1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include <linux/fsverity.h>
36 #include "misc.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "print-tree.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "volumes.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "free-space-cache.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54 #include "zoned.h"
55 #include "subpage.h"
56 
57 struct btrfs_iget_args {
58 	u64 ino;
59 	struct btrfs_root *root;
60 };
61 
62 struct btrfs_dio_data {
63 	u64 reserve;
64 	loff_t length;
65 	ssize_t submitted;
66 	struct extent_changeset *data_reserved;
67 };
68 
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct file_operations btrfs_dir_file_operations;
75 
76 static struct kmem_cache *btrfs_inode_cachep;
77 struct kmem_cache *btrfs_trans_handle_cachep;
78 struct kmem_cache *btrfs_path_cachep;
79 struct kmem_cache *btrfs_free_space_cachep;
80 struct kmem_cache *btrfs_free_space_bitmap_cachep;
81 
82 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
83 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
84 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
85 static noinline int cow_file_range(struct btrfs_inode *inode,
86 				   struct page *locked_page,
87 				   u64 start, u64 end, int *page_started,
88 				   unsigned long *nr_written, int unlock);
89 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
90 				       u64 len, u64 orig_start, u64 block_start,
91 				       u64 block_len, u64 orig_block_len,
92 				       u64 ram_bytes, int compress_type,
93 				       int type);
94 
95 static void __endio_write_update_ordered(struct btrfs_inode *inode,
96 					 const u64 offset, const u64 bytes,
97 					 const bool uptodate);
98 
99 /*
100  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
101  *
102  * ilock_flags can have the following bit set:
103  *
104  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
105  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
106  *		     return -EAGAIN
107  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
108  */
btrfs_inode_lock(struct inode * inode,unsigned int ilock_flags)109 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
110 {
111 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
112 		if (ilock_flags & BTRFS_ILOCK_TRY) {
113 			if (!inode_trylock_shared(inode))
114 				return -EAGAIN;
115 			else
116 				return 0;
117 		}
118 		inode_lock_shared(inode);
119 	} else {
120 		if (ilock_flags & BTRFS_ILOCK_TRY) {
121 			if (!inode_trylock(inode))
122 				return -EAGAIN;
123 			else
124 				return 0;
125 		}
126 		inode_lock(inode);
127 	}
128 	if (ilock_flags & BTRFS_ILOCK_MMAP)
129 		down_write(&BTRFS_I(inode)->i_mmap_lock);
130 	return 0;
131 }
132 
133 /*
134  * btrfs_inode_unlock - unock inode i_rwsem
135  *
136  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
137  * to decide whether the lock acquired is shared or exclusive.
138  */
btrfs_inode_unlock(struct inode * inode,unsigned int ilock_flags)139 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
140 {
141 	if (ilock_flags & BTRFS_ILOCK_MMAP)
142 		up_write(&BTRFS_I(inode)->i_mmap_lock);
143 	if (ilock_flags & BTRFS_ILOCK_SHARED)
144 		inode_unlock_shared(inode);
145 	else
146 		inode_unlock(inode);
147 }
148 
149 /*
150  * Cleanup all submitted ordered extents in specified range to handle errors
151  * from the btrfs_run_delalloc_range() callback.
152  *
153  * NOTE: caller must ensure that when an error happens, it can not call
154  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
155  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
156  * to be released, which we want to happen only when finishing the ordered
157  * extent (btrfs_finish_ordered_io()).
158  */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct page * locked_page,u64 offset,u64 bytes)159 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
160 						 struct page *locked_page,
161 						 u64 offset, u64 bytes)
162 {
163 	unsigned long index = offset >> PAGE_SHIFT;
164 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
165 	u64 page_start = page_offset(locked_page);
166 	u64 page_end = page_start + PAGE_SIZE - 1;
167 
168 	struct page *page;
169 
170 	while (index <= end_index) {
171 		/*
172 		 * For locked page, we will call end_extent_writepage() on it
173 		 * in run_delalloc_range() for the error handling.  That
174 		 * end_extent_writepage() function will call
175 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
176 		 * run the ordered extent accounting.
177 		 *
178 		 * Here we can't just clear the Ordered bit, or
179 		 * btrfs_mark_ordered_io_finished() would skip the accounting
180 		 * for the page range, and the ordered extent will never finish.
181 		 */
182 		if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
183 			index++;
184 			continue;
185 		}
186 		page = find_get_page(inode->vfs_inode.i_mapping, index);
187 		index++;
188 		if (!page)
189 			continue;
190 
191 		/*
192 		 * Here we just clear all Ordered bits for every page in the
193 		 * range, then __endio_write_update_ordered() will handle
194 		 * the ordered extent accounting for the range.
195 		 */
196 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
197 					       offset, bytes);
198 		put_page(page);
199 	}
200 
201 	/* The locked page covers the full range, nothing needs to be done */
202 	if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
203 		return;
204 	/*
205 	 * In case this page belongs to the delalloc range being instantiated
206 	 * then skip it, since the first page of a range is going to be
207 	 * properly cleaned up by the caller of run_delalloc_range
208 	 */
209 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
210 		bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
211 		offset = page_offset(locked_page) + PAGE_SIZE;
212 	}
213 
214 	return __endio_write_update_ordered(inode, offset, bytes, false);
215 }
216 
217 static int btrfs_dirty_inode(struct inode *inode);
218 
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)219 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
220 				     struct inode *inode,  struct inode *dir,
221 				     const struct qstr *qstr)
222 {
223 	int err;
224 
225 	err = btrfs_init_acl(trans, inode, dir);
226 	if (!err)
227 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
228 	return err;
229 }
230 
231 /*
232  * this does all the hard work for inserting an inline extent into
233  * the btree.  The caller should have done a btrfs_drop_extents so that
234  * no overlapping inline items exist in the btree
235  */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,bool extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)236 static int insert_inline_extent(struct btrfs_trans_handle *trans,
237 				struct btrfs_path *path, bool extent_inserted,
238 				struct btrfs_root *root, struct inode *inode,
239 				u64 start, size_t size, size_t compressed_size,
240 				int compress_type,
241 				struct page **compressed_pages)
242 {
243 	struct extent_buffer *leaf;
244 	struct page *page = NULL;
245 	char *kaddr;
246 	unsigned long ptr;
247 	struct btrfs_file_extent_item *ei;
248 	int ret;
249 	size_t cur_size = size;
250 	unsigned long offset;
251 
252 	ASSERT((compressed_size > 0 && compressed_pages) ||
253 	       (compressed_size == 0 && !compressed_pages));
254 
255 	if (compressed_size && compressed_pages)
256 		cur_size = compressed_size;
257 
258 	if (!extent_inserted) {
259 		struct btrfs_key key;
260 		size_t datasize;
261 
262 		key.objectid = btrfs_ino(BTRFS_I(inode));
263 		key.offset = start;
264 		key.type = BTRFS_EXTENT_DATA_KEY;
265 
266 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
267 		ret = btrfs_insert_empty_item(trans, root, path, &key,
268 					      datasize);
269 		if (ret)
270 			goto fail;
271 	}
272 	leaf = path->nodes[0];
273 	ei = btrfs_item_ptr(leaf, path->slots[0],
274 			    struct btrfs_file_extent_item);
275 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
276 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
277 	btrfs_set_file_extent_encryption(leaf, ei, 0);
278 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
279 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
280 	ptr = btrfs_file_extent_inline_start(ei);
281 
282 	if (compress_type != BTRFS_COMPRESS_NONE) {
283 		struct page *cpage;
284 		int i = 0;
285 		while (compressed_size > 0) {
286 			cpage = compressed_pages[i];
287 			cur_size = min_t(unsigned long, compressed_size,
288 				       PAGE_SIZE);
289 
290 			kaddr = kmap_atomic(cpage);
291 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
292 			kunmap_atomic(kaddr);
293 
294 			i++;
295 			ptr += cur_size;
296 			compressed_size -= cur_size;
297 		}
298 		btrfs_set_file_extent_compression(leaf, ei,
299 						  compress_type);
300 	} else {
301 		page = find_get_page(inode->i_mapping,
302 				     start >> PAGE_SHIFT);
303 		btrfs_set_file_extent_compression(leaf, ei, 0);
304 		kaddr = kmap_atomic(page);
305 		offset = offset_in_page(start);
306 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
307 		kunmap_atomic(kaddr);
308 		put_page(page);
309 	}
310 	btrfs_mark_buffer_dirty(leaf);
311 	btrfs_release_path(path);
312 
313 	/*
314 	 * We align size to sectorsize for inline extents just for simplicity
315 	 * sake.
316 	 */
317 	size = ALIGN(size, root->fs_info->sectorsize);
318 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
319 	if (ret)
320 		goto fail;
321 
322 	/*
323 	 * we're an inline extent, so nobody can
324 	 * extend the file past i_size without locking
325 	 * a page we already have locked.
326 	 *
327 	 * We must do any isize and inode updates
328 	 * before we unlock the pages.  Otherwise we
329 	 * could end up racing with unlink.
330 	 */
331 	BTRFS_I(inode)->disk_i_size = inode->i_size;
332 fail:
333 	return ret;
334 }
335 
336 
337 /*
338  * conditionally insert an inline extent into the file.  This
339  * does the checks required to make sure the data is small enough
340  * to fit as an inline extent.
341  */
cow_file_range_inline(struct btrfs_inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)342 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
343 					  u64 end, size_t compressed_size,
344 					  int compress_type,
345 					  struct page **compressed_pages)
346 {
347 	struct btrfs_drop_extents_args drop_args = { 0 };
348 	struct btrfs_root *root = inode->root;
349 	struct btrfs_fs_info *fs_info = root->fs_info;
350 	struct btrfs_trans_handle *trans;
351 	u64 isize = i_size_read(&inode->vfs_inode);
352 	u64 actual_end = min(end + 1, isize);
353 	u64 inline_len = actual_end - start;
354 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
355 	u64 data_len = inline_len;
356 	int ret;
357 	struct btrfs_path *path;
358 
359 	if (compressed_size)
360 		data_len = compressed_size;
361 
362 	if (start > 0 ||
363 	    actual_end > fs_info->sectorsize ||
364 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
365 	    (!compressed_size &&
366 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
367 	    end + 1 < isize ||
368 	    data_len > fs_info->max_inline) {
369 		return 1;
370 	}
371 
372 	path = btrfs_alloc_path();
373 	if (!path)
374 		return -ENOMEM;
375 
376 	trans = btrfs_join_transaction(root);
377 	if (IS_ERR(trans)) {
378 		btrfs_free_path(path);
379 		return PTR_ERR(trans);
380 	}
381 	trans->block_rsv = &inode->block_rsv;
382 
383 	drop_args.path = path;
384 	drop_args.start = start;
385 	drop_args.end = aligned_end;
386 	drop_args.drop_cache = true;
387 	drop_args.replace_extent = true;
388 
389 	if (compressed_size && compressed_pages)
390 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
391 		   compressed_size);
392 	else
393 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
394 		    inline_len);
395 
396 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
397 	if (ret) {
398 		btrfs_abort_transaction(trans, ret);
399 		goto out;
400 	}
401 
402 	if (isize > actual_end)
403 		inline_len = min_t(u64, isize, actual_end);
404 	ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
405 				   root, &inode->vfs_inode, start,
406 				   inline_len, compressed_size,
407 				   compress_type, compressed_pages);
408 	if (ret && ret != -ENOSPC) {
409 		btrfs_abort_transaction(trans, ret);
410 		goto out;
411 	} else if (ret == -ENOSPC) {
412 		ret = 1;
413 		goto out;
414 	}
415 
416 	btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
417 	ret = btrfs_update_inode(trans, root, inode);
418 	if (ret && ret != -ENOSPC) {
419 		btrfs_abort_transaction(trans, ret);
420 		goto out;
421 	} else if (ret == -ENOSPC) {
422 		ret = 1;
423 		goto out;
424 	}
425 
426 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
427 out:
428 	/*
429 	 * Don't forget to free the reserved space, as for inlined extent
430 	 * it won't count as data extent, free them directly here.
431 	 * And at reserve time, it's always aligned to page size, so
432 	 * just free one page here.
433 	 */
434 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
435 	btrfs_free_path(path);
436 	btrfs_end_transaction(trans);
437 	return ret;
438 }
439 
440 struct async_extent {
441 	u64 start;
442 	u64 ram_size;
443 	u64 compressed_size;
444 	struct page **pages;
445 	unsigned long nr_pages;
446 	int compress_type;
447 	struct list_head list;
448 };
449 
450 struct async_chunk {
451 	struct inode *inode;
452 	struct page *locked_page;
453 	u64 start;
454 	u64 end;
455 	unsigned int write_flags;
456 	struct list_head extents;
457 	struct cgroup_subsys_state *blkcg_css;
458 	struct btrfs_work work;
459 	atomic_t *pending;
460 };
461 
462 struct async_cow {
463 	/* Number of chunks in flight; must be first in the structure */
464 	atomic_t num_chunks;
465 	struct async_chunk chunks[];
466 };
467 
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)468 static noinline int add_async_extent(struct async_chunk *cow,
469 				     u64 start, u64 ram_size,
470 				     u64 compressed_size,
471 				     struct page **pages,
472 				     unsigned long nr_pages,
473 				     int compress_type)
474 {
475 	struct async_extent *async_extent;
476 
477 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
478 	BUG_ON(!async_extent); /* -ENOMEM */
479 	async_extent->start = start;
480 	async_extent->ram_size = ram_size;
481 	async_extent->compressed_size = compressed_size;
482 	async_extent->pages = pages;
483 	async_extent->nr_pages = nr_pages;
484 	async_extent->compress_type = compress_type;
485 	list_add_tail(&async_extent->list, &cow->extents);
486 	return 0;
487 }
488 
489 /*
490  * Check if the inode has flags compatible with compression
491  */
inode_can_compress(struct btrfs_inode * inode)492 static inline bool inode_can_compress(struct btrfs_inode *inode)
493 {
494 	/* Subpage doesn't support compression yet */
495 	if (inode->root->fs_info->sectorsize < PAGE_SIZE)
496 		return false;
497 	if (inode->flags & BTRFS_INODE_NODATACOW ||
498 	    inode->flags & BTRFS_INODE_NODATASUM)
499 		return false;
500 	return true;
501 }
502 
503 /*
504  * Check if the inode needs to be submitted to compression, based on mount
505  * options, defragmentation, properties or heuristics.
506  */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)507 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
508 				      u64 end)
509 {
510 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
511 
512 	if (!inode_can_compress(inode)) {
513 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
514 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
515 			btrfs_ino(inode));
516 		return 0;
517 	}
518 	/* force compress */
519 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
520 		return 1;
521 	/* defrag ioctl */
522 	if (inode->defrag_compress)
523 		return 1;
524 	/* bad compression ratios */
525 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
526 		return 0;
527 	if (btrfs_test_opt(fs_info, COMPRESS) ||
528 	    inode->flags & BTRFS_INODE_COMPRESS ||
529 	    inode->prop_compress)
530 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
531 	return 0;
532 }
533 
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)534 static inline void inode_should_defrag(struct btrfs_inode *inode,
535 		u64 start, u64 end, u64 num_bytes, u64 small_write)
536 {
537 	/* If this is a small write inside eof, kick off a defrag */
538 	if (num_bytes < small_write &&
539 	    (start > 0 || end + 1 < inode->disk_i_size))
540 		btrfs_add_inode_defrag(NULL, inode);
541 }
542 
543 /*
544  * we create compressed extents in two phases.  The first
545  * phase compresses a range of pages that have already been
546  * locked (both pages and state bits are locked).
547  *
548  * This is done inside an ordered work queue, and the compression
549  * is spread across many cpus.  The actual IO submission is step
550  * two, and the ordered work queue takes care of making sure that
551  * happens in the same order things were put onto the queue by
552  * writepages and friends.
553  *
554  * If this code finds it can't get good compression, it puts an
555  * entry onto the work queue to write the uncompressed bytes.  This
556  * makes sure that both compressed inodes and uncompressed inodes
557  * are written in the same order that the flusher thread sent them
558  * down.
559  */
compress_file_range(struct async_chunk * async_chunk)560 static noinline int compress_file_range(struct async_chunk *async_chunk)
561 {
562 	struct inode *inode = async_chunk->inode;
563 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
564 	u64 blocksize = fs_info->sectorsize;
565 	u64 start = async_chunk->start;
566 	u64 end = async_chunk->end;
567 	u64 actual_end;
568 	u64 i_size;
569 	int ret = 0;
570 	struct page **pages = NULL;
571 	unsigned long nr_pages;
572 	unsigned long total_compressed = 0;
573 	unsigned long total_in = 0;
574 	int i;
575 	int will_compress;
576 	int compress_type = fs_info->compress_type;
577 	int compressed_extents = 0;
578 	int redirty = 0;
579 
580 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
581 			SZ_16K);
582 
583 	/*
584 	 * We need to save i_size before now because it could change in between
585 	 * us evaluating the size and assigning it.  This is because we lock and
586 	 * unlock the page in truncate and fallocate, and then modify the i_size
587 	 * later on.
588 	 *
589 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
590 	 * does that for us.
591 	 */
592 	barrier();
593 	i_size = i_size_read(inode);
594 	barrier();
595 	actual_end = min_t(u64, i_size, end + 1);
596 again:
597 	will_compress = 0;
598 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
599 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
600 	nr_pages = min_t(unsigned long, nr_pages,
601 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
602 
603 	/*
604 	 * we don't want to send crud past the end of i_size through
605 	 * compression, that's just a waste of CPU time.  So, if the
606 	 * end of the file is before the start of our current
607 	 * requested range of bytes, we bail out to the uncompressed
608 	 * cleanup code that can deal with all of this.
609 	 *
610 	 * It isn't really the fastest way to fix things, but this is a
611 	 * very uncommon corner.
612 	 */
613 	if (actual_end <= start)
614 		goto cleanup_and_bail_uncompressed;
615 
616 	total_compressed = actual_end - start;
617 
618 	/*
619 	 * skip compression for a small file range(<=blocksize) that
620 	 * isn't an inline extent, since it doesn't save disk space at all.
621 	 */
622 	if (total_compressed <= blocksize &&
623 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
624 		goto cleanup_and_bail_uncompressed;
625 
626 	total_compressed = min_t(unsigned long, total_compressed,
627 			BTRFS_MAX_UNCOMPRESSED);
628 	total_in = 0;
629 	ret = 0;
630 
631 	/*
632 	 * we do compression for mount -o compress and when the
633 	 * inode has not been flagged as nocompress.  This flag can
634 	 * change at any time if we discover bad compression ratios.
635 	 */
636 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
637 		WARN_ON(pages);
638 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
639 		if (!pages) {
640 			/* just bail out to the uncompressed code */
641 			nr_pages = 0;
642 			goto cont;
643 		}
644 
645 		if (BTRFS_I(inode)->defrag_compress)
646 			compress_type = BTRFS_I(inode)->defrag_compress;
647 		else if (BTRFS_I(inode)->prop_compress)
648 			compress_type = BTRFS_I(inode)->prop_compress;
649 
650 		/*
651 		 * we need to call clear_page_dirty_for_io on each
652 		 * page in the range.  Otherwise applications with the file
653 		 * mmap'd can wander in and change the page contents while
654 		 * we are compressing them.
655 		 *
656 		 * If the compression fails for any reason, we set the pages
657 		 * dirty again later on.
658 		 *
659 		 * Note that the remaining part is redirtied, the start pointer
660 		 * has moved, the end is the original one.
661 		 */
662 		if (!redirty) {
663 			extent_range_clear_dirty_for_io(inode, start, end);
664 			redirty = 1;
665 		}
666 
667 		/* Compression level is applied here and only here */
668 		ret = btrfs_compress_pages(
669 			compress_type | (fs_info->compress_level << 4),
670 					   inode->i_mapping, start,
671 					   pages,
672 					   &nr_pages,
673 					   &total_in,
674 					   &total_compressed);
675 
676 		if (!ret) {
677 			unsigned long offset = offset_in_page(total_compressed);
678 			struct page *page = pages[nr_pages - 1];
679 
680 			/* zero the tail end of the last page, we might be
681 			 * sending it down to disk
682 			 */
683 			if (offset)
684 				memzero_page(page, offset, PAGE_SIZE - offset);
685 			will_compress = 1;
686 		}
687 	}
688 cont:
689 	/*
690 	 * Check cow_file_range() for why we don't even try to create inline
691 	 * extent for subpage case.
692 	 */
693 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
694 		/* lets try to make an inline extent */
695 		if (ret || total_in < actual_end) {
696 			/* we didn't compress the entire range, try
697 			 * to make an uncompressed inline extent.
698 			 */
699 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
700 						    0, BTRFS_COMPRESS_NONE,
701 						    NULL);
702 		} else {
703 			/* try making a compressed inline extent */
704 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
705 						    total_compressed,
706 						    compress_type, pages);
707 		}
708 		if (ret <= 0) {
709 			unsigned long clear_flags = EXTENT_DELALLOC |
710 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
711 				EXTENT_DO_ACCOUNTING;
712 			unsigned long page_error_op;
713 
714 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
715 
716 			/*
717 			 * inline extent creation worked or returned error,
718 			 * we don't need to create any more async work items.
719 			 * Unlock and free up our temp pages.
720 			 *
721 			 * We use DO_ACCOUNTING here because we need the
722 			 * delalloc_release_metadata to be done _after_ we drop
723 			 * our outstanding extent for clearing delalloc for this
724 			 * range.
725 			 */
726 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
727 						     NULL,
728 						     clear_flags,
729 						     PAGE_UNLOCK |
730 						     PAGE_START_WRITEBACK |
731 						     page_error_op |
732 						     PAGE_END_WRITEBACK);
733 
734 			/*
735 			 * Ensure we only free the compressed pages if we have
736 			 * them allocated, as we can still reach here with
737 			 * inode_need_compress() == false.
738 			 */
739 			if (pages) {
740 				for (i = 0; i < nr_pages; i++) {
741 					WARN_ON(pages[i]->mapping);
742 					put_page(pages[i]);
743 				}
744 				kfree(pages);
745 			}
746 			return 0;
747 		}
748 	}
749 
750 	if (will_compress) {
751 		/*
752 		 * we aren't doing an inline extent round the compressed size
753 		 * up to a block size boundary so the allocator does sane
754 		 * things
755 		 */
756 		total_compressed = ALIGN(total_compressed, blocksize);
757 
758 		/*
759 		 * one last check to make sure the compression is really a
760 		 * win, compare the page count read with the blocks on disk,
761 		 * compression must free at least one sector size
762 		 */
763 		total_in = ALIGN(total_in, PAGE_SIZE);
764 		if (total_compressed + blocksize <= total_in) {
765 			compressed_extents++;
766 
767 			/*
768 			 * The async work queues will take care of doing actual
769 			 * allocation on disk for these compressed pages, and
770 			 * will submit them to the elevator.
771 			 */
772 			add_async_extent(async_chunk, start, total_in,
773 					total_compressed, pages, nr_pages,
774 					compress_type);
775 
776 			if (start + total_in < end) {
777 				start += total_in;
778 				pages = NULL;
779 				cond_resched();
780 				goto again;
781 			}
782 			return compressed_extents;
783 		}
784 	}
785 	if (pages) {
786 		/*
787 		 * the compression code ran but failed to make things smaller,
788 		 * free any pages it allocated and our page pointer array
789 		 */
790 		for (i = 0; i < nr_pages; i++) {
791 			WARN_ON(pages[i]->mapping);
792 			put_page(pages[i]);
793 		}
794 		kfree(pages);
795 		pages = NULL;
796 		total_compressed = 0;
797 		nr_pages = 0;
798 
799 		/* flag the file so we don't compress in the future */
800 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
801 		    !(BTRFS_I(inode)->prop_compress)) {
802 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
803 		}
804 	}
805 cleanup_and_bail_uncompressed:
806 	/*
807 	 * No compression, but we still need to write the pages in the file
808 	 * we've been given so far.  redirty the locked page if it corresponds
809 	 * to our extent and set things up for the async work queue to run
810 	 * cow_file_range to do the normal delalloc dance.
811 	 */
812 	if (async_chunk->locked_page &&
813 	    (page_offset(async_chunk->locked_page) >= start &&
814 	     page_offset(async_chunk->locked_page)) <= end) {
815 		__set_page_dirty_nobuffers(async_chunk->locked_page);
816 		/* unlocked later on in the async handlers */
817 	}
818 
819 	if (redirty)
820 		extent_range_redirty_for_io(inode, start, end);
821 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
822 			 BTRFS_COMPRESS_NONE);
823 	compressed_extents++;
824 
825 	return compressed_extents;
826 }
827 
free_async_extent_pages(struct async_extent * async_extent)828 static void free_async_extent_pages(struct async_extent *async_extent)
829 {
830 	int i;
831 
832 	if (!async_extent->pages)
833 		return;
834 
835 	for (i = 0; i < async_extent->nr_pages; i++) {
836 		WARN_ON(async_extent->pages[i]->mapping);
837 		put_page(async_extent->pages[i]);
838 	}
839 	kfree(async_extent->pages);
840 	async_extent->nr_pages = 0;
841 	async_extent->pages = NULL;
842 }
843 
844 /*
845  * phase two of compressed writeback.  This is the ordered portion
846  * of the code, which only gets called in the order the work was
847  * queued.  We walk all the async extents created by compress_file_range
848  * and send them down to the disk.
849  */
submit_compressed_extents(struct async_chunk * async_chunk)850 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
851 {
852 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
853 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
854 	struct async_extent *async_extent;
855 	u64 alloc_hint = 0;
856 	struct btrfs_key ins;
857 	struct extent_map *em;
858 	struct btrfs_root *root = inode->root;
859 	struct extent_io_tree *io_tree = &inode->io_tree;
860 	int ret = 0;
861 
862 again:
863 	while (!list_empty(&async_chunk->extents)) {
864 		async_extent = list_entry(async_chunk->extents.next,
865 					  struct async_extent, list);
866 		list_del(&async_extent->list);
867 
868 retry:
869 		lock_extent(io_tree, async_extent->start,
870 			    async_extent->start + async_extent->ram_size - 1);
871 		/* did the compression code fall back to uncompressed IO? */
872 		if (!async_extent->pages) {
873 			int page_started = 0;
874 			unsigned long nr_written = 0;
875 
876 			/* allocate blocks */
877 			ret = cow_file_range(inode, async_chunk->locked_page,
878 					     async_extent->start,
879 					     async_extent->start +
880 					     async_extent->ram_size - 1,
881 					     &page_started, &nr_written, 0);
882 
883 			/* JDM XXX */
884 
885 			/*
886 			 * if page_started, cow_file_range inserted an
887 			 * inline extent and took care of all the unlocking
888 			 * and IO for us.  Otherwise, we need to submit
889 			 * all those pages down to the drive.
890 			 */
891 			if (!page_started && !ret)
892 				extent_write_locked_range(&inode->vfs_inode,
893 						  async_extent->start,
894 						  async_extent->start +
895 						  async_extent->ram_size - 1,
896 						  WB_SYNC_ALL);
897 			else if (ret && async_chunk->locked_page)
898 				unlock_page(async_chunk->locked_page);
899 			kfree(async_extent);
900 			cond_resched();
901 			continue;
902 		}
903 
904 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
905 					   async_extent->compressed_size,
906 					   async_extent->compressed_size,
907 					   0, alloc_hint, &ins, 1, 1);
908 		if (ret) {
909 			free_async_extent_pages(async_extent);
910 
911 			if (ret == -ENOSPC) {
912 				unlock_extent(io_tree, async_extent->start,
913 					      async_extent->start +
914 					      async_extent->ram_size - 1);
915 
916 				/*
917 				 * we need to redirty the pages if we decide to
918 				 * fallback to uncompressed IO, otherwise we
919 				 * will not submit these pages down to lower
920 				 * layers.
921 				 */
922 				extent_range_redirty_for_io(&inode->vfs_inode,
923 						async_extent->start,
924 						async_extent->start +
925 						async_extent->ram_size - 1);
926 
927 				goto retry;
928 			}
929 			goto out_free;
930 		}
931 		/*
932 		 * here we're doing allocation and writeback of the
933 		 * compressed pages
934 		 */
935 		em = create_io_em(inode, async_extent->start,
936 				  async_extent->ram_size, /* len */
937 				  async_extent->start, /* orig_start */
938 				  ins.objectid, /* block_start */
939 				  ins.offset, /* block_len */
940 				  ins.offset, /* orig_block_len */
941 				  async_extent->ram_size, /* ram_bytes */
942 				  async_extent->compress_type,
943 				  BTRFS_ORDERED_COMPRESSED);
944 		if (IS_ERR(em))
945 			/* ret value is not necessary due to void function */
946 			goto out_free_reserve;
947 		free_extent_map(em);
948 
949 		ret = btrfs_add_ordered_extent_compress(inode,
950 						async_extent->start,
951 						ins.objectid,
952 						async_extent->ram_size,
953 						ins.offset,
954 						async_extent->compress_type);
955 		if (ret) {
956 			btrfs_drop_extent_cache(inode, async_extent->start,
957 						async_extent->start +
958 						async_extent->ram_size - 1, 0);
959 			goto out_free_reserve;
960 		}
961 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
962 
963 		/*
964 		 * clear dirty, set writeback and unlock the pages.
965 		 */
966 		extent_clear_unlock_delalloc(inode, async_extent->start,
967 				async_extent->start +
968 				async_extent->ram_size - 1,
969 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
970 				PAGE_UNLOCK | PAGE_START_WRITEBACK);
971 		if (btrfs_submit_compressed_write(inode, async_extent->start,
972 				    async_extent->ram_size,
973 				    ins.objectid,
974 				    ins.offset, async_extent->pages,
975 				    async_extent->nr_pages,
976 				    async_chunk->write_flags,
977 				    async_chunk->blkcg_css)) {
978 			struct page *p = async_extent->pages[0];
979 			const u64 start = async_extent->start;
980 			const u64 end = start + async_extent->ram_size - 1;
981 
982 			p->mapping = inode->vfs_inode.i_mapping;
983 			btrfs_writepage_endio_finish_ordered(inode, p, start,
984 							     end, false);
985 
986 			p->mapping = NULL;
987 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
988 						     PAGE_END_WRITEBACK |
989 						     PAGE_SET_ERROR);
990 			free_async_extent_pages(async_extent);
991 		}
992 		alloc_hint = ins.objectid + ins.offset;
993 		kfree(async_extent);
994 		cond_resched();
995 	}
996 	return;
997 out_free_reserve:
998 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
999 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1000 out_free:
1001 	extent_clear_unlock_delalloc(inode, async_extent->start,
1002 				     async_extent->start +
1003 				     async_extent->ram_size - 1,
1004 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1005 				     EXTENT_DELALLOC_NEW |
1006 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1007 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1008 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1009 	free_async_extent_pages(async_extent);
1010 	kfree(async_extent);
1011 	goto again;
1012 }
1013 
get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1014 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1015 				      u64 num_bytes)
1016 {
1017 	struct extent_map_tree *em_tree = &inode->extent_tree;
1018 	struct extent_map *em;
1019 	u64 alloc_hint = 0;
1020 
1021 	read_lock(&em_tree->lock);
1022 	em = search_extent_mapping(em_tree, start, num_bytes);
1023 	if (em) {
1024 		/*
1025 		 * if block start isn't an actual block number then find the
1026 		 * first block in this inode and use that as a hint.  If that
1027 		 * block is also bogus then just don't worry about it.
1028 		 */
1029 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1030 			free_extent_map(em);
1031 			em = search_extent_mapping(em_tree, 0, 0);
1032 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1033 				alloc_hint = em->block_start;
1034 			if (em)
1035 				free_extent_map(em);
1036 		} else {
1037 			alloc_hint = em->block_start;
1038 			free_extent_map(em);
1039 		}
1040 	}
1041 	read_unlock(&em_tree->lock);
1042 
1043 	return alloc_hint;
1044 }
1045 
1046 /*
1047  * when extent_io.c finds a delayed allocation range in the file,
1048  * the call backs end up in this code.  The basic idea is to
1049  * allocate extents on disk for the range, and create ordered data structs
1050  * in ram to track those extents.
1051  *
1052  * locked_page is the page that writepage had locked already.  We use
1053  * it to make sure we don't do extra locks or unlocks.
1054  *
1055  * *page_started is set to one if we unlock locked_page and do everything
1056  * required to start IO on it.  It may be clean and already done with
1057  * IO when we return.
1058  */
cow_file_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)1059 static noinline int cow_file_range(struct btrfs_inode *inode,
1060 				   struct page *locked_page,
1061 				   u64 start, u64 end, int *page_started,
1062 				   unsigned long *nr_written, int unlock)
1063 {
1064 	struct btrfs_root *root = inode->root;
1065 	struct btrfs_fs_info *fs_info = root->fs_info;
1066 	u64 alloc_hint = 0;
1067 	u64 num_bytes;
1068 	unsigned long ram_size;
1069 	u64 cur_alloc_size = 0;
1070 	u64 min_alloc_size;
1071 	u64 blocksize = fs_info->sectorsize;
1072 	struct btrfs_key ins;
1073 	struct extent_map *em;
1074 	unsigned clear_bits;
1075 	unsigned long page_ops;
1076 	bool extent_reserved = false;
1077 	int ret = 0;
1078 
1079 	if (btrfs_is_free_space_inode(inode)) {
1080 		WARN_ON_ONCE(1);
1081 		ret = -EINVAL;
1082 		goto out_unlock;
1083 	}
1084 
1085 	num_bytes = ALIGN(end - start + 1, blocksize);
1086 	num_bytes = max(blocksize,  num_bytes);
1087 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1088 
1089 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1090 
1091 	/*
1092 	 * Due to the page size limit, for subpage we can only trigger the
1093 	 * writeback for the dirty sectors of page, that means data writeback
1094 	 * is doing more writeback than what we want.
1095 	 *
1096 	 * This is especially unexpected for some call sites like fallocate,
1097 	 * where we only increase i_size after everything is done.
1098 	 * This means we can trigger inline extent even if we didn't want to.
1099 	 * So here we skip inline extent creation completely.
1100 	 */
1101 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1102 		/* lets try to make an inline extent */
1103 		ret = cow_file_range_inline(inode, start, end, 0,
1104 					    BTRFS_COMPRESS_NONE, NULL);
1105 		if (ret == 0) {
1106 			/*
1107 			 * We use DO_ACCOUNTING here because we need the
1108 			 * delalloc_release_metadata to be run _after_ we drop
1109 			 * our outstanding extent for clearing delalloc for this
1110 			 * range.
1111 			 */
1112 			extent_clear_unlock_delalloc(inode, start, end,
1113 				     locked_page,
1114 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1115 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1116 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1117 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1118 			*nr_written = *nr_written +
1119 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1120 			*page_started = 1;
1121 			/*
1122 			 * locked_page is locked by the caller of
1123 			 * writepage_delalloc(), not locked by
1124 			 * __process_pages_contig().
1125 			 *
1126 			 * We can't let __process_pages_contig() to unlock it,
1127 			 * as it doesn't have any subpage::writers recorded.
1128 			 *
1129 			 * Here we manually unlock the page, since the caller
1130 			 * can't use page_started to determine if it's an
1131 			 * inline extent or a compressed extent.
1132 			 */
1133 			unlock_page(locked_page);
1134 			goto out;
1135 		} else if (ret < 0) {
1136 			goto out_unlock;
1137 		}
1138 	}
1139 
1140 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1141 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1142 
1143 	/*
1144 	 * Relocation relies on the relocated extents to have exactly the same
1145 	 * size as the original extents. Normally writeback for relocation data
1146 	 * extents follows a NOCOW path because relocation preallocates the
1147 	 * extents. However, due to an operation such as scrub turning a block
1148 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1149 	 * an extent allocated during COW has exactly the requested size and can
1150 	 * not be split into smaller extents, otherwise relocation breaks and
1151 	 * fails during the stage where it updates the bytenr of file extent
1152 	 * items.
1153 	 */
1154 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1155 		min_alloc_size = num_bytes;
1156 	else
1157 		min_alloc_size = fs_info->sectorsize;
1158 
1159 	while (num_bytes > 0) {
1160 		cur_alloc_size = num_bytes;
1161 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1162 					   min_alloc_size, 0, alloc_hint,
1163 					   &ins, 1, 1);
1164 		if (ret < 0)
1165 			goto out_unlock;
1166 		cur_alloc_size = ins.offset;
1167 		extent_reserved = true;
1168 
1169 		ram_size = ins.offset;
1170 		em = create_io_em(inode, start, ins.offset, /* len */
1171 				  start, /* orig_start */
1172 				  ins.objectid, /* block_start */
1173 				  ins.offset, /* block_len */
1174 				  ins.offset, /* orig_block_len */
1175 				  ram_size, /* ram_bytes */
1176 				  BTRFS_COMPRESS_NONE, /* compress_type */
1177 				  BTRFS_ORDERED_REGULAR /* type */);
1178 		if (IS_ERR(em)) {
1179 			ret = PTR_ERR(em);
1180 			goto out_reserve;
1181 		}
1182 		free_extent_map(em);
1183 
1184 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1185 					       ram_size, cur_alloc_size,
1186 					       BTRFS_ORDERED_REGULAR);
1187 		if (ret)
1188 			goto out_drop_extent_cache;
1189 
1190 		if (root->root_key.objectid ==
1191 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1192 			ret = btrfs_reloc_clone_csums(inode, start,
1193 						      cur_alloc_size);
1194 			/*
1195 			 * Only drop cache here, and process as normal.
1196 			 *
1197 			 * We must not allow extent_clear_unlock_delalloc()
1198 			 * at out_unlock label to free meta of this ordered
1199 			 * extent, as its meta should be freed by
1200 			 * btrfs_finish_ordered_io().
1201 			 *
1202 			 * So we must continue until @start is increased to
1203 			 * skip current ordered extent.
1204 			 */
1205 			if (ret)
1206 				btrfs_drop_extent_cache(inode, start,
1207 						start + ram_size - 1, 0);
1208 		}
1209 
1210 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1211 
1212 		/*
1213 		 * We're not doing compressed IO, don't unlock the first page
1214 		 * (which the caller expects to stay locked), don't clear any
1215 		 * dirty bits and don't set any writeback bits
1216 		 *
1217 		 * Do set the Ordered (Private2) bit so we know this page was
1218 		 * properly setup for writepage.
1219 		 */
1220 		page_ops = unlock ? PAGE_UNLOCK : 0;
1221 		page_ops |= PAGE_SET_ORDERED;
1222 
1223 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1224 					     locked_page,
1225 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1226 					     page_ops);
1227 		if (num_bytes < cur_alloc_size)
1228 			num_bytes = 0;
1229 		else
1230 			num_bytes -= cur_alloc_size;
1231 		alloc_hint = ins.objectid + ins.offset;
1232 		start += cur_alloc_size;
1233 		extent_reserved = false;
1234 
1235 		/*
1236 		 * btrfs_reloc_clone_csums() error, since start is increased
1237 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1238 		 * free metadata of current ordered extent, we're OK to exit.
1239 		 */
1240 		if (ret)
1241 			goto out_unlock;
1242 	}
1243 out:
1244 	return ret;
1245 
1246 out_drop_extent_cache:
1247 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1248 out_reserve:
1249 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1250 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1251 out_unlock:
1252 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1253 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1254 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1255 	/*
1256 	 * If we reserved an extent for our delalloc range (or a subrange) and
1257 	 * failed to create the respective ordered extent, then it means that
1258 	 * when we reserved the extent we decremented the extent's size from
1259 	 * the data space_info's bytes_may_use counter and incremented the
1260 	 * space_info's bytes_reserved counter by the same amount. We must make
1261 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1262 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1263 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1264 	 */
1265 	if (extent_reserved) {
1266 		extent_clear_unlock_delalloc(inode, start,
1267 					     start + cur_alloc_size - 1,
1268 					     locked_page,
1269 					     clear_bits,
1270 					     page_ops);
1271 		start += cur_alloc_size;
1272 		if (start >= end)
1273 			goto out;
1274 	}
1275 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1276 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1277 				     page_ops);
1278 	goto out;
1279 }
1280 
1281 /*
1282  * work queue call back to started compression on a file and pages
1283  */
async_cow_start(struct btrfs_work * work)1284 static noinline void async_cow_start(struct btrfs_work *work)
1285 {
1286 	struct async_chunk *async_chunk;
1287 	int compressed_extents;
1288 
1289 	async_chunk = container_of(work, struct async_chunk, work);
1290 
1291 	compressed_extents = compress_file_range(async_chunk);
1292 	if (compressed_extents == 0) {
1293 		btrfs_add_delayed_iput(async_chunk->inode);
1294 		async_chunk->inode = NULL;
1295 	}
1296 }
1297 
1298 /*
1299  * work queue call back to submit previously compressed pages
1300  */
async_cow_submit(struct btrfs_work * work)1301 static noinline void async_cow_submit(struct btrfs_work *work)
1302 {
1303 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1304 						     work);
1305 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1306 	unsigned long nr_pages;
1307 
1308 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1309 		PAGE_SHIFT;
1310 
1311 	/*
1312 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1313 	 * in which case we don't have anything to submit, yet we need to
1314 	 * always adjust ->async_delalloc_pages as its paired with the init
1315 	 * happening in cow_file_range_async
1316 	 */
1317 	if (async_chunk->inode)
1318 		submit_compressed_extents(async_chunk);
1319 
1320 	/* atomic_sub_return implies a barrier */
1321 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1322 	    5 * SZ_1M)
1323 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1324 }
1325 
async_cow_free(struct btrfs_work * work)1326 static noinline void async_cow_free(struct btrfs_work *work)
1327 {
1328 	struct async_chunk *async_chunk;
1329 
1330 	async_chunk = container_of(work, struct async_chunk, work);
1331 	if (async_chunk->inode)
1332 		btrfs_add_delayed_iput(async_chunk->inode);
1333 	if (async_chunk->blkcg_css)
1334 		css_put(async_chunk->blkcg_css);
1335 	/*
1336 	 * Since the pointer to 'pending' is at the beginning of the array of
1337 	 * async_chunk's, freeing it ensures the whole array has been freed.
1338 	 */
1339 	if (atomic_dec_and_test(async_chunk->pending))
1340 		kvfree(async_chunk->pending);
1341 }
1342 
cow_file_range_async(struct btrfs_inode * inode,struct writeback_control * wbc,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1343 static int cow_file_range_async(struct btrfs_inode *inode,
1344 				struct writeback_control *wbc,
1345 				struct page *locked_page,
1346 				u64 start, u64 end, int *page_started,
1347 				unsigned long *nr_written)
1348 {
1349 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1350 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1351 	struct async_cow *ctx;
1352 	struct async_chunk *async_chunk;
1353 	unsigned long nr_pages;
1354 	u64 cur_end;
1355 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1356 	int i;
1357 	bool should_compress;
1358 	unsigned nofs_flag;
1359 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1360 
1361 	unlock_extent(&inode->io_tree, start, end);
1362 
1363 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1364 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1365 		num_chunks = 1;
1366 		should_compress = false;
1367 	} else {
1368 		should_compress = true;
1369 	}
1370 
1371 	nofs_flag = memalloc_nofs_save();
1372 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1373 	memalloc_nofs_restore(nofs_flag);
1374 
1375 	if (!ctx) {
1376 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1377 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1378 			EXTENT_DO_ACCOUNTING;
1379 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1380 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1381 
1382 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1383 					     clear_bits, page_ops);
1384 		return -ENOMEM;
1385 	}
1386 
1387 	async_chunk = ctx->chunks;
1388 	atomic_set(&ctx->num_chunks, num_chunks);
1389 
1390 	for (i = 0; i < num_chunks; i++) {
1391 		if (should_compress)
1392 			cur_end = min(end, start + SZ_512K - 1);
1393 		else
1394 			cur_end = end;
1395 
1396 		/*
1397 		 * igrab is called higher up in the call chain, take only the
1398 		 * lightweight reference for the callback lifetime
1399 		 */
1400 		ihold(&inode->vfs_inode);
1401 		async_chunk[i].pending = &ctx->num_chunks;
1402 		async_chunk[i].inode = &inode->vfs_inode;
1403 		async_chunk[i].start = start;
1404 		async_chunk[i].end = cur_end;
1405 		async_chunk[i].write_flags = write_flags;
1406 		INIT_LIST_HEAD(&async_chunk[i].extents);
1407 
1408 		/*
1409 		 * The locked_page comes all the way from writepage and its
1410 		 * the original page we were actually given.  As we spread
1411 		 * this large delalloc region across multiple async_chunk
1412 		 * structs, only the first struct needs a pointer to locked_page
1413 		 *
1414 		 * This way we don't need racey decisions about who is supposed
1415 		 * to unlock it.
