1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "misc.h"
10 #include "delayed-inode.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "ctree.h"
14 #include "qgroup.h"
15 #include "locking.h"
16
17 #define BTRFS_DELAYED_WRITEBACK 512
18 #define BTRFS_DELAYED_BACKGROUND 128
19 #define BTRFS_DELAYED_BATCH 16
20
21 static struct kmem_cache *delayed_node_cache;
22
btrfs_delayed_inode_init(void)23 int __init btrfs_delayed_inode_init(void)
24 {
25 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
26 sizeof(struct btrfs_delayed_node),
27 0,
28 SLAB_MEM_SPREAD,
29 NULL);
30 if (!delayed_node_cache)
31 return -ENOMEM;
32 return 0;
33 }
34
btrfs_delayed_inode_exit(void)35 void __cold btrfs_delayed_inode_exit(void)
36 {
37 kmem_cache_destroy(delayed_node_cache);
38 }
39
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)40 static inline void btrfs_init_delayed_node(
41 struct btrfs_delayed_node *delayed_node,
42 struct btrfs_root *root, u64 inode_id)
43 {
44 delayed_node->root = root;
45 delayed_node->inode_id = inode_id;
46 refcount_set(&delayed_node->refs, 0);
47 delayed_node->ins_root = RB_ROOT_CACHED;
48 delayed_node->del_root = RB_ROOT_CACHED;
49 mutex_init(&delayed_node->mutex);
50 INIT_LIST_HEAD(&delayed_node->n_list);
51 INIT_LIST_HEAD(&delayed_node->p_list);
52 }
53
btrfs_is_continuous_delayed_item(struct btrfs_delayed_item * item1,struct btrfs_delayed_item * item2)54 static inline int btrfs_is_continuous_delayed_item(
55 struct btrfs_delayed_item *item1,
56 struct btrfs_delayed_item *item2)
57 {
58 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
59 item1->key.objectid == item2->key.objectid &&
60 item1->key.type == item2->key.type &&
61 item1->key.offset + 1 == item2->key.offset)
62 return 1;
63 return 0;
64 }
65
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)66 static struct btrfs_delayed_node *btrfs_get_delayed_node(
67 struct btrfs_inode *btrfs_inode)
68 {
69 struct btrfs_root *root = btrfs_inode->root;
70 u64 ino = btrfs_ino(btrfs_inode);
71 struct btrfs_delayed_node *node;
72
73 node = READ_ONCE(btrfs_inode->delayed_node);
74 if (node) {
75 refcount_inc(&node->refs);
76 return node;
77 }
78
79 spin_lock(&root->inode_lock);
80 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
81
82 if (node) {
83 if (btrfs_inode->delayed_node) {
84 refcount_inc(&node->refs); /* can be accessed */
85 BUG_ON(btrfs_inode->delayed_node != node);
86 spin_unlock(&root->inode_lock);
87 return node;
88 }
89
90 /*
91 * It's possible that we're racing into the middle of removing
92 * this node from the radix tree. In this case, the refcount
93 * was zero and it should never go back to one. Just return
94 * NULL like it was never in the radix at all; our release
95 * function is in the process of removing it.
96 *
97 * Some implementations of refcount_inc refuse to bump the
98 * refcount once it has hit zero. If we don't do this dance
99 * here, refcount_inc() may decide to just WARN_ONCE() instead
100 * of actually bumping the refcount.
101 *
102 * If this node is properly in the radix, we want to bump the
103 * refcount twice, once for the inode and once for this get
104 * operation.
105 */
106 if (refcount_inc_not_zero(&node->refs)) {
107 refcount_inc(&node->refs);
108 btrfs_inode->delayed_node = node;
109 } else {
110 node = NULL;
111 }
112
113 spin_unlock(&root->inode_lock);
114 return node;
115 }
116 spin_unlock(&root->inode_lock);
117
118 return NULL;
119 }
120
121 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)122 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
123 struct btrfs_inode *btrfs_inode)
124 {
125 struct btrfs_delayed_node *node;
126 struct btrfs_root *root = btrfs_inode->root;
127 u64 ino = btrfs_ino(btrfs_inode);
128 int ret;
129
130 again:
131 node = btrfs_get_delayed_node(btrfs_inode);
132 if (node)
133 return node;
134
135 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
136 if (!node)
137 return ERR_PTR(-ENOMEM);
138 btrfs_init_delayed_node(node, root, ino);
139
140 /* cached in the btrfs inode and can be accessed */
141 refcount_set(&node->refs, 2);
142
143 ret = radix_tree_preload(GFP_NOFS);
144 if (ret) {
145 kmem_cache_free(delayed_node_cache, node);
146 return ERR_PTR(ret);
147 }
148
149 spin_lock(&root->inode_lock);
150 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 if (ret == -EEXIST) {
152 spin_unlock(&root->inode_lock);
153 kmem_cache_free(delayed_node_cache, node);
154 radix_tree_preload_end();
155 goto again;
156 }
157 btrfs_inode->delayed_node = node;
158 spin_unlock(&root->inode_lock);
159 radix_tree_preload_end();
160
161 return node;
162 }
163
164 /*
165 * Call it when holding delayed_node->mutex
166 *
167 * If mod = 1, add this node into the prepared list.
168 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 struct btrfs_delayed_node *node,
171 int mod)
172 {
173 spin_lock(&root->lock);
174 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 if (!list_empty(&node->p_list))
176 list_move_tail(&node->p_list, &root->prepare_list);
177 else if (mod)
178 list_add_tail(&node->p_list, &root->prepare_list);
179 } else {
180 list_add_tail(&node->n_list, &root->node_list);
181 list_add_tail(&node->p_list, &root->prepare_list);
182 refcount_inc(&node->refs); /* inserted into list */
183 root->nodes++;
184 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 }
186 spin_unlock(&root->lock);
187 }
188
189 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 struct btrfs_delayed_node *node)
192 {
193 spin_lock(&root->lock);
194 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 root->nodes--;
196 refcount_dec(&node->refs); /* not in the list */
197 list_del_init(&node->n_list);
198 if (!list_empty(&node->p_list))
199 list_del_init(&node->p_list);
200 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 }
202 spin_unlock(&root->lock);
203 }
204
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 struct btrfs_delayed_root *delayed_root)
207 {
208 struct list_head *p;
209 struct btrfs_delayed_node *node = NULL;
210
211 spin_lock(&delayed_root->lock);
212 if (list_empty(&delayed_root->node_list))
213 goto out;
214
215 p = delayed_root->node_list.next;
216 node = list_entry(p, struct btrfs_delayed_node, n_list);
217 refcount_inc(&node->refs);
218 out:
219 spin_unlock(&delayed_root->lock);
220
221 return node;
222 }
223
btrfs_next_delayed_node(struct btrfs_delayed_node * node)224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 struct btrfs_delayed_node *node)
226 {
227 struct btrfs_delayed_root *delayed_root;
228 struct list_head *p;
229 struct btrfs_delayed_node *next = NULL;
230
231 delayed_root = node->root->fs_info->delayed_root;
232 spin_lock(&delayed_root->lock);
233 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234 /* not in the list */
235 if (list_empty(&delayed_root->node_list))
236 goto out;
237 p = delayed_root->node_list.next;
238 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 goto out;
240 else
241 p = node->n_list.next;
242
243 next = list_entry(p, struct btrfs_delayed_node, n_list);
244 refcount_inc(&next->refs);
245 out:
246 spin_unlock(&delayed_root->lock);
247
248 return next;
249 }
250
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)251 static void __btrfs_release_delayed_node(
252 struct btrfs_delayed_node *delayed_node,
253 int mod)
254 {
255 struct btrfs_delayed_root *delayed_root;
256
257 if (!delayed_node)
258 return;
259
260 delayed_root = delayed_node->root->fs_info->delayed_root;
261
262 mutex_lock(&delayed_node->mutex);
263 if (delayed_node->count)
264 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 else
266 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 mutex_unlock(&delayed_node->mutex);
268
269 if (refcount_dec_and_test(&delayed_node->refs)) {
270 struct btrfs_root *root = delayed_node->root;
271
272 spin_lock(&root->inode_lock);
273 /*
274 * Once our refcount goes to zero, nobody is allowed to bump it
275 * back up. We can delete it now.
