1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 /*
36 * when auto defrag is enabled we
37 * queue up these defrag structs to remember which
38 * inodes need defragging passes
39 */
40 struct inode_defrag {
41 struct rb_node rb_node;
42 /* objectid */
43 u64 ino;
44 /*
45 * transid where the defrag was added, we search for
46 * extents newer than this
47 */
48 u64 transid;
49
50 /* root objectid */
51 u64 root;
52
53 /* last offset we were able to defrag */
54 u64 last_offset;
55
56 /* if we've wrapped around back to zero once already */
57 int cycled;
58 };
59
__compare_inode_defrag(struct inode_defrag * defrag1,struct inode_defrag * defrag2)60 static int __compare_inode_defrag(struct inode_defrag *defrag1,
61 struct inode_defrag *defrag2)
62 {
63 if (defrag1->root > defrag2->root)
64 return 1;
65 else if (defrag1->root < defrag2->root)
66 return -1;
67 else if (defrag1->ino > defrag2->ino)
68 return 1;
69 else if (defrag1->ino < defrag2->ino)
70 return -1;
71 else
72 return 0;
73 }
74
75 /* pop a record for an inode into the defrag tree. The lock
76 * must be held already
77 *
78 * If you're inserting a record for an older transid than an
79 * existing record, the transid already in the tree is lowered
80 *
81 * If an existing record is found the defrag item you
82 * pass in is freed
83 */
__btrfs_add_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)84 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
85 struct inode_defrag *defrag)
86 {
87 struct btrfs_fs_info *fs_info = inode->root->fs_info;
88 struct inode_defrag *entry;
89 struct rb_node **p;
90 struct rb_node *parent = NULL;
91 int ret;
92
93 p = &fs_info->defrag_inodes.rb_node;
94 while (*p) {
95 parent = *p;
96 entry = rb_entry(parent, struct inode_defrag, rb_node);
97
98 ret = __compare_inode_defrag(defrag, entry);
99 if (ret < 0)
100 p = &parent->rb_left;
101 else if (ret > 0)
102 p = &parent->rb_right;
103 else {
104 /* if we're reinserting an entry for
105 * an old defrag run, make sure to
106 * lower the transid of our existing record
107 */
108 if (defrag->transid < entry->transid)
109 entry->transid = defrag->transid;
110 if (defrag->last_offset > entry->last_offset)
111 entry->last_offset = defrag->last_offset;
112 return -EEXIST;
113 }
114 }
115 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
116 rb_link_node(&defrag->rb_node, parent, p);
117 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
118 return 0;
119 }
120
__need_auto_defrag(struct btrfs_fs_info * fs_info)121 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 {
123 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
124 return 0;
125
126 if (btrfs_fs_closing(fs_info))
127 return 0;
128
129 return 1;
130 }
131
132 /*
133 * insert a defrag record for this inode if auto defrag is
134 * enabled
135 */
btrfs_add_inode_defrag(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)136 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
137 struct btrfs_inode *inode)
138 {
139 struct btrfs_root *root = inode->root;
140 struct btrfs_fs_info *fs_info = root->fs_info;
141 struct inode_defrag *defrag;
142 u64 transid;
143 int ret;
144
145 if (!__need_auto_defrag(fs_info))
146 return 0;
147
148 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
149 return 0;
150
151 if (trans)
152 transid = trans->transid;
153 else
154 transid = inode->root->last_trans;
155
156 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
157 if (!defrag)
158 return -ENOMEM;
159
160 defrag->ino = btrfs_ino(inode);
161 defrag->transid = transid;
162 defrag->root = root->root_key.objectid;
163
164 spin_lock(&fs_info->defrag_inodes_lock);
165 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166 /*
167 * If we set IN_DEFRAG flag and evict the inode from memory,
168 * and then re-read this inode, this new inode doesn't have
169 * IN_DEFRAG flag. At the case, we may find the existed defrag.
170 */
171 ret = __btrfs_add_inode_defrag(inode, defrag);
172 if (ret)
173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 } else {
175 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176 }
177 spin_unlock(&fs_info->defrag_inodes_lock);
178 return 0;
179 }
180
181 /*
182 * Requeue the defrag object. If there is a defrag object that points to
183 * the same inode in the tree, we will merge them together (by
184 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185 */
btrfs_requeue_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)186 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
187 struct inode_defrag *defrag)
188 {
189 struct btrfs_fs_info *fs_info = inode->root->fs_info;
190 int ret;
191
192 if (!__need_auto_defrag(fs_info))
193 goto out;
194
195 /*
196 * Here we don't check the IN_DEFRAG flag, because we need merge
197 * them together.
198 */
199 spin_lock(&fs_info->defrag_inodes_lock);
200 ret = __btrfs_add_inode_defrag(inode, defrag);
201 spin_unlock(&fs_info->defrag_inodes_lock);
202 if (ret)
203 goto out;
204 return;
205 out:
206 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
207 }
208
209 /*
210 * pick the defragable inode that we want, if it doesn't exist, we will get
211 * the next one.
212 */
213 static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)214 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 {
216 struct inode_defrag *entry = NULL;
217 struct inode_defrag tmp;
218 struct rb_node *p;
219 struct rb_node *parent = NULL;
220 int ret;
221
222 tmp.ino = ino;
223 tmp.root = root;
224
225 spin_lock(&fs_info->defrag_inodes_lock);
226 p = fs_info->defrag_inodes.rb_node;
227 while (p) {
228 parent = p;
229 entry = rb_entry(parent, struct inode_defrag, rb_node);
230
231 ret = __compare_inode_defrag(&tmp, entry);
232 if (ret < 0)
233 p = parent->rb_left;
234 else if (ret > 0)
235 p = parent->rb_right;
236 else
237 goto out;
238 }
239
240 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
241 parent = rb_next(parent);
242 if (parent)
243 entry = rb_entry(parent, struct inode_defrag, rb_node);
244 else
245 entry = NULL;
246 }
247 out:
248 if (entry)
249 rb_erase(parent, &fs_info->defrag_inodes);
250 spin_unlock(&fs_info->defrag_inodes_lock);
251 return entry;
252 }
253
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)254 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 {
256 struct inode_defrag *defrag;
257 struct rb_node *node;
258
259 spin_lock(&fs_info->defrag_inodes_lock);
260 node = rb_first(&fs_info->defrag_inodes);
261 while (node) {
262 rb_erase(node, &fs_info->defrag_inodes);
263 defrag = rb_entry(node, struct inode_defrag, rb_node);
264 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265
266 cond_resched_lock(&fs_info->defrag_inodes_lock);
267
268 node = rb_first(&fs_info->defrag_inodes);
269 }
270 spin_unlock(&fs_info->defrag_inodes_lock);
271 }
272
273 #define BTRFS_DEFRAG_BATCH 1024
274
__btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag)275 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
276 struct inode_defrag *defrag)
277 {
278 struct btrfs_root *inode_root;
279 struct inode *inode;
280 struct btrfs_ioctl_defrag_range_args range;
281 int num_defrag;
282 int ret;
283
284 /* get the inode */
285 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
286 if (IS_ERR(inode_root)) {
287 ret = PTR_ERR(inode_root);
288 goto cleanup;
289 }
290
291 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
292 btrfs_put_root(inode_root);
293 if (IS_ERR(inode)) {
294 ret = PTR_ERR(inode);
295 goto cleanup;
296 }
297
298 /* do a chunk of defrag */
299 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
300 memset(&range, 0, sizeof(range));
301 range.len = (u64)-1;
302 range.start = defrag->last_offset;
303
304 sb_start_write(fs_info->sb);
305 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
306 BTRFS_DEFRAG_BATCH);
307 sb_end_write(fs_info->sb);
308 /*
309 * if we filled the whole defrag batch, there
310 * must be more work to do. Queue this defrag
311 * again
312 */
313 if (num_defrag == BTRFS_DEFRAG_BATCH) {
314 defrag->last_offset = range.start;
315 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
316 } else if (defrag->last_offset && !defrag->cycled) {
317 /*
318 * we didn't fill our defrag batch, but
319 * we didn't start at zero. Make sure we loop
320 * around to the start of the file.
321 */
322 defrag->last_offset = 0;
323 defrag->cycled = 1;
324 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
325 } else {
326 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
327 }
328
329 iput(inode);
330 return 0;
331 cleanup:
332 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
333 return ret;
334 }
335
336 /*
337 * run through the list of inodes in the FS that need
338 * defragging
339 */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)340 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
341 {
342 struct inode_defrag *defrag;
343 u64 first_ino = 0;
344 u64 root_objectid = 0;
345
346 atomic_inc(&fs_info->defrag_running);
347 while (1) {
348 /* Pause the auto defragger. */
349 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
350 &fs_info->fs_state))
351 break;
352
353 if (!__need_auto_defrag(fs_info))
354 break;
355
356 /* find an inode to defrag */
357 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
358 first_ino);
359 if (!defrag) {
360 if (root_objectid || first_ino) {
361 root_objectid = 0;
362 first_ino = 0;
363 continue;
364 } else {
365 break;
366 }
367 }
368
369 first_ino = defrag->ino + 1;
370 root_objectid = defrag->root;
371
372 __btrfs_run_defrag_inode(fs_info, defrag);
373 }
374 atomic_dec(&fs_info->defrag_running);
375
376 /*
377 * during unmount, we use the transaction_wait queue to
378 * wait for the defragger to stop
379 */
380 wake_up(&fs_info->transaction_wait);
381 return 0;
382 }
383
384 /* simple helper to fault in pages and copy. This should go away
385 * and be replaced with calls into generic code.
386 */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)387 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
388 struct page **prepared_pages,
389 struct iov_iter *i)
390 {
391 size_t copied = 0;
392 size_t total_copied = 0;
393 int pg = 0;
394 int offset = offset_in_page(pos);
395
396 while (write_bytes > 0) {
397 size_t count = min_t(size_t,
398 PAGE_SIZE - offset, write_bytes);
399 struct page *page = prepared_pages[pg];
400 /*
401 * Copy data from userspace to the current page
402 */
403 copied = copy_page_from_iter_atomic(page, offset, count, i);
404
405 /* Flush processor's dcache for this page */
406 flush_dcache_page(page);
407
408 /*
409 * if we get a partial write, we can end up with
410 * partially up to date pages. These add
411 * a lot of complexity, so make sure they don't
412 * happen by forcing this copy to be retried.
413 *
414 * The rest of the btrfs_file_write code will fall
415 * back to page at a time copies after we return 0.
416 */
417 if (unlikely(copied < count)) {
418 if (!PageUptodate(page)) {
419 iov_iter_revert(i, copied);
420 copied = 0;
421 }
422 if (!copied)
423 break;
424 }
425
426 write_bytes -= copied;
427 total_copied += copied;
428 offset += copied;
429 if (offset == PAGE_SIZE) {
430 pg++;
431 offset = 0;
432 }
433 }
434 return total_copied;
435 }
436
437 /*
438 * unlocks pages after btrfs_file_write is done with them
439 */
btrfs_drop_pages(struct page ** pages,size_t num_pages)440 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
441 {
442 size_t i;
443 for (i = 0; i < num_pages; i++) {
444 /* page checked is some magic around finding pages that
445 * have been modified without going through btrfs_set_page_dirty
446 * clear it here. There should be no need to mark the pages
447 * accessed as prepare_pages should have marked them accessed
448 * in prepare_pages via find_or_create_page()
449 */
450 ClearPageChecked(pages[i]);
451 unlock_page(pages[i]);
452 put_page(pages[i]);
453 }
454 }
455
456 /*
457 * After btrfs_copy_from_user(), update the following things for delalloc:
458 * - Mark newly dirtied pages as DELALLOC in the io tree.
459 * Used to advise which range is to be written back.
460 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
461 * - Update inode size for past EOF write
462 */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464 size_t num_pages, loff_t pos, size_t write_bytes,
465 struct extent_state **cached, bool noreserve)
466 {
467 struct btrfs_fs_info *fs_info = inode->root->fs_info;
468 int err = 0;
469 int i;
470 u64 num_bytes;
471 u64 start_pos;
472 u64 end_of_last_block;
473 u64 end_pos = pos + write_bytes;
474 loff_t isize = i_size_read(&inode->vfs_inode);
475 unsigned int extra_bits = 0;
476
477 if (write_bytes == 0)
478 return 0;
479
480 if (noreserve)
481 extra_bits |= EXTENT_NORESERVE;
482
483 start_pos = round_down(pos, fs_info->sectorsize);
484 num_bytes = round_up(write_bytes + pos - start_pos,
485 fs_info->sectorsize);
486 ASSERT(num_bytes <= U32_MAX);
487
488 end_of_last_block = start_pos + num_bytes - 1;
489
490 /*
491 * The pages may have already been dirty, clear out old accounting so
492 * we can set things up properly
493 */
494 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
495 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
496 0, 0, cached);
497
498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
499 extra_bits, cached);
500 if (err)
501 return err;
502
503 for (i = 0; i < num_pages; i++) {
504 struct page *p = pages[i];
505
506 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
507 ClearPageChecked(p);
508 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
509 }
510
511 /*
512 * we've only changed i_size in ram, and we haven't updated
513 * the disk i_size. There is no need to log the inode
514 * at this time.
515 */
516 if (end_pos > isize)
517 i_size_write(&inode->vfs_inode, end_pos);
518 return 0;
519 }
520
521 /*
522 * this drops all the extents in the cache that intersect the range
523 * [start, end]. Existing extents are split as required.