1416 		 */
1417 		if (locked_page) {
1418 			/*
1419 			 * Depending on the compressibility, the pages might or
1420 			 * might not go through async.  We want all of them to
1421 			 * be accounted against wbc once.  Let's do it here
1422 			 * before the paths diverge.  wbc accounting is used
1423 			 * only for foreign writeback detection and doesn't
1424 			 * need full accuracy.  Just account the whole thing
1425 			 * against the first page.
1426 			 */
1427 			wbc_account_cgroup_owner(wbc, locked_page,
1428 						 cur_end - start);
1429 			async_chunk[i].locked_page = locked_page;
1430 			locked_page = NULL;
1431 		} else {
1432 			async_chunk[i].locked_page = NULL;
1433 		}
1434 
1435 		if (blkcg_css != blkcg_root_css) {
1436 			css_get(blkcg_css);
1437 			async_chunk[i].blkcg_css = blkcg_css;
1438 		} else {
1439 			async_chunk[i].blkcg_css = NULL;
1440 		}
1441 
1442 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1443 				async_cow_submit, async_cow_free);
1444 
1445 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1446 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1447 
1448 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1449 
1450 		*nr_written += nr_pages;
1451 		start = cur_end + 1;
1452 	}
1453 	*page_started = 1;
1454 	return 0;
1455 }
1456 
run_delalloc_zoned(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1457 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1458 				       struct page *locked_page, u64 start,
1459 				       u64 end, int *page_started,
1460 				       unsigned long *nr_written)
1461 {
1462 	int ret;
1463 
1464 	ret = cow_file_range(inode, locked_page, start, end, page_started,
1465 			     nr_written, 0);
1466 	if (ret)
1467 		return ret;
1468 
1469 	if (*page_started)
1470 		return 0;
1471 
1472 	__set_page_dirty_nobuffers(locked_page);
1473 	account_page_redirty(locked_page);
1474 	extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL);
1475 	*page_started = 1;
1476 
1477 	return 0;
1478 }
1479 
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1480 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1481 					u64 bytenr, u64 num_bytes)
1482 {
1483 	int ret;
1484 	struct btrfs_ordered_sum *sums;
1485 	LIST_HEAD(list);
1486 
1487 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1488 				       bytenr + num_bytes - 1, &list, 0);
1489 	if (ret == 0 && list_empty(&list))
1490 		return 0;
1491 
1492 	while (!list_empty(&list)) {
1493 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1494 		list_del(&sums->list);
1495 		kfree(sums);
1496 	}
1497 	if (ret < 0)
1498 		return ret;
1499 	return 1;
1500 }
1501 
fallback_to_cow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1502 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1503 			   const u64 start, const u64 end,
1504 			   int *page_started, unsigned long *nr_written)
1505 {
1506 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1507 	const bool is_reloc_ino = (inode->root->root_key.objectid ==
1508 				   BTRFS_DATA_RELOC_TREE_OBJECTID);
1509 	const u64 range_bytes = end + 1 - start;
1510 	struct extent_io_tree *io_tree = &inode->io_tree;
1511 	u64 range_start = start;
1512 	u64 count;
1513 
1514 	/*
1515 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1516 	 * made we had not enough available data space and therefore we did not
1517 	 * reserve data space for it, since we though we could do NOCOW for the
1518 	 * respective file range (either there is prealloc extent or the inode
1519 	 * has the NOCOW bit set).
1520 	 *
1521 	 * However when we need to fallback to COW mode (because for example the
1522 	 * block group for the corresponding extent was turned to RO mode by a
1523 	 * scrub or relocation) we need to do the following:
1524 	 *
1525 	 * 1) We increment the bytes_may_use counter of the data space info.
1526 	 *    If COW succeeds, it allocates a new data extent and after doing
1527 	 *    that it decrements the space info's bytes_may_use counter and
1528 	 *    increments its bytes_reserved counter by the same amount (we do
1529 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1530 	 *    bytes_may_use counter to compensate (when space is reserved at
1531 	 *    buffered write time, the bytes_may_use counter is incremented);
1532 	 *
1533 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1534 	 *    that if the COW path fails for any reason, it decrements (through
1535 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1536 	 *    data space info, which we incremented in the step above.
1537 	 *
1538 	 * If we need to fallback to cow and the inode corresponds to a free
1539 	 * space cache inode or an inode of the data relocation tree, we must
1540 	 * also increment bytes_may_use of the data space_info for the same
1541 	 * reason. Space caches and relocated data extents always get a prealloc
1542 	 * extent for them, however scrub or balance may have set the block
1543 	 * group that contains that extent to RO mode and therefore force COW
1544 	 * when starting writeback.
1545 	 */
1546 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1547 				 EXTENT_NORESERVE, 0);
1548 	if (count > 0 || is_space_ino || is_reloc_ino) {
1549 		u64 bytes = count;
1550 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1551 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1552 
1553 		if (is_space_ino || is_reloc_ino)
1554 			bytes = range_bytes;
1555 
1556 		spin_lock(&sinfo->lock);
1557 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1558 		spin_unlock(&sinfo->lock);
1559 
1560 		if (count > 0)
1561 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1562 					 0, 0, NULL);
1563 	}
1564 
1565 	return cow_file_range(inode, locked_page, start, end, page_started,
1566 			      nr_written, 1);
1567 }
1568 
1569 /*
1570  * when nowcow writeback call back.  This checks for snapshots or COW copies
1571  * of the extents that exist in the file, and COWs the file as required.
1572  *
1573  * If no cow copies or snapshots exist, we write directly to the existing
1574  * blocks on disk
1575  */
run_delalloc_nocow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1576 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1577 				       struct page *locked_page,
1578 				       const u64 start, const u64 end,
1579 				       int *page_started,
1580 				       unsigned long *nr_written)
1581 {
1582 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1583 	struct btrfs_root *root = inode->root;
1584 	struct btrfs_path *path;
1585 	u64 cow_start = (u64)-1;
1586 	u64 cur_offset = start;
1587 	int ret;
1588 	bool check_prev = true;
1589 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1590 	u64 ino = btrfs_ino(inode);
1591 	bool nocow = false;
1592 	u64 disk_bytenr = 0;
1593 	const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1594 
1595 	path = btrfs_alloc_path();
1596 	if (!path) {
1597 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1598 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1599 					     EXTENT_DO_ACCOUNTING |
1600 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1601 					     PAGE_START_WRITEBACK |
1602 					     PAGE_END_WRITEBACK);
1603 		return -ENOMEM;
1604 	}
1605 
1606 	while (1) {
1607 		struct btrfs_key found_key;
1608 		struct btrfs_file_extent_item *fi;
1609 		struct extent_buffer *leaf;
1610 		u64 extent_end;
1611 		u64 extent_offset;
1612 		u64 num_bytes = 0;
1613 		u64 disk_num_bytes;
1614 		u64 ram_bytes;
1615 		int extent_type;
1616 
1617 		nocow = false;
1618 
1619 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1620 					       cur_offset, 0);
1621 		if (ret < 0)
1622 			goto error;
1623 
1624 		/*
1625 		 * If there is no extent for our range when doing the initial
1626 		 * search, then go back to the previous slot as it will be the
1627 		 * one containing the search offset
1628 		 */
1629 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1630 			leaf = path->nodes[0];
1631 			btrfs_item_key_to_cpu(leaf, &found_key,
1632 					      path->slots[0] - 1);
1633 			if (found_key.objectid == ino &&
1634 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1635 				path->slots[0]--;
1636 		}
1637 		check_prev = false;
1638 next_slot:
1639 		/* Go to next leaf if we have exhausted the current one */
1640 		leaf = path->nodes[0];
1641 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1642 			ret = btrfs_next_leaf(root, path);
1643 			if (ret < 0) {
1644 				if (cow_start != (u64)-1)
1645 					cur_offset = cow_start;
1646 				goto error;
1647 			}
1648 			if (ret > 0)
1649 				break;
1650 			leaf = path->nodes[0];
1651 		}
1652 
1653 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1654 
1655 		/* Didn't find anything for our INO */
1656 		if (found_key.objectid > ino)
1657 			break;
1658 		/*
1659 		 * Keep searching until we find an EXTENT_ITEM or there are no
1660 		 * more extents for this inode
1661 		 */
1662 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1663 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1664 			path->slots[0]++;
1665 			goto next_slot;
1666 		}
1667 
1668 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1669 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1670 		    found_key.offset > end)
1671 			break;
1672 
1673 		/*
1674 		 * If the found extent starts after requested offset, then
1675 		 * adjust extent_end to be right before this extent begins
1676 		 */
1677 		if (found_key.offset > cur_offset) {
1678 			extent_end = found_key.offset;
1679 			extent_type = 0;
1680 			goto out_check;
1681 		}
1682 
1683 		/*
1684 		 * Found extent which begins before our range and potentially
1685 		 * intersect it
1686 		 */
1687 		fi = btrfs_item_ptr(leaf, path->slots[0],
1688 				    struct btrfs_file_extent_item);
1689 		extent_type = btrfs_file_extent_type(leaf, fi);
1690 
1691 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1692 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1693 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1694 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1695 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1696 			extent_end = found_key.offset +
1697 				btrfs_file_extent_num_bytes(leaf, fi);
1698 			disk_num_bytes =
1699 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1700 			/*
1701 			 * If the extent we got ends before our current offset,
1702 			 * skip to the next extent.
1703 			 */
1704 			if (extent_end <= cur_offset) {
1705 				path->slots[0]++;
1706 				goto next_slot;
1707 			}
1708 			/* Skip holes */
1709 			if (disk_bytenr == 0)
1710 				goto out_check;
1711 			/* Skip compressed/encrypted/encoded extents */
1712 			if (btrfs_file_extent_compression(leaf, fi) ||
1713 			    btrfs_file_extent_encryption(leaf, fi) ||
1714 			    btrfs_file_extent_other_encoding(leaf, fi))
1715 				goto out_check;
1716 			/*
1717 			 * If extent is created before the last volume's snapshot
1718 			 * this implies the extent is shared, hence we can't do
1719 			 * nocow. This is the same check as in
1720 			 * btrfs_cross_ref_exist but without calling
1721 			 * btrfs_search_slot.
1722 			 */
1723 			if (!freespace_inode &&
1724 			    btrfs_file_extent_generation(leaf, fi) <=
1725 			    btrfs_root_last_snapshot(&root->root_item))
1726 				goto out_check;
1727 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1728 				goto out_check;
1729 
1730 			/*
1731 			 * The following checks can be expensive, as they need to
1732 			 * take other locks and do btree or rbtree searches, so
1733 			 * release the path to avoid blocking other tasks for too
1734 			 * long.
1735 			 */
1736 			btrfs_release_path(path);
1737 
1738 			ret = btrfs_cross_ref_exist(root, ino,
1739 						    found_key.offset -
1740 						    extent_offset, disk_bytenr, false);
1741 			if (ret) {
1742 				/*
1743 				 * ret could be -EIO if the above fails to read
1744 				 * metadata.
1745 				 */
1746 				if (ret < 0) {
1747 					if (cow_start != (u64)-1)
1748 						cur_offset = cow_start;
1749 					goto error;
1750 				}
1751 
1752 				WARN_ON_ONCE(freespace_inode);
1753 				goto out_check;
1754 			}
1755 			disk_bytenr += extent_offset;
1756 			disk_bytenr += cur_offset - found_key.offset;
1757 			num_bytes = min(end + 1, extent_end) - cur_offset;
1758 			/*
1759 			 * If there are pending snapshots for this root, we
1760 			 * fall into common COW way
1761 			 */
1762 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1763 				goto out_check;
1764 			/*
1765 			 * force cow if csum exists in the range.
1766 			 * this ensure that csum for a given extent are
1767 			 * either valid or do not exist.
1768 			 */
1769 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1770 						  num_bytes);
1771 			if (ret) {
1772 				/*
1773 				 * ret could be -EIO if the above fails to read
1774 				 * metadata.
1775 				 */
1776 				if (ret < 0) {
1777 					if (cow_start != (u64)-1)
1778 						cur_offset = cow_start;
1779 					goto error;
1780 				}
1781 				WARN_ON_ONCE(freespace_inode);
1782 				goto out_check;
1783 			}
1784 			/* If the extent's block group is RO, we must COW */
1785 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1786 				goto out_check;
1787 			nocow = true;
1788 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1789 			extent_end = found_key.offset + ram_bytes;
1790 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1791 			/* Skip extents outside of our requested range */
1792 			if (extent_end <= start) {
1793 				path->slots[0]++;
1794 				goto next_slot;
1795 			}
1796 		} else {
1797 			/* If this triggers then we have a memory corruption */
1798 			BUG();
1799 		}
1800 out_check:
1801 		/*
1802 		 * If nocow is false then record the beginning of the range
1803 		 * that needs to be COWed
1804 		 */
1805 		if (!nocow) {
1806 			if (cow_start == (u64)-1)
1807 				cow_start = cur_offset;
1808 			cur_offset = extent_end;
1809 			if (cur_offset > end)
1810 				break;
1811 			if (!path->nodes[0])
1812 				continue;
1813 			path->slots[0]++;
1814 			goto next_slot;
1815 		}
1816 
1817 		/*
1818 		 * COW range from cow_start to found_key.offset - 1. As the key
1819 		 * will contain the beginning of the first extent that can be
1820 		 * NOCOW, following one which needs to be COW'ed
1821 		 */
1822 		if (cow_start != (u64)-1) {
1823 			ret = fallback_to_cow(inode, locked_page,
1824 					      cow_start, found_key.offset - 1,
1825 					      page_started, nr_written);
1826 			if (ret)
1827 				goto error;
1828 			cow_start = (u64)-1;
1829 		}
1830 
1831 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1832 			u64 orig_start = found_key.offset - extent_offset;
1833 			struct extent_map *em;
1834 
1835 			em = create_io_em(inode, cur_offset, num_bytes,
1836 					  orig_start,
1837 					  disk_bytenr, /* block_start */
1838 					  num_bytes, /* block_len */
1839 					  disk_num_bytes, /* orig_block_len */
1840 					  ram_bytes, BTRFS_COMPRESS_NONE,
1841 					  BTRFS_ORDERED_PREALLOC);
1842 			if (IS_ERR(em)) {
1843 				ret = PTR_ERR(em);
1844 				goto error;
1845 			}
1846 			free_extent_map(em);
1847 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1848 						       disk_bytenr, num_bytes,
1849 						       num_bytes,
1850 						       BTRFS_ORDERED_PREALLOC);
1851 			if (ret) {
1852 				btrfs_drop_extent_cache(inode, cur_offset,
1853 							cur_offset + num_bytes - 1,
1854 							0);
1855 				goto error;
1856 			}
1857 		} else {
1858 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1859 						       disk_bytenr, num_bytes,
1860 						       num_bytes,
1861 						       BTRFS_ORDERED_NOCOW);
1862 			if (ret)
1863 				goto error;
1864 		}
1865 
1866 		if (nocow)
1867 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1868 		nocow = false;
1869 
1870 		if (root->root_key.objectid ==
1871 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1872 			/*
1873 			 * Error handled later, as we must prevent
1874 			 * extent_clear_unlock_delalloc() in error handler
1875 			 * from freeing metadata of created ordered extent.
1876 			 */
1877 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1878 						      num_bytes);
1879 
1880 		extent_clear_unlock_delalloc(inode, cur_offset,
1881 					     cur_offset + num_bytes - 1,
1882 					     locked_page, EXTENT_LOCKED |
1883 					     EXTENT_DELALLOC |
1884 					     EXTENT_CLEAR_DATA_RESV,
1885 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
1886 
1887 		cur_offset = extent_end;
1888 
1889 		/*
1890 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1891 		 * handler, as metadata for created ordered extent will only
1892 		 * be freed by btrfs_finish_ordered_io().
1893 		 */
1894 		if (ret)
1895 			goto error;
1896 		if (cur_offset > end)
1897 			break;
1898 	}
1899 	btrfs_release_path(path);
1900 
1901 	if (cur_offset <= end && cow_start == (u64)-1)
1902 		cow_start = cur_offset;
1903 
1904 	if (cow_start != (u64)-1) {
1905 		cur_offset = end;
1906 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1907 				      page_started, nr_written);
1908 		if (ret)
1909 			goto error;
1910 	}
1911 
1912 error:
1913 	if (nocow)
1914 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1915 
1916 	if (ret && cur_offset < end)
1917 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1918 					     locked_page, EXTENT_LOCKED |
1919 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1920 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1921 					     PAGE_START_WRITEBACK |
1922 					     PAGE_END_WRITEBACK);
1923 	btrfs_free_path(path);
1924 	return ret;
1925 }
1926 
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)1927 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1928 {
1929 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1930 		if (inode->defrag_bytes &&
1931 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1932 				   0, NULL))
1933 			return false;
1934 		return true;
1935 	}
1936 	return false;
1937 }
1938 
1939 /*
1940  * Function to process delayed allocation (create CoW) for ranges which are
1941  * being touched for the first time.
1942  */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1943 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1944 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1945 		struct writeback_control *wbc)
1946 {
1947 	int ret;
1948 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1949 
1950 	if (should_nocow(inode, start, end)) {
1951 		ASSERT(!zoned);
1952 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1953 					 page_started, nr_written);
1954 	} else if (!inode_can_compress(inode) ||
1955 		   !inode_need_compress(inode, start, end)) {
1956 		if (zoned)
1957 			ret = run_delalloc_zoned(inode, locked_page, start, end,
1958 						 page_started, nr_written);
1959 		else
1960 			ret = cow_file_range(inode, locked_page, start, end,
1961 					     page_started, nr_written, 1);
1962 	} else {
1963 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1964 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1965 					   page_started, nr_written);
1966 	}
1967 	ASSERT(ret <= 0);
1968 	if (ret)
1969 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1970 					      end - start + 1);
1971 	return ret;
1972 }
1973 
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)1974 void btrfs_split_delalloc_extent(struct inode *inode,
1975 				 struct extent_state *orig, u64 split)
1976 {
1977 	u64 size;
1978 
1979 	/* not delalloc, ignore it */
1980 	if (!(orig->state & EXTENT_DELALLOC))
1981 		return;
1982 
1983 	size = orig->end - orig->start + 1;
1984 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1985 		u32 num_extents;
1986 		u64 new_size;
1987 
1988 		/*
1989 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1990 		 * applies here, just in reverse.
1991 		 */
1992 		new_size = orig->end - split + 1;
1993 		num_extents = count_max_extents(new_size);
1994 		new_size = split - orig->start;
1995 		num_extents += count_max_extents(new_size);
1996 		if (count_max_extents(size) >= num_extents)
1997 			return;
1998 	}
1999 
2000 	spin_lock(&BTRFS_I(inode)->lock);
2001 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2002 	spin_unlock(&BTRFS_I(inode)->lock);
2003 }
2004 
2005 /*
2006  * Handle merged delayed allocation extents so we can keep track of new extents
2007  * that are just merged onto old extents, such as when we are doing sequential
2008  * writes, so we can properly account for the metadata space we'll need.
2009  */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)2010 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2011 				 struct extent_state *other)
2012 {
2013 	u64 new_size, old_size;
2014 	u32 num_extents;
2015 
2016 	/* not delalloc, ignore it */
2017 	if (!(other->state & EXTENT_DELALLOC))
2018 		return;
2019 
2020 	if (new->start > other->start)
2021 		new_size = new->end - other->start + 1;
2022 	else
2023 		new_size = other->end - new->start + 1;
2024 
2025 	/* we're not bigger than the max, unreserve the space and go */
2026 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2027 		spin_lock(&BTRFS_I(inode)->lock);
2028 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2029 		spin_unlock(&BTRFS_I(inode)->lock);
2030 		return;
2031 	}
2032 
2033 	/*
2034 	 * We have to add up either side to figure out how many extents were
2035 	 * accounted for before we merged into one big extent.  If the number of
2036 	 * extents we accounted for is <= the amount we need for the new range
2037 	 * then we can return, otherwise drop.  Think of it like this
2038 	 *
2039 	 * [ 4k][MAX_SIZE]
2040 	 *
2041 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2042 	 * need 2 outstanding extents, on one side we have 1 and the other side
2043 	 * we have 1 so they are == and we can return.  But in this case
2044 	 *
2045 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2046 	 *
2047 	 * Each range on their own accounts for 2 extents, but merged together
2048 	 * they are only 3 extents worth of accounting, so we need to drop in
2049 	 * this case.
2050 	 */
2051 	old_size = other->end - other->start + 1;
2052 	num_extents = count_max_extents(old_size);
2053 	old_size = new->end - new->start + 1;
2054 	num_extents += count_max_extents(old_size);
2055 	if (count_max_extents(new_size) >= num_extents)
2056 		return;
2057 
2058 	spin_lock(&BTRFS_I(inode)->lock);
2059 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2060 	spin_unlock(&BTRFS_I(inode)->lock);
2061 }
2062 
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)2063 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2064 				      struct inode *inode)
2065 {
2066 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2067 
2068 	spin_lock(&root->delalloc_lock);
2069 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2070 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2071 			      &root->delalloc_inodes);
2072 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2073 			&BTRFS_I(inode)->runtime_flags);
2074 		root->nr_delalloc_inodes++;
2075 		if (root->nr_delalloc_inodes == 1) {
2076 			spin_lock(&fs_info->delalloc_root_lock);
2077 			BUG_ON(!list_empty(&root->delalloc_root));
2078 			list_add_tail(&root->delalloc_root,
2079 				      &fs_info->delalloc_roots);
2080 			spin_unlock(&fs_info->delalloc_root_lock);
2081 		}
2082 	}
2083 	spin_unlock(&root->delalloc_lock);
2084 }
2085 
2086 
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2087 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2088 				struct btrfs_inode *inode)
2089 {
2090 	struct btrfs_fs_info *fs_info = root->fs_info;
2091 
2092 	if (!list_empty(&inode->delalloc_inodes)) {
2093 		list_del_init(&inode->delalloc_inodes);
2094 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2095 			  &inode->runtime_flags);
2096 		root->nr_delalloc_inodes--;
2097 		if (!root->nr_delalloc_inodes) {
2098 			ASSERT(list_empty(&root->delalloc_inodes));
2099 			spin_lock(&fs_info->delalloc_root_lock);
2100 			BUG_ON(list_empty(&root->delalloc_root));
2101 			list_del_init(&root->delalloc_root);
2102 			spin_unlock(&fs_info->delalloc_root_lock);
2103 		}
2104 	}
2105 }
2106 
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)2107 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2108 				     struct btrfs_inode *inode)
2109 {
2110 	spin_lock(&root->delalloc_lock);
2111 	__btrfs_del_delalloc_inode(root, inode);
2112 	spin_unlock(&root->delalloc_lock);
2113 }
2114 
2115 /*
2116  * Properly track delayed allocation bytes in the inode and to maintain the
2117  * list of inodes that have pending delalloc work to be done.
2118  */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)2119 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2120 			       unsigned *bits)
2121 {
2122 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2123 
2124 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2125 		WARN_ON(1);
2126 	/*
2127 	 * set_bit and clear bit hooks normally require _irqsave/restore
2128 	 * but in this case, we are only testing for the DELALLOC
2129 	 * bit, which is only set or cleared with irqs on
2130 	 */
2131 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2132 		struct btrfs_root *root = BTRFS_I(inode)->root;
2133 		u64 len = state->end + 1 - state->start;
2134 		u32 num_extents = count_max_extents(len);
2135 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2136 
2137 		spin_lock(&BTRFS_I(inode)->lock);
2138 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2139 		spin_unlock(&BTRFS_I(inode)->lock);
2140 
2141 		/* For sanity tests */
2142 		if (btrfs_is_testing(fs_info))
2143 			return;
2144 
2145 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2146 					 fs_info->delalloc_batch);
2147 		spin_lock(&BTRFS_I(inode)->lock);
2148 		BTRFS_I(inode)->delalloc_bytes += len;
2149 		if (*bits & EXTENT_DEFRAG)
2150 			BTRFS_I(inode)->defrag_bytes += len;
2151 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2152 					 &BTRFS_I(inode)->runtime_flags))
2153 			btrfs_add_delalloc_inodes(root, inode);
2154 		spin_unlock(&BTRFS_I(inode)->lock);
2155 	}
2156 
2157 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2158 	    (*bits & EXTENT_DELALLOC_NEW)) {
2159 		spin_lock(&BTRFS_I(inode)->lock);
2160 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2161 			state->start;
2162 		spin_unlock(&BTRFS_I(inode)->lock);
2163 	}
2164 }
2165 
2166 /*
2167  * Once a range is no longer delalloc this function ensures that proper
2168  * accounting happens.
2169  */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)2170 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2171 				 struct extent_state *state, unsigned *bits)
2172 {
2173 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2174 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2175 	u64 len = state->end + 1 - state->start;
2176 	u32 num_extents = count_max_extents(len);
2177 
2178 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2179 		spin_lock(&inode->lock);
2180 		inode->defrag_bytes -= len;
2181 		spin_unlock(&inode->lock);
2182 	}
2183 
2184 	/*
2185 	 * set_bit and clear bit hooks normally require _irqsave/restore
2186 	 * but in this case, we are only testing for the DELALLOC
2187 	 * bit, which is only set or cleared with irqs on
2188 	 */
2189 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2190 		struct btrfs_root *root = inode->root;
2191 		bool do_list = !btrfs_is_free_space_inode(inode);
2192 
2193 		spin_lock(&inode->lock);
2194 		btrfs_mod_outstanding_extents(inode, -num_extents);
2195 		spin_unlock(&inode->lock);
2196 
2197 		/*
2198 		 * We don't reserve metadata space for space cache inodes so we
2199 		 * don't need to call delalloc_release_metadata if there is an
2200 		 * error.
2201 		 */
2202 		if (*bits & EXTENT_CLEAR_META_RESV &&
2203 		    root != fs_info->tree_root)
2204 			btrfs_delalloc_release_metadata(inode, len, false);
2205 
2206 		/* For sanity tests. */
2207 		if (btrfs_is_testing(fs_info))
2208 			return;
2209 
2210 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2211 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2212 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2213 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2214 
2215 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2216 					 fs_info->delalloc_batch);
2217 		spin_lock(&inode->lock);
2218 		inode->delalloc_bytes -= len;
2219 		if (do_list && inode->delalloc_bytes == 0 &&
2220 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2221 					&inode->runtime_flags))
2222 			btrfs_del_delalloc_inode(root, inode);
2223 		spin_unlock(&inode->lock);
2224 	}
2225 
2226 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2227 	    (*bits & EXTENT_DELALLOC_NEW)) {
2228 		spin_lock(&inode->lock);
2229 		ASSERT(inode->new_delalloc_bytes >= len);
2230 		inode->new_delalloc_bytes -= len;
2231 		if (*bits & EXTENT_ADD_INODE_BYTES)
2232 			inode_add_bytes(&inode->vfs_inode, len);
2233 		spin_unlock(&inode->lock);
2234 	}
2235 }
2236 
2237 /*
2238  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2239  * in a chunk's stripe. This function ensures that bios do not span a
2240  * stripe/chunk
2241  *
2242  * @page - The page we are about to add to the bio
2243  * @size - size we want to add to the bio
2244  * @bio - bio we want to ensure is smaller than a stripe
2245  * @bio_flags - flags of the bio
2246  *
2247  * return 1 if page cannot be added to the bio
2248  * return 0 if page can be added to the bio
2249  * return error otherwise
2250  */
btrfs_bio_fits_in_stripe(struct page * page,size_t size,struct bio * bio,unsigned long bio_flags)2251 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2252 			     unsigned long bio_flags)
2253 {
2254 	struct inode *inode = page->mapping->host;
2255 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2256 	u64 logical = bio->bi_iter.bi_sector << 9;
2257 	u32 bio_len = bio->bi_iter.bi_size;
2258 	struct extent_map *em;
2259 	int ret = 0;
2260 	struct btrfs_io_geometry geom;
2261 
2262 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2263 		return 0;
2264 
2265 	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
2266 	if (IS_ERR(em))
2267 		return PTR_ERR(em);
2268 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, &geom);
2269 	if (ret < 0)
2270 		goto out;
2271 
2272 	if (geom.len < bio_len + size)
2273 		ret = 1;
2274 out:
2275 	free_extent_map(em);
2276 	return ret;
2277 }
2278 
2279 /*
2280  * in order to insert checksums into the metadata in large chunks,
2281  * we wait until bio submission time.   All the pages in the bio are
2282  * checksummed and sums are attached onto the ordered extent record.
2283  *
2284  * At IO completion time the cums attached on the ordered extent record
2285  * are inserted into the btree
2286  */
btrfs_submit_bio_start(struct inode * inode,struct bio * bio,u64 dio_file_offset)2287 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2288 					   u64 dio_file_offset)
2289 {
2290 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2291 }
2292 
2293 /*
2294  * Split an extent_map at [start, start + len]
2295  *
2296  * This function is intended to be used only for extract_ordered_extent().
2297  */
split_zoned_em(struct btrfs_inode * inode,u64 start,u64 len,u64 pre,u64 post)2298 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2299 			  u64 pre, u64 post)
2300 {
2301 	struct extent_map_tree *em_tree = &inode->extent_tree;
2302 	struct extent_map *em;
2303 	struct extent_map *split_pre = NULL;
2304 	struct extent_map *split_mid = NULL;
2305 	struct extent_map *split_post = NULL;
2306 	int ret = 0;
2307 	unsigned long flags;
2308 
2309 	/* Sanity check */
2310 	if (pre == 0 && post == 0)
2311 		return 0;
2312 
2313 	split_pre = alloc_extent_map();
2314 	if (pre)
2315 		split_mid = alloc_extent_map();
2316 	if (post)
2317 		split_post = alloc_extent_map();
2318 	if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2319 		ret = -ENOMEM;
2320 		goto out;
2321 	}
2322 
2323 	ASSERT(pre + post < len);
2324 
2325 	lock_extent(&inode->io_tree, start, start + len - 1);
2326 	write_lock(&em_tree->lock);
2327 	em = lookup_extent_mapping(em_tree, start, len);
2328 	if (!em) {
2329 		ret = -EIO;
2330 		goto out_unlock;
2331 	}
2332 
2333 	ASSERT(em->len == len);
2334 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2335 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2336 	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2337 	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2338 	ASSERT(!list_empty(&em->list));
2339 
2340 	flags = em->flags;
2341 	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2342 
2343 	/* First, replace the em with a new extent_map starting from * em->start */
2344 	split_pre->start = em->start;
2345 	split_pre->len = (pre ? pre : em->len - post);
2346 	split_pre->orig_start = split_pre->start;
2347 	split_pre->block_start = em->block_start;
2348 	split_pre->block_len = split_pre->len;
2349 	split_pre->orig_block_len = split_pre->block_len;
2350 	split_pre->ram_bytes = split_pre->len;
2351 	split_pre->flags = flags;
2352 	split_pre->compress_type = em->compress_type;
2353 	split_pre->generation = em->generation;
2354 
2355 	replace_extent_mapping(em_tree, em, split_pre, 1);
2356 
2357 	/*
2358 	 * Now we only have an extent_map at:
2359 	 *     [em->start, em->start + pre] if pre != 0
2360 	 *     [em->start, em->start + em->len - post] if pre == 0
2361 	 */
2362 
2363 	if (pre) {
2364 		/* Insert the middle extent_map */
2365 		split_mid->start = em->start + pre;
2366 		split_mid->len = em->len - pre - post;
2367 		split_mid->orig_start = split_mid->start;
2368 		split_mid->block_start = em->block_start + pre;
2369 		split_mid->block_len = split_mid->len;
2370 		split_mid->orig_block_len = split_mid->block_len;
2371 		split_mid->ram_bytes = split_mid->len;
2372 		split_mid->flags = flags;
2373 		split_mid->compress_type = em->compress_type;
2374 		split_mid->generation = em->generation;
2375 		add_extent_mapping(em_tree, split_mid, 1);
2376 	}
2377 
2378 	if (post) {
2379 		split_post->start = em->start + em->len - post;
2380 		split_post->len = post;
2381 		split_post->orig_start = split_post->start;
2382 		split_post->block_start = em->block_start + em->len - post;
2383 		split_post->block_len = split_post->len;
2384 		split_post->orig_block_len = split_post->block_len;
2385 		split_post->ram_bytes = split_post->len;
2386 		split_post->flags = flags;
2387 		split_post->compress_type = em->compress_type;
2388 		split_post->generation = em->generation;
2389 		add_extent_mapping(em_tree, split_post, 1);
2390 	}
2391 
2392 	/* Once for us */
2393 	free_extent_map(em);
2394 	/* Once for the tree */
2395 	free_extent_map(em);
2396 
2397 out_unlock:
2398 	write_unlock(&em_tree->lock);
2399 	unlock_extent(&inode->io_tree, start, start + len - 1);
2400 out:
2401 	free_extent_map(split_pre);
2402 	free_extent_map(split_mid);
2403 	free_extent_map(split_post);
2404 
2405 	return ret;
2406 }
2407 
extract_ordered_extent(struct btrfs_inode * inode,struct bio * bio,loff_t file_offset)2408 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2409 					   struct bio *bio, loff_t file_offset)
2410 {
2411 	struct btrfs_ordered_extent *ordered;
2412 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2413 	u64 file_len;
2414 	u64 len = bio->bi_iter.bi_size;
2415 	u64 end = start + len;
2416 	u64 ordered_end;
2417 	u64 pre, post;
2418 	int ret = 0;
2419 
2420 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2421 	if (WARN_ON_ONCE(!ordered))
2422 		return BLK_STS_IOERR;
2423 
2424 	/* No need to split */
2425 	if (ordered->disk_num_bytes == len)
2426 		goto out;
2427 
2428 	/* We cannot split once end_bio'd ordered extent */
2429 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2430 		ret = -EINVAL;
2431 		goto out;
2432 	}
2433 
2434 	/* We cannot split a compressed ordered extent */
2435 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2436 		ret = -EINVAL;
2437 		goto out;
2438 	}
2439 
2440 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2441 	/* bio must be in one ordered extent */
2442 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2443 		ret = -EINVAL;
2444 		goto out;
2445 	}
2446 
2447 	/* Checksum list should be empty */
2448 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2449 		ret = -EINVAL;
2450 		goto out;
2451 	}
2452 
2453 	file_len = ordered->num_bytes;
2454 	pre = start - ordered->disk_bytenr;
2455 	post = ordered_end - end;
2456 
2457 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2458 	if (ret)
2459 		goto out;
2460 	ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2461 
2462 out:
2463 	btrfs_put_ordered_extent(ordered);
2464 
2465 	return errno_to_blk_status(ret);
2466 }
2467 
2468 /*
2469  * extent_io.c submission hook. This does the right thing for csum calculation
2470  * on write, or reading the csums from the tree before a read.
2471  *
2472  * Rules about async/sync submit,
2473  * a) read:				sync submit
2474  *
2475  * b) write without checksum:		sync submit
2476  *
2477  * c) write with checksum:
2478  *    c-1) if bio is issued by fsync:	sync submit
2479  *         (sync_writers != 0)
2480  *
2481  *    c-2) if root is reloc root:	sync submit
2482  *         (only in case of buffered IO)
2483  *
2484  *    c-3) otherwise:			async submit
2485  */
btrfs_submit_data_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)2486 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2487 				   int mirror_num, unsigned long bio_flags)
2488 
2489 {
2490 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2491 	struct btrfs_root *root = BTRFS_I(inode)->root;
2492 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2493 	blk_status_t ret = 0;
2494 	int skip_sum;
2495 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2496 
2497 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2498 		   !fs_info->csum_root;
2499 
2500 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2501 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2502 
2503 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2504 		struct page *page = bio_first_bvec_all(bio)->bv_page;
2505 		loff_t file_offset = page_offset(page);
2506 
2507 		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2508 		if (ret)
2509 			goto out;
2510 	}
2511 
2512 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2513 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2514 		if (ret)
2515 			goto out;
2516 
2517 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2518 			ret = btrfs_submit_compressed_read(inode, bio,
2519 							   mirror_num,
2520 							   bio_flags);
2521 			goto out;
2522 		} else {
2523 			/*
2524 			 * Lookup bio sums does extra checks around whether we
2525 			 * need to csum or not, which is why we ignore skip_sum
2526 			 * here.
2527 			 */
2528 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2529 			if (ret)
2530 				goto out;
2531 		}
2532 		goto mapit;
2533 	} else if (async && !skip_sum) {
2534 		/* csum items have already been cloned */
2535 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2536 			goto mapit;
2537 		/* we're doing a write, do the async checksumming */
2538 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2539 					  0, btrfs_submit_bio_start);
2540 		goto out;
2541 	} else if (!skip_sum) {
2542 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2543 		if (ret)
2544 			goto out;
2545 	}
2546 
2547 mapit:
2548 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2549 
2550 out:
2551 	if (ret) {
2552 		bio->bi_status = ret;
2553 		bio_endio(bio);
2554 	}
2555 	return ret;
2556 }
2557 
2558 /*
2559  * given a list of ordered sums record them in the inode.  This happens
2560  * at IO completion time based on sums calculated at bio submission time.
2561  */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2562 static int add_pending_csums(struct btrfs_trans_handle *trans,
2563 			     struct list_head *list)
2564 {
2565 	struct btrfs_ordered_sum *sum;
2566 	int ret;
2567 
2568 	list_for_each_entry(sum, list, list) {
2569 		trans->adding_csums = true;
2570 		ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2571 		trans->adding_csums = false;
2572 		if (ret)
2573 			return ret;
2574 	}
2575 	return 0;
2576 }
2577 
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2578 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2579 					 const u64 start,
2580 					 const u64 len,
2581 					 struct extent_state **cached_state)
2582 {
2583 	u64 search_start = start;
2584 	const u64 end = start + len - 1;
2585 
2586 	while (search_start < end) {
2587 		const u64 search_len = end - search_start + 1;
2588 		struct extent_map *em;
2589 		u64 em_len;
2590 		int ret = 0;
2591 
2592 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2593 		if (IS_ERR(em))
2594 			return PTR_ERR(em);
2595 
2596 		if (em->block_start != EXTENT_MAP_HOLE)
2597 			goto next;
2598 
2599 		em_len = em->len;
2600 		if (em->start < search_start)
2601 			em_len -= search_start - em->start;
2602 		if (em_len > search_len)
2603 			em_len = search_len;
2604 
2605 		ret = set_extent_bit(&inode->io_tree, search_start,
2606 				     search_start + em_len - 1,
2607 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2608 				     GFP_NOFS, NULL);
2609 next:
2610 		search_start = extent_map_end(em);
2611 		free_extent_map(em);
2612 		if (ret)
2613 			return ret;
2614 	}
2615 	return 0;
2616 }
2617 
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2618 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2619 			      unsigned int extra_bits,
2620 			      struct extent_state **cached_state)
2621 {
2622 	WARN_ON(PAGE_ALIGNED(end));
2623 
2624 	if (start >= i_size_read(&inode->vfs_inode) &&
2625 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2626 		/*
2627 		 * There can't be any extents following eof in this case so just
2628 		 * set the delalloc new bit for the range directly.
2629 		 */
2630 		extra_bits |= EXTENT_DELALLOC_NEW;
2631 	} else {
2632 		int ret;
2633 
2634 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2635 						    end + 1 - start,
2636 						    cached_state);
2637 		if (ret)
2638 			return ret;
2639 	}
2640 
2641 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2642 				   cached_state);
2643 }
2644 
2645 /* see btrfs_writepage_start_hook for details on why this is required */
2646 struct btrfs_writepage_fixup {
2647 	struct page *page;
2648 	struct inode *inode;
2649 	struct btrfs_work work;
2650 };
2651 
btrfs_writepage_fixup_worker(struct btrfs_work * work)2652 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2653 {
2654 	struct btrfs_writepage_fixup *fixup;
2655 	struct btrfs_ordered_extent *ordered;
2656 	struct extent_state *cached_state = NULL;
2657 	struct extent_changeset *data_reserved = NULL;
2658 	struct page *page;
2659 	struct btrfs_inode *inode;
2660 	u64 page_start;
2661 	u64 page_end;
2662 	int ret = 0;
2663 	bool free_delalloc_space = true;
2664 
2665 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2666 	page = fixup->page;
2667 	inode = BTRFS_I(fixup->inode);
2668 	page_start = page_offset(page);
2669 	page_end = page_offset(page) + PAGE_SIZE - 1;
2670 
2671 	/*
2672 	 * This is similar to page_mkwrite, we need to reserve the space before
2673 	 * we take the page lock.
2674 	 */
2675 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2676 					   PAGE_SIZE);
2677 again:
2678 	lock_page(page);
2679 
2680 	/*
2681 	 * Before we queued this fixup, we took a reference on the page.
2682 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2683 	 * address space.
2684 	 */
2685 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2686 		/*
2687 		 * Unfortunately this is a little tricky, either
2688 		 *
2689 		 * 1) We got here and our page had already been dealt with and
2690 		 *    we reserved our space, thus ret == 0, so we need to just
2691 		 *    drop our space reservation and bail.  This can happen the
2692 		 *    first time we come into the fixup worker, or could happen
2693 		 *    while waiting for the ordered extent.
2694 		 * 2) Our page was already dealt with, but we happened to get an
2695 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2696 		 *    this case we obviously don't have anything to release, but
2697 		 *    because the page was already dealt with we don't want to
2698 		 *    mark the page with an error, so make sure we're resetting
2699 		 *    ret to 0.  This is why we have this check _before_ the ret
2700 		 *    check, because we do not want to have a surprise ENOSPC
2701 		 *    when the page was already properly dealt with.
2702 		 */
2703 		if (!ret) {
2704 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2705 			btrfs_delalloc_release_space(inode, data_reserved,
2706 						     page_start, PAGE_SIZE,
2707 						     true);
2708 		}
2709 		ret = 0;
2710 		goto out_page;
2711 	}
2712 
2713 	/*
2714 	 * We can't mess with the page state unless it is locked, so now that
2715 	 * it is locked bail if we failed to make our space reservation.
2716 	 */
2717 	if (ret)
2718 		goto out_page;
2719 
2720 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2721 
2722 	/* already ordered? We're done */
2723 	if (PageOrdered(page))
2724 		goto out_reserved;
2725 
2726 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2727 	if (ordered) {
2728 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2729 				     &cached_state);
2730 		unlock_page(page);
2731 		btrfs_start_ordered_extent(ordered, 1);
2732 		btrfs_put_ordered_extent(ordered);
2733 		goto again;
2734 	}
2735 
2736 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2737 					&cached_state);
2738 	if (ret)
2739 		goto out_reserved;
2740 
2741 	/*
2742 	 * Everything went as planned, we're now the owner of a dirty page with
2743 	 * delayed allocation bits set and space reserved for our COW
2744 	 * destination.
2745 	 *
2746 	 * The page was dirty when we started, nothing should have cleaned it.
2747 	 */
2748 	BUG_ON(!PageDirty(page));
2749 	free_delalloc_space = false;
2750 out_reserved:
2751 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2752 	if (free_delalloc_space)
2753 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2754 					     PAGE_SIZE, true);
2755 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2756 			     &cached_state);
2757 out_page:
2758 	if (ret) {
2759 		/*
2760 		 * We hit ENOSPC or other errors.  Update the mapping and page
2761 		 * to reflect the errors and clean the page.
2762 		 */
2763 		mapping_set_error(page->mapping, ret);
2764 		end_extent_writepage(page, ret, page_start, page_end);
2765 		clear_page_dirty_for_io(page);
2766 		SetPageError(page);
2767 	}
2768 	ClearPageChecked(page);
2769 	unlock_page(page);
2770 	put_page(page);
2771 	kfree(fixup);
2772 	extent_changeset_free(data_reserved);
2773 	/*
2774 	 * As a precaution, do a delayed iput in case it would be the last iput
2775 	 * that could need flushing space. Recursing back to fixup worker would
2776 	 * deadlock.
2777 	 */
2778 	btrfs_add_delayed_iput(&inode->vfs_inode);
2779 }
2780 
2781 /*
2782  * There are a few paths in the higher layers of the kernel that directly
2783  * set the page dirty bit without asking the filesystem if it is a
2784  * good idea.  This causes problems because we want to make sure COW
2785  * properly happens and the data=ordered rules are followed.
2786  *
2787  * In our case any range that doesn't have the ORDERED bit set
2788  * hasn't been properly setup for IO.  We kick off an async process
2789  * to fix it up.  The async helper will wait for ordered extents, set
2790  * the delalloc bit and make it safe to write the page.
