1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 
25 #define BTRFS_ROOT_TRANS_TAG 0
26 
27 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
28 	[TRANS_STATE_RUNNING]		= 0U,
29 	[TRANS_STATE_BLOCKED]		=  __TRANS_START,
30 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
31 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
32 					   __TRANS_ATTACH |
33 					   __TRANS_JOIN |
34 					   __TRANS_JOIN_NOSTART),
35 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
36 					   __TRANS_ATTACH |
37 					   __TRANS_JOIN |
38 					   __TRANS_JOIN_NOLOCK |
39 					   __TRANS_JOIN_NOSTART),
40 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
41 					   __TRANS_ATTACH |
42 					   __TRANS_JOIN |
43 					   __TRANS_JOIN_NOLOCK |
44 					   __TRANS_JOIN_NOSTART),
45 };
46 
btrfs_put_transaction(struct btrfs_transaction * transaction)47 void btrfs_put_transaction(struct btrfs_transaction *transaction)
48 {
49 	WARN_ON(refcount_read(&transaction->use_count) == 0);
50 	if (refcount_dec_and_test(&transaction->use_count)) {
51 		BUG_ON(!list_empty(&transaction->list));
52 		WARN_ON(!RB_EMPTY_ROOT(
53 				&transaction->delayed_refs.href_root.rb_root));
54 		if (transaction->delayed_refs.pending_csums)
55 			btrfs_err(transaction->fs_info,
56 				  "pending csums is %llu",
57 				  transaction->delayed_refs.pending_csums);
58 		/*
59 		 * If any block groups are found in ->deleted_bgs then it's
60 		 * because the transaction was aborted and a commit did not
61 		 * happen (things failed before writing the new superblock
62 		 * and calling btrfs_finish_extent_commit()), so we can not
63 		 * discard the physical locations of the block groups.
64 		 */
65 		while (!list_empty(&transaction->deleted_bgs)) {
66 			struct btrfs_block_group_cache *cache;
67 
68 			cache = list_first_entry(&transaction->deleted_bgs,
69 						 struct btrfs_block_group_cache,
70 						 bg_list);
71 			list_del_init(&cache->bg_list);
72 			btrfs_put_block_group_trimming(cache);
73 			btrfs_put_block_group(cache);
74 		}
75 		WARN_ON(!list_empty(&transaction->dev_update_list));
76 		kfree(transaction);
77 	}
78 }
79 
switch_commit_roots(struct btrfs_transaction * trans)80 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
81 {
82 	struct btrfs_fs_info *fs_info = trans->fs_info;
83 	struct btrfs_root *root, *tmp;
84 
85 	down_write(&fs_info->commit_root_sem);
86 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
87 				 dirty_list) {
88 		list_del_init(&root->dirty_list);
89 		free_extent_buffer(root->commit_root);
90 		root->commit_root = btrfs_root_node(root);
91 		if (is_fstree(root->root_key.objectid))
92 			btrfs_unpin_free_ino(root);
93 		extent_io_tree_release(&root->dirty_log_pages);
94 		btrfs_qgroup_clean_swapped_blocks(root);
95 	}
96 
97 	/* We can free old roots now. */
98 	spin_lock(&trans->dropped_roots_lock);
99 	while (!list_empty(&trans->dropped_roots)) {
100 		root = list_first_entry(&trans->dropped_roots,
101 					struct btrfs_root, root_list);
102 		list_del_init(&root->root_list);
103 		spin_unlock(&trans->dropped_roots_lock);
104 		btrfs_drop_and_free_fs_root(fs_info, root);
105 		spin_lock(&trans->dropped_roots_lock);
106 	}
107 	spin_unlock(&trans->dropped_roots_lock);
108 	up_write(&fs_info->commit_root_sem);
109 }
110 
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)111 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
112 					 unsigned int type)
113 {
114 	if (type & TRANS_EXTWRITERS)
115 		atomic_inc(&trans->num_extwriters);
116 }
117 
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)118 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
119 					 unsigned int type)
120 {
121 	if (type & TRANS_EXTWRITERS)
122 		atomic_dec(&trans->num_extwriters);
123 }
124 
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)125 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
126 					  unsigned int type)
127 {
128 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
129 }
130 
extwriter_counter_read(struct btrfs_transaction * trans)131 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
132 {
133 	return atomic_read(&trans->num_extwriters);
134 }
135 
136 /*
137  * To be called after all the new block groups attached to the transaction
138  * handle have been created (btrfs_create_pending_block_groups()).
139  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)140 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
141 {
142 	struct btrfs_fs_info *fs_info = trans->fs_info;
143 
144 	if (!trans->chunk_bytes_reserved)
145 		return;
146 
147 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
148 
149 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
150 				trans->chunk_bytes_reserved);
151 	trans->chunk_bytes_reserved = 0;
152 }
153 
154 /*
155  * either allocate a new transaction or hop into the existing one
156  */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)157 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
158 				     unsigned int type)
159 {
160 	struct btrfs_transaction *cur_trans;
161 
162 	spin_lock(&fs_info->trans_lock);
163 loop:
164 	/* The file system has been taken offline. No new transactions. */
165 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
166 		spin_unlock(&fs_info->trans_lock);
167 		return -EROFS;
168 	}
169 
170 	cur_trans = fs_info->running_transaction;
171 	if (cur_trans) {
172 		if (cur_trans->aborted) {
173 			spin_unlock(&fs_info->trans_lock);
174 			return cur_trans->aborted;
175 		}
176 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
177 			spin_unlock(&fs_info->trans_lock);
178 			return -EBUSY;
179 		}
180 		refcount_inc(&cur_trans->use_count);
181 		atomic_inc(&cur_trans->num_writers);
182 		extwriter_counter_inc(cur_trans, type);
183 		spin_unlock(&fs_info->trans_lock);
184 		return 0;
185 	}
186 	spin_unlock(&fs_info->trans_lock);
187 
188 	/*
189 	 * If we are ATTACH, we just want to catch the current transaction,
190 	 * and commit it. If there is no transaction, just return ENOENT.
191 	 */
192 	if (type == TRANS_ATTACH)
193 		return -ENOENT;
194 
195 	/*
196 	 * JOIN_NOLOCK only happens during the transaction commit, so
197 	 * it is impossible that ->running_transaction is NULL
198 	 */
199 	BUG_ON(type == TRANS_JOIN_NOLOCK);
200 
201 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
202 	if (!cur_trans)
203 		return -ENOMEM;
204 
205 	spin_lock(&fs_info->trans_lock);
206 	if (fs_info->running_transaction) {
207 		/*
208 		 * someone started a transaction after we unlocked.  Make sure
209 		 * to redo the checks above
210 		 */
211 		kfree(cur_trans);
212 		goto loop;
213 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
214 		spin_unlock(&fs_info->trans_lock);
215 		kfree(cur_trans);
216 		return -EROFS;
217 	}
218 
219 	cur_trans->fs_info = fs_info;
220 	atomic_set(&cur_trans->num_writers, 1);
221 	extwriter_counter_init(cur_trans, type);
222 	init_waitqueue_head(&cur_trans->writer_wait);
223 	init_waitqueue_head(&cur_trans->commit_wait);
224 	cur_trans->state = TRANS_STATE_RUNNING;
225 	/*
226 	 * One for this trans handle, one so it will live on until we
227 	 * commit the transaction.
228 	 */
229 	refcount_set(&cur_trans->use_count, 2);
230 	cur_trans->flags = 0;
231 	cur_trans->start_time = ktime_get_seconds();
232 
233 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
234 
235 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
236 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
237 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
238 
239 	/*
240 	 * although the tree mod log is per file system and not per transaction,
241 	 * the log must never go across transaction boundaries.
242 	 */
243 	smp_mb();
244 	if (!list_empty(&fs_info->tree_mod_seq_list))
245 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
246 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
247 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
248 	atomic64_set(&fs_info->tree_mod_seq, 0);
249 
250 	spin_lock_init(&cur_trans->delayed_refs.lock);
251 
252 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
253 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
254 	INIT_LIST_HEAD(&cur_trans->switch_commits);
255 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
256 	INIT_LIST_HEAD(&cur_trans->io_bgs);
257 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
258 	mutex_init(&cur_trans->cache_write_mutex);
259 	spin_lock_init(&cur_trans->dirty_bgs_lock);
260 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
261 	spin_lock_init(&cur_trans->dropped_roots_lock);
262 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
263 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
264 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
265 	fs_info->generation++;
266 	cur_trans->transid = fs_info->generation;
267 	fs_info->running_transaction = cur_trans;
268 	cur_trans->aborted = 0;
269 	spin_unlock(&fs_info->trans_lock);
270 
271 	return 0;
272 }
273 
274 /*
275  * this does all the record keeping required to make sure that a reference
276  * counted root is properly recorded in a given transaction.  This is required
277  * to make sure the old root from before we joined the transaction is deleted
278  * when the transaction commits
279  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)280 static int record_root_in_trans(struct btrfs_trans_handle *trans,
281 			       struct btrfs_root *root,
282 			       int force)
283 {
284 	struct btrfs_fs_info *fs_info = root->fs_info;
285 
286 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
287 	    root->last_trans < trans->transid) || force) {
288 		WARN_ON(root == fs_info->extent_root);
289 		WARN_ON(!force && root->commit_root != root->node);
290 
291 		/*
292 		 * see below for IN_TRANS_SETUP usage rules
293 		 * we have the reloc mutex held now, so there
294 		 * is only one writer in this function
295 		 */
296 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
297 
298 		/* make sure readers find IN_TRANS_SETUP before
299 		 * they find our root->last_trans update
300 		 */
301 		smp_wmb();
302 
303 		spin_lock(&fs_info->fs_roots_radix_lock);
304 		if (root->last_trans == trans->transid && !force) {
305 			spin_unlock(&fs_info->fs_roots_radix_lock);
306 			return 0;
307 		}
308 		radix_tree_tag_set(&fs_info->fs_roots_radix,
309 				   (unsigned long)root->root_key.objectid,
310 				   BTRFS_ROOT_TRANS_TAG);
311 		spin_unlock(&fs_info->fs_roots_radix_lock);
312 		root->last_trans = trans->transid;
313 
314 		/* this is pretty tricky.  We don't want to
315 		 * take the relocation lock in btrfs_record_root_in_trans
316 		 * unless we're really doing the first setup for this root in
317 		 * this transaction.
