1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "fs.h"
16 #include "messages.h"
17 #include "misc.h"
18 #include "free-space-cache.h"
19 #include "transaction.h"
20 #include "disk-io.h"
21 #include "extent_io.h"
22 #include "volumes.h"
23 #include "space-info.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "discard.h"
27 #include "subpage.h"
28 #include "inode-item.h"
29 #include "accessors.h"
30 #include "file-item.h"
31 #include "file.h"
32 #include "super.h"
33
34 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
35 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
36 #define FORCE_EXTENT_THRESHOLD SZ_1M
37
38 static struct kmem_cache *btrfs_free_space_cachep;
39 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
40
41 struct btrfs_trim_range {
42 u64 start;
43 u64 bytes;
44 struct list_head list;
45 };
46
47 static int link_free_space(struct btrfs_free_space_ctl *ctl,
48 struct btrfs_free_space *info);
49 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
50 struct btrfs_free_space *info, bool update_stat);
51 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
52 struct btrfs_free_space *bitmap_info, u64 *offset,
53 u64 *bytes, bool for_alloc);
54 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
55 struct btrfs_free_space *bitmap_info);
56 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
57 struct btrfs_free_space *info, u64 offset,
58 u64 bytes, bool update_stats);
59
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)60 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
61 {
62 struct btrfs_free_space *info;
63 struct rb_node *node;
64
65 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
66 info = rb_entry(node, struct btrfs_free_space, offset_index);
67 if (!info->bitmap) {
68 unlink_free_space(ctl, info, true);
69 kmem_cache_free(btrfs_free_space_cachep, info);
70 } else {
71 free_bitmap(ctl, info);
72 }
73
74 cond_resched_lock(&ctl->tree_lock);
75 }
76 }
77
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)78 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
79 struct btrfs_path *path,
80 u64 offset)
81 {
82 struct btrfs_fs_info *fs_info = root->fs_info;
83 struct btrfs_key key;
84 struct btrfs_key location;
85 struct btrfs_disk_key disk_key;
86 struct btrfs_free_space_header *header;
87 struct extent_buffer *leaf;
88 struct inode *inode = NULL;
89 unsigned nofs_flag;
90 int ret;
91
92 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
93 key.offset = offset;
94 key.type = 0;
95
96 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
97 if (ret < 0)
98 return ERR_PTR(ret);
99 if (ret > 0) {
100 btrfs_release_path(path);
101 return ERR_PTR(-ENOENT);
102 }
103
104 leaf = path->nodes[0];
105 header = btrfs_item_ptr(leaf, path->slots[0],
106 struct btrfs_free_space_header);
107 btrfs_free_space_key(leaf, header, &disk_key);
108 btrfs_disk_key_to_cpu(&location, &disk_key);
109 btrfs_release_path(path);
110
111 /*
112 * We are often under a trans handle at this point, so we need to make
113 * sure NOFS is set to keep us from deadlocking.
114 */
115 nofs_flag = memalloc_nofs_save();
116 inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
117 btrfs_release_path(path);
118 memalloc_nofs_restore(nofs_flag);
119 if (IS_ERR(inode))
120 return inode;
121
122 mapping_set_gfp_mask(inode->i_mapping,
123 mapping_gfp_constraint(inode->i_mapping,
124 ~(__GFP_FS | __GFP_HIGHMEM)));
125
126 return inode;
127 }
128
lookup_free_space_inode(struct btrfs_block_group * block_group,struct btrfs_path * path)129 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
130 struct btrfs_path *path)
131 {
132 struct btrfs_fs_info *fs_info = block_group->fs_info;
133 struct inode *inode = NULL;
134 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
135
136 spin_lock(&block_group->lock);
137 if (block_group->inode)
138 inode = igrab(block_group->inode);
139 spin_unlock(&block_group->lock);
140 if (inode)
141 return inode;
142
143 inode = __lookup_free_space_inode(fs_info->tree_root, path,
144 block_group->start);
145 if (IS_ERR(inode))
146 return inode;
147
148 spin_lock(&block_group->lock);
149 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
150 btrfs_info(fs_info, "Old style space inode found, converting.");
151 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
152 BTRFS_INODE_NODATACOW;
153 block_group->disk_cache_state = BTRFS_DC_CLEAR;
154 }
155
156 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
157 block_group->inode = igrab(inode);
158 spin_unlock(&block_group->lock);
159
160 return inode;
161 }
162
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)163 static int __create_free_space_inode(struct btrfs_root *root,
164 struct btrfs_trans_handle *trans,
165 struct btrfs_path *path,
166 u64 ino, u64 offset)
167 {
168 struct btrfs_key key;
169 struct btrfs_disk_key disk_key;
170 struct btrfs_free_space_header *header;
171 struct btrfs_inode_item *inode_item;
172 struct extent_buffer *leaf;
173 /* We inline CRCs for the free disk space cache */
174 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
175 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
176 int ret;
177
178 ret = btrfs_insert_empty_inode(trans, root, path, ino);
179 if (ret)
180 return ret;
181
182 leaf = path->nodes[0];
183 inode_item = btrfs_item_ptr(leaf, path->slots[0],
184 struct btrfs_inode_item);
185 btrfs_item_key(leaf, &disk_key, path->slots[0]);
186 memzero_extent_buffer(leaf, (unsigned long)inode_item,
187 sizeof(*inode_item));
188 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
189 btrfs_set_inode_size(leaf, inode_item, 0);
190 btrfs_set_inode_nbytes(leaf, inode_item, 0);
191 btrfs_set_inode_uid(leaf, inode_item, 0);
192 btrfs_set_inode_gid(leaf, inode_item, 0);
193 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
194 btrfs_set_inode_flags(leaf, inode_item, flags);
195 btrfs_set_inode_nlink(leaf, inode_item, 1);
196 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
197 btrfs_set_inode_block_group(leaf, inode_item, offset);
198 btrfs_mark_buffer_dirty(leaf);
199 btrfs_release_path(path);
200
201 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
202 key.offset = offset;
203 key.type = 0;
204 ret = btrfs_insert_empty_item(trans, root, path, &key,
205 sizeof(struct btrfs_free_space_header));
206 if (ret < 0) {
207 btrfs_release_path(path);
208 return ret;
209 }
210
211 leaf = path->nodes[0];
212 header = btrfs_item_ptr(leaf, path->slots[0],
213 struct btrfs_free_space_header);
214 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
215 btrfs_set_free_space_key(leaf, header, &disk_key);
216 btrfs_mark_buffer_dirty(leaf);
217 btrfs_release_path(path);
218
219 return 0;
220 }
221
create_free_space_inode(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)222 int create_free_space_inode(struct btrfs_trans_handle *trans,
223 struct btrfs_block_group *block_group,
224 struct btrfs_path *path)
225 {
226 int ret;
227 u64 ino;
228
229 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
230 if (ret < 0)
231 return ret;
232
233 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
234 ino, block_group->start);
235 }
236
237 /*
238 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
239 * handles lookup, otherwise it takes ownership and iputs the inode.
240 * Don't reuse an inode pointer after passing it into this function.
241 */
btrfs_remove_free_space_inode(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_block_group * block_group)242 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
243 struct inode *inode,
244 struct btrfs_block_group *block_group)
245 {
246 struct btrfs_path *path;
247 struct btrfs_key key;
248 int ret = 0;
249
250 path = btrfs_alloc_path();
251 if (!path)
252 return -ENOMEM;
253
254 if (!inode)
255 inode = lookup_free_space_inode(block_group, path);
256 if (IS_ERR(inode)) {
257 if (PTR_ERR(inode) != -ENOENT)
258 ret = PTR_ERR(inode);
259 goto out;
260 }
261 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
262 if (ret) {
263 btrfs_add_delayed_iput(BTRFS_I(inode));
264 goto out;
265 }
266 clear_nlink(inode);
267 /* One for the block groups ref */
268 spin_lock(&block_group->lock);
269 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
270 block_group->inode = NULL;
271 spin_unlock(&block_group->lock);
272 iput(inode);
273 } else {
274 spin_unlock(&block_group->lock);
275 }
276 /* One for the lookup ref */
277 btrfs_add_delayed_iput(BTRFS_I(inode));
278
279 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
280 key.type = 0;
281 key.offset = block_group->start;
282 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
283 -1, 1);
284 if (ret) {
285 if (ret > 0)
286 ret = 0;
287 goto out;
288 }
289 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
290 out:
291 btrfs_free_path(path);
292 return ret;
293 }
294
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct inode * vfs_inode)295 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
296 struct btrfs_block_group *block_group,
297 struct inode *vfs_inode)
298 {
299 struct btrfs_truncate_control control = {
300 .inode = BTRFS_I(vfs_inode),
301 .new_size = 0,
302 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
303 .min_type = BTRFS_EXTENT_DATA_KEY,
304 .clear_extent_range = true,
305 };
306 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
307 struct btrfs_root *root = inode->root;
308 struct extent_state *cached_state = NULL;
309 int ret = 0;
310 bool locked = false;
311
312 if (block_group) {
313 struct btrfs_path *path = btrfs_alloc_path();
314
315 if (!path) {
316 ret = -ENOMEM;
317 goto fail;
318 }
319 locked = true;
320 mutex_lock(&trans->transaction->cache_write_mutex);
321 if (!list_empty(&block_group->io_list)) {
322 list_del_init(&block_group->io_list);
323
324 btrfs_wait_cache_io(trans, block_group, path);
325 btrfs_put_block_group(block_group);
326 }
327
328 /*
329 * now that we've truncated the cache away, its no longer
330 * setup or written
331 */
332 spin_lock(&block_group->lock);
333 block_group->disk_cache_state = BTRFS_DC_CLEAR;
334 spin_unlock(&block_group->lock);
335 btrfs_free_path(path);
336 }
337
338 btrfs_i_size_write(inode, 0);
339 truncate_pagecache(vfs_inode, 0);
340
341 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
342 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
343
344 /*
345 * We skip the throttling logic for free space cache inodes, so we don't
346 * need to check for -EAGAIN.
347 */
348 ret = btrfs_truncate_inode_items(trans, root, &control);
349
350 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
351 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
352
353 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
354 if (ret)
355 goto fail;
356
357 ret = btrfs_update_inode(trans, root, inode);
358
359 fail:
360 if (locked)
361 mutex_unlock(&trans->transaction->cache_write_mutex);
362 if (ret)
363 btrfs_abort_transaction(trans, ret);
364
365 return ret;
366 }
367
readahead_cache(struct inode * inode)368 static void readahead_cache(struct inode *inode)
369 {
370 struct file_ra_state ra;
371 unsigned long last_index;
372
373 file_ra_state_init(&ra, inode->i_mapping);
374 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
375
376 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
377 }
378
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)379 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
380 int write)
381 {
382 int num_pages;
383
384 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
385
386 /* Make sure we can fit our crcs and generation into the first page */
387 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
388 return -ENOSPC;
389
390 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
391
392 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
393 if (!io_ctl->pages)
394 return -ENOMEM;
395
396 io_ctl->num_pages = num_pages;
397 io_ctl->fs_info = btrfs_sb(inode->i_sb);
398 io_ctl->inode = inode;
399
400 return 0;
401 }
402 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
403
io_ctl_free(struct btrfs_io_ctl * io_ctl)404 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
405 {
406 kfree(io_ctl->pages);
407 io_ctl->pages = NULL;
408 }
409
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)410 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
411 {
412 if (io_ctl->cur) {
413 io_ctl->cur = NULL;
414 io_ctl->orig = NULL;
415 }
416 }
417
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)418 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
419 {
420 ASSERT(io_ctl->index < io_ctl->num_pages);
421 io_ctl->page = io_ctl->pages[io_ctl->index++];
422 io_ctl->cur = page_address(io_ctl->page);
423 io_ctl->orig = io_ctl->cur;
424 io_ctl->size = PAGE_SIZE;
425 if (clear)
426 clear_page(io_ctl->cur);
427 }
428
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)429 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
430 {
431 int i;
432
433 io_ctl_unmap_page(io_ctl);
434
435 for (i = 0; i < io_ctl->num_pages; i++) {
436 if (io_ctl->pages[i]) {
437 btrfs_page_clear_checked(io_ctl->fs_info,
438 io_ctl->pages[i],
439 page_offset(io_ctl->pages[i]),
440 PAGE_SIZE);
441 unlock_page(io_ctl->pages[i]);
442 put_page(io_ctl->pages[i]);
443 }
444 }
445 }
446
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,bool uptodate)447 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
448 {
449 struct page *page;
450 struct inode *inode = io_ctl->inode;
451 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
452 int i;
453
454 for (i = 0; i < io_ctl->num_pages; i++) {
455 int ret;
456
457 page = find_or_create_page(inode->i_mapping, i, mask);
458 if (!page) {
459 io_ctl_drop_pages(io_ctl);
460 return -ENOMEM;
461 }
462
463 ret = set_page_extent_mapped(page);
464 if (ret < 0) {
465 unlock_page(page);
466 put_page(page);
467 io_ctl_drop_pages(io_ctl);
468 return ret;
469 }
470
471 io_ctl->pages[i] = page;
472 if (uptodate && !PageUptodate(page)) {
473 btrfs_read_folio(NULL, page_folio(page));
474 lock_page(page);
475 if (page->mapping != inode->i_mapping) {
476 btrfs_err(BTRFS_I(inode)->root->fs_info,
477 "free space cache page truncated");
478 io_ctl_drop_pages(io_ctl);
479 return -EIO;
480 }
481 if (!PageUptodate(page)) {
482 btrfs_err(BTRFS_I(inode)->root->fs_info,
483 "error reading free space cache");
484 io_ctl_drop_pages(io_ctl);
485 return -EIO;
486 }
487 }
488 }
489
490 for (i = 0; i < io_ctl->num_pages; i++)
491 clear_page_dirty_for_io(io_ctl->pages[i]);
492
493 return 0;
494 }
495
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)496 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
497 {
498 io_ctl_map_page(io_ctl, 1);
499
500 /*
501 * Skip the csum areas. If we don't check crcs then we just have a
502 * 64bit chunk at the front of the first page.
503 */
504 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
505 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
506
507 put_unaligned_le64(generation, io_ctl->cur);
508 io_ctl->cur += sizeof(u64);
509 }
510
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)511 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
512 {
513 u64 cache_gen;
514
515 /*
516 * Skip the crc area. If we don't check crcs then we just have a 64bit
517 * chunk at the front of the first page.
518 */
519 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
520 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
521
522 cache_gen = get_unaligned_le64(io_ctl->cur);
523 if (cache_gen != generation) {
524 btrfs_err_rl(io_ctl->fs_info,
525 "space cache generation (%llu) does not match inode (%llu)",
526 cache_gen, generation);
527 io_ctl_unmap_page(io_ctl);
528 return -EIO;
529 }
530 io_ctl->cur += sizeof(u64);
531 return 0;
532 }
533
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)534 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
535 {
536 u32 *tmp;
537 u32 crc = ~(u32)0;
538 unsigned offset = 0;
539
540 if (index == 0)
541 offset = sizeof(u32) * io_ctl->num_pages;
542
543 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
544 btrfs_crc32c_final(crc, (u8 *)&crc);
545 io_ctl_unmap_page(io_ctl);
546 tmp = page_address(io_ctl->pages[0]);
547 tmp += index;
548 *tmp = crc;
549 }
550
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)551 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
552 {
553 u32 *tmp, val;
554 u32 crc = ~(u32)0;
555 unsigned offset = 0;
556
557 if (index == 0)
558 offset = sizeof(u32) * io_ctl->num_pages;
559
560 tmp = page_address(io_ctl->pages[0]);
561 tmp += index;
562 val = *tmp;
563
564 io_ctl_map_page(io_ctl, 0);
565 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
566 btrfs_crc32c_final(crc, (u8 *)&crc);
567 if (val != crc) {
568 btrfs_err_rl(io_ctl->fs_info,
569 "csum mismatch on free space cache");
570 io_ctl_unmap_page(io_ctl);
571 return -EIO;
572 }
573
574 return 0;
575 }
576
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)577 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
578 void *bitmap)
579 {
580 struct btrfs_free_space_entry *entry;
581
582 if (!io_ctl->cur)
583 return -ENOSPC;
584
585 entry = io_ctl->cur;
586 put_unaligned_le64(offset, &entry->offset);
587 put_unaligned_le64(bytes, &entry->bytes);
588 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
589 BTRFS_FREE_SPACE_EXTENT;
590 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
591 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
592
593 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
594 return 0;
595
596 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
597
598 /* No more pages to map */
599 if (io_ctl->index >= io_ctl->num_pages)
600 return 0;
601
602 /* map the next page */
603 io_ctl_map_page(io_ctl, 1);
604 return 0;
605 }
606
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)607 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
608 {
609 if (!io_ctl->cur)
610 return -ENOSPC;
611
612 /*
613 * If we aren't at the start of the current page, unmap this one and
614 * map the next one if there is any left.
