1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 
32 #undef SCRAMBLE_DELAYED_REFS
33 
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49 	CHUNK_ALLOC_NO_FORCE = 0,
50 	CHUNK_ALLOC_LIMITED = 1,
51 	CHUNK_ALLOC_FORCE = 2,
52 };
53 
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 			       struct btrfs_delayed_ref_node *node, u64 parent,
56 			       u64 root_objectid, u64 owner_objectid,
57 			       u64 owner_offset, int refs_to_drop,
58 			       struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 				    struct extent_buffer *leaf,
61 				    struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 				      u64 parent, u64 root_objectid,
64 				      u64 flags, u64 owner, u64 offset,
65 				      struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 				     struct btrfs_delayed_ref_node *node,
68 				     struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
70 			  int force);
71 static int find_next_key(struct btrfs_path *path, int level,
72 			 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 			    struct btrfs_space_info *info, u64 bytes,
75 			    int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 			       u64 num_bytes);
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 				     struct btrfs_space_info *space_info,
80 				     u64 num_bytes);
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 				     struct btrfs_space_info *space_info,
83 				     u64 num_bytes);
84 
85 static noinline int
block_group_cache_done(struct btrfs_block_group_cache * cache)86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 	smp_mb();
89 	return cache->cached == BTRFS_CACHE_FINISHED ||
90 		cache->cached == BTRFS_CACHE_ERROR;
91 }
92 
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94 {
95 	return (cache->flags & bits) == bits;
96 }
97 
btrfs_get_block_group(struct btrfs_block_group_cache * cache)98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
99 {
100 	atomic_inc(&cache->count);
101 }
102 
btrfs_put_block_group(struct btrfs_block_group_cache * cache)103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104 {
105 	if (atomic_dec_and_test(&cache->count)) {
106 		WARN_ON(cache->pinned > 0);
107 		WARN_ON(cache->reserved > 0);
108 
109 		/*
110 		 * If not empty, someone is still holding mutex of
111 		 * full_stripe_lock, which can only be released by caller.
112 		 * And it will definitely cause use-after-free when caller
113 		 * tries to release full stripe lock.
114 		 *
115 		 * No better way to resolve, but only to warn.
116 		 */
117 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 		kfree(cache->free_space_ctl);
119 		kfree(cache);
120 	}
121 }
122 
123 /*
124  * this adds the block group to the fs_info rb tree for the block group
125  * cache
126  */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 				struct btrfs_block_group_cache *block_group)
129 {
130 	struct rb_node **p;
131 	struct rb_node *parent = NULL;
132 	struct btrfs_block_group_cache *cache;
133 
134 	spin_lock(&info->block_group_cache_lock);
135 	p = &info->block_group_cache_tree.rb_node;
136 
137 	while (*p) {
138 		parent = *p;
139 		cache = rb_entry(parent, struct btrfs_block_group_cache,
140 				 cache_node);
141 		if (block_group->key.objectid < cache->key.objectid) {
142 			p = &(*p)->rb_left;
143 		} else if (block_group->key.objectid > cache->key.objectid) {
144 			p = &(*p)->rb_right;
145 		} else {
146 			spin_unlock(&info->block_group_cache_lock);
147 			return -EEXIST;
148 		}
149 	}
150 
151 	rb_link_node(&block_group->cache_node, parent, p);
152 	rb_insert_color(&block_group->cache_node,
153 			&info->block_group_cache_tree);
154 
155 	if (info->first_logical_byte > block_group->key.objectid)
156 		info->first_logical_byte = block_group->key.objectid;
157 
158 	spin_unlock(&info->block_group_cache_lock);
159 
160 	return 0;
161 }
162 
163 /*
164  * This will return the block group at or after bytenr if contains is 0, else
165  * it will return the block group that contains the bytenr
166  */
167 static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 			      int contains)
170 {
171 	struct btrfs_block_group_cache *cache, *ret = NULL;
172 	struct rb_node *n;
173 	u64 end, start;
174 
175 	spin_lock(&info->block_group_cache_lock);
176 	n = info->block_group_cache_tree.rb_node;
177 
178 	while (n) {
179 		cache = rb_entry(n, struct btrfs_block_group_cache,
180 				 cache_node);
181 		end = cache->key.objectid + cache->key.offset - 1;
182 		start = cache->key.objectid;
183 
184 		if (bytenr < start) {
185 			if (!contains && (!ret || start < ret->key.objectid))
186 				ret = cache;
187 			n = n->rb_left;
188 		} else if (bytenr > start) {
189 			if (contains && bytenr <= end) {
190 				ret = cache;
191 				break;
192 			}
193 			n = n->rb_right;
194 		} else {
195 			ret = cache;
196 			break;
197 		}
198 	}
199 	if (ret) {
200 		btrfs_get_block_group(ret);
201 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 			info->first_logical_byte = ret->key.objectid;
203 	}
204 	spin_unlock(&info->block_group_cache_lock);
205 
206 	return ret;
207 }
208 
add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 			       u64 start, u64 num_bytes)
211 {
212 	u64 end = start + num_bytes - 1;
213 	set_extent_bits(&fs_info->freed_extents[0],
214 			start, end, EXTENT_UPTODATE);
215 	set_extent_bits(&fs_info->freed_extents[1],
216 			start, end, EXTENT_UPTODATE);
217 	return 0;
218 }
219 
free_excluded_extents(struct btrfs_block_group_cache * cache)220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
221 {
222 	struct btrfs_fs_info *fs_info = cache->fs_info;
223 	u64 start, end;
224 
225 	start = cache->key.objectid;
226 	end = start + cache->key.offset - 1;
227 
228 	clear_extent_bits(&fs_info->freed_extents[0],
229 			  start, end, EXTENT_UPTODATE);
230 	clear_extent_bits(&fs_info->freed_extents[1],
231 			  start, end, EXTENT_UPTODATE);
232 }
233 
exclude_super_stripes(struct btrfs_block_group_cache * cache)234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
235 {
236 	struct btrfs_fs_info *fs_info = cache->fs_info;
237 	u64 bytenr;
238 	u64 *logical;
239 	int stripe_len;
240 	int i, nr, ret;
241 
242 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 		cache->bytes_super += stripe_len;
245 		ret = add_excluded_extent(fs_info, cache->key.objectid,
246 					  stripe_len);
247 		if (ret)
248 			return ret;
249 	}
250 
251 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 		bytenr = btrfs_sb_offset(i);
253 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 				       bytenr, &logical, &nr, &stripe_len);
255 		if (ret)
256 			return ret;
257 
258 		while (nr--) {
259 			u64 start, len;
260 
261 			if (logical[nr] > cache->key.objectid +
262 			    cache->key.offset)
263 				continue;
264 
265 			if (logical[nr] + stripe_len <= cache->key.objectid)
266 				continue;
267 
268 			start = logical[nr];
269 			if (start < cache->key.objectid) {
270 				start = cache->key.objectid;
271 				len = (logical[nr] + stripe_len) - start;
272 			} else {
273 				len = min_t(u64, stripe_len,
274 					    cache->key.objectid +
275 					    cache->key.offset - start);
276 			}
277 
278 			cache->bytes_super += len;
279 			ret = add_excluded_extent(fs_info, start, len);
280 			if (ret) {
281 				kfree(logical);
282 				return ret;
283 			}
284 		}
285 
286 		kfree(logical);
287 	}
288 	return 0;
289 }
290 
291 static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache * cache)292 get_caching_control(struct btrfs_block_group_cache *cache)
293 {
294 	struct btrfs_caching_control *ctl;
295 
296 	spin_lock(&cache->lock);
297 	if (!cache->caching_ctl) {
298 		spin_unlock(&cache->lock);
299 		return NULL;
300 	}
301 
302 	ctl = cache->caching_ctl;
303 	refcount_inc(&ctl->count);
304 	spin_unlock(&cache->lock);
305 	return ctl;
306 }
307 
put_caching_control(struct btrfs_caching_control * ctl)308 static void put_caching_control(struct btrfs_caching_control *ctl)
309 {
310 	if (refcount_dec_and_test(&ctl->count))
311 		kfree(ctl);
312 }
313 
314 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group_cache * block_group)315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
316 {
317 	struct btrfs_fs_info *fs_info = block_group->fs_info;
318 	u64 start = block_group->key.objectid;
319 	u64 len = block_group->key.offset;
320 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 		fs_info->nodesize : fs_info->sectorsize;
322 	u64 step = chunk << 1;
323 
324 	while (len > chunk) {
325 		btrfs_remove_free_space(block_group, start, chunk);
326 		start += step;
327 		if (len < step)
328 			len = 0;
329 		else
330 			len -= step;
331 	}
332 }
333 #endif
334 
335 /*
336  * this is only called by cache_block_group, since we could have freed extents
337  * we need to check the pinned_extents for any extents that can't be used yet
338  * since their free space will be released as soon as the transaction commits.
339  */
add_new_free_space(struct btrfs_block_group_cache * block_group,u64 start,u64 end)340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 		       u64 start, u64 end)
342 {
343 	struct btrfs_fs_info *info = block_group->fs_info;
344 	u64 extent_start, extent_end, size, total_added = 0;
345 	int ret;
346 
347 	while (start < end) {
348 		ret = find_first_extent_bit(info->pinned_extents, start,
349 					    &extent_start, &extent_end,
350 					    EXTENT_DIRTY | EXTENT_UPTODATE,
351 					    NULL);
352 		if (ret)
353 			break;
354 
355 		if (extent_start <= start) {
356 			start = extent_end + 1;
357 		} else if (extent_start > start && extent_start < end) {
358 			size = extent_start - start;
359 			total_added += size;
360 			ret = btrfs_add_free_space(block_group, start,
361 						   size);
362 			BUG_ON(ret); /* -ENOMEM or logic error */
363 			start = extent_end + 1;
364 		} else {
365 			break;
366 		}
367 	}
368 
369 	if (start < end) {
370 		size = end - start;
371 		total_added += size;
372 		ret = btrfs_add_free_space(block_group, start, size);
373 		BUG_ON(ret); /* -ENOMEM or logic error */
374 	}
375 
376 	return total_added;
377 }
378 
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
380 {
381 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 	struct btrfs_fs_info *fs_info = block_group->fs_info;
383 	struct btrfs_root *extent_root = fs_info->extent_root;
384 	struct btrfs_path *path;
385 	struct extent_buffer *leaf;
386 	struct btrfs_key key;
387 	u64 total_found = 0;
388 	u64 last = 0;
389 	u32 nritems;
390 	int ret;
391 	bool wakeup = true;
392 
393 	path = btrfs_alloc_path();
394 	if (!path)
395 		return -ENOMEM;
396 
397 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
398 
399 #ifdef CONFIG_BTRFS_DEBUG
400 	/*
401 	 * If we're fragmenting we don't want to make anybody think we can
402 	 * allocate from this block group until we've had a chance to fragment
403 	 * the free space.
404 	 */
405 	if (btrfs_should_fragment_free_space(block_group))
406 		wakeup = false;
407 #endif
408 	/*
409 	 * We don't want to deadlock with somebody trying to allocate a new
410 	 * extent for the extent root while also trying to search the extent
411 	 * root to add free space.  So we skip locking and search the commit
412 	 * root, since its read-only
413 	 */
414 	path->skip_locking = 1;
415 	path->search_commit_root = 1;
416 	path->reada = READA_FORWARD;
417 
418 	key.objectid = last;
419 	key.offset = 0;
420 	key.type = BTRFS_EXTENT_ITEM_KEY;
421 
422 next:
423 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 	if (ret < 0)
425 		goto out;
426 
427 	leaf = path->nodes[0];
428 	nritems = btrfs_header_nritems(leaf);
429 
430 	while (1) {
431 		if (btrfs_fs_closing(fs_info) > 1) {
432 			last = (u64)-1;
433 			break;
434 		}
435 
436 		if (path->slots[0] < nritems) {
437 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 		} else {
439 			ret = find_next_key(path, 0, &key);
440 			if (ret)
441 				break;
442 
443 			if (need_resched() ||
444 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
445 				if (wakeup)
446 					caching_ctl->progress = last;
447 				btrfs_release_path(path);
448 				up_read(&fs_info->commit_root_sem);
449 				mutex_unlock(&caching_ctl->mutex);
450 				cond_resched();
451 				mutex_lock(&caching_ctl->mutex);
452 				down_read(&fs_info->commit_root_sem);
453 				goto next;
454 			}
455 
456 			ret = btrfs_next_leaf(extent_root, path);
457 			if (ret < 0)
458 				goto out;
459 			if (ret)
460 				break;
461 			leaf = path->nodes[0];
462 			nritems = btrfs_header_nritems(leaf);
463 			continue;
464 		}
465 
466 		if (key.objectid < last) {
467 			key.objectid = last;
468 			key.offset = 0;
469 			key.type = BTRFS_EXTENT_ITEM_KEY;
470 
471 			if (wakeup)
472 				caching_ctl->progress = last;
473 			btrfs_release_path(path);
474 			goto next;
475 		}
476 
477 		if (key.objectid < block_group->key.objectid) {
478 			path->slots[0]++;
479 			continue;
480 		}
481 
482 		if (key.objectid >= block_group->key.objectid +
483 		    block_group->key.offset)
484 			break;
485 
486 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 		    key.type == BTRFS_METADATA_ITEM_KEY) {
488 			total_found += add_new_free_space(block_group, last,
489 							  key.objectid);
490 			if (key.type == BTRFS_METADATA_ITEM_KEY)
491 				last = key.objectid +
492 					fs_info->nodesize;
493 			else
494 				last = key.objectid + key.offset;
495 
496 			if (total_found > CACHING_CTL_WAKE_UP) {
497 				total_found = 0;
498 				if (wakeup)
499 					wake_up(&caching_ctl->wait);
500 			}
501 		}
502 		path->slots[0]++;
503 	}
504 	ret = 0;
505 
506 	total_found += add_new_free_space(block_group, last,
507 					  block_group->key.objectid +
508 					  block_group->key.offset);
509 	caching_ctl->progress = (u64)-1;
510 
511 out:
512 	btrfs_free_path(path);
513 	return ret;
514 }
515 
caching_thread(struct btrfs_work * work)516 static noinline void caching_thread(struct btrfs_work *work)
517 {
518 	struct btrfs_block_group_cache *block_group;
519 	struct btrfs_fs_info *fs_info;
520 	struct btrfs_caching_control *caching_ctl;
521 	int ret;
522 
523 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 	block_group = caching_ctl->block_group;
525 	fs_info = block_group->fs_info;
526 
527 	mutex_lock(&caching_ctl->mutex);
528 	down_read(&fs_info->commit_root_sem);
529 
530 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 		ret = load_free_space_tree(caching_ctl);
532 	else
533 		ret = load_extent_tree_free(caching_ctl);
534 
535 	spin_lock(&block_group->lock);
536 	block_group->caching_ctl = NULL;
537 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 	spin_unlock(&block_group->lock);
539 
540 #ifdef CONFIG_BTRFS_DEBUG
541 	if (btrfs_should_fragment_free_space(block_group)) {
542 		u64 bytes_used;
543 
544 		spin_lock(&block_group->space_info->lock);
545 		spin_lock(&block_group->lock);
546 		bytes_used = block_group->key.offset -
547 			btrfs_block_group_used(&block_group->item);
548 		block_group->space_info->bytes_used += bytes_used >> 1;
549 		spin_unlock(&block_group->lock);
550 		spin_unlock(&block_group->space_info->lock);
551 		fragment_free_space(block_group);
552 	}
553 #endif
554 
555 	caching_ctl->progress = (u64)-1;
556 
557 	up_read(&fs_info->commit_root_sem);
558 	free_excluded_extents(block_group);
559 	mutex_unlock(&caching_ctl->mutex);
560 
561 	wake_up(&caching_ctl->wait);
562 
563 	put_caching_control(caching_ctl);
564 	btrfs_put_block_group(block_group);
565 }
566 
cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)567 static int cache_block_group(struct btrfs_block_group_cache *cache,
568 			     int load_cache_only)
569 {
570 	DEFINE_WAIT(wait);
571 	struct btrfs_fs_info *fs_info = cache->fs_info;
572 	struct btrfs_caching_control *caching_ctl;
573 	int ret = 0;
574 
575 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
576 	if (!caching_ctl)
577 		return -ENOMEM;
578 
579 	INIT_LIST_HEAD(&caching_ctl->list);
580 	mutex_init(&caching_ctl->mutex);
581 	init_waitqueue_head(&caching_ctl->wait);
582 	caching_ctl->block_group = cache;
583 	caching_ctl->progress = cache->key.objectid;
584 	refcount_set(&caching_ctl->count, 1);
585 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 			caching_thread, NULL, NULL);
587 
588 	spin_lock(&cache->lock);
589 	/*
590 	 * This should be a rare occasion, but this could happen I think in the
591 	 * case where one thread starts to load the space cache info, and then
592 	 * some other thread starts a transaction commit which tries to do an
593 	 * allocation while the other thread is still loading the space cache
594 	 * info.  The previous loop should have kept us from choosing this block
595 	 * group, but if we've moved to the state where we will wait on caching
596 	 * block groups we need to first check if we're doing a fast load here,
597 	 * so we can wait for it to finish, otherwise we could end up allocating
598 	 * from a block group who's cache gets evicted for one reason or
599 	 * another.
600 	 */
601 	while (cache->cached == BTRFS_CACHE_FAST) {
602 		struct btrfs_caching_control *ctl;
603 
604 		ctl = cache->caching_ctl;
605 		refcount_inc(&ctl->count);
606 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 		spin_unlock(&cache->lock);
608 
609 		schedule();
610 
611 		finish_wait(&ctl->wait, &wait);
612 		put_caching_control(ctl);
613 		spin_lock(&cache->lock);
614 	}
615 
616 	if (cache->cached != BTRFS_CACHE_NO) {
617 		spin_unlock(&cache->lock);
618 		kfree(caching_ctl);
619 		return 0;
620 	}
621 	WARN_ON(cache->caching_ctl);
622 	cache->caching_ctl = caching_ctl;
623 	cache->cached = BTRFS_CACHE_FAST;
624 	spin_unlock(&cache->lock);
625 
626 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 		mutex_lock(&caching_ctl->mutex);
628 		ret = load_free_space_cache(fs_info, cache);
629 
630 		spin_lock(&cache->lock);
631 		if (ret == 1) {
632 			cache->caching_ctl = NULL;
633 			cache->cached = BTRFS_CACHE_FINISHED;
634 			cache->last_byte_to_unpin = (u64)-1;
635 			caching_ctl->progress = (u64)-1;
636 		} else {
637 			if (load_cache_only) {
638 				cache->caching_ctl = NULL;
639 				cache->cached = BTRFS_CACHE_NO;
640 			} else {
641 				cache->cached = BTRFS_CACHE_STARTED;
642 				cache->has_caching_ctl = 1;
643 			}
644 		}
645 		spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
647 		if (ret == 1 &&
648 		    btrfs_should_fragment_free_space(cache)) {
649 			u64 bytes_used;
650 
651 			spin_lock(&cache->space_info->lock);
652 			spin_lock(&cache->lock);
653 			bytes_used = cache->key.offset -
654 				btrfs_block_group_used(&cache->item);
655 			cache->space_info->bytes_used += bytes_used >> 1;
656 			spin_unlock(&cache->lock);
657 			spin_unlock(&cache->space_info->lock);
658 			fragment_free_space(cache);
659 		}
660 #endif
661 		mutex_unlock(&caching_ctl->mutex);
662 
663 		wake_up(&caching_ctl->wait);
664 		if (ret == 1) {
665 			put_caching_control(caching_ctl);
666 			free_excluded_extents(cache);
667 			return 0;
668 		}
669 	} else {
670 		/*
671 		 * We're either using the free space tree or no caching at all.
672 		 * Set cached to the appropriate value and wakeup any waiters.
673 		 */
674 		spin_lock(&cache->lock);
675 		if (load_cache_only) {
676 			cache->caching_ctl = NULL;
677 			cache->cached = BTRFS_CACHE_NO;
678 		} else {
679 			cache->cached = BTRFS_CACHE_STARTED;
680 			cache->has_caching_ctl = 1;
681 		}
682 		spin_unlock(&cache->lock);
683 		wake_up(&caching_ctl->wait);
684 	}
685 
686 	if (load_cache_only) {
687 		put_caching_control(caching_ctl);
688 		return 0;
689 	}
690 
691 	down_write(&fs_info->commit_root_sem);
692 	refcount_inc(&caching_ctl->count);
693 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 	up_write(&fs_info->commit_root_sem);
695 
696 	btrfs_get_block_group(cache);
697 
698 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
699 
700 	return ret;
701 }
702 
703 /*
704  * return the block group that starts at or after bytenr
705  */
706 static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
708 {
709 	return block_group_cache_tree_search(info, bytenr, 0);
710 }
711 
712 /*
713  * return the block group that contains the given bytenr
714  */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 						 struct btrfs_fs_info *info,
717 						 u64 bytenr)
718 {
719 	return block_group_cache_tree_search(info, bytenr, 1);
720 }
721 
__find_space_info(struct btrfs_fs_info * info,u64 flags)722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 						  u64 flags)
724 {
725 	struct list_head *head = &info->space_info;
726 	struct btrfs_space_info *found;
727 
728 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
729 
730 	rcu_read_lock();
731 	list_for_each_entry_rcu(found, head, list) {
732 		if (found->flags & flags) {
733 			rcu_read_unlock();
734 			return found;
735 		}
736 	}
737 	rcu_read_unlock();
738 	return NULL;
739 }
740 
add_pinned_bytes(struct btrfs_fs_info * fs_info,s64 num_bytes,bool metadata,u64 root_objectid)741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 			     bool metadata, u64 root_objectid)
743 {
744 	struct btrfs_space_info *space_info;
745 	u64 flags;
746 
747 	if (metadata) {
748 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 		else
751 			flags = BTRFS_BLOCK_GROUP_METADATA;
752 	} else {
753 		flags = BTRFS_BLOCK_GROUP_DATA;
754 	}
755 
756 	space_info = __find_space_info(fs_info, flags);
757 	ASSERT(space_info);
758 	percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
760 }
761 
762 /*
763  * after adding space to the filesystem, we need to clear the full flags
764  * on all the space infos.
765  */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767 {
768 	struct list_head *head = &info->space_info;
769 	struct btrfs_space_info *found;
770 
771 	rcu_read_lock();
772 	list_for_each_entry_rcu(found, head, list)
773 		found->full = 0;
774 	rcu_read_unlock();
775 }
776 
777 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
779 {
780 	int ret;
781 	struct btrfs_key key;
782 	struct btrfs_path *path;
783 
784 	path = btrfs_alloc_path();
785 	if (!path)
786 		return -ENOMEM;
787 
788 	key.objectid = start;
789 	key.offset = len;
790 	key.type = BTRFS_EXTENT_ITEM_KEY;
791 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 	btrfs_free_path(path);
793 	return ret;
794 }
795 
796 /*
797  * helper function to lookup reference count and flags of a tree block.
798  *
799  * the head node for delayed ref is used to store the sum of all the
800  * reference count modifications queued up in the rbtree. the head
801  * node may also store the extent flags to set. This way you can check
802  * to see what the reference count and extent flags would be if all of
803  * the delayed refs are not processed.
804  */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 			     struct btrfs_fs_info *fs_info, u64 bytenr,
807 			     u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 	struct btrfs_delayed_ref_head *head;
810 	struct btrfs_delayed_ref_root *delayed_refs;
811 	struct btrfs_path *path;
812 	struct btrfs_extent_item *ei;
813 	struct extent_buffer *leaf;
814 	struct btrfs_key key;
815 	u32 item_size;
816 	u64 num_refs;
817 	u64 extent_flags;
818 	int ret;
819 
820 	/*
821 	 * If we don't have skinny metadata, don't bother doing anything
822 	 * different
823 	 */
824 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 		offset = fs_info->nodesize;
826 		metadata = 0;
827 	}
828 
829 	path = btrfs_alloc_path();
830 	if (!path)
831 		return -ENOMEM;
832 
833 	if (!trans) {
834 		path->skip_locking = 1;
835 		path->search_commit_root = 1;
836 	}
837 
838 search_again:
839 	key.objectid = bytenr;
840 	key.offset = offset;
841 	if (metadata)
842 		key.type = BTRFS_METADATA_ITEM_KEY;
843 	else
844 		key.type = BTRFS_EXTENT_ITEM_KEY;
845 
846 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
847 	if (ret < 0)
848 		goto out_free;
849 
850 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 		if (path->slots[0]) {
852 			path->slots[0]--;
853 			btrfs_item_key_to_cpu(path->nodes[0], &key,
854 					      path->slots[0]);
855 			if (key.objectid == bytenr &&
856 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
857 			    key.offset == fs_info->nodesize)
858 				ret = 0;
859 		}
860 	}
861 
862 	if (ret == 0) {
863 		leaf = path->nodes[0];
864 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 		if (item_size >= sizeof(*ei)) {
866 			ei = btrfs_item_ptr(leaf, path->slots[0],
867 					    struct btrfs_extent_item);
868 			num_refs = btrfs_extent_refs(leaf, ei);
869 			extent_flags = btrfs_extent_flags(leaf, ei);
870 		} else {
871 			ret = -EINVAL;
872 			btrfs_print_v0_err(fs_info);
873 			if (trans)
874 				btrfs_abort_transaction(trans, ret);
875 			else
876 				btrfs_handle_fs_error(fs_info, ret, NULL);
877 
878 			goto out_free;
879 		}
880 
881 		BUG_ON(num_refs == 0);
882 	} else {
883 		num_refs = 0;
884 		extent_flags = 0;
885 		ret = 0;
886 	}
887 
888 	if (!trans)
889 		goto out;
890 
891 	delayed_refs = &trans->transaction->delayed_refs;
892 	spin_lock(&delayed_refs->lock);
893 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
894 	if (head) {
895 		if (!mutex_trylock(&head->mutex)) {
896 			refcount_inc(&head->refs);
897 			spin_unlock(&delayed_refs->lock);
898 
899 			btrfs_release_path(path);
900 
901 			/*
902 			 * Mutex was contended, block until it's released and try
903 			 * again
904 			 */
905 			mutex_lock(&head->mutex);
906 			mutex_unlock(&head->mutex);
907 			btrfs_put_delayed_ref_head(head);
908 			goto search_again;
909 		}
910 		spin_lock(&head->lock);
911 		if (head->extent_op && head->extent_op->update_flags)
912 			extent_flags |= head->extent_op->flags_to_set;
913 		else
914 			BUG_ON(num_refs == 0);
915 
916 		num_refs += head->ref_mod;
917 		spin_unlock(&head->lock);
918 		mutex_unlock(&head->mutex);
919 	}
920 	spin_unlock(&delayed_refs->lock);
921 out:
922 	WARN_ON(num_refs == 0);
923 	if (refs)
924 		*refs = num_refs;
925 	if (flags)
926 		*flags = extent_flags;
927 out_free:
928 	btrfs_free_path(path);
929 	return ret;
930 }
931 
932 /*
933  * Back reference rules.  Back refs have three main goals:
934  *
935  * 1) differentiate between all holders of references to an extent so that
936  *    when a reference is dropped we can make sure it was a valid reference
937  *    before freeing the extent.
938  *
939  * 2) Provide enough information to quickly find the holders of an extent
940  *    if we notice a given block is corrupted or bad.
941  *
942  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943  *    maintenance.  This is actually the same as #2, but with a slightly
944  *    different use case.
945  *
946  * There are two kinds of back refs. The implicit back refs is optimized
947  * for pointers in non-shared tree blocks. For a given pointer in a block,
948  * back refs of this kind provide information about the block's owner tree
949  * and the pointer's key. These information allow us to find the block by
950  * b-tree searching. The full back refs is for pointers in tree blocks not
951  * referenced by their owner trees. The location of tree block is recorded
952  * in the back refs. Actually the full back refs is generic, and can be
953  * used in all cases the implicit back refs is used. The major shortcoming
954  * of the full back refs is its overhead. Every time a tree block gets
955  * COWed, we have to update back refs entry for all pointers in it.
956  *
957  * For a newly allocated tree block, we use implicit back refs for
958  * pointers in it. This means most tree related operations only involve
959  * implicit back refs. For a tree block created in old transaction, the
960  * only way to drop a reference to it is COW it. So we can detect the
961  * event that tree block loses its owner tree's reference and do the
962  * back refs conversion.
963  *
964  * When a tree block is COWed through a tree, there are four cases:
965  *
966  * The reference count of the block is one and the tree is the block's
967  * owner tree. Nothing to do in this case.
968  *
969  * The reference count of the block is one and the tree is not the
970  * block's owner tree. In this case, full back refs is used for pointers
971  * in the block. Remove these full back refs, add implicit back refs for
972  * every pointers in the new block.
973  *
974  * The reference count of the block is greater than one and the tree is
975  * the block's owner tree. In this case, implicit back refs is used for
976  * pointers in the block. Add full back refs for every pointers in the
977  * block, increase lower level extents' reference counts. The original
978  * implicit back refs are entailed to the new block.
979  *
980  * The reference count of the block is greater than one and the tree is
981  * not the block's owner tree. Add implicit back refs for every pointer in
982  * the new block, increase lower level extents' reference count.
983  *
984  * Back Reference Key composing:
985  *
986  * The key objectid corresponds to the first byte in the extent,
987  * The key type is used to differentiate between types of back refs.
988  * There are different meanings of the key offset for different types
989  * of back refs.
990  *
991  * File extents can be referenced by:
992  *
993  * - multiple snapshots, subvolumes, or different generations in one subvol
994  * - different files inside a single subvolume
995  * - different offsets inside a file (bookend extents in file.c)
996  *
997  * The extent ref structure for the implicit back refs has fields for:
998  *
999  * - Objectid of the subvolume root
1000  * - objectid of the file holding the reference
1001  * - original offset in the file
1002  * - how many bookend extents
1003  *
1004  * The key offset for the implicit back refs is hash of the first
1005  * three fields.
1006  *
1007  * The extent ref structure for the full back refs has field for:
1008  *
1009  * - number of pointers in the tree leaf
1010  *
1011  * The key offset for the implicit back refs is the first byte of
1012  * the tree leaf
1013  *
1014  * When a file extent is allocated, The implicit back refs is used.
1015  * the fields are filled in:
1016  *
1017  *     (root_key.objectid, inode objectid, offset in file, 1)
1018  *
1019  * When a file extent is removed file truncation, we find the
1020  * corresponding implicit back refs and check the following fields:
1021  *
1022  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1023  *
1024  * Btree extents can be referenced by:
1025  *
1026  * - Different subvolumes
1027  *
1028  * Both the implicit back refs and the full back refs for tree blocks
1029  * only consist of key. The key offset for the implicit back refs is
1030  * objectid of block's owner tree. The key offset for the full back refs
1031  * is the first byte of parent block.
1032  *
1033  * When implicit back refs is used, information about the lowest key and
1034  * level of the tree block are required. These information are stored in
1035  * tree block info structure.
1036  */
1037 
1038 /*
1039  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042  */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 				     struct btrfs_extent_inline_ref *iref,
1045 				     enum btrfs_inline_ref_type is_data)
1046 {
1047 	int type = btrfs_extent_inline_ref_type(eb, iref);
1048 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1049 
1050 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1053 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1056 				return type;
1057 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 				ASSERT(eb->fs_info);
1059 				/*
1060 				 * Every shared one has parent tree
1061 				 * block, which must be aligned to
1062 				 * nodesize.
1063 				 */
1064 				if (offset &&
1065 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1066 					return type;
1067 			}
1068 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1069 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1070 				return type;
1071 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 				ASSERT(eb->fs_info);
1073 				/*
1074 				 * Every shared one has parent tree
1075 				 * block, which must be aligned to
1076 				 * nodesize.
1077 				 */
1078 				if (offset &&
1079 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1080 					return type;
1081 			}
1082 		} else {
1083 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1084 			return type;
1085 		}
1086 	}
1087 
1088 	btrfs_print_leaf((struct extent_buffer *)eb);
1089 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1090 		  eb->start, type);
1091 	WARN_ON(1);
1092 
1093 	return BTRFS_REF_TYPE_INVALID;
1094 }
1095 
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)1096 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 	u32 high_crc = ~(u32)0;
1099 	u32 low_crc = ~(u32)0;
1100 	__le64 lenum;
1101 
1102 	lenum = cpu_to_le64(root_objectid);
1103 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1104 	lenum = cpu_to_le64(owner);
1105 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1106 	lenum = cpu_to_le64(offset);
1107 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1108 
1109 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1110 }
1111 
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)1112 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 				     struct btrfs_extent_data_ref *ref)
1114 {
1115 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 				    btrfs_extent_data_ref_objectid(leaf, ref),
1117 				    btrfs_extent_data_ref_offset(leaf, ref));
1118 }
1119 
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)1120 static int match_extent_data_ref(struct extent_buffer *leaf,
1121 				 struct btrfs_extent_data_ref *ref,
1122 				 u64 root_objectid, u64 owner, u64 offset)
1123 {
1124 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1127 		return 0;
1128 	return 1;
1129 }
1130 
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)1131 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1132 					   struct btrfs_path *path,
1133 					   u64 bytenr, u64 parent,
1134 					   u64 root_objectid,
1135 					   u64 owner, u64 offset)
1136 {
1137 	struct btrfs_root *root = trans->fs_info->extent_root;
1138 	struct btrfs_key key;
1139 	struct btrfs_extent_data_ref *ref;
1140 	struct extent_buffer *leaf;
1141 	u32 nritems;
1142 	int ret;
1143 	int recow;
1144 	int err = -ENOENT;
1145 
1146 	key.objectid = bytenr;
1147 	if (parent) {
1148 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 		key.offset = parent;
1150 	} else {
1151 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 		key.offset = hash_extent_data_ref(root_objectid,
1153 						  owner, offset);
1154 	}
1155 again:
1156 	recow = 0;
1157 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1158 	if (ret < 0) {
1159 		err = ret;
1160 		goto fail;
1161 	}
1162 
1163 	if (parent) {
1164 		if (!ret)
1165 			return 0;
1166 		goto fail;
1167 	}
1168 
1169 	leaf = path->nodes[0];
1170 	nritems = btrfs_header_nritems(leaf);
1171 	while (1) {
1172 		if (path->slots[0] >= nritems) {
1173 			ret = btrfs_next_leaf(root, path);
1174 			if (ret < 0)
1175 				err = ret;
1176 			if (ret)
1177 				goto fail;
1178 
1179 			leaf = path->nodes[0];
1180 			nritems = btrfs_header_nritems(leaf);
1181 			recow = 1;
1182 		}
1183 
1184 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 		if (key.objectid != bytenr ||
1186 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1187 			goto fail;
1188 
1189 		ref = btrfs_item_ptr(leaf, path->slots[0],
1190 				     struct btrfs_extent_data_ref);
1191 
1192 		if (match_extent_data_ref(leaf, ref, root_objectid,
1193 					  owner, offset)) {
1194 			if (recow) {
1195 				btrfs_release_path(path);
1196 				goto again;
1197 			}
1198 			err = 0;
1199 			break;
1200 		}
1201 		path->slots[0]++;
1202 	}
1203 fail:
1204 	return err;
1205 }
1206 
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1207 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1208 					   struct btrfs_path *path,
1209 					   u64 bytenr, u64 parent,
1210 					   u64 root_objectid, u64 owner,
1211 					   u64 offset, int refs_to_add)
1212 {
1213 	struct btrfs_root *root = trans->fs_info->extent_root;
1214 	struct btrfs_key key;
1215 	struct extent_buffer *leaf;
1216 	u32 size;
1217 	u32 num_refs;
1218 	int ret;
1219 
1220 	key.objectid = bytenr;
1221 	if (parent) {
1222 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 		key.offset = parent;
1224 		size = sizeof(struct btrfs_shared_data_ref);
1225 	} else {
1226 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 		key.offset = hash_extent_data_ref(root_objectid,
1228 						  owner, offset);
1229 		size = sizeof(struct btrfs_extent_data_ref);
1230 	}
1231 
1232 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 	if (ret && ret != -EEXIST)
1234 		goto fail;
1235 
1236 	leaf = path->nodes[0];
1237 	if (parent) {
1238 		struct btrfs_shared_data_ref *ref;
1239 		ref = btrfs_item_ptr(leaf, path->slots[0],
1240 				     struct btrfs_shared_data_ref);
1241 		if (ret == 0) {
1242 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1243 		} else {
1244 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 			num_refs += refs_to_add;
1246 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1247 		}
1248 	} else {
1249 		struct btrfs_extent_data_ref *ref;
1250 		while (ret == -EEXIST) {
1251 			ref = btrfs_item_ptr(leaf, path->slots[0],
1252 					     struct btrfs_extent_data_ref);
1253 			if (match_extent_data_ref(leaf, ref, root_objectid,
1254 						  owner, offset))
1255 				break;
1256 			btrfs_release_path(path);
1257 			key.offset++;
1258 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1259 						      size);
1260 			if (ret && ret != -EEXIST)
1261 				goto fail;
1262 
1263 			leaf = path->nodes[0];
1264 		}
1265 		ref = btrfs_item_ptr(leaf, path->slots[0],
1266 				     struct btrfs_extent_data_ref);
1267 		if (ret == 0) {
1268 			btrfs_set_extent_data_ref_root(leaf, ref,
1269 						       root_objectid);
1270 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1273 		} else {
1274 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 			num_refs += refs_to_add;
1276 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1277 		}
1278 	}
1279 	btrfs_mark_buffer_dirty(leaf);
1280 	ret = 0;
1281 fail:
1282 	btrfs_release_path(path);
1283 	return ret;
1284 }
1285 
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,int refs_to_drop,int * last_ref)1286 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1287 					   struct btrfs_path *path,
1288 					   int refs_to_drop, int *last_ref)
1289 {
1290 	struct btrfs_key key;
1291 	struct btrfs_extent_data_ref *ref1 = NULL;
1292 	struct btrfs_shared_data_ref *ref2 = NULL;
1293 	struct extent_buffer *leaf;
1294 	u32 num_refs = 0;
1295 	int ret = 0;
1296 
1297 	leaf = path->nodes[0];
1298 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1299 
1300 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 				      struct btrfs_extent_data_ref);
1303 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 				      struct btrfs_shared_data_ref);
1307 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1309 		btrfs_print_v0_err(trans->fs_info);
1310 		btrfs_abort_transaction(trans, -EINVAL);
1311 		return -EINVAL;
1312 	} else {
1313 		BUG();
1314 	}
1315 
1316 	BUG_ON(num_refs < refs_to_drop);
1317 	num_refs -= refs_to_drop;
1318 
1319 	if (num_refs == 0) {
1320 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1321 		*last_ref = 1;
1322 	} else {
1323 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1327 		btrfs_mark_buffer_dirty(leaf);
1328 	}
1329 	return ret;
1330 }
1331 
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)1332 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1333 					  struct btrfs_extent_inline_ref *iref)
1334 {
1335 	struct btrfs_key key;
1336 	struct extent_buffer *leaf;
1337 	struct btrfs_extent_data_ref *ref1;
1338 	struct btrfs_shared_data_ref *ref2;
1339 	u32 num_refs = 0;
1340 	int type;
1341 
1342 	leaf = path->nodes[0];
1343 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344 
1345 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1346 	if (iref) {
1347 		/*
1348 		 * If type is invalid, we should have bailed out earlier than
1349 		 * this call.
1350 		 */
1351 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1354 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 		} else {
1357 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 		}
1360 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 				      struct btrfs_extent_data_ref);
1363 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 				      struct btrfs_shared_data_ref);
1367 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1368 	} else {
1369 		WARN_ON(1);
1370 	}
1371 	return num_refs;
1372 }
1373 
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1374 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1375 					  struct btrfs_path *path,
1376 					  u64 bytenr, u64 parent,
1377 					  u64 root_objectid)
1378 {
1379 	struct btrfs_root *root = trans->fs_info->extent_root;
1380 	struct btrfs_key key;
1381 	int ret;
1382 
1383 	key.objectid = bytenr;
1384 	if (parent) {
1385 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 		key.offset = parent;
1387 	} else {
1388 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 		key.offset = root_objectid;
1390 	}
1391 
1392 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 	if (ret > 0)
1394 		ret = -ENOENT;
1395 	return ret;
1396 }
1397 
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1398 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1399 					  struct btrfs_path *path,
1400 					  u64 bytenr, u64 parent,
1401 					  u64 root_objectid)
1402 {
1403 	struct btrfs_key key;
1404 	int ret;
1405 
1406 	key.objectid = bytenr;
1407 	if (parent) {
1408 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 		key.offset = parent;
1410 	} else {
1411 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 		key.offset = root_objectid;
1413 	}
1414 
1415 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1416 				      path, &key, 0);
1417 	btrfs_release_path(path);
1418 	return ret;
1419 }
1420 
extent_ref_type(u64 parent,u64 owner)1421 static inline int extent_ref_type(u64 parent, u64 owner)
1422 {
1423 	int type;
1424 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1425 		if (parent > 0)
1426 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 		else
1428 			type = BTRFS_TREE_BLOCK_REF_KEY;
1429 	} else {
1430 		if (parent > 0)
1431 			type = BTRFS_SHARED_DATA_REF_KEY;
1432 		else
1433 			type = BTRFS_EXTENT_DATA_REF_KEY;
1434 	}
1435 	return type;
1436 }
1437 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1438 static int find_next_key(struct btrfs_path *path, int level,
1439 			 struct btrfs_key *key)
1440 
1441 {
1442 	for (; level < BTRFS_MAX_LEVEL; level++) {
1443 		if (!path->nodes[level])
1444 			break;
1445 		if (path->slots[level] + 1 >=
1446 		    btrfs_header_nritems(path->nodes[level]))
1447 			continue;
1448 		if (level == 0)
1449 			btrfs_item_key_to_cpu(path->nodes[level], key,
1450 					      path->slots[level] + 1);
1451 		else
1452 			btrfs_node_key_to_cpu(path->nodes[level], key,
1453 					      path->slots[level] + 1);
1454 		return 0;
1455 	}
1456 	return 1;
1457 }
1458 
1459 /*
1460  * look for inline back ref. if back ref is found, *ref_ret is set
1461  * to the address of inline back ref, and 0 is returned.
1462  *
1463  * if back ref isn't found, *ref_ret is set to the address where it
1464  * should be inserted, and -ENOENT is returned.
1465  *
1466  * if insert is true and there are too many inline back refs, the path
1467  * points to the extent item, and -EAGAIN is returned.
1468  *
1469  * NOTE: inline back refs are ordered in the same way that back ref
1470  *	 items in the tree are ordered.
1471  */
1472 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)1473 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1474 				 struct btrfs_path *path,
1475 				 struct btrfs_extent_inline_ref **ref_ret,
1476 				 u64 bytenr, u64 num_bytes,
1477 				 u64 parent, u64 root_objectid,
1478 				 u64 owner, u64 offset, int insert)
1479 {
1480 	struct btrfs_fs_info *fs_info = trans->fs_info;
1481 	struct btrfs_root *root = fs_info->extent_root;
1482 	struct btrfs_key key;
1483 	struct extent_buffer *leaf;
1484 	struct btrfs_extent_item *ei;
1485 	struct btrfs_extent_inline_ref *iref;
1486 	u64 flags;
1487 	u64 item_size;
1488 	unsigned long ptr;
1489 	unsigned long end;
1490 	int extra_size;
1491 	int type;
1492 	int want;
1493 	int ret;
1494 	int err = 0;
1495 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1496 	int needed;
1497 
1498 	key.objectid = bytenr;
1499 	key.type = BTRFS_EXTENT_ITEM_KEY;
1500 	key.offset = num_bytes;
1501 
1502 	want = extent_ref_type(parent, owner);
1503 	if (insert) {
1504 		extra_size = btrfs_extent_inline_ref_size(want);
1505 		path->keep_locks = 1;
1506 	} else
1507 		extra_size = -1;
1508 
1509 	/*
1510 	 * Owner is our level, so we can just add one to get the level for the
1511 	 * block we are interested in.