318 		 *
319 		 * Normally we'd use root->last_trans as a flag to decide
320 		 * if we want to take the expensive mutex.
321 		 *
322 		 * But, we have to set root->last_trans before we
323 		 * init the relocation root, otherwise, we trip over warnings
324 		 * in ctree.c.  The solution used here is to flag ourselves
325 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
326 		 * fixing up the reloc trees and everyone must wait.
327 		 *
328 		 * When this is zero, they can trust root->last_trans and fly
329 		 * through btrfs_record_root_in_trans without having to take the
330 		 * lock.  smp_wmb() makes sure that all the writes above are
331 		 * done before we pop in the zero below
332 		 */
333 		btrfs_init_reloc_root(trans, root);
334 		smp_mb__before_atomic();
335 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
336 	}
337 	return 0;
338 }
339 
340 
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)341 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
342 			    struct btrfs_root *root)
343 {
344 	struct btrfs_fs_info *fs_info = root->fs_info;
345 	struct btrfs_transaction *cur_trans = trans->transaction;
346 
347 	/* Add ourselves to the transaction dropped list */
348 	spin_lock(&cur_trans->dropped_roots_lock);
349 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
350 	spin_unlock(&cur_trans->dropped_roots_lock);
351 
352 	/* Make sure we don't try to update the root at commit time */
353 	spin_lock(&fs_info->fs_roots_radix_lock);
354 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
355 			     (unsigned long)root->root_key.objectid,
356 			     BTRFS_ROOT_TRANS_TAG);
357 	spin_unlock(&fs_info->fs_roots_radix_lock);
358 }
359 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)360 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
361 			       struct btrfs_root *root)
362 {
363 	struct btrfs_fs_info *fs_info = root->fs_info;
364 
365 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
366 		return 0;
367 
368 	/*
369 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
370 	 * and barriers
371 	 */
372 	smp_rmb();
373 	if (root->last_trans == trans->transid &&
374 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
375 		return 0;
376 
377 	mutex_lock(&fs_info->reloc_mutex);
378 	record_root_in_trans(trans, root, 0);
379 	mutex_unlock(&fs_info->reloc_mutex);
380 
381 	return 0;
382 }
383 
is_transaction_blocked(struct btrfs_transaction * trans)384 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
385 {
386 	return (trans->state >= TRANS_STATE_BLOCKED &&
387 		trans->state < TRANS_STATE_UNBLOCKED &&
388 		!trans->aborted);
389 }
390 
391 /* wait for commit against the current transaction to become unblocked
392  * when this is done, it is safe to start a new transaction, but the current
393  * transaction might not be fully on disk.
394  */
wait_current_trans(struct btrfs_fs_info * fs_info)395 static void wait_current_trans(struct btrfs_fs_info *fs_info)
396 {
397 	struct btrfs_transaction *cur_trans;
398 
399 	spin_lock(&fs_info->trans_lock);
400 	cur_trans = fs_info->running_transaction;
401 	if (cur_trans && is_transaction_blocked(cur_trans)) {
402 		refcount_inc(&cur_trans->use_count);
403 		spin_unlock(&fs_info->trans_lock);
404 
405 		wait_event(fs_info->transaction_wait,
406 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
407 			   cur_trans->aborted);
408 		btrfs_put_transaction(cur_trans);
409 	} else {
410 		spin_unlock(&fs_info->trans_lock);
411 	}
412 }
413 
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)414 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
415 {
416 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
417 		return 0;
418 
419 	if (type == TRANS_START)
420 		return 1;
421 
422 	return 0;
423 }
424 
need_reserve_reloc_root(struct btrfs_root * root)425 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
426 {
427 	struct btrfs_fs_info *fs_info = root->fs_info;
428 
429 	if (!fs_info->reloc_ctl ||
430 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
431 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
432 	    root->reloc_root)
433 		return false;
434 
435 	return true;
436 }
437 
438 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)439 start_transaction(struct btrfs_root *root, unsigned int num_items,
440 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
441 		  bool enforce_qgroups)
442 {
443 	struct btrfs_fs_info *fs_info = root->fs_info;
444 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
445 	struct btrfs_trans_handle *h;
446 	struct btrfs_transaction *cur_trans;
447 	u64 num_bytes = 0;
448 	u64 qgroup_reserved = 0;
449 	bool reloc_reserved = false;
450 	int ret;
451 
452 	/* Send isn't supposed to start transactions. */
453 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
454 
455 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
456 		return ERR_PTR(-EROFS);
457 
458 	if (current->journal_info) {
459 		WARN_ON(type & TRANS_EXTWRITERS);
460 		h = current->journal_info;
461 		refcount_inc(&h->use_count);
462 		WARN_ON(refcount_read(&h->use_count) > 2);
463 		h->orig_rsv = h->block_rsv;
464 		h->block_rsv = NULL;
465 		goto got_it;
466 	}
467 
468 	/*
469 	 * Do the reservation before we join the transaction so we can do all
470 	 * the appropriate flushing if need be.
471 	 */
472 	if (num_items && root != fs_info->chunk_root) {
473 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
474 		u64 delayed_refs_bytes = 0;
475 
476 		qgroup_reserved = num_items * fs_info->nodesize;
477 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
478 				enforce_qgroups);
479 		if (ret)
480 			return ERR_PTR(ret);
481 
482 		/*
483 		 * We want to reserve all the bytes we may need all at once, so
484 		 * we only do 1 enospc flushing cycle per transaction start.  We
485 		 * accomplish this by simply assuming we'll do 2 x num_items
486 		 * worth of delayed refs updates in this trans handle, and
487 		 * refill that amount for whatever is missing in the reserve.
488 		 */
489 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
490 		if (delayed_refs_rsv->full == 0) {
491 			delayed_refs_bytes = num_bytes;
492 			num_bytes <<= 1;
493 		}
494 
495 		/*
496 		 * Do the reservation for the relocation root creation
497 		 */
498 		if (need_reserve_reloc_root(root)) {
499 			num_bytes += fs_info->nodesize;
500 			reloc_reserved = true;
501 		}
502 
503 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
504 		if (ret)
505 			goto reserve_fail;
506 		if (delayed_refs_bytes) {
507 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
508 							  delayed_refs_bytes);
509 			num_bytes -= delayed_refs_bytes;
510 		}
511 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
512 		   !delayed_refs_rsv->full) {
513 		/*
514 		 * Some people call with btrfs_start_transaction(root, 0)
515 		 * because they can be throttled, but have some other mechanism
516 		 * for reserving space.  We still want these guys to refill the
517 		 * delayed block_rsv so just add 1 items worth of reservation
518 		 * here.
519 		 */
520 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
521 		if (ret)
522 			goto reserve_fail;
523 	}
524 again:
525 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
526 	if (!h) {
527 		ret = -ENOMEM;
528 		goto alloc_fail;
529 	}
530 
531 	/*
532 	 * If we are JOIN_NOLOCK we're already committing a transaction and
533 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
534 	 * because we're already holding a ref.  We need this because we could
535 	 * have raced in and did an fsync() on a file which can kick a commit
536 	 * and then we deadlock with somebody doing a freeze.
537 	 *
538 	 * If we are ATTACH, it means we just want to catch the current
539 	 * transaction and commit it, so we needn't do sb_start_intwrite().
540 	 */
541 	if (type & __TRANS_FREEZABLE)
542 		sb_start_intwrite(fs_info->sb);
543 
544 	if (may_wait_transaction(fs_info, type))
545 		wait_current_trans(fs_info);
546 
547 	do {
548 		ret = join_transaction(fs_info, type);
549 		if (ret == -EBUSY) {
550 			wait_current_trans(fs_info);
551 			if (unlikely(type == TRANS_ATTACH ||
552 				     type == TRANS_JOIN_NOSTART))
553 				ret = -ENOENT;
554 		}
555 	} while (ret == -EBUSY);
556 
557 	if (ret < 0)
558 		goto join_fail;
559 
560 	cur_trans = fs_info->running_transaction;
561 
562 	h->transid = cur_trans->transid;
563 	h->transaction = cur_trans;
564 	h->root = root;
565 	refcount_set(&h->use_count, 1);
566 	h->fs_info = root->fs_info;
567 
568 	h->type = type;
569 	h->can_flush_pending_bgs = true;
570 	INIT_LIST_HEAD(&h->new_bgs);
571 
572 	smp_mb();
573 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
574 	    may_wait_transaction(fs_info, type)) {
575 		current->journal_info = h;
576 		btrfs_commit_transaction(h);
577 		goto again;
578 	}
579 
580 	if (num_bytes) {
581 		trace_btrfs_space_reservation(fs_info, "transaction",
582 					      h->transid, num_bytes, 1);
583 		h->block_rsv = &fs_info->trans_block_rsv;
584 		h->bytes_reserved = num_bytes;
585 		h->reloc_reserved = reloc_reserved;
586 	}
587 
588 got_it:
589 	btrfs_record_root_in_trans(h, root);
590 
591 	if (!current->journal_info)
592 		current->journal_info = h;
593 	return h;
594 
595 join_fail:
596 	if (type & __TRANS_FREEZABLE)
597 		sb_end_intwrite(fs_info->sb);
598 	kmem_cache_free(btrfs_trans_handle_cachep, h);
599 alloc_fail:
600 	if (num_bytes)
601 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
602 					num_bytes);
603 reserve_fail:
604 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
605 	return ERR_PTR(ret);
606 }
607 
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)608 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
609 						   unsigned int num_items)
610 {
611 	return start_transaction(root, num_items, TRANS_START,
612 				 BTRFS_RESERVE_FLUSH_ALL, true);
613 }
614 
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items,int min_factor)615 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
616 					struct btrfs_root *root,
617 					unsigned int num_items,
618 					int min_factor)
619 {
620 	struct btrfs_fs_info *fs_info = root->fs_info;
621 	struct btrfs_trans_handle *trans;
622 	u64 num_bytes;
623 	int ret;
624 
625 	/*
626 	 * We have two callers: unlink and block group removal.  The
627 	 * former should succeed even if we will temporarily exceed
628 	 * quota and the latter operates on the extent root so
629 	 * qgroup enforcement is ignored anyway.
