1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
37 #include "xattr.h"
38 #include "tree-log.h"
39 #include "volumes.h"
40 #include "compression.h"
41 #include "locking.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
44 #include "backref.h"
45 #include "props.h"
46 #include "qgroup.h"
47 #include "dedupe.h"
48 
49 struct btrfs_iget_args {
50 	struct btrfs_key *location;
51 	struct btrfs_root *root;
52 };
53 
54 struct btrfs_dio_data {
55 	u64 reserve;
56 	u64 unsubmitted_oe_range_start;
57 	u64 unsubmitted_oe_range_end;
58 	int overwrite;
59 };
60 
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct address_space_operations btrfs_symlink_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
70 
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75 
76 #define S_SHIFT 12
77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct inode *inode,
91 				   struct page *locked_page,
92 				   u64 start, u64 end, u64 delalloc_end,
93 				   int *page_started, unsigned long *nr_written,
94 				   int unlock, struct btrfs_dedupe_hash *hash);
95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 				       u64 orig_start, u64 block_start,
97 				       u64 block_len, u64 orig_block_len,
98 				       u64 ram_bytes, int compress_type,
99 				       int type);
100 
101 static void __endio_write_update_ordered(struct inode *inode,
102 					 const u64 offset, const u64 bytes,
103 					 const bool uptodate);
104 
105 /*
106  * Cleanup all submitted ordered extents in specified range to handle errors
107  * from the fill_dellaloc() callback.
108  *
109  * NOTE: caller must ensure that when an error happens, it can not call
110  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112  * to be released, which we want to happen only when finishing the ordered
113  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
114  * fill_delalloc() callback already does proper cleanup for the first page of
115  * the range, that is, it invokes the callback writepage_end_io_hook() for the
116  * range of the first page.
117  */
btrfs_cleanup_ordered_extents(struct inode * inode,const u64 offset,const u64 bytes)118 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
119 						 const u64 offset,
120 						 const u64 bytes)
121 {
122 	unsigned long index = offset >> PAGE_SHIFT;
123 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
124 	struct page *page;
125 
126 	while (index <= end_index) {
127 		page = find_get_page(inode->i_mapping, index);
128 		index++;
129 		if (!page)
130 			continue;
131 		ClearPagePrivate2(page);
132 		put_page(page);
133 	}
134 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
135 					    bytes - PAGE_SIZE, false);
136 }
137 
138 static int btrfs_dirty_inode(struct inode *inode);
139 
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)141 void btrfs_test_inode_set_ops(struct inode *inode)
142 {
143 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
144 }
145 #endif
146 
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
148 				     struct inode *inode,  struct inode *dir,
149 				     const struct qstr *qstr)
150 {
151 	int err;
152 
153 	err = btrfs_init_acl(trans, inode, dir);
154 	if (!err)
155 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
156 	return err;
157 }
158 
159 /*
160  * this does all the hard work for inserting an inline extent into
161  * the btree.  The caller should have done a btrfs_drop_extents so that
162  * no overlapping inline items exist in the btree
163  */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)164 static int insert_inline_extent(struct btrfs_trans_handle *trans,
165 				struct btrfs_path *path, int extent_inserted,
166 				struct btrfs_root *root, struct inode *inode,
167 				u64 start, size_t size, size_t compressed_size,
168 				int compress_type,
169 				struct page **compressed_pages)
170 {
171 	struct extent_buffer *leaf;
172 	struct page *page = NULL;
173 	char *kaddr;
174 	unsigned long ptr;
175 	struct btrfs_file_extent_item *ei;
176 	int ret;
177 	size_t cur_size = size;
178 	unsigned long offset;
179 
180 	if (compressed_size && compressed_pages)
181 		cur_size = compressed_size;
182 
183 	inode_add_bytes(inode, size);
184 
185 	if (!extent_inserted) {
186 		struct btrfs_key key;
187 		size_t datasize;
188 
189 		key.objectid = btrfs_ino(BTRFS_I(inode));
190 		key.offset = start;
191 		key.type = BTRFS_EXTENT_DATA_KEY;
192 
193 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
194 		path->leave_spinning = 1;
195 		ret = btrfs_insert_empty_item(trans, root, path, &key,
196 					      datasize);
197 		if (ret)