615 */
616 if (io_ctl->cur != io_ctl->orig) {
617 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
618 if (io_ctl->index >= io_ctl->num_pages)
619 return -ENOSPC;
620 io_ctl_map_page(io_ctl, 0);
621 }
622
623 copy_page(io_ctl->cur, bitmap);
624 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
625 if (io_ctl->index < io_ctl->num_pages)
626 io_ctl_map_page(io_ctl, 0);
627 return 0;
628 }
629
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)630 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
631 {
632 /*
633 * If we're not on the boundary we know we've modified the page and we
634 * need to crc the page.
635 */
636 if (io_ctl->cur != io_ctl->orig)
637 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
638 else
639 io_ctl_unmap_page(io_ctl);
640
641 while (io_ctl->index < io_ctl->num_pages) {
642 io_ctl_map_page(io_ctl, 1);
643 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
644 }
645 }
646
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)647 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
648 struct btrfs_free_space *entry, u8 *type)
649 {
650 struct btrfs_free_space_entry *e;
651 int ret;
652
653 if (!io_ctl->cur) {
654 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
655 if (ret)
656 return ret;
657 }
658
659 e = io_ctl->cur;
660 entry->offset = get_unaligned_le64(&e->offset);
661 entry->bytes = get_unaligned_le64(&e->bytes);
662 *type = e->type;
663 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
664 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
665
666 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
667 return 0;
668
669 io_ctl_unmap_page(io_ctl);
670
671 return 0;
672 }
673
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)674 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
675 struct btrfs_free_space *entry)
676 {
677 int ret;
678
679 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
680 if (ret)
681 return ret;
682
683 copy_page(entry->bitmap, io_ctl->cur);
684 io_ctl_unmap_page(io_ctl);
685
686 return 0;
687 }
688
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)689 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
690 {
691 struct btrfs_block_group *block_group = ctl->block_group;
692 u64 max_bytes;
693 u64 bitmap_bytes;
694 u64 extent_bytes;
695 u64 size = block_group->length;
696 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
697 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
698
699 max_bitmaps = max_t(u64, max_bitmaps, 1);
700
701 if (ctl->total_bitmaps > max_bitmaps)
702 btrfs_err(block_group->fs_info,
703 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
704 block_group->start, block_group->length,
705 ctl->total_bitmaps, ctl->unit, max_bitmaps,
706 bytes_per_bg);
707 ASSERT(ctl->total_bitmaps <= max_bitmaps);
708
709 /*
710 * We are trying to keep the total amount of memory used per 1GiB of
711 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
712 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
713 * bitmaps, we may end up using more memory than this.
714 */
715 if (size < SZ_1G)
716 max_bytes = MAX_CACHE_BYTES_PER_GIG;
717 else
718 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
719
720 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
721
722 /*
723 * we want the extent entry threshold to always be at most 1/2 the max
724 * bytes we can have, or whatever is less than that.
725 */
726 extent_bytes = max_bytes - bitmap_bytes;
727 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
728
729 ctl->extents_thresh =
730 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
731 }
732
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)733 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
734 struct btrfs_free_space_ctl *ctl,
735 struct btrfs_path *path, u64 offset)
736 {
737 struct btrfs_fs_info *fs_info = root->fs_info;
738 struct btrfs_free_space_header *header;
739 struct extent_buffer *leaf;
740 struct btrfs_io_ctl io_ctl;
741 struct btrfs_key key;
742 struct btrfs_free_space *e, *n;
743 LIST_HEAD(bitmaps);
744 u64 num_entries;
745 u64 num_bitmaps;
746 u64 generation;
747 u8 type;
748 int ret = 0;
749
750 /* Nothing in the space cache, goodbye */
751 if (!i_size_read(inode))
752 return 0;
753
754 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
755 key.offset = offset;
756 key.type = 0;
757
758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
759 if (ret < 0)
760 return 0;
761 else if (ret > 0) {
762 btrfs_release_path(path);
763 return 0;
764 }
765
766 ret = -1;
767
768 leaf = path->nodes[0];
769 header = btrfs_item_ptr(leaf, path->slots[0],
770 struct btrfs_free_space_header);
771 num_entries = btrfs_free_space_entries(leaf, header);
772 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
773 generation = btrfs_free_space_generation(leaf, header);
774 btrfs_release_path(path);
775
776 if (!BTRFS_I(inode)->generation) {
777 btrfs_info(fs_info,
778 "the free space cache file (%llu) is invalid, skip it",
779 offset);
780 return 0;
781 }
782
783 if (BTRFS_I(inode)->generation != generation) {
784 btrfs_err(fs_info,
785 "free space inode generation (%llu) did not match free space cache generation (%llu)",
786 BTRFS_I(inode)->generation, generation);
787 return 0;
788 }
789
790 if (!num_entries)
791 return 0;
792
793 ret = io_ctl_init(&io_ctl, inode, 0);
794 if (ret)
795 return ret;
796
797 readahead_cache(inode);
798
799 ret = io_ctl_prepare_pages(&io_ctl, true);
800 if (ret)
801 goto out;
802
803 ret = io_ctl_check_crc(&io_ctl, 0);
804 if (ret)
805 goto free_cache;
806
807 ret = io_ctl_check_generation(&io_ctl, generation);
808 if (ret)
809 goto free_cache;
810
811 while (num_entries) {
812 e = kmem_cache_zalloc(btrfs_free_space_cachep,
813 GFP_NOFS);
814 if (!e) {
815 ret = -ENOMEM;
816 goto free_cache;
817 }
818
819 ret = io_ctl_read_entry(&io_ctl, e, &type);
820 if (ret) {
821 kmem_cache_free(btrfs_free_space_cachep, e);
822 goto free_cache;
823 }
824
825 if (!e->bytes) {
826 ret = -1;
827 kmem_cache_free(btrfs_free_space_cachep, e);
828 goto free_cache;
829 }
830
831 if (type == BTRFS_FREE_SPACE_EXTENT) {
832 spin_lock(&ctl->tree_lock);
833 ret = link_free_space(ctl, e);
834 spin_unlock(&ctl->tree_lock);
835 if (ret) {
836 btrfs_err(fs_info,
837 "Duplicate entries in free space cache, dumping");
838 kmem_cache_free(btrfs_free_space_cachep, e);
839 goto free_cache;
840 }
841 } else {
842 ASSERT(num_bitmaps);
843 num_bitmaps--;
844 e->bitmap = kmem_cache_zalloc(
845 btrfs_free_space_bitmap_cachep, GFP_NOFS);
846 if (!e->bitmap) {
847 ret = -ENOMEM;
848 kmem_cache_free(
849 btrfs_free_space_cachep, e);
850 goto free_cache;
851 }
852 spin_lock(&ctl->tree_lock);
853 ret = link_free_space(ctl, e);
854 if (ret) {
855 spin_unlock(&ctl->tree_lock);
856 btrfs_err(fs_info,
857 "Duplicate entries in free space cache, dumping");
858 kmem_cache_free(btrfs_free_space_cachep, e);
859 goto free_cache;
860 }
861 ctl->total_bitmaps++;
862 recalculate_thresholds(ctl);
863 spin_unlock(&ctl->tree_lock);
864 list_add_tail(&e->list, &bitmaps);
865 }
866
867 num_entries--;
868 }
869
870 io_ctl_unmap_page(&io_ctl);
871
872 /*
873 * We add the bitmaps at the end of the entries in order that
874 * the bitmap entries are added to the cache.
875 */
876 list_for_each_entry_safe(e, n, &bitmaps, list) {
877 list_del_init(&e->list);
878 ret = io_ctl_read_bitmap(&io_ctl, e);
879 if (ret)
880 goto free_cache;
881 }
882
883 io_ctl_drop_pages(&io_ctl);
884 ret = 1;
885 out:
886 io_ctl_free(&io_ctl);
887 return ret;
888 free_cache:
889 io_ctl_drop_pages(&io_ctl);
890
891 spin_lock(&ctl->tree_lock);
892 __btrfs_remove_free_space_cache(ctl);
893 spin_unlock(&ctl->tree_lock);
894 goto out;
895 }
896
copy_free_space_cache(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)897 static int copy_free_space_cache(struct btrfs_block_group *block_group,
898 struct btrfs_free_space_ctl *ctl)
899 {
900 struct btrfs_free_space *info;
901 struct rb_node *n;
902 int ret = 0;
903
904 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
905 info = rb_entry(n, struct btrfs_free_space, offset_index);
906 if (!info->bitmap) {
907 const u64 offset = info->offset;
908 const u64 bytes = info->bytes;
909
910 unlink_free_space(ctl, info, true);
911 spin_unlock(&ctl->tree_lock);
912 kmem_cache_free(btrfs_free_space_cachep, info);
913 ret = btrfs_add_free_space(block_group, offset, bytes);
914 spin_lock(&ctl->tree_lock);
915 } else {
916 u64 offset = info->offset;
917 u64 bytes = ctl->unit;
918
919 ret = search_bitmap(ctl, info, &offset, &bytes, false);
920 if (ret == 0) {
921 bitmap_clear_bits(ctl, info, offset, bytes, true);
922 spin_unlock(&ctl->tree_lock);
923 ret = btrfs_add_free_space(block_group, offset,
924 bytes);
925 spin_lock(&ctl->tree_lock);
926 } else {
927 free_bitmap(ctl, info);
928 ret = 0;
929 }
930 }
931 cond_resched_lock(&ctl->tree_lock);
932 }
933 return ret;
934 }
935
936 static struct lock_class_key btrfs_free_space_inode_key;
937
load_free_space_cache(struct btrfs_block_group * block_group)938 int load_free_space_cache(struct btrfs_block_group *block_group)
939 {
940 struct btrfs_fs_info *fs_info = block_group->fs_info;
941 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
942 struct btrfs_free_space_ctl tmp_ctl = {};
943 struct inode *inode;
944 struct btrfs_path *path;
945 int ret = 0;
946 bool matched;
947 u64 used = block_group->used;
948
949 /*
950 * Because we could potentially discard our loaded free space, we want
951 * to load everything into a temporary structure first, and then if it's
952 * valid copy it all into the actual free space ctl.
953 */
954 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
955
956 /*
957 * If this block group has been marked to be cleared for one reason or
958 * another then we can't trust the on disk cache, so just return.
959 */
960 spin_lock(&block_group->lock);
961 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
962 spin_unlock(&block_group->lock);
963 return 0;
964 }
965 spin_unlock(&block_group->lock);
966
967 path = btrfs_alloc_path();
968 if (!path)
969 return 0;
970 path->search_commit_root = 1;
971 path->skip_locking = 1;
972
973 /*
974 * We must pass a path with search_commit_root set to btrfs_iget in
975 * order to avoid a deadlock when allocating extents for the tree root.
976 *
977 * When we are COWing an extent buffer from the tree root, when looking
978 * for a free extent, at extent-tree.c:find_free_extent(), we can find
979 * block group without its free space cache loaded. When we find one
980 * we must load its space cache which requires reading its free space
981 * cache's inode item from the root tree. If this inode item is located
982 * in the same leaf that we started COWing before, then we end up in
983 * deadlock on the extent buffer (trying to read lock it when we
984 * previously write locked it).
985 *
986 * It's safe to read the inode item using the commit root because
987 * block groups, once loaded, stay in memory forever (until they are
988 * removed) as well as their space caches once loaded. New block groups
989 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
990 * we will never try to read their inode item while the fs is mounted.
991 */
992 inode = lookup_free_space_inode(block_group, path);
993 if (IS_ERR(inode)) {
994 btrfs_free_path(path);
995 return 0;
996 }
997
998 /* We may have converted the inode and made the cache invalid. */
999 spin_lock(&block_group->lock);
1000 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1001 spin_unlock(&block_group->lock);
1002 btrfs_free_path(path);
1003 goto out;
1004 }
1005 spin_unlock(&block_group->lock);
1006
1007 /*
1008 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1009 * free space inodes to prevent false positives related to locks for normal
1010 * inodes.
1011 */
1012 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1013 &btrfs_free_space_inode_key);
1014
1015 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1016 path, block_group->start);
1017 btrfs_free_path(path);
1018 if (ret <= 0)
1019 goto out;
1020
1021 matched = (tmp_ctl.free_space == (block_group->length - used -
1022 block_group->bytes_super));
1023
1024 if (matched) {
1025 spin_lock(&tmp_ctl.tree_lock);
1026 ret = copy_free_space_cache(block_group, &tmp_ctl);
1027 spin_unlock(&tmp_ctl.tree_lock);
1028 /*
1029 * ret == 1 means we successfully loaded the free space cache,
1030 * so we need to re-set it here.
1031 */
1032 if (ret == 0)
1033 ret = 1;
1034 } else {
1035 /*
1036 * We need to call the _locked variant so we don't try to update
1037 * the discard counters.
1038 */
1039 spin_lock(&tmp_ctl.tree_lock);
1040 __btrfs_remove_free_space_cache(&tmp_ctl);
1041 spin_unlock(&tmp_ctl.tree_lock);
1042 btrfs_warn(fs_info,
1043 "block group %llu has wrong amount of free space",
1044 block_group->start);
1045 ret = -1;
1046 }
1047 out:
1048 if (ret < 0) {
1049 /* This cache is bogus, make sure it gets cleared */
1050 spin_lock(&block_group->lock);
1051 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1052 spin_unlock(&block_group->lock);
1053 ret = 0;
1054
1055 btrfs_warn(fs_info,
1056 "failed to load free space cache for block group %llu, rebuilding it now",
1057 block_group->start);
1058 }
1059
1060 spin_lock(&ctl->tree_lock);
1061 btrfs_discard_update_discardable(block_group);
1062 spin_unlock(&ctl->tree_lock);
1063 iput(inode);
1064 return ret;
1065 }
1066
1067 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)1068 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1069 struct btrfs_free_space_ctl *ctl,
1070 struct btrfs_block_group *block_group,
1071 int *entries, int *bitmaps,
1072 struct list_head *bitmap_list)
1073 {
1074 int ret;
1075 struct btrfs_free_cluster *cluster = NULL;
1076 struct btrfs_free_cluster *cluster_locked = NULL;
1077 struct rb_node *node = rb_first(&ctl->free_space_offset);
1078 struct btrfs_trim_range *trim_entry;
1079
1080 /* Get the cluster for this block_group if it exists */
1081 if (block_group && !list_empty(&block_group->cluster_list)) {
1082 cluster = list_entry(block_group->cluster_list.next,
1083 struct btrfs_free_cluster,
1084 block_group_list);
1085 }
1086
1087 if (!node && cluster) {
1088 cluster_locked = cluster;
1089 spin_lock(&cluster_locked->lock);
1090 node = rb_first(&cluster->root);
1091 cluster = NULL;
1092 }
1093
1094 /* Write out the extent entries */
1095 while (node) {
1096 struct btrfs_free_space *e;
1097
1098 e = rb_entry(node, struct btrfs_free_space, offset_index);
1099 *entries += 1;
1100
1101 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1102 e->bitmap);
1103 if (ret)
1104 goto fail;
1105
1106 if (e->bitmap) {
1107 list_add_tail(&e->list, bitmap_list);
1108 *bitmaps += 1;
1109 }
1110 node = rb_next(node);
1111 if (!node && cluster) {
1112 node = rb_first(&cluster->root);
1113 cluster_locked = cluster;
1114 spin_lock(&cluster_locked->lock);
1115 cluster = NULL;
1116 }
1117 }
1118 if (cluster_locked) {
1119 spin_unlock(&cluster_locked->lock);
1120 cluster_locked = NULL;
1121 }
1122
1123 /*
1124 * Make sure we don't miss any range that was removed from our rbtree
1125 * because trimming is running. Otherwise after a umount+mount (or crash
1126 * after committing the transaction) we would leak free space and get
1127 * an inconsistent free space cache report from fsck.