1512 	 */
1513 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 		key.type = BTRFS_METADATA_ITEM_KEY;
1515 		key.offset = owner;
1516 	}
1517 
1518 again:
1519 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1520 	if (ret < 0) {
1521 		err = ret;
1522 		goto out;
1523 	}
1524 
1525 	/*
1526 	 * We may be a newly converted file system which still has the old fat
1527 	 * extent entries for metadata, so try and see if we have one of those.
1528 	 */
1529 	if (ret > 0 && skinny_metadata) {
1530 		skinny_metadata = false;
1531 		if (path->slots[0]) {
1532 			path->slots[0]--;
1533 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 					      path->slots[0]);
1535 			if (key.objectid == bytenr &&
1536 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 			    key.offset == num_bytes)
1538 				ret = 0;
1539 		}
1540 		if (ret) {
1541 			key.objectid = bytenr;
1542 			key.type = BTRFS_EXTENT_ITEM_KEY;
1543 			key.offset = num_bytes;
1544 			btrfs_release_path(path);
1545 			goto again;
1546 		}
1547 	}
1548 
1549 	if (ret && !insert) {
1550 		err = -ENOENT;
1551 		goto out;
1552 	} else if (WARN_ON(ret)) {
1553 		err = -EIO;
1554 		goto out;
1555 	}
1556 
1557 	leaf = path->nodes[0];
1558 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1559 	if (unlikely(item_size < sizeof(*ei))) {
1560 		err = -EINVAL;
1561 		btrfs_print_v0_err(fs_info);
1562 		btrfs_abort_transaction(trans, err);
1563 		goto out;
1564 	}
1565 
1566 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 	flags = btrfs_extent_flags(leaf, ei);
1568 
1569 	ptr = (unsigned long)(ei + 1);
1570 	end = (unsigned long)ei + item_size;
1571 
1572 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1573 		ptr += sizeof(struct btrfs_tree_block_info);
1574 		BUG_ON(ptr > end);
1575 	}
1576 
1577 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 		needed = BTRFS_REF_TYPE_DATA;
1579 	else
1580 		needed = BTRFS_REF_TYPE_BLOCK;
1581 
1582 	err = -ENOENT;
1583 	while (1) {
1584 		if (ptr >= end) {
1585 			WARN_ON(ptr > end);
1586 			break;
1587 		}
1588 		iref = (struct btrfs_extent_inline_ref *)ptr;
1589 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 		if (type == BTRFS_REF_TYPE_INVALID) {
1591 			err = -EUCLEAN;
1592 			goto out;
1593 		}
1594 
1595 		if (want < type)
1596 			break;
1597 		if (want > type) {
1598 			ptr += btrfs_extent_inline_ref_size(type);
1599 			continue;
1600 		}
1601 
1602 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 			struct btrfs_extent_data_ref *dref;
1604 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 			if (match_extent_data_ref(leaf, dref, root_objectid,
1606 						  owner, offset)) {
1607 				err = 0;
1608 				break;
1609 			}
1610 			if (hash_extent_data_ref_item(leaf, dref) <
1611 			    hash_extent_data_ref(root_objectid, owner, offset))
1612 				break;
1613 		} else {
1614 			u64 ref_offset;
1615 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 			if (parent > 0) {
1617 				if (parent == ref_offset) {
1618 					err = 0;
1619 					break;
1620 				}
1621 				if (ref_offset < parent)
1622 					break;
1623 			} else {
1624 				if (root_objectid == ref_offset) {
1625 					err = 0;
1626 					break;
1627 				}
1628 				if (ref_offset < root_objectid)
1629 					break;
1630 			}
1631 		}
1632 		ptr += btrfs_extent_inline_ref_size(type);
1633 	}
1634 	if (err == -ENOENT && insert) {
1635 		if (item_size + extra_size >=
1636 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 			err = -EAGAIN;
1638 			goto out;
1639 		}
1640 		/*
1641 		 * To add new inline back ref, we have to make sure
1642 		 * there is no corresponding back ref item.
1643 		 * For simplicity, we just do not add new inline back
1644 		 * ref if there is any kind of item for this block
1645 		 */
1646 		if (find_next_key(path, 0, &key) == 0 &&
1647 		    key.objectid == bytenr &&
1648 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1649 			err = -EAGAIN;
1650 			goto out;
1651 		}
1652 	}
1653 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654 out:
1655 	if (insert) {
1656 		path->keep_locks = 0;
1657 		btrfs_unlock_up_safe(path, 1);
1658 	}
1659 	return err;
1660 }
1661 
1662 /*
1663  * helper to add new inline back ref
1664  */
1665 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1666 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1667 				 struct btrfs_path *path,
1668 				 struct btrfs_extent_inline_ref *iref,
1669 				 u64 parent, u64 root_objectid,
1670 				 u64 owner, u64 offset, int refs_to_add,
1671 				 struct btrfs_delayed_extent_op *extent_op)
1672 {
1673 	struct extent_buffer *leaf;
1674 	struct btrfs_extent_item *ei;
1675 	unsigned long ptr;
1676 	unsigned long end;
1677 	unsigned long item_offset;
1678 	u64 refs;
1679 	int size;
1680 	int type;
1681 
1682 	leaf = path->nodes[0];
1683 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 	item_offset = (unsigned long)iref - (unsigned long)ei;
1685 
1686 	type = extent_ref_type(parent, owner);
1687 	size = btrfs_extent_inline_ref_size(type);
1688 
1689 	btrfs_extend_item(fs_info, path, size);
1690 
1691 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 	refs = btrfs_extent_refs(leaf, ei);
1693 	refs += refs_to_add;
1694 	btrfs_set_extent_refs(leaf, ei, refs);
1695 	if (extent_op)
1696 		__run_delayed_extent_op(extent_op, leaf, ei);
1697 
1698 	ptr = (unsigned long)ei + item_offset;
1699 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 	if (ptr < end - size)
1701 		memmove_extent_buffer(leaf, ptr + size, ptr,
1702 				      end - size - ptr);
1703 
1704 	iref = (struct btrfs_extent_inline_ref *)ptr;
1705 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 		struct btrfs_extent_data_ref *dref;
1708 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 		struct btrfs_shared_data_ref *sref;
1715 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 	} else {
1721 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 	}
1723 	btrfs_mark_buffer_dirty(leaf);
1724 }
1725 
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1726 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1727 				 struct btrfs_path *path,
1728 				 struct btrfs_extent_inline_ref **ref_ret,
1729 				 u64 bytenr, u64 num_bytes, u64 parent,
1730 				 u64 root_objectid, u64 owner, u64 offset)
1731 {
1732 	int ret;
1733 
1734 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 					   num_bytes, parent, root_objectid,
1736 					   owner, offset, 0);
1737 	if (ret != -ENOENT)
1738 		return ret;
1739 
1740 	btrfs_release_path(path);
1741 	*ref_ret = NULL;
1742 
1743 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1744 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1745 					    root_objectid);
1746 	} else {
1747 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 					     root_objectid, owner, offset);
1749 	}
1750 	return ret;
1751 }
1752 
1753 /*
1754  * helper to update/remove inline back ref
1755  */
1756 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1757 void update_inline_extent_backref(struct btrfs_path *path,
1758 				  struct btrfs_extent_inline_ref *iref,
1759 				  int refs_to_mod,
1760 				  struct btrfs_delayed_extent_op *extent_op,
1761 				  int *last_ref)
1762 {
1763 	struct extent_buffer *leaf = path->nodes[0];
1764 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1765 	struct btrfs_extent_item *ei;
1766 	struct btrfs_extent_data_ref *dref = NULL;
1767 	struct btrfs_shared_data_ref *sref = NULL;
1768 	unsigned long ptr;
1769 	unsigned long end;
1770 	u32 item_size;
1771 	int size;
1772 	int type;
1773 	u64 refs;
1774 
1775 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 	refs = btrfs_extent_refs(leaf, ei);
1777 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 	refs += refs_to_mod;
1779 	btrfs_set_extent_refs(leaf, ei, refs);
1780 	if (extent_op)
1781 		__run_delayed_extent_op(extent_op, leaf, ei);
1782 
1783 	/*
1784 	 * If type is invalid, we should have bailed out after
1785 	 * lookup_inline_extent_backref().
1786 	 */
1787 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1789 
1790 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 		refs = btrfs_extent_data_ref_count(leaf, dref);
1793 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 		refs = btrfs_shared_data_ref_count(leaf, sref);
1796 	} else {
1797 		refs = 1;
1798 		BUG_ON(refs_to_mod != -1);
1799 	}
1800 
1801 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 	refs += refs_to_mod;
1803 
1804 	if (refs > 0) {
1805 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 		else
1808 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 	} else {
1810 		*last_ref = 1;
1811 		size =  btrfs_extent_inline_ref_size(type);
1812 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 		ptr = (unsigned long)iref;
1814 		end = (unsigned long)ei + item_size;
1815 		if (ptr + size < end)
1816 			memmove_extent_buffer(leaf, ptr, ptr + size,
1817 					      end - ptr - size);
1818 		item_size -= size;
1819 		btrfs_truncate_item(fs_info, path, item_size, 1);
1820 	}
1821 	btrfs_mark_buffer_dirty(leaf);
1822 }
1823 
1824 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 				 struct btrfs_path *path,
1827 				 u64 bytenr, u64 num_bytes, u64 parent,
1828 				 u64 root_objectid, u64 owner,
1829 				 u64 offset, int refs_to_add,
1830 				 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 	struct btrfs_extent_inline_ref *iref;
1833 	int ret;
1834 
1835 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 					   num_bytes, parent, root_objectid,
1837 					   owner, offset, 1);
1838 	if (ret == 0) {
1839 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 		update_inline_extent_backref(path, iref, refs_to_add,
1841 					     extent_op, NULL);
1842 	} else if (ret == -ENOENT) {
1843 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1844 					    root_objectid, owner, offset,
1845 					    refs_to_add, extent_op);
1846 		ret = 0;
1847 	}
1848 	return ret;
1849 }
1850 
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 				 struct btrfs_path *path,
1853 				 u64 bytenr, u64 parent, u64 root_objectid,
1854 				 u64 owner, u64 offset, int refs_to_add)
1855 {
1856 	int ret;
1857 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 		BUG_ON(refs_to_add != 1);
1859 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1860 					    root_objectid);
1861 	} else {
1862 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 					     root_objectid, owner, offset,
1864 					     refs_to_add);
1865 	}
1866 	return ret;
1867 }
1868 
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1869 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1870 				 struct btrfs_path *path,
1871 				 struct btrfs_extent_inline_ref *iref,
1872 				 int refs_to_drop, int is_data, int *last_ref)
1873 {
1874 	int ret = 0;
1875 
1876 	BUG_ON(!is_data && refs_to_drop != 1);
1877 	if (iref) {
1878 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1879 					     last_ref);
1880 	} else if (is_data) {
1881 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1882 					     last_ref);
1883 	} else {
1884 		*last_ref = 1;
1885 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1886 	}
1887 	return ret;
1888 }
1889 
1890 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1891 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 			       u64 *discarded_bytes)
1893 {
1894 	int j, ret = 0;
1895 	u64 bytes_left, end;
1896 	u64 aligned_start = ALIGN(start, 1 << 9);
1897 
1898 	if (WARN_ON(start != aligned_start)) {
1899 		len -= aligned_start - start;
1900 		len = round_down(len, 1 << 9);
1901 		start = aligned_start;
1902 	}
1903 
1904 	*discarded_bytes = 0;
1905 
1906 	if (!len)
1907 		return 0;
1908 
1909 	end = start + len;
1910 	bytes_left = len;
1911 
1912 	/* Skip any superblocks on this device. */
1913 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 		u64 sb_start = btrfs_sb_offset(j);
1915 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 		u64 size = sb_start - start;
1917 
1918 		if (!in_range(sb_start, start, bytes_left) &&
1919 		    !in_range(sb_end, start, bytes_left) &&
1920 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1921 			continue;
1922 
1923 		/*
1924 		 * Superblock spans beginning of range.  Adjust start and
1925 		 * try again.
1926 		 */
1927 		if (sb_start <= start) {
1928 			start += sb_end - start;
1929 			if (start > end) {
1930 				bytes_left = 0;
1931 				break;
1932 			}
1933 			bytes_left = end - start;
1934 			continue;
1935 		}
1936 
1937 		if (size) {
1938 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1939 						   GFP_NOFS, 0);
1940 			if (!ret)
1941 				*discarded_bytes += size;
1942 			else if (ret != -EOPNOTSUPP)
1943 				return ret;
1944 		}
1945 
1946 		start = sb_end;
1947 		if (start > end) {
1948 			bytes_left = 0;
1949 			break;
1950 		}
1951 		bytes_left = end - start;
1952 	}
1953 
1954 	if (bytes_left) {
1955 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1956 					   GFP_NOFS, 0);
1957 		if (!ret)
1958 			*discarded_bytes += bytes_left;
1959 	}
1960 	return ret;
1961 }
1962 
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1963 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1964 			 u64 num_bytes, u64 *actual_bytes)
1965 {
1966 	int ret;
1967 	u64 discarded_bytes = 0;
1968 	struct btrfs_bio *bbio = NULL;
1969 
1970 
1971 	/*
1972 	 * Avoid races with device replace and make sure our bbio has devices
1973 	 * associated to its stripes that don't go away while we are discarding.
1974 	 */
1975 	btrfs_bio_counter_inc_blocked(fs_info);
1976 	/* Tell the block device(s) that the sectors can be discarded */
1977 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1978 			      &bbio, 0);
1979 	/* Error condition is -ENOMEM */
1980 	if (!ret) {
1981 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1982 		int i;
1983 
1984 
1985 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1986 			u64 bytes;
1987 			struct request_queue *req_q;
1988 
1989 			if (!stripe->dev->bdev) {
1990 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1991 				continue;
1992 			}
1993 			req_q = bdev_get_queue(stripe->dev->bdev);
1994 			if (!blk_queue_discard(req_q))
1995 				continue;
1996 
1997 			ret = btrfs_issue_discard(stripe->dev->bdev,
1998 						  stripe->physical,
1999 						  stripe->length,
2000 						  &bytes);
2001 			if (!ret)
2002 				discarded_bytes += bytes;
2003 			else if (ret != -EOPNOTSUPP)
2004 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2005 
2006 			/*
2007 			 * Just in case we get back EOPNOTSUPP for some reason,
2008 			 * just ignore the return value so we don't screw up
2009 			 * people calling discard_extent.
2010 			 */
2011 			ret = 0;
2012 		}
2013 		btrfs_put_bbio(bbio);
2014 	}
2015 	btrfs_bio_counter_dec(fs_info);
2016 
2017 	if (actual_bytes)
2018 		*actual_bytes = discarded_bytes;
2019 
2020 
2021 	if (ret == -EOPNOTSUPP)
2022 		ret = 0;
2023 	return ret;
2024 }
2025 
2026 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)2027 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2028 			 struct btrfs_root *root,
2029 			 u64 bytenr, u64 num_bytes, u64 parent,
2030 			 u64 root_objectid, u64 owner, u64 offset)
2031 {
2032 	struct btrfs_fs_info *fs_info = root->fs_info;
2033 	int old_ref_mod, new_ref_mod;
2034 	int ret;
2035 
2036 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2038 
2039 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2041 
2042 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2043 		ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2044 						 num_bytes, parent,
2045 						 root_objectid, (int)owner,
2046 						 BTRFS_ADD_DELAYED_REF, NULL,
2047 						 &old_ref_mod, &new_ref_mod);
2048 	} else {
2049 		ret = btrfs_add_delayed_data_ref(trans, bytenr,
2050 						 num_bytes, parent,
2051 						 root_objectid, owner, offset,
2052 						 0, BTRFS_ADD_DELAYED_REF,
2053 						 &old_ref_mod, &new_ref_mod);
2054 	}
2055 
2056 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 		bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2058 
2059 		add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2060 	}
2061 
2062 	return ret;
2063 }
2064 
2065 /*
2066  * __btrfs_inc_extent_ref - insert backreference for a given extent
2067  *
2068  * @trans:	    Handle of transaction
2069  *
2070  * @node:	    The delayed ref node used to get the bytenr/length for
2071  *		    extent whose references are incremented.
2072  *
2073  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075  *		    bytenr of the parent block. Since new extents are always
2076  *		    created with indirect references, this will only be the case
2077  *		    when relocating a shared extent. In that case, root_objectid
2078  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2079  *		    be 0
2080  *
2081  * @root_objectid:  The id of the root where this modification has originated,
2082  *		    this can be either one of the well-known metadata trees or
2083  *		    the subvolume id which references this extent.
2084  *
2085  * @owner:	    For data extents it is the inode number of the owning file.
2086  *		    For metadata extents this parameter holds the level in the
2087  *		    tree of the extent.
2088  *
2089  * @offset:	    For metadata extents the offset is ignored and is currently
2090  *		    always passed as 0. For data extents it is the fileoffset
2091  *		    this extent belongs to.
2092  *
2093  * @refs_to_add     Number of references to add
2094  *
2095  * @extent_op       Pointer to a structure, holding information necessary when
2096  *                  updating a tree block's flags
2097  *
2098  */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)2099 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 				  struct btrfs_delayed_ref_node *node,
2101 				  u64 parent, u64 root_objectid,
2102 				  u64 owner, u64 offset, int refs_to_add,
2103 				  struct btrfs_delayed_extent_op *extent_op)
2104 {
2105 	struct btrfs_path *path;
2106 	struct extent_buffer *leaf;
2107 	struct btrfs_extent_item *item;
2108 	struct btrfs_key key;
2109 	u64 bytenr = node->bytenr;
2110 	u64 num_bytes = node->num_bytes;
2111 	u64 refs;
2112 	int ret;
2113 
2114 	path = btrfs_alloc_path();
2115 	if (!path)
2116 		return -ENOMEM;
2117 
2118 	path->reada = READA_FORWARD;
2119 	path->leave_spinning = 1;
2120 	/* this will setup the path even if it fails to insert the back ref */
2121 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 					   parent, root_objectid, owner,
2123 					   offset, refs_to_add, extent_op);
2124 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2125 		goto out;
2126 
2127 	/*
2128 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 	 * inline extent ref, so just update the reference count and add a
2130 	 * normal backref.
2131 	 */
2132 	leaf = path->nodes[0];
2133 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2134 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 	refs = btrfs_extent_refs(leaf, item);
2136 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 	if (extent_op)
2138 		__run_delayed_extent_op(extent_op, leaf, item);
2139 
2140 	btrfs_mark_buffer_dirty(leaf);
2141 	btrfs_release_path(path);
2142 
2143 	path->reada = READA_FORWARD;
2144 	path->leave_spinning = 1;
2145 	/* now insert the actual backref */
2146 	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 				    owner, offset, refs_to_add);
2148 	if (ret)
2149 		btrfs_abort_transaction(trans, ret);
2150 out:
2151 	btrfs_free_path(path);
2152 	return ret;
2153 }
2154 
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2155 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2156 				struct btrfs_delayed_ref_node *node,
2157 				struct btrfs_delayed_extent_op *extent_op,
2158 				int insert_reserved)
2159 {
2160 	int ret = 0;
2161 	struct btrfs_delayed_data_ref *ref;
2162 	struct btrfs_key ins;
2163 	u64 parent = 0;
2164 	u64 ref_root = 0;
2165 	u64 flags = 0;
2166 
2167 	ins.objectid = node->bytenr;
2168 	ins.offset = node->num_bytes;
2169 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2170 
2171 	ref = btrfs_delayed_node_to_data_ref(node);
2172 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2173 
2174 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 		parent = ref->parent;
2176 	ref_root = ref->root;
2177 
2178 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2179 		if (extent_op)
2180 			flags |= extent_op->flags_to_set;
2181 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 						 flags, ref->objectid,
2183 						 ref->offset, &ins,
2184 						 node->ref_mod);
2185 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2186 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 					     ref->objectid, ref->offset,
2188 					     node->ref_mod, extent_op);
2189 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2190 		ret = __btrfs_free_extent(trans, node, parent,
2191 					  ref_root, ref->objectid,
2192 					  ref->offset, node->ref_mod,
2193 					  extent_op);
2194 	} else {
2195 		BUG();
2196 	}
2197 	return ret;
2198 }
2199 
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)2200 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 				    struct extent_buffer *leaf,
2202 				    struct btrfs_extent_item *ei)
2203 {
2204 	u64 flags = btrfs_extent_flags(leaf, ei);
2205 	if (extent_op->update_flags) {
2206 		flags |= extent_op->flags_to_set;
2207 		btrfs_set_extent_flags(leaf, ei, flags);
2208 	}
2209 
2210 	if (extent_op->update_key) {
2211 		struct btrfs_tree_block_info *bi;
2212 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2215 	}
2216 }
2217 
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)2218 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2219 				 struct btrfs_delayed_ref_head *head,
2220 				 struct btrfs_delayed_extent_op *extent_op)
2221 {
2222 	struct btrfs_fs_info *fs_info = trans->fs_info;
2223 	struct btrfs_key key;
2224 	struct btrfs_path *path;
2225 	struct btrfs_extent_item *ei;
2226 	struct extent_buffer *leaf;
2227 	u32 item_size;
2228 	int ret;
2229 	int err = 0;
2230 	int metadata = !extent_op->is_data;
2231 
2232 	if (trans->aborted)
2233 		return 0;
2234 
2235 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2236 		metadata = 0;
2237 
2238 	path = btrfs_alloc_path();
2239 	if (!path)
2240 		return -ENOMEM;
2241 
2242 	key.objectid = head->bytenr;
2243 
2244 	if (metadata) {
2245 		key.type = BTRFS_METADATA_ITEM_KEY;
2246 		key.offset = extent_op->level;
2247 	} else {
2248 		key.type = BTRFS_EXTENT_ITEM_KEY;
2249 		key.offset = head->num_bytes;
2250 	}
2251 
2252 again:
2253 	path->reada = READA_FORWARD;
2254 	path->leave_spinning = 1;
2255 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2256 	if (ret < 0) {
2257 		err = ret;
2258 		goto out;
2259 	}
2260 	if (ret > 0) {
2261 		if (metadata) {
2262 			if (path->slots[0] > 0) {
2263 				path->slots[0]--;
2264 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2265 						      path->slots[0]);
2266 				if (key.objectid == head->bytenr &&
2267 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2268 				    key.offset == head->num_bytes)
2269 					ret = 0;
2270 			}
2271 			if (ret > 0) {
2272 				btrfs_release_path(path);
2273 				metadata = 0;
2274 
2275 				key.objectid = head->bytenr;
2276 				key.offset = head->num_bytes;
2277 				key.type = BTRFS_EXTENT_ITEM_KEY;
2278 				goto again;
2279 			}
2280 		} else {
2281 			err = -EIO;
2282 			goto out;
2283 		}
2284 	}
2285 
2286 	leaf = path->nodes[0];
2287 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2288 
2289 	if (unlikely(item_size < sizeof(*ei))) {
2290 		err = -EINVAL;
2291 		btrfs_print_v0_err(fs_info);
2292 		btrfs_abort_transaction(trans, err);
2293 		goto out;
2294 	}
2295 
2296 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 	__run_delayed_extent_op(extent_op, leaf, ei);
2298 
2299 	btrfs_mark_buffer_dirty(leaf);
2300 out:
2301 	btrfs_free_path(path);
2302 	return err;
2303 }
2304 
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2305 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2306 				struct btrfs_delayed_ref_node *node,
2307 				struct btrfs_delayed_extent_op *extent_op,
2308 				int insert_reserved)
2309 {
2310 	int ret = 0;
2311 	struct btrfs_delayed_tree_ref *ref;
2312 	u64 parent = 0;
2313 	u64 ref_root = 0;
2314 
2315 	ref = btrfs_delayed_node_to_tree_ref(node);
2316 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2317 
2318 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 		parent = ref->parent;
2320 	ref_root = ref->root;
2321 
2322 	if (node->ref_mod != 1) {
2323 		btrfs_err(trans->fs_info,
2324 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 			  node->bytenr, node->ref_mod, node->action, ref_root,
2326 			  parent);
2327 		return -EIO;
2328 	}
2329 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2330 		BUG_ON(!extent_op || !extent_op->update_flags);
2331 		ret = alloc_reserved_tree_block(trans, node, extent_op);
2332 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2333 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 					     ref->level, 0, 1, extent_op);
2335 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2336 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
2337 					  ref->level, 0, 1, extent_op);
2338 	} else {
2339 		BUG();
2340 	}
2341 	return ret;
2342 }
2343 
2344 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2345 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2346 			       struct btrfs_delayed_ref_node *node,
2347 			       struct btrfs_delayed_extent_op *extent_op,
2348 			       int insert_reserved)
2349 {
2350 	int ret = 0;
2351 
2352 	if (trans->aborted) {
2353 		if (insert_reserved)
2354 			btrfs_pin_extent(trans->fs_info, node->bytenr,
2355 					 node->num_bytes, 1);
2356 		return 0;
2357 	}
2358 
2359 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2361 		ret = run_delayed_tree_ref(trans, node, extent_op,
2362 					   insert_reserved);
2363 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2365 		ret = run_delayed_data_ref(trans, node, extent_op,
2366 					   insert_reserved);
2367 	else
2368 		BUG();
2369 	return ret;
2370 }
2371 
2372 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)2373 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2374 {
2375 	struct btrfs_delayed_ref_node *ref;
2376 
2377 	if (RB_EMPTY_ROOT(&head->ref_tree))
2378 		return NULL;
2379 
2380 	/*
2381 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2382 	 * This is to prevent a ref count from going down to zero, which deletes
2383 	 * the extent item from the extent tree, when there still are references
2384 	 * to add, which would fail because they would not find the extent item.
2385 	 */
2386 	if (!list_empty(&head->ref_add_list))
2387 		return list_first_entry(&head->ref_add_list,
2388 				struct btrfs_delayed_ref_node, add_list);
2389 
2390 	ref = rb_entry(rb_first(&head->ref_tree),
2391 		       struct btrfs_delayed_ref_node, ref_node);
2392 	ASSERT(list_empty(&ref->add_list));
2393 	return ref;
2394 }
2395 
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)2396 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2397 				      struct btrfs_delayed_ref_head *head)
2398 {
2399 	spin_lock(&delayed_refs->lock);
2400 	head->processing = 0;
2401 	delayed_refs->num_heads_ready++;
2402 	spin_unlock(&delayed_refs->lock);
2403 	btrfs_delayed_ref_unlock(head);
2404 }
2405 
cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)2406 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2407 			     struct btrfs_delayed_ref_head *head)
2408 {
2409 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2410 	int ret;
2411 
2412 	if (!extent_op)
2413 		return 0;
2414 	head->extent_op = NULL;
2415 	if (head->must_insert_reserved) {
2416 		btrfs_free_delayed_extent_op(extent_op);
2417 		return 0;
2418 	}
2419 	spin_unlock(&head->lock);
2420 	ret = run_delayed_extent_op(trans, head, extent_op);
2421 	btrfs_free_delayed_extent_op(extent_op);
2422 	return ret ? ret : 1;
2423 }
2424 
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)2425 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2426 			    struct btrfs_delayed_ref_head *head)
2427 {
2428 
2429 	struct btrfs_fs_info *fs_info = trans->fs_info;
2430 	struct btrfs_delayed_ref_root *delayed_refs;
2431 	int ret;
2432 
2433 	delayed_refs = &trans->transaction->delayed_refs;
2434 
2435 	ret = cleanup_extent_op(trans, head);
2436 	if (ret < 0) {
2437 		unselect_delayed_ref_head(delayed_refs, head);
2438 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2439 		return ret;
2440 	} else if (ret) {
2441 		return ret;
2442 	}
2443 
2444 	/*
2445 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2446 	 * and then re-check to make sure nobody got added.
2447 	 */
2448 	spin_unlock(&head->lock);
2449 	spin_lock(&delayed_refs->lock);
2450 	spin_lock(&head->lock);
2451 	if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2452 		spin_unlock(&head->lock);
2453 		spin_unlock(&delayed_refs->lock);
2454 		return 1;
2455 	}
2456 	delayed_refs->num_heads--;
2457 	rb_erase(&head->href_node, &delayed_refs->href_root);
2458 	RB_CLEAR_NODE(&head->href_node);
2459 	spin_unlock(&head->lock);
2460 	spin_unlock(&delayed_refs->lock);
2461 	atomic_dec(&delayed_refs->num_entries);
2462 
2463 	trace_run_delayed_ref_head(fs_info, head, 0);
2464 
2465 	if (head->total_ref_mod < 0) {
2466 		struct btrfs_space_info *space_info;
2467 		u64 flags;
2468 
2469 		if (head->is_data)
2470 			flags = BTRFS_BLOCK_GROUP_DATA;
2471 		else if (head->is_system)
2472 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 		else
2474 			flags = BTRFS_BLOCK_GROUP_METADATA;
2475 		space_info = __find_space_info(fs_info, flags);
2476 		ASSERT(space_info);
2477 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 				   -head->num_bytes,
2479 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
2480 
2481 		if (head->is_data) {
2482 			spin_lock(&delayed_refs->lock);
2483 			delayed_refs->pending_csums -= head->num_bytes;
2484 			spin_unlock(&delayed_refs->lock);
2485 		}
2486 	}
2487 
2488 	if (head->must_insert_reserved) {
2489 		btrfs_pin_extent(fs_info, head->bytenr,
2490 				 head->num_bytes, 1);
2491 		if (head->is_data) {
2492 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2493 					      head->num_bytes);
2494 		}
2495 	}
2496 
2497 	/* Also free its reserved qgroup space */
2498 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2499 				      head->qgroup_reserved);
2500 	btrfs_delayed_ref_unlock(head);
2501 	btrfs_put_delayed_ref_head(head);
2502 	return 0;
2503 }
2504 
2505 /*
2506  * Returns 0 on success or if called with an already aborted transaction.
2507  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508  */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)2509 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2510 					     unsigned long nr)
2511 {
2512 	struct btrfs_fs_info *fs_info = trans->fs_info;
2513 	struct btrfs_delayed_ref_root *delayed_refs;
2514 	struct btrfs_delayed_ref_node *ref;
2515 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2516 	struct btrfs_delayed_extent_op *extent_op;
2517 	ktime_t start = ktime_get();
2518 	int ret;
2519 	unsigned long count = 0;
2520 	unsigned long actual_count = 0;
2521 	int must_insert_reserved = 0;
2522 
2523 	delayed_refs = &trans->transaction->delayed_refs;
2524 	while (1) {
2525 		if (!locked_ref) {
2526 			if (count >= nr)
2527 				break;
2528 
2529 			spin_lock(&delayed_refs->lock);
2530 			locked_ref = btrfs_select_ref_head(trans);
2531 			if (!locked_ref) {
2532 				spin_unlock(&delayed_refs->lock);
2533 				break;
2534 			}
2535 
2536 			/* grab the lock that says we are going to process
2537 			 * all the refs for this head */
2538 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2539 			spin_unlock(&delayed_refs->lock);
2540 			/*
2541 			 * we may have dropped the spin lock to get the head
2542 			 * mutex lock, and that might have given someone else
2543 			 * time to free the head.  If that's true, it has been
2544 			 * removed from our list and we can move on.
2545 			 */
2546 			if (ret == -EAGAIN) {
2547 				locked_ref = NULL;
2548 				count++;
2549 				continue;
2550 			}
2551 		}
2552 
2553 		/*
2554 		 * We need to try and merge add/drops of the same ref since we
2555 		 * can run into issues with relocate dropping the implicit ref
2556 		 * and then it being added back again before the drop can
2557 		 * finish.  If we merged anything we need to re-loop so we can
2558 		 * get a good ref.
2559 		 * Or we can get node references of the same type that weren't
2560 		 * merged when created due to bumps in the tree mod seq, and
2561 		 * we need to merge them to prevent adding an inline extent
2562 		 * backref before dropping it (triggering a BUG_ON at
2563 		 * insert_inline_extent_backref()).
2564 		 */
2565 		spin_lock(&locked_ref->lock);
2566 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2567 
2568 		ref = select_delayed_ref(locked_ref);
2569 
2570 		if (ref && ref->seq &&
2571 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2572 			spin_unlock(&locked_ref->lock);
2573 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2574 			locked_ref = NULL;
2575 			cond_resched();
2576 			count++;
2577 			continue;
2578 		}
2579 
2580 		/*
2581 		 * We're done processing refs in this ref_head, clean everything
2582 		 * up and move on to the next ref_head.
2583 		 */
2584 		if (!ref) {
2585 			ret = cleanup_ref_head(trans, locked_ref);
2586 			if (ret > 0 ) {
2587 				/* We dropped our lock, we need to loop. */
2588 				ret = 0;
2589 				continue;
2590 			} else if (ret) {
2591 				return ret;
2592 			}
2593 			locked_ref = NULL;
2594 			count++;
2595 			continue;
2596 		}
2597 
2598 		actual_count++;
2599 		ref->in_tree = 0;
2600 		rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2601 		RB_CLEAR_NODE(&ref->ref_node);
2602 		if (!list_empty(&ref->add_list))
2603 			list_del(&ref->add_list);
2604 		/*
2605 		 * When we play the delayed ref, also correct the ref_mod on
2606 		 * head
2607 		 */
2608 		switch (ref->action) {
2609 		case BTRFS_ADD_DELAYED_REF:
2610 		case BTRFS_ADD_DELAYED_EXTENT:
2611 			locked_ref->ref_mod -= ref->ref_mod;
2612 			break;
2613 		case BTRFS_DROP_DELAYED_REF:
2614 			locked_ref->ref_mod += ref->ref_mod;
2615 			break;
2616 		default:
2617 			WARN_ON(1);
2618 		}
2619 		atomic_dec(&delayed_refs->num_entries);
2620 
2621 		/*
2622 		 * Record the must-insert_reserved flag before we drop the spin
2623 		 * lock.
2624 		 */
2625 		must_insert_reserved = locked_ref->must_insert_reserved;
2626 		locked_ref->must_insert_reserved = 0;
2627 
2628 		extent_op = locked_ref->extent_op;
2629 		locked_ref->extent_op = NULL;
2630 		spin_unlock(&locked_ref->lock);
2631 
2632 		ret = run_one_delayed_ref(trans, ref, extent_op,
2633 					  must_insert_reserved);
2634 
2635 		btrfs_free_delayed_extent_op(extent_op);
2636 		if (ret) {
2637 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2638 			btrfs_put_delayed_ref(ref);
2639 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2640 				    ret);
2641 			return ret;
2642 		}
2643 
2644 		btrfs_put_delayed_ref(ref);
2645 		count++;
2646 		cond_resched();
2647 	}
2648 
2649 	/*
2650 	 * We don't want to include ref heads since we can have empty ref heads
2651 	 * and those will drastically skew our runtime down since we just do
2652 	 * accounting, no actual extent tree updates.
2653 	 */
2654 	if (actual_count > 0) {
2655 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2656 		u64 avg;
2657 
2658 		/*
2659 		 * We weigh the current average higher than our current runtime
2660 		 * to avoid large swings in the average.
2661 		 */
2662 		spin_lock(&delayed_refs->lock);
2663 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2664 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2665 		spin_unlock(&delayed_refs->lock);
2666 	}
2667 	return 0;
2668 }
2669 
2670 #ifdef SCRAMBLE_DELAYED_REFS
2671 /*
2672  * Normally delayed refs get processed in ascending bytenr order. This
2673  * correlates in most cases to the order added. To expose dependencies on this
2674  * order, we start to process the tree in the middle instead of the beginning
2675  */
find_middle(struct rb_root * root)2676 static u64 find_middle(struct rb_root *root)
2677 {
2678 	struct rb_node *n = root->rb_node;
2679 	struct btrfs_delayed_ref_node *entry;
2680 	int alt = 1;
2681 	u64 middle;
2682 	u64 first = 0, last = 0;
2683 
2684 	n = rb_first(root);
2685 	if (n) {
2686 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2687 		first = entry->bytenr;
2688 	}
2689 	n = rb_last(root);
2690 	if (n) {
2691 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2692 		last = entry->bytenr;
2693 	}
2694 	n = root->rb_node;
2695 
2696 	while (n) {
2697 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2698 		WARN_ON(!entry->in_tree);
2699 
2700 		middle = entry->bytenr;
2701 
2702 		if (alt)
2703 			n = n->rb_left;
2704 		else
2705 			n = n->rb_right;
2706 
2707 		alt = 1 - alt;
2708 	}
2709 	return middle;
2710 }
2711 #endif
2712 
heads_to_leaves(struct btrfs_fs_info * fs_info,u64 heads)2713 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2714 {
2715 	u64 num_bytes;
2716 
2717 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2718 			     sizeof(struct btrfs_extent_inline_ref));
2719 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2720 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2721 
2722 	/*
2723 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2724 	 * closer to what we're really going to want to use.
2725 	 */
2726 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2727 }
2728 
2729 /*
2730  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2731  * would require to store the csums for that many bytes.
2732  */
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info * fs_info,u64 csum_bytes)2733 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2734 {
2735 	u64 csum_size;
2736 	u64 num_csums_per_leaf;
2737 	u64 num_csums;
2738 
2739 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2740 	num_csums_per_leaf = div64_u64(csum_size,
2741 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2742 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2743 	num_csums += num_csums_per_leaf - 1;
2744 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2745 	return num_csums;
2746 }
2747 
btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2748 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2749 				       struct btrfs_fs_info *fs_info)
2750 {
2751 	struct btrfs_block_rsv *global_rsv;
2752 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2753 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2754 	unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2755 	u64 num_bytes, num_dirty_bgs_bytes;
2756 	int ret = 0;
2757 
2758 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2759 	num_heads = heads_to_leaves(fs_info, num_heads);
2760 	if (num_heads > 1)
2761 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2762 	num_bytes <<= 1;
2763 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2764 							fs_info->nodesize;
2765 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2766 							     num_dirty_bgs);
2767 	global_rsv = &fs_info->global_block_rsv;
2768 
2769 	/*
2770 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2771 	 * wiggle room since running delayed refs can create more delayed refs.
2772 	 */
2773 	if (global_rsv->space_info->full) {
2774 		num_dirty_bgs_bytes <<= 1;
2775 		num_bytes <<= 1;
2776 	}
2777 
2778 	spin_lock(&global_rsv->lock);
2779 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2780 		ret = 1;
2781 	spin_unlock(&global_rsv->lock);
2782 	return ret;
2783 }
2784 
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2785 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2786 				       struct btrfs_fs_info *fs_info)
2787 {
2788 	u64 num_entries =
2789 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2790 	u64 avg_runtime;
2791 	u64 val;
2792 
2793 	smp_mb();
2794 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2795 	val = num_entries * avg_runtime;
2796 	if (val >= NSEC_PER_SEC)
2797 		return 1;
2798 	if (val >= NSEC_PER_SEC / 2)
2799 		return 2;
2800 
2801 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2802 }
2803 
2804 struct async_delayed_refs {
2805 	struct btrfs_root *root;
2806 	u64 transid;
2807 	int count;
2808 	int error;
2809 	int sync;
2810 	struct completion wait;
2811 	struct btrfs_work work;
2812 };
2813 
2814 static inline struct async_delayed_refs *
to_async_delayed_refs(struct btrfs_work * work)2815 to_async_delayed_refs(struct btrfs_work *work)
2816 {
2817 	return container_of(work, struct async_delayed_refs, work);
2818 }
2819 
delayed_ref_async_start(struct btrfs_work * work)2820 static void delayed_ref_async_start(struct btrfs_work *work)
2821 {
2822 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2823 	struct btrfs_trans_handle *trans;
2824 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2825 	int ret;
2826 
2827 	/* if the commit is already started, we don't need to wait here */
2828 	if (btrfs_transaction_blocked(fs_info))
2829 		goto done;
2830 
2831 	trans = btrfs_join_transaction(async->root);
2832 	if (IS_ERR(trans)) {
2833 		async->error = PTR_ERR(trans);
2834 		goto done;
2835 	}
2836 
2837 	/*
2838 	 * trans->sync means that when we call end_transaction, we won't
2839 	 * wait on delayed refs
2840 	 */
2841 	trans->sync = true;
2842 
2843 	/* Don't bother flushing if we got into a different transaction */
2844 	if (trans->transid > async->transid)
2845 		goto end;
2846 
2847 	ret = btrfs_run_delayed_refs(trans, async->count);
2848 	if (ret)
2849 		async->error = ret;
2850 end:
2851 	ret = btrfs_end_transaction(trans);
2852 	if (ret && !async->error)
2853 		async->error = ret;
2854 done:
2855 	if (async->sync)
2856 		complete(&async->wait);
2857 	else
2858 		kfree(async);
2859 }
2860 
btrfs_async_run_delayed_refs(struct btrfs_fs_info * fs_info,unsigned long count,u64 transid,int wait)2861 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2862 				 unsigned long count, u64 transid, int wait)
2863 {
2864 	struct async_delayed_refs *async;
2865 	int ret;
2866 
2867 	async = kmalloc(sizeof(*async), GFP_NOFS);
2868 	if (!async)
2869 		return -ENOMEM;
2870 
2871 	async->root = fs_info->tree_root;
2872 	async->count = count;
2873 	async->error = 0;
2874 	async->transid = transid;
2875 	if (wait)
2876 		async->sync = 1;
2877 	else
2878 		async->sync = 0;
2879 	init_completion(&async->wait);
2880 
2881 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2882 			delayed_ref_async_start, NULL, NULL);
2883 
2884 	btrfs_queue_work(fs_info->extent_workers, &async->work);
2885 
2886 	if (wait) {
2887 		wait_for_completion(&async->wait);
2888 		ret = async->error;
2889 		kfree(async);
2890 		return ret;
2891 	}
2892 	return 0;
2893 }
2894 
2895 /*
2896  * this starts processing the delayed reference count updates and
2897  * extent insertions we have queued up so far.  count can be
2898  * 0, which means to process everything in the tree at the start
2899  * of the run (but not newly added entries), or it can be some target
2900  * number you'd like to process.