630 	 */
631 	trans = start_transaction(root, num_items, TRANS_START,
632 				  BTRFS_RESERVE_FLUSH_ALL, false);
633 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
634 		return trans;
635 
636 	trans = btrfs_start_transaction(root, 0);
637 	if (IS_ERR(trans))
638 		return trans;
639 
640 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
641 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
642 				       num_bytes, min_factor);
643 	if (ret) {
644 		btrfs_end_transaction(trans);
645 		return ERR_PTR(ret);
646 	}
647 
648 	trans->block_rsv = &fs_info->trans_block_rsv;
649 	trans->bytes_reserved = num_bytes;
650 	trace_btrfs_space_reservation(fs_info, "transaction",
651 				      trans->transid, num_bytes, 1);
652 
653 	return trans;
654 }
655 
btrfs_join_transaction(struct btrfs_root * root)656 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
657 {
658 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
659 				 true);
660 }
661 
btrfs_join_transaction_nolock(struct btrfs_root * root)662 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
663 {
664 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
665 				 BTRFS_RESERVE_NO_FLUSH, true);
666 }
667 
668 /*
669  * Similar to regular join but it never starts a transaction when none is
670  * running or after waiting for the current one to finish.
671  */
btrfs_join_transaction_nostart(struct btrfs_root * root)672 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
673 {
674 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
675 				 BTRFS_RESERVE_NO_FLUSH, true);
676 }
677 
678 /*
679  * btrfs_attach_transaction() - catch the running transaction
680  *
681  * It is used when we want to commit the current the transaction, but
682  * don't want to start a new one.
683  *
684  * Note: If this function return -ENOENT, it just means there is no
685  * running transaction. But it is possible that the inactive transaction
686  * is still in the memory, not fully on disk. If you hope there is no
687  * inactive transaction in the fs when -ENOENT is returned, you should
688  * invoke
689  *     btrfs_attach_transaction_barrier()
690  */
btrfs_attach_transaction(struct btrfs_root * root)691 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
692 {
693 	return start_transaction(root, 0, TRANS_ATTACH,
694 				 BTRFS_RESERVE_NO_FLUSH, true);
695 }
696 
697 /*
698  * btrfs_attach_transaction_barrier() - catch the running transaction
699  *
700  * It is similar to the above function, the difference is this one
701  * will wait for all the inactive transactions until they fully
702  * complete.
703  */
704 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)705 btrfs_attach_transaction_barrier(struct btrfs_root *root)
706 {
707 	struct btrfs_trans_handle *trans;
708 
709 	trans = start_transaction(root, 0, TRANS_ATTACH,
710 				  BTRFS_RESERVE_NO_FLUSH, true);
711 	if (trans == ERR_PTR(-ENOENT))
712 		btrfs_wait_for_commit(root->fs_info, 0);
713 
714 	return trans;
715 }
716 
717 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_transaction * commit)718 static noinline void wait_for_commit(struct btrfs_transaction *commit)
719 {
720 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
721 }
722 
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)723 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
724 {
725 	struct btrfs_transaction *cur_trans = NULL, *t;
726 	int ret = 0;
727 
728 	if (transid) {
729 		if (transid <= fs_info->last_trans_committed)
730 			goto out;
731 
732 		/* find specified transaction */
733 		spin_lock(&fs_info->trans_lock);
734 		list_for_each_entry(t, &fs_info->trans_list, list) {
735 			if (t->transid == transid) {
736 				cur_trans = t;
737 				refcount_inc(&cur_trans->use_count);
738 				ret = 0;
739 				break;
740 			}
741 			if (t->transid > transid) {
742 				ret = 0;
743 				break;
744 			}
745 		}
746 		spin_unlock(&fs_info->trans_lock);
747 
748 		/*
749 		 * The specified transaction doesn't exist, or we
750 		 * raced with btrfs_commit_transaction
751 		 */
752 		if (!cur_trans) {
753 			if (transid > fs_info->last_trans_committed)
754 				ret = -EINVAL;
755 			goto out;
756 		}
757 	} else {
758 		/* find newest transaction that is committing | committed */
759 		spin_lock(&fs_info->trans_lock);
760 		list_for_each_entry_reverse(t, &fs_info->trans_list,
761 					    list) {
762 			if (t->state >= TRANS_STATE_COMMIT_START) {
763 				if (t->state == TRANS_STATE_COMPLETED)
764 					break;
765 				cur_trans = t;
766 				refcount_inc(&cur_trans->use_count);
767 				break;
768 			}
769 		}
770 		spin_unlock(&fs_info->trans_lock);
771 		if (!cur_trans)
772 			goto out;  /* nothing committing|committed */
773 	}
774 
775 	wait_for_commit(cur_trans);
776 	btrfs_put_transaction(cur_trans);
777 out:
778 	return ret;
779 }
780 
btrfs_throttle(struct btrfs_fs_info * fs_info)781 void btrfs_throttle(struct btrfs_fs_info *fs_info)
782 {
783 	wait_current_trans(fs_info);
784 }
785 
should_end_transaction(struct btrfs_trans_handle * trans)786 static int should_end_transaction(struct btrfs_trans_handle *trans)
787 {
788 	struct btrfs_fs_info *fs_info = trans->fs_info;
789 
790 	if (btrfs_check_space_for_delayed_refs(fs_info))
791 		return 1;
792 
793 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
794 }
795 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)796 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
797 {
798 	struct btrfs_transaction *cur_trans = trans->transaction;
799 
800 	smp_mb();
801 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
802 	    cur_trans->delayed_refs.flushing)
803 		return 1;
804 
805 	return should_end_transaction(trans);
806 }
807 
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)808 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
809 
810 {
811 	struct btrfs_fs_info *fs_info = trans->fs_info;
812 
813 	if (!trans->block_rsv) {
814 		ASSERT(!trans->bytes_reserved);
815 		return;
816 	}
817 
818 	if (!trans->bytes_reserved)
819 		return;
820 
821 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
822 	trace_btrfs_space_reservation(fs_info, "transaction",
823 				      trans->transid, trans->bytes_reserved, 0);
824 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
825 				trans->bytes_reserved);
826 	trans->bytes_reserved = 0;
827 }
828 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)829 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
830 				   int throttle)
831 {
832 	struct btrfs_fs_info *info = trans->fs_info;
833 	struct btrfs_transaction *cur_trans = trans->transaction;
834 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
835 	int err = 0;
836 
837 	if (refcount_read(&trans->use_count) > 1) {
838 		refcount_dec(&trans->use_count);
839 		trans->block_rsv = trans->orig_rsv;
840 		return 0;
841 	}
842 
843 	btrfs_trans_release_metadata(trans);
844 	trans->block_rsv = NULL;
845 
846 	btrfs_create_pending_block_groups(trans);
847 
848 	btrfs_trans_release_chunk_metadata(trans);
849 
850 	if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
851 		if (throttle)
852 			return btrfs_commit_transaction(trans);
853 		else
854 			wake_up_process(info->transaction_kthread);
855 	}
856 
857 	if (trans->type & __TRANS_FREEZABLE)
858 		sb_end_intwrite(info->sb);
859 
860 	WARN_ON(cur_trans != info->running_transaction);
861 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
862 	atomic_dec(&cur_trans->num_writers);
863 	extwriter_counter_dec(cur_trans, trans->type);
864 
865 	cond_wake_up(&cur_trans->writer_wait);
866 	btrfs_put_transaction(cur_trans);
867 
868 	if (current->journal_info == trans)
869 		current->journal_info = NULL;
870 
871 	if (throttle)
872 		btrfs_run_delayed_iputs(info);
873 
874 	if (trans->aborted ||
875 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
876 		wake_up_process(info->transaction_kthread);
877 		err = -EIO;
878 	}
879 
880 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
881 	return err;
882 }
883 
btrfs_end_transaction(struct btrfs_trans_handle * trans)884 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
885 {
886 	return __btrfs_end_transaction(trans, 0);
887 }
888 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)889 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
890 {
891 	return __btrfs_end_transaction(trans, 1);
892 }
893 
894 /*
895  * when btree blocks are allocated, they have some corresponding bits set for
896  * them in one of two extent_io trees.  This is used to make sure all of
897  * those extents are sent to disk but does not wait on them
898  */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)899 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
900 			       struct extent_io_tree *dirty_pages, int mark)
901 {
902 	int err = 0;
903 	int werr = 0;
904 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
905 	struct extent_state *cached_state = NULL;
906 	u64 start = 0;
907 	u64 end;
908 
909 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
910 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
911 				      mark, &cached_state)) {
912 		bool wait_writeback = false;
913 
914 		err = convert_extent_bit(dirty_pages, start, end,
915 					 EXTENT_NEED_WAIT,
916 					 mark, &cached_state);
917 		/*
918 		 * convert_extent_bit can return -ENOMEM, which is most of the
919 		 * time a temporary error. So when it happens, ignore the error
920 		 * and wait for writeback of this range to finish - because we
921 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
922 		 * to __btrfs_wait_marked_extents() would not know that
923 		 * writeback for this range started and therefore wouldn't
924 		 * wait for it to finish - we don't want to commit a
925 		 * superblock that points to btree nodes/leafs for which
926 		 * writeback hasn't finished yet (and without errors).