1128 */
1129 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1130 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1131 trim_entry->bytes, NULL);
1132 if (ret)
1133 goto fail;
1134 *entries += 1;
1135 }
1136
1137 return 0;
1138 fail:
1139 if (cluster_locked)
1140 spin_unlock(&cluster_locked->lock);
1141 return -ENOSPC;
1142 }
1143
1144 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)1145 update_cache_item(struct btrfs_trans_handle *trans,
1146 struct btrfs_root *root,
1147 struct inode *inode,
1148 struct btrfs_path *path, u64 offset,
1149 int entries, int bitmaps)
1150 {
1151 struct btrfs_key key;
1152 struct btrfs_free_space_header *header;
1153 struct extent_buffer *leaf;
1154 int ret;
1155
1156 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1157 key.offset = offset;
1158 key.type = 0;
1159
1160 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1161 if (ret < 0) {
1162 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1163 EXTENT_DELALLOC, NULL);
1164 goto fail;
1165 }
1166 leaf = path->nodes[0];
1167 if (ret > 0) {
1168 struct btrfs_key found_key;
1169 ASSERT(path->slots[0]);
1170 path->slots[0]--;
1171 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1172 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1173 found_key.offset != offset) {
1174 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1175 inode->i_size - 1, EXTENT_DELALLOC,
1176 NULL);
1177 btrfs_release_path(path);
1178 goto fail;
1179 }
1180 }
1181
1182 BTRFS_I(inode)->generation = trans->transid;
1183 header = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_free_space_header);
1185 btrfs_set_free_space_entries(leaf, header, entries);
1186 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1187 btrfs_set_free_space_generation(leaf, header, trans->transid);
1188 btrfs_mark_buffer_dirty(leaf);
1189 btrfs_release_path(path);
1190
1191 return 0;
1192
1193 fail:
1194 return -1;
1195 }
1196
write_pinned_extent_entries(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1197 static noinline_for_stack int write_pinned_extent_entries(
1198 struct btrfs_trans_handle *trans,
1199 struct btrfs_block_group *block_group,
1200 struct btrfs_io_ctl *io_ctl,
1201 int *entries)
1202 {
1203 u64 start, extent_start, extent_end, len;
1204 struct extent_io_tree *unpin = NULL;
1205 int ret;
1206
1207 if (!block_group)
1208 return 0;
1209
1210 /*
1211 * We want to add any pinned extents to our free space cache
1212 * so we don't leak the space
1213 *
1214 * We shouldn't have switched the pinned extents yet so this is the
1215 * right one
1216 */
1217 unpin = &trans->transaction->pinned_extents;
1218
1219 start = block_group->start;
1220
1221 while (start < block_group->start + block_group->length) {
1222 if (!find_first_extent_bit(unpin, start,
1223 &extent_start, &extent_end,
1224 EXTENT_DIRTY, NULL))
1225 return 0;
1226
1227 /* This pinned extent is out of our range */
1228 if (extent_start >= block_group->start + block_group->length)
1229 return 0;
1230
1231 extent_start = max(extent_start, start);
1232 extent_end = min(block_group->start + block_group->length,
1233 extent_end + 1);
1234 len = extent_end - extent_start;
1235
1236 *entries += 1;
1237 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1238 if (ret)
1239 return -ENOSPC;
1240
1241 start = extent_end;
1242 }
1243
1244 return 0;
1245 }
1246
1247 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1248 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1249 {
1250 struct btrfs_free_space *entry, *next;
1251 int ret;
1252
1253 /* Write out the bitmaps */
1254 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1255 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1256 if (ret)
1257 return -ENOSPC;
1258 list_del_init(&entry->list);
1259 }
1260
1261 return 0;
1262 }
1263
flush_dirty_cache(struct inode * inode)1264 static int flush_dirty_cache(struct inode *inode)
1265 {
1266 int ret;
1267
1268 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1269 if (ret)
1270 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1271 EXTENT_DELALLOC, NULL);
1272
1273 return ret;
1274 }
1275
1276 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1277 cleanup_bitmap_list(struct list_head *bitmap_list)
1278 {
1279 struct btrfs_free_space *entry, *next;
1280
1281 list_for_each_entry_safe(entry, next, bitmap_list, list)
1282 list_del_init(&entry->list);
1283 }
1284
1285 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1286 cleanup_write_cache_enospc(struct inode *inode,
1287 struct btrfs_io_ctl *io_ctl,
1288 struct extent_state **cached_state)
1289 {
1290 io_ctl_drop_pages(io_ctl);
1291 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1292 cached_state);
1293 }
1294
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1295 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1296 struct btrfs_trans_handle *trans,
1297 struct btrfs_block_group *block_group,
1298 struct btrfs_io_ctl *io_ctl,
1299 struct btrfs_path *path, u64 offset)
1300 {
1301 int ret;
1302 struct inode *inode = io_ctl->inode;
1303
1304 if (!inode)
1305 return 0;
1306
1307 /* Flush the dirty pages in the cache file. */
1308 ret = flush_dirty_cache(inode);
1309 if (ret)
1310 goto out;
1311
1312 /* Update the cache item to tell everyone this cache file is valid. */
1313 ret = update_cache_item(trans, root, inode, path, offset,
1314 io_ctl->entries, io_ctl->bitmaps);
1315 out:
1316 if (ret) {
1317 invalidate_inode_pages2(inode->i_mapping);
1318 BTRFS_I(inode)->generation = 0;
1319 if (block_group)
1320 btrfs_debug(root->fs_info,
1321 "failed to write free space cache for block group %llu error %d",
1322 block_group->start, ret);
1323 }
1324 btrfs_update_inode(trans, root, BTRFS_I(inode));
1325
1326 if (block_group) {
1327 /* the dirty list is protected by the dirty_bgs_lock */
1328 spin_lock(&trans->transaction->dirty_bgs_lock);
1329
1330 /* the disk_cache_state is protected by the block group lock */
1331 spin_lock(&block_group->lock);
1332
1333 /*
1334 * only mark this as written if we didn't get put back on
1335 * the dirty list while waiting for IO. Otherwise our
1336 * cache state won't be right, and we won't get written again
1337 */
1338 if (!ret && list_empty(&block_group->dirty_list))
1339 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1340 else if (ret)
1341 block_group->disk_cache_state = BTRFS_DC_ERROR;
1342
1343 spin_unlock(&block_group->lock);
1344 spin_unlock(&trans->transaction->dirty_bgs_lock);
1345 io_ctl->inode = NULL;
1346 iput(inode);
1347 }
1348
1349 return ret;
1350
1351 }
1352
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1353 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1354 struct btrfs_block_group *block_group,
1355 struct btrfs_path *path)
1356 {
1357 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1358 block_group, &block_group->io_ctl,
1359 path, block_group->start);
1360 }
1361
1362 /*
1363 * Write out cached info to an inode.
1364 *
1365 * @root: root the inode belongs to
1366 * @inode: freespace inode we are writing out
1367 * @ctl: free space cache we are going to write out
1368 * @block_group: block_group for this cache if it belongs to a block_group
1369 * @io_ctl: holds context for the io
1370 * @trans: the trans handle
1371 *
1372 * This function writes out a free space cache struct to disk for quick recovery
1373 * on mount. This will return 0 if it was successful in writing the cache out,
1374 * or an errno if it was not.
1375 */
__btrfs_write_out_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1376 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1377 struct btrfs_free_space_ctl *ctl,
1378 struct btrfs_block_group *block_group,
1379 struct btrfs_io_ctl *io_ctl,
1380 struct btrfs_trans_handle *trans)
1381 {
1382 struct extent_state *cached_state = NULL;
1383 LIST_HEAD(bitmap_list);
1384 int entries = 0;
1385 int bitmaps = 0;
1386 int ret;
1387 int must_iput = 0;
1388
1389 if (!i_size_read(inode))
1390 return -EIO;
1391
1392 WARN_ON(io_ctl->pages);
1393 ret = io_ctl_init(io_ctl, inode, 1);
1394 if (ret)
1395 return ret;
1396
1397 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1398 down_write(&block_group->data_rwsem);
1399 spin_lock(&block_group->lock);
1400 if (block_group->delalloc_bytes) {
1401 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1402 spin_unlock(&block_group->lock);
1403 up_write(&block_group->data_rwsem);
1404 BTRFS_I(inode)->generation = 0;
1405 ret = 0;
1406 must_iput = 1;
1407 goto out;
1408 }
1409 spin_unlock(&block_group->lock);
1410 }
1411
1412 /* Lock all pages first so we can lock the extent safely. */
1413 ret = io_ctl_prepare_pages(io_ctl, false);
1414 if (ret)
1415 goto out_unlock;
1416
1417 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1418 &cached_state);
1419
1420 io_ctl_set_generation(io_ctl, trans->transid);
1421
1422 mutex_lock(&ctl->cache_writeout_mutex);
1423 /* Write out the extent entries in the free space cache */
1424 spin_lock(&ctl->tree_lock);
1425 ret = write_cache_extent_entries(io_ctl, ctl,
1426 block_group, &entries, &bitmaps,
1427 &bitmap_list);
1428 if (ret)
1429 goto out_nospc_locked;
1430
1431 /*
1432 * Some spaces that are freed in the current transaction are pinned,
1433 * they will be added into free space cache after the transaction is
1434 * committed, we shouldn't lose them.
1435 *
1436 * If this changes while we are working we'll get added back to
1437 * the dirty list and redo it. No locking needed
1438 */
1439 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1440 if (ret)
1441 goto out_nospc_locked;
1442
1443 /*
1444 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1445 * locked while doing it because a concurrent trim can be manipulating
1446 * or freeing the bitmap.
1447 */
1448 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1449 spin_unlock(&ctl->tree_lock);
1450 mutex_unlock(&ctl->cache_writeout_mutex);
1451 if (ret)
1452 goto out_nospc;
1453
1454 /* Zero out the rest of the pages just to make sure */
1455 io_ctl_zero_remaining_pages(io_ctl);
1456
1457 /* Everything is written out, now we dirty the pages in the file. */
1458 ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1459 io_ctl->num_pages, 0, i_size_read(inode),
1460 &cached_state, false);
1461 if (ret)
1462 goto out_nospc;
1463
1464 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1465 up_write(&block_group->data_rwsem);
1466 /*
1467 * Release the pages and unlock the extent, we will flush
1468 * them out later
1469 */
1470 io_ctl_drop_pages(io_ctl);
1471 io_ctl_free(io_ctl);
1472
1473 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1474 &cached_state);
1475
1476 /*
1477 * at this point the pages are under IO and we're happy,
1478 * The caller is responsible for waiting on them and updating
1479 * the cache and the inode
1480 */
1481 io_ctl->entries = entries;
1482 io_ctl->bitmaps = bitmaps;
1483
1484 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1485 if (ret)
1486 goto out;
1487
1488 return 0;
1489
1490 out_nospc_locked:
1491 cleanup_bitmap_list(&bitmap_list);
1492 spin_unlock(&ctl->tree_lock);
1493 mutex_unlock(&ctl->cache_writeout_mutex);
1494
1495 out_nospc:
1496 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1497
1498 out_unlock:
1499 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1500 up_write(&block_group->data_rwsem);
1501
1502 out:
1503 io_ctl->inode = NULL;
1504 io_ctl_free(io_ctl);
1505 if (ret) {
1506 invalidate_inode_pages2(inode->i_mapping);
1507 BTRFS_I(inode)->generation = 0;
1508 }
1509 btrfs_update_inode(trans, root, BTRFS_I(inode));
1510 if (must_iput)
1511 iput(inode);
1512 return ret;
1513 }
1514
btrfs_write_out_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group,struct btrfs_path * path)1515 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1516 struct btrfs_block_group *block_group,
1517 struct btrfs_path *path)
1518 {
1519 struct btrfs_fs_info *fs_info = trans->fs_info;
1520 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1521 struct inode *inode;
1522 int ret = 0;
1523
1524 spin_lock(&block_group->lock);
1525 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1526 spin_unlock(&block_group->lock);
1527 return 0;
1528 }
1529 spin_unlock(&block_group->lock);
1530
1531 inode = lookup_free_space_inode(block_group, path);
1532 if (IS_ERR(inode))
1533 return 0;
1534
1535 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1536 block_group, &block_group->io_ctl, trans);
1537 if (ret) {
1538 btrfs_debug(fs_info,
1539 "failed to write free space cache for block group %llu error %d",
1540 block_group->start, ret);
1541 spin_lock(&block_group->lock);
1542 block_group->disk_cache_state = BTRFS_DC_ERROR;
1543 spin_unlock(&block_group->lock);
1544
1545 block_group->io_ctl.inode = NULL;
1546 iput(inode);
1547 }
1548
1549 /*
1550 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1551 * to wait for IO and put the inode
1552 */
1553
1554 return ret;
1555 }
1556
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1557 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1558 u64 offset)
1559 {
1560 ASSERT(offset >= bitmap_start);
1561 offset -= bitmap_start;
1562 return (unsigned long)(div_u64(offset, unit));
1563 }
1564
bytes_to_bits(u64 bytes,u32 unit)1565 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1566 {
1567 return (unsigned long)(div_u64(bytes, unit));
1568 }
1569
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1570 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1571 u64 offset)
1572 {
1573 u64 bitmap_start;
1574 u64 bytes_per_bitmap;
1575
1576 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1577 bitmap_start = offset - ctl->start;
1578 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1579 bitmap_start *= bytes_per_bitmap;
1580 bitmap_start += ctl->start;
1581
1582 return bitmap_start;
1583 }
1584
tree_insert_offset(struct btrfs_free_space_ctl * ctl,struct btrfs_free_cluster * cluster,struct btrfs_free_space * new_entry)1585 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1586 struct btrfs_free_cluster *cluster,
1587 struct btrfs_free_space *new_entry)
1588 {
1589 struct rb_root *root;
1590 struct rb_node **p;
1591 struct rb_node *parent = NULL;
1592
1593 lockdep_assert_held(&ctl->tree_lock);
1594
1595 if (cluster) {
1596 lockdep_assert_held(&cluster->lock);
1597 root = &cluster->root;
1598 } else {
1599 root = &ctl->free_space_offset;
1600 }
1601
1602 p = &root->rb_node;
1603
1604 while (*p) {
1605 struct btrfs_free_space *info;
1606
1607 parent = *p;
1608 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1609
1610 if (new_entry->offset < info->offset) {
1611 p = &(*p)->rb_left;
1612 } else if (new_entry->offset > info->offset) {
1613 p = &(*p)->rb_right;
1614 } else {
1615 /*
1616 * we could have a bitmap entry and an extent entry
1617 * share the same offset. If this is the case, we want
1618 * the extent entry to always be found first if we do a
1619 * linear search through the tree, since we want to have
1620 * the quickest allocation time, and allocating from an
1621 * extent is faster than allocating from a bitmap. So
1622 * if we're inserting a bitmap and we find an entry at
1623 * this offset, we want to go right, or after this entry
1624 * logically. If we are inserting an extent and we've
1625 * found a bitmap, we want to go left, or before
1626 * logically.
1627 */
1628 if (new_entry->bitmap) {
1629 if (info->bitmap) {
1630 WARN_ON_ONCE(1);
1631 return -EEXIST;
1632 }
1633 p = &(*p)->rb_right;
1634 } else {
1635 if (!info->bitmap) {
1636 WARN_ON_ONCE(1);
1637 return -EEXIST;
1638 }
1639 p = &(*p)->rb_left;
1640 }
1641 }
1642 }
1643
1644 rb_link_node(&new_entry->offset_index, parent, p);
1645 rb_insert_color(&new_entry->offset_index, root);
1646
1647 return 0;
1648 }
1649
1650 /*
1651 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1652 * searched through the bitmap and figured out the largest ->max_extent_size,
1653 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1654 * allocator the wrong thing, we want to use the actual real max_extent_size
1655 * we've found already if it's larger, or we want to use ->bytes.