524 */
btrfs_drop_extent_cache(struct btrfs_inode * inode,u64 start,u64 end,int skip_pinned)525 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
526 int skip_pinned)
527 {
528 struct extent_map *em;
529 struct extent_map *split = NULL;
530 struct extent_map *split2 = NULL;
531 struct extent_map_tree *em_tree = &inode->extent_tree;
532 u64 len = end - start + 1;
533 u64 gen;
534 int ret;
535 int testend = 1;
536 unsigned long flags;
537 int compressed = 0;
538 bool modified;
539
540 WARN_ON(end < start);
541 if (end == (u64)-1) {
542 len = (u64)-1;
543 testend = 0;
544 }
545 while (1) {
546 int no_splits = 0;
547
548 modified = false;
549 if (!split)
550 split = alloc_extent_map();
551 if (!split2)
552 split2 = alloc_extent_map();
553 if (!split || !split2)
554 no_splits = 1;
555
556 write_lock(&em_tree->lock);
557 em = lookup_extent_mapping(em_tree, start, len);
558 if (!em) {
559 write_unlock(&em_tree->lock);
560 break;
561 }
562 flags = em->flags;
563 gen = em->generation;
564 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
565 if (testend && em->start + em->len >= start + len) {
566 free_extent_map(em);
567 write_unlock(&em_tree->lock);
568 break;
569 }
570 start = em->start + em->len;
571 if (testend)
572 len = start + len - (em->start + em->len);
573 free_extent_map(em);
574 write_unlock(&em_tree->lock);
575 continue;
576 }
577 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
578 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
579 clear_bit(EXTENT_FLAG_LOGGING, &flags);
580 modified = !list_empty(&em->list);
581 if (no_splits)
582 goto next;
583
584 if (em->start < start) {
585 split->start = em->start;
586 split->len = start - em->start;
587
588 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
589 split->orig_start = em->orig_start;
590 split->block_start = em->block_start;
591
592 if (compressed)
593 split->block_len = em->block_len;
594 else
595 split->block_len = split->len;
596 split->orig_block_len = max(split->block_len,
597 em->orig_block_len);
598 split->ram_bytes = em->ram_bytes;
599 } else {
600 split->orig_start = split->start;
601 split->block_len = 0;
602 split->block_start = em->block_start;
603 split->orig_block_len = 0;
604 split->ram_bytes = split->len;
605 }
606
607 split->generation = gen;
608 split->flags = flags;
609 split->compress_type = em->compress_type;
610 replace_extent_mapping(em_tree, em, split, modified);
611 free_extent_map(split);
612 split = split2;
613 split2 = NULL;
614 }
615 if (testend && em->start + em->len > start + len) {
616 u64 diff = start + len - em->start;
617
618 split->start = start + len;
619 split->len = em->start + em->len - (start + len);
620 split->flags = flags;
621 split->compress_type = em->compress_type;
622 split->generation = gen;
623
624 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
625 split->orig_block_len = max(em->block_len,
626 em->orig_block_len);
627
628 split->ram_bytes = em->ram_bytes;
629 if (compressed) {
630 split->block_len = em->block_len;
631 split->block_start = em->block_start;
632 split->orig_start = em->orig_start;
633 } else {
634 split->block_len = split->len;
635 split->block_start = em->block_start
636 + diff;
637 split->orig_start = em->orig_start;
638 }
639 } else {
640 split->ram_bytes = split->len;
641 split->orig_start = split->start;
642 split->block_len = 0;
643 split->block_start = em->block_start;
644 split->orig_block_len = 0;
645 }
646
647 if (extent_map_in_tree(em)) {
648 replace_extent_mapping(em_tree, em, split,
649 modified);
650 } else {
651 ret = add_extent_mapping(em_tree, split,
652 modified);
653 ASSERT(ret == 0); /* Logic error */
654 }
655 free_extent_map(split);
656 split = NULL;
657 }
658 next:
659 if (extent_map_in_tree(em))
660 remove_extent_mapping(em_tree, em);
661 write_unlock(&em_tree->lock);
662
663 /* once for us */
664 free_extent_map(em);
665 /* once for the tree*/
666 free_extent_map(em);
667 }
668 if (split)
669 free_extent_map(split);
670 if (split2)
671 free_extent_map(split2);
672 }
673
674 /*
675 * this is very complex, but the basic idea is to drop all extents
676 * in the range start - end. hint_block is filled in with a block number
677 * that would be a good hint to the block allocator for this file.
678 *
679 * If an extent intersects the range but is not entirely inside the range
680 * it is either truncated or split. Anything entirely inside the range
681 * is deleted from the tree.
682 *
683 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
684 * to deal with that. We set the field 'bytes_found' of the arguments structure
685 * with the number of allocated bytes found in the target range, so that the
686 * caller can update the inode's number of bytes in an atomic way when
687 * replacing extents in a range to avoid races with stat(2).
688 */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)689 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
690 struct btrfs_root *root, struct btrfs_inode *inode,
691 struct btrfs_drop_extents_args *args)
692 {
693 struct btrfs_fs_info *fs_info = root->fs_info;
694 struct extent_buffer *leaf;
695 struct btrfs_file_extent_item *fi;
696 struct btrfs_ref ref = { 0 };
697 struct btrfs_key key;
698 struct btrfs_key new_key;
699 u64 ino = btrfs_ino(inode);
700 u64 search_start = args->start;
701 u64 disk_bytenr = 0;
702 u64 num_bytes = 0;
703 u64 extent_offset = 0;
704 u64 extent_end = 0;
705 u64 last_end = args->start;
706 int del_nr = 0;
707 int del_slot = 0;
708 int extent_type;
709 int recow;
710 int ret;
711 int modify_tree = -1;
712 int update_refs;
713 int found = 0;
714 int leafs_visited = 0;
715 struct btrfs_path *path = args->path;
716
717 args->bytes_found = 0;
718 args->extent_inserted = false;
719
720 /* Must always have a path if ->replace_extent is true */
721 ASSERT(!(args->replace_extent && !args->path));
722
723 if (!path) {
724 path = btrfs_alloc_path();
725 if (!path) {
726 ret = -ENOMEM;
727 goto out;
728 }
729 }
730
731 if (args->drop_cache)
732 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
733
734 if (args->start >= inode->disk_i_size && !args->replace_extent)
735 modify_tree = 0;
736
737 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
738 while (1) {
739 recow = 0;
740 ret = btrfs_lookup_file_extent(trans, root, path, ino,
741 search_start, modify_tree);
742 if (ret < 0)
743 break;
744 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
745 leaf = path->nodes[0];
746 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
747 if (key.objectid == ino &&
748 key.type == BTRFS_EXTENT_DATA_KEY)
749 path->slots[0]--;
750 }
751 ret = 0;
752 leafs_visited++;
753 next_slot:
754 leaf = path->nodes[0];
755 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
756 BUG_ON(del_nr > 0);
757 ret = btrfs_next_leaf(root, path);
758 if (ret < 0)
759 break;
760 if (ret > 0) {
761 ret = 0;
762 break;
763 }
764 leafs_visited++;
765 leaf = path->nodes[0];
766 recow = 1;
767 }
768
769 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
770
771 if (key.objectid > ino)
772 break;
773 if (WARN_ON_ONCE(key.objectid < ino) ||
774 key.type < BTRFS_EXTENT_DATA_KEY) {
775 ASSERT(del_nr == 0);
776 path->slots[0]++;
777 goto next_slot;
778 }
779 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
780 break;
781
782 fi = btrfs_item_ptr(leaf, path->slots[0],
783 struct btrfs_file_extent_item);
784 extent_type = btrfs_file_extent_type(leaf, fi);
785
786 if (extent_type == BTRFS_FILE_EXTENT_REG ||
787 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
788 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
789 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
790 extent_offset = btrfs_file_extent_offset(leaf, fi);
791 extent_end = key.offset +
792 btrfs_file_extent_num_bytes(leaf, fi);
793 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
794 extent_end = key.offset +
795 btrfs_file_extent_ram_bytes(leaf, fi);
796 } else {
797 /* can't happen */
798 BUG();
799 }
800
801 /*
802 * Don't skip extent items representing 0 byte lengths. They
803 * used to be created (bug) if while punching holes we hit
804 * -ENOSPC condition. So if we find one here, just ensure we
805 * delete it, otherwise we would insert a new file extent item
806 * with the same key (offset) as that 0 bytes length file
807 * extent item in the call to setup_items_for_insert() later
808 * in this function.
809 */
810 if (extent_end == key.offset && extent_end >= search_start) {
811 last_end = extent_end;
812 goto delete_extent_item;
813 }
814
815 if (extent_end <= search_start) {
816 path->slots[0]++;
817 goto next_slot;
818 }
819
820 found = 1;
821 search_start = max(key.offset, args->start);
822 if (recow || !modify_tree) {
823 modify_tree = -1;
824 btrfs_release_path(path);
825 continue;
826 }
827
828 /*
829 * | - range to drop - |
830 * | -------- extent -------- |
831 */
832 if (args->start > key.offset && args->end < extent_end) {
833 BUG_ON(del_nr > 0);
834 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
835 ret = -EOPNOTSUPP;
836 break;
837 }
838
839 memcpy(&new_key, &key, sizeof(new_key));
840 new_key.offset = args->start;
841 ret = btrfs_duplicate_item(trans, root, path,
842 &new_key);
843 if (ret == -EAGAIN) {
844 btrfs_release_path(path);
845 continue;
846 }
847 if (ret < 0)
848 break;
849
850 leaf = path->nodes[0];
851 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
852 struct btrfs_file_extent_item);
853 btrfs_set_file_extent_num_bytes(leaf, fi,
854 args->start - key.offset);
855
856 fi = btrfs_item_ptr(leaf, path->slots[0],
857 struct btrfs_file_extent_item);
858
859 extent_offset += args->start - key.offset;
860 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
861 btrfs_set_file_extent_num_bytes(leaf, fi,
862 extent_end - args->start);
863 btrfs_mark_buffer_dirty(leaf);
864
865 if (update_refs && disk_bytenr > 0) {
866 btrfs_init_generic_ref(&ref,
867 BTRFS_ADD_DELAYED_REF,
868 disk_bytenr, num_bytes, 0);
869 btrfs_init_data_ref(&ref,
870 root->root_key.objectid,
871 new_key.objectid,
872 args->start - extent_offset);
873 ret = btrfs_inc_extent_ref(trans, &ref);
874 BUG_ON(ret); /* -ENOMEM */
875 }
876 key.offset = args->start;
877 }
878 /*
879 * From here on out we will have actually dropped something, so
880 * last_end can be updated.
881 */
882 last_end = extent_end;
883
884 /*
885 * | ---- range to drop ----- |
886 * | -------- extent -------- |
887 */
888 if (args->start <= key.offset && args->end < extent_end) {
889 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
890 ret = -EOPNOTSUPP;
891 break;
892 }
893
894 memcpy(&new_key, &key, sizeof(new_key));
895 new_key.offset = args->end;
896 btrfs_set_item_key_safe(fs_info, path, &new_key);
897
898 extent_offset += args->end - key.offset;
899 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
900 btrfs_set_file_extent_num_bytes(leaf, fi,
901 extent_end - args->end);
902 btrfs_mark_buffer_dirty(leaf);
903 if (update_refs && disk_bytenr > 0)
904 args->bytes_found += args->end - key.offset;
905 break;
906 }
907
908 search_start = extent_end;
909 /*
910 * | ---- range to drop ----- |
911 * | -------- extent -------- |
912 */
913 if (args->start > key.offset && args->end >= extent_end) {
914 BUG_ON(del_nr > 0);
915 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
916 ret = -EOPNOTSUPP;
917 break;
918 }
919
920 btrfs_set_file_extent_num_bytes(leaf, fi,
921 args->start - key.offset);
922 btrfs_mark_buffer_dirty(leaf);
923 if (update_refs && disk_bytenr > 0)
924 args->bytes_found += extent_end - args->start;
925 if (args->end == extent_end)
926 break;
927
928 path->slots[0]++;
929 goto next_slot;
930 }
931
932 /*
933 * | ---- range to drop ----- |
934 * | ------ extent ------ |
935 */
936 if (args->start <= key.offset && args->end >= extent_end) {
937 delete_extent_item:
938 if (del_nr == 0) {
939 del_slot = path->slots[0];
940 del_nr = 1;
941 } else {
942 BUG_ON(del_slot + del_nr != path->slots[0]);
943 del_nr++;
944 }
945
946 if (update_refs &&
947 extent_type == BTRFS_FILE_EXTENT_INLINE) {
948 args->bytes_found += extent_end - key.offset;
949 extent_end = ALIGN(extent_end,
950 fs_info->sectorsize);
951 } else if (update_refs && disk_bytenr > 0) {
952 btrfs_init_generic_ref(&ref,
953 BTRFS_DROP_DELAYED_REF,
954 disk_bytenr, num_bytes, 0);
955 btrfs_init_data_ref(&ref,
956 root->root_key.objectid,
957 key.objectid,
958 key.offset - extent_offset);
959 ret = btrfs_free_extent(trans, &ref);
960 BUG_ON(ret); /* -ENOMEM */
961 args->bytes_found += extent_end - key.offset;
962 }
963
964 if (args->end == extent_end)
965 break;
966
967 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
968 path->slots[0]++;
969 goto next_slot;
970 }
971
972 ret = btrfs_del_items(trans, root, path, del_slot,
973 del_nr);
974 if (ret) {
975 btrfs_abort_transaction(trans, ret);
976 break;
977 }
978
979 del_nr = 0;
980 del_slot = 0;
981
982 btrfs_release_path(path);
983 continue;
984 }
985
986 BUG();
987 }
988
989 if (!ret && del_nr > 0) {
990 /*
991 * Set path->slots[0] to first slot, so that after the delete
992 * if items are move off from our leaf to its immediate left or
993 * right neighbor leafs, we end up with a correct and adjusted
994 * path->slots[0] for our insertion (if args->replace_extent).
995 */
996 path->slots[0] = del_slot;
997 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
998 if (ret)
999 btrfs_abort_transaction(trans, ret);
1000 }
1001
1002 leaf = path->nodes[0];
1003 /*
1004 * If btrfs_del_items() was called, it might have deleted a leaf, in
1005 * which case it unlocked our path, so check path->locks[0] matches a
1006 * write lock.