2791  */
btrfs_writepage_cow_fixup(struct page * page)2792 int btrfs_writepage_cow_fixup(struct page *page)
2793 {
2794 	struct inode *inode = page->mapping->host;
2795 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2796 	struct btrfs_writepage_fixup *fixup;
2797 
2798 	/* This page has ordered extent covering it already */
2799 	if (PageOrdered(page))
2800 		return 0;
2801 
2802 	/*
2803 	 * PageChecked is set below when we create a fixup worker for this page,
2804 	 * don't try to create another one if we're already PageChecked()
2805 	 *
2806 	 * The extent_io writepage code will redirty the page if we send back
2807 	 * EAGAIN.
2808 	 */
2809 	if (PageChecked(page))
2810 		return -EAGAIN;
2811 
2812 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2813 	if (!fixup)
2814 		return -EAGAIN;
2815 
2816 	/*
2817 	 * We are already holding a reference to this inode from
2818 	 * write_cache_pages.  We need to hold it because the space reservation
2819 	 * takes place outside of the page lock, and we can't trust
2820 	 * page->mapping outside of the page lock.
2821 	 */
2822 	ihold(inode);
2823 	SetPageChecked(page);
2824 	get_page(page);
2825 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2826 	fixup->page = page;
2827 	fixup->inode = inode;
2828 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2829 
2830 	return -EAGAIN;
2831 }
2832 
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2833 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2834 				       struct btrfs_inode *inode, u64 file_pos,
2835 				       struct btrfs_file_extent_item *stack_fi,
2836 				       const bool update_inode_bytes,
2837 				       u64 qgroup_reserved)
2838 {
2839 	struct btrfs_root *root = inode->root;
2840 	const u64 sectorsize = root->fs_info->sectorsize;
2841 	struct btrfs_path *path;
2842 	struct extent_buffer *leaf;
2843 	struct btrfs_key ins;
2844 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2845 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2846 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2847 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2848 	struct btrfs_drop_extents_args drop_args = { 0 };
2849 	int ret;
2850 
2851 	path = btrfs_alloc_path();
2852 	if (!path)
2853 		return -ENOMEM;
2854 
2855 	/*
2856 	 * we may be replacing one extent in the tree with another.
2857 	 * The new extent is pinned in the extent map, and we don't want
2858 	 * to drop it from the cache until it is completely in the btree.
2859 	 *
2860 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2861 	 * the caller is expected to unpin it and allow it to be merged
2862 	 * with the others.
2863 	 */
2864 	drop_args.path = path;
2865 	drop_args.start = file_pos;
2866 	drop_args.end = file_pos + num_bytes;
2867 	drop_args.replace_extent = true;
2868 	drop_args.extent_item_size = sizeof(*stack_fi);
2869 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2870 	if (ret)
2871 		goto out;
2872 
2873 	if (!drop_args.extent_inserted) {
2874 		ins.objectid = btrfs_ino(inode);
2875 		ins.offset = file_pos;
2876 		ins.type = BTRFS_EXTENT_DATA_KEY;
2877 
2878 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2879 					      sizeof(*stack_fi));
2880 		if (ret)
2881 			goto out;
2882 	}
2883 	leaf = path->nodes[0];
2884 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2885 	write_extent_buffer(leaf, stack_fi,
2886 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2887 			sizeof(struct btrfs_file_extent_item));
2888 
2889 	btrfs_mark_buffer_dirty(leaf);
2890 	btrfs_release_path(path);
2891 
2892 	/*
2893 	 * If we dropped an inline extent here, we know the range where it is
2894 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2895 	 * number of bytes only for that range containing the inline extent.
2896 	 * The remaining of the range will be processed when clearning the
2897 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2898 	 */
2899 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2900 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2901 
2902 		inline_size = drop_args.bytes_found - inline_size;
2903 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2904 		drop_args.bytes_found -= inline_size;
2905 		num_bytes -= sectorsize;
2906 	}
2907 
2908 	if (update_inode_bytes)
2909 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2910 
2911 	ins.objectid = disk_bytenr;
2912 	ins.offset = disk_num_bytes;
2913 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2914 
2915 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2916 	if (ret)
2917 		goto out;
2918 
2919 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2920 					       file_pos, qgroup_reserved, &ins);
2921 out:
2922 	btrfs_free_path(path);
2923 
2924 	return ret;
2925 }
2926 
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2927 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2928 					 u64 start, u64 len)
2929 {
2930 	struct btrfs_block_group *cache;
2931 
2932 	cache = btrfs_lookup_block_group(fs_info, start);
2933 	ASSERT(cache);
2934 
2935 	spin_lock(&cache->lock);
2936 	cache->delalloc_bytes -= len;
2937 	spin_unlock(&cache->lock);
2938 
2939 	btrfs_put_block_group(cache);
2940 }
2941 
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)2942 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2943 					     struct btrfs_ordered_extent *oe)
2944 {
2945 	struct btrfs_file_extent_item stack_fi;
2946 	u64 logical_len;
2947 	bool update_inode_bytes;
2948 
2949 	memset(&stack_fi, 0, sizeof(stack_fi));
2950 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2951 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2952 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2953 						   oe->disk_num_bytes);
2954 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2955 		logical_len = oe->truncated_len;
2956 	else
2957 		logical_len = oe->num_bytes;
2958 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2959 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2960 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2961 	/* Encryption and other encoding is reserved and all 0 */
2962 
2963 	/*
2964 	 * For delalloc, when completing an ordered extent we update the inode's
2965 	 * bytes when clearing the range in the inode's io tree, so pass false
2966 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2967 	 * except if the ordered extent was truncated.
2968 	 */
2969 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2970 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2971 
2972 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2973 					   oe->file_offset, &stack_fi,
2974 					   update_inode_bytes, oe->qgroup_rsv);
2975 }
2976 
2977 /*
2978  * As ordered data IO finishes, this gets called so we can finish
2979  * an ordered extent if the range of bytes in the file it covers are
2980  * fully written.
2981  */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2982 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2983 {
2984 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
2985 	struct btrfs_root *root = inode->root;
2986 	struct btrfs_fs_info *fs_info = root->fs_info;
2987 	struct btrfs_trans_handle *trans = NULL;
2988 	struct extent_io_tree *io_tree = &inode->io_tree;
2989 	struct extent_state *cached_state = NULL;
2990 	u64 start, end;
2991 	int compress_type = 0;
2992 	int ret = 0;
2993 	u64 logical_len = ordered_extent->num_bytes;
2994 	bool freespace_inode;
2995 	bool truncated = false;
2996 	bool clear_reserved_extent = true;
2997 	unsigned int clear_bits = EXTENT_DEFRAG;
2998 
2999 	start = ordered_extent->file_offset;
3000 	end = start + ordered_extent->num_bytes - 1;
3001 
3002 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3003 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3004 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3005 		clear_bits |= EXTENT_DELALLOC_NEW;
3006 
3007 	freespace_inode = btrfs_is_free_space_inode(inode);
3008 
3009 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3010 		ret = -EIO;
3011 		goto out;
3012 	}
3013 
3014 	if (ordered_extent->bdev)
3015 		btrfs_rewrite_logical_zoned(ordered_extent);
3016 
3017 	btrfs_free_io_failure_record(inode, start, end);
3018 
3019 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3020 		truncated = true;
3021 		logical_len = ordered_extent->truncated_len;
3022 		/* Truncated the entire extent, don't bother adding */
3023 		if (!logical_len)
3024 			goto out;
3025 	}
3026 
3027 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3028 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3029 
3030 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3031 		if (freespace_inode)
3032 			trans = btrfs_join_transaction_spacecache(root);
3033 		else
3034 			trans = btrfs_join_transaction(root);
3035 		if (IS_ERR(trans)) {
3036 			ret = PTR_ERR(trans);
3037 			trans = NULL;
3038 			goto out;
3039 		}
3040 		trans->block_rsv = &inode->block_rsv;
3041 		ret = btrfs_update_inode_fallback(trans, root, inode);
3042 		if (ret) /* -ENOMEM or corruption */
3043 			btrfs_abort_transaction(trans, ret);
3044 		goto out;
3045 	}
3046 
3047 	clear_bits |= EXTENT_LOCKED;
3048 	lock_extent_bits(io_tree, start, end, &cached_state);
3049 
3050 	if (freespace_inode)
3051 		trans = btrfs_join_transaction_spacecache(root);
3052 	else
3053 		trans = btrfs_join_transaction(root);
3054 	if (IS_ERR(trans)) {
3055 		ret = PTR_ERR(trans);
3056 		trans = NULL;
3057 		goto out;
3058 	}
3059 
3060 	trans->block_rsv = &inode->block_rsv;
3061 
3062 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3063 		compress_type = ordered_extent->compress_type;
3064 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3065 		BUG_ON(compress_type);
3066 		ret = btrfs_mark_extent_written(trans, inode,
3067 						ordered_extent->file_offset,
3068 						ordered_extent->file_offset +
3069 						logical_len);
3070 	} else {
3071 		BUG_ON(root == fs_info->tree_root);
3072 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3073 		if (!ret) {
3074 			clear_reserved_extent = false;
3075 			btrfs_release_delalloc_bytes(fs_info,
3076 						ordered_extent->disk_bytenr,
3077 						ordered_extent->disk_num_bytes);
3078 		}
3079 	}
3080 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3081 			   ordered_extent->num_bytes, trans->transid);
3082 	if (ret < 0) {
3083 		btrfs_abort_transaction(trans, ret);
3084 		goto out;
3085 	}
3086 
3087 	ret = add_pending_csums(trans, &ordered_extent->list);
3088 	if (ret) {
3089 		btrfs_abort_transaction(trans, ret);
3090 		goto out;
3091 	}
3092 
3093 	/*
3094 	 * If this is a new delalloc range, clear its new delalloc flag to
3095 	 * update the inode's number of bytes. This needs to be done first
3096 	 * before updating the inode item.
3097 	 */
3098 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3099 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3100 		clear_extent_bit(&inode->io_tree, start, end,
3101 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3102 				 0, 0, &cached_state);
3103 
3104 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3105 	ret = btrfs_update_inode_fallback(trans, root, inode);
3106 	if (ret) { /* -ENOMEM or corruption */
3107 		btrfs_abort_transaction(trans, ret);
3108 		goto out;
3109 	}
3110 	ret = 0;
3111 out:
3112 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3113 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3114 			 &cached_state);
3115 
3116 	if (trans)
3117 		btrfs_end_transaction(trans);
3118 
3119 	if (ret || truncated) {
3120 		u64 unwritten_start = start;
3121 
3122 		/*
3123 		 * If we failed to finish this ordered extent for any reason we
3124 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3125 		 * extent, and mark the inode with the error if it wasn't
3126 		 * already set.  Any error during writeback would have already
3127 		 * set the mapping error, so we need to set it if we're the ones
3128 		 * marking this ordered extent as failed.
3129 		 */
3130 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3131 					     &ordered_extent->flags))
3132 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3133 
3134 		if (truncated)
3135 			unwritten_start += logical_len;
3136 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3137 
3138 		/* Drop the cache for the part of the extent we didn't write. */
3139 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3140 
3141 		/*
3142 		 * If the ordered extent had an IOERR or something else went
3143 		 * wrong we need to return the space for this ordered extent
3144 		 * back to the allocator.  We only free the extent in the
3145 		 * truncated case if we didn't write out the extent at all.
3146 		 *
3147 		 * If we made it past insert_reserved_file_extent before we
3148 		 * errored out then we don't need to do this as the accounting
3149 		 * has already been done.
3150 		 */
3151 		if ((ret || !logical_len) &&
3152 		    clear_reserved_extent &&
3153 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3154 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3155 			/*
3156 			 * Discard the range before returning it back to the
3157 			 * free space pool
3158 			 */
3159 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3160 				btrfs_discard_extent(fs_info,
3161 						ordered_extent->disk_bytenr,
3162 						ordered_extent->disk_num_bytes,
3163 						NULL);
3164 			btrfs_free_reserved_extent(fs_info,
3165 					ordered_extent->disk_bytenr,
3166 					ordered_extent->disk_num_bytes, 1);
3167 		}
3168 	}
3169 
3170 	/*
3171 	 * This needs to be done to make sure anybody waiting knows we are done
3172 	 * updating everything for this ordered extent.
3173 	 */
3174 	btrfs_remove_ordered_extent(inode, ordered_extent);
3175 
3176 	/* once for us */
3177 	btrfs_put_ordered_extent(ordered_extent);
3178 	/* once for the tree */
3179 	btrfs_put_ordered_extent(ordered_extent);
3180 
3181 	return ret;
3182 }
3183 
finish_ordered_fn(struct btrfs_work * work)3184 static void finish_ordered_fn(struct btrfs_work *work)
3185 {
3186 	struct btrfs_ordered_extent *ordered_extent;
3187 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3188 	btrfs_finish_ordered_io(ordered_extent);
3189 }
3190 
btrfs_writepage_endio_finish_ordered(struct btrfs_inode * inode,struct page * page,u64 start,u64 end,bool uptodate)3191 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3192 					  struct page *page, u64 start,
3193 					  u64 end, bool uptodate)
3194 {
3195 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3196 
3197 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3198 				       finish_ordered_fn, uptodate);
3199 }
3200 
3201 /*
3202  * check_data_csum - verify checksum of one sector of uncompressed data
3203  * @inode:	inode
3204  * @io_bio:	btrfs_io_bio which contains the csum
3205  * @bio_offset:	offset to the beginning of the bio (in bytes)
3206  * @page:	page where is the data to be verified
3207  * @pgoff:	offset inside the page
3208  * @start:	logical offset in the file
3209  *
3210  * The length of such check is always one sector size.
3211  */
check_data_csum(struct inode * inode,struct btrfs_io_bio * io_bio,u32 bio_offset,struct page * page,u32 pgoff,u64 start)3212 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
3213 			   u32 bio_offset, struct page *page, u32 pgoff,
3214 			   u64 start)
3215 {
3216 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3217 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3218 	char *kaddr;
3219 	u32 len = fs_info->sectorsize;
3220 	const u32 csum_size = fs_info->csum_size;
3221 	unsigned int offset_sectors;
3222 	u8 *csum_expected;
3223 	u8 csum[BTRFS_CSUM_SIZE];
3224 
3225 	ASSERT(pgoff + len <= PAGE_SIZE);
3226 
3227 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3228 	csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
3229 
3230 	kaddr = kmap_atomic(page);
3231 	shash->tfm = fs_info->csum_shash;
3232 
3233 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3234 
3235 	if (memcmp(csum, csum_expected, csum_size))
3236 		goto zeroit;
3237 
3238 	kunmap_atomic(kaddr);
3239 	return 0;
3240 zeroit:
3241 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3242 				    io_bio->mirror_num);
3243 	if (io_bio->device)
3244 		btrfs_dev_stat_inc_and_print(io_bio->device,
3245 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3246 	memset(kaddr + pgoff, 1, len);
3247 	flush_dcache_page(page);
3248 	kunmap_atomic(kaddr);
3249 	return -EIO;
3250 }
3251 
3252 /*
3253  * When reads are done, we need to check csums to verify the data is correct.
3254  * if there's a match, we allow the bio to finish.  If not, the code in
3255  * extent_io.c will try to find good copies for us.
3256  *
3257  * @bio_offset:	offset to the beginning of the bio (in bytes)
3258  * @start:	file offset of the range start
3259  * @end:	file offset of the range end (inclusive)
3260  *
3261  * Return a bitmap where bit set means a csum mismatch, and bit not set means
3262  * csum match.
3263  */
btrfs_verify_data_csum(struct btrfs_io_bio * io_bio,u32 bio_offset,struct page * page,u64 start,u64 end)3264 unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3265 				    struct page *page, u64 start, u64 end)
3266 {
3267 	struct inode *inode = page->mapping->host;
3268 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3269 	struct btrfs_root *root = BTRFS_I(inode)->root;
3270 	const u32 sectorsize = root->fs_info->sectorsize;
3271 	u32 pg_off;
3272 	unsigned int result = 0;
3273 
3274 	if (PageChecked(page)) {
3275 		ClearPageChecked(page);
3276 		return 0;
3277 	}
3278 
3279 	/*
3280 	 * For subpage case, above PageChecked is not safe as it's not subpage
3281 	 * compatible.
3282 	 * But for now only cow fixup and compressed read utilize PageChecked
3283 	 * flag, while in this context we can easily use io_bio->csum to
3284 	 * determine if we really need to do csum verification.
3285 	 *
3286 	 * So for now, just exit if io_bio->csum is NULL, as it means it's
3287 	 * compressed read, and its compressed data csum has already been
3288 	 * verified.
3289 	 */
3290 	if (io_bio->csum == NULL)
3291 		return 0;
3292 
3293 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3294 		return 0;
3295 
3296 	if (!root->fs_info->csum_root)
3297 		return 0;
3298 
3299 	ASSERT(page_offset(page) <= start &&
3300 	       end <= page_offset(page) + PAGE_SIZE - 1);
3301 	for (pg_off = offset_in_page(start);
3302 	     pg_off < offset_in_page(end);
3303 	     pg_off += sectorsize, bio_offset += sectorsize) {
3304 		u64 file_offset = pg_off + page_offset(page);
3305 		int ret;
3306 
3307 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3308 		    test_range_bit(io_tree, file_offset,
3309 				   file_offset + sectorsize - 1,
3310 				   EXTENT_NODATASUM, 1, NULL)) {
3311 			/* Skip the range without csum for data reloc inode */
3312 			clear_extent_bits(io_tree, file_offset,
3313 					  file_offset + sectorsize - 1,
3314 					  EXTENT_NODATASUM);
3315 			continue;
3316 		}
3317 		ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off,
3318 				      page_offset(page) + pg_off);
3319 		if (ret < 0) {
3320 			const int nr_bit = (pg_off - offset_in_page(start)) >>
3321 				     root->fs_info->sectorsize_bits;
3322 
3323 			result |= (1U << nr_bit);
3324 		}
3325 	}
3326 	return result;
3327 }
3328 
3329 /*
3330  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3331  *
3332  * @inode: The inode we want to perform iput on
3333  *
3334  * This function uses the generic vfs_inode::i_count to track whether we should
3335  * just decrement it (in case it's > 1) or if this is the last iput then link
3336  * the inode to the delayed iput machinery. Delayed iputs are processed at
3337  * transaction commit time/superblock commit/cleaner kthread.
3338  */
btrfs_add_delayed_iput(struct inode * inode)3339 void btrfs_add_delayed_iput(struct inode *inode)
3340 {
3341 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3342 	struct btrfs_inode *binode = BTRFS_I(inode);
3343 
3344 	if (atomic_add_unless(&inode->i_count, -1, 1))
3345 		return;
3346 
3347 	atomic_inc(&fs_info->nr_delayed_iputs);
3348 	spin_lock(&fs_info->delayed_iput_lock);
3349 	ASSERT(list_empty(&binode->delayed_iput));
3350 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3351 	spin_unlock(&fs_info->delayed_iput_lock);
3352 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3353 		wake_up_process(fs_info->cleaner_kthread);
3354 }
3355 
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3356 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3357 				    struct btrfs_inode *inode)
3358 {
3359 	list_del_init(&inode->delayed_iput);
3360 	spin_unlock(&fs_info->delayed_iput_lock);
3361 	iput(&inode->vfs_inode);
3362 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3363 		wake_up(&fs_info->delayed_iputs_wait);
3364 	spin_lock(&fs_info->delayed_iput_lock);
3365 }
3366 
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3367 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3368 				   struct btrfs_inode *inode)
3369 {
3370 	if (!list_empty(&inode->delayed_iput)) {
3371 		spin_lock(&fs_info->delayed_iput_lock);
3372 		if (!list_empty(&inode->delayed_iput))
3373 			run_delayed_iput_locked(fs_info, inode);
3374 		spin_unlock(&fs_info->delayed_iput_lock);
3375 	}
3376 }
3377 
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3378 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3379 {
3380 
3381 	spin_lock(&fs_info->delayed_iput_lock);
3382 	while (!list_empty(&fs_info->delayed_iputs)) {
3383 		struct btrfs_inode *inode;
3384 
3385 		inode = list_first_entry(&fs_info->delayed_iputs,
3386 				struct btrfs_inode, delayed_iput);
3387 		run_delayed_iput_locked(fs_info, inode);
3388 		cond_resched_lock(&fs_info->delayed_iput_lock);
3389 	}
3390 	spin_unlock(&fs_info->delayed_iput_lock);
3391 }
3392 
3393 /**
3394  * Wait for flushing all delayed iputs
3395  *
3396  * @fs_info:  the filesystem
3397  *
3398  * This will wait on any delayed iputs that are currently running with KILLABLE
3399  * set.  Once they are all done running we will return, unless we are killed in
3400  * which case we return EINTR. This helps in user operations like fallocate etc
3401  * that might get blocked on the iputs.
3402  *
3403  * Return EINTR if we were killed, 0 if nothing's pending
3404  */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3405 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3406 {
3407 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3408 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3409 	if (ret)
3410 		return -EINTR;
3411 	return 0;
3412 }
3413 
3414 /*
3415  * This creates an orphan entry for the given inode in case something goes wrong
3416  * in the middle of an unlink.
3417  */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3418 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3419 		     struct btrfs_inode *inode)
3420 {
3421 	int ret;
3422 
3423 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3424 	if (ret && ret != -EEXIST) {
3425 		btrfs_abort_transaction(trans, ret);
3426 		return ret;
3427 	}
3428 
3429 	return 0;
3430 }
3431 
3432 /*
3433  * We have done the delete so we can go ahead and remove the orphan item for
3434  * this particular inode.
3435  */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3436 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3437 			    struct btrfs_inode *inode)
3438 {
3439 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3440 }
3441 
3442 /*
3443  * this cleans up any orphans that may be left on the list from the last use
3444  * of this root.
3445  */
btrfs_orphan_cleanup(struct btrfs_root * root)3446 int btrfs_orphan_cleanup(struct btrfs_root *root)
3447 {
3448 	struct btrfs_fs_info *fs_info = root->fs_info;
3449 	struct btrfs_path *path;
3450 	struct extent_buffer *leaf;
3451 	struct btrfs_key key, found_key;
3452 	struct btrfs_trans_handle *trans;
3453 	struct inode *inode;
3454 	u64 last_objectid = 0;
3455 	int ret = 0, nr_unlink = 0;
3456 
3457 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3458 		return 0;
3459 
3460 	path = btrfs_alloc_path();
3461 	if (!path) {
3462 		ret = -ENOMEM;
3463 		goto out;
3464 	}
3465 	path->reada = READA_BACK;
3466 
3467 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3468 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3469 	key.offset = (u64)-1;
3470 
3471 	while (1) {
3472 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3473 		if (ret < 0)
3474 			goto out;
3475 
3476 		/*
3477 		 * if ret == 0 means we found what we were searching for, which
3478 		 * is weird, but possible, so only screw with path if we didn't
3479 		 * find the key and see if we have stuff that matches
3480 		 */
3481 		if (ret > 0) {
3482 			ret = 0;
3483 			if (path->slots[0] == 0)
3484 				break;
3485 			path->slots[0]--;
3486 		}
3487 
3488 		/* pull out the item */
3489 		leaf = path->nodes[0];
3490 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3491 
3492 		/* make sure the item matches what we want */
3493 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3494 			break;
3495 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3496 			break;
3497 
3498 		/* release the path since we're done with it */
3499 		btrfs_release_path(path);
3500 
3501 		/*
3502 		 * this is where we are basically btrfs_lookup, without the
3503 		 * crossing root thing.  we store the inode number in the
3504 		 * offset of the orphan item.
3505 		 */
3506 
3507 		if (found_key.offset == last_objectid) {
3508 			btrfs_err(fs_info,
3509 				  "Error removing orphan entry, stopping orphan cleanup");
3510 			ret = -EINVAL;
3511 			goto out;
3512 		}
3513 
3514 		last_objectid = found_key.offset;
3515 
3516 		found_key.objectid = found_key.offset;
3517 		found_key.type = BTRFS_INODE_ITEM_KEY;
3518 		found_key.offset = 0;
3519 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3520 		ret = PTR_ERR_OR_ZERO(inode);
3521 		if (ret && ret != -ENOENT)
3522 			goto out;
3523 
3524 		if (ret == -ENOENT && root == fs_info->tree_root) {
3525 			struct btrfs_root *dead_root;
3526 			int is_dead_root = 0;
3527 
3528 			/*
3529 			 * This is an orphan in the tree root. Currently these
3530 			 * could come from 2 sources:
3531 			 *  a) a root (snapshot/subvolume) deletion in progress
3532 			 *  b) a free space cache inode
3533 			 * We need to distinguish those two, as the orphan item
3534 			 * for a root must not get deleted before the deletion
3535 			 * of the snapshot/subvolume's tree completes.
3536 			 *
3537 			 * btrfs_find_orphan_roots() ran before us, which has
3538 			 * found all deleted roots and loaded them into
3539 			 * fs_info->fs_roots_radix. So here we can find if an
3540 			 * orphan item corresponds to a deleted root by looking
3541 			 * up the root from that radix tree.
3542 			 */
3543 
3544 			spin_lock(&fs_info->fs_roots_radix_lock);
3545 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3546 							 (unsigned long)found_key.objectid);
3547 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3548 				is_dead_root = 1;
3549 			spin_unlock(&fs_info->fs_roots_radix_lock);
3550 
3551 			if (is_dead_root) {
3552 				/* prevent this orphan from being found again */
3553 				key.offset = found_key.objectid - 1;
3554 				continue;
3555 			}
3556 
3557 		}
3558 
3559 		/*
3560 		 * If we have an inode with links, there are a couple of
3561 		 * possibilities:
3562 		 *
3563 		 * 1. We were halfway through creating fsverity metadata for the
3564 		 * file. In that case, the orphan item represents incomplete
3565 		 * fsverity metadata which must be cleaned up with
3566 		 * btrfs_drop_verity_items and deleting the orphan item.
3567 
3568 		 * 2. Old kernels (before v3.12) used to create an
3569 		 * orphan item for truncate indicating that there were possibly
3570 		 * extent items past i_size that needed to be deleted. In v3.12,
3571 		 * truncate was changed to update i_size in sync with the extent
3572 		 * items, but the (useless) orphan item was still created. Since
3573 		 * v4.18, we don't create the orphan item for truncate at all.
3574 		 *
3575 		 * So, this item could mean that we need to do a truncate, but
3576 		 * only if this filesystem was last used on a pre-v3.12 kernel
3577 		 * and was not cleanly unmounted. The odds of that are quite
3578 		 * slim, and it's a pain to do the truncate now, so just delete
3579 		 * the orphan item.
3580 		 *
3581 		 * It's also possible that this orphan item was supposed to be
3582 		 * deleted but wasn't. The inode number may have been reused,
3583 		 * but either way, we can delete the orphan item.
3584 		 */
3585 		if (ret == -ENOENT || inode->i_nlink) {
3586 			if (!ret) {
3587 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3588 				iput(inode);
3589 				if (ret)
3590 					goto out;
3591 			}
3592 			trans = btrfs_start_transaction(root, 1);
3593 			if (IS_ERR(trans)) {
3594 				ret = PTR_ERR(trans);
3595 				goto out;
3596 			}
3597 			btrfs_debug(fs_info, "auto deleting %Lu",
3598 				    found_key.objectid);
3599 			ret = btrfs_del_orphan_item(trans, root,
3600 						    found_key.objectid);
3601 			btrfs_end_transaction(trans);
3602 			if (ret)
3603 				goto out;
3604 			continue;
3605 		}
3606 
3607 		nr_unlink++;
3608 
3609 		/* this will do delete_inode and everything for us */
3610 		iput(inode);
3611 	}
3612 	/* release the path since we're done with it */
3613 	btrfs_release_path(path);
3614 
3615 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3616 
3617 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3618 		trans = btrfs_join_transaction(root);
3619 		if (!IS_ERR(trans))
3620 			btrfs_end_transaction(trans);
3621 	}
3622 
3623 	if (nr_unlink)
3624 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3625 
3626 out:
3627 	if (ret)
3628 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3629 	btrfs_free_path(path);
3630 	return ret;
3631 }
3632 
3633 /*
3634  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3635  * don't find any xattrs, we know there can't be any acls.
3636  *
3637  * slot is the slot the inode is in, objectid is the objectid of the inode
3638  */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3639 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3640 					  int slot, u64 objectid,
3641 					  int *first_xattr_slot)
3642 {
3643 	u32 nritems = btrfs_header_nritems(leaf);
3644 	struct btrfs_key found_key;
3645 	static u64 xattr_access = 0;
3646 	static u64 xattr_default = 0;
3647 	int scanned = 0;
3648 
3649 	if (!xattr_access) {
3650 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3651 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3652 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3653 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3654 	}
3655 
3656 	slot++;
3657 	*first_xattr_slot = -1;
3658 	while (slot < nritems) {
3659 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3660 
3661 		/* we found a different objectid, there must not be acls */
3662 		if (found_key.objectid != objectid)
3663 			return 0;
3664 
3665 		/* we found an xattr, assume we've got an acl */
3666 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3667 			if (*first_xattr_slot == -1)
3668 				*first_xattr_slot = slot;
3669 			if (found_key.offset == xattr_access ||
3670 			    found_key.offset == xattr_default)
3671 				return 1;
3672 		}
3673 
3674 		/*
3675 		 * we found a key greater than an xattr key, there can't
3676 		 * be any acls later on
3677 		 */
3678 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3679 			return 0;
3680 
3681 		slot++;
3682 		scanned++;
3683 
3684 		/*
3685 		 * it goes inode, inode backrefs, xattrs, extents,
3686 		 * so if there are a ton of hard links to an inode there can
3687 		 * be a lot of backrefs.  Don't waste time searching too hard,
3688 		 * this is just an optimization
3689 		 */
3690 		if (scanned >= 8)
3691 			break;
3692 	}
3693 	/* we hit the end of the leaf before we found an xattr or
3694 	 * something larger than an xattr.  We have to assume the inode
3695 	 * has acls
3696 	 */
3697 	if (*first_xattr_slot == -1)
3698 		*first_xattr_slot = slot;
3699 	return 1;
3700 }
3701 
3702 /*
3703  * read an inode from the btree into the in-memory inode
3704  */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3705 static int btrfs_read_locked_inode(struct inode *inode,
3706 				   struct btrfs_path *in_path)
3707 {
3708 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3709 	struct btrfs_path *path = in_path;
3710 	struct extent_buffer *leaf;
3711 	struct btrfs_inode_item *inode_item;
3712 	struct btrfs_root *root = BTRFS_I(inode)->root;
3713 	struct btrfs_key location;
3714 	unsigned long ptr;
3715 	int maybe_acls;
3716 	u32 rdev;
3717 	int ret;
3718 	bool filled = false;
3719 	int first_xattr_slot;
3720 
3721 	ret = btrfs_fill_inode(inode, &rdev);
3722 	if (!ret)
3723 		filled = true;
3724 
3725 	if (!path) {
3726 		path = btrfs_alloc_path();
3727 		if (!path)
3728 			return -ENOMEM;
3729 	}
3730 
3731 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3732 
3733 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3734 	if (ret) {
3735 		if (path != in_path)
3736 			btrfs_free_path(path);
3737 		return ret;
3738 	}
3739 
3740 	leaf = path->nodes[0];
3741 
3742 	if (filled)
3743 		goto cache_index;
3744 
3745 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3746 				    struct btrfs_inode_item);
3747 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3748 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3749 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3750 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3751 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3752 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3753 			round_up(i_size_read(inode), fs_info->sectorsize));
3754 
3755 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3756 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3757 
3758 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3759 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3760 
3761 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3762 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3763 
3764 	BTRFS_I(inode)->i_otime.tv_sec =
3765 		btrfs_timespec_sec(leaf, &inode_item->otime);
3766 	BTRFS_I(inode)->i_otime.tv_nsec =
3767 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3768 
3769 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3770 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3771 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3772 
3773 	inode_set_iversion_queried(inode,
3774 				   btrfs_inode_sequence(leaf, inode_item));
3775 	inode->i_generation = BTRFS_I(inode)->generation;
3776 	inode->i_rdev = 0;
3777 	rdev = btrfs_inode_rdev(leaf, inode_item);
3778 
3779 	BTRFS_I(inode)->index_cnt = (u64)-1;
3780 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3781 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3782 
3783 cache_index:
3784 	/*
3785 	 * If we were modified in the current generation and evicted from memory
3786 	 * and then re-read we need to do a full sync since we don't have any
3787 	 * idea about which extents were modified before we were evicted from
3788 	 * cache.
3789 	 *
3790 	 * This is required for both inode re-read from disk and delayed inode
3791 	 * in delayed_nodes_tree.
3792 	 */
3793 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3794 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3795 			&BTRFS_I(inode)->runtime_flags);
3796 
3797 	/*
3798 	 * We don't persist the id of the transaction where an unlink operation
3799 	 * against the inode was last made. So here we assume the inode might
3800 	 * have been evicted, and therefore the exact value of last_unlink_trans
3801 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3802 	 * between the inode and its parent if the inode is fsync'ed and the log
3803 	 * replayed. For example, in the scenario:
3804 	 *
3805 	 * touch mydir/foo
3806 	 * ln mydir/foo mydir/bar
3807 	 * sync
3808 	 * unlink mydir/bar
3809 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3810 	 * xfs_io -c fsync mydir/foo
3811 	 * <power failure>
3812 	 * mount fs, triggers fsync log replay
3813 	 *
3814 	 * We must make sure that when we fsync our inode foo we also log its
3815 	 * parent inode, otherwise after log replay the parent still has the
3816 	 * dentry with the "bar" name but our inode foo has a link count of 1
3817 	 * and doesn't have an inode ref with the name "bar" anymore.
3818 	 *
3819 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3820 	 * but it guarantees correctness at the expense of occasional full
3821 	 * transaction commits on fsync if our inode is a directory, or if our
3822 	 * inode is not a directory, logging its parent unnecessarily.
3823 	 */
3824 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3825 
3826 	/*
3827 	 * Same logic as for last_unlink_trans. We don't persist the generation
3828 	 * of the last transaction where this inode was used for a reflink
3829 	 * operation, so after eviction and reloading the inode we must be
3830 	 * pessimistic and assume the last transaction that modified the inode.
3831 	 */
3832 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3833 
3834 	path->slots[0]++;
3835 	if (inode->i_nlink != 1 ||
3836 	    path->slots[0] >= btrfs_header_nritems(leaf))
3837 		goto cache_acl;
3838 
3839 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3840 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3841 		goto cache_acl;
3842 
3843 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3844 	if (location.type == BTRFS_INODE_REF_KEY) {
3845 		struct btrfs_inode_ref *ref;
3846 
3847 		ref = (struct btrfs_inode_ref *)ptr;
3848 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3849 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3850 		struct btrfs_inode_extref *extref;
3851 
3852 		extref = (struct btrfs_inode_extref *)ptr;
3853 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3854 								     extref);
3855 	}
3856 cache_acl:
3857 	/*
3858 	 * try to precache a NULL acl entry for files that don't have
3859 	 * any xattrs or acls
3860 	 */
3861 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3862 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3863 	if (first_xattr_slot != -1) {
3864 		path->slots[0] = first_xattr_slot;
3865 		ret = btrfs_load_inode_props(inode, path);
3866 		if (ret)
3867 			btrfs_err(fs_info,
3868 				  "error loading props for ino %llu (root %llu): %d",
3869 				  btrfs_ino(BTRFS_I(inode)),
3870 				  root->root_key.objectid, ret);
3871 	}
3872 	if (path != in_path)
3873 		btrfs_free_path(path);
3874 
3875 	if (!maybe_acls)
3876 		cache_no_acl(inode);
3877 
3878 	switch (inode->i_mode & S_IFMT) {
3879 	case S_IFREG:
3880 		inode->i_mapping->a_ops = &btrfs_aops;
3881 		inode->i_fop = &btrfs_file_operations;
3882 		inode->i_op = &btrfs_file_inode_operations;
3883 		break;
3884 	case S_IFDIR:
3885 		inode->i_fop = &btrfs_dir_file_operations;
3886 		inode->i_op = &btrfs_dir_inode_operations;
3887 		break;
3888 	case S_IFLNK:
3889 		inode->i_op = &btrfs_symlink_inode_operations;
3890 		inode_nohighmem(inode);
3891 		inode->i_mapping->a_ops = &btrfs_aops;
3892 		break;
3893 	default:
3894 		inode->i_op = &btrfs_special_inode_operations;
3895 		init_special_inode(inode, inode->i_mode, rdev);
3896 		break;
3897 	}
3898 
3899 	btrfs_sync_inode_flags_to_i_flags(inode);
3900 	return 0;
3901 }
3902 
3903 /*
3904  * given a leaf and an inode, copy the inode fields into the leaf
3905  */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3906 static void fill_inode_item(struct btrfs_trans_handle *trans,
3907 			    struct extent_buffer *leaf,
3908 			    struct btrfs_inode_item *item,
3909 			    struct inode *inode)
3910 {
3911 	struct btrfs_map_token token;
3912 	u64 flags;
3913 
3914 	btrfs_init_map_token(&token, leaf);
3915 
3916 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3917 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3918 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3919 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3920 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3921 
3922 	btrfs_set_token_timespec_sec(&token, &item->atime,
3923 				     inode->i_atime.tv_sec);
3924 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3925 				      inode->i_atime.tv_nsec);
3926 
3927 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3928 				     inode->i_mtime.tv_sec);
3929 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3930 				      inode->i_mtime.tv_nsec);
3931 
3932 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3933 				     inode->i_ctime.tv_sec);
3934 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3935 				      inode->i_ctime.tv_nsec);
3936 
3937 	btrfs_set_token_timespec_sec(&token, &item->otime,
3938 				     BTRFS_I(inode)->i_otime.tv_sec);
3939 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3940 				      BTRFS_I(inode)->i_otime.tv_nsec);
3941 
3942 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3943 	btrfs_set_token_inode_generation(&token, item,
3944 					 BTRFS_I(inode)->generation);
3945 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3946 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3947 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3948 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3949 					  BTRFS_I(inode)->ro_flags);
3950 	btrfs_set_token_inode_flags(&token, item, flags);
3951 	btrfs_set_token_inode_block_group(&token, item, 0);
3952 }
3953 
3954 /*
3955  * copy everything in the in-memory inode into the btree.
3956  */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)3957 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3958 				struct btrfs_root *root,
3959 				struct btrfs_inode *inode)
3960 {
3961 	struct btrfs_inode_item *inode_item;
3962 	struct btrfs_path *path;
3963 	struct extent_buffer *leaf;
3964 	int ret;
3965 
3966 	path = btrfs_alloc_path();
3967 	if (!path)
3968 		return -ENOMEM;
3969 
3970 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3971 	if (ret) {
3972 		if (ret > 0)
3973 			ret = -ENOENT;
3974 		goto failed;
3975 	}
3976 
3977 	leaf = path->nodes[0];
3978 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3979 				    struct btrfs_inode_item);
3980 
3981 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3982 	btrfs_mark_buffer_dirty(leaf);
3983 	btrfs_set_inode_last_trans(trans, inode);
3984 	ret = 0;
3985 failed:
3986 	btrfs_free_path(path);
3987 	return ret;
3988 }
3989 
3990 /*
3991  * copy everything in the in-memory inode into the btree.
3992  */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)3993 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3994 				struct btrfs_root *root,
3995 				struct btrfs_inode *inode)
3996 {
3997 	struct btrfs_fs_info *fs_info = root->fs_info;
3998 	int ret;
3999 
4000 	/*
4001 	 * If the inode is a free space inode, we can deadlock during commit
4002 	 * if we put it into the delayed code.
4003 	 *
4004 	 * The data relocation inode should also be directly updated
4005 	 * without delay
4006 	 */
4007 	if (!btrfs_is_free_space_inode(inode)
4008 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4009 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4010 		btrfs_update_root_times(trans, root);
4011 
4012 		ret = btrfs_delayed_update_inode(trans, root, inode);
4013 		if (!ret)
4014 			btrfs_set_inode_last_trans(trans, inode);
4015 		return ret;
4016 	}
4017 
4018 	return btrfs_update_inode_item(trans, root, inode);
4019 }
4020 
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)4021 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4022 				struct btrfs_root *root, struct btrfs_inode *inode)
4023 {
4024 	int ret;
4025 
4026 	ret = btrfs_update_inode(trans, root, inode);
4027 	if (ret == -ENOSPC)
4028 		return btrfs_update_inode_item(trans, root, inode);
4029 	return ret;
4030 }
4031 
4032 /*
4033  * unlink helper that gets used here in inode.c and in the tree logging
4034  * recovery code.  It remove a link in a directory with a given name, and
4035  * also drops the back refs in the inode to the directory
4036  */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4037 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4038 				struct btrfs_root *root,
4039 				struct btrfs_inode *dir,
4040 				struct btrfs_inode *inode,
4041 				const char *name, int name_len)
4042 {
4043 	struct btrfs_fs_info *fs_info = root->fs_info;
4044 	struct btrfs_path *path;
4045 	int ret = 0;
4046 	struct btrfs_dir_item *di;
4047 	u64 index;
4048 	u64 ino = btrfs_ino(inode);
4049 	u64 dir_ino = btrfs_ino(dir);
4050 
4051 	path = btrfs_alloc_path();
4052 	if (!path) {
4053 		ret = -ENOMEM;
4054 		goto out;
4055 	}
4056 
4057 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4058 				    name, name_len, -1);
4059 	if (IS_ERR_OR_NULL(di)) {
4060 		ret = di ? PTR_ERR(di) : -ENOENT;
4061 		goto err;
4062 	}
4063 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4064 	if (ret)
4065 		goto err;
4066 	btrfs_release_path(path);
4067 
4068 	/*
4069 	 * If we don't have dir index, we have to get it by looking up
4070 	 * the inode ref, since we get the inode ref, remove it directly,
4071 	 * it is unnecessary to do delayed deletion.
4072 	 *
4073 	 * But if we have dir index, needn't search inode ref to get it.
4074 	 * Since the inode ref is close to the inode item, it is better
4075 	 * that we delay to delete it, and just do this deletion when
4076 	 * we update the inode item.
4077 	 */
4078 	if (inode->dir_index) {
4079 		ret = btrfs_delayed_delete_inode_ref(inode);
4080 		if (!ret) {
4081 			index = inode->dir_index;
4082 			goto skip_backref;
4083 		}
4084 	}
4085 
4086 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4087 				  dir_ino, &index);
4088 	if (ret) {
4089 		btrfs_info(fs_info,
4090 			"failed to delete reference to %.*s, inode %llu parent %llu",
4091 			name_len, name, ino, dir_ino);
4092 		btrfs_abort_transaction(trans, ret);
4093 		goto err;
4094 	}
4095 skip_backref:
4096 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4097 	if (ret) {
4098 		btrfs_abort_transaction(trans, ret);
4099 		goto err;
4100 	}
4101 
4102 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4103 			dir_ino);
4104 	if (ret != 0 && ret != -ENOENT) {
4105 		btrfs_abort_transaction(trans, ret);
4106 		goto err;
4107 	}
4108 
4109 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4110 			index);
4111 	if (ret == -ENOENT)
4112 		ret = 0;
4113 	else if (ret)
4114 		btrfs_abort_transaction(trans, ret);
4115 
4116 	/*
4117 	 * If we have a pending delayed iput we could end up with the final iput
4118 	 * being run in btrfs-cleaner context.  If we have enough of these built
4119 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4120 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4121 	 * the inode we can run the delayed iput here without any issues as the
4122 	 * final iput won't be done until after we drop the ref we're currently
4123 	 * holding.
4124 	 */
4125 	btrfs_run_delayed_iput(fs_info, inode);
4126 err:
4127 	btrfs_free_path(path);
4128 	if (ret)
4129 		goto out;
4130 
4131 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4132 	inode_inc_iversion(&inode->vfs_inode);
4133 	inode_inc_iversion(&dir->vfs_inode);
4134 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4135 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4136 	ret = btrfs_update_inode(trans, root, dir);
4137 out:
4138 	return ret;
4139 }
4140 
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4141 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4142 		       struct btrfs_root *root,
4143 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4144 		       const char *name, int name_len)
4145 {
4146 	int ret;
4147 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4148 	if (!ret) {
4149 		drop_nlink(&inode->vfs_inode);
4150 		ret = btrfs_update_inode(trans, root, inode);
4151 	}
4152 	return ret;
4153 }
4154 
4155 /*
4156  * helper to start transaction for unlink and rmdir.
