773 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5774 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5775 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5776 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5777 }
5778
5779
5780 /*
5781 * To be called after all the new block groups attached to the transaction
5782 * handle have been created (btrfs_create_pending_block_groups()).
5783 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)5784 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5785 {
5786 struct btrfs_fs_info *fs_info = trans->fs_info;
5787
5788 if (!trans->chunk_bytes_reserved)
5789 return;
5790
5791 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5792
5793 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5794 trans->chunk_bytes_reserved, NULL);
5795 trans->chunk_bytes_reserved = 0;
5796 }
5797
5798 /*
5799 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5800 * root: the root of the parent directory
5801 * rsv: block reservation
5802 * items: the number of items that we need do reservation
5803 * use_global_rsv: allow fallback to the global block reservation
5804 *
5805 * This function is used to reserve the space for snapshot/subvolume
5806 * creation and deletion. Those operations are different with the
5807 * common file/directory operations, they change two fs/file trees
5808 * and root tree, the number of items that the qgroup reserves is
5809 * different with the free space reservation. So we can not use
5810 * the space reservation mechanism in start_transaction().
5811 */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)5812 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5813 struct btrfs_block_rsv *rsv, int items,
5814 bool use_global_rsv)
5815 {
5816 u64 qgroup_num_bytes = 0;
5817 u64 num_bytes;
5818 int ret;
5819 struct btrfs_fs_info *fs_info = root->fs_info;
5820 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5821
5822 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5823 /* One for parent inode, two for dir entries */
5824 qgroup_num_bytes = 3 * fs_info->nodesize;
5825 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5826 qgroup_num_bytes, true);
5827 if (ret)
5828 return ret;
5829 }
5830
5831 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5832 rsv->space_info = __find_space_info(fs_info,
5833 BTRFS_BLOCK_GROUP_METADATA);
5834 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5835 BTRFS_RESERVE_FLUSH_ALL);
5836
5837 if (ret == -ENOSPC && use_global_rsv)
5838 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5839
5840 if (ret && qgroup_num_bytes)
5841 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5842
5843 return ret;
5844 }
5845
btrfs_subvolume_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)5846 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5847 struct btrfs_block_rsv *rsv)
5848 {
5849 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5850 }
5851
btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)5852 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5853 struct btrfs_inode *inode)
5854 {
5855 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5856 u64 reserve_size = 0;
5857 u64 qgroup_rsv_size = 0;
5858 u64 csum_leaves;
5859 unsigned outstanding_extents;
5860
5861 lockdep_assert_held(&inode->lock);
5862 outstanding_extents = inode->outstanding_extents;
5863 if (outstanding_extents)
5864 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5865 outstanding_extents + 1);
5866 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5867 inode->csum_bytes);
5868 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5869 csum_leaves);
5870 /*
5871 * For qgroup rsv, the calculation is very simple:
5872 * account one nodesize for each outstanding extent
5873 *
5874 * This is overestimating in most cases.
5875 */
5876 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
5877
5878 spin_lock(&block_rsv->lock);
5879 block_rsv->size = reserve_size;
5880 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
5881 spin_unlock(&block_rsv->lock);
5882 }
5883
btrfs_delalloc_reserve_metadata(struct btrfs_inode * inode,u64 num_bytes)5884 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5885 {
5886 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5887 unsigned nr_extents;
5888 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5889 int ret = 0;
5890 bool delalloc_lock = true;
5891
5892 /* If we are a free space inode we need to not flush since we will be in
5893 * the middle of a transaction commit. We also don't need the delalloc
5894 * mutex since we won't race with anybody. We need this mostly to make
5895 * lockdep shut its filthy mouth.
5896 *
5897 * If we have a transaction open (can happen if we call truncate_block
5898 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5899 */
5900 if (btrfs_is_free_space_inode(inode)) {
5901 flush = BTRFS_RESERVE_NO_FLUSH;
5902 delalloc_lock = false;
5903 } else {
5904 if (current->journal_info)
5905 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5906
5907 if (btrfs_transaction_in_commit(fs_info))
5908 schedule_timeout(1);
5909 }
5910
5911 if (delalloc_lock)
5912 mutex_lock(&inode->delalloc_mutex);
5913
5914 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5915
5916 /* Add our new extents and calculate the new rsv size. */
5917 spin_lock(&inode->lock);
5918 nr_extents = count_max_extents(num_bytes);
5919 btrfs_mod_outstanding_extents(inode, nr_extents);
5920 inode->csum_bytes += num_bytes;
5921 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5922 spin_unlock(&inode->lock);
5923
5924 ret = btrfs_inode_rsv_refill(inode, flush);
5925 if (unlikely(ret))
5926 goto out_fail;
5927
5928 if (delalloc_lock)
5929 mutex_unlock(&inode->delalloc_mutex);
5930 return 0;
5931
5932 out_fail:
5933 spin_lock(&inode->lock);
5934 nr_extents = count_max_extents(num_bytes);
5935 btrfs_mod_outstanding_extents(inode, -nr_extents);
5936 inode->csum_bytes -= num_bytes;
5937 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5938 spin_unlock(&inode->lock);
5939
5940 btrfs_inode_rsv_release(inode, true);
5941 if (delalloc_lock)
5942 mutex_unlock(&inode->delalloc_mutex);
5943 return ret;
5944 }
5945
5946 /**
5947 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5948 * @inode: the inode to release the reservation for.
5949 * @num_bytes: the number of bytes we are releasing.
5950 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
5951 *
5952 * This will release the metadata reservation for an inode. This can be called
5953 * once we complete IO for a given set of bytes to release their metadata
5954 * reservations, or on error for the same reason.
5955 */
btrfs_delalloc_release_metadata(struct btrfs_inode * inode,u64 num_bytes,bool qgroup_free)5956 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5957 bool qgroup_free)
5958 {
5959 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5960
5961 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5962 spin_lock(&inode->lock);
5963 inode->csum_bytes -= num_bytes;
5964 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5965 spin_unlock(&inode->lock);
5966
5967 if (btrfs_is_testing(fs_info))
5968 return;
5969
5970 btrfs_inode_rsv_release(inode, qgroup_free);
5971 }
5972
5973 /**
5974 * btrfs_delalloc_release_extents - release our outstanding_extents
5975 * @inode: the inode to balance the reservation for.
5976 * @num_bytes: the number of bytes we originally reserved with
5977 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
5978 *
5979 * When we reserve space we increase outstanding_extents for the extents we may
5980 * add. Once we've set the range as delalloc or created our ordered extents we
5981 * have outstanding_extents to track the real usage, so we use this to free our
5982 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
5983 * with btrfs_delalloc_reserve_metadata.
5984 */
btrfs_delalloc_release_extents(struct btrfs_inode * inode,u64 num_bytes,bool qgroup_free)5985 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
5986 bool qgroup_free)
5987 {
5988 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5989 unsigned num_extents;
5990
5991 spin_lock(&inode->lock);
5992 num_extents = count_max_extents(num_bytes);
5993 btrfs_mod_outstanding_extents(inode, -num_extents);
5994 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5995 spin_unlock(&inode->lock);
5996
5997 if (btrfs_is_testing(fs_info))
5998 return;
5999
6000 btrfs_inode_rsv_release(inode, qgroup_free);
6001 }
6002
6003 /**
6004 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6005 * delalloc
6006 * @inode: inode we're writing to
6007 * @start: start range we are writing to
6008 * @len: how long the range we are writing to
6009 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6010 * current reservation.
6011 *
6012 * This will do the following things
6013 *
6014 * o reserve space in data space info for num bytes
6015 * and reserve precious corresponding qgroup space
6016 * (Done in check_data_free_space)
6017 *
6018 * o reserve space for metadata space, based on the number of outstanding
6019 * extents and how much csums will be needed
6020 * also reserve metadata space in a per root over-reserve method.
6021 * o add to the inodes->delalloc_bytes
6022 * o add it to the fs_info's delalloc inodes list.
6023 * (Above 3 all done in delalloc_reserve_metadata)
6024 *
6025 * Return 0 for success
6026 * Return <0 for error(-ENOSPC or -EQUOT)
6027 */
btrfs_delalloc_reserve_space(struct inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)6028 int btrfs_delalloc_reserve_space(struct inode *inode,
6029 struct extent_changeset **reserved, u64 start, u64 len)
6030 {
6031 int ret;
6032
6033 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6034 if (ret < 0)
6035 return ret;
6036 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6037 if (ret < 0)
6038 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6039 return ret;
6040 }
6041
6042 /**
6043 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6044 * @inode: inode we're releasing space for
6045 * @start: start position of the space already reserved
6046 * @len: the len of the space already reserved
6047 * @release_bytes: the len of the space we consumed or didn't use
6048 *
6049 * This function will release the metadata space that was not used and will
6050 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6051 * list if there are no delalloc bytes left.
6052 * Also it will handle the qgroup reserved space.
6053 */
btrfs_delalloc_release_space(struct inode * inode,struct extent_changeset * reserved,u64 start,u64 len,bool qgroup_free)6054 void btrfs_delalloc_release_space(struct inode *inode,
6055 struct extent_changeset *reserved,
6056 u64 start, u64 len, bool qgroup_free)
6057 {
6058 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6059 btrfs_free_reserved_data_space(inode, reserved, start, len);
6060 }
6061
update_block_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * info,u64 bytenr,u64 num_bytes,int alloc)6062 static int update_block_group(struct btrfs_trans_handle *trans,
6063 struct btrfs_fs_info *info, u64 bytenr,
6064 u64 num_bytes, int alloc)
6065 {
6066 struct btrfs_block_group_cache *cache = NULL;
6067 u64 total = num_bytes;
6068 u64 old_val;
6069 u64 byte_in_group;
6070 int factor;
6071
6072 /* block accounting for super block */
6073 spin_lock(&info->delalloc_root_lock);
6074 old_val = btrfs_super_bytes_used(info->super_copy);
6075 if (alloc)
6076 old_val += num_bytes;
6077 else
6078 old_val -= num_bytes;
6079 btrfs_set_super_bytes_used(info->super_copy, old_val);
6080 spin_unlock(&info->delalloc_root_lock);
6081
6082 while (total) {
6083 cache = btrfs_lookup_block_group(info, bytenr);
6084 if (!cache)
6085 return -ENOENT;
6086 factor = btrfs_bg_type_to_factor(cache->flags);
6087
6088 /*
6089 * If this block group has free space cache written out, we
6090 * need to make sure to load it if we are removing space. This
6091 * is because we need the unpinning stage to actually add the
6092 * space back to the block group, otherwise we will leak space.
6093 */
6094 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6095 cache_block_group(cache, 1);
6096
6097 byte_in_group = bytenr - cache->key.objectid;
6098 WARN_ON(byte_in_group > cache->key.offset);
6099
6100 spin_lock(&cache->space_info->lock);
6101 spin_lock(&cache->lock);
6102
6103 if (btrfs_test_opt(info, SPACE_CACHE) &&
6104 cache->disk_cache_state < BTRFS_DC_CLEAR)
6105 cache->disk_cache_state = BTRFS_DC_CLEAR;
6106
6107 old_val = btrfs_block_group_used(&cache->item);
6108 num_bytes = min(total, cache->key.offset - byte_in_group);
6109 if (alloc) {
6110 old_val += num_bytes;
6111 btrfs_set_block_group_used(&cache->item, old_val);
6112 cache->reserved -= num_bytes;
6113 cache->space_info->bytes_reserved -= num_bytes;
6114 cache->space_info->bytes_used += num_bytes;
6115 cache->space_info->disk_used += num_bytes * factor;
6116 spin_unlock(&cache->lock);
6117 spin_unlock(&cache->space_info->lock);
6118 } else {
6119 old_val -= num_bytes;
6120 btrfs_set_block_group_used(&cache->item, old_val);
6121 cache->pinned += num_bytes;
6122 cache->space_info->bytes_pinned += num_bytes;
6123 cache->space_info->bytes_used -= num_bytes;
6124 cache->space_info->disk_used -= num_bytes * factor;
6125 spin_unlock(&cache->lock);
6126 spin_unlock(&cache->space_info->lock);
6127
6128 trace_btrfs_space_reservation(info, "pinned",
6129 cache->space_info->flags,
6130 num_bytes, 1);
6131 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6132 num_bytes,
6133 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6134 set_extent_dirty(info->pinned_extents,
6135 bytenr, bytenr + num_bytes - 1,
6136 GFP_NOFS | __GFP_NOFAIL);
6137 }
6138
6139 spin_lock(&trans->transaction->dirty_bgs_lock);
6140 if (list_empty(&cache->dirty_list)) {
6141 list_add_tail(&cache->dirty_list,
6142 &trans->transaction->dirty_bgs);
6143 trans->transaction->num_dirty_bgs++;
6144 btrfs_get_block_group(cache);
6145 }
6146 spin_unlock(&trans->transaction->dirty_bgs_lock);
6147
6148 /*
6149 * No longer have used bytes in this block group, queue it for
6150 * deletion. We do this after adding the block group to the
6151 * dirty list to avoid races between cleaner kthread and space
6152 * cache writeout.
6153 */
6154 if (!alloc && old_val == 0)
6155 btrfs_mark_bg_unused(cache);
6156
6157 btrfs_put_block_group(cache);
6158 total -= num_bytes;
6159 bytenr += num_bytes;
6160 }
6161 return 0;
6162 }
6163
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)6164 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6165 {
6166 struct btrfs_block_group_cache *cache;
6167 u64 bytenr;
6168
6169 spin_lock(&fs_info->block_group_cache_lock);
6170 bytenr = fs_info->first_logical_byte;
6171 spin_unlock(&fs_info->block_group_cache_lock);
6172
6173 if (bytenr < (u64)-1)
6174 return bytenr;
6175
6176 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6177 if (!cache)
6178 return 0;
6179
6180 bytenr = cache->key.objectid;
6181 btrfs_put_block_group(cache);
6182
6183 return bytenr;
6184 }
6185
pin_down_extent(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)6186 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6187 struct btrfs_block_group_cache *cache,
6188 u64 bytenr, u64 num_bytes, int reserved)
6189 {
6190 spin_lock(&cache->space_info->lock);
6191 spin_lock(&cache->lock);
6192 cache->pinned += num_bytes;
6193 cache->space_info->bytes_pinned += num_bytes;
6194 if (reserved) {
6195 cache->reserved -= num_bytes;
6196 cache->space_info->bytes_reserved -= num_bytes;
6197 }
6198 spin_unlock(&cache->lock);
6199 spin_unlock(&cache->space_info->lock);
6200
6201 trace_btrfs_space_reservation(fs_info, "pinned",
6202 cache->space_info->flags, num_bytes, 1);
6203 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6204 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6205 set_extent_dirty(fs_info->pinned_extents, bytenr,
6206 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6207 return 0;
6208 }
6209
6210 /*
6211 * this function must be called within transaction
6212 */
btrfs_pin_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,int reserved)6213 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6214 u64 bytenr, u64 num_bytes, int reserved)
6215 {
6216 struct btrfs_block_group_cache *cache;
6217
6218 cache = btrfs_lookup_block_group(fs_info, bytenr);
6219 BUG_ON(!cache); /* Logic error */
6220
6221 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6222
6223 btrfs_put_block_group(cache);
6224 return 0;
6225 }
6226
6227 /*
6228 * this function must be called within transaction
6229 */
btrfs_pin_extent_for_log_replay(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)6230 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6231 u64 bytenr, u64 num_bytes)
6232 {
6233 struct btrfs_block_group_cache *cache;
6234 int ret;
6235
6236 cache = btrfs_lookup_block_group(fs_info, bytenr);
6237 if (!cache)
6238 return -EINVAL;
6239
6240 /*
6241 * pull in the free space cache (if any) so that our pin
6242 * removes the free space from the cache. We have load_only set
6243 * to one because the slow code to read in the free extents does check
6244 * the pinned extents.
6245 */
6246 cache_block_group(cache, 1);
6247
6248 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6249
6250 /* remove us from the free space cache (if we're there at all) */
6251 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6252 btrfs_put_block_group(cache);
6253 return ret;
6254 }
6255
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)6256 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6257 u64 start, u64 num_bytes)
6258 {
6259 int ret;
6260 struct btrfs_block_group_cache *block_group;
6261 struct btrfs_caching_control *caching_ctl;
6262
6263 block_group = btrfs_lookup_block_group(fs_info, start);
6264 if (!block_group)
6265 return -EINVAL;
6266
6267 cache_block_group(block_group, 0);
6268 caching_ctl = get_caching_control(block_group);
6269
6270 if (!caching_ctl) {
6271 /* Logic error */
6272 BUG_ON(!block_group_cache_done(block_group));
6273 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6274 } else {
6275 mutex_lock(&caching_ctl->mutex);
6276
6277 if (start >= caching_ctl->progress) {
6278 ret = add_excluded_extent(fs_info, start, num_bytes);
6279 } else if (start + num_bytes <= caching_ctl->progress) {
6280 ret = btrfs_remove_free_space(block_group,
6281 start, num_bytes);
6282 } else {
6283 num_bytes = caching_ctl->progress - start;
6284 ret = btrfs_remove_free_space(block_group,
6285 start, num_bytes);
6286 if (ret)
6287 goto out_lock;
6288
6289 num_bytes = (start + num_bytes) -
6290 caching_ctl->progress;
6291 start = caching_ctl->progress;
6292 ret = add_excluded_extent(fs_info, start, num_bytes);
6293 }
6294 out_lock:
6295 mutex_unlock(&caching_ctl->mutex);
6296 put_caching_control(caching_ctl);
6297 }
6298 btrfs_put_block_group(block_group);
6299 return ret;
6300 }
6301
btrfs_exclude_logged_extents(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)6302 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6303 struct extent_buffer *eb)
6304 {
6305 struct btrfs_file_extent_item *item;
6306 struct btrfs_key key;
6307 int found_type;
6308 int i;
6309 int ret = 0;
6310
6311 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6312 return 0;
6313
6314 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6315 btrfs_item_key_to_cpu(eb, &key, i);
6316 if (key.type != BTRFS_EXTENT_DATA_KEY)
6317 continue;
6318 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6319 found_type = btrfs_file_extent_type(eb, item);
6320 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6321 continue;
6322 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6323 continue;
6324 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6325 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6326 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6327 if (ret)
6328 break;
6329 }
6330
6331 return ret;
6332 }
6333
6334 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group_cache * bg)6335 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6336 {
6337 atomic_inc(&bg->reservations);
6338 }
6339
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)6340 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6341 const u64 start)
6342 {
6343 struct btrfs_block_group_cache *bg;
6344
6345 bg = btrfs_lookup_block_group(fs_info, start);
6346 ASSERT(bg);
6347 if (atomic_dec_and_test(&bg->reservations))
6348 wake_up_var(&bg->reservations);
6349 btrfs_put_block_group(bg);
6350 }
6351
btrfs_wait_block_group_reservations(struct btrfs_block_group_cache * bg)6352 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6353 {
6354 struct btrfs_space_info *space_info = bg->space_info;
6355
6356 ASSERT(bg->ro);
6357
6358 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6359 return;
6360
6361 /*
6362 * Our block group is read only but before we set it to read only,
6363 * some task might have had allocated an extent from it already, but it
6364 * has not yet created a respective ordered extent (and added it to a
6365 * root's list of ordered extents).
6366 * Therefore wait for any task currently allocating extents, since the
6367 * block group's reservations counter is incremented while a read lock
6368 * on the groups' semaphore is held and decremented after releasing
6369 * the read access on that semaphore and creating the ordered extent.
6370 */
6371 down_write(&space_info->groups_sem);
6372 up_write(&space_info->groups_sem);
6373
6374 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6375 }
6376
6377 /**
6378 * btrfs_add_reserved_bytes - update the block_group and space info counters
6379 * @cache: The cache we are manipulating
6380 * @ram_bytes: The number of bytes of file content, and will be same to
6381 * @num_bytes except for the compress path.
6382 * @num_bytes: The number of bytes in question
6383 * @delalloc: The blocks are allocated for the delalloc write
6384 *
6385 * This is called by the allocator when it reserves space. If this is a
6386 * reservation and the block group has become read only we cannot make the
6387 * reservation and return -EAGAIN, otherwise this function always succeeds.