276 */
277 ASSERT(refcount_read(&delayed_node->refs) == 0);
278 radix_tree_delete(&root->delayed_nodes_tree,
279 delayed_node->inode_id);
280 spin_unlock(&root->inode_lock);
281 kmem_cache_free(delayed_node_cache, delayed_node);
282 }
283 }
284
btrfs_release_delayed_node(struct btrfs_delayed_node * node)285 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
286 {
287 __btrfs_release_delayed_node(node, 0);
288 }
289
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)290 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
291 struct btrfs_delayed_root *delayed_root)
292 {
293 struct list_head *p;
294 struct btrfs_delayed_node *node = NULL;
295
296 spin_lock(&delayed_root->lock);
297 if (list_empty(&delayed_root->prepare_list))
298 goto out;
299
300 p = delayed_root->prepare_list.next;
301 list_del_init(p);
302 node = list_entry(p, struct btrfs_delayed_node, p_list);
303 refcount_inc(&node->refs);
304 out:
305 spin_unlock(&delayed_root->lock);
306
307 return node;
308 }
309
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)310 static inline void btrfs_release_prepared_delayed_node(
311 struct btrfs_delayed_node *node)
312 {
313 __btrfs_release_delayed_node(node, 1);
314 }
315
btrfs_alloc_delayed_item(u32 data_len)316 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
317 {
318 struct btrfs_delayed_item *item;
319 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
320 if (item) {
321 item->data_len = data_len;
322 item->ins_or_del = 0;
323 item->bytes_reserved = 0;
324 item->delayed_node = NULL;
325 refcount_set(&item->refs, 1);
326 }
327 return item;
328 }
329
330 /*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
333 * @key: the key to look up
334 * @prev: used to store the prev item if the right item isn't found
335 * @next: used to store the next item if the right item isn't found
336 *
337 * Note: if we don't find the right item, we will return the prev item and
338 * the next item.
339 */
__btrfs_lookup_delayed_item(struct rb_root * root,struct btrfs_key * key,struct btrfs_delayed_item ** prev,struct btrfs_delayed_item ** next)340 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
341 struct rb_root *root,
342 struct btrfs_key *key,
343 struct btrfs_delayed_item **prev,
344 struct btrfs_delayed_item **next)
345 {
346 struct rb_node *node, *prev_node = NULL;
347 struct btrfs_delayed_item *delayed_item = NULL;
348 int ret = 0;
349
350 node = root->rb_node;
351
352 while (node) {
353 delayed_item = rb_entry(node, struct btrfs_delayed_item,
354 rb_node);
355 prev_node = node;
356 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
357 if (ret < 0)
358 node = node->rb_right;
359 else if (ret > 0)
360 node = node->rb_left;
361 else
362 return delayed_item;
363 }
364
365 if (prev) {
366 if (!prev_node)
367 *prev = NULL;
368 else if (ret < 0)
369 *prev = delayed_item;
370 else if ((node = rb_prev(prev_node)) != NULL) {
371 *prev = rb_entry(node, struct btrfs_delayed_item,
372 rb_node);
373 } else
374 *prev = NULL;
375 }
376
377 if (next) {
378 if (!prev_node)
379 *next = NULL;
380 else if (ret > 0)
381 *next = delayed_item;
382 else if ((node = rb_next(prev_node)) != NULL) {
383 *next = rb_entry(node, struct btrfs_delayed_item,
384 rb_node);
385 } else
386 *next = NULL;
387 }
388 return NULL;
389 }
390
__btrfs_lookup_delayed_insertion_item(struct btrfs_delayed_node * delayed_node,struct btrfs_key * key)391 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
392 struct btrfs_delayed_node *delayed_node,
393 struct btrfs_key *key)
394 {
395 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
396 NULL, NULL);
397 }
398
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins,int action)399 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
400 struct btrfs_delayed_item *ins,
401 int action)
402 {
403 struct rb_node **p, *node;
404 struct rb_node *parent_node = NULL;
405 struct rb_root_cached *root;
406 struct btrfs_delayed_item *item;
407 int cmp;
408 bool leftmost = true;
409
410 if (action == BTRFS_DELAYED_INSERTION_ITEM)
411 root = &delayed_node->ins_root;
412 else if (action == BTRFS_DELAYED_DELETION_ITEM)
413 root = &delayed_node->del_root;
414 else
415 BUG();
416 p = &root->rb_root.rb_node;
417 node = &ins->rb_node;
418
419 while (*p) {
420 parent_node = *p;
421 item = rb_entry(parent_node, struct btrfs_delayed_item,
422 rb_node);
423
424 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
425 if (cmp < 0) {
426 p = &(*p)->rb_right;
427 leftmost = false;
428 } else if (cmp > 0) {
429 p = &(*p)->rb_left;
430 } else {
431 return -EEXIST;
432 }
433 }
434
435 rb_link_node(node, parent_node, p);
436 rb_insert_color_cached(node, root, leftmost);
437 ins->delayed_node = delayed_node;
438 ins->ins_or_del = action;
439
440 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
441 action == BTRFS_DELAYED_INSERTION_ITEM &&
442 ins->key.offset >= delayed_node->index_cnt)
443 delayed_node->index_cnt = ins->key.offset + 1;
444
445 delayed_node->count++;
446 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
447 return 0;
448 }
449
__btrfs_add_delayed_insertion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)450 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
451 struct btrfs_delayed_item *item)
452 {
453 return __btrfs_add_delayed_item(node, item,
454 BTRFS_DELAYED_INSERTION_ITEM);
455 }
456
__btrfs_add_delayed_deletion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)457 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
458 struct btrfs_delayed_item *item)
459 {
460 return __btrfs_add_delayed_item(node, item,
461 BTRFS_DELAYED_DELETION_ITEM);
462 }
463
finish_one_item(struct btrfs_delayed_root * delayed_root)464 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
465 {
466 int seq = atomic_inc_return(&delayed_root->items_seq);
467
468 /* atomic_dec_return implies a barrier */
469 if ((atomic_dec_return(&delayed_root->items) <
470 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
471 cond_wake_up_nomb(&delayed_root->wait);
472 }
473
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)474 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
475 {