4157  *
4158  * unlink and rmdir are special in btrfs, they do not always free space, so
4159  * if we cannot make our reservations the normal way try and see if there is
4160  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4161  * allow the unlink to occur.
4162  */
__unlink_start_trans(struct inode * dir)4163 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4164 {
4165 	struct btrfs_root *root = BTRFS_I(dir)->root;
4166 
4167 	/*
4168 	 * 1 for the possible orphan item
4169 	 * 1 for the dir item
4170 	 * 1 for the dir index
4171 	 * 1 for the inode ref
4172 	 * 1 for the inode
4173 	 */
4174 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
4175 }
4176 
btrfs_unlink(struct inode * dir,struct dentry * dentry)4177 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4178 {
4179 	struct btrfs_root *root = BTRFS_I(dir)->root;
4180 	struct btrfs_trans_handle *trans;
4181 	struct inode *inode = d_inode(dentry);
4182 	int ret;
4183 
4184 	trans = __unlink_start_trans(dir);
4185 	if (IS_ERR(trans))
4186 		return PTR_ERR(trans);
4187 
4188 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4189 			0);
4190 
4191 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4192 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4193 			dentry->d_name.len);
4194 	if (ret)
4195 		goto out;
4196 
4197 	if (inode->i_nlink == 0) {
4198 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4199 		if (ret)
4200 			goto out;
4201 	}
4202 
4203 out:
4204 	btrfs_end_transaction(trans);
4205 	btrfs_btree_balance_dirty(root->fs_info);
4206 	return ret;
4207 }
4208 
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4209 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4210 			       struct inode *dir, struct dentry *dentry)
4211 {
4212 	struct btrfs_root *root = BTRFS_I(dir)->root;
4213 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4214 	struct btrfs_path *path;
4215 	struct extent_buffer *leaf;
4216 	struct btrfs_dir_item *di;
4217 	struct btrfs_key key;
4218 	const char *name = dentry->d_name.name;
4219 	int name_len = dentry->d_name.len;
4220 	u64 index;
4221 	int ret;
4222 	u64 objectid;
4223 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4224 
4225 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4226 		objectid = inode->root->root_key.objectid;
4227 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4228 		objectid = inode->location.objectid;
4229 	} else {
4230 		WARN_ON(1);
4231 		return -EINVAL;
4232 	}
4233 
4234 	path = btrfs_alloc_path();
4235 	if (!path)
4236 		return -ENOMEM;
4237 
4238 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4239 				   name, name_len, -1);
4240 	if (IS_ERR_OR_NULL(di)) {
4241 		ret = di ? PTR_ERR(di) : -ENOENT;
4242 		goto out;
4243 	}
4244 
4245 	leaf = path->nodes[0];
4246 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4247 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4248 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4249 	if (ret) {
4250 		btrfs_abort_transaction(trans, ret);
4251 		goto out;
4252 	}
4253 	btrfs_release_path(path);
4254 
4255 	/*
4256 	 * This is a placeholder inode for a subvolume we didn't have a
4257 	 * reference to at the time of the snapshot creation.  In the meantime
4258 	 * we could have renamed the real subvol link into our snapshot, so
4259 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4260 	 * Instead simply lookup the dir_index_item for this entry so we can
4261 	 * remove it.  Otherwise we know we have a ref to the root and we can
4262 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4263 	 */
4264 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4265 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4266 						 name, name_len);
4267 		if (IS_ERR_OR_NULL(di)) {
4268 			if (!di)
4269 				ret = -ENOENT;
4270 			else
4271 				ret = PTR_ERR(di);
4272 			btrfs_abort_transaction(trans, ret);
4273 			goto out;
4274 		}
4275 
4276 		leaf = path->nodes[0];
4277 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4278 		index = key.offset;
4279 		btrfs_release_path(path);
4280 	} else {
4281 		ret = btrfs_del_root_ref(trans, objectid,
4282 					 root->root_key.objectid, dir_ino,
4283 					 &index, name, name_len);
4284 		if (ret) {
4285 			btrfs_abort_transaction(trans, ret);
4286 			goto out;
4287 		}
4288 	}
4289 
4290 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4291 	if (ret) {
4292 		btrfs_abort_transaction(trans, ret);
4293 		goto out;
4294 	}
4295 
4296 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4297 	inode_inc_iversion(dir);
4298 	dir->i_mtime = dir->i_ctime = current_time(dir);
4299 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4300 	if (ret)
4301 		btrfs_abort_transaction(trans, ret);
4302 out:
4303 	btrfs_free_path(path);
4304 	return ret;
4305 }
4306 
4307 /*
4308  * Helper to check if the subvolume references other subvolumes or if it's
4309  * default.
4310  */
may_destroy_subvol(struct btrfs_root * root)4311 static noinline int may_destroy_subvol(struct btrfs_root *root)
4312 {
4313 	struct btrfs_fs_info *fs_info = root->fs_info;
4314 	struct btrfs_path *path;
4315 	struct btrfs_dir_item *di;
4316 	struct btrfs_key key;
4317 	u64 dir_id;
4318 	int ret;
4319 
4320 	path = btrfs_alloc_path();
4321 	if (!path)
4322 		return -ENOMEM;
4323 
4324 	/* Make sure this root isn't set as the default subvol */
4325 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4326 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4327 				   dir_id, "default", 7, 0);
4328 	if (di && !IS_ERR(di)) {
4329 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4330 		if (key.objectid == root->root_key.objectid) {
4331 			ret = -EPERM;
4332 			btrfs_err(fs_info,
4333 				  "deleting default subvolume %llu is not allowed",
4334 				  key.objectid);
4335 			goto out;
4336 		}
4337 		btrfs_release_path(path);
4338 	}
4339 
4340 	key.objectid = root->root_key.objectid;
4341 	key.type = BTRFS_ROOT_REF_KEY;
4342 	key.offset = (u64)-1;
4343 
4344 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4345 	if (ret < 0)
4346 		goto out;
4347 	BUG_ON(ret == 0);
4348 
4349 	ret = 0;
4350 	if (path->slots[0] > 0) {
4351 		path->slots[0]--;
4352 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4353 		if (key.objectid == root->root_key.objectid &&
4354 		    key.type == BTRFS_ROOT_REF_KEY)
4355 			ret = -ENOTEMPTY;
4356 	}
4357 out:
4358 	btrfs_free_path(path);
4359 	return ret;
4360 }
4361 
4362 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4363 static void btrfs_prune_dentries(struct btrfs_root *root)
4364 {
4365 	struct btrfs_fs_info *fs_info = root->fs_info;
4366 	struct rb_node *node;
4367 	struct rb_node *prev;
4368 	struct btrfs_inode *entry;
4369 	struct inode *inode;
4370 	u64 objectid = 0;
4371 
4372 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4373 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4374 
4375 	spin_lock(&root->inode_lock);
4376 again:
4377 	node = root->inode_tree.rb_node;
4378 	prev = NULL;
4379 	while (node) {
4380 		prev = node;
4381 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4382 
4383 		if (objectid < btrfs_ino(entry))
4384 			node = node->rb_left;
4385 		else if (objectid > btrfs_ino(entry))
4386 			node = node->rb_right;
4387 		else
4388 			break;
4389 	}
4390 	if (!node) {
4391 		while (prev) {
4392 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4393 			if (objectid <= btrfs_ino(entry)) {
4394 				node = prev;
4395 				break;
4396 			}
4397 			prev = rb_next(prev);
4398 		}
4399 	}
4400 	while (node) {
4401 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4402 		objectid = btrfs_ino(entry) + 1;
4403 		inode = igrab(&entry->vfs_inode);
4404 		if (inode) {
4405 			spin_unlock(&root->inode_lock);
4406 			if (atomic_read(&inode->i_count) > 1)
4407 				d_prune_aliases(inode);
4408 			/*
4409 			 * btrfs_drop_inode will have it removed from the inode
4410 			 * cache when its usage count hits zero.
4411 			 */
4412 			iput(inode);
4413 			cond_resched();
4414 			spin_lock(&root->inode_lock);
4415 			goto again;
4416 		}
4417 
4418 		if (cond_resched_lock(&root->inode_lock))
4419 			goto again;
4420 
4421 		node = rb_next(node);
4422 	}
4423 	spin_unlock(&root->inode_lock);
4424 }
4425 
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4426 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4427 {
4428 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4429 	struct btrfs_root *root = BTRFS_I(dir)->root;
4430 	struct inode *inode = d_inode(dentry);
4431 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4432 	struct btrfs_trans_handle *trans;
4433 	struct btrfs_block_rsv block_rsv;
4434 	u64 root_flags;
4435 	int ret;
4436 
4437 	/*
4438 	 * Don't allow to delete a subvolume with send in progress. This is
4439 	 * inside the inode lock so the error handling that has to drop the bit
4440 	 * again is not run concurrently.
4441 	 */
4442 	spin_lock(&dest->root_item_lock);
4443 	if (dest->send_in_progress) {
4444 		spin_unlock(&dest->root_item_lock);
4445 		btrfs_warn(fs_info,
4446 			   "attempt to delete subvolume %llu during send",
4447 			   dest->root_key.objectid);
4448 		return -EPERM;
4449 	}
4450 	root_flags = btrfs_root_flags(&dest->root_item);
4451 	btrfs_set_root_flags(&dest->root_item,
4452 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4453 	spin_unlock(&dest->root_item_lock);
4454 
4455 	down_write(&fs_info->subvol_sem);
4456 
4457 	ret = may_destroy_subvol(dest);
4458 	if (ret)
4459 		goto out_up_write;
4460 
4461 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4462 	/*
4463 	 * One for dir inode,
4464 	 * two for dir entries,
4465 	 * two for root ref/backref.
4466 	 */
4467 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4468 	if (ret)
4469 		goto out_up_write;
4470 
4471 	trans = btrfs_start_transaction(root, 0);
4472 	if (IS_ERR(trans)) {
4473 		ret = PTR_ERR(trans);
4474 		goto out_release;
4475 	}
4476 	trans->block_rsv = &block_rsv;
4477 	trans->bytes_reserved = block_rsv.size;
4478 
4479 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4480 
4481 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4482 	if (ret) {
4483 		btrfs_abort_transaction(trans, ret);
4484 		goto out_end_trans;
4485 	}
4486 
4487 	ret = btrfs_record_root_in_trans(trans, dest);
4488 	if (ret) {
4489 		btrfs_abort_transaction(trans, ret);
4490 		goto out_end_trans;
4491 	}
4492 
4493 	memset(&dest->root_item.drop_progress, 0,
4494 		sizeof(dest->root_item.drop_progress));
4495 	btrfs_set_root_drop_level(&dest->root_item, 0);
4496 	btrfs_set_root_refs(&dest->root_item, 0);
4497 
4498 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4499 		ret = btrfs_insert_orphan_item(trans,
4500 					fs_info->tree_root,
4501 					dest->root_key.objectid);
4502 		if (ret) {
4503 			btrfs_abort_transaction(trans, ret);
4504 			goto out_end_trans;
4505 		}
4506 	}
4507 
4508 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4509 				  BTRFS_UUID_KEY_SUBVOL,
4510 				  dest->root_key.objectid);
4511 	if (ret && ret != -ENOENT) {
4512 		btrfs_abort_transaction(trans, ret);
4513 		goto out_end_trans;
4514 	}
4515 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4516 		ret = btrfs_uuid_tree_remove(trans,
4517 					  dest->root_item.received_uuid,
4518 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4519 					  dest->root_key.objectid);
4520 		if (ret && ret != -ENOENT) {
4521 			btrfs_abort_transaction(trans, ret);
4522 			goto out_end_trans;
4523 		}
4524 	}
4525 
4526 	free_anon_bdev(dest->anon_dev);
4527 	dest->anon_dev = 0;
4528 out_end_trans:
4529 	trans->block_rsv = NULL;
4530 	trans->bytes_reserved = 0;
4531 	ret = btrfs_end_transaction(trans);
4532 	inode->i_flags |= S_DEAD;
4533 out_release:
4534 	btrfs_subvolume_release_metadata(root, &block_rsv);
4535 out_up_write:
4536 	up_write(&fs_info->subvol_sem);
4537 	if (ret) {
4538 		spin_lock(&dest->root_item_lock);
4539 		root_flags = btrfs_root_flags(&dest->root_item);
4540 		btrfs_set_root_flags(&dest->root_item,
4541 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4542 		spin_unlock(&dest->root_item_lock);
4543 	} else {
4544 		d_invalidate(dentry);
4545 		btrfs_prune_dentries(dest);
4546 		ASSERT(dest->send_in_progress == 0);
4547 	}
4548 
4549 	return ret;
4550 }
4551 
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4552 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4553 {
4554 	struct inode *inode = d_inode(dentry);
4555 	int err = 0;
4556 	struct btrfs_root *root = BTRFS_I(dir)->root;
4557 	struct btrfs_trans_handle *trans;
4558 	u64 last_unlink_trans;
4559 
4560 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4561 		return -ENOTEMPTY;
4562 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4563 		return btrfs_delete_subvolume(dir, dentry);
4564 
4565 	trans = __unlink_start_trans(dir);
4566 	if (IS_ERR(trans))
4567 		return PTR_ERR(trans);
4568 
4569 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4570 		err = btrfs_unlink_subvol(trans, dir, dentry);
4571 		goto out;
4572 	}
4573 
4574 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4575 	if (err)
4576 		goto out;
4577 
4578 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4579 
4580 	/* now the directory is empty */
4581 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4582 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4583 			dentry->d_name.len);
4584 	if (!err) {
4585 		btrfs_i_size_write(BTRFS_I(inode), 0);
4586 		/*
4587 		 * Propagate the last_unlink_trans value of the deleted dir to
4588 		 * its parent directory. This is to prevent an unrecoverable
4589 		 * log tree in the case we do something like this:
4590 		 * 1) create dir foo
4591 		 * 2) create snapshot under dir foo
4592 		 * 3) delete the snapshot
4593 		 * 4) rmdir foo
4594 		 * 5) mkdir foo
4595 		 * 6) fsync foo or some file inside foo
4596 		 */
4597 		if (last_unlink_trans >= trans->transid)
4598 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4599 	}
4600 out:
4601 	btrfs_end_transaction(trans);
4602 	btrfs_btree_balance_dirty(root->fs_info);
4603 
4604 	return err;
4605 }
4606 
4607 /*
4608  * Return this if we need to call truncate_block for the last bit of the
4609  * truncate.
4610  */
4611 #define NEED_TRUNCATE_BLOCK 1
4612 
4613 /*
4614  * Remove inode items from a given root.
4615  *
4616  * @trans:		A transaction handle.
4617  * @root:		The root from which to remove items.
4618  * @inode:		The inode whose items we want to remove.
4619  * @new_size:		The new i_size for the inode. This is only applicable when
4620  *			@min_type is BTRFS_EXTENT_DATA_KEY, must be 0 otherwise.
4621  * @min_type:		The minimum key type to remove. All keys with a type
4622  *			greater than this value are removed and all keys with
4623  *			this type are removed only if their offset is >= @new_size.
4624  * @extents_found:	Output parameter that will contain the number of file
4625  *			extent items that were removed or adjusted to the new
4626  *			inode i_size. The caller is responsible for initializing
4627  *			the counter. Also, it can be NULL if the caller does not
4628  *			need this counter.
4629  *
4630  * Remove all keys associated with the inode from the given root that have a key
4631  * with a type greater than or equals to @min_type. When @min_type has a value of
4632  * BTRFS_EXTENT_DATA_KEY, only remove file extent items that have an offset value
4633  * greater than or equals to @new_size. If a file extent item that starts before
4634  * @new_size and ends after it is found, its length is adjusted.
4635  *
4636  * Returns: 0 on success, < 0 on error and NEED_TRUNCATE_BLOCK when @min_type is
4637  * BTRFS_EXTENT_DATA_KEY and the caller must truncate the last block.
4638  */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,u64 new_size,u32 min_type,u64 * extents_found)4639 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4640 			       struct btrfs_root *root,
4641 			       struct btrfs_inode *inode,
4642 			       u64 new_size, u32 min_type,
4643 			       u64 *extents_found)
4644 {
4645 	struct btrfs_fs_info *fs_info = root->fs_info;
4646 	struct btrfs_path *path;
4647 	struct extent_buffer *leaf;
4648 	struct btrfs_file_extent_item *fi;
4649 	struct btrfs_key key;
4650 	struct btrfs_key found_key;
4651 	u64 extent_start = 0;
4652 	u64 extent_num_bytes = 0;
4653 	u64 extent_offset = 0;
4654 	u64 item_end = 0;
4655 	u64 last_size = new_size;
4656 	u32 found_type = (u8)-1;
4657 	int found_extent;
4658 	int del_item;
4659 	int pending_del_nr = 0;
4660 	int pending_del_slot = 0;
4661 	int extent_type = -1;
4662 	int ret;
4663 	u64 ino = btrfs_ino(inode);
4664 	u64 bytes_deleted = 0;
4665 	bool be_nice = false;
4666 	bool should_throttle = false;
4667 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4668 	struct extent_state *cached_state = NULL;
4669 
4670 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4671 
4672 	/*
4673 	 * For non-free space inodes and non-shareable roots, we want to back
4674 	 * off from time to time.  This means all inodes in subvolume roots,
4675 	 * reloc roots, and data reloc roots.
4676 	 */
4677 	if (!btrfs_is_free_space_inode(inode) &&
4678 	    test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4679 		be_nice = true;
4680 
4681 	path = btrfs_alloc_path();
4682 	if (!path)
4683 		return -ENOMEM;
4684 	path->reada = READA_BACK;
4685 
4686 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4687 		lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4688 				 &cached_state);
4689 
4690 		/*
4691 		 * We want to drop from the next block forward in case this
4692 		 * new size is not block aligned since we will be keeping the
4693 		 * last block of the extent just the way it is.
4694 		 */
4695 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4696 					fs_info->sectorsize),
4697 					(u64)-1, 0);
4698 	}
4699 
4700 	/*
4701 	 * This function is also used to drop the items in the log tree before
4702 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4703 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4704 	 * items.
4705 	 */
4706 	if (min_type == 0 && root == inode->root)
4707 		btrfs_kill_delayed_inode_items(inode);
4708 
4709 	key.objectid = ino;
4710 	key.offset = (u64)-1;
4711 	key.type = (u8)-1;
4712 
4713 search_again:
4714 	/*
4715 	 * with a 16K leaf size and 128MB extents, you can actually queue
4716 	 * up a huge file in a single leaf.  Most of the time that
4717 	 * bytes_deleted is > 0, it will be huge by the time we get here
4718 	 */
4719 	if (be_nice && bytes_deleted > SZ_32M &&
4720 	    btrfs_should_end_transaction(trans)) {
4721 		ret = -EAGAIN;
4722 		goto out;
4723 	}
4724 
4725 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4726 	if (ret < 0)
4727 		goto out;
4728 
4729 	if (ret > 0) {
4730 		ret = 0;
4731 		/* there are no items in the tree for us to truncate, we're
4732 		 * done
4733 		 */
4734 		if (path->slots[0] == 0)
4735 			goto out;
4736 		path->slots[0]--;
4737 	}
4738 
4739 	while (1) {
4740 		u64 clear_start = 0, clear_len = 0;
4741 
4742 		fi = NULL;
4743 		leaf = path->nodes[0];
4744 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4745 		found_type = found_key.type;
4746 
4747 		if (found_key.objectid != ino)
4748 			break;
4749 
4750 		if (found_type < min_type)
4751 			break;
4752 
4753 		item_end = found_key.offset;
4754 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4755 			fi = btrfs_item_ptr(leaf, path->slots[0],
4756 					    struct btrfs_file_extent_item);
4757 			extent_type = btrfs_file_extent_type(leaf, fi);
4758 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4759 				item_end +=
4760 				    btrfs_file_extent_num_bytes(leaf, fi);
4761 
4762 				trace_btrfs_truncate_show_fi_regular(
4763 					inode, leaf, fi, found_key.offset);
4764 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4765 				item_end += btrfs_file_extent_ram_bytes(leaf,
4766 									fi);
4767 
4768 				trace_btrfs_truncate_show_fi_inline(
4769 					inode, leaf, fi, path->slots[0],
4770 					found_key.offset);
4771 			}
4772 			item_end--;
4773 		}
4774 		if (found_type > min_type) {
4775 			del_item = 1;
4776 		} else {
4777 			if (item_end < new_size)
4778 				break;
4779 			if (found_key.offset >= new_size)
4780 				del_item = 1;
4781 			else
4782 				del_item = 0;
4783 		}
4784 		found_extent = 0;
4785 		/* FIXME, shrink the extent if the ref count is only 1 */
4786 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4787 			goto delete;
4788 
4789 		if (extents_found != NULL)
4790 			(*extents_found)++;
4791 
4792 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4793 			u64 num_dec;
4794 
4795 			clear_start = found_key.offset;
4796 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4797 			if (!del_item) {
4798 				u64 orig_num_bytes =
4799 					btrfs_file_extent_num_bytes(leaf, fi);
4800 				extent_num_bytes = ALIGN(new_size -
4801 						found_key.offset,
4802 						fs_info->sectorsize);
4803 				clear_start = ALIGN(new_size, fs_info->sectorsize);
4804 				btrfs_set_file_extent_num_bytes(leaf, fi,
4805 							 extent_num_bytes);
4806 				num_dec = (orig_num_bytes -
4807 					   extent_num_bytes);
4808 				if (test_bit(BTRFS_ROOT_SHAREABLE,
4809 					     &root->state) &&
4810 				    extent_start != 0)
4811 					inode_sub_bytes(&inode->vfs_inode,
4812 							num_dec);
4813 				btrfs_mark_buffer_dirty(leaf);
4814 			} else {
4815 				extent_num_bytes =
4816 					btrfs_file_extent_disk_num_bytes(leaf,
4817 									 fi);
4818 				extent_offset = found_key.offset -
4819 					btrfs_file_extent_offset(leaf, fi);
4820 
4821 				/* FIXME blocksize != 4096 */
4822 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4823 				if (extent_start != 0) {
4824 					found_extent = 1;
4825 					if (test_bit(BTRFS_ROOT_SHAREABLE,
4826 						     &root->state))
4827 						inode_sub_bytes(&inode->vfs_inode,
4828 								num_dec);
4829 				}
4830 			}
4831 			clear_len = num_dec;
4832 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4833 			/*
4834 			 * we can't truncate inline items that have had
4835 			 * special encodings
4836 			 */
4837 			if (!del_item &&
4838 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4839 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4840 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4841 				u32 size = (u32)(new_size - found_key.offset);
4842 
4843 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4844 				size = btrfs_file_extent_calc_inline_size(size);
4845 				btrfs_truncate_item(path, size, 1);
4846 			} else if (!del_item) {
4847 				/*
4848 				 * We have to bail so the last_size is set to
4849 				 * just before this extent.
4850 				 */
4851 				ret = NEED_TRUNCATE_BLOCK;
4852 				break;
4853 			} else {
4854 				/*
4855 				 * Inline extents are special, we just treat
4856 				 * them as a full sector worth in the file
4857 				 * extent tree just for simplicity sake.
4858 				 */
4859 				clear_len = fs_info->sectorsize;
4860 			}
4861 
4862 			if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4863 				inode_sub_bytes(&inode->vfs_inode,
4864 						item_end + 1 - new_size);
4865 		}
4866 delete:
4867 		/*
4868 		 * We use btrfs_truncate_inode_items() to clean up log trees for
4869 		 * multiple fsyncs, and in this case we don't want to clear the
4870 		 * file extent range because it's just the log.
4871 		 */
4872 		if (root == inode->root) {
4873 			ret = btrfs_inode_clear_file_extent_range(inode,
4874 						  clear_start, clear_len);
4875 			if (ret) {
4876 				btrfs_abort_transaction(trans, ret);
4877 				break;
4878 			}
4879 		}
4880 
4881 		if (del_item)
4882 			last_size = found_key.offset;
4883 		else
4884 			last_size = new_size;
4885 		if (del_item) {
4886 			if (!pending_del_nr) {
4887 				/* no pending yet, add ourselves */
4888 				pending_del_slot = path->slots[0];
4889 				pending_del_nr = 1;
4890 			} else if (pending_del_nr &&
4891 				   path->slots[0] + 1 == pending_del_slot) {
4892 				/* hop on the pending chunk */
4893 				pending_del_nr++;
4894 				pending_del_slot = path->slots[0];
4895 			} else {
4896 				BUG();
4897 			}
4898 		} else {
4899 			break;
4900 		}
4901 		should_throttle = false;
4902 
4903 		if (found_extent &&
4904 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4905 			struct btrfs_ref ref = { 0 };
4906 
4907 			bytes_deleted += extent_num_bytes;
4908 
4909 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4910 					extent_start, extent_num_bytes, 0);
4911 			ref.real_root = root->root_key.objectid;
4912 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4913 					ino, extent_offset);
4914 			ret = btrfs_free_extent(trans, &ref);
4915 			if (ret) {
4916 				btrfs_abort_transaction(trans, ret);
4917 				break;
4918 			}
4919 			if (be_nice) {
4920 				if (btrfs_should_throttle_delayed_refs(trans))
4921 					should_throttle = true;
4922 			}
4923 		}
4924 
4925 		if (found_type == BTRFS_INODE_ITEM_KEY)
4926 			break;
4927 
4928 		if (path->slots[0] == 0 ||
4929 		    path->slots[0] != pending_del_slot ||
4930 		    should_throttle) {
4931 			if (pending_del_nr) {
4932 				ret = btrfs_del_items(trans, root, path,
4933 						pending_del_slot,
4934 						pending_del_nr);
4935 				if (ret) {
4936 					btrfs_abort_transaction(trans, ret);
4937 					break;
4938 				}
4939 				pending_del_nr = 0;
4940 			}
4941 			btrfs_release_path(path);
4942 
4943 			/*
4944 			 * We can generate a lot of delayed refs, so we need to
4945 			 * throttle every once and a while and make sure we're
4946 			 * adding enough space to keep up with the work we are
4947 			 * generating.  Since we hold a transaction here we
4948 			 * can't flush, and we don't want to FLUSH_LIMIT because
4949 			 * we could have generated too many delayed refs to
4950 			 * actually allocate, so just bail if we're short and
4951 			 * let the normal reservation dance happen higher up.
4952 			 */
4953 			if (should_throttle) {
4954 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4955 							BTRFS_RESERVE_NO_FLUSH);
4956 				if (ret) {
4957 					ret = -EAGAIN;
4958 					break;
4959 				}
4960 			}
4961 			goto search_again;
4962 		} else {
4963 			path->slots[0]--;
4964 		}
4965 	}
4966 out:
4967 	if (ret >= 0 && pending_del_nr) {
4968 		int err;
4969 
4970 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4971 				      pending_del_nr);
4972 		if (err) {
4973 			btrfs_abort_transaction(trans, err);
4974 			ret = err;
4975 		}
4976 	}
4977 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4978 		ASSERT(last_size >= new_size);
4979 		if (!ret && last_size > new_size)
4980 			last_size = new_size;
4981 		btrfs_inode_safe_disk_i_size_write(inode, last_size);
4982 		unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4983 				     &cached_state);
4984 	}
4985 
4986 	btrfs_free_path(path);
4987 	return ret;
4988 }
4989 
4990 /*
4991  * btrfs_truncate_block - read, zero a chunk and write a block
4992  * @inode - inode that we're zeroing
4993  * @from - the offset to start zeroing
4994  * @len - the length to zero, 0 to zero the entire range respective to the
4995  *	offset
4996  * @front - zero up to the offset instead of from the offset on
4997  *
4998  * This will find the block for the "from" offset and cow the block and zero the
4999  * part we want to zero.  This is used with truncate and hole punching.
5000  */
btrfs_truncate_block(struct btrfs_inode * inode,loff_t from,loff_t len,int front)5001 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
5002 			 int front)
5003 {
5004 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5005 	struct address_space *mapping = inode->vfs_inode.i_mapping;
5006 	struct extent_io_tree *io_tree = &inode->io_tree;
5007 	struct btrfs_ordered_extent *ordered;
5008 	struct extent_state *cached_state = NULL;
5009 	struct extent_changeset *data_reserved = NULL;
5010 	bool only_release_metadata = false;
5011 	u32 blocksize = fs_info->sectorsize;
5012 	pgoff_t index = from >> PAGE_SHIFT;
5013 	unsigned offset = from & (blocksize - 1);
5014 	struct page *page;
5015 	gfp_t mask = btrfs_alloc_write_mask(mapping);
5016 	size_t write_bytes = blocksize;
5017 	int ret = 0;
5018 	u64 block_start;
5019 	u64 block_end;
5020 
5021 	if (IS_ALIGNED(offset, blocksize) &&
5022 	    (!len || IS_ALIGNED(len, blocksize)))
5023 		goto out;
5024 
5025 	block_start = round_down(from, blocksize);
5026 	block_end = block_start + blocksize - 1;
5027 
5028 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
5029 					  blocksize);
5030 	if (ret < 0) {
5031 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
5032 			/* For nocow case, no need to reserve data space */
5033 			only_release_metadata = true;
5034 		} else {
5035 			goto out;
5036 		}
5037 	}
5038 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
5039 	if (ret < 0) {
5040 		if (!only_release_metadata)
5041 			btrfs_free_reserved_data_space(inode, data_reserved,
5042 						       block_start, blocksize);
5043 		goto out;
5044 	}
5045 again:
5046 	page = find_or_create_page(mapping, index, mask);
5047 	if (!page) {
5048 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
5049 					     blocksize, true);
5050 		btrfs_delalloc_release_extents(inode, blocksize);
5051 		ret = -ENOMEM;
5052 		goto out;
5053 	}
5054 	ret = set_page_extent_mapped(page);
5055 	if (ret < 0)
5056 		goto out_unlock;
5057 
5058 	if (!PageUptodate(page)) {
5059 		ret = btrfs_readpage(NULL, page);
5060 		lock_page(page);
5061 		if (page->mapping != mapping) {
5062 			unlock_page(page);
5063 			put_page(page);
5064 			goto again;
5065 		}
5066 		if (!PageUptodate(page)) {
5067 			ret = -EIO;
5068 			goto out_unlock;
5069 		}
5070 	}
5071 	wait_on_page_writeback(page);
5072 
5073 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5074 
5075 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
5076 	if (ordered) {
5077 		unlock_extent_cached(io_tree, block_start, block_end,
5078 				     &cached_state);
5079 		unlock_page(page);
5080 		put_page(page);
5081 		btrfs_start_ordered_extent(ordered, 1);
5082 		btrfs_put_ordered_extent(ordered);
5083 		goto again;
5084 	}
5085 
5086 	clear_extent_bit(&inode->io_tree, block_start, block_end,
5087 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5088 			 0, 0, &cached_state);
5089 
5090 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5091 					&cached_state);
5092 	if (ret) {
5093 		unlock_extent_cached(io_tree, block_start, block_end,
5094 				     &cached_state);
5095 		goto out_unlock;
5096 	}
5097 
5098 	if (offset != blocksize) {
5099 		if (!len)
5100 			len = blocksize - offset;
5101 		if (front)
5102 			memzero_page(page, (block_start - page_offset(page)),
5103 				     offset);
5104 		else
5105 			memzero_page(page, (block_start - page_offset(page)) + offset,
5106 				     len);
5107 		flush_dcache_page(page);
5108 	}
5109 	ClearPageChecked(page);
5110 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
5111 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5112 
5113 	if (only_release_metadata)
5114 		set_extent_bit(&inode->io_tree, block_start, block_end,
5115 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
5116 
5117 out_unlock:
5118 	if (ret) {
5119 		if (only_release_metadata)
5120 			btrfs_delalloc_release_metadata(inode, blocksize, true);
5121 		else
5122 			btrfs_delalloc_release_space(inode, data_reserved,
5123 					block_start, blocksize, true);
5124 	}
5125 	btrfs_delalloc_release_extents(inode, blocksize);
5126 	unlock_page(page);
5127 	put_page(page);
5128 out:
5129 	if (only_release_metadata)
5130 		btrfs_check_nocow_unlock(inode);
5131 	extent_changeset_free(data_reserved);
5132 	return ret;
5133 }
5134 
maybe_insert_hole(struct btrfs_root * root,struct btrfs_inode * inode,u64 offset,u64 len)5135 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
5136 			     u64 offset, u64 len)
5137 {
5138 	struct btrfs_fs_info *fs_info = root->fs_info;
5139 	struct btrfs_trans_handle *trans;
5140 	struct btrfs_drop_extents_args drop_args = { 0 };
5141 	int ret;
5142 
5143 	/*
5144 	 * If NO_HOLES is enabled, we don't need to do anything.
5145 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5146 	 * or btrfs_update_inode() will be called, which guarantee that the next
5147 	 * fsync will know this inode was changed and needs to be logged.
5148 	 */
5149 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
5150 		return 0;
5151 
5152 	/*
5153 	 * 1 - for the one we're dropping
5154 	 * 1 - for the one we're adding
5155 	 * 1 - for updating the inode.
5156 	 */
5157 	trans = btrfs_start_transaction(root, 3);
5158 	if (IS_ERR(trans))
5159 		return PTR_ERR(trans);
5160 
5161 	drop_args.start = offset;
5162 	drop_args.end = offset + len;
5163 	drop_args.drop_cache = true;
5164 
5165 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5166 	if (ret) {
5167 		btrfs_abort_transaction(trans, ret);
5168 		btrfs_end_transaction(trans);
5169 		return ret;
5170 	}
5171 
5172 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5173 			offset, 0, 0, len, 0, len, 0, 0, 0);
5174 	if (ret) {
5175 		btrfs_abort_transaction(trans, ret);
5176 	} else {
5177 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5178 		btrfs_update_inode(trans, root, inode);
5179 	}
5180 	btrfs_end_transaction(trans);
5181 	return ret;
5182 }
5183 
5184 /*
5185  * This function puts in dummy file extents for the area we're creating a hole
5186  * for.  So if we are truncating this file to a larger size we need to insert
5187  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5188  * the range between oldsize and size
5189  */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5190 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5191 {
5192 	struct btrfs_root *root = inode->root;
5193 	struct btrfs_fs_info *fs_info = root->fs_info;
5194 	struct extent_io_tree *io_tree = &inode->io_tree;
5195 	struct extent_map *em = NULL;
5196 	struct extent_state *cached_state = NULL;
5197 	struct extent_map_tree *em_tree = &inode->extent_tree;
5198 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5199 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5200 	u64 last_byte;
5201 	u64 cur_offset;
5202 	u64 hole_size;
5203 	int err = 0;
5204 
5205 	/*
5206 	 * If our size started in the middle of a block we need to zero out the
5207 	 * rest of the block before we expand the i_size, otherwise we could
5208 	 * expose stale data.
5209 	 */
5210 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5211 	if (err)
5212 		return err;
5213 
5214 	if (size <= hole_start)
5215 		return 0;
5216 
5217 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5218 					   &cached_state);
5219 	cur_offset = hole_start;
5220 	while (1) {
5221 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5222 				      block_end - cur_offset);
5223 		if (IS_ERR(em)) {
5224 			err = PTR_ERR(em);
5225 			em = NULL;
5226 			break;
5227 		}
5228 		last_byte = min(extent_map_end(em), block_end);
5229 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5230 		hole_size = last_byte - cur_offset;
5231 
5232 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5233 			struct extent_map *hole_em;
5234 
5235 			err = maybe_insert_hole(root, inode, cur_offset,
5236 						hole_size);
5237 			if (err)
5238 				break;
5239 
5240 			err = btrfs_inode_set_file_extent_range(inode,
5241 							cur_offset, hole_size);
5242 			if (err)
5243 				break;
5244 
5245 			btrfs_drop_extent_cache(inode, cur_offset,
5246 						cur_offset + hole_size - 1, 0);
5247 			hole_em = alloc_extent_map();
5248 			if (!hole_em) {
5249 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5250 					&inode->runtime_flags);
5251 				goto next;
5252 			}
5253 			hole_em->start = cur_offset;
5254 			hole_em->len = hole_size;
5255 			hole_em->orig_start = cur_offset;
5256 
5257 			hole_em->block_start = EXTENT_MAP_HOLE;
5258 			hole_em->block_len = 0;
5259 			hole_em->orig_block_len = 0;
5260 			hole_em->ram_bytes = hole_size;
5261 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5262 			hole_em->generation = fs_info->generation;
5263 
5264 			while (1) {
5265 				write_lock(&em_tree->lock);
5266 				err = add_extent_mapping(em_tree, hole_em, 1);
5267 				write_unlock(&em_tree->lock);
5268 				if (err != -EEXIST)
5269 					break;
5270 				btrfs_drop_extent_cache(inode, cur_offset,
5271 							cur_offset +
5272 							hole_size - 1, 0);
5273 			}
5274 			free_extent_map(hole_em);
5275 		} else {
5276 			err = btrfs_inode_set_file_extent_range(inode,
5277 							cur_offset, hole_size);
5278 			if (err)
5279 				break;
5280 		}
5281 next:
5282 		free_extent_map(em);
5283 		em = NULL;
5284 		cur_offset = last_byte;
5285 		if (cur_offset >= block_end)
5286 			break;
5287 	}
5288 	free_extent_map(em);
5289 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5290 	return err;
5291 }
5292 
btrfs_setsize(struct inode * inode,struct iattr * attr)5293 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5294 {
5295 	struct btrfs_root *root = BTRFS_I(inode)->root;
5296 	struct btrfs_trans_handle *trans;
5297 	loff_t oldsize = i_size_read(inode);
5298 	loff_t newsize = attr->ia_size;
5299 	int mask = attr->ia_valid;
5300 	int ret;
5301 
5302 	/*
5303 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5304 	 * special case where we need to update the times despite not having
5305 	 * these flags set.  For all other operations the VFS set these flags
5306 	 * explicitly if it wants a timestamp update.
5307 	 */
5308 	if (newsize != oldsize) {
5309 		inode_inc_iversion(inode);
5310 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5311 			inode->i_ctime = inode->i_mtime =
5312 				current_time(inode);
5313 	}
5314 
5315 	if (newsize > oldsize) {
5316 		/*
5317 		 * Don't do an expanding truncate while snapshotting is ongoing.
5318 		 * This is to ensure the snapshot captures a fully consistent
5319 		 * state of this file - if the snapshot captures this expanding
5320 		 * truncation, it must capture all writes that happened before
5321 		 * this truncation.
5322 		 */
5323 		btrfs_drew_write_lock(&root->snapshot_lock);
5324 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5325 		if (ret) {
5326 			btrfs_drew_write_unlock(&root->snapshot_lock);
5327 			return ret;
5328 		}
5329 
5330 		trans = btrfs_start_transaction(root, 1);
5331 		if (IS_ERR(trans)) {
5332 			btrfs_drew_write_unlock(&root->snapshot_lock);
5333 			return PTR_ERR(trans);
5334 		}
5335 
5336 		i_size_write(inode, newsize);
5337 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5338 		pagecache_isize_extended(inode, oldsize, newsize);
5339 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5340 		btrfs_drew_write_unlock(&root->snapshot_lock);
5341 		btrfs_end_transaction(trans);
5342 	} else {
5343 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5344 
5345 		if (btrfs_is_zoned(fs_info)) {
5346 			ret = btrfs_wait_ordered_range(inode,
5347 					ALIGN(newsize, fs_info->sectorsize),
5348 					(u64)-1);
5349 			if (ret)
5350 				return ret;
5351 		}
5352 
5353 		/*
5354 		 * We're truncating a file that used to have good data down to
5355 		 * zero. Make sure any new writes to the file get on disk
5356 		 * on close.
5357 		 */
5358 		if (newsize == 0)
5359 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5360 				&BTRFS_I(inode)->runtime_flags);
5361 
5362 		truncate_setsize(inode, newsize);
5363 
5364 		inode_dio_wait(inode);
5365 
5366 		ret = btrfs_truncate(inode, newsize == oldsize);
5367 		if (ret && inode->i_nlink) {
5368 			int err;
5369 
5370 			/*
5371 			 * Truncate failed, so fix up the in-memory size. We
5372 			 * adjusted disk_i_size down as we removed extents, so
5373 			 * wait for disk_i_size to be stable and then update the
5374 			 * in-memory size to match.
5375 			 */
5376 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5377 			if (err)
5378 				return err;
5379 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5380 		}
5381 	}
5382 
5383 	return ret;
5384 }
5385 
btrfs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)5386 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5387 			 struct iattr *attr)
5388 {
5389 	struct inode *inode = d_inode(dentry);
5390 	struct btrfs_root *root = BTRFS_I(inode)->root;
5391 	int err;
5392 
5393 	if (btrfs_root_readonly(root))
5394 		return -EROFS;
5395 
5396 	err = setattr_prepare(mnt_userns, dentry, attr);
5397 	if (err)
5398 		return err;
5399 
5400 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5401 		err = btrfs_setsize(inode, attr);
5402 		if (err)
5403 			return err;
5404 	}
5405 
5406 	if (attr->ia_valid) {
5407 		setattr_copy(mnt_userns, inode, attr);
5408 		inode_inc_iversion(inode);
5409 		err = btrfs_dirty_inode(inode);
5410 
5411 		if (!err && attr->ia_valid & ATTR_MODE)
5412 			err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5413 	}
5414 
5415 	return err;
5416 }
5417 
5418 /*
5419  * While truncating the inode pages during eviction, we get the VFS calling
5420  * btrfs_invalidatepage() against each page of the inode. This is slow because
5421  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5422  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5423  * extent_state structures over and over, wasting lots of time.
5424  *
5425  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5426  * those expensive operations on a per page basis and do only the ordered io
5427  * finishing, while we release here the extent_map and extent_state structures,
5428  * without the excessive merging and splitting.
5429  */
evict_inode_truncate_pages(struct inode * inode)5430 static void evict_inode_truncate_pages(struct inode *inode)
5431 {
5432 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5433 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5434 	struct rb_node *node;
5435 
5436 	ASSERT(inode->i_state & I_FREEING);
5437 	truncate_inode_pages_final(&inode->i_data);
5438 
5439 	write_lock(&map_tree->lock);
5440 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5441 		struct extent_map *em;
5442 
5443 		node = rb_first_cached(&map_tree->map);
5444 		em = rb_entry(node, struct extent_map, rb_node);
5445 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5446 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5447 		remove_extent_mapping(map_tree, em);
5448 		free_extent_map(em);
5449 		if (need_resched()) {
5450 			write_unlock(&map_tree->lock);
5451 			cond_resched();
5452 			write_lock(&map_tree->lock);
5453 		}
5454 	}
5455 	write_unlock(&map_tree->lock);
5456 
5457 	/*
5458 	 * Keep looping until we have no more ranges in the io tree.
5459 	 * We can have ongoing bios started by readahead that have
5460 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5461 	 * still in progress (unlocked the pages in the bio but did not yet
5462 	 * unlocked the ranges in the io tree). Therefore this means some
5463 	 * ranges can still be locked and eviction started because before
5464 	 * submitting those bios, which are executed by a separate task (work
5465 	 * queue kthread), inode references (inode->i_count) were not taken
5466 	 * (which would be dropped in the end io callback of each bio).
5467 	 * Therefore here we effectively end up waiting for those bios and
5468 	 * anyone else holding locked ranges without having bumped the inode's
5469 	 * reference count - if we don't do it, when they access the inode's
5470 	 * io_tree to unlock a range it may be too late, leading to an
5471 	 * use-after-free issue.
5472 	 */
5473 	spin_lock(&io_tree->lock);
5474 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5475 		struct extent_state *state;
5476 		struct extent_state *cached_state = NULL;
5477 		u64 start;
5478 		u64 end;
5479 		unsigned state_flags;
5480 
5481 		node = rb_first(&io_tree->state);
5482 		state = rb_entry(node, struct extent_state, rb_node);
5483 		start = state->start;
5484 		end = state->end;
5485 		state_flags = state->state;
5486 		spin_unlock(&io_tree->lock);
5487 
5488 		lock_extent_bits(io_tree, start, end, &cached_state);
5489 
5490 		/*
5491 		 * If still has DELALLOC flag, the extent didn't reach disk,
5492 		 * and its reserved space won't be freed by delayed_ref.
5493 		 * So we need to free its reserved space here.