198 			goto fail;
199 	}
200 	leaf = path->nodes[0];
201 	ei = btrfs_item_ptr(leaf, path->slots[0],
202 			    struct btrfs_file_extent_item);
203 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
204 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
205 	btrfs_set_file_extent_encryption(leaf, ei, 0);
206 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
207 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
208 	ptr = btrfs_file_extent_inline_start(ei);
209 
210 	if (compress_type != BTRFS_COMPRESS_NONE) {
211 		struct page *cpage;
212 		int i = 0;
213 		while (compressed_size > 0) {
214 			cpage = compressed_pages[i];
215 			cur_size = min_t(unsigned long, compressed_size,
216 				       PAGE_SIZE);
217 
218 			kaddr = kmap_atomic(cpage);
219 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
220 			kunmap_atomic(kaddr);
221 
222 			i++;
223 			ptr += cur_size;
224 			compressed_size -= cur_size;
225 		}
226 		btrfs_set_file_extent_compression(leaf, ei,
227 						  compress_type);
228 	} else {
229 		page = find_get_page(inode->i_mapping,
230 				     start >> PAGE_SHIFT);
231 		btrfs_set_file_extent_compression(leaf, ei, 0);
232 		kaddr = kmap_atomic(page);
233 		offset = start & (PAGE_SIZE - 1);
234 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
235 		kunmap_atomic(kaddr);
236 		put_page(page);
237 	}
238 	btrfs_mark_buffer_dirty(leaf);
239 	btrfs_release_path(path);
240 
241 	/*
242 	 * we're an inline extent, so nobody can
243 	 * extend the file past i_size without locking
244 	 * a page we already have locked.
245 	 *
246 	 * We must do any isize and inode updates
247 	 * before we unlock the pages.  Otherwise we
248 	 * could end up racing with unlink.
249 	 */
250 	BTRFS_I(inode)->disk_i_size = inode->i_size;
251 	ret = btrfs_update_inode(trans, root, inode);
252 
253 fail:
254 	return ret;
255 }
256 
257 
258 /*
259  * conditionally insert an inline extent into the file.  This
260  * does the checks required to make sure the data is small enough
261  * to fit as an inline extent.
262  */
cow_file_range_inline(struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)263 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
264 					  u64 end, size_t compressed_size,
265 					  int compress_type,
266 					  struct page **compressed_pages)
267 {
268 	struct btrfs_root *root = BTRFS_I(inode)->root;
269 	struct btrfs_fs_info *fs_info = root->fs_info;
270 	struct btrfs_trans_handle *trans;
271 	u64 isize = i_size_read(inode);
272 	u64 actual_end = min(end + 1, isize);
273 	u64 inline_len = actual_end - start;
274 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
275 	u64 data_len = inline_len;
276 	int ret;
277 	struct btrfs_path *path;
278 	int extent_inserted = 0;
279 	u32 extent_item_size;
280 
281 	if (compressed_size)
282 		data_len = compressed_size;
283 
284 	if (start > 0 ||
285 	    actual_end > fs_info->sectorsize ||
286 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
287 	    (!compressed_size &&
288 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
289 	    end + 1 < isize ||
290 	    data_len > fs_info->max_inline) {
291 		return 1;
292 	}
293 
294 	path = btrfs_alloc_path();
295 	if (!path)
296 		return -ENOMEM;
297 
298 	trans = btrfs_join_transaction(root);
299 	if (IS_ERR(trans)) {
300 		btrfs_free_path(path);
301 		return PTR_ERR(trans);
302 	}
303 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
304 
305 	if (compressed_size && compressed_pages)
306 		extent_item_size = btrfs_file_extent_calc_inline_size(
307 		   compressed_size);
308 	else
309 		extent_item_size = btrfs_file_extent_calc_inline_size(
310 		    inline_len);
311 
312 	ret = __btrfs_drop_extents(trans, root, inode, path,
313 				   start, aligned_end, NULL,
314 				   1, 1, extent_item_size, &extent_inserted);
315 	if (ret) {
316 		btrfs_abort_transaction(trans, ret);
317 		goto out;
318 	}
319 
320 	if (isize > actual_end)
321 		inline_len = min_t(u64, isize, actual_end);
322 	ret = insert_inline_extent(trans, path, extent_inserted,
323 				   root, inode, start,
324 				   inline_len, compressed_size,
325 				   compress_type, compressed_pages);
326 	if (ret && ret != -ENOSPC) {
327 		btrfs_abort_transaction(trans, ret);
328 		goto out;
329 	} else if (ret == -ENOSPC) {
330 		ret = 1;
331 		goto out;
332 	}
333 
334 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
335 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
336 out:
337 	/*
338 	 * Don't forget to free the reserved space, as for inlined extent
339 	 * it won't count as data extent, free them directly here.