6388 */
btrfs_add_reserved_bytes(struct btrfs_block_group_cache * cache,u64 ram_bytes,u64 num_bytes,int delalloc)6389 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6390 u64 ram_bytes, u64 num_bytes, int delalloc)
6391 {
6392 struct btrfs_space_info *space_info = cache->space_info;
6393 int ret = 0;
6394
6395 spin_lock(&space_info->lock);
6396 spin_lock(&cache->lock);
6397 if (cache->ro) {
6398 ret = -EAGAIN;
6399 } else {
6400 cache->reserved += num_bytes;
6401 space_info->bytes_reserved += num_bytes;
6402
6403 trace_btrfs_space_reservation(cache->fs_info,
6404 "space_info", space_info->flags,
6405 ram_bytes, 0);
6406 space_info->bytes_may_use -= ram_bytes;
6407 if (delalloc)
6408 cache->delalloc_bytes += num_bytes;
6409 }
6410 spin_unlock(&cache->lock);
6411 spin_unlock(&space_info->lock);
6412 return ret;
6413 }
6414
6415 /**
6416 * btrfs_free_reserved_bytes - update the block_group and space info counters
6417 * @cache: The cache we are manipulating
6418 * @num_bytes: The number of bytes in question
6419 * @delalloc: The blocks are allocated for the delalloc write
6420 *
6421 * This is called by somebody who is freeing space that was never actually used
6422 * on disk. For example if you reserve some space for a new leaf in transaction
6423 * A and before transaction A commits you free that leaf, you call this with
6424 * reserve set to 0 in order to clear the reservation.
6425 */
6426
btrfs_free_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int delalloc)6427 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6428 u64 num_bytes, int delalloc)
6429 {
6430 struct btrfs_space_info *space_info = cache->space_info;
6431 int ret = 0;
6432
6433 spin_lock(&space_info->lock);
6434 spin_lock(&cache->lock);
6435 if (cache->ro)
6436 space_info->bytes_readonly += num_bytes;
6437 cache->reserved -= num_bytes;
6438 space_info->bytes_reserved -= num_bytes;
6439
6440 if (delalloc)
6441 cache->delalloc_bytes -= num_bytes;
6442 spin_unlock(&cache->lock);
6443 spin_unlock(&space_info->lock);
6444 return ret;
6445 }
btrfs_prepare_extent_commit(struct btrfs_fs_info * fs_info)6446 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6447 {
6448 struct btrfs_caching_control *next;
6449 struct btrfs_caching_control *caching_ctl;
6450 struct btrfs_block_group_cache *cache;
6451
6452 down_write(&fs_info->commit_root_sem);
6453
6454 list_for_each_entry_safe(caching_ctl, next,
6455 &fs_info->caching_block_groups, list) {
6456 cache = caching_ctl->block_group;
6457 if (block_group_cache_done(cache)) {
6458 cache->last_byte_to_unpin = (u64)-1;
6459 list_del_init(&caching_ctl->list);
6460 put_caching_control(caching_ctl);
6461 } else {
6462 cache->last_byte_to_unpin = caching_ctl->progress;
6463 }
6464 }
6465
6466 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6467 fs_info->pinned_extents = &fs_info->freed_extents[1];
6468 else
6469 fs_info->pinned_extents = &fs_info->freed_extents[0];
6470
6471 up_write(&fs_info->commit_root_sem);
6472
6473 update_global_block_rsv(fs_info);
6474 }
6475
6476 /*
6477 * Returns the free cluster for the given space info and sets empty_cluster to
6478 * what it should be based on the mount options.
6479 */
6480 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)6481 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6482 struct btrfs_space_info *space_info, u64 *empty_cluster)
6483 {
6484 struct btrfs_free_cluster *ret = NULL;
6485
6486 *empty_cluster = 0;
6487 if (btrfs_mixed_space_info(space_info))
6488 return ret;
6489
6490 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6491 ret = &fs_info->meta_alloc_cluster;
6492 if (btrfs_test_opt(fs_info, SSD))
6493 *empty_cluster = SZ_2M;
6494 else
6495 *empty_cluster = SZ_64K;
6496 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6497 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6498 *empty_cluster = SZ_2M;
6499 ret = &fs_info->data_alloc_cluster;
6500 }
6501
6502 return ret;
6503 }
6504
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)6505 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6506 u64 start, u64 end,
6507 const bool return_free_space)
6508 {
6509 struct btrfs_block_group_cache *cache = NULL;
6510 struct btrfs_space_info *space_info;
6511 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6512 struct btrfs_free_cluster *cluster = NULL;
6513 u64 len;
6514 u64 total_unpinned = 0;
6515 u64 empty_cluster = 0;
6516 bool readonly;
6517
6518 while (start <= end) {
6519 readonly = false;
6520 if (!cache ||
6521 start >= cache->key.objectid + cache->key.offset) {
6522 if (cache)
6523 btrfs_put_block_group(cache);
6524 total_unpinned = 0;
6525 cache = btrfs_lookup_block_group(fs_info, start);
6526 BUG_ON(!cache); /* Logic error */
6527
6528 cluster = fetch_cluster_info(fs_info,
6529 cache->space_info,
6530 &empty_cluster);
6531 empty_cluster <<= 1;
6532 }
6533
6534 len = cache->key.objectid + cache->key.offset - start;
6535 len = min(len, end + 1 - start);
6536
6537 if (start < cache->last_byte_to_unpin) {
6538 len = min(len, cache->last_byte_to_unpin - start);
6539 if (return_free_space)
6540 btrfs_add_free_space(cache, start, len);
6541 }
6542
6543 start += len;
6544 total_unpinned += len;
6545 space_info = cache->space_info;
6546
6547 /*
6548 * If this space cluster has been marked as fragmented and we've
6549 * unpinned enough in this block group to potentially allow a
6550 * cluster to be created inside of it go ahead and clear the
6551 * fragmented check.
6552 */
6553 if (cluster && cluster->fragmented &&
6554 total_unpinned > empty_cluster) {
6555 spin_lock(&cluster->lock);
6556 cluster->fragmented = 0;
6557 spin_unlock(&cluster->lock);
6558 }
6559
6560 spin_lock(&space_info->lock);
6561 spin_lock(&cache->lock);
6562 cache->pinned -= len;
6563 space_info->bytes_pinned -= len;
6564
6565 trace_btrfs_space_reservation(fs_info, "pinned",
6566 space_info->flags, len, 0);
6567 space_info->max_extent_size = 0;
6568 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6569 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6570 if (cache->ro) {
6571 space_info->bytes_readonly += len;
6572 readonly = true;
6573 }
6574 spin_unlock(&cache->lock);
6575 if (!readonly && return_free_space &&
6576 global_rsv->space_info == space_info) {
6577 u64 to_add = len;
6578
6579 spin_lock(&global_rsv->lock);
6580 if (!global_rsv->full) {
6581 to_add = min(len, global_rsv->size -
6582 global_rsv->reserved);
6583 global_rsv->reserved += to_add;
6584 space_info->bytes_may_use += to_add;
6585 if (global_rsv->reserved >= global_rsv->size)
6586 global_rsv->full = 1;
6587 trace_btrfs_space_reservation(fs_info,
6588 "space_info",
6589 space_info->flags,
6590 to_add, 1);
6591 len -= to_add;
6592 }
6593 spin_unlock(&global_rsv->lock);
6594 /* Add to any tickets we may have */
6595 if (len)
6596 space_info_add_new_bytes(fs_info, space_info,
6597 len);
6598 }
6599 spin_unlock(&space_info->lock);
6600 }
6601
6602 if (cache)
6603 btrfs_put_block_group(cache);
6604 return 0;
6605 }
6606
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)6607 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6608 {
6609 struct btrfs_fs_info *fs_info = trans->fs_info;
6610 struct btrfs_block_group_cache *block_group, *tmp;
6611 struct list_head *deleted_bgs;
6612 struct extent_io_tree *unpin;
6613 u64 start;
6614 u64 end;
6615 int ret;
6616
6617 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6618 unpin = &fs_info->freed_extents[1];
6619 else
6620 unpin = &fs_info->freed_extents[0];
6621
6622 while (!trans->aborted) {
6623 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6624 ret = find_first_extent_bit(unpin, 0, &start, &end,
6625 EXTENT_DIRTY, NULL);
6626 if (ret) {
6627 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6628 break;
6629 }
6630
6631 if (btrfs_test_opt(fs_info, DISCARD))
6632 ret = btrfs_discard_extent(fs_info, start,
6633 end + 1 - start, NULL);
6634
6635 clear_extent_dirty(unpin, start, end);
6636 unpin_extent_range(fs_info, start, end, true);
6637 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6638 cond_resched();
6639 }
6640
6641 /*
6642 * Transaction is finished. We don't need the lock anymore. We
6643 * do need to clean up the block groups in case of a transaction
6644 * abort.
6645 */
6646 deleted_bgs = &trans->transaction->deleted_bgs;
6647 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6648 u64 trimmed = 0;
6649
6650 ret = -EROFS;
6651 if (!trans->aborted)
6652 ret = btrfs_discard_extent(fs_info,
6653 block_group->key.objectid,
6654 block_group->key.offset,
6655 &trimmed);
6656
6657 list_del_init(&block_group->bg_list);
6658 btrfs_put_block_group_trimming(block_group);
6659 btrfs_put_block_group(block_group);
6660
6661 if (ret) {
6662 const char *errstr = btrfs_decode_error(ret);
6663 btrfs_warn(fs_info,
6664 "discard failed while removing blockgroup: errno=%d %s",
6665 ret, errstr);
6666 }
6667 }
6668
6669 return 0;
6670 }
6671
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)6672 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6673 struct btrfs_delayed_ref_node *node, u64 parent,
6674 u64 root_objectid, u64 owner_objectid,
6675 u64 owner_offset, int refs_to_drop,
6676 struct btrfs_delayed_extent_op *extent_op)
6677 {
6678 struct btrfs_fs_info *info = trans->fs_info;
6679 struct btrfs_key key;
6680 struct btrfs_path *path;
6681 struct btrfs_root *extent_root = info->extent_root;
6682 struct extent_buffer *leaf;
6683 struct btrfs_extent_item *ei;
6684 struct btrfs_extent_inline_ref *iref;
6685 int ret;
6686 int is_data;
6687 int extent_slot = 0;
6688 int found_extent = 0;
6689 int num_to_del = 1;
6690 u32 item_size;
6691 u64 refs;
6692 u64 bytenr = node->bytenr;
6693 u64 num_bytes = node->num_bytes;
6694 int last_ref = 0;
6695 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6696
6697 path = btrfs_alloc_path();
6698 if (!path)
6699 return -ENOMEM;
6700
6701 path->reada = READA_FORWARD;
6702 path->leave_spinning = 1;
6703
6704 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6705 BUG_ON(!is_data && refs_to_drop != 1);
6706
6707 if (is_data)
6708 skinny_metadata = false;
6709
6710 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6711 parent, root_objectid, owner_objectid,
6712 owner_offset);
6713 if (ret == 0) {
6714 extent_slot = path->slots[0];
6715 while (extent_slot >= 0) {
6716 btrfs_item_key_to_cpu(path->nodes[0], &key,
6717 extent_slot);
6718 if (key.objectid != bytenr)
6719 break;
6720 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6721 key.offset == num_bytes) {
6722 found_extent = 1;
6723 break;
6724 }
6725 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6726 key.offset == owner_objectid) {
6727 found_extent = 1;
6728 break;
6729 }
6730 if (path->slots[0] - extent_slot > 5)
6731 break;
6732 extent_slot--;
6733 }
6734
6735 if (!found_extent) {
6736 BUG_ON(iref);
6737 ret = remove_extent_backref(trans, path, NULL,
6738 refs_to_drop,
6739 is_data, &last_ref);
6740 if (ret) {
6741 btrfs_abort_transaction(trans, ret);
6742 goto out;
6743 }
6744 btrfs_release_path(path);
6745 path->leave_spinning = 1;
6746
6747 key.objectid = bytenr;
6748 key.type = BTRFS_EXTENT_ITEM_KEY;
6749 key.offset = num_bytes;
6750
6751 if (!is_data && skinny_metadata) {
6752 key.type = BTRFS_METADATA_ITEM_KEY;
6753 key.offset = owner_objectid;
6754 }
6755
6756 ret = btrfs_search_slot(trans, extent_root,
6757 &key, path, -1, 1);
6758 if (ret > 0 && skinny_metadata && path->slots[0]) {
6759 /*
6760 * Couldn't find our skinny metadata item,
6761 * see if we have ye olde extent item.
6762 */
6763 path->slots[0]--;
6764 btrfs_item_key_to_cpu(path->nodes[0], &key,
6765 path->slots[0]);
6766 if (key.objectid == bytenr &&
6767 key.type == BTRFS_EXTENT_ITEM_KEY &&
6768 key.offset == num_bytes)
6769 ret = 0;
6770 }
6771
6772 if (ret > 0 && skinny_metadata) {
6773 skinny_metadata = false;
6774 key.objectid = bytenr;
6775 key.type = BTRFS_EXTENT_ITEM_KEY;
6776 key.offset = num_bytes;
6777 btrfs_release_path(path);
6778 ret = btrfs_search_slot(trans, extent_root,
6779 &key, path, -1, 1);
6780 }
6781
6782 if (ret) {
6783 btrfs_err(info,
6784 "umm, got %d back from search, was looking for %llu",
6785 ret, bytenr);
6786 if (ret > 0)
6787 btrfs_print_leaf(path->nodes[0]);
6788 }
6789 if (ret < 0) {
6790 btrfs_abort_transaction(trans, ret);
6791 goto out;
6792 }
6793 extent_slot = path->slots[0];
6794 }
6795 } else if (WARN_ON(ret == -ENOENT)) {
6796 btrfs_print_leaf(path->nodes[0]);
6797 btrfs_err(info,
6798 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6799 bytenr, parent, root_objectid, owner_objectid,
6800 owner_offset);
6801 btrfs_abort_transaction(trans, ret);
6802 goto out;
6803 } else {
6804 btrfs_abort_transaction(trans, ret);
6805 goto out;
6806 }
6807
6808 leaf = path->nodes[0];
6809 item_size = btrfs_item_size_nr(leaf, extent_slot);
6810 if (unlikely(item_size < sizeof(*ei))) {
6811 ret = -EINVAL;
6812 btrfs_print_v0_err(info);
6813 btrfs_abort_transaction(trans, ret);
6814 goto out;
6815 }
6816 ei = btrfs_item_ptr(leaf, extent_slot,
6817 struct btrfs_extent_item);
6818 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6819 key.type == BTRFS_EXTENT_ITEM_KEY) {
6820 struct btrfs_tree_block_info *bi;
6821 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6822 bi = (struct btrfs_tree_block_info *)(ei + 1);
6823 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6824 }
6825
6826 refs = btrfs_extent_refs(leaf, ei);
6827 if (refs < refs_to_drop) {
6828 btrfs_err(info,
6829 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6830 refs_to_drop, refs, bytenr);
6831 ret = -EINVAL;
6832 btrfs_abort_transaction(trans, ret);
6833 goto out;
6834 }
6835 refs -= refs_to_drop;
6836
6837 if (refs > 0) {
6838 if (extent_op)
6839 __run_delayed_extent_op(extent_op, leaf, ei);
6840 /*
6841 * In the case of inline back ref, reference count will
6842 * be updated by remove_extent_backref
6843 */
6844 if (iref) {
6845 BUG_ON(!found_extent);
6846 } else {
6847 btrfs_set_extent_refs(leaf, ei, refs);
6848 btrfs_mark_buffer_dirty(leaf);
6849 }
6850 if (found_extent) {
6851 ret = remove_extent_backref(trans, path, iref,
6852 refs_to_drop, is_data,
6853 &last_ref);
6854 if (ret) {
6855 btrfs_abort_transaction(trans, ret);
6856 goto out;
6857 }
6858 }
6859 } else {
6860 if (found_extent) {
6861 BUG_ON(is_data && refs_to_drop !=
6862 extent_data_ref_count(path, iref));
6863 if (iref) {
6864 BUG_ON(path->slots[0] != extent_slot);
6865 } else {
6866 BUG_ON(path->slots[0] != extent_slot + 1);
6867 path->slots[0] = extent_slot;
6868 num_to_del = 2;
6869 }
6870 }
6871
6872 last_ref = 1;
6873 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6874 num_to_del);
6875 if (ret) {
6876 btrfs_abort_transaction(trans, ret);
6877 goto out;
6878 }
6879 btrfs_release_path(path);
6880
6881 if (is_data) {
6882 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
6883 if (ret) {
6884 btrfs_abort_transaction(trans, ret);
6885 goto out;
6886 }
6887 }
6888
6889 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
6890 if (ret) {
6891 btrfs_abort_transaction(trans, ret);
6892 goto out;
6893 }
6894
6895 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
6896 if (ret) {
6897 btrfs_abort_transaction(trans, ret);
6898 goto out;
6899 }
6900 }
6901 btrfs_release_path(path);
6902
6903 out:
6904 btrfs_free_path(path);
6905 return ret;
6906 }
6907
6908 /*
6909 * when we free an block, it is possible (and likely) that we free the last
6910 * delayed ref for that extent as well. This searches the delayed ref tree for
6911 * a given extent, and if there are no other delayed refs to be processed, it
6912 * removes it from the tree.
6913 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)6914 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6915 u64 bytenr)
6916 {
6917 struct btrfs_delayed_ref_head *head;
6918 struct btrfs_delayed_ref_root *delayed_refs;
6919 int ret = 0;
6920
6921 delayed_refs = &trans->transaction->delayed_refs;
6922 spin_lock(&delayed_refs->lock);
6923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
6924 if (!head)
6925 goto out_delayed_unlock;
6926
6927 spin_lock(&head->lock);
6928 if (!RB_EMPTY_ROOT(&head->ref_tree))
6929 goto out;
6930
6931 if (head->extent_op) {
6932 if (!head->must_insert_reserved)
6933 goto out;
6934 btrfs_free_delayed_extent_op(head->extent_op);
6935 head->extent_op = NULL;
6936 }
6937
6938 /*
6939 * waiting for the lock here would deadlock. If someone else has it
6940 * locked they are already in the process of dropping it anyway
6941 */
6942 if (!mutex_trylock(&head->mutex))
6943 goto out;
6944
6945 /*
6946 * at this point we have a head with no other entries. Go
6947 * ahead and process it.
6948 */
6949 rb_erase(&head->href_node, &delayed_refs->href_root);
6950 RB_CLEAR_NODE(&head->href_node);
6951 atomic_dec(&delayed_refs->num_entries);
6952
6953 /*
6954 * we don't take a ref on the node because we're removing it from the
6955 * tree, so we just steal the ref the tree was holding.
6956 */
6957 delayed_refs->num_heads--;
6958 if (head->processing == 0)
6959 delayed_refs->num_heads_ready--;
6960 head->processing = 0;
6961 spin_unlock(&head->lock);
6962 spin_unlock(&delayed_refs->lock);
6963
6964 BUG_ON(head->extent_op);
6965 if (head->must_insert_reserved)
6966 ret = 1;
6967
6968 mutex_unlock(&head->mutex);
6969 btrfs_put_delayed_ref_head(head);
6970 return ret;
6971 out:
6972 spin_unlock(&head->lock);
6973
6974 out_delayed_unlock:
6975 spin_unlock(&delayed_refs->lock);
6976 return 0;
6977 }
6978
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)6979 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6980 struct btrfs_root *root,
6981 struct extent_buffer *buf,
6982 u64 parent, int last_ref)
6983 {
6984 struct btrfs_fs_info *fs_info = root->fs_info;
6985 int pin = 1;
6986 int ret;
6987
6988 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6989 int old_ref_mod, new_ref_mod;
6990
6991 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
6992 root->root_key.objectid,
6993 btrfs_header_level(buf), 0,
6994 BTRFS_DROP_DELAYED_REF);
6995 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
6996 buf->len, parent,
6997 root->root_key.objectid,
6998 btrfs_header_level(buf),
6999 BTRFS_DROP_DELAYED_REF, NULL,
7000 &old_ref_mod, &new_ref_mod);
7001 BUG_ON(ret); /* -ENOMEM */
7002 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7003 }
7004
7005 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7006 struct btrfs_block_group_cache *cache;
7007
7008 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7009 ret = check_ref_cleanup(trans, buf->start);
7010 if (!ret)
7011 goto out;
7012 }
7013
7014 pin = 0;
7015 cache = btrfs_lookup_block_group(fs_info, buf->start);
7016
7017 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7018 pin_down_extent(fs_info, cache, buf->start,
7019 buf->len, 1);
7020 btrfs_put_block_group(cache);
7021 goto out;
7022 }
7023
7024 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7025
7026 btrfs_add_free_space(cache, buf->start, buf->len);
7027 btrfs_free_reserved_bytes(cache, buf->len, 0);
7028 btrfs_put_block_group(cache);
7029 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7030 }
7031 out:
7032 if (pin)
7033 add_pinned_bytes(fs_info, buf->len, true,
7034 root->root_key.objectid);
7035
7036 if (last_ref) {
7037 /*
7038 * Deleting the buffer, clear the corrupt flag since it doesn't
7039 * matter anymore.