927 		 * We cleanup any entries left in the io tree when committing
928 		 * the transaction (through extent_io_tree_release()).
929 		 */
930 		if (err == -ENOMEM) {
931 			err = 0;
932 			wait_writeback = true;
933 		}
934 		if (!err)
935 			err = filemap_fdatawrite_range(mapping, start, end);
936 		if (err)
937 			werr = err;
938 		else if (wait_writeback)
939 			werr = filemap_fdatawait_range(mapping, start, end);
940 		free_extent_state(cached_state);
941 		cached_state = NULL;
942 		cond_resched();
943 		start = end + 1;
944 	}
945 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
946 	return werr;
947 }
948 
949 /*
950  * when btree blocks are allocated, they have some corresponding bits set for
951  * them in one of two extent_io trees.  This is used to make sure all of
952  * those extents are on disk for transaction or log commit.  We wait
953  * on all the pages and clear them from the dirty pages state tree
954  */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)955 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
956 				       struct extent_io_tree *dirty_pages)
957 {
958 	int err = 0;
959 	int werr = 0;
960 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
961 	struct extent_state *cached_state = NULL;
962 	u64 start = 0;
963 	u64 end;
964 
965 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
966 				      EXTENT_NEED_WAIT, &cached_state)) {
967 		/*
968 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
969 		 * When committing the transaction, we'll remove any entries
970 		 * left in the io tree. For a log commit, we don't remove them
971 		 * after committing the log because the tree can be accessed
972 		 * concurrently - we do it only at transaction commit time when
973 		 * it's safe to do it (through extent_io_tree_release()).
974 		 */
975 		err = clear_extent_bit(dirty_pages, start, end,
976 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
977 		if (err == -ENOMEM)
978 			err = 0;
979 		if (!err)
980 			err = filemap_fdatawait_range(mapping, start, end);
981 		if (err)
982 			werr = err;
983 		free_extent_state(cached_state);
984 		cached_state = NULL;
985 		cond_resched();
986 		start = end + 1;
987 	}
988 	if (err)
989 		werr = err;
990 	return werr;
991 }
992 
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)993 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
994 		       struct extent_io_tree *dirty_pages)
995 {
996 	bool errors = false;
997 	int err;
998 
999 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1000 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1001 		errors = true;
1002 
1003 	if (errors && !err)
1004 		err = -EIO;
1005 	return err;
1006 }
1007 
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1008 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1009 {
1010 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1011 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1012 	bool errors = false;
1013 	int err;
1014 
1015 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1016 
1017 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1018 	if ((mark & EXTENT_DIRTY) &&
1019 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1020 		errors = true;
1021 
1022 	if ((mark & EXTENT_NEW) &&
1023 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1024 		errors = true;
1025 
1026 	if (errors && !err)
1027 		err = -EIO;
1028 	return err;
1029 }
1030 
1031 /*
1032  * When btree blocks are allocated the corresponding extents are marked dirty.
1033  * This function ensures such extents are persisted on disk for transaction or
1034  * log commit.
1035  *
1036  * @trans: transaction whose dirty pages we'd like to write
1037  */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1038 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1039 {
1040 	int ret;
1041 	int ret2;
1042 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1043 	struct btrfs_fs_info *fs_info = trans->fs_info;
1044 	struct blk_plug plug;
1045 
1046 	blk_start_plug(&plug);
1047 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1048 	blk_finish_plug(&plug);
1049 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1050 
1051 	extent_io_tree_release(&trans->transaction->dirty_pages);
1052 
1053 	if (ret)
1054 		return ret;
1055 	else if (ret2)
1056 		return ret2;
1057 	else
1058 		return 0;
1059 }
1060 
1061 /*
1062  * this is used to update the root pointer in the tree of tree roots.
1063  *
1064  * But, in the case of the extent allocation tree, updating the root
1065  * pointer may allocate blocks which may change the root of the extent
1066  * allocation tree.
1067  *
1068  * So, this loops and repeats and makes sure the cowonly root didn't
1069  * change while the root pointer was being updated in the metadata.
1070  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1071 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1072 			       struct btrfs_root *root)
1073 {
1074 	int ret;
1075 	u64 old_root_bytenr;
1076 	u64 old_root_used;
1077 	struct btrfs_fs_info *fs_info = root->fs_info;
1078 	struct btrfs_root *tree_root = fs_info->tree_root;
1079 
1080 	old_root_used = btrfs_root_used(&root->root_item);
1081 
1082 	while (1) {
1083 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1084 		if (old_root_bytenr == root->node->start &&
1085 		    old_root_used == btrfs_root_used(&root->root_item))
1086 			break;
1087 
1088 		btrfs_set_root_node(&root->root_item, root->node);
1089 		ret = btrfs_update_root(trans, tree_root,
1090 					&root->root_key,
1091 					&root->root_item);
1092 		if (ret)
1093 			return ret;
1094 
1095 		old_root_used = btrfs_root_used(&root->root_item);
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 /*
1102  * update all the cowonly tree roots on disk
1103  *
1104  * The error handling in this function may not be obvious. Any of the
1105  * failures will cause the file system to go offline. We still need
1106  * to clean up the delayed refs.
1107  */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1108 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1109 {
1110 	struct btrfs_fs_info *fs_info = trans->fs_info;
1111 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1112 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1113 	struct list_head *next;
1114 	struct extent_buffer *eb;
1115 	int ret;
1116 
1117 	eb = btrfs_lock_root_node(fs_info->tree_root);
1118 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1119 			      0, &eb);
1120 	btrfs_tree_unlock(eb);
1121 	free_extent_buffer(eb);
1122 
1123 	if (ret)
1124 		return ret;
1125 
1126 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1127 	if (ret)
1128 		return ret;
1129 
1130 	ret = btrfs_run_dev_stats(trans);
1131 	if (ret)
1132 		return ret;
1133 	ret = btrfs_run_dev_replace(trans);
1134 	if (ret)
1135 		return ret;
1136 	ret = btrfs_run_qgroups(trans);
1137 	if (ret)
1138 		return ret;
1139 
1140 	ret = btrfs_setup_space_cache(trans);
1141 	if (ret)
1142 		return ret;
1143 
1144 	/* run_qgroups might have added some more refs */
1145 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1146 	if (ret)
1147 		return ret;
1148 again:
1149 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1150 		struct btrfs_root *root;
1151 		next = fs_info->dirty_cowonly_roots.next;
1152 		list_del_init(next);
1153 		root = list_entry(next, struct btrfs_root, dirty_list);
1154 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1155 
1156 		if (root != fs_info->extent_root)
1157 			list_add_tail(&root->dirty_list,
1158 				      &trans->transaction->switch_commits);
1159 		ret = update_cowonly_root(trans, root);
1160 		if (ret)
1161 			return ret;
1162 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1163 		if (ret)
1164 			return ret;
1165 	}
1166 
1167 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1168 		ret = btrfs_write_dirty_block_groups(trans);
1169 		if (ret)
1170 			return ret;
1171 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1172 		if (ret)
1173 			return ret;
1174 	}
1175 
1176 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1177 		goto again;
1178 
1179 	list_add_tail(&fs_info->extent_root->dirty_list,
1180 		      &trans->transaction->switch_commits);
1181 
1182 	/* Update dev-replace pointer once everything is committed */
1183 	fs_info->dev_replace.committed_cursor_left =
1184 		fs_info->dev_replace.cursor_left_last_write_of_item;
1185 
1186 	return 0;
1187 }
1188 
1189 /*
1190  * dead roots are old snapshots that need to be deleted.  This allocates
1191  * a dirty root struct and adds it into the list of dead roots that need to
1192  * be deleted
1193  */
btrfs_add_dead_root(struct btrfs_root * root)1194 void btrfs_add_dead_root(struct btrfs_root *root)
1195 {
1196 	struct btrfs_fs_info *fs_info = root->fs_info;
1197 
1198 	spin_lock(&fs_info->trans_lock);
1199 	if (list_empty(&root->root_list))
1200 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1201 	spin_unlock(&fs_info->trans_lock);
1202 }
1203 
1204 /*
1205  * update all the cowonly tree roots on disk
1206  */
commit_fs_roots(struct btrfs_trans_handle * trans)1207 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1208 {
1209 	struct btrfs_fs_info *fs_info = trans->fs_info;
1210 	struct btrfs_root *gang[8];
1211 	int i;
1212 	int ret;
1213 	int err = 0;
1214 
1215 	spin_lock(&fs_info->fs_roots_radix_lock);
1216 	while (1) {
1217 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1218 						 (void **)gang, 0,
1219 						 ARRAY_SIZE(gang),
1220 						 BTRFS_ROOT_TRANS_TAG);
1221 		if (ret == 0)
1222 			break;
1223 		for (i = 0; i < ret; i++) {
1224 			struct btrfs_root *root = gang[i];
1225 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1226 					(unsigned long)root->root_key.objectid,
1227 					BTRFS_ROOT_TRANS_TAG);
1228 			spin_unlock(&fs_info->fs_roots_radix_lock);
1229 
1230 			btrfs_free_log(trans, root);
1231 			btrfs_update_reloc_root(trans, root);
1232 
1233 			btrfs_save_ino_cache(root, trans);
1234 
1235 			/* see comments in should_cow_block() */
1236 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1237 			smp_mb__after_atomic();
1238 
1239 			if (root->commit_root != root->node) {
1240 				list_add_tail(&root->dirty_list,
1241 					&trans->transaction->switch_commits);
1242 				btrfs_set_root_node(&root->root_item,
1243 						    root->node);
1244 			}
1245 
1246 			err = btrfs_update_root(trans, fs_info->tree_root,
1247 						&root->root_key,
1248 						&root->root_item);
1249 			spin_lock(&fs_info->fs_roots_radix_lock);
1250 			if (err)
1251 				break;
1252 			btrfs_qgroup_free_meta_all_pertrans(root);
1253 		}
1254 	}
1255 	spin_unlock(&fs_info->fs_roots_radix_lock);
1256 	return err;
1257 }
1258 
1259 /*
1260  * defrag a given btree.