5494 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5495 		 *
5496 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5497 		 */
5498 		if (state_flags & EXTENT_DELALLOC)
5499 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5500 					       end - start + 1);
5501 
5502 		clear_extent_bit(io_tree, start, end,
5503 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5504 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5505 				 &cached_state);
5506 
5507 		cond_resched();
5508 		spin_lock(&io_tree->lock);
5509 	}
5510 	spin_unlock(&io_tree->lock);
5511 }
5512 
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5513 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5514 							struct btrfs_block_rsv *rsv)
5515 {
5516 	struct btrfs_fs_info *fs_info = root->fs_info;
5517 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5518 	struct btrfs_trans_handle *trans;
5519 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5520 	int ret;
5521 
5522 	/*
5523 	 * Eviction should be taking place at some place safe because of our
5524 	 * delayed iputs.  However the normal flushing code will run delayed
5525 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5526 	 *
5527 	 * We reserve the delayed_refs_extra here again because we can't use
5528 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5529 	 * above.  We reserve our extra bit here because we generate a ton of
5530 	 * delayed refs activity by truncating.
5531 	 *
5532 	 * If we cannot make our reservation we'll attempt to steal from the
5533 	 * global reserve, because we really want to be able to free up space.
5534 	 */
5535 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5536 				     BTRFS_RESERVE_FLUSH_EVICT);
5537 	if (ret) {
5538 		/*
5539 		 * Try to steal from the global reserve if there is space for
5540 		 * it.
5541 		 */
5542 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5543 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5544 			btrfs_warn(fs_info,
5545 				   "could not allocate space for delete; will truncate on mount");
5546 			return ERR_PTR(-ENOSPC);
5547 		}
5548 		delayed_refs_extra = 0;
5549 	}
5550 
5551 	trans = btrfs_join_transaction(root);
5552 	if (IS_ERR(trans))
5553 		return trans;
5554 
5555 	if (delayed_refs_extra) {
5556 		trans->block_rsv = &fs_info->trans_block_rsv;
5557 		trans->bytes_reserved = delayed_refs_extra;
5558 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5559 					delayed_refs_extra, 1);
5560 	}
5561 	return trans;
5562 }
5563 
btrfs_evict_inode(struct inode * inode)5564 void btrfs_evict_inode(struct inode *inode)
5565 {
5566 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5567 	struct btrfs_trans_handle *trans;
5568 	struct btrfs_root *root = BTRFS_I(inode)->root;
5569 	struct btrfs_block_rsv *rsv;
5570 	int ret;
5571 
5572 	trace_btrfs_inode_evict(inode);
5573 
5574 	if (!root) {
5575 		fsverity_cleanup_inode(inode);
5576 		clear_inode(inode);
5577 		return;
5578 	}
5579 
5580 	evict_inode_truncate_pages(inode);
5581 
5582 	if (inode->i_nlink &&
5583 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5584 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5585 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5586 		goto no_delete;
5587 
5588 	if (is_bad_inode(inode))
5589 		goto no_delete;
5590 
5591 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5592 
5593 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5594 		goto no_delete;
5595 
5596 	if (inode->i_nlink > 0) {
5597 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5598 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5599 		goto no_delete;
5600 	}
5601 
5602 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5603 	if (ret)
5604 		goto no_delete;
5605 
5606 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5607 	if (!rsv)
5608 		goto no_delete;
5609 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5610 	rsv->failfast = 1;
5611 
5612 	btrfs_i_size_write(BTRFS_I(inode), 0);
5613 
5614 	while (1) {
5615 		trans = evict_refill_and_join(root, rsv);
5616 		if (IS_ERR(trans))
5617 			goto free_rsv;
5618 
5619 		trans->block_rsv = rsv;
5620 
5621 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5622 						 0, 0, NULL);
5623 		trans->block_rsv = &fs_info->trans_block_rsv;
5624 		btrfs_end_transaction(trans);
5625 		btrfs_btree_balance_dirty(fs_info);
5626 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5627 			goto free_rsv;
5628 		else if (!ret)
5629 			break;
5630 	}
5631 
5632 	/*
5633 	 * Errors here aren't a big deal, it just means we leave orphan items in
5634 	 * the tree. They will be cleaned up on the next mount. If the inode
5635 	 * number gets reused, cleanup deletes the orphan item without doing
5636 	 * anything, and unlink reuses the existing orphan item.
5637 	 *
5638 	 * If it turns out that we are dropping too many of these, we might want
5639 	 * to add a mechanism for retrying these after a commit.
5640 	 */
5641 	trans = evict_refill_and_join(root, rsv);
5642 	if (!IS_ERR(trans)) {
5643 		trans->block_rsv = rsv;
5644 		btrfs_orphan_del(trans, BTRFS_I(inode));
5645 		trans->block_rsv = &fs_info->trans_block_rsv;
5646 		btrfs_end_transaction(trans);
5647 	}
5648 
5649 free_rsv:
5650 	btrfs_free_block_rsv(fs_info, rsv);
5651 no_delete:
5652 	/*
5653 	 * If we didn't successfully delete, the orphan item will still be in
5654 	 * the tree and we'll retry on the next mount. Again, we might also want
5655 	 * to retry these periodically in the future.
5656 	 */
5657 	btrfs_remove_delayed_node(BTRFS_I(inode));
5658 	fsverity_cleanup_inode(inode);
5659 	clear_inode(inode);
5660 }
5661 
5662 /*
5663  * Return the key found in the dir entry in the location pointer, fill @type
5664  * with BTRFS_FT_*, and return 0.
5665  *
5666  * If no dir entries were found, returns -ENOENT.
5667  * If found a corrupted location in dir entry, returns -EUCLEAN.
5668  */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5669 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5670 			       struct btrfs_key *location, u8 *type)
5671 {
5672 	const char *name = dentry->d_name.name;
5673 	int namelen = dentry->d_name.len;
5674 	struct btrfs_dir_item *di;
5675 	struct btrfs_path *path;
5676 	struct btrfs_root *root = BTRFS_I(dir)->root;
5677 	int ret = 0;
5678 
5679 	path = btrfs_alloc_path();
5680 	if (!path)
5681 		return -ENOMEM;
5682 
5683 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5684 			name, namelen, 0);
5685 	if (IS_ERR_OR_NULL(di)) {
5686 		ret = di ? PTR_ERR(di) : -ENOENT;
5687 		goto out;
5688 	}
5689 
5690 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5691 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5692 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5693 		ret = -EUCLEAN;
5694 		btrfs_warn(root->fs_info,
5695 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5696 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5697 			   location->objectid, location->type, location->offset);
5698 	}
5699 	if (!ret)
5700 		*type = btrfs_dir_type(path->nodes[0], di);
5701 out:
5702 	btrfs_free_path(path);
5703 	return ret;
5704 }
5705 
5706 /*
5707  * when we hit a tree root in a directory, the btrfs part of the inode
5708  * needs to be changed to reflect the root directory of the tree root.  This
5709  * is kind of like crossing a mount point.
5710  */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5711 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5712 				    struct inode *dir,
5713 				    struct dentry *dentry,
5714 				    struct btrfs_key *location,
5715 				    struct btrfs_root **sub_root)
5716 {
5717 	struct btrfs_path *path;
5718 	struct btrfs_root *new_root;
5719 	struct btrfs_root_ref *ref;
5720 	struct extent_buffer *leaf;
5721 	struct btrfs_key key;
5722 	int ret;
5723 	int err = 0;
5724 
5725 	path = btrfs_alloc_path();
5726 	if (!path) {
5727 		err = -ENOMEM;
5728 		goto out;
5729 	}
5730 
5731 	err = -ENOENT;
5732 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5733 	key.type = BTRFS_ROOT_REF_KEY;
5734 	key.offset = location->objectid;
5735 
5736 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5737 	if (ret) {
5738 		if (ret < 0)
5739 			err = ret;
5740 		goto out;
5741 	}
5742 
5743 	leaf = path->nodes[0];
5744 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5745 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5746 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5747 		goto out;
5748 
5749 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5750 				   (unsigned long)(ref + 1),
5751 				   dentry->d_name.len);
5752 	if (ret)
5753 		goto out;
5754 
5755 	btrfs_release_path(path);
5756 
5757 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5758 	if (IS_ERR(new_root)) {
5759 		err = PTR_ERR(new_root);
5760 		goto out;
5761 	}
5762 
5763 	*sub_root = new_root;
5764 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5765 	location->type = BTRFS_INODE_ITEM_KEY;
5766 	location->offset = 0;
5767 	err = 0;
5768 out:
5769 	btrfs_free_path(path);
5770 	return err;
5771 }
5772 
inode_tree_add(struct inode * inode)5773 static void inode_tree_add(struct inode *inode)
5774 {
5775 	struct btrfs_root *root = BTRFS_I(inode)->root;
5776 	struct btrfs_inode *entry;
5777 	struct rb_node **p;
5778 	struct rb_node *parent;
5779 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5780 	u64 ino = btrfs_ino(BTRFS_I(inode));
5781 
5782 	if (inode_unhashed(inode))
5783 		return;
5784 	parent = NULL;
5785 	spin_lock(&root->inode_lock);
5786 	p = &root->inode_tree.rb_node;
5787 	while (*p) {
5788 		parent = *p;
5789 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5790 
5791 		if (ino < btrfs_ino(entry))
5792 			p = &parent->rb_left;
5793 		else if (ino > btrfs_ino(entry))
5794 			p = &parent->rb_right;
5795 		else {
5796 			WARN_ON(!(entry->vfs_inode.i_state &
5797 				  (I_WILL_FREE | I_FREEING)));
5798 			rb_replace_node(parent, new, &root->inode_tree);
5799 			RB_CLEAR_NODE(parent);
5800 			spin_unlock(&root->inode_lock);
5801 			return;
5802 		}
5803 	}
5804 	rb_link_node(new, parent, p);
5805 	rb_insert_color(new, &root->inode_tree);
5806 	spin_unlock(&root->inode_lock);
5807 }
5808 
inode_tree_del(struct btrfs_inode * inode)5809 static void inode_tree_del(struct btrfs_inode *inode)
5810 {
5811 	struct btrfs_root *root = inode->root;
5812 	int empty = 0;
5813 
5814 	spin_lock(&root->inode_lock);
5815 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5816 		rb_erase(&inode->rb_node, &root->inode_tree);
5817 		RB_CLEAR_NODE(&inode->rb_node);
5818 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5819 	}
5820 	spin_unlock(&root->inode_lock);
5821 
5822 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5823 		spin_lock(&root->inode_lock);
5824 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5825 		spin_unlock(&root->inode_lock);
5826 		if (empty)
5827 			btrfs_add_dead_root(root);
5828 	}
5829 }
5830 
5831 
btrfs_init_locked_inode(struct inode * inode,void * p)5832 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5833 {
5834 	struct btrfs_iget_args *args = p;
5835 
5836 	inode->i_ino = args->ino;
5837 	BTRFS_I(inode)->location.objectid = args->ino;
5838 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5839 	BTRFS_I(inode)->location.offset = 0;
5840 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5841 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5842 	return 0;
5843 }
5844 
btrfs_find_actor(struct inode * inode,void * opaque)5845 static int btrfs_find_actor(struct inode *inode, void *opaque)
5846 {
5847 	struct btrfs_iget_args *args = opaque;
5848 
5849 	return args->ino == BTRFS_I(inode)->location.objectid &&
5850 		args->root == BTRFS_I(inode)->root;
5851 }
5852 
btrfs_iget_locked(struct super_block * s,u64 ino,struct btrfs_root * root)5853 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5854 				       struct btrfs_root *root)
5855 {
5856 	struct inode *inode;
5857 	struct btrfs_iget_args args;
5858 	unsigned long hashval = btrfs_inode_hash(ino, root);
5859 
5860 	args.ino = ino;
5861 	args.root = root;
5862 
5863 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5864 			     btrfs_init_locked_inode,
5865 			     (void *)&args);
5866 	return inode;
5867 }
5868 
5869 /*
5870  * Get an inode object given its inode number and corresponding root.
5871  * Path can be preallocated to prevent recursing back to iget through
5872  * allocator. NULL is also valid but may require an additional allocation
5873  * later.
5874  */
btrfs_iget_path(struct super_block * s,u64 ino,struct btrfs_root * root,struct btrfs_path * path)5875 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5876 			      struct btrfs_root *root, struct btrfs_path *path)
5877 {
5878 	struct inode *inode;
5879 
5880 	inode = btrfs_iget_locked(s, ino, root);
5881 	if (!inode)
5882 		return ERR_PTR(-ENOMEM);
5883 
5884 	if (inode->i_state & I_NEW) {
5885 		int ret;
5886 
5887 		ret = btrfs_read_locked_inode(inode, path);
5888 		if (!ret) {
5889 			inode_tree_add(inode);
5890 			unlock_new_inode(inode);
5891 		} else {
5892 			iget_failed(inode);
5893 			/*
5894 			 * ret > 0 can come from btrfs_search_slot called by
5895 			 * btrfs_read_locked_inode, this means the inode item
5896 			 * was not found.
5897 			 */
5898 			if (ret > 0)
5899 				ret = -ENOENT;
5900 			inode = ERR_PTR(ret);
5901 		}
5902 	}
5903 
5904 	return inode;
5905 }
5906 
btrfs_iget(struct super_block * s,u64 ino,struct btrfs_root * root)5907 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5908 {
5909 	return btrfs_iget_path(s, ino, root, NULL);
5910 }
5911 
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5912 static struct inode *new_simple_dir(struct super_block *s,
5913 				    struct btrfs_key *key,
5914 				    struct btrfs_root *root)
5915 {
5916 	struct inode *inode = new_inode(s);
5917 
5918 	if (!inode)
5919 		return ERR_PTR(-ENOMEM);
5920 
5921 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5922 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5923 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5924 
5925 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5926 	/*
5927 	 * We only need lookup, the rest is read-only and there's no inode
5928 	 * associated with the dentry
5929 	 */
5930 	inode->i_op = &simple_dir_inode_operations;
5931 	inode->i_opflags &= ~IOP_XATTR;
5932 	inode->i_fop = &simple_dir_operations;
5933 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5934 	inode->i_mtime = current_time(inode);
5935 	inode->i_atime = inode->i_mtime;
5936 	inode->i_ctime = inode->i_mtime;
5937 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5938 
5939 	return inode;
5940 }
5941 
btrfs_inode_type(struct inode * inode)5942 static inline u8 btrfs_inode_type(struct inode *inode)
5943 {
5944 	/*
5945 	 * Compile-time asserts that generic FT_* types still match
5946 	 * BTRFS_FT_* types
5947 	 */
5948 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5949 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5950 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5951 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5952 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5953 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5954 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5955 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5956 
5957 	return fs_umode_to_ftype(inode->i_mode);
5958 }
5959 
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5960 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5961 {
5962 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5963 	struct inode *inode;
5964 	struct btrfs_root *root = BTRFS_I(dir)->root;
5965 	struct btrfs_root *sub_root = root;
5966 	struct btrfs_key location;
5967 	u8 di_type = 0;
5968 	int ret = 0;
5969 
5970 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5971 		return ERR_PTR(-ENAMETOOLONG);
5972 
5973 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5974 	if (ret < 0)
5975 		return ERR_PTR(ret);
5976 
5977 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5978 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5979 		if (IS_ERR(inode))
5980 			return inode;
5981 
5982 		/* Do extra check against inode mode with di_type */
5983 		if (btrfs_inode_type(inode) != di_type) {
5984 			btrfs_crit(fs_info,
5985 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5986 				  inode->i_mode, btrfs_inode_type(inode),
5987 				  di_type);
5988 			iput(inode);
5989 			return ERR_PTR(-EUCLEAN);
5990 		}
5991 		return inode;
5992 	}
5993 
5994 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5995 				       &location, &sub_root);
5996 	if (ret < 0) {
5997 		if (ret != -ENOENT)
5998 			inode = ERR_PTR(ret);
5999 		else
6000 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
6001 	} else {
6002 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
6003 	}
6004 	if (root != sub_root)
6005 		btrfs_put_root(sub_root);
6006 
6007 	if (!IS_ERR(inode) && root != sub_root) {
6008 		down_read(&fs_info->cleanup_work_sem);
6009 		if (!sb_rdonly(inode->i_sb))
6010 			ret = btrfs_orphan_cleanup(sub_root);
6011 		up_read(&fs_info->cleanup_work_sem);
6012 		if (ret) {
6013 			iput(inode);
6014 			inode = ERR_PTR(ret);
6015 		}
6016 	}
6017 
6018 	return inode;
6019 }
6020 
btrfs_dentry_delete(const struct dentry * dentry)6021 static int btrfs_dentry_delete(const struct dentry *dentry)
6022 {
6023 	struct btrfs_root *root;
6024 	struct inode *inode = d_inode(dentry);
6025 
6026 	if (!inode && !IS_ROOT(dentry))
6027 		inode = d_inode(dentry->d_parent);
6028 
6029 	if (inode) {
6030 		root = BTRFS_I(inode)->root;
6031 		if (btrfs_root_refs(&root->root_item) == 0)
6032 			return 1;
6033 
6034 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6035 			return 1;
6036 	}
6037 	return 0;
6038 }
6039 
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)6040 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
6041 				   unsigned int flags)
6042 {
6043 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
6044 
6045 	if (inode == ERR_PTR(-ENOENT))
6046 		inode = NULL;
6047 	return d_splice_alias(inode, dentry);
6048 }
6049 
6050 /*
6051  * All this infrastructure exists because dir_emit can fault, and we are holding
6052  * the tree lock when doing readdir.  For now just allocate a buffer and copy
6053  * our information into that, and then dir_emit from the buffer.  This is
6054  * similar to what NFS does, only we don't keep the buffer around in pagecache
6055  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
6056  * copy_to_user_inatomic so we don't have to worry about page faulting under the
6057  * tree lock.
6058  */
btrfs_opendir(struct inode * inode,struct file * file)6059 static int btrfs_opendir(struct inode *inode, struct file *file)
6060 {
6061 	struct btrfs_file_private *private;
6062 
6063 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6064 	if (!private)
6065 		return -ENOMEM;
6066 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6067 	if (!private->filldir_buf) {
6068 		kfree(private);
6069 		return -ENOMEM;
6070 	}
6071 	file->private_data = private;
6072 	return 0;
6073 }
6074 
6075 struct dir_entry {
6076 	u64 ino;
6077 	u64 offset;
6078 	unsigned type;
6079 	int name_len;
6080 };
6081 
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6082 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6083 {
6084 	while (entries--) {
6085 		struct dir_entry *entry = addr;
6086 		char *name = (char *)(entry + 1);
6087 
6088 		ctx->pos = get_unaligned(&entry->offset);
6089 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6090 					 get_unaligned(&entry->ino),
6091 					 get_unaligned(&entry->type)))
6092 			return 1;
6093 		addr += sizeof(struct dir_entry) +
6094 			get_unaligned(&entry->name_len);
6095 		ctx->pos++;
6096 	}
6097 	return 0;
6098 }
6099 
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6100 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6101 {
6102 	struct inode *inode = file_inode(file);
6103 	struct btrfs_root *root = BTRFS_I(inode)->root;
6104 	struct btrfs_file_private *private = file->private_data;
6105 	struct btrfs_dir_item *di;
6106 	struct btrfs_key key;
6107 	struct btrfs_key found_key;
6108 	struct btrfs_path *path;
6109 	void *addr;
6110 	struct list_head ins_list;
6111 	struct list_head del_list;
6112 	int ret;
6113 	struct extent_buffer *leaf;
6114 	int slot;
6115 	char *name_ptr;
6116 	int name_len;
6117 	int entries = 0;
6118 	int total_len = 0;
6119 	bool put = false;
6120 	struct btrfs_key location;
6121 
6122 	if (!dir_emit_dots(file, ctx))
6123 		return 0;
6124 
6125 	path = btrfs_alloc_path();
6126 	if (!path)
6127 		return -ENOMEM;
6128 
6129 	addr = private->filldir_buf;
6130 	path->reada = READA_FORWARD;
6131 
6132 	INIT_LIST_HEAD(&ins_list);
6133 	INIT_LIST_HEAD(&del_list);
6134 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6135 
6136 again:
6137 	key.type = BTRFS_DIR_INDEX_KEY;
6138 	key.offset = ctx->pos;
6139 	key.objectid = btrfs_ino(BTRFS_I(inode));
6140 
6141 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6142 	if (ret < 0)
6143 		goto err;
6144 
6145 	while (1) {
6146 		struct dir_entry *entry;
6147 
6148 		leaf = path->nodes[0];
6149 		slot = path->slots[0];
6150 		if (slot >= btrfs_header_nritems(leaf)) {
6151 			ret = btrfs_next_leaf(root, path);
6152 			if (ret < 0)
6153 				goto err;
6154 			else if (ret > 0)
6155 				break;
6156 			continue;
6157 		}
6158 
6159 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6160 
6161 		if (found_key.objectid != key.objectid)
6162 			break;
6163 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6164 			break;
6165 		if (found_key.offset < ctx->pos)
6166 			goto next;
6167 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6168 			goto next;
6169 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6170 		name_len = btrfs_dir_name_len(leaf, di);
6171 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6172 		    PAGE_SIZE) {
6173 			btrfs_release_path(path);
6174 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6175 			if (ret)
6176 				goto nopos;
6177 			addr = private->filldir_buf;
6178 			entries = 0;
6179 			total_len = 0;
6180 			goto again;
6181 		}
6182 
6183 		entry = addr;
6184 		put_unaligned(name_len, &entry->name_len);
6185 		name_ptr = (char *)(entry + 1);
6186 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6187 				   name_len);
6188 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6189 				&entry->type);
6190 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6191 		put_unaligned(location.objectid, &entry->ino);
6192 		put_unaligned(found_key.offset, &entry->offset);
6193 		entries++;
6194 		addr += sizeof(struct dir_entry) + name_len;
6195 		total_len += sizeof(struct dir_entry) + name_len;
6196 next:
6197 		path->slots[0]++;
6198 	}
6199 	btrfs_release_path(path);
6200 
6201 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6202 	if (ret)
6203 		goto nopos;
6204 
6205 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6206 	if (ret)
6207 		goto nopos;
6208 
6209 	/*
6210 	 * Stop new entries from being returned after we return the last
6211 	 * entry.
6212 	 *
6213 	 * New directory entries are assigned a strictly increasing
6214 	 * offset.  This means that new entries created during readdir
6215 	 * are *guaranteed* to be seen in the future by that readdir.
6216 	 * This has broken buggy programs which operate on names as
6217 	 * they're returned by readdir.  Until we re-use freed offsets
6218 	 * we have this hack to stop new entries from being returned
6219 	 * under the assumption that they'll never reach this huge
6220 	 * offset.
6221 	 *
6222 	 * This is being careful not to overflow 32bit loff_t unless the
6223 	 * last entry requires it because doing so has broken 32bit apps
6224 	 * in the past.
6225 	 */
6226 	if (ctx->pos >= INT_MAX)
6227 		ctx->pos = LLONG_MAX;
6228 	else
6229 		ctx->pos = INT_MAX;
6230 nopos:
6231 	ret = 0;
6232 err:
6233 	if (put)
6234 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6235 	btrfs_free_path(path);
6236 	return ret;
6237 }
6238 
6239 /*
6240  * This is somewhat expensive, updating the tree every time the
6241  * inode changes.  But, it is most likely to find the inode in cache.
6242  * FIXME, needs more benchmarking...there are no reasons other than performance
6243  * to keep or drop this code.
6244  */
btrfs_dirty_inode(struct inode * inode)6245 static int btrfs_dirty_inode(struct inode *inode)
6246 {
6247 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6248 	struct btrfs_root *root = BTRFS_I(inode)->root;
6249 	struct btrfs_trans_handle *trans;
6250 	int ret;
6251 
6252 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6253 		return 0;
6254 
6255 	trans = btrfs_join_transaction(root);
6256 	if (IS_ERR(trans))
6257 		return PTR_ERR(trans);
6258 
6259 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6260 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6261 		/* whoops, lets try again with the full transaction */
6262 		btrfs_end_transaction(trans);
6263 		trans = btrfs_start_transaction(root, 1);
6264 		if (IS_ERR(trans))
6265 			return PTR_ERR(trans);
6266 
6267 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6268 	}
6269 	btrfs_end_transaction(trans);
6270 	if (BTRFS_I(inode)->delayed_node)
6271 		btrfs_balance_delayed_items(fs_info);
6272 
6273 	return ret;
6274 }
6275 
6276 /*
6277  * This is a copy of file_update_time.  We need this so we can return error on
6278  * ENOSPC for updating the inode in the case of file write and mmap writes.
6279  */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6280 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6281 			     int flags)
6282 {
6283 	struct btrfs_root *root = BTRFS_I(inode)->root;
6284 	bool dirty = flags & ~S_VERSION;
6285 
6286 	if (btrfs_root_readonly(root))
6287 		return -EROFS;
6288 
6289 	if (flags & S_VERSION)
6290 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6291 	if (flags & S_CTIME)
6292 		inode->i_ctime = *now;
6293 	if (flags & S_MTIME)
6294 		inode->i_mtime = *now;
6295 	if (flags & S_ATIME)
6296 		inode->i_atime = *now;
6297 	return dirty ? btrfs_dirty_inode(inode) : 0;
6298 }
6299 
6300 /*
6301  * find the highest existing sequence number in a directory
6302  * and then set the in-memory index_cnt variable to reflect
6303  * free sequence numbers
6304  */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6305 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6306 {
6307 	struct btrfs_root *root = inode->root;
6308 	struct btrfs_key key, found_key;
6309 	struct btrfs_path *path;
6310 	struct extent_buffer *leaf;
6311 	int ret;
6312 
6313 	key.objectid = btrfs_ino(inode);
6314 	key.type = BTRFS_DIR_INDEX_KEY;
6315 	key.offset = (u64)-1;
6316 
6317 	path = btrfs_alloc_path();
6318 	if (!path)
6319 		return -ENOMEM;
6320 
6321 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6322 	if (ret < 0)
6323 		goto out;
6324 	/* FIXME: we should be able to handle this */
6325 	if (ret == 0)
6326 		goto out;
6327 	ret = 0;
6328 
6329 	/*
6330 	 * MAGIC NUMBER EXPLANATION:
6331 	 * since we search a directory based on f_pos we have to start at 2
6332 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6333 	 * else has to start at 2
6334 	 */
6335 	if (path->slots[0] == 0) {
6336 		inode->index_cnt = 2;
6337 		goto out;
6338 	}
6339 
6340 	path->slots[0]--;
6341 
6342 	leaf = path->nodes[0];
6343 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6344 
6345 	if (found_key.objectid != btrfs_ino(inode) ||
6346 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6347 		inode->index_cnt = 2;
6348 		goto out;
6349 	}
6350 
6351 	inode->index_cnt = found_key.offset + 1;
6352 out:
6353 	btrfs_free_path(path);
6354 	return ret;
6355 }
6356 
6357 /*
6358  * helper to find a free sequence number in a given directory.  This current
6359  * code is very simple, later versions will do smarter things in the btree
6360  */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6361 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6362 {
6363 	int ret = 0;
6364 
6365 	if (dir->index_cnt == (u64)-1) {
6366 		ret = btrfs_inode_delayed_dir_index_count(dir);
6367 		if (ret) {
6368 			ret = btrfs_set_inode_index_count(dir);
6369 			if (ret)
6370 				return ret;
6371 		}
6372 	}
6373 
6374 	*index = dir->index_cnt;
6375 	dir->index_cnt++;
6376 
6377 	return ret;
6378 }
6379 
btrfs_insert_inode_locked(struct inode * inode)6380 static int btrfs_insert_inode_locked(struct inode *inode)
6381 {
6382 	struct btrfs_iget_args args;
6383 
6384 	args.ino = BTRFS_I(inode)->location.objectid;
6385 	args.root = BTRFS_I(inode)->root;
6386 
6387 	return insert_inode_locked4(inode,
6388 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6389 		   btrfs_find_actor, &args);
6390 }
6391 
6392 /*
6393  * Inherit flags from the parent inode.
6394  *
6395  * Currently only the compression flags and the cow flags are inherited.
6396  */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6397 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6398 {
6399 	unsigned int flags;
6400 
6401 	if (!dir)
6402 		return;
6403 
6404 	flags = BTRFS_I(dir)->flags;
6405 
6406 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6407 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6408 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6409 	} else if (flags & BTRFS_INODE_COMPRESS) {
6410 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6411 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6412 	}
6413 
6414 	if (flags & BTRFS_INODE_NODATACOW) {
6415 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6416 		if (S_ISREG(inode->i_mode))
6417 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6418 	}
6419 
6420 	btrfs_sync_inode_flags_to_i_flags(inode);
6421 }
6422 
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct user_namespace * mnt_userns,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6423 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6424 				     struct btrfs_root *root,
6425 				     struct user_namespace *mnt_userns,
6426 				     struct inode *dir,
6427 				     const char *name, int name_len,
6428 				     u64 ref_objectid, u64 objectid,
6429 				     umode_t mode, u64 *index)
6430 {
6431 	struct btrfs_fs_info *fs_info = root->fs_info;
6432 	struct inode *inode;
6433 	struct btrfs_inode_item *inode_item;
6434 	struct btrfs_key *location;
6435 	struct btrfs_path *path;
6436 	struct btrfs_inode_ref *ref;
6437 	struct btrfs_key key[2];
6438 	u32 sizes[2];
6439 	int nitems = name ? 2 : 1;
6440 	unsigned long ptr;
6441 	unsigned int nofs_flag;
6442 	int ret;
6443 
6444 	path = btrfs_alloc_path();
6445 	if (!path)
6446 		return ERR_PTR(-ENOMEM);
6447 
6448 	nofs_flag = memalloc_nofs_save();
6449 	inode = new_inode(fs_info->sb);
6450 	memalloc_nofs_restore(nofs_flag);
6451 	if (!inode) {
6452 		btrfs_free_path(path);
6453 		return ERR_PTR(-ENOMEM);
6454 	}
6455 
6456 	/*
6457 	 * O_TMPFILE, set link count to 0, so that after this point,
6458 	 * we fill in an inode item with the correct link count.
6459 	 */
6460 	if (!name)
6461 		set_nlink(inode, 0);
6462 
6463 	/*
6464 	 * we have to initialize this early, so we can reclaim the inode
6465 	 * number if we fail afterwards in this function.
6466 	 */
6467 	inode->i_ino = objectid;
6468 
6469 	if (dir && name) {
6470 		trace_btrfs_inode_request(dir);
6471 
6472 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6473 		if (ret) {
6474 			btrfs_free_path(path);
6475 			iput(inode);
6476 			return ERR_PTR(ret);
6477 		}
6478 	} else if (dir) {
6479 		*index = 0;
6480 	}
6481 	/*
6482 	 * index_cnt is ignored for everything but a dir,
6483 	 * btrfs_set_inode_index_count has an explanation for the magic
6484 	 * number
6485 	 */
6486 	BTRFS_I(inode)->index_cnt = 2;
6487 	BTRFS_I(inode)->dir_index = *index;
6488 	BTRFS_I(inode)->root = btrfs_grab_root(root);
6489 	BTRFS_I(inode)->generation = trans->transid;
6490 	inode->i_generation = BTRFS_I(inode)->generation;
6491 
6492 	/*
6493 	 * We could have gotten an inode number from somebody who was fsynced
6494 	 * and then removed in this same transaction, so let's just set full
6495 	 * sync since it will be a full sync anyway and this will blow away the
6496 	 * old info in the log.
6497 	 */
6498 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6499 
6500 	key[0].objectid = objectid;
6501 	key[0].type = BTRFS_INODE_ITEM_KEY;
6502 	key[0].offset = 0;
6503 
6504 	sizes[0] = sizeof(struct btrfs_inode_item);
6505 
6506 	if (name) {
6507 		/*
6508 		 * Start new inodes with an inode_ref. This is slightly more
6509 		 * efficient for small numbers of hard links since they will
6510 		 * be packed into one item. Extended refs will kick in if we
6511 		 * add more hard links than can fit in the ref item.
6512 		 */
6513 		key[1].objectid = objectid;
6514 		key[1].type = BTRFS_INODE_REF_KEY;
6515 		key[1].offset = ref_objectid;
6516 
6517 		sizes[1] = name_len + sizeof(*ref);
6518 	}
6519 
6520 	location = &BTRFS_I(inode)->location;
6521 	location->objectid = objectid;
6522 	location->offset = 0;
6523 	location->type = BTRFS_INODE_ITEM_KEY;
6524 
6525 	ret = btrfs_insert_inode_locked(inode);
6526 	if (ret < 0) {
6527 		iput(inode);
6528 		goto fail;
6529 	}
6530 
6531 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6532 	if (ret != 0)
6533 		goto fail_unlock;
6534 
6535 	inode_init_owner(mnt_userns, inode, dir, mode);
6536 	inode_set_bytes(inode, 0);
6537 
6538 	inode->i_mtime = current_time(inode);
6539 	inode->i_atime = inode->i_mtime;
6540 	inode->i_ctime = inode->i_mtime;
6541 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6542 
6543 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6544 				  struct btrfs_inode_item);
6545 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6546 			     sizeof(*inode_item));
6547 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6548 
6549 	if (name) {
6550 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6551 				     struct btrfs_inode_ref);
6552 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6553 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6554 		ptr = (unsigned long)(ref + 1);
6555 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6556 	}
6557 
6558 	btrfs_mark_buffer_dirty(path->nodes[0]);
6559 	btrfs_free_path(path);
6560 
6561 	btrfs_inherit_iflags(inode, dir);
6562 
6563 	if (S_ISREG(mode)) {
6564 		if (btrfs_test_opt(fs_info, NODATASUM))
6565 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6566 		if (btrfs_test_opt(fs_info, NODATACOW))
6567 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6568 				BTRFS_INODE_NODATASUM;
6569 	}
6570 
6571 	inode_tree_add(inode);
6572 
6573 	trace_btrfs_inode_new(inode);
6574 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6575 
6576 	btrfs_update_root_times(trans, root);
6577 
6578 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6579 	if (ret)
6580 		btrfs_err(fs_info,
6581 			  "error inheriting props for ino %llu (root %llu): %d",
6582 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6583 
6584 	return inode;
6585 
6586 fail_unlock:
6587 	discard_new_inode(inode);
6588 fail:
6589 	if (dir && name)
6590 		BTRFS_I(dir)->index_cnt--;
6591 	btrfs_free_path(path);
6592 	return ERR_PTR(ret);
6593 }
6594 
6595 /*
6596  * utility function to add 'inode' into 'parent_inode' with
6597  * a give name and a given sequence number.
6598  * if 'add_backref' is true, also insert a backref from the
6599  * inode to the parent directory.
6600  */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6601 int btrfs_add_link(struct btrfs_trans_handle *trans,
6602 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6603 		   const char *name, int name_len, int add_backref, u64 index)
6604 {
6605 	int ret = 0;
6606 	struct btrfs_key key;
6607 	struct btrfs_root *root = parent_inode->root;
6608 	u64 ino = btrfs_ino(inode);
6609 	u64 parent_ino = btrfs_ino(parent_inode);
6610 
6611 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6612 		memcpy(&key, &inode->root->root_key, sizeof(key));
6613 	} else {
6614 		key.objectid = ino;
6615 		key.type = BTRFS_INODE_ITEM_KEY;
6616 		key.offset = 0;
6617 	}
6618 
6619 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6620 		ret = btrfs_add_root_ref(trans, key.objectid,
6621 					 root->root_key.objectid, parent_ino,
6622 					 index, name, name_len);
6623 	} else if (add_backref) {
6624 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6625 					     parent_ino, index);
6626 	}
6627 
6628 	/* Nothing to clean up yet */
6629 	if (ret)
6630 		return ret;
6631 
6632 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6633 				    btrfs_inode_type(&inode->vfs_inode), index);
6634 	if (ret == -EEXIST || ret == -EOVERFLOW)
6635 		goto fail_dir_item;
6636 	else if (ret) {
6637 		btrfs_abort_transaction(trans, ret);
6638 		return ret;
6639 	}
6640 
6641 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6642 			   name_len * 2);
6643 	inode_inc_iversion(&parent_inode->vfs_inode);
6644 	/*
6645 	 * If we are replaying a log tree, we do not want to update the mtime
6646 	 * and ctime of the parent directory with the current time, since the
6647 	 * log replay procedure is responsible for setting them to their correct
6648 	 * values (the ones it had when the fsync was done).
6649 	 */
6650 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6651 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6652 
6653 		parent_inode->vfs_inode.i_mtime = now;
6654 		parent_inode->vfs_inode.i_ctime = now;
6655 	}
6656 	ret = btrfs_update_inode(trans, root, parent_inode);
6657 	if (ret)
6658 		btrfs_abort_transaction(trans, ret);
6659 	return ret;
6660 
6661 fail_dir_item:
6662 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6663 		u64 local_index;
6664 		int err;
6665 		err = btrfs_del_root_ref(trans, key.objectid,
6666 					 root->root_key.objectid, parent_ino,
6667 					 &local_index, name, name_len);
6668 		if (err)
6669 			btrfs_abort_transaction(trans, err);
6670 	} else if (add_backref) {
6671 		u64 local_index;
6672 		int err;
6673 
6674 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6675 					  ino, parent_ino, &local_index);
6676 		if (err)
6677 			btrfs_abort_transaction(trans, err);
6678 	}
6679 
6680 	/* Return the original error code */
6681 	return ret;
6682 }
6683 
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6684 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6685 			    struct btrfs_inode *dir, struct dentry *dentry,
6686 			    struct btrfs_inode *inode, int backref, u64 index)
6687 {
6688 	int err = btrfs_add_link(trans, dir, inode,
6689 				 dentry->d_name.name, dentry->d_name.len,
6690 				 backref, index);
6691 	if (err > 0)
6692 		err = -EEXIST;
6693 	return err;
6694 }
6695 
btrfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6696 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6697 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6698 {
6699 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6700 	struct btrfs_trans_handle *trans;
6701 	struct btrfs_root *root = BTRFS_I(dir)->root;
6702 	struct inode *inode = NULL;
6703 	int err;
6704 	u64 objectid;
6705 	u64 index = 0;
6706 
6707 	/*
6708 	 * 2 for inode item and ref
6709 	 * 2 for dir items
6710 	 * 1 for xattr if selinux is on
6711 	 */
6712 	trans = btrfs_start_transaction(root, 5);
6713 	if (IS_ERR(trans))
6714 		return PTR_ERR(trans);
6715 
6716 	err = btrfs_get_free_objectid(root, &objectid);
6717 	if (err)
6718 		goto out_unlock;
6719 
6720 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6721 			dentry->d_name.name, dentry->d_name.len,
6722 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6723 	if (IS_ERR(inode)) {
6724 		err = PTR_ERR(inode);
6725 		inode = NULL;
6726 		goto out_unlock;
6727 	}
6728 
6729 	/*
6730 	* If the active LSM wants to access the inode during
6731 	* d_instantiate it needs these. Smack checks to see
6732 	* if the filesystem supports xattrs by looking at the
6733 	* ops vector.
6734 	*/
6735 	inode->i_op = &btrfs_special_inode_operations;
6736 	init_special_inode(inode, inode->i_mode, rdev);
6737 
6738 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6739 	if (err)
6740 		goto out_unlock;
6741 
6742 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6743 			0, index);
6744 	if (err)
6745 		goto out_unlock;
6746 
6747 	btrfs_update_inode(trans, root, BTRFS_I(inode));
6748 	d_instantiate_new(dentry, inode);
6749 
6750 out_unlock:
6751 	btrfs_end_transaction(trans);
6752 	btrfs_btree_balance_dirty(fs_info);
6753 	if (err && inode) {
6754 		inode_dec_link_count(inode);
6755 		discard_new_inode(inode);
6756 	}
6757 	return err;
6758 }
6759 
btrfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6760 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6761 			struct dentry *dentry, umode_t mode, bool excl)
6762 {
6763 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6764 	struct btrfs_trans_handle *trans;
6765 	struct btrfs_root *root = BTRFS_I(dir)->root;
6766 	struct inode *inode = NULL;
6767 	int err;
6768 	u64 objectid;
6769 	u64 index = 0;
6770 
6771 	/*
6772 	 * 2 for inode item and ref
6773 	 * 2 for dir items
6774 	 * 1 for xattr if selinux is on
6775 	 */
6776 	trans = btrfs_start_transaction(root, 5);
6777 	if (IS_ERR(trans))
6778 		return PTR_ERR(trans);
6779 
6780 	err = btrfs_get_free_objectid(root, &objectid);
6781 	if (err)
6782 		goto out_unlock;
6783 
6784 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6785 			dentry->d_name.name, dentry->d_name.len,
6786 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6787 	if (IS_ERR(inode)) {
6788 		err = PTR_ERR(inode);
6789 		inode = NULL;
6790 		goto out_unlock;
6791 	}
6792 	/*
6793 	* If the active LSM wants to access the inode during
6794 	* d_instantiate it needs these. Smack checks to see
6795 	* if the filesystem supports xattrs by looking at the
6796 	* ops vector.
6797 	*/
6798 	inode->i_fop = &btrfs_file_operations;
6799 	inode->i_op = &btrfs_file_inode_operations;
6800 	inode->i_mapping->a_ops = &btrfs_aops;
6801 
6802 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6803 	if (err)
6804 		goto out_unlock;
6805 
6806 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6807 	if (err)
6808 		goto out_unlock;
6809 
6810 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6811 			0, index);
6812 	if (err)
6813 		goto out_unlock;
6814 
6815 	d_instantiate_new(dentry, inode);
6816 
6817 out_unlock:
6818 	btrfs_end_transaction(trans);
6819 	if (err && inode) {
6820 		inode_dec_link_count(inode);
6821 		discard_new_inode(inode);
6822 	}
6823 	btrfs_btree_balance_dirty(fs_info);
6824 	return err;
6825 }
6826 
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6827 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6828 		      struct dentry *dentry)
6829 {
6830 	struct btrfs_trans_handle *trans = NULL;
6831 	struct btrfs_root *root = BTRFS_I(dir)->root;
6832 	struct inode *inode = d_inode(old_dentry);
6833 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6834 	u64 index;
6835 	int err;
6836 	int drop_inode = 0;
6837 
6838 	/* do not allow sys_link's with other subvols of the same device */
6839 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6840 		return -EXDEV;
6841 
6842 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6843 		return -EMLINK;
6844 
6845 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6846 	if (err)
6847 		goto fail;
6848 
6849 	/*
6850 	 * 2 items for inode and inode ref
6851 	 * 2 items for dir items
6852 	 * 1 item for parent inode
6853 	 * 1 item for orphan item deletion if O_TMPFILE
6854 	 */
6855 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6856 	if (IS_ERR(trans)) {
6857 		err = PTR_ERR(trans);
6858 		trans = NULL;
6859 		goto fail;
6860 	}
6861 
6862 	/* There are several dir indexes for this inode, clear the cache. */
6863 	BTRFS_I(inode)->dir_index = 0ULL;
6864 	inc_nlink(inode);
6865 	inode_inc_iversion(inode);
6866 	inode->i_ctime = current_time(inode);
6867 	ihold(inode);
6868 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6869 
6870 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6871 			1, index);
6872 
6873 	if (err) {
6874 		drop_inode = 1;
6875 	} else {
6876 		struct dentry *parent = dentry->d_parent;
6877 
6878 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6879 		if (err)
6880 			goto fail;
6881 		if (inode->i_nlink == 1) {
6882 			/*
6883 			 * If new hard link count is 1, it's a file created
6884 			 * with open(2) O_TMPFILE flag.