1007 */
1008 if (!ret && args->replace_extent && leafs_visited == 1 &&
1009 path->locks[0] == BTRFS_WRITE_LOCK &&
1010 btrfs_leaf_free_space(leaf) >=
1011 sizeof(struct btrfs_item) + args->extent_item_size) {
1012
1013 key.objectid = ino;
1014 key.type = BTRFS_EXTENT_DATA_KEY;
1015 key.offset = args->start;
1016 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1017 struct btrfs_key slot_key;
1018
1019 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1020 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1021 path->slots[0]++;
1022 }
1023 setup_items_for_insert(root, path, &key,
1024 &args->extent_item_size, 1);
1025 args->extent_inserted = true;
1026 }
1027
1028 if (!args->path)
1029 btrfs_free_path(path);
1030 else if (!args->extent_inserted)
1031 btrfs_release_path(path);
1032 out:
1033 args->drop_end = found ? min(args->end, last_end) : args->end;
1034
1035 return ret;
1036 }
1037
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)1038 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1039 u64 objectid, u64 bytenr, u64 orig_offset,
1040 u64 *start, u64 *end)
1041 {
1042 struct btrfs_file_extent_item *fi;
1043 struct btrfs_key key;
1044 u64 extent_end;
1045
1046 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1047 return 0;
1048
1049 btrfs_item_key_to_cpu(leaf, &key, slot);
1050 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1051 return 0;
1052
1053 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1054 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1055 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1056 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1057 btrfs_file_extent_compression(leaf, fi) ||
1058 btrfs_file_extent_encryption(leaf, fi) ||
1059 btrfs_file_extent_other_encoding(leaf, fi))
1060 return 0;
1061
1062 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1063 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1064 return 0;
1065
1066 *start = key.offset;
1067 *end = extent_end;
1068 return 1;
1069 }
1070
1071 /*
1072 * Mark extent in the range start - end as written.
1073 *
1074 * This changes extent type from 'pre-allocated' to 'regular'. If only
1075 * part of extent is marked as written, the extent will be split into
1076 * two or three.
1077 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)1078 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1079 struct btrfs_inode *inode, u64 start, u64 end)
1080 {
1081 struct btrfs_fs_info *fs_info = trans->fs_info;
1082 struct btrfs_root *root = inode->root;
1083 struct extent_buffer *leaf;
1084 struct btrfs_path *path;
1085 struct btrfs_file_extent_item *fi;
1086 struct btrfs_ref ref = { 0 };
1087 struct btrfs_key key;
1088 struct btrfs_key new_key;
1089 u64 bytenr;
1090 u64 num_bytes;
1091 u64 extent_end;
1092 u64 orig_offset;
1093 u64 other_start;
1094 u64 other_end;
1095 u64 split;
1096 int del_nr = 0;
1097 int del_slot = 0;
1098 int recow;
1099 int ret = 0;
1100 u64 ino = btrfs_ino(inode);
1101
1102 path = btrfs_alloc_path();
1103 if (!path)
1104 return -ENOMEM;
1105 again:
1106 recow = 0;
1107 split = start;
1108 key.objectid = ino;
1109 key.type = BTRFS_EXTENT_DATA_KEY;
1110 key.offset = split;
1111
1112 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1113 if (ret < 0)
1114 goto out;
1115 if (ret > 0 && path->slots[0] > 0)
1116 path->slots[0]--;
1117
1118 leaf = path->nodes[0];
1119 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1120 if (key.objectid != ino ||
1121 key.type != BTRFS_EXTENT_DATA_KEY) {
1122 ret = -EINVAL;
1123 btrfs_abort_transaction(trans, ret);
1124 goto out;
1125 }
1126 fi = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_file_extent_item);
1128 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1129 ret = -EINVAL;
1130 btrfs_abort_transaction(trans, ret);
1131 goto out;
1132 }
1133 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1134 if (key.offset > start || extent_end < end) {
1135 ret = -EINVAL;
1136 btrfs_abort_transaction(trans, ret);
1137 goto out;
1138 }
1139
1140 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1141 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1142 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1143 memcpy(&new_key, &key, sizeof(new_key));
1144
1145 if (start == key.offset && end < extent_end) {
1146 other_start = 0;
1147 other_end = start;
1148 if (extent_mergeable(leaf, path->slots[0] - 1,
1149 ino, bytenr, orig_offset,
1150 &other_start, &other_end)) {
1151 new_key.offset = end;
1152 btrfs_set_item_key_safe(fs_info, path, &new_key);
1153 fi = btrfs_item_ptr(leaf, path->slots[0],
1154 struct btrfs_file_extent_item);
1155 btrfs_set_file_extent_generation(leaf, fi,
1156 trans->transid);
1157 btrfs_set_file_extent_num_bytes(leaf, fi,
1158 extent_end - end);
1159 btrfs_set_file_extent_offset(leaf, fi,
1160 end - orig_offset);
1161 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1162 struct btrfs_file_extent_item);
1163 btrfs_set_file_extent_generation(leaf, fi,
1164 trans->transid);
1165 btrfs_set_file_extent_num_bytes(leaf, fi,
1166 end - other_start);
1167 btrfs_mark_buffer_dirty(leaf);
1168 goto out;
1169 }
1170 }
1171
1172 if (start > key.offset && end == extent_end) {
1173 other_start = end;
1174 other_end = 0;
1175 if (extent_mergeable(leaf, path->slots[0] + 1,
1176 ino, bytenr, orig_offset,
1177 &other_start, &other_end)) {
1178 fi = btrfs_item_ptr(leaf, path->slots[0],
1179 struct btrfs_file_extent_item);
1180 btrfs_set_file_extent_num_bytes(leaf, fi,
1181 start - key.offset);
1182 btrfs_set_file_extent_generation(leaf, fi,
1183 trans->transid);
1184 path->slots[0]++;
1185 new_key.offset = start;
1186 btrfs_set_item_key_safe(fs_info, path, &new_key);
1187
1188 fi = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_file_extent_item);
1190 btrfs_set_file_extent_generation(leaf, fi,
1191 trans->transid);
1192 btrfs_set_file_extent_num_bytes(leaf, fi,
1193 other_end - start);
1194 btrfs_set_file_extent_offset(leaf, fi,
1195 start - orig_offset);
1196 btrfs_mark_buffer_dirty(leaf);
1197 goto out;
1198 }
1199 }
1200
1201 while (start > key.offset || end < extent_end) {
1202 if (key.offset == start)
1203 split = end;
1204
1205 new_key.offset = split;
1206 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1207 if (ret == -EAGAIN) {
1208 btrfs_release_path(path);
1209 goto again;
1210 }
1211 if (ret < 0) {
1212 btrfs_abort_transaction(trans, ret);
1213 goto out;
1214 }
1215
1216 leaf = path->nodes[0];
1217 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1218 struct btrfs_file_extent_item);
1219 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1220 btrfs_set_file_extent_num_bytes(leaf, fi,
1221 split - key.offset);
1222
1223 fi = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_file_extent_item);
1225
1226 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1227 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1228 btrfs_set_file_extent_num_bytes(leaf, fi,
1229 extent_end - split);
1230 btrfs_mark_buffer_dirty(leaf);
1231
1232 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1233 num_bytes, 0);
1234 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1235 orig_offset);
1236 ret = btrfs_inc_extent_ref(trans, &ref);
1237 if (ret) {
1238 btrfs_abort_transaction(trans, ret);
1239 goto out;
1240 }
1241
1242 if (split == start) {
1243 key.offset = start;
1244 } else {
1245 if (start != key.offset) {
1246 ret = -EINVAL;
1247 btrfs_abort_transaction(trans, ret);
1248 goto out;
1249 }
1250 path->slots[0]--;
1251 extent_end = end;
1252 }
1253 recow = 1;
1254 }
1255
1256 other_start = end;
1257 other_end = 0;
1258 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1259 num_bytes, 0);
1260 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1261 if (extent_mergeable(leaf, path->slots[0] + 1,
1262 ino, bytenr, orig_offset,
1263 &other_start, &other_end)) {
1264 if (recow) {
1265 btrfs_release_path(path);
1266 goto again;
1267 }
1268 extent_end = other_end;
1269 del_slot = path->slots[0] + 1;
1270 del_nr++;
1271 ret = btrfs_free_extent(trans, &ref);
1272 if (ret) {
1273 btrfs_abort_transaction(trans, ret);
1274 goto out;
1275 }
1276 }
1277 other_start = 0;
1278 other_end = start;
1279 if (extent_mergeable(leaf, path->slots[0] - 1,
1280 ino, bytenr, orig_offset,
1281 &other_start, &other_end)) {
1282 if (recow) {
1283 btrfs_release_path(path);
1284 goto again;
1285 }
1286 key.offset = other_start;
1287 del_slot = path->slots[0];
1288 del_nr++;
1289 ret = btrfs_free_extent(trans, &ref);
1290 if (ret) {
1291 btrfs_abort_transaction(trans, ret);
1292 goto out;
1293 }
1294 }
1295 if (del_nr == 0) {
1296 fi = btrfs_item_ptr(leaf, path->slots[0],
1297 struct btrfs_file_extent_item);
1298 btrfs_set_file_extent_type(leaf, fi,
1299 BTRFS_FILE_EXTENT_REG);
1300 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1301 btrfs_mark_buffer_dirty(leaf);
1302 } else {
1303 fi = btrfs_item_ptr(leaf, del_slot - 1,
1304 struct btrfs_file_extent_item);
1305 btrfs_set_file_extent_type(leaf, fi,
1306 BTRFS_FILE_EXTENT_REG);
1307 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1308 btrfs_set_file_extent_num_bytes(leaf, fi,
1309 extent_end - key.offset);
1310 btrfs_mark_buffer_dirty(leaf);
1311
1312 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1313 if (ret < 0) {
1314 btrfs_abort_transaction(trans, ret);
1315 goto out;
1316 }
1317 }
1318 out:
1319 btrfs_free_path(path);
1320 return ret;
1321 }
1322
1323 /*
1324 * on error we return an unlocked page and the error value
1325 * on success we return a locked page and 0
1326 */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)1327 static int prepare_uptodate_page(struct inode *inode,
1328 struct page *page, u64 pos,
1329 bool force_uptodate)
1330 {
1331 int ret = 0;
1332
1333 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1334 !PageUptodate(page)) {
1335 ret = btrfs_readpage(NULL, page);
1336 if (ret)
1337 return ret;
1338 lock_page(page);
1339 if (!PageUptodate(page)) {
1340 unlock_page(page);
1341 return -EIO;
1342 }
1343
1344 /*
1345 * Since btrfs_readpage() will unlock the page before it
1346 * returns, there is a window where btrfs_releasepage() can be
1347 * called to release the page. Here we check both inode
1348 * mapping and PagePrivate() to make sure the page was not
1349 * released.
1350 *
1351 * The private flag check is essential for subpage as we need
1352 * to store extra bitmap using page->private.
1353 */
1354 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1355 unlock_page(page);
1356 return -EAGAIN;
1357 }
1358 }
1359 return 0;
1360 }
1361
1362 /*
1363 * this just gets pages into the page cache and locks them down.
1364 */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate)1365 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1366 size_t num_pages, loff_t pos,
1367 size_t write_bytes, bool force_uptodate)
1368 {
1369 int i;
1370 unsigned long index = pos >> PAGE_SHIFT;
1371 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1372 int err = 0;
1373 int faili;
1374
1375 for (i = 0; i < num_pages; i++) {
1376 again:
1377 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1378 mask | __GFP_WRITE);
1379 if (!pages[i]) {
1380 faili = i - 1;
1381 err = -ENOMEM;
1382 goto fail;
1383 }
1384
1385 err = set_page_extent_mapped(pages[i]);
1386 if (err < 0) {
1387 faili = i;
1388 goto fail;
1389 }
1390
1391 if (i == 0)
1392 err = prepare_uptodate_page(inode, pages[i], pos,
1393 force_uptodate);
1394 if (!err && i == num_pages - 1)
1395 err = prepare_uptodate_page(inode, pages[i],
1396 pos + write_bytes, false);
1397 if (err) {
1398 put_page(pages[i]);
1399 if (err == -EAGAIN) {
1400 err = 0;
1401 goto again;
1402 }
1403 faili = i - 1;
1404 goto fail;
1405 }
1406 wait_on_page_writeback(pages[i]);
1407 }
1408
1409 return 0;
1410 fail:
1411 while (faili >= 0) {
1412 unlock_page(pages[faili]);
1413 put_page(pages[faili]);
1414 faili--;
1415 }
1416 return err;
1417
1418 }
1419
1420 /*
1421 * This function locks the extent and properly waits for data=ordered extents
1422 * to finish before allowing the pages to be modified if need.
1423 *
1424 * The return value:
1425 * 1 - the extent is locked
1426 * 0 - the extent is not locked, and everything is OK
1427 * -EAGAIN - need re-prepare the pages
1428 * the other < 0 number - Something wrong happens
1429 */
1430 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,struct extent_state ** cached_state)1431 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1432 size_t num_pages, loff_t pos,
1433 size_t write_bytes,
1434 u64 *lockstart, u64 *lockend,
1435 struct extent_state **cached_state)
1436 {
1437 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1438 u64 start_pos;
1439 u64 last_pos;
1440 int i;
1441 int ret = 0;
1442
1443 start_pos = round_down(pos, fs_info->sectorsize);
1444 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1445
1446 if (start_pos < inode->vfs_inode.i_size) {
1447 struct btrfs_ordered_extent *ordered;
1448
1449 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1450 cached_state);
1451 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1452 last_pos - start_pos + 1);
1453 if (ordered &&
1454 ordered->file_offset + ordered->num_bytes > start_pos &&
1455 ordered->file_offset <= last_pos) {
1456 unlock_extent_cached(&inode->io_tree, start_pos,
1457 last_pos, cached_state);
1458 for (i = 0; i < num_pages; i++) {
1459 unlock_page(pages[i]);
1460 put_page(pages[i]);
1461 }
1462 btrfs_start_ordered_extent(ordered, 1);
1463 btrfs_put_ordered_extent(ordered);
1464 return -EAGAIN;
1465 }
1466 if (ordered)
1467 btrfs_put_ordered_extent(ordered);
1468
1469 *lockstart = start_pos;
1470 *lockend = last_pos;
1471 ret = 1;
1472 }
1473
1474 /*
1475 * We should be called after prepare_pages() which should have locked
1476 * all pages in the range.