476 struct rb_root_cached *root;
477 struct btrfs_delayed_root *delayed_root;
478
479 /* Not associated with any delayed_node */
480 if (!delayed_item->delayed_node)
481 return;
482 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
483
484 BUG_ON(!delayed_root);
485 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
486 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
487
488 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
489 root = &delayed_item->delayed_node->ins_root;
490 else
491 root = &delayed_item->delayed_node->del_root;
492
493 rb_erase_cached(&delayed_item->rb_node, root);
494 delayed_item->delayed_node->count--;
495
496 finish_one_item(delayed_root);
497 }
498
btrfs_release_delayed_item(struct btrfs_delayed_item * item)499 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
500 {
501 if (item) {
502 __btrfs_remove_delayed_item(item);
503 if (refcount_dec_and_test(&item->refs))
504 kfree(item);
505 }
506 }
507
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)508 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
509 struct btrfs_delayed_node *delayed_node)
510 {
511 struct rb_node *p;
512 struct btrfs_delayed_item *item = NULL;
513
514 p = rb_first_cached(&delayed_node->ins_root);
515 if (p)
516 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
517
518 return item;
519 }
520
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)521 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
522 struct btrfs_delayed_node *delayed_node)
523 {
524 struct rb_node *p;
525 struct btrfs_delayed_item *item = NULL;
526
527 p = rb_first_cached(&delayed_node->del_root);
528 if (p)
529 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
530
531 return item;
532 }
533
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)534 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
535 struct btrfs_delayed_item *item)
536 {
537 struct rb_node *p;
538 struct btrfs_delayed_item *next = NULL;
539
540 p = rb_next(&item->rb_node);
541 if (p)
542 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
543
544 return next;
545 }
546
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_item * item)547 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
548 struct btrfs_root *root,
549 struct btrfs_delayed_item *item)
550 {
551 struct btrfs_block_rsv *src_rsv;
552 struct btrfs_block_rsv *dst_rsv;
553 struct btrfs_fs_info *fs_info = root->fs_info;
554 u64 num_bytes;
555 int ret;
556
557 if (!trans->bytes_reserved)
558 return 0;
559
560 src_rsv = trans->block_rsv;
561 dst_rsv = &fs_info->delayed_block_rsv;
562
563 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
564
565 /*
566 * Here we migrate space rsv from transaction rsv, since have already
567 * reserved space when starting a transaction. So no need to reserve
568 * qgroup space here.
569 */
570 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
571 if (!ret) {
572 trace_btrfs_space_reservation(fs_info, "delayed_item",
573 item->key.objectid,
574 num_bytes, 1);
575 item->bytes_reserved = num_bytes;
576 }
577
578 return ret;
579 }
580
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)581 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
582 struct btrfs_delayed_item *item)
583 {
584 struct btrfs_block_rsv *rsv;
585 struct btrfs_fs_info *fs_info = root->fs_info;
586
587 if (!item->bytes_reserved)
588 return;
589
590 rsv = &fs_info->delayed_block_rsv;
591 /*
592 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
593 * to release/reserve qgroup space.
594 */
595 trace_btrfs_space_reservation(fs_info, "delayed_item",
596 item->key.objectid, item->bytes_reserved,
597 0);
598 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
599 }
600
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)601 static int btrfs_delayed_inode_reserve_metadata(
602 struct btrfs_trans_handle *trans,
603 struct btrfs_root *root,
604 struct btrfs_delayed_node *node)
605 {
606 struct btrfs_fs_info *fs_info = root->fs_info;
607 struct btrfs_block_rsv *src_rsv;
608 struct btrfs_block_rsv *dst_rsv;
609 u64 num_bytes;
610 int ret;
611
612 src_rsv = trans->block_rsv;
613 dst_rsv = &fs_info->delayed_block_rsv;
614
615 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
616
617 /*
618 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
619 * which doesn't reserve space for speed. This is a problem since we
620 * still need to reserve space for this update, so try to reserve the
621 * space.
622 *
623 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
624 * we always reserve enough to update the inode item.
625 */
626 if (!src_rsv || (!trans->bytes_reserved &&
627 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
628 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
629 BTRFS_QGROUP_RSV_META_PREALLOC, true);
630 if (ret < 0)
631 return ret;
632 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
633 BTRFS_RESERVE_NO_FLUSH);
634 /* NO_FLUSH could only fail with -ENOSPC */
635 ASSERT(ret == 0 || ret == -ENOSPC);
636 if (ret)
637 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
638 } else {
639 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
640 }
641
642 if (!ret) {
643 trace_btrfs_space_reservation(fs_info, "delayed_inode",
644 node->inode_id, num_bytes, 1);
645 node->bytes_reserved = num_bytes;
646 }
647
648 return ret;
649 }
650
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)651 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
652 struct btrfs_delayed_node *node,
653 bool qgroup_free)
654 {
655 struct btrfs_block_rsv *rsv;
656
657 if (!node->bytes_reserved)
658 return;
659
660 rsv = &fs_info->delayed_block_rsv;
661 trace_btrfs_space_reservation(fs_info, "delayed_inode",
662 node->inode_id, node->bytes_reserved, 0);
663 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
664 if (qgroup_free)
665 btrfs_qgroup_free_meta_prealloc(node->root,
666 node->bytes_reserved);
667 else
668 btrfs_qgroup_convert_reserved_meta(node->root,
669 node->bytes_reserved);
670 node->bytes_reserved = 0;
671 }
672
673 /*
674 * Insert a single delayed item or a batch of delayed items that have consecutive
675 * keys if they exist.