340 	 * And at reserve time, it's always aligned to page size, so
341 	 * just free one page here.
342 	 */
343 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
344 	btrfs_free_path(path);
345 	btrfs_end_transaction(trans);
346 	return ret;
347 }
348 
349 struct async_extent {
350 	u64 start;
351 	u64 ram_size;
352 	u64 compressed_size;
353 	struct page **pages;
354 	unsigned long nr_pages;
355 	int compress_type;
356 	struct list_head list;
357 };
358 
359 struct async_cow {
360 	struct inode *inode;
361 	struct btrfs_root *root;
362 	struct page *locked_page;
363 	u64 start;
364 	u64 end;
365 	unsigned int write_flags;
366 	struct list_head extents;
367 	struct btrfs_work work;
368 };
369 
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)370 static noinline int add_async_extent(struct async_cow *cow,
371 				     u64 start, u64 ram_size,
372 				     u64 compressed_size,
373 				     struct page **pages,
374 				     unsigned long nr_pages,
375 				     int compress_type)
376 {
377 	struct async_extent *async_extent;
378 
379 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
380 	BUG_ON(!async_extent); /* -ENOMEM */
381 	async_extent->start = start;
382 	async_extent->ram_size = ram_size;
383 	async_extent->compressed_size = compressed_size;
384 	async_extent->pages = pages;
385 	async_extent->nr_pages = nr_pages;
386 	async_extent->compress_type = compress_type;
387 	list_add_tail(&async_extent->list, &cow->extents);
388 	return 0;
389 }
390 
inode_need_compress(struct inode * inode,u64 start,u64 end)391 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
392 {
393 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
394 
395 	/* force compress */
396 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
397 		return 1;
398 	/* defrag ioctl */
399 	if (BTRFS_I(inode)->defrag_compress)
400 		return 1;
401 	/* bad compression ratios */
402 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
403 		return 0;
404 	if (btrfs_test_opt(fs_info, COMPRESS) ||
405 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
406 	    BTRFS_I(inode)->prop_compress)
407 		return btrfs_compress_heuristic(inode, start, end);
408 	return 0;
409 }
410 
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)411 static inline void inode_should_defrag(struct btrfs_inode *inode,
412 		u64 start, u64 end, u64 num_bytes, u64 small_write)
413 {
414 	/* If this is a small write inside eof, kick off a defrag */
415 	if (num_bytes < small_write &&
416 	    (start > 0 || end + 1 < inode->disk_i_size))
417 		btrfs_add_inode_defrag(NULL, inode);
418 }
419 
420 /*
421  * we create compressed extents in two phases.  The first
422  * phase compresses a range of pages that have already been
423  * locked (both pages and state bits are locked).
424  *
425  * This is done inside an ordered work queue, and the compression
426  * is spread across many cpus.  The actual IO submission is step
427  * two, and the ordered work queue takes care of making sure that
428  * happens in the same order things were put onto the queue by
429  * writepages and friends.
430  *
431  * If this code finds it can't get good compression, it puts an
432  * entry onto the work queue to write the uncompressed bytes.  This
433  * makes sure that both compressed inodes and uncompressed inodes
434  * are written in the same order that the flusher thread sent them
435  * down.
436  */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)437 static noinline void compress_file_range(struct inode *inode,
438 					struct page *locked_page,
439 					u64 start, u64 end,
440 					struct async_cow *async_cow,
441 					int *num_added)
442 {
443 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
444 	u64 blocksize = fs_info->sectorsize;
445 	u64 actual_end;
446 	u64 isize = i_size_read(inode);
447 	int ret = 0;
448 	struct page **pages = NULL;
449 	unsigned long nr_pages;
450 	unsigned long total_compressed = 0;
451 	unsigned long total_in = 0;
452 	int i;
453 	int will_compress;
454 	int compress_type = fs_info->compress_type;
455 	int redirty = 0;
456 
457 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
458 			SZ_16K);
459 
460 	actual_end = min_t(u64, isize, end + 1);
461 again:
462 	will_compress = 0;
463 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
464 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
465 	nr_pages = min_t(unsigned long, nr_pages,
466 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
467 
468 	/*
469 	 * we don't want to send crud past the end of i_size through
470 	 * compression, that's just a waste of CPU time.  So, if the
471 	 * end of the file is before the start of our current
472 	 * requested range of bytes, we bail out to the uncompressed
473 	 * cleanup code that can deal with all of this.