2901  *
2902  * Returns 0 on success or if called with an aborted transaction
2903  * Returns <0 on error and aborts the transaction
2904  */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2905 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2906 			   unsigned long count)
2907 {
2908 	struct btrfs_fs_info *fs_info = trans->fs_info;
2909 	struct rb_node *node;
2910 	struct btrfs_delayed_ref_root *delayed_refs;
2911 	struct btrfs_delayed_ref_head *head;
2912 	int ret;
2913 	int run_all = count == (unsigned long)-1;
2914 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2915 
2916 	/* We'll clean this up in btrfs_cleanup_transaction */
2917 	if (trans->aborted)
2918 		return 0;
2919 
2920 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2921 		return 0;
2922 
2923 	delayed_refs = &trans->transaction->delayed_refs;
2924 	if (count == 0)
2925 		count = atomic_read(&delayed_refs->num_entries) * 2;
2926 
2927 again:
2928 #ifdef SCRAMBLE_DELAYED_REFS
2929 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2930 #endif
2931 	trans->can_flush_pending_bgs = false;
2932 	ret = __btrfs_run_delayed_refs(trans, count);
2933 	if (ret < 0) {
2934 		btrfs_abort_transaction(trans, ret);
2935 		return ret;
2936 	}
2937 
2938 	if (run_all) {
2939 		if (!list_empty(&trans->new_bgs))
2940 			btrfs_create_pending_block_groups(trans);
2941 
2942 		spin_lock(&delayed_refs->lock);
2943 		node = rb_first(&delayed_refs->href_root);
2944 		if (!node) {
2945 			spin_unlock(&delayed_refs->lock);
2946 			goto out;
2947 		}
2948 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2949 				href_node);
2950 		refcount_inc(&head->refs);
2951 		spin_unlock(&delayed_refs->lock);
2952 
2953 		/* Mutex was contended, block until it's released and retry. */
2954 		mutex_lock(&head->mutex);
2955 		mutex_unlock(&head->mutex);
2956 
2957 		btrfs_put_delayed_ref_head(head);
2958 		cond_resched();
2959 		goto again;
2960 	}
2961 out:
2962 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
2963 	return 0;
2964 }
2965 
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 flags,int level,int is_data)2966 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2967 				struct btrfs_fs_info *fs_info,
2968 				u64 bytenr, u64 num_bytes, u64 flags,
2969 				int level, int is_data)
2970 {
2971 	struct btrfs_delayed_extent_op *extent_op;
2972 	int ret;
2973 
2974 	extent_op = btrfs_alloc_delayed_extent_op();
2975 	if (!extent_op)
2976 		return -ENOMEM;
2977 
2978 	extent_op->flags_to_set = flags;
2979 	extent_op->update_flags = true;
2980 	extent_op->update_key = false;
2981 	extent_op->is_data = is_data ? true : false;
2982 	extent_op->level = level;
2983 
2984 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
2985 					  num_bytes, extent_op);
2986 	if (ret)
2987 		btrfs_free_delayed_extent_op(extent_op);
2988 	return ret;
2989 }
2990 
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2991 static noinline int check_delayed_ref(struct btrfs_root *root,
2992 				      struct btrfs_path *path,
2993 				      u64 objectid, u64 offset, u64 bytenr)
2994 {
2995 	struct btrfs_delayed_ref_head *head;
2996 	struct btrfs_delayed_ref_node *ref;
2997 	struct btrfs_delayed_data_ref *data_ref;
2998 	struct btrfs_delayed_ref_root *delayed_refs;
2999 	struct btrfs_transaction *cur_trans;
3000 	struct rb_node *node;
3001 	int ret = 0;
3002 
3003 	spin_lock(&root->fs_info->trans_lock);
3004 	cur_trans = root->fs_info->running_transaction;
3005 	if (cur_trans)
3006 		refcount_inc(&cur_trans->use_count);
3007 	spin_unlock(&root->fs_info->trans_lock);
3008 	if (!cur_trans)
3009 		return 0;
3010 
3011 	delayed_refs = &cur_trans->delayed_refs;
3012 	spin_lock(&delayed_refs->lock);
3013 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3014 	if (!head) {
3015 		spin_unlock(&delayed_refs->lock);
3016 		btrfs_put_transaction(cur_trans);
3017 		return 0;
3018 	}
3019 
3020 	if (!mutex_trylock(&head->mutex)) {
3021 		refcount_inc(&head->refs);
3022 		spin_unlock(&delayed_refs->lock);
3023 
3024 		btrfs_release_path(path);
3025 
3026 		/*
3027 		 * Mutex was contended, block until it's released and let
3028 		 * caller try again
3029 		 */
3030 		mutex_lock(&head->mutex);
3031 		mutex_unlock(&head->mutex);
3032 		btrfs_put_delayed_ref_head(head);
3033 		btrfs_put_transaction(cur_trans);
3034 		return -EAGAIN;
3035 	}
3036 	spin_unlock(&delayed_refs->lock);
3037 
3038 	spin_lock(&head->lock);
3039 	/*
3040 	 * XXX: We should replace this with a proper search function in the
3041 	 * future.
3042 	 */
3043 	for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3044 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3045 		/* If it's a shared ref we know a cross reference exists */
3046 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3047 			ret = 1;
3048 			break;
3049 		}
3050 
3051 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3052 
3053 		/*
3054 		 * If our ref doesn't match the one we're currently looking at
3055 		 * then we have a cross reference.
3056 		 */
3057 		if (data_ref->root != root->root_key.objectid ||
3058 		    data_ref->objectid != objectid ||
3059 		    data_ref->offset != offset) {
3060 			ret = 1;
3061 			break;
3062 		}
3063 	}
3064 	spin_unlock(&head->lock);
3065 	mutex_unlock(&head->mutex);
3066 	btrfs_put_transaction(cur_trans);
3067 	return ret;
3068 }
3069 
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3070 static noinline int check_committed_ref(struct btrfs_root *root,
3071 					struct btrfs_path *path,
3072 					u64 objectid, u64 offset, u64 bytenr)
3073 {
3074 	struct btrfs_fs_info *fs_info = root->fs_info;
3075 	struct btrfs_root *extent_root = fs_info->extent_root;
3076 	struct extent_buffer *leaf;
3077 	struct btrfs_extent_data_ref *ref;
3078 	struct btrfs_extent_inline_ref *iref;
3079 	struct btrfs_extent_item *ei;
3080 	struct btrfs_key key;
3081 	u32 item_size;
3082 	int type;
3083 	int ret;
3084 
3085 	key.objectid = bytenr;
3086 	key.offset = (u64)-1;
3087 	key.type = BTRFS_EXTENT_ITEM_KEY;
3088 
3089 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3090 	if (ret < 0)
3091 		goto out;
3092 	BUG_ON(ret == 0); /* Corruption */
3093 
3094 	ret = -ENOENT;
3095 	if (path->slots[0] == 0)
3096 		goto out;
3097 
3098 	path->slots[0]--;
3099 	leaf = path->nodes[0];
3100 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3101 
3102 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3103 		goto out;
3104 
3105 	ret = 1;
3106 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3107 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3108 
3109 	if (item_size != sizeof(*ei) +
3110 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 		goto out;
3112 
3113 	if (btrfs_extent_generation(leaf, ei) <=
3114 	    btrfs_root_last_snapshot(&root->root_item))
3115 		goto out;
3116 
3117 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3118 
3119 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3120 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3121 		goto out;
3122 
3123 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3124 	if (btrfs_extent_refs(leaf, ei) !=
3125 	    btrfs_extent_data_ref_count(leaf, ref) ||
3126 	    btrfs_extent_data_ref_root(leaf, ref) !=
3127 	    root->root_key.objectid ||
3128 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3129 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3130 		goto out;
3131 
3132 	ret = 0;
3133 out:
3134 	return ret;
3135 }
3136 
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)3137 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3138 			  u64 bytenr)
3139 {
3140 	struct btrfs_path *path;
3141 	int ret;
3142 	int ret2;
3143 
3144 	path = btrfs_alloc_path();
3145 	if (!path)
3146 		return -ENOMEM;
3147 
3148 	do {
3149 		ret = check_committed_ref(root, path, objectid,
3150 					  offset, bytenr);
3151 		if (ret && ret != -ENOENT)
3152 			goto out;
3153 
3154 		ret2 = check_delayed_ref(root, path, objectid,
3155 					 offset, bytenr);
3156 	} while (ret2 == -EAGAIN);
3157 
3158 	if (ret2 && ret2 != -ENOENT) {
3159 		ret = ret2;
3160 		goto out;
3161 	}
3162 
3163 	if (ret != -ENOENT || ret2 != -ENOENT)
3164 		ret = 0;
3165 out:
3166 	btrfs_free_path(path);
3167 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168 		WARN_ON(ret > 0);
3169 	return ret;
3170 }
3171 
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)3172 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3173 			   struct btrfs_root *root,
3174 			   struct extent_buffer *buf,
3175 			   int full_backref, int inc)
3176 {
3177 	struct btrfs_fs_info *fs_info = root->fs_info;
3178 	u64 bytenr;
3179 	u64 num_bytes;
3180 	u64 parent;
3181 	u64 ref_root;
3182 	u32 nritems;
3183 	struct btrfs_key key;
3184 	struct btrfs_file_extent_item *fi;
3185 	int i;
3186 	int level;
3187 	int ret = 0;
3188 	int (*process_func)(struct btrfs_trans_handle *,
3189 			    struct btrfs_root *,
3190 			    u64, u64, u64, u64, u64, u64);
3191 
3192 
3193 	if (btrfs_is_testing(fs_info))
3194 		return 0;
3195 
3196 	ref_root = btrfs_header_owner(buf);
3197 	nritems = btrfs_header_nritems(buf);
3198 	level = btrfs_header_level(buf);
3199 
3200 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3201 		return 0;
3202 
3203 	if (inc)
3204 		process_func = btrfs_inc_extent_ref;
3205 	else
3206 		process_func = btrfs_free_extent;
3207 
3208 	if (full_backref)
3209 		parent = buf->start;
3210 	else
3211 		parent = 0;
3212 
3213 	for (i = 0; i < nritems; i++) {
3214 		if (level == 0) {
3215 			btrfs_item_key_to_cpu(buf, &key, i);
3216 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3217 				continue;
3218 			fi = btrfs_item_ptr(buf, i,
3219 					    struct btrfs_file_extent_item);
3220 			if (btrfs_file_extent_type(buf, fi) ==
3221 			    BTRFS_FILE_EXTENT_INLINE)
3222 				continue;
3223 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3224 			if (bytenr == 0)
3225 				continue;
3226 
3227 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3228 			key.offset -= btrfs_file_extent_offset(buf, fi);
3229 			ret = process_func(trans, root, bytenr, num_bytes,
3230 					   parent, ref_root, key.objectid,
3231 					   key.offset);
3232 			if (ret)
3233 				goto fail;
3234 		} else {
3235 			bytenr = btrfs_node_blockptr(buf, i);
3236 			num_bytes = fs_info->nodesize;
3237 			ret = process_func(trans, root, bytenr, num_bytes,
3238 					   parent, ref_root, level - 1, 0);
3239 			if (ret)
3240 				goto fail;
3241 		}
3242 	}
3243 	return 0;
3244 fail:
3245 	return ret;
3246 }
3247 
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3248 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3249 		  struct extent_buffer *buf, int full_backref)
3250 {
3251 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3252 }
3253 
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3254 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3255 		  struct extent_buffer *buf, int full_backref)
3256 {
3257 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3258 }
3259 
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_block_group_cache * cache)3260 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3261 				 struct btrfs_fs_info *fs_info,
3262 				 struct btrfs_path *path,
3263 				 struct btrfs_block_group_cache *cache)
3264 {
3265 	int ret;
3266 	struct btrfs_root *extent_root = fs_info->extent_root;
3267 	unsigned long bi;
3268 	struct extent_buffer *leaf;
3269 
3270 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3271 	if (ret) {
3272 		if (ret > 0)
3273 			ret = -ENOENT;
3274 		goto fail;
3275 	}
3276 
3277 	leaf = path->nodes[0];
3278 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3279 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3280 	btrfs_mark_buffer_dirty(leaf);
3281 fail:
3282 	btrfs_release_path(path);
3283 	return ret;
3284 
3285 }
3286 
3287 static struct btrfs_block_group_cache *
next_block_group(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache)3288 next_block_group(struct btrfs_fs_info *fs_info,
3289 		 struct btrfs_block_group_cache *cache)
3290 {
3291 	struct rb_node *node;
3292 
3293 	spin_lock(&fs_info->block_group_cache_lock);
3294 
3295 	/* If our block group was removed, we need a full search. */
3296 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3297 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3298 
3299 		spin_unlock(&fs_info->block_group_cache_lock);
3300 		btrfs_put_block_group(cache);
3301 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3302 	}
3303 	node = rb_next(&cache->cache_node);
3304 	btrfs_put_block_group(cache);
3305 	if (node) {
3306 		cache = rb_entry(node, struct btrfs_block_group_cache,
3307 				 cache_node);
3308 		btrfs_get_block_group(cache);
3309 	} else
3310 		cache = NULL;
3311 	spin_unlock(&fs_info->block_group_cache_lock);
3312 	return cache;
3313 }
3314 
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3315 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316 			    struct btrfs_trans_handle *trans,
3317 			    struct btrfs_path *path)
3318 {
3319 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3320 	struct btrfs_root *root = fs_info->tree_root;
3321 	struct inode *inode = NULL;
3322 	struct extent_changeset *data_reserved = NULL;
3323 	u64 alloc_hint = 0;
3324 	int dcs = BTRFS_DC_ERROR;
3325 	u64 num_pages = 0;
3326 	int retries = 0;
3327 	int ret = 0;
3328 
3329 	/*
3330 	 * If this block group is smaller than 100 megs don't bother caching the
3331 	 * block group.
3332 	 */
3333 	if (block_group->key.offset < (100 * SZ_1M)) {
3334 		spin_lock(&block_group->lock);
3335 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3336 		spin_unlock(&block_group->lock);
3337 		return 0;
3338 	}
3339 
3340 	if (trans->aborted)
3341 		return 0;
3342 again:
3343 	inode = lookup_free_space_inode(fs_info, block_group, path);
3344 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3345 		ret = PTR_ERR(inode);
3346 		btrfs_release_path(path);
3347 		goto out;
3348 	}
3349 
3350 	if (IS_ERR(inode)) {
3351 		BUG_ON(retries);
3352 		retries++;
3353 
3354 		if (block_group->ro)
3355 			goto out_free;
3356 
3357 		ret = create_free_space_inode(fs_info, trans, block_group,
3358 					      path);
3359 		if (ret)
3360 			goto out_free;
3361 		goto again;
3362 	}
3363 
3364 	/*
3365 	 * We want to set the generation to 0, that way if anything goes wrong
3366 	 * from here on out we know not to trust this cache when we load up next
3367 	 * time.
3368 	 */
3369 	BTRFS_I(inode)->generation = 0;
3370 	ret = btrfs_update_inode(trans, root, inode);
3371 	if (ret) {
3372 		/*
3373 		 * So theoretically we could recover from this, simply set the
3374 		 * super cache generation to 0 so we know to invalidate the
3375 		 * cache, but then we'd have to keep track of the block groups
3376 		 * that fail this way so we know we _have_ to reset this cache
3377 		 * before the next commit or risk reading stale cache.  So to
3378 		 * limit our exposure to horrible edge cases lets just abort the
3379 		 * transaction, this only happens in really bad situations
3380 		 * anyway.
3381 		 */
3382 		btrfs_abort_transaction(trans, ret);
3383 		goto out_put;
3384 	}
3385 	WARN_ON(ret);
3386 
3387 	/* We've already setup this transaction, go ahead and exit */
3388 	if (block_group->cache_generation == trans->transid &&
3389 	    i_size_read(inode)) {
3390 		dcs = BTRFS_DC_SETUP;
3391 		goto out_put;
3392 	}
3393 
3394 	if (i_size_read(inode) > 0) {
3395 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3396 					&fs_info->global_block_rsv);
3397 		if (ret)
3398 			goto out_put;
3399 
3400 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3401 		if (ret)
3402 			goto out_put;
3403 	}
3404 
3405 	spin_lock(&block_group->lock);
3406 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3407 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3408 		/*
3409 		 * don't bother trying to write stuff out _if_
3410 		 * a) we're not cached,
3411 		 * b) we're with nospace_cache mount option,
3412 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3413 		 */
3414 		dcs = BTRFS_DC_WRITTEN;
3415 		spin_unlock(&block_group->lock);
3416 		goto out_put;
3417 	}
3418 	spin_unlock(&block_group->lock);
3419 
3420 	/*
3421 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3422 	 * skip doing the setup, we've already cleared the cache so we're safe.
3423 	 */
3424 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3425 		ret = -ENOSPC;
3426 		goto out_put;
3427 	}
3428 
3429 	/*
3430 	 * Try to preallocate enough space based on how big the block group is.
3431 	 * Keep in mind this has to include any pinned space which could end up
3432 	 * taking up quite a bit since it's not folded into the other space
3433 	 * cache.
3434 	 */
3435 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3436 	if (!num_pages)
3437 		num_pages = 1;
3438 
3439 	num_pages *= 16;
3440 	num_pages *= PAGE_SIZE;
3441 
3442 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3443 	if (ret)
3444 		goto out_put;
3445 
3446 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3447 					      num_pages, num_pages,
3448 					      &alloc_hint);
3449 	/*
3450 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3451 	 * of metadata or split extents when writing the cache out, which means
3452 	 * we can enospc if we are heavily fragmented in addition to just normal
3453 	 * out of space conditions.  So if we hit this just skip setting up any
3454 	 * other block groups for this transaction, maybe we'll unpin enough
3455 	 * space the next time around.
3456 	 */
3457 	if (!ret)
3458 		dcs = BTRFS_DC_SETUP;
3459 	else if (ret == -ENOSPC)
3460 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3461 
3462 out_put:
3463 	iput(inode);
3464 out_free:
3465 	btrfs_release_path(path);
3466 out:
3467 	spin_lock(&block_group->lock);
3468 	if (!ret && dcs == BTRFS_DC_SETUP)
3469 		block_group->cache_generation = trans->transid;
3470 	block_group->disk_cache_state = dcs;
3471 	spin_unlock(&block_group->lock);
3472 
3473 	extent_changeset_free(data_reserved);
3474 	return ret;
3475 }
3476 
btrfs_setup_space_cache(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3477 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3478 			    struct btrfs_fs_info *fs_info)
3479 {
3480 	struct btrfs_block_group_cache *cache, *tmp;
3481 	struct btrfs_transaction *cur_trans = trans->transaction;
3482 	struct btrfs_path *path;
3483 
3484 	if (list_empty(&cur_trans->dirty_bgs) ||
3485 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3486 		return 0;
3487 
3488 	path = btrfs_alloc_path();
3489 	if (!path)
3490 		return -ENOMEM;
3491 
3492 	/* Could add new block groups, use _safe just in case */
3493 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3494 				 dirty_list) {
3495 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3496 			cache_save_setup(cache, trans, path);
3497 	}
3498 
3499 	btrfs_free_path(path);
3500 	return 0;
3501 }
3502 
3503 /*
3504  * transaction commit does final block group cache writeback during a
3505  * critical section where nothing is allowed to change the FS.  This is
3506  * required in order for the cache to actually match the block group,
3507  * but can introduce a lot of latency into the commit.
3508  *
3509  * So, btrfs_start_dirty_block_groups is here to kick off block group
3510  * cache IO.  There's a chance we'll have to redo some of it if the
3511  * block group changes again during the commit, but it greatly reduces
3512  * the commit latency by getting rid of the easy block groups while
3513  * we're still allowing others to join the commit.
3514  */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3515 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3516 {
3517 	struct btrfs_fs_info *fs_info = trans->fs_info;
3518 	struct btrfs_block_group_cache *cache;
3519 	struct btrfs_transaction *cur_trans = trans->transaction;
3520 	int ret = 0;
3521 	int should_put;
3522 	struct btrfs_path *path = NULL;
3523 	LIST_HEAD(dirty);
3524 	struct list_head *io = &cur_trans->io_bgs;
3525 	int num_started = 0;
3526 	int loops = 0;
3527 
3528 	spin_lock(&cur_trans->dirty_bgs_lock);
3529 	if (list_empty(&cur_trans->dirty_bgs)) {
3530 		spin_unlock(&cur_trans->dirty_bgs_lock);
3531 		return 0;
3532 	}
3533 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3534 	spin_unlock(&cur_trans->dirty_bgs_lock);
3535 
3536 again:
3537 	/*
3538 	 * make sure all the block groups on our dirty list actually
3539 	 * exist
3540 	 */
3541 	btrfs_create_pending_block_groups(trans);
3542 
3543 	if (!path) {
3544 		path = btrfs_alloc_path();
3545 		if (!path)
3546 			return -ENOMEM;
3547 	}
3548 
3549 	/*
3550 	 * cache_write_mutex is here only to save us from balance or automatic
3551 	 * removal of empty block groups deleting this block group while we are
3552 	 * writing out the cache
3553 	 */
3554 	mutex_lock(&trans->transaction->cache_write_mutex);
3555 	while (!list_empty(&dirty)) {
3556 		cache = list_first_entry(&dirty,
3557 					 struct btrfs_block_group_cache,
3558 					 dirty_list);
3559 		/*
3560 		 * this can happen if something re-dirties a block
3561 		 * group that is already under IO.  Just wait for it to
3562 		 * finish and then do it all again
3563 		 */
3564 		if (!list_empty(&cache->io_list)) {
3565 			list_del_init(&cache->io_list);
3566 			btrfs_wait_cache_io(trans, cache, path);
3567 			btrfs_put_block_group(cache);
3568 		}
3569 
3570 
3571 		/*
3572 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3573 		 * if it should update the cache_state.  Don't delete
3574 		 * until after we wait.
3575 		 *
3576 		 * Since we're not running in the commit critical section
3577 		 * we need the dirty_bgs_lock to protect from update_block_group
3578 		 */
3579 		spin_lock(&cur_trans->dirty_bgs_lock);
3580 		list_del_init(&cache->dirty_list);
3581 		spin_unlock(&cur_trans->dirty_bgs_lock);
3582 
3583 		should_put = 1;
3584 
3585 		cache_save_setup(cache, trans, path);
3586 
3587 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3588 			cache->io_ctl.inode = NULL;
3589 			ret = btrfs_write_out_cache(fs_info, trans,
3590 						    cache, path);
3591 			if (ret == 0 && cache->io_ctl.inode) {
3592 				num_started++;
3593 				should_put = 0;
3594 
3595 				/*
3596 				 * The cache_write_mutex is protecting the
3597 				 * io_list, also refer to the definition of
3598 				 * btrfs_transaction::io_bgs for more details
3599 				 */
3600 				list_add_tail(&cache->io_list, io);
3601 			} else {
3602 				/*
3603 				 * if we failed to write the cache, the
3604 				 * generation will be bad and life goes on
3605 				 */
3606 				ret = 0;
3607 			}
3608 		}
3609 		if (!ret) {
3610 			ret = write_one_cache_group(trans, fs_info,
3611 						    path, cache);
3612 			/*
3613 			 * Our block group might still be attached to the list
3614 			 * of new block groups in the transaction handle of some
3615 			 * other task (struct btrfs_trans_handle->new_bgs). This
3616 			 * means its block group item isn't yet in the extent
3617 			 * tree. If this happens ignore the error, as we will
3618 			 * try again later in the critical section of the
3619 			 * transaction commit.
3620 			 */
3621 			if (ret == -ENOENT) {
3622 				ret = 0;
3623 				spin_lock(&cur_trans->dirty_bgs_lock);
3624 				if (list_empty(&cache->dirty_list)) {
3625 					list_add_tail(&cache->dirty_list,
3626 						      &cur_trans->dirty_bgs);
3627 					btrfs_get_block_group(cache);
3628 				}
3629 				spin_unlock(&cur_trans->dirty_bgs_lock);
3630 			} else if (ret) {
3631 				btrfs_abort_transaction(trans, ret);
3632 			}
3633 		}
3634 
3635 		/* if its not on the io list, we need to put the block group */
3636 		if (should_put)
3637 			btrfs_put_block_group(cache);
3638 
3639 		if (ret)
3640 			break;
3641 
3642 		/*
3643 		 * Avoid blocking other tasks for too long. It might even save
3644 		 * us from writing caches for block groups that are going to be
3645 		 * removed.
3646 		 */
3647 		mutex_unlock(&trans->transaction->cache_write_mutex);
3648 		mutex_lock(&trans->transaction->cache_write_mutex);
3649 	}
3650 	mutex_unlock(&trans->transaction->cache_write_mutex);
3651 
3652 	/*
3653 	 * go through delayed refs for all the stuff we've just kicked off
3654 	 * and then loop back (just once)
3655 	 */
3656 	ret = btrfs_run_delayed_refs(trans, 0);
3657 	if (!ret && loops == 0) {
3658 		loops++;
3659 		spin_lock(&cur_trans->dirty_bgs_lock);
3660 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3661 		/*
3662 		 * dirty_bgs_lock protects us from concurrent block group
3663 		 * deletes too (not just cache_write_mutex).
3664 		 */
3665 		if (!list_empty(&dirty)) {
3666 			spin_unlock(&cur_trans->dirty_bgs_lock);
3667 			goto again;
3668 		}
3669 		spin_unlock(&cur_trans->dirty_bgs_lock);
3670 	} else if (ret < 0) {
3671 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3672 	}
3673 
3674 	btrfs_free_path(path);
3675 	return ret;
3676 }
3677 
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3678 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3679 				   struct btrfs_fs_info *fs_info)
3680 {
3681 	struct btrfs_block_group_cache *cache;
3682 	struct btrfs_transaction *cur_trans = trans->transaction;
3683 	int ret = 0;
3684 	int should_put;
3685 	struct btrfs_path *path;
3686 	struct list_head *io = &cur_trans->io_bgs;
3687 	int num_started = 0;
3688 
3689 	path = btrfs_alloc_path();
3690 	if (!path)
3691 		return -ENOMEM;
3692 
3693 	/*
3694 	 * Even though we are in the critical section of the transaction commit,
3695 	 * we can still have concurrent tasks adding elements to this
3696 	 * transaction's list of dirty block groups. These tasks correspond to
3697 	 * endio free space workers started when writeback finishes for a
3698 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3699 	 * allocate new block groups as a result of COWing nodes of the root
3700 	 * tree when updating the free space inode. The writeback for the space
3701 	 * caches is triggered by an earlier call to
3702 	 * btrfs_start_dirty_block_groups() and iterations of the following
3703 	 * loop.
3704 	 * Also we want to do the cache_save_setup first and then run the
3705 	 * delayed refs to make sure we have the best chance at doing this all
3706 	 * in one shot.
3707 	 */
3708 	spin_lock(&cur_trans->dirty_bgs_lock);
3709 	while (!list_empty(&cur_trans->dirty_bgs)) {
3710 		cache = list_first_entry(&cur_trans->dirty_bgs,
3711 					 struct btrfs_block_group_cache,
3712 					 dirty_list);
3713 
3714 		/*
3715 		 * this can happen if cache_save_setup re-dirties a block
3716 		 * group that is already under IO.  Just wait for it to
3717 		 * finish and then do it all again
3718 		 */
3719 		if (!list_empty(&cache->io_list)) {
3720 			spin_unlock(&cur_trans->dirty_bgs_lock);
3721 			list_del_init(&cache->io_list);
3722 			btrfs_wait_cache_io(trans, cache, path);
3723 			btrfs_put_block_group(cache);
3724 			spin_lock(&cur_trans->dirty_bgs_lock);
3725 		}
3726 
3727 		/*
3728 		 * don't remove from the dirty list until after we've waited
3729 		 * on any pending IO
3730 		 */
3731 		list_del_init(&cache->dirty_list);
3732 		spin_unlock(&cur_trans->dirty_bgs_lock);
3733 		should_put = 1;
3734 
3735 		cache_save_setup(cache, trans, path);
3736 
3737 		if (!ret)
3738 			ret = btrfs_run_delayed_refs(trans,
3739 						     (unsigned long) -1);
3740 
3741 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3742 			cache->io_ctl.inode = NULL;
3743 			ret = btrfs_write_out_cache(fs_info, trans,
3744 						    cache, path);
3745 			if (ret == 0 && cache->io_ctl.inode) {
3746 				num_started++;
3747 				should_put = 0;
3748 				list_add_tail(&cache->io_list, io);
3749 			} else {
3750 				/*
3751 				 * if we failed to write the cache, the
3752 				 * generation will be bad and life goes on
3753 				 */
3754 				ret = 0;
3755 			}
3756 		}
3757 		if (!ret) {
3758 			ret = write_one_cache_group(trans, fs_info,
3759 						    path, cache);
3760 			/*
3761 			 * One of the free space endio workers might have
3762 			 * created a new block group while updating a free space
3763 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3764 			 * and hasn't released its transaction handle yet, in
3765 			 * which case the new block group is still attached to
3766 			 * its transaction handle and its creation has not
3767 			 * finished yet (no block group item in the extent tree
3768 			 * yet, etc). If this is the case, wait for all free
3769 			 * space endio workers to finish and retry. This is a
3770 			 * a very rare case so no need for a more efficient and
3771 			 * complex approach.
3772 			 */
3773 			if (ret == -ENOENT) {
3774 				wait_event(cur_trans->writer_wait,
3775 				   atomic_read(&cur_trans->num_writers) == 1);
3776 				ret = write_one_cache_group(trans, fs_info,
3777 							    path, cache);
3778 			}
3779 			if (ret)
3780 				btrfs_abort_transaction(trans, ret);
3781 		}
3782 
3783 		/* if its not on the io list, we need to put the block group */
3784 		if (should_put)
3785 			btrfs_put_block_group(cache);
3786 		spin_lock(&cur_trans->dirty_bgs_lock);
3787 	}
3788 	spin_unlock(&cur_trans->dirty_bgs_lock);
3789 
3790 	/*
3791 	 * Refer to the definition of io_bgs member for details why it's safe
3792 	 * to use it without any locking
3793 	 */
3794 	while (!list_empty(io)) {
3795 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3796 					 io_list);
3797 		list_del_init(&cache->io_list);
3798 		btrfs_wait_cache_io(trans, cache, path);
3799 		btrfs_put_block_group(cache);
3800 	}
3801 
3802 	btrfs_free_path(path);
3803 	return ret;
3804 }
3805 
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)3806 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3807 {
3808 	struct btrfs_block_group_cache *block_group;
3809 	int readonly = 0;
3810 
3811 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3812 	if (!block_group || block_group->ro)
3813 		readonly = 1;
3814 	if (block_group)
3815 		btrfs_put_block_group(block_group);
3816 	return readonly;
3817 }
3818 
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3819 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3820 {
3821 	struct btrfs_block_group_cache *bg;
3822 	bool ret = true;
3823 
3824 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3825 	if (!bg)
3826 		return false;
3827 
3828 	spin_lock(&bg->lock);
3829 	if (bg->ro)
3830 		ret = false;
3831 	else
3832 		atomic_inc(&bg->nocow_writers);
3833 	spin_unlock(&bg->lock);
3834 
3835 	/* no put on block group, done by btrfs_dec_nocow_writers */
3836 	if (!ret)
3837 		btrfs_put_block_group(bg);
3838 
3839 	return ret;
3840 
3841 }
3842 
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3843 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3844 {
3845 	struct btrfs_block_group_cache *bg;
3846 
3847 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3848 	ASSERT(bg);
3849 	if (atomic_dec_and_test(&bg->nocow_writers))
3850 		wake_up_var(&bg->nocow_writers);
3851 	/*
3852 	 * Once for our lookup and once for the lookup done by a previous call
3853 	 * to btrfs_inc_nocow_writers()
3854 	 */
3855 	btrfs_put_block_group(bg);
3856 	btrfs_put_block_group(bg);
3857 }
3858 
btrfs_wait_nocow_writers(struct btrfs_block_group_cache * bg)3859 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3860 {
3861 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3862 }
3863 
alloc_name(u64 flags)3864 static const char *alloc_name(u64 flags)
3865 {
3866 	switch (flags) {
3867 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3868 		return "mixed";
3869 	case BTRFS_BLOCK_GROUP_METADATA:
3870 		return "metadata";
3871 	case BTRFS_BLOCK_GROUP_DATA:
3872 		return "data";
3873 	case BTRFS_BLOCK_GROUP_SYSTEM:
3874 		return "system";
3875 	default:
3876 		WARN_ON(1);
3877 		return "invalid-combination";
3878 	};
3879 }
3880 
create_space_info(struct btrfs_fs_info * info,u64 flags)3881 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3882 {
3883 
3884 	struct btrfs_space_info *space_info;
3885 	int i;
3886 	int ret;
3887 
3888 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3889 	if (!space_info)
3890 		return -ENOMEM;
3891 
3892 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3893 				 GFP_KERNEL);
3894 	if (ret) {
3895 		kfree(space_info);
3896 		return ret;
3897 	}
3898 
3899 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3900 		INIT_LIST_HEAD(&space_info->block_groups[i]);
3901 	init_rwsem(&space_info->groups_sem);
3902 	spin_lock_init(&space_info->lock);
3903 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3904 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3905 	init_waitqueue_head(&space_info->wait);
3906 	INIT_LIST_HEAD(&space_info->ro_bgs);
3907 	INIT_LIST_HEAD(&space_info->tickets);
3908 	INIT_LIST_HEAD(&space_info->priority_tickets);
3909 
3910 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3911 				    info->space_info_kobj, "%s",
3912 				    alloc_name(space_info->flags));
3913 	if (ret) {
3914 		percpu_counter_destroy(&space_info->total_bytes_pinned);
3915 		kfree(space_info);
3916 		return ret;
3917 	}
3918 
3919 	list_add_rcu(&space_info->list, &info->space_info);
3920 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3921 		info->data_sinfo = space_info;
3922 
3923 	return ret;
3924 }
3925 
update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,u64 bytes_readonly,struct btrfs_space_info ** space_info)3926 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3927 			     u64 total_bytes, u64 bytes_used,
3928 			     u64 bytes_readonly,
3929 			     struct btrfs_space_info **space_info)
3930 {
3931 	struct btrfs_space_info *found;
3932 	int factor;
3933 
3934 	factor = btrfs_bg_type_to_factor(flags);
3935 
3936 	found = __find_space_info(info, flags);
3937 	ASSERT(found);
3938 	spin_lock(&found->lock);
3939 	found->total_bytes += total_bytes;
3940 	found->disk_total += total_bytes * factor;
3941 	found->bytes_used += bytes_used;
3942 	found->disk_used += bytes_used * factor;
3943 	found->bytes_readonly += bytes_readonly;
3944 	if (total_bytes > 0)
3945 		found->full = 0;
3946 	space_info_add_new_bytes(info, found, total_bytes -
3947 				 bytes_used - bytes_readonly);
3948 	spin_unlock(&found->lock);
3949 	*space_info = found;
3950 }
3951 
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)3952 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3953 {
3954 	u64 extra_flags = chunk_to_extended(flags) &
3955 				BTRFS_EXTENDED_PROFILE_MASK;
3956 
3957 	write_seqlock(&fs_info->profiles_lock);
3958 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3959 		fs_info->avail_data_alloc_bits |= extra_flags;
3960 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3961 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3962 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3963 		fs_info->avail_system_alloc_bits |= extra_flags;
3964 	write_sequnlock(&fs_info->profiles_lock);
3965 }
3966 
3967 /*
3968  * returns target flags in extended format or 0 if restripe for this
3969  * chunk_type is not in progress
3970  *
3971  * should be called with balance_lock held
3972  */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)3973 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3974 {
3975 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3976 	u64 target = 0;
3977 
3978 	if (!bctl)
3979 		return 0;
3980 
3981 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3982 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3983 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3984 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3985 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3986 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3987 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3988 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3989 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3990 	}
3991 
3992 	return target;
3993 }
3994 
3995 /*
3996  * @flags: available profiles in extended format (see ctree.h)
3997  *
3998  * Returns reduced profile in chunk format.  If profile changing is in
3999  * progress (either running or paused) picks the target profile (if it's
4000  * already available), otherwise falls back to plain reducing.
4001  */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)4002 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4003 {
4004 	u64 num_devices = fs_info->fs_devices->rw_devices;
4005 	u64 target;
4006 	u64 raid_type;
4007 	u64 allowed = 0;
4008 
4009 	/*
4010 	 * see if restripe for this chunk_type is in progress, if so
4011 	 * try to reduce to the target profile
4012 	 */
4013 	spin_lock(&fs_info->balance_lock);
4014 	target = get_restripe_target(fs_info, flags);
4015 	if (target) {
4016 		/* pick target profile only if it's already available */
4017 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4018 			spin_unlock(&fs_info->balance_lock);
4019 			return extended_to_chunk(target);
4020 		}
4021 	}
4022 	spin_unlock(&fs_info->balance_lock);
4023 
4024 	/* First, mask out the RAID levels which aren't possible */
4025 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4026 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4027 			allowed |= btrfs_raid_array[raid_type].bg_flag;
4028 	}
4029 	allowed &= flags;
4030 
4031 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4032 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4033 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4034 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4035 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4036 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4037 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4038 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4039 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4040 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4041 
4042 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4043 
4044 	return extended_to_chunk(flags | allowed);
4045 }
4046 
get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)4047 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4048 {
4049 	unsigned seq;
4050 	u64 flags;
4051 
4052 	do {
4053 		flags = orig_flags;
4054 		seq = read_seqbegin(&fs_info->profiles_lock);
4055 
4056 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4057 			flags |= fs_info->avail_data_alloc_bits;
4058 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4059 			flags |= fs_info->avail_system_alloc_bits;
4060 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4061 			flags |= fs_info->avail_metadata_alloc_bits;
4062 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4063 
4064 	return btrfs_reduce_alloc_profile(fs_info, flags);
4065 }
4066 
get_alloc_profile_by_root(struct btrfs_root * root,int data)4067 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4068 {
4069 	struct btrfs_fs_info *fs_info = root->fs_info;
4070 	u64 flags;
4071 	u64 ret;
4072 
4073 	if (data)
4074 		flags = BTRFS_BLOCK_GROUP_DATA;
4075 	else if (root == fs_info->chunk_root)
4076 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4077 	else
4078 		flags = BTRFS_BLOCK_GROUP_METADATA;
4079 
4080 	ret = get_alloc_profile(fs_info, flags);
4081 	return ret;
4082 }
4083 
btrfs_data_alloc_profile(struct btrfs_fs_info * fs_info)4084 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4085 {
4086 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4087 }
4088 
btrfs_metadata_alloc_profile(struct btrfs_fs_info * fs_info)4089 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4090 {
4091 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4092 }
4093 
btrfs_system_alloc_profile(struct btrfs_fs_info * fs_info)4094 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4095 {
4096 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4097 }
4098 
btrfs_space_info_used(struct btrfs_space_info * s_info,bool may_use_included)4099 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4100 				 bool may_use_included)
4101 {
4102 	ASSERT(s_info);
4103 	return s_info->bytes_used + s_info->bytes_reserved +
4104 		s_info->bytes_pinned + s_info->bytes_readonly +
4105 		(may_use_included ? s_info->bytes_may_use : 0);
4106 }
4107 
btrfs_alloc_data_chunk_ondemand(struct btrfs_inode * inode,u64 bytes)4108 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4109 {
4110 	struct btrfs_root *root = inode->root;
4111 	struct btrfs_fs_info *fs_info = root->fs_info;
4112 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4113 	u64 used;
4114 	int ret = 0;
4115 	int need_commit = 2;
4116 	int have_pinned_space;
4117 
4118 	/* make sure bytes are sectorsize aligned */
4119 	bytes = ALIGN(bytes, fs_info->sectorsize);
4120 
4121 	if (btrfs_is_free_space_inode(inode)) {
4122 		need_commit = 0;
4123 		ASSERT(current->journal_info);
4124 	}
4125 
4126 again:
4127 	/* make sure we have enough space to handle the data first */
4128 	spin_lock(&data_sinfo->lock);
4129 	used = btrfs_space_info_used(data_sinfo, true);
4130 
4131 	if (used + bytes > data_sinfo->total_bytes) {
4132 		struct btrfs_trans_handle *trans;
4133 
4134 		/*
4135 		 * if we don't have enough free bytes in this space then we need
4136 		 * to alloc a new chunk.
4137 		 */
4138 		if (!data_sinfo->full) {
4139 			u64 alloc_target;
4140 
4141 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4142 			spin_unlock(&data_sinfo->lock);
4143 
4144 			alloc_target = btrfs_data_alloc_profile(fs_info);
4145 			/*
4146 			 * It is ugly that we don't call nolock join
4147 			 * transaction for the free space inode case here.
4148 			 * But it is safe because we only do the data space
4149 			 * reservation for the free space cache in the
4150 			 * transaction context, the common join transaction
4151 			 * just increase the counter of the current transaction
4152 			 * handler, doesn't try to acquire the trans_lock of
4153 			 * the fs.
4154 			 */
4155 			trans = btrfs_join_transaction(root);
4156 			if (IS_ERR(trans))
4157 				return PTR_ERR(trans);
4158 
4159 			ret = do_chunk_alloc(trans, alloc_target,
4160 					     CHUNK_ALLOC_NO_FORCE);
4161 			btrfs_end_transaction(trans);
4162 			if (ret < 0) {
4163 				if (ret != -ENOSPC)
4164 					return ret;
4165 				else {
4166 					have_pinned_space = 1;
4167 					goto commit_trans;
4168 				}
4169 			}
4170 
4171 			goto again;
4172 		}
4173 
4174 		/*
4175 		 * If we don't have enough pinned space to deal with this
4176 		 * allocation, and no removed chunk in current transaction,
4177 		 * don't bother committing the transaction.
4178 		 */
4179 		have_pinned_space = __percpu_counter_compare(
4180 			&data_sinfo->total_bytes_pinned,
4181 			used + bytes - data_sinfo->total_bytes,
4182 			BTRFS_TOTAL_BYTES_PINNED_BATCH);
4183 		spin_unlock(&data_sinfo->lock);
4184 
4185 		/* commit the current transaction and try again */
4186 commit_trans:
4187 		if (need_commit) {
4188 			need_commit--;
4189 
4190 			if (need_commit > 0) {
4191 				btrfs_start_delalloc_roots(fs_info, -1);
4192 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4193 							 (u64)-1);
4194 			}
4195 
4196 			trans = btrfs_join_transaction(root);
4197 			if (IS_ERR(trans))
4198 				return PTR_ERR(trans);
4199 			if (have_pinned_space >= 0 ||
4200 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4201 				     &trans->transaction->flags) ||
4202 			    need_commit > 0) {
4203 				ret = btrfs_commit_transaction(trans);
4204 				if (ret)
4205 					return ret;
4206 				/*
4207 				 * The cleaner kthread might still be doing iput
4208 				 * operations. Wait for it to finish so that
4209 				 * more space is released.
4210 				 */
4211 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4212 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4213 				goto again;
4214 			} else {
4215 				btrfs_end_transaction(trans);
4216 			}
4217 		}
4218 
4219 		trace_btrfs_space_reservation(fs_info,
4220 					      "space_info:enospc",
4221 					      data_sinfo->flags, bytes, 1);
4222 		return -ENOSPC;
4223 	}
4224 	data_sinfo->bytes_may_use += bytes;
4225 	trace_btrfs_space_reservation(fs_info, "space_info",
4226 				      data_sinfo->flags, bytes, 1);
4227 	spin_unlock(&data_sinfo->lock);
4228 
4229 	return 0;
4230 }
4231 
btrfs_check_data_free_space(struct inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)4232 int btrfs_check_data_free_space(struct inode *inode,
4233 			struct extent_changeset **reserved, u64 start, u64 len)
4234 {
4235 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4236 	int ret;
4237 
4238 	/* align the range */
4239 	len = round_up(start + len, fs_info->sectorsize) -
4240 	      round_down(start, fs_info->sectorsize);
4241 	start = round_down(start, fs_info->sectorsize);
4242 
4243 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4244 	if (ret < 0)
4245 		return ret;
4246 
4247 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4248 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4249 	if (ret < 0)
4250 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4251 	else
4252 		ret = 0;
4253 	return ret;
4254 }
4255 
4256 /*
4257  * Called if we need to clear a data reservation for this inode
4258  * Normally in a error case.
4259  *
4260  * This one will *NOT* use accurate qgroup reserved space API, just for case
4261  * which we can't sleep and is sure it won't affect qgroup reserved space.
4262  * Like clear_bit_hook().
4263  */
btrfs_free_reserved_data_space_noquota(struct inode * inode,u64 start,u64 len)4264 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4265 					    u64 len)
4266 {
4267 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4268 	struct btrfs_space_info *data_sinfo;
4269 
4270 	/* Make sure the range is aligned to sectorsize */
4271 	len = round_up(start + len, fs_info->sectorsize) -
4272 	      round_down(start, fs_info->sectorsize);
4273 	start = round_down(start, fs_info->sectorsize);
4274 
4275 	data_sinfo = fs_info->data_sinfo;
4276 	spin_lock(&data_sinfo->lock);
4277 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4278 		data_sinfo->bytes_may_use = 0;
4279 	else
4280 		data_sinfo->bytes_may_use -= len;
4281 	trace_btrfs_space_reservation(fs_info, "space_info",
4282 				      data_sinfo->flags, len, 0);
4283 	spin_unlock(&data_sinfo->lock);
4284 }
4285 
4286 /*
4287  * Called if we need to clear a data reservation for this inode
4288  * Normally in a error case.
4289  *
4290  * This one will handle the per-inode data rsv map for accurate reserved
4291  * space framework.
4292  */
btrfs_free_reserved_data_space(struct inode * inode,struct extent_changeset * reserved,u64 start,u64 len)4293 void btrfs_free_reserved_data_space(struct inode *inode,
4294 			struct extent_changeset *reserved, u64 start, u64 len)
4295 {
4296 	struct btrfs_root *root = BTRFS_I(inode)->root;
4297 
4298 	/* Make sure the range is aligned to sectorsize */
4299 	len = round_up(start + len, root->fs_info->sectorsize) -
4300 	      round_down(start, root->fs_info->sectorsize);
4301 	start = round_down(start, root->fs_info->sectorsize);
4302 
4303 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4304 	btrfs_qgroup_free_data(inode, reserved, start, len);
4305 }
4306 
force_metadata_allocation(struct btrfs_fs_info * info)4307 static void force_metadata_allocation(struct btrfs_fs_info *info)
4308 {
4309 	struct list_head *head = &info->space_info;
4310 	struct btrfs_space_info *found;
4311 
4312 	rcu_read_lock();
4313 	list_for_each_entry_rcu(found, head, list) {
4314 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4315 			found->force_alloc = CHUNK_ALLOC_FORCE;
4316 	}
4317 	rcu_read_unlock();
4318 }
4319 
calc_global_rsv_need_space(struct btrfs_block_rsv * global)4320 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4321 {
4322 	return (global->size << 1);
4323 }
4324 
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)4325 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4326 			      struct btrfs_space_info *sinfo, int force)
4327 {
4328 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4329 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4330 	u64 thresh;
4331 
4332 	if (force == CHUNK_ALLOC_FORCE)
4333 		return 1;
4334 
4335 	/*
4336 	 * We need to take into account the global rsv because for all intents
4337 	 * and purposes it's used space.  Don't worry about locking the
4338 	 * global_rsv, it doesn't change except when the transaction commits.