676 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)677 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
678 struct btrfs_root *root,
679 struct btrfs_path *path,
680 struct btrfs_delayed_item *first_item)
681 {
682 LIST_HEAD(batch);
683 struct btrfs_delayed_item *curr;
684 struct btrfs_delayed_item *next;
685 const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info);
686 int total_size;
687 int nitems;
688 char *ins_data = NULL;
689 struct btrfs_key *ins_keys;
690 u32 *ins_sizes;
691 int ret;
692
693 list_add_tail(&first_item->tree_list, &batch);
694 nitems = 1;
695 total_size = first_item->data_len + sizeof(struct btrfs_item);
696 curr = first_item;
697
698 while (true) {
699 int next_size;
700
701 next = __btrfs_next_delayed_item(curr);
702 if (!next || !btrfs_is_continuous_delayed_item(curr, next))
703 break;
704
705 next_size = next->data_len + sizeof(struct btrfs_item);
706 if (total_size + next_size > max_size)
707 break;
708
709 list_add_tail(&next->tree_list, &batch);
710 nitems++;
711 total_size += next_size;
712 curr = next;
713 }
714
715 if (nitems == 1) {
716 ins_keys = &first_item->key;
717 ins_sizes = &first_item->data_len;
718 } else {
719 int i = 0;
720
721 ins_data = kmalloc(nitems * sizeof(u32) +
722 nitems * sizeof(struct btrfs_key), GFP_NOFS);
723 if (!ins_data) {
724 ret = -ENOMEM;
725 goto out;
726 }
727 ins_sizes = (u32 *)ins_data;
728 ins_keys = (struct btrfs_key *)(ins_data + nitems * sizeof(u32));
729 list_for_each_entry(curr, &batch, tree_list) {
730 ins_keys[i] = curr->key;
731 ins_sizes[i] = curr->data_len;
732 i++;
733 }
734 }
735
736 ret = btrfs_insert_empty_items(trans, root, path, ins_keys, ins_sizes,
737 nitems);
738 if (ret)
739 goto out;
740
741 list_for_each_entry(curr, &batch, tree_list) {
742 char *data_ptr;
743
744 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
745 write_extent_buffer(path->nodes[0], &curr->data,
746 (unsigned long)data_ptr, curr->data_len);
747 path->slots[0]++;
748 }
749
750 /*
751 * Now release our path before releasing the delayed items and their
752 * metadata reservations, so that we don't block other tasks for more
753 * time than needed.
754 */
755 btrfs_release_path(path);
756
757 list_for_each_entry_safe(curr, next, &batch, tree_list) {
758 list_del(&curr->tree_list);
759 btrfs_delayed_item_release_metadata(root, curr);
760 btrfs_release_delayed_item(curr);
761 }
762 out:
763 kfree(ins_data);
764 return ret;
765 }
766
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)767 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
768 struct btrfs_path *path,
769 struct btrfs_root *root,
770 struct btrfs_delayed_node *node)
771 {
772 int ret = 0;
773
774 while (ret == 0) {
775 struct btrfs_delayed_item *curr;
776
777 mutex_lock(&node->mutex);
778 curr = __btrfs_first_delayed_insertion_item(node);
779 if (!curr) {
780 mutex_unlock(&node->mutex);
781 break;
782 }
783 ret = btrfs_insert_delayed_item(trans, root, path, curr);
784 mutex_unlock(&node->mutex);
785 }
786
787 return ret;
788 }
789
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)790 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
791 struct btrfs_root *root,
792 struct btrfs_path *path,
793 struct btrfs_delayed_item *item)
794 {
795 struct btrfs_delayed_item *curr, *next;
796 struct extent_buffer *leaf;
797 struct btrfs_key key;
798 struct list_head head;
799 int nitems, i, last_item;
800 int ret = 0;
801
802 BUG_ON(!path->nodes[0]);
803
804 leaf = path->nodes[0];
805
806 i = path->slots[0];
807 last_item = btrfs_header_nritems(leaf) - 1;
808 if (i > last_item)
809 return -ENOENT; /* FIXME: Is errno suitable? */
810
811 next = item;
812 INIT_LIST_HEAD(&head);
813 btrfs_item_key_to_cpu(leaf, &key, i);
814 nitems = 0;
815 /*
816 * count the number of the dir index items that we can delete in batch
817 */
818 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
819 list_add_tail(&next->tree_list, &head);
820 nitems++;
821
822 curr = next;
823 next = __btrfs_next_delayed_item(curr);
824 if (!next)
825 break;
826
827 if (!btrfs_is_continuous_delayed_item(curr, next))
828 break;
829
830 i++;
831 if (i > last_item)
832 break;
833 btrfs_item_key_to_cpu(leaf, &key, i);
834 }
835
836 if (!nitems)
837 return 0;
838
839 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
840 if (ret)
841 goto out;
842
843 list_for_each_entry_safe(curr, next, &head, tree_list) {
844 btrfs_delayed_item_release_metadata(root, curr);
845 list_del(&curr->tree_list);
846 btrfs_release_delayed_item(curr);
847 }
848
849 out:
850 return ret;
851 }
852
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)853 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
854 struct btrfs_path *path,
855 struct btrfs_root *root,
856 struct btrfs_delayed_node *node)
857 {
858 struct btrfs_delayed_item *curr, *prev;
859 int ret = 0;
860
861 do_again:
862 mutex_lock(&node->mutex);
863 curr = __btrfs_first_delayed_deletion_item(node);
864 if (!curr)
865 goto delete_fail;
866
867 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
868 if (ret < 0)
869 goto delete_fail;
870 else if (ret > 0) {
871 /*
872 * can't find the item which the node points to, so this node
873 * is invalid, just drop it.
874 */
875 prev = curr;
876 curr = __btrfs_next_delayed_item(prev);
877 btrfs_release_delayed_item(prev);
878 ret = 0;
879 btrfs_release_path(path);
880 if (curr) {
881 mutex_unlock(&node->mutex);
882 goto do_again;
883 } else
884 goto delete_fail;
885 }
886
887 btrfs_batch_delete_items(trans, root, path, curr);
888 btrfs_release_path(path);
889 mutex_unlock(&node->mutex);
890 goto do_again;
891
892 delete_fail:
893 btrfs_release_path(path);
894 mutex_unlock(&node->mutex);
895 return ret;
896 }
897
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)898 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
899 {
900 struct btrfs_delayed_root *delayed_root;
901
902 if (delayed_node &&
903 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
904 BUG_ON(!delayed_node->root);
905 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
906 delayed_node->count--;
907
908 delayed_root = delayed_node->root->fs_info->delayed_root;
909 finish_one_item(delayed_root);
910 }
911 }
912
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)913 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
914 {
915
916 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
917 struct btrfs_delayed_root *delayed_root;
918
919 ASSERT(delayed_node->root);
920 delayed_node->count--;
921
922 delayed_root = delayed_node->root->fs_info->delayed_root;
923 finish_one_item(delayed_root);
924 }
925 }
926
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)927 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
928 struct btrfs_root *root,
929 struct btrfs_path *path,
930 struct btrfs_delayed_node *node)
931 {
932 struct btrfs_fs_info *fs_info = root->fs_info;
933 struct btrfs_key key;
934 struct btrfs_inode_item *inode_item;
935 struct extent_buffer *leaf;
936 int mod;
937 int ret;
938
939 key.objectid = node->inode_id;
940 key.type = BTRFS_INODE_ITEM_KEY;
941 key.offset = 0;
942
943 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
944 mod = -1;
945 else
946 mod = 1;
947
948 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
949 if (ret > 0)
950 ret = -ENOENT;
951 if (ret < 0)
952 goto out;
953
954 leaf = path->nodes[0];
955 inode_item = btrfs_item_ptr(leaf, path->slots[0],
956 struct btrfs_inode_item);
957 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
958 sizeof(struct btrfs_inode_item));
959 btrfs_mark_buffer_dirty(leaf);
960
961 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
962 goto out;
963
964 path->slots[0]++;
965 if (path->slots[0] >= btrfs_header_nritems(leaf))
966 goto search;
967 again:
968 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
969 if (key.objectid != node->inode_id)
970 goto out;
971
972 if (key.type != BTRFS_INODE_REF_KEY &&
973 key.type != BTRFS_INODE_EXTREF_KEY)
974 goto out;
975
976 /*
977 * Delayed iref deletion is for the inode who has only one link,
978 * so there is only one iref. The case that several irefs are
979 * in the same item doesn't exist.