7040 */
7041 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7042 }
7043 }
7044
7045 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)7046 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7047 struct btrfs_root *root,
7048 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7049 u64 owner, u64 offset)
7050 {
7051 struct btrfs_fs_info *fs_info = root->fs_info;
7052 int old_ref_mod, new_ref_mod;
7053 int ret;
7054
7055 if (btrfs_is_testing(fs_info))
7056 return 0;
7057
7058 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7059 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7060 root_objectid, owner, offset,
7061 BTRFS_DROP_DELAYED_REF);
7062
7063 /*
7064 * tree log blocks never actually go into the extent allocation
7065 * tree, just update pinning info and exit early.
7066 */
7067 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7068 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7069 /* unlocks the pinned mutex */
7070 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7071 old_ref_mod = new_ref_mod = 0;
7072 ret = 0;
7073 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7074 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7075 num_bytes, parent,
7076 root_objectid, (int)owner,
7077 BTRFS_DROP_DELAYED_REF, NULL,
7078 &old_ref_mod, &new_ref_mod);
7079 } else {
7080 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7081 num_bytes, parent,
7082 root_objectid, owner, offset,
7083 0, BTRFS_DROP_DELAYED_REF,
7084 &old_ref_mod, &new_ref_mod);
7085 }
7086
7087 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7088 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7089
7090 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7091 }
7092
7093 return ret;
7094 }
7095
7096 /*
7097 * when we wait for progress in the block group caching, its because
7098 * our allocation attempt failed at least once. So, we must sleep
7099 * and let some progress happen before we try again.
7100 *
7101 * This function will sleep at least once waiting for new free space to
7102 * show up, and then it will check the block group free space numbers
7103 * for our min num_bytes. Another option is to have it go ahead
7104 * and look in the rbtree for a free extent of a given size, but this
7105 * is a good start.
7106 *
7107 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7108 * any of the information in this block group.
7109 */
7110 static noinline void
wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)7111 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7112 u64 num_bytes)
7113 {
7114 struct btrfs_caching_control *caching_ctl;
7115
7116 caching_ctl = get_caching_control(cache);
7117 if (!caching_ctl)
7118 return;
7119
7120 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7121 (cache->free_space_ctl->free_space >= num_bytes));
7122
7123 put_caching_control(caching_ctl);
7124 }
7125
7126 static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache * cache)7127 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7128 {
7129 struct btrfs_caching_control *caching_ctl;
7130 int ret = 0;
7131
7132 caching_ctl = get_caching_control(cache);
7133 if (!caching_ctl)
7134 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7135
7136 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7137 if (cache->cached == BTRFS_CACHE_ERROR)
7138 ret = -EIO;
7139 put_caching_control(caching_ctl);
7140 return ret;
7141 }
7142
7143 enum btrfs_loop_type {
7144 LOOP_CACHING_NOWAIT = 0,
7145 LOOP_CACHING_WAIT = 1,
7146 LOOP_ALLOC_CHUNK = 2,
7147 LOOP_NO_EMPTY_SIZE = 3,
7148 };
7149
7150 static inline void
btrfs_lock_block_group(struct btrfs_block_group_cache * cache,int delalloc)7151 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7152 int delalloc)
7153 {
7154 if (delalloc)
7155 down_read(&cache->data_rwsem);
7156 }
7157
7158 static inline void
btrfs_grab_block_group(struct btrfs_block_group_cache * cache,int delalloc)7159 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7160 int delalloc)
7161 {
7162 btrfs_get_block_group(cache);
7163 if (delalloc)
7164 down_read(&cache->data_rwsem);
7165 }
7166
7167 static struct btrfs_block_group_cache *
btrfs_lock_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,int delalloc)7168 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7169 struct btrfs_free_cluster *cluster,
7170 int delalloc)
7171 {
7172 struct btrfs_block_group_cache *used_bg = NULL;
7173
7174 spin_lock(&cluster->refill_lock);
7175 while (1) {
7176 used_bg = cluster->block_group;
7177 if (!used_bg)
7178 return NULL;
7179
7180 if (used_bg == block_group)
7181 return used_bg;
7182
7183 btrfs_get_block_group(used_bg);
7184
7185 if (!delalloc)
7186 return used_bg;
7187
7188 if (down_read_trylock(&used_bg->data_rwsem))
7189 return used_bg;
7190
7191 spin_unlock(&cluster->refill_lock);
7192
7193 /* We should only have one-level nested. */
7194 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7195
7196 spin_lock(&cluster->refill_lock);
7197 if (used_bg == cluster->block_group)
7198 return used_bg;
7199
7200 up_read(&used_bg->data_rwsem);
7201 btrfs_put_block_group(used_bg);
7202 }
7203 }
7204
7205 static inline void
btrfs_release_block_group(struct btrfs_block_group_cache * cache,int delalloc)7206 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7207 int delalloc)
7208 {
7209 if (delalloc)
7210 up_read(&cache->data_rwsem);
7211 btrfs_put_block_group(cache);
7212 }
7213
7214 /*
7215 * walks the btree of allocated extents and find a hole of a given size.
7216 * The key ins is changed to record the hole:
7217 * ins->objectid == start position
7218 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7219 * ins->offset == the size of the hole.
7220 * Any available blocks before search_start are skipped.
7221 *
7222 * If there is no suitable free space, we will record the max size of
7223 * the free space extent currently.
7224 */
find_free_extent(struct btrfs_fs_info * fs_info,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 flags,int delalloc)7225 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7226 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7227 u64 hint_byte, struct btrfs_key *ins,
7228 u64 flags, int delalloc)
7229 {
7230 int ret = 0;
7231 struct btrfs_root *root = fs_info->extent_root;
7232 struct btrfs_free_cluster *last_ptr = NULL;
7233 struct btrfs_block_group_cache *block_group = NULL;
7234 u64 search_start = 0;
7235 u64 max_extent_size = 0;
7236 u64 empty_cluster = 0;
7237 struct btrfs_space_info *space_info;
7238 int loop = 0;
7239 int index = btrfs_bg_flags_to_raid_index(flags);
7240 bool failed_cluster_refill = false;
7241 bool failed_alloc = false;
7242 bool use_cluster = true;
7243 bool have_caching_bg = false;
7244 bool orig_have_caching_bg = false;
7245 bool full_search = false;
7246
7247 WARN_ON(num_bytes < fs_info->sectorsize);
7248 ins->type = BTRFS_EXTENT_ITEM_KEY;
7249 ins->objectid = 0;
7250 ins->offset = 0;
7251
7252 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7253
7254 space_info = __find_space_info(fs_info, flags);
7255 if (!space_info) {
7256 btrfs_err(fs_info, "No space info for %llu", flags);
7257 return -ENOSPC;
7258 }
7259
7260 /*
7261 * If our free space is heavily fragmented we may not be able to make
7262 * big contiguous allocations, so instead of doing the expensive search
7263 * for free space, simply return ENOSPC with our max_extent_size so we
7264 * can go ahead and search for a more manageable chunk.
7265 *
7266 * If our max_extent_size is large enough for our allocation simply
7267 * disable clustering since we will likely not be able to find enough
7268 * space to create a cluster and induce latency trying.
7269 */
7270 if (unlikely(space_info->max_extent_size)) {
7271 spin_lock(&space_info->lock);
7272 if (space_info->max_extent_size &&
7273 num_bytes > space_info->max_extent_size) {
7274 ins->offset = space_info->max_extent_size;
7275 spin_unlock(&space_info->lock);
7276 return -ENOSPC;
7277 } else if (space_info->max_extent_size) {
7278 use_cluster = false;
7279 }
7280 spin_unlock(&space_info->lock);
7281 }
7282
7283 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7284 if (last_ptr) {
7285 spin_lock(&last_ptr->lock);
7286 if (last_ptr->block_group)
7287 hint_byte = last_ptr->window_start;
7288 if (last_ptr->fragmented) {
7289 /*
7290 * We still set window_start so we can keep track of the
7291 * last place we found an allocation to try and save
7292 * some time.
7293 */
7294 hint_byte = last_ptr->window_start;
7295 use_cluster = false;
7296 }
7297 spin_unlock(&last_ptr->lock);
7298 }
7299
7300 search_start = max(search_start, first_logical_byte(fs_info, 0));
7301 search_start = max(search_start, hint_byte);
7302 if (search_start == hint_byte) {
7303 block_group = btrfs_lookup_block_group(fs_info, search_start);
7304 /*
7305 * we don't want to use the block group if it doesn't match our
7306 * allocation bits, or if its not cached.
7307 *
7308 * However if we are re-searching with an ideal block group
7309 * picked out then we don't care that the block group is cached.
7310 */
7311 if (block_group && block_group_bits(block_group, flags) &&
7312 block_group->cached != BTRFS_CACHE_NO) {
7313 down_read(&space_info->groups_sem);
7314 if (list_empty(&block_group->list) ||
7315 block_group->ro) {
7316 /*
7317 * someone is removing this block group,
7318 * we can't jump into the have_block_group
7319 * target because our list pointers are not
7320 * valid
7321 */
7322 btrfs_put_block_group(block_group);
7323 up_read(&space_info->groups_sem);
7324 } else {
7325 index = btrfs_bg_flags_to_raid_index(
7326 block_group->flags);
7327 btrfs_lock_block_group(block_group, delalloc);
7328 goto have_block_group;
7329 }
7330 } else if (block_group) {
7331 btrfs_put_block_group(block_group);
7332 }
7333 }
7334 search:
7335 have_caching_bg = false;
7336 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7337 full_search = true;
7338 down_read(&space_info->groups_sem);
7339 list_for_each_entry(block_group, &space_info->block_groups[index],
7340 list) {
7341 u64 offset;
7342 int cached;
7343
7344 /* If the block group is read-only, we can skip it entirely. */
7345 if (unlikely(block_group->ro))
7346 continue;
7347
7348 btrfs_grab_block_group(block_group, delalloc);
7349 search_start = block_group->key.objectid;
7350
7351 /*
7352 * this can happen if we end up cycling through all the
7353 * raid types, but we want to make sure we only allocate
7354 * for the proper type.
7355 */
7356 if (!block_group_bits(block_group, flags)) {
7357 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7358 BTRFS_BLOCK_GROUP_RAID1 |
7359 BTRFS_BLOCK_GROUP_RAID5 |
7360 BTRFS_BLOCK_GROUP_RAID6 |
7361 BTRFS_BLOCK_GROUP_RAID10;
7362
7363 /*
7364 * if they asked for extra copies and this block group
7365 * doesn't provide them, bail. This does allow us to
7366 * fill raid0 from raid1.
7367 */
7368 if ((flags & extra) && !(block_group->flags & extra))
7369 goto loop;
7370 }
7371
7372 have_block_group:
7373 cached = block_group_cache_done(block_group);
7374 if (unlikely(!cached)) {
7375 have_caching_bg = true;
7376 ret = cache_block_group(block_group, 0);
7377 BUG_ON(ret < 0);
7378 ret = 0;
7379 }
7380
7381 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7382 goto loop;
7383
7384 /*
7385 * Ok we want to try and use the cluster allocator, so
7386 * lets look there
7387 */
7388 if (last_ptr && use_cluster) {
7389 struct btrfs_block_group_cache *used_block_group;
7390 unsigned long aligned_cluster;
7391 /*
7392 * the refill lock keeps out other
7393 * people trying to start a new cluster
7394 */
7395 used_block_group = btrfs_lock_cluster(block_group,
7396 last_ptr,
7397 delalloc);
7398 if (!used_block_group)
7399 goto refill_cluster;
7400
7401 if (used_block_group != block_group &&
7402 (used_block_group->ro ||
7403 !block_group_bits(used_block_group, flags)))
7404 goto release_cluster;
7405
7406 offset = btrfs_alloc_from_cluster(used_block_group,
7407 last_ptr,
7408 num_bytes,
7409 used_block_group->key.objectid,
7410 &max_extent_size);
7411 if (offset) {
7412 /* we have a block, we're done */
7413 spin_unlock(&last_ptr->refill_lock);
7414 trace_btrfs_reserve_extent_cluster(
7415 used_block_group,
7416 search_start, num_bytes);
7417 if (used_block_group != block_group) {
7418 btrfs_release_block_group(block_group,
7419 delalloc);
7420 block_group = used_block_group;
7421 }
7422 goto checks;
7423 }
7424
7425 WARN_ON(last_ptr->block_group != used_block_group);
7426 release_cluster:
7427 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7428 * set up a new clusters, so lets just skip it
7429 * and let the allocator find whatever block
7430 * it can find. If we reach this point, we
7431 * will have tried the cluster allocator
7432 * plenty of times and not have found
7433 * anything, so we are likely way too
7434 * fragmented for the clustering stuff to find
7435 * anything.
7436 *
7437 * However, if the cluster is taken from the
7438 * current block group, release the cluster
7439 * first, so that we stand a better chance of
7440 * succeeding in the unclustered
7441 * allocation. */
7442 if (loop >= LOOP_NO_EMPTY_SIZE &&
7443 used_block_group != block_group) {
7444 spin_unlock(&last_ptr->refill_lock);
7445 btrfs_release_block_group(used_block_group,
7446 delalloc);
7447 goto unclustered_alloc;
7448 }
7449
7450 /*
7451 * this cluster didn't work out, free it and
7452 * start over
7453 */
7454 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7455
7456 if (used_block_group != block_group)
7457 btrfs_release_block_group(used_block_group,
7458 delalloc);
7459 refill_cluster:
7460 if (loop >= LOOP_NO_EMPTY_SIZE) {
7461 spin_unlock(&last_ptr->refill_lock);
7462 goto unclustered_alloc;
7463 }
7464
7465 aligned_cluster = max_t(unsigned long,
7466 empty_cluster + empty_size,
7467 block_group->full_stripe_len);
7468
7469 /* allocate a cluster in this block group */
7470 ret = btrfs_find_space_cluster(fs_info, block_group,
7471 last_ptr, search_start,
7472 num_bytes,
7473 aligned_cluster);
7474 if (ret == 0) {
7475 /*
7476 * now pull our allocation out of this
7477 * cluster
7478 */
7479 offset = btrfs_alloc_from_cluster(block_group,
7480 last_ptr,
7481 num_bytes,
7482 search_start,
7483 &max_extent_size);
7484 if (offset) {
7485 /* we found one, proceed */
7486 spin_unlock(&last_ptr->refill_lock);
7487 trace_btrfs_reserve_extent_cluster(
7488 block_group, search_start,
7489 num_bytes);
7490 goto checks;
7491 }
7492 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7493 && !failed_cluster_refill) {
7494 spin_unlock(&last_ptr->refill_lock);
7495
7496 failed_cluster_refill = true;
7497 wait_block_group_cache_progress(block_group,
7498 num_bytes + empty_cluster + empty_size);
7499 goto have_block_group;
7500 }
7501
7502 /*
7503 * at this point we either didn't find a cluster
7504 * or we weren't able to allocate a block from our
7505 * cluster. Free the cluster we've been trying
7506 * to use, and go to the next block group
7507 */
7508 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7509 spin_unlock(&last_ptr->refill_lock);
7510 goto loop;
7511 }
7512
7513 unclustered_alloc:
7514 /*
7515 * We are doing an unclustered alloc, set the fragmented flag so
7516 * we don't bother trying to setup a cluster again until we get
7517 * more space.
7518 */
7519 if (unlikely(last_ptr)) {
7520 spin_lock(&last_ptr->lock);
7521 last_ptr->fragmented = 1;
7522 spin_unlock(&last_ptr->lock);
7523 }
7524 if (cached) {
7525 struct btrfs_free_space_ctl *ctl =
7526 block_group->free_space_ctl;
7527
7528 spin_lock(&ctl->tree_lock);
7529 if (ctl->free_space <
7530 num_bytes + empty_cluster + empty_size) {
7531 if (ctl->free_space > max_extent_size)
7532 max_extent_size = ctl->free_space;
7533 spin_unlock(&ctl->tree_lock);
7534 goto loop;
7535 }
7536 spin_unlock(&ctl->tree_lock);
7537 }
7538
7539 offset = btrfs_find_space_for_alloc(block_group, search_start,
7540 num_bytes, empty_size,
7541 &max_extent_size);
7542 /*
7543 * If we didn't find a chunk, and we haven't failed on this
7544 * block group before, and this block group is in the middle of
7545 * caching and we are ok with waiting, then go ahead and wait
7546 * for progress to be made, and set failed_alloc to true.
7547 *
7548 * If failed_alloc is true then we've already waited on this
7549 * block group once and should move on to the next block group.
7550 */
7551 if (!offset && !failed_alloc && !cached &&
7552 loop > LOOP_CACHING_NOWAIT) {
7553 wait_block_group_cache_progress(block_group,
7554 num_bytes + empty_size);
7555 failed_alloc = true;
7556 goto have_block_group;
7557 } else if (!offset) {
7558 goto loop;
7559 }
7560 checks:
7561 search_start = round_up(offset, fs_info->stripesize);
7562
7563 /* move on to the next group */
7564 if (search_start + num_bytes >
7565 block_group->key.objectid + block_group->key.offset) {
7566 btrfs_add_free_space(block_group, offset, num_bytes);
7567 goto loop;
7568 }
7569
7570 if (offset < search_start)
7571 btrfs_add_free_space(block_group, offset,
7572 search_start - offset);
7573
7574 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7575 num_bytes, delalloc);
7576 if (ret == -EAGAIN) {
7577 btrfs_add_free_space(block_group, offset, num_bytes);
7578 goto loop;
7579 }
7580 btrfs_inc_block_group_reservations(block_group);
7581
7582 /* we are all good, lets return */
7583 ins->objectid = search_start;
7584 ins->offset = num_bytes;
7585
7586 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7587 btrfs_release_block_group(block_group, delalloc);
7588 break;
7589 loop:
7590 failed_cluster_refill = false;
7591 failed_alloc = false;
7592 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7593 index);
7594 btrfs_release_block_group(block_group, delalloc);
7595 cond_resched();
7596 }
7597 up_read(&space_info->groups_sem);
7598
7599 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7600 && !orig_have_caching_bg)
7601 orig_have_caching_bg = true;
7602
7603 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7604 goto search;
7605
7606 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7607 goto search;
7608
7609 /*
7610 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7611 * caching kthreads as we move along
7612 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7613 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7614 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7615 * again
7616 */
7617 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7618 index = 0;
7619 if (loop == LOOP_CACHING_NOWAIT) {
7620 /*
7621 * We want to skip the LOOP_CACHING_WAIT step if we
7622 * don't have any uncached bgs and we've already done a
7623 * full search through.
7624 */
7625 if (orig_have_caching_bg || !full_search)
7626 loop = LOOP_CACHING_WAIT;
7627 else
7628 loop = LOOP_ALLOC_CHUNK;
7629 } else {
7630 loop++;
7631 }
7632
7633 if (loop == LOOP_ALLOC_CHUNK) {
7634 struct btrfs_trans_handle *trans;
7635 int exist = 0;
7636
7637 trans = current->journal_info;
7638 if (trans)
7639 exist = 1;
7640 else
7641 trans = btrfs_join_transaction(root);
7642
7643 if (IS_ERR(trans)) {
7644 ret = PTR_ERR(trans);
7645 goto out;
7646 }
7647
7648 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
7649
7650 /*
7651 * If we can't allocate a new chunk we've already looped
7652 * through at least once, move on to the NO_EMPTY_SIZE
7653 * case.
7654 */
7655 if (ret == -ENOSPC)
7656 loop = LOOP_NO_EMPTY_SIZE;
7657
7658 /*
7659 * Do not bail out on ENOSPC since we
7660 * can do more things.
7661 */
7662 if (ret < 0 && ret != -ENOSPC)
7663 btrfs_abort_transaction(trans, ret);
7664 else
7665 ret = 0;
7666 if (!exist)
7667 btrfs_end_transaction(trans);
7668 if (ret)
7669 goto out;
7670 }
7671
7672 if (loop == LOOP_NO_EMPTY_SIZE) {
7673 /*
7674 * Don't loop again if we already have no empty_size and
7675 * no empty_cluster.