4339 	 */
4340 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4341 		bytes_used += calc_global_rsv_need_space(global_rsv);
4342 
4343 	/*
4344 	 * in limited mode, we want to have some free space up to
4345 	 * about 1% of the FS size.
4346 	 */
4347 	if (force == CHUNK_ALLOC_LIMITED) {
4348 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4349 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4350 
4351 		if (sinfo->total_bytes - bytes_used < thresh)
4352 			return 1;
4353 	}
4354 
4355 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4356 		return 0;
4357 	return 1;
4358 }
4359 
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)4360 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4361 {
4362 	u64 num_dev;
4363 
4364 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4365 		    BTRFS_BLOCK_GROUP_RAID0 |
4366 		    BTRFS_BLOCK_GROUP_RAID5 |
4367 		    BTRFS_BLOCK_GROUP_RAID6))
4368 		num_dev = fs_info->fs_devices->rw_devices;
4369 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4370 		num_dev = 2;
4371 	else
4372 		num_dev = 1;	/* DUP or single */
4373 
4374 	return num_dev;
4375 }
4376 
4377 /*
4378  * If @is_allocation is true, reserve space in the system space info necessary
4379  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4380  * removing a chunk.
4381  */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4382 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4383 {
4384 	struct btrfs_fs_info *fs_info = trans->fs_info;
4385 	struct btrfs_space_info *info;
4386 	u64 left;
4387 	u64 thresh;
4388 	int ret = 0;
4389 	u64 num_devs;
4390 
4391 	/*
4392 	 * Needed because we can end up allocating a system chunk and for an
4393 	 * atomic and race free space reservation in the chunk block reserve.
4394 	 */
4395 	lockdep_assert_held(&fs_info->chunk_mutex);
4396 
4397 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4398 	spin_lock(&info->lock);
4399 	left = info->total_bytes - btrfs_space_info_used(info, true);
4400 	spin_unlock(&info->lock);
4401 
4402 	num_devs = get_profile_num_devs(fs_info, type);
4403 
4404 	/* num_devs device items to update and 1 chunk item to add or remove */
4405 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4406 		btrfs_calc_trans_metadata_size(fs_info, 1);
4407 
4408 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4409 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4410 			   left, thresh, type);
4411 		dump_space_info(fs_info, info, 0, 0);
4412 	}
4413 
4414 	if (left < thresh) {
4415 		u64 flags = btrfs_system_alloc_profile(fs_info);
4416 
4417 		/*
4418 		 * Ignore failure to create system chunk. We might end up not
4419 		 * needing it, as we might not need to COW all nodes/leafs from
4420 		 * the paths we visit in the chunk tree (they were already COWed
4421 		 * or created in the current transaction for example).
4422 		 */
4423 		ret = btrfs_alloc_chunk(trans, flags);
4424 	}
4425 
4426 	if (!ret) {
4427 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4428 					  &fs_info->chunk_block_rsv,
4429 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4430 		if (!ret)
4431 			trans->chunk_bytes_reserved += thresh;
4432 	}
4433 }
4434 
4435 /*
4436  * If force is CHUNK_ALLOC_FORCE:
4437  *    - return 1 if it successfully allocates a chunk,
4438  *    - return errors including -ENOSPC otherwise.
4439  * If force is NOT CHUNK_ALLOC_FORCE:
4440  *    - return 0 if it doesn't need to allocate a new chunk,
4441  *    - return 1 if it successfully allocates a chunk,
4442  *    - return errors including -ENOSPC otherwise.
4443  */
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,int force)4444 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4445 			  int force)
4446 {
4447 	struct btrfs_fs_info *fs_info = trans->fs_info;
4448 	struct btrfs_space_info *space_info;
4449 	bool wait_for_alloc = false;
4450 	bool should_alloc = false;
4451 	int ret = 0;
4452 
4453 	/* Don't re-enter if we're already allocating a chunk */
4454 	if (trans->allocating_chunk)
4455 		return -ENOSPC;
4456 
4457 	space_info = __find_space_info(fs_info, flags);
4458 	ASSERT(space_info);
4459 
4460 	do {
4461 		spin_lock(&space_info->lock);
4462 		if (force < space_info->force_alloc)
4463 			force = space_info->force_alloc;
4464 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4465 		if (space_info->full) {
4466 			/* No more free physical space */
4467 			if (should_alloc)
4468 				ret = -ENOSPC;
4469 			else
4470 				ret = 0;
4471 			spin_unlock(&space_info->lock);
4472 			return ret;
4473 		} else if (!should_alloc) {
4474 			spin_unlock(&space_info->lock);
4475 			return 0;
4476 		} else if (space_info->chunk_alloc) {
4477 			/*
4478 			 * Someone is already allocating, so we need to block
4479 			 * until this someone is finished and then loop to
4480 			 * recheck if we should continue with our allocation
4481 			 * attempt.
4482 			 */
4483 			wait_for_alloc = true;
4484 			spin_unlock(&space_info->lock);
4485 			mutex_lock(&fs_info->chunk_mutex);
4486 			mutex_unlock(&fs_info->chunk_mutex);
4487 		} else {
4488 			/* Proceed with allocation */
4489 			space_info->chunk_alloc = 1;
4490 			wait_for_alloc = false;
4491 			spin_unlock(&space_info->lock);
4492 		}
4493 
4494 		cond_resched();
4495 	} while (wait_for_alloc);
4496 
4497 	mutex_lock(&fs_info->chunk_mutex);
4498 	trans->allocating_chunk = true;
4499 
4500 	/*
4501 	 * If we have mixed data/metadata chunks we want to make sure we keep
4502 	 * allocating mixed chunks instead of individual chunks.
4503 	 */
4504 	if (btrfs_mixed_space_info(space_info))
4505 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4506 
4507 	/*
4508 	 * if we're doing a data chunk, go ahead and make sure that
4509 	 * we keep a reasonable number of metadata chunks allocated in the
4510 	 * FS as well.
4511 	 */
4512 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4513 		fs_info->data_chunk_allocations++;
4514 		if (!(fs_info->data_chunk_allocations %
4515 		      fs_info->metadata_ratio))
4516 			force_metadata_allocation(fs_info);
4517 	}
4518 
4519 	/*
4520 	 * Check if we have enough space in SYSTEM chunk because we may need
4521 	 * to update devices.
4522 	 */
4523 	check_system_chunk(trans, flags);
4524 
4525 	ret = btrfs_alloc_chunk(trans, flags);
4526 	trans->allocating_chunk = false;
4527 
4528 	spin_lock(&space_info->lock);
4529 	if (ret < 0) {
4530 		if (ret == -ENOSPC)
4531 			space_info->full = 1;
4532 		else
4533 			goto out;
4534 	} else {
4535 		ret = 1;
4536 	}
4537 
4538 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4539 out:
4540 	space_info->chunk_alloc = 0;
4541 	spin_unlock(&space_info->lock);
4542 	mutex_unlock(&fs_info->chunk_mutex);
4543 	/*
4544 	 * When we allocate a new chunk we reserve space in the chunk block
4545 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4546 	 * add new nodes/leafs to it if we end up needing to do it when
4547 	 * inserting the chunk item and updating device items as part of the
4548 	 * second phase of chunk allocation, performed by
4549 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4550 	 * large number of new block groups to create in our transaction
4551 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4552 	 * in extreme cases - like having a single transaction create many new
4553 	 * block groups when starting to write out the free space caches of all
4554 	 * the block groups that were made dirty during the lifetime of the
4555 	 * transaction.
4556 	 */
4557 	if (trans->can_flush_pending_bgs &&
4558 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4559 		btrfs_create_pending_block_groups(trans);
4560 		btrfs_trans_release_chunk_metadata(trans);
4561 	}
4562 	return ret;
4563 }
4564 
can_overcommit(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush,bool system_chunk)4565 static int can_overcommit(struct btrfs_fs_info *fs_info,
4566 			  struct btrfs_space_info *space_info, u64 bytes,
4567 			  enum btrfs_reserve_flush_enum flush,
4568 			  bool system_chunk)
4569 {
4570 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4571 	u64 profile;
4572 	u64 space_size;
4573 	u64 avail;
4574 	u64 used;
4575 	int factor;
4576 
4577 	/* Don't overcommit when in mixed mode. */
4578 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4579 		return 0;
4580 
4581 	if (system_chunk)
4582 		profile = btrfs_system_alloc_profile(fs_info);
4583 	else
4584 		profile = btrfs_metadata_alloc_profile(fs_info);
4585 
4586 	used = btrfs_space_info_used(space_info, false);
4587 
4588 	/*
4589 	 * We only want to allow over committing if we have lots of actual space
4590 	 * free, but if we don't have enough space to handle the global reserve
4591 	 * space then we could end up having a real enospc problem when trying
4592 	 * to allocate a chunk or some other such important allocation.
4593 	 */
4594 	spin_lock(&global_rsv->lock);
4595 	space_size = calc_global_rsv_need_space(global_rsv);
4596 	spin_unlock(&global_rsv->lock);
4597 	if (used + space_size >= space_info->total_bytes)
4598 		return 0;
4599 
4600 	used += space_info->bytes_may_use;
4601 
4602 	avail = atomic64_read(&fs_info->free_chunk_space);
4603 
4604 	/*
4605 	 * If we have dup, raid1 or raid10 then only half of the free
4606 	 * space is actually useable.  For raid56, the space info used
4607 	 * doesn't include the parity drive, so we don't have to
4608 	 * change the math
4609 	 */
4610 	factor = btrfs_bg_type_to_factor(profile);
4611 	avail = div_u64(avail, factor);
4612 
4613 	/*
4614 	 * If we aren't flushing all things, let us overcommit up to
4615 	 * 1/2th of the space. If we can flush, don't let us overcommit
4616 	 * too much, let it overcommit up to 1/8 of the space.
4617 	 */
4618 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4619 		avail >>= 3;
4620 	else
4621 		avail >>= 1;
4622 
4623 	if (used + bytes < space_info->total_bytes + avail)
4624 		return 1;
4625 	return 0;
4626 }
4627 
btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info * fs_info,unsigned long nr_pages,int nr_items)4628 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4629 					 unsigned long nr_pages, int nr_items)
4630 {
4631 	struct super_block *sb = fs_info->sb;
4632 
4633 	if (down_read_trylock(&sb->s_umount)) {
4634 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4635 		up_read(&sb->s_umount);
4636 	} else {
4637 		/*
4638 		 * We needn't worry the filesystem going from r/w to r/o though
4639 		 * we don't acquire ->s_umount mutex, because the filesystem
4640 		 * should guarantee the delalloc inodes list be empty after
4641 		 * the filesystem is readonly(all dirty pages are written to
4642 		 * the disk).
4643 		 */
4644 		btrfs_start_delalloc_roots(fs_info, nr_items);
4645 		if (!current->journal_info)
4646 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4647 	}
4648 }
4649 
calc_reclaim_items_nr(struct btrfs_fs_info * fs_info,u64 to_reclaim)4650 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4651 					u64 to_reclaim)
4652 {
4653 	u64 bytes;
4654 	u64 nr;
4655 
4656 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4657 	nr = div64_u64(to_reclaim, bytes);
4658 	if (!nr)
4659 		nr = 1;
4660 	return nr;
4661 }
4662 
4663 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4664 
4665 /*
4666  * shrink metadata reservation for delalloc
4667  */
shrink_delalloc(struct btrfs_fs_info * fs_info,u64 to_reclaim,u64 orig,bool wait_ordered)4668 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4669 			    u64 orig, bool wait_ordered)
4670 {
4671 	struct btrfs_space_info *space_info;
4672 	struct btrfs_trans_handle *trans;
4673 	u64 delalloc_bytes;
4674 	u64 max_reclaim;
4675 	u64 items;
4676 	long time_left;
4677 	unsigned long nr_pages;
4678 	int loops;
4679 
4680 	/* Calc the number of the pages we need flush for space reservation */
4681 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4682 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4683 
4684 	trans = (struct btrfs_trans_handle *)current->journal_info;
4685 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4686 
4687 	delalloc_bytes = percpu_counter_sum_positive(
4688 						&fs_info->delalloc_bytes);
4689 	if (delalloc_bytes == 0) {
4690 		if (trans)
4691 			return;
4692 		if (wait_ordered)
4693 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4694 		return;
4695 	}
4696 
4697 	loops = 0;
4698 	while (delalloc_bytes && loops < 3) {
4699 		max_reclaim = min(delalloc_bytes, to_reclaim);
4700 		nr_pages = max_reclaim >> PAGE_SHIFT;
4701 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4702 		/*
4703 		 * We need to wait for the async pages to actually start before
4704 		 * we do anything.
4705 		 */
4706 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4707 		if (!max_reclaim)
4708 			goto skip_async;
4709 
4710 		if (max_reclaim <= nr_pages)
4711 			max_reclaim = 0;
4712 		else
4713 			max_reclaim -= nr_pages;
4714 
4715 		wait_event(fs_info->async_submit_wait,
4716 			   atomic_read(&fs_info->async_delalloc_pages) <=
4717 			   (int)max_reclaim);
4718 skip_async:
4719 		spin_lock(&space_info->lock);
4720 		if (list_empty(&space_info->tickets) &&
4721 		    list_empty(&space_info->priority_tickets)) {
4722 			spin_unlock(&space_info->lock);
4723 			break;
4724 		}
4725 		spin_unlock(&space_info->lock);
4726 
4727 		loops++;
4728 		if (wait_ordered && !trans) {
4729 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4730 		} else {
4731 			time_left = schedule_timeout_killable(1);
4732 			if (time_left)
4733 				break;
4734 		}
4735 		delalloc_bytes = percpu_counter_sum_positive(
4736 						&fs_info->delalloc_bytes);
4737 	}
4738 }
4739 
4740 struct reserve_ticket {
4741 	u64 bytes;
4742 	int error;
4743 	struct list_head list;
4744 	wait_queue_head_t wait;
4745 };
4746 
4747 /**
4748  * maybe_commit_transaction - possibly commit the transaction if its ok to
4749  * @root - the root we're allocating for
4750  * @bytes - the number of bytes we want to reserve
4751  * @force - force the commit
4752  *
4753  * This will check to make sure that committing the transaction will actually
4754  * get us somewhere and then commit the transaction if it does.  Otherwise it
4755  * will return -ENOSPC.
4756  */
may_commit_transaction(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)4757 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4758 				  struct btrfs_space_info *space_info)
4759 {
4760 	struct reserve_ticket *ticket = NULL;
4761 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4762 	struct btrfs_trans_handle *trans;
4763 	u64 bytes;
4764 
4765 	trans = (struct btrfs_trans_handle *)current->journal_info;
4766 	if (trans)
4767 		return -EAGAIN;
4768 
4769 	spin_lock(&space_info->lock);
4770 	if (!list_empty(&space_info->priority_tickets))
4771 		ticket = list_first_entry(&space_info->priority_tickets,
4772 					  struct reserve_ticket, list);
4773 	else if (!list_empty(&space_info->tickets))
4774 		ticket = list_first_entry(&space_info->tickets,
4775 					  struct reserve_ticket, list);
4776 	bytes = (ticket) ? ticket->bytes : 0;
4777 	spin_unlock(&space_info->lock);
4778 
4779 	if (!bytes)
4780 		return 0;
4781 
4782 	/* See if there is enough pinned space to make this reservation */
4783 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4784 				   bytes,
4785 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4786 		goto commit;
4787 
4788 	/*
4789 	 * See if there is some space in the delayed insertion reservation for
4790 	 * this reservation.
4791 	 */
4792 	if (space_info != delayed_rsv->space_info)
4793 		return -ENOSPC;
4794 
4795 	spin_lock(&delayed_rsv->lock);
4796 	if (delayed_rsv->size > bytes)
4797 		bytes = 0;
4798 	else
4799 		bytes -= delayed_rsv->size;
4800 	spin_unlock(&delayed_rsv->lock);
4801 
4802 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4803 				   bytes,
4804 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4805 		return -ENOSPC;
4806 	}
4807 
4808 commit:
4809 	trans = btrfs_join_transaction(fs_info->extent_root);
4810 	if (IS_ERR(trans))
4811 		return -ENOSPC;
4812 
4813 	return btrfs_commit_transaction(trans);
4814 }
4815 
4816 /*
4817  * Try to flush some data based on policy set by @state. This is only advisory
4818  * and may fail for various reasons. The caller is supposed to examine the
4819  * state of @space_info to detect the outcome.
4820  */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,int state)4821 static void flush_space(struct btrfs_fs_info *fs_info,
4822 		       struct btrfs_space_info *space_info, u64 num_bytes,
4823 		       int state)
4824 {
4825 	struct btrfs_root *root = fs_info->extent_root;
4826 	struct btrfs_trans_handle *trans;
4827 	int nr;
4828 	int ret = 0;
4829 
4830 	switch (state) {
4831 	case FLUSH_DELAYED_ITEMS_NR:
4832 	case FLUSH_DELAYED_ITEMS:
4833 		if (state == FLUSH_DELAYED_ITEMS_NR)
4834 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4835 		else
4836 			nr = -1;
4837 
4838 		trans = btrfs_join_transaction(root);
4839 		if (IS_ERR(trans)) {
4840 			ret = PTR_ERR(trans);
4841 			break;
4842 		}
4843 		ret = btrfs_run_delayed_items_nr(trans, nr);
4844 		btrfs_end_transaction(trans);
4845 		break;
4846 	case FLUSH_DELALLOC:
4847 	case FLUSH_DELALLOC_WAIT:
4848 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4849 				state == FLUSH_DELALLOC_WAIT);
4850 		break;
4851 	case ALLOC_CHUNK:
4852 		trans = btrfs_join_transaction(root);
4853 		if (IS_ERR(trans)) {
4854 			ret = PTR_ERR(trans);
4855 			break;
4856 		}
4857 		ret = do_chunk_alloc(trans,
4858 				     btrfs_metadata_alloc_profile(fs_info),
4859 				     CHUNK_ALLOC_NO_FORCE);
4860 		btrfs_end_transaction(trans);
4861 		if (ret > 0 || ret == -ENOSPC)
4862 			ret = 0;
4863 		break;
4864 	case COMMIT_TRANS:
4865 		ret = may_commit_transaction(fs_info, space_info);
4866 		break;
4867 	default:
4868 		ret = -ENOSPC;
4869 		break;
4870 	}
4871 
4872 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4873 				ret);
4874 	return;
4875 }
4876 
4877 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool system_chunk)4878 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4879 				 struct btrfs_space_info *space_info,
4880 				 bool system_chunk)
4881 {
4882 	struct reserve_ticket *ticket;
4883 	u64 used;
4884 	u64 expected;
4885 	u64 to_reclaim = 0;
4886 
4887 	list_for_each_entry(ticket, &space_info->tickets, list)
4888 		to_reclaim += ticket->bytes;
4889 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4890 		to_reclaim += ticket->bytes;
4891 	if (to_reclaim)
4892 		return to_reclaim;
4893 
4894 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4895 	if (can_overcommit(fs_info, space_info, to_reclaim,
4896 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4897 		return 0;
4898 
4899 	used = btrfs_space_info_used(space_info, true);
4900 
4901 	if (can_overcommit(fs_info, space_info, SZ_1M,
4902 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4903 		expected = div_factor_fine(space_info->total_bytes, 95);
4904 	else
4905 		expected = div_factor_fine(space_info->total_bytes, 90);
4906 
4907 	if (used > expected)
4908 		to_reclaim = used - expected;
4909 	else
4910 		to_reclaim = 0;
4911 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4912 				     space_info->bytes_reserved);
4913 	return to_reclaim;
4914 }
4915 
need_do_async_reclaim(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 used,bool system_chunk)4916 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4917 					struct btrfs_space_info *space_info,
4918 					u64 used, bool system_chunk)
4919 {
4920 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4921 
4922 	/* If we're just plain full then async reclaim just slows us down. */
4923 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4924 		return 0;
4925 
4926 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4927 					      system_chunk))
4928 		return 0;
4929 
4930 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4931 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4932 }
4933 
wake_all_tickets(struct list_head * head)4934 static void wake_all_tickets(struct list_head *head)
4935 {
4936 	struct reserve_ticket *ticket;
4937 
4938 	while (!list_empty(head)) {
4939 		ticket = list_first_entry(head, struct reserve_ticket, list);
4940 		list_del_init(&ticket->list);
4941 		ticket->error = -ENOSPC;
4942 		wake_up(&ticket->wait);
4943 	}
4944 }
4945 
4946 /*
4947  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4948  * will loop and continuously try to flush as long as we are making progress.
4949  * We count progress as clearing off tickets each time we have to loop.
4950  */
btrfs_async_reclaim_metadata_space(struct work_struct * work)4951 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4952 {
4953 	struct btrfs_fs_info *fs_info;
4954 	struct btrfs_space_info *space_info;
4955 	u64 to_reclaim;
4956 	int flush_state;
4957 	int commit_cycles = 0;
4958 	u64 last_tickets_id;
4959 
4960 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4961 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4962 
4963 	spin_lock(&space_info->lock);
4964 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4965 						      false);
4966 	if (!to_reclaim) {
4967 		space_info->flush = 0;
4968 		spin_unlock(&space_info->lock);
4969 		return;
4970 	}
4971 	last_tickets_id = space_info->tickets_id;
4972 	spin_unlock(&space_info->lock);
4973 
4974 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4975 	do {
4976 		flush_space(fs_info, space_info, to_reclaim, flush_state);
4977 		spin_lock(&space_info->lock);
4978 		if (list_empty(&space_info->tickets)) {
4979 			space_info->flush = 0;
4980 			spin_unlock(&space_info->lock);
4981 			return;
4982 		}
4983 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4984 							      space_info,
4985 							      false);
4986 		if (last_tickets_id == space_info->tickets_id) {
4987 			flush_state++;
4988 		} else {
4989 			last_tickets_id = space_info->tickets_id;
4990 			flush_state = FLUSH_DELAYED_ITEMS_NR;
4991 			if (commit_cycles)
4992 				commit_cycles--;
4993 		}
4994 
4995 		if (flush_state > COMMIT_TRANS) {
4996 			commit_cycles++;
4997 			if (commit_cycles > 2) {
4998 				wake_all_tickets(&space_info->tickets);
4999 				space_info->flush = 0;
5000 			} else {
5001 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5002 			}
5003 		}
5004 		spin_unlock(&space_info->lock);
5005 	} while (flush_state <= COMMIT_TRANS);
5006 }
5007 
btrfs_init_async_reclaim_work(struct work_struct * work)5008 void btrfs_init_async_reclaim_work(struct work_struct *work)
5009 {
5010 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5011 }
5012 
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)5013 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5014 					    struct btrfs_space_info *space_info,
5015 					    struct reserve_ticket *ticket)
5016 {
5017 	u64 to_reclaim;
5018 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5019 
5020 	spin_lock(&space_info->lock);
5021 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5022 						      false);
5023 	if (!to_reclaim) {
5024 		spin_unlock(&space_info->lock);
5025 		return;
5026 	}
5027 	spin_unlock(&space_info->lock);
5028 
5029 	do {
5030 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5031 		flush_state++;
5032 		spin_lock(&space_info->lock);
5033 		if (ticket->bytes == 0) {
5034 			spin_unlock(&space_info->lock);
5035 			return;
5036 		}
5037 		spin_unlock(&space_info->lock);
5038 
5039 		/*
5040 		 * Priority flushers can't wait on delalloc without
5041 		 * deadlocking.
5042 		 */
5043 		if (flush_state == FLUSH_DELALLOC ||
5044 		    flush_state == FLUSH_DELALLOC_WAIT)
5045 			flush_state = ALLOC_CHUNK;
5046 	} while (flush_state < COMMIT_TRANS);
5047 }
5048 
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 orig_bytes)5049 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5050 			       struct btrfs_space_info *space_info,
5051 			       struct reserve_ticket *ticket, u64 orig_bytes)
5052 
5053 {
5054 	DEFINE_WAIT(wait);
5055 	int ret = 0;
5056 
5057 	spin_lock(&space_info->lock);
5058 	while (ticket->bytes > 0 && ticket->error == 0) {
5059 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5060 		if (ret) {
5061 			ret = -EINTR;
5062 			break;
5063 		}
5064 		spin_unlock(&space_info->lock);
5065 
5066 		schedule();
5067 
5068 		finish_wait(&ticket->wait, &wait);
5069 		spin_lock(&space_info->lock);
5070 	}
5071 	if (!ret)
5072 		ret = ticket->error;
5073 	if (!list_empty(&ticket->list))
5074 		list_del_init(&ticket->list);
5075 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5076 		u64 num_bytes = orig_bytes - ticket->bytes;
5077 		space_info->bytes_may_use -= num_bytes;
5078 		trace_btrfs_space_reservation(fs_info, "space_info",
5079 					      space_info->flags, num_bytes, 0);
5080 	}
5081 	spin_unlock(&space_info->lock);
5082 
5083 	return ret;
5084 }
5085 
5086 /**
5087  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5088  * @root - the root we're allocating for
5089  * @space_info - the space info we want to allocate from
5090  * @orig_bytes - the number of bytes we want
5091  * @flush - whether or not we can flush to make our reservation
5092  *
5093  * This will reserve orig_bytes number of bytes from the space info associated
5094  * with the block_rsv.  If there is not enough space it will make an attempt to
5095  * flush out space to make room.  It will do this by flushing delalloc if
5096  * possible or committing the transaction.  If flush is 0 then no attempts to
5097  * regain reservations will be made and this will fail if there is not enough
5098  * space already.
5099  */
__reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush,bool system_chunk)5100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5101 				    struct btrfs_space_info *space_info,
5102 				    u64 orig_bytes,
5103 				    enum btrfs_reserve_flush_enum flush,
5104 				    bool system_chunk)
5105 {
5106 	struct reserve_ticket ticket;
5107 	u64 used;
5108 	int ret = 0;
5109 
5110 	ASSERT(orig_bytes);
5111 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5112 
5113 	spin_lock(&space_info->lock);
5114 	ret = -ENOSPC;
5115 	used = btrfs_space_info_used(space_info, true);
5116 
5117 	/*
5118 	 * If we have enough space then hooray, make our reservation and carry
5119 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5120 	 * If not things get more complicated.
5121 	 */
5122 	if (used + orig_bytes <= space_info->total_bytes) {
5123 		space_info->bytes_may_use += orig_bytes;
5124 		trace_btrfs_space_reservation(fs_info, "space_info",
5125 					      space_info->flags, orig_bytes, 1);
5126 		ret = 0;
5127 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5128 				  system_chunk)) {
5129 		space_info->bytes_may_use += orig_bytes;
5130 		trace_btrfs_space_reservation(fs_info, "space_info",
5131 					      space_info->flags, orig_bytes, 1);
5132 		ret = 0;
5133 	}
5134 
5135 	/*
5136 	 * If we couldn't make a reservation then setup our reservation ticket
5137 	 * and kick the async worker if it's not already running.
5138 	 *
5139 	 * If we are a priority flusher then we just need to add our ticket to
5140 	 * the list and we will do our own flushing further down.
5141 	 */
5142 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5143 		ticket.bytes = orig_bytes;
5144 		ticket.error = 0;
5145 		init_waitqueue_head(&ticket.wait);
5146 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5147 			list_add_tail(&ticket.list, &space_info->tickets);
5148 			if (!space_info->flush) {
5149 				space_info->flush = 1;
5150 				trace_btrfs_trigger_flush(fs_info,
5151 							  space_info->flags,
5152 							  orig_bytes, flush,
5153 							  "enospc");
5154 				queue_work(system_unbound_wq,
5155 					   &fs_info->async_reclaim_work);
5156 			}
5157 		} else {
5158 			list_add_tail(&ticket.list,
5159 				      &space_info->priority_tickets);
5160 		}
5161 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5162 		used += orig_bytes;
5163 		/*
5164 		 * We will do the space reservation dance during log replay,
5165 		 * which means we won't have fs_info->fs_root set, so don't do
5166 		 * the async reclaim as we will panic.
5167 		 */
5168 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5169 		    need_do_async_reclaim(fs_info, space_info,
5170 					  used, system_chunk) &&
5171 		    !work_busy(&fs_info->async_reclaim_work)) {
5172 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5173 						  orig_bytes, flush, "preempt");
5174 			queue_work(system_unbound_wq,
5175 				   &fs_info->async_reclaim_work);
5176 		}
5177 	}
5178 	spin_unlock(&space_info->lock);
5179 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5180 		return ret;
5181 
5182 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5183 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5184 					   orig_bytes);
5185 
5186 	ret = 0;
5187 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5188 	spin_lock(&space_info->lock);
5189 	if (ticket.bytes) {
5190 		if (ticket.bytes < orig_bytes) {
5191 			u64 num_bytes = orig_bytes - ticket.bytes;
5192 			space_info->bytes_may_use -= num_bytes;
5193 			trace_btrfs_space_reservation(fs_info, "space_info",
5194 						      space_info->flags,
5195 						      num_bytes, 0);
5196 
5197 		}
5198 		list_del_init(&ticket.list);
5199 		ret = -ENOSPC;
5200 	}
5201 	spin_unlock(&space_info->lock);
5202 	ASSERT(list_empty(&ticket.list));
5203 	return ret;
5204 }
5205 
5206 /**
5207  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5208  * @root - the root we're allocating for
5209  * @block_rsv - the block_rsv we're allocating for
5210  * @orig_bytes - the number of bytes we want
5211  * @flush - whether or not we can flush to make our reservation
5212  *
5213  * This will reserve orgi_bytes number of bytes from the space info associated
5214  * with the block_rsv.  If there is not enough space it will make an attempt to
5215  * flush out space to make room.  It will do this by flushing delalloc if
5216  * possible or committing the transaction.  If flush is 0 then no attempts to
5217  * regain reservations will be made and this will fail if there is not enough
5218  * space already.
5219  */
reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)5220 static int reserve_metadata_bytes(struct btrfs_root *root,
5221 				  struct btrfs_block_rsv *block_rsv,
5222 				  u64 orig_bytes,
5223 				  enum btrfs_reserve_flush_enum flush)
5224 {
5225 	struct btrfs_fs_info *fs_info = root->fs_info;
5226 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5227 	int ret;
5228 	bool system_chunk = (root == fs_info->chunk_root);
5229 
5230 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5231 				       orig_bytes, flush, system_chunk);
5232 	if (ret == -ENOSPC &&
5233 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5234 		if (block_rsv != global_rsv &&
5235 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5236 			ret = 0;
5237 	}
5238 	if (ret == -ENOSPC) {
5239 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5240 					      block_rsv->space_info->flags,
5241 					      orig_bytes, 1);
5242 
5243 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5244 			dump_space_info(fs_info, block_rsv->space_info,
5245 					orig_bytes, 0);
5246 	}
5247 	return ret;
5248 }
5249 
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)5250 static struct btrfs_block_rsv *get_block_rsv(
5251 					const struct btrfs_trans_handle *trans,
5252 					const struct btrfs_root *root)
5253 {
5254 	struct btrfs_fs_info *fs_info = root->fs_info;
5255 	struct btrfs_block_rsv *block_rsv = NULL;
5256 
5257 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5258 	    (root == fs_info->csum_root && trans->adding_csums) ||
5259 	    (root == fs_info->uuid_root))
5260 		block_rsv = trans->block_rsv;
5261 
5262 	if (!block_rsv)
5263 		block_rsv = root->block_rsv;
5264 
5265 	if (!block_rsv)
5266 		block_rsv = &fs_info->empty_block_rsv;
5267 
5268 	return block_rsv;
5269 }
5270 
block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)5271 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5272 			       u64 num_bytes)
5273 {
5274 	int ret = -ENOSPC;
5275 	spin_lock(&block_rsv->lock);
5276 	if (block_rsv->reserved >= num_bytes) {
5277 		block_rsv->reserved -= num_bytes;
5278 		if (block_rsv->reserved < block_rsv->size)
5279 			block_rsv->full = 0;
5280 		ret = 0;
5281 	}
5282 	spin_unlock(&block_rsv->lock);
5283 	return ret;
5284 }
5285 
block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,int update_size)5286 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5287 				u64 num_bytes, int update_size)
5288 {
5289 	spin_lock(&block_rsv->lock);
5290 	block_rsv->reserved += num_bytes;
5291 	if (update_size)
5292 		block_rsv->size += num_bytes;
5293 	else if (block_rsv->reserved >= block_rsv->size)
5294 		block_rsv->full = 1;
5295 	spin_unlock(&block_rsv->lock);
5296 }
5297 
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)5298 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5299 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5300 			     int min_factor)
5301 {
5302 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5303 	u64 min_bytes;
5304 
5305 	if (global_rsv->space_info != dest->space_info)
5306 		return -ENOSPC;
5307 
5308 	spin_lock(&global_rsv->lock);
5309 	min_bytes = div_factor(global_rsv->size, min_factor);
5310 	if (global_rsv->reserved < min_bytes + num_bytes) {
5311 		spin_unlock(&global_rsv->lock);
5312 		return -ENOSPC;
5313 	}
5314 	global_rsv->reserved -= num_bytes;
5315 	if (global_rsv->reserved < global_rsv->size)
5316 		global_rsv->full = 0;
5317 	spin_unlock(&global_rsv->lock);
5318 
5319 	block_rsv_add_bytes(dest, num_bytes, 1);
5320 	return 0;
5321 }
5322 
5323 /*
5324  * This is for space we already have accounted in space_info->bytes_may_use, so
5325  * basically when we're returning space from block_rsv's.
5326  */
space_info_add_old_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5327 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5328 				     struct btrfs_space_info *space_info,
5329 				     u64 num_bytes)
5330 {
5331 	struct reserve_ticket *ticket;
5332 	struct list_head *head;
5333 	u64 used;
5334 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5335 	bool check_overcommit = false;
5336 
5337 	spin_lock(&space_info->lock);
5338 	head = &space_info->priority_tickets;
5339 
5340 	/*
5341 	 * If we are over our limit then we need to check and see if we can
5342 	 * overcommit, and if we can't then we just need to free up our space
5343 	 * and not satisfy any requests.
5344 	 */
5345 	used = btrfs_space_info_used(space_info, true);
5346 	if (used - num_bytes >= space_info->total_bytes)
5347 		check_overcommit = true;
5348 again:
5349 	while (!list_empty(head) && num_bytes) {
5350 		ticket = list_first_entry(head, struct reserve_ticket,
5351 					  list);
5352 		/*
5353 		 * We use 0 bytes because this space is already reserved, so
5354 		 * adding the ticket space would be a double count.
5355 		 */
5356 		if (check_overcommit &&
5357 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5358 			break;
5359 		if (num_bytes >= ticket->bytes) {
5360 			list_del_init(&ticket->list);
5361 			num_bytes -= ticket->bytes;
5362 			ticket->bytes = 0;
5363 			space_info->tickets_id++;
5364 			wake_up(&ticket->wait);
5365 		} else {
5366 			ticket->bytes -= num_bytes;
5367 			num_bytes = 0;
5368 		}
5369 	}
5370 
5371 	if (num_bytes && head == &space_info->priority_tickets) {
5372 		head = &space_info->tickets;
5373 		flush = BTRFS_RESERVE_FLUSH_ALL;
5374 		goto again;
5375 	}
5376 	space_info->bytes_may_use -= num_bytes;
5377 	trace_btrfs_space_reservation(fs_info, "space_info",
5378 				      space_info->flags, num_bytes, 0);
5379 	spin_unlock(&space_info->lock);
5380 }
5381 
5382 /*
5383  * This is for newly allocated space that isn't accounted in
5384  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5385  * we use this helper.
5386  */
space_info_add_new_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5387 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5388 				     struct btrfs_space_info *space_info,
5389 				     u64 num_bytes)
5390 {
5391 	struct reserve_ticket *ticket;
5392 	struct list_head *head = &space_info->priority_tickets;
5393 
5394 again:
5395 	while (!list_empty(head) && num_bytes) {
5396 		ticket = list_first_entry(head, struct reserve_ticket,
5397 					  list);
5398 		if (num_bytes >= ticket->bytes) {
5399 			trace_btrfs_space_reservation(fs_info, "space_info",
5400 						      space_info->flags,
5401 						      ticket->bytes, 1);
5402 			list_del_init(&ticket->list);
5403 			num_bytes -= ticket->bytes;
5404 			space_info->bytes_may_use += ticket->bytes;
5405 			ticket->bytes = 0;
5406 			space_info->tickets_id++;
5407 			wake_up(&ticket->wait);
5408 		} else {
5409 			trace_btrfs_space_reservation(fs_info, "space_info",
5410 						      space_info->flags,
5411 						      num_bytes, 1);
5412 			space_info->bytes_may_use += num_bytes;
5413 			ticket->bytes -= num_bytes;
5414 			num_bytes = 0;
5415 		}
5416 	}
5417 
5418 	if (num_bytes && head == &space_info->priority_tickets) {
5419 		head = &space_info->tickets;
5420 		goto again;
5421 	}
5422 }
5423 
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes,u64 * qgroup_to_release_ret)5424 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5425 				    struct btrfs_block_rsv *block_rsv,
5426 				    struct btrfs_block_rsv *dest, u64 num_bytes,
5427 				    u64 *qgroup_to_release_ret)
5428 {
5429 	struct btrfs_space_info *space_info = block_rsv->space_info;
5430 	u64 qgroup_to_release = 0;
5431 	u64 ret;
5432 
5433 	spin_lock(&block_rsv->lock);
5434 	if (num_bytes == (u64)-1) {
5435 		num_bytes = block_rsv->size;
5436 		qgroup_to_release = block_rsv->qgroup_rsv_size;
5437 	}
5438 	block_rsv->size -= num_bytes;
5439 	if (block_rsv->reserved >= block_rsv->size) {
5440 		num_bytes = block_rsv->reserved - block_rsv->size;
5441 		block_rsv->reserved = block_rsv->size;
5442 		block_rsv->full = 1;
5443 	} else {
5444 		num_bytes = 0;
5445 	}
5446 	if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5447 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5448 				    block_rsv->qgroup_rsv_size;
5449 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5450 	} else {
5451 		qgroup_to_release = 0;
5452 	}
5453 	spin_unlock(&block_rsv->lock);
5454 
5455 	ret = num_bytes;
5456 	if (num_bytes > 0) {
5457 		if (dest) {
5458 			spin_lock(&dest->lock);
5459 			if (!dest->full) {
5460 				u64 bytes_to_add;
5461 
5462 				bytes_to_add = dest->size - dest->reserved;
5463 				bytes_to_add = min(num_bytes, bytes_to_add);
5464 				dest->reserved += bytes_to_add;
5465 				if (dest->reserved >= dest->size)
5466 					dest->full = 1;
5467 				num_bytes -= bytes_to_add;
5468 			}
5469 			spin_unlock(&dest->lock);
5470 		}
5471 		if (num_bytes)
5472 			space_info_add_old_bytes(fs_info, space_info,
5473 						 num_bytes);
5474 	}
5475 	if (qgroup_to_release_ret)
5476 		*qgroup_to_release_ret = qgroup_to_release;
5477 	return ret;
5478 }
5479 
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes,int update_size)5480 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5481 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5482 			    int update_size)
5483 {
5484 	int ret;
5485 
5486 	ret = block_rsv_use_bytes(src, num_bytes);
5487 	if (ret)
5488 		return ret;
5489 
5490 	block_rsv_add_bytes(dst, num_bytes, update_size);
5491 	return 0;
5492 }
5493 
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,unsigned short type)5494 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5495 {
5496 	memset(rsv, 0, sizeof(*rsv));
5497 	spin_lock_init(&rsv->lock);
5498 	rsv->type = type;
5499 }
5500 
btrfs_init_metadata_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv,unsigned short type)5501 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5502 				   struct btrfs_block_rsv *rsv,
5503 				   unsigned short type)
5504 {
5505 	btrfs_init_block_rsv(rsv, type);
5506 	rsv->space_info = __find_space_info(fs_info,
5507 					    BTRFS_BLOCK_GROUP_METADATA);
5508 }
5509 
btrfs_alloc_block_rsv(struct btrfs_fs_info * fs_info,unsigned short type)5510 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5511 					      unsigned short type)
5512 {
5513 	struct btrfs_block_rsv *block_rsv;
5514 
5515 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5516 	if (!block_rsv)
5517 		return NULL;
5518 
5519 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5520 	return block_rsv;
5521 }
5522 
btrfs_free_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)5523 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5524 			  struct btrfs_block_rsv *rsv)
5525 {
5526 	if (!rsv)
5527 		return;
5528 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5529 	kfree(rsv);
5530 }
5531 
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)5532 int btrfs_block_rsv_add(struct btrfs_root *root,
5533 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5534 			enum btrfs_reserve_flush_enum flush)
5535 {
5536 	int ret;
5537 
5538 	if (num_bytes == 0)
5539 		return 0;
5540 
5541 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5542 	if (!ret) {
5543 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5544 		return 0;
5545 	}
5546 
5547 	return ret;
5548 }
5549 
btrfs_block_rsv_check(struct btrfs_block_rsv * block_rsv,int min_factor)5550 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5551 {
5552 	u64 num_bytes = 0;
5553 	int ret = -ENOSPC;
5554 
5555 	if (!block_rsv)
5556 		return 0;
5557 
5558 	spin_lock(&block_rsv->lock);
5559 	num_bytes = div_factor(block_rsv->size, min_factor);
5560 	if (block_rsv->reserved >= num_bytes)
5561 		ret = 0;
5562 	spin_unlock(&block_rsv->lock);
5563 
5564 	return ret;
5565 }
5566 
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)5567 int btrfs_block_rsv_refill(struct btrfs_root *root,
5568 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5569 			   enum btrfs_reserve_flush_enum flush)
5570 {
5571 	u64 num_bytes = 0;
5572 	int ret = -ENOSPC;
5573 
5574 	if (!block_rsv)
5575 		return 0;
5576 
5577 	spin_lock(&block_rsv->lock);
5578 	num_bytes = min_reserved;
5579 	if (block_rsv->reserved >= num_bytes)
5580 		ret = 0;
5581 	else
5582 		num_bytes -= block_rsv->reserved;
5583 	spin_unlock(&block_rsv->lock);
5584 
5585 	if (!ret)
5586 		return 0;
5587 
5588 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5589 	if (!ret) {
5590 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5591 		return 0;
5592 	}
5593 
5594 	return ret;
5595 }
5596 
5597 /**
5598  * btrfs_inode_rsv_refill - refill the inode block rsv.
5599  * @inode - the inode we are refilling.
5600  * @flush - the flusing restriction.
5601  *
5602  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5603  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5604  * or return if we already have enough space.  This will also handle the resreve
5605  * tracepoint for the reserved amount.
5606  */
btrfs_inode_rsv_refill(struct btrfs_inode * inode,enum btrfs_reserve_flush_enum flush)5607 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5608 				  enum btrfs_reserve_flush_enum flush)
5609 {
5610 	struct btrfs_root *root = inode->root;
5611 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5612 	u64 num_bytes = 0;
5613 	u64 qgroup_num_bytes = 0;
5614 	int ret = -ENOSPC;
5615 
5616 	spin_lock(&block_rsv->lock);
5617 	if (block_rsv->reserved < block_rsv->size)
5618 		num_bytes = block_rsv->size - block_rsv->reserved;
5619 	if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5620 		qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5621 				   block_rsv->qgroup_rsv_reserved;
5622 	spin_unlock(&block_rsv->lock);
5623 
5624 	if (num_bytes == 0)
5625 		return 0;
5626 
5627 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5628 	if (ret)
5629 		return ret;
5630 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5631 	if (!ret) {
5632 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5633 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5634 					      btrfs_ino(inode), num_bytes, 1);
5635 
5636 		/* Don't forget to increase qgroup_rsv_reserved */
5637 		spin_lock(&block_rsv->lock);
5638 		block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5639 		spin_unlock(&block_rsv->lock);
5640 	} else
5641 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5642 	return ret;
5643 }
5644 
5645 /**
5646  * btrfs_inode_rsv_release - release any excessive reservation.