1477 */
1478 for (i = 0; i < num_pages; i++)
1479 WARN_ON(!PageLocked(pages[i]));
1480
1481 return ret;
1482 }
1483
check_can_nocow(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1484 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1485 size_t *write_bytes, bool nowait)
1486 {
1487 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1488 struct btrfs_root *root = inode->root;
1489 u64 lockstart, lockend;
1490 u64 num_bytes;
1491 int ret;
1492
1493 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1494 return 0;
1495
1496 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1497 return -EAGAIN;
1498
1499 lockstart = round_down(pos, fs_info->sectorsize);
1500 lockend = round_up(pos + *write_bytes,
1501 fs_info->sectorsize) - 1;
1502 num_bytes = lockend - lockstart + 1;
1503
1504 if (nowait) {
1505 struct btrfs_ordered_extent *ordered;
1506
1507 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1508 return -EAGAIN;
1509
1510 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1511 num_bytes);
1512 if (ordered) {
1513 btrfs_put_ordered_extent(ordered);
1514 ret = -EAGAIN;
1515 goto out_unlock;
1516 }
1517 } else {
1518 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1519 lockend, NULL);
1520 }
1521
1522 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1523 NULL, NULL, NULL, false);
1524 if (ret <= 0) {
1525 ret = 0;
1526 if (!nowait)
1527 btrfs_drew_write_unlock(&root->snapshot_lock);
1528 } else {
1529 *write_bytes = min_t(size_t, *write_bytes ,
1530 num_bytes - pos + lockstart);
1531 }
1532 out_unlock:
1533 unlock_extent(&inode->io_tree, lockstart, lockend);
1534
1535 return ret;
1536 }
1537
check_nocow_nolock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes)1538 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1539 size_t *write_bytes)
1540 {
1541 return check_can_nocow(inode, pos, write_bytes, true);
1542 }
1543
1544 /*
1545 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1546 *
1547 * @pos: File offset
1548 * @write_bytes: The length to write, will be updated to the nocow writeable
1549 * range
1550 *
1551 * This function will flush ordered extents in the range to ensure proper
1552 * nocow checks.
1553 *
1554 * Return:
1555 * >0 and update @write_bytes if we can do nocow write
1556 * 0 if we can't do nocow write
1557 * -EAGAIN if we can't get the needed lock or there are ordered extents
1558 * for * (nowait == true) case
1559 * <0 if other error happened
1560 *
1561 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1562 */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes)1563 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1564 size_t *write_bytes)
1565 {
1566 return check_can_nocow(inode, pos, write_bytes, false);
1567 }
1568
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1569 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1570 {
1571 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1572 }
1573
update_time_for_write(struct inode * inode)1574 static void update_time_for_write(struct inode *inode)
1575 {
1576 struct timespec64 now;
1577
1578 if (IS_NOCMTIME(inode))
1579 return;
1580
1581 now = current_time(inode);
1582 if (!timespec64_equal(&inode->i_mtime, &now))
1583 inode->i_mtime = now;
1584
1585 if (!timespec64_equal(&inode->i_ctime, &now))
1586 inode->i_ctime = now;
1587
1588 if (IS_I_VERSION(inode))
1589 inode_inc_iversion(inode);
1590 }
1591
btrfs_write_check(struct kiocb * iocb,struct iov_iter * from,size_t count)1592 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1593 size_t count)
1594 {
1595 struct file *file = iocb->ki_filp;
1596 struct inode *inode = file_inode(file);
1597 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1598 loff_t pos = iocb->ki_pos;
1599 int ret;
1600 loff_t oldsize;
1601 loff_t start_pos;
1602
1603 if (iocb->ki_flags & IOCB_NOWAIT) {
1604 size_t nocow_bytes = count;
1605
1606 /* We will allocate space in case nodatacow is not set, so bail */
1607 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1608 return -EAGAIN;
1609 /*
1610 * There are holes in the range or parts of the range that must
1611 * be COWed (shared extents, RO block groups, etc), so just bail
1612 * out.
1613 */
1614 if (nocow_bytes < count)
1615 return -EAGAIN;
1616 }
1617
1618 current->backing_dev_info = inode_to_bdi(inode);
1619 ret = file_remove_privs(file);
1620 if (ret)
1621 return ret;
1622
1623 /*
1624 * We reserve space for updating the inode when we reserve space for the
1625 * extent we are going to write, so we will enospc out there. We don't
1626 * need to start yet another transaction to update the inode as we will
1627 * update the inode when we finish writing whatever data we write.
1628 */
1629 update_time_for_write(inode);
1630
1631 start_pos = round_down(pos, fs_info->sectorsize);
1632 oldsize = i_size_read(inode);
1633 if (start_pos > oldsize) {
1634 /* Expand hole size to cover write data, preventing empty gap */
1635 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1636
1637 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1638 if (ret) {
1639 current->backing_dev_info = NULL;
1640 return ret;
1641 }
1642 }
1643
1644 return 0;
1645 }
1646
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1647 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1648 struct iov_iter *i)
1649 {
1650 struct file *file = iocb->ki_filp;
1651 loff_t pos;
1652 struct inode *inode = file_inode(file);
1653 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1654 struct page **pages = NULL;
1655 struct extent_changeset *data_reserved = NULL;
1656 u64 release_bytes = 0;
1657 u64 lockstart;
1658 u64 lockend;
1659 size_t num_written = 0;
1660 int nrptrs;
1661 ssize_t ret;
1662 bool only_release_metadata = false;
1663 bool force_page_uptodate = false;
1664 loff_t old_isize = i_size_read(inode);
1665 unsigned int ilock_flags = 0;
1666
1667 if (iocb->ki_flags & IOCB_NOWAIT)
1668 ilock_flags |= BTRFS_ILOCK_TRY;
1669
1670 ret = btrfs_inode_lock(inode, ilock_flags);
1671 if (ret < 0)
1672 return ret;
1673
1674 ret = generic_write_checks(iocb, i);
1675 if (ret <= 0)
1676 goto out;
1677
1678 ret = btrfs_write_check(iocb, i, ret);
1679 if (ret < 0)
1680 goto out;
1681
1682 pos = iocb->ki_pos;
1683 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1684 PAGE_SIZE / (sizeof(struct page *)));
1685 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1686 nrptrs = max(nrptrs, 8);
1687 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1688 if (!pages) {
1689 ret = -ENOMEM;
1690 goto out;
1691 }
1692
1693 while (iov_iter_count(i) > 0) {
1694 struct extent_state *cached_state = NULL;
1695 size_t offset = offset_in_page(pos);
1696 size_t sector_offset;
1697 size_t write_bytes = min(iov_iter_count(i),
1698 nrptrs * (size_t)PAGE_SIZE -
1699 offset);
1700 size_t num_pages;
1701 size_t reserve_bytes;
1702 size_t dirty_pages;
1703 size_t copied;
1704 size_t dirty_sectors;
1705 size_t num_sectors;
1706 int extents_locked;
1707
1708 /*
1709 * Fault pages before locking them in prepare_pages
1710 * to avoid recursive lock
1711 */
1712 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1713 ret = -EFAULT;
1714 break;
1715 }
1716
1717 only_release_metadata = false;
1718 sector_offset = pos & (fs_info->sectorsize - 1);
1719
1720 extent_changeset_release(data_reserved);
1721 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1722 &data_reserved, pos,
1723 write_bytes);
1724 if (ret < 0) {
1725 /*
1726 * If we don't have to COW at the offset, reserve
1727 * metadata only. write_bytes may get smaller than
1728 * requested here.
1729 */
1730 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1731 &write_bytes) > 0)
1732 only_release_metadata = true;
1733 else
1734 break;
1735 }
1736
1737 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1738 WARN_ON(num_pages > nrptrs);
1739 reserve_bytes = round_up(write_bytes + sector_offset,
1740 fs_info->sectorsize);
1741 WARN_ON(reserve_bytes == 0);
1742 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1743 reserve_bytes);
1744 if (ret) {
1745 if (!only_release_metadata)
1746 btrfs_free_reserved_data_space(BTRFS_I(inode),
1747 data_reserved, pos,
1748 write_bytes);
1749 else
1750 btrfs_check_nocow_unlock(BTRFS_I(inode));
1751 break;
1752 }
1753
1754 release_bytes = reserve_bytes;
1755 again:
1756 /*
1757 * This is going to setup the pages array with the number of
1758 * pages we want, so we don't really need to worry about the
1759 * contents of pages from loop to loop
1760 */
1761 ret = prepare_pages(inode, pages, num_pages,
1762 pos, write_bytes,
1763 force_page_uptodate);
1764 if (ret) {
1765 btrfs_delalloc_release_extents(BTRFS_I(inode),
1766 reserve_bytes);
1767 break;
1768 }
1769
1770 extents_locked = lock_and_cleanup_extent_if_need(
1771 BTRFS_I(inode), pages,
1772 num_pages, pos, write_bytes, &lockstart,
1773 &lockend, &cached_state);
1774 if (extents_locked < 0) {
1775 if (extents_locked == -EAGAIN)
1776 goto again;
1777 btrfs_delalloc_release_extents(BTRFS_I(inode),
1778 reserve_bytes);
1779 ret = extents_locked;
1780 break;
1781 }
1782
1783 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1784
1785 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1786 dirty_sectors = round_up(copied + sector_offset,
1787 fs_info->sectorsize);
1788 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1789
1790 /*
1791 * if we have trouble faulting in the pages, fall
1792 * back to one page at a time
1793 */
1794 if (copied < write_bytes)
1795 nrptrs = 1;
1796
1797 if (copied == 0) {
1798 force_page_uptodate = true;
1799 dirty_sectors = 0;
1800 dirty_pages = 0;
1801 } else {
1802 force_page_uptodate = false;
1803 dirty_pages = DIV_ROUND_UP(copied + offset,
1804 PAGE_SIZE);
1805 }
1806
1807 if (num_sectors > dirty_sectors) {
1808 /* release everything except the sectors we dirtied */
1809 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1810 if (only_release_metadata) {
1811 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1812 release_bytes, true);
1813 } else {
1814 u64 __pos;
1815
1816 __pos = round_down(pos,
1817 fs_info->sectorsize) +
1818 (dirty_pages << PAGE_SHIFT);
1819 btrfs_delalloc_release_space(BTRFS_I(inode),
1820 data_reserved, __pos,
1821 release_bytes, true);
1822 }
1823 }
1824
1825 release_bytes = round_up(copied + sector_offset,
1826 fs_info->sectorsize);
1827
1828 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1829 dirty_pages, pos, copied,
1830 &cached_state, only_release_metadata);
1831
1832 /*
1833 * If we have not locked the extent range, because the range's
1834 * start offset is >= i_size, we might still have a non-NULL
1835 * cached extent state, acquired while marking the extent range
1836 * as delalloc through btrfs_dirty_pages(). Therefore free any
1837 * possible cached extent state to avoid a memory leak.
1838 */
1839 if (extents_locked)
1840 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1841 lockstart, lockend, &cached_state);
1842 else
1843 free_extent_state(cached_state);
1844
1845 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1846 if (ret) {
1847 btrfs_drop_pages(pages, num_pages);
1848 break;
1849 }
1850
1851 release_bytes = 0;
1852 if (only_release_metadata)
1853 btrfs_check_nocow_unlock(BTRFS_I(inode));
1854
1855 btrfs_drop_pages(pages, num_pages);
1856
1857 cond_resched();
1858
1859 balance_dirty_pages_ratelimited(inode->i_mapping);
1860
1861 pos += copied;
1862 num_written += copied;
1863 }
1864
1865 kfree(pages);
1866
1867 if (release_bytes) {
1868 if (only_release_metadata) {
1869 btrfs_check_nocow_unlock(BTRFS_I(inode));
1870 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1871 release_bytes, true);
1872 } else {
1873 btrfs_delalloc_release_space(BTRFS_I(inode),
1874 data_reserved,
1875 round_down(pos, fs_info->sectorsize),
1876 release_bytes, true);
1877 }
1878 }
1879
1880 extent_changeset_free(data_reserved);
1881 if (num_written > 0) {
1882 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1883 iocb->ki_pos += num_written;
1884 }
1885 out:
1886 btrfs_inode_unlock(inode, ilock_flags);
1887 return num_written ? num_written : ret;
1888 }
1889
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)1890 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1891 const struct iov_iter *iter, loff_t offset)
1892 {
1893 const u32 blocksize_mask = fs_info->sectorsize - 1;
1894
1895 if (offset & blocksize_mask)
1896 return -EINVAL;
1897
1898 if (iov_iter_alignment(iter) & blocksize_mask)
1899 return -EINVAL;
1900
1901 return 0;
1902 }
1903
btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1904 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1905 {
1906 struct file *file = iocb->ki_filp;
1907 struct inode *inode = file_inode(file);
1908 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1909 loff_t pos;
1910 ssize_t written = 0;
1911 ssize_t written_buffered;
1912 loff_t endbyte;
1913 ssize_t err;
1914 unsigned int ilock_flags = 0;
1915 struct iomap_dio *dio = NULL;
1916
1917 if (iocb->ki_flags & IOCB_NOWAIT)
1918 ilock_flags |= BTRFS_ILOCK_TRY;
1919
1920 /* If the write DIO is within EOF, use a shared lock */
1921 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1922 ilock_flags |= BTRFS_ILOCK_SHARED;
1923
1924 relock:
1925 err = btrfs_inode_lock(inode, ilock_flags);
1926 if (err < 0)
1927 return err;
1928
1929 err = generic_write_checks(iocb, from);
1930 if (err <= 0) {
1931 btrfs_inode_unlock(inode, ilock_flags);
1932 return err;
1933 }
1934
1935 err = btrfs_write_check(iocb, from, err);
1936 if (err < 0) {
1937 btrfs_inode_unlock(inode, ilock_flags);
1938 goto out;
1939 }
1940
1941 pos = iocb->ki_pos;
1942 /*
1943 * Re-check since file size may have changed just before taking the
1944 * lock or pos may have changed because of O_APPEND in generic_write_check()
1945 */
1946 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1947 pos + iov_iter_count(from) > i_size_read(inode)) {
1948 btrfs_inode_unlock(inode, ilock_flags);
1949 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1950 goto relock;
1951 }
1952
1953 if (check_direct_IO(fs_info, from, pos)) {
1954 btrfs_inode_unlock(inode, ilock_flags);
1955 goto buffered;
1956 }
1957
1958 dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1959 0);
1960
1961 btrfs_inode_unlock(inode, ilock_flags);
1962
1963 if (IS_ERR_OR_NULL(dio)) {
1964 err = PTR_ERR_OR_ZERO(dio);
1965 if (err < 0 && err != -ENOTBLK)
1966 goto out;
1967 } else {
1968 written = iomap_dio_complete(dio);
1969 }
1970
1971 if (written < 0 || !iov_iter_count(from)) {
1972 err = written;
1973 goto out;
1974 }
1975
1976 buffered:
1977 pos = iocb->ki_pos;
1978 written_buffered = btrfs_buffered_write(iocb, from);
1979 if (written_buffered < 0) {
1980 err = written_buffered;
1981 goto out;
1982 }
1983 /*
1984 * Ensure all data is persisted. We want the next direct IO read to be
1985 * able to read what was just written.