980 */
981 btrfs_del_item(trans, root, path);
982 out:
983 btrfs_release_delayed_iref(node);
984 btrfs_release_path(path);
985 err_out:
986 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
987 btrfs_release_delayed_inode(node);
988
989 /*
990 * If we fail to update the delayed inode we need to abort the
991 * transaction, because we could leave the inode with the improper
992 * counts behind.
993 */
994 if (ret && ret != -ENOENT)
995 btrfs_abort_transaction(trans, ret);
996
997 return ret;
998
999 search:
1000 btrfs_release_path(path);
1001
1002 key.type = BTRFS_INODE_EXTREF_KEY;
1003 key.offset = -1;
1004
1005 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1006 if (ret < 0)
1007 goto err_out;
1008 ASSERT(ret);
1009
1010 ret = 0;
1011 leaf = path->nodes[0];
1012 path->slots[0]--;
1013 goto again;
1014 }
1015
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1016 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1017 struct btrfs_root *root,
1018 struct btrfs_path *path,
1019 struct btrfs_delayed_node *node)
1020 {
1021 int ret;
1022
1023 mutex_lock(&node->mutex);
1024 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1025 mutex_unlock(&node->mutex);
1026 return 0;
1027 }
1028
1029 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1030 mutex_unlock(&node->mutex);
1031 return ret;
1032 }
1033
1034 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1035 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1036 struct btrfs_path *path,
1037 struct btrfs_delayed_node *node)
1038 {
1039 int ret;
1040
1041 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1042 if (ret)
1043 return ret;
1044
1045 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1046 if (ret)
1047 return ret;
1048
1049 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1050 return ret;
1051 }
1052
1053 /*
1054 * Called when committing the transaction.
1055 * Returns 0 on success.
1056 * Returns < 0 on error and returns with an aborted transaction with any
1057 * outstanding delayed items cleaned up.
1058 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1059 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1060 {
1061 struct btrfs_fs_info *fs_info = trans->fs_info;
1062 struct btrfs_delayed_root *delayed_root;
1063 struct btrfs_delayed_node *curr_node, *prev_node;
1064 struct btrfs_path *path;
1065 struct btrfs_block_rsv *block_rsv;
1066 int ret = 0;
1067 bool count = (nr > 0);
1068
1069 if (TRANS_ABORTED(trans))
1070 return -EIO;
1071
1072 path = btrfs_alloc_path();
1073 if (!path)
1074 return -ENOMEM;
1075
1076 block_rsv = trans->block_rsv;
1077 trans->block_rsv = &fs_info->delayed_block_rsv;
1078
1079 delayed_root = fs_info->delayed_root;
1080
1081 curr_node = btrfs_first_delayed_node(delayed_root);
1082 while (curr_node && (!count || nr--)) {
1083 ret = __btrfs_commit_inode_delayed_items(trans, path,
1084 curr_node);
1085 if (ret) {
1086 btrfs_release_delayed_node(curr_node);
1087 curr_node = NULL;
1088 btrfs_abort_transaction(trans, ret);
1089 break;
1090 }
1091
1092 prev_node = curr_node;
1093 curr_node = btrfs_next_delayed_node(curr_node);
1094 btrfs_release_delayed_node(prev_node);
1095 }
1096
1097 if (curr_node)
1098 btrfs_release_delayed_node(curr_node);
1099 btrfs_free_path(path);
1100 trans->block_rsv = block_rsv;
1101
1102 return ret;
1103 }
1104
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1105 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1106 {
1107 return __btrfs_run_delayed_items(trans, -1);
1108 }
1109
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1110 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1111 {
1112 return __btrfs_run_delayed_items(trans, nr);
1113 }
1114
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1115 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1116 struct btrfs_inode *inode)
1117 {
1118 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1119 struct btrfs_path *path;
1120 struct btrfs_block_rsv *block_rsv;
1121 int ret;
1122
1123 if (!delayed_node)
1124 return 0;
1125
1126 mutex_lock(&delayed_node->mutex);
1127 if (!delayed_node->count) {
1128 mutex_unlock(&delayed_node->mutex);
1129 btrfs_release_delayed_node(delayed_node);
1130 return 0;
1131 }
1132 mutex_unlock(&delayed_node->mutex);
1133
1134 path = btrfs_alloc_path();
1135 if (!path) {
1136 btrfs_release_delayed_node(delayed_node);
1137 return -ENOMEM;
1138 }
1139
1140 block_rsv = trans->block_rsv;
1141 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1142
1143 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1144
1145 btrfs_release_delayed_node(delayed_node);
1146 btrfs_free_path(path);
1147 trans->block_rsv = block_rsv;
1148
1149 return ret;
1150 }
1151
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1152 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1153 {
1154 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1155 struct btrfs_trans_handle *trans;
1156 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1157 struct btrfs_path *path;
1158 struct btrfs_block_rsv *block_rsv;
1159 int ret;
1160
1161 if (!delayed_node)
1162 return 0;
1163
1164 mutex_lock(&delayed_node->mutex);
1165 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1166 mutex_unlock(&delayed_node->mutex);
1167 btrfs_release_delayed_node(delayed_node);
1168 return 0;
1169 }
1170 mutex_unlock(&delayed_node->mutex);
1171
1172 trans = btrfs_join_transaction(delayed_node->root);
1173 if (IS_ERR(trans)) {
1174 ret = PTR_ERR(trans);
1175 goto out;
1176 }
1177
1178 path = btrfs_alloc_path();
1179 if (!path) {
1180 ret = -ENOMEM;
1181 goto trans_out;
1182 }
1183
1184 block_rsv = trans->block_rsv;
1185 trans->block_rsv = &fs_info->delayed_block_rsv;
1186
1187 mutex_lock(&delayed_node->mutex);
1188 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1189 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1190 path, delayed_node);
1191 else
1192 ret = 0;
1193 mutex_unlock(&delayed_node->mutex);
1194
1195 btrfs_free_path(path);
1196 trans->block_rsv = block_rsv;
1197 trans_out:
1198 btrfs_end_transaction(trans);
1199 btrfs_btree_balance_dirty(fs_info);
1200 out:
1201 btrfs_release_delayed_node(delayed_node);
1202
1203 return ret;
1204 }
1205
btrfs_remove_delayed_node(struct btrfs_inode * inode)1206 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1207 {
1208 struct btrfs_delayed_node *delayed_node;
1209
1210 delayed_node = READ_ONCE(inode->delayed_node);
1211 if (!delayed_node)
1212 return;
1213
1214 inode->delayed_node = NULL;
1215 btrfs_release_delayed_node(delayed_node);
1216 }
1217
1218 struct btrfs_async_delayed_work {
1219 struct btrfs_delayed_root *delayed_root;
1220 int nr;
1221 struct btrfs_work work;
1222 };
1223
btrfs_async_run_delayed_root(struct btrfs_work * work)1224 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1225 {
1226 struct btrfs_async_delayed_work *async_work;