474 	 *
475 	 * It isn't really the fastest way to fix things, but this is a
476 	 * very uncommon corner.
477 	 */
478 	if (actual_end <= start)
479 		goto cleanup_and_bail_uncompressed;
480 
481 	total_compressed = actual_end - start;
482 
483 	/*
484 	 * skip compression for a small file range(<=blocksize) that
485 	 * isn't an inline extent, since it doesn't save disk space at all.
486 	 */
487 	if (total_compressed <= blocksize &&
488 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
489 		goto cleanup_and_bail_uncompressed;
490 
491 	total_compressed = min_t(unsigned long, total_compressed,
492 			BTRFS_MAX_UNCOMPRESSED);
493 	total_in = 0;
494 	ret = 0;
495 
496 	/*
497 	 * we do compression for mount -o compress and when the
498 	 * inode has not been flagged as nocompress.  This flag can
499 	 * change at any time if we discover bad compression ratios.
500 	 */
501 	if (inode_need_compress(inode, start, end)) {
502 		WARN_ON(pages);
503 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
504 		if (!pages) {
505 			/* just bail out to the uncompressed code */
506 			goto cont;
507 		}
508 
509 		if (BTRFS_I(inode)->defrag_compress)
510 			compress_type = BTRFS_I(inode)->defrag_compress;
511 		else if (BTRFS_I(inode)->prop_compress)
512 			compress_type = BTRFS_I(inode)->prop_compress;
513 
514 		/*
515 		 * we need to call clear_page_dirty_for_io on each
516 		 * page in the range.  Otherwise applications with the file
517 		 * mmap'd can wander in and change the page contents while
518 		 * we are compressing them.
519 		 *
520 		 * If the compression fails for any reason, we set the pages
521 		 * dirty again later on.
522 		 *
523 		 * Note that the remaining part is redirtied, the start pointer
524 		 * has moved, the end is the original one.
525 		 */
526 		if (!redirty) {
527 			extent_range_clear_dirty_for_io(inode, start, end);
528 			redirty = 1;
529 		}
530 
531 		/* Compression level is applied here and only here */
532 		ret = btrfs_compress_pages(
533 			compress_type | (fs_info->compress_level << 4),
534 					   inode->i_mapping, start,
535 					   pages,
536 					   &nr_pages,
537 					   &total_in,
538 					   &total_compressed);
539 
540 		if (!ret) {
541 			unsigned long offset = total_compressed &
542 				(PAGE_SIZE - 1);
543 			struct page *page = pages[nr_pages - 1];
544 			char *kaddr;
545 
546 			/* zero the tail end of the last page, we might be
547 			 * sending it down to disk
548 			 */
549 			if (offset) {
550 				kaddr = kmap_atomic(page);
551 				memset(kaddr + offset, 0,
552 				       PAGE_SIZE - offset);
553 				kunmap_atomic(kaddr);
554 			}
555 			will_compress = 1;
556 		}
557 	}
558 cont:
559 	if (start == 0) {
560 		/* lets try to make an inline extent */
561 		if (ret || total_in < actual_end) {
562 			/* we didn't compress the entire range, try
563 			 * to make an uncompressed inline extent.
564 			 */
565 			ret = cow_file_range_inline(inode, start, end, 0,
566 						    BTRFS_COMPRESS_NONE, NULL);
567 		} else {
568 			/* try making a compressed inline extent */
569 			ret = cow_file_range_inline(inode, start, end,
570 						    total_compressed,
571 						    compress_type, pages);
572 		}
573 		if (ret <= 0) {
574 			unsigned long clear_flags = EXTENT_DELALLOC |
575 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
576 				EXTENT_DO_ACCOUNTING;
577 			unsigned long page_error_op;
578 
579 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
580 
581 			/*
582 			 * inline extent creation worked or returned error,
583 			 * we don't need to create any more async work items.
584 			 * Unlock and free up our temp pages.