1986 */
1987 endbyte = pos + written_buffered - 1;
1988 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1989 if (err)
1990 goto out;
1991 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1992 if (err)
1993 goto out;
1994 written += written_buffered;
1995 iocb->ki_pos = pos + written_buffered;
1996 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1997 endbyte >> PAGE_SHIFT);
1998 out:
1999 return written ? written : err;
2000 }
2001
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2002 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
2003 struct iov_iter *from)
2004 {
2005 struct file *file = iocb->ki_filp;
2006 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2007 ssize_t num_written = 0;
2008 const bool sync = iocb->ki_flags & IOCB_DSYNC;
2009
2010 /*
2011 * If the fs flips readonly due to some impossible error, although we
2012 * have opened a file as writable, we have to stop this write operation
2013 * to ensure consistency.
2014 */
2015 if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2016 return -EROFS;
2017
2018 if (!(iocb->ki_flags & IOCB_DIRECT) &&
2019 (iocb->ki_flags & IOCB_NOWAIT))
2020 return -EOPNOTSUPP;
2021
2022 if (sync)
2023 atomic_inc(&inode->sync_writers);
2024
2025 if (iocb->ki_flags & IOCB_DIRECT)
2026 num_written = btrfs_direct_write(iocb, from);
2027 else
2028 num_written = btrfs_buffered_write(iocb, from);
2029
2030 btrfs_set_inode_last_sub_trans(inode);
2031
2032 if (num_written > 0)
2033 num_written = generic_write_sync(iocb, num_written);
2034
2035 if (sync)
2036 atomic_dec(&inode->sync_writers);
2037
2038 current->backing_dev_info = NULL;
2039 return num_written;
2040 }
2041
btrfs_release_file(struct inode * inode,struct file * filp)2042 int btrfs_release_file(struct inode *inode, struct file *filp)
2043 {
2044 struct btrfs_file_private *private = filp->private_data;
2045
2046 if (private && private->filldir_buf)
2047 kfree(private->filldir_buf);
2048 kfree(private);
2049 filp->private_data = NULL;
2050
2051 /*
2052 * Set by setattr when we are about to truncate a file from a non-zero
2053 * size to a zero size. This tries to flush down new bytes that may
2054 * have been written if the application were using truncate to replace
2055 * a file in place.
2056 */
2057 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2058 &BTRFS_I(inode)->runtime_flags))
2059 filemap_flush(inode->i_mapping);
2060 return 0;
2061 }
2062
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)2063 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2064 {
2065 int ret;
2066 struct blk_plug plug;
2067
2068 /*
2069 * This is only called in fsync, which would do synchronous writes, so
2070 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2071 * multiple disks using raid profile, a large IO can be split to
2072 * several segments of stripe length (currently 64K).
2073 */
2074 blk_start_plug(&plug);
2075 atomic_inc(&BTRFS_I(inode)->sync_writers);
2076 ret = btrfs_fdatawrite_range(inode, start, end);
2077 atomic_dec(&BTRFS_I(inode)->sync_writers);
2078 blk_finish_plug(&plug);
2079
2080 return ret;
2081 }
2082
skip_inode_logging(const struct btrfs_log_ctx * ctx)2083 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2084 {
2085 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2086 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2087
2088 if (btrfs_inode_in_log(inode, fs_info->generation) &&
2089 list_empty(&ctx->ordered_extents))
2090 return true;
2091
2092 /*
2093 * If we are doing a fast fsync we can not bail out if the inode's
2094 * last_trans is <= then the last committed transaction, because we only
2095 * update the last_trans of the inode during ordered extent completion,
2096 * and for a fast fsync we don't wait for that, we only wait for the
2097 * writeback to complete.
2098 */
2099 if (inode->last_trans <= fs_info->last_trans_committed &&
2100 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2101 list_empty(&ctx->ordered_extents)))
2102 return true;
2103
2104 return false;
2105 }
2106
2107 /*
2108 * fsync call for both files and directories. This logs the inode into
2109 * the tree log instead of forcing full commits whenever possible.
2110 *
2111 * It needs to call filemap_fdatawait so that all ordered extent updates are
2112 * in the metadata btree are up to date for copying to the log.
2113 *
2114 * It drops the inode mutex before doing the tree log commit. This is an
2115 * important optimization for directories because holding the mutex prevents
2116 * new operations on the dir while we write to disk.
2117 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)2118 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2119 {
2120 struct dentry *dentry = file_dentry(file);
2121 struct inode *inode = d_inode(dentry);
2122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2123 struct btrfs_root *root = BTRFS_I(inode)->root;
2124 struct btrfs_trans_handle *trans;
2125 struct btrfs_log_ctx ctx;
2126 int ret = 0, err;
2127 u64 len;
2128 bool full_sync;
2129
2130 trace_btrfs_sync_file(file, datasync);
2131
2132 btrfs_init_log_ctx(&ctx, inode);
2133
2134 /*
2135 * Always set the range to a full range, otherwise we can get into
2136 * several problems, from missing file extent items to represent holes
2137 * when not using the NO_HOLES feature, to log tree corruption due to
2138 * races between hole detection during logging and completion of ordered
2139 * extents outside the range, to missing checksums due to ordered extents
2140 * for which we flushed only a subset of their pages.
2141 */
2142 start = 0;
2143 end = LLONG_MAX;
2144 len = (u64)LLONG_MAX + 1;
2145
2146 /*
2147 * We write the dirty pages in the range and wait until they complete
2148 * out of the ->i_mutex. If so, we can flush the dirty pages by
2149 * multi-task, and make the performance up. See
2150 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2151 */
2152 ret = start_ordered_ops(inode, start, end);
2153 if (ret)
2154 goto out;
2155
2156 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2157
2158 atomic_inc(&root->log_batch);
2159
2160 /*
2161 * Always check for the full sync flag while holding the inode's lock,
2162 * to avoid races with other tasks. The flag must be either set all the
2163 * time during logging or always off all the time while logging.
2164 */
2165 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2166 &BTRFS_I(inode)->runtime_flags);
2167
2168 /*
2169 * Before we acquired the inode's lock and the mmap lock, someone may
2170 * have dirtied more pages in the target range. We need to make sure
2171 * that writeback for any such pages does not start while we are logging
2172 * the inode, because if it does, any of the following might happen when
2173 * we are not doing a full inode sync:
2174 *
2175 * 1) We log an extent after its writeback finishes but before its
2176 * checksums are added to the csum tree, leading to -EIO errors
2177 * when attempting to read the extent after a log replay.
2178 *
2179 * 2) We can end up logging an extent before its writeback finishes.
2180 * Therefore after the log replay we will have a file extent item
2181 * pointing to an unwritten extent (and no data checksums as well).
2182 *
2183 * So trigger writeback for any eventual new dirty pages and then we
2184 * wait for all ordered extents to complete below.
2185 */
2186 ret = start_ordered_ops(inode, start, end);
2187 if (ret) {
2188 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2189 goto out;
2190 }
2191
2192 /*
2193 * We have to do this here to avoid the priority inversion of waiting on
2194 * IO of a lower priority task while holding a transaction open.
2195 *
2196 * For a full fsync we wait for the ordered extents to complete while
2197 * for a fast fsync we wait just for writeback to complete, and then
2198 * attach the ordered extents to the transaction so that a transaction
2199 * commit waits for their completion, to avoid data loss if we fsync,
2200 * the current transaction commits before the ordered extents complete
2201 * and a power failure happens right after that.
2202 *
2203 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2204 * logical address recorded in the ordered extent may change. We need
2205 * to wait for the IO to stabilize the logical address.
2206 */
2207 if (full_sync || btrfs_is_zoned(fs_info)) {
2208 ret = btrfs_wait_ordered_range(inode, start, len);
2209 } else {
2210 /*
2211 * Get our ordered extents as soon as possible to avoid doing
2212 * checksum lookups in the csum tree, and use instead the
2213 * checksums attached to the ordered extents.
2214 */
2215 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2216 &ctx.ordered_extents);
2217 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2218 }
2219
2220 if (ret)
2221 goto out_release_extents;
2222
2223 atomic_inc(&root->log_batch);
2224
2225 smp_mb();
2226 if (skip_inode_logging(&ctx)) {
2227 /*
2228 * We've had everything committed since the last time we were
2229 * modified so clear this flag in case it was set for whatever
2230 * reason, it's no longer relevant.
2231 */
2232 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2233 &BTRFS_I(inode)->runtime_flags);
2234 /*
2235 * An ordered extent might have started before and completed
2236 * already with io errors, in which case the inode was not
2237 * updated and we end up here. So check the inode's mapping
2238 * for any errors that might have happened since we last
2239 * checked called fsync.
2240 */
2241 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2242 goto out_release_extents;
2243 }
2244
2245 /*
2246 * We use start here because we will need to wait on the IO to complete
2247 * in btrfs_sync_log, which could require joining a transaction (for
2248 * example checking cross references in the nocow path). If we use join
2249 * here we could get into a situation where we're waiting on IO to
2250 * happen that is blocked on a transaction trying to commit. With start
2251 * we inc the extwriter counter, so we wait for all extwriters to exit
2252 * before we start blocking joiners. This comment is to keep somebody
2253 * from thinking they are super smart and changing this to
2254 * btrfs_join_transaction *cough*Josef*cough*.
2255 */
2256 trans = btrfs_start_transaction(root, 0);
2257 if (IS_ERR(trans)) {
2258 ret = PTR_ERR(trans);
2259 goto out_release_extents;
2260 }
2261 trans->in_fsync = true;
2262
2263 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2264 btrfs_release_log_ctx_extents(&ctx);
2265 if (ret < 0) {
2266 /* Fallthrough and commit/free transaction. */
2267 ret = 1;
2268 }
2269
2270 /* we've logged all the items and now have a consistent
2271 * version of the file in the log. It is possible that
2272 * someone will come in and modify the file, but that's
2273 * fine because the log is consistent on disk, and we
2274 * have references to all of the file's extents
2275 *
2276 * It is possible that someone will come in and log the
2277 * file again, but that will end up using the synchronization
2278 * inside btrfs_sync_log to keep things safe.
2279 */
2280 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2281
2282 if (ret != BTRFS_NO_LOG_SYNC) {
2283 if (!ret) {
2284 ret = btrfs_sync_log(trans, root, &ctx);
2285 if (!ret) {
2286 ret = btrfs_end_transaction(trans);
2287 goto out;
2288 }
2289 }
2290 if (!full_sync) {
2291 ret = btrfs_wait_ordered_range(inode, start, len);
2292 if (ret) {
2293 btrfs_end_transaction(trans);
2294 goto out;
2295 }
2296 }
2297 ret = btrfs_commit_transaction(trans);
2298 } else {
2299 ret = btrfs_end_transaction(trans);
2300 }
2301 out:
2302 ASSERT(list_empty(&ctx.list));
2303 err = file_check_and_advance_wb_err(file);
2304 if (!ret)
2305 ret = err;
2306 return ret > 0 ? -EIO : ret;
2307
2308 out_release_extents:
2309 btrfs_release_log_ctx_extents(&ctx);
2310 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2311 goto out;
2312 }
2313
2314 static const struct vm_operations_struct btrfs_file_vm_ops = {
2315 .fault = filemap_fault,
2316 .map_pages = filemap_map_pages,
2317 .page_mkwrite = btrfs_page_mkwrite,
2318 };
2319
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2320 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2321 {
2322 struct address_space *mapping = filp->f_mapping;
2323
2324 if (!mapping->a_ops->readpage)
2325 return -ENOEXEC;
2326
2327 file_accessed(filp);
2328 vma->vm_ops = &btrfs_file_vm_ops;
2329
2330 return 0;
2331 }
2332
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2333 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2334 int slot, u64 start, u64 end)
2335 {
2336 struct btrfs_file_extent_item *fi;
2337 struct btrfs_key key;
2338
2339 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2340 return 0;
2341
2342 btrfs_item_key_to_cpu(leaf, &key, slot);
2343 if (key.objectid != btrfs_ino(inode) ||
2344 key.type != BTRFS_EXTENT_DATA_KEY)
2345 return 0;
2346
2347 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2348
2349 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2350 return 0;
2351
2352 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2353 return 0;
2354
2355 if (key.offset == end)
2356 return 1;
2357 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2358 return 1;
2359 return 0;
2360 }
2361
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2362 static int fill_holes(struct btrfs_trans_handle *trans,
2363 struct btrfs_inode *inode,
2364 struct btrfs_path *path, u64 offset, u64 end)
2365 {
2366 struct btrfs_fs_info *fs_info = trans->fs_info;
2367 struct btrfs_root *root = inode->root;
2368 struct extent_buffer *leaf;
2369 struct btrfs_file_extent_item *fi;
2370 struct extent_map *hole_em;
2371 struct extent_map_tree *em_tree = &inode->extent_tree;
2372 struct btrfs_key key;
2373 int ret;
2374
2375 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2376 goto out;
2377
2378 key.objectid = btrfs_ino(inode);
2379 key.type = BTRFS_EXTENT_DATA_KEY;
2380 key.offset = offset;
2381
2382 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2383 if (ret <= 0) {
2384 /*
2385 * We should have dropped this offset, so if we find it then
2386 * something has gone horribly wrong.