7676 */
7677 if (empty_size == 0 &&
7678 empty_cluster == 0) {
7679 ret = -ENOSPC;
7680 goto out;
7681 }
7682 empty_size = 0;
7683 empty_cluster = 0;
7684 }
7685
7686 goto search;
7687 } else if (!ins->objectid) {
7688 ret = -ENOSPC;
7689 } else if (ins->objectid) {
7690 if (!use_cluster && last_ptr) {
7691 spin_lock(&last_ptr->lock);
7692 last_ptr->window_start = ins->objectid;
7693 spin_unlock(&last_ptr->lock);
7694 }
7695 ret = 0;
7696 }
7697 out:
7698 if (ret == -ENOSPC) {
7699 spin_lock(&space_info->lock);
7700 space_info->max_extent_size = max_extent_size;
7701 spin_unlock(&space_info->lock);
7702 ins->offset = max_extent_size;
7703 }
7704 return ret;
7705 }
7706
dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)7707 static void dump_space_info(struct btrfs_fs_info *fs_info,
7708 struct btrfs_space_info *info, u64 bytes,
7709 int dump_block_groups)
7710 {
7711 struct btrfs_block_group_cache *cache;
7712 int index = 0;
7713
7714 spin_lock(&info->lock);
7715 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7716 info->flags,
7717 info->total_bytes - btrfs_space_info_used(info, true),
7718 info->full ? "" : "not ");
7719 btrfs_info(fs_info,
7720 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7721 info->total_bytes, info->bytes_used, info->bytes_pinned,
7722 info->bytes_reserved, info->bytes_may_use,
7723 info->bytes_readonly);
7724 spin_unlock(&info->lock);
7725
7726 if (!dump_block_groups)
7727 return;
7728
7729 down_read(&info->groups_sem);
7730 again:
7731 list_for_each_entry(cache, &info->block_groups[index], list) {
7732 spin_lock(&cache->lock);
7733 btrfs_info(fs_info,
7734 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7735 cache->key.objectid, cache->key.offset,
7736 btrfs_block_group_used(&cache->item), cache->pinned,
7737 cache->reserved, cache->ro ? "[readonly]" : "");
7738 btrfs_dump_free_space(cache, bytes);
7739 spin_unlock(&cache->lock);
7740 }
7741 if (++index < BTRFS_NR_RAID_TYPES)
7742 goto again;
7743 up_read(&info->groups_sem);
7744 }
7745
7746 /*
7747 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7748 * hole that is at least as big as @num_bytes.
7749 *
7750 * @root - The root that will contain this extent
7751 *
7752 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7753 * is used for accounting purposes. This value differs
7754 * from @num_bytes only in the case of compressed extents.
7755 *
7756 * @num_bytes - Number of bytes to allocate on-disk.
7757 *
7758 * @min_alloc_size - Indicates the minimum amount of space that the
7759 * allocator should try to satisfy. In some cases
7760 * @num_bytes may be larger than what is required and if
7761 * the filesystem is fragmented then allocation fails.
7762 * However, the presence of @min_alloc_size gives a
7763 * chance to try and satisfy the smaller allocation.
7764 *
7765 * @empty_size - A hint that you plan on doing more COW. This is the
7766 * size in bytes the allocator should try to find free
7767 * next to the block it returns. This is just a hint and
7768 * may be ignored by the allocator.
7769 *
7770 * @hint_byte - Hint to the allocator to start searching above the byte
7771 * address passed. It might be ignored.
7772 *
7773 * @ins - This key is modified to record the found hole. It will
7774 * have the following values:
7775 * ins->objectid == start position
7776 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7777 * ins->offset == the size of the hole.
7778 *
7779 * @is_data - Boolean flag indicating whether an extent is
7780 * allocated for data (true) or metadata (false)
7781 *
7782 * @delalloc - Boolean flag indicating whether this allocation is for
7783 * delalloc or not. If 'true' data_rwsem of block groups
7784 * is going to be acquired.
7785 *
7786 *
7787 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7788 * case -ENOSPC is returned then @ins->offset will contain the size of the
7789 * largest available hole the allocator managed to find.
7790 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)7791 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7792 u64 num_bytes, u64 min_alloc_size,
7793 u64 empty_size, u64 hint_byte,
7794 struct btrfs_key *ins, int is_data, int delalloc)
7795 {
7796 struct btrfs_fs_info *fs_info = root->fs_info;
7797 bool final_tried = num_bytes == min_alloc_size;
7798 u64 flags;
7799 int ret;
7800
7801 flags = get_alloc_profile_by_root(root, is_data);
7802 again:
7803 WARN_ON(num_bytes < fs_info->sectorsize);
7804 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7805 hint_byte, ins, flags, delalloc);
7806 if (!ret && !is_data) {
7807 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7808 } else if (ret == -ENOSPC) {
7809 if (!final_tried && ins->offset) {
7810 num_bytes = min(num_bytes >> 1, ins->offset);
7811 num_bytes = round_down(num_bytes,
7812 fs_info->sectorsize);
7813 num_bytes = max(num_bytes, min_alloc_size);
7814 ram_bytes = num_bytes;
7815 if (num_bytes == min_alloc_size)
7816 final_tried = true;
7817 goto again;
7818 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7819 struct btrfs_space_info *sinfo;
7820
7821 sinfo = __find_space_info(fs_info, flags);
7822 btrfs_err(fs_info,
7823 "allocation failed flags %llu, wanted %llu",
7824 flags, num_bytes);
7825 if (sinfo)
7826 dump_space_info(fs_info, sinfo, num_bytes, 1);
7827 }
7828 }
7829
7830 return ret;
7831 }
7832
__btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int pin,int delalloc)7833 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7834 u64 start, u64 len,
7835 int pin, int delalloc)
7836 {
7837 struct btrfs_block_group_cache *cache;
7838 int ret = 0;
7839
7840 cache = btrfs_lookup_block_group(fs_info, start);
7841 if (!cache) {
7842 btrfs_err(fs_info, "Unable to find block group for %llu",
7843 start);
7844 return -ENOSPC;
7845 }
7846
7847 if (pin)
7848 pin_down_extent(fs_info, cache, start, len, 1);
7849 else {
7850 if (btrfs_test_opt(fs_info, DISCARD))
7851 ret = btrfs_discard_extent(fs_info, start, len, NULL);
7852 btrfs_add_free_space(cache, start, len);
7853 btrfs_free_reserved_bytes(cache, len, delalloc);
7854 trace_btrfs_reserved_extent_free(fs_info, start, len);
7855 }
7856
7857 btrfs_put_block_group(cache);
7858 return ret;
7859 }
7860
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)7861 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7862 u64 start, u64 len, int delalloc)
7863 {
7864 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
7865 }
7866
btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)7867 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
7868 u64 start, u64 len)
7869 {
7870 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
7871 }
7872
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)7873 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7874 u64 parent, u64 root_objectid,
7875 u64 flags, u64 owner, u64 offset,
7876 struct btrfs_key *ins, int ref_mod)
7877 {
7878 struct btrfs_fs_info *fs_info = trans->fs_info;
7879 int ret;
7880 struct btrfs_extent_item *extent_item;
7881 struct btrfs_extent_inline_ref *iref;
7882 struct btrfs_path *path;
7883 struct extent_buffer *leaf;
7884 int type;
7885 u32 size;
7886
7887 if (parent > 0)
7888 type = BTRFS_SHARED_DATA_REF_KEY;
7889 else
7890 type = BTRFS_EXTENT_DATA_REF_KEY;
7891
7892 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7893
7894 path = btrfs_alloc_path();
7895 if (!path)
7896 return -ENOMEM;
7897
7898 path->leave_spinning = 1;
7899 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7900 ins, size);
7901 if (ret) {
7902 btrfs_free_path(path);
7903 return ret;
7904 }
7905
7906 leaf = path->nodes[0];
7907 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7908 struct btrfs_extent_item);
7909 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7910 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7911 btrfs_set_extent_flags(leaf, extent_item,
7912 flags | BTRFS_EXTENT_FLAG_DATA);
7913
7914 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7915 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7916 if (parent > 0) {
7917 struct btrfs_shared_data_ref *ref;
7918 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7919 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7920 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7921 } else {
7922 struct btrfs_extent_data_ref *ref;
7923 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7924 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7925 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7926 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7927 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7928 }
7929
7930 btrfs_mark_buffer_dirty(path->nodes[0]);
7931 btrfs_free_path(path);
7932
7933 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
7934 if (ret)
7935 return ret;
7936
7937 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
7938 if (ret) { /* -ENOENT, logic error */
7939 btrfs_err(fs_info, "update block group failed for %llu %llu",
7940 ins->objectid, ins->offset);
7941 BUG();
7942 }
7943 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
7944 return ret;
7945 }
7946
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)7947 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7948 struct btrfs_delayed_ref_node *node,
7949 struct btrfs_delayed_extent_op *extent_op)
7950 {
7951 struct btrfs_fs_info *fs_info = trans->fs_info;
7952 int ret;
7953 struct btrfs_extent_item *extent_item;
7954 struct btrfs_key extent_key;
7955 struct btrfs_tree_block_info *block_info;
7956 struct btrfs_extent_inline_ref *iref;
7957 struct btrfs_path *path;
7958 struct extent_buffer *leaf;
7959 struct btrfs_delayed_tree_ref *ref;
7960 u32 size = sizeof(*extent_item) + sizeof(*iref);
7961 u64 num_bytes;
7962 u64 flags = extent_op->flags_to_set;
7963 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
7964
7965 ref = btrfs_delayed_node_to_tree_ref(node);
7966
7967 extent_key.objectid = node->bytenr;
7968 if (skinny_metadata) {
7969 extent_key.offset = ref->level;
7970 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7971 num_bytes = fs_info->nodesize;
7972 } else {
7973 extent_key.offset = node->num_bytes;
7974 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7975 size += sizeof(*block_info);
7976 num_bytes = node->num_bytes;
7977 }
7978
7979 path = btrfs_alloc_path();
7980 if (!path) {
7981 btrfs_free_and_pin_reserved_extent(fs_info,
7982 extent_key.objectid,
7983 fs_info->nodesize);
7984 return -ENOMEM;
7985 }
7986
7987 path->leave_spinning = 1;
7988 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7989 &extent_key, size);
7990 if (ret) {
7991 btrfs_free_path(path);
7992 btrfs_free_and_pin_reserved_extent(fs_info,
7993 extent_key.objectid,
7994 fs_info->nodesize);
7995 return ret;
7996 }
7997
7998 leaf = path->nodes[0];
7999 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8000 struct btrfs_extent_item);
8001 btrfs_set_extent_refs(leaf, extent_item, 1);
8002 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8003 btrfs_set_extent_flags(leaf, extent_item,
8004 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8005
8006 if (skinny_metadata) {
8007 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8008 } else {
8009 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8010 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8011 btrfs_set_tree_block_level(leaf, block_info, ref->level);
8012 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8013 }
8014
8015 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8016 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8017 btrfs_set_extent_inline_ref_type(leaf, iref,
8018 BTRFS_SHARED_BLOCK_REF_KEY);
8019 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8020 } else {
8021 btrfs_set_extent_inline_ref_type(leaf, iref,
8022 BTRFS_TREE_BLOCK_REF_KEY);
8023 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8024 }
8025
8026 btrfs_mark_buffer_dirty(leaf);
8027 btrfs_free_path(path);
8028
8029 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8030 num_bytes);
8031 if (ret)
8032 return ret;
8033
8034 ret = update_block_group(trans, fs_info, extent_key.objectid,
8035 fs_info->nodesize, 1);
8036 if (ret) { /* -ENOENT, logic error */
8037 btrfs_err(fs_info, "update block group failed for %llu %llu",
8038 extent_key.objectid, extent_key.offset);
8039 BUG();
8040 }
8041
8042 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8043 fs_info->nodesize);
8044 return ret;
8045 }
8046
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)8047 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8048 struct btrfs_root *root, u64 owner,
8049 u64 offset, u64 ram_bytes,
8050 struct btrfs_key *ins)
8051 {
8052 int ret;
8053
8054 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8055
8056 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8057 root->root_key.objectid, owner, offset,
8058 BTRFS_ADD_DELAYED_EXTENT);
8059
8060 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8061 ins->offset, 0,
8062 root->root_key.objectid, owner,
8063 offset, ram_bytes,
8064 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8065 return ret;
8066 }
8067
8068 /*
8069 * this is used by the tree logging recovery code. It records that
8070 * an extent has been allocated and makes sure to clear the free
8071 * space cache bits as well
8072 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)8073 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8074 u64 root_objectid, u64 owner, u64 offset,
8075 struct btrfs_key *ins)
8076 {
8077 struct btrfs_fs_info *fs_info = trans->fs_info;
8078 int ret;
8079 struct btrfs_block_group_cache *block_group;
8080 struct btrfs_space_info *space_info;
8081
8082 /*
8083 * Mixed block groups will exclude before processing the log so we only
8084 * need to do the exclude dance if this fs isn't mixed.
8085 */
8086 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8087 ret = __exclude_logged_extent(fs_info, ins->objectid,
8088 ins->offset);
8089 if (ret)
8090 return ret;
8091 }
8092
8093 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8094 if (!block_group)
8095 return -EINVAL;
8096
8097 space_info = block_group->space_info;
8098 spin_lock(&space_info->lock);
8099 spin_lock(&block_group->lock);
8100 space_info->bytes_reserved += ins->offset;
8101 block_group->reserved += ins->offset;
8102 spin_unlock(&block_group->lock);
8103 spin_unlock(&space_info->lock);
8104
8105 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8106 offset, ins, 1);
8107 btrfs_put_block_group(block_group);
8108 return ret;
8109 }
8110
8111 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner)8112 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8113 u64 bytenr, int level, u64 owner)
8114 {
8115 struct btrfs_fs_info *fs_info = root->fs_info;
8116 struct extent_buffer *buf;
8117
8118 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8119 if (IS_ERR(buf))
8120 return buf;
8121
8122 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8123 btrfs_tree_lock(buf);
8124 clean_tree_block(fs_info, buf);
8125 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8126
8127 btrfs_set_lock_blocking(buf);
8128 set_extent_buffer_uptodate(buf);
8129
8130 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8131 btrfs_set_header_level(buf, level);
8132 btrfs_set_header_bytenr(buf, buf->start);
8133 btrfs_set_header_generation(buf, trans->transid);
8134 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8135 btrfs_set_header_owner(buf, owner);
8136 write_extent_buffer_fsid(buf, fs_info->fsid);
8137 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8138 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8139 buf->log_index = root->log_transid % 2;
8140 /*
8141 * we allow two log transactions at a time, use different
8142 * EXENT bit to differentiate dirty pages.
8143 */
8144 if (buf->log_index == 0)
8145 set_extent_dirty(&root->dirty_log_pages, buf->start,
8146 buf->start + buf->len - 1, GFP_NOFS);
8147 else
8148 set_extent_new(&root->dirty_log_pages, buf->start,
8149 buf->start + buf->len - 1);
8150 } else {
8151 buf->log_index = -1;
8152 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8153 buf->start + buf->len - 1, GFP_NOFS);
8154 }
8155 trans->dirty = true;
8156 /* this returns a buffer locked for blocking */
8157 return buf;
8158 }
8159
8160 static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)8161 use_block_rsv(struct btrfs_trans_handle *trans,
8162 struct btrfs_root *root, u32 blocksize)
8163 {
8164 struct btrfs_fs_info *fs_info = root->fs_info;
8165 struct btrfs_block_rsv *block_rsv;
8166 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8167 int ret;
8168 bool global_updated = false;
8169
8170 block_rsv = get_block_rsv(trans, root);
8171
8172 if (unlikely(block_rsv->size == 0))
8173 goto try_reserve;
8174 again:
8175 ret = block_rsv_use_bytes(block_rsv, blocksize);
8176 if (!ret)
8177 return block_rsv;
8178
8179 if (block_rsv->failfast)
8180 return ERR_PTR(ret);
8181
8182 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8183 global_updated = true;
8184 update_global_block_rsv(fs_info);
8185 goto again;
8186 }
8187
8188 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8189 static DEFINE_RATELIMIT_STATE(_rs,
8190 DEFAULT_RATELIMIT_INTERVAL * 10,
8191 /*DEFAULT_RATELIMIT_BURST*/ 1);
8192 if (__ratelimit(&_rs))
8193 WARN(1, KERN_DEBUG
8194 "BTRFS: block rsv returned %d\n", ret);
8195 }
8196 try_reserve:
8197 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8198 BTRFS_RESERVE_NO_FLUSH);
8199 if (!ret)
8200 return block_rsv;
8201 /*
8202 * If we couldn't reserve metadata bytes try and use some from
8203 * the global reserve if its space type is the same as the global
8204 * reservation.
8205 */
8206 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8207 block_rsv->space_info == global_rsv->space_info) {
8208 ret = block_rsv_use_bytes(global_rsv, blocksize);
8209 if (!ret)
8210 return global_rsv;
8211 }
8212 return ERR_PTR(ret);
8213 }
8214
unuse_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u32 blocksize)8215 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8216 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8217 {
8218 block_rsv_add_bytes(block_rsv, blocksize, 0);
8219 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8220 }
8221
8222 /*
8223 * finds a free extent and does all the dirty work required for allocation
8224 * returns the tree buffer or an ERR_PTR on error.
8225 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size)8226 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8227 struct btrfs_root *root,
8228 u64 parent, u64 root_objectid,
8229 const struct btrfs_disk_key *key,
8230 int level, u64 hint,
8231 u64 empty_size)
8232 {
8233 struct btrfs_fs_info *fs_info = root->fs_info;
8234 struct btrfs_key ins;
8235 struct btrfs_block_rsv *block_rsv;
8236 struct extent_buffer *buf;
8237 struct btrfs_delayed_extent_op *extent_op;
8238 u64 flags = 0;
8239 int ret;
8240 u32 blocksize = fs_info->nodesize;
8241 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8242
8243 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8244 if (btrfs_is_testing(fs_info)) {
8245 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8246 level, root_objectid);
8247 if (!IS_ERR(buf))
8248 root->alloc_bytenr += blocksize;
8249 return buf;
8250 }
8251 #endif
8252
8253 block_rsv = use_block_rsv(trans, root, blocksize);
8254 if (IS_ERR(block_rsv))
8255 return ERR_CAST(block_rsv);
8256
8257 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8258 empty_size, hint, &ins, 0, 0);
8259 if (ret)
8260 goto out_unuse;
8261
8262 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8263 root_objectid);
8264 if (IS_ERR(buf)) {
8265 ret = PTR_ERR(buf);
8266 goto out_free_reserved;
8267 }
8268
8269 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8270 if (parent == 0)
8271 parent = ins.objectid;
8272 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8273 } else
8274 BUG_ON(parent > 0);
8275
8276 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8277 extent_op = btrfs_alloc_delayed_extent_op();
8278 if (!extent_op) {
8279 ret = -ENOMEM;
8280 goto out_free_buf;
8281 }
8282 if (key)
8283 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8284 else
8285 memset(&extent_op->key, 0, sizeof(extent_op->key));
8286 extent_op->flags_to_set = flags;
8287 extent_op->update_key = skinny_metadata ? false : true;
8288 extent_op->update_flags = true;
8289 extent_op->is_data = false;
8290 extent_op->level = level;
8291
8292 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8293 root_objectid, level, 0,
8294 BTRFS_ADD_DELAYED_EXTENT);
8295 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8296 ins.offset, parent,
8297 root_objectid, level,
8298 BTRFS_ADD_DELAYED_EXTENT,
8299 extent_op, NULL, NULL);
8300 if (ret)
8301 goto out_free_delayed;
8302 }
8303 return buf;
8304
8305 out_free_delayed:
8306 btrfs_free_delayed_extent_op(extent_op);
8307 out_free_buf:
8308 free_extent_buffer(buf);
8309 out_free_reserved:
8310 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8311 out_unuse:
8312 unuse_block_rsv(fs_info, block_rsv, blocksize);
8313 return ERR_PTR(ret);
8314 }
8315
8316 struct walk_control {
8317 u64 refs[BTRFS_MAX_LEVEL];
8318 u64 flags[BTRFS_MAX_LEVEL];
8319 struct btrfs_key update_progress;
8320 int stage;
8321 int level;
8322 int shared_level;
8323 int update_ref;
8324 int keep_locks;
8325 int reada_slot;
8326 int reada_count;
8327 };
8328
8329 #define DROP_REFERENCE 1
8330 #define UPDATE_BACKREF 2
8331
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)8332 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8333 struct btrfs_root *root,
8334 struct walk_control *wc,
8335 struct btrfs_path *path)
8336 {
8337 struct btrfs_fs_info *fs_info = root->fs_info;
8338 u64 bytenr;
8339 u64 generation;
8340 u64 refs;
8341 u64 flags;
8342 u32 nritems;
8343 struct btrfs_key key;
8344 struct extent_buffer *eb;
8345 int ret;
8346 int slot;
8347 int nread = 0;
8348
8349 if (path->slots[wc->level] < wc->reada_slot) {
8350 wc->reada_count = wc->reada_count * 2 / 3;
8351 wc->reada_count = max(wc->reada_count, 2);
8352 } else {
8353 wc->reada_count = wc->reada_count * 3 / 2;
8354 wc->reada_count = min_t(int, wc->reada_count,
8355 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8356 }
8357
8358 eb = path->nodes[wc->level];
8359 nritems = btrfs_header_nritems(eb);
8360
8361 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8362 if (nread >= wc->reada_count)
8363 break;
8364
8365 cond_resched();
8366 bytenr = btrfs_node_blockptr(eb, slot);
8367 generation = btrfs_node_ptr_generation(eb, slot);
8368
8369 if (slot == path->slots[wc->level])
8370 goto reada;
8371
8372 if (wc->stage == UPDATE_BACKREF &&
8373 generation <= root->root_key.offset)
8374 continue;
8375
8376 /* We don't lock the tree block, it's OK to be racy here */
8377 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8378 wc->level - 1, 1, &refs,
8379 &flags);
8380 /* We don't care about errors in readahead. */
8381 if (ret < 0)
8382 continue;
8383 BUG_ON(refs == 0);
8384
8385 if (wc->stage == DROP_REFERENCE) {
8386 if (refs == 1)
8387 goto reada;
8388
8389 if (wc->level == 1 &&
8390 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8391 continue;
8392 if (!wc->update_ref ||
8393 generation <= root->root_key.offset)
8394 continue;
8395 btrfs_node_key_to_cpu(eb, &key, slot);
8396 ret = btrfs_comp_cpu_keys(&key,
8397 &wc->update_progress);
8398 if (ret < 0)
8399 continue;
8400 } else {
8401 if (wc->level == 1 &&
8402 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8403 continue;
8404 }
8405 reada:
8406 readahead_tree_block(fs_info, bytenr);
8407 nread++;
8408 }
8409 wc->reada_slot = slot;
8410 }
8411
8412 /*
8413 * helper to process tree block while walking down the tree.