1227 struct btrfs_delayed_root *delayed_root;
1228 struct btrfs_trans_handle *trans;
1229 struct btrfs_path *path;
1230 struct btrfs_delayed_node *delayed_node = NULL;
1231 struct btrfs_root *root;
1232 struct btrfs_block_rsv *block_rsv;
1233 int total_done = 0;
1234
1235 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1236 delayed_root = async_work->delayed_root;
1237
1238 path = btrfs_alloc_path();
1239 if (!path)
1240 goto out;
1241
1242 do {
1243 if (atomic_read(&delayed_root->items) <
1244 BTRFS_DELAYED_BACKGROUND / 2)
1245 break;
1246
1247 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1248 if (!delayed_node)
1249 break;
1250
1251 root = delayed_node->root;
1252
1253 trans = btrfs_join_transaction(root);
1254 if (IS_ERR(trans)) {
1255 btrfs_release_path(path);
1256 btrfs_release_prepared_delayed_node(delayed_node);
1257 total_done++;
1258 continue;
1259 }
1260
1261 block_rsv = trans->block_rsv;
1262 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1263
1264 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1265
1266 trans->block_rsv = block_rsv;
1267 btrfs_end_transaction(trans);
1268 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1269
1270 btrfs_release_path(path);
1271 btrfs_release_prepared_delayed_node(delayed_node);
1272 total_done++;
1273
1274 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1275 || total_done < async_work->nr);
1276
1277 btrfs_free_path(path);
1278 out:
1279 wake_up(&delayed_root->wait);
1280 kfree(async_work);
1281 }
1282
1283
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1284 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1285 struct btrfs_fs_info *fs_info, int nr)
1286 {
1287 struct btrfs_async_delayed_work *async_work;
1288
1289 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1290 if (!async_work)
1291 return -ENOMEM;
1292
1293 async_work->delayed_root = delayed_root;
1294 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1295 NULL);
1296 async_work->nr = nr;
1297
1298 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1299 return 0;
1300 }
1301
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1302 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1303 {
1304 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1305 }
1306
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1307 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1308 {
1309 int val = atomic_read(&delayed_root->items_seq);
1310
1311 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1312 return 1;
1313
1314 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1315 return 1;
1316
1317 return 0;
1318 }
1319
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1320 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1321 {
1322 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1323
1324 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1325 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1326 return;
1327
1328 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1329 int seq;
1330 int ret;
1331
1332 seq = atomic_read(&delayed_root->items_seq);
1333
1334 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1335 if (ret)
1336 return;
1337
1338 wait_event_interruptible(delayed_root->wait,
1339 could_end_wait(delayed_root, seq));
1340 return;
1341 }
1342
1343 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1344 }
1345
1346 /* Will return 0 or -ENOMEM */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,struct btrfs_disk_key * disk_key,u8 type,u64 index)1347 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1348 const char *name, int name_len,
1349 struct btrfs_inode *dir,
1350 struct btrfs_disk_key *disk_key, u8 type,
1351 u64 index)
1352 {
1353 struct btrfs_delayed_node *delayed_node;
1354 struct btrfs_delayed_item *delayed_item;
1355 struct btrfs_dir_item *dir_item;
1356 int ret;
1357
1358 delayed_node = btrfs_get_or_create_delayed_node(dir);
1359 if (IS_ERR(delayed_node))
1360 return PTR_ERR(delayed_node);
1361
1362 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1363 if (!delayed_item) {
1364 ret = -ENOMEM;
1365 goto release_node;
1366 }
1367
1368 delayed_item->key.objectid = btrfs_ino(dir);
1369 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1370 delayed_item->key.offset = index;
1371
1372 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1373 dir_item->location = *disk_key;
1374 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1375 btrfs_set_stack_dir_data_len(dir_item, 0);
1376 btrfs_set_stack_dir_name_len(dir_item, name_len);
1377 btrfs_set_stack_dir_type(dir_item, type);
1378 memcpy((char *)(dir_item + 1), name, name_len);
1379
1380 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1381 /*
1382 * we have reserved enough space when we start a new transaction,
1383 * so reserving metadata failure is impossible
1384 */
1385 BUG_ON(ret);
1386
1387 mutex_lock(&delayed_node->mutex);
1388 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1389 if (unlikely(ret)) {
1390 btrfs_err(trans->fs_info,
1391 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1392 name_len, name, delayed_node->root->root_key.objectid,
1393 delayed_node->inode_id, ret);
1394 BUG();
1395 }
1396 mutex_unlock(&delayed_node->mutex);
1397
1398 release_node:
1399 btrfs_release_delayed_node(delayed_node);
1400 return ret;
1401 }
1402
btrfs_delete_delayed_insertion_item(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,struct btrfs_key * key)1403 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1404 struct btrfs_delayed_node *node,
1405 struct btrfs_key *key)
1406 {
1407 struct btrfs_delayed_item *item;
1408
1409 mutex_lock(&node->mutex);
1410 item = __btrfs_lookup_delayed_insertion_item(node, key);
1411 if (!item) {
1412 mutex_unlock(&node->mutex);
1413 return 1;
1414 }
1415
1416 btrfs_delayed_item_release_metadata(node->root, item);
1417 btrfs_release_delayed_item(item);
1418 mutex_unlock(&node->mutex);
1419 return 0;
1420 }
1421
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1422 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1423 struct btrfs_inode *dir, u64 index)
1424 {
1425 struct btrfs_delayed_node *node;
1426 struct btrfs_delayed_item *item;
1427 struct btrfs_key item_key;
1428 int ret;
1429
1430 node = btrfs_get_or_create_delayed_node(dir);
1431 if (IS_ERR(node))
1432 return PTR_ERR(node);
1433
1434 item_key.objectid = btrfs_ino(dir);
1435 item_key.type = BTRFS_DIR_INDEX_KEY;
1436 item_key.offset = index;
1437
1438 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1439 &item_key);
1440 if (!ret)
1441 goto end;
1442
1443 item = btrfs_alloc_delayed_item(0);
1444 if (!item) {
1445 ret = -ENOMEM;
1446 goto end;
1447 }
1448
1449 item->key = item_key;
1450
1451 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1452 /*
1453 * we have reserved enough space when we start a new transaction,
1454 * so reserving metadata failure is impossible.