2387 */
2388 if (ret == 0)
2389 ret = -EINVAL;
2390 return ret;
2391 }
2392
2393 leaf = path->nodes[0];
2394 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2395 u64 num_bytes;
2396
2397 path->slots[0]--;
2398 fi = btrfs_item_ptr(leaf, path->slots[0],
2399 struct btrfs_file_extent_item);
2400 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2401 end - offset;
2402 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2403 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2404 btrfs_set_file_extent_offset(leaf, fi, 0);
2405 btrfs_mark_buffer_dirty(leaf);
2406 goto out;
2407 }
2408
2409 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2410 u64 num_bytes;
2411
2412 key.offset = offset;
2413 btrfs_set_item_key_safe(fs_info, path, &key);
2414 fi = btrfs_item_ptr(leaf, path->slots[0],
2415 struct btrfs_file_extent_item);
2416 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2417 offset;
2418 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2419 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2420 btrfs_set_file_extent_offset(leaf, fi, 0);
2421 btrfs_mark_buffer_dirty(leaf);
2422 goto out;
2423 }
2424 btrfs_release_path(path);
2425
2426 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2427 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2428 if (ret)
2429 return ret;
2430
2431 out:
2432 btrfs_release_path(path);
2433
2434 hole_em = alloc_extent_map();
2435 if (!hole_em) {
2436 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2437 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2438 } else {
2439 hole_em->start = offset;
2440 hole_em->len = end - offset;
2441 hole_em->ram_bytes = hole_em->len;
2442 hole_em->orig_start = offset;
2443
2444 hole_em->block_start = EXTENT_MAP_HOLE;
2445 hole_em->block_len = 0;
2446 hole_em->orig_block_len = 0;
2447 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2448 hole_em->generation = trans->transid;
2449
2450 do {
2451 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2452 write_lock(&em_tree->lock);
2453 ret = add_extent_mapping(em_tree, hole_em, 1);
2454 write_unlock(&em_tree->lock);
2455 } while (ret == -EEXIST);
2456 free_extent_map(hole_em);
2457 if (ret)
2458 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2459 &inode->runtime_flags);
2460 }
2461
2462 return 0;
2463 }
2464
2465 /*
2466 * Find a hole extent on given inode and change start/len to the end of hole
2467 * extent.(hole/vacuum extent whose em->start <= start &&
2468 * em->start + em->len > start)
2469 * When a hole extent is found, return 1 and modify start/len.
2470 */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2471 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2472 {
2473 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2474 struct extent_map *em;
2475 int ret = 0;
2476
2477 em = btrfs_get_extent(inode, NULL, 0,
2478 round_down(*start, fs_info->sectorsize),
2479 round_up(*len, fs_info->sectorsize));
2480 if (IS_ERR(em))
2481 return PTR_ERR(em);
2482
2483 /* Hole or vacuum extent(only exists in no-hole mode) */
2484 if (em->block_start == EXTENT_MAP_HOLE) {
2485 ret = 1;
2486 *len = em->start + em->len > *start + *len ?
2487 0 : *start + *len - em->start - em->len;
2488 *start = em->start + em->len;
2489 }
2490 free_extent_map(em);
2491 return ret;
2492 }
2493
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2494 static int btrfs_punch_hole_lock_range(struct inode *inode,
2495 const u64 lockstart,
2496 const u64 lockend,
2497 struct extent_state **cached_state)
2498 {
2499 /*
2500 * For subpage case, if the range is not at page boundary, we could
2501 * have pages at the leading/tailing part of the range.
2502 * This could lead to dead loop since filemap_range_has_page()
2503 * will always return true.
2504 * So here we need to do extra page alignment for
2505 * filemap_range_has_page().
2506 */
2507 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2508 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2509
2510 while (1) {
2511 struct btrfs_ordered_extent *ordered;
2512 int ret;
2513
2514 truncate_pagecache_range(inode, lockstart, lockend);
2515
2516 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2517 cached_state);
2518 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2519 lockend);
2520
2521 /*
2522 * We need to make sure we have no ordered extents in this range
2523 * and nobody raced in and read a page in this range, if we did
2524 * we need to try again.
2525 */
2526 if ((!ordered ||
2527 (ordered->file_offset + ordered->num_bytes <= lockstart ||
2528 ordered->file_offset > lockend)) &&
2529 !filemap_range_has_page(inode->i_mapping,
2530 page_lockstart, page_lockend)) {
2531 if (ordered)
2532 btrfs_put_ordered_extent(ordered);
2533 break;
2534 }
2535 if (ordered)
2536 btrfs_put_ordered_extent(ordered);
2537 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2538 lockend, cached_state);
2539 ret = btrfs_wait_ordered_range(inode, lockstart,
2540 lockend - lockstart + 1);
2541 if (ret)
2542 return ret;
2543 }
2544 return 0;
2545 }
2546
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2547 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2548 struct btrfs_inode *inode,
2549 struct btrfs_path *path,
2550 struct btrfs_replace_extent_info *extent_info,
2551 const u64 replace_len,
2552 const u64 bytes_to_drop)
2553 {
2554 struct btrfs_fs_info *fs_info = trans->fs_info;
2555 struct btrfs_root *root = inode->root;
2556 struct btrfs_file_extent_item *extent;
2557 struct extent_buffer *leaf;
2558 struct btrfs_key key;
2559 int slot;
2560 struct btrfs_ref ref = { 0 };
2561 int ret;
2562
2563 if (replace_len == 0)
2564 return 0;
2565
2566 if (extent_info->disk_offset == 0 &&
2567 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2568 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2569 return 0;
2570 }
2571
2572 key.objectid = btrfs_ino(inode);
2573 key.type = BTRFS_EXTENT_DATA_KEY;
2574 key.offset = extent_info->file_offset;
2575 ret = btrfs_insert_empty_item(trans, root, path, &key,
2576 sizeof(struct btrfs_file_extent_item));
2577 if (ret)
2578 return ret;
2579 leaf = path->nodes[0];
2580 slot = path->slots[0];
2581 write_extent_buffer(leaf, extent_info->extent_buf,
2582 btrfs_item_ptr_offset(leaf, slot),
2583 sizeof(struct btrfs_file_extent_item));
2584 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2585 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2586 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2587 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2588 if (extent_info->is_new_extent)
2589 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2590 btrfs_mark_buffer_dirty(leaf);
2591 btrfs_release_path(path);
2592
2593 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2594 replace_len);
2595 if (ret)
2596 return ret;
2597
2598 /* If it's a hole, nothing more needs to be done. */
2599 if (extent_info->disk_offset == 0) {
2600 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2601 return 0;
2602 }
2603
2604 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2605
2606 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2607 key.objectid = extent_info->disk_offset;
2608 key.type = BTRFS_EXTENT_ITEM_KEY;
2609 key.offset = extent_info->disk_len;
2610 ret = btrfs_alloc_reserved_file_extent(trans, root,
2611 btrfs_ino(inode),
2612 extent_info->file_offset,
2613 extent_info->qgroup_reserved,
2614 &key);
2615 } else {
2616 u64 ref_offset;
2617
2618 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2619 extent_info->disk_offset,
2620 extent_info->disk_len, 0);
2621 ref_offset = extent_info->file_offset - extent_info->data_offset;
2622 btrfs_init_data_ref(&ref, root->root_key.objectid,
2623 btrfs_ino(inode), ref_offset);
2624 ret = btrfs_inc_extent_ref(trans, &ref);
2625 }
2626
2627 extent_info->insertions++;
2628
2629 return ret;
2630 }
2631
2632 /*
2633 * The respective range must have been previously locked, as well as the inode.
2634 * The end offset is inclusive (last byte of the range).
2635 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2636 * the file range with an extent.
2637 * When not punching a hole, we don't want to end up in a state where we dropped
2638 * extents without inserting a new one, so we must abort the transaction to avoid
2639 * a corruption.
2640 */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2641 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2642 struct btrfs_path *path, const u64 start,
2643 const u64 end,
2644 struct btrfs_replace_extent_info *extent_info,
2645 struct btrfs_trans_handle **trans_out)
2646 {
2647 struct btrfs_drop_extents_args drop_args = { 0 };
2648 struct btrfs_root *root = inode->root;
2649 struct btrfs_fs_info *fs_info = root->fs_info;
2650 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2651 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2652 struct btrfs_trans_handle *trans = NULL;
2653 struct btrfs_block_rsv *rsv;
2654 unsigned int rsv_count;
2655 u64 cur_offset;
2656 u64 len = end - start;
2657 int ret = 0;
2658
2659 if (end <= start)
2660 return -EINVAL;
2661
2662 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2663 if (!rsv) {
2664 ret = -ENOMEM;
2665 goto out;
2666 }
2667 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2668 rsv->failfast = 1;
2669
2670 /*
2671 * 1 - update the inode
2672 * 1 - removing the extents in the range
2673 * 1 - adding the hole extent if no_holes isn't set or if we are
2674 * replacing the range with a new extent
2675 */
2676 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2677 rsv_count = 3;
2678 else
2679 rsv_count = 2;
2680
2681 trans = btrfs_start_transaction(root, rsv_count);
2682 if (IS_ERR(trans)) {
2683 ret = PTR_ERR(trans);
2684 trans = NULL;
2685 goto out_free;
2686 }
2687
2688 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2689 min_size, false);
2690 BUG_ON(ret);
2691 trans->block_rsv = rsv;
2692
2693 cur_offset = start;
2694 drop_args.path = path;
2695 drop_args.end = end + 1;
2696 drop_args.drop_cache = true;
2697 while (cur_offset < end) {
2698 drop_args.start = cur_offset;
2699 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2700 /* If we are punching a hole decrement the inode's byte count */
2701 if (!extent_info)
2702 btrfs_update_inode_bytes(inode, 0,
2703 drop_args.bytes_found);
2704 if (ret != -ENOSPC) {
2705 /*
2706 * The only time we don't want to abort is if we are
2707 * attempting to clone a partial inline extent, in which
2708 * case we'll get EOPNOTSUPP. However if we aren't
2709 * clone we need to abort no matter what, because if we
2710 * got EOPNOTSUPP via prealloc then we messed up and
2711 * need to abort.
2712 */
2713 if (ret &&
2714 (ret != -EOPNOTSUPP ||
2715 (extent_info && extent_info->is_new_extent)))
2716 btrfs_abort_transaction(trans, ret);
2717 break;
2718 }
2719
2720 trans->block_rsv = &fs_info->trans_block_rsv;
2721
2722 if (!extent_info && cur_offset < drop_args.drop_end &&
2723 cur_offset < ino_size) {
2724 ret = fill_holes(trans, inode, path, cur_offset,
2725 drop_args.drop_end);
2726 if (ret) {
2727 /*
2728 * If we failed then we didn't insert our hole
2729 * entries for the area we dropped, so now the
2730 * fs is corrupted, so we must abort the
2731 * transaction.
2732 */
2733 btrfs_abort_transaction(trans, ret);
2734 break;
2735 }
2736 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2737 /*
2738 * We are past the i_size here, but since we didn't
2739 * insert holes we need to clear the mapped area so we
2740 * know to not set disk_i_size in this area until a new
2741 * file extent is inserted here.
2742 */
2743 ret = btrfs_inode_clear_file_extent_range(inode,
2744 cur_offset,
2745 drop_args.drop_end - cur_offset);
2746 if (ret) {
2747 /*
2748 * We couldn't clear our area, so we could
2749 * presumably adjust up and corrupt the fs, so
2750 * we need to abort.
2751 */
2752 btrfs_abort_transaction(trans, ret);
2753 break;
2754 }
2755 }
2756
2757 if (extent_info &&
2758 drop_args.drop_end > extent_info->file_offset) {
2759 u64 replace_len = drop_args.drop_end -
2760 extent_info->file_offset;
2761
2762 ret = btrfs_insert_replace_extent(trans, inode, path,
2763 extent_info, replace_len,
2764 drop_args.bytes_found);
2765 if (ret) {
2766 btrfs_abort_transaction(trans, ret);
2767 break;
2768 }
2769 extent_info->data_len -= replace_len;
2770 extent_info->data_offset += replace_len;
2771 extent_info->file_offset += replace_len;
2772 }
2773
2774 ret = btrfs_update_inode(trans, root, inode);
2775 if (ret)
2776 break;
2777
2778 btrfs_end_transaction(trans);
2779 btrfs_btree_balance_dirty(fs_info);
2780
2781 trans = btrfs_start_transaction(root, rsv_count);
2782 if (IS_ERR(trans)) {
2783 ret = PTR_ERR(trans);
2784 trans = NULL;
2785 break;
2786 }
2787
2788 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2789 rsv, min_size, false);
2790 BUG_ON(ret); /* shouldn't happen */
2791 trans->block_rsv = rsv;
2792
2793 cur_offset = drop_args.drop_end;
2794 len = end - cur_offset;
2795 if (!extent_info && len) {
2796 ret = find_first_non_hole(inode, &cur_offset, &len);
2797 if (unlikely(ret < 0))
2798 break;
2799 if (ret && !len) {
2800 ret = 0;
2801 break;
2802 }
2803 }
2804 }
2805
2806 /*
2807 * If we were cloning, force the next fsync to be a full one since we
2808 * we replaced (or just dropped in the case of cloning holes when
2809 * NO_HOLES is enabled) file extent items and did not setup new extent
2810 * maps for the replacement extents (or holes).