8414 *
8415 * when wc->stage == UPDATE_BACKREF, this function updates
8416 * back refs for pointers in the block.
8417 *
8418 * NOTE: return value 1 means we should stop walking down.
8419 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)8420 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8421 struct btrfs_root *root,
8422 struct btrfs_path *path,
8423 struct walk_control *wc, int lookup_info)
8424 {
8425 struct btrfs_fs_info *fs_info = root->fs_info;
8426 int level = wc->level;
8427 struct extent_buffer *eb = path->nodes[level];
8428 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8429 int ret;
8430
8431 if (wc->stage == UPDATE_BACKREF &&
8432 btrfs_header_owner(eb) != root->root_key.objectid)
8433 return 1;
8434
8435 /*
8436 * when reference count of tree block is 1, it won't increase
8437 * again. once full backref flag is set, we never clear it.
8438 */
8439 if (lookup_info &&
8440 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8441 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8442 BUG_ON(!path->locks[level]);
8443 ret = btrfs_lookup_extent_info(trans, fs_info,
8444 eb->start, level, 1,
8445 &wc->refs[level],
8446 &wc->flags[level]);
8447 BUG_ON(ret == -ENOMEM);
8448 if (ret)
8449 return ret;
8450 BUG_ON(wc->refs[level] == 0);
8451 }
8452
8453 if (wc->stage == DROP_REFERENCE) {
8454 if (wc->refs[level] > 1)
8455 return 1;
8456
8457 if (path->locks[level] && !wc->keep_locks) {
8458 btrfs_tree_unlock_rw(eb, path->locks[level]);
8459 path->locks[level] = 0;
8460 }
8461 return 0;
8462 }
8463
8464 /* wc->stage == UPDATE_BACKREF */
8465 if (!(wc->flags[level] & flag)) {
8466 BUG_ON(!path->locks[level]);
8467 ret = btrfs_inc_ref(trans, root, eb, 1);
8468 BUG_ON(ret); /* -ENOMEM */
8469 ret = btrfs_dec_ref(trans, root, eb, 0);
8470 BUG_ON(ret); /* -ENOMEM */
8471 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8472 eb->len, flag,
8473 btrfs_header_level(eb), 0);
8474 BUG_ON(ret); /* -ENOMEM */
8475 wc->flags[level] |= flag;
8476 }
8477
8478 /*
8479 * the block is shared by multiple trees, so it's not good to
8480 * keep the tree lock
8481 */
8482 if (path->locks[level] && level > 0) {
8483 btrfs_tree_unlock_rw(eb, path->locks[level]);
8484 path->locks[level] = 0;
8485 }
8486 return 0;
8487 }
8488
8489 /*
8490 * helper to process tree block pointer.
8491 *
8492 * when wc->stage == DROP_REFERENCE, this function checks
8493 * reference count of the block pointed to. if the block
8494 * is shared and we need update back refs for the subtree
8495 * rooted at the block, this function changes wc->stage to
8496 * UPDATE_BACKREF. if the block is shared and there is no
8497 * need to update back, this function drops the reference
8498 * to the block.
8499 *
8500 * NOTE: return value 1 means we should stop walking down.
8501 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)8502 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8503 struct btrfs_root *root,
8504 struct btrfs_path *path,
8505 struct walk_control *wc, int *lookup_info)
8506 {
8507 struct btrfs_fs_info *fs_info = root->fs_info;
8508 u64 bytenr;
8509 u64 generation;
8510 u64 parent;
8511 u32 blocksize;
8512 struct btrfs_key key;
8513 struct btrfs_key first_key;
8514 struct extent_buffer *next;
8515 int level = wc->level;
8516 int reada = 0;
8517 int ret = 0;
8518 bool need_account = false;
8519
8520 generation = btrfs_node_ptr_generation(path->nodes[level],
8521 path->slots[level]);
8522 /*
8523 * if the lower level block was created before the snapshot
8524 * was created, we know there is no need to update back refs
8525 * for the subtree
8526 */
8527 if (wc->stage == UPDATE_BACKREF &&
8528 generation <= root->root_key.offset) {
8529 *lookup_info = 1;
8530 return 1;
8531 }
8532
8533 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8534 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8535 path->slots[level]);
8536 blocksize = fs_info->nodesize;
8537
8538 next = find_extent_buffer(fs_info, bytenr);
8539 if (!next) {
8540 next = btrfs_find_create_tree_block(fs_info, bytenr);
8541 if (IS_ERR(next))
8542 return PTR_ERR(next);
8543
8544 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8545 level - 1);
8546 reada = 1;
8547 }
8548 btrfs_tree_lock(next);
8549 btrfs_set_lock_blocking(next);
8550
8551 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8552 &wc->refs[level - 1],
8553 &wc->flags[level - 1]);
8554 if (ret < 0)
8555 goto out_unlock;
8556
8557 if (unlikely(wc->refs[level - 1] == 0)) {
8558 btrfs_err(fs_info, "Missing references.");
8559 ret = -EIO;
8560 goto out_unlock;
8561 }
8562 *lookup_info = 0;
8563
8564 if (wc->stage == DROP_REFERENCE) {
8565 if (wc->refs[level - 1] > 1) {
8566 need_account = true;
8567 if (level == 1 &&
8568 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8569 goto skip;
8570
8571 if (!wc->update_ref ||
8572 generation <= root->root_key.offset)
8573 goto skip;
8574
8575 btrfs_node_key_to_cpu(path->nodes[level], &key,
8576 path->slots[level]);
8577 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8578 if (ret < 0)
8579 goto skip;
8580
8581 wc->stage = UPDATE_BACKREF;
8582 wc->shared_level = level - 1;
8583 }
8584 } else {
8585 if (level == 1 &&
8586 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8587 goto skip;
8588 }
8589
8590 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8591 btrfs_tree_unlock(next);
8592 free_extent_buffer(next);
8593 next = NULL;
8594 *lookup_info = 1;
8595 }
8596
8597 if (!next) {
8598 if (reada && level == 1)
8599 reada_walk_down(trans, root, wc, path);
8600 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8601 &first_key);
8602 if (IS_ERR(next)) {
8603 return PTR_ERR(next);
8604 } else if (!extent_buffer_uptodate(next)) {
8605 free_extent_buffer(next);
8606 return -EIO;
8607 }
8608 btrfs_tree_lock(next);
8609 btrfs_set_lock_blocking(next);
8610 }
8611
8612 level--;
8613 ASSERT(level == btrfs_header_level(next));
8614 if (level != btrfs_header_level(next)) {
8615 btrfs_err(root->fs_info, "mismatched level");
8616 ret = -EIO;
8617 goto out_unlock;
8618 }
8619 path->nodes[level] = next;
8620 path->slots[level] = 0;
8621 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8622 wc->level = level;
8623 if (wc->level == 1)
8624 wc->reada_slot = 0;
8625 return 0;
8626 skip:
8627 wc->refs[level - 1] = 0;
8628 wc->flags[level - 1] = 0;
8629 if (wc->stage == DROP_REFERENCE) {
8630 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8631 parent = path->nodes[level]->start;
8632 } else {
8633 ASSERT(root->root_key.objectid ==
8634 btrfs_header_owner(path->nodes[level]));
8635 if (root->root_key.objectid !=
8636 btrfs_header_owner(path->nodes[level])) {
8637 btrfs_err(root->fs_info,
8638 "mismatched block owner");
8639 ret = -EIO;
8640 goto out_unlock;
8641 }
8642 parent = 0;
8643 }
8644
8645 if (need_account) {
8646 ret = btrfs_qgroup_trace_subtree(trans, next,
8647 generation, level - 1);
8648 if (ret) {
8649 btrfs_err_rl(fs_info,
8650 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8651 ret);
8652 }
8653 }
8654 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8655 parent, root->root_key.objectid,
8656 level - 1, 0);
8657 if (ret)
8658 goto out_unlock;
8659 }
8660
8661 *lookup_info = 1;
8662 ret = 1;
8663
8664 out_unlock:
8665 btrfs_tree_unlock(next);
8666 free_extent_buffer(next);
8667
8668 return ret;
8669 }
8670
8671 /*
8672 * helper to process tree block while walking up the tree.
8673 *
8674 * when wc->stage == DROP_REFERENCE, this function drops
8675 * reference count on the block.
8676 *
8677 * when wc->stage == UPDATE_BACKREF, this function changes
8678 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8679 * to UPDATE_BACKREF previously while processing the block.
8680 *
8681 * NOTE: return value 1 means we should stop walking up.
8682 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8683 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8684 struct btrfs_root *root,
8685 struct btrfs_path *path,
8686 struct walk_control *wc)
8687 {
8688 struct btrfs_fs_info *fs_info = root->fs_info;
8689 int ret;
8690 int level = wc->level;
8691 struct extent_buffer *eb = path->nodes[level];
8692 u64 parent = 0;
8693
8694 if (wc->stage == UPDATE_BACKREF) {
8695 BUG_ON(wc->shared_level < level);
8696 if (level < wc->shared_level)
8697 goto out;
8698
8699 ret = find_next_key(path, level + 1, &wc->update_progress);
8700 if (ret > 0)
8701 wc->update_ref = 0;
8702
8703 wc->stage = DROP_REFERENCE;
8704 wc->shared_level = -1;
8705 path->slots[level] = 0;
8706
8707 /*
8708 * check reference count again if the block isn't locked.
8709 * we should start walking down the tree again if reference
8710 * count is one.
8711 */
8712 if (!path->locks[level]) {
8713 BUG_ON(level == 0);
8714 btrfs_tree_lock(eb);
8715 btrfs_set_lock_blocking(eb);
8716 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8717
8718 ret = btrfs_lookup_extent_info(trans, fs_info,
8719 eb->start, level, 1,
8720 &wc->refs[level],
8721 &wc->flags[level]);
8722 if (ret < 0) {
8723 btrfs_tree_unlock_rw(eb, path->locks[level]);
8724 path->locks[level] = 0;
8725 return ret;
8726 }
8727 BUG_ON(wc->refs[level] == 0);
8728 if (wc->refs[level] == 1) {
8729 btrfs_tree_unlock_rw(eb, path->locks[level]);
8730 path->locks[level] = 0;
8731 return 1;
8732 }
8733 }
8734 }
8735
8736 /* wc->stage == DROP_REFERENCE */
8737 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8738
8739 if (wc->refs[level] == 1) {
8740 if (level == 0) {
8741 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8742 ret = btrfs_dec_ref(trans, root, eb, 1);
8743 else
8744 ret = btrfs_dec_ref(trans, root, eb, 0);
8745 BUG_ON(ret); /* -ENOMEM */
8746 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
8747 if (ret) {
8748 btrfs_err_rl(fs_info,
8749 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8750 ret);
8751 }
8752 }
8753 /* make block locked assertion in clean_tree_block happy */
8754 if (!path->locks[level] &&
8755 btrfs_header_generation(eb) == trans->transid) {
8756 btrfs_tree_lock(eb);
8757 btrfs_set_lock_blocking(eb);
8758 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8759 }
8760 clean_tree_block(fs_info, eb);
8761 }
8762
8763 if (eb == root->node) {
8764 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8765 parent = eb->start;
8766 else
8767 BUG_ON(root->root_key.objectid !=
8768 btrfs_header_owner(eb));
8769 } else {
8770 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8771 parent = path->nodes[level + 1]->start;
8772 else
8773 BUG_ON(root->root_key.objectid !=
8774 btrfs_header_owner(path->nodes[level + 1]));
8775 }
8776
8777 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8778 out:
8779 wc->refs[level] = 0;
8780 wc->flags[level] = 0;
8781 return 0;
8782 }
8783
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8784 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8785 struct btrfs_root *root,
8786 struct btrfs_path *path,
8787 struct walk_control *wc)
8788 {
8789 int level = wc->level;
8790 int lookup_info = 1;
8791 int ret;
8792
8793 while (level >= 0) {
8794 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8795 if (ret > 0)
8796 break;
8797
8798 if (level == 0)
8799 break;
8800
8801 if (path->slots[level] >=
8802 btrfs_header_nritems(path->nodes[level]))
8803 break;
8804
8805 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8806 if (ret > 0) {
8807 path->slots[level]++;
8808 continue;
8809 } else if (ret < 0)
8810 return ret;
8811 level = wc->level;
8812 }
8813 return 0;
8814 }
8815
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)8816 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8817 struct btrfs_root *root,
8818 struct btrfs_path *path,
8819 struct walk_control *wc, int max_level)
8820 {
8821 int level = wc->level;
8822 int ret;
8823
8824 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8825 while (level < max_level && path->nodes[level]) {
8826 wc->level = level;
8827 if (path->slots[level] + 1 <
8828 btrfs_header_nritems(path->nodes[level])) {
8829 path->slots[level]++;
8830 return 0;
8831 } else {
8832 ret = walk_up_proc(trans, root, path, wc);
8833 if (ret > 0)
8834 return 0;
8835
8836 if (path->locks[level]) {
8837 btrfs_tree_unlock_rw(path->nodes[level],
8838 path->locks[level]);
8839 path->locks[level] = 0;
8840 }
8841 free_extent_buffer(path->nodes[level]);
8842 path->nodes[level] = NULL;
8843 level++;
8844 }
8845 }
8846 return 1;
8847 }
8848
8849 /*
8850 * drop a subvolume tree.
8851 *
8852 * this function traverses the tree freeing any blocks that only
8853 * referenced by the tree.
8854 *
8855 * when a shared tree block is found. this function decreases its
8856 * reference count by one. if update_ref is true, this function
8857 * also make sure backrefs for the shared block and all lower level
8858 * blocks are properly updated.
8859 *
8860 * If called with for_reloc == 0, may exit early with -EAGAIN
8861 */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)8862 int btrfs_drop_snapshot(struct btrfs_root *root,
8863 struct btrfs_block_rsv *block_rsv, int update_ref,
8864 int for_reloc)
8865 {
8866 struct btrfs_fs_info *fs_info = root->fs_info;
8867 struct btrfs_path *path;
8868 struct btrfs_trans_handle *trans;
8869 struct btrfs_root *tree_root = fs_info->tree_root;
8870 struct btrfs_root_item *root_item = &root->root_item;
8871 struct walk_control *wc;
8872 struct btrfs_key key;
8873 int err = 0;
8874 int ret;
8875 int level;
8876 bool root_dropped = false;
8877
8878 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8879
8880 path = btrfs_alloc_path();
8881 if (!path) {
8882 err = -ENOMEM;
8883 goto out;
8884 }
8885
8886 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8887 if (!wc) {
8888 btrfs_free_path(path);
8889 err = -ENOMEM;
8890 goto out;
8891 }
8892
8893 trans = btrfs_start_transaction(tree_root, 0);
8894 if (IS_ERR(trans)) {
8895 err = PTR_ERR(trans);
8896 goto out_free;
8897 }
8898
8899 if (block_rsv)
8900 trans->block_rsv = block_rsv;
8901
8902 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8903 level = btrfs_header_level(root->node);
8904 path->nodes[level] = btrfs_lock_root_node(root);
8905 btrfs_set_lock_blocking(path->nodes[level]);
8906 path->slots[level] = 0;
8907 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8908 memset(&wc->update_progress, 0,
8909 sizeof(wc->update_progress));
8910 } else {
8911 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8912 memcpy(&wc->update_progress, &key,
8913 sizeof(wc->update_progress));
8914
8915 level = root_item->drop_level;
8916 BUG_ON(level == 0);
8917 path->lowest_level = level;
8918 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8919 path->lowest_level = 0;
8920 if (ret < 0) {
8921 err = ret;
8922 goto out_end_trans;
8923 }
8924 WARN_ON(ret > 0);
8925
8926 /*
8927 * unlock our path, this is safe because only this
8928 * function is allowed to delete this snapshot
8929 */
8930 btrfs_unlock_up_safe(path, 0);
8931
8932 level = btrfs_header_level(root->node);
8933 while (1) {
8934 btrfs_tree_lock(path->nodes[level]);
8935 btrfs_set_lock_blocking(path->nodes[level]);
8936 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8937
8938 ret = btrfs_lookup_extent_info(trans, fs_info,
8939 path->nodes[level]->start,
8940 level, 1, &wc->refs[level],
8941 &wc->flags[level]);
8942 if (ret < 0) {
8943 err = ret;
8944 goto out_end_trans;
8945 }
8946 BUG_ON(wc->refs[level] == 0);
8947
8948 if (level == root_item->drop_level)
8949 break;
8950
8951 btrfs_tree_unlock(path->nodes[level]);
8952 path->locks[level] = 0;
8953 WARN_ON(wc->refs[level] != 1);
8954 level--;
8955 }
8956 }
8957
8958 wc->level = level;
8959 wc->shared_level = -1;
8960 wc->stage = DROP_REFERENCE;
8961 wc->update_ref = update_ref;
8962 wc->keep_locks = 0;
8963 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
8964
8965 while (1) {
8966
8967 ret = walk_down_tree(trans, root, path, wc);
8968 if (ret < 0) {
8969 err = ret;
8970 break;
8971 }
8972
8973 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8974 if (ret < 0) {
8975 err = ret;
8976 break;
8977 }
8978
8979 if (ret > 0) {
8980 BUG_ON(wc->stage != DROP_REFERENCE);
8981 break;
8982 }
8983
8984 if (wc->stage == DROP_REFERENCE) {
8985 level = wc->level;
8986 btrfs_node_key(path->nodes[level],
8987 &root_item->drop_progress,
8988 path->slots[level]);
8989 root_item->drop_level = level;
8990 }
8991
8992 BUG_ON(wc->level == 0);
8993 if (btrfs_should_end_transaction(trans) ||
8994 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
8995 ret = btrfs_update_root(trans, tree_root,
8996 &root->root_key,
8997 root_item);
8998 if (ret) {
8999 btrfs_abort_transaction(trans, ret);
9000 err = ret;
9001 goto out_end_trans;
9002 }
9003
9004 btrfs_end_transaction_throttle(trans);
9005 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9006 btrfs_debug(fs_info,
9007 "drop snapshot early exit");
9008 err = -EAGAIN;
9009 goto out_free;
9010 }
9011
9012 trans = btrfs_start_transaction(tree_root, 0);
9013 if (IS_ERR(trans)) {
9014 err = PTR_ERR(trans);
9015 goto out_free;
9016 }
9017 if (block_rsv)
9018 trans->block_rsv = block_rsv;
9019 }
9020 }
9021 btrfs_release_path(path);
9022 if (err)
9023 goto out_end_trans;
9024
9025 ret = btrfs_del_root(trans, &root->root_key);
9026 if (ret) {
9027 btrfs_abort_transaction(trans, ret);
9028 err = ret;
9029 goto out_end_trans;
9030 }
9031
9032 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9033 ret = btrfs_find_root(tree_root, &root->root_key, path,
9034 NULL, NULL);
9035 if (ret < 0) {
9036 btrfs_abort_transaction(trans, ret);
9037 err = ret;
9038 goto out_end_trans;
9039 } else if (ret > 0) {
9040 /* if we fail to delete the orphan item this time
9041 * around, it'll get picked up the next time.
9042 *
9043 * The most common failure here is just -ENOENT.