1261  * Every leaf in the btree is read and defragged.
1262  */
btrfs_defrag_root(struct btrfs_root * root)1263 int btrfs_defrag_root(struct btrfs_root *root)
1264 {
1265 	struct btrfs_fs_info *info = root->fs_info;
1266 	struct btrfs_trans_handle *trans;
1267 	int ret;
1268 
1269 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1270 		return 0;
1271 
1272 	while (1) {
1273 		trans = btrfs_start_transaction(root, 0);
1274 		if (IS_ERR(trans))
1275 			return PTR_ERR(trans);
1276 
1277 		ret = btrfs_defrag_leaves(trans, root);
1278 
1279 		btrfs_end_transaction(trans);
1280 		btrfs_btree_balance_dirty(info);
1281 		cond_resched();
1282 
1283 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1284 			break;
1285 
1286 		if (btrfs_defrag_cancelled(info)) {
1287 			btrfs_debug(info, "defrag_root cancelled");
1288 			ret = -EAGAIN;
1289 			break;
1290 		}
1291 	}
1292 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1293 	return ret;
1294 }
1295 
1296 /*
1297  * Do all special snapshot related qgroup dirty hack.
1298  *
1299  * Will do all needed qgroup inherit and dirty hack like switch commit
1300  * roots inside one transaction and write all btree into disk, to make
1301  * qgroup works.
1302  */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1303 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1304 				   struct btrfs_root *src,
1305 				   struct btrfs_root *parent,
1306 				   struct btrfs_qgroup_inherit *inherit,
1307 				   u64 dst_objectid)
1308 {
1309 	struct btrfs_fs_info *fs_info = src->fs_info;
1310 	int ret;
1311 
1312 	/*
1313 	 * Save some performance in the case that qgroups are not
1314 	 * enabled. If this check races with the ioctl, rescan will
1315 	 * kick in anyway.
1316 	 */
1317 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1318 		return 0;
1319 
1320 	/*
1321 	 * Ensure dirty @src will be committed.  Or, after coming
1322 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1323 	 * recorded root will never be updated again, causing an outdated root
1324 	 * item.
1325 	 */
1326 	record_root_in_trans(trans, src, 1);
1327 
1328 	/*
1329 	 * We are going to commit transaction, see btrfs_commit_transaction()
1330 	 * comment for reason locking tree_log_mutex
1331 	 */
1332 	mutex_lock(&fs_info->tree_log_mutex);
1333 
1334 	ret = commit_fs_roots(trans);
1335 	if (ret)
1336 		goto out;
1337 	ret = btrfs_qgroup_account_extents(trans);
1338 	if (ret < 0)
1339 		goto out;
1340 
1341 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1342 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1343 				   inherit);
1344 	if (ret < 0)
1345 		goto out;
1346 
1347 	/*
1348 	 * Now we do a simplified commit transaction, which will:
1349 	 * 1) commit all subvolume and extent tree
1350 	 *    To ensure all subvolume and extent tree have a valid
1351 	 *    commit_root to accounting later insert_dir_item()
1352 	 * 2) write all btree blocks onto disk
1353 	 *    This is to make sure later btree modification will be cowed
1354 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1355 	 * In this simplified commit, we don't really care about other trees
1356 	 * like chunk and root tree, as they won't affect qgroup.
1357 	 * And we don't write super to avoid half committed status.
1358 	 */
1359 	ret = commit_cowonly_roots(trans);
1360 	if (ret)
1361 		goto out;
1362 	switch_commit_roots(trans->transaction);
1363 	ret = btrfs_write_and_wait_transaction(trans);
1364 	if (ret)
1365 		btrfs_handle_fs_error(fs_info, ret,
1366 			"Error while writing out transaction for qgroup");
1367 
1368 out:
1369 	mutex_unlock(&fs_info->tree_log_mutex);
1370 
1371 	/*
1372 	 * Force parent root to be updated, as we recorded it before so its
1373 	 * last_trans == cur_transid.
1374 	 * Or it won't be committed again onto disk after later
1375 	 * insert_dir_item()
1376 	 */
1377 	if (!ret)
1378 		record_root_in_trans(trans, parent, 1);
1379 	return ret;
1380 }
1381 
1382 /*
1383  * new snapshots need to be created at a very specific time in the
1384  * transaction commit.  This does the actual creation.
1385  *
1386  * Note:
1387  * If the error which may affect the commitment of the current transaction
1388  * happens, we should return the error number. If the error which just affect
1389  * the creation of the pending snapshots, just return 0.
1390  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1391 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1392 				   struct btrfs_pending_snapshot *pending)
1393 {
1394 
1395 	struct btrfs_fs_info *fs_info = trans->fs_info;
1396 	struct btrfs_key key;
1397 	struct btrfs_root_item *new_root_item;
1398 	struct btrfs_root *tree_root = fs_info->tree_root;
1399 	struct btrfs_root *root = pending->root;
1400 	struct btrfs_root *parent_root;
1401 	struct btrfs_block_rsv *rsv;
1402 	struct inode *parent_inode;
1403 	struct btrfs_path *path;
1404 	struct btrfs_dir_item *dir_item;
1405 	struct dentry *dentry;
1406 	struct extent_buffer *tmp;
1407 	struct extent_buffer *old;
1408 	struct timespec64 cur_time;
1409 	int ret = 0;
1410 	u64 to_reserve = 0;
1411 	u64 index = 0;
1412 	u64 objectid;
1413 	u64 root_flags;
1414 	uuid_le new_uuid;
1415 
1416 	ASSERT(pending->path);
1417 	path = pending->path;
1418 
1419 	ASSERT(pending->root_item);
1420 	new_root_item = pending->root_item;
1421 
1422 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1423 	if (pending->error)
1424 		goto no_free_objectid;
1425 
1426 	/*
1427 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1428 	 * accounted by later btrfs_qgroup_inherit().
1429 	 */
1430 	btrfs_set_skip_qgroup(trans, objectid);
1431 
1432 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1433 
1434 	if (to_reserve > 0) {
1435 		pending->error = btrfs_block_rsv_add(root,
1436 						     &pending->block_rsv,
1437 						     to_reserve,
1438 						     BTRFS_RESERVE_NO_FLUSH);
1439 		if (pending->error)
1440 			goto clear_skip_qgroup;
1441 	}
1442 
1443 	key.objectid = objectid;
1444 	key.offset = (u64)-1;
1445 	key.type = BTRFS_ROOT_ITEM_KEY;
1446 
1447 	rsv = trans->block_rsv;
1448 	trans->block_rsv = &pending->block_rsv;
1449 	trans->bytes_reserved = trans->block_rsv->reserved;
1450 	trace_btrfs_space_reservation(fs_info, "transaction",
1451 				      trans->transid,
1452 				      trans->bytes_reserved, 1);
1453 	dentry = pending->dentry;
1454 	parent_inode = pending->dir;
1455 	parent_root = BTRFS_I(parent_inode)->root;
1456 	record_root_in_trans(trans, parent_root, 0);
1457 
1458 	cur_time = current_time(parent_inode);
1459 
1460 	/*
1461 	 * insert the directory item
1462 	 */
1463 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1464 	BUG_ON(ret); /* -ENOMEM */
1465 
1466 	/* check if there is a file/dir which has the same name. */
1467 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1468 					 btrfs_ino(BTRFS_I(parent_inode)),
1469 					 dentry->d_name.name,
1470 					 dentry->d_name.len, 0);
1471 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1472 		pending->error = -EEXIST;
1473 		goto dir_item_existed;
1474 	} else if (IS_ERR(dir_item)) {
1475 		ret = PTR_ERR(dir_item);
1476 		btrfs_abort_transaction(trans, ret);
1477 		goto fail;
1478 	}
1479 	btrfs_release_path(path);
1480 
1481 	/*
1482 	 * pull in the delayed directory update
1483 	 * and the delayed inode item
1484 	 * otherwise we corrupt the FS during
1485 	 * snapshot
1486 	 */
1487 	ret = btrfs_run_delayed_items(trans);
1488 	if (ret) {	/* Transaction aborted */
1489 		btrfs_abort_transaction(trans, ret);
1490 		goto fail;
1491 	}
1492 
1493 	record_root_in_trans(trans, root, 0);
1494 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1495 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1496 	btrfs_check_and_init_root_item(new_root_item);
1497 
1498 	root_flags = btrfs_root_flags(new_root_item);
1499 	if (pending->readonly)
1500 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1501 	else
1502 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1503 	btrfs_set_root_flags(new_root_item, root_flags);
1504 
1505 	btrfs_set_root_generation_v2(new_root_item,
1506 			trans->transid);
1507 	uuid_le_gen(&new_uuid);
1508 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1509 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1510 			BTRFS_UUID_SIZE);
1511 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1512 		memset(new_root_item->received_uuid, 0,
1513 		       sizeof(new_root_item->received_uuid));
1514 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1515 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1516 		btrfs_set_root_stransid(new_root_item, 0);
1517 		btrfs_set_root_rtransid(new_root_item, 0);
1518 	}
1519 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1520 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1521 	btrfs_set_root_otransid(new_root_item, trans->transid);
1522 
1523 	old = btrfs_lock_root_node(root);
1524 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1525 	if (ret) {
1526 		btrfs_tree_unlock(old);
1527 		free_extent_buffer(old);
1528 		btrfs_abort_transaction(trans, ret);
1529 		goto fail;
1530 	}
1531 
1532 	btrfs_set_lock_blocking_write(old);
1533 
1534 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1535 	/* clean up in any case */
1536 	btrfs_tree_unlock(old);
1537 	free_extent_buffer(old);
1538 	if (ret) {
1539 		btrfs_abort_transaction(trans, ret);
1540 		goto fail;
1541 	}
1542 	/* see comments in should_cow_block() */
1543 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1544 	smp_wmb();
1545 
1546 	btrfs_set_root_node(new_root_item, tmp);
1547 	/* record when the snapshot was created in key.offset */
1548 	key.offset = trans->transid;
1549 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1550 	btrfs_tree_unlock(tmp);
1551 	free_extent_buffer(tmp);
1552 	if (ret) {
1553 		btrfs_abort_transaction(trans, ret);
1554 		goto fail;
1555 	}
1556 
1557 	/*
1558 	 * insert root back/forward references
1559 	 */
1560 	ret = btrfs_add_root_ref(trans, objectid,
1561 				 parent_root->root_key.objectid,
1562 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1563 				 dentry->d_name.name, dentry->d_name.len);
1564 	if (ret) {
1565 		btrfs_abort_transaction(trans, ret);
1566 		goto fail;
1567 	}
1568 
1569 	key.offset = (u64)-1;
1570 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1571 	if (IS_ERR(pending->snap)) {
1572 		ret = PTR_ERR(pending->snap);
1573 		btrfs_abort_transaction(trans, ret);
1574 		goto fail;
1575 	}
1576 
1577 	ret = btrfs_reloc_post_snapshot(trans, pending);
1578 	if (ret) {
1579 		btrfs_abort_transaction(trans, ret);
1580 		goto fail;
1581 	}
1582 
1583 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1584 	if (ret) {
1585 		btrfs_abort_transaction(trans, ret);
1586 		goto fail;
1587 	}
1588 
1589 	/*
1590 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1591 	 * snapshot hack to do fast snapshot.