5647  * @inode - the inode we need to release from.
5648  * @qgroup_free - free or convert qgroup meta.
5649  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5650  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5651  *   @qgroup_free is true for error handling, and false for normal release.
5652  *
5653  * This is the same as btrfs_block_rsv_release, except that it handles the
5654  * tracepoint for the reservation.
5655  */
btrfs_inode_rsv_release(struct btrfs_inode * inode,bool qgroup_free)5656 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5657 {
5658 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5659 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5660 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5661 	u64 released = 0;
5662 	u64 qgroup_to_release = 0;
5663 
5664 	/*
5665 	 * Since we statically set the block_rsv->size we just want to say we
5666 	 * are releasing 0 bytes, and then we'll just get the reservation over
5667 	 * the size free'd.
5668 	 */
5669 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5670 					   &qgroup_to_release);
5671 	if (released > 0)
5672 		trace_btrfs_space_reservation(fs_info, "delalloc",
5673 					      btrfs_ino(inode), released, 0);
5674 	if (qgroup_free)
5675 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5676 	else
5677 		btrfs_qgroup_convert_reserved_meta(inode->root,
5678 						   qgroup_to_release);
5679 }
5680 
btrfs_block_rsv_release(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes)5681 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5682 			     struct btrfs_block_rsv *block_rsv,
5683 			     u64 num_bytes)
5684 {
5685 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5686 
5687 	if (global_rsv == block_rsv ||
5688 	    block_rsv->space_info != global_rsv->space_info)
5689 		global_rsv = NULL;
5690 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5691 }
5692 
update_global_block_rsv(struct btrfs_fs_info * fs_info)5693 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5694 {
5695 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5696 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5697 	u64 num_bytes;
5698 
5699 	/*
5700 	 * The global block rsv is based on the size of the extent tree, the
5701 	 * checksum tree and the root tree.  If the fs is empty we want to set
5702 	 * it to a minimal amount for safety.
5703 	 */
5704 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5705 		btrfs_root_used(&fs_info->csum_root->root_item) +
5706 		btrfs_root_used(&fs_info->tree_root->root_item);
5707 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5708 
5709 	spin_lock(&sinfo->lock);
5710 	spin_lock(&block_rsv->lock);
5711 
5712 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5713 
5714 	if (block_rsv->reserved < block_rsv->size) {
5715 		num_bytes = btrfs_space_info_used(sinfo, true);
5716 		if (sinfo->total_bytes > num_bytes) {
5717 			num_bytes = sinfo->total_bytes - num_bytes;
5718 			num_bytes = min(num_bytes,
5719 					block_rsv->size - block_rsv->reserved);
5720 			block_rsv->reserved += num_bytes;
5721 			sinfo->bytes_may_use += num_bytes;
5722 			trace_btrfs_space_reservation(fs_info, "space_info",
5723 						      sinfo->flags, num_bytes,
5724 						      1);
5725 		}
5726 	} else if (block_rsv->reserved > block_rsv->size) {
5727 		num_bytes = block_rsv->reserved - block_rsv->size;
5728 		sinfo->bytes_may_use -= num_bytes;
5729 		trace_btrfs_space_reservation(fs_info, "space_info",
5730 				      sinfo->flags, num_bytes, 0);
5731 		block_rsv->reserved = block_rsv->size;
5732 	}
5733 
5734 	if (block_rsv->reserved == block_rsv->size)
5735 		block_rsv->full = 1;
5736 	else
5737 		block_rsv->full = 0;
5738 
5739 	spin_unlock(&block_rsv->lock);
5740 	spin_unlock(&sinfo->lock);
5741 }
5742 
init_global_block_rsv(struct btrfs_fs_info * fs_info)5743 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5744 {
5745 	struct btrfs_space_info *space_info;
5746 
5747 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5748 	fs_info->chunk_block_rsv.space_info = space_info;
5749 
5750 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5751 	fs_info->global_block_rsv.space_info = space_info;
5752 	fs_info->trans_block_rsv.space_info = space_info;
5753 	fs_info->empty_block_rsv.space_info = space_info;
5754 	fs_info->delayed_block_rsv.space_info = space_info;
5755 
5756 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5757 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5758 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5759 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5760 	if (fs_info->quota_root)
5761 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5762 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5763 
5764 	update_global_block_rsv(fs_info);
5765 }
5766 
release_global_block_rsv(struct btrfs_fs_info * fs_info)5767 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5768 {
5769 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5770 				(u64)-1, NULL);
5771 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5772 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5773 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5774 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5775 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5776 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5777 }
5778 
5779 
5780 /*
5781  * To be called after all the new block groups attached to the transaction
5782  * handle have been created (btrfs_create_pending_block_groups()).
5783  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)5784 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5785 {
5786 	struct btrfs_fs_info *fs_info = trans->fs_info;
5787 
5788 	if (!trans->chunk_bytes_reserved)
5789 		return;
5790 
5791 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5792 
5793 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5794 				trans->chunk_bytes_reserved, NULL);
5795 	trans->chunk_bytes_reserved = 0;
5796 }
5797 
5798 /*
5799  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5800  * root: the root of the parent directory
5801  * rsv: block reservation
5802  * items: the number of items that we need do reservation
5803  * use_global_rsv: allow fallback to the global block reservation
5804  *
5805  * This function is used to reserve the space for snapshot/subvolume
5806  * creation and deletion. Those operations are different with the
5807  * common file/directory operations, they change two fs/file trees
5808  * and root tree, the number of items that the qgroup reserves is
5809  * different with the free space reservation. So we can not use
5810  * the space reservation mechanism in start_transaction().
5811  */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)5812 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5813 				     struct btrfs_block_rsv *rsv, int items,
5814 				     bool use_global_rsv)
5815 {
5816 	u64 qgroup_num_bytes = 0;
5817 	u64 num_bytes;
5818 	int ret;
5819 	struct btrfs_fs_info *fs_info = root->fs_info;
5820 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5821 
5822 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5823 		/* One for parent inode, two for dir entries */
5824 		qgroup_num_bytes = 3 * fs_info->nodesize;
5825 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
5826 				qgroup_num_bytes, true);
5827 		if (ret)
5828 			return ret;
5829 	}
5830 
5831 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5832 	rsv->space_info = __find_space_info(fs_info,
5833 					    BTRFS_BLOCK_GROUP_METADATA);
5834 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5835 				  BTRFS_RESERVE_FLUSH_ALL);
5836 
5837 	if (ret == -ENOSPC && use_global_rsv)
5838 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5839 
5840 	if (ret && qgroup_num_bytes)
5841 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5842 
5843 	return ret;
5844 }
5845 
btrfs_subvolume_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)5846 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5847 				      struct btrfs_block_rsv *rsv)
5848 {
5849 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5850 }
5851 
btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)5852 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5853 						 struct btrfs_inode *inode)
5854 {
5855 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5856 	u64 reserve_size = 0;
5857 	u64 qgroup_rsv_size = 0;
5858 	u64 csum_leaves;
5859 	unsigned outstanding_extents;
5860 
5861 	lockdep_assert_held(&inode->lock);
5862 	outstanding_extents = inode->outstanding_extents;
5863 	if (outstanding_extents)
5864 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5865 						outstanding_extents + 1);
5866 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5867 						 inode->csum_bytes);
5868 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5869 						       csum_leaves);
5870 	/*
5871 	 * For qgroup rsv, the calculation is very simple:
5872 	 * account one nodesize for each outstanding extent
5873 	 *
5874 	 * This is overestimating in most cases.
5875 	 */
5876 	qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
5877 
5878 	spin_lock(&block_rsv->lock);
5879 	block_rsv->size = reserve_size;
5880 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
5881 	spin_unlock(&block_rsv->lock);
5882 }
5883 
btrfs_delalloc_reserve_metadata(struct btrfs_inode * inode,u64 num_bytes)5884 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5885 {
5886 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5887 	unsigned nr_extents;
5888 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5889 	int ret = 0;
5890 	bool delalloc_lock = true;
5891 
5892 	/* If we are a free space inode we need to not flush since we will be in
5893 	 * the middle of a transaction commit.  We also don't need the delalloc
5894 	 * mutex since we won't race with anybody.  We need this mostly to make
5895 	 * lockdep shut its filthy mouth.
5896 	 *
5897 	 * If we have a transaction open (can happen if we call truncate_block
5898 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5899 	 */
5900 	if (btrfs_is_free_space_inode(inode)) {
5901 		flush = BTRFS_RESERVE_NO_FLUSH;
5902 		delalloc_lock = false;
5903 	} else {
5904 		if (current->journal_info)
5905 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
5906 
5907 		if (btrfs_transaction_in_commit(fs_info))
5908 			schedule_timeout(1);
5909 	}
5910 
5911 	if (delalloc_lock)
5912 		mutex_lock(&inode->delalloc_mutex);
5913 
5914 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5915 
5916 	/* Add our new extents and calculate the new rsv size. */
5917 	spin_lock(&inode->lock);
5918 	nr_extents = count_max_extents(num_bytes);
5919 	btrfs_mod_outstanding_extents(inode, nr_extents);
5920 	inode->csum_bytes += num_bytes;
5921 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5922 	spin_unlock(&inode->lock);
5923 
5924 	ret = btrfs_inode_rsv_refill(inode, flush);
5925 	if (unlikely(ret))
5926 		goto out_fail;
5927 
5928 	if (delalloc_lock)
5929 		mutex_unlock(&inode->delalloc_mutex);
5930 	return 0;
5931 
5932 out_fail:
5933 	spin_lock(&inode->lock);
5934 	nr_extents = count_max_extents(num_bytes);
5935 	btrfs_mod_outstanding_extents(inode, -nr_extents);
5936 	inode->csum_bytes -= num_bytes;
5937 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5938 	spin_unlock(&inode->lock);
5939 
5940 	btrfs_inode_rsv_release(inode, true);
5941 	if (delalloc_lock)
5942 		mutex_unlock(&inode->delalloc_mutex);
5943 	return ret;
5944 }
5945 
5946 /**
5947  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5948  * @inode: the inode to release the reservation for.
5949  * @num_bytes: the number of bytes we are releasing.
5950  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
5951  *
5952  * This will release the metadata reservation for an inode.  This can be called
5953  * once we complete IO for a given set of bytes to release their metadata
5954  * reservations, or on error for the same reason.
5955  */
btrfs_delalloc_release_metadata(struct btrfs_inode * inode,u64 num_bytes,bool qgroup_free)5956 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5957 				     bool qgroup_free)
5958 {
5959 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5960 
5961 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5962 	spin_lock(&inode->lock);
5963 	inode->csum_bytes -= num_bytes;
5964 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5965 	spin_unlock(&inode->lock);
5966 
5967 	if (btrfs_is_testing(fs_info))
5968 		return;
5969 
5970 	btrfs_inode_rsv_release(inode, qgroup_free);
5971 }
5972 
5973 /**
5974  * btrfs_delalloc_release_extents - release our outstanding_extents
5975  * @inode: the inode to balance the reservation for.
5976  * @num_bytes: the number of bytes we originally reserved with
5977  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
5978  *
5979  * When we reserve space we increase outstanding_extents for the extents we may
5980  * add.  Once we've set the range as delalloc or created our ordered extents we
5981  * have outstanding_extents to track the real usage, so we use this to free our
5982  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
5983  * with btrfs_delalloc_reserve_metadata.
5984  */
btrfs_delalloc_release_extents(struct btrfs_inode * inode,u64 num_bytes,bool qgroup_free)5985 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
5986 				    bool qgroup_free)
5987 {
5988 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5989 	unsigned num_extents;
5990 
5991 	spin_lock(&inode->lock);
5992 	num_extents = count_max_extents(num_bytes);
5993 	btrfs_mod_outstanding_extents(inode, -num_extents);
5994 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5995 	spin_unlock(&inode->lock);
5996 
5997 	if (btrfs_is_testing(fs_info))
5998 		return;
5999 
6000 	btrfs_inode_rsv_release(inode, qgroup_free);
6001 }
6002 
6003 /**
6004  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6005  * delalloc
6006  * @inode: inode we're writing to
6007  * @start: start range we are writing to
6008  * @len: how long the range we are writing to
6009  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6010  * 	      current reservation.
6011  *
6012  * This will do the following things
6013  *
6014  * o reserve space in data space info for num bytes
6015  *   and reserve precious corresponding qgroup space
6016  *   (Done in check_data_free_space)
6017  *
6018  * o reserve space for metadata space, based on the number of outstanding
6019  *   extents and how much csums will be needed
6020  *   also reserve metadata space in a per root over-reserve method.
6021  * o add to the inodes->delalloc_bytes
6022  * o add it to the fs_info's delalloc inodes list.
6023  *   (Above 3 all done in delalloc_reserve_metadata)
6024  *
6025  * Return 0 for success
6026  * Return <0 for error(-ENOSPC or -EQUOT)
6027  */
btrfs_delalloc_reserve_space(struct inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)6028 int btrfs_delalloc_reserve_space(struct inode *inode,
6029 			struct extent_changeset **reserved, u64 start, u64 len)
6030 {
6031 	int ret;
6032 
6033 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6034 	if (ret < 0)
6035 		return ret;
6036 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6037 	if (ret < 0)
6038 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6039 	return ret;
6040 }
6041 
6042 /**
6043  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6044  * @inode: inode we're releasing space for
6045  * @start: start position of the space already reserved
6046  * @len: the len of the space already reserved
6047  * @release_bytes: the len of the space we consumed or didn't use
6048  *
6049  * This function will release the metadata space that was not used and will
6050  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6051  * list if there are no delalloc bytes left.
6052  * Also it will handle the qgroup reserved space.
6053  */
btrfs_delalloc_release_space(struct inode * inode,struct extent_changeset * reserved,u64 start,u64 len,bool qgroup_free)6054 void btrfs_delalloc_release_space(struct inode *inode,
6055 				  struct extent_changeset *reserved,
6056 				  u64 start, u64 len, bool qgroup_free)
6057 {
6058 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6059 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6060 }
6061 
update_block_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * info,u64 bytenr,u64 num_bytes,int alloc)6062 static int update_block_group(struct btrfs_trans_handle *trans,
6063 			      struct btrfs_fs_info *info, u64 bytenr,
6064 			      u64 num_bytes, int alloc)
6065 {
6066 	struct btrfs_block_group_cache *cache = NULL;
6067 	u64 total = num_bytes;
6068 	u64 old_val;
6069 	u64 byte_in_group;
6070 	int factor;
6071 
6072 	/* block accounting for super block */
6073 	spin_lock(&info->delalloc_root_lock);
6074 	old_val = btrfs_super_bytes_used(info->super_copy);
6075 	if (alloc)
6076 		old_val += num_bytes;
6077 	else
6078 		old_val -= num_bytes;
6079 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6080 	spin_unlock(&info->delalloc_root_lock);
6081 
6082 	while (total) {
6083 		cache = btrfs_lookup_block_group(info, bytenr);
6084 		if (!cache)
6085 			return -ENOENT;
6086 		factor = btrfs_bg_type_to_factor(cache->flags);
6087 
6088 		/*
6089 		 * If this block group has free space cache written out, we
6090 		 * need to make sure to load it if we are removing space.  This
6091 		 * is because we need the unpinning stage to actually add the
6092 		 * space back to the block group, otherwise we will leak space.
6093 		 */
6094 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6095 			cache_block_group(cache, 1);
6096 
6097 		byte_in_group = bytenr - cache->key.objectid;
6098 		WARN_ON(byte_in_group > cache->key.offset);
6099 
6100 		spin_lock(&cache->space_info->lock);
6101 		spin_lock(&cache->lock);
6102 
6103 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6104 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6105 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6106 
6107 		old_val = btrfs_block_group_used(&cache->item);
6108 		num_bytes = min(total, cache->key.offset - byte_in_group);
6109 		if (alloc) {
6110 			old_val += num_bytes;
6111 			btrfs_set_block_group_used(&cache->item, old_val);
6112 			cache->reserved -= num_bytes;
6113 			cache->space_info->bytes_reserved -= num_bytes;
6114 			cache->space_info->bytes_used += num_bytes;
6115 			cache->space_info->disk_used += num_bytes * factor;
6116 			spin_unlock(&cache->lock);
6117 			spin_unlock(&cache->space_info->lock);
6118 		} else {
6119 			old_val -= num_bytes;
6120 			btrfs_set_block_group_used(&cache->item, old_val);
6121 			cache->pinned += num_bytes;
6122 			cache->space_info->bytes_pinned += num_bytes;
6123 			cache->space_info->bytes_used -= num_bytes;
6124 			cache->space_info->disk_used -= num_bytes * factor;
6125 			spin_unlock(&cache->lock);
6126 			spin_unlock(&cache->space_info->lock);
6127 
6128 			trace_btrfs_space_reservation(info, "pinned",
6129 						      cache->space_info->flags,
6130 						      num_bytes, 1);
6131 			percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6132 					   num_bytes,
6133 					   BTRFS_TOTAL_BYTES_PINNED_BATCH);
6134 			set_extent_dirty(info->pinned_extents,
6135 					 bytenr, bytenr + num_bytes - 1,
6136 					 GFP_NOFS | __GFP_NOFAIL);
6137 		}
6138 
6139 		spin_lock(&trans->transaction->dirty_bgs_lock);
6140 		if (list_empty(&cache->dirty_list)) {
6141 			list_add_tail(&cache->dirty_list,
6142 				      &trans->transaction->dirty_bgs);
6143 			trans->transaction->num_dirty_bgs++;
6144 			btrfs_get_block_group(cache);
6145 		}
6146 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6147 
6148 		/*
6149 		 * No longer have used bytes in this block group, queue it for
6150 		 * deletion. We do this after adding the block group to the
6151 		 * dirty list to avoid races between cleaner kthread and space
6152 		 * cache writeout.
6153 		 */
6154 		if (!alloc && old_val == 0)
6155 			btrfs_mark_bg_unused(cache);
6156 
6157 		btrfs_put_block_group(cache);
6158 		total -= num_bytes;
6159 		bytenr += num_bytes;
6160 	}
6161 	return 0;
6162 }
6163 
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)6164 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6165 {
6166 	struct btrfs_block_group_cache *cache;
6167 	u64 bytenr;
6168 
6169 	spin_lock(&fs_info->block_group_cache_lock);
6170 	bytenr = fs_info->first_logical_byte;
6171 	spin_unlock(&fs_info->block_group_cache_lock);
6172 
6173 	if (bytenr < (u64)-1)
6174 		return bytenr;
6175 
6176 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6177 	if (!cache)
6178 		return 0;
6179 
6180 	bytenr = cache->key.objectid;
6181 	btrfs_put_block_group(cache);
6182 
6183 	return bytenr;
6184 }
6185 
pin_down_extent(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)6186 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6187 			   struct btrfs_block_group_cache *cache,
6188 			   u64 bytenr, u64 num_bytes, int reserved)
6189 {
6190 	spin_lock(&cache->space_info->lock);
6191 	spin_lock(&cache->lock);
6192 	cache->pinned += num_bytes;
6193 	cache->space_info->bytes_pinned += num_bytes;
6194 	if (reserved) {
6195 		cache->reserved -= num_bytes;
6196 		cache->space_info->bytes_reserved -= num_bytes;
6197 	}
6198 	spin_unlock(&cache->lock);
6199 	spin_unlock(&cache->space_info->lock);
6200 
6201 	trace_btrfs_space_reservation(fs_info, "pinned",
6202 				      cache->space_info->flags, num_bytes, 1);
6203 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6204 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6205 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6206 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6207 	return 0;
6208 }
6209 
6210 /*
6211  * this function must be called within transaction
6212  */
btrfs_pin_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,int reserved)6213 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6214 		     u64 bytenr, u64 num_bytes, int reserved)
6215 {
6216 	struct btrfs_block_group_cache *cache;
6217 
6218 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6219 	BUG_ON(!cache); /* Logic error */
6220 
6221 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6222 
6223 	btrfs_put_block_group(cache);
6224 	return 0;
6225 }
6226 
6227 /*
6228  * this function must be called within transaction
6229  */
btrfs_pin_extent_for_log_replay(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)6230 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6231 				    u64 bytenr, u64 num_bytes)
6232 {
6233 	struct btrfs_block_group_cache *cache;
6234 	int ret;
6235 
6236 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6237 	if (!cache)
6238 		return -EINVAL;
6239 
6240 	/*
6241 	 * pull in the free space cache (if any) so that our pin
6242 	 * removes the free space from the cache.  We have load_only set
6243 	 * to one because the slow code to read in the free extents does check
6244 	 * the pinned extents.
6245 	 */
6246 	cache_block_group(cache, 1);
6247 
6248 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6249 
6250 	/* remove us from the free space cache (if we're there at all) */
6251 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6252 	btrfs_put_block_group(cache);
6253 	return ret;
6254 }
6255 
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)6256 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6257 				   u64 start, u64 num_bytes)
6258 {
6259 	int ret;
6260 	struct btrfs_block_group_cache *block_group;
6261 	struct btrfs_caching_control *caching_ctl;
6262 
6263 	block_group = btrfs_lookup_block_group(fs_info, start);
6264 	if (!block_group)
6265 		return -EINVAL;
6266 
6267 	cache_block_group(block_group, 0);
6268 	caching_ctl = get_caching_control(block_group);
6269 
6270 	if (!caching_ctl) {
6271 		/* Logic error */
6272 		BUG_ON(!block_group_cache_done(block_group));
6273 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6274 	} else {
6275 		mutex_lock(&caching_ctl->mutex);
6276 
6277 		if (start >= caching_ctl->progress) {
6278 			ret = add_excluded_extent(fs_info, start, num_bytes);
6279 		} else if (start + num_bytes <= caching_ctl->progress) {
6280 			ret = btrfs_remove_free_space(block_group,
6281 						      start, num_bytes);
6282 		} else {
6283 			num_bytes = caching_ctl->progress - start;
6284 			ret = btrfs_remove_free_space(block_group,
6285 						      start, num_bytes);
6286 			if (ret)
6287 				goto out_lock;
6288 
6289 			num_bytes = (start + num_bytes) -
6290 				caching_ctl->progress;
6291 			start = caching_ctl->progress;
6292 			ret = add_excluded_extent(fs_info, start, num_bytes);
6293 		}
6294 out_lock:
6295 		mutex_unlock(&caching_ctl->mutex);
6296 		put_caching_control(caching_ctl);
6297 	}
6298 	btrfs_put_block_group(block_group);
6299 	return ret;
6300 }
6301 
btrfs_exclude_logged_extents(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)6302 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6303 				 struct extent_buffer *eb)
6304 {
6305 	struct btrfs_file_extent_item *item;
6306 	struct btrfs_key key;
6307 	int found_type;
6308 	int i;
6309 	int ret = 0;
6310 
6311 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6312 		return 0;
6313 
6314 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6315 		btrfs_item_key_to_cpu(eb, &key, i);
6316 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6317 			continue;
6318 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6319 		found_type = btrfs_file_extent_type(eb, item);
6320 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6321 			continue;
6322 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6323 			continue;
6324 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6325 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6326 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6327 		if (ret)
6328 			break;
6329 	}
6330 
6331 	return ret;
6332 }
6333 
6334 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group_cache * bg)6335 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6336 {
6337 	atomic_inc(&bg->reservations);
6338 }
6339 
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)6340 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6341 					const u64 start)
6342 {
6343 	struct btrfs_block_group_cache *bg;
6344 
6345 	bg = btrfs_lookup_block_group(fs_info, start);
6346 	ASSERT(bg);
6347 	if (atomic_dec_and_test(&bg->reservations))
6348 		wake_up_var(&bg->reservations);
6349 	btrfs_put_block_group(bg);
6350 }
6351 
btrfs_wait_block_group_reservations(struct btrfs_block_group_cache * bg)6352 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6353 {
6354 	struct btrfs_space_info *space_info = bg->space_info;
6355 
6356 	ASSERT(bg->ro);
6357 
6358 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6359 		return;
6360 
6361 	/*
6362 	 * Our block group is read only but before we set it to read only,
6363 	 * some task might have had allocated an extent from it already, but it
6364 	 * has not yet created a respective ordered extent (and added it to a
6365 	 * root's list of ordered extents).
6366 	 * Therefore wait for any task currently allocating extents, since the
6367 	 * block group's reservations counter is incremented while a read lock
6368 	 * on the groups' semaphore is held and decremented after releasing
6369 	 * the read access on that semaphore and creating the ordered extent.
6370 	 */
6371 	down_write(&space_info->groups_sem);
6372 	up_write(&space_info->groups_sem);
6373 
6374 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6375 }
6376 
6377 /**
6378  * btrfs_add_reserved_bytes - update the block_group and space info counters
6379  * @cache:	The cache we are manipulating
6380  * @ram_bytes:  The number of bytes of file content, and will be same to
6381  *              @num_bytes except for the compress path.
6382  * @num_bytes:	The number of bytes in question
6383  * @delalloc:   The blocks are allocated for the delalloc write
6384  *
6385  * This is called by the allocator when it reserves space. If this is a
6386  * reservation and the block group has become read only we cannot make the
6387  * reservation and return -EAGAIN, otherwise this function always succeeds.
6388  */
btrfs_add_reserved_bytes(struct btrfs_block_group_cache * cache,u64 ram_bytes,u64 num_bytes,int delalloc)6389 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6390 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6391 {
6392 	struct btrfs_space_info *space_info = cache->space_info;
6393 	int ret = 0;
6394 
6395 	spin_lock(&space_info->lock);
6396 	spin_lock(&cache->lock);
6397 	if (cache->ro) {
6398 		ret = -EAGAIN;
6399 	} else {
6400 		cache->reserved += num_bytes;
6401 		space_info->bytes_reserved += num_bytes;
6402 
6403 		trace_btrfs_space_reservation(cache->fs_info,
6404 				"space_info", space_info->flags,
6405 				ram_bytes, 0);
6406 		space_info->bytes_may_use -= ram_bytes;
6407 		if (delalloc)
6408 			cache->delalloc_bytes += num_bytes;
6409 	}
6410 	spin_unlock(&cache->lock);
6411 	spin_unlock(&space_info->lock);
6412 	return ret;
6413 }
6414 
6415 /**
6416  * btrfs_free_reserved_bytes - update the block_group and space info counters
6417  * @cache:      The cache we are manipulating
6418  * @num_bytes:  The number of bytes in question
6419  * @delalloc:   The blocks are allocated for the delalloc write
6420  *
6421  * This is called by somebody who is freeing space that was never actually used
6422  * on disk.  For example if you reserve some space for a new leaf in transaction
6423  * A and before transaction A commits you free that leaf, you call this with
6424  * reserve set to 0 in order to clear the reservation.
6425  */
6426 
btrfs_free_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int delalloc)6427 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6428 				     u64 num_bytes, int delalloc)
6429 {
6430 	struct btrfs_space_info *space_info = cache->space_info;
6431 	int ret = 0;
6432 
6433 	spin_lock(&space_info->lock);
6434 	spin_lock(&cache->lock);
6435 	if (cache->ro)
6436 		space_info->bytes_readonly += num_bytes;
6437 	cache->reserved -= num_bytes;
6438 	space_info->bytes_reserved -= num_bytes;
6439 
6440 	if (delalloc)
6441 		cache->delalloc_bytes -= num_bytes;
6442 	spin_unlock(&cache->lock);
6443 	spin_unlock(&space_info->lock);
6444 	return ret;
6445 }
btrfs_prepare_extent_commit(struct btrfs_fs_info * fs_info)6446 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6447 {
6448 	struct btrfs_caching_control *next;
6449 	struct btrfs_caching_control *caching_ctl;
6450 	struct btrfs_block_group_cache *cache;
6451 
6452 	down_write(&fs_info->commit_root_sem);
6453 
6454 	list_for_each_entry_safe(caching_ctl, next,
6455 				 &fs_info->caching_block_groups, list) {
6456 		cache = caching_ctl->block_group;
6457 		if (block_group_cache_done(cache)) {
6458 			cache->last_byte_to_unpin = (u64)-1;
6459 			list_del_init(&caching_ctl->list);
6460 			put_caching_control(caching_ctl);
6461 		} else {
6462 			cache->last_byte_to_unpin = caching_ctl->progress;
6463 		}
6464 	}
6465 
6466 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6467 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6468 	else
6469 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6470 
6471 	up_write(&fs_info->commit_root_sem);
6472 
6473 	update_global_block_rsv(fs_info);
6474 }
6475 
6476 /*
6477  * Returns the free cluster for the given space info and sets empty_cluster to
6478  * what it should be based on the mount options.
6479  */
6480 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)6481 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6482 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6483 {
6484 	struct btrfs_free_cluster *ret = NULL;
6485 
6486 	*empty_cluster = 0;
6487 	if (btrfs_mixed_space_info(space_info))
6488 		return ret;
6489 
6490 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6491 		ret = &fs_info->meta_alloc_cluster;
6492 		if (btrfs_test_opt(fs_info, SSD))
6493 			*empty_cluster = SZ_2M;
6494 		else
6495 			*empty_cluster = SZ_64K;
6496 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6497 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6498 		*empty_cluster = SZ_2M;
6499 		ret = &fs_info->data_alloc_cluster;
6500 	}
6501 
6502 	return ret;
6503 }
6504 
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)6505 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6506 			      u64 start, u64 end,
6507 			      const bool return_free_space)
6508 {
6509 	struct btrfs_block_group_cache *cache = NULL;
6510 	struct btrfs_space_info *space_info;
6511 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6512 	struct btrfs_free_cluster *cluster = NULL;
6513 	u64 len;
6514 	u64 total_unpinned = 0;
6515 	u64 empty_cluster = 0;
6516 	bool readonly;
6517 
6518 	while (start <= end) {
6519 		readonly = false;
6520 		if (!cache ||
6521 		    start >= cache->key.objectid + cache->key.offset) {
6522 			if (cache)
6523 				btrfs_put_block_group(cache);
6524 			total_unpinned = 0;
6525 			cache = btrfs_lookup_block_group(fs_info, start);
6526 			BUG_ON(!cache); /* Logic error */
6527 
6528 			cluster = fetch_cluster_info(fs_info,
6529 						     cache->space_info,
6530 						     &empty_cluster);
6531 			empty_cluster <<= 1;
6532 		}
6533 
6534 		len = cache->key.objectid + cache->key.offset - start;
6535 		len = min(len, end + 1 - start);
6536 
6537 		if (start < cache->last_byte_to_unpin) {
6538 			len = min(len, cache->last_byte_to_unpin - start);
6539 			if (return_free_space)
6540 				btrfs_add_free_space(cache, start, len);
6541 		}
6542 
6543 		start += len;
6544 		total_unpinned += len;
6545 		space_info = cache->space_info;
6546 
6547 		/*
6548 		 * If this space cluster has been marked as fragmented and we've
6549 		 * unpinned enough in this block group to potentially allow a
6550 		 * cluster to be created inside of it go ahead and clear the
6551 		 * fragmented check.
6552 		 */
6553 		if (cluster && cluster->fragmented &&
6554 		    total_unpinned > empty_cluster) {
6555 			spin_lock(&cluster->lock);
6556 			cluster->fragmented = 0;
6557 			spin_unlock(&cluster->lock);
6558 		}
6559 
6560 		spin_lock(&space_info->lock);
6561 		spin_lock(&cache->lock);
6562 		cache->pinned -= len;
6563 		space_info->bytes_pinned -= len;
6564 
6565 		trace_btrfs_space_reservation(fs_info, "pinned",
6566 					      space_info->flags, len, 0);
6567 		space_info->max_extent_size = 0;
6568 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
6569 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6570 		if (cache->ro) {
6571 			space_info->bytes_readonly += len;
6572 			readonly = true;
6573 		}
6574 		spin_unlock(&cache->lock);
6575 		if (!readonly && return_free_space &&
6576 		    global_rsv->space_info == space_info) {
6577 			u64 to_add = len;
6578 
6579 			spin_lock(&global_rsv->lock);
6580 			if (!global_rsv->full) {
6581 				to_add = min(len, global_rsv->size -
6582 					     global_rsv->reserved);
6583 				global_rsv->reserved += to_add;
6584 				space_info->bytes_may_use += to_add;
6585 				if (global_rsv->reserved >= global_rsv->size)
6586 					global_rsv->full = 1;
6587 				trace_btrfs_space_reservation(fs_info,
6588 							      "space_info",
6589 							      space_info->flags,
6590 							      to_add, 1);
6591 				len -= to_add;
6592 			}
6593 			spin_unlock(&global_rsv->lock);
6594 			/* Add to any tickets we may have */
6595 			if (len)
6596 				space_info_add_new_bytes(fs_info, space_info,
6597 							 len);
6598 		}
6599 		spin_unlock(&space_info->lock);
6600 	}
6601 
6602 	if (cache)
6603 		btrfs_put_block_group(cache);
6604 	return 0;
6605 }
6606 
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)6607 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6608 {
6609 	struct btrfs_fs_info *fs_info = trans->fs_info;
6610 	struct btrfs_block_group_cache *block_group, *tmp;
6611 	struct list_head *deleted_bgs;
6612 	struct extent_io_tree *unpin;
6613 	u64 start;
6614 	u64 end;
6615 	int ret;
6616 
6617 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6618 		unpin = &fs_info->freed_extents[1];
6619 	else
6620 		unpin = &fs_info->freed_extents[0];
6621 
6622 	while (!trans->aborted) {
6623 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6624 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6625 					    EXTENT_DIRTY, NULL);
6626 		if (ret) {
6627 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6628 			break;
6629 		}
6630 
6631 		if (btrfs_test_opt(fs_info, DISCARD))
6632 			ret = btrfs_discard_extent(fs_info, start,
6633 						   end + 1 - start, NULL);
6634 
6635 		clear_extent_dirty(unpin, start, end);
6636 		unpin_extent_range(fs_info, start, end, true);
6637 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6638 		cond_resched();
6639 	}
6640 
6641 	/*
6642 	 * Transaction is finished.  We don't need the lock anymore.  We
6643 	 * do need to clean up the block groups in case of a transaction
6644 	 * abort.
6645 	 */
6646 	deleted_bgs = &trans->transaction->deleted_bgs;
6647 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6648 		u64 trimmed = 0;
6649 
6650 		ret = -EROFS;
6651 		if (!trans->aborted)
6652 			ret = btrfs_discard_extent(fs_info,
6653 						   block_group->key.objectid,
6654 						   block_group->key.offset,
6655 						   &trimmed);
6656 
6657 		list_del_init(&block_group->bg_list);
6658 		btrfs_put_block_group_trimming(block_group);
6659 		btrfs_put_block_group(block_group);
6660 
6661 		if (ret) {
6662 			const char *errstr = btrfs_decode_error(ret);
6663 			btrfs_warn(fs_info,
6664 			   "discard failed while removing blockgroup: errno=%d %s",
6665 				   ret, errstr);
6666 		}
6667 	}
6668 
6669 	return 0;
6670 }
6671 
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)6672 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6673 			       struct btrfs_delayed_ref_node *node, u64 parent,
6674 			       u64 root_objectid, u64 owner_objectid,
6675 			       u64 owner_offset, int refs_to_drop,
6676 			       struct btrfs_delayed_extent_op *extent_op)
6677 {
6678 	struct btrfs_fs_info *info = trans->fs_info;
6679 	struct btrfs_key key;
6680 	struct btrfs_path *path;
6681 	struct btrfs_root *extent_root = info->extent_root;
6682 	struct extent_buffer *leaf;
6683 	struct btrfs_extent_item *ei;
6684 	struct btrfs_extent_inline_ref *iref;
6685 	int ret;
6686 	int is_data;
6687 	int extent_slot = 0;
6688 	int found_extent = 0;
6689 	int num_to_del = 1;
6690 	u32 item_size;
6691 	u64 refs;
6692 	u64 bytenr = node->bytenr;
6693 	u64 num_bytes = node->num_bytes;
6694 	int last_ref = 0;
6695 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6696 
6697 	path = btrfs_alloc_path();
6698 	if (!path)
6699 		return -ENOMEM;
6700 
6701 	path->reada = READA_FORWARD;
6702 	path->leave_spinning = 1;
6703 
6704 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6705 	BUG_ON(!is_data && refs_to_drop != 1);
6706 
6707 	if (is_data)
6708 		skinny_metadata = false;
6709 
6710 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6711 				    parent, root_objectid, owner_objectid,
6712 				    owner_offset);
6713 	if (ret == 0) {
6714 		extent_slot = path->slots[0];
6715 		while (extent_slot >= 0) {
6716 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6717 					      extent_slot);
6718 			if (key.objectid != bytenr)
6719 				break;
6720 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6721 			    key.offset == num_bytes) {
6722 				found_extent = 1;
6723 				break;
6724 			}
6725 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6726 			    key.offset == owner_objectid) {
6727 				found_extent = 1;
6728 				break;
6729 			}
6730 			if (path->slots[0] - extent_slot > 5)
6731 				break;
6732 			extent_slot--;
6733 		}
6734 
6735 		if (!found_extent) {
6736 			BUG_ON(iref);
6737 			ret = remove_extent_backref(trans, path, NULL,
6738 						    refs_to_drop,
6739 						    is_data, &last_ref);
6740 			if (ret) {
6741 				btrfs_abort_transaction(trans, ret);
6742 				goto out;
6743 			}
6744 			btrfs_release_path(path);
6745 			path->leave_spinning = 1;
6746 
6747 			key.objectid = bytenr;
6748 			key.type = BTRFS_EXTENT_ITEM_KEY;
6749 			key.offset = num_bytes;
6750 
6751 			if (!is_data && skinny_metadata) {
6752 				key.type = BTRFS_METADATA_ITEM_KEY;
6753 				key.offset = owner_objectid;
6754 			}
6755 
6756 			ret = btrfs_search_slot(trans, extent_root,
6757 						&key, path, -1, 1);
6758 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6759 				/*
6760 				 * Couldn't find our skinny metadata item,
6761 				 * see if we have ye olde extent item.
6762 				 */
6763 				path->slots[0]--;
6764 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6765 						      path->slots[0]);
6766 				if (key.objectid == bytenr &&
6767 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6768 				    key.offset == num_bytes)
6769 					ret = 0;
6770 			}
6771 
6772 			if (ret > 0 && skinny_metadata) {
6773 				skinny_metadata = false;
6774 				key.objectid = bytenr;
6775 				key.type = BTRFS_EXTENT_ITEM_KEY;
6776 				key.offset = num_bytes;
6777 				btrfs_release_path(path);
6778 				ret = btrfs_search_slot(trans, extent_root,
6779 							&key, path, -1, 1);
6780 			}
6781 
6782 			if (ret) {
6783 				btrfs_err(info,
6784 					  "umm, got %d back from search, was looking for %llu",
6785 					  ret, bytenr);
6786 				if (ret > 0)
6787 					btrfs_print_leaf(path->nodes[0]);
6788 			}
6789 			if (ret < 0) {
6790 				btrfs_abort_transaction(trans, ret);
6791 				goto out;
6792 			}
6793 			extent_slot = path->slots[0];
6794 		}
6795 	} else if (WARN_ON(ret == -ENOENT)) {
6796 		btrfs_print_leaf(path->nodes[0]);
6797 		btrfs_err(info,
6798 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6799 			bytenr, parent, root_objectid, owner_objectid,
6800 			owner_offset);
6801 		btrfs_abort_transaction(trans, ret);
6802 		goto out;
6803 	} else {
6804 		btrfs_abort_transaction(trans, ret);
6805 		goto out;
6806 	}
6807 
6808 	leaf = path->nodes[0];
6809 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6810 	if (unlikely(item_size < sizeof(*ei))) {
6811 		ret = -EINVAL;
6812 		btrfs_print_v0_err(info);
6813 		btrfs_abort_transaction(trans, ret);
6814 		goto out;
6815 	}
6816 	ei = btrfs_item_ptr(leaf, extent_slot,
6817 			    struct btrfs_extent_item);
6818 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6819 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6820 		struct btrfs_tree_block_info *bi;
6821 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6822 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6823 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6824 	}
6825 
6826 	refs = btrfs_extent_refs(leaf, ei);
6827 	if (refs < refs_to_drop) {
6828 		btrfs_err(info,
6829 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6830 			  refs_to_drop, refs, bytenr);
6831 		ret = -EINVAL;
6832 		btrfs_abort_transaction(trans, ret);
6833 		goto out;
6834 	}
6835 	refs -= refs_to_drop;
6836 
6837 	if (refs > 0) {
6838 		if (extent_op)
6839 			__run_delayed_extent_op(extent_op, leaf, ei);
6840 		/*
6841 		 * In the case of inline back ref, reference count will
6842 		 * be updated by remove_extent_backref
6843 		 */
6844 		if (iref) {
6845 			BUG_ON(!found_extent);
6846 		} else {
6847 			btrfs_set_extent_refs(leaf, ei, refs);
6848 			btrfs_mark_buffer_dirty(leaf);
6849 		}
6850 		if (found_extent) {
6851 			ret = remove_extent_backref(trans, path, iref,
6852 						    refs_to_drop, is_data,
6853 						    &last_ref);
6854 			if (ret) {
6855 				btrfs_abort_transaction(trans, ret);
6856 				goto out;
6857 			}
6858 		}
6859 	} else {
6860 		if (found_extent) {
6861 			BUG_ON(is_data && refs_to_drop !=
6862 			       extent_data_ref_count(path, iref));
6863 			if (iref) {
6864 				BUG_ON(path->slots[0] != extent_slot);
6865 			} else {
6866 				BUG_ON(path->slots[0] != extent_slot + 1);
6867 				path->slots[0] = extent_slot;
6868 				num_to_del = 2;
6869 			}
6870 		}
6871 
6872 		last_ref = 1;
6873 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6874 				      num_to_del);
6875 		if (ret) {
6876 			btrfs_abort_transaction(trans, ret);
6877 			goto out;
6878 		}
6879 		btrfs_release_path(path);
6880 
6881 		if (is_data) {
6882 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
6883 			if (ret) {
6884 				btrfs_abort_transaction(trans, ret);
6885 				goto out;
6886 			}
6887 		}
6888 
6889 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
6890 		if (ret) {
6891 			btrfs_abort_transaction(trans, ret);
6892 			goto out;
6893 		}
6894 
6895 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
6896 		if (ret) {
6897 			btrfs_abort_transaction(trans, ret);
6898 			goto out;
6899 		}
6900 	}
6901 	btrfs_release_path(path);
6902 
6903 out:
6904 	btrfs_free_path(path);
6905 	return ret;
6906 }
6907 
6908 /*
6909  * when we free an block, it is possible (and likely) that we free the last
6910  * delayed ref for that extent as well.  This searches the delayed ref tree for
6911  * a given extent, and if there are no other delayed refs to be processed, it
6912  * removes it from the tree.
6913  */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)6914 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6915 				      u64 bytenr)
6916 {
6917 	struct btrfs_delayed_ref_head *head;
6918 	struct btrfs_delayed_ref_root *delayed_refs;
6919 	int ret = 0;
6920 
6921 	delayed_refs = &trans->transaction->delayed_refs;
6922 	spin_lock(&delayed_refs->lock);
6923 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
6924 	if (!head)
6925 		goto out_delayed_unlock;
6926 
6927 	spin_lock(&head->lock);
6928 	if (!RB_EMPTY_ROOT(&head->ref_tree))
6929 		goto out;
6930 
6931 	if (head->extent_op) {
6932 		if (!head->must_insert_reserved)
6933 			goto out;
6934 		btrfs_free_delayed_extent_op(head->extent_op);
6935 		head->extent_op = NULL;
6936 	}
6937 
6938 	/*
6939 	 * waiting for the lock here would deadlock.  If someone else has it
6940 	 * locked they are already in the process of dropping it anyway
6941 	 */
6942 	if (!mutex_trylock(&head->mutex))
6943 		goto out;
6944 
6945 	/*
6946 	 * at this point we have a head with no other entries.  Go
6947 	 * ahead and process it.