1656 *
1657 * This matters because find_free_space() will skip entries who's ->bytes is
1658 * less than the required bytes. So if we didn't search down this bitmap, we
1659 * may pick some previous entry that has a smaller ->max_extent_size than we
1660 * have. For example, assume we have two entries, one that has
1661 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1662 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1663 * call into find_free_space(), and return with max_extent_size == 4K, because
1664 * that first bitmap entry had ->max_extent_size set, but the second one did
1665 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1666 * 8K contiguous range.
1667 *
1668 * Consider the other case, we have 2 8K chunks in that second entry and still
1669 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1670 * allocator comes in it'll fully search our second bitmap, and this time it'll
1671 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1672 * right allocation the next loop through.
1673 */
get_max_extent_size(const struct btrfs_free_space * entry)1674 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1675 {
1676 if (entry->bitmap && entry->max_extent_size)
1677 return entry->max_extent_size;
1678 return entry->bytes;
1679 }
1680
1681 /*
1682 * We want the largest entry to be leftmost, so this is inverted from what you'd
1683 * normally expect.
1684 */
entry_less(struct rb_node * node,const struct rb_node * parent)1685 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1686 {
1687 const struct btrfs_free_space *entry, *exist;
1688
1689 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1690 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1691 return get_max_extent_size(exist) < get_max_extent_size(entry);
1692 }
1693
1694 /*
1695 * searches the tree for the given offset.
1696 *
1697 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1698 * want a section that has at least bytes size and comes at or after the given
1699 * offset.
1700 */
1701 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1702 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1703 u64 offset, int bitmap_only, int fuzzy)
1704 {
1705 struct rb_node *n = ctl->free_space_offset.rb_node;
1706 struct btrfs_free_space *entry = NULL, *prev = NULL;
1707
1708 lockdep_assert_held(&ctl->tree_lock);
1709
1710 /* find entry that is closest to the 'offset' */
1711 while (n) {
1712 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1713 prev = entry;
1714
1715 if (offset < entry->offset)
1716 n = n->rb_left;
1717 else if (offset > entry->offset)
1718 n = n->rb_right;
1719 else
1720 break;
1721
1722 entry = NULL;
1723 }
1724
1725 if (bitmap_only) {
1726 if (!entry)
1727 return NULL;
1728 if (entry->bitmap)
1729 return entry;
1730
1731 /*
1732 * bitmap entry and extent entry may share same offset,
1733 * in that case, bitmap entry comes after extent entry.
1734 */
1735 n = rb_next(n);
1736 if (!n)
1737 return NULL;
1738 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1739 if (entry->offset != offset)
1740 return NULL;
1741
1742 WARN_ON(!entry->bitmap);
1743 return entry;
1744 } else if (entry) {
1745 if (entry->bitmap) {
1746 /*
1747 * if previous extent entry covers the offset,
1748 * we should return it instead of the bitmap entry
1749 */
1750 n = rb_prev(&entry->offset_index);
1751 if (n) {
1752 prev = rb_entry(n, struct btrfs_free_space,
1753 offset_index);
1754 if (!prev->bitmap &&
1755 prev->offset + prev->bytes > offset)
1756 entry = prev;
1757 }
1758 }
1759 return entry;
1760 }
1761
1762 if (!prev)
1763 return NULL;
1764
1765 /* find last entry before the 'offset' */
1766 entry = prev;
1767 if (entry->offset > offset) {
1768 n = rb_prev(&entry->offset_index);
1769 if (n) {
1770 entry = rb_entry(n, struct btrfs_free_space,
1771 offset_index);
1772 ASSERT(entry->offset <= offset);
1773 } else {
1774 if (fuzzy)
1775 return entry;
1776 else
1777 return NULL;
1778 }
1779 }
1780
1781 if (entry->bitmap) {
1782 n = rb_prev(&entry->offset_index);
1783 if (n) {
1784 prev = rb_entry(n, struct btrfs_free_space,
1785 offset_index);
1786 if (!prev->bitmap &&
1787 prev->offset + prev->bytes > offset)
1788 return prev;
1789 }
1790 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1791 return entry;
1792 } else if (entry->offset + entry->bytes > offset)
1793 return entry;
1794
1795 if (!fuzzy)
1796 return NULL;
1797
1798 while (1) {
1799 n = rb_next(&entry->offset_index);
1800 if (!n)
1801 return NULL;
1802 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1803 if (entry->bitmap) {
1804 if (entry->offset + BITS_PER_BITMAP *
1805 ctl->unit > offset)
1806 break;
1807 } else {
1808 if (entry->offset + entry->bytes > offset)
1809 break;
1810 }
1811 }
1812 return entry;
1813 }
1814
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)1815 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1816 struct btrfs_free_space *info,
1817 bool update_stat)
1818 {
1819 lockdep_assert_held(&ctl->tree_lock);
1820
1821 rb_erase(&info->offset_index, &ctl->free_space_offset);
1822 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1823 ctl->free_extents--;
1824
1825 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1826 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1827 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1828 }
1829
1830 if (update_stat)
1831 ctl->free_space -= info->bytes;
1832 }
1833
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1834 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1835 struct btrfs_free_space *info)
1836 {
1837 int ret = 0;
1838
1839 lockdep_assert_held(&ctl->tree_lock);
1840
1841 ASSERT(info->bytes || info->bitmap);
1842 ret = tree_insert_offset(ctl, NULL, info);
1843 if (ret)
1844 return ret;
1845
1846 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1847
1848 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1849 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1850 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1851 }
1852
1853 ctl->free_space += info->bytes;
1854 ctl->free_extents++;
1855 return ret;
1856 }
1857
relink_bitmap_entry(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1858 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1859 struct btrfs_free_space *info)
1860 {
1861 ASSERT(info->bitmap);
1862
1863 /*
1864 * If our entry is empty it's because we're on a cluster and we don't
1865 * want to re-link it into our ctl bytes index.
1866 */
1867 if (RB_EMPTY_NODE(&info->bytes_index))
1868 return;
1869
1870 lockdep_assert_held(&ctl->tree_lock);
1871
1872 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1873 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1874 }
1875
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,bool update_stat)1876 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1877 struct btrfs_free_space *info,
1878 u64 offset, u64 bytes, bool update_stat)
1879 {
1880 unsigned long start, count, end;
1881 int extent_delta = -1;
1882
1883 start = offset_to_bit(info->offset, ctl->unit, offset);
1884 count = bytes_to_bits(bytes, ctl->unit);
1885 end = start + count;
1886 ASSERT(end <= BITS_PER_BITMAP);
1887
1888 bitmap_clear(info->bitmap, start, count);
1889
1890 info->bytes -= bytes;
1891 if (info->max_extent_size > ctl->unit)
1892 info->max_extent_size = 0;
1893
1894 relink_bitmap_entry(ctl, info);
1895
1896 if (start && test_bit(start - 1, info->bitmap))
1897 extent_delta++;
1898
1899 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1900 extent_delta++;
1901
1902 info->bitmap_extents += extent_delta;
1903 if (!btrfs_free_space_trimmed(info)) {
1904 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1905 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1906 }
1907
1908 if (update_stat)
1909 ctl->free_space -= bytes;
1910 }
1911
bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1912 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1913 struct btrfs_free_space *info, u64 offset,
1914 u64 bytes)
1915 {
1916 unsigned long start, count, end;
1917 int extent_delta = 1;
1918
1919 start = offset_to_bit(info->offset, ctl->unit, offset);
1920 count = bytes_to_bits(bytes, ctl->unit);
1921 end = start + count;
1922 ASSERT(end <= BITS_PER_BITMAP);
1923
1924 bitmap_set(info->bitmap, start, count);
1925
1926 /*
1927 * We set some bytes, we have no idea what the max extent size is
1928 * anymore.
1929 */
1930 info->max_extent_size = 0;
1931 info->bytes += bytes;
1932 ctl->free_space += bytes;
1933
1934 relink_bitmap_entry(ctl, info);
1935
1936 if (start && test_bit(start - 1, info->bitmap))
1937 extent_delta--;
1938
1939 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1940 extent_delta--;
1941
1942 info->bitmap_extents += extent_delta;
1943 if (!btrfs_free_space_trimmed(info)) {
1944 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1945 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1946 }
1947 }
1948
1949 /*
1950 * If we can not find suitable extent, we will use bytes to record
1951 * the size of the max extent.
1952 */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1953 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1954 struct btrfs_free_space *bitmap_info, u64 *offset,
1955 u64 *bytes, bool for_alloc)
1956 {
1957 unsigned long found_bits = 0;
1958 unsigned long max_bits = 0;
1959 unsigned long bits, i;
1960 unsigned long next_zero;
1961 unsigned long extent_bits;
1962
1963 /*
1964 * Skip searching the bitmap if we don't have a contiguous section that
1965 * is large enough for this allocation.
1966 */
1967 if (for_alloc &&
1968 bitmap_info->max_extent_size &&
1969 bitmap_info->max_extent_size < *bytes) {
1970 *bytes = bitmap_info->max_extent_size;
1971 return -1;
1972 }
1973
1974 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1975 max_t(u64, *offset, bitmap_info->offset));
1976 bits = bytes_to_bits(*bytes, ctl->unit);
1977
1978 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1979 if (for_alloc && bits == 1) {
1980 found_bits = 1;
1981 break;
1982 }
1983 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1984 BITS_PER_BITMAP, i);
1985 extent_bits = next_zero - i;
1986 if (extent_bits >= bits) {
1987 found_bits = extent_bits;
1988 break;
1989 } else if (extent_bits > max_bits) {
1990 max_bits = extent_bits;
1991 }
1992 i = next_zero;
1993 }
1994
1995 if (found_bits) {
1996 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1997 *bytes = (u64)(found_bits) * ctl->unit;
1998 return 0;
1999 }
2000
2001 *bytes = (u64)(max_bits) * ctl->unit;
2002 bitmap_info->max_extent_size = *bytes;
2003 relink_bitmap_entry(ctl, bitmap_info);
2004 return -1;
2005 }
2006
2007 /* Cache the size of the max extent in bytes */
2008 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size,bool use_bytes_index)2009 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2010 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2011 {
2012 struct btrfs_free_space *entry;
2013 struct rb_node *node;
2014 u64 tmp;
2015 u64 align_off;
2016 int ret;
2017
2018 if (!ctl->free_space_offset.rb_node)
2019 goto out;
2020 again:
2021 if (use_bytes_index) {
2022 node = rb_first_cached(&ctl->free_space_bytes);
2023 } else {
2024 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2025 0, 1);
2026 if (!entry)
2027 goto out;
2028 node = &entry->offset_index;
2029 }
2030
2031 for (; node; node = rb_next(node)) {
2032 if (use_bytes_index)
2033 entry = rb_entry(node, struct btrfs_free_space,
2034 bytes_index);
2035 else
2036 entry = rb_entry(node, struct btrfs_free_space,
2037 offset_index);
2038
2039 /*
2040 * If we are using the bytes index then all subsequent entries
2041 * in this tree are going to be < bytes, so simply set the max
2042 * extent size and exit the loop.
2043 *
2044 * If we're using the offset index then we need to keep going
2045 * through the rest of the tree.
2046 */
2047 if (entry->bytes < *bytes) {
2048 *max_extent_size = max(get_max_extent_size(entry),
2049 *max_extent_size);
2050 if (use_bytes_index)
2051 break;
2052 continue;
2053 }
2054
2055 /* make sure the space returned is big enough
2056 * to match our requested alignment
2057 */
2058 if (*bytes >= align) {
2059 tmp = entry->offset - ctl->start + align - 1;
2060 tmp = div64_u64(tmp, align);
2061 tmp = tmp * align + ctl->start;
2062 align_off = tmp - entry->offset;
2063 } else {
2064 align_off = 0;
2065 tmp = entry->offset;
2066 }
2067
2068 /*
2069 * We don't break here if we're using the bytes index because we
2070 * may have another entry that has the correct alignment that is
2071 * the right size, so we don't want to miss that possibility.
2072 * At worst this adds another loop through the logic, but if we
2073 * broke here we could prematurely ENOSPC.
2074 */
2075 if (entry->bytes < *bytes + align_off) {
2076 *max_extent_size = max(get_max_extent_size(entry),
2077 *max_extent_size);
2078 continue;
2079 }
2080
2081 if (entry->bitmap) {
2082 struct rb_node *old_next = rb_next(node);
2083 u64 size = *bytes;
2084
2085 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2086 if (!ret) {
2087 *offset = tmp;
2088 *bytes = size;
2089 return entry;
2090 } else {
2091 *max_extent_size =
2092 max(get_max_extent_size(entry),
2093 *max_extent_size);
2094 }
2095
2096 /*
2097 * The bitmap may have gotten re-arranged in the space
2098 * index here because the max_extent_size may have been
2099 * updated. Start from the beginning again if this
2100 * happened.
2101 */
2102 if (use_bytes_index && old_next != rb_next(node))
2103 goto again;
2104 continue;
2105 }
2106
2107 *offset = tmp;
2108 *bytes = entry->bytes - align_off;
2109 return entry;
2110 }
2111 out:
2112 return NULL;
2113 }
2114
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)2115 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2116 struct btrfs_free_space *info, u64 offset)
2117 {
2118 info->offset = offset_to_bitmap(ctl, offset);
2119 info->bytes = 0;
2120 info->bitmap_extents = 0;
2121 INIT_LIST_HEAD(&info->list);
2122 link_free_space(ctl, info);
2123 ctl->total_bitmaps++;
2124 recalculate_thresholds(ctl);
2125 }
2126
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)2127 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2128 struct btrfs_free_space *bitmap_info)
2129 {
2130 /*
2131 * Normally when this is called, the bitmap is completely empty. However,
2132 * if we are blowing up the free space cache for one reason or another
2133 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2134 * we may leave stats on the table.
2135 */
2136 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2137 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2138 bitmap_info->bitmap_extents;
2139 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2140
2141 }
2142 unlink_free_space(ctl, bitmap_info, true);
2143 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2144 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2145 ctl->total_bitmaps--;
2146 recalculate_thresholds(ctl);
2147 }
2148
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)2149 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2150 struct btrfs_free_space *bitmap_info,
2151 u64 *offset, u64 *bytes)
2152 {
2153 u64 end;
2154 u64 search_start, search_bytes;
2155 int ret;
2156
2157 again:
2158 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2159
2160 /*
2161 * We need to search for bits in this bitmap. We could only cover some
2162 * of the extent in this bitmap thanks to how we add space, so we need
2163 * to search for as much as it as we can and clear that amount, and then
2164 * go searching for the next bit.
2165 */
2166 search_start = *offset;
2167 search_bytes = ctl->unit;
2168 search_bytes = min(search_bytes, end - search_start + 1);
2169 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2170 false);
2171 if (ret < 0 || search_start != *offset)
2172 return -EINVAL;
2173
2174 /* We may have found more bits than what we need */
2175 search_bytes = min(search_bytes, *bytes);
2176
2177 /* Cannot clear past the end of the bitmap */
2178 search_bytes = min(search_bytes, end - search_start + 1);
2179
2180 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2181 *offset += search_bytes;
2182 *bytes -= search_bytes;
2183
2184 if (*bytes) {
2185 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2186 if (!bitmap_info->bytes)
2187 free_bitmap(ctl, bitmap_info);
2188
2189 /*
2190 * no entry after this bitmap, but we still have bytes to
2191 * remove, so something has gone wrong.
2192 */
2193 if (!next)
2194 return -EINVAL;
2195
2196 bitmap_info = rb_entry(next, struct btrfs_free_space,
2197 offset_index);
2198
2199 /*
2200 * if the next entry isn't a bitmap we need to return to let the
2201 * extent stuff do its work.
2202 */
2203 if (!bitmap_info->bitmap)
2204 return -EAGAIN;
2205
2206 /*
2207 * Ok the next item is a bitmap, but it may not actually hold
2208 * the information for the rest of this free space stuff, so
2209 * look for it, and if we don't find it return so we can try
2210 * everything over again.