1592 	 * To co-operate with that hack, we do hack again.
1593 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1594 	 */
1595 	ret = qgroup_account_snapshot(trans, root, parent_root,
1596 				      pending->inherit, objectid);
1597 	if (ret < 0)
1598 		goto fail;
1599 
1600 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1601 				    dentry->d_name.len, BTRFS_I(parent_inode),
1602 				    &key, BTRFS_FT_DIR, index);
1603 	/* We have check then name at the beginning, so it is impossible. */
1604 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1605 	if (ret) {
1606 		btrfs_abort_transaction(trans, ret);
1607 		goto fail;
1608 	}
1609 
1610 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1611 					 dentry->d_name.len * 2);
1612 	parent_inode->i_mtime = parent_inode->i_ctime =
1613 		current_time(parent_inode);
1614 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1615 	if (ret) {
1616 		btrfs_abort_transaction(trans, ret);
1617 		goto fail;
1618 	}
1619 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1620 				  objectid);
1621 	if (ret) {
1622 		btrfs_abort_transaction(trans, ret);
1623 		goto fail;
1624 	}
1625 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1626 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1627 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1628 					  objectid);
1629 		if (ret && ret != -EEXIST) {
1630 			btrfs_abort_transaction(trans, ret);
1631 			goto fail;
1632 		}
1633 	}
1634 
1635 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1636 	if (ret) {
1637 		btrfs_abort_transaction(trans, ret);
1638 		goto fail;
1639 	}
1640 
1641 fail:
1642 	pending->error = ret;
1643 dir_item_existed:
1644 	trans->block_rsv = rsv;
1645 	trans->bytes_reserved = 0;
1646 clear_skip_qgroup:
1647 	btrfs_clear_skip_qgroup(trans);
1648 no_free_objectid:
1649 	kfree(new_root_item);
1650 	pending->root_item = NULL;
1651 	btrfs_free_path(path);
1652 	pending->path = NULL;
1653 
1654 	return ret;
1655 }
1656 
1657 /*
1658  * create all the snapshots we've scheduled for creation
1659  */
create_pending_snapshots(struct btrfs_trans_handle * trans)1660 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1661 {
1662 	struct btrfs_pending_snapshot *pending, *next;
1663 	struct list_head *head = &trans->transaction->pending_snapshots;
1664 	int ret = 0;
1665 
1666 	list_for_each_entry_safe(pending, next, head, list) {
1667 		list_del(&pending->list);
1668 		ret = create_pending_snapshot(trans, pending);
1669 		if (ret)
1670 			break;
1671 	}
1672 	return ret;
1673 }
1674 
update_super_roots(struct btrfs_fs_info * fs_info)1675 static void update_super_roots(struct btrfs_fs_info *fs_info)
1676 {
1677 	struct btrfs_root_item *root_item;
1678 	struct btrfs_super_block *super;
1679 
1680 	super = fs_info->super_copy;
1681 
1682 	root_item = &fs_info->chunk_root->root_item;
1683 	super->chunk_root = root_item->bytenr;
1684 	super->chunk_root_generation = root_item->generation;
1685 	super->chunk_root_level = root_item->level;
1686 
1687 	root_item = &fs_info->tree_root->root_item;
1688 	super->root = root_item->bytenr;
1689 	super->generation = root_item->generation;
1690 	super->root_level = root_item->level;
1691 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1692 		super->cache_generation = root_item->generation;
1693 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1694 		super->uuid_tree_generation = root_item->generation;
1695 }
1696 
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1697 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1698 {
1699 	struct btrfs_transaction *trans;
1700 	int ret = 0;
1701 
1702 	spin_lock(&info->trans_lock);
1703 	trans = info->running_transaction;
1704 	if (trans)
1705 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1706 	spin_unlock(&info->trans_lock);
1707 	return ret;
1708 }
1709 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1710 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1711 {
1712 	struct btrfs_transaction *trans;
1713 	int ret = 0;
1714 
1715 	spin_lock(&info->trans_lock);
1716 	trans = info->running_transaction;
1717 	if (trans)
1718 		ret = is_transaction_blocked(trans);
1719 	spin_unlock(&info->trans_lock);
1720 	return ret;
1721 }
1722 
1723 /*
1724  * wait for the current transaction commit to start and block subsequent
1725  * transaction joins
1726  */
wait_current_trans_commit_start(struct btrfs_fs_info * fs_info,struct btrfs_transaction * trans)1727 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1728 					    struct btrfs_transaction *trans)
1729 {
1730 	wait_event(fs_info->transaction_blocked_wait,
1731 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1732 }
1733 
1734 /*
1735  * wait for the current transaction to start and then become unblocked.
1736  * caller holds ref.
1737  */
wait_current_trans_commit_start_and_unblock(struct btrfs_fs_info * fs_info,struct btrfs_transaction * trans)1738 static void wait_current_trans_commit_start_and_unblock(
1739 					struct btrfs_fs_info *fs_info,
1740 					struct btrfs_transaction *trans)
1741 {
1742 	wait_event(fs_info->transaction_wait,
1743 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1744 }
1745 
1746 /*
1747  * commit transactions asynchronously. once btrfs_commit_transaction_async
1748  * returns, any subsequent transaction will not be allowed to join.
1749  */
1750 struct btrfs_async_commit {
1751 	struct btrfs_trans_handle *newtrans;
1752 	struct work_struct work;
1753 };
1754 
do_async_commit(struct work_struct * work)1755 static void do_async_commit(struct work_struct *work)
1756 {
1757 	struct btrfs_async_commit *ac =
1758 		container_of(work, struct btrfs_async_commit, work);
1759 
1760 	/*
1761 	 * We've got freeze protection passed with the transaction.
1762 	 * Tell lockdep about it.
1763 	 */
1764 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1765 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1766 
1767 	current->journal_info = ac->newtrans;
1768 
1769 	btrfs_commit_transaction(ac->newtrans);
1770 	kfree(ac);
1771 }
1772 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,int wait_for_unblock)1773 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1774 				   int wait_for_unblock)
1775 {
1776 	struct btrfs_fs_info *fs_info = trans->fs_info;
1777 	struct btrfs_async_commit *ac;
1778 	struct btrfs_transaction *cur_trans;
1779 
1780 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1781 	if (!ac)
1782 		return -ENOMEM;
1783 
1784 	INIT_WORK(&ac->work, do_async_commit);
1785 	ac->newtrans = btrfs_join_transaction(trans->root);
1786 	if (IS_ERR(ac->newtrans)) {
1787 		int err = PTR_ERR(ac->newtrans);
1788 		kfree(ac);
1789 		return err;
1790 	}
1791 
1792 	/* take transaction reference */
1793 	cur_trans = trans->transaction;
1794 	refcount_inc(&cur_trans->use_count);
1795 
1796 	btrfs_end_transaction(trans);
1797 
1798 	/*
1799 	 * Tell lockdep we've released the freeze rwsem, since the
1800 	 * async commit thread will be the one to unlock it.
1801 	 */
1802 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1803 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1804 
1805 	schedule_work(&ac->work);
1806 
1807 	/* wait for transaction to start and unblock */
1808 	if (wait_for_unblock)
1809 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1810 	else
1811 		wait_current_trans_commit_start(fs_info, cur_trans);
1812 
1813 	if (current->journal_info == trans)
1814 		current->journal_info = NULL;
1815 
1816 	btrfs_put_transaction(cur_trans);
1817 	return 0;
1818 }
1819 
1820 
cleanup_transaction(struct btrfs_trans_handle * trans,int err)1821 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1822 {
1823 	struct btrfs_fs_info *fs_info = trans->fs_info;
1824 	struct btrfs_transaction *cur_trans = trans->transaction;
1825 
1826 	WARN_ON(refcount_read(&trans->use_count) > 1);
1827 
1828 	btrfs_abort_transaction(trans, err);
1829 
1830 	spin_lock(&fs_info->trans_lock);
1831 
1832 	/*
1833 	 * If the transaction is removed from the list, it means this
1834 	 * transaction has been committed successfully, so it is impossible
1835 	 * to call the cleanup function.