2811 */
2812 if (extent_info && !extent_info->is_new_extent)
2813 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2814
2815 if (ret)
2816 goto out_trans;
2817
2818 trans->block_rsv = &fs_info->trans_block_rsv;
2819 /*
2820 * If we are using the NO_HOLES feature we might have had already an
2821 * hole that overlaps a part of the region [lockstart, lockend] and
2822 * ends at (or beyond) lockend. Since we have no file extent items to
2823 * represent holes, drop_end can be less than lockend and so we must
2824 * make sure we have an extent map representing the existing hole (the
2825 * call to __btrfs_drop_extents() might have dropped the existing extent
2826 * map representing the existing hole), otherwise the fast fsync path
2827 * will not record the existence of the hole region
2828 * [existing_hole_start, lockend].
2829 */
2830 if (drop_args.drop_end <= end)
2831 drop_args.drop_end = end + 1;
2832 /*
2833 * Don't insert file hole extent item if it's for a range beyond eof
2834 * (because it's useless) or if it represents a 0 bytes range (when
2835 * cur_offset == drop_end).
2836 */
2837 if (!extent_info && cur_offset < ino_size &&
2838 cur_offset < drop_args.drop_end) {
2839 ret = fill_holes(trans, inode, path, cur_offset,
2840 drop_args.drop_end);
2841 if (ret) {
2842 /* Same comment as above. */
2843 btrfs_abort_transaction(trans, ret);
2844 goto out_trans;
2845 }
2846 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2847 /* See the comment in the loop above for the reasoning here. */
2848 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2849 drop_args.drop_end - cur_offset);
2850 if (ret) {
2851 btrfs_abort_transaction(trans, ret);
2852 goto out_trans;
2853 }
2854
2855 }
2856 if (extent_info) {
2857 ret = btrfs_insert_replace_extent(trans, inode, path,
2858 extent_info, extent_info->data_len,
2859 drop_args.bytes_found);
2860 if (ret) {
2861 btrfs_abort_transaction(trans, ret);
2862 goto out_trans;
2863 }
2864 }
2865
2866 out_trans:
2867 if (!trans)
2868 goto out_free;
2869
2870 trans->block_rsv = &fs_info->trans_block_rsv;
2871 if (ret)
2872 btrfs_end_transaction(trans);
2873 else
2874 *trans_out = trans;
2875 out_free:
2876 btrfs_free_block_rsv(fs_info, rsv);
2877 out:
2878 return ret;
2879 }
2880
btrfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)2881 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2882 {
2883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2884 struct btrfs_root *root = BTRFS_I(inode)->root;
2885 struct extent_state *cached_state = NULL;
2886 struct btrfs_path *path;
2887 struct btrfs_trans_handle *trans = NULL;
2888 u64 lockstart;
2889 u64 lockend;
2890 u64 tail_start;
2891 u64 tail_len;
2892 u64 orig_start = offset;
2893 int ret = 0;
2894 bool same_block;
2895 u64 ino_size;
2896 bool truncated_block = false;
2897 bool updated_inode = false;
2898
2899 ret = btrfs_wait_ordered_range(inode, offset, len);
2900 if (ret)
2901 return ret;
2902
2903 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2904 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2905 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2906 if (ret < 0)
2907 goto out_only_mutex;
2908 if (ret && !len) {
2909 /* Already in a large hole */
2910 ret = 0;
2911 goto out_only_mutex;
2912 }
2913
2914 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2915 lockend = round_down(offset + len,
2916 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2917 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2918 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2919 /*
2920 * We needn't truncate any block which is beyond the end of the file
2921 * because we are sure there is no data there.
2922 */
2923 /*
2924 * Only do this if we are in the same block and we aren't doing the
2925 * entire block.
2926 */
2927 if (same_block && len < fs_info->sectorsize) {
2928 if (offset < ino_size) {
2929 truncated_block = true;
2930 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2931 0);
2932 } else {
2933 ret = 0;
2934 }
2935 goto out_only_mutex;
2936 }
2937
2938 /* zero back part of the first block */
2939 if (offset < ino_size) {
2940 truncated_block = true;
2941 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2942 if (ret) {
2943 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2944 return ret;
2945 }
2946 }
2947
2948 /* Check the aligned pages after the first unaligned page,
2949 * if offset != orig_start, which means the first unaligned page
2950 * including several following pages are already in holes,
2951 * the extra check can be skipped */
2952 if (offset == orig_start) {
2953 /* after truncate page, check hole again */
2954 len = offset + len - lockstart;
2955 offset = lockstart;
2956 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2957 if (ret < 0)
2958 goto out_only_mutex;
2959 if (ret && !len) {
2960 ret = 0;
2961 goto out_only_mutex;
2962 }
2963 lockstart = offset;
2964 }
2965
2966 /* Check the tail unaligned part is in a hole */
2967 tail_start = lockend + 1;
2968 tail_len = offset + len - tail_start;
2969 if (tail_len) {
2970 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2971 if (unlikely(ret < 0))
2972 goto out_only_mutex;
2973 if (!ret) {
2974 /* zero the front end of the last page */
2975 if (tail_start + tail_len < ino_size) {
2976 truncated_block = true;
2977 ret = btrfs_truncate_block(BTRFS_I(inode),
2978 tail_start + tail_len,
2979 0, 1);
2980 if (ret)
2981 goto out_only_mutex;
2982 }
2983 }
2984 }
2985
2986 if (lockend < lockstart) {
2987 ret = 0;
2988 goto out_only_mutex;
2989 }
2990
2991 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2992 &cached_state);
2993 if (ret)
2994 goto out_only_mutex;
2995
2996 path = btrfs_alloc_path();
2997 if (!path) {
2998 ret = -ENOMEM;
2999 goto out;
3000 }
3001
3002 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3003 lockend, NULL, &trans);
3004 btrfs_free_path(path);
3005 if (ret)
3006 goto out;
3007
3008 ASSERT(trans != NULL);
3009 inode_inc_iversion(inode);
3010 inode->i_mtime = inode->i_ctime = current_time(inode);
3011 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3012 updated_inode = true;
3013 btrfs_end_transaction(trans);
3014 btrfs_btree_balance_dirty(fs_info);
3015 out:
3016 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3017 &cached_state);
3018 out_only_mutex:
3019 if (!updated_inode && truncated_block && !ret) {
3020 /*
3021 * If we only end up zeroing part of a page, we still need to
3022 * update the inode item, so that all the time fields are
3023 * updated as well as the necessary btrfs inode in memory fields
3024 * for detecting, at fsync time, if the inode isn't yet in the
3025 * log tree or it's there but not up to date.
3026 */
3027 struct timespec64 now = current_time(inode);
3028
3029 inode_inc_iversion(inode);
3030 inode->i_mtime = now;
3031 inode->i_ctime = now;
3032 trans = btrfs_start_transaction(root, 1);
3033 if (IS_ERR(trans)) {
3034 ret = PTR_ERR(trans);
3035 } else {
3036 int ret2;
3037
3038 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3039 ret2 = btrfs_end_transaction(trans);
3040 if (!ret)
3041 ret = ret2;
3042 }
3043 }
3044 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3045 return ret;
3046 }
3047
3048 /* Helper structure to record which range is already reserved */
3049 struct falloc_range {
3050 struct list_head list;
3051 u64 start;
3052 u64 len;
3053 };
3054
3055 /*
3056 * Helper function to add falloc range
3057 *
3058 * Caller should have locked the larger range of extent containing
3059 * [start, len)
3060 */
add_falloc_range(struct list_head * head,u64 start,u64 len)3061 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3062 {
3063 struct falloc_range *range = NULL;
3064
3065 if (!list_empty(head)) {
3066 /*
3067 * As fallocate iterates by bytenr order, we only need to check
3068 * the last range.
3069 */
3070 range = list_last_entry(head, struct falloc_range, list);
3071 if (range->start + range->len == start) {
3072 range->len += len;
3073 return 0;
3074 }
3075 }
3076
3077 range = kmalloc(sizeof(*range), GFP_KERNEL);
3078 if (!range)
3079 return -ENOMEM;
3080 range->start = start;
3081 range->len = len;
3082 list_add_tail(&range->list, head);
3083 return 0;
3084 }
3085
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)3086 static int btrfs_fallocate_update_isize(struct inode *inode,
3087 const u64 end,
3088 const int mode)
3089 {
3090 struct btrfs_trans_handle *trans;
3091 struct btrfs_root *root = BTRFS_I(inode)->root;
3092 int ret;
3093 int ret2;
3094
3095 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3096 return 0;
3097
3098 trans = btrfs_start_transaction(root, 1);
3099 if (IS_ERR(trans))
3100 return PTR_ERR(trans);
3101
3102 inode->i_ctime = current_time(inode);
3103 i_size_write(inode, end);
3104 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3105 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3106 ret2 = btrfs_end_transaction(trans);
3107
3108 return ret ? ret : ret2;
3109 }
3110
3111 enum {
3112 RANGE_BOUNDARY_WRITTEN_EXTENT,
3113 RANGE_BOUNDARY_PREALLOC_EXTENT,
3114 RANGE_BOUNDARY_HOLE,
3115 };
3116
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)3117 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3118 u64 offset)
3119 {
3120 const u64 sectorsize = btrfs_inode_sectorsize(inode);
3121 struct extent_map *em;
3122 int ret;
3123
3124 offset = round_down(offset, sectorsize);
3125 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3126 if (IS_ERR(em))
3127 return PTR_ERR(em);
3128
3129 if (em->block_start == EXTENT_MAP_HOLE)
3130 ret = RANGE_BOUNDARY_HOLE;
3131 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3132 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3133 else
3134 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3135
3136 free_extent_map(em);
3137 return ret;
3138 }
3139
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)3140 static int btrfs_zero_range(struct inode *inode,
3141 loff_t offset,
3142 loff_t len,
3143 const int mode)
3144 {
3145 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3146 struct extent_map *em;
3147 struct extent_changeset *data_reserved = NULL;
3148 int ret;
3149 u64 alloc_hint = 0;
3150 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3151 u64 alloc_start = round_down(offset, sectorsize);
3152 u64 alloc_end = round_up(offset + len, sectorsize);
3153 u64 bytes_to_reserve = 0;
3154 bool space_reserved = false;
3155
3156 inode_dio_wait(inode);
3157
3158 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3159 alloc_end - alloc_start);
3160 if (IS_ERR(em)) {
3161 ret = PTR_ERR(em);
3162 goto out;
3163 }
3164
3165 /*
3166 * Avoid hole punching and extent allocation for some cases. More cases
3167 * could be considered, but these are unlikely common and we keep things
3168 * as simple as possible for now. Also, intentionally, if the target
3169 * range contains one or more prealloc extents together with regular
3170 * extents and holes, we drop all the existing extents and allocate a
3171 * new prealloc extent, so that we get a larger contiguous disk extent.
3172 */
3173 if (em->start <= alloc_start &&
3174 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3175 const u64 em_end = em->start + em->len;
3176
3177 if (em_end >= offset + len) {
3178 /*
3179 * The whole range is already a prealloc extent,
3180 * do nothing except updating the inode's i_size if
3181 * needed.
3182 */
3183 free_extent_map(em);
3184 ret = btrfs_fallocate_update_isize(inode, offset + len,
3185 mode);
3186 goto out;
3187 }
3188 /*
3189 * Part of the range is already a prealloc extent, so operate
3190 * only on the remaining part of the range.
3191 */
3192 alloc_start = em_end;
3193 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3194 len = offset + len - alloc_start;
3195 offset = alloc_start;
3196 alloc_hint = em->block_start + em->len;
3197 }
3198 free_extent_map(em);
3199
3200 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3201 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3202 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3203 sectorsize);
3204 if (IS_ERR(em)) {
3205 ret = PTR_ERR(em);
3206 goto out;
3207 }
3208
3209 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3210 free_extent_map(em);
3211 ret = btrfs_fallocate_update_isize(inode, offset + len,
3212 mode);
3213 goto out;
3214 }
3215 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3216 free_extent_map(em);
3217 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3218 0);
3219 if (!ret)
3220 ret = btrfs_fallocate_update_isize(inode,
3221 offset + len,
3222 mode);
3223 return ret;
3224 }
3225 free_extent_map(em);
3226 alloc_start = round_down(offset, sectorsize);
3227 alloc_end = alloc_start + sectorsize;
3228 goto reserve_space;
3229 }
3230
3231 alloc_start = round_up(offset, sectorsize);
3232 alloc_end = round_down(offset + len, sectorsize);
3233
3234 /*
3235 * For unaligned ranges, check the pages at the boundaries, they might
3236 * map to an extent, in which case we need to partially zero them, or
3237 * they might map to a hole, in which case we need our allocation range
3238 * to cover them.