6948 	 */
6949 	rb_erase(&head->href_node, &delayed_refs->href_root);
6950 	RB_CLEAR_NODE(&head->href_node);
6951 	atomic_dec(&delayed_refs->num_entries);
6952 
6953 	/*
6954 	 * we don't take a ref on the node because we're removing it from the
6955 	 * tree, so we just steal the ref the tree was holding.
6956 	 */
6957 	delayed_refs->num_heads--;
6958 	if (head->processing == 0)
6959 		delayed_refs->num_heads_ready--;
6960 	head->processing = 0;
6961 	spin_unlock(&head->lock);
6962 	spin_unlock(&delayed_refs->lock);
6963 
6964 	BUG_ON(head->extent_op);
6965 	if (head->must_insert_reserved)
6966 		ret = 1;
6967 
6968 	mutex_unlock(&head->mutex);
6969 	btrfs_put_delayed_ref_head(head);
6970 	return ret;
6971 out:
6972 	spin_unlock(&head->lock);
6973 
6974 out_delayed_unlock:
6975 	spin_unlock(&delayed_refs->lock);
6976 	return 0;
6977 }
6978 
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)6979 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6980 			   struct btrfs_root *root,
6981 			   struct extent_buffer *buf,
6982 			   u64 parent, int last_ref)
6983 {
6984 	struct btrfs_fs_info *fs_info = root->fs_info;
6985 	int pin = 1;
6986 	int ret;
6987 
6988 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6989 		int old_ref_mod, new_ref_mod;
6990 
6991 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
6992 				   root->root_key.objectid,
6993 				   btrfs_header_level(buf), 0,
6994 				   BTRFS_DROP_DELAYED_REF);
6995 		ret = btrfs_add_delayed_tree_ref(trans, buf->start,
6996 						 buf->len, parent,
6997 						 root->root_key.objectid,
6998 						 btrfs_header_level(buf),
6999 						 BTRFS_DROP_DELAYED_REF, NULL,
7000 						 &old_ref_mod, &new_ref_mod);
7001 		BUG_ON(ret); /* -ENOMEM */
7002 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7003 	}
7004 
7005 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7006 		struct btrfs_block_group_cache *cache;
7007 
7008 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7009 			ret = check_ref_cleanup(trans, buf->start);
7010 			if (!ret)
7011 				goto out;
7012 		}
7013 
7014 		pin = 0;
7015 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7016 
7017 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7018 			pin_down_extent(fs_info, cache, buf->start,
7019 					buf->len, 1);
7020 			btrfs_put_block_group(cache);
7021 			goto out;
7022 		}
7023 
7024 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7025 
7026 		btrfs_add_free_space(cache, buf->start, buf->len);
7027 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7028 		btrfs_put_block_group(cache);
7029 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7030 	}
7031 out:
7032 	if (pin)
7033 		add_pinned_bytes(fs_info, buf->len, true,
7034 				 root->root_key.objectid);
7035 
7036 	if (last_ref) {
7037 		/*
7038 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7039 		 * matter anymore.
7040 		 */
7041 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7042 	}
7043 }
7044 
7045 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)7046 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7047 		      struct btrfs_root *root,
7048 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7049 		      u64 owner, u64 offset)
7050 {
7051 	struct btrfs_fs_info *fs_info = root->fs_info;
7052 	int old_ref_mod, new_ref_mod;
7053 	int ret;
7054 
7055 	if (btrfs_is_testing(fs_info))
7056 		return 0;
7057 
7058 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7059 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7060 				   root_objectid, owner, offset,
7061 				   BTRFS_DROP_DELAYED_REF);
7062 
7063 	/*
7064 	 * tree log blocks never actually go into the extent allocation
7065 	 * tree, just update pinning info and exit early.
7066 	 */
7067 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7068 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7069 		/* unlocks the pinned mutex */
7070 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7071 		old_ref_mod = new_ref_mod = 0;
7072 		ret = 0;
7073 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7074 		ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7075 						 num_bytes, parent,
7076 						 root_objectid, (int)owner,
7077 						 BTRFS_DROP_DELAYED_REF, NULL,
7078 						 &old_ref_mod, &new_ref_mod);
7079 	} else {
7080 		ret = btrfs_add_delayed_data_ref(trans, bytenr,
7081 						 num_bytes, parent,
7082 						 root_objectid, owner, offset,
7083 						 0, BTRFS_DROP_DELAYED_REF,
7084 						 &old_ref_mod, &new_ref_mod);
7085 	}
7086 
7087 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7088 		bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7089 
7090 		add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7091 	}
7092 
7093 	return ret;
7094 }
7095 
7096 /*
7097  * when we wait for progress in the block group caching, its because
7098  * our allocation attempt failed at least once.  So, we must sleep
7099  * and let some progress happen before we try again.
7100  *
7101  * This function will sleep at least once waiting for new free space to
7102  * show up, and then it will check the block group free space numbers
7103  * for our min num_bytes.  Another option is to have it go ahead
7104  * and look in the rbtree for a free extent of a given size, but this
7105  * is a good start.
7106  *
7107  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7108  * any of the information in this block group.
7109  */
7110 static noinline void
wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)7111 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7112 				u64 num_bytes)
7113 {
7114 	struct btrfs_caching_control *caching_ctl;
7115 
7116 	caching_ctl = get_caching_control(cache);
7117 	if (!caching_ctl)
7118 		return;
7119 
7120 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7121 		   (cache->free_space_ctl->free_space >= num_bytes));
7122 
7123 	put_caching_control(caching_ctl);
7124 }
7125 
7126 static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache * cache)7127 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7128 {
7129 	struct btrfs_caching_control *caching_ctl;
7130 	int ret = 0;
7131 
7132 	caching_ctl = get_caching_control(cache);
7133 	if (!caching_ctl)
7134 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7135 
7136 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7137 	if (cache->cached == BTRFS_CACHE_ERROR)
7138 		ret = -EIO;
7139 	put_caching_control(caching_ctl);
7140 	return ret;
7141 }
7142 
7143 enum btrfs_loop_type {
7144 	LOOP_CACHING_NOWAIT = 0,
7145 	LOOP_CACHING_WAIT = 1,
7146 	LOOP_ALLOC_CHUNK = 2,
7147 	LOOP_NO_EMPTY_SIZE = 3,
7148 };
7149 
7150 static inline void
btrfs_lock_block_group(struct btrfs_block_group_cache * cache,int delalloc)7151 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7152 		       int delalloc)
7153 {
7154 	if (delalloc)
7155 		down_read(&cache->data_rwsem);
7156 }
7157 
7158 static inline void
btrfs_grab_block_group(struct btrfs_block_group_cache * cache,int delalloc)7159 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7160 		       int delalloc)
7161 {
7162 	btrfs_get_block_group(cache);
7163 	if (delalloc)
7164 		down_read(&cache->data_rwsem);
7165 }
7166 
7167 static struct btrfs_block_group_cache *
btrfs_lock_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,int delalloc)7168 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7169 		   struct btrfs_free_cluster *cluster,
7170 		   int delalloc)
7171 {
7172 	struct btrfs_block_group_cache *used_bg = NULL;
7173 
7174 	spin_lock(&cluster->refill_lock);
7175 	while (1) {
7176 		used_bg = cluster->block_group;
7177 		if (!used_bg)
7178 			return NULL;
7179 
7180 		if (used_bg == block_group)
7181 			return used_bg;
7182 
7183 		btrfs_get_block_group(used_bg);
7184 
7185 		if (!delalloc)
7186 			return used_bg;
7187 
7188 		if (down_read_trylock(&used_bg->data_rwsem))
7189 			return used_bg;
7190 
7191 		spin_unlock(&cluster->refill_lock);
7192 
7193 		/* We should only have one-level nested. */
7194 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7195 
7196 		spin_lock(&cluster->refill_lock);
7197 		if (used_bg == cluster->block_group)
7198 			return used_bg;
7199 
7200 		up_read(&used_bg->data_rwsem);
7201 		btrfs_put_block_group(used_bg);
7202 	}
7203 }
7204 
7205 static inline void
btrfs_release_block_group(struct btrfs_block_group_cache * cache,int delalloc)7206 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7207 			 int delalloc)
7208 {
7209 	if (delalloc)
7210 		up_read(&cache->data_rwsem);
7211 	btrfs_put_block_group(cache);
7212 }
7213 
7214 /*
7215  * walks the btree of allocated extents and find a hole of a given size.
7216  * The key ins is changed to record the hole:
7217  * ins->objectid == start position
7218  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7219  * ins->offset == the size of the hole.
7220  * Any available blocks before search_start are skipped.
7221  *
7222  * If there is no suitable free space, we will record the max size of
7223  * the free space extent currently.
7224  */
find_free_extent(struct btrfs_fs_info * fs_info,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 flags,int delalloc)7225 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7226 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7227 				u64 hint_byte, struct btrfs_key *ins,
7228 				u64 flags, int delalloc)
7229 {
7230 	int ret = 0;
7231 	struct btrfs_root *root = fs_info->extent_root;
7232 	struct btrfs_free_cluster *last_ptr = NULL;
7233 	struct btrfs_block_group_cache *block_group = NULL;
7234 	u64 search_start = 0;
7235 	u64 max_extent_size = 0;
7236 	u64 empty_cluster = 0;
7237 	struct btrfs_space_info *space_info;
7238 	int loop = 0;
7239 	int index = btrfs_bg_flags_to_raid_index(flags);
7240 	bool failed_cluster_refill = false;
7241 	bool failed_alloc = false;
7242 	bool use_cluster = true;
7243 	bool have_caching_bg = false;
7244 	bool orig_have_caching_bg = false;
7245 	bool full_search = false;
7246 
7247 	WARN_ON(num_bytes < fs_info->sectorsize);
7248 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7249 	ins->objectid = 0;
7250 	ins->offset = 0;
7251 
7252 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7253 
7254 	space_info = __find_space_info(fs_info, flags);
7255 	if (!space_info) {
7256 		btrfs_err(fs_info, "No space info for %llu", flags);
7257 		return -ENOSPC;
7258 	}
7259 
7260 	/*
7261 	 * If our free space is heavily fragmented we may not be able to make
7262 	 * big contiguous allocations, so instead of doing the expensive search
7263 	 * for free space, simply return ENOSPC with our max_extent_size so we
7264 	 * can go ahead and search for a more manageable chunk.
7265 	 *
7266 	 * If our max_extent_size is large enough for our allocation simply
7267 	 * disable clustering since we will likely not be able to find enough
7268 	 * space to create a cluster and induce latency trying.
7269 	 */
7270 	if (unlikely(space_info->max_extent_size)) {
7271 		spin_lock(&space_info->lock);
7272 		if (space_info->max_extent_size &&
7273 		    num_bytes > space_info->max_extent_size) {
7274 			ins->offset = space_info->max_extent_size;
7275 			spin_unlock(&space_info->lock);
7276 			return -ENOSPC;
7277 		} else if (space_info->max_extent_size) {
7278 			use_cluster = false;
7279 		}
7280 		spin_unlock(&space_info->lock);
7281 	}
7282 
7283 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7284 	if (last_ptr) {
7285 		spin_lock(&last_ptr->lock);
7286 		if (last_ptr->block_group)
7287 			hint_byte = last_ptr->window_start;
7288 		if (last_ptr->fragmented) {
7289 			/*
7290 			 * We still set window_start so we can keep track of the
7291 			 * last place we found an allocation to try and save
7292 			 * some time.
7293 			 */
7294 			hint_byte = last_ptr->window_start;
7295 			use_cluster = false;
7296 		}
7297 		spin_unlock(&last_ptr->lock);
7298 	}
7299 
7300 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7301 	search_start = max(search_start, hint_byte);
7302 	if (search_start == hint_byte) {
7303 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7304 		/*
7305 		 * we don't want to use the block group if it doesn't match our
7306 		 * allocation bits, or if its not cached.
7307 		 *
7308 		 * However if we are re-searching with an ideal block group
7309 		 * picked out then we don't care that the block group is cached.
7310 		 */
7311 		if (block_group && block_group_bits(block_group, flags) &&
7312 		    block_group->cached != BTRFS_CACHE_NO) {
7313 			down_read(&space_info->groups_sem);
7314 			if (list_empty(&block_group->list) ||
7315 			    block_group->ro) {
7316 				/*
7317 				 * someone is removing this block group,
7318 				 * we can't jump into the have_block_group
7319 				 * target because our list pointers are not
7320 				 * valid
7321 				 */
7322 				btrfs_put_block_group(block_group);
7323 				up_read(&space_info->groups_sem);
7324 			} else {
7325 				index = btrfs_bg_flags_to_raid_index(
7326 						block_group->flags);
7327 				btrfs_lock_block_group(block_group, delalloc);
7328 				goto have_block_group;
7329 			}
7330 		} else if (block_group) {
7331 			btrfs_put_block_group(block_group);
7332 		}
7333 	}
7334 search:
7335 	have_caching_bg = false;
7336 	if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7337 		full_search = true;
7338 	down_read(&space_info->groups_sem);
7339 	list_for_each_entry(block_group, &space_info->block_groups[index],
7340 			    list) {
7341 		u64 offset;
7342 		int cached;
7343 
7344 		/* If the block group is read-only, we can skip it entirely. */
7345 		if (unlikely(block_group->ro))
7346 			continue;
7347 
7348 		btrfs_grab_block_group(block_group, delalloc);
7349 		search_start = block_group->key.objectid;
7350 
7351 		/*
7352 		 * this can happen if we end up cycling through all the
7353 		 * raid types, but we want to make sure we only allocate
7354 		 * for the proper type.
7355 		 */
7356 		if (!block_group_bits(block_group, flags)) {
7357 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
7358 				BTRFS_BLOCK_GROUP_RAID1 |
7359 				BTRFS_BLOCK_GROUP_RAID5 |
7360 				BTRFS_BLOCK_GROUP_RAID6 |
7361 				BTRFS_BLOCK_GROUP_RAID10;
7362 
7363 			/*
7364 			 * if they asked for extra copies and this block group
7365 			 * doesn't provide them, bail.  This does allow us to
7366 			 * fill raid0 from raid1.
7367 			 */
7368 			if ((flags & extra) && !(block_group->flags & extra))
7369 				goto loop;
7370 		}
7371 
7372 have_block_group:
7373 		cached = block_group_cache_done(block_group);
7374 		if (unlikely(!cached)) {
7375 			have_caching_bg = true;
7376 			ret = cache_block_group(block_group, 0);
7377 			BUG_ON(ret < 0);
7378 			ret = 0;
7379 		}
7380 
7381 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7382 			goto loop;
7383 
7384 		/*
7385 		 * Ok we want to try and use the cluster allocator, so
7386 		 * lets look there
7387 		 */
7388 		if (last_ptr && use_cluster) {
7389 			struct btrfs_block_group_cache *used_block_group;
7390 			unsigned long aligned_cluster;
7391 			/*
7392 			 * the refill lock keeps out other
7393 			 * people trying to start a new cluster
7394 			 */
7395 			used_block_group = btrfs_lock_cluster(block_group,
7396 							      last_ptr,
7397 							      delalloc);
7398 			if (!used_block_group)
7399 				goto refill_cluster;
7400 
7401 			if (used_block_group != block_group &&
7402 			    (used_block_group->ro ||
7403 			     !block_group_bits(used_block_group, flags)))
7404 				goto release_cluster;
7405 
7406 			offset = btrfs_alloc_from_cluster(used_block_group,
7407 						last_ptr,
7408 						num_bytes,
7409 						used_block_group->key.objectid,
7410 						&max_extent_size);
7411 			if (offset) {
7412 				/* we have a block, we're done */
7413 				spin_unlock(&last_ptr->refill_lock);
7414 				trace_btrfs_reserve_extent_cluster(
7415 						used_block_group,
7416 						search_start, num_bytes);
7417 				if (used_block_group != block_group) {
7418 					btrfs_release_block_group(block_group,
7419 								  delalloc);
7420 					block_group = used_block_group;
7421 				}
7422 				goto checks;
7423 			}
7424 
7425 			WARN_ON(last_ptr->block_group != used_block_group);
7426 release_cluster:
7427 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7428 			 * set up a new clusters, so lets just skip it
7429 			 * and let the allocator find whatever block
7430 			 * it can find.  If we reach this point, we
7431 			 * will have tried the cluster allocator
7432 			 * plenty of times and not have found
7433 			 * anything, so we are likely way too
7434 			 * fragmented for the clustering stuff to find
7435 			 * anything.
7436 			 *
7437 			 * However, if the cluster is taken from the
7438 			 * current block group, release the cluster
7439 			 * first, so that we stand a better chance of
7440 			 * succeeding in the unclustered
7441 			 * allocation.  */
7442 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7443 			    used_block_group != block_group) {
7444 				spin_unlock(&last_ptr->refill_lock);
7445 				btrfs_release_block_group(used_block_group,
7446 							  delalloc);
7447 				goto unclustered_alloc;
7448 			}
7449 
7450 			/*
7451 			 * this cluster didn't work out, free it and
7452 			 * start over
7453 			 */
7454 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7455 
7456 			if (used_block_group != block_group)
7457 				btrfs_release_block_group(used_block_group,
7458 							  delalloc);
7459 refill_cluster:
7460 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7461 				spin_unlock(&last_ptr->refill_lock);
7462 				goto unclustered_alloc;
7463 			}
7464 
7465 			aligned_cluster = max_t(unsigned long,
7466 						empty_cluster + empty_size,
7467 					      block_group->full_stripe_len);
7468 
7469 			/* allocate a cluster in this block group */
7470 			ret = btrfs_find_space_cluster(fs_info, block_group,
7471 						       last_ptr, search_start,
7472 						       num_bytes,
7473 						       aligned_cluster);
7474 			if (ret == 0) {
7475 				/*
7476 				 * now pull our allocation out of this
7477 				 * cluster
7478 				 */
7479 				offset = btrfs_alloc_from_cluster(block_group,
7480 							last_ptr,
7481 							num_bytes,
7482 							search_start,
7483 							&max_extent_size);
7484 				if (offset) {
7485 					/* we found one, proceed */
7486 					spin_unlock(&last_ptr->refill_lock);
7487 					trace_btrfs_reserve_extent_cluster(
7488 						block_group, search_start,
7489 						num_bytes);
7490 					goto checks;
7491 				}
7492 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7493 				   && !failed_cluster_refill) {
7494 				spin_unlock(&last_ptr->refill_lock);
7495 
7496 				failed_cluster_refill = true;
7497 				wait_block_group_cache_progress(block_group,
7498 				       num_bytes + empty_cluster + empty_size);
7499 				goto have_block_group;
7500 			}
7501 
7502 			/*
7503 			 * at this point we either didn't find a cluster
7504 			 * or we weren't able to allocate a block from our
7505 			 * cluster.  Free the cluster we've been trying
7506 			 * to use, and go to the next block group
7507 			 */
7508 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7509 			spin_unlock(&last_ptr->refill_lock);
7510 			goto loop;
7511 		}
7512 
7513 unclustered_alloc:
7514 		/*
7515 		 * We are doing an unclustered alloc, set the fragmented flag so
7516 		 * we don't bother trying to setup a cluster again until we get
7517 		 * more space.
7518 		 */
7519 		if (unlikely(last_ptr)) {
7520 			spin_lock(&last_ptr->lock);
7521 			last_ptr->fragmented = 1;
7522 			spin_unlock(&last_ptr->lock);
7523 		}
7524 		if (cached) {
7525 			struct btrfs_free_space_ctl *ctl =
7526 				block_group->free_space_ctl;
7527 
7528 			spin_lock(&ctl->tree_lock);
7529 			if (ctl->free_space <
7530 			    num_bytes + empty_cluster + empty_size) {
7531 				if (ctl->free_space > max_extent_size)
7532 					max_extent_size = ctl->free_space;
7533 				spin_unlock(&ctl->tree_lock);
7534 				goto loop;
7535 			}
7536 			spin_unlock(&ctl->tree_lock);
7537 		}
7538 
7539 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7540 						    num_bytes, empty_size,
7541 						    &max_extent_size);
7542 		/*
7543 		 * If we didn't find a chunk, and we haven't failed on this
7544 		 * block group before, and this block group is in the middle of
7545 		 * caching and we are ok with waiting, then go ahead and wait
7546 		 * for progress to be made, and set failed_alloc to true.
7547 		 *
7548 		 * If failed_alloc is true then we've already waited on this
7549 		 * block group once and should move on to the next block group.
7550 		 */
7551 		if (!offset && !failed_alloc && !cached &&
7552 		    loop > LOOP_CACHING_NOWAIT) {
7553 			wait_block_group_cache_progress(block_group,
7554 						num_bytes + empty_size);
7555 			failed_alloc = true;
7556 			goto have_block_group;
7557 		} else if (!offset) {
7558 			goto loop;
7559 		}
7560 checks:
7561 		search_start = round_up(offset, fs_info->stripesize);
7562 
7563 		/* move on to the next group */
7564 		if (search_start + num_bytes >
7565 		    block_group->key.objectid + block_group->key.offset) {
7566 			btrfs_add_free_space(block_group, offset, num_bytes);
7567 			goto loop;
7568 		}
7569 
7570 		if (offset < search_start)
7571 			btrfs_add_free_space(block_group, offset,
7572 					     search_start - offset);
7573 
7574 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7575 				num_bytes, delalloc);
7576 		if (ret == -EAGAIN) {
7577 			btrfs_add_free_space(block_group, offset, num_bytes);
7578 			goto loop;
7579 		}
7580 		btrfs_inc_block_group_reservations(block_group);
7581 
7582 		/* we are all good, lets return */
7583 		ins->objectid = search_start;
7584 		ins->offset = num_bytes;
7585 
7586 		trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7587 		btrfs_release_block_group(block_group, delalloc);
7588 		break;
7589 loop:
7590 		failed_cluster_refill = false;
7591 		failed_alloc = false;
7592 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7593 		       index);
7594 		btrfs_release_block_group(block_group, delalloc);
7595 		cond_resched();
7596 	}
7597 	up_read(&space_info->groups_sem);
7598 
7599 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7600 		&& !orig_have_caching_bg)
7601 		orig_have_caching_bg = true;
7602 
7603 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7604 		goto search;
7605 
7606 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7607 		goto search;
7608 
7609 	/*
7610 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7611 	 *			caching kthreads as we move along
7612 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7613 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7614 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7615 	 *			again
7616 	 */
7617 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7618 		index = 0;
7619 		if (loop == LOOP_CACHING_NOWAIT) {
7620 			/*
7621 			 * We want to skip the LOOP_CACHING_WAIT step if we
7622 			 * don't have any uncached bgs and we've already done a
7623 			 * full search through.
7624 			 */
7625 			if (orig_have_caching_bg || !full_search)
7626 				loop = LOOP_CACHING_WAIT;
7627 			else
7628 				loop = LOOP_ALLOC_CHUNK;
7629 		} else {
7630 			loop++;
7631 		}
7632 
7633 		if (loop == LOOP_ALLOC_CHUNK) {
7634 			struct btrfs_trans_handle *trans;
7635 			int exist = 0;
7636 
7637 			trans = current->journal_info;
7638 			if (trans)
7639 				exist = 1;
7640 			else
7641 				trans = btrfs_join_transaction(root);
7642 
7643 			if (IS_ERR(trans)) {
7644 				ret = PTR_ERR(trans);
7645 				goto out;
7646 			}
7647 
7648 			ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
7649 
7650 			/*
7651 			 * If we can't allocate a new chunk we've already looped
7652 			 * through at least once, move on to the NO_EMPTY_SIZE
7653 			 * case.
7654 			 */
7655 			if (ret == -ENOSPC)
7656 				loop = LOOP_NO_EMPTY_SIZE;
7657 
7658 			/*
7659 			 * Do not bail out on ENOSPC since we
7660 			 * can do more things.
7661 			 */
7662 			if (ret < 0 && ret != -ENOSPC)
7663 				btrfs_abort_transaction(trans, ret);
7664 			else
7665 				ret = 0;
7666 			if (!exist)
7667 				btrfs_end_transaction(trans);
7668 			if (ret)
7669 				goto out;
7670 		}
7671 
7672 		if (loop == LOOP_NO_EMPTY_SIZE) {
7673 			/*
7674 			 * Don't loop again if we already have no empty_size and
7675 			 * no empty_cluster.
7676 			 */
7677 			if (empty_size == 0 &&
7678 			    empty_cluster == 0) {
7679 				ret = -ENOSPC;
7680 				goto out;
7681 			}
7682 			empty_size = 0;
7683 			empty_cluster = 0;
7684 		}
7685 
7686 		goto search;
7687 	} else if (!ins->objectid) {
7688 		ret = -ENOSPC;
7689 	} else if (ins->objectid) {
7690 		if (!use_cluster && last_ptr) {
7691 			spin_lock(&last_ptr->lock);
7692 			last_ptr->window_start = ins->objectid;
7693 			spin_unlock(&last_ptr->lock);
7694 		}
7695 		ret = 0;
7696 	}
7697 out:
7698 	if (ret == -ENOSPC) {
7699 		spin_lock(&space_info->lock);
7700 		space_info->max_extent_size = max_extent_size;
7701 		spin_unlock(&space_info->lock);
7702 		ins->offset = max_extent_size;
7703 	}
7704 	return ret;
7705 }
7706 
dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)7707 static void dump_space_info(struct btrfs_fs_info *fs_info,
7708 			    struct btrfs_space_info *info, u64 bytes,
7709 			    int dump_block_groups)
7710 {
7711 	struct btrfs_block_group_cache *cache;
7712 	int index = 0;
7713 
7714 	spin_lock(&info->lock);
7715 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7716 		   info->flags,
7717 		   info->total_bytes - btrfs_space_info_used(info, true),
7718 		   info->full ? "" : "not ");
7719 	btrfs_info(fs_info,
7720 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7721 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7722 		info->bytes_reserved, info->bytes_may_use,
7723 		info->bytes_readonly);
7724 	spin_unlock(&info->lock);
7725 
7726 	if (!dump_block_groups)
7727 		return;
7728 
7729 	down_read(&info->groups_sem);
7730 again:
7731 	list_for_each_entry(cache, &info->block_groups[index], list) {
7732 		spin_lock(&cache->lock);
7733 		btrfs_info(fs_info,
7734 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7735 			cache->key.objectid, cache->key.offset,
7736 			btrfs_block_group_used(&cache->item), cache->pinned,
7737 			cache->reserved, cache->ro ? "[readonly]" : "");
7738 		btrfs_dump_free_space(cache, bytes);
7739 		spin_unlock(&cache->lock);
7740 	}
7741 	if (++index < BTRFS_NR_RAID_TYPES)
7742 		goto again;
7743 	up_read(&info->groups_sem);
7744 }
7745 
7746 /*
7747  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7748  *			  hole that is at least as big as @num_bytes.
7749  *
7750  * @root           -	The root that will contain this extent
7751  *
7752  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
7753  *			is used for accounting purposes. This value differs
7754  *			from @num_bytes only in the case of compressed extents.
7755  *
7756  * @num_bytes      -	Number of bytes to allocate on-disk.
7757  *
7758  * @min_alloc_size -	Indicates the minimum amount of space that the
7759  *			allocator should try to satisfy. In some cases
7760  *			@num_bytes may be larger than what is required and if
7761  *			the filesystem is fragmented then allocation fails.
7762  *			However, the presence of @min_alloc_size gives a
7763  *			chance to try and satisfy the smaller allocation.
7764  *
7765  * @empty_size     -	A hint that you plan on doing more COW. This is the
7766  *			size in bytes the allocator should try to find free
7767  *			next to the block it returns.  This is just a hint and
7768  *			may be ignored by the allocator.
7769  *
7770  * @hint_byte      -	Hint to the allocator to start searching above the byte
7771  *			address passed. It might be ignored.
7772  *
7773  * @ins            -	This key is modified to record the found hole. It will
7774  *			have the following values:
7775  *			ins->objectid == start position
7776  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
7777  *			ins->offset == the size of the hole.
7778  *
7779  * @is_data        -	Boolean flag indicating whether an extent is
7780  *			allocated for data (true) or metadata (false)
7781  *
7782  * @delalloc       -	Boolean flag indicating whether this allocation is for
7783  *			delalloc or not. If 'true' data_rwsem of block groups
7784  *			is going to be acquired.
7785  *
7786  *
7787  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7788  * case -ENOSPC is returned then @ins->offset will contain the size of the
7789  * largest available hole the allocator managed to find.
7790  */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)7791 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7792 			 u64 num_bytes, u64 min_alloc_size,
7793 			 u64 empty_size, u64 hint_byte,
7794 			 struct btrfs_key *ins, int is_data, int delalloc)
7795 {
7796 	struct btrfs_fs_info *fs_info = root->fs_info;
7797 	bool final_tried = num_bytes == min_alloc_size;
7798 	u64 flags;
7799 	int ret;
7800 
7801 	flags = get_alloc_profile_by_root(root, is_data);
7802 again:
7803 	WARN_ON(num_bytes < fs_info->sectorsize);
7804 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7805 			       hint_byte, ins, flags, delalloc);
7806 	if (!ret && !is_data) {
7807 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7808 	} else if (ret == -ENOSPC) {
7809 		if (!final_tried && ins->offset) {
7810 			num_bytes = min(num_bytes >> 1, ins->offset);
7811 			num_bytes = round_down(num_bytes,
7812 					       fs_info->sectorsize);
7813 			num_bytes = max(num_bytes, min_alloc_size);
7814 			ram_bytes = num_bytes;
7815 			if (num_bytes == min_alloc_size)
7816 				final_tried = true;
7817 			goto again;
7818 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7819 			struct btrfs_space_info *sinfo;
7820 
7821 			sinfo = __find_space_info(fs_info, flags);
7822 			btrfs_err(fs_info,
7823 				  "allocation failed flags %llu, wanted %llu",
7824 				  flags, num_bytes);
7825 			if (sinfo)
7826 				dump_space_info(fs_info, sinfo, num_bytes, 1);
7827 		}
7828 	}
7829 
7830 	return ret;
7831 }
7832 
__btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int pin,int delalloc)7833 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7834 					u64 start, u64 len,
7835 					int pin, int delalloc)
7836 {
7837 	struct btrfs_block_group_cache *cache;
7838 	int ret = 0;
7839 
7840 	cache = btrfs_lookup_block_group(fs_info, start);
7841 	if (!cache) {
7842 		btrfs_err(fs_info, "Unable to find block group for %llu",
7843 			  start);
7844 		return -ENOSPC;
7845 	}
7846 
7847 	if (pin)
7848 		pin_down_extent(fs_info, cache, start, len, 1);
7849 	else {
7850 		if (btrfs_test_opt(fs_info, DISCARD))
7851 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
7852 		btrfs_add_free_space(cache, start, len);
7853 		btrfs_free_reserved_bytes(cache, len, delalloc);
7854 		trace_btrfs_reserved_extent_free(fs_info, start, len);
7855 	}
7856 
7857 	btrfs_put_block_group(cache);
7858 	return ret;
7859 }
7860 
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)7861 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7862 			       u64 start, u64 len, int delalloc)
7863 {
7864 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
7865 }
7866 
btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)7867 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
7868 				       u64 start, u64 len)
7869 {
7870 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
7871 }
7872 
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)7873 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7874 				      u64 parent, u64 root_objectid,
7875 				      u64 flags, u64 owner, u64 offset,
7876 				      struct btrfs_key *ins, int ref_mod)
7877 {
7878 	struct btrfs_fs_info *fs_info = trans->fs_info;
7879 	int ret;
7880 	struct btrfs_extent_item *extent_item;
7881 	struct btrfs_extent_inline_ref *iref;
7882 	struct btrfs_path *path;
7883 	struct extent_buffer *leaf;
7884 	int type;
7885 	u32 size;
7886 
7887 	if (parent > 0)
7888 		type = BTRFS_SHARED_DATA_REF_KEY;
7889 	else
7890 		type = BTRFS_EXTENT_DATA_REF_KEY;
7891 
7892 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7893 
7894 	path = btrfs_alloc_path();
7895 	if (!path)
7896 		return -ENOMEM;
7897 
7898 	path->leave_spinning = 1;
7899 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7900 				      ins, size);
7901 	if (ret) {
7902 		btrfs_free_path(path);
7903 		return ret;
7904 	}
7905 
7906 	leaf = path->nodes[0];
7907 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7908 				     struct btrfs_extent_item);
7909 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7910 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7911 	btrfs_set_extent_flags(leaf, extent_item,
7912 			       flags | BTRFS_EXTENT_FLAG_DATA);
7913 
7914 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7915 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7916 	if (parent > 0) {
7917 		struct btrfs_shared_data_ref *ref;
7918 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7919 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7920 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7921 	} else {
7922 		struct btrfs_extent_data_ref *ref;
7923 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7924 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7925 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7926 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7927 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7928 	}
7929 
7930 	btrfs_mark_buffer_dirty(path->nodes[0]);
7931 	btrfs_free_path(path);
7932 
7933 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
7934 	if (ret)
7935 		return ret;
7936 
7937 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
7938 	if (ret) { /* -ENOENT, logic error */
7939 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7940 			ins->objectid, ins->offset);
7941 		BUG();
7942 	}
7943 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
7944 	return ret;
7945 }
7946 
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)7947 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7948 				     struct btrfs_delayed_ref_node *node,
7949 				     struct btrfs_delayed_extent_op *extent_op)
7950 {
7951 	struct btrfs_fs_info *fs_info = trans->fs_info;
7952 	int ret;
7953 	struct btrfs_extent_item *extent_item;
7954 	struct btrfs_key extent_key;
7955 	struct btrfs_tree_block_info *block_info;
7956 	struct btrfs_extent_inline_ref *iref;
7957 	struct btrfs_path *path;
7958 	struct extent_buffer *leaf;
7959 	struct btrfs_delayed_tree_ref *ref;
7960 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7961 	u64 num_bytes;
7962 	u64 flags = extent_op->flags_to_set;
7963 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
7964 
7965 	ref = btrfs_delayed_node_to_tree_ref(node);
7966 
7967 	extent_key.objectid = node->bytenr;
7968 	if (skinny_metadata) {
7969 		extent_key.offset = ref->level;
7970 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
7971 		num_bytes = fs_info->nodesize;
7972 	} else {
7973 		extent_key.offset = node->num_bytes;
7974 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7975 		size += sizeof(*block_info);
7976 		num_bytes = node->num_bytes;
7977 	}
7978 
7979 	path = btrfs_alloc_path();
7980 	if (!path) {
7981 		btrfs_free_and_pin_reserved_extent(fs_info,
7982 						   extent_key.objectid,
7983 						   fs_info->nodesize);
7984 		return -ENOMEM;
7985 	}
7986 
7987 	path->leave_spinning = 1;
7988 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7989 				      &extent_key, size);
7990 	if (ret) {
7991 		btrfs_free_path(path);
7992 		btrfs_free_and_pin_reserved_extent(fs_info,
7993 						   extent_key.objectid,
7994 						   fs_info->nodesize);
7995 		return ret;
7996 	}
7997 
7998 	leaf = path->nodes[0];
7999 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8000 				     struct btrfs_extent_item);
8001 	btrfs_set_extent_refs(leaf, extent_item, 1);
8002 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8003 	btrfs_set_extent_flags(leaf, extent_item,
8004 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8005 
8006 	if (skinny_metadata) {
8007 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8008 	} else {
8009 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8010 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8011 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
8012 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8013 	}
8014 
8015 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8016 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8017 		btrfs_set_extent_inline_ref_type(leaf, iref,
8018 						 BTRFS_SHARED_BLOCK_REF_KEY);
8019 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8020 	} else {
8021 		btrfs_set_extent_inline_ref_type(leaf, iref,
8022 						 BTRFS_TREE_BLOCK_REF_KEY);
8023 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8024 	}
8025 
8026 	btrfs_mark_buffer_dirty(leaf);
8027 	btrfs_free_path(path);
8028 
8029 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
8030 					  num_bytes);
8031 	if (ret)
8032 		return ret;
8033 
8034 	ret = update_block_group(trans, fs_info, extent_key.objectid,
8035 				 fs_info->nodesize, 1);
8036 	if (ret) { /* -ENOENT, logic error */
8037 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8038 			extent_key.objectid, extent_key.offset);
8039 		BUG();
8040 	}
8041 
8042 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8043 					  fs_info->nodesize);
8044 	return ret;
8045 }
8046 
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)8047 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8048 				     struct btrfs_root *root, u64 owner,
8049 				     u64 offset, u64 ram_bytes,
8050 				     struct btrfs_key *ins)
8051 {
8052 	int ret;
8053 
8054 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8055 
8056 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8057 			   root->root_key.objectid, owner, offset,
8058 			   BTRFS_ADD_DELAYED_EXTENT);
8059 
8060 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8061 					 ins->offset, 0,
8062 					 root->root_key.objectid, owner,
8063 					 offset, ram_bytes,
8064 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8065 	return ret;
8066 }
8067 
8068 /*
8069  * this is used by the tree logging recovery code.  It records that
8070  * an extent has been allocated and makes sure to clear the free
8071  * space cache bits as well
8072  */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)8073 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8074 				   u64 root_objectid, u64 owner, u64 offset,
8075 				   struct btrfs_key *ins)
8076 {
8077 	struct btrfs_fs_info *fs_info = trans->fs_info;
8078 	int ret;
8079 	struct btrfs_block_group_cache *block_group;
8080 	struct btrfs_space_info *space_info;
8081 
8082 	/*
8083 	 * Mixed block groups will exclude before processing the log so we only
8084 	 * need to do the exclude dance if this fs isn't mixed.
8085 	 */
8086 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8087 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8088 					      ins->offset);
8089 		if (ret)
8090 			return ret;
8091 	}
8092 
8093 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8094 	if (!block_group)
8095 		return -EINVAL;
8096 
8097 	space_info = block_group->space_info;
8098 	spin_lock(&space_info->lock);
8099 	spin_lock(&block_group->lock);
8100 	space_info->bytes_reserved += ins->offset;
8101 	block_group->reserved += ins->offset;
8102 	spin_unlock(&block_group->lock);
8103 	spin_unlock(&space_info->lock);
8104 
8105 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8106 					 offset, ins, 1);
8107 	btrfs_put_block_group(block_group);
8108 	return ret;
8109 }
8110 
8111 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner)8112 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8113 		      u64 bytenr, int level, u64 owner)
8114 {
8115 	struct btrfs_fs_info *fs_info = root->fs_info;
8116 	struct extent_buffer *buf;
8117 
8118 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8119 	if (IS_ERR(buf))
8120 		return buf;
8121 
8122 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8123 	btrfs_tree_lock(buf);
8124 	clean_tree_block(fs_info, buf);
8125 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8126 
8127 	btrfs_set_lock_blocking(buf);
8128 	set_extent_buffer_uptodate(buf);
8129 
8130 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8131 	btrfs_set_header_level(buf, level);
8132 	btrfs_set_header_bytenr(buf, buf->start);
8133 	btrfs_set_header_generation(buf, trans->transid);
8134 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8135 	btrfs_set_header_owner(buf, owner);
8136 	write_extent_buffer_fsid(buf, fs_info->fsid);
8137 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8138 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8139 		buf->log_index = root->log_transid % 2;
8140 		/*
8141 		 * we allow two log transactions at a time, use different
8142 		 * EXENT bit to differentiate dirty pages.
8143 		 */
8144 		if (buf->log_index == 0)
8145 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8146 					buf->start + buf->len - 1, GFP_NOFS);
8147 		else
8148 			set_extent_new(&root->dirty_log_pages, buf->start,
8149 					buf->start + buf->len - 1);
8150 	} else {
8151 		buf->log_index = -1;
8152 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8153 			 buf->start + buf->len - 1, GFP_NOFS);
8154 	}
8155 	trans->dirty = true;
8156 	/* this returns a buffer locked for blocking */
8157 	return buf;
8158 }
8159 
8160 static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)8161 use_block_rsv(struct btrfs_trans_handle *trans,
8162 	      struct btrfs_root *root, u32 blocksize)
8163 {
8164 	struct btrfs_fs_info *fs_info = root->fs_info;
8165 	struct btrfs_block_rsv *block_rsv;
8166 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8167 	int ret;
8168 	bool global_updated = false;
8169 
8170 	block_rsv = get_block_rsv(trans, root);
8171 
8172 	if (unlikely(block_rsv->size == 0))
8173 		goto try_reserve;
8174 again:
8175 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8176 	if (!ret)
8177 		return block_rsv;
8178 
8179 	if (block_rsv->failfast)
8180 		return ERR_PTR(ret);
8181 
8182 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8183 		global_updated = true;
8184 		update_global_block_rsv(fs_info);
8185 		goto again;
8186 	}
8187 
8188 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8189 		static DEFINE_RATELIMIT_STATE(_rs,
8190 				DEFAULT_RATELIMIT_INTERVAL * 10,
8191 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8192 		if (__ratelimit(&_rs))
8193 			WARN(1, KERN_DEBUG
8194 				"BTRFS: block rsv returned %d\n", ret);
8195 	}
8196 try_reserve:
8197 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8198 				     BTRFS_RESERVE_NO_FLUSH);
8199 	if (!ret)
8200 		return block_rsv;
8201 	/*
8202 	 * If we couldn't reserve metadata bytes try and use some from
8203 	 * the global reserve if its space type is the same as the global
8204 	 * reservation.
8205 	 */
8206 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8207 	    block_rsv->space_info == global_rsv->space_info) {
8208 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8209 		if (!ret)
8210 			return global_rsv;
8211 	}
8212 	return ERR_PTR(ret);
8213 }
8214 
unuse_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u32 blocksize)8215 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8216 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8217 {
8218 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8219 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8220 }
8221 
8222 /*
8223  * finds a free extent and does all the dirty work required for allocation
8224  * returns the tree buffer or an ERR_PTR on error.