2211 */
2212 search_start = *offset;
2213 search_bytes = ctl->unit;
2214 ret = search_bitmap(ctl, bitmap_info, &search_start,
2215 &search_bytes, false);
2216 if (ret < 0 || search_start != *offset)
2217 return -EAGAIN;
2218
2219 goto again;
2220 } else if (!bitmap_info->bytes)
2221 free_bitmap(ctl, bitmap_info);
2222
2223 return 0;
2224 }
2225
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2226 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2227 struct btrfs_free_space *info, u64 offset,
2228 u64 bytes, enum btrfs_trim_state trim_state)
2229 {
2230 u64 bytes_to_set = 0;
2231 u64 end;
2232
2233 /*
2234 * This is a tradeoff to make bitmap trim state minimal. We mark the
2235 * whole bitmap untrimmed if at any point we add untrimmed regions.
2236 */
2237 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2238 if (btrfs_free_space_trimmed(info)) {
2239 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2240 info->bitmap_extents;
2241 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2242 }
2243 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2244 }
2245
2246 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2247
2248 bytes_to_set = min(end - offset, bytes);
2249
2250 bitmap_set_bits(ctl, info, offset, bytes_to_set);
2251
2252 return bytes_to_set;
2253
2254 }
2255
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2256 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2257 struct btrfs_free_space *info)
2258 {
2259 struct btrfs_block_group *block_group = ctl->block_group;
2260 struct btrfs_fs_info *fs_info = block_group->fs_info;
2261 bool forced = false;
2262
2263 #ifdef CONFIG_BTRFS_DEBUG
2264 if (btrfs_should_fragment_free_space(block_group))
2265 forced = true;
2266 #endif
2267
2268 /* This is a way to reclaim large regions from the bitmaps. */
2269 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2270 return false;
2271
2272 /*
2273 * If we are below the extents threshold then we can add this as an
2274 * extent, and don't have to deal with the bitmap
2275 */
2276 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2277 /*
2278 * If this block group has some small extents we don't want to
2279 * use up all of our free slots in the cache with them, we want
2280 * to reserve them to larger extents, however if we have plenty
2281 * of cache left then go ahead an dadd them, no sense in adding
2282 * the overhead of a bitmap if we don't have to.
2283 */
2284 if (info->bytes <= fs_info->sectorsize * 8) {
2285 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2286 return false;
2287 } else {
2288 return false;
2289 }
2290 }
2291
2292 /*
2293 * The original block groups from mkfs can be really small, like 8
2294 * megabytes, so don't bother with a bitmap for those entries. However
2295 * some block groups can be smaller than what a bitmap would cover but
2296 * are still large enough that they could overflow the 32k memory limit,
2297 * so allow those block groups to still be allowed to have a bitmap
2298 * entry.
2299 */
2300 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2301 return false;
2302
2303 return true;
2304 }
2305
2306 static const struct btrfs_free_space_op free_space_op = {
2307 .use_bitmap = use_bitmap,
2308 };
2309
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2310 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2311 struct btrfs_free_space *info)
2312 {
2313 struct btrfs_free_space *bitmap_info;
2314 struct btrfs_block_group *block_group = NULL;
2315 int added = 0;
2316 u64 bytes, offset, bytes_added;
2317 enum btrfs_trim_state trim_state;
2318 int ret;
2319
2320 bytes = info->bytes;
2321 offset = info->offset;
2322 trim_state = info->trim_state;
2323
2324 if (!ctl->op->use_bitmap(ctl, info))
2325 return 0;
2326
2327 if (ctl->op == &free_space_op)
2328 block_group = ctl->block_group;
2329 again:
2330 /*
2331 * Since we link bitmaps right into the cluster we need to see if we
2332 * have a cluster here, and if so and it has our bitmap we need to add
2333 * the free space to that bitmap.
2334 */
2335 if (block_group && !list_empty(&block_group->cluster_list)) {
2336 struct btrfs_free_cluster *cluster;
2337 struct rb_node *node;
2338 struct btrfs_free_space *entry;
2339
2340 cluster = list_entry(block_group->cluster_list.next,
2341 struct btrfs_free_cluster,
2342 block_group_list);
2343 spin_lock(&cluster->lock);
2344 node = rb_first(&cluster->root);
2345 if (!node) {
2346 spin_unlock(&cluster->lock);
2347 goto no_cluster_bitmap;
2348 }
2349
2350 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2351 if (!entry->bitmap) {
2352 spin_unlock(&cluster->lock);
2353 goto no_cluster_bitmap;
2354 }
2355
2356 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2357 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2358 bytes, trim_state);
2359 bytes -= bytes_added;
2360 offset += bytes_added;
2361 }
2362 spin_unlock(&cluster->lock);
2363 if (!bytes) {
2364 ret = 1;
2365 goto out;
2366 }
2367 }
2368
2369 no_cluster_bitmap:
2370 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2371 1, 0);
2372 if (!bitmap_info) {
2373 ASSERT(added == 0);
2374 goto new_bitmap;
2375 }
2376
2377 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2378 trim_state);
2379 bytes -= bytes_added;
2380 offset += bytes_added;
2381 added = 0;
2382
2383 if (!bytes) {
2384 ret = 1;
2385 goto out;
2386 } else
2387 goto again;
2388
2389 new_bitmap:
2390 if (info && info->bitmap) {
2391 add_new_bitmap(ctl, info, offset);
2392 added = 1;
2393 info = NULL;
2394 goto again;
2395 } else {
2396 spin_unlock(&ctl->tree_lock);
2397
2398 /* no pre-allocated info, allocate a new one */
2399 if (!info) {
2400 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2401 GFP_NOFS);
2402 if (!info) {
2403 spin_lock(&ctl->tree_lock);
2404 ret = -ENOMEM;
2405 goto out;
2406 }
2407 }
2408
2409 /* allocate the bitmap */
2410 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2411 GFP_NOFS);
2412 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2413 spin_lock(&ctl->tree_lock);
2414 if (!info->bitmap) {
2415 ret = -ENOMEM;
2416 goto out;
2417 }
2418 goto again;
2419 }
2420
2421 out:
2422 if (info) {
2423 if (info->bitmap)
2424 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2425 info->bitmap);
2426 kmem_cache_free(btrfs_free_space_cachep, info);
2427 }
2428
2429 return ret;
2430 }
2431
2432 /*
2433 * Free space merging rules:
2434 * 1) Merge trimmed areas together
2435 * 2) Let untrimmed areas coalesce with trimmed areas
2436 * 3) Always pull neighboring regions from bitmaps
2437 *
2438 * The above rules are for when we merge free space based on btrfs_trim_state.
2439 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2440 * same reason: to promote larger extent regions which makes life easier for
2441 * find_free_extent(). Rule 2 enables coalescing based on the common path
2442 * being returning free space from btrfs_finish_extent_commit(). So when free
2443 * space is trimmed, it will prevent aggregating trimmed new region and
2444 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2445 * and provide find_free_extent() with the largest extents possible hoping for
2446 * the reuse path.
2447 */
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2448 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2449 struct btrfs_free_space *info, bool update_stat)
2450 {
2451 struct btrfs_free_space *left_info = NULL;
2452 struct btrfs_free_space *right_info;
2453 bool merged = false;
2454 u64 offset = info->offset;
2455 u64 bytes = info->bytes;
2456 const bool is_trimmed = btrfs_free_space_trimmed(info);
2457 struct rb_node *right_prev = NULL;
2458
2459 /*
2460 * first we want to see if there is free space adjacent to the range we
2461 * are adding, if there is remove that struct and add a new one to
2462 * cover the entire range
2463 */
2464 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2465 if (right_info)
2466 right_prev = rb_prev(&right_info->offset_index);
2467
2468 if (right_prev)
2469 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2470 else if (!right_info)
2471 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2472
2473 /* See try_merge_free_space() comment. */
2474 if (right_info && !right_info->bitmap &&
2475 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2476 unlink_free_space(ctl, right_info, update_stat);
2477 info->bytes += right_info->bytes;
2478 kmem_cache_free(btrfs_free_space_cachep, right_info);
2479 merged = true;
2480 }
2481
2482 /* See try_merge_free_space() comment. */
2483 if (left_info && !left_info->bitmap &&
2484 left_info->offset + left_info->bytes == offset &&
2485 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2486 unlink_free_space(ctl, left_info, update_stat);
2487 info->offset = left_info->offset;
2488 info->bytes += left_info->bytes;
2489 kmem_cache_free(btrfs_free_space_cachep, left_info);
2490 merged = true;
2491 }
2492
2493 return merged;
2494 }
2495
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2496 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2497 struct btrfs_free_space *info,
2498 bool update_stat)
2499 {
2500 struct btrfs_free_space *bitmap;
2501 unsigned long i;
2502 unsigned long j;
2503 const u64 end = info->offset + info->bytes;
2504 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2505 u64 bytes;
2506
2507 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2508 if (!bitmap)
2509 return false;
2510
2511 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2512 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2513 if (j == i)
2514 return false;
2515 bytes = (j - i) * ctl->unit;
2516 info->bytes += bytes;
2517
2518 /* See try_merge_free_space() comment. */
2519 if (!btrfs_free_space_trimmed(bitmap))
2520 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2521
2522 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2523
2524 if (!bitmap->bytes)
2525 free_bitmap(ctl, bitmap);
2526
2527 return true;
2528 }
2529
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2530 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2531 struct btrfs_free_space *info,
2532 bool update_stat)
2533 {
2534 struct btrfs_free_space *bitmap;
2535 u64 bitmap_offset;
2536 unsigned long i;
2537 unsigned long j;
2538 unsigned long prev_j;
2539 u64 bytes;
2540
2541 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2542 /* If we're on a boundary, try the previous logical bitmap. */
2543 if (bitmap_offset == info->offset) {
2544 if (info->offset == 0)
2545 return false;
2546 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2547 }
2548
2549 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2550 if (!bitmap)
2551 return false;
2552
2553 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2554 j = 0;
2555 prev_j = (unsigned long)-1;
2556 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2557 if (j > i)
2558 break;
2559 prev_j = j;
2560 }
2561 if (prev_j == i)
2562 return false;
2563
2564 if (prev_j == (unsigned long)-1)
2565 bytes = (i + 1) * ctl->unit;
2566 else
2567 bytes = (i - prev_j) * ctl->unit;
2568
2569 info->offset -= bytes;
2570 info->bytes += bytes;
2571
2572 /* See try_merge_free_space() comment. */
2573 if (!btrfs_free_space_trimmed(bitmap))
2574 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2575
2576 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2577
2578 if (!bitmap->bytes)
2579 free_bitmap(ctl, bitmap);
2580
2581 return true;
2582 }
2583
2584 /*
2585 * We prefer always to allocate from extent entries, both for clustered and
2586 * non-clustered allocation requests. So when attempting to add a new extent
2587 * entry, try to see if there's adjacent free space in bitmap entries, and if
2588 * there is, migrate that space from the bitmaps to the extent.
2589 * Like this we get better chances of satisfying space allocation requests
2590 * because we attempt to satisfy them based on a single cache entry, and never
2591 * on 2 or more entries - even if the entries represent a contiguous free space
2592 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2593 * ends).
2594 */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2595 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2596 struct btrfs_free_space *info,
2597 bool update_stat)
2598 {
2599 /*
2600 * Only work with disconnected entries, as we can change their offset,
2601 * and must be extent entries.
2602 */
2603 ASSERT(!info->bitmap);
2604 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2605
2606 if (ctl->total_bitmaps > 0) {
2607 bool stole_end;
2608 bool stole_front = false;
2609
2610 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2611 if (ctl->total_bitmaps > 0)
2612 stole_front = steal_from_bitmap_to_front(ctl, info,
2613 update_stat);
2614
2615 if (stole_end || stole_front)
2616 try_merge_free_space(ctl, info, update_stat);
2617 }
2618 }
2619
__btrfs_add_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes,enum btrfs_trim_state trim_state)2620 int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2621 u64 offset, u64 bytes,
2622 enum btrfs_trim_state trim_state)
2623 {
2624 struct btrfs_fs_info *fs_info = block_group->fs_info;
2625 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2626 struct btrfs_free_space *info;
2627 int ret = 0;
2628 u64 filter_bytes = bytes;
2629
2630 ASSERT(!btrfs_is_zoned(fs_info));
2631
2632 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2633 if (!info)
2634 return -ENOMEM;
2635
2636 info->offset = offset;
2637 info->bytes = bytes;
2638 info->trim_state = trim_state;
2639 RB_CLEAR_NODE(&info->offset_index);
2640 RB_CLEAR_NODE(&info->bytes_index);
2641
2642 spin_lock(&ctl->tree_lock);
2643
2644 if (try_merge_free_space(ctl, info, true))
2645 goto link;
2646
2647 /*
2648 * There was no extent directly to the left or right of this new
2649 * extent then we know we're going to have to allocate a new extent, so
2650 * before we do that see if we need to drop this into a bitmap
2651 */
2652 ret = insert_into_bitmap(ctl, info);
2653 if (ret < 0) {
2654 goto out;
2655 } else if (ret) {
2656 ret = 0;
2657 goto out;
2658 }
2659 link:
2660 /*
2661 * Only steal free space from adjacent bitmaps if we're sure we're not
2662 * going to add the new free space to existing bitmap entries - because
2663 * that would mean unnecessary work that would be reverted. Therefore
2664 * attempt to steal space from bitmaps if we're adding an extent entry.
2665 */
2666 steal_from_bitmap(ctl, info, true);
2667
2668 filter_bytes = max(filter_bytes, info->bytes);
2669
2670 ret = link_free_space(ctl, info);
2671 if (ret)
2672 kmem_cache_free(btrfs_free_space_cachep, info);
2673 out:
2674 btrfs_discard_update_discardable(block_group);
2675 spin_unlock(&ctl->tree_lock);
2676
2677 if (ret) {
2678 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2679 ASSERT(ret != -EEXIST);
2680 }
2681
2682 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2683 btrfs_discard_check_filter(block_group, filter_bytes);
2684 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2685 }
2686
2687 return ret;
2688 }
2689
__btrfs_add_free_space_zoned(struct btrfs_block_group * block_group,u64 bytenr,u64 size,bool used)2690 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2691 u64 bytenr, u64 size, bool used)
2692 {
2693 struct btrfs_space_info *sinfo = block_group->space_info;
2694 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2695 u64 offset = bytenr - block_group->start;
2696 u64 to_free, to_unusable;
2697 int bg_reclaim_threshold = 0;
2698 bool initial = (size == block_group->length);
2699 u64 reclaimable_unusable;
2700
2701 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2702
2703 if (!initial)
2704 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2705
2706 spin_lock(&ctl->tree_lock);
2707 if (!used)
2708 to_free = size;
2709 else if (initial)
2710 to_free = block_group->zone_capacity;
2711 else if (offset >= block_group->alloc_offset)
2712 to_free = size;
2713 else if (offset + size <= block_group->alloc_offset)
2714 to_free = 0;
2715 else
2716 to_free = offset + size - block_group->alloc_offset;
2717 to_unusable = size - to_free;
2718
2719 ctl->free_space += to_free;
2720 /*
2721 * If the block group is read-only, we should account freed space into
2722 * bytes_readonly.
2723 */
2724 if (!block_group->ro)
2725 block_group->zone_unusable += to_unusable;
2726 spin_unlock(&ctl->tree_lock);
2727 if (!used) {
2728 spin_lock(&block_group->lock);
2729 block_group->alloc_offset -= size;
2730 spin_unlock(&block_group->lock);
2731 }
2732
2733 reclaimable_unusable = block_group->zone_unusable -
2734 (block_group->length - block_group->zone_capacity);
2735 /* All the region is now unusable. Mark it as unused and reclaim */
2736 if (block_group->zone_unusable == block_group->length) {
2737 btrfs_mark_bg_unused(block_group);
2738 } else if (bg_reclaim_threshold &&
2739 reclaimable_unusable >=
2740 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2741 btrfs_mark_bg_to_reclaim(block_group);
2742 }
2743
2744 return 0;
2745 }
2746
btrfs_add_free_space(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2747 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2748 u64 bytenr, u64 size)
2749 {
2750 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2751
2752 if (btrfs_is_zoned(block_group->fs_info))
2753 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2754 true);
2755
2756 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2757 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2758
2759 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2760 }
2761
btrfs_add_free_space_unused(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2762 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2763 u64 bytenr, u64 size)
2764 {
2765 if (btrfs_is_zoned(block_group->fs_info))
2766 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2767 false);
2768
2769 return btrfs_add_free_space(block_group, bytenr, size);
2770 }
2771
2772 /*
2773 * This is a subtle distinction because when adding free space back in general,
2774 * we want it to be added as untrimmed for async. But in the case where we add
2775 * it on loading of a block group, we want to consider it trimmed.