3239 */
3240 if (!IS_ALIGNED(offset, sectorsize)) {
3241 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3242 offset);
3243 if (ret < 0)
3244 goto out;
3245 if (ret == RANGE_BOUNDARY_HOLE) {
3246 alloc_start = round_down(offset, sectorsize);
3247 ret = 0;
3248 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3249 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3250 if (ret)
3251 goto out;
3252 } else {
3253 ret = 0;
3254 }
3255 }
3256
3257 if (!IS_ALIGNED(offset + len, sectorsize)) {
3258 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3259 offset + len);
3260 if (ret < 0)
3261 goto out;
3262 if (ret == RANGE_BOUNDARY_HOLE) {
3263 alloc_end = round_up(offset + len, sectorsize);
3264 ret = 0;
3265 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3266 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3267 0, 1);
3268 if (ret)
3269 goto out;
3270 } else {
3271 ret = 0;
3272 }
3273 }
3274
3275 reserve_space:
3276 if (alloc_start < alloc_end) {
3277 struct extent_state *cached_state = NULL;
3278 const u64 lockstart = alloc_start;
3279 const u64 lockend = alloc_end - 1;
3280
3281 bytes_to_reserve = alloc_end - alloc_start;
3282 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3283 bytes_to_reserve);
3284 if (ret < 0)
3285 goto out;
3286 space_reserved = true;
3287 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3288 &cached_state);
3289 if (ret)
3290 goto out;
3291 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3292 alloc_start, bytes_to_reserve);
3293 if (ret) {
3294 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3295 lockend, &cached_state);
3296 goto out;
3297 }
3298 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3299 alloc_end - alloc_start,
3300 i_blocksize(inode),
3301 offset + len, &alloc_hint);
3302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3303 lockend, &cached_state);
3304 /* btrfs_prealloc_file_range releases reserved space on error */
3305 if (ret) {
3306 space_reserved = false;
3307 goto out;
3308 }
3309 }
3310 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3311 out:
3312 if (ret && space_reserved)
3313 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3314 alloc_start, bytes_to_reserve);
3315 extent_changeset_free(data_reserved);
3316
3317 return ret;
3318 }
3319
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3320 static long btrfs_fallocate(struct file *file, int mode,
3321 loff_t offset, loff_t len)
3322 {
3323 struct inode *inode = file_inode(file);
3324 struct extent_state *cached_state = NULL;
3325 struct extent_changeset *data_reserved = NULL;
3326 struct falloc_range *range;
3327 struct falloc_range *tmp;
3328 struct list_head reserve_list;
3329 u64 cur_offset;
3330 u64 last_byte;
3331 u64 alloc_start;
3332 u64 alloc_end;
3333 u64 alloc_hint = 0;
3334 u64 locked_end;
3335 u64 actual_end = 0;
3336 struct extent_map *em;
3337 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3338 int ret;
3339
3340 /* Do not allow fallocate in ZONED mode */
3341 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3342 return -EOPNOTSUPP;
3343
3344 alloc_start = round_down(offset, blocksize);
3345 alloc_end = round_up(offset + len, blocksize);
3346 cur_offset = alloc_start;
3347
3348 /* Make sure we aren't being give some crap mode */
3349 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3350 FALLOC_FL_ZERO_RANGE))
3351 return -EOPNOTSUPP;
3352
3353 if (mode & FALLOC_FL_PUNCH_HOLE)
3354 return btrfs_punch_hole(inode, offset, len);
3355
3356 /*
3357 * Only trigger disk allocation, don't trigger qgroup reserve
3358 *
3359 * For qgroup space, it will be checked later.
3360 */
3361 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3362 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3363 alloc_end - alloc_start);
3364 if (ret < 0)
3365 return ret;
3366 }
3367
3368 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3369
3370 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3371 ret = inode_newsize_ok(inode, offset + len);
3372 if (ret)
3373 goto out;
3374 }
3375
3376 /*
3377 * TODO: Move these two operations after we have checked
3378 * accurate reserved space, or fallocate can still fail but
3379 * with page truncated or size expanded.
3380 *
3381 * But that's a minor problem and won't do much harm BTW.
3382 */
3383 if (alloc_start > inode->i_size) {
3384 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3385 alloc_start);
3386 if (ret)
3387 goto out;
3388 } else if (offset + len > inode->i_size) {
3389 /*
3390 * If we are fallocating from the end of the file onward we
3391 * need to zero out the end of the block if i_size lands in the
3392 * middle of a block.
3393 */
3394 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3395 if (ret)
3396 goto out;
3397 }
3398
3399 /*
3400 * wait for ordered IO before we have any locks. We'll loop again
3401 * below with the locks held.
3402 */
3403 ret = btrfs_wait_ordered_range(inode, alloc_start,
3404 alloc_end - alloc_start);
3405 if (ret)
3406 goto out;
3407
3408 if (mode & FALLOC_FL_ZERO_RANGE) {
3409 ret = btrfs_zero_range(inode, offset, len, mode);
3410 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3411 return ret;
3412 }
3413
3414 locked_end = alloc_end - 1;
3415 while (1) {
3416 struct btrfs_ordered_extent *ordered;
3417
3418 /* the extent lock is ordered inside the running
3419 * transaction
3420 */
3421 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3422 locked_end, &cached_state);
3423 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3424 locked_end);
3425
3426 if (ordered &&
3427 ordered->file_offset + ordered->num_bytes > alloc_start &&
3428 ordered->file_offset < alloc_end) {
3429 btrfs_put_ordered_extent(ordered);
3430 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3431 alloc_start, locked_end,
3432 &cached_state);
3433 /*
3434 * we can't wait on the range with the transaction
3435 * running or with the extent lock held
3436 */
3437 ret = btrfs_wait_ordered_range(inode, alloc_start,
3438 alloc_end - alloc_start);
3439 if (ret)
3440 goto out;
3441 } else {
3442 if (ordered)
3443 btrfs_put_ordered_extent(ordered);
3444 break;
3445 }
3446 }
3447
3448 /* First, check if we exceed the qgroup limit */
3449 INIT_LIST_HEAD(&reserve_list);
3450 while (cur_offset < alloc_end) {
3451 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3452 alloc_end - cur_offset);
3453 if (IS_ERR(em)) {
3454 ret = PTR_ERR(em);
3455 break;
3456 }
3457 last_byte = min(extent_map_end(em), alloc_end);
3458 actual_end = min_t(u64, extent_map_end(em), offset + len);
3459 last_byte = ALIGN(last_byte, blocksize);
3460 if (em->block_start == EXTENT_MAP_HOLE ||
3461 (cur_offset >= inode->i_size &&
3462 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3463 ret = add_falloc_range(&reserve_list, cur_offset,
3464 last_byte - cur_offset);
3465 if (ret < 0) {
3466 free_extent_map(em);
3467 break;
3468 }
3469 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3470 &data_reserved, cur_offset,
3471 last_byte - cur_offset);
3472 if (ret < 0) {
3473 cur_offset = last_byte;
3474 free_extent_map(em);
3475 break;
3476 }
3477 } else {
3478 /*
3479 * Do not need to reserve unwritten extent for this
3480 * range, free reserved data space first, otherwise
3481 * it'll result in false ENOSPC error.
3482 */
3483 btrfs_free_reserved_data_space(BTRFS_I(inode),
3484 data_reserved, cur_offset,
3485 last_byte - cur_offset);
3486 }
3487 free_extent_map(em);
3488 cur_offset = last_byte;
3489 }
3490
3491 /*
3492 * If ret is still 0, means we're OK to fallocate.
3493 * Or just cleanup the list and exit.
3494 */
3495 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3496 if (!ret)
3497 ret = btrfs_prealloc_file_range(inode, mode,
3498 range->start,
3499 range->len, i_blocksize(inode),
3500 offset + len, &alloc_hint);
3501 else
3502 btrfs_free_reserved_data_space(BTRFS_I(inode),
3503 data_reserved, range->start,
3504 range->len);
3505 list_del(&range->list);
3506 kfree(range);
3507 }
3508 if (ret < 0)
3509 goto out_unlock;
3510
3511 /*
3512 * We didn't need to allocate any more space, but we still extended the
3513 * size of the file so we need to update i_size and the inode item.
3514 */
3515 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3516 out_unlock:
3517 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3518 &cached_state);
3519 out:
3520 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3521 /* Let go of our reservation. */
3522 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3523 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3524 cur_offset, alloc_end - cur_offset);
3525 extent_changeset_free(data_reserved);
3526 return ret;
3527 }
3528
find_desired_extent(struct btrfs_inode * inode,loff_t offset,int whence)3529 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3530 int whence)
3531 {
3532 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3533 struct extent_map *em = NULL;
3534 struct extent_state *cached_state = NULL;
3535 loff_t i_size = inode->vfs_inode.i_size;
3536 u64 lockstart;
3537 u64 lockend;
3538 u64 start;
3539 u64 len;
3540 int ret = 0;
3541
3542 if (i_size == 0 || offset >= i_size)
3543 return -ENXIO;
3544
3545 /*
3546 * offset can be negative, in this case we start finding DATA/HOLE from
3547 * the very start of the file.
3548 */
3549 start = max_t(loff_t, 0, offset);
3550
3551 lockstart = round_down(start, fs_info->sectorsize);
3552 lockend = round_up(i_size, fs_info->sectorsize);
3553 if (lockend <= lockstart)
3554 lockend = lockstart + fs_info->sectorsize;
3555 lockend--;
3556 len = lockend - lockstart + 1;
3557
3558 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3559
3560 while (start < i_size) {
3561 em = btrfs_get_extent_fiemap(inode, start, len);
3562 if (IS_ERR(em)) {
3563 ret = PTR_ERR(em);
3564 em = NULL;
3565 break;
3566 }
3567
3568 if (whence == SEEK_HOLE &&
3569 (em->block_start == EXTENT_MAP_HOLE ||
3570 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3571 break;
3572 else if (whence == SEEK_DATA &&
3573 (em->block_start != EXTENT_MAP_HOLE &&
3574 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3575 break;
3576
3577 start = em->start + em->len;
3578 free_extent_map(em);
3579 em = NULL;
3580 cond_resched();
3581 }
3582 free_extent_map(em);
3583 unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3584 &cached_state);
3585 if (ret) {
3586 offset = ret;
3587 } else {
3588 if (whence == SEEK_DATA && start >= i_size)
3589 offset = -ENXIO;
3590 else
3591 offset = min_t(loff_t, start, i_size);
3592 }
3593
3594 return offset;
3595 }
3596
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3597 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3598 {
3599 struct inode *inode = file->f_mapping->host;
3600
3601 switch (whence) {
3602 default:
3603 return generic_file_llseek(file, offset, whence);
3604 case SEEK_DATA:
3605 case SEEK_HOLE:
3606 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3607 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3608 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3609 break;
3610 }
3611
3612 if (offset < 0)
3613 return offset;
3614
3615 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3616 }
3617
btrfs_file_open(struct inode * inode,struct file * filp)3618 static int btrfs_file_open(struct inode *inode, struct file *filp)
3619 {
3620 int ret;
3621
3622 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3623
3624 ret = fsverity_file_open(inode, filp);
3625 if (ret)
3626 return ret;
3627 return generic_file_open(inode, filp);
3628 }
3629
check_direct_read(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)3630 static int check_direct_read(struct btrfs_fs_info *fs_info,
3631 const struct iov_iter *iter, loff_t offset)
3632 {
3633 int ret;
3634 int i, seg;
3635
3636 ret = check_direct_IO(fs_info, iter, offset);
3637 if (ret < 0)
3638 return ret;
3639
3640 if (!iter_is_iovec(iter))
3641 return 0;
3642
3643 for (seg = 0; seg < iter->nr_segs; seg++)
3644 for (i = seg + 1; i < iter->nr_segs; i++)
3645 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3646 return -EINVAL;
3647 return 0;
3648 }
3649
btrfs_direct_read(struct kiocb * iocb,struct iov_iter * to)3650 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3651 {
3652 struct inode *inode = file_inode(iocb->ki_filp);
3653 ssize_t ret;
3654
3655 if (fsverity_active(inode))
3656 return 0;
3657
3658 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3659 return 0;
3660
3661 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3662 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3663 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3664 return ret;
3665 }
3666
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3667 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3668 {
3669 ssize_t ret = 0;
3670
3671 if (iocb->ki_flags & IOCB_DIRECT) {
3672 ret = btrfs_direct_read(iocb, to);
3673 if (ret < 0 || !iov_iter_count(to) ||
3674 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3675 return ret;
3676 }
3677
3678 return filemap_read(iocb, to, ret);
3679 }
3680
3681 const struct file_operations btrfs_file_operations = {
3682 .llseek = btrfs_file_llseek,
3683 .read_iter = btrfs_file_read_iter,
3684 .splice_read = generic_file_splice_read,
3685 .write_iter = btrfs_file_write_iter,
3686 .splice_write = iter_file_splice_write,
3687 .mmap = btrfs_file_mmap,
3688 .open = btrfs_file_open,
3689 .release = btrfs_release_file,
3690 .fsync = btrfs_sync_file,
3691 .fallocate = btrfs_fallocate,
3692 .unlocked_ioctl = btrfs_ioctl,
3693 #ifdef CONFIG_COMPAT
3694 .compat_ioctl = btrfs_compat_ioctl,
3695 #endif
3696 .remap_file_range = btrfs_remap_file_range,
3697 };
3698
btrfs_auto_defrag_exit(void)3699 void __cold btrfs_auto_defrag_exit(void)
3700 {
3701 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3702 }
3703
btrfs_auto_defrag_init(void)3704 int __init btrfs_auto_defrag_init(void)
3705 {
3706 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3707 sizeof(struct inode_defrag), 0,
3708 SLAB_MEM_SPREAD,
3709 NULL);
3710 if (!btrfs_inode_defrag_cachep)
3711 return -ENOMEM;
3712
3713 return 0;
3714 }
3715
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3716 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3717 {
3718 int ret;
3719
3720 /*
3721 * So with compression we will find and lock a dirty page and clear the
3722 * first one as dirty, setup an async extent, and immediately return
3723 * with the entire range locked but with nobody actually marked with
3724 * writeback. So we can't just filemap_write_and_wait_range() and
3725 * expect it to work since it will just kick off a thread to do the
3726 * actual work. So we need to call filemap_fdatawrite_range _again_
3727 * since it will wait on the page lock, which won't be unlocked until
3728 * after the pages have been marked as writeback and so we're good to go
3729 * from there. We have to do this otherwise we'll miss the ordered
3730 * extents and that results in badness. Please Josef, do not think you
3731 * know better and pull this out at some point in the future, it is
3732 * right and you are wrong.
3733 */
3734 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3735 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3736 &BTRFS_I(inode)->runtime_flags))
3737 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3738
3739 return ret;
3740 }
3741