1455 */
1456 if (ret < 0) {
1457 btrfs_err(trans->fs_info,
1458 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1459 btrfs_release_delayed_item(item);
1460 goto end;
1461 }
1462
1463 mutex_lock(&node->mutex);
1464 ret = __btrfs_add_delayed_deletion_item(node, item);
1465 if (unlikely(ret)) {
1466 btrfs_err(trans->fs_info,
1467 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1468 index, node->root->root_key.objectid,
1469 node->inode_id, ret);
1470 btrfs_delayed_item_release_metadata(dir->root, item);
1471 btrfs_release_delayed_item(item);
1472 }
1473 mutex_unlock(&node->mutex);
1474 end:
1475 btrfs_release_delayed_node(node);
1476 return ret;
1477 }
1478
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1479 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1480 {
1481 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1482
1483 if (!delayed_node)
1484 return -ENOENT;
1485
1486 /*
1487 * Since we have held i_mutex of this directory, it is impossible that
1488 * a new directory index is added into the delayed node and index_cnt
1489 * is updated now. So we needn't lock the delayed node.
1490 */
1491 if (!delayed_node->index_cnt) {
1492 btrfs_release_delayed_node(delayed_node);
1493 return -EINVAL;
1494 }
1495
1496 inode->index_cnt = delayed_node->index_cnt;
1497 btrfs_release_delayed_node(delayed_node);
1498 return 0;
1499 }
1500
btrfs_readdir_get_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1501 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1502 struct list_head *ins_list,
1503 struct list_head *del_list)
1504 {
1505 struct btrfs_delayed_node *delayed_node;
1506 struct btrfs_delayed_item *item;
1507
1508 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1509 if (!delayed_node)
1510 return false;
1511
1512 /*
1513 * We can only do one readdir with delayed items at a time because of
1514 * item->readdir_list.
1515 */
1516 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1517 btrfs_inode_lock(inode, 0);
1518
1519 mutex_lock(&delayed_node->mutex);
1520 item = __btrfs_first_delayed_insertion_item(delayed_node);
1521 while (item) {
1522 refcount_inc(&item->refs);
1523 list_add_tail(&item->readdir_list, ins_list);
1524 item = __btrfs_next_delayed_item(item);
1525 }
1526
1527 item = __btrfs_first_delayed_deletion_item(delayed_node);
1528 while (item) {
1529 refcount_inc(&item->refs);
1530 list_add_tail(&item->readdir_list, del_list);
1531 item = __btrfs_next_delayed_item(item);
1532 }
1533 mutex_unlock(&delayed_node->mutex);
1534 /*
1535 * This delayed node is still cached in the btrfs inode, so refs
1536 * must be > 1 now, and we needn't check it is going to be freed
1537 * or not.
1538 *
1539 * Besides that, this function is used to read dir, we do not
1540 * insert/delete delayed items in this period. So we also needn't
1541 * requeue or dequeue this delayed node.
1542 */
1543 refcount_dec(&delayed_node->refs);
1544
1545 return true;
1546 }
1547
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1548 void btrfs_readdir_put_delayed_items(struct inode *inode,
1549 struct list_head *ins_list,
1550 struct list_head *del_list)
1551 {
1552 struct btrfs_delayed_item *curr, *next;
1553
1554 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1555 list_del(&curr->readdir_list);
1556 if (refcount_dec_and_test(&curr->refs))
1557 kfree(curr);
1558 }
1559
1560 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1561 list_del(&curr->readdir_list);
1562 if (refcount_dec_and_test(&curr->refs))
1563 kfree(curr);
1564 }
1565
1566 /*
1567 * The VFS is going to do up_read(), so we need to downgrade back to a
1568 * read lock.
1569 */
1570 downgrade_write(&inode->i_rwsem);
1571 }
1572
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1573 int btrfs_should_delete_dir_index(struct list_head *del_list,
1574 u64 index)
1575 {
1576 struct btrfs_delayed_item *curr;
1577 int ret = 0;
1578
1579 list_for_each_entry(curr, del_list, readdir_list) {
1580 if (curr->key.offset > index)
1581 break;
1582 if (curr->key.offset == index) {
1583 ret = 1;
1584 break;
1585 }
1586 }
1587 return ret;
1588 }
1589
1590 /*
1591 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1592 *
1593 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list)1594 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1595 struct list_head *ins_list)
1596 {
1597 struct btrfs_dir_item *di;
1598 struct btrfs_delayed_item *curr, *next;
1599 struct btrfs_key location;
1600 char *name;
1601 int name_len;
1602 int over = 0;
1603 unsigned char d_type;
1604
1605 if (list_empty(ins_list))
1606 return 0;
1607
1608 /*
1609 * Changing the data of the delayed item is impossible. So
1610 * we needn't lock them. And we have held i_mutex of the
1611 * directory, nobody can delete any directory indexes now.
1612 */
1613 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1614 list_del(&curr->readdir_list);
1615
1616 if (curr->key.offset < ctx->pos) {
1617 if (refcount_dec_and_test(&curr->refs))
1618 kfree(curr);
1619 continue;
1620 }
1621
1622 ctx->pos = curr->key.offset;
1623
1624 di = (struct btrfs_dir_item *)curr->data;
1625 name = (char *)(di + 1);
1626 name_len = btrfs_stack_dir_name_len(di);
1627
1628 d_type = fs_ftype_to_dtype(di->type);
1629 btrfs_disk_key_to_cpu(&location, &di->location);
1630
1631 over = !dir_emit(ctx, name, name_len,
1632 location.objectid, d_type);
1633
1634 if (refcount_dec_and_test(&curr->refs))
1635 kfree(curr);
1636
1637 if (over)
1638 return 1;
1639 ctx->pos++;
1640 }
1641 return 0;
1642 }
1643
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1644 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1645 struct btrfs_inode_item *inode_item,
1646 struct inode *inode)
1647 {
1648 u64 flags;
1649
1650 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1651 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1652 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1653 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1654 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1655 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1656 btrfs_set_stack_inode_generation(inode_item,
1657 BTRFS_I(inode)->generation);
1658 btrfs_set_stack_inode_sequence(inode_item,
1659 inode_peek_iversion(inode));
1660 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1661 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1662 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1663 BTRFS_I(inode)->ro_flags);
1664 btrfs_set_stack_inode_flags(inode_item, flags);
1665 btrfs_set_stack_inode_block_group(inode_item, 0);
1666
1667 btrfs_set_stack_timespec_sec(&inode_item->atime,
1668 inode->i_atime.tv_sec);
1669 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1670 inode->i_atime.tv_nsec);
1671
1672 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1673 inode->i_mtime.tv_sec);
1674 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1675 inode->i_mtime.tv_nsec);
1676
1677 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1678 inode->i_ctime.tv_sec);
1679 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1680 inode->i_ctime.tv_nsec);
1681
1682 btrfs_set_stack_timespec_sec(&inode_item->otime,
1683 BTRFS_I(inode)->i_otime.tv_sec);
1684 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1685 BTRFS_I(inode)->i_otime.tv_nsec);
1686 }
1687
btrfs_fill_inode(struct inode * inode,u32 * rdev)1688 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1689 {
1690 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1691 struct btrfs_delayed_node *delayed_node;
1692 struct btrfs_inode_item *inode_item;
1693
1694 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1695 if (!delayed_node)
1696 return -ENOENT;
1697
1698 mutex_lock(&delayed_node->mutex);