2776 */
btrfs_add_free_space_async_trimmed(struct btrfs_block_group * block_group,u64 bytenr,u64 size)2777 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2778 u64 bytenr, u64 size)
2779 {
2780 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2781
2782 if (btrfs_is_zoned(block_group->fs_info))
2783 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2784 true);
2785
2786 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2787 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2788 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2789
2790 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2791 }
2792
btrfs_remove_free_space(struct btrfs_block_group * block_group,u64 offset,u64 bytes)2793 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2794 u64 offset, u64 bytes)
2795 {
2796 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2797 struct btrfs_free_space *info;
2798 int ret;
2799 bool re_search = false;
2800
2801 if (btrfs_is_zoned(block_group->fs_info)) {
2802 /*
2803 * This can happen with conventional zones when replaying log.
2804 * Since the allocation info of tree-log nodes are not recorded
2805 * to the extent-tree, calculate_alloc_pointer() failed to
2806 * advance the allocation pointer after last allocated tree log
2807 * node blocks.
2808 *
2809 * This function is called from
2810 * btrfs_pin_extent_for_log_replay() when replaying the log.
2811 * Advance the pointer not to overwrite the tree-log nodes.
2812 */
2813 if (block_group->start + block_group->alloc_offset <
2814 offset + bytes) {
2815 block_group->alloc_offset =
2816 offset + bytes - block_group->start;
2817 }
2818 return 0;
2819 }
2820
2821 spin_lock(&ctl->tree_lock);
2822
2823 again:
2824 ret = 0;
2825 if (!bytes)
2826 goto out_lock;
2827
2828 info = tree_search_offset(ctl, offset, 0, 0);
2829 if (!info) {
2830 /*
2831 * oops didn't find an extent that matched the space we wanted
2832 * to remove, look for a bitmap instead
2833 */
2834 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2835 1, 0);
2836 if (!info) {
2837 /*
2838 * If we found a partial bit of our free space in a
2839 * bitmap but then couldn't find the other part this may
2840 * be a problem, so WARN about it.
2841 */
2842 WARN_ON(re_search);
2843 goto out_lock;
2844 }
2845 }
2846
2847 re_search = false;
2848 if (!info->bitmap) {
2849 unlink_free_space(ctl, info, true);
2850 if (offset == info->offset) {
2851 u64 to_free = min(bytes, info->bytes);
2852
2853 info->bytes -= to_free;
2854 info->offset += to_free;
2855 if (info->bytes) {
2856 ret = link_free_space(ctl, info);
2857 WARN_ON(ret);
2858 } else {
2859 kmem_cache_free(btrfs_free_space_cachep, info);
2860 }
2861
2862 offset += to_free;
2863 bytes -= to_free;
2864 goto again;
2865 } else {
2866 u64 old_end = info->bytes + info->offset;
2867
2868 info->bytes = offset - info->offset;
2869 ret = link_free_space(ctl, info);
2870 WARN_ON(ret);
2871 if (ret)
2872 goto out_lock;
2873
2874 /* Not enough bytes in this entry to satisfy us */
2875 if (old_end < offset + bytes) {
2876 bytes -= old_end - offset;
2877 offset = old_end;
2878 goto again;
2879 } else if (old_end == offset + bytes) {
2880 /* all done */
2881 goto out_lock;
2882 }
2883 spin_unlock(&ctl->tree_lock);
2884
2885 ret = __btrfs_add_free_space(block_group,
2886 offset + bytes,
2887 old_end - (offset + bytes),
2888 info->trim_state);
2889 WARN_ON(ret);
2890 goto out;
2891 }
2892 }
2893
2894 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2895 if (ret == -EAGAIN) {
2896 re_search = true;
2897 goto again;
2898 }
2899 out_lock:
2900 btrfs_discard_update_discardable(block_group);
2901 spin_unlock(&ctl->tree_lock);
2902 out:
2903 return ret;
2904 }
2905
btrfs_dump_free_space(struct btrfs_block_group * block_group,u64 bytes)2906 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2907 u64 bytes)
2908 {
2909 struct btrfs_fs_info *fs_info = block_group->fs_info;
2910 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2911 struct btrfs_free_space *info;
2912 struct rb_node *n;
2913 int count = 0;
2914
2915 /*
2916 * Zoned btrfs does not use free space tree and cluster. Just print
2917 * out the free space after the allocation offset.
2918 */
2919 if (btrfs_is_zoned(fs_info)) {
2920 btrfs_info(fs_info, "free space %llu active %d",
2921 block_group->zone_capacity - block_group->alloc_offset,
2922 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2923 &block_group->runtime_flags));
2924 return;
2925 }
2926
2927 spin_lock(&ctl->tree_lock);
2928 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2929 info = rb_entry(n, struct btrfs_free_space, offset_index);
2930 if (info->bytes >= bytes && !block_group->ro)
2931 count++;
2932 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2933 info->offset, info->bytes,
2934 (info->bitmap) ? "yes" : "no");
2935 }
2936 spin_unlock(&ctl->tree_lock);
2937 btrfs_info(fs_info, "block group has cluster?: %s",
2938 list_empty(&block_group->cluster_list) ? "no" : "yes");
2939 btrfs_info(fs_info,
2940 "%d free space entries at or bigger than %llu bytes",
2941 count, bytes);
2942 }
2943
btrfs_init_free_space_ctl(struct btrfs_block_group * block_group,struct btrfs_free_space_ctl * ctl)2944 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2945 struct btrfs_free_space_ctl *ctl)
2946 {
2947 struct btrfs_fs_info *fs_info = block_group->fs_info;
2948
2949 spin_lock_init(&ctl->tree_lock);
2950 ctl->unit = fs_info->sectorsize;
2951 ctl->start = block_group->start;
2952 ctl->block_group = block_group;
2953 ctl->op = &free_space_op;
2954 ctl->free_space_bytes = RB_ROOT_CACHED;
2955 INIT_LIST_HEAD(&ctl->trimming_ranges);
2956 mutex_init(&ctl->cache_writeout_mutex);
2957
2958 /*
2959 * we only want to have 32k of ram per block group for keeping
2960 * track of free space, and if we pass 1/2 of that we want to
2961 * start converting things over to using bitmaps
2962 */
2963 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2964 }
2965
2966 /*
2967 * for a given cluster, put all of its extents back into the free
2968 * space cache. If the block group passed doesn't match the block group
2969 * pointed to by the cluster, someone else raced in and freed the
2970 * cluster already. In that case, we just return without changing anything
2971 */
__btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)2972 static void __btrfs_return_cluster_to_free_space(
2973 struct btrfs_block_group *block_group,
2974 struct btrfs_free_cluster *cluster)
2975 {
2976 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2977 struct rb_node *node;
2978
2979 lockdep_assert_held(&ctl->tree_lock);
2980
2981 spin_lock(&cluster->lock);
2982 if (cluster->block_group != block_group) {
2983 spin_unlock(&cluster->lock);
2984 return;
2985 }
2986
2987 cluster->block_group = NULL;
2988 cluster->window_start = 0;
2989 list_del_init(&cluster->block_group_list);
2990
2991 node = rb_first(&cluster->root);
2992 while (node) {
2993 struct btrfs_free_space *entry;
2994
2995 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2996 node = rb_next(&entry->offset_index);
2997 rb_erase(&entry->offset_index, &cluster->root);
2998 RB_CLEAR_NODE(&entry->offset_index);
2999
3000 if (!entry->bitmap) {
3001 /* Merging treats extents as if they were new */
3002 if (!btrfs_free_space_trimmed(entry)) {
3003 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3004 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3005 entry->bytes;
3006 }
3007
3008 try_merge_free_space(ctl, entry, false);
3009 steal_from_bitmap(ctl, entry, false);
3010
3011 /* As we insert directly, update these statistics */
3012 if (!btrfs_free_space_trimmed(entry)) {
3013 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3014 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3015 entry->bytes;
3016 }
3017 }
3018 tree_insert_offset(ctl, NULL, entry);
3019 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3020 entry_less);
3021 }
3022 cluster->root = RB_ROOT;
3023 spin_unlock(&cluster->lock);
3024 btrfs_put_block_group(block_group);
3025 }
3026
btrfs_remove_free_space_cache(struct btrfs_block_group * block_group)3027 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3028 {
3029 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3030 struct btrfs_free_cluster *cluster;
3031 struct list_head *head;
3032
3033 spin_lock(&ctl->tree_lock);
3034 while ((head = block_group->cluster_list.next) !=
3035 &block_group->cluster_list) {
3036 cluster = list_entry(head, struct btrfs_free_cluster,
3037 block_group_list);
3038
3039 WARN_ON(cluster->block_group != block_group);
3040 __btrfs_return_cluster_to_free_space(block_group, cluster);
3041
3042 cond_resched_lock(&ctl->tree_lock);
3043 }
3044 __btrfs_remove_free_space_cache(ctl);
3045 btrfs_discard_update_discardable(block_group);
3046 spin_unlock(&ctl->tree_lock);
3047
3048 }
3049
3050 /*
3051 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3052 */
btrfs_is_free_space_trimmed(struct btrfs_block_group * block_group)3053 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3054 {
3055 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3056 struct btrfs_free_space *info;
3057 struct rb_node *node;
3058 bool ret = true;
3059
3060 spin_lock(&ctl->tree_lock);
3061 node = rb_first(&ctl->free_space_offset);
3062
3063 while (node) {
3064 info = rb_entry(node, struct btrfs_free_space, offset_index);
3065
3066 if (!btrfs_free_space_trimmed(info)) {
3067 ret = false;
3068 break;
3069 }
3070
3071 node = rb_next(node);
3072 }
3073
3074 spin_unlock(&ctl->tree_lock);
3075 return ret;
3076 }
3077
btrfs_find_space_for_alloc(struct btrfs_block_group * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)3078 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3079 u64 offset, u64 bytes, u64 empty_size,
3080 u64 *max_extent_size)
3081 {
3082 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3083 struct btrfs_discard_ctl *discard_ctl =
3084 &block_group->fs_info->discard_ctl;
3085 struct btrfs_free_space *entry = NULL;
3086 u64 bytes_search = bytes + empty_size;
3087 u64 ret = 0;
3088 u64 align_gap = 0;
3089 u64 align_gap_len = 0;
3090 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3091 bool use_bytes_index = (offset == block_group->start);
3092
3093 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3094
3095 spin_lock(&ctl->tree_lock);
3096 entry = find_free_space(ctl, &offset, &bytes_search,
3097 block_group->full_stripe_len, max_extent_size,
3098 use_bytes_index);
3099 if (!entry)
3100 goto out;
3101
3102 ret = offset;
3103 if (entry->bitmap) {
3104 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3105
3106 if (!btrfs_free_space_trimmed(entry))
3107 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3108
3109 if (!entry->bytes)
3110 free_bitmap(ctl, entry);
3111 } else {
3112 unlink_free_space(ctl, entry, true);
3113 align_gap_len = offset - entry->offset;
3114 align_gap = entry->offset;
3115 align_gap_trim_state = entry->trim_state;
3116
3117 if (!btrfs_free_space_trimmed(entry))
3118 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3119
3120 entry->offset = offset + bytes;
3121 WARN_ON(entry->bytes < bytes + align_gap_len);
3122
3123 entry->bytes -= bytes + align_gap_len;
3124 if (!entry->bytes)
3125 kmem_cache_free(btrfs_free_space_cachep, entry);
3126 else
3127 link_free_space(ctl, entry);
3128 }
3129 out:
3130 btrfs_discard_update_discardable(block_group);
3131 spin_unlock(&ctl->tree_lock);
3132
3133 if (align_gap_len)
3134 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3135 align_gap_trim_state);
3136 return ret;
3137 }
3138
3139 /*
3140 * given a cluster, put all of its extents back into the free space
3141 * cache. If a block group is passed, this function will only free
3142 * a cluster that belongs to the passed block group.
3143 *
3144 * Otherwise, it'll get a reference on the block group pointed to by the
3145 * cluster and remove the cluster from it.
3146 */
btrfs_return_cluster_to_free_space(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster)3147 void btrfs_return_cluster_to_free_space(
3148 struct btrfs_block_group *block_group,
3149 struct btrfs_free_cluster *cluster)
3150 {
3151 struct btrfs_free_space_ctl *ctl;
3152
3153 /* first, get a safe pointer to the block group */
3154 spin_lock(&cluster->lock);
3155 if (!block_group) {
3156 block_group = cluster->block_group;
3157 if (!block_group) {
3158 spin_unlock(&cluster->lock);
3159 return;
3160 }
3161 } else if (cluster->block_group != block_group) {
3162 /* someone else has already freed it don't redo their work */
3163 spin_unlock(&cluster->lock);
3164 return;
3165 }
3166 btrfs_get_block_group(block_group);
3167 spin_unlock(&cluster->lock);
3168
3169 ctl = block_group->free_space_ctl;
3170
3171 /* now return any extents the cluster had on it */
3172 spin_lock(&ctl->tree_lock);
3173 __btrfs_return_cluster_to_free_space(block_group, cluster);
3174 spin_unlock(&ctl->tree_lock);
3175
3176 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3177
3178 /* finally drop our ref */
3179 btrfs_put_block_group(block_group);
3180 }
3181
btrfs_alloc_from_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)3182 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3183 struct btrfs_free_cluster *cluster,
3184 struct btrfs_free_space *entry,
3185 u64 bytes, u64 min_start,
3186 u64 *max_extent_size)
3187 {
3188 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3189 int err;
3190 u64 search_start = cluster->window_start;
3191 u64 search_bytes = bytes;
3192 u64 ret = 0;
3193
3194 search_start = min_start;
3195 search_bytes = bytes;
3196
3197 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3198 if (err) {
3199 *max_extent_size = max(get_max_extent_size(entry),
3200 *max_extent_size);
3201 return 0;
3202 }
3203
3204 ret = search_start;
3205 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3206
3207 return ret;
3208 }
3209
3210 /*
3211 * given a cluster, try to allocate 'bytes' from it, returns 0
3212 * if it couldn't find anything suitably large, or a logical disk offset
3213 * if things worked out
3214 */
btrfs_alloc_from_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)3215 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3216 struct btrfs_free_cluster *cluster, u64 bytes,
3217 u64 min_start, u64 *max_extent_size)
3218 {
3219 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3220 struct btrfs_discard_ctl *discard_ctl =
3221 &block_group->fs_info->discard_ctl;
3222 struct btrfs_free_space *entry = NULL;
3223 struct rb_node *node;
3224 u64 ret = 0;
3225
3226 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3227
3228 spin_lock(&cluster->lock);
3229 if (bytes > cluster->max_size)
3230 goto out;
3231
3232 if (cluster->block_group != block_group)
3233 goto out;
3234
3235 node = rb_first(&cluster->root);
3236 if (!node)
3237 goto out;
3238
3239 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3240 while (1) {
3241 if (entry->bytes < bytes)
3242 *max_extent_size = max(get_max_extent_size(entry),
3243 *max_extent_size);
3244
3245 if (entry->bytes < bytes ||
3246 (!entry->bitmap && entry->offset < min_start)) {
3247 node = rb_next(&entry->offset_index);
3248 if (!node)
3249 break;
3250 entry = rb_entry(node, struct btrfs_free_space,
3251 offset_index);
3252 continue;
3253 }
3254
3255 if (entry->bitmap) {
3256 ret = btrfs_alloc_from_bitmap(block_group,
3257 cluster, entry, bytes,
3258 cluster->window_start,
3259 max_extent_size);
3260 if (ret == 0) {
3261 node = rb_next(&entry->offset_index);
3262 if (!node)
3263 break;
3264 entry = rb_entry(node, struct btrfs_free_space,
3265 offset_index);
3266 continue;
3267 }
3268 cluster->window_start += bytes;
3269 } else {
3270 ret = entry->offset;
3271
3272 entry->offset += bytes;
3273 entry->bytes -= bytes;
3274 }
3275
3276 break;
3277 }
3278 out:
3279 spin_unlock(&cluster->lock);
3280
3281 if (!ret)
3282 return 0;
3283
3284 spin_lock(&ctl->tree_lock);
3285
3286 if (!btrfs_free_space_trimmed(entry))
3287 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3288
3289 ctl->free_space -= bytes;
3290 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3291 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3292
3293 spin_lock(&cluster->lock);
3294 if (entry->bytes == 0) {
3295 rb_erase(&entry->offset_index, &cluster->root);
3296 ctl->free_extents--;
3297 if (entry->bitmap) {
3298 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3299 entry->bitmap);
3300 ctl->total_bitmaps--;
3301 recalculate_thresholds(ctl);
3302 } else if (!btrfs_free_space_trimmed(entry)) {
3303 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3304 }
3305 kmem_cache_free(btrfs_free_space_cachep, entry);
3306 }
3307
3308 spin_unlock(&cluster->lock);
3309 spin_unlock(&ctl->tree_lock);
3310
3311 return ret;
3312 }
3313
btrfs_bitmap_cluster(struct btrfs_block_group * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3314 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3315 struct btrfs_free_space *entry,
3316 struct btrfs_free_cluster *cluster,
3317 u64 offset, u64 bytes,
3318 u64 cont1_bytes, u64 min_bytes)
3319 {
3320 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3321 unsigned long next_zero;
3322 unsigned long i;
3323 unsigned long want_bits;
3324 unsigned long min_bits;
3325 unsigned long found_bits;
3326 unsigned long max_bits = 0;
3327 unsigned long start = 0;
3328 unsigned long total_found = 0;
3329 int ret;
3330
3331 lockdep_assert_held(&ctl->tree_lock);
3332
3333 i = offset_to_bit(entry->offset, ctl->unit,
3334 max_t(u64, offset, entry->offset));
3335 want_bits = bytes_to_bits(bytes, ctl->unit);
3336 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3337
3338 /*
3339 * Don't bother looking for a cluster in this bitmap if it's heavily
3340 * fragmented.