585 			 *
586 			 * We use DO_ACCOUNTING here because we need the
587 			 * delalloc_release_metadata to be done _after_ we drop
588 			 * our outstanding extent for clearing delalloc for this
589 			 * range.
590 			 */
591 			extent_clear_unlock_delalloc(inode, start, end, end,
592 						     NULL, clear_flags,
593 						     PAGE_UNLOCK |
594 						     PAGE_CLEAR_DIRTY |
595 						     PAGE_SET_WRITEBACK |
596 						     page_error_op |
597 						     PAGE_END_WRITEBACK);
598 			goto free_pages_out;
599 		}
600 	}
601 
602 	if (will_compress) {
603 		/*
604 		 * we aren't doing an inline extent round the compressed size
605 		 * up to a block size boundary so the allocator does sane
606 		 * things
607 		 */
608 		total_compressed = ALIGN(total_compressed, blocksize);
609 
610 		/*
611 		 * one last check to make sure the compression is really a
612 		 * win, compare the page count read with the blocks on disk,
613 		 * compression must free at least one sector size
614 		 */
615 		total_in = ALIGN(total_in, PAGE_SIZE);
616 		if (total_compressed + blocksize <= total_in) {
617 			*num_added += 1;
618 
619 			/*
620 			 * The async work queues will take care of doing actual
621 			 * allocation on disk for these compressed pages, and
622 			 * will submit them to the elevator.
623 			 */
624 			add_async_extent(async_cow, start, total_in,
625 					total_compressed, pages, nr_pages,
626 					compress_type);
627 
628 			if (start + total_in < end) {
629 				start += total_in;
630 				pages = NULL;
631 				cond_resched();
632 				goto again;
633 			}
634 			return;
635 		}
636 	}
637 	if (pages) {
638 		/*
639 		 * the compression code ran but failed to make things smaller,
640 		 * free any pages it allocated and our page pointer array
641 		 */
642 		for (i = 0; i < nr_pages; i++) {
643 			WARN_ON(pages[i]->mapping);
644 			put_page(pages[i]);
645 		}
646 		kfree(pages);
647 		pages = NULL;
648 		total_compressed = 0;
649 		nr_pages = 0;
650 
651 		/* flag the file so we don't compress in the future */
652 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
653 		    !(BTRFS_I(inode)->prop_compress)) {
654 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
655 		}
656 	}
657 cleanup_and_bail_uncompressed:
658 	/*
659 	 * No compression, but we still need to write the pages in the file
660 	 * we've been given so far.  redirty the locked page if it corresponds
661 	 * to our extent and set things up for the async work queue to run
662 	 * cow_file_range to do the normal delalloc dance.
663 	 */
664 	if (page_offset(locked_page) >= start &&
665 	    page_offset(locked_page) <= end)
666 		__set_page_dirty_nobuffers(locked_page);
667 		/* unlocked later on in the async handlers */
668 
669 	if (redirty)
670 		extent_range_redirty_for_io(inode, start, end);
671 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
672 			 BTRFS_COMPRESS_NONE);
673 	*num_added += 1;
674 
675 	return;
676 
677 free_pages_out:
678 	for (i = 0; i < nr_pages; i++) {
679 		WARN_ON(pages[i]->mapping);
680 		put_page(pages[i]);
681 	}
682 	kfree(pages);
683 }
684 
free_async_extent_pages(struct async_extent * async_extent)685 static void free_async_extent_pages(struct async_extent *async_extent)
686 {
687 	int i;
688 
689 	if (!async_extent->pages)
690 		return;
691 
692 	for (i = 0; i < async_extent->nr_pages; i++) {
693 		WARN_ON(async_extent->pages[i]->mapping);
694 		put_page(async_extent->pages[i]);
695 	}
696 	kfree(async_extent->pages);
697 	async_extent->nr_pages = 0;
698 	async_extent->pages = NULL;
699 }
700 
701 /*
702  * phase two of compressed writeback.  This is the ordered portion
703  * of the code, which only gets called in the order the work was
704  * queued.  We walk all the async extents created by compress_file_range
705  * and send them down to the disk.