8225  */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size)8226 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8227 					     struct btrfs_root *root,
8228 					     u64 parent, u64 root_objectid,
8229 					     const struct btrfs_disk_key *key,
8230 					     int level, u64 hint,
8231 					     u64 empty_size)
8232 {
8233 	struct btrfs_fs_info *fs_info = root->fs_info;
8234 	struct btrfs_key ins;
8235 	struct btrfs_block_rsv *block_rsv;
8236 	struct extent_buffer *buf;
8237 	struct btrfs_delayed_extent_op *extent_op;
8238 	u64 flags = 0;
8239 	int ret;
8240 	u32 blocksize = fs_info->nodesize;
8241 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8242 
8243 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8244 	if (btrfs_is_testing(fs_info)) {
8245 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8246 					    level, root_objectid);
8247 		if (!IS_ERR(buf))
8248 			root->alloc_bytenr += blocksize;
8249 		return buf;
8250 	}
8251 #endif
8252 
8253 	block_rsv = use_block_rsv(trans, root, blocksize);
8254 	if (IS_ERR(block_rsv))
8255 		return ERR_CAST(block_rsv);
8256 
8257 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8258 				   empty_size, hint, &ins, 0, 0);
8259 	if (ret)
8260 		goto out_unuse;
8261 
8262 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8263 				    root_objectid);
8264 	if (IS_ERR(buf)) {
8265 		ret = PTR_ERR(buf);
8266 		goto out_free_reserved;
8267 	}
8268 
8269 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8270 		if (parent == 0)
8271 			parent = ins.objectid;
8272 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8273 	} else
8274 		BUG_ON(parent > 0);
8275 
8276 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8277 		extent_op = btrfs_alloc_delayed_extent_op();
8278 		if (!extent_op) {
8279 			ret = -ENOMEM;
8280 			goto out_free_buf;
8281 		}
8282 		if (key)
8283 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8284 		else
8285 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8286 		extent_op->flags_to_set = flags;
8287 		extent_op->update_key = skinny_metadata ? false : true;
8288 		extent_op->update_flags = true;
8289 		extent_op->is_data = false;
8290 		extent_op->level = level;
8291 
8292 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8293 				   root_objectid, level, 0,
8294 				   BTRFS_ADD_DELAYED_EXTENT);
8295 		ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8296 						 ins.offset, parent,
8297 						 root_objectid, level,
8298 						 BTRFS_ADD_DELAYED_EXTENT,
8299 						 extent_op, NULL, NULL);
8300 		if (ret)
8301 			goto out_free_delayed;
8302 	}
8303 	return buf;
8304 
8305 out_free_delayed:
8306 	btrfs_free_delayed_extent_op(extent_op);
8307 out_free_buf:
8308 	free_extent_buffer(buf);
8309 out_free_reserved:
8310 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8311 out_unuse:
8312 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8313 	return ERR_PTR(ret);
8314 }
8315 
8316 struct walk_control {
8317 	u64 refs[BTRFS_MAX_LEVEL];
8318 	u64 flags[BTRFS_MAX_LEVEL];
8319 	struct btrfs_key update_progress;
8320 	int stage;
8321 	int level;
8322 	int shared_level;
8323 	int update_ref;
8324 	int keep_locks;
8325 	int reada_slot;
8326 	int reada_count;
8327 };
8328 
8329 #define DROP_REFERENCE	1
8330 #define UPDATE_BACKREF	2
8331 
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)8332 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8333 				     struct btrfs_root *root,
8334 				     struct walk_control *wc,
8335 				     struct btrfs_path *path)
8336 {
8337 	struct btrfs_fs_info *fs_info = root->fs_info;
8338 	u64 bytenr;
8339 	u64 generation;
8340 	u64 refs;
8341 	u64 flags;
8342 	u32 nritems;
8343 	struct btrfs_key key;
8344 	struct extent_buffer *eb;
8345 	int ret;
8346 	int slot;
8347 	int nread = 0;
8348 
8349 	if (path->slots[wc->level] < wc->reada_slot) {
8350 		wc->reada_count = wc->reada_count * 2 / 3;
8351 		wc->reada_count = max(wc->reada_count, 2);
8352 	} else {
8353 		wc->reada_count = wc->reada_count * 3 / 2;
8354 		wc->reada_count = min_t(int, wc->reada_count,
8355 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8356 	}
8357 
8358 	eb = path->nodes[wc->level];
8359 	nritems = btrfs_header_nritems(eb);
8360 
8361 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8362 		if (nread >= wc->reada_count)
8363 			break;
8364 
8365 		cond_resched();
8366 		bytenr = btrfs_node_blockptr(eb, slot);
8367 		generation = btrfs_node_ptr_generation(eb, slot);
8368 
8369 		if (slot == path->slots[wc->level])
8370 			goto reada;
8371 
8372 		if (wc->stage == UPDATE_BACKREF &&
8373 		    generation <= root->root_key.offset)
8374 			continue;
8375 
8376 		/* We don't lock the tree block, it's OK to be racy here */
8377 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8378 					       wc->level - 1, 1, &refs,
8379 					       &flags);
8380 		/* We don't care about errors in readahead. */
8381 		if (ret < 0)
8382 			continue;
8383 		BUG_ON(refs == 0);
8384 
8385 		if (wc->stage == DROP_REFERENCE) {
8386 			if (refs == 1)
8387 				goto reada;
8388 
8389 			if (wc->level == 1 &&
8390 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8391 				continue;
8392 			if (!wc->update_ref ||
8393 			    generation <= root->root_key.offset)
8394 				continue;
8395 			btrfs_node_key_to_cpu(eb, &key, slot);
8396 			ret = btrfs_comp_cpu_keys(&key,
8397 						  &wc->update_progress);
8398 			if (ret < 0)
8399 				continue;
8400 		} else {
8401 			if (wc->level == 1 &&
8402 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8403 				continue;
8404 		}
8405 reada:
8406 		readahead_tree_block(fs_info, bytenr);
8407 		nread++;
8408 	}
8409 	wc->reada_slot = slot;
8410 }
8411 
8412 /*
8413  * helper to process tree block while walking down the tree.
8414  *
8415  * when wc->stage == UPDATE_BACKREF, this function updates
8416  * back refs for pointers in the block.
8417  *
8418  * NOTE: return value 1 means we should stop walking down.
8419  */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)8420 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8421 				   struct btrfs_root *root,
8422 				   struct btrfs_path *path,
8423 				   struct walk_control *wc, int lookup_info)
8424 {
8425 	struct btrfs_fs_info *fs_info = root->fs_info;
8426 	int level = wc->level;
8427 	struct extent_buffer *eb = path->nodes[level];
8428 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8429 	int ret;
8430 
8431 	if (wc->stage == UPDATE_BACKREF &&
8432 	    btrfs_header_owner(eb) != root->root_key.objectid)
8433 		return 1;
8434 
8435 	/*
8436 	 * when reference count of tree block is 1, it won't increase
8437 	 * again. once full backref flag is set, we never clear it.
8438 	 */
8439 	if (lookup_info &&
8440 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8441 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8442 		BUG_ON(!path->locks[level]);
8443 		ret = btrfs_lookup_extent_info(trans, fs_info,
8444 					       eb->start, level, 1,
8445 					       &wc->refs[level],
8446 					       &wc->flags[level]);
8447 		BUG_ON(ret == -ENOMEM);
8448 		if (ret)
8449 			return ret;
8450 		BUG_ON(wc->refs[level] == 0);
8451 	}
8452 
8453 	if (wc->stage == DROP_REFERENCE) {
8454 		if (wc->refs[level] > 1)
8455 			return 1;
8456 
8457 		if (path->locks[level] && !wc->keep_locks) {
8458 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8459 			path->locks[level] = 0;
8460 		}
8461 		return 0;
8462 	}
8463 
8464 	/* wc->stage == UPDATE_BACKREF */
8465 	if (!(wc->flags[level] & flag)) {
8466 		BUG_ON(!path->locks[level]);
8467 		ret = btrfs_inc_ref(trans, root, eb, 1);
8468 		BUG_ON(ret); /* -ENOMEM */
8469 		ret = btrfs_dec_ref(trans, root, eb, 0);
8470 		BUG_ON(ret); /* -ENOMEM */
8471 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8472 						  eb->len, flag,
8473 						  btrfs_header_level(eb), 0);
8474 		BUG_ON(ret); /* -ENOMEM */
8475 		wc->flags[level] |= flag;
8476 	}
8477 
8478 	/*
8479 	 * the block is shared by multiple trees, so it's not good to
8480 	 * keep the tree lock
8481 	 */
8482 	if (path->locks[level] && level > 0) {
8483 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8484 		path->locks[level] = 0;
8485 	}
8486 	return 0;
8487 }
8488 
8489 /*
8490  * helper to process tree block pointer.
8491  *
8492  * when wc->stage == DROP_REFERENCE, this function checks
8493  * reference count of the block pointed to. if the block
8494  * is shared and we need update back refs for the subtree
8495  * rooted at the block, this function changes wc->stage to
8496  * UPDATE_BACKREF. if the block is shared and there is no
8497  * need to update back, this function drops the reference
8498  * to the block.
8499  *
8500  * NOTE: return value 1 means we should stop walking down.
8501  */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)8502 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8503 				 struct btrfs_root *root,
8504 				 struct btrfs_path *path,
8505 				 struct walk_control *wc, int *lookup_info)
8506 {
8507 	struct btrfs_fs_info *fs_info = root->fs_info;
8508 	u64 bytenr;
8509 	u64 generation;
8510 	u64 parent;
8511 	u32 blocksize;
8512 	struct btrfs_key key;
8513 	struct btrfs_key first_key;
8514 	struct extent_buffer *next;
8515 	int level = wc->level;
8516 	int reada = 0;
8517 	int ret = 0;
8518 	bool need_account = false;
8519 
8520 	generation = btrfs_node_ptr_generation(path->nodes[level],
8521 					       path->slots[level]);
8522 	/*
8523 	 * if the lower level block was created before the snapshot
8524 	 * was created, we know there is no need to update back refs
8525 	 * for the subtree
8526 	 */
8527 	if (wc->stage == UPDATE_BACKREF &&
8528 	    generation <= root->root_key.offset) {
8529 		*lookup_info = 1;
8530 		return 1;
8531 	}
8532 
8533 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8534 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8535 			      path->slots[level]);
8536 	blocksize = fs_info->nodesize;
8537 
8538 	next = find_extent_buffer(fs_info, bytenr);
8539 	if (!next) {
8540 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8541 		if (IS_ERR(next))
8542 			return PTR_ERR(next);
8543 
8544 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8545 					       level - 1);
8546 		reada = 1;
8547 	}
8548 	btrfs_tree_lock(next);
8549 	btrfs_set_lock_blocking(next);
8550 
8551 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8552 				       &wc->refs[level - 1],
8553 				       &wc->flags[level - 1]);
8554 	if (ret < 0)
8555 		goto out_unlock;
8556 
8557 	if (unlikely(wc->refs[level - 1] == 0)) {
8558 		btrfs_err(fs_info, "Missing references.");
8559 		ret = -EIO;
8560 		goto out_unlock;
8561 	}
8562 	*lookup_info = 0;
8563 
8564 	if (wc->stage == DROP_REFERENCE) {
8565 		if (wc->refs[level - 1] > 1) {
8566 			need_account = true;
8567 			if (level == 1 &&
8568 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8569 				goto skip;
8570 
8571 			if (!wc->update_ref ||
8572 			    generation <= root->root_key.offset)
8573 				goto skip;
8574 
8575 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8576 					      path->slots[level]);
8577 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8578 			if (ret < 0)
8579 				goto skip;
8580 
8581 			wc->stage = UPDATE_BACKREF;
8582 			wc->shared_level = level - 1;
8583 		}
8584 	} else {
8585 		if (level == 1 &&
8586 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8587 			goto skip;
8588 	}
8589 
8590 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8591 		btrfs_tree_unlock(next);
8592 		free_extent_buffer(next);
8593 		next = NULL;
8594 		*lookup_info = 1;
8595 	}
8596 
8597 	if (!next) {
8598 		if (reada && level == 1)
8599 			reada_walk_down(trans, root, wc, path);
8600 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
8601 				       &first_key);
8602 		if (IS_ERR(next)) {
8603 			return PTR_ERR(next);
8604 		} else if (!extent_buffer_uptodate(next)) {
8605 			free_extent_buffer(next);
8606 			return -EIO;
8607 		}
8608 		btrfs_tree_lock(next);
8609 		btrfs_set_lock_blocking(next);
8610 	}
8611 
8612 	level--;
8613 	ASSERT(level == btrfs_header_level(next));
8614 	if (level != btrfs_header_level(next)) {
8615 		btrfs_err(root->fs_info, "mismatched level");
8616 		ret = -EIO;
8617 		goto out_unlock;
8618 	}
8619 	path->nodes[level] = next;
8620 	path->slots[level] = 0;
8621 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8622 	wc->level = level;
8623 	if (wc->level == 1)
8624 		wc->reada_slot = 0;
8625 	return 0;
8626 skip:
8627 	wc->refs[level - 1] = 0;
8628 	wc->flags[level - 1] = 0;
8629 	if (wc->stage == DROP_REFERENCE) {
8630 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8631 			parent = path->nodes[level]->start;
8632 		} else {
8633 			ASSERT(root->root_key.objectid ==
8634 			       btrfs_header_owner(path->nodes[level]));
8635 			if (root->root_key.objectid !=
8636 			    btrfs_header_owner(path->nodes[level])) {
8637 				btrfs_err(root->fs_info,
8638 						"mismatched block owner");
8639 				ret = -EIO;
8640 				goto out_unlock;
8641 			}
8642 			parent = 0;
8643 		}
8644 
8645 		if (need_account) {
8646 			ret = btrfs_qgroup_trace_subtree(trans, next,
8647 							 generation, level - 1);
8648 			if (ret) {
8649 				btrfs_err_rl(fs_info,
8650 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8651 					     ret);
8652 			}
8653 		}
8654 		ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8655 					parent, root->root_key.objectid,
8656 					level - 1, 0);
8657 		if (ret)
8658 			goto out_unlock;
8659 	}
8660 
8661 	*lookup_info = 1;
8662 	ret = 1;
8663 
8664 out_unlock:
8665 	btrfs_tree_unlock(next);
8666 	free_extent_buffer(next);
8667 
8668 	return ret;
8669 }
8670 
8671 /*
8672  * helper to process tree block while walking up the tree.
8673  *
8674  * when wc->stage == DROP_REFERENCE, this function drops
8675  * reference count on the block.
8676  *
8677  * when wc->stage == UPDATE_BACKREF, this function changes
8678  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8679  * to UPDATE_BACKREF previously while processing the block.
8680  *
8681  * NOTE: return value 1 means we should stop walking up.
8682  */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8683 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8684 				 struct btrfs_root *root,
8685 				 struct btrfs_path *path,
8686 				 struct walk_control *wc)
8687 {
8688 	struct btrfs_fs_info *fs_info = root->fs_info;
8689 	int ret;
8690 	int level = wc->level;
8691 	struct extent_buffer *eb = path->nodes[level];
8692 	u64 parent = 0;
8693 
8694 	if (wc->stage == UPDATE_BACKREF) {
8695 		BUG_ON(wc->shared_level < level);
8696 		if (level < wc->shared_level)
8697 			goto out;
8698 
8699 		ret = find_next_key(path, level + 1, &wc->update_progress);
8700 		if (ret > 0)
8701 			wc->update_ref = 0;
8702 
8703 		wc->stage = DROP_REFERENCE;
8704 		wc->shared_level = -1;
8705 		path->slots[level] = 0;
8706 
8707 		/*
8708 		 * check reference count again if the block isn't locked.
8709 		 * we should start walking down the tree again if reference
8710 		 * count is one.
8711 		 */
8712 		if (!path->locks[level]) {
8713 			BUG_ON(level == 0);
8714 			btrfs_tree_lock(eb);
8715 			btrfs_set_lock_blocking(eb);
8716 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8717 
8718 			ret = btrfs_lookup_extent_info(trans, fs_info,
8719 						       eb->start, level, 1,
8720 						       &wc->refs[level],
8721 						       &wc->flags[level]);
8722 			if (ret < 0) {
8723 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8724 				path->locks[level] = 0;
8725 				return ret;
8726 			}
8727 			BUG_ON(wc->refs[level] == 0);
8728 			if (wc->refs[level] == 1) {
8729 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8730 				path->locks[level] = 0;
8731 				return 1;
8732 			}
8733 		}
8734 	}
8735 
8736 	/* wc->stage == DROP_REFERENCE */
8737 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8738 
8739 	if (wc->refs[level] == 1) {
8740 		if (level == 0) {
8741 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8742 				ret = btrfs_dec_ref(trans, root, eb, 1);
8743 			else
8744 				ret = btrfs_dec_ref(trans, root, eb, 0);
8745 			BUG_ON(ret); /* -ENOMEM */
8746 			ret = btrfs_qgroup_trace_leaf_items(trans, eb);
8747 			if (ret) {
8748 				btrfs_err_rl(fs_info,
8749 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8750 					     ret);
8751 			}
8752 		}
8753 		/* make block locked assertion in clean_tree_block happy */
8754 		if (!path->locks[level] &&
8755 		    btrfs_header_generation(eb) == trans->transid) {
8756 			btrfs_tree_lock(eb);
8757 			btrfs_set_lock_blocking(eb);
8758 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8759 		}
8760 		clean_tree_block(fs_info, eb);
8761 	}
8762 
8763 	if (eb == root->node) {
8764 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8765 			parent = eb->start;
8766 		else
8767 			BUG_ON(root->root_key.objectid !=
8768 			       btrfs_header_owner(eb));
8769 	} else {
8770 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8771 			parent = path->nodes[level + 1]->start;
8772 		else
8773 			BUG_ON(root->root_key.objectid !=
8774 			       btrfs_header_owner(path->nodes[level + 1]));
8775 	}
8776 
8777 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8778 out:
8779 	wc->refs[level] = 0;
8780 	wc->flags[level] = 0;
8781 	return 0;
8782 }
8783 
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8784 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8785 				   struct btrfs_root *root,
8786 				   struct btrfs_path *path,
8787 				   struct walk_control *wc)
8788 {
8789 	int level = wc->level;
8790 	int lookup_info = 1;
8791 	int ret;
8792 
8793 	while (level >= 0) {
8794 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8795 		if (ret > 0)
8796 			break;
8797 
8798 		if (level == 0)
8799 			break;
8800 
8801 		if (path->slots[level] >=
8802 		    btrfs_header_nritems(path->nodes[level]))
8803 			break;
8804 
8805 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8806 		if (ret > 0) {
8807 			path->slots[level]++;
8808 			continue;
8809 		} else if (ret < 0)
8810 			return ret;
8811 		level = wc->level;
8812 	}
8813 	return 0;
8814 }
8815 
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)8816 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8817 				 struct btrfs_root *root,
8818 				 struct btrfs_path *path,
8819 				 struct walk_control *wc, int max_level)
8820 {
8821 	int level = wc->level;
8822 	int ret;
8823 
8824 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8825 	while (level < max_level && path->nodes[level]) {
8826 		wc->level = level;
8827 		if (path->slots[level] + 1 <
8828 		    btrfs_header_nritems(path->nodes[level])) {
8829 			path->slots[level]++;
8830 			return 0;
8831 		} else {
8832 			ret = walk_up_proc(trans, root, path, wc);
8833 			if (ret > 0)
8834 				return 0;
8835 
8836 			if (path->locks[level]) {
8837 				btrfs_tree_unlock_rw(path->nodes[level],
8838 						     path->locks[level]);
8839 				path->locks[level] = 0;
8840 			}
8841 			free_extent_buffer(path->nodes[level]);
8842 			path->nodes[level] = NULL;
8843 			level++;
8844 		}
8845 	}
8846 	return 1;
8847 }
8848 
8849 /*
8850  * drop a subvolume tree.
8851  *
8852  * this function traverses the tree freeing any blocks that only
8853  * referenced by the tree.
8854  *
8855  * when a shared tree block is found. this function decreases its
8856  * reference count by one. if update_ref is true, this function
8857  * also make sure backrefs for the shared block and all lower level
8858  * blocks are properly updated.
8859  *
8860  * If called with for_reloc == 0, may exit early with -EAGAIN
8861  */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)8862 int btrfs_drop_snapshot(struct btrfs_root *root,
8863 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8864 			 int for_reloc)
8865 {
8866 	struct btrfs_fs_info *fs_info = root->fs_info;
8867 	struct btrfs_path *path;
8868 	struct btrfs_trans_handle *trans;
8869 	struct btrfs_root *tree_root = fs_info->tree_root;
8870 	struct btrfs_root_item *root_item = &root->root_item;
8871 	struct walk_control *wc;
8872 	struct btrfs_key key;
8873 	int err = 0;
8874 	int ret;
8875 	int level;
8876 	bool root_dropped = false;
8877 
8878 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8879 
8880 	path = btrfs_alloc_path();
8881 	if (!path) {
8882 		err = -ENOMEM;
8883 		goto out;
8884 	}
8885 
8886 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8887 	if (!wc) {
8888 		btrfs_free_path(path);
8889 		err = -ENOMEM;
8890 		goto out;
8891 	}
8892 
8893 	trans = btrfs_start_transaction(tree_root, 0);
8894 	if (IS_ERR(trans)) {
8895 		err = PTR_ERR(trans);
8896 		goto out_free;
8897 	}
8898 
8899 	if (block_rsv)
8900 		trans->block_rsv = block_rsv;
8901 
8902 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8903 		level = btrfs_header_level(root->node);
8904 		path->nodes[level] = btrfs_lock_root_node(root);
8905 		btrfs_set_lock_blocking(path->nodes[level]);
8906 		path->slots[level] = 0;
8907 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8908 		memset(&wc->update_progress, 0,
8909 		       sizeof(wc->update_progress));
8910 	} else {
8911 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8912 		memcpy(&wc->update_progress, &key,
8913 		       sizeof(wc->update_progress));
8914 
8915 		level = root_item->drop_level;
8916 		BUG_ON(level == 0);
8917 		path->lowest_level = level;
8918 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8919 		path->lowest_level = 0;
8920 		if (ret < 0) {
8921 			err = ret;
8922 			goto out_end_trans;
8923 		}
8924 		WARN_ON(ret > 0);
8925 
8926 		/*
8927 		 * unlock our path, this is safe because only this
8928 		 * function is allowed to delete this snapshot
8929 		 */
8930 		btrfs_unlock_up_safe(path, 0);
8931 
8932 		level = btrfs_header_level(root->node);
8933 		while (1) {
8934 			btrfs_tree_lock(path->nodes[level]);
8935 			btrfs_set_lock_blocking(path->nodes[level]);
8936 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8937 
8938 			ret = btrfs_lookup_extent_info(trans, fs_info,
8939 						path->nodes[level]->start,
8940 						level, 1, &wc->refs[level],
8941 						&wc->flags[level]);
8942 			if (ret < 0) {
8943 				err = ret;
8944 				goto out_end_trans;
8945 			}
8946 			BUG_ON(wc->refs[level] == 0);
8947 
8948 			if (level == root_item->drop_level)
8949 				break;
8950 
8951 			btrfs_tree_unlock(path->nodes[level]);
8952 			path->locks[level] = 0;
8953 			WARN_ON(wc->refs[level] != 1);
8954 			level--;
8955 		}
8956 	}
8957 
8958 	wc->level = level;
8959 	wc->shared_level = -1;
8960 	wc->stage = DROP_REFERENCE;
8961 	wc->update_ref = update_ref;
8962 	wc->keep_locks = 0;
8963 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
8964 
8965 	while (1) {
8966 
8967 		ret = walk_down_tree(trans, root, path, wc);
8968 		if (ret < 0) {
8969 			err = ret;
8970 			break;
8971 		}
8972 
8973 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8974 		if (ret < 0) {
8975 			err = ret;
8976 			break;
8977 		}
8978 
8979 		if (ret > 0) {
8980 			BUG_ON(wc->stage != DROP_REFERENCE);
8981 			break;
8982 		}
8983 
8984 		if (wc->stage == DROP_REFERENCE) {
8985 			level = wc->level;
8986 			btrfs_node_key(path->nodes[level],
8987 				       &root_item->drop_progress,
8988 				       path->slots[level]);
8989 			root_item->drop_level = level;
8990 		}
8991 
8992 		BUG_ON(wc->level == 0);
8993 		if (btrfs_should_end_transaction(trans) ||
8994 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
8995 			ret = btrfs_update_root(trans, tree_root,
8996 						&root->root_key,
8997 						root_item);
8998 			if (ret) {
8999 				btrfs_abort_transaction(trans, ret);
9000 				err = ret;
9001 				goto out_end_trans;
9002 			}
9003 
9004 			btrfs_end_transaction_throttle(trans);
9005 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9006 				btrfs_debug(fs_info,
9007 					    "drop snapshot early exit");
9008 				err = -EAGAIN;
9009 				goto out_free;
9010 			}
9011 
9012 			trans = btrfs_start_transaction(tree_root, 0);
9013 			if (IS_ERR(trans)) {
9014 				err = PTR_ERR(trans);
9015 				goto out_free;
9016 			}
9017 			if (block_rsv)
9018 				trans->block_rsv = block_rsv;
9019 		}
9020 	}
9021 	btrfs_release_path(path);
9022 	if (err)
9023 		goto out_end_trans;
9024 
9025 	ret = btrfs_del_root(trans, &root->root_key);
9026 	if (ret) {
9027 		btrfs_abort_transaction(trans, ret);
9028 		err = ret;
9029 		goto out_end_trans;
9030 	}
9031 
9032 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9033 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9034 				      NULL, NULL);
9035 		if (ret < 0) {
9036 			btrfs_abort_transaction(trans, ret);
9037 			err = ret;
9038 			goto out_end_trans;
9039 		} else if (ret > 0) {
9040 			/* if we fail to delete the orphan item this time
9041 			 * around, it'll get picked up the next time.
9042 			 *
9043 			 * The most common failure here is just -ENOENT.
9044 			 */
9045 			btrfs_del_orphan_item(trans, tree_root,
9046 					      root->root_key.objectid);
9047 		}
9048 	}
9049 
9050 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9051 		btrfs_add_dropped_root(trans, root);
9052 	} else {
9053 		free_extent_buffer(root->node);
9054 		free_extent_buffer(root->commit_root);
9055 		btrfs_put_fs_root(root);
9056 	}
9057 	root_dropped = true;
9058 out_end_trans:
9059 	btrfs_end_transaction_throttle(trans);
9060 out_free:
9061 	kfree(wc);
9062 	btrfs_free_path(path);
9063 out:
9064 	/*
9065 	 * So if we need to stop dropping the snapshot for whatever reason we
9066 	 * need to make sure to add it back to the dead root list so that we
9067 	 * keep trying to do the work later.  This also cleans up roots if we
9068 	 * don't have it in the radix (like when we recover after a power fail
9069 	 * or unmount) so we don't leak memory.
9070 	 */
9071 	if (!for_reloc && !root_dropped)
9072 		btrfs_add_dead_root(root);
9073 	if (err && err != -EAGAIN)
9074 		btrfs_handle_fs_error(fs_info, err, NULL);
9075 	return err;
9076 }
9077 
9078 /*
9079  * drop subtree rooted at tree block 'node'.
9080  *
9081  * NOTE: this function will unlock and release tree block 'node'
9082  * only used by relocation code
9083  */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)9084 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9085 			struct btrfs_root *root,
9086 			struct extent_buffer *node,
9087 			struct extent_buffer *parent)
9088 {
9089 	struct btrfs_fs_info *fs_info = root->fs_info;
9090 	struct btrfs_path *path;
9091 	struct walk_control *wc;
9092 	int level;
9093 	int parent_level;
9094 	int ret = 0;
9095 	int wret;
9096 
9097 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9098 
9099 	path = btrfs_alloc_path();
9100 	if (!path)
9101 		return -ENOMEM;
9102 
9103 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9104 	if (!wc) {
9105 		btrfs_free_path(path);
9106 		return -ENOMEM;
9107 	}
9108 
9109 	btrfs_assert_tree_locked(parent);
9110 	parent_level = btrfs_header_level(parent);
9111 	extent_buffer_get(parent);
9112 	path->nodes[parent_level] = parent;
9113 	path->slots[parent_level] = btrfs_header_nritems(parent);
9114 
9115 	btrfs_assert_tree_locked(node);
9116 	level = btrfs_header_level(node);
9117 	path->nodes[level] = node;
9118 	path->slots[level] = 0;
9119 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9120 
9121 	wc->refs[parent_level] = 1;
9122 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9123 	wc->level = level;
9124 	wc->shared_level = -1;
9125 	wc->stage = DROP_REFERENCE;
9126 	wc->update_ref = 0;
9127 	wc->keep_locks = 1;
9128 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9129 
9130 	while (1) {
9131 		wret = walk_down_tree(trans, root, path, wc);
9132 		if (wret < 0) {
9133 			ret = wret;
9134 			break;
9135 		}
9136 
9137 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9138 		if (wret < 0)
9139 			ret = wret;
9140 		if (wret != 0)
9141 			break;
9142 	}
9143 
9144 	kfree(wc);
9145 	btrfs_free_path(path);
9146 	return ret;
9147 }
9148 
update_block_group_flags(struct btrfs_fs_info * fs_info,u64 flags)9149 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9150 {
9151 	u64 num_devices;
9152 	u64 stripped;
9153 
9154 	/*
9155 	 * if restripe for this chunk_type is on pick target profile and
9156 	 * return, otherwise do the usual balance
9157 	 */
9158 	stripped = get_restripe_target(fs_info, flags);
9159 	if (stripped)
9160 		return extended_to_chunk(stripped);
9161 
9162 	num_devices = fs_info->fs_devices->rw_devices;
9163 
9164 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9165 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9166 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9167 
9168 	if (num_devices == 1) {
9169 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9170 		stripped = flags & ~stripped;
9171 
9172 		/* turn raid0 into single device chunks */
9173 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9174 			return stripped;
9175 
9176 		/* turn mirroring into duplication */
9177 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9178 			     BTRFS_BLOCK_GROUP_RAID10))
9179 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9180 	} else {
9181 		/* they already had raid on here, just return */
9182 		if (flags & stripped)
9183 			return flags;
9184 
9185 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9186 		stripped = flags & ~stripped;
9187 
9188 		/* switch duplicated blocks with raid1 */
9189 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9190 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9191 
9192 		/* this is drive concat, leave it alone */
9193 	}
9194 
9195 	return flags;
9196 }
9197 
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)9198 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9199 {
9200 	struct btrfs_space_info *sinfo = cache->space_info;
9201 	u64 num_bytes;
9202 	u64 min_allocable_bytes;
9203 	int ret = -ENOSPC;
9204 
9205 	/*
9206 	 * We need some metadata space and system metadata space for
9207 	 * allocating chunks in some corner cases until we force to set
9208 	 * it to be readonly.
9209 	 */
9210 	if ((sinfo->flags &
9211 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9212 	    !force)
9213 		min_allocable_bytes = SZ_1M;
9214 	else
9215 		min_allocable_bytes = 0;
9216 
9217 	spin_lock(&sinfo->lock);
9218 	spin_lock(&cache->lock);
9219 
9220 	if (cache->ro) {
9221 		cache->ro++;
9222 		ret = 0;
9223 		goto out;
9224 	}
9225 
9226 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9227 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9228 
9229 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9230 	    min_allocable_bytes <= sinfo->total_bytes) {
9231 		sinfo->bytes_readonly += num_bytes;
9232 		cache->ro++;
9233 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9234 		ret = 0;
9235 	}
9236 out:
9237 	spin_unlock(&cache->lock);
9238 	spin_unlock(&sinfo->lock);
9239 	return ret;
9240 }
9241 
btrfs_inc_block_group_ro(struct btrfs_block_group_cache * cache)9242 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9243 
9244 {
9245 	struct btrfs_fs_info *fs_info = cache->fs_info;
9246 	struct btrfs_trans_handle *trans;
9247 	u64 alloc_flags;
9248 	int ret;
9249 
9250 again:
9251 	trans = btrfs_join_transaction(fs_info->extent_root);
9252 	if (IS_ERR(trans))
9253 		return PTR_ERR(trans);
9254 
9255 	/*
9256 	 * we're not allowed to set block groups readonly after the dirty
9257 	 * block groups cache has started writing.  If it already started,
9258 	 * back off and let this transaction commit
9259 	 */
9260 	mutex_lock(&fs_info->ro_block_group_mutex);
9261 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9262 		u64 transid = trans->transid;
9263 
9264 		mutex_unlock(&fs_info->ro_block_group_mutex);
9265 		btrfs_end_transaction(trans);
9266 
9267 		ret = btrfs_wait_for_commit(fs_info, transid);
9268 		if (ret)
9269 			return ret;
9270 		goto again;
9271 	}
9272 
9273 	/*
9274 	 * if we are changing raid levels, try to allocate a corresponding
9275 	 * block group with the new raid level.
9276 	 */
9277 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9278 	if (alloc_flags != cache->flags) {
9279 		ret = do_chunk_alloc(trans, alloc_flags,
9280 				     CHUNK_ALLOC_FORCE);
9281 		/*
9282 		 * ENOSPC is allowed here, we may have enough space
9283 		 * already allocated at the new raid level to
9284 		 * carry on
9285 		 */
9286 		if (ret == -ENOSPC)
9287 			ret = 0;
9288 		if (ret < 0)
9289 			goto out;
9290 	}
9291 
9292 	ret = inc_block_group_ro(cache, 0);
9293 	if (!ret)
9294 		goto out;
9295 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9296 	ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9297 	if (ret < 0)
9298 		goto out;
9299 	ret = inc_block_group_ro(cache, 0);
9300 out:
9301 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9302 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9303 		mutex_lock(&fs_info->chunk_mutex);
9304 		check_system_chunk(trans, alloc_flags);
9305 		mutex_unlock(&fs_info->chunk_mutex);
9306 	}
9307 	mutex_unlock(&fs_info->ro_block_group_mutex);
9308 
9309 	btrfs_end_transaction(trans);
9310 	return ret;
9311 }
9312 
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)9313 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9314 {
9315 	u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9316 
9317 	return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9318 }
9319 
9320 /*
9321  * helper to account the unused space of all the readonly block group in the
9322  * space_info. takes mirrors into account.
9323  */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)9324 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9325 {
9326 	struct btrfs_block_group_cache *block_group;
9327 	u64 free_bytes = 0;
9328 	int factor;
9329 
9330 	/* It's df, we don't care if it's racy */
9331 	if (list_empty(&sinfo->ro_bgs))
9332 		return 0;
9333 
9334 	spin_lock(&sinfo->lock);
9335 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9336 		spin_lock(&block_group->lock);
9337 
9338 		if (!block_group->ro) {
9339 			spin_unlock(&block_group->lock);
9340 			continue;
9341 		}
9342 
9343 		factor = btrfs_bg_type_to_factor(block_group->flags);
9344 		free_bytes += (block_group->key.offset -
9345 			       btrfs_block_group_used(&block_group->item)) *
9346 			       factor;
9347 
9348 		spin_unlock(&block_group->lock);
9349 	}
9350 	spin_unlock(&sinfo->lock);
9351 
9352 	return free_bytes;
9353 }
9354 
btrfs_dec_block_group_ro(struct btrfs_block_group_cache * cache)9355 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9356 {
9357 	struct btrfs_space_info *sinfo = cache->space_info;
9358 	u64 num_bytes;
9359 
9360 	BUG_ON(!cache->ro);
9361 
9362 	spin_lock(&sinfo->lock);
9363 	spin_lock(&cache->lock);
9364 	if (!--cache->ro) {
9365 		num_bytes = cache->key.offset - cache->reserved -
9366 			    cache->pinned - cache->bytes_super -
9367 			    btrfs_block_group_used(&cache->item);
9368 		sinfo->bytes_readonly -= num_bytes;
9369 		list_del_init(&cache->ro_list);
9370 	}
9371 	spin_unlock(&cache->lock);
9372 	spin_unlock(&sinfo->lock);
9373 }
9374 
9375 /*
9376  * checks to see if its even possible to relocate this block group.
9377  *
9378  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9379  * ok to go ahead and try.
9380  */
btrfs_can_relocate(struct btrfs_fs_info * fs_info,u64 bytenr)9381 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9382 {
9383 	struct btrfs_root *root = fs_info->extent_root;
9384 	struct btrfs_block_group_cache *block_group;
9385 	struct btrfs_space_info *space_info;
9386 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9387 	struct btrfs_device *device;
9388 	struct btrfs_trans_handle *trans;
9389 	u64 min_free;
9390 	u64 dev_min = 1;
9391 	u64 dev_nr = 0;
9392 	u64 target;
9393 	int debug;
9394 	int index;
9395 	int full = 0;
9396 	int ret = 0;
9397 
9398 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9399 
9400 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9401 
9402 	/* odd, couldn't find the block group, leave it alone */
9403 	if (!block_group) {
9404 		if (debug)
9405 			btrfs_warn(fs_info,
9406 				   "can't find block group for bytenr %llu",
9407 				   bytenr);
9408 		return -1;
9409 	}
9410 
9411 	min_free = btrfs_block_group_used(&block_group->item);
9412 
9413 	/* no bytes used, we're good */
9414 	if (!min_free)
9415 		goto out;
9416 
9417 	space_info = block_group->space_info;
9418 	spin_lock(&space_info->lock);
9419 
9420 	full = space_info->full;
9421 
9422 	/*
9423 	 * if this is the last block group we have in this space, we can't
9424 	 * relocate it unless we're able to allocate a new chunk below.
9425 	 *
9426 	 * Otherwise, we need to make sure we have room in the space to handle
9427 	 * all of the extents from this block group.  If we can, we're good
9428 	 */
9429 	if ((space_info->total_bytes != block_group->key.offset) &&
9430 	    (btrfs_space_info_used(space_info, false) + min_free <
9431 	     space_info->total_bytes)) {
9432 		spin_unlock(&space_info->lock);
9433 		goto out;
9434 	}
9435 	spin_unlock(&space_info->lock);
9436 
9437 	/*
9438 	 * ok we don't have enough space, but maybe we have free space on our
9439 	 * devices to allocate new chunks for relocation, so loop through our
9440 	 * alloc devices and guess if we have enough space.  if this block
9441 	 * group is going to be restriped, run checks against the target
9442 	 * profile instead of the current one.
9443 	 */
9444 	ret = -1;
9445 
9446 	/*
9447 	 * index:
9448 	 *      0: raid10
9449 	 *      1: raid1
9450 	 *      2: dup
9451 	 *      3: raid0
9452 	 *      4: single
9453 	 */
9454 	target = get_restripe_target(fs_info, block_group->flags);
9455 	if (target) {
9456 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9457 	} else {
9458 		/*
9459 		 * this is just a balance, so if we were marked as full
9460 		 * we know there is no space for a new chunk
9461 		 */
9462 		if (full) {
9463 			if (debug)
9464 				btrfs_warn(fs_info,
9465 					   "no space to alloc new chunk for block group %llu",
9466 					   block_group->key.objectid);
9467 			goto out;
9468 		}
9469 
9470 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
9471 	}
9472 
9473 	if (index == BTRFS_RAID_RAID10) {
9474 		dev_min = 4;
9475 		/* Divide by 2 */
9476 		min_free >>= 1;
9477 	} else if (index == BTRFS_RAID_RAID1) {
9478 		dev_min = 2;
9479 	} else if (index == BTRFS_RAID_DUP) {
9480 		/* Multiply by 2 */
9481 		min_free <<= 1;
9482 	} else if (index == BTRFS_RAID_RAID0) {
9483 		dev_min = fs_devices->rw_devices;
9484 		min_free = div64_u64(min_free, dev_min);
9485 	}
9486 
9487 	/* We need to do this so that we can look at pending chunks */
9488 	trans = btrfs_join_transaction(root);
9489 	if (IS_ERR(trans)) {
9490 		ret = PTR_ERR(trans);
9491 		goto out;
9492 	}
9493 
9494 	mutex_lock(&fs_info->chunk_mutex);
9495 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9496 		u64 dev_offset;
9497 
9498 		/*
9499 		 * check to make sure we can actually find a chunk with enough
9500 		 * space to fit our block group in.
9501 		 */
9502 		if (device->total_bytes > device->bytes_used + min_free &&
9503 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9504 			ret = find_free_dev_extent(trans, device, min_free,
9505 						   &dev_offset, NULL);
9506 			if (!ret)
9507 				dev_nr++;
9508 
9509 			if (dev_nr >= dev_min)
9510 				break;
9511 
9512 			ret = -1;
9513 		}
9514 	}
9515 	if (debug && ret == -1)
9516 		btrfs_warn(fs_info,
9517 			   "no space to allocate a new chunk for block group %llu",
9518 			   block_group->key.objectid);
9519 	mutex_unlock(&fs_info->chunk_mutex);
9520 	btrfs_end_transaction(trans);
9521 out:
9522 	btrfs_put_block_group(block_group);
9523 	return ret;
9524 }
9525 
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)9526 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9527 				  struct btrfs_path *path,
9528 				  struct btrfs_key *key)
9529 {
9530 	struct btrfs_root *root = fs_info->extent_root;
9531 	int ret = 0;
9532 	struct btrfs_key found_key;
9533 	struct extent_buffer *leaf;
9534 	struct btrfs_block_group_item bg;
9535 	u64 flags;
9536 	int slot;
9537 
9538 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9539 	if (ret < 0)
9540 		goto out;
9541 
9542 	while (1) {
9543 		slot = path->slots[0];
9544 		leaf = path->nodes[0];
9545 		if (slot >= btrfs_header_nritems(leaf)) {
9546 			ret = btrfs_next_leaf(root, path);
9547 			if (ret == 0)
9548 				continue;
9549 			if (ret < 0)
9550 				goto out;
9551 			break;
9552 		}
9553 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9554 
9555 		if (found_key.objectid >= key->objectid &&
9556 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9557 			struct extent_map_tree *em_tree;
9558 			struct extent_map *em;
9559 
9560 			em_tree = &root->fs_info->mapping_tree.map_tree;
9561 			read_lock(&em_tree->lock);
9562 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9563 						   found_key.offset);
9564 			read_unlock(&em_tree->lock);
9565 			if (!em) {
9566 				btrfs_err(fs_info,
9567 			"logical %llu len %llu found bg but no related chunk",
9568 					  found_key.objectid, found_key.offset);
9569 				ret = -ENOENT;
9570 			} else if (em->start != found_key.objectid ||
9571 				   em->len != found_key.offset) {
9572 				btrfs_err(fs_info,
9573 		"block group %llu len %llu mismatch with chunk %llu len %llu",
9574 					  found_key.objectid, found_key.offset,
9575 					  em->start, em->len);
9576 				ret = -EUCLEAN;
9577 			} else {
9578 				read_extent_buffer(leaf, &bg,
9579 					btrfs_item_ptr_offset(leaf, slot),
9580 					sizeof(bg));
9581 				flags = btrfs_block_group_flags(&bg) &
9582 					BTRFS_BLOCK_GROUP_TYPE_MASK;
9583 
9584 				if (flags != (em->map_lookup->type &
9585 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9586 					btrfs_err(fs_info,
9587 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9588 						found_key.objectid,
9589 						found_key.offset, flags,
9590 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
9591 						 em->map_lookup->type));
9592 					ret = -EUCLEAN;
9593 				} else {
9594 					ret = 0;
9595 				}
9596 			}
9597 			free_extent_map(em);
9598 			goto out;
9599 		}
9600 		path->slots[0]++;
9601 	}
9602 out:
9603 	return ret;
9604 }
9605 
btrfs_put_block_group_cache(struct btrfs_fs_info * info)9606 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9607 {
9608 	struct btrfs_block_group_cache *block_group;
9609 	u64 last = 0;
9610 
9611 	while (1) {
9612 		struct inode *inode;
9613 
9614 		block_group = btrfs_lookup_first_block_group(info, last);
9615 		while (block_group) {
9616 			spin_lock(&block_group->lock);
9617 			if (block_group->iref)
9618 				break;
9619 			spin_unlock(&block_group->lock);
9620 			block_group = next_block_group(info, block_group);
9621 		}
9622 		if (!block_group) {
9623 			if (last == 0)
9624 				break;
9625 			last = 0;
9626 			continue;
9627 		}
9628 
9629 		inode = block_group->inode;
9630 		block_group->iref = 0;
9631 		block_group->inode = NULL;
9632 		spin_unlock(&block_group->lock);
9633 		ASSERT(block_group->io_ctl.inode == NULL);
9634 		iput(inode);
9635 		last = block_group->key.objectid + block_group->key.offset;
9636 		btrfs_put_block_group(block_group);
9637 	}
9638 }
9639 
9640 /*
9641  * Must be called only after stopping all workers, since we could have block
9642  * group caching kthreads running, and therefore they could race with us if we
9643  * freed the block groups before stopping them.
9644  */
btrfs_free_block_groups(struct btrfs_fs_info * info)9645 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9646 {
9647 	struct btrfs_block_group_cache *block_group;
9648 	struct btrfs_space_info *space_info;
9649 	struct btrfs_caching_control *caching_ctl;
9650 	struct rb_node *n;
9651 
9652 	down_write(&info->commit_root_sem);
9653 	while (!list_empty(&info->caching_block_groups)) {
9654 		caching_ctl = list_entry(info->caching_block_groups.next,
9655 					 struct btrfs_caching_control, list);
9656 		list_del(&caching_ctl->list);
9657 		put_caching_control(caching_ctl);
9658 	}
9659 	up_write(&info->commit_root_sem);
9660 
9661 	spin_lock(&info->unused_bgs_lock);
9662 	while (!list_empty(&info->unused_bgs)) {
9663 		block_group = list_first_entry(&info->unused_bgs,
9664 					       struct btrfs_block_group_cache,
9665 					       bg_list);
9666 		list_del_init(&block_group->bg_list);
9667 		btrfs_put_block_group(block_group);
9668 	}
9669 	spin_unlock(&info->unused_bgs_lock);
9670 
9671 	spin_lock(&info->block_group_cache_lock);
9672 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9673 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9674 				       cache_node);
9675 		rb_erase(&block_group->cache_node,
9676 			 &info->block_group_cache_tree);
9677 		RB_CLEAR_NODE(&block_group->cache_node);
9678 		spin_unlock(&info->block_group_cache_lock);
9679 
9680 		down_write(&block_group->space_info->groups_sem);
9681 		list_del(&block_group->list);
9682 		up_write(&block_group->space_info->groups_sem);
9683 
9684 		/*
9685 		 * We haven't cached this block group, which means we could
9686 		 * possibly have excluded extents on this block group.