3341 */
3342 if (entry->max_extent_size &&
3343 entry->max_extent_size < cont1_bytes)
3344 return -ENOSPC;
3345 again:
3346 found_bits = 0;
3347 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3348 next_zero = find_next_zero_bit(entry->bitmap,
3349 BITS_PER_BITMAP, i);
3350 if (next_zero - i >= min_bits) {
3351 found_bits = next_zero - i;
3352 if (found_bits > max_bits)
3353 max_bits = found_bits;
3354 break;
3355 }
3356 if (next_zero - i > max_bits)
3357 max_bits = next_zero - i;
3358 i = next_zero;
3359 }
3360
3361 if (!found_bits) {
3362 entry->max_extent_size = (u64)max_bits * ctl->unit;
3363 return -ENOSPC;
3364 }
3365
3366 if (!total_found) {
3367 start = i;
3368 cluster->max_size = 0;
3369 }
3370
3371 total_found += found_bits;
3372
3373 if (cluster->max_size < found_bits * ctl->unit)
3374 cluster->max_size = found_bits * ctl->unit;
3375
3376 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3377 i = next_zero + 1;
3378 goto again;
3379 }
3380
3381 cluster->window_start = start * ctl->unit + entry->offset;
3382 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3383 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3384
3385 /*
3386 * We need to know if we're currently on the normal space index when we
3387 * manipulate the bitmap so that we know we need to remove and re-insert
3388 * it into the space_index tree. Clear the bytes_index node here so the
3389 * bitmap manipulation helpers know not to mess with the space_index
3390 * until this bitmap entry is added back into the normal cache.
3391 */
3392 RB_CLEAR_NODE(&entry->bytes_index);
3393
3394 ret = tree_insert_offset(ctl, cluster, entry);
3395 ASSERT(!ret); /* -EEXIST; Logic error */
3396
3397 trace_btrfs_setup_cluster(block_group, cluster,
3398 total_found * ctl->unit, 1);
3399 return 0;
3400 }
3401
3402 /*
3403 * This searches the block group for just extents to fill the cluster with.
3404 * Try to find a cluster with at least bytes total bytes, at least one
3405 * extent of cont1_bytes, and other clusters of at least min_bytes.
3406 */
3407 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3408 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3409 struct btrfs_free_cluster *cluster,
3410 struct list_head *bitmaps, u64 offset, u64 bytes,
3411 u64 cont1_bytes, u64 min_bytes)
3412 {
3413 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3414 struct btrfs_free_space *first = NULL;
3415 struct btrfs_free_space *entry = NULL;
3416 struct btrfs_free_space *last;
3417 struct rb_node *node;
3418 u64 window_free;
3419 u64 max_extent;
3420 u64 total_size = 0;
3421
3422 lockdep_assert_held(&ctl->tree_lock);
3423
3424 entry = tree_search_offset(ctl, offset, 0, 1);
3425 if (!entry)
3426 return -ENOSPC;
3427
3428 /*
3429 * We don't want bitmaps, so just move along until we find a normal
3430 * extent entry.
3431 */
3432 while (entry->bitmap || entry->bytes < min_bytes) {
3433 if (entry->bitmap && list_empty(&entry->list))
3434 list_add_tail(&entry->list, bitmaps);
3435 node = rb_next(&entry->offset_index);
3436 if (!node)
3437 return -ENOSPC;
3438 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3439 }
3440
3441 window_free = entry->bytes;
3442 max_extent = entry->bytes;
3443 first = entry;
3444 last = entry;
3445
3446 for (node = rb_next(&entry->offset_index); node;
3447 node = rb_next(&entry->offset_index)) {
3448 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3449
3450 if (entry->bitmap) {
3451 if (list_empty(&entry->list))
3452 list_add_tail(&entry->list, bitmaps);
3453 continue;
3454 }
3455
3456 if (entry->bytes < min_bytes)
3457 continue;
3458
3459 last = entry;
3460 window_free += entry->bytes;
3461 if (entry->bytes > max_extent)
3462 max_extent = entry->bytes;
3463 }
3464
3465 if (window_free < bytes || max_extent < cont1_bytes)
3466 return -ENOSPC;
3467
3468 cluster->window_start = first->offset;
3469
3470 node = &first->offset_index;
3471
3472 /*
3473 * now we've found our entries, pull them out of the free space
3474 * cache and put them into the cluster rbtree
3475 */
3476 do {
3477 int ret;
3478
3479 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3480 node = rb_next(&entry->offset_index);
3481 if (entry->bitmap || entry->bytes < min_bytes)
3482 continue;
3483
3484 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3485 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3486 ret = tree_insert_offset(ctl, cluster, entry);
3487 total_size += entry->bytes;
3488 ASSERT(!ret); /* -EEXIST; Logic error */
3489 } while (node && entry != last);
3490
3491 cluster->max_size = max_extent;
3492 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3493 return 0;
3494 }
3495
3496 /*
3497 * This specifically looks for bitmaps that may work in the cluster, we assume
3498 * that we have already failed to find extents that will work.
3499 */
3500 static noinline int
setup_cluster_bitmap(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3501 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3502 struct btrfs_free_cluster *cluster,
3503 struct list_head *bitmaps, u64 offset, u64 bytes,
3504 u64 cont1_bytes, u64 min_bytes)
3505 {
3506 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3507 struct btrfs_free_space *entry = NULL;
3508 int ret = -ENOSPC;
3509 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3510
3511 if (ctl->total_bitmaps == 0)
3512 return -ENOSPC;
3513
3514 /*
3515 * The bitmap that covers offset won't be in the list unless offset
3516 * is just its start offset.
3517 */
3518 if (!list_empty(bitmaps))
3519 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3520
3521 if (!entry || entry->offset != bitmap_offset) {
3522 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3523 if (entry && list_empty(&entry->list))
3524 list_add(&entry->list, bitmaps);
3525 }
3526
3527 list_for_each_entry(entry, bitmaps, list) {
3528 if (entry->bytes < bytes)
3529 continue;
3530 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3531 bytes, cont1_bytes, min_bytes);
3532 if (!ret)
3533 return 0;
3534 }
3535
3536 /*
3537 * The bitmaps list has all the bitmaps that record free space
3538 * starting after offset, so no more search is required.
3539 */
3540 return -ENOSPC;
3541 }
3542
3543 /*
3544 * here we try to find a cluster of blocks in a block group. The goal
3545 * is to find at least bytes+empty_size.
3546 * We might not find them all in one contiguous area.
3547 *
3548 * returns zero and sets up cluster if things worked out, otherwise
3549 * it returns -enospc
3550 */
btrfs_find_space_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3551 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3552 struct btrfs_free_cluster *cluster,
3553 u64 offset, u64 bytes, u64 empty_size)
3554 {
3555 struct btrfs_fs_info *fs_info = block_group->fs_info;
3556 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3557 struct btrfs_free_space *entry, *tmp;
3558 LIST_HEAD(bitmaps);
3559 u64 min_bytes;
3560 u64 cont1_bytes;
3561 int ret;
3562
3563 /*
3564 * Choose the minimum extent size we'll require for this
3565 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3566 * For metadata, allow allocates with smaller extents. For
3567 * data, keep it dense.
3568 */
3569 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3570 cont1_bytes = bytes + empty_size;
3571 min_bytes = cont1_bytes;
3572 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3573 cont1_bytes = bytes;
3574 min_bytes = fs_info->sectorsize;
3575 } else {
3576 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3577 min_bytes = fs_info->sectorsize;
3578 }
3579
3580 spin_lock(&ctl->tree_lock);
3581
3582 /*
3583 * If we know we don't have enough space to make a cluster don't even
3584 * bother doing all the work to try and find one.
3585 */
3586 if (ctl->free_space < bytes) {
3587 spin_unlock(&ctl->tree_lock);
3588 return -ENOSPC;
3589 }
3590
3591 spin_lock(&cluster->lock);
3592
3593 /* someone already found a cluster, hooray */
3594 if (cluster->block_group) {
3595 ret = 0;
3596 goto out;
3597 }
3598
3599 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3600 min_bytes);
3601
3602 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3603 bytes + empty_size,
3604 cont1_bytes, min_bytes);
3605 if (ret)
3606 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3607 offset, bytes + empty_size,
3608 cont1_bytes, min_bytes);
3609
3610 /* Clear our temporary list */
3611 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3612 list_del_init(&entry->list);
3613
3614 if (!ret) {
3615 btrfs_get_block_group(block_group);
3616 list_add_tail(&cluster->block_group_list,
3617 &block_group->cluster_list);
3618 cluster->block_group = block_group;
3619 } else {
3620 trace_btrfs_failed_cluster_setup(block_group);
3621 }
3622 out:
3623 spin_unlock(&cluster->lock);
3624 spin_unlock(&ctl->tree_lock);
3625
3626 return ret;
3627 }
3628
3629 /*
3630 * simple code to zero out a cluster
3631 */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3632 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3633 {
3634 spin_lock_init(&cluster->lock);
3635 spin_lock_init(&cluster->refill_lock);
3636 cluster->root = RB_ROOT;
3637 cluster->max_size = 0;
3638 cluster->fragmented = false;
3639 INIT_LIST_HEAD(&cluster->block_group_list);
3640 cluster->block_group = NULL;
3641 }
3642
do_trimming(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,enum btrfs_trim_state reserved_trim_state,struct btrfs_trim_range * trim_entry)3643 static int do_trimming(struct btrfs_block_group *block_group,
3644 u64 *total_trimmed, u64 start, u64 bytes,
3645 u64 reserved_start, u64 reserved_bytes,
3646 enum btrfs_trim_state reserved_trim_state,
3647 struct btrfs_trim_range *trim_entry)
3648 {
3649 struct btrfs_space_info *space_info = block_group->space_info;
3650 struct btrfs_fs_info *fs_info = block_group->fs_info;
3651 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3652 int ret;
3653 int update = 0;
3654 const u64 end = start + bytes;
3655 const u64 reserved_end = reserved_start + reserved_bytes;
3656 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3657 u64 trimmed = 0;
3658
3659 spin_lock(&space_info->lock);
3660 spin_lock(&block_group->lock);
3661 if (!block_group->ro) {
3662 block_group->reserved += reserved_bytes;
3663 space_info->bytes_reserved += reserved_bytes;
3664 update = 1;
3665 }
3666 spin_unlock(&block_group->lock);
3667 spin_unlock(&space_info->lock);
3668
3669 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3670 if (!ret) {
3671 *total_trimmed += trimmed;
3672 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3673 }
3674
3675 mutex_lock(&ctl->cache_writeout_mutex);
3676 if (reserved_start < start)
3677 __btrfs_add_free_space(block_group, reserved_start,
3678 start - reserved_start,
3679 reserved_trim_state);
3680 if (end < reserved_end)
3681 __btrfs_add_free_space(block_group, end, reserved_end - end,
3682 reserved_trim_state);
3683 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3684 list_del(&trim_entry->list);
3685 mutex_unlock(&ctl->cache_writeout_mutex);
3686
3687 if (update) {
3688 spin_lock(&space_info->lock);
3689 spin_lock(&block_group->lock);
3690 if (block_group->ro)
3691 space_info->bytes_readonly += reserved_bytes;
3692 block_group->reserved -= reserved_bytes;
3693 space_info->bytes_reserved -= reserved_bytes;
3694 spin_unlock(&block_group->lock);
3695 spin_unlock(&space_info->lock);
3696 }
3697
3698 return ret;
3699 }
3700
3701 /*
3702 * If @async is set, then we will trim 1 region and return.
3703 */
trim_no_bitmap(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,bool async)3704 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3705 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3706 bool async)
3707 {
3708 struct btrfs_discard_ctl *discard_ctl =
3709 &block_group->fs_info->discard_ctl;
3710 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3711 struct btrfs_free_space *entry;
3712 struct rb_node *node;
3713 int ret = 0;
3714 u64 extent_start;
3715 u64 extent_bytes;
3716 enum btrfs_trim_state extent_trim_state;
3717 u64 bytes;
3718 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3719
3720 while (start < end) {
3721 struct btrfs_trim_range trim_entry;
3722
3723 mutex_lock(&ctl->cache_writeout_mutex);
3724 spin_lock(&ctl->tree_lock);
3725
3726 if (ctl->free_space < minlen)
3727 goto out_unlock;
3728
3729 entry = tree_search_offset(ctl, start, 0, 1);
3730 if (!entry)
3731 goto out_unlock;
3732
3733 /* Skip bitmaps and if async, already trimmed entries */
3734 while (entry->bitmap ||
3735 (async && btrfs_free_space_trimmed(entry))) {
3736 node = rb_next(&entry->offset_index);
3737 if (!node)
3738 goto out_unlock;
3739 entry = rb_entry(node, struct btrfs_free_space,
3740 offset_index);
3741 }
3742
3743 if (entry->offset >= end)
3744 goto out_unlock;
3745
3746 extent_start = entry->offset;
3747 extent_bytes = entry->bytes;
3748 extent_trim_state = entry->trim_state;
3749 if (async) {
3750 start = entry->offset;
3751 bytes = entry->bytes;
3752 if (bytes < minlen) {
3753 spin_unlock(&ctl->tree_lock);
3754 mutex_unlock(&ctl->cache_writeout_mutex);
3755 goto next;
3756 }
3757 unlink_free_space(ctl, entry, true);
3758 /*
3759 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3760 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3761 * X when we come back around. So trim it now.