1699 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1700 mutex_unlock(&delayed_node->mutex);
1701 btrfs_release_delayed_node(delayed_node);
1702 return -ENOENT;
1703 }
1704
1705 inode_item = &delayed_node->inode_item;
1706
1707 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1708 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1709 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1710 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1711 round_up(i_size_read(inode), fs_info->sectorsize));
1712 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1713 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1714 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1715 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1716 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1717
1718 inode_set_iversion_queried(inode,
1719 btrfs_stack_inode_sequence(inode_item));
1720 inode->i_rdev = 0;
1721 *rdev = btrfs_stack_inode_rdev(inode_item);
1722 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1723 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1724
1725 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1726 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1727
1728 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1729 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1730
1731 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1732 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1733
1734 BTRFS_I(inode)->i_otime.tv_sec =
1735 btrfs_stack_timespec_sec(&inode_item->otime);
1736 BTRFS_I(inode)->i_otime.tv_nsec =
1737 btrfs_stack_timespec_nsec(&inode_item->otime);
1738
1739 inode->i_generation = BTRFS_I(inode)->generation;
1740 BTRFS_I(inode)->index_cnt = (u64)-1;
1741
1742 mutex_unlock(&delayed_node->mutex);
1743 btrfs_release_delayed_node(delayed_node);
1744 return 0;
1745 }
1746
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)1747 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1748 struct btrfs_root *root,
1749 struct btrfs_inode *inode)
1750 {
1751 struct btrfs_delayed_node *delayed_node;
1752 int ret = 0;
1753
1754 delayed_node = btrfs_get_or_create_delayed_node(inode);
1755 if (IS_ERR(delayed_node))
1756 return PTR_ERR(delayed_node);
1757
1758 mutex_lock(&delayed_node->mutex);
1759 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1760 fill_stack_inode_item(trans, &delayed_node->inode_item,
1761 &inode->vfs_inode);
1762 goto release_node;
1763 }
1764
1765 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1766 if (ret)
1767 goto release_node;
1768
1769 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1770 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1771 delayed_node->count++;
1772 atomic_inc(&root->fs_info->delayed_root->items);
1773 release_node:
1774 mutex_unlock(&delayed_node->mutex);
1775 btrfs_release_delayed_node(delayed_node);
1776 return ret;
1777 }
1778
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1779 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1780 {
1781 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1782 struct btrfs_delayed_node *delayed_node;
1783
1784 /*
1785 * we don't do delayed inode updates during log recovery because it
1786 * leads to enospc problems. This means we also can't do
1787 * delayed inode refs
1788 */
1789 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1790 return -EAGAIN;
1791
1792 delayed_node = btrfs_get_or_create_delayed_node(inode);
1793 if (IS_ERR(delayed_node))
1794 return PTR_ERR(delayed_node);
1795
1796 /*
1797 * We don't reserve space for inode ref deletion is because:
1798 * - We ONLY do async inode ref deletion for the inode who has only
1799 * one link(i_nlink == 1), it means there is only one inode ref.
1800 * And in most case, the inode ref and the inode item are in the
1801 * same leaf, and we will deal with them at the same time.
1802 * Since we are sure we will reserve the space for the inode item,
1803 * it is unnecessary to reserve space for inode ref deletion.
1804 * - If the inode ref and the inode item are not in the same leaf,
1805 * We also needn't worry about enospc problem, because we reserve
1806 * much more space for the inode update than it needs.
1807 * - At the worst, we can steal some space from the global reservation.
1808 * It is very rare.
1809 */
1810 mutex_lock(&delayed_node->mutex);
1811 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1812 goto release_node;
1813
1814 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1815 delayed_node->count++;
1816 atomic_inc(&fs_info->delayed_root->items);
1817 release_node:
1818 mutex_unlock(&delayed_node->mutex);
1819 btrfs_release_delayed_node(delayed_node);
1820 return 0;
1821 }
1822
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1823 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1824 {
1825 struct btrfs_root *root = delayed_node->root;
1826 struct btrfs_fs_info *fs_info = root->fs_info;
1827 struct btrfs_delayed_item *curr_item, *prev_item;
1828
1829 mutex_lock(&delayed_node->mutex);
1830 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1831 while (curr_item) {
1832 btrfs_delayed_item_release_metadata(root, curr_item);
1833 prev_item = curr_item;
1834 curr_item = __btrfs_next_delayed_item(prev_item);
1835 btrfs_release_delayed_item(prev_item);
1836 }
1837
1838 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1839 while (curr_item) {
1840 btrfs_delayed_item_release_metadata(root, curr_item);
1841 prev_item = curr_item;
1842 curr_item = __btrfs_next_delayed_item(prev_item);
1843 btrfs_release_delayed_item(prev_item);
1844 }
1845
1846 btrfs_release_delayed_iref(delayed_node);
1847
1848 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1849 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1850 btrfs_release_delayed_inode(delayed_node);
1851 }
1852 mutex_unlock(&delayed_node->mutex);
1853 }
1854
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)1855 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1856 {
1857 struct btrfs_delayed_node *delayed_node;
1858
1859 delayed_node = btrfs_get_delayed_node(inode);
1860 if (!delayed_node)
1861 return;
1862
1863 __btrfs_kill_delayed_node(delayed_node);
1864 btrfs_release_delayed_node(delayed_node);
1865 }
1866
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)1867 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1868 {
1869 u64 inode_id = 0;
1870 struct btrfs_delayed_node *delayed_nodes[8];
1871 int i, n;
1872
1873 while (1) {
1874 spin_lock(&root->inode_lock);
1875 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1876 (void **)delayed_nodes, inode_id,
1877 ARRAY_SIZE(delayed_nodes));
1878 if (!n) {
1879 spin_unlock(&root->inode_lock);
1880 break;
1881 }
1882
1883 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1884 for (i = 0; i < n; i++) {
1885 /*
1886 * Don't increase refs in case the node is dead and
1887 * about to be removed from the tree in the loop below
1888 */
1889 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1890 delayed_nodes[i] = NULL;
1891 }
1892 spin_unlock(&root->inode_lock);
1893
1894 for (i = 0; i < n; i++) {
1895 if (!delayed_nodes[i])
1896 continue;
1897 __btrfs_kill_delayed_node(delayed_nodes[i]);
1898 btrfs_release_delayed_node(delayed_nodes[i]);
1899 }
1900 }
1901 }
1902
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)1903 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1904 {
1905 struct btrfs_delayed_node *curr_node, *prev_node;
1906
1907 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1908 while (curr_node) {
1909 __btrfs_kill_delayed_node(curr_node);
1910
1911 prev_node = curr_node;
1912 curr_node = btrfs_next_delayed_node(curr_node);
1913 btrfs_release_delayed_node(prev_node);
1914 }
1915 }
1916
1917