6885 			 */
6886 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6887 			if (err)
6888 				goto fail;
6889 		}
6890 		d_instantiate(dentry, inode);
6891 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6892 	}
6893 
6894 fail:
6895 	if (trans)
6896 		btrfs_end_transaction(trans);
6897 	if (drop_inode) {
6898 		inode_dec_link_count(inode);
6899 		iput(inode);
6900 	}
6901 	btrfs_btree_balance_dirty(fs_info);
6902 	return err;
6903 }
6904 
btrfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)6905 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6906 		       struct dentry *dentry, umode_t mode)
6907 {
6908 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6909 	struct inode *inode = NULL;
6910 	struct btrfs_trans_handle *trans;
6911 	struct btrfs_root *root = BTRFS_I(dir)->root;
6912 	int err = 0;
6913 	u64 objectid = 0;
6914 	u64 index = 0;
6915 
6916 	/*
6917 	 * 2 items for inode and ref
6918 	 * 2 items for dir items
6919 	 * 1 for xattr if selinux is on
6920 	 */
6921 	trans = btrfs_start_transaction(root, 5);
6922 	if (IS_ERR(trans))
6923 		return PTR_ERR(trans);
6924 
6925 	err = btrfs_get_free_objectid(root, &objectid);
6926 	if (err)
6927 		goto out_fail;
6928 
6929 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6930 			dentry->d_name.name, dentry->d_name.len,
6931 			btrfs_ino(BTRFS_I(dir)), objectid,
6932 			S_IFDIR | mode, &index);
6933 	if (IS_ERR(inode)) {
6934 		err = PTR_ERR(inode);
6935 		inode = NULL;
6936 		goto out_fail;
6937 	}
6938 
6939 	/* these must be set before we unlock the inode */
6940 	inode->i_op = &btrfs_dir_inode_operations;
6941 	inode->i_fop = &btrfs_dir_file_operations;
6942 
6943 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6944 	if (err)
6945 		goto out_fail;
6946 
6947 	btrfs_i_size_write(BTRFS_I(inode), 0);
6948 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6949 	if (err)
6950 		goto out_fail;
6951 
6952 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6953 			dentry->d_name.name,
6954 			dentry->d_name.len, 0, index);
6955 	if (err)
6956 		goto out_fail;
6957 
6958 	d_instantiate_new(dentry, inode);
6959 
6960 out_fail:
6961 	btrfs_end_transaction(trans);
6962 	if (err && inode) {
6963 		inode_dec_link_count(inode);
6964 		discard_new_inode(inode);
6965 	}
6966 	btrfs_btree_balance_dirty(fs_info);
6967 	return err;
6968 }
6969 
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6970 static noinline int uncompress_inline(struct btrfs_path *path,
6971 				      struct page *page,
6972 				      size_t pg_offset, u64 extent_offset,
6973 				      struct btrfs_file_extent_item *item)
6974 {
6975 	int ret;
6976 	struct extent_buffer *leaf = path->nodes[0];
6977 	char *tmp;
6978 	size_t max_size;
6979 	unsigned long inline_size;
6980 	unsigned long ptr;
6981 	int compress_type;
6982 
6983 	WARN_ON(pg_offset != 0);
6984 	compress_type = btrfs_file_extent_compression(leaf, item);
6985 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6986 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6987 					btrfs_item_nr(path->slots[0]));
6988 	tmp = kmalloc(inline_size, GFP_NOFS);
6989 	if (!tmp)
6990 		return -ENOMEM;
6991 	ptr = btrfs_file_extent_inline_start(item);
6992 
6993 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6994 
6995 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6996 	ret = btrfs_decompress(compress_type, tmp, page,
6997 			       extent_offset, inline_size, max_size);
6998 
6999 	/*
7000 	 * decompression code contains a memset to fill in any space between the end
7001 	 * of the uncompressed data and the end of max_size in case the decompressed
7002 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
7003 	 * the end of an inline extent and the beginning of the next block, so we
7004 	 * cover that region here.
7005 	 */
7006 
7007 	if (max_size + pg_offset < PAGE_SIZE)
7008 		memzero_page(page,  pg_offset + max_size,
7009 			     PAGE_SIZE - max_size - pg_offset);
7010 	kfree(tmp);
7011 	return ret;
7012 }
7013 
7014 /**
7015  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
7016  * @inode:	file to search in
7017  * @page:	page to read extent data into if the extent is inline
7018  * @pg_offset:	offset into @page to copy to
7019  * @start:	file offset
7020  * @len:	length of range starting at @start
7021  *
7022  * This returns the first &struct extent_map which overlaps with the given
7023  * range, reading it from the B-tree and caching it if necessary. Note that
7024  * there may be more extents which overlap the given range after the returned
7025  * extent_map.
7026  *
7027  * If @page is not NULL and the extent is inline, this also reads the extent
7028  * data directly into the page and marks the extent up to date in the io_tree.
7029  *
7030  * Return: ERR_PTR on error, non-NULL extent_map on success.
7031  */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len)7032 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7033 				    struct page *page, size_t pg_offset,
7034 				    u64 start, u64 len)
7035 {
7036 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7037 	int ret = 0;
7038 	u64 extent_start = 0;
7039 	u64 extent_end = 0;
7040 	u64 objectid = btrfs_ino(inode);
7041 	int extent_type = -1;
7042 	struct btrfs_path *path = NULL;
7043 	struct btrfs_root *root = inode->root;
7044 	struct btrfs_file_extent_item *item;
7045 	struct extent_buffer *leaf;
7046 	struct btrfs_key found_key;
7047 	struct extent_map *em = NULL;
7048 	struct extent_map_tree *em_tree = &inode->extent_tree;
7049 	struct extent_io_tree *io_tree = &inode->io_tree;
7050 
7051 	read_lock(&em_tree->lock);
7052 	em = lookup_extent_mapping(em_tree, start, len);
7053 	read_unlock(&em_tree->lock);
7054 
7055 	if (em) {
7056 		if (em->start > start || em->start + em->len <= start)
7057 			free_extent_map(em);
7058 		else if (em->block_start == EXTENT_MAP_INLINE && page)
7059 			free_extent_map(em);
7060 		else
7061 			goto out;
7062 	}
7063 	em = alloc_extent_map();
7064 	if (!em) {
7065 		ret = -ENOMEM;
7066 		goto out;
7067 	}
7068 	em->start = EXTENT_MAP_HOLE;
7069 	em->orig_start = EXTENT_MAP_HOLE;
7070 	em->len = (u64)-1;
7071 	em->block_len = (u64)-1;
7072 
7073 	path = btrfs_alloc_path();
7074 	if (!path) {
7075 		ret = -ENOMEM;
7076 		goto out;
7077 	}
7078 
7079 	/* Chances are we'll be called again, so go ahead and do readahead */
7080 	path->reada = READA_FORWARD;
7081 
7082 	/*
7083 	 * The same explanation in load_free_space_cache applies here as well,
7084 	 * we only read when we're loading the free space cache, and at that
7085 	 * point the commit_root has everything we need.
7086 	 */
7087 	if (btrfs_is_free_space_inode(inode)) {
7088 		path->search_commit_root = 1;
7089 		path->skip_locking = 1;
7090 	}
7091 
7092 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7093 	if (ret < 0) {
7094 		goto out;
7095 	} else if (ret > 0) {
7096 		if (path->slots[0] == 0)
7097 			goto not_found;
7098 		path->slots[0]--;
7099 		ret = 0;
7100 	}
7101 
7102 	leaf = path->nodes[0];
7103 	item = btrfs_item_ptr(leaf, path->slots[0],
7104 			      struct btrfs_file_extent_item);
7105 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7106 	if (found_key.objectid != objectid ||
7107 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
7108 		/*
7109 		 * If we backup past the first extent we want to move forward
7110 		 * and see if there is an extent in front of us, otherwise we'll
7111 		 * say there is a hole for our whole search range which can
7112 		 * cause problems.
7113 		 */
7114 		extent_end = start;
7115 		goto next;
7116 	}
7117 
7118 	extent_type = btrfs_file_extent_type(leaf, item);
7119 	extent_start = found_key.offset;
7120 	extent_end = btrfs_file_extent_end(path);
7121 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7122 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7123 		/* Only regular file could have regular/prealloc extent */
7124 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
7125 			ret = -EUCLEAN;
7126 			btrfs_crit(fs_info,
7127 		"regular/prealloc extent found for non-regular inode %llu",
7128 				   btrfs_ino(inode));
7129 			goto out;
7130 		}
7131 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7132 						       extent_start);
7133 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7134 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7135 						      path->slots[0],
7136 						      extent_start);
7137 	}
7138 next:
7139 	if (start >= extent_end) {
7140 		path->slots[0]++;
7141 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7142 			ret = btrfs_next_leaf(root, path);
7143 			if (ret < 0)
7144 				goto out;
7145 			else if (ret > 0)
7146 				goto not_found;
7147 
7148 			leaf = path->nodes[0];
7149 		}
7150 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7151 		if (found_key.objectid != objectid ||
7152 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7153 			goto not_found;
7154 		if (start + len <= found_key.offset)
7155 			goto not_found;
7156 		if (start > found_key.offset)
7157 			goto next;
7158 
7159 		/* New extent overlaps with existing one */
7160 		em->start = start;
7161 		em->orig_start = start;
7162 		em->len = found_key.offset - start;
7163 		em->block_start = EXTENT_MAP_HOLE;
7164 		goto insert;
7165 	}
7166 
7167 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7168 
7169 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7170 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7171 		goto insert;
7172 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7173 		unsigned long ptr;
7174 		char *map;
7175 		size_t size;
7176 		size_t extent_offset;
7177 		size_t copy_size;
7178 
7179 		if (!page)
7180 			goto out;
7181 
7182 		size = btrfs_file_extent_ram_bytes(leaf, item);
7183 		extent_offset = page_offset(page) + pg_offset - extent_start;
7184 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7185 				  size - extent_offset);
7186 		em->start = extent_start + extent_offset;
7187 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7188 		em->orig_block_len = em->len;
7189 		em->orig_start = em->start;
7190 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7191 
7192 		if (!PageUptodate(page)) {
7193 			if (btrfs_file_extent_compression(leaf, item) !=
7194 			    BTRFS_COMPRESS_NONE) {
7195 				ret = uncompress_inline(path, page, pg_offset,
7196 							extent_offset, item);
7197 				if (ret)
7198 					goto out;
7199 			} else {
7200 				map = kmap_local_page(page);
7201 				read_extent_buffer(leaf, map + pg_offset, ptr,
7202 						   copy_size);
7203 				if (pg_offset + copy_size < PAGE_SIZE) {
7204 					memset(map + pg_offset + copy_size, 0,
7205 					       PAGE_SIZE - pg_offset -
7206 					       copy_size);
7207 				}
7208 				kunmap_local(map);
7209 			}
7210 			flush_dcache_page(page);
7211 		}
7212 		set_extent_uptodate(io_tree, em->start,
7213 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7214 		goto insert;
7215 	}
7216 not_found:
7217 	em->start = start;
7218 	em->orig_start = start;
7219 	em->len = len;
7220 	em->block_start = EXTENT_MAP_HOLE;
7221 insert:
7222 	ret = 0;
7223 	btrfs_release_path(path);
7224 	if (em->start > start || extent_map_end(em) <= start) {
7225 		btrfs_err(fs_info,
7226 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7227 			  em->start, em->len, start, len);
7228 		ret = -EIO;
7229 		goto out;
7230 	}
7231 
7232 	write_lock(&em_tree->lock);
7233 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7234 	write_unlock(&em_tree->lock);
7235 out:
7236 	btrfs_free_path(path);
7237 
7238 	trace_btrfs_get_extent(root, inode, em);
7239 
7240 	if (ret) {
7241 		free_extent_map(em);
7242 		return ERR_PTR(ret);
7243 	}
7244 	return em;
7245 }
7246 
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)7247 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7248 					   u64 start, u64 len)
7249 {
7250 	struct extent_map *em;
7251 	struct extent_map *hole_em = NULL;
7252 	u64 delalloc_start = start;
7253 	u64 end;
7254 	u64 delalloc_len;
7255 	u64 delalloc_end;
7256 	int err = 0;
7257 
7258 	em = btrfs_get_extent(inode, NULL, 0, start, len);
7259 	if (IS_ERR(em))
7260 		return em;
7261 	/*
7262 	 * If our em maps to:
7263 	 * - a hole or
7264 	 * - a pre-alloc extent,
7265 	 * there might actually be delalloc bytes behind it.
7266 	 */
7267 	if (em->block_start != EXTENT_MAP_HOLE &&
7268 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7269 		return em;
7270 	else
7271 		hole_em = em;
7272 
7273 	/* check to see if we've wrapped (len == -1 or similar) */
7274 	end = start + len;
7275 	if (end < start)
7276 		end = (u64)-1;
7277 	else
7278 		end -= 1;
7279 
7280 	em = NULL;
7281 
7282 	/* ok, we didn't find anything, lets look for delalloc */
7283 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7284 				 end, len, EXTENT_DELALLOC, 1);
7285 	delalloc_end = delalloc_start + delalloc_len;
7286 	if (delalloc_end < delalloc_start)
7287 		delalloc_end = (u64)-1;
7288 
7289 	/*
7290 	 * We didn't find anything useful, return the original results from
7291 	 * get_extent()
7292 	 */
7293 	if (delalloc_start > end || delalloc_end <= start) {
7294 		em = hole_em;
7295 		hole_em = NULL;
7296 		goto out;
7297 	}
7298 
7299 	/*
7300 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7301 	 * the start they passed in
7302 	 */
7303 	delalloc_start = max(start, delalloc_start);
7304 	delalloc_len = delalloc_end - delalloc_start;
7305 
7306 	if (delalloc_len > 0) {
7307 		u64 hole_start;
7308 		u64 hole_len;
7309 		const u64 hole_end = extent_map_end(hole_em);
7310 
7311 		em = alloc_extent_map();
7312 		if (!em) {
7313 			err = -ENOMEM;
7314 			goto out;
7315 		}
7316 
7317 		ASSERT(hole_em);
7318 		/*
7319 		 * When btrfs_get_extent can't find anything it returns one
7320 		 * huge hole
7321 		 *
7322 		 * Make sure what it found really fits our range, and adjust to
7323 		 * make sure it is based on the start from the caller
7324 		 */
7325 		if (hole_end <= start || hole_em->start > end) {
7326 		       free_extent_map(hole_em);
7327 		       hole_em = NULL;
7328 		} else {
7329 		       hole_start = max(hole_em->start, start);
7330 		       hole_len = hole_end - hole_start;
7331 		}
7332 
7333 		if (hole_em && delalloc_start > hole_start) {
7334 			/*
7335 			 * Our hole starts before our delalloc, so we have to
7336 			 * return just the parts of the hole that go until the
7337 			 * delalloc starts
7338 			 */
7339 			em->len = min(hole_len, delalloc_start - hole_start);
7340 			em->start = hole_start;
7341 			em->orig_start = hole_start;
7342 			/*
7343 			 * Don't adjust block start at all, it is fixed at
7344 			 * EXTENT_MAP_HOLE
7345 			 */
7346 			em->block_start = hole_em->block_start;
7347 			em->block_len = hole_len;
7348 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7349 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7350 		} else {
7351 			/*
7352 			 * Hole is out of passed range or it starts after
7353 			 * delalloc range
7354 			 */
7355 			em->start = delalloc_start;
7356 			em->len = delalloc_len;
7357 			em->orig_start = delalloc_start;
7358 			em->block_start = EXTENT_MAP_DELALLOC;
7359 			em->block_len = delalloc_len;
7360 		}
7361 	} else {
7362 		return hole_em;
7363 	}
7364 out:
7365 
7366 	free_extent_map(hole_em);
7367 	if (err) {
7368 		free_extent_map(em);
7369 		return ERR_PTR(err);
7370 	}
7371 	return em;
7372 }
7373 
btrfs_create_dio_extent(struct btrfs_inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7374 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7375 						  const u64 start,
7376 						  const u64 len,
7377 						  const u64 orig_start,
7378 						  const u64 block_start,
7379 						  const u64 block_len,
7380 						  const u64 orig_block_len,
7381 						  const u64 ram_bytes,
7382 						  const int type)
7383 {
7384 	struct extent_map *em = NULL;
7385 	int ret;
7386 
7387 	if (type != BTRFS_ORDERED_NOCOW) {
7388 		em = create_io_em(inode, start, len, orig_start, block_start,
7389 				  block_len, orig_block_len, ram_bytes,
7390 				  BTRFS_COMPRESS_NONE, /* compress_type */
7391 				  type);
7392 		if (IS_ERR(em))
7393 			goto out;
7394 	}
7395 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7396 					   block_len, type);
7397 	if (ret) {
7398 		if (em) {
7399 			free_extent_map(em);
7400 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7401 		}
7402 		em = ERR_PTR(ret);
7403 	}
7404  out:
7405 
7406 	return em;
7407 }
7408 
btrfs_new_extent_direct(struct btrfs_inode * inode,u64 start,u64 len)7409 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7410 						  u64 start, u64 len)
7411 {
7412 	struct btrfs_root *root = inode->root;
7413 	struct btrfs_fs_info *fs_info = root->fs_info;
7414 	struct extent_map *em;
7415 	struct btrfs_key ins;
7416 	u64 alloc_hint;
7417 	int ret;
7418 
7419 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7420 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7421 				   0, alloc_hint, &ins, 1, 1);
7422 	if (ret)
7423 		return ERR_PTR(ret);
7424 
7425 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7426 				     ins.objectid, ins.offset, ins.offset,
7427 				     ins.offset, BTRFS_ORDERED_REGULAR);
7428 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7429 	if (IS_ERR(em))
7430 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7431 					   1);
7432 
7433 	return em;
7434 }
7435 
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7436 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7437 {
7438 	struct btrfs_block_group *block_group;
7439 	bool readonly = false;
7440 
7441 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7442 	if (!block_group || block_group->ro)
7443 		readonly = true;
7444 	if (block_group)
7445 		btrfs_put_block_group(block_group);
7446 	return readonly;
7447 }
7448 
7449 /*
7450  * Check if we can do nocow write into the range [@offset, @offset + @len)
7451  *
7452  * @offset:	File offset
7453  * @len:	The length to write, will be updated to the nocow writeable
7454  *		range
7455  * @orig_start:	(optional) Return the original file offset of the file extent
7456  * @orig_len:	(optional) Return the original on-disk length of the file extent
7457  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7458  * @strict:	if true, omit optimizations that might force us into unnecessary
7459  *		cow. e.g., don't trust generation number.
7460  *
7461  * Return:
7462  * >0	and update @len if we can do nocow write
7463  *  0	if we can't do nocow write
7464  * <0	if error happened
7465  *
7466  * NOTE: This only checks the file extents, caller is responsible to wait for
7467  *	 any ordered extents.
7468  */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool strict)7469 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7470 			      u64 *orig_start, u64 *orig_block_len,
7471 			      u64 *ram_bytes, bool strict)
7472 {
7473 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7474 	struct btrfs_path *path;
7475 	int ret;
7476 	struct extent_buffer *leaf;
7477 	struct btrfs_root *root = BTRFS_I(inode)->root;
7478 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7479 	struct btrfs_file_extent_item *fi;
7480 	struct btrfs_key key;
7481 	u64 disk_bytenr;
7482 	u64 backref_offset;
7483 	u64 extent_end;
7484 	u64 num_bytes;
7485 	int slot;
7486 	int found_type;
7487 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7488 
7489 	path = btrfs_alloc_path();
7490 	if (!path)
7491 		return -ENOMEM;
7492 
7493 	ret = btrfs_lookup_file_extent(NULL, root, path,
7494 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7495 	if (ret < 0)
7496 		goto out;
7497 
7498 	slot = path->slots[0];
7499 	if (ret == 1) {
7500 		if (slot == 0) {
7501 			/* can't find the item, must cow */
7502 			ret = 0;
7503 			goto out;
7504 		}
7505 		slot--;
7506 	}
7507 	ret = 0;
7508 	leaf = path->nodes[0];
7509 	btrfs_item_key_to_cpu(leaf, &key, slot);
7510 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7511 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7512 		/* not our file or wrong item type, must cow */
7513 		goto out;
7514 	}
7515 
7516 	if (key.offset > offset) {
7517 		/* Wrong offset, must cow */
7518 		goto out;
7519 	}
7520 
7521 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7522 	found_type = btrfs_file_extent_type(leaf, fi);
7523 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7524 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7525 		/* not a regular extent, must cow */
7526 		goto out;
7527 	}
7528 
7529 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7530 		goto out;
7531 
7532 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7533 	if (extent_end <= offset)
7534 		goto out;
7535 
7536 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7537 	if (disk_bytenr == 0)
7538 		goto out;
7539 
7540 	if (btrfs_file_extent_compression(leaf, fi) ||
7541 	    btrfs_file_extent_encryption(leaf, fi) ||
7542 	    btrfs_file_extent_other_encoding(leaf, fi))
7543 		goto out;
7544 
7545 	/*
7546 	 * Do the same check as in btrfs_cross_ref_exist but without the
7547 	 * unnecessary search.
7548 	 */
7549 	if (!strict &&
7550 	    (btrfs_file_extent_generation(leaf, fi) <=
7551 	     btrfs_root_last_snapshot(&root->root_item)))
7552 		goto out;
7553 
7554 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7555 
7556 	if (orig_start) {
7557 		*orig_start = key.offset - backref_offset;
7558 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7559 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7560 	}
7561 
7562 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7563 		goto out;
7564 
7565 	num_bytes = min(offset + *len, extent_end) - offset;
7566 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7567 		u64 range_end;
7568 
7569 		range_end = round_up(offset + num_bytes,
7570 				     root->fs_info->sectorsize) - 1;
7571 		ret = test_range_bit(io_tree, offset, range_end,
7572 				     EXTENT_DELALLOC, 0, NULL);
7573 		if (ret) {
7574 			ret = -EAGAIN;
7575 			goto out;
7576 		}
7577 	}
7578 
7579 	btrfs_release_path(path);
7580 
7581 	/*
7582 	 * look for other files referencing this extent, if we
7583 	 * find any we must cow
7584 	 */
7585 
7586 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7587 				    key.offset - backref_offset, disk_bytenr,
7588 				    strict);
7589 	if (ret) {
7590 		ret = 0;
7591 		goto out;
7592 	}
7593 
7594 	/*
7595 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7596 	 * in this extent we are about to write.  If there
7597 	 * are any csums in that range we have to cow in order
7598 	 * to keep the csums correct
7599 	 */
7600 	disk_bytenr += backref_offset;
7601 	disk_bytenr += offset - key.offset;
7602 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7603 		goto out;
7604 	/*
7605 	 * all of the above have passed, it is safe to overwrite this extent
7606 	 * without cow
7607 	 */
7608 	*len = num_bytes;
7609 	ret = 1;
7610 out:
7611 	btrfs_free_path(path);
7612 	return ret;
7613 }
7614 
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,bool writing)7615 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7616 			      struct extent_state **cached_state, bool writing)
7617 {
7618 	struct btrfs_ordered_extent *ordered;
7619 	int ret = 0;
7620 
7621 	while (1) {
7622 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7623 				 cached_state);
7624 		/*
7625 		 * We're concerned with the entire range that we're going to be
7626 		 * doing DIO to, so we need to make sure there's no ordered
7627 		 * extents in this range.
7628 		 */
7629 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7630 						     lockend - lockstart + 1);
7631 
7632 		/*
7633 		 * We need to make sure there are no buffered pages in this
7634 		 * range either, we could have raced between the invalidate in
7635 		 * generic_file_direct_write and locking the extent.  The
7636 		 * invalidate needs to happen so that reads after a write do not
7637 		 * get stale data.
7638 		 */
7639 		if (!ordered &&
7640 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7641 							 lockstart, lockend)))
7642 			break;
7643 
7644 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7645 				     cached_state);
7646 
7647 		if (ordered) {
7648 			/*
7649 			 * If we are doing a DIO read and the ordered extent we
7650 			 * found is for a buffered write, we can not wait for it
7651 			 * to complete and retry, because if we do so we can
7652 			 * deadlock with concurrent buffered writes on page
7653 			 * locks. This happens only if our DIO read covers more
7654 			 * than one extent map, if at this point has already
7655 			 * created an ordered extent for a previous extent map
7656 			 * and locked its range in the inode's io tree, and a
7657 			 * concurrent write against that previous extent map's
7658 			 * range and this range started (we unlock the ranges
7659 			 * in the io tree only when the bios complete and
7660 			 * buffered writes always lock pages before attempting
7661 			 * to lock range in the io tree).
7662 			 */
7663 			if (writing ||
7664 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7665 				btrfs_start_ordered_extent(ordered, 1);
7666 			else
7667 				ret = -ENOTBLK;
7668 			btrfs_put_ordered_extent(ordered);
7669 		} else {
7670 			/*
7671 			 * We could trigger writeback for this range (and wait
7672 			 * for it to complete) and then invalidate the pages for
7673 			 * this range (through invalidate_inode_pages2_range()),
7674 			 * but that can lead us to a deadlock with a concurrent
7675 			 * call to readahead (a buffered read or a defrag call
7676 			 * triggered a readahead) on a page lock due to an
7677 			 * ordered dio extent we created before but did not have
7678 			 * yet a corresponding bio submitted (whence it can not
7679 			 * complete), which makes readahead wait for that
7680 			 * ordered extent to complete while holding a lock on
7681 			 * that page.
7682 			 */
7683 			ret = -ENOTBLK;
7684 		}
7685 
7686 		if (ret)
7687 			break;
7688 
7689 		cond_resched();
7690 	}
7691 
7692 	return ret;
7693 }
7694 
7695 /* The callers of this must take lock_extent() */
create_io_em(struct btrfs_inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7696 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7697 				       u64 len, u64 orig_start, u64 block_start,
7698 				       u64 block_len, u64 orig_block_len,
7699 				       u64 ram_bytes, int compress_type,
7700 				       int type)
7701 {
7702 	struct extent_map_tree *em_tree;
7703 	struct extent_map *em;
7704 	int ret;
7705 
7706 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7707 	       type == BTRFS_ORDERED_COMPRESSED ||
7708 	       type == BTRFS_ORDERED_NOCOW ||
7709 	       type == BTRFS_ORDERED_REGULAR);
7710 
7711 	em_tree = &inode->extent_tree;
7712 	em = alloc_extent_map();
7713 	if (!em)
7714 		return ERR_PTR(-ENOMEM);
7715 
7716 	em->start = start;
7717 	em->orig_start = orig_start;
7718 	em->len = len;
7719 	em->block_len = block_len;
7720 	em->block_start = block_start;
7721 	em->orig_block_len = orig_block_len;
7722 	em->ram_bytes = ram_bytes;
7723 	em->generation = -1;
7724 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7725 	if (type == BTRFS_ORDERED_PREALLOC) {
7726 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7727 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7728 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7729 		em->compress_type = compress_type;
7730 	}
7731 
7732 	do {
7733 		btrfs_drop_extent_cache(inode, em->start,
7734 					em->start + em->len - 1, 0);
7735 		write_lock(&em_tree->lock);
7736 		ret = add_extent_mapping(em_tree, em, 1);
7737 		write_unlock(&em_tree->lock);
7738 		/*
7739 		 * The caller has taken lock_extent(), who could race with us
7740 		 * to add em?
7741 		 */
7742 	} while (ret == -EEXIST);
7743 
7744 	if (ret) {
7745 		free_extent_map(em);
7746 		return ERR_PTR(ret);
7747 	}
7748 
7749 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7750 	return em;
7751 }
7752 
7753 
btrfs_get_blocks_direct_write(struct extent_map ** map,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7754 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7755 					 struct inode *inode,
7756 					 struct btrfs_dio_data *dio_data,
7757 					 u64 start, u64 len)
7758 {
7759 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7760 	struct extent_map *em = *map;
7761 	int ret = 0;
7762 
7763 	/*
7764 	 * We don't allocate a new extent in the following cases
7765 	 *
7766 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7767 	 * existing extent.
7768 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7769 	 * just use the extent.
7770 	 *
7771 	 */
7772 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7773 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7774 	     em->block_start != EXTENT_MAP_HOLE)) {
7775 		int type;
7776 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7777 
7778 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7779 			type = BTRFS_ORDERED_PREALLOC;
7780 		else
7781 			type = BTRFS_ORDERED_NOCOW;
7782 		len = min(len, em->len - (start - em->start));
7783 		block_start = em->block_start + (start - em->start);
7784 
7785 		if (can_nocow_extent(inode, start, &len, &orig_start,
7786 				     &orig_block_len, &ram_bytes, false) == 1 &&
7787 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7788 			struct extent_map *em2;
7789 
7790 			em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7791 						      orig_start, block_start,
7792 						      len, orig_block_len,
7793 						      ram_bytes, type);
7794 			btrfs_dec_nocow_writers(fs_info, block_start);
7795 			if (type == BTRFS_ORDERED_PREALLOC) {
7796 				free_extent_map(em);
7797 				*map = em = em2;
7798 			}
7799 
7800 			if (em2 && IS_ERR(em2)) {
7801 				ret = PTR_ERR(em2);
7802 				goto out;
7803 			}
7804 			/*
7805 			 * For inode marked NODATACOW or extent marked PREALLOC,
7806 			 * use the existing or preallocated extent, so does not
7807 			 * need to adjust btrfs_space_info's bytes_may_use.
7808 			 */
7809 			btrfs_free_reserved_data_space_noquota(fs_info, len);
7810 			goto skip_cow;
7811 		}
7812 	}
7813 
7814 	/* this will cow the extent */
7815 	free_extent_map(em);
7816 	*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7817 	if (IS_ERR(em)) {
7818 		ret = PTR_ERR(em);
7819 		goto out;
7820 	}
7821 
7822 	len = min(len, em->len - (start - em->start));
7823 
7824 skip_cow:
7825 	/*
7826 	 * Need to update the i_size under the extent lock so buffered
7827 	 * readers will get the updated i_size when we unlock.
7828 	 */
7829 	if (start + len > i_size_read(inode))
7830 		i_size_write(inode, start + len);
7831 
7832 	dio_data->reserve -= len;
7833 out:
7834 	return ret;
7835 }
7836 
btrfs_dio_iomap_begin(struct inode * inode,loff_t start,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)7837 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7838 		loff_t length, unsigned int flags, struct iomap *iomap,
7839 		struct iomap *srcmap)
7840 {
7841 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7842 	struct extent_map *em;
7843 	struct extent_state *cached_state = NULL;
7844 	struct btrfs_dio_data *dio_data = NULL;
7845 	u64 lockstart, lockend;
7846 	const bool write = !!(flags & IOMAP_WRITE);
7847 	int ret = 0;
7848 	u64 len = length;
7849 	bool unlock_extents = false;
7850 
7851 	if (!write)
7852 		len = min_t(u64, len, fs_info->sectorsize);
7853 
7854 	lockstart = start;
7855 	lockend = start + len - 1;
7856 
7857 	/*
7858 	 * The generic stuff only does filemap_write_and_wait_range, which
7859 	 * isn't enough if we've written compressed pages to this area, so we
7860 	 * need to flush the dirty pages again to make absolutely sure that any
7861 	 * outstanding dirty pages are on disk.
7862 	 */
7863 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7864 		     &BTRFS_I(inode)->runtime_flags)) {
7865 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7866 					       start + length - 1);
7867 		if (ret)
7868 			return ret;
7869 	}
7870 
7871 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7872 	if (!dio_data)
7873 		return -ENOMEM;
7874 
7875 	dio_data->length = length;
7876 	if (write) {
7877 		dio_data->reserve = round_up(length, fs_info->sectorsize);
7878 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7879 				&dio_data->data_reserved,
7880 				start, dio_data->reserve);
7881 		if (ret) {
7882 			extent_changeset_free(dio_data->data_reserved);
7883 			kfree(dio_data);
7884 			return ret;
7885 		}
7886 	}
7887 	iomap->private = dio_data;
7888 
7889 
7890 	/*
7891 	 * If this errors out it's because we couldn't invalidate pagecache for
7892 	 * this range and we need to fallback to buffered.
7893 	 */
7894 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7895 		ret = -ENOTBLK;
7896 		goto err;
7897 	}
7898 
7899 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7900 	if (IS_ERR(em)) {
7901 		ret = PTR_ERR(em);
7902 		goto unlock_err;
7903 	}
7904 
7905 	/*
7906 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7907 	 * io.  INLINE is special, and we could probably kludge it in here, but
7908 	 * it's still buffered so for safety lets just fall back to the generic
7909 	 * buffered path.
7910 	 *
7911 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7912 	 * decompress it, so there will be buffering required no matter what we
7913 	 * do, so go ahead and fallback to buffered.
7914 	 *
7915 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7916 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7917 	 * the generic code.
7918 	 */
7919 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7920 	    em->block_start == EXTENT_MAP_INLINE) {
7921 		free_extent_map(em);
7922 		ret = -ENOTBLK;
7923 		goto unlock_err;
7924 	}
7925 
7926 	len = min(len, em->len - (start - em->start));
7927 	if (write) {
7928 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7929 						    start, len);
7930 		if (ret < 0)
7931 			goto unlock_err;
7932 		unlock_extents = true;
7933 		/* Recalc len in case the new em is smaller than requested */
7934 		len = min(len, em->len - (start - em->start));
7935 	} else {
7936 		/*
7937 		 * We need to unlock only the end area that we aren't using.
7938 		 * The rest is going to be unlocked by the endio routine.
7939 		 */
7940 		lockstart = start + len;
7941 		if (lockstart < lockend)
7942 			unlock_extents = true;
7943 	}
7944 
7945 	if (unlock_extents)
7946 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7947 				     lockstart, lockend, &cached_state);
7948 	else
7949 		free_extent_state(cached_state);
7950 
7951 	/*
7952 	 * Translate extent map information to iomap.
7953 	 * We trim the extents (and move the addr) even though iomap code does
7954 	 * that, since we have locked only the parts we are performing I/O in.
7955 	 */
7956 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7957 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7958 		iomap->addr = IOMAP_NULL_ADDR;
7959 		iomap->type = IOMAP_HOLE;
7960 	} else {
7961 		iomap->addr = em->block_start + (start - em->start);
7962 		iomap->type = IOMAP_MAPPED;
7963 	}
7964 	iomap->offset = start;
7965 	iomap->bdev = fs_info->fs_devices->latest_bdev;
7966 	iomap->length = len;
7967 
7968 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7969 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7970 
7971 	free_extent_map(em);
7972 
7973 	return 0;
7974 
7975 unlock_err:
7976 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7977 			     &cached_state);
7978 err:
7979 	if (dio_data) {
7980 		btrfs_delalloc_release_space(BTRFS_I(inode),
7981 				dio_data->data_reserved, start,
7982 				dio_data->reserve, true);
7983 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7984 		extent_changeset_free(dio_data->data_reserved);
7985 		kfree(dio_data);
7986 	}
7987 	return ret;
7988 }
7989 
btrfs_dio_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned int flags,struct iomap * iomap)7990 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7991 		ssize_t written, unsigned int flags, struct iomap *iomap)
7992 {
7993 	int ret = 0;
7994 	struct btrfs_dio_data *dio_data = iomap->private;
7995 	size_t submitted = dio_data->submitted;
7996 	const bool write = !!(flags & IOMAP_WRITE);
7997 
7998 	if (!write && (iomap->type == IOMAP_HOLE)) {
7999 		/* If reading from a hole, unlock and return */
8000 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
8001 		goto out;
8002 	}
8003 
8004 	if (submitted < length) {
8005 		pos += submitted;
8006 		length -= submitted;
8007 		if (write)
8008 			__endio_write_update_ordered(BTRFS_I(inode), pos,
8009 					length, false);
8010 		else
8011 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
8012 				      pos + length - 1);
8013 		ret = -ENOTBLK;
8014 	}
8015 
8016 	if (write) {
8017 		if (dio_data->reserve)
8018 			btrfs_delalloc_release_space(BTRFS_I(inode),
8019 					dio_data->data_reserved, pos,
8020 					dio_data->reserve, true);
8021 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
8022 		extent_changeset_free(dio_data->data_reserved);
8023 	}
8024 out:
8025 	kfree(dio_data);
8026 	iomap->private = NULL;
8027 
8028 	return ret;
8029 }
8030 
btrfs_dio_private_put(struct btrfs_dio_private * dip)8031 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8032 {
8033 	/*
8034 	 * This implies a barrier so that stores to dio_bio->bi_status before
8035 	 * this and loads of dio_bio->bi_status after this are fully ordered.
8036 	 */
8037 	if (!refcount_dec_and_test(&dip->refs))
8038 		return;
8039 
8040 	if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
8041 		__endio_write_update_ordered(BTRFS_I(dip->inode),
8042 					     dip->logical_offset,
8043 					     dip->bytes,
8044 					     !dip->dio_bio->bi_status);
8045 	} else {
8046 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
8047 			      dip->logical_offset,
8048 			      dip->logical_offset + dip->bytes - 1);
8049 	}
8050 
8051 	bio_endio(dip->dio_bio);
8052 	kfree(dip);
8053 }
8054 
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)8055 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
8056 					  int mirror_num,
8057 					  unsigned long bio_flags)
8058 {
8059 	struct btrfs_dio_private *dip = bio->bi_private;
8060 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8061 	blk_status_t ret;
8062 
8063 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8064 
8065 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8066 	if (ret)
8067 		return ret;
8068 
8069 	refcount_inc(&dip->refs);
8070 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
8071 	if (ret)
8072 		refcount_dec(&dip->refs);
8073 	return ret;
8074 }
8075 
btrfs_check_read_dio_bio(struct inode * inode,struct btrfs_io_bio * io_bio,const bool uptodate)8076 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
8077 					     struct btrfs_io_bio *io_bio,
8078 					     const bool uptodate)
8079 {
8080 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8081 	const u32 sectorsize = fs_info->sectorsize;
8082 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8083 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8084 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8085 	struct bio_vec bvec;
8086 	struct bvec_iter iter;
8087 	u64 start = io_bio->logical;
8088 	u32 bio_offset = 0;
8089 	blk_status_t err = BLK_STS_OK;
8090 
8091 	__bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
8092 		unsigned int i, nr_sectors, pgoff;
8093 
8094 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8095 		pgoff = bvec.bv_offset;
8096 		for (i = 0; i < nr_sectors; i++) {
8097 			ASSERT(pgoff < PAGE_SIZE);
8098 			if (uptodate &&
8099 			    (!csum || !check_data_csum(inode, io_bio,
8100 						       bio_offset, bvec.bv_page,
8101 						       pgoff, start))) {
8102 				clean_io_failure(fs_info, failure_tree, io_tree,
8103 						 start, bvec.bv_page,
8104 						 btrfs_ino(BTRFS_I(inode)),
8105 						 pgoff);
8106 			} else {
8107 				int ret;
8108 
8109 				ASSERT((start - io_bio->logical) < UINT_MAX);
8110 				ret = btrfs_repair_one_sector(inode,
8111 						&io_bio->bio,
8112 						start - io_bio->logical,
8113 						bvec.bv_page, pgoff,
8114 						start, io_bio->mirror_num,
8115 						submit_dio_repair_bio);
8116 				if (ret)
8117 					err = errno_to_blk_status(ret);
8118 			}
8119 			start += sectorsize;
8120 			ASSERT(bio_offset + sectorsize > bio_offset);
8121 			bio_offset += sectorsize;
8122 			pgoff += sectorsize;
8123 		}
8124 	}
8125 	return err;
8126 }
8127 
__endio_write_update_ordered(struct btrfs_inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8128 static void __endio_write_update_ordered(struct btrfs_inode *inode,
8129 					 const u64 offset, const u64 bytes,
8130 					 const bool uptodate)
8131 {
8132 	btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
8133 				       finish_ordered_fn, uptodate);
8134 }
8135 
btrfs_submit_bio_start_direct_io(struct inode * inode,struct bio * bio,u64 dio_file_offset)8136 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
8137 						     struct bio *bio,
8138 						     u64 dio_file_offset)
8139 {
8140 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
8141 }
8142 
btrfs_end_dio_bio(struct bio * bio)8143 static void btrfs_end_dio_bio(struct bio *bio)
8144 {
8145 	struct btrfs_dio_private *dip = bio->bi_private;
8146 	blk_status_t err = bio->bi_status;
8147 
8148 	if (err)
8149 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8150 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8151 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8152 			   bio->bi_opf, bio->bi_iter.bi_sector,
8153 			   bio->bi_iter.bi_size, err);
8154 
8155 	if (bio_op(bio) == REQ_OP_READ) {
8156 		err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
8157 					       !err);
8158 	}
8159 
8160 	if (err)
8161 		dip->dio_bio->bi_status = err;
8162 
8163 	btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio);
8164 
8165 	bio_put(bio);
8166 	btrfs_dio_private_put(dip);
8167 }
8168 
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8169 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8170 		struct inode *inode, u64 file_offset, int async_submit)
8171 {
8172 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8173 	struct btrfs_dio_private *dip = bio->bi_private;
8174 	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8175 	blk_status_t ret;
8176 
8177 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8178 	if (async_submit)
8179 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8180 
8181 	if (!write) {
8182 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8183 		if (ret)
8184 			goto err;
8185 	}
8186 
8187 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8188 		goto map;
8189 
8190 	if (write && async_submit) {
8191 		ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8192 					  btrfs_submit_bio_start_direct_io);
8193 		goto err;
8194 	} else if (write) {
8195 		/*
8196 		 * If we aren't doing async submit, calculate the csum of the
8197 		 * bio now.
8198 		 */
8199 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8200 		if (ret)
8201 			goto err;
8202 	} else {
8203 		u64 csum_offset;
8204 
8205 		csum_offset = file_offset - dip->logical_offset;
8206 		csum_offset >>= fs_info->sectorsize_bits;
8207 		csum_offset *= fs_info->csum_size;
8208 		btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
8209 	}
8210 map:
8211 	ret = btrfs_map_bio(fs_info, bio, 0);
8212 err:
8213 	return ret;
8214 }
8215 
8216 /*
8217  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8218  * or ordered extents whether or not we submit any bios.
8219  */
btrfs_create_dio_private(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8220 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8221 							  struct inode *inode,
8222 							  loff_t file_offset)
8223 {
8224 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8225 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8226 	size_t dip_size;
8227 	struct btrfs_dio_private *dip;
8228 
8229 	dip_size = sizeof(*dip);
8230 	if (!write && csum) {
8231 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8232 		size_t nblocks;
8233 
8234 		nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8235 		dip_size += fs_info->csum_size * nblocks;
8236 	}
8237 
8238 	dip = kzalloc(dip_size, GFP_NOFS);
8239 	if (!dip)
8240 		return NULL;
8241 
8242 	dip->inode = inode;
8243 	dip->logical_offset = file_offset;
8244 	dip->bytes = dio_bio->bi_iter.bi_size;
8245 	dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8246 	dip->dio_bio = dio_bio;
8247 	refcount_set(&dip->refs, 1);
8248 	return dip;
8249 }
8250 
btrfs_submit_direct(const struct iomap_iter * iter,struct bio * dio_bio,loff_t file_offset)8251 static blk_qc_t btrfs_submit_direct(const struct iomap_iter *iter,
8252 		struct bio *dio_bio, loff_t file_offset)
8253 {
8254 	struct inode *inode = iter->inode;
8255 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8256 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8257 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8258 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
8259 	struct btrfs_dio_private *dip;
8260 	struct bio *bio;
8261 	u64 start_sector;
8262 	int async_submit = 0;
8263 	u64 submit_len;
8264 	u64 clone_offset = 0;
8265 	u64 clone_len;
8266 	u64 logical;
8267 	int ret;
8268 	blk_status_t status;
8269 	struct btrfs_io_geometry geom;
8270 	struct btrfs_dio_data *dio_data = iter->iomap.private;
8271 	struct extent_map *em = NULL;
8272 
8273 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8274 	if (!dip) {
8275 		if (!write) {
8276 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8277 				file_offset + dio_bio->bi_iter.bi_size - 1);
8278 		}
8279 		dio_bio->bi_status = BLK_STS_RESOURCE;
8280 		bio_endio(dio_bio);
8281 		return BLK_QC_T_NONE;
8282 	}
8283 
8284 	if (!write) {
8285 		/*
8286 		 * Load the csums up front to reduce csum tree searches and
8287 		 * contention when submitting bios.
8288 		 *
8289 		 * If we have csums disabled this will do nothing.
8290 		 */
8291 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8292 		if (status != BLK_STS_OK)
8293 			goto out_err;
8294 	}
8295 
8296 	start_sector = dio_bio->bi_iter.bi_sector;
8297 	submit_len = dio_bio->bi_iter.bi_size;
8298 
8299 	do {
8300 		logical = start_sector << 9;
8301 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8302 		if (IS_ERR(em)) {
8303 			status = errno_to_blk_status(PTR_ERR(em));
8304 			em = NULL;
8305 			goto out_err_em;
8306 		}
8307 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8308 					    logical, &geom);
8309 		if (ret) {
8310 			status = errno_to_blk_status(ret);
8311 			goto out_err_em;
8312 		}
8313 
8314 		clone_len = min(submit_len, geom.len);
8315 		ASSERT(clone_len <= UINT_MAX);
8316 
8317 		/*
8318 		 * This will never fail as it's passing GPF_NOFS and
8319 		 * the allocation is backed by btrfs_bioset.
8320 		 */
8321 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8322 		bio->bi_private = dip;
8323 		bio->bi_end_io = btrfs_end_dio_bio;
8324 		btrfs_io_bio(bio)->logical = file_offset;
8325 
8326 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8327 			status = extract_ordered_extent(BTRFS_I(inode), bio,
8328 							file_offset);
8329 			if (status) {
8330 				bio_put(bio);
8331 				goto out_err;
8332 			}
8333 		}
8334 
8335 		ASSERT(submit_len >= clone_len);
8336 		submit_len -= clone_len;
8337 
8338 		/*
8339 		 * Increase the count before we submit the bio so we know
8340 		 * the end IO handler won't happen before we increase the
8341 		 * count. Otherwise, the dip might get freed before we're
8342 		 * done setting it up.