9044 */
9045 btrfs_del_orphan_item(trans, tree_root,
9046 root->root_key.objectid);
9047 }
9048 }
9049
9050 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9051 btrfs_add_dropped_root(trans, root);
9052 } else {
9053 free_extent_buffer(root->node);
9054 free_extent_buffer(root->commit_root);
9055 btrfs_put_fs_root(root);
9056 }
9057 root_dropped = true;
9058 out_end_trans:
9059 btrfs_end_transaction_throttle(trans);
9060 out_free:
9061 kfree(wc);
9062 btrfs_free_path(path);
9063 out:
9064 /*
9065 * So if we need to stop dropping the snapshot for whatever reason we
9066 * need to make sure to add it back to the dead root list so that we
9067 * keep trying to do the work later. This also cleans up roots if we
9068 * don't have it in the radix (like when we recover after a power fail
9069 * or unmount) so we don't leak memory.
9070 */
9071 if (!for_reloc && !root_dropped)
9072 btrfs_add_dead_root(root);
9073 if (err && err != -EAGAIN)
9074 btrfs_handle_fs_error(fs_info, err, NULL);
9075 return err;
9076 }
9077
9078 /*
9079 * drop subtree rooted at tree block 'node'.
9080 *
9081 * NOTE: this function will unlock and release tree block 'node'
9082 * only used by relocation code
9083 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)9084 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9085 struct btrfs_root *root,
9086 struct extent_buffer *node,
9087 struct extent_buffer *parent)
9088 {
9089 struct btrfs_fs_info *fs_info = root->fs_info;
9090 struct btrfs_path *path;
9091 struct walk_control *wc;
9092 int level;
9093 int parent_level;
9094 int ret = 0;
9095 int wret;
9096
9097 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9098
9099 path = btrfs_alloc_path();
9100 if (!path)
9101 return -ENOMEM;
9102
9103 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9104 if (!wc) {
9105 btrfs_free_path(path);
9106 return -ENOMEM;
9107 }
9108
9109 btrfs_assert_tree_locked(parent);
9110 parent_level = btrfs_header_level(parent);
9111 extent_buffer_get(parent);
9112 path->nodes[parent_level] = parent;
9113 path->slots[parent_level] = btrfs_header_nritems(parent);
9114
9115 btrfs_assert_tree_locked(node);
9116 level = btrfs_header_level(node);
9117 path->nodes[level] = node;
9118 path->slots[level] = 0;
9119 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9120
9121 wc->refs[parent_level] = 1;
9122 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9123 wc->level = level;
9124 wc->shared_level = -1;
9125 wc->stage = DROP_REFERENCE;
9126 wc->update_ref = 0;
9127 wc->keep_locks = 1;
9128 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9129
9130 while (1) {
9131 wret = walk_down_tree(trans, root, path, wc);
9132 if (wret < 0) {
9133 ret = wret;
9134 break;
9135 }
9136
9137 wret = walk_up_tree(trans, root, path, wc, parent_level);
9138 if (wret < 0)
9139 ret = wret;
9140 if (wret != 0)
9141 break;
9142 }
9143
9144 kfree(wc);
9145 btrfs_free_path(path);
9146 return ret;
9147 }
9148
update_block_group_flags(struct btrfs_fs_info * fs_info,u64 flags)9149 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9150 {
9151 u64 num_devices;
9152 u64 stripped;
9153
9154 /*
9155 * if restripe for this chunk_type is on pick target profile and
9156 * return, otherwise do the usual balance
9157 */
9158 stripped = get_restripe_target(fs_info, flags);
9159 if (stripped)
9160 return extended_to_chunk(stripped);
9161
9162 num_devices = fs_info->fs_devices->rw_devices;
9163
9164 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9165 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9166 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9167
9168 if (num_devices == 1) {
9169 stripped |= BTRFS_BLOCK_GROUP_DUP;
9170 stripped = flags & ~stripped;
9171
9172 /* turn raid0 into single device chunks */
9173 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9174 return stripped;
9175
9176 /* turn mirroring into duplication */
9177 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9178 BTRFS_BLOCK_GROUP_RAID10))
9179 return stripped | BTRFS_BLOCK_GROUP_DUP;
9180 } else {
9181 /* they already had raid on here, just return */
9182 if (flags & stripped)
9183 return flags;
9184
9185 stripped |= BTRFS_BLOCK_GROUP_DUP;
9186 stripped = flags & ~stripped;
9187
9188 /* switch duplicated blocks with raid1 */
9189 if (flags & BTRFS_BLOCK_GROUP_DUP)
9190 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9191
9192 /* this is drive concat, leave it alone */
9193 }
9194
9195 return flags;
9196 }
9197
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)9198 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9199 {
9200 struct btrfs_space_info *sinfo = cache->space_info;
9201 u64 num_bytes;
9202 u64 min_allocable_bytes;
9203 int ret = -ENOSPC;
9204
9205 /*
9206 * We need some metadata space and system metadata space for
9207 * allocating chunks in some corner cases until we force to set
9208 * it to be readonly.
9209 */
9210 if ((sinfo->flags &
9211 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9212 !force)
9213 min_allocable_bytes = SZ_1M;
9214 else
9215 min_allocable_bytes = 0;
9216
9217 spin_lock(&sinfo->lock);
9218 spin_lock(&cache->lock);
9219
9220 if (cache->ro) {
9221 cache->ro++;
9222 ret = 0;
9223 goto out;
9224 }
9225
9226 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9227 cache->bytes_super - btrfs_block_group_used(&cache->item);
9228
9229 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9230 min_allocable_bytes <= sinfo->total_bytes) {
9231 sinfo->bytes_readonly += num_bytes;
9232 cache->ro++;
9233 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9234 ret = 0;
9235 }
9236 out:
9237 spin_unlock(&cache->lock);
9238 spin_unlock(&sinfo->lock);
9239 return ret;
9240 }
9241
btrfs_inc_block_group_ro(struct btrfs_block_group_cache * cache)9242 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9243
9244 {
9245 struct btrfs_fs_info *fs_info = cache->fs_info;
9246 struct btrfs_trans_handle *trans;
9247 u64 alloc_flags;
9248 int ret;
9249
9250 again:
9251 trans = btrfs_join_transaction(fs_info->extent_root);
9252 if (IS_ERR(trans))
9253 return PTR_ERR(trans);
9254
9255 /*
9256 * we're not allowed to set block groups readonly after the dirty
9257 * block groups cache has started writing. If it already started,
9258 * back off and let this transaction commit
9259 */
9260 mutex_lock(&fs_info->ro_block_group_mutex);
9261 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9262 u64 transid = trans->transid;
9263
9264 mutex_unlock(&fs_info->ro_block_group_mutex);
9265 btrfs_end_transaction(trans);
9266
9267 ret = btrfs_wait_for_commit(fs_info, transid);
9268 if (ret)
9269 return ret;
9270 goto again;
9271 }
9272
9273 /*
9274 * if we are changing raid levels, try to allocate a corresponding
9275 * block group with the new raid level.
9276 */
9277 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9278 if (alloc_flags != cache->flags) {
9279 ret = do_chunk_alloc(trans, alloc_flags,
9280 CHUNK_ALLOC_FORCE);
9281 /*
9282 * ENOSPC is allowed here, we may have enough space
9283 * already allocated at the new raid level to
9284 * carry on
9285 */
9286 if (ret == -ENOSPC)
9287 ret = 0;
9288 if (ret < 0)
9289 goto out;
9290 }
9291
9292 ret = inc_block_group_ro(cache, 0);
9293 if (!ret)
9294 goto out;
9295 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9296 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9297 if (ret < 0)
9298 goto out;
9299 ret = inc_block_group_ro(cache, 0);
9300 out:
9301 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9302 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9303 mutex_lock(&fs_info->chunk_mutex);
9304 check_system_chunk(trans, alloc_flags);
9305 mutex_unlock(&fs_info->chunk_mutex);
9306 }
9307 mutex_unlock(&fs_info->ro_block_group_mutex);
9308
9309 btrfs_end_transaction(trans);
9310 return ret;
9311 }
9312
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)9313 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9314 {
9315 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9316
9317 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9318 }
9319
9320 /*
9321 * helper to account the unused space of all the readonly block group in the
9322 * space_info. takes mirrors into account.
9323 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)9324 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9325 {
9326 struct btrfs_block_group_cache *block_group;
9327 u64 free_bytes = 0;
9328 int factor;
9329
9330 /* It's df, we don't care if it's racy */
9331 if (list_empty(&sinfo->ro_bgs))
9332 return 0;
9333
9334 spin_lock(&sinfo->lock);
9335 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9336 spin_lock(&block_group->lock);
9337
9338 if (!block_group->ro) {
9339 spin_unlock(&block_group->lock);
9340 continue;
9341 }
9342
9343 factor = btrfs_bg_type_to_factor(block_group->flags);
9344 free_bytes += (block_group->key.offset -
9345 btrfs_block_group_used(&block_group->item)) *
9346 factor;
9347
9348 spin_unlock(&block_group->lock);
9349 }
9350 spin_unlock(&sinfo->lock);
9351
9352 return free_bytes;
9353 }
9354
btrfs_dec_block_group_ro(struct btrfs_block_group_cache * cache)9355 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9356 {
9357 struct btrfs_space_info *sinfo = cache->space_info;
9358 u64 num_bytes;
9359
9360 BUG_ON(!cache->ro);
9361
9362 spin_lock(&sinfo->lock);
9363 spin_lock(&cache->lock);
9364 if (!--cache->ro) {
9365 num_bytes = cache->key.offset - cache->reserved -
9366 cache->pinned - cache->bytes_super -
9367 btrfs_block_group_used(&cache->item);
9368 sinfo->bytes_readonly -= num_bytes;
9369 list_del_init(&cache->ro_list);
9370 }
9371 spin_unlock(&cache->lock);
9372 spin_unlock(&sinfo->lock);
9373 }
9374
9375 /*
9376 * checks to see if its even possible to relocate this block group.
9377 *
9378 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9379 * ok to go ahead and try.
9380 */
btrfs_can_relocate(struct btrfs_fs_info * fs_info,u64 bytenr)9381 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9382 {
9383 struct btrfs_root *root = fs_info->extent_root;
9384 struct btrfs_block_group_cache *block_group;
9385 struct btrfs_space_info *space_info;
9386 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9387 struct btrfs_device *device;
9388 struct btrfs_trans_handle *trans;
9389 u64 min_free;
9390 u64 dev_min = 1;
9391 u64 dev_nr = 0;
9392 u64 target;
9393 int debug;
9394 int index;
9395 int full = 0;
9396 int ret = 0;
9397
9398 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9399
9400 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9401
9402 /* odd, couldn't find the block group, leave it alone */
9403 if (!block_group) {
9404 if (debug)
9405 btrfs_warn(fs_info,
9406 "can't find block group for bytenr %llu",
9407 bytenr);
9408 return -1;
9409 }
9410
9411 min_free = btrfs_block_group_used(&block_group->item);
9412
9413 /* no bytes used, we're good */
9414 if (!min_free)
9415 goto out;
9416
9417 space_info = block_group->space_info;
9418 spin_lock(&space_info->lock);
9419
9420 full = space_info->full;
9421
9422 /*
9423 * if this is the last block group we have in this space, we can't
9424 * relocate it unless we're able to allocate a new chunk below.
9425 *
9426 * Otherwise, we need to make sure we have room in the space to handle
9427 * all of the extents from this block group. If we can, we're good
9428 */
9429 if ((space_info->total_bytes != block_group->key.offset) &&
9430 (btrfs_space_info_used(space_info, false) + min_free <
9431 space_info->total_bytes)) {
9432 spin_unlock(&space_info->lock);
9433 goto out;
9434 }
9435 spin_unlock(&space_info->lock);
9436
9437 /*
9438 * ok we don't have enough space, but maybe we have free space on our
9439 * devices to allocate new chunks for relocation, so loop through our
9440 * alloc devices and guess if we have enough space. if this block
9441 * group is going to be restriped, run checks against the target
9442 * profile instead of the current one.
9443 */
9444 ret = -1;
9445
9446 /*
9447 * index:
9448 * 0: raid10
9449 * 1: raid1
9450 * 2: dup
9451 * 3: raid0
9452 * 4: single
9453 */
9454 target = get_restripe_target(fs_info, block_group->flags);
9455 if (target) {
9456 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9457 } else {
9458 /*
9459 * this is just a balance, so if we were marked as full
9460 * we know there is no space for a new chunk
9461 */
9462 if (full) {
9463 if (debug)
9464 btrfs_warn(fs_info,
9465 "no space to alloc new chunk for block group %llu",
9466 block_group->key.objectid);
9467 goto out;
9468 }
9469
9470 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9471 }
9472
9473 if (index == BTRFS_RAID_RAID10) {
9474 dev_min = 4;
9475 /* Divide by 2 */
9476 min_free >>= 1;
9477 } else if (index == BTRFS_RAID_RAID1) {
9478 dev_min = 2;
9479 } else if (index == BTRFS_RAID_DUP) {
9480 /* Multiply by 2 */
9481 min_free <<= 1;
9482 } else if (index == BTRFS_RAID_RAID0) {
9483 dev_min = fs_devices->rw_devices;
9484 min_free = div64_u64(min_free, dev_min);
9485 }
9486
9487 /* We need to do this so that we can look at pending chunks */
9488 trans = btrfs_join_transaction(root);
9489 if (IS_ERR(trans)) {
9490 ret = PTR_ERR(trans);
9491 goto out;
9492 }
9493
9494 mutex_lock(&fs_info->chunk_mutex);
9495 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9496 u64 dev_offset;
9497
9498 /*
9499 * check to make sure we can actually find a chunk with enough
9500 * space to fit our block group in.
9501 */
9502 if (device->total_bytes > device->bytes_used + min_free &&
9503 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9504 ret = find_free_dev_extent(trans, device, min_free,
9505 &dev_offset, NULL);
9506 if (!ret)
9507 dev_nr++;
9508
9509 if (dev_nr >= dev_min)
9510 break;
9511
9512 ret = -1;
9513 }
9514 }
9515 if (debug && ret == -1)
9516 btrfs_warn(fs_info,
9517 "no space to allocate a new chunk for block group %llu",
9518 block_group->key.objectid);
9519 mutex_unlock(&fs_info->chunk_mutex);
9520 btrfs_end_transaction(trans);
9521 out:
9522 btrfs_put_block_group(block_group);
9523 return ret;
9524 }
9525
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)9526 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9527 struct btrfs_path *path,
9528 struct btrfs_key *key)
9529 {
9530 struct btrfs_root *root = fs_info->extent_root;
9531 int ret = 0;
9532 struct btrfs_key found_key;
9533 struct extent_buffer *leaf;
9534 struct btrfs_block_group_item bg;
9535 u64 flags;
9536 int slot;
9537
9538 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9539 if (ret < 0)
9540 goto out;
9541
9542 while (1) {
9543 slot = path->slots[0];
9544 leaf = path->nodes[0];
9545 if (slot >= btrfs_header_nritems(leaf)) {
9546 ret = btrfs_next_leaf(root, path);
9547 if (ret == 0)
9548 continue;
9549 if (ret < 0)
9550 goto out;
9551 break;
9552 }
9553 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9554
9555 if (found_key.objectid >= key->objectid &&
9556 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9557 struct extent_map_tree *em_tree;
9558 struct extent_map *em;
9559
9560 em_tree = &root->fs_info->mapping_tree.map_tree;
9561 read_lock(&em_tree->lock);
9562 em = lookup_extent_mapping(em_tree, found_key.objectid,
9563 found_key.offset);
9564 read_unlock(&em_tree->lock);
9565 if (!em) {
9566 btrfs_err(fs_info,
9567 "logical %llu len %llu found bg but no related chunk",
9568 found_key.objectid, found_key.offset);
9569 ret = -ENOENT;
9570 } else if (em->start != found_key.objectid ||
9571 em->len != found_key.offset) {
9572 btrfs_err(fs_info,
9573 "block group %llu len %llu mismatch with chunk %llu len %llu",
9574 found_key.objectid, found_key.offset,
9575 em->start, em->len);
9576 ret = -EUCLEAN;
9577 } else {
9578 read_extent_buffer(leaf, &bg,
9579 btrfs_item_ptr_offset(leaf, slot),
9580 sizeof(bg));
9581 flags = btrfs_block_group_flags(&bg) &
9582 BTRFS_BLOCK_GROUP_TYPE_MASK;
9583
9584 if (flags != (em->map_lookup->type &
9585 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9586 btrfs_err(fs_info,
9587 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9588 found_key.objectid,
9589 found_key.offset, flags,
9590 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9591 em->map_lookup->type));
9592 ret = -EUCLEAN;
9593 } else {
9594 ret = 0;
9595 }
9596 }
9597 free_extent_map(em);
9598 goto out;
9599 }
9600 path->slots[0]++;
9601 }
9602 out:
9603 return ret;
9604 }
9605
btrfs_put_block_group_cache(struct btrfs_fs_info * info)9606 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9607 {
9608 struct btrfs_block_group_cache *block_group;
9609 u64 last = 0;
9610
9611 while (1) {
9612 struct inode *inode;
9613
9614 block_group = btrfs_lookup_first_block_group(info, last);
9615 while (block_group) {
9616 spin_lock(&block_group->lock);
9617 if (block_group->iref)
9618 break;
9619 spin_unlock(&block_group->lock);
9620 block_group = next_block_group(info, block_group);
9621 }
9622 if (!block_group) {
9623 if (last == 0)
9624 break;
9625 last = 0;
9626 continue;
9627 }
9628
9629 inode = block_group->inode;
9630 block_group->iref = 0;
9631 block_group->inode = NULL;
9632 spin_unlock(&block_group->lock);
9633 ASSERT(block_group->io_ctl.inode == NULL);
9634 iput(inode);
9635 last = block_group->key.objectid + block_group->key.offset;
9636 btrfs_put_block_group(block_group);
9637 }
9638 }
9639
9640 /*
9641 * Must be called only after stopping all workers, since we could have block
9642 * group caching kthreads running, and therefore they could race with us if we
9643 * freed the block groups before stopping them.
9644 */
btrfs_free_block_groups(struct btrfs_fs_info * info)9645 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9646 {
9647 struct btrfs_block_group_cache *block_group;
9648 struct btrfs_space_info *space_info;
9649 struct btrfs_caching_control *caching_ctl;
9650 struct rb_node *n;
9651
9652 down_write(&info->commit_root_sem);
9653 while (!list_empty(&info->caching_block_groups)) {
9654 caching_ctl = list_entry(info->caching_block_groups.next,
9655 struct btrfs_caching_control, list);
9656 list_del(&caching_ctl->list);
9657 put_caching_control(caching_ctl);
9658 }
9659 up_write(&info->commit_root_sem);
9660
9661 spin_lock(&info->unused_bgs_lock);
9662 while (!list_empty(&info->unused_bgs)) {
9663 block_group = list_first_entry(&info->unused_bgs,
9664 struct btrfs_block_group_cache,
9665 bg_list);
9666 list_del_init(&block_group->bg_list);
9667 btrfs_put_block_group(block_group);
9668 }
9669 spin_unlock(&info->unused_bgs_lock);
9670
9671 spin_lock(&info->block_group_cache_lock);
9672 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9673 block_group = rb_entry(n, struct btrfs_block_group_cache,
9674 cache_node);
9675 rb_erase(&block_group->cache_node,
9676 &info->block_group_cache_tree);
9677 RB_CLEAR_NODE(&block_group->cache_node);
9678 spin_unlock(&info->block_group_cache_lock);
9679
9680 down_write(&block_group->space_info->groups_sem);
9681 list_del(&block_group->list);
9682 up_write(&block_group->space_info->groups_sem);
9683
9684 /*
9685 * We haven't cached this block group, which means we could
9686 * possibly have excluded extents on this block group.
9687 */
9688 if (block_group->cached == BTRFS_CACHE_NO ||
9689 block_group->cached == BTRFS_CACHE_ERROR)
9690 free_excluded_extents(block_group);
9691
9692 btrfs_remove_free_space_cache(block_group);
9693 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9694 ASSERT(list_empty(&block_group->dirty_list));
9695 ASSERT(list_empty(&block_group->io_list));
9696 ASSERT(list_empty(&block_group->bg_list));
9697 ASSERT(atomic_read(&block_group->count) == 1);
9698 btrfs_put_block_group(block_group);
9699
9700 spin_lock(&info->block_group_cache_lock);
9701 }
9702 spin_unlock(&info->block_group_cache_lock);
9703
9704 /* now that all the block groups are freed, go through and
9705 * free all the space_info structs. This is only called during
9706 * the final stages of unmount, and so we know nobody is
9707 * using them. We call synchronize_rcu() once before we start,
9708 * just to be on the safe side.
9709 */
9710 synchronize_rcu();
9711
9712 release_global_block_rsv(info);
9713
9714 while (!list_empty(&info->space_info)) {
9715 int i;
9716
9717 space_info = list_entry(info->space_info.next,
9718 struct btrfs_space_info,
9719 list);
9720
9721 /*
9722 * Do not hide this behind enospc_debug, this is actually
9723 * important and indicates a real bug if this happens.