1836 	 */
1837 	BUG_ON(list_empty(&cur_trans->list));
1838 
1839 	list_del_init(&cur_trans->list);
1840 	if (cur_trans == fs_info->running_transaction) {
1841 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1842 		spin_unlock(&fs_info->trans_lock);
1843 		wait_event(cur_trans->writer_wait,
1844 			   atomic_read(&cur_trans->num_writers) == 1);
1845 
1846 		spin_lock(&fs_info->trans_lock);
1847 	}
1848 	spin_unlock(&fs_info->trans_lock);
1849 
1850 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1851 
1852 	spin_lock(&fs_info->trans_lock);
1853 	if (cur_trans == fs_info->running_transaction)
1854 		fs_info->running_transaction = NULL;
1855 	spin_unlock(&fs_info->trans_lock);
1856 
1857 	if (trans->type & __TRANS_FREEZABLE)
1858 		sb_end_intwrite(fs_info->sb);
1859 	btrfs_put_transaction(cur_trans);
1860 	btrfs_put_transaction(cur_trans);
1861 
1862 	trace_btrfs_transaction_commit(trans->root);
1863 
1864 	if (current->journal_info == trans)
1865 		current->journal_info = NULL;
1866 	btrfs_scrub_cancel(fs_info);
1867 
1868 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1869 }
1870 
1871 /*
1872  * Release reserved delayed ref space of all pending block groups of the
1873  * transaction and remove them from the list
1874  */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)1875 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1876 {
1877        struct btrfs_fs_info *fs_info = trans->fs_info;
1878        struct btrfs_block_group_cache *block_group, *tmp;
1879 
1880        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1881                btrfs_delayed_refs_rsv_release(fs_info, 1);
1882                list_del_init(&block_group->bg_list);
1883        }
1884 }
1885 
btrfs_start_delalloc_flush(struct btrfs_trans_handle * trans)1886 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1887 {
1888 	struct btrfs_fs_info *fs_info = trans->fs_info;
1889 
1890 	/*
1891 	 * We use writeback_inodes_sb here because if we used
1892 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1893 	 * Currently are holding the fs freeze lock, if we do an async flush
1894 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1895 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1896 	 * from already being in a transaction and our join_transaction doesn't
1897 	 * have to re-take the fs freeze lock.
1898 	 */
1899 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1900 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1901 	} else {
1902 		struct btrfs_pending_snapshot *pending;
1903 		struct list_head *head = &trans->transaction->pending_snapshots;
1904 
1905 		/*
1906 		 * Flush dellaloc for any root that is going to be snapshotted.
1907 		 * This is done to avoid a corrupted version of files, in the
1908 		 * snapshots, that had both buffered and direct IO writes (even
1909 		 * if they were done sequentially) due to an unordered update of
1910 		 * the inode's size on disk.
1911 		 */
1912 		list_for_each_entry(pending, head, list) {
1913 			int ret;
1914 
1915 			ret = btrfs_start_delalloc_snapshot(pending->root);
1916 			if (ret)
1917 				return ret;
1918 		}
1919 	}
1920 	return 0;
1921 }
1922 
btrfs_wait_delalloc_flush(struct btrfs_trans_handle * trans)1923 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1924 {
1925 	struct btrfs_fs_info *fs_info = trans->fs_info;
1926 
1927 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1928 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1929 	} else {
1930 		struct btrfs_pending_snapshot *pending;
1931 		struct list_head *head = &trans->transaction->pending_snapshots;
1932 
1933 		/*
1934 		 * Wait for any dellaloc that we started previously for the roots
1935 		 * that are going to be snapshotted. This is to avoid a corrupted
1936 		 * version of files in the snapshots that had both buffered and
1937 		 * direct IO writes (even if they were done sequentially).
1938 		 */
1939 		list_for_each_entry(pending, head, list)
1940 			btrfs_wait_ordered_extents(pending->root,
1941 						   U64_MAX, 0, U64_MAX);
1942 	}
1943 }
1944 
btrfs_commit_transaction(struct btrfs_trans_handle * trans)1945 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1946 {
1947 	struct btrfs_fs_info *fs_info = trans->fs_info;
1948 	struct btrfs_transaction *cur_trans = trans->transaction;
1949 	struct btrfs_transaction *prev_trans = NULL;
1950 	int ret;
1951 
1952 	/* Stop the commit early if ->aborted is set */
1953 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
1954 		ret = cur_trans->aborted;
1955 		btrfs_end_transaction(trans);
1956 		return ret;
1957 	}
1958 
1959 	btrfs_trans_release_metadata(trans);
1960 	trans->block_rsv = NULL;
1961 
1962 	/* make a pass through all the delayed refs we have so far
1963 	 * any runnings procs may add more while we are here
1964 	 */
1965 	ret = btrfs_run_delayed_refs(trans, 0);
1966 	if (ret) {
1967 		btrfs_end_transaction(trans);
1968 		return ret;
1969 	}
1970 
1971 	cur_trans = trans->transaction;
1972 
1973 	/*
1974 	 * set the flushing flag so procs in this transaction have to
1975 	 * start sending their work down.
1976 	 */
1977 	cur_trans->delayed_refs.flushing = 1;
1978 	smp_wmb();
1979 
1980 	btrfs_create_pending_block_groups(trans);
1981 
1982 	ret = btrfs_run_delayed_refs(trans, 0);
1983 	if (ret) {
1984 		btrfs_end_transaction(trans);
1985 		return ret;
1986 	}
1987 
1988 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1989 		int run_it = 0;
1990 
1991 		/* this mutex is also taken before trying to set
1992 		 * block groups readonly.  We need to make sure
1993 		 * that nobody has set a block group readonly
1994 		 * after a extents from that block group have been
1995 		 * allocated for cache files.  btrfs_set_block_group_ro
1996 		 * will wait for the transaction to commit if it
1997 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1998 		 *
1999 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2000 		 * only one process starts all the block group IO.  It wouldn't
2001 		 * hurt to have more than one go through, but there's no
2002 		 * real advantage to it either.
2003 		 */
2004 		mutex_lock(&fs_info->ro_block_group_mutex);
2005 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2006 				      &cur_trans->flags))
2007 			run_it = 1;
2008 		mutex_unlock(&fs_info->ro_block_group_mutex);
2009 
2010 		if (run_it) {
2011 			ret = btrfs_start_dirty_block_groups(trans);
2012 			if (ret) {
2013 				btrfs_end_transaction(trans);
2014 				return ret;
2015 			}
2016 		}
2017 	}
2018 
2019 	spin_lock(&fs_info->trans_lock);
2020 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2021 		spin_unlock(&fs_info->trans_lock);
2022 		refcount_inc(&cur_trans->use_count);
2023 		ret = btrfs_end_transaction(trans);
2024 
2025 		wait_for_commit(cur_trans);
2026 
2027 		if (unlikely(cur_trans->aborted))
2028 			ret = cur_trans->aborted;
2029 
2030 		btrfs_put_transaction(cur_trans);
2031 
2032 		return ret;
2033 	}
2034 
2035 	cur_trans->state = TRANS_STATE_COMMIT_START;
2036 	wake_up(&fs_info->transaction_blocked_wait);
2037 
2038 	if (cur_trans->list.prev != &fs_info->trans_list) {
2039 		prev_trans = list_entry(cur_trans->list.prev,
2040 					struct btrfs_transaction, list);
2041 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2042 			refcount_inc(&prev_trans->use_count);
2043 			spin_unlock(&fs_info->trans_lock);
2044 
2045 			wait_for_commit(prev_trans);
2046 			ret = prev_trans->aborted;
2047 
2048 			btrfs_put_transaction(prev_trans);
2049 			if (ret)
2050 				goto cleanup_transaction;
2051 		} else {
2052 			spin_unlock(&fs_info->trans_lock);
2053 		}
2054 	} else {
2055 		spin_unlock(&fs_info->trans_lock);
2056 		/*
2057 		 * The previous transaction was aborted and was already removed
2058 		 * from the list of transactions at fs_info->trans_list. So we
2059 		 * abort to prevent writing a new superblock that reflects a
2060 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2061 		 */
2062 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2063 			ret = -EROFS;
2064 			goto cleanup_transaction;
2065 		}
2066 	}
2067 
2068 	extwriter_counter_dec(cur_trans, trans->type);
2069 
2070 	ret = btrfs_start_delalloc_flush(trans);
2071 	if (ret)
2072 		goto cleanup_transaction;
2073 
2074 	ret = btrfs_run_delayed_items(trans);
2075 	if (ret)
2076 		goto cleanup_transaction;
2077 
2078 	wait_event(cur_trans->writer_wait,
2079 		   extwriter_counter_read(cur_trans) == 0);
2080 
2081 	/* some pending stuffs might be added after the previous flush. */
2082 	ret = btrfs_run_delayed_items(trans);
2083 	if (ret)
2084 		goto cleanup_transaction;
2085 
2086 	btrfs_wait_delalloc_flush(trans);
2087 
2088 	btrfs_scrub_pause(fs_info);
2089 	/*
2090 	 * Ok now we need to make sure to block out any other joins while we
2091 	 * commit the transaction.  We could have started a join before setting
2092 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2093 	 */
2094 	spin_lock(&fs_info->trans_lock);
2095 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2096 	spin_unlock(&fs_info->trans_lock);
2097 	wait_event(cur_trans->writer_wait,
2098 		   atomic_read(&cur_trans->num_writers) == 1);
2099 
2100 	/* ->aborted might be set after the previous check, so check it */
2101 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2102 		ret = cur_trans->aborted;
2103 		goto scrub_continue;
2104 	}
2105 	/*
2106 	 * the reloc mutex makes sure that we stop
2107 	 * the balancing code from coming in and moving
2108 	 * extents around in the middle of the commit
2109 	 */
2110 	mutex_lock(&fs_info->reloc_mutex);
2111 
2112 	/*
2113 	 * We needn't worry about the delayed items because we will
2114 	 * deal with them in create_pending_snapshot(), which is the
2115 	 * core function of the snapshot creation.