8343 		 *
8344 		 * We transfer the initial reference to the last bio, so we
8345 		 * don't need to increment the reference count for the last one.
8346 		 */
8347 		if (submit_len > 0) {
8348 			refcount_inc(&dip->refs);
8349 			/*
8350 			 * If we are submitting more than one bio, submit them
8351 			 * all asynchronously. The exception is RAID 5 or 6, as
8352 			 * asynchronous checksums make it difficult to collect
8353 			 * full stripe writes.
8354 			 */
8355 			if (!raid56)
8356 				async_submit = 1;
8357 		}
8358 
8359 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8360 						async_submit);
8361 		if (status) {
8362 			bio_put(bio);
8363 			if (submit_len > 0)
8364 				refcount_dec(&dip->refs);
8365 			goto out_err_em;
8366 		}
8367 
8368 		dio_data->submitted += clone_len;
8369 		clone_offset += clone_len;
8370 		start_sector += clone_len >> 9;
8371 		file_offset += clone_len;
8372 
8373 		free_extent_map(em);
8374 	} while (submit_len > 0);
8375 	return BLK_QC_T_NONE;
8376 
8377 out_err_em:
8378 	free_extent_map(em);
8379 out_err:
8380 	dip->dio_bio->bi_status = status;
8381 	btrfs_dio_private_put(dip);
8382 
8383 	return BLK_QC_T_NONE;
8384 }
8385 
8386 const struct iomap_ops btrfs_dio_iomap_ops = {
8387 	.iomap_begin            = btrfs_dio_iomap_begin,
8388 	.iomap_end              = btrfs_dio_iomap_end,
8389 };
8390 
8391 const struct iomap_dio_ops btrfs_dio_ops = {
8392 	.submit_io		= btrfs_submit_direct,
8393 };
8394 
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)8395 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8396 			u64 start, u64 len)
8397 {
8398 	int	ret;
8399 
8400 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8401 	if (ret)
8402 		return ret;
8403 
8404 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8405 }
8406 
btrfs_readpage(struct file * file,struct page * page)8407 int btrfs_readpage(struct file *file, struct page *page)
8408 {
8409 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8410 	u64 start = page_offset(page);
8411 	u64 end = start + PAGE_SIZE - 1;
8412 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
8413 	int ret;
8414 
8415 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8416 
8417 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
8418 	if (bio_ctrl.bio)
8419 		ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
8420 	return ret;
8421 }
8422 
btrfs_writepage(struct page * page,struct writeback_control * wbc)8423 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8424 {
8425 	struct inode *inode = page->mapping->host;
8426 	int ret;
8427 
8428 	if (current->flags & PF_MEMALLOC) {
8429 		redirty_page_for_writepage(wbc, page);
8430 		unlock_page(page);
8431 		return 0;
8432 	}
8433 
8434 	/*
8435 	 * If we are under memory pressure we will call this directly from the
8436 	 * VM, we need to make sure we have the inode referenced for the ordered
8437 	 * extent.  If not just return like we didn't do anything.
8438 	 */
8439 	if (!igrab(inode)) {
8440 		redirty_page_for_writepage(wbc, page);
8441 		return AOP_WRITEPAGE_ACTIVATE;
8442 	}
8443 	ret = extent_write_full_page(page, wbc);
8444 	btrfs_add_delayed_iput(inode);
8445 	return ret;
8446 }
8447 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8448 static int btrfs_writepages(struct address_space *mapping,
8449 			    struct writeback_control *wbc)
8450 {
8451 	return extent_writepages(mapping, wbc);
8452 }
8453 
btrfs_readahead(struct readahead_control * rac)8454 static void btrfs_readahead(struct readahead_control *rac)
8455 {
8456 	extent_readahead(rac);
8457 }
8458 
8459 /*
8460  * For releasepage() and invalidatepage() we have a race window where
8461  * end_page_writeback() is called but the subpage spinlock is not yet released.
8462  * If we continue to release/invalidate the page, we could cause use-after-free
8463  * for subpage spinlock.  So this function is to spin and wait for subpage
8464  * spinlock.
8465  */
wait_subpage_spinlock(struct page * page)8466 static void wait_subpage_spinlock(struct page *page)
8467 {
8468 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8469 	struct btrfs_subpage *subpage;
8470 
8471 	if (fs_info->sectorsize == PAGE_SIZE)
8472 		return;
8473 
8474 	ASSERT(PagePrivate(page) && page->private);
8475 	subpage = (struct btrfs_subpage *)page->private;
8476 
8477 	/*
8478 	 * This may look insane as we just acquire the spinlock and release it,
8479 	 * without doing anything.  But we just want to make sure no one is
8480 	 * still holding the subpage spinlock.
8481 	 * And since the page is not dirty nor writeback, and we have page
8482 	 * locked, the only possible way to hold a spinlock is from the endio
8483 	 * function to clear page writeback.
8484 	 *
8485 	 * Here we just acquire the spinlock so that all existing callers
8486 	 * should exit and we're safe to release/invalidate the page.
8487 	 */
8488 	spin_lock_irq(&subpage->lock);
8489 	spin_unlock_irq(&subpage->lock);
8490 }
8491 
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8492 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8493 {
8494 	int ret = try_release_extent_mapping(page, gfp_flags);
8495 
8496 	if (ret == 1) {
8497 		wait_subpage_spinlock(page);
8498 		clear_page_extent_mapped(page);
8499 	}
8500 	return ret;
8501 }
8502 
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8503 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8504 {
8505 	if (PageWriteback(page) || PageDirty(page))
8506 		return 0;
8507 	return __btrfs_releasepage(page, gfp_flags);
8508 }
8509 
8510 #ifdef CONFIG_MIGRATION
btrfs_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)8511 static int btrfs_migratepage(struct address_space *mapping,
8512 			     struct page *newpage, struct page *page,
8513 			     enum migrate_mode mode)
8514 {
8515 	int ret;
8516 
8517 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8518 	if (ret != MIGRATEPAGE_SUCCESS)
8519 		return ret;
8520 
8521 	if (page_has_private(page))
8522 		attach_page_private(newpage, detach_page_private(page));
8523 
8524 	if (PageOrdered(page)) {
8525 		ClearPageOrdered(page);
8526 		SetPageOrdered(newpage);
8527 	}
8528 
8529 	if (mode != MIGRATE_SYNC_NO_COPY)
8530 		migrate_page_copy(newpage, page);
8531 	else
8532 		migrate_page_states(newpage, page);
8533 	return MIGRATEPAGE_SUCCESS;
8534 }
8535 #endif
8536 
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8537 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8538 				 unsigned int length)
8539 {
8540 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8541 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8542 	struct extent_io_tree *tree = &inode->io_tree;
8543 	struct extent_state *cached_state = NULL;
8544 	u64 page_start = page_offset(page);
8545 	u64 page_end = page_start + PAGE_SIZE - 1;
8546 	u64 cur;
8547 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8548 
8549 	/*
8550 	 * We have page locked so no new ordered extent can be created on this
8551 	 * page, nor bio can be submitted for this page.
8552 	 *
8553 	 * But already submitted bio can still be finished on this page.
8554 	 * Furthermore, endio function won't skip page which has Ordered
8555 	 * (Private2) already cleared, so it's possible for endio and
8556 	 * invalidatepage to do the same ordered extent accounting twice
8557 	 * on one page.
8558 	 *
8559 	 * So here we wait for any submitted bios to finish, so that we won't
8560 	 * do double ordered extent accounting on the same page.
8561 	 */
8562 	wait_on_page_writeback(page);
8563 	wait_subpage_spinlock(page);
8564 
8565 	/*
8566 	 * For subpage case, we have call sites like
8567 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8568 	 * sectorsize.
8569 	 * If the range doesn't cover the full page, we don't need to and
8570 	 * shouldn't clear page extent mapped, as page->private can still
8571 	 * record subpage dirty bits for other part of the range.
8572 	 *
8573 	 * For cases that can invalidate the full even the range doesn't
8574 	 * cover the full page, like invalidating the last page, we're
8575 	 * still safe to wait for ordered extent to finish.
8576 	 */
8577 	if (!(offset == 0 && length == PAGE_SIZE)) {
8578 		btrfs_releasepage(page, GFP_NOFS);
8579 		return;
8580 	}
8581 
8582 	if (!inode_evicting)
8583 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8584 
8585 	cur = page_start;
8586 	while (cur < page_end) {
8587 		struct btrfs_ordered_extent *ordered;
8588 		bool delete_states;
8589 		u64 range_end;
8590 		u32 range_len;
8591 
8592 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8593 							   page_end + 1 - cur);
8594 		if (!ordered) {
8595 			range_end = page_end;
8596 			/*
8597 			 * No ordered extent covering this range, we are safe
8598 			 * to delete all extent states in the range.
8599 			 */
8600 			delete_states = true;
8601 			goto next;
8602 		}
8603 		if (ordered->file_offset > cur) {
8604 			/*
8605 			 * There is a range between [cur, oe->file_offset) not
8606 			 * covered by any ordered extent.
8607 			 * We are safe to delete all extent states, and handle
8608 			 * the ordered extent in the next iteration.
8609 			 */
8610 			range_end = ordered->file_offset - 1;
8611 			delete_states = true;
8612 			goto next;
8613 		}
8614 
8615 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8616 				page_end);
8617 		ASSERT(range_end + 1 - cur < U32_MAX);
8618 		range_len = range_end + 1 - cur;
8619 		if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) {
8620 			/*
8621 			 * If Ordered (Private2) is cleared, it means endio has
8622 			 * already been executed for the range.
8623 			 * We can't delete the extent states as
8624 			 * btrfs_finish_ordered_io() may still use some of them.
8625 			 */
8626 			delete_states = false;
8627 			goto next;
8628 		}
8629 		btrfs_page_clear_ordered(fs_info, page, cur, range_len);
8630 
8631 		/*
8632 		 * IO on this page will never be started, so we need to account
8633 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8634 		 * here, must leave that up for the ordered extent completion.
8635 		 *
8636 		 * This will also unlock the range for incoming
8637 		 * btrfs_finish_ordered_io().
8638 		 */
8639 		if (!inode_evicting)
8640 			clear_extent_bit(tree, cur, range_end,
8641 					 EXTENT_DELALLOC |
8642 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8643 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8644 
8645 		spin_lock_irq(&inode->ordered_tree.lock);
8646 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8647 		ordered->truncated_len = min(ordered->truncated_len,
8648 					     cur - ordered->file_offset);
8649 		spin_unlock_irq(&inode->ordered_tree.lock);
8650 
8651 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8652 						   cur, range_end + 1 - cur)) {
8653 			btrfs_finish_ordered_io(ordered);
8654 			/*
8655 			 * The ordered extent has finished, now we're again
8656 			 * safe to delete all extent states of the range.
8657 			 */
8658 			delete_states = true;
8659 		} else {
8660 			/*
8661 			 * btrfs_finish_ordered_io() will get executed by endio
8662 			 * of other pages, thus we can't delete extent states
8663 			 * anymore
8664 			 */
8665 			delete_states = false;
8666 		}
8667 next:
8668 		if (ordered)
8669 			btrfs_put_ordered_extent(ordered);
8670 		/*
8671 		 * Qgroup reserved space handler
8672 		 * Sector(s) here will be either:
8673 		 *
8674 		 * 1) Already written to disk or bio already finished
8675 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8676 		 *    Qgroup will be handled by its qgroup_record then.
8677 		 *    btrfs_qgroup_free_data() call will do nothing here.
8678 		 *
8679 		 * 2) Not written to disk yet
8680 		 *    Then btrfs_qgroup_free_data() call will clear the
8681 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8682 		 *    reserved data space.
8683 		 *    Since the IO will never happen for this page.
8684 		 */
8685 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8686 		if (!inode_evicting) {
8687 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8688 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8689 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8690 				 delete_states, &cached_state);
8691 		}
8692 		cur = range_end + 1;
8693 	}
8694 	/*
8695 	 * We have iterated through all ordered extents of the page, the page
8696 	 * should not have Ordered (Private2) anymore, or the above iteration
8697 	 * did something wrong.
8698 	 */
8699 	ASSERT(!PageOrdered(page));
8700 	if (!inode_evicting)
8701 		__btrfs_releasepage(page, GFP_NOFS);
8702 	ClearPageChecked(page);
8703 	clear_page_extent_mapped(page);
8704 }
8705 
8706 /*
8707  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8708  * called from a page fault handler when a page is first dirtied. Hence we must
8709  * be careful to check for EOF conditions here. We set the page up correctly
8710  * for a written page which means we get ENOSPC checking when writing into
8711  * holes and correct delalloc and unwritten extent mapping on filesystems that
8712  * support these features.
8713  *
8714  * We are not allowed to take the i_mutex here so we have to play games to
8715  * protect against truncate races as the page could now be beyond EOF.  Because
8716  * truncate_setsize() writes the inode size before removing pages, once we have
8717  * the page lock we can determine safely if the page is beyond EOF. If it is not
8718  * beyond EOF, then the page is guaranteed safe against truncation until we
8719  * unlock the page.
8720  */
btrfs_page_mkwrite(struct vm_fault * vmf)8721 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8722 {
8723 	struct page *page = vmf->page;
8724 	struct inode *inode = file_inode(vmf->vma->vm_file);
8725 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8726 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8727 	struct btrfs_ordered_extent *ordered;
8728 	struct extent_state *cached_state = NULL;
8729 	struct extent_changeset *data_reserved = NULL;
8730 	unsigned long zero_start;
8731 	loff_t size;
8732 	vm_fault_t ret;
8733 	int ret2;
8734 	int reserved = 0;
8735 	u64 reserved_space;
8736 	u64 page_start;
8737 	u64 page_end;
8738 	u64 end;
8739 
8740 	reserved_space = PAGE_SIZE;
8741 
8742 	sb_start_pagefault(inode->i_sb);
8743 	page_start = page_offset(page);
8744 	page_end = page_start + PAGE_SIZE - 1;
8745 	end = page_end;
8746 
8747 	/*
8748 	 * Reserving delalloc space after obtaining the page lock can lead to
8749 	 * deadlock. For example, if a dirty page is locked by this function
8750 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8751 	 * dirty page write out, then the btrfs_writepage() function could
8752 	 * end up waiting indefinitely to get a lock on the page currently
8753 	 * being processed by btrfs_page_mkwrite() function.
8754 	 */
8755 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8756 					    page_start, reserved_space);
8757 	if (!ret2) {
8758 		ret2 = file_update_time(vmf->vma->vm_file);
8759 		reserved = 1;
8760 	}
8761 	if (ret2) {
8762 		ret = vmf_error(ret2);
8763 		if (reserved)
8764 			goto out;
8765 		goto out_noreserve;
8766 	}
8767 
8768 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8769 again:
8770 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8771 	lock_page(page);
8772 	size = i_size_read(inode);
8773 
8774 	if ((page->mapping != inode->i_mapping) ||
8775 	    (page_start >= size)) {
8776 		/* page got truncated out from underneath us */
8777 		goto out_unlock;
8778 	}
8779 	wait_on_page_writeback(page);
8780 
8781 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8782 	ret2 = set_page_extent_mapped(page);
8783 	if (ret2 < 0) {
8784 		ret = vmf_error(ret2);
8785 		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8786 		goto out_unlock;
8787 	}
8788 
8789 	/*
8790 	 * we can't set the delalloc bits if there are pending ordered
8791 	 * extents.  Drop our locks and wait for them to finish
8792 	 */
8793 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8794 			PAGE_SIZE);
8795 	if (ordered) {
8796 		unlock_extent_cached(io_tree, page_start, page_end,
8797 				     &cached_state);
8798 		unlock_page(page);
8799 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8800 		btrfs_start_ordered_extent(ordered, 1);
8801 		btrfs_put_ordered_extent(ordered);
8802 		goto again;
8803 	}
8804 
8805 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8806 		reserved_space = round_up(size - page_start,
8807 					  fs_info->sectorsize);
8808 		if (reserved_space < PAGE_SIZE) {
8809 			end = page_start + reserved_space - 1;
8810 			btrfs_delalloc_release_space(BTRFS_I(inode),
8811 					data_reserved, page_start,
8812 					PAGE_SIZE - reserved_space, true);
8813 		}
8814 	}
8815 
8816 	/*
8817 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8818 	 * faulted in, but write(2) could also dirty a page and set delalloc
8819 	 * bits, thus in this case for space account reason, we still need to
8820 	 * clear any delalloc bits within this page range since we have to
8821 	 * reserve data&meta space before lock_page() (see above comments).
8822 	 */
8823 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8824 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8825 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8826 
8827 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8828 					&cached_state);
8829 	if (ret2) {
8830 		unlock_extent_cached(io_tree, page_start, page_end,
8831 				     &cached_state);
8832 		ret = VM_FAULT_SIGBUS;
8833 		goto out_unlock;
8834 	}
8835 
8836 	/* page is wholly or partially inside EOF */
8837 	if (page_start + PAGE_SIZE > size)
8838 		zero_start = offset_in_page(size);
8839 	else
8840 		zero_start = PAGE_SIZE;
8841 
8842 	if (zero_start != PAGE_SIZE) {
8843 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8844 		flush_dcache_page(page);
8845 	}
8846 	ClearPageChecked(page);
8847 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8848 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8849 
8850 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8851 
8852 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8853 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8854 
8855 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8856 	sb_end_pagefault(inode->i_sb);
8857 	extent_changeset_free(data_reserved);
8858 	return VM_FAULT_LOCKED;
8859 
8860 out_unlock:
8861 	unlock_page(page);
8862 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8863 out:
8864 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8865 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8866 				     reserved_space, (ret != 0));
8867 out_noreserve:
8868 	sb_end_pagefault(inode->i_sb);
8869 	extent_changeset_free(data_reserved);
8870 	return ret;
8871 }
8872 
btrfs_truncate(struct inode * inode,bool skip_writeback)8873 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8874 {
8875 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8876 	struct btrfs_root *root = BTRFS_I(inode)->root;
8877 	struct btrfs_block_rsv *rsv;
8878 	int ret;
8879 	struct btrfs_trans_handle *trans;
8880 	u64 mask = fs_info->sectorsize - 1;
8881 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8882 	u64 extents_found = 0;
8883 
8884 	if (!skip_writeback) {
8885 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8886 					       (u64)-1);
8887 		if (ret)
8888 			return ret;
8889 	}
8890 
8891 	/*
8892 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8893 	 * things going on here:
8894 	 *
8895 	 * 1) We need to reserve space to update our inode.
8896 	 *
8897 	 * 2) We need to have something to cache all the space that is going to
8898 	 * be free'd up by the truncate operation, but also have some slack
8899 	 * space reserved in case it uses space during the truncate (thank you
8900 	 * very much snapshotting).
8901 	 *
8902 	 * And we need these to be separate.  The fact is we can use a lot of
8903 	 * space doing the truncate, and we have no earthly idea how much space
8904 	 * we will use, so we need the truncate reservation to be separate so it
8905 	 * doesn't end up using space reserved for updating the inode.  We also
8906 	 * need to be able to stop the transaction and start a new one, which
8907 	 * means we need to be able to update the inode several times, and we
8908 	 * have no idea of knowing how many times that will be, so we can't just
8909 	 * reserve 1 item for the entirety of the operation, so that has to be
8910 	 * done separately as well.
8911 	 *
8912 	 * So that leaves us with
8913 	 *
8914 	 * 1) rsv - for the truncate reservation, which we will steal from the
8915 	 * transaction reservation.
8916 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8917 	 * updating the inode.
8918 	 */
8919 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8920 	if (!rsv)
8921 		return -ENOMEM;
8922 	rsv->size = min_size;
8923 	rsv->failfast = 1;
8924 
8925 	/*
8926 	 * 1 for the truncate slack space
8927 	 * 1 for updating the inode.
8928 	 */
8929 	trans = btrfs_start_transaction(root, 2);
8930 	if (IS_ERR(trans)) {
8931 		ret = PTR_ERR(trans);
8932 		goto out;
8933 	}
8934 
8935 	/* Migrate the slack space for the truncate to our reserve */
8936 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8937 				      min_size, false);
8938 	BUG_ON(ret);
8939 
8940 	trans->block_rsv = rsv;
8941 
8942 	while (1) {
8943 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8944 						 inode->i_size,
8945 						 BTRFS_EXTENT_DATA_KEY,
8946 						 &extents_found);
8947 		trans->block_rsv = &fs_info->trans_block_rsv;
8948 		if (ret != -ENOSPC && ret != -EAGAIN)
8949 			break;
8950 
8951 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8952 		if (ret)
8953 			break;
8954 
8955 		btrfs_end_transaction(trans);
8956 		btrfs_btree_balance_dirty(fs_info);
8957 
8958 		trans = btrfs_start_transaction(root, 2);
8959 		if (IS_ERR(trans)) {
8960 			ret = PTR_ERR(trans);
8961 			trans = NULL;
8962 			break;
8963 		}
8964 
8965 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8966 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8967 					      rsv, min_size, false);
8968 		BUG_ON(ret);	/* shouldn't happen */
8969 		trans->block_rsv = rsv;
8970 	}
8971 
8972 	/*
8973 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8974 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8975 	 * we've truncated everything except the last little bit, and can do
8976 	 * btrfs_truncate_block and then update the disk_i_size.
8977 	 */
8978 	if (ret == NEED_TRUNCATE_BLOCK) {
8979 		btrfs_end_transaction(trans);
8980 		btrfs_btree_balance_dirty(fs_info);
8981 
8982 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8983 		if (ret)
8984 			goto out;
8985 		trans = btrfs_start_transaction(root, 1);
8986 		if (IS_ERR(trans)) {
8987 			ret = PTR_ERR(trans);
8988 			goto out;
8989 		}
8990 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8991 	}
8992 
8993 	if (trans) {
8994 		int ret2;
8995 
8996 		trans->block_rsv = &fs_info->trans_block_rsv;
8997 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8998 		if (ret2 && !ret)
8999 			ret = ret2;
9000 
9001 		ret2 = btrfs_end_transaction(trans);
9002 		if (ret2 && !ret)
9003 			ret = ret2;
9004 		btrfs_btree_balance_dirty(fs_info);
9005 	}
9006 out:
9007 	btrfs_free_block_rsv(fs_info, rsv);
9008 	/*
9009 	 * So if we truncate and then write and fsync we normally would just
9010 	 * write the extents that changed, which is a problem if we need to
9011 	 * first truncate that entire inode.  So set this flag so we write out
9012 	 * all of the extents in the inode to the sync log so we're completely
9013 	 * safe.
9014 	 *
9015 	 * If no extents were dropped or trimmed we don't need to force the next
9016 	 * fsync to truncate all the inode's items from the log and re-log them
9017 	 * all. This means the truncate operation did not change the file size,
9018 	 * or changed it to a smaller size but there was only an implicit hole
9019 	 * between the old i_size and the new i_size, and there were no prealloc
9020 	 * extents beyond i_size to drop.
9021 	 */
9022 	if (extents_found > 0)
9023 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9024 
9025 	return ret;
9026 }
9027 
9028 /*
9029  * create a new subvolume directory/inode (helper for the ioctl).
9030  */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,struct user_namespace * mnt_userns)9031 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9032 			     struct btrfs_root *new_root,
9033 			     struct btrfs_root *parent_root,
9034 			     struct user_namespace *mnt_userns)
9035 {
9036 	struct inode *inode;
9037 	int err;
9038 	u64 index = 0;
9039 	u64 ino;
9040 
9041 	err = btrfs_get_free_objectid(new_root, &ino);
9042 	if (err < 0)
9043 		return err;
9044 
9045 	inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2,
9046 				ino, ino,
9047 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9048 				&index);
9049 	if (IS_ERR(inode))
9050 		return PTR_ERR(inode);
9051 	inode->i_op = &btrfs_dir_inode_operations;
9052 	inode->i_fop = &btrfs_dir_file_operations;
9053 
9054 	set_nlink(inode, 1);
9055 	btrfs_i_size_write(BTRFS_I(inode), 0);
9056 	unlock_new_inode(inode);
9057 
9058 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9059 	if (err)
9060 		btrfs_err(new_root->fs_info,
9061 			  "error inheriting subvolume %llu properties: %d",
9062 			  new_root->root_key.objectid, err);
9063 
9064 	err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
9065 
9066 	iput(inode);
9067 	return err;
9068 }
9069 
btrfs_alloc_inode(struct super_block * sb)9070 struct inode *btrfs_alloc_inode(struct super_block *sb)
9071 {
9072 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9073 	struct btrfs_inode *ei;
9074 	struct inode *inode;
9075 
9076 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9077 	if (!ei)
9078 		return NULL;
9079 
9080 	ei->root = NULL;
9081 	ei->generation = 0;
9082 	ei->last_trans = 0;
9083 	ei->last_sub_trans = 0;
9084 	ei->logged_trans = 0;
9085 	ei->delalloc_bytes = 0;
9086 	ei->new_delalloc_bytes = 0;
9087 	ei->defrag_bytes = 0;
9088 	ei->disk_i_size = 0;
9089 	ei->flags = 0;
9090 	ei->ro_flags = 0;
9091 	ei->csum_bytes = 0;
9092 	ei->index_cnt = (u64)-1;
9093 	ei->dir_index = 0;
9094 	ei->last_unlink_trans = 0;
9095 	ei->last_reflink_trans = 0;
9096 	ei->last_log_commit = 0;
9097 
9098 	spin_lock_init(&ei->lock);
9099 	ei->outstanding_extents = 0;
9100 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9101 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9102 					      BTRFS_BLOCK_RSV_DELALLOC);
9103 	ei->runtime_flags = 0;
9104 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9105 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9106 
9107 	ei->delayed_node = NULL;
9108 
9109 	ei->i_otime.tv_sec = 0;
9110 	ei->i_otime.tv_nsec = 0;
9111 
9112 	inode = &ei->vfs_inode;
9113 	extent_map_tree_init(&ei->extent_tree);
9114 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9115 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9116 			    IO_TREE_INODE_IO_FAILURE, inode);
9117 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
9118 			    IO_TREE_INODE_FILE_EXTENT, inode);
9119 	ei->io_tree.track_uptodate = true;
9120 	ei->io_failure_tree.track_uptodate = true;
9121 	atomic_set(&ei->sync_writers, 0);
9122 	mutex_init(&ei->log_mutex);
9123 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9124 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9125 	INIT_LIST_HEAD(&ei->delayed_iput);
9126 	RB_CLEAR_NODE(&ei->rb_node);
9127 	init_rwsem(&ei->i_mmap_lock);
9128 
9129 	return inode;
9130 }
9131 
9132 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9133 void btrfs_test_destroy_inode(struct inode *inode)
9134 {
9135 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9136 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9137 }
9138 #endif
9139 
btrfs_free_inode(struct inode * inode)9140 void btrfs_free_inode(struct inode *inode)
9141 {
9142 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9143 }
9144 
btrfs_destroy_inode(struct inode * vfs_inode)9145 void btrfs_destroy_inode(struct inode *vfs_inode)
9146 {
9147 	struct btrfs_ordered_extent *ordered;
9148 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
9149 	struct btrfs_root *root = inode->root;
9150 
9151 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
9152 	WARN_ON(vfs_inode->i_data.nrpages);
9153 	WARN_ON(inode->block_rsv.reserved);
9154 	WARN_ON(inode->block_rsv.size);
9155 	WARN_ON(inode->outstanding_extents);
9156 	WARN_ON(inode->delalloc_bytes);
9157 	WARN_ON(inode->new_delalloc_bytes);
9158 	WARN_ON(inode->csum_bytes);
9159 	WARN_ON(inode->defrag_bytes);
9160 
9161 	/*
9162 	 * This can happen where we create an inode, but somebody else also
9163 	 * created the same inode and we need to destroy the one we already
9164 	 * created.
9165 	 */
9166 	if (!root)
9167 		return;
9168 
9169 	while (1) {
9170 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9171 		if (!ordered)
9172 			break;
9173 		else {
9174 			btrfs_err(root->fs_info,
9175 				  "found ordered extent %llu %llu on inode cleanup",
9176 				  ordered->file_offset, ordered->num_bytes);
9177 			btrfs_remove_ordered_extent(inode, ordered);
9178 			btrfs_put_ordered_extent(ordered);
9179 			btrfs_put_ordered_extent(ordered);
9180 		}
9181 	}
9182 	btrfs_qgroup_check_reserved_leak(inode);
9183 	inode_tree_del(inode);
9184 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9185 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
9186 	btrfs_put_root(inode->root);
9187 }
9188 
btrfs_drop_inode(struct inode * inode)9189 int btrfs_drop_inode(struct inode *inode)
9190 {
9191 	struct btrfs_root *root = BTRFS_I(inode)->root;
9192 
9193 	if (root == NULL)
9194 		return 1;
9195 
9196 	/* the snap/subvol tree is on deleting */
9197 	if (btrfs_root_refs(&root->root_item) == 0)
9198 		return 1;
9199 	else
9200 		return generic_drop_inode(inode);
9201 }
9202 
init_once(void * foo)9203 static void init_once(void *foo)
9204 {
9205 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9206 
9207 	inode_init_once(&ei->vfs_inode);
9208 }
9209 
btrfs_destroy_cachep(void)9210 void __cold btrfs_destroy_cachep(void)
9211 {
9212 	/*
9213 	 * Make sure all delayed rcu free inodes are flushed before we
9214 	 * destroy cache.
9215 	 */
9216 	rcu_barrier();
9217 	kmem_cache_destroy(btrfs_inode_cachep);
9218 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9219 	kmem_cache_destroy(btrfs_path_cachep);
9220 	kmem_cache_destroy(btrfs_free_space_cachep);
9221 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9222 }
9223 
btrfs_init_cachep(void)9224 int __init btrfs_init_cachep(void)
9225 {
9226 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9227 			sizeof(struct btrfs_inode), 0,
9228 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9229 			init_once);
9230 	if (!btrfs_inode_cachep)
9231 		goto fail;
9232 
9233 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9234 			sizeof(struct btrfs_trans_handle), 0,
9235 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9236 	if (!btrfs_trans_handle_cachep)
9237 		goto fail;
9238 
9239 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9240 			sizeof(struct btrfs_path), 0,
9241 			SLAB_MEM_SPREAD, NULL);
9242 	if (!btrfs_path_cachep)
9243 		goto fail;
9244 
9245 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9246 			sizeof(struct btrfs_free_space), 0,
9247 			SLAB_MEM_SPREAD, NULL);
9248 	if (!btrfs_free_space_cachep)
9249 		goto fail;
9250 
9251 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9252 							PAGE_SIZE, PAGE_SIZE,
9253 							SLAB_MEM_SPREAD, NULL);
9254 	if (!btrfs_free_space_bitmap_cachep)
9255 		goto fail;
9256 
9257 	return 0;
9258 fail:
9259 	btrfs_destroy_cachep();
9260 	return -ENOMEM;
9261 }
9262 
btrfs_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9263 static int btrfs_getattr(struct user_namespace *mnt_userns,
9264 			 const struct path *path, struct kstat *stat,
9265 			 u32 request_mask, unsigned int flags)
9266 {
9267 	u64 delalloc_bytes;
9268 	u64 inode_bytes;
9269 	struct inode *inode = d_inode(path->dentry);
9270 	u32 blocksize = inode->i_sb->s_blocksize;
9271 	u32 bi_flags = BTRFS_I(inode)->flags;
9272 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9273 
9274 	stat->result_mask |= STATX_BTIME;
9275 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9276 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9277 	if (bi_flags & BTRFS_INODE_APPEND)
9278 		stat->attributes |= STATX_ATTR_APPEND;
9279 	if (bi_flags & BTRFS_INODE_COMPRESS)
9280 		stat->attributes |= STATX_ATTR_COMPRESSED;
9281 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9282 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9283 	if (bi_flags & BTRFS_INODE_NODUMP)
9284 		stat->attributes |= STATX_ATTR_NODUMP;
9285 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9286 		stat->attributes |= STATX_ATTR_VERITY;
9287 
9288 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9289 				  STATX_ATTR_COMPRESSED |
9290 				  STATX_ATTR_IMMUTABLE |
9291 				  STATX_ATTR_NODUMP);
9292 
9293 	generic_fillattr(mnt_userns, inode, stat);
9294 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9295 
9296 	spin_lock(&BTRFS_I(inode)->lock);
9297 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9298 	inode_bytes = inode_get_bytes(inode);
9299 	spin_unlock(&BTRFS_I(inode)->lock);
9300 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
9301 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9302 	return 0;
9303 }
9304 
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9305 static int btrfs_rename_exchange(struct inode *old_dir,
9306 			      struct dentry *old_dentry,
9307 			      struct inode *new_dir,
9308 			      struct dentry *new_dentry)
9309 {
9310 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9311 	struct btrfs_trans_handle *trans;
9312 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9313 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9314 	struct inode *new_inode = new_dentry->d_inode;
9315 	struct inode *old_inode = old_dentry->d_inode;
9316 	struct timespec64 ctime = current_time(old_inode);
9317 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9318 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9319 	u64 old_idx = 0;
9320 	u64 new_idx = 0;
9321 	int ret;
9322 	int ret2;
9323 	bool root_log_pinned = false;
9324 	bool dest_log_pinned = false;
9325 	bool need_abort = false;
9326 
9327 	/*
9328 	 * For non-subvolumes allow exchange only within one subvolume, in the
9329 	 * same inode namespace. Two subvolumes (represented as directory) can
9330 	 * be exchanged as they're a logical link and have a fixed inode number.
9331 	 */
9332 	if (root != dest &&
9333 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9334 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9335 		return -EXDEV;
9336 
9337 	/* close the race window with snapshot create/destroy ioctl */
9338 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9339 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9340 		down_read(&fs_info->subvol_sem);
9341 
9342 	/*
9343 	 * We want to reserve the absolute worst case amount of items.  So if
9344 	 * both inodes are subvols and we need to unlink them then that would
9345 	 * require 4 item modifications, but if they are both normal inodes it
9346 	 * would require 5 item modifications, so we'll assume their normal
9347 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9348 	 * should cover the worst case number of items we'll modify.
9349 	 */
9350 	trans = btrfs_start_transaction(root, 12);
9351 	if (IS_ERR(trans)) {
9352 		ret = PTR_ERR(trans);
9353 		goto out_notrans;
9354 	}
9355 
9356 	if (dest != root) {
9357 		ret = btrfs_record_root_in_trans(trans, dest);
9358 		if (ret)
9359 			goto out_fail;
9360 	}
9361 
9362 	/*
9363 	 * We need to find a free sequence number both in the source and
9364 	 * in the destination directory for the exchange.
9365 	 */
9366 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9367 	if (ret)
9368 		goto out_fail;
9369 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9370 	if (ret)
9371 		goto out_fail;
9372 
9373 	BTRFS_I(old_inode)->dir_index = 0ULL;
9374 	BTRFS_I(new_inode)->dir_index = 0ULL;
9375 
9376 	/* Reference for the source. */
9377 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9378 		/* force full log commit if subvolume involved. */
9379 		btrfs_set_log_full_commit(trans);
9380 	} else {
9381 		ret = btrfs_insert_inode_ref(trans, dest,
9382 					     new_dentry->d_name.name,
9383 					     new_dentry->d_name.len,
9384 					     old_ino,
9385 					     btrfs_ino(BTRFS_I(new_dir)),
9386 					     old_idx);
9387 		if (ret)
9388 			goto out_fail;
9389 		need_abort = true;
9390 	}
9391 
9392 	/* And now for the dest. */
9393 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9394 		/* force full log commit if subvolume involved. */
9395 		btrfs_set_log_full_commit(trans);
9396 	} else {
9397 		ret = btrfs_insert_inode_ref(trans, root,
9398 					     old_dentry->d_name.name,
9399 					     old_dentry->d_name.len,
9400 					     new_ino,
9401 					     btrfs_ino(BTRFS_I(old_dir)),
9402 					     new_idx);
9403 		if (ret) {
9404 			if (need_abort)
9405 				btrfs_abort_transaction(trans, ret);
9406 			goto out_fail;
9407 		}
9408 	}
9409 
9410 	/* Update inode version and ctime/mtime. */
9411 	inode_inc_iversion(old_dir);
9412 	inode_inc_iversion(new_dir);
9413 	inode_inc_iversion(old_inode);
9414 	inode_inc_iversion(new_inode);
9415 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9416 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9417 	old_inode->i_ctime = ctime;
9418 	new_inode->i_ctime = ctime;
9419 
9420 	if (old_dentry->d_parent != new_dentry->d_parent) {
9421 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9422 				BTRFS_I(old_inode), 1);
9423 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9424 				BTRFS_I(new_inode), 1);
9425 	}
9426 
9427 	/*
9428 	 * Now pin the logs of the roots. We do it to ensure that no other task
9429 	 * can sync the logs while we are in progress with the rename, because
9430 	 * that could result in an inconsistency in case any of the inodes that
9431 	 * are part of this rename operation were logged before.
9432 	 *
9433 	 * We pin the logs even if at this precise moment none of the inodes was
9434 	 * logged before. This is because right after we checked for that, some
9435 	 * other task fsyncing some other inode not involved with this rename
9436 	 * operation could log that one of our inodes exists.
9437 	 *
9438 	 * We don't need to pin the logs before the above calls to
9439 	 * btrfs_insert_inode_ref(), since those don't ever need to change a log.
9440 	 */
9441 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9442 		btrfs_pin_log_trans(root);
9443 		root_log_pinned = true;
9444 	}
9445 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID) {
9446 		btrfs_pin_log_trans(dest);
9447 		dest_log_pinned = true;
9448 	}
9449 
9450 	/* src is a subvolume */
9451 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9452 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9453 	} else { /* src is an inode */
9454 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9455 					   BTRFS_I(old_dentry->d_inode),
9456 					   old_dentry->d_name.name,
9457 					   old_dentry->d_name.len);
9458 		if (!ret)
9459 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9460 	}
9461 	if (ret) {
9462 		btrfs_abort_transaction(trans, ret);
9463 		goto out_fail;
9464 	}
9465 
9466 	/* dest is a subvolume */
9467 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9468 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9469 	} else { /* dest is an inode */
9470 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9471 					   BTRFS_I(new_dentry->d_inode),
9472 					   new_dentry->d_name.name,
9473 					   new_dentry->d_name.len);
9474 		if (!ret)
9475 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9476 	}
9477 	if (ret) {
9478 		btrfs_abort_transaction(trans, ret);
9479 		goto out_fail;
9480 	}
9481 
9482 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9483 			     new_dentry->d_name.name,
9484 			     new_dentry->d_name.len, 0, old_idx);
9485 	if (ret) {
9486 		btrfs_abort_transaction(trans, ret);
9487 		goto out_fail;
9488 	}
9489 
9490 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9491 			     old_dentry->d_name.name,
9492 			     old_dentry->d_name.len, 0, new_idx);
9493 	if (ret) {
9494 		btrfs_abort_transaction(trans, ret);
9495 		goto out_fail;
9496 	}
9497 
9498 	if (old_inode->i_nlink == 1)
9499 		BTRFS_I(old_inode)->dir_index = old_idx;
9500 	if (new_inode->i_nlink == 1)
9501 		BTRFS_I(new_inode)->dir_index = new_idx;
9502 
9503 	if (root_log_pinned) {
9504 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9505 				   new_dentry->d_parent);
9506 		btrfs_end_log_trans(root);
9507 		root_log_pinned = false;
9508 	}
9509 	if (dest_log_pinned) {
9510 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9511 				   old_dentry->d_parent);
9512 		btrfs_end_log_trans(dest);
9513 		dest_log_pinned = false;
9514 	}
9515 out_fail:
9516 	/*
9517 	 * If we have pinned a log and an error happened, we unpin tasks
9518 	 * trying to sync the log and force them to fallback to a transaction
9519 	 * commit if the log currently contains any of the inodes involved in
9520 	 * this rename operation (to ensure we do not persist a log with an
9521 	 * inconsistent state for any of these inodes or leading to any
9522 	 * inconsistencies when replayed). If the transaction was aborted, the
9523 	 * abortion reason is propagated to userspace when attempting to commit
9524 	 * the transaction. If the log does not contain any of these inodes, we
9525 	 * allow the tasks to sync it.
9526 	 */
9527 	if (ret && (root_log_pinned || dest_log_pinned)) {
9528 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9529 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9530 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9531 		    btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))
9532 			btrfs_set_log_full_commit(trans);
9533 
9534 		if (root_log_pinned) {
9535 			btrfs_end_log_trans(root);
9536 			root_log_pinned = false;
9537 		}
9538 		if (dest_log_pinned) {
9539 			btrfs_end_log_trans(dest);
9540 			dest_log_pinned = false;
9541 		}
9542 	}
9543 	ret2 = btrfs_end_transaction(trans);
9544 	ret = ret ? ret : ret2;
9545 out_notrans:
9546 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9547 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9548 		up_read(&fs_info->subvol_sem);
9549 
9550 	return ret;
9551 }
9552 
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry)9553 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9554 				     struct btrfs_root *root,
9555 				     struct user_namespace *mnt_userns,
9556 				     struct inode *dir,
9557 				     struct dentry *dentry)
9558 {
9559 	int ret;
9560 	struct inode *inode;
9561 	u64 objectid;
9562 	u64 index;
9563 
9564 	ret = btrfs_get_free_objectid(root, &objectid);
9565 	if (ret)
9566 		return ret;
9567 
9568 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
9569 				dentry->d_name.name,
9570 				dentry->d_name.len,
9571 				btrfs_ino(BTRFS_I(dir)),
9572 				objectid,
9573 				S_IFCHR | WHITEOUT_MODE,
9574 				&index);
9575 
9576 	if (IS_ERR(inode)) {
9577 		ret = PTR_ERR(inode);
9578 		return ret;
9579 	}
9580 
9581 	inode->i_op = &btrfs_special_inode_operations;
9582 	init_special_inode(inode, inode->i_mode,
9583 		WHITEOUT_DEV);
9584 
9585 	ret = btrfs_init_inode_security(trans, inode, dir,
9586 				&dentry->d_name);
9587 	if (ret)
9588 		goto out;
9589 
9590 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9591 				BTRFS_I(inode), 0, index);
9592 	if (ret)
9593 		goto out;
9594 
9595 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9596 out:
9597 	unlock_new_inode(inode);
9598 	if (ret)
9599 		inode_dec_link_count(inode);
9600 	iput(inode);
9601 
9602 	return ret;
9603 }
9604 
btrfs_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9605 static int btrfs_rename(struct user_namespace *mnt_userns,
9606 			struct inode *old_dir, struct dentry *old_dentry,
9607 			struct inode *new_dir, struct dentry *new_dentry,
9608 			unsigned int flags)
9609 {
9610 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9611 	struct btrfs_trans_handle *trans;
9612 	unsigned int trans_num_items;
9613 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9614 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9615 	struct inode *new_inode = d_inode(new_dentry);
9616 	struct inode *old_inode = d_inode(old_dentry);
9617 	u64 index = 0;
9618 	int ret;
9619 	int ret2;
9620 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9621 	bool log_pinned = false;
9622 
9623 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9624 		return -EPERM;
9625 
9626 	/* we only allow rename subvolume link between subvolumes */
9627 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9628 		return -EXDEV;
9629 
9630 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9631 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9632 		return -ENOTEMPTY;
9633 
9634 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9635 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9636 		return -ENOTEMPTY;
9637 
9638 
9639 	/* check for collisions, even if the  name isn't there */
9640 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9641 			     new_dentry->d_name.name,
9642 			     new_dentry->d_name.len);
9643 
9644 	if (ret) {
9645 		if (ret == -EEXIST) {
9646 			/* we shouldn't get
9647 			 * eexist without a new_inode */
9648 			if (WARN_ON(!new_inode)) {
9649 				return ret;
9650 			}
9651 		} else {
9652 			/* maybe -EOVERFLOW */
9653 			return ret;
9654 		}
9655 	}
9656 	ret = 0;
9657 
9658 	/*
9659 	 * we're using rename to replace one file with another.  Start IO on it
9660 	 * now so  we don't add too much work to the end of the transaction
9661 	 */
9662 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9663 		filemap_flush(old_inode->i_mapping);
9664 
9665 	/* close the racy window with snapshot create/destroy ioctl */
9666 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9667 		down_read(&fs_info->subvol_sem);
9668 	/*
9669 	 * We want to reserve the absolute worst case amount of items.  So if
9670 	 * both inodes are subvols and we need to unlink them then that would
9671 	 * require 4 item modifications, but if they are both normal inodes it
9672 	 * would require 5 item modifications, so we'll assume they are normal
9673 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9674 	 * should cover the worst case number of items we'll modify.