9724 */
9725 if (WARN_ON(space_info->bytes_pinned > 0 ||
9726 space_info->bytes_reserved > 0 ||
9727 space_info->bytes_may_use > 0))
9728 dump_space_info(info, space_info, 0, 0);
9729 list_del(&space_info->list);
9730 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9731 struct kobject *kobj;
9732 kobj = space_info->block_group_kobjs[i];
9733 space_info->block_group_kobjs[i] = NULL;
9734 if (kobj) {
9735 kobject_del(kobj);
9736 kobject_put(kobj);
9737 }
9738 }
9739 kobject_del(&space_info->kobj);
9740 kobject_put(&space_info->kobj);
9741 }
9742 return 0;
9743 }
9744
9745 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
btrfs_add_raid_kobjects(struct btrfs_fs_info * fs_info)9746 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9747 {
9748 struct btrfs_space_info *space_info;
9749 struct raid_kobject *rkobj;
9750 LIST_HEAD(list);
9751 int index;
9752 int ret = 0;
9753
9754 spin_lock(&fs_info->pending_raid_kobjs_lock);
9755 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9756 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9757
9758 list_for_each_entry(rkobj, &list, list) {
9759 space_info = __find_space_info(fs_info, rkobj->flags);
9760 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9761
9762 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9763 "%s", get_raid_name(index));
9764 if (ret) {
9765 kobject_put(&rkobj->kobj);
9766 break;
9767 }
9768 }
9769 if (ret)
9770 btrfs_warn(fs_info,
9771 "failed to add kobject for block cache, ignoring");
9772 }
9773
link_block_group(struct btrfs_block_group_cache * cache)9774 static void link_block_group(struct btrfs_block_group_cache *cache)
9775 {
9776 struct btrfs_space_info *space_info = cache->space_info;
9777 struct btrfs_fs_info *fs_info = cache->fs_info;
9778 int index = btrfs_bg_flags_to_raid_index(cache->flags);
9779 bool first = false;
9780
9781 down_write(&space_info->groups_sem);
9782 if (list_empty(&space_info->block_groups[index]))
9783 first = true;
9784 list_add_tail(&cache->list, &space_info->block_groups[index]);
9785 up_write(&space_info->groups_sem);
9786
9787 if (first) {
9788 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9789 if (!rkobj) {
9790 btrfs_warn(cache->fs_info,
9791 "couldn't alloc memory for raid level kobject");
9792 return;
9793 }
9794 rkobj->flags = cache->flags;
9795 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9796
9797 spin_lock(&fs_info->pending_raid_kobjs_lock);
9798 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9799 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9800 space_info->block_group_kobjs[index] = &rkobj->kobj;
9801 }
9802 }
9803
9804 static struct btrfs_block_group_cache *
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start,u64 size)9805 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9806 u64 start, u64 size)
9807 {
9808 struct btrfs_block_group_cache *cache;
9809
9810 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9811 if (!cache)
9812 return NULL;
9813
9814 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9815 GFP_NOFS);
9816 if (!cache->free_space_ctl) {
9817 kfree(cache);
9818 return NULL;
9819 }
9820
9821 cache->key.objectid = start;
9822 cache->key.offset = size;
9823 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9824
9825 cache->fs_info = fs_info;
9826 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9827 set_free_space_tree_thresholds(cache);
9828
9829 atomic_set(&cache->count, 1);
9830 spin_lock_init(&cache->lock);
9831 init_rwsem(&cache->data_rwsem);
9832 INIT_LIST_HEAD(&cache->list);
9833 INIT_LIST_HEAD(&cache->cluster_list);
9834 INIT_LIST_HEAD(&cache->bg_list);
9835 INIT_LIST_HEAD(&cache->ro_list);
9836 INIT_LIST_HEAD(&cache->dirty_list);
9837 INIT_LIST_HEAD(&cache->io_list);
9838 btrfs_init_free_space_ctl(cache);
9839 atomic_set(&cache->trimming, 0);
9840 mutex_init(&cache->free_space_lock);
9841 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9842
9843 return cache;
9844 }
9845
9846
9847 /*
9848 * Iterate all chunks and verify that each of them has the corresponding block
9849 * group
9850 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)9851 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9852 {
9853 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9854 struct extent_map *em;
9855 struct btrfs_block_group_cache *bg;
9856 u64 start = 0;
9857 int ret = 0;
9858
9859 while (1) {
9860 read_lock(&map_tree->map_tree.lock);
9861 /*
9862 * lookup_extent_mapping will return the first extent map
9863 * intersecting the range, so setting @len to 1 is enough to
9864 * get the first chunk.
9865 */
9866 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9867 read_unlock(&map_tree->map_tree.lock);
9868 if (!em)
9869 break;
9870
9871 bg = btrfs_lookup_block_group(fs_info, em->start);
9872 if (!bg) {
9873 btrfs_err(fs_info,
9874 "chunk start=%llu len=%llu doesn't have corresponding block group",
9875 em->start, em->len);
9876 ret = -EUCLEAN;
9877 free_extent_map(em);
9878 break;
9879 }
9880 if (bg->key.objectid != em->start ||
9881 bg->key.offset != em->len ||
9882 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9883 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9884 btrfs_err(fs_info,
9885 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9886 em->start, em->len,
9887 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9888 bg->key.objectid, bg->key.offset,
9889 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9890 ret = -EUCLEAN;
9891 free_extent_map(em);
9892 btrfs_put_block_group(bg);
9893 break;
9894 }
9895 start = em->start + em->len;
9896 free_extent_map(em);
9897 btrfs_put_block_group(bg);
9898 }
9899 return ret;
9900 }
9901
btrfs_read_block_groups(struct btrfs_fs_info * info)9902 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9903 {
9904 struct btrfs_path *path;
9905 int ret;
9906 struct btrfs_block_group_cache *cache;
9907 struct btrfs_space_info *space_info;
9908 struct btrfs_key key;
9909 struct btrfs_key found_key;
9910 struct extent_buffer *leaf;
9911 int need_clear = 0;
9912 u64 cache_gen;
9913 u64 feature;
9914 int mixed;
9915
9916 feature = btrfs_super_incompat_flags(info->super_copy);
9917 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9918
9919 key.objectid = 0;
9920 key.offset = 0;
9921 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9922 path = btrfs_alloc_path();
9923 if (!path)
9924 return -ENOMEM;
9925 path->reada = READA_FORWARD;
9926
9927 cache_gen = btrfs_super_cache_generation(info->super_copy);
9928 if (btrfs_test_opt(info, SPACE_CACHE) &&
9929 btrfs_super_generation(info->super_copy) != cache_gen)
9930 need_clear = 1;
9931 if (btrfs_test_opt(info, CLEAR_CACHE))
9932 need_clear = 1;
9933
9934 while (1) {
9935 ret = find_first_block_group(info, path, &key);
9936 if (ret > 0)
9937 break;
9938 if (ret != 0)
9939 goto error;
9940
9941 leaf = path->nodes[0];
9942 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9943
9944 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9945 found_key.offset);
9946 if (!cache) {
9947 ret = -ENOMEM;
9948 goto error;
9949 }
9950
9951 if (need_clear) {
9952 /*
9953 * When we mount with old space cache, we need to
9954 * set BTRFS_DC_CLEAR and set dirty flag.
9955 *
9956 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9957 * truncate the old free space cache inode and
9958 * setup a new one.
9959 * b) Setting 'dirty flag' makes sure that we flush
9960 * the new space cache info onto disk.
9961 */
9962 if (btrfs_test_opt(info, SPACE_CACHE))
9963 cache->disk_cache_state = BTRFS_DC_CLEAR;
9964 }
9965
9966 read_extent_buffer(leaf, &cache->item,
9967 btrfs_item_ptr_offset(leaf, path->slots[0]),
9968 sizeof(cache->item));
9969 cache->flags = btrfs_block_group_flags(&cache->item);
9970 if (!mixed &&
9971 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9972 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9973 btrfs_err(info,
9974 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9975 cache->key.objectid);
9976 ret = -EINVAL;
9977 goto error;
9978 }
9979
9980 key.objectid = found_key.objectid + found_key.offset;
9981 btrfs_release_path(path);
9982
9983 /*
9984 * We need to exclude the super stripes now so that the space
9985 * info has super bytes accounted for, otherwise we'll think
9986 * we have more space than we actually do.
9987 */
9988 ret = exclude_super_stripes(cache);
9989 if (ret) {
9990 /*
9991 * We may have excluded something, so call this just in
9992 * case.
9993 */
9994 free_excluded_extents(cache);
9995 btrfs_put_block_group(cache);
9996 goto error;
9997 }
9998
9999 /*
10000 * check for two cases, either we are full, and therefore
10001 * don't need to bother with the caching work since we won't
10002 * find any space, or we are empty, and we can just add all
10003 * the space in and be done with it. This saves us _alot_ of
10004 * time, particularly in the full case.
10005 */
10006 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10007 cache->last_byte_to_unpin = (u64)-1;
10008 cache->cached = BTRFS_CACHE_FINISHED;
10009 free_excluded_extents(cache);
10010 } else if (btrfs_block_group_used(&cache->item) == 0) {
10011 cache->last_byte_to_unpin = (u64)-1;
10012 cache->cached = BTRFS_CACHE_FINISHED;
10013 add_new_free_space(cache, found_key.objectid,
10014 found_key.objectid +
10015 found_key.offset);
10016 free_excluded_extents(cache);
10017 }
10018
10019 ret = btrfs_add_block_group_cache(info, cache);
10020 if (ret) {
10021 btrfs_remove_free_space_cache(cache);
10022 btrfs_put_block_group(cache);
10023 goto error;
10024 }
10025
10026 trace_btrfs_add_block_group(info, cache, 0);
10027 update_space_info(info, cache->flags, found_key.offset,
10028 btrfs_block_group_used(&cache->item),
10029 cache->bytes_super, &space_info);
10030
10031 cache->space_info = space_info;
10032
10033 link_block_group(cache);
10034
10035 set_avail_alloc_bits(info, cache->flags);
10036 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10037 inc_block_group_ro(cache, 1);
10038 } else if (btrfs_block_group_used(&cache->item) == 0) {
10039 ASSERT(list_empty(&cache->bg_list));
10040 btrfs_mark_bg_unused(cache);
10041 }
10042 }
10043
10044 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10045 if (!(get_alloc_profile(info, space_info->flags) &
10046 (BTRFS_BLOCK_GROUP_RAID10 |
10047 BTRFS_BLOCK_GROUP_RAID1 |
10048 BTRFS_BLOCK_GROUP_RAID5 |
10049 BTRFS_BLOCK_GROUP_RAID6 |
10050 BTRFS_BLOCK_GROUP_DUP)))
10051 continue;
10052 /*
10053 * avoid allocating from un-mirrored block group if there are
10054 * mirrored block groups.
10055 */
10056 list_for_each_entry(cache,
10057 &space_info->block_groups[BTRFS_RAID_RAID0],
10058 list)
10059 inc_block_group_ro(cache, 1);
10060 list_for_each_entry(cache,
10061 &space_info->block_groups[BTRFS_RAID_SINGLE],
10062 list)
10063 inc_block_group_ro(cache, 1);
10064 }
10065
10066 btrfs_add_raid_kobjects(info);
10067 init_global_block_rsv(info);
10068 ret = check_chunk_block_group_mappings(info);
10069 error:
10070 btrfs_free_path(path);
10071 return ret;
10072 }
10073
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)10074 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10075 {
10076 struct btrfs_fs_info *fs_info = trans->fs_info;
10077 struct btrfs_block_group_cache *block_group, *tmp;
10078 struct btrfs_root *extent_root = fs_info->extent_root;
10079 struct btrfs_block_group_item item;
10080 struct btrfs_key key;
10081 int ret = 0;
10082 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10083
10084 trans->can_flush_pending_bgs = false;
10085 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10086 if (ret)
10087 goto next;
10088
10089 spin_lock(&block_group->lock);
10090 memcpy(&item, &block_group->item, sizeof(item));
10091 memcpy(&key, &block_group->key, sizeof(key));
10092 spin_unlock(&block_group->lock);
10093
10094 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10095 sizeof(item));
10096 if (ret)
10097 btrfs_abort_transaction(trans, ret);
10098 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10099 if (ret)
10100 btrfs_abort_transaction(trans, ret);
10101 add_block_group_free_space(trans, block_group);
10102 /* already aborted the transaction if it failed. */
10103 next:
10104 list_del_init(&block_group->bg_list);
10105 }
10106 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10107 }
10108
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)10109 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10110 u64 type, u64 chunk_offset, u64 size)
10111 {
10112 struct btrfs_fs_info *fs_info = trans->fs_info;
10113 struct btrfs_block_group_cache *cache;
10114 int ret;
10115
10116 btrfs_set_log_full_commit(fs_info, trans);
10117
10118 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10119 if (!cache)
10120 return -ENOMEM;
10121
10122 btrfs_set_block_group_used(&cache->item, bytes_used);
10123 btrfs_set_block_group_chunk_objectid(&cache->item,
10124 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10125 btrfs_set_block_group_flags(&cache->item, type);
10126
10127 cache->flags = type;
10128 cache->last_byte_to_unpin = (u64)-1;
10129 cache->cached = BTRFS_CACHE_FINISHED;
10130 cache->needs_free_space = 1;
10131 ret = exclude_super_stripes(cache);
10132 if (ret) {
10133 /*
10134 * We may have excluded something, so call this just in
10135 * case.
10136 */
10137 free_excluded_extents(cache);
10138 btrfs_put_block_group(cache);
10139 return ret;
10140 }
10141
10142 add_new_free_space(cache, chunk_offset, chunk_offset + size);
10143
10144 free_excluded_extents(cache);
10145
10146 #ifdef CONFIG_BTRFS_DEBUG
10147 if (btrfs_should_fragment_free_space(cache)) {
10148 u64 new_bytes_used = size - bytes_used;
10149
10150 bytes_used += new_bytes_used >> 1;
10151 fragment_free_space(cache);
10152 }
10153 #endif
10154 /*
10155 * Ensure the corresponding space_info object is created and
10156 * assigned to our block group. We want our bg to be added to the rbtree
10157 * with its ->space_info set.
10158 */
10159 cache->space_info = __find_space_info(fs_info, cache->flags);
10160 ASSERT(cache->space_info);
10161
10162 ret = btrfs_add_block_group_cache(fs_info, cache);
10163 if (ret) {
10164 btrfs_remove_free_space_cache(cache);
10165 btrfs_put_block_group(cache);
10166 return ret;
10167 }
10168
10169 /*
10170 * Now that our block group has its ->space_info set and is inserted in
10171 * the rbtree, update the space info's counters.
10172 */
10173 trace_btrfs_add_block_group(fs_info, cache, 1);
10174 update_space_info(fs_info, cache->flags, size, bytes_used,
10175 cache->bytes_super, &cache->space_info);
10176 update_global_block_rsv(fs_info);
10177
10178 link_block_group(cache);
10179
10180 list_add_tail(&cache->bg_list, &trans->new_bgs);
10181
10182 set_avail_alloc_bits(fs_info, type);
10183 return 0;
10184 }
10185
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)10186 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10187 {
10188 u64 extra_flags = chunk_to_extended(flags) &
10189 BTRFS_EXTENDED_PROFILE_MASK;
10190
10191 write_seqlock(&fs_info->profiles_lock);
10192 if (flags & BTRFS_BLOCK_GROUP_DATA)
10193 fs_info->avail_data_alloc_bits &= ~extra_flags;
10194 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10195 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10196 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10197 fs_info->avail_system_alloc_bits &= ~extra_flags;
10198 write_sequnlock(&fs_info->profiles_lock);
10199 }
10200
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)10201 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10202 u64 group_start, struct extent_map *em)
10203 {
10204 struct btrfs_fs_info *fs_info = trans->fs_info;
10205 struct btrfs_root *root = fs_info->extent_root;
10206 struct btrfs_path *path;
10207 struct btrfs_block_group_cache *block_group;
10208 struct btrfs_free_cluster *cluster;
10209 struct btrfs_root *tree_root = fs_info->tree_root;
10210 struct btrfs_key key;
10211 struct inode *inode;
10212 struct kobject *kobj = NULL;
10213 int ret;
10214 int index;
10215 int factor;
10216 struct btrfs_caching_control *caching_ctl = NULL;
10217 bool remove_em;
10218
10219 block_group = btrfs_lookup_block_group(fs_info, group_start);
10220 BUG_ON(!block_group);
10221 BUG_ON(!block_group->ro);
10222
10223 trace_btrfs_remove_block_group(block_group);
10224 /*
10225 * Free the reserved super bytes from this block group before
10226 * remove it.
10227 */
10228 free_excluded_extents(block_group);
10229 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10230 block_group->key.offset);
10231
10232 memcpy(&key, &block_group->key, sizeof(key));
10233 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10234 factor = btrfs_bg_type_to_factor(block_group->flags);
10235
10236 /* make sure this block group isn't part of an allocation cluster */
10237 cluster = &fs_info->data_alloc_cluster;
10238 spin_lock(&cluster->refill_lock);
10239 btrfs_return_cluster_to_free_space(block_group, cluster);
10240 spin_unlock(&cluster->refill_lock);
10241
10242 /*
10243 * make sure this block group isn't part of a metadata
10244 * allocation cluster
10245 */
10246 cluster = &fs_info->meta_alloc_cluster;
10247 spin_lock(&cluster->refill_lock);
10248 btrfs_return_cluster_to_free_space(block_group, cluster);
10249 spin_unlock(&cluster->refill_lock);
10250
10251 path = btrfs_alloc_path();
10252 if (!path) {
10253 ret = -ENOMEM;
10254 goto out;
10255 }
10256
10257 /*
10258 * get the inode first so any iput calls done for the io_list
10259 * aren't the final iput (no unlinks allowed now)
10260 */
10261 inode = lookup_free_space_inode(fs_info, block_group, path);
10262
10263 mutex_lock(&trans->transaction->cache_write_mutex);
10264 /*
10265 * make sure our free spache cache IO is done before remove the
10266 * free space inode
10267 */
10268 spin_lock(&trans->transaction->dirty_bgs_lock);
10269 if (!list_empty(&block_group->io_list)) {
10270 list_del_init(&block_group->io_list);
10271
10272 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10273
10274 spin_unlock(&trans->transaction->dirty_bgs_lock);
10275 btrfs_wait_cache_io(trans, block_group, path);
10276 btrfs_put_block_group(block_group);
10277 spin_lock(&trans->transaction->dirty_bgs_lock);
10278 }
10279
10280 if (!list_empty(&block_group->dirty_list)) {
10281 list_del_init(&block_group->dirty_list);
10282 btrfs_put_block_group(block_group);
10283 }
10284 spin_unlock(&trans->transaction->dirty_bgs_lock);
10285 mutex_unlock(&trans->transaction->cache_write_mutex);
10286
10287 if (!IS_ERR(inode)) {
10288 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10289 if (ret) {
10290 btrfs_add_delayed_iput(inode);
10291 goto out;
10292 }
10293 clear_nlink(inode);
10294 /* One for the block groups ref */
10295 spin_lock(&block_group->lock);
10296 if (block_group->iref) {
10297 block_group->iref = 0;
10298 block_group->inode = NULL;
10299 spin_unlock(&block_group->lock);
10300 iput(inode);
10301 } else {
10302 spin_unlock(&block_group->lock);
10303 }
10304 /* One for our lookup ref */
10305 btrfs_add_delayed_iput(inode);
10306 }
10307
10308 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10309 key.offset = block_group->key.objectid;
10310 key.type = 0;
10311
10312 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10313 if (ret < 0)
10314 goto out;
10315 if (ret > 0)
10316 btrfs_release_path(path);
10317 if (ret == 0) {
10318 ret = btrfs_del_item(trans, tree_root, path);
10319 if (ret)
10320 goto out;
10321 btrfs_release_path(path);
10322 }
10323
10324 spin_lock(&fs_info->block_group_cache_lock);
10325 rb_erase(&block_group->cache_node,
10326 &fs_info->block_group_cache_tree);
10327 RB_CLEAR_NODE(&block_group->cache_node);
10328
10329 if (fs_info->first_logical_byte == block_group->key.objectid)
10330 fs_info->first_logical_byte = (u64)-1;
10331 spin_unlock(&fs_info->block_group_cache_lock);
10332
10333 down_write(&block_group->space_info->groups_sem);
10334 /*
10335 * we must use list_del_init so people can check to see if they
10336 * are still on the list after taking the semaphore
10337 */
10338 list_del_init(&block_group->list);
10339 if (list_empty(&block_group->space_info->block_groups[index])) {
10340 kobj = block_group->space_info->block_group_kobjs[index];
10341 block_group->space_info->block_group_kobjs[index] = NULL;
10342 clear_avail_alloc_bits(fs_info, block_group->flags);
10343 }
10344 up_write(&block_group->space_info->groups_sem);
10345 if (kobj) {
10346 kobject_del(kobj);
10347 kobject_put(kobj);
10348 }
10349
10350 if (block_group->has_caching_ctl)
10351 caching_ctl = get_caching_control(block_group);
10352 if (block_group->cached == BTRFS_CACHE_STARTED)
10353 wait_block_group_cache_done(block_group);
10354 if (block_group->has_caching_ctl) {
10355 down_write(&fs_info->commit_root_sem);
10356 if (!caching_ctl) {
10357 struct btrfs_caching_control *ctl;
10358
10359 list_for_each_entry(ctl,
10360 &fs_info->caching_block_groups, list)
10361 if (ctl->block_group == block_group) {
10362 caching_ctl = ctl;
10363 refcount_inc(&caching_ctl->count);
10364 break;
10365 }
10366 }
10367 if (caching_ctl)
10368 list_del_init(&caching_ctl->list);
10369 up_write(&fs_info->commit_root_sem);
10370 if (caching_ctl) {
10371 /* Once for the caching bgs list and once for us. */
10372 put_caching_control(caching_ctl);
10373 put_caching_control(caching_ctl);
10374 }
10375 }
10376
10377 spin_lock(&trans->transaction->dirty_bgs_lock);
10378 if (!list_empty(&block_group->dirty_list)) {
10379 WARN_ON(1);
10380 }
10381 if (!list_empty(&block_group->io_list)) {
10382 WARN_ON(1);
10383 }
10384 spin_unlock(&trans->transaction->dirty_bgs_lock);
10385 btrfs_remove_free_space_cache(block_group);
10386
10387 spin_lock(&block_group->space_info->lock);
10388 list_del_init(&block_group->ro_list);
10389
10390 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10391 WARN_ON(block_group->space_info->total_bytes
10392 < block_group->key.offset);
10393 WARN_ON(block_group->space_info->bytes_readonly
10394 < block_group->key.offset);
10395 WARN_ON(block_group->space_info->disk_total
10396 < block_group->key.offset * factor);
10397 }
10398 block_group->space_info->total_bytes -= block_group->key.offset;
10399 block_group->space_info->bytes_readonly -= block_group->key.offset;
10400 block_group->space_info->disk_total -= block_group->key.offset * factor;
10401
10402 spin_unlock(&block_group->space_info->lock);
10403
10404 memcpy(&key, &block_group->key, sizeof(key));
10405
10406 mutex_lock(&fs_info->chunk_mutex);
10407 if (!list_empty(&em->list)) {
10408 /* We're in the transaction->pending_chunks list. */
10409 free_extent_map(em);
10410 }
10411 spin_lock(&block_group->lock);
10412 block_group->removed = 1;
10413 /*
10414 * At this point trimming can't start on this block group, because we
10415 * removed the block group from the tree fs_info->block_group_cache_tree
10416 * so no one can't find it anymore and even if someone already got this
10417 * block group before we removed it from the rbtree, they have already
10418 * incremented block_group->trimming - if they didn't, they won't find
10419 * any free space entries because we already removed them all when we
10420 * called btrfs_remove_free_space_cache().