3762 */
3763 if (max_discard_size &&
3764 bytes >= (max_discard_size +
3765 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3766 bytes = max_discard_size;
3767 extent_bytes = max_discard_size;
3768 entry->offset += max_discard_size;
3769 entry->bytes -= max_discard_size;
3770 link_free_space(ctl, entry);
3771 } else {
3772 kmem_cache_free(btrfs_free_space_cachep, entry);
3773 }
3774 } else {
3775 start = max(start, extent_start);
3776 bytes = min(extent_start + extent_bytes, end) - start;
3777 if (bytes < minlen) {
3778 spin_unlock(&ctl->tree_lock);
3779 mutex_unlock(&ctl->cache_writeout_mutex);
3780 goto next;
3781 }
3782
3783 unlink_free_space(ctl, entry, true);
3784 kmem_cache_free(btrfs_free_space_cachep, entry);
3785 }
3786
3787 spin_unlock(&ctl->tree_lock);
3788 trim_entry.start = extent_start;
3789 trim_entry.bytes = extent_bytes;
3790 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3791 mutex_unlock(&ctl->cache_writeout_mutex);
3792
3793 ret = do_trimming(block_group, total_trimmed, start, bytes,
3794 extent_start, extent_bytes, extent_trim_state,
3795 &trim_entry);
3796 if (ret) {
3797 block_group->discard_cursor = start + bytes;
3798 break;
3799 }
3800 next:
3801 start += bytes;
3802 block_group->discard_cursor = start;
3803 if (async && *total_trimmed)
3804 break;
3805
3806 if (fatal_signal_pending(current)) {
3807 ret = -ERESTARTSYS;
3808 break;
3809 }
3810
3811 cond_resched();
3812 }
3813
3814 return ret;
3815
3816 out_unlock:
3817 block_group->discard_cursor = btrfs_block_group_end(block_group);
3818 spin_unlock(&ctl->tree_lock);
3819 mutex_unlock(&ctl->cache_writeout_mutex);
3820
3821 return ret;
3822 }
3823
3824 /*
3825 * If we break out of trimming a bitmap prematurely, we should reset the
3826 * trimming bit. In a rather contrieved case, it's possible to race here so
3827 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3828 *
3829 * start = start of bitmap
3830 * end = near end of bitmap
3831 *
3832 * Thread 1: Thread 2:
3833 * trim_bitmaps(start)
3834 * trim_bitmaps(end)
3835 * end_trimming_bitmap()
3836 * reset_trimming_bitmap()
3837 */
reset_trimming_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)3838 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3839 {
3840 struct btrfs_free_space *entry;
3841
3842 spin_lock(&ctl->tree_lock);
3843 entry = tree_search_offset(ctl, offset, 1, 0);
3844 if (entry) {
3845 if (btrfs_free_space_trimmed(entry)) {
3846 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3847 entry->bitmap_extents;
3848 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3849 }
3850 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3851 }
3852
3853 spin_unlock(&ctl->tree_lock);
3854 }
3855
end_trimming_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * entry)3856 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3857 struct btrfs_free_space *entry)
3858 {
3859 if (btrfs_free_space_trimming_bitmap(entry)) {
3860 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3861 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3862 entry->bitmap_extents;
3863 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3864 }
3865 }
3866
3867 /*
3868 * If @async is set, then we will trim 1 region and return.
3869 */
trim_bitmaps(struct btrfs_block_group * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)3870 static int trim_bitmaps(struct btrfs_block_group *block_group,
3871 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3872 u64 maxlen, bool async)
3873 {
3874 struct btrfs_discard_ctl *discard_ctl =
3875 &block_group->fs_info->discard_ctl;
3876 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3877 struct btrfs_free_space *entry;
3878 int ret = 0;
3879 int ret2;
3880 u64 bytes;
3881 u64 offset = offset_to_bitmap(ctl, start);
3882 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3883
3884 while (offset < end) {
3885 bool next_bitmap = false;
3886 struct btrfs_trim_range trim_entry;
3887
3888 mutex_lock(&ctl->cache_writeout_mutex);
3889 spin_lock(&ctl->tree_lock);
3890
3891 if (ctl->free_space < minlen) {
3892 block_group->discard_cursor =
3893 btrfs_block_group_end(block_group);
3894 spin_unlock(&ctl->tree_lock);
3895 mutex_unlock(&ctl->cache_writeout_mutex);
3896 break;
3897 }
3898
3899 entry = tree_search_offset(ctl, offset, 1, 0);
3900 /*
3901 * Bitmaps are marked trimmed lossily now to prevent constant
3902 * discarding of the same bitmap (the reason why we are bound
3903 * by the filters). So, retrim the block group bitmaps when we
3904 * are preparing to punt to the unused_bgs list. This uses
3905 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3906 * which is the only discard index which sets minlen to 0.
3907 */
3908 if (!entry || (async && minlen && start == offset &&
3909 btrfs_free_space_trimmed(entry))) {
3910 spin_unlock(&ctl->tree_lock);
3911 mutex_unlock(&ctl->cache_writeout_mutex);
3912 next_bitmap = true;
3913 goto next;
3914 }
3915
3916 /*
3917 * Async discard bitmap trimming begins at by setting the start
3918 * to be key.objectid and the offset_to_bitmap() aligns to the
3919 * start of the bitmap. This lets us know we are fully
3920 * scanning the bitmap rather than only some portion of it.
3921 */
3922 if (start == offset)
3923 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3924
3925 bytes = minlen;
3926 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3927 if (ret2 || start >= end) {
3928 /*
3929 * We lossily consider a bitmap trimmed if we only skip
3930 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3931 */
3932 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3933 end_trimming_bitmap(ctl, entry);
3934 else
3935 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3936 spin_unlock(&ctl->tree_lock);
3937 mutex_unlock(&ctl->cache_writeout_mutex);
3938 next_bitmap = true;
3939 goto next;
3940 }
3941
3942 /*
3943 * We already trimmed a region, but are using the locking above
3944 * to reset the trim_state.
3945 */
3946 if (async && *total_trimmed) {
3947 spin_unlock(&ctl->tree_lock);
3948 mutex_unlock(&ctl->cache_writeout_mutex);
3949 goto out;
3950 }
3951
3952 bytes = min(bytes, end - start);
3953 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3954 spin_unlock(&ctl->tree_lock);
3955 mutex_unlock(&ctl->cache_writeout_mutex);
3956 goto next;
3957 }
3958
3959 /*
3960 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3961 * If X < @minlen, we won't trim X when we come back around.
3962 * So trim it now. We differ here from trimming extents as we
3963 * don't keep individual state per bit.
3964 */
3965 if (async &&
3966 max_discard_size &&
3967 bytes > (max_discard_size + minlen))
3968 bytes = max_discard_size;
3969
3970 bitmap_clear_bits(ctl, entry, start, bytes, true);
3971 if (entry->bytes == 0)
3972 free_bitmap(ctl, entry);
3973
3974 spin_unlock(&ctl->tree_lock);
3975 trim_entry.start = start;
3976 trim_entry.bytes = bytes;
3977 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3978 mutex_unlock(&ctl->cache_writeout_mutex);
3979
3980 ret = do_trimming(block_group, total_trimmed, start, bytes,
3981 start, bytes, 0, &trim_entry);
3982 if (ret) {
3983 reset_trimming_bitmap(ctl, offset);
3984 block_group->discard_cursor =
3985 btrfs_block_group_end(block_group);
3986 break;
3987 }
3988 next:
3989 if (next_bitmap) {
3990 offset += BITS_PER_BITMAP * ctl->unit;
3991 start = offset;
3992 } else {
3993 start += bytes;
3994 }
3995 block_group->discard_cursor = start;
3996
3997 if (fatal_signal_pending(current)) {
3998 if (start != offset)
3999 reset_trimming_bitmap(ctl, offset);
4000 ret = -ERESTARTSYS;
4001 break;
4002 }
4003
4004 cond_resched();
4005 }
4006
4007 if (offset >= end)
4008 block_group->discard_cursor = end;
4009
4010 out:
4011 return ret;
4012 }
4013
btrfs_trim_block_group(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)4014 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4015 u64 *trimmed, u64 start, u64 end, u64 minlen)
4016 {
4017 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4018 int ret;
4019 u64 rem = 0;
4020
4021 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4022
4023 *trimmed = 0;
4024
4025 spin_lock(&block_group->lock);
4026 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4027 spin_unlock(&block_group->lock);
4028 return 0;
4029 }
4030 btrfs_freeze_block_group(block_group);
4031 spin_unlock(&block_group->lock);
4032
4033 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4034 if (ret)
4035 goto out;
4036
4037 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4038 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4039 /* If we ended in the middle of a bitmap, reset the trimming flag */
4040 if (rem)
4041 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4042 out:
4043 btrfs_unfreeze_block_group(block_group);
4044 return ret;
4045 }
4046
btrfs_trim_block_group_extents(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,bool async)4047 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4048 u64 *trimmed, u64 start, u64 end, u64 minlen,
4049 bool async)
4050 {
4051 int ret;
4052
4053 *trimmed = 0;
4054
4055 spin_lock(&block_group->lock);
4056 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4057 spin_unlock(&block_group->lock);
4058 return 0;
4059 }
4060 btrfs_freeze_block_group(block_group);
4061 spin_unlock(&block_group->lock);
4062
4063 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4064 btrfs_unfreeze_block_group(block_group);
4065
4066 return ret;
4067 }
4068
btrfs_trim_block_group_bitmaps(struct btrfs_block_group * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen,u64 maxlen,bool async)4069 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4070 u64 *trimmed, u64 start, u64 end, u64 minlen,
4071 u64 maxlen, bool async)
4072 {
4073 int ret;
4074
4075 *trimmed = 0;
4076
4077 spin_lock(&block_group->lock);
4078 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4079 spin_unlock(&block_group->lock);
4080 return 0;
4081 }
4082 btrfs_freeze_block_group(block_group);
4083 spin_unlock(&block_group->lock);
4084
4085 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4086 async);
4087
4088 btrfs_unfreeze_block_group(block_group);
4089
4090 return ret;
4091 }
4092
btrfs_free_space_cache_v1_active(struct btrfs_fs_info * fs_info)4093 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4094 {
4095 return btrfs_super_cache_generation(fs_info->super_copy);
4096 }
4097
cleanup_free_space_cache_v1(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans)4098 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4099 struct btrfs_trans_handle *trans)
4100 {
4101 struct btrfs_block_group *block_group;
4102 struct rb_node *node;
4103 int ret = 0;
4104
4105 btrfs_info(fs_info, "cleaning free space cache v1");
4106
4107 node = rb_first_cached(&fs_info->block_group_cache_tree);
4108 while (node) {
4109 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4110 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4111 if (ret)
4112 goto out;
4113 node = rb_next(node);
4114 }
4115 out:
4116 return ret;
4117 }
4118
btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info * fs_info,bool active)4119 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4120 {
4121 struct btrfs_trans_handle *trans;
4122 int ret;
4123
4124 /*
4125 * update_super_roots will appropriately set or unset
4126 * super_copy->cache_generation based on SPACE_CACHE and
4127 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4128 * transaction commit whether we are enabling space cache v1 and don't
4129 * have any other work to do, or are disabling it and removing free
4130 * space inodes.
4131 */
4132 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4133 if (IS_ERR(trans))
4134 return PTR_ERR(trans);
4135
4136 if (!active) {
4137 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4138 ret = cleanup_free_space_cache_v1(fs_info, trans);
4139 if (ret) {
4140 btrfs_abort_transaction(trans, ret);
4141 btrfs_end_transaction(trans);
4142 goto out;
4143 }
4144 }
4145
4146 ret = btrfs_commit_transaction(trans);
4147 out:
4148 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4149
4150 return ret;
4151 }
4152
btrfs_free_space_init(void)4153 int __init btrfs_free_space_init(void)
4154 {
4155 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
4156 sizeof(struct btrfs_free_space), 0,
4157 SLAB_MEM_SPREAD, NULL);
4158 if (!btrfs_free_space_cachep)
4159 return -ENOMEM;
4160
4161 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4162 PAGE_SIZE, PAGE_SIZE,
4163 SLAB_MEM_SPREAD, NULL);
4164 if (!btrfs_free_space_bitmap_cachep) {
4165 kmem_cache_destroy(btrfs_free_space_cachep);
4166 return -ENOMEM;
4167 }
4168
4169 return 0;
4170 }
4171
btrfs_free_space_exit(void)4172 void __cold btrfs_free_space_exit(void)
4173 {
4174 kmem_cache_destroy(btrfs_free_space_cachep);
4175 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4176 }
4177
4178 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4179 /*
4180 * Use this if you need to make a bitmap or extent entry specifically, it
4181 * doesn't do any of the merging that add_free_space does, this acts a lot like
4182 * how the free space cache loading stuff works, so you can get really weird
4183 * configurations.
4184 */
test_add_free_space_entry(struct btrfs_block_group * cache,u64 offset,u64 bytes,bool bitmap)4185 int test_add_free_space_entry(struct btrfs_block_group *cache,
4186 u64 offset, u64 bytes, bool bitmap)
4187 {
4188 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4189 struct btrfs_free_space *info = NULL, *bitmap_info;
4190 void *map = NULL;
4191 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4192 u64 bytes_added;
4193 int ret;
4194
4195 again:
4196 if (!info) {
4197 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4198 if (!info)
4199 return -ENOMEM;
4200 }
4201
4202 if (!bitmap) {
4203 spin_lock(&ctl->tree_lock);
4204 info->offset = offset;
4205 info->bytes = bytes;
4206 info->max_extent_size = 0;
4207 ret = link_free_space(ctl, info);
4208 spin_unlock(&ctl->tree_lock);
4209 if (ret)
4210 kmem_cache_free(btrfs_free_space_cachep, info);
4211 return ret;
4212 }
4213
4214 if (!map) {
4215 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4216 if (!map) {
4217 kmem_cache_free(btrfs_free_space_cachep, info);
4218 return -ENOMEM;
4219 }
4220 }
4221
4222 spin_lock(&ctl->tree_lock);
4223 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4224 1, 0);
4225 if (!bitmap_info) {
4226 info->bitmap = map;
4227 map = NULL;
4228 add_new_bitmap(ctl, info, offset);
4229 bitmap_info = info;
4230 info = NULL;
4231 }
4232
4233 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4234 trim_state);
4235
4236 bytes -= bytes_added;
4237 offset += bytes_added;
4238 spin_unlock(&ctl->tree_lock);
4239
4240 if (bytes)
4241 goto again;
4242
4243 if (info)
4244 kmem_cache_free(btrfs_free_space_cachep, info);
4245 if (map)
4246 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4247 return 0;
4248 }
4249
4250 /*
4251 * Checks to see if the given range is in the free space cache. This is really
4252 * just used to check the absence of space, so if there is free space in the
4253 * range at all we will return 1.
4254 */
test_check_exists(struct btrfs_block_group * cache,u64 offset,u64 bytes)4255 int test_check_exists(struct btrfs_block_group *cache,
4256 u64 offset, u64 bytes)
4257 {
4258 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4259 struct btrfs_free_space *info;
4260 int ret = 0;
4261
4262 spin_lock(&ctl->tree_lock);
4263 info = tree_search_offset(ctl, offset, 0, 0);
4264 if (!info) {
4265 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4266 1, 0);
4267 if (!info)
4268 goto out;
4269 }
4270
4271 have_info:
4272 if (info->bitmap) {
4273 u64 bit_off, bit_bytes;
4274 struct rb_node *n;
4275 struct btrfs_free_space *tmp;
4276
4277 bit_off = offset;
4278 bit_bytes = ctl->unit;
4279 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4280 if (!ret) {
4281 if (bit_off == offset) {
4282 ret = 1;
4283 goto out;
4284 } else if (bit_off > offset &&
4285 offset + bytes > bit_off) {
4286 ret = 1;
4287 goto out;
4288 }
4289 }
4290
4291 n = rb_prev(&info->offset_index);
4292 while (n) {
4293 tmp = rb_entry(n, struct btrfs_free_space,
4294 offset_index);
4295 if (tmp->offset + tmp->bytes < offset)
4296 break;
4297 if (offset + bytes < tmp->offset) {
4298 n = rb_prev(&tmp->offset_index);
4299 continue;
4300 }
4301 info = tmp;
4302 goto have_info;
4303 }
4304
4305 n = rb_next(&info->offset_index);
4306 while (n) {
4307 tmp = rb_entry(n, struct btrfs_free_space,
4308 offset_index);
4309 if (offset + bytes < tmp->offset)
4310 break;
4311 if (tmp->offset + tmp->bytes < offset) {
4312 n = rb_next(&tmp->offset_index);
4313 continue;
4314 }
4315 info = tmp;
4316 goto have_info;
4317 }
4318
4319 ret = 0;
4320 goto out;
4321 }
4322
4323 if (info->offset == offset) {
4324 ret = 1;
4325 goto out;
4326 }
4327
4328 if (offset > info->offset && offset < info->offset + info->bytes)
4329 ret = 1;
4330 out:
4331 spin_unlock(&ctl->tree_lock);
4332 return ret;
4333 }
4334 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4335