2116 	 */
2117 	ret = create_pending_snapshots(trans);
2118 	if (ret) {
2119 		mutex_unlock(&fs_info->reloc_mutex);
2120 		goto scrub_continue;
2121 	}
2122 
2123 	/*
2124 	 * We insert the dir indexes of the snapshots and update the inode
2125 	 * of the snapshots' parents after the snapshot creation, so there
2126 	 * are some delayed items which are not dealt with. Now deal with
2127 	 * them.
2128 	 *
2129 	 * We needn't worry that this operation will corrupt the snapshots,
2130 	 * because all the tree which are snapshoted will be forced to COW
2131 	 * the nodes and leaves.
2132 	 */
2133 	ret = btrfs_run_delayed_items(trans);
2134 	if (ret) {
2135 		mutex_unlock(&fs_info->reloc_mutex);
2136 		goto scrub_continue;
2137 	}
2138 
2139 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2140 	if (ret) {
2141 		mutex_unlock(&fs_info->reloc_mutex);
2142 		goto scrub_continue;
2143 	}
2144 
2145 	/*
2146 	 * make sure none of the code above managed to slip in a
2147 	 * delayed item
2148 	 */
2149 	btrfs_assert_delayed_root_empty(fs_info);
2150 
2151 	WARN_ON(cur_trans != trans->transaction);
2152 
2153 	/* btrfs_commit_tree_roots is responsible for getting the
2154 	 * various roots consistent with each other.  Every pointer
2155 	 * in the tree of tree roots has to point to the most up to date
2156 	 * root for every subvolume and other tree.  So, we have to keep
2157 	 * the tree logging code from jumping in and changing any
2158 	 * of the trees.
2159 	 *
2160 	 * At this point in the commit, there can't be any tree-log
2161 	 * writers, but a little lower down we drop the trans mutex
2162 	 * and let new people in.  By holding the tree_log_mutex
2163 	 * from now until after the super is written, we avoid races
2164 	 * with the tree-log code.
2165 	 */
2166 	mutex_lock(&fs_info->tree_log_mutex);
2167 
2168 	ret = commit_fs_roots(trans);
2169 	if (ret) {
2170 		mutex_unlock(&fs_info->tree_log_mutex);
2171 		mutex_unlock(&fs_info->reloc_mutex);
2172 		goto scrub_continue;
2173 	}
2174 
2175 	/*
2176 	 * Since the transaction is done, we can apply the pending changes
2177 	 * before the next transaction.
2178 	 */
2179 	btrfs_apply_pending_changes(fs_info);
2180 
2181 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2182 	 * safe to free the root of tree log roots
2183 	 */
2184 	btrfs_free_log_root_tree(trans, fs_info);
2185 
2186 	/*
2187 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2188 	 * new delayed refs. Must handle them or qgroup can be wrong.
2189 	 */
2190 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2191 	if (ret) {
2192 		mutex_unlock(&fs_info->tree_log_mutex);
2193 		mutex_unlock(&fs_info->reloc_mutex);
2194 		goto scrub_continue;
2195 	}
2196 
2197 	/*
2198 	 * Since fs roots are all committed, we can get a quite accurate
2199 	 * new_roots. So let's do quota accounting.
2200 	 */
2201 	ret = btrfs_qgroup_account_extents(trans);
2202 	if (ret < 0) {
2203 		mutex_unlock(&fs_info->tree_log_mutex);
2204 		mutex_unlock(&fs_info->reloc_mutex);
2205 		goto scrub_continue;
2206 	}
2207 
2208 	ret = commit_cowonly_roots(trans);
2209 	if (ret) {
2210 		mutex_unlock(&fs_info->tree_log_mutex);
2211 		mutex_unlock(&fs_info->reloc_mutex);
2212 		goto scrub_continue;
2213 	}
2214 
2215 	/*
2216 	 * The tasks which save the space cache and inode cache may also
2217 	 * update ->aborted, check it.
2218 	 */
2219 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2220 		ret = cur_trans->aborted;
2221 		mutex_unlock(&fs_info->tree_log_mutex);
2222 		mutex_unlock(&fs_info->reloc_mutex);
2223 		goto scrub_continue;
2224 	}
2225 
2226 	btrfs_prepare_extent_commit(fs_info);
2227 
2228 	cur_trans = fs_info->running_transaction;
2229 
2230 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2231 			    fs_info->tree_root->node);
2232 	list_add_tail(&fs_info->tree_root->dirty_list,
2233 		      &cur_trans->switch_commits);
2234 
2235 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2236 			    fs_info->chunk_root->node);
2237 	list_add_tail(&fs_info->chunk_root->dirty_list,
2238 		      &cur_trans->switch_commits);
2239 
2240 	switch_commit_roots(cur_trans);
2241 
2242 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2243 	ASSERT(list_empty(&cur_trans->io_bgs));
2244 	update_super_roots(fs_info);
2245 
2246 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2247 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2248 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2249 	       sizeof(*fs_info->super_copy));
2250 
2251 	btrfs_commit_device_sizes(cur_trans);
2252 
2253 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2254 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2255 
2256 	btrfs_trans_release_chunk_metadata(trans);
2257 
2258 	spin_lock(&fs_info->trans_lock);
2259 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2260 	fs_info->running_transaction = NULL;
2261 	spin_unlock(&fs_info->trans_lock);
2262 	mutex_unlock(&fs_info->reloc_mutex);
2263 
2264 	wake_up(&fs_info->transaction_wait);
2265 
2266 	ret = btrfs_write_and_wait_transaction(trans);
2267 	if (ret) {
2268 		btrfs_handle_fs_error(fs_info, ret,
2269 				      "Error while writing out transaction");
2270 		mutex_unlock(&fs_info->tree_log_mutex);
2271 		goto scrub_continue;
2272 	}
2273 
2274 	ret = write_all_supers(fs_info, 0);
2275 	/*
2276 	 * the super is written, we can safely allow the tree-loggers
2277 	 * to go about their business
2278 	 */
2279 	mutex_unlock(&fs_info->tree_log_mutex);
2280 	if (ret)
2281 		goto scrub_continue;
2282 
2283 	btrfs_finish_extent_commit(trans);
2284 
2285 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2286 		btrfs_clear_space_info_full(fs_info);
2287 
2288 	fs_info->last_trans_committed = cur_trans->transid;
2289 	/*
2290 	 * We needn't acquire the lock here because there is no other task
2291 	 * which can change it.
2292 	 */
2293 	cur_trans->state = TRANS_STATE_COMPLETED;
2294 	wake_up(&cur_trans->commit_wait);
2295 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2296 
2297 	spin_lock(&fs_info->trans_lock);
2298 	list_del_init(&cur_trans->list);
2299 	spin_unlock(&fs_info->trans_lock);
2300 
2301 	btrfs_put_transaction(cur_trans);
2302 	btrfs_put_transaction(cur_trans);
2303 
2304 	if (trans->type & __TRANS_FREEZABLE)
2305 		sb_end_intwrite(fs_info->sb);
2306 
2307 	trace_btrfs_transaction_commit(trans->root);
2308 
2309 	btrfs_scrub_continue(fs_info);
2310 
2311 	if (current->journal_info == trans)
2312 		current->journal_info = NULL;
2313 
2314 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2315 
2316 	return ret;
2317 
2318 scrub_continue:
2319 	btrfs_scrub_continue(fs_info);
2320 cleanup_transaction:
2321 	btrfs_trans_release_metadata(trans);
2322 	btrfs_cleanup_pending_block_groups(trans);
2323 	btrfs_trans_release_chunk_metadata(trans);
2324 	trans->block_rsv = NULL;
2325 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2326 	if (current->journal_info == trans)
2327 		current->journal_info = NULL;
2328 	cleanup_transaction(trans, ret);
2329 
2330 	return ret;
2331 }
2332 
2333 /*
2334  * return < 0 if error
2335  * 0 if there are no more dead_roots at the time of call
2336  * 1 there are more to be processed, call me again
2337  *
2338  * The return value indicates there are certainly more snapshots to delete, but
2339  * if there comes a new one during processing, it may return 0. We don't mind,
2340  * because btrfs_commit_super will poke cleaner thread and it will process it a
2341  * few seconds later.
2342  */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2343 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2344 {
2345 	int ret;
2346 	struct btrfs_fs_info *fs_info = root->fs_info;
2347 
2348 	spin_lock(&fs_info->trans_lock);
2349 	if (list_empty(&fs_info->dead_roots)) {
2350 		spin_unlock(&fs_info->trans_lock);
2351 		return 0;
2352 	}
2353 	root = list_first_entry(&fs_info->dead_roots,
2354 			struct btrfs_root, root_list);
2355 	list_del_init(&root->root_list);
2356 	spin_unlock(&fs_info->trans_lock);
2357 
2358 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2359 
2360 	btrfs_kill_all_delayed_nodes(root);
2361 
2362 	if (btrfs_header_backref_rev(root->node) <
2363 			BTRFS_MIXED_BACKREF_REV)
2364 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2365 	else
2366 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2367 
2368 	return (ret < 0) ? 0 : 1;
2369 }
2370 
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2371 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2372 {
2373 	unsigned long prev;
2374 	unsigned long bit;
2375 
2376 	prev = xchg(&fs_info->pending_changes, 0);
2377 	if (!prev)
2378 		return;
2379 
2380 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2381 	if (prev & bit)
2382 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2383 	prev &= ~bit;
2384 
2385 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2386 	if (prev & bit)
2387 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2388 	prev &= ~bit;
2389 
2390 	bit = 1 << BTRFS_PENDING_COMMIT;
2391 	if (prev & bit)
2392 		btrfs_debug(fs_info, "pending commit done");
2393 	prev &= ~bit;
2394 
2395 	if (prev)
2396 		btrfs_warn(fs_info,
2397 			"unknown pending changes left 0x%lx, ignoring", prev);
2398 }
2399