10421 *
10422 * And we must not remove the extent map from the fs_info->mapping_tree
10423 * to prevent the same logical address range and physical device space
10424 * ranges from being reused for a new block group. This is because our
10425 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10426 * completely transactionless, so while it is trimming a range the
10427 * currently running transaction might finish and a new one start,
10428 * allowing for new block groups to be created that can reuse the same
10429 * physical device locations unless we take this special care.
10430 *
10431 * There may also be an implicit trim operation if the file system
10432 * is mounted with -odiscard. The same protections must remain
10433 * in place until the extents have been discarded completely when
10434 * the transaction commit has completed.
10435 */
10436 remove_em = (atomic_read(&block_group->trimming) == 0);
10437 /*
10438 * Make sure a trimmer task always sees the em in the pinned_chunks list
10439 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10440 * before checking block_group->removed).
10441 */
10442 if (!remove_em) {
10443 /*
10444 * Our em might be in trans->transaction->pending_chunks which
10445 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10446 * and so is the fs_info->pinned_chunks list.
10447 *
10448 * So at this point we must be holding the chunk_mutex to avoid
10449 * any races with chunk allocation (more specifically at
10450 * volumes.c:contains_pending_extent()), to ensure it always
10451 * sees the em, either in the pending_chunks list or in the
10452 * pinned_chunks list.
10453 */
10454 list_move_tail(&em->list, &fs_info->pinned_chunks);
10455 }
10456 spin_unlock(&block_group->lock);
10457
10458 if (remove_em) {
10459 struct extent_map_tree *em_tree;
10460
10461 em_tree = &fs_info->mapping_tree.map_tree;
10462 write_lock(&em_tree->lock);
10463 /*
10464 * The em might be in the pending_chunks list, so make sure the
10465 * chunk mutex is locked, since remove_extent_mapping() will
10466 * delete us from that list.
10467 */
10468 remove_extent_mapping(em_tree, em);
10469 write_unlock(&em_tree->lock);
10470 /* once for the tree */
10471 free_extent_map(em);
10472 }
10473
10474 mutex_unlock(&fs_info->chunk_mutex);
10475
10476 ret = remove_block_group_free_space(trans, block_group);
10477 if (ret)
10478 goto out;
10479
10480 btrfs_put_block_group(block_group);
10481 btrfs_put_block_group(block_group);
10482
10483 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10484 if (ret > 0)
10485 ret = -EIO;
10486 if (ret < 0)
10487 goto out;
10488
10489 ret = btrfs_del_item(trans, root, path);
10490 out:
10491 btrfs_free_path(path);
10492 return ret;
10493 }
10494
10495 struct btrfs_trans_handle *
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)10496 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10497 const u64 chunk_offset)
10498 {
10499 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10500 struct extent_map *em;
10501 struct map_lookup *map;
10502 unsigned int num_items;
10503
10504 read_lock(&em_tree->lock);
10505 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10506 read_unlock(&em_tree->lock);
10507 ASSERT(em && em->start == chunk_offset);
10508
10509 /*
10510 * We need to reserve 3 + N units from the metadata space info in order
10511 * to remove a block group (done at btrfs_remove_chunk() and at
10512 * btrfs_remove_block_group()), which are used for:
10513 *
10514 * 1 unit for adding the free space inode's orphan (located in the tree
10515 * of tree roots).
10516 * 1 unit for deleting the block group item (located in the extent
10517 * tree).
10518 * 1 unit for deleting the free space item (located in tree of tree
10519 * roots).
10520 * N units for deleting N device extent items corresponding to each
10521 * stripe (located in the device tree).
10522 *
10523 * In order to remove a block group we also need to reserve units in the
10524 * system space info in order to update the chunk tree (update one or
10525 * more device items and remove one chunk item), but this is done at
10526 * btrfs_remove_chunk() through a call to check_system_chunk().
10527 */
10528 map = em->map_lookup;
10529 num_items = 3 + map->num_stripes;
10530 free_extent_map(em);
10531
10532 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10533 num_items, 1);
10534 }
10535
10536 /*
10537 * Process the unused_bgs list and remove any that don't have any allocated
10538 * space inside of them.
10539 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)10540 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10541 {
10542 struct btrfs_block_group_cache *block_group;
10543 struct btrfs_space_info *space_info;
10544 struct btrfs_trans_handle *trans;
10545 int ret = 0;
10546
10547 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10548 return;
10549
10550 spin_lock(&fs_info->unused_bgs_lock);
10551 while (!list_empty(&fs_info->unused_bgs)) {
10552 u64 start, end;
10553 int trimming;
10554
10555 block_group = list_first_entry(&fs_info->unused_bgs,
10556 struct btrfs_block_group_cache,
10557 bg_list);
10558 list_del_init(&block_group->bg_list);
10559
10560 space_info = block_group->space_info;
10561
10562 if (ret || btrfs_mixed_space_info(space_info)) {
10563 btrfs_put_block_group(block_group);
10564 continue;
10565 }
10566 spin_unlock(&fs_info->unused_bgs_lock);
10567
10568 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10569
10570 /* Don't want to race with allocators so take the groups_sem */
10571 down_write(&space_info->groups_sem);
10572 spin_lock(&block_group->lock);
10573 if (block_group->reserved || block_group->pinned ||
10574 btrfs_block_group_used(&block_group->item) ||
10575 block_group->ro ||
10576 list_is_singular(&block_group->list)) {
10577 /*
10578 * We want to bail if we made new allocations or have
10579 * outstanding allocations in this block group. We do
10580 * the ro check in case balance is currently acting on
10581 * this block group.
10582 */
10583 trace_btrfs_skip_unused_block_group(block_group);
10584 spin_unlock(&block_group->lock);
10585 up_write(&space_info->groups_sem);
10586 goto next;
10587 }
10588 spin_unlock(&block_group->lock);
10589
10590 /* We don't want to force the issue, only flip if it's ok. */
10591 ret = inc_block_group_ro(block_group, 0);
10592 up_write(&space_info->groups_sem);
10593 if (ret < 0) {
10594 ret = 0;
10595 goto next;
10596 }
10597
10598 /*
10599 * Want to do this before we do anything else so we can recover
10600 * properly if we fail to join the transaction.
10601 */
10602 trans = btrfs_start_trans_remove_block_group(fs_info,
10603 block_group->key.objectid);
10604 if (IS_ERR(trans)) {
10605 btrfs_dec_block_group_ro(block_group);
10606 ret = PTR_ERR(trans);
10607 goto next;
10608 }
10609
10610 /*
10611 * We could have pending pinned extents for this block group,
10612 * just delete them, we don't care about them anymore.
10613 */
10614 start = block_group->key.objectid;
10615 end = start + block_group->key.offset - 1;
10616 /*
10617 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10618 * btrfs_finish_extent_commit(). If we are at transaction N,
10619 * another task might be running finish_extent_commit() for the
10620 * previous transaction N - 1, and have seen a range belonging
10621 * to the block group in freed_extents[] before we were able to
10622 * clear the whole block group range from freed_extents[]. This
10623 * means that task can lookup for the block group after we
10624 * unpinned it from freed_extents[] and removed it, leading to
10625 * a BUG_ON() at btrfs_unpin_extent_range().
10626 */
10627 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10628 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10629 EXTENT_DIRTY);
10630 if (ret) {
10631 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10632 btrfs_dec_block_group_ro(block_group);
10633 goto end_trans;
10634 }
10635 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10636 EXTENT_DIRTY);
10637 if (ret) {
10638 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10639 btrfs_dec_block_group_ro(block_group);
10640 goto end_trans;
10641 }
10642 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10643
10644 /* Reset pinned so btrfs_put_block_group doesn't complain */
10645 spin_lock(&space_info->lock);
10646 spin_lock(&block_group->lock);
10647
10648 space_info->bytes_pinned -= block_group->pinned;
10649 space_info->bytes_readonly += block_group->pinned;
10650 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10651 -block_group->pinned,
10652 BTRFS_TOTAL_BYTES_PINNED_BATCH);
10653 block_group->pinned = 0;
10654
10655 spin_unlock(&block_group->lock);
10656 spin_unlock(&space_info->lock);
10657
10658 /* DISCARD can flip during remount */
10659 trimming = btrfs_test_opt(fs_info, DISCARD);
10660
10661 /* Implicit trim during transaction commit. */
10662 if (trimming)
10663 btrfs_get_block_group_trimming(block_group);
10664
10665 /*
10666 * Btrfs_remove_chunk will abort the transaction if things go
10667 * horribly wrong.
10668 */
10669 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
10670
10671 if (ret) {
10672 if (trimming)
10673 btrfs_put_block_group_trimming(block_group);
10674 goto end_trans;
10675 }
10676
10677 /*
10678 * If we're not mounted with -odiscard, we can just forget
10679 * about this block group. Otherwise we'll need to wait
10680 * until transaction commit to do the actual discard.
10681 */
10682 if (trimming) {
10683 spin_lock(&fs_info->unused_bgs_lock);
10684 /*
10685 * A concurrent scrub might have added us to the list
10686 * fs_info->unused_bgs, so use a list_move operation
10687 * to add the block group to the deleted_bgs list.
10688 */
10689 list_move(&block_group->bg_list,
10690 &trans->transaction->deleted_bgs);
10691 spin_unlock(&fs_info->unused_bgs_lock);
10692 btrfs_get_block_group(block_group);
10693 }
10694 end_trans:
10695 btrfs_end_transaction(trans);
10696 next:
10697 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10698 btrfs_put_block_group(block_group);
10699 spin_lock(&fs_info->unused_bgs_lock);
10700 }
10701 spin_unlock(&fs_info->unused_bgs_lock);
10702 }
10703
btrfs_init_space_info(struct btrfs_fs_info * fs_info)10704 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10705 {
10706 struct btrfs_super_block *disk_super;
10707 u64 features;
10708 u64 flags;
10709 int mixed = 0;
10710 int ret;
10711
10712 disk_super = fs_info->super_copy;
10713 if (!btrfs_super_root(disk_super))
10714 return -EINVAL;
10715
10716 features = btrfs_super_incompat_flags(disk_super);
10717 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10718 mixed = 1;
10719
10720 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10721 ret = create_space_info(fs_info, flags);
10722 if (ret)
10723 goto out;
10724
10725 if (mixed) {
10726 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10727 ret = create_space_info(fs_info, flags);
10728 } else {
10729 flags = BTRFS_BLOCK_GROUP_METADATA;
10730 ret = create_space_info(fs_info, flags);
10731 if (ret)
10732 goto out;
10733
10734 flags = BTRFS_BLOCK_GROUP_DATA;
10735 ret = create_space_info(fs_info, flags);
10736 }
10737 out:
10738 return ret;
10739 }
10740
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)10741 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10742 u64 start, u64 end)
10743 {
10744 return unpin_extent_range(fs_info, start, end, false);
10745 }
10746
10747 /*
10748 * It used to be that old block groups would be left around forever.
10749 * Iterating over them would be enough to trim unused space. Since we
10750 * now automatically remove them, we also need to iterate over unallocated
10751 * space.
10752 *
10753 * We don't want a transaction for this since the discard may take a
10754 * substantial amount of time. We don't require that a transaction be
10755 * running, but we do need to take a running transaction into account
10756 * to ensure that we're not discarding chunks that were released in
10757 * the current transaction.
10758 *
10759 * Holding the chunks lock will prevent other threads from allocating
10760 * or releasing chunks, but it won't prevent a running transaction
10761 * from committing and releasing the memory that the pending chunks
10762 * list head uses. For that, we need to take a reference to the
10763 * transaction.
10764 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 minlen,u64 * trimmed)10765 static int btrfs_trim_free_extents(struct btrfs_device *device,
10766 u64 minlen, u64 *trimmed)
10767 {
10768 u64 start = 0, len = 0;
10769 int ret;
10770
10771 *trimmed = 0;
10772
10773 /* Not writeable = nothing to do. */
10774 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10775 return 0;
10776
10777 /* No free space = nothing to do. */
10778 if (device->total_bytes <= device->bytes_used)
10779 return 0;
10780
10781 ret = 0;
10782
10783 while (1) {
10784 struct btrfs_fs_info *fs_info = device->fs_info;
10785 struct btrfs_transaction *trans;
10786 u64 bytes;
10787
10788 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10789 if (ret)
10790 return ret;
10791
10792 down_read(&fs_info->commit_root_sem);
10793
10794 spin_lock(&fs_info->trans_lock);
10795 trans = fs_info->running_transaction;
10796 if (trans)
10797 refcount_inc(&trans->use_count);
10798 spin_unlock(&fs_info->trans_lock);
10799
10800 ret = find_free_dev_extent_start(trans, device, minlen, start,
10801 &start, &len);
10802 if (trans)
10803 btrfs_put_transaction(trans);
10804
10805 if (ret) {
10806 up_read(&fs_info->commit_root_sem);
10807 mutex_unlock(&fs_info->chunk_mutex);
10808 if (ret == -ENOSPC)
10809 ret = 0;
10810 break;
10811 }
10812
10813 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10814 up_read(&fs_info->commit_root_sem);
10815 mutex_unlock(&fs_info->chunk_mutex);
10816
10817 if (ret)
10818 break;
10819
10820 start += len;
10821 *trimmed += bytes;
10822
10823 if (fatal_signal_pending(current)) {
10824 ret = -ERESTARTSYS;
10825 break;
10826 }
10827
10828 cond_resched();
10829 }
10830
10831 return ret;
10832 }
10833
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)10834 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10835 {
10836 struct btrfs_block_group_cache *cache = NULL;
10837 struct btrfs_device *device;
10838 struct list_head *devices;
10839 u64 group_trimmed;
10840 u64 start;
10841 u64 end;
10842 u64 trimmed = 0;
10843 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10844 int ret = 0;
10845
10846 /*
10847 * try to trim all FS space, our block group may start from non-zero.
10848 */
10849 if (range->len == total_bytes)
10850 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10851 else
10852 cache = btrfs_lookup_block_group(fs_info, range->start);
10853
10854 while (cache) {
10855 if (cache->key.objectid >= (range->start + range->len)) {
10856 btrfs_put_block_group(cache);
10857 break;
10858 }
10859
10860 start = max(range->start, cache->key.objectid);
10861 end = min(range->start + range->len,
10862 cache->key.objectid + cache->key.offset);
10863
10864 if (end - start >= range->minlen) {
10865 if (!block_group_cache_done(cache)) {
10866 ret = cache_block_group(cache, 0);
10867 if (ret) {
10868 btrfs_put_block_group(cache);
10869 break;
10870 }
10871 ret = wait_block_group_cache_done(cache);
10872 if (ret) {
10873 btrfs_put_block_group(cache);
10874 break;
10875 }
10876 }
10877 ret = btrfs_trim_block_group(cache,
10878 &group_trimmed,
10879 start,
10880 end,
10881 range->minlen);
10882
10883 trimmed += group_trimmed;
10884 if (ret) {
10885 btrfs_put_block_group(cache);
10886 break;
10887 }
10888 }
10889
10890 cache = next_block_group(fs_info, cache);
10891 }
10892
10893 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10894 devices = &fs_info->fs_devices->alloc_list;
10895 list_for_each_entry(device, devices, dev_alloc_list) {
10896 ret = btrfs_trim_free_extents(device, range->minlen,
10897 &group_trimmed);
10898 if (ret)
10899 break;
10900
10901 trimmed += group_trimmed;
10902 }
10903 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10904
10905 range->len = trimmed;
10906 return ret;
10907 }
10908
10909 /*
10910 * btrfs_{start,end}_write_no_snapshotting() are similar to
10911 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10912 * data into the page cache through nocow before the subvolume is snapshoted,
10913 * but flush the data into disk after the snapshot creation, or to prevent
10914 * operations while snapshotting is ongoing and that cause the snapshot to be
10915 * inconsistent (writes followed by expanding truncates for example).
10916 */
btrfs_end_write_no_snapshotting(struct btrfs_root * root)10917 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
10918 {
10919 percpu_counter_dec(&root->subv_writers->counter);
10920 cond_wake_up(&root->subv_writers->wait);
10921 }
10922
btrfs_start_write_no_snapshotting(struct btrfs_root * root)10923 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
10924 {
10925 if (atomic_read(&root->will_be_snapshotted))
10926 return 0;
10927
10928 percpu_counter_inc(&root->subv_writers->counter);
10929 /*
10930 * Make sure counter is updated before we check for snapshot creation.
10931 */
10932 smp_mb();
10933 if (atomic_read(&root->will_be_snapshotted)) {
10934 btrfs_end_write_no_snapshotting(root);
10935 return 0;
10936 }
10937 return 1;
10938 }
10939
btrfs_wait_for_snapshot_creation(struct btrfs_root * root)10940 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10941 {
10942 while (true) {
10943 int ret;
10944
10945 ret = btrfs_start_write_no_snapshotting(root);
10946 if (ret)
10947 break;
10948 wait_var_event(&root->will_be_snapshotted,
10949 !atomic_read(&root->will_be_snapshotted));
10950 }
10951 }
10952
btrfs_mark_bg_unused(struct btrfs_block_group_cache * bg)10953 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
10954 {
10955 struct btrfs_fs_info *fs_info = bg->fs_info;
10956
10957 spin_lock(&fs_info->unused_bgs_lock);
10958 if (list_empty(&bg->bg_list)) {
10959 btrfs_get_block_group(bg);
10960 trace_btrfs_add_unused_block_group(bg);
10961 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
10962 }
10963 spin_unlock(&fs_info->unused_bgs_lock);
10964 }
10965