9687 		 */
9688 		if (block_group->cached == BTRFS_CACHE_NO ||
9689 		    block_group->cached == BTRFS_CACHE_ERROR)
9690 			free_excluded_extents(block_group);
9691 
9692 		btrfs_remove_free_space_cache(block_group);
9693 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9694 		ASSERT(list_empty(&block_group->dirty_list));
9695 		ASSERT(list_empty(&block_group->io_list));
9696 		ASSERT(list_empty(&block_group->bg_list));
9697 		ASSERT(atomic_read(&block_group->count) == 1);
9698 		btrfs_put_block_group(block_group);
9699 
9700 		spin_lock(&info->block_group_cache_lock);
9701 	}
9702 	spin_unlock(&info->block_group_cache_lock);
9703 
9704 	/* now that all the block groups are freed, go through and
9705 	 * free all the space_info structs.  This is only called during
9706 	 * the final stages of unmount, and so we know nobody is
9707 	 * using them.  We call synchronize_rcu() once before we start,
9708 	 * just to be on the safe side.
9709 	 */
9710 	synchronize_rcu();
9711 
9712 	release_global_block_rsv(info);
9713 
9714 	while (!list_empty(&info->space_info)) {
9715 		int i;
9716 
9717 		space_info = list_entry(info->space_info.next,
9718 					struct btrfs_space_info,
9719 					list);
9720 
9721 		/*
9722 		 * Do not hide this behind enospc_debug, this is actually
9723 		 * important and indicates a real bug if this happens.
9724 		 */
9725 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9726 			    space_info->bytes_reserved > 0 ||
9727 			    space_info->bytes_may_use > 0))
9728 			dump_space_info(info, space_info, 0, 0);
9729 		list_del(&space_info->list);
9730 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9731 			struct kobject *kobj;
9732 			kobj = space_info->block_group_kobjs[i];
9733 			space_info->block_group_kobjs[i] = NULL;
9734 			if (kobj) {
9735 				kobject_del(kobj);
9736 				kobject_put(kobj);
9737 			}
9738 		}
9739 		kobject_del(&space_info->kobj);
9740 		kobject_put(&space_info->kobj);
9741 	}
9742 	return 0;
9743 }
9744 
9745 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
btrfs_add_raid_kobjects(struct btrfs_fs_info * fs_info)9746 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9747 {
9748 	struct btrfs_space_info *space_info;
9749 	struct raid_kobject *rkobj;
9750 	LIST_HEAD(list);
9751 	int index;
9752 	int ret = 0;
9753 
9754 	spin_lock(&fs_info->pending_raid_kobjs_lock);
9755 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
9756 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
9757 
9758 	list_for_each_entry(rkobj, &list, list) {
9759 		space_info = __find_space_info(fs_info, rkobj->flags);
9760 		index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9761 
9762 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9763 				  "%s", get_raid_name(index));
9764 		if (ret) {
9765 			kobject_put(&rkobj->kobj);
9766 			break;
9767 		}
9768 	}
9769 	if (ret)
9770 		btrfs_warn(fs_info,
9771 			   "failed to add kobject for block cache, ignoring");
9772 }
9773 
link_block_group(struct btrfs_block_group_cache * cache)9774 static void link_block_group(struct btrfs_block_group_cache *cache)
9775 {
9776 	struct btrfs_space_info *space_info = cache->space_info;
9777 	struct btrfs_fs_info *fs_info = cache->fs_info;
9778 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
9779 	bool first = false;
9780 
9781 	down_write(&space_info->groups_sem);
9782 	if (list_empty(&space_info->block_groups[index]))
9783 		first = true;
9784 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9785 	up_write(&space_info->groups_sem);
9786 
9787 	if (first) {
9788 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9789 		if (!rkobj) {
9790 			btrfs_warn(cache->fs_info,
9791 				"couldn't alloc memory for raid level kobject");
9792 			return;
9793 		}
9794 		rkobj->flags = cache->flags;
9795 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9796 
9797 		spin_lock(&fs_info->pending_raid_kobjs_lock);
9798 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9799 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
9800 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9801 	}
9802 }
9803 
9804 static struct btrfs_block_group_cache *
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start,u64 size)9805 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9806 			       u64 start, u64 size)
9807 {
9808 	struct btrfs_block_group_cache *cache;
9809 
9810 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9811 	if (!cache)
9812 		return NULL;
9813 
9814 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9815 					GFP_NOFS);
9816 	if (!cache->free_space_ctl) {
9817 		kfree(cache);
9818 		return NULL;
9819 	}
9820 
9821 	cache->key.objectid = start;
9822 	cache->key.offset = size;
9823 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9824 
9825 	cache->fs_info = fs_info;
9826 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9827 	set_free_space_tree_thresholds(cache);
9828 
9829 	atomic_set(&cache->count, 1);
9830 	spin_lock_init(&cache->lock);
9831 	init_rwsem(&cache->data_rwsem);
9832 	INIT_LIST_HEAD(&cache->list);
9833 	INIT_LIST_HEAD(&cache->cluster_list);
9834 	INIT_LIST_HEAD(&cache->bg_list);
9835 	INIT_LIST_HEAD(&cache->ro_list);
9836 	INIT_LIST_HEAD(&cache->dirty_list);
9837 	INIT_LIST_HEAD(&cache->io_list);
9838 	btrfs_init_free_space_ctl(cache);
9839 	atomic_set(&cache->trimming, 0);
9840 	mutex_init(&cache->free_space_lock);
9841 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9842 
9843 	return cache;
9844 }
9845 
9846 
9847 /*
9848  * Iterate all chunks and verify that each of them has the corresponding block
9849  * group
9850  */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)9851 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9852 {
9853 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9854 	struct extent_map *em;
9855 	struct btrfs_block_group_cache *bg;
9856 	u64 start = 0;
9857 	int ret = 0;
9858 
9859 	while (1) {
9860 		read_lock(&map_tree->map_tree.lock);
9861 		/*
9862 		 * lookup_extent_mapping will return the first extent map
9863 		 * intersecting the range, so setting @len to 1 is enough to
9864 		 * get the first chunk.
9865 		 */
9866 		em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9867 		read_unlock(&map_tree->map_tree.lock);
9868 		if (!em)
9869 			break;
9870 
9871 		bg = btrfs_lookup_block_group(fs_info, em->start);
9872 		if (!bg) {
9873 			btrfs_err(fs_info,
9874 	"chunk start=%llu len=%llu doesn't have corresponding block group",
9875 				     em->start, em->len);
9876 			ret = -EUCLEAN;
9877 			free_extent_map(em);
9878 			break;
9879 		}
9880 		if (bg->key.objectid != em->start ||
9881 		    bg->key.offset != em->len ||
9882 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9883 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9884 			btrfs_err(fs_info,
9885 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9886 				em->start, em->len,
9887 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9888 				bg->key.objectid, bg->key.offset,
9889 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9890 			ret = -EUCLEAN;
9891 			free_extent_map(em);
9892 			btrfs_put_block_group(bg);
9893 			break;
9894 		}
9895 		start = em->start + em->len;
9896 		free_extent_map(em);
9897 		btrfs_put_block_group(bg);
9898 	}
9899 	return ret;
9900 }
9901 
btrfs_read_block_groups(struct btrfs_fs_info * info)9902 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9903 {
9904 	struct btrfs_path *path;
9905 	int ret;
9906 	struct btrfs_block_group_cache *cache;
9907 	struct btrfs_space_info *space_info;
9908 	struct btrfs_key key;
9909 	struct btrfs_key found_key;
9910 	struct extent_buffer *leaf;
9911 	int need_clear = 0;
9912 	u64 cache_gen;
9913 	u64 feature;
9914 	int mixed;
9915 
9916 	feature = btrfs_super_incompat_flags(info->super_copy);
9917 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9918 
9919 	key.objectid = 0;
9920 	key.offset = 0;
9921 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9922 	path = btrfs_alloc_path();
9923 	if (!path)
9924 		return -ENOMEM;
9925 	path->reada = READA_FORWARD;
9926 
9927 	cache_gen = btrfs_super_cache_generation(info->super_copy);
9928 	if (btrfs_test_opt(info, SPACE_CACHE) &&
9929 	    btrfs_super_generation(info->super_copy) != cache_gen)
9930 		need_clear = 1;
9931 	if (btrfs_test_opt(info, CLEAR_CACHE))
9932 		need_clear = 1;
9933 
9934 	while (1) {
9935 		ret = find_first_block_group(info, path, &key);
9936 		if (ret > 0)
9937 			break;
9938 		if (ret != 0)
9939 			goto error;
9940 
9941 		leaf = path->nodes[0];
9942 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9943 
9944 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
9945 						       found_key.offset);
9946 		if (!cache) {
9947 			ret = -ENOMEM;
9948 			goto error;
9949 		}
9950 
9951 		if (need_clear) {
9952 			/*
9953 			 * When we mount with old space cache, we need to
9954 			 * set BTRFS_DC_CLEAR and set dirty flag.
9955 			 *
9956 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9957 			 *    truncate the old free space cache inode and
9958 			 *    setup a new one.
9959 			 * b) Setting 'dirty flag' makes sure that we flush
9960 			 *    the new space cache info onto disk.
9961 			 */
9962 			if (btrfs_test_opt(info, SPACE_CACHE))
9963 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9964 		}
9965 
9966 		read_extent_buffer(leaf, &cache->item,
9967 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9968 				   sizeof(cache->item));
9969 		cache->flags = btrfs_block_group_flags(&cache->item);
9970 		if (!mixed &&
9971 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9972 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9973 			btrfs_err(info,
9974 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9975 				  cache->key.objectid);
9976 			ret = -EINVAL;
9977 			goto error;
9978 		}
9979 
9980 		key.objectid = found_key.objectid + found_key.offset;
9981 		btrfs_release_path(path);
9982 
9983 		/*
9984 		 * We need to exclude the super stripes now so that the space
9985 		 * info has super bytes accounted for, otherwise we'll think
9986 		 * we have more space than we actually do.
9987 		 */
9988 		ret = exclude_super_stripes(cache);
9989 		if (ret) {
9990 			/*
9991 			 * We may have excluded something, so call this just in
9992 			 * case.
9993 			 */
9994 			free_excluded_extents(cache);
9995 			btrfs_put_block_group(cache);
9996 			goto error;
9997 		}
9998 
9999 		/*
10000 		 * check for two cases, either we are full, and therefore
10001 		 * don't need to bother with the caching work since we won't
10002 		 * find any space, or we are empty, and we can just add all
10003 		 * the space in and be done with it.  This saves us _alot_ of
10004 		 * time, particularly in the full case.
10005 		 */
10006 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10007 			cache->last_byte_to_unpin = (u64)-1;
10008 			cache->cached = BTRFS_CACHE_FINISHED;
10009 			free_excluded_extents(cache);
10010 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10011 			cache->last_byte_to_unpin = (u64)-1;
10012 			cache->cached = BTRFS_CACHE_FINISHED;
10013 			add_new_free_space(cache, found_key.objectid,
10014 					   found_key.objectid +
10015 					   found_key.offset);
10016 			free_excluded_extents(cache);
10017 		}
10018 
10019 		ret = btrfs_add_block_group_cache(info, cache);
10020 		if (ret) {
10021 			btrfs_remove_free_space_cache(cache);
10022 			btrfs_put_block_group(cache);
10023 			goto error;
10024 		}
10025 
10026 		trace_btrfs_add_block_group(info, cache, 0);
10027 		update_space_info(info, cache->flags, found_key.offset,
10028 				  btrfs_block_group_used(&cache->item),
10029 				  cache->bytes_super, &space_info);
10030 
10031 		cache->space_info = space_info;
10032 
10033 		link_block_group(cache);
10034 
10035 		set_avail_alloc_bits(info, cache->flags);
10036 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10037 			inc_block_group_ro(cache, 1);
10038 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10039 			ASSERT(list_empty(&cache->bg_list));
10040 			btrfs_mark_bg_unused(cache);
10041 		}
10042 	}
10043 
10044 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10045 		if (!(get_alloc_profile(info, space_info->flags) &
10046 		      (BTRFS_BLOCK_GROUP_RAID10 |
10047 		       BTRFS_BLOCK_GROUP_RAID1 |
10048 		       BTRFS_BLOCK_GROUP_RAID5 |
10049 		       BTRFS_BLOCK_GROUP_RAID6 |
10050 		       BTRFS_BLOCK_GROUP_DUP)))
10051 			continue;
10052 		/*
10053 		 * avoid allocating from un-mirrored block group if there are
10054 		 * mirrored block groups.
10055 		 */
10056 		list_for_each_entry(cache,
10057 				&space_info->block_groups[BTRFS_RAID_RAID0],
10058 				list)
10059 			inc_block_group_ro(cache, 1);
10060 		list_for_each_entry(cache,
10061 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10062 				list)
10063 			inc_block_group_ro(cache, 1);
10064 	}
10065 
10066 	btrfs_add_raid_kobjects(info);
10067 	init_global_block_rsv(info);
10068 	ret = check_chunk_block_group_mappings(info);
10069 error:
10070 	btrfs_free_path(path);
10071 	return ret;
10072 }
10073 
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)10074 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10075 {
10076 	struct btrfs_fs_info *fs_info = trans->fs_info;
10077 	struct btrfs_block_group_cache *block_group, *tmp;
10078 	struct btrfs_root *extent_root = fs_info->extent_root;
10079 	struct btrfs_block_group_item item;
10080 	struct btrfs_key key;
10081 	int ret = 0;
10082 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10083 
10084 	trans->can_flush_pending_bgs = false;
10085 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10086 		if (ret)
10087 			goto next;
10088 
10089 		spin_lock(&block_group->lock);
10090 		memcpy(&item, &block_group->item, sizeof(item));
10091 		memcpy(&key, &block_group->key, sizeof(key));
10092 		spin_unlock(&block_group->lock);
10093 
10094 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10095 					sizeof(item));
10096 		if (ret)
10097 			btrfs_abort_transaction(trans, ret);
10098 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10099 		if (ret)
10100 			btrfs_abort_transaction(trans, ret);
10101 		add_block_group_free_space(trans, block_group);
10102 		/* already aborted the transaction if it failed. */
10103 next:
10104 		list_del_init(&block_group->bg_list);
10105 	}
10106 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10107 }
10108 
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)10109 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10110 			   u64 type, u64 chunk_offset, u64 size)
10111 {
10112 	struct btrfs_fs_info *fs_info = trans->fs_info;
10113 	struct btrfs_block_group_cache *cache;
10114 	int ret;
10115 
10116 	btrfs_set_log_full_commit(fs_info, trans);
10117 
10118 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10119 	if (!cache)
10120 		return -ENOMEM;
10121 
10122 	btrfs_set_block_group_used(&cache->item, bytes_used);
10123 	btrfs_set_block_group_chunk_objectid(&cache->item,
10124 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10125 	btrfs_set_block_group_flags(&cache->item, type);
10126 
10127 	cache->flags = type;
10128 	cache->last_byte_to_unpin = (u64)-1;
10129 	cache->cached = BTRFS_CACHE_FINISHED;
10130 	cache->needs_free_space = 1;
10131 	ret = exclude_super_stripes(cache);
10132 	if (ret) {
10133 		/*
10134 		 * We may have excluded something, so call this just in
10135 		 * case.
10136 		 */
10137 		free_excluded_extents(cache);
10138 		btrfs_put_block_group(cache);
10139 		return ret;
10140 	}
10141 
10142 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
10143 
10144 	free_excluded_extents(cache);
10145 
10146 #ifdef CONFIG_BTRFS_DEBUG
10147 	if (btrfs_should_fragment_free_space(cache)) {
10148 		u64 new_bytes_used = size - bytes_used;
10149 
10150 		bytes_used += new_bytes_used >> 1;
10151 		fragment_free_space(cache);
10152 	}
10153 #endif
10154 	/*
10155 	 * Ensure the corresponding space_info object is created and
10156 	 * assigned to our block group. We want our bg to be added to the rbtree
10157 	 * with its ->space_info set.
10158 	 */
10159 	cache->space_info = __find_space_info(fs_info, cache->flags);
10160 	ASSERT(cache->space_info);
10161 
10162 	ret = btrfs_add_block_group_cache(fs_info, cache);
10163 	if (ret) {
10164 		btrfs_remove_free_space_cache(cache);
10165 		btrfs_put_block_group(cache);
10166 		return ret;
10167 	}
10168 
10169 	/*
10170 	 * Now that our block group has its ->space_info set and is inserted in
10171 	 * the rbtree, update the space info's counters.
10172 	 */
10173 	trace_btrfs_add_block_group(fs_info, cache, 1);
10174 	update_space_info(fs_info, cache->flags, size, bytes_used,
10175 				cache->bytes_super, &cache->space_info);
10176 	update_global_block_rsv(fs_info);
10177 
10178 	link_block_group(cache);
10179 
10180 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10181 
10182 	set_avail_alloc_bits(fs_info, type);
10183 	return 0;
10184 }
10185 
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)10186 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10187 {
10188 	u64 extra_flags = chunk_to_extended(flags) &
10189 				BTRFS_EXTENDED_PROFILE_MASK;
10190 
10191 	write_seqlock(&fs_info->profiles_lock);
10192 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10193 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10194 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10195 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10196 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10197 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10198 	write_sequnlock(&fs_info->profiles_lock);
10199 }
10200 
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)10201 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10202 			     u64 group_start, struct extent_map *em)
10203 {
10204 	struct btrfs_fs_info *fs_info = trans->fs_info;
10205 	struct btrfs_root *root = fs_info->extent_root;
10206 	struct btrfs_path *path;
10207 	struct btrfs_block_group_cache *block_group;
10208 	struct btrfs_free_cluster *cluster;
10209 	struct btrfs_root *tree_root = fs_info->tree_root;
10210 	struct btrfs_key key;
10211 	struct inode *inode;
10212 	struct kobject *kobj = NULL;
10213 	int ret;
10214 	int index;
10215 	int factor;
10216 	struct btrfs_caching_control *caching_ctl = NULL;
10217 	bool remove_em;
10218 
10219 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10220 	BUG_ON(!block_group);
10221 	BUG_ON(!block_group->ro);
10222 
10223 	trace_btrfs_remove_block_group(block_group);
10224 	/*
10225 	 * Free the reserved super bytes from this block group before
10226 	 * remove it.
10227 	 */
10228 	free_excluded_extents(block_group);
10229 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10230 				  block_group->key.offset);
10231 
10232 	memcpy(&key, &block_group->key, sizeof(key));
10233 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
10234 	factor = btrfs_bg_type_to_factor(block_group->flags);
10235 
10236 	/* make sure this block group isn't part of an allocation cluster */
10237 	cluster = &fs_info->data_alloc_cluster;
10238 	spin_lock(&cluster->refill_lock);
10239 	btrfs_return_cluster_to_free_space(block_group, cluster);
10240 	spin_unlock(&cluster->refill_lock);
10241 
10242 	/*
10243 	 * make sure this block group isn't part of a metadata
10244 	 * allocation cluster
10245 	 */
10246 	cluster = &fs_info->meta_alloc_cluster;
10247 	spin_lock(&cluster->refill_lock);
10248 	btrfs_return_cluster_to_free_space(block_group, cluster);
10249 	spin_unlock(&cluster->refill_lock);
10250 
10251 	path = btrfs_alloc_path();
10252 	if (!path) {
10253 		ret = -ENOMEM;
10254 		goto out;
10255 	}
10256 
10257 	/*
10258 	 * get the inode first so any iput calls done for the io_list
10259 	 * aren't the final iput (no unlinks allowed now)
10260 	 */
10261 	inode = lookup_free_space_inode(fs_info, block_group, path);
10262 
10263 	mutex_lock(&trans->transaction->cache_write_mutex);
10264 	/*
10265 	 * make sure our free spache cache IO is done before remove the
10266 	 * free space inode
10267 	 */
10268 	spin_lock(&trans->transaction->dirty_bgs_lock);
10269 	if (!list_empty(&block_group->io_list)) {
10270 		list_del_init(&block_group->io_list);
10271 
10272 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10273 
10274 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10275 		btrfs_wait_cache_io(trans, block_group, path);
10276 		btrfs_put_block_group(block_group);
10277 		spin_lock(&trans->transaction->dirty_bgs_lock);
10278 	}
10279 
10280 	if (!list_empty(&block_group->dirty_list)) {
10281 		list_del_init(&block_group->dirty_list);
10282 		btrfs_put_block_group(block_group);
10283 	}
10284 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10285 	mutex_unlock(&trans->transaction->cache_write_mutex);
10286 
10287 	if (!IS_ERR(inode)) {
10288 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10289 		if (ret) {
10290 			btrfs_add_delayed_iput(inode);
10291 			goto out;
10292 		}
10293 		clear_nlink(inode);
10294 		/* One for the block groups ref */
10295 		spin_lock(&block_group->lock);
10296 		if (block_group->iref) {
10297 			block_group->iref = 0;
10298 			block_group->inode = NULL;
10299 			spin_unlock(&block_group->lock);
10300 			iput(inode);
10301 		} else {
10302 			spin_unlock(&block_group->lock);
10303 		}
10304 		/* One for our lookup ref */
10305 		btrfs_add_delayed_iput(inode);
10306 	}
10307 
10308 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10309 	key.offset = block_group->key.objectid;
10310 	key.type = 0;
10311 
10312 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10313 	if (ret < 0)
10314 		goto out;
10315 	if (ret > 0)
10316 		btrfs_release_path(path);
10317 	if (ret == 0) {
10318 		ret = btrfs_del_item(trans, tree_root, path);
10319 		if (ret)
10320 			goto out;
10321 		btrfs_release_path(path);
10322 	}
10323 
10324 	spin_lock(&fs_info->block_group_cache_lock);
10325 	rb_erase(&block_group->cache_node,
10326 		 &fs_info->block_group_cache_tree);
10327 	RB_CLEAR_NODE(&block_group->cache_node);
10328 
10329 	if (fs_info->first_logical_byte == block_group->key.objectid)
10330 		fs_info->first_logical_byte = (u64)-1;
10331 	spin_unlock(&fs_info->block_group_cache_lock);
10332 
10333 	down_write(&block_group->space_info->groups_sem);
10334 	/*
10335 	 * we must use list_del_init so people can check to see if they
10336 	 * are still on the list after taking the semaphore
10337 	 */
10338 	list_del_init(&block_group->list);
10339 	if (list_empty(&block_group->space_info->block_groups[index])) {
10340 		kobj = block_group->space_info->block_group_kobjs[index];
10341 		block_group->space_info->block_group_kobjs[index] = NULL;
10342 		clear_avail_alloc_bits(fs_info, block_group->flags);
10343 	}
10344 	up_write(&block_group->space_info->groups_sem);
10345 	if (kobj) {
10346 		kobject_del(kobj);
10347 		kobject_put(kobj);
10348 	}
10349 
10350 	if (block_group->has_caching_ctl)
10351 		caching_ctl = get_caching_control(block_group);
10352 	if (block_group->cached == BTRFS_CACHE_STARTED)
10353 		wait_block_group_cache_done(block_group);
10354 	if (block_group->has_caching_ctl) {
10355 		down_write(&fs_info->commit_root_sem);
10356 		if (!caching_ctl) {
10357 			struct btrfs_caching_control *ctl;
10358 
10359 			list_for_each_entry(ctl,
10360 				    &fs_info->caching_block_groups, list)
10361 				if (ctl->block_group == block_group) {
10362 					caching_ctl = ctl;
10363 					refcount_inc(&caching_ctl->count);
10364 					break;
10365 				}
10366 		}
10367 		if (caching_ctl)
10368 			list_del_init(&caching_ctl->list);
10369 		up_write(&fs_info->commit_root_sem);
10370 		if (caching_ctl) {
10371 			/* Once for the caching bgs list and once for us. */
10372 			put_caching_control(caching_ctl);
10373 			put_caching_control(caching_ctl);
10374 		}
10375 	}
10376 
10377 	spin_lock(&trans->transaction->dirty_bgs_lock);
10378 	if (!list_empty(&block_group->dirty_list)) {
10379 		WARN_ON(1);
10380 	}
10381 	if (!list_empty(&block_group->io_list)) {
10382 		WARN_ON(1);
10383 	}
10384 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10385 	btrfs_remove_free_space_cache(block_group);
10386 
10387 	spin_lock(&block_group->space_info->lock);
10388 	list_del_init(&block_group->ro_list);
10389 
10390 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10391 		WARN_ON(block_group->space_info->total_bytes
10392 			< block_group->key.offset);
10393 		WARN_ON(block_group->space_info->bytes_readonly
10394 			< block_group->key.offset);
10395 		WARN_ON(block_group->space_info->disk_total
10396 			< block_group->key.offset * factor);
10397 	}
10398 	block_group->space_info->total_bytes -= block_group->key.offset;
10399 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10400 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10401 
10402 	spin_unlock(&block_group->space_info->lock);
10403 
10404 	memcpy(&key, &block_group->key, sizeof(key));
10405 
10406 	mutex_lock(&fs_info->chunk_mutex);
10407 	if (!list_empty(&em->list)) {
10408 		/* We're in the transaction->pending_chunks list. */
10409 		free_extent_map(em);
10410 	}
10411 	spin_lock(&block_group->lock);
10412 	block_group->removed = 1;
10413 	/*
10414 	 * At this point trimming can't start on this block group, because we
10415 	 * removed the block group from the tree fs_info->block_group_cache_tree
10416 	 * so no one can't find it anymore and even if someone already got this
10417 	 * block group before we removed it from the rbtree, they have already
10418 	 * incremented block_group->trimming - if they didn't, they won't find
10419 	 * any free space entries because we already removed them all when we
10420 	 * called btrfs_remove_free_space_cache().
10421 	 *
10422 	 * And we must not remove the extent map from the fs_info->mapping_tree
10423 	 * to prevent the same logical address range and physical device space
10424 	 * ranges from being reused for a new block group. This is because our
10425 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10426 	 * completely transactionless, so while it is trimming a range the
10427 	 * currently running transaction might finish and a new one start,
10428 	 * allowing for new block groups to be created that can reuse the same
10429 	 * physical device locations unless we take this special care.
10430 	 *
10431 	 * There may also be an implicit trim operation if the file system
10432 	 * is mounted with -odiscard. The same protections must remain
10433 	 * in place until the extents have been discarded completely when
10434 	 * the transaction commit has completed.
10435 	 */
10436 	remove_em = (atomic_read(&block_group->trimming) == 0);
10437 	/*
10438 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10439 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10440 	 * before checking block_group->removed).
10441 	 */
10442 	if (!remove_em) {
10443 		/*
10444 		 * Our em might be in trans->transaction->pending_chunks which
10445 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10446 		 * and so is the fs_info->pinned_chunks list.
10447 		 *
10448 		 * So at this point we must be holding the chunk_mutex to avoid
10449 		 * any races with chunk allocation (more specifically at
10450 		 * volumes.c:contains_pending_extent()), to ensure it always
10451 		 * sees the em, either in the pending_chunks list or in the
10452 		 * pinned_chunks list.
10453 		 */
10454 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10455 	}
10456 	spin_unlock(&block_group->lock);
10457 
10458 	if (remove_em) {
10459 		struct extent_map_tree *em_tree;
10460 
10461 		em_tree = &fs_info->mapping_tree.map_tree;
10462 		write_lock(&em_tree->lock);
10463 		/*
10464 		 * The em might be in the pending_chunks list, so make sure the
10465 		 * chunk mutex is locked, since remove_extent_mapping() will
10466 		 * delete us from that list.
10467 		 */
10468 		remove_extent_mapping(em_tree, em);
10469 		write_unlock(&em_tree->lock);
10470 		/* once for the tree */
10471 		free_extent_map(em);
10472 	}
10473 
10474 	mutex_unlock(&fs_info->chunk_mutex);
10475 
10476 	ret = remove_block_group_free_space(trans, block_group);
10477 	if (ret)
10478 		goto out;
10479 
10480 	btrfs_put_block_group(block_group);
10481 	btrfs_put_block_group(block_group);
10482 
10483 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10484 	if (ret > 0)
10485 		ret = -EIO;
10486 	if (ret < 0)
10487 		goto out;
10488 
10489 	ret = btrfs_del_item(trans, root, path);
10490 out:
10491 	btrfs_free_path(path);
10492 	return ret;
10493 }
10494 
10495 struct btrfs_trans_handle *
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)10496 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10497 				     const u64 chunk_offset)
10498 {
10499 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10500 	struct extent_map *em;
10501 	struct map_lookup *map;
10502 	unsigned int num_items;
10503 
10504 	read_lock(&em_tree->lock);
10505 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10506 	read_unlock(&em_tree->lock);
10507 	ASSERT(em && em->start == chunk_offset);
10508 
10509 	/*
10510 	 * We need to reserve 3 + N units from the metadata space info in order
10511 	 * to remove a block group (done at btrfs_remove_chunk() and at
10512 	 * btrfs_remove_block_group()), which are used for:
10513 	 *
10514 	 * 1 unit for adding the free space inode's orphan (located in the tree
10515 	 * of tree roots).
10516 	 * 1 unit for deleting the block group item (located in the extent
10517 	 * tree).
10518 	 * 1 unit for deleting the free space item (located in tree of tree
10519 	 * roots).
10520 	 * N units for deleting N device extent items corresponding to each
10521 	 * stripe (located in the device tree).
10522 	 *
10523 	 * In order to remove a block group we also need to reserve units in the
10524 	 * system space info in order to update the chunk tree (update one or
10525 	 * more device items and remove one chunk item), but this is done at
10526 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10527 	 */
10528 	map = em->map_lookup;
10529 	num_items = 3 + map->num_stripes;
10530 	free_extent_map(em);
10531 
10532 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10533 							   num_items, 1);
10534 }
10535 
10536 /*
10537  * Process the unused_bgs list and remove any that don't have any allocated
10538  * space inside of them.
10539  */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)10540 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10541 {
10542 	struct btrfs_block_group_cache *block_group;
10543 	struct btrfs_space_info *space_info;
10544 	struct btrfs_trans_handle *trans;
10545 	int ret = 0;
10546 
10547 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10548 		return;
10549 
10550 	spin_lock(&fs_info->unused_bgs_lock);
10551 	while (!list_empty(&fs_info->unused_bgs)) {
10552 		u64 start, end;
10553 		int trimming;
10554 
10555 		block_group = list_first_entry(&fs_info->unused_bgs,
10556 					       struct btrfs_block_group_cache,
10557 					       bg_list);
10558 		list_del_init(&block_group->bg_list);
10559 
10560 		space_info = block_group->space_info;
10561 
10562 		if (ret || btrfs_mixed_space_info(space_info)) {
10563 			btrfs_put_block_group(block_group);
10564 			continue;
10565 		}
10566 		spin_unlock(&fs_info->unused_bgs_lock);
10567 
10568 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10569 
10570 		/* Don't want to race with allocators so take the groups_sem */
10571 		down_write(&space_info->groups_sem);
10572 		spin_lock(&block_group->lock);
10573 		if (block_group->reserved || block_group->pinned ||
10574 		    btrfs_block_group_used(&block_group->item) ||
10575 		    block_group->ro ||
10576 		    list_is_singular(&block_group->list)) {
10577 			/*
10578 			 * We want to bail if we made new allocations or have
10579 			 * outstanding allocations in this block group.  We do
10580 			 * the ro check in case balance is currently acting on
10581 			 * this block group.
10582 			 */
10583 			trace_btrfs_skip_unused_block_group(block_group);
10584 			spin_unlock(&block_group->lock);
10585 			up_write(&space_info->groups_sem);
10586 			goto next;
10587 		}
10588 		spin_unlock(&block_group->lock);
10589 
10590 		/* We don't want to force the issue, only flip if it's ok. */
10591 		ret = inc_block_group_ro(block_group, 0);
10592 		up_write(&space_info->groups_sem);
10593 		if (ret < 0) {
10594 			ret = 0;
10595 			goto next;
10596 		}
10597 
10598 		/*
10599 		 * Want to do this before we do anything else so we can recover
10600 		 * properly if we fail to join the transaction.
10601 		 */
10602 		trans = btrfs_start_trans_remove_block_group(fs_info,
10603 						     block_group->key.objectid);
10604 		if (IS_ERR(trans)) {
10605 			btrfs_dec_block_group_ro(block_group);
10606 			ret = PTR_ERR(trans);
10607 			goto next;
10608 		}
10609 
10610 		/*
10611 		 * We could have pending pinned extents for this block group,
10612 		 * just delete them, we don't care about them anymore.
10613 		 */
10614 		start = block_group->key.objectid;
10615 		end = start + block_group->key.offset - 1;
10616 		/*
10617 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10618 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10619 		 * another task might be running finish_extent_commit() for the
10620 		 * previous transaction N - 1, and have seen a range belonging
10621 		 * to the block group in freed_extents[] before we were able to
10622 		 * clear the whole block group range from freed_extents[]. This
10623 		 * means that task can lookup for the block group after we
10624 		 * unpinned it from freed_extents[] and removed it, leading to
10625 		 * a BUG_ON() at btrfs_unpin_extent_range().
10626 		 */
10627 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10628 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10629 				  EXTENT_DIRTY);
10630 		if (ret) {
10631 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10632 			btrfs_dec_block_group_ro(block_group);
10633 			goto end_trans;
10634 		}
10635 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10636 				  EXTENT_DIRTY);
10637 		if (ret) {
10638 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10639 			btrfs_dec_block_group_ro(block_group);
10640 			goto end_trans;
10641 		}
10642 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10643 
10644 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10645 		spin_lock(&space_info->lock);
10646 		spin_lock(&block_group->lock);
10647 
10648 		space_info->bytes_pinned -= block_group->pinned;
10649 		space_info->bytes_readonly += block_group->pinned;
10650 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
10651 				   -block_group->pinned,
10652 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
10653 		block_group->pinned = 0;
10654 
10655 		spin_unlock(&block_group->lock);
10656 		spin_unlock(&space_info->lock);
10657 
10658 		/* DISCARD can flip during remount */
10659 		trimming = btrfs_test_opt(fs_info, DISCARD);
10660 
10661 		/* Implicit trim during transaction commit. */
10662 		if (trimming)
10663 			btrfs_get_block_group_trimming(block_group);
10664 
10665 		/*
10666 		 * Btrfs_remove_chunk will abort the transaction if things go
10667 		 * horribly wrong.
10668 		 */
10669 		ret = btrfs_remove_chunk(trans, block_group->key.objectid);
10670 
10671 		if (ret) {
10672 			if (trimming)
10673 				btrfs_put_block_group_trimming(block_group);
10674 			goto end_trans;
10675 		}
10676 
10677 		/*
10678 		 * If we're not mounted with -odiscard, we can just forget
10679 		 * about this block group. Otherwise we'll need to wait
10680 		 * until transaction commit to do the actual discard.
10681 		 */
10682 		if (trimming) {
10683 			spin_lock(&fs_info->unused_bgs_lock);
10684 			/*
10685 			 * A concurrent scrub might have added us to the list
10686 			 * fs_info->unused_bgs, so use a list_move operation
10687 			 * to add the block group to the deleted_bgs list.
10688 			 */
10689 			list_move(&block_group->bg_list,
10690 				  &trans->transaction->deleted_bgs);
10691 			spin_unlock(&fs_info->unused_bgs_lock);
10692 			btrfs_get_block_group(block_group);
10693 		}
10694 end_trans:
10695 		btrfs_end_transaction(trans);
10696 next:
10697 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10698 		btrfs_put_block_group(block_group);
10699 		spin_lock(&fs_info->unused_bgs_lock);
10700 	}
10701 	spin_unlock(&fs_info->unused_bgs_lock);
10702 }
10703 
btrfs_init_space_info(struct btrfs_fs_info * fs_info)10704 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10705 {
10706 	struct btrfs_super_block *disk_super;
10707 	u64 features;
10708 	u64 flags;
10709 	int mixed = 0;
10710 	int ret;
10711 
10712 	disk_super = fs_info->super_copy;
10713 	if (!btrfs_super_root(disk_super))
10714 		return -EINVAL;
10715 
10716 	features = btrfs_super_incompat_flags(disk_super);
10717 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10718 		mixed = 1;
10719 
10720 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10721 	ret = create_space_info(fs_info, flags);
10722 	if (ret)
10723 		goto out;
10724 
10725 	if (mixed) {
10726 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10727 		ret = create_space_info(fs_info, flags);
10728 	} else {
10729 		flags = BTRFS_BLOCK_GROUP_METADATA;
10730 		ret = create_space_info(fs_info, flags);
10731 		if (ret)
10732 			goto out;
10733 
10734 		flags = BTRFS_BLOCK_GROUP_DATA;
10735 		ret = create_space_info(fs_info, flags);
10736 	}
10737 out:
10738 	return ret;
10739 }
10740 
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)10741 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10742 				   u64 start, u64 end)
10743 {
10744 	return unpin_extent_range(fs_info, start, end, false);
10745 }
10746 
10747 /*
10748  * It used to be that old block groups would be left around forever.
10749  * Iterating over them would be enough to trim unused space.  Since we
10750  * now automatically remove them, we also need to iterate over unallocated
10751  * space.
10752  *
10753  * We don't want a transaction for this since the discard may take a
10754  * substantial amount of time.  We don't require that a transaction be
10755  * running, but we do need to take a running transaction into account
10756  * to ensure that we're not discarding chunks that were released in
10757  * the current transaction.
10758  *
10759  * Holding the chunks lock will prevent other threads from allocating
10760  * or releasing chunks, but it won't prevent a running transaction
10761  * from committing and releasing the memory that the pending chunks
10762  * list head uses.  For that, we need to take a reference to the
10763  * transaction.
10764  */
btrfs_trim_free_extents(struct btrfs_device * device,u64 minlen,u64 * trimmed)10765 static int btrfs_trim_free_extents(struct btrfs_device *device,
10766 				   u64 minlen, u64 *trimmed)
10767 {
10768 	u64 start = 0, len = 0;
10769 	int ret;
10770 
10771 	*trimmed = 0;
10772 
10773 	/* Not writeable = nothing to do. */
10774 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10775 		return 0;
10776 
10777 	/* No free space = nothing to do. */
10778 	if (device->total_bytes <= device->bytes_used)
10779 		return 0;
10780 
10781 	ret = 0;
10782 
10783 	while (1) {
10784 		struct btrfs_fs_info *fs_info = device->fs_info;
10785 		struct btrfs_transaction *trans;
10786 		u64 bytes;
10787 
10788 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10789 		if (ret)
10790 			return ret;
10791 
10792 		down_read(&fs_info->commit_root_sem);
10793 
10794 		spin_lock(&fs_info->trans_lock);
10795 		trans = fs_info->running_transaction;
10796 		if (trans)
10797 			refcount_inc(&trans->use_count);
10798 		spin_unlock(&fs_info->trans_lock);
10799 
10800 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10801 						 &start, &len);
10802 		if (trans)
10803 			btrfs_put_transaction(trans);
10804 
10805 		if (ret) {
10806 			up_read(&fs_info->commit_root_sem);
10807 			mutex_unlock(&fs_info->chunk_mutex);
10808 			if (ret == -ENOSPC)
10809 				ret = 0;
10810 			break;
10811 		}
10812 
10813 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10814 		up_read(&fs_info->commit_root_sem);
10815 		mutex_unlock(&fs_info->chunk_mutex);
10816 
10817 		if (ret)
10818 			break;
10819 
10820 		start += len;
10821 		*trimmed += bytes;
10822 
10823 		if (fatal_signal_pending(current)) {
10824 			ret = -ERESTARTSYS;
10825 			break;
10826 		}
10827 
10828 		cond_resched();
10829 	}
10830 
10831 	return ret;
10832 }
10833 
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)10834 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10835 {
10836 	struct btrfs_block_group_cache *cache = NULL;
10837 	struct btrfs_device *device;
10838 	struct list_head *devices;
10839 	u64 group_trimmed;
10840 	u64 start;
10841 	u64 end;
10842 	u64 trimmed = 0;
10843 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10844 	int ret = 0;
10845 
10846 	/*
10847 	 * try to trim all FS space, our block group may start from non-zero.
10848 	 */
10849 	if (range->len == total_bytes)
10850 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10851 	else
10852 		cache = btrfs_lookup_block_group(fs_info, range->start);
10853 
10854 	while (cache) {
10855 		if (cache->key.objectid >= (range->start + range->len)) {
10856 			btrfs_put_block_group(cache);
10857 			break;
10858 		}
10859 
10860 		start = max(range->start, cache->key.objectid);
10861 		end = min(range->start + range->len,
10862 				cache->key.objectid + cache->key.offset);
10863 
10864 		if (end - start >= range->minlen) {
10865 			if (!block_group_cache_done(cache)) {
10866 				ret = cache_block_group(cache, 0);
10867 				if (ret) {
10868 					btrfs_put_block_group(cache);
10869 					break;
10870 				}
10871 				ret = wait_block_group_cache_done(cache);
10872 				if (ret) {
10873 					btrfs_put_block_group(cache);
10874 					break;
10875 				}
10876 			}
10877 			ret = btrfs_trim_block_group(cache,
10878 						     &group_trimmed,
10879 						     start,
10880 						     end,
10881 						     range->minlen);
10882 
10883 			trimmed += group_trimmed;
10884 			if (ret) {
10885 				btrfs_put_block_group(cache);
10886 				break;
10887 			}
10888 		}
10889 
10890 		cache = next_block_group(fs_info, cache);
10891 	}
10892 
10893 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
10894 	devices = &fs_info->fs_devices->alloc_list;
10895 	list_for_each_entry(device, devices, dev_alloc_list) {
10896 		ret = btrfs_trim_free_extents(device, range->minlen,
10897 					      &group_trimmed);
10898 		if (ret)
10899 			break;
10900 
10901 		trimmed += group_trimmed;
10902 	}
10903 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10904 
10905 	range->len = trimmed;
10906 	return ret;
10907 }
10908 
10909 /*
10910  * btrfs_{start,end}_write_no_snapshotting() are similar to
10911  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10912  * data into the page cache through nocow before the subvolume is snapshoted,
10913  * but flush the data into disk after the snapshot creation, or to prevent
10914  * operations while snapshotting is ongoing and that cause the snapshot to be
10915  * inconsistent (writes followed by expanding truncates for example).
10916  */
btrfs_end_write_no_snapshotting(struct btrfs_root * root)10917 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
10918 {
10919 	percpu_counter_dec(&root->subv_writers->counter);
10920 	cond_wake_up(&root->subv_writers->wait);
10921 }
10922 
btrfs_start_write_no_snapshotting(struct btrfs_root * root)10923 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
10924 {
10925 	if (atomic_read(&root->will_be_snapshotted))
10926 		return 0;
10927 
10928 	percpu_counter_inc(&root->subv_writers->counter);
10929 	/*
10930 	 * Make sure counter is updated before we check for snapshot creation.
10931 	 */
10932 	smp_mb();
10933 	if (atomic_read(&root->will_be_snapshotted)) {
10934 		btrfs_end_write_no_snapshotting(root);
10935 		return 0;
10936 	}
10937 	return 1;
10938 }
10939 
btrfs_wait_for_snapshot_creation(struct btrfs_root * root)10940 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10941 {
10942 	while (true) {
10943 		int ret;
10944 
10945 		ret = btrfs_start_write_no_snapshotting(root);
10946 		if (ret)
10947 			break;
10948 		wait_var_event(&root->will_be_snapshotted,
10949 			       !atomic_read(&root->will_be_snapshotted));
10950 	}
10951 }
10952 
btrfs_mark_bg_unused(struct btrfs_block_group_cache * bg)10953 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
10954 {
10955 	struct btrfs_fs_info *fs_info = bg->fs_info;
10956 
10957 	spin_lock(&fs_info->unused_bgs_lock);
10958 	if (list_empty(&bg->bg_list)) {
10959 		btrfs_get_block_group(bg);
10960 		trace_btrfs_add_unused_block_group(bg);
10961 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
10962 	}
10963 	spin_unlock(&fs_info->unused_bgs_lock);
10964 }
10965