9675 	 * If our rename has the whiteout flag, we need more 5 units for the
9676 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9677 	 * when selinux is enabled).
9678 	 */
9679 	trans_num_items = 11;
9680 	if (flags & RENAME_WHITEOUT)
9681 		trans_num_items += 5;
9682 	trans = btrfs_start_transaction(root, trans_num_items);
9683 	if (IS_ERR(trans)) {
9684 		ret = PTR_ERR(trans);
9685 		goto out_notrans;
9686 	}
9687 
9688 	if (dest != root) {
9689 		ret = btrfs_record_root_in_trans(trans, dest);
9690 		if (ret)
9691 			goto out_fail;
9692 	}
9693 
9694 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9695 	if (ret)
9696 		goto out_fail;
9697 
9698 	BTRFS_I(old_inode)->dir_index = 0ULL;
9699 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9700 		/* force full log commit if subvolume involved. */
9701 		btrfs_set_log_full_commit(trans);
9702 	} else {
9703 		ret = btrfs_insert_inode_ref(trans, dest,
9704 					     new_dentry->d_name.name,
9705 					     new_dentry->d_name.len,
9706 					     old_ino,
9707 					     btrfs_ino(BTRFS_I(new_dir)), index);
9708 		if (ret)
9709 			goto out_fail;
9710 	}
9711 
9712 	inode_inc_iversion(old_dir);
9713 	inode_inc_iversion(new_dir);
9714 	inode_inc_iversion(old_inode);
9715 	old_dir->i_ctime = old_dir->i_mtime =
9716 	new_dir->i_ctime = new_dir->i_mtime =
9717 	old_inode->i_ctime = current_time(old_dir);
9718 
9719 	if (old_dentry->d_parent != new_dentry->d_parent)
9720 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9721 				BTRFS_I(old_inode), 1);
9722 
9723 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9724 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9725 	} else {
9726 		/*
9727 		 * Now pin the log. We do it to ensure that no other task can
9728 		 * sync the log while we are in progress with the rename, as
9729 		 * that could result in an inconsistency in case any of the
9730 		 * inodes that are part of this rename operation were logged
9731 		 * before.
9732 		 *
9733 		 * We pin the log even if at this precise moment none of the
9734 		 * inodes was logged before. This is because right after we
9735 		 * checked for that, some other task fsyncing some other inode
9736 		 * not involved with this rename operation could log that one of
9737 		 * our inodes exists.
9738 		 *
9739 		 * We don't need to pin the logs before the above call to
9740 		 * btrfs_insert_inode_ref(), since that does not need to change
9741 		 * a log.
9742 		 */
9743 		btrfs_pin_log_trans(root);
9744 		log_pinned = true;
9745 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9746 					BTRFS_I(d_inode(old_dentry)),
9747 					old_dentry->d_name.name,
9748 					old_dentry->d_name.len);
9749 		if (!ret)
9750 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9751 	}
9752 	if (ret) {
9753 		btrfs_abort_transaction(trans, ret);
9754 		goto out_fail;
9755 	}
9756 
9757 	if (new_inode) {
9758 		inode_inc_iversion(new_inode);
9759 		new_inode->i_ctime = current_time(new_inode);
9760 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9761 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9762 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9763 			BUG_ON(new_inode->i_nlink == 0);
9764 		} else {
9765 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9766 						 BTRFS_I(d_inode(new_dentry)),
9767 						 new_dentry->d_name.name,
9768 						 new_dentry->d_name.len);
9769 		}
9770 		if (!ret && new_inode->i_nlink == 0)
9771 			ret = btrfs_orphan_add(trans,
9772 					BTRFS_I(d_inode(new_dentry)));
9773 		if (ret) {
9774 			btrfs_abort_transaction(trans, ret);
9775 			goto out_fail;
9776 		}
9777 	}
9778 
9779 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9780 			     new_dentry->d_name.name,
9781 			     new_dentry->d_name.len, 0, index);
9782 	if (ret) {
9783 		btrfs_abort_transaction(trans, ret);
9784 		goto out_fail;
9785 	}
9786 
9787 	if (old_inode->i_nlink == 1)
9788 		BTRFS_I(old_inode)->dir_index = index;
9789 
9790 	if (log_pinned) {
9791 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9792 				   new_dentry->d_parent);
9793 		btrfs_end_log_trans(root);
9794 		log_pinned = false;
9795 	}
9796 
9797 	if (flags & RENAME_WHITEOUT) {
9798 		ret = btrfs_whiteout_for_rename(trans, root, mnt_userns,
9799 						old_dir, old_dentry);
9800 
9801 		if (ret) {
9802 			btrfs_abort_transaction(trans, ret);
9803 			goto out_fail;
9804 		}
9805 	}
9806 out_fail:
9807 	/*
9808 	 * If we have pinned the log and an error happened, we unpin tasks
9809 	 * trying to sync the log and force them to fallback to a transaction
9810 	 * commit if the log currently contains any of the inodes involved in
9811 	 * this rename operation (to ensure we do not persist a log with an
9812 	 * inconsistent state for any of these inodes or leading to any
9813 	 * inconsistencies when replayed). If the transaction was aborted, the
9814 	 * abortion reason is propagated to userspace when attempting to commit
9815 	 * the transaction. If the log does not contain any of these inodes, we
9816 	 * allow the tasks to sync it.
9817 	 */
9818 	if (ret && log_pinned) {
9819 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9820 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9821 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9822 		    (new_inode &&
9823 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9824 			btrfs_set_log_full_commit(trans);
9825 
9826 		btrfs_end_log_trans(root);
9827 		log_pinned = false;
9828 	}
9829 	ret2 = btrfs_end_transaction(trans);
9830 	ret = ret ? ret : ret2;
9831 out_notrans:
9832 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9833 		up_read(&fs_info->subvol_sem);
9834 
9835 	return ret;
9836 }
9837 
btrfs_rename2(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9838 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9839 			 struct dentry *old_dentry, struct inode *new_dir,
9840 			 struct dentry *new_dentry, unsigned int flags)
9841 {
9842 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9843 		return -EINVAL;
9844 
9845 	if (flags & RENAME_EXCHANGE)
9846 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9847 					  new_dentry);
9848 
9849 	return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9850 			    new_dentry, flags);
9851 }
9852 
9853 struct btrfs_delalloc_work {
9854 	struct inode *inode;
9855 	struct completion completion;
9856 	struct list_head list;
9857 	struct btrfs_work work;
9858 };
9859 
btrfs_run_delalloc_work(struct btrfs_work * work)9860 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9861 {
9862 	struct btrfs_delalloc_work *delalloc_work;
9863 	struct inode *inode;
9864 
9865 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9866 				     work);
9867 	inode = delalloc_work->inode;
9868 	filemap_flush(inode->i_mapping);
9869 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9870 				&BTRFS_I(inode)->runtime_flags))
9871 		filemap_flush(inode->i_mapping);
9872 
9873 	iput(inode);
9874 	complete(&delalloc_work->completion);
9875 }
9876 
btrfs_alloc_delalloc_work(struct inode * inode)9877 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9878 {
9879 	struct btrfs_delalloc_work *work;
9880 
9881 	work = kmalloc(sizeof(*work), GFP_NOFS);
9882 	if (!work)
9883 		return NULL;
9884 
9885 	init_completion(&work->completion);
9886 	INIT_LIST_HEAD(&work->list);
9887 	work->inode = inode;
9888 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9889 
9890 	return work;
9891 }
9892 
9893 /*
9894  * some fairly slow code that needs optimization. This walks the list
9895  * of all the inodes with pending delalloc and forces them to disk.
9896  */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)9897 static int start_delalloc_inodes(struct btrfs_root *root,
9898 				 struct writeback_control *wbc, bool snapshot,
9899 				 bool in_reclaim_context)
9900 {
9901 	struct btrfs_inode *binode;
9902 	struct inode *inode;
9903 	struct btrfs_delalloc_work *work, *next;
9904 	struct list_head works;
9905 	struct list_head splice;
9906 	int ret = 0;
9907 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9908 
9909 	INIT_LIST_HEAD(&works);
9910 	INIT_LIST_HEAD(&splice);
9911 
9912 	mutex_lock(&root->delalloc_mutex);
9913 	spin_lock(&root->delalloc_lock);
9914 	list_splice_init(&root->delalloc_inodes, &splice);
9915 	while (!list_empty(&splice)) {
9916 		binode = list_entry(splice.next, struct btrfs_inode,
9917 				    delalloc_inodes);
9918 
9919 		list_move_tail(&binode->delalloc_inodes,
9920 			       &root->delalloc_inodes);
9921 
9922 		if (in_reclaim_context &&
9923 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9924 			continue;
9925 
9926 		inode = igrab(&binode->vfs_inode);
9927 		if (!inode) {
9928 			cond_resched_lock(&root->delalloc_lock);
9929 			continue;
9930 		}
9931 		spin_unlock(&root->delalloc_lock);
9932 
9933 		if (snapshot)
9934 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9935 				&binode->runtime_flags);
9936 		if (full_flush) {
9937 			work = btrfs_alloc_delalloc_work(inode);
9938 			if (!work) {
9939 				iput(inode);
9940 				ret = -ENOMEM;
9941 				goto out;
9942 			}
9943 			list_add_tail(&work->list, &works);
9944 			btrfs_queue_work(root->fs_info->flush_workers,
9945 					 &work->work);
9946 		} else {
9947 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9948 			btrfs_add_delayed_iput(inode);
9949 			if (ret || wbc->nr_to_write <= 0)
9950 				goto out;
9951 		}
9952 		cond_resched();
9953 		spin_lock(&root->delalloc_lock);
9954 	}
9955 	spin_unlock(&root->delalloc_lock);
9956 
9957 out:
9958 	list_for_each_entry_safe(work, next, &works, list) {
9959 		list_del_init(&work->list);
9960 		wait_for_completion(&work->completion);
9961 		kfree(work);
9962 	}
9963 
9964 	if (!list_empty(&splice)) {
9965 		spin_lock(&root->delalloc_lock);
9966 		list_splice_tail(&splice, &root->delalloc_inodes);
9967 		spin_unlock(&root->delalloc_lock);
9968 	}
9969 	mutex_unlock(&root->delalloc_mutex);
9970 	return ret;
9971 }
9972 
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)9973 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9974 {
9975 	struct writeback_control wbc = {
9976 		.nr_to_write = LONG_MAX,
9977 		.sync_mode = WB_SYNC_NONE,
9978 		.range_start = 0,
9979 		.range_end = LLONG_MAX,
9980 	};
9981 	struct btrfs_fs_info *fs_info = root->fs_info;
9982 
9983 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9984 		return -EROFS;
9985 
9986 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9987 }
9988 
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)9989 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9990 			       bool in_reclaim_context)
9991 {
9992 	struct writeback_control wbc = {
9993 		.nr_to_write = nr,
9994 		.sync_mode = WB_SYNC_NONE,
9995 		.range_start = 0,
9996 		.range_end = LLONG_MAX,
9997 	};
9998 	struct btrfs_root *root;
9999 	struct list_head splice;
10000 	int ret;
10001 
10002 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10003 		return -EROFS;
10004 
10005 	INIT_LIST_HEAD(&splice);
10006 
10007 	mutex_lock(&fs_info->delalloc_root_mutex);
10008 	spin_lock(&fs_info->delalloc_root_lock);
10009 	list_splice_init(&fs_info->delalloc_roots, &splice);
10010 	while (!list_empty(&splice)) {
10011 		/*
10012 		 * Reset nr_to_write here so we know that we're doing a full
10013 		 * flush.
10014 		 */
10015 		if (nr == LONG_MAX)
10016 			wbc.nr_to_write = LONG_MAX;
10017 
10018 		root = list_first_entry(&splice, struct btrfs_root,
10019 					delalloc_root);
10020 		root = btrfs_grab_root(root);
10021 		BUG_ON(!root);
10022 		list_move_tail(&root->delalloc_root,
10023 			       &fs_info->delalloc_roots);
10024 		spin_unlock(&fs_info->delalloc_root_lock);
10025 
10026 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
10027 		btrfs_put_root(root);
10028 		if (ret < 0 || wbc.nr_to_write <= 0)
10029 			goto out;
10030 		spin_lock(&fs_info->delalloc_root_lock);
10031 	}
10032 	spin_unlock(&fs_info->delalloc_root_lock);
10033 
10034 	ret = 0;
10035 out:
10036 	if (!list_empty(&splice)) {
10037 		spin_lock(&fs_info->delalloc_root_lock);
10038 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10039 		spin_unlock(&fs_info->delalloc_root_lock);
10040 	}
10041 	mutex_unlock(&fs_info->delalloc_root_mutex);
10042 	return ret;
10043 }
10044 
btrfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)10045 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
10046 			 struct dentry *dentry, const char *symname)
10047 {
10048 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10049 	struct btrfs_trans_handle *trans;
10050 	struct btrfs_root *root = BTRFS_I(dir)->root;
10051 	struct btrfs_path *path;
10052 	struct btrfs_key key;
10053 	struct inode *inode = NULL;
10054 	int err;
10055 	u64 objectid;
10056 	u64 index = 0;
10057 	int name_len;
10058 	int datasize;
10059 	unsigned long ptr;
10060 	struct btrfs_file_extent_item *ei;
10061 	struct extent_buffer *leaf;
10062 
10063 	name_len = strlen(symname);
10064 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10065 		return -ENAMETOOLONG;
10066 
10067 	/*
10068 	 * 2 items for inode item and ref
10069 	 * 2 items for dir items
10070 	 * 1 item for updating parent inode item
10071 	 * 1 item for the inline extent item
10072 	 * 1 item for xattr if selinux is on
10073 	 */
10074 	trans = btrfs_start_transaction(root, 7);
10075 	if (IS_ERR(trans))
10076 		return PTR_ERR(trans);
10077 
10078 	err = btrfs_get_free_objectid(root, &objectid);
10079 	if (err)
10080 		goto out_unlock;
10081 
10082 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
10083 				dentry->d_name.name, dentry->d_name.len,
10084 				btrfs_ino(BTRFS_I(dir)), objectid,
10085 				S_IFLNK | S_IRWXUGO, &index);
10086 	if (IS_ERR(inode)) {
10087 		err = PTR_ERR(inode);
10088 		inode = NULL;
10089 		goto out_unlock;
10090 	}
10091 
10092 	/*
10093 	* If the active LSM wants to access the inode during
10094 	* d_instantiate it needs these. Smack checks to see
10095 	* if the filesystem supports xattrs by looking at the
10096 	* ops vector.
10097 	*/
10098 	inode->i_fop = &btrfs_file_operations;
10099 	inode->i_op = &btrfs_file_inode_operations;
10100 	inode->i_mapping->a_ops = &btrfs_aops;
10101 
10102 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10103 	if (err)
10104 		goto out_unlock;
10105 
10106 	path = btrfs_alloc_path();
10107 	if (!path) {
10108 		err = -ENOMEM;
10109 		goto out_unlock;
10110 	}
10111 	key.objectid = btrfs_ino(BTRFS_I(inode));
10112 	key.offset = 0;
10113 	key.type = BTRFS_EXTENT_DATA_KEY;
10114 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10115 	err = btrfs_insert_empty_item(trans, root, path, &key,
10116 				      datasize);
10117 	if (err) {
10118 		btrfs_free_path(path);
10119 		goto out_unlock;
10120 	}
10121 	leaf = path->nodes[0];
10122 	ei = btrfs_item_ptr(leaf, path->slots[0],
10123 			    struct btrfs_file_extent_item);
10124 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10125 	btrfs_set_file_extent_type(leaf, ei,
10126 				   BTRFS_FILE_EXTENT_INLINE);
10127 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10128 	btrfs_set_file_extent_compression(leaf, ei, 0);
10129 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10130 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10131 
10132 	ptr = btrfs_file_extent_inline_start(ei);
10133 	write_extent_buffer(leaf, symname, ptr, name_len);
10134 	btrfs_mark_buffer_dirty(leaf);
10135 	btrfs_free_path(path);
10136 
10137 	inode->i_op = &btrfs_symlink_inode_operations;
10138 	inode_nohighmem(inode);
10139 	inode_set_bytes(inode, name_len);
10140 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10141 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
10142 	/*
10143 	 * Last step, add directory indexes for our symlink inode. This is the
10144 	 * last step to avoid extra cleanup of these indexes if an error happens
10145 	 * elsewhere above.
10146 	 */
10147 	if (!err)
10148 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10149 				BTRFS_I(inode), 0, index);
10150 	if (err)
10151 		goto out_unlock;
10152 
10153 	d_instantiate_new(dentry, inode);
10154 
10155 out_unlock:
10156 	btrfs_end_transaction(trans);
10157 	if (err && inode) {
10158 		inode_dec_link_count(inode);
10159 		discard_new_inode(inode);
10160 	}
10161 	btrfs_btree_balance_dirty(fs_info);
10162 	return err;
10163 }
10164 
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)10165 static struct btrfs_trans_handle *insert_prealloc_file_extent(
10166 				       struct btrfs_trans_handle *trans_in,
10167 				       struct btrfs_inode *inode,
10168 				       struct btrfs_key *ins,
10169 				       u64 file_offset)
10170 {
10171 	struct btrfs_file_extent_item stack_fi;
10172 	struct btrfs_replace_extent_info extent_info;
10173 	struct btrfs_trans_handle *trans = trans_in;
10174 	struct btrfs_path *path;
10175 	u64 start = ins->objectid;
10176 	u64 len = ins->offset;
10177 	int qgroup_released;
10178 	int ret;
10179 
10180 	memset(&stack_fi, 0, sizeof(stack_fi));
10181 
10182 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
10183 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
10184 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
10185 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
10186 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
10187 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
10188 	/* Encryption and other encoding is reserved and all 0 */
10189 
10190 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
10191 	if (qgroup_released < 0)
10192 		return ERR_PTR(qgroup_released);
10193 
10194 	if (trans) {
10195 		ret = insert_reserved_file_extent(trans, inode,
10196 						  file_offset, &stack_fi,
10197 						  true, qgroup_released);
10198 		if (ret)
10199 			goto free_qgroup;
10200 		return trans;
10201 	}
10202 
10203 	extent_info.disk_offset = start;
10204 	extent_info.disk_len = len;
10205 	extent_info.data_offset = 0;
10206 	extent_info.data_len = len;
10207 	extent_info.file_offset = file_offset;
10208 	extent_info.extent_buf = (char *)&stack_fi;
10209 	extent_info.is_new_extent = true;
10210 	extent_info.qgroup_reserved = qgroup_released;
10211 	extent_info.insertions = 0;
10212 
10213 	path = btrfs_alloc_path();
10214 	if (!path) {
10215 		ret = -ENOMEM;
10216 		goto free_qgroup;
10217 	}
10218 
10219 	ret = btrfs_replace_file_extents(inode, path, file_offset,
10220 				     file_offset + len - 1, &extent_info,
10221 				     &trans);
10222 	btrfs_free_path(path);
10223 	if (ret)
10224 		goto free_qgroup;
10225 	return trans;
10226 
10227 free_qgroup:
10228 	/*
10229 	 * We have released qgroup data range at the beginning of the function,
10230 	 * and normally qgroup_released bytes will be freed when committing
10231 	 * transaction.
10232 	 * But if we error out early, we have to free what we have released
10233 	 * or we leak qgroup data reservation.
10234 	 */
10235 	btrfs_qgroup_free_refroot(inode->root->fs_info,
10236 			inode->root->root_key.objectid, qgroup_released,
10237 			BTRFS_QGROUP_RSV_DATA);
10238 	return ERR_PTR(ret);
10239 }
10240 
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10241 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10242 				       u64 start, u64 num_bytes, u64 min_size,
10243 				       loff_t actual_len, u64 *alloc_hint,
10244 				       struct btrfs_trans_handle *trans)
10245 {
10246 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10247 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10248 	struct extent_map *em;
10249 	struct btrfs_root *root = BTRFS_I(inode)->root;
10250 	struct btrfs_key ins;
10251 	u64 cur_offset = start;
10252 	u64 clear_offset = start;
10253 	u64 i_size;
10254 	u64 cur_bytes;
10255 	u64 last_alloc = (u64)-1;
10256 	int ret = 0;
10257 	bool own_trans = true;
10258 	u64 end = start + num_bytes - 1;
10259 
10260 	if (trans)
10261 		own_trans = false;
10262 	while (num_bytes > 0) {
10263 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10264 		cur_bytes = max(cur_bytes, min_size);
10265 		/*
10266 		 * If we are severely fragmented we could end up with really
10267 		 * small allocations, so if the allocator is returning small
10268 		 * chunks lets make its job easier by only searching for those
10269 		 * sized chunks.
10270 		 */
10271 		cur_bytes = min(cur_bytes, last_alloc);
10272 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10273 				min_size, 0, *alloc_hint, &ins, 1, 0);
10274 		if (ret)
10275 			break;
10276 
10277 		/*
10278 		 * We've reserved this space, and thus converted it from
10279 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
10280 		 * from here on out we will only need to clear our reservation
10281 		 * for the remaining unreserved area, so advance our
10282 		 * clear_offset by our extent size.
10283 		 */
10284 		clear_offset += ins.offset;
10285 
10286 		last_alloc = ins.offset;
10287 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
10288 						    &ins, cur_offset);
10289 		/*
10290 		 * Now that we inserted the prealloc extent we can finally
10291 		 * decrement the number of reservations in the block group.
10292 		 * If we did it before, we could race with relocation and have
10293 		 * relocation miss the reserved extent, making it fail later.
10294 		 */
10295 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10296 		if (IS_ERR(trans)) {
10297 			ret = PTR_ERR(trans);
10298 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10299 						   ins.offset, 0);
10300 			break;
10301 		}
10302 
10303 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10304 					cur_offset + ins.offset -1, 0);
10305 
10306 		em = alloc_extent_map();
10307 		if (!em) {
10308 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10309 				&BTRFS_I(inode)->runtime_flags);
10310 			goto next;
10311 		}
10312 
10313 		em->start = cur_offset;
10314 		em->orig_start = cur_offset;
10315 		em->len = ins.offset;
10316 		em->block_start = ins.objectid;
10317 		em->block_len = ins.offset;
10318 		em->orig_block_len = ins.offset;
10319 		em->ram_bytes = ins.offset;
10320 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10321 		em->generation = trans->transid;
10322 
10323 		while (1) {
10324 			write_lock(&em_tree->lock);
10325 			ret = add_extent_mapping(em_tree, em, 1);
10326 			write_unlock(&em_tree->lock);
10327 			if (ret != -EEXIST)
10328 				break;
10329 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10330 						cur_offset + ins.offset - 1,
10331 						0);
10332 		}
10333 		free_extent_map(em);
10334 next:
10335 		num_bytes -= ins.offset;
10336 		cur_offset += ins.offset;
10337 		*alloc_hint = ins.objectid + ins.offset;
10338 
10339 		inode_inc_iversion(inode);
10340 		inode->i_ctime = current_time(inode);
10341 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10342 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10343 		    (actual_len > inode->i_size) &&
10344 		    (cur_offset > inode->i_size)) {
10345 			if (cur_offset > actual_len)
10346 				i_size = actual_len;
10347 			else
10348 				i_size = cur_offset;
10349 			i_size_write(inode, i_size);
10350 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10351 		}
10352 
10353 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10354 
10355 		if (ret) {
10356 			btrfs_abort_transaction(trans, ret);
10357 			if (own_trans)
10358 				btrfs_end_transaction(trans);
10359 			break;
10360 		}
10361 
10362 		if (own_trans) {
10363 			btrfs_end_transaction(trans);
10364 			trans = NULL;
10365 		}
10366 	}
10367 	if (clear_offset < end)
10368 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10369 			end - clear_offset + 1);
10370 	return ret;
10371 }
10372 
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10373 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10374 			      u64 start, u64 num_bytes, u64 min_size,
10375 			      loff_t actual_len, u64 *alloc_hint)
10376 {
10377 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10378 					   min_size, actual_len, alloc_hint,
10379 					   NULL);
10380 }
10381 
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10382 int btrfs_prealloc_file_range_trans(struct inode *inode,
10383 				    struct btrfs_trans_handle *trans, int mode,
10384 				    u64 start, u64 num_bytes, u64 min_size,
10385 				    loff_t actual_len, u64 *alloc_hint)
10386 {
10387 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10388 					   min_size, actual_len, alloc_hint, trans);
10389 }
10390 
btrfs_set_page_dirty(struct page * page)10391 static int btrfs_set_page_dirty(struct page *page)
10392 {
10393 	return __set_page_dirty_nobuffers(page);
10394 }
10395 
btrfs_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)10396 static int btrfs_permission(struct user_namespace *mnt_userns,
10397 			    struct inode *inode, int mask)
10398 {
10399 	struct btrfs_root *root = BTRFS_I(inode)->root;
10400 	umode_t mode = inode->i_mode;
10401 
10402 	if (mask & MAY_WRITE &&
10403 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10404 		if (btrfs_root_readonly(root))
10405 			return -EROFS;
10406 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10407 			return -EACCES;
10408 	}
10409 	return generic_permission(mnt_userns, inode, mask);
10410 }
10411 
btrfs_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)10412 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10413 			 struct dentry *dentry, umode_t mode)
10414 {
10415 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10416 	struct btrfs_trans_handle *trans;
10417 	struct btrfs_root *root = BTRFS_I(dir)->root;
10418 	struct inode *inode = NULL;
10419 	u64 objectid;
10420 	u64 index;
10421 	int ret = 0;
10422 
10423 	/*
10424 	 * 5 units required for adding orphan entry
10425 	 */
10426 	trans = btrfs_start_transaction(root, 5);
10427 	if (IS_ERR(trans))
10428 		return PTR_ERR(trans);
10429 
10430 	ret = btrfs_get_free_objectid(root, &objectid);
10431 	if (ret)
10432 		goto out;
10433 
10434 	inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0,
10435 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10436 	if (IS_ERR(inode)) {
10437 		ret = PTR_ERR(inode);
10438 		inode = NULL;
10439 		goto out;
10440 	}
10441 
10442 	inode->i_fop = &btrfs_file_operations;
10443 	inode->i_op = &btrfs_file_inode_operations;
10444 
10445 	inode->i_mapping->a_ops = &btrfs_aops;
10446 
10447 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10448 	if (ret)
10449 		goto out;
10450 
10451 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10452 	if (ret)
10453 		goto out;
10454 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10455 	if (ret)
10456 		goto out;
10457 
10458 	/*
10459 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10460 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10461 	 * through:
10462 	 *
10463 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10464 	 */
10465 	set_nlink(inode, 1);
10466 	d_tmpfile(dentry, inode);
10467 	unlock_new_inode(inode);
10468 	mark_inode_dirty(inode);
10469 out:
10470 	btrfs_end_transaction(trans);
10471 	if (ret && inode)
10472 		discard_new_inode(inode);
10473 	btrfs_btree_balance_dirty(fs_info);
10474 	return ret;
10475 }
10476 
btrfs_set_range_writeback(struct btrfs_inode * inode,u64 start,u64 end)10477 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10478 {
10479 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10480 	unsigned long index = start >> PAGE_SHIFT;
10481 	unsigned long end_index = end >> PAGE_SHIFT;
10482 	struct page *page;
10483 	u32 len;
10484 
10485 	ASSERT(end + 1 - start <= U32_MAX);
10486 	len = end + 1 - start;
10487 	while (index <= end_index) {
10488 		page = find_get_page(inode->vfs_inode.i_mapping, index);
10489 		ASSERT(page); /* Pages should be in the extent_io_tree */
10490 
10491 		btrfs_page_set_writeback(fs_info, page, start, len);
10492 		put_page(page);
10493 		index++;
10494 	}
10495 }
10496 
10497 #ifdef CONFIG_SWAP
10498 /*
10499  * Add an entry indicating a block group or device which is pinned by a
10500  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10501  * negative errno on failure.
10502  */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10503 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10504 				  bool is_block_group)
10505 {
10506 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10507 	struct btrfs_swapfile_pin *sp, *entry;
10508 	struct rb_node **p;
10509 	struct rb_node *parent = NULL;
10510 
10511 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10512 	if (!sp)
10513 		return -ENOMEM;
10514 	sp->ptr = ptr;
10515 	sp->inode = inode;
10516 	sp->is_block_group = is_block_group;
10517 	sp->bg_extent_count = 1;
10518 
10519 	spin_lock(&fs_info->swapfile_pins_lock);
10520 	p = &fs_info->swapfile_pins.rb_node;
10521 	while (*p) {
10522 		parent = *p;
10523 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10524 		if (sp->ptr < entry->ptr ||
10525 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10526 			p = &(*p)->rb_left;
10527 		} else if (sp->ptr > entry->ptr ||
10528 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10529 			p = &(*p)->rb_right;
10530 		} else {
10531 			if (is_block_group)
10532 				entry->bg_extent_count++;
10533 			spin_unlock(&fs_info->swapfile_pins_lock);
10534 			kfree(sp);
10535 			return 1;
10536 		}
10537 	}
10538 	rb_link_node(&sp->node, parent, p);
10539 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10540 	spin_unlock(&fs_info->swapfile_pins_lock);
10541 	return 0;
10542 }
10543 
10544 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10545 static void btrfs_free_swapfile_pins(struct inode *inode)
10546 {
10547 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10548 	struct btrfs_swapfile_pin *sp;
10549 	struct rb_node *node, *next;
10550 
10551 	spin_lock(&fs_info->swapfile_pins_lock);
10552 	node = rb_first(&fs_info->swapfile_pins);
10553 	while (node) {
10554 		next = rb_next(node);
10555 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10556 		if (sp->inode == inode) {
10557 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10558 			if (sp->is_block_group) {
10559 				btrfs_dec_block_group_swap_extents(sp->ptr,
10560 							   sp->bg_extent_count);
10561 				btrfs_put_block_group(sp->ptr);
10562 			}
10563 			kfree(sp);
10564 		}
10565 		node = next;
10566 	}
10567 	spin_unlock(&fs_info->swapfile_pins_lock);
10568 }
10569 
10570 struct btrfs_swap_info {
10571 	u64 start;
10572 	u64 block_start;
10573 	u64 block_len;
10574 	u64 lowest_ppage;
10575 	u64 highest_ppage;
10576 	unsigned long nr_pages;
10577 	int nr_extents;
10578 };
10579 
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10580 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10581 				 struct btrfs_swap_info *bsi)
10582 {
10583 	unsigned long nr_pages;
10584 	u64 first_ppage, first_ppage_reported, next_ppage;
10585 	int ret;
10586 
10587 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10588 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10589 				PAGE_SIZE) >> PAGE_SHIFT;
10590 
10591 	if (first_ppage >= next_ppage)
10592 		return 0;
10593 	nr_pages = next_ppage - first_ppage;
10594 
10595 	first_ppage_reported = first_ppage;
10596 	if (bsi->start == 0)
10597 		first_ppage_reported++;
10598 	if (bsi->lowest_ppage > first_ppage_reported)
10599 		bsi->lowest_ppage = first_ppage_reported;
10600 	if (bsi->highest_ppage < (next_ppage - 1))
10601 		bsi->highest_ppage = next_ppage - 1;
10602 
10603 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10604 	if (ret < 0)
10605 		return ret;
10606 	bsi->nr_extents += ret;
10607 	bsi->nr_pages += nr_pages;
10608 	return 0;
10609 }
10610 
btrfs_swap_deactivate(struct file * file)10611 static void btrfs_swap_deactivate(struct file *file)
10612 {
10613 	struct inode *inode = file_inode(file);
10614 
10615 	btrfs_free_swapfile_pins(inode);
10616 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10617 }
10618 
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10619 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10620 			       sector_t *span)
10621 {
10622 	struct inode *inode = file_inode(file);
10623 	struct btrfs_root *root = BTRFS_I(inode)->root;
10624 	struct btrfs_fs_info *fs_info = root->fs_info;
10625 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10626 	struct extent_state *cached_state = NULL;
10627 	struct extent_map *em = NULL;
10628 	struct btrfs_device *device = NULL;
10629 	struct btrfs_swap_info bsi = {
10630 		.lowest_ppage = (sector_t)-1ULL,
10631 	};
10632 	int ret = 0;
10633 	u64 isize;
10634 	u64 start;
10635 
10636 	/*
10637 	 * If the swap file was just created, make sure delalloc is done. If the
10638 	 * file changes again after this, the user is doing something stupid and
10639 	 * we don't really care.
10640 	 */
10641 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10642 	if (ret)
10643 		return ret;
10644 
10645 	/*
10646 	 * The inode is locked, so these flags won't change after we check them.
10647 	 */
10648 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10649 		btrfs_warn(fs_info, "swapfile must not be compressed");
10650 		return -EINVAL;
10651 	}
10652 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10653 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10654 		return -EINVAL;
10655 	}
10656 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10657 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10658 		return -EINVAL;
10659 	}
10660 
10661 	/*
10662 	 * Balance or device remove/replace/resize can move stuff around from
10663 	 * under us. The exclop protection makes sure they aren't running/won't
10664 	 * run concurrently while we are mapping the swap extents, and
10665 	 * fs_info->swapfile_pins prevents them from running while the swap
10666 	 * file is active and moving the extents. Note that this also prevents
10667 	 * a concurrent device add which isn't actually necessary, but it's not
10668 	 * really worth the trouble to allow it.
10669 	 */
10670 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10671 		btrfs_warn(fs_info,
10672 	   "cannot activate swapfile while exclusive operation is running");
10673 		return -EBUSY;
10674 	}
10675 
10676 	/*
10677 	 * Prevent snapshot creation while we are activating the swap file.
10678 	 * We do not want to race with snapshot creation. If snapshot creation
10679 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10680 	 * completes before the first write into the swap file after it is
10681 	 * activated, than that write would fallback to COW.
10682 	 */
10683 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10684 		btrfs_exclop_finish(fs_info);
10685 		btrfs_warn(fs_info,
10686 	   "cannot activate swapfile because snapshot creation is in progress");
10687 		return -EINVAL;
10688 	}
10689 	/*
10690 	 * Snapshots can create extents which require COW even if NODATACOW is
10691 	 * set. We use this counter to prevent snapshots. We must increment it
10692 	 * before walking the extents because we don't want a concurrent
10693 	 * snapshot to run after we've already checked the extents.
10694 	 */
10695 	atomic_inc(&root->nr_swapfiles);
10696 
10697 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10698 
10699 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10700 	start = 0;
10701 	while (start < isize) {
10702 		u64 logical_block_start, physical_block_start;
10703 		struct btrfs_block_group *bg;
10704 		u64 len = isize - start;
10705 
10706 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10707 		if (IS_ERR(em)) {
10708 			ret = PTR_ERR(em);
10709 			goto out;
10710 		}
10711 
10712 		if (em->block_start == EXTENT_MAP_HOLE) {
10713 			btrfs_warn(fs_info, "swapfile must not have holes");
10714 			ret = -EINVAL;
10715 			goto out;
10716 		}
10717 		if (em->block_start == EXTENT_MAP_INLINE) {
10718 			/*
10719 			 * It's unlikely we'll ever actually find ourselves
10720 			 * here, as a file small enough to fit inline won't be
10721 			 * big enough to store more than the swap header, but in
10722 			 * case something changes in the future, let's catch it
10723 			 * here rather than later.
10724 			 */
10725 			btrfs_warn(fs_info, "swapfile must not be inline");
10726 			ret = -EINVAL;
10727 			goto out;
10728 		}
10729 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10730 			btrfs_warn(fs_info, "swapfile must not be compressed");
10731 			ret = -EINVAL;
10732 			goto out;
10733 		}
10734 
10735 		logical_block_start = em->block_start + (start - em->start);
10736 		len = min(len, em->len - (start - em->start));
10737 		free_extent_map(em);
10738 		em = NULL;
10739 
10740 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10741 		if (ret < 0) {
10742 			goto out;
10743 		} else if (ret) {
10744 			ret = 0;
10745 		} else {
10746 			btrfs_warn(fs_info,
10747 				   "swapfile must not be copy-on-write");
10748 			ret = -EINVAL;
10749 			goto out;
10750 		}
10751 
10752 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10753 		if (IS_ERR(em)) {
10754 			ret = PTR_ERR(em);
10755 			goto out;
10756 		}
10757 
10758 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10759 			btrfs_warn(fs_info,
10760 				   "swapfile must have single data profile");
10761 			ret = -EINVAL;
10762 			goto out;
10763 		}
10764 
10765 		if (device == NULL) {
10766 			device = em->map_lookup->stripes[0].dev;
10767 			ret = btrfs_add_swapfile_pin(inode, device, false);
10768 			if (ret == 1)
10769 				ret = 0;
10770 			else if (ret)
10771 				goto out;
10772 		} else if (device != em->map_lookup->stripes[0].dev) {
10773 			btrfs_warn(fs_info, "swapfile must be on one device");
10774 			ret = -EINVAL;
10775 			goto out;
10776 		}
10777 
10778 		physical_block_start = (em->map_lookup->stripes[0].physical +
10779 					(logical_block_start - em->start));
10780 		len = min(len, em->len - (logical_block_start - em->start));
10781 		free_extent_map(em);
10782 		em = NULL;
10783 
10784 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10785 		if (!bg) {
10786 			btrfs_warn(fs_info,
10787 			   "could not find block group containing swapfile");
10788 			ret = -EINVAL;
10789 			goto out;
10790 		}
10791 
10792 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10793 			btrfs_warn(fs_info,
10794 			   "block group for swapfile at %llu is read-only%s",
10795 			   bg->start,
10796 			   atomic_read(&fs_info->scrubs_running) ?
10797 				       " (scrub running)" : "");
10798 			btrfs_put_block_group(bg);
10799 			ret = -EINVAL;
10800 			goto out;
10801 		}
10802 
10803 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10804 		if (ret) {
10805 			btrfs_put_block_group(bg);
10806 			if (ret == 1)
10807 				ret = 0;
10808 			else
10809 				goto out;
10810 		}
10811 
10812 		if (bsi.block_len &&
10813 		    bsi.block_start + bsi.block_len == physical_block_start) {
10814 			bsi.block_len += len;
10815 		} else {
10816 			if (bsi.block_len) {
10817 				ret = btrfs_add_swap_extent(sis, &bsi);
10818 				if (ret)
10819 					goto out;
10820 			}
10821 			bsi.start = start;
10822 			bsi.block_start = physical_block_start;
10823 			bsi.block_len = len;
10824 		}
10825 
10826 		start += len;
10827 	}
10828 
10829 	if (bsi.block_len)
10830 		ret = btrfs_add_swap_extent(sis, &bsi);
10831 
10832 out:
10833 	if (!IS_ERR_OR_NULL(em))
10834 		free_extent_map(em);
10835 
10836 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10837 
10838 	if (ret)
10839 		btrfs_swap_deactivate(file);
10840 
10841 	btrfs_drew_write_unlock(&root->snapshot_lock);
10842 
10843 	btrfs_exclop_finish(fs_info);
10844 
10845 	if (ret)
10846 		return ret;
10847 
10848 	if (device)
10849 		sis->bdev = device->bdev;
10850 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10851 	sis->max = bsi.nr_pages;
10852 	sis->pages = bsi.nr_pages - 1;
10853 	sis->highest_bit = bsi.nr_pages - 1;
10854 	return bsi.nr_extents;
10855 }
10856 #else
btrfs_swap_deactivate(struct file * file)10857 static void btrfs_swap_deactivate(struct file *file)
10858 {
10859 }
10860 
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10861 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10862 			       sector_t *span)
10863 {
10864 	return -EOPNOTSUPP;
10865 }
10866 #endif
10867 
10868 /*
10869  * Update the number of bytes used in the VFS' inode. When we replace extents in
10870  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10871  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10872  * always get a correct value.
10873  */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10874 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10875 			      const u64 add_bytes,
10876 			      const u64 del_bytes)
10877 {
10878 	if (add_bytes == del_bytes)
10879 		return;
10880 
10881 	spin_lock(&inode->lock);
10882 	if (del_bytes > 0)
10883 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10884 	if (add_bytes > 0)
10885 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10886 	spin_unlock(&inode->lock);
10887 }
10888 
10889 static const struct inode_operations btrfs_dir_inode_operations = {
10890 	.getattr	= btrfs_getattr,
10891 	.lookup		= btrfs_lookup,
10892 	.create		= btrfs_create,
10893 	.unlink		= btrfs_unlink,
10894 	.link		= btrfs_link,
10895 	.mkdir		= btrfs_mkdir,
10896 	.rmdir		= btrfs_rmdir,
10897 	.rename		= btrfs_rename2,
10898 	.symlink	= btrfs_symlink,
10899 	.setattr	= btrfs_setattr,
10900 	.mknod		= btrfs_mknod,
10901 	.listxattr	= btrfs_listxattr,
10902 	.permission	= btrfs_permission,
10903 	.get_acl	= btrfs_get_acl,
10904 	.set_acl	= btrfs_set_acl,
10905 	.update_time	= btrfs_update_time,
10906 	.tmpfile        = btrfs_tmpfile,
10907 	.fileattr_get	= btrfs_fileattr_get,
10908 	.fileattr_set	= btrfs_fileattr_set,
10909 };
10910 
10911 static const struct file_operations btrfs_dir_file_operations = {
10912 	.llseek		= generic_file_llseek,
10913 	.read		= generic_read_dir,
10914 	.iterate_shared	= btrfs_real_readdir,
10915 	.open		= btrfs_opendir,
10916 	.unlocked_ioctl	= btrfs_ioctl,
10917 #ifdef CONFIG_COMPAT
10918 	.compat_ioctl	= btrfs_compat_ioctl,
10919 #endif
10920 	.release        = btrfs_release_file,
10921 	.fsync		= btrfs_sync_file,
10922 };
10923 
10924 /*
10925  * btrfs doesn't support the bmap operation because swapfiles
10926  * use bmap to make a mapping of extents in the file.  They assume
10927  * these extents won't change over the life of the file and they
10928  * use the bmap result to do IO directly to the drive.
10929  *
10930  * the btrfs bmap call would return logical addresses that aren't
10931  * suitable for IO and they also will change frequently as COW
10932  * operations happen.  So, swapfile + btrfs == corruption.
10933  *
10934  * For now we're avoiding this by dropping bmap.
10935  */
10936 static const struct address_space_operations btrfs_aops = {
10937 	.readpage	= btrfs_readpage,
10938 	.writepage	= btrfs_writepage,
10939 	.writepages	= btrfs_writepages,
10940 	.readahead	= btrfs_readahead,
10941 	.direct_IO	= noop_direct_IO,
10942 	.invalidatepage = btrfs_invalidatepage,
10943 	.releasepage	= btrfs_releasepage,
10944 #ifdef CONFIG_MIGRATION
10945 	.migratepage	= btrfs_migratepage,
10946 #endif
10947 	.set_page_dirty	= btrfs_set_page_dirty,
10948 	.error_remove_page = generic_error_remove_page,
10949 	.swap_activate	= btrfs_swap_activate,
10950 	.swap_deactivate = btrfs_swap_deactivate,
10951 };
10952 
10953 static const struct inode_operations btrfs_file_inode_operations = {
10954 	.getattr	= btrfs_getattr,
10955 	.setattr	= btrfs_setattr,
10956 	.listxattr      = btrfs_listxattr,
10957 	.permission	= btrfs_permission,
10958 	.fiemap		= btrfs_fiemap,
10959 	.get_acl	= btrfs_get_acl,
10960 	.set_acl	= btrfs_set_acl,
10961 	.update_time	= btrfs_update_time,
10962 	.fileattr_get	= btrfs_fileattr_get,
10963 	.fileattr_set	= btrfs_fileattr_set,
10964 };
10965 static const struct inode_operations btrfs_special_inode_operations = {
10966 	.getattr	= btrfs_getattr,
10967 	.setattr	= btrfs_setattr,
10968 	.permission	= btrfs_permission,
10969 	.listxattr	= btrfs_listxattr,
10970 	.get_acl	= btrfs_get_acl,
10971 	.set_acl	= btrfs_set_acl,
10972 	.update_time	= btrfs_update_time,
10973 };
10974 static const struct inode_operations btrfs_symlink_inode_operations = {
10975 	.get_link	= page_get_link,
10976 	.getattr	= btrfs_getattr,
10977 	.setattr	= btrfs_setattr,
10978 	.permission	= btrfs_permission,
10979 	.listxattr	= btrfs_listxattr,
10980 	.update_time	= btrfs_update_time,
10981 };
10982 
10983 const struct dentry_operations btrfs_dentry_operations = {
10984 	.d_delete	= btrfs_dentry_delete,
10985 };
10986