706  */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)707 static noinline void submit_compressed_extents(struct inode *inode,
708 					      struct async_cow *async_cow)
709 {
710 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
711 	struct async_extent *async_extent;
712 	u64 alloc_hint = 0;
713 	struct btrfs_key ins;
714 	struct extent_map *em;
715 	struct btrfs_root *root = BTRFS_I(inode)->root;
716 	struct extent_io_tree *io_tree;
717 	int ret = 0;
718 
719 again:
720 	while (!list_empty(&async_cow->extents)) {
721 		async_extent = list_entry(async_cow->extents.next,
722 					  struct async_extent, list);
723 		list_del(&async_extent->list);
724 
725 		io_tree = &BTRFS_I(inode)->io_tree;
726 
727 retry:
728 		/* did the compression code fall back to uncompressed IO? */
729 		if (!async_extent->pages) {
730 			int page_started = 0;
731 			unsigned long nr_written = 0;
732 
733 			lock_extent(io_tree, async_extent->start,
734 					 async_extent->start +
735 					 async_extent->ram_size - 1);
736 
737 			/* allocate blocks */
738 			ret = cow_file_range(inode, async_cow->locked_page,
739 					     async_extent->start,
740 					     async_extent->start +
741 					     async_extent->ram_size - 1,
742 					     async_extent->start +
743 					     async_extent->ram_size - 1,
744 					     &page_started, &nr_written, 0,
745 					     NULL);
746 
747 			/* JDM XXX */
748 
749 			/*
750 			 * if page_started, cow_file_range inserted an
751 			 * inline extent and took care of all the unlocking
752 			 * and IO for us.  Otherwise, we need to submit
753 			 * all those pages down to the drive.
754 			 */
755 			if (!page_started && !ret)
756 				extent_write_locked_range(inode,
757 						  async_extent->start,
758 						  async_extent->start +
759 						  async_extent->ram_size - 1,
760 						  WB_SYNC_ALL);
761 			else if (ret)
762 				unlock_page(async_cow->locked_page);
763 			kfree(async_extent);
764 			cond_resched();
765 			continue;
766 		}
767 
768 		lock_extent(io_tree, async_extent->start,
769 			    async_extent->start + async_extent->ram_size - 1);
770 
771 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
772 					   async_extent->compressed_size,
773 					   async_extent->compressed_size,
774 					   0, alloc_hint, &ins, 1, 1);
775 		if (ret) {
776 			free_async_extent_pages(async_extent);
777 
778 			if (ret == -ENOSPC) {
779 				unlock_extent(io_tree, async_extent->start,
780 					      async_extent->start +
781 					      async_extent->ram_size - 1);
782 
783 				/*
784 				 * we need to redirty the pages if we decide to
785 				 * fallback to uncompressed IO, otherwise we
786 				 * will not submit these pages down to lower
787 				 * layers.
788 				 */
789 				extent_range_redirty_for_io(inode,
790 						async_extent->start,
791 						async_extent->start +
792 						async_extent->ram_size - 1);
793 
794 				goto retry;
795 			}
796 			goto out_free;
797 		}
798 		/*
799 		 * here we're doing allocation and writeback of the
800 		 * compressed pages
801 		 */
802 		em = create_io_em(inode, async_extent->start,
803 				  async_extent->ram_size, /* len */
804 				  async_extent->start, /* orig_start */
805 				  ins.objectid, /* block_start */
806 				  ins.offset, /* block_len */
807 				  ins.offset, /* orig_block_len */
808 				  async_extent->ram_size, /* ram_bytes */
809 				  async_extent->compress_type,
810 				  BTRFS_ORDERED_COMPRESSED);
811 		if (IS_ERR(em))
812 			/* ret value is not necessary due to void function */
813 			goto out_free_reserve;
814 		free_extent_map(em);
815 
816 		ret = btrfs_add_ordered_extent_compress(inode,
817 						async_extent->start,
818 						ins.objectid,
819 						async_extent->ram_size,
820 						ins.offset,
821 						BTRFS_ORDERED_COMPRESSED,
822 						async_extent->compress_type);
823 		if (ret) {
824 			btrfs_drop_extent_cache(BTRFS_I(inode),
825 						async_extent->start,
826 						async_extent->start +
827 						async_extent->ram_size - 1, 0);
828 			goto out_free_reserve;
829 		}
830 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
831 
832 		/*
833 		 * clear dirty, set writeback and unlock the pages.
834 		 */
835 		extent_clear_unlock_delalloc(inode, async_extent->start,
836 				async_extent->start +
837 				async_extent->ram_size - 1,
838 				async_extent->start +
839 				async_extent->ram_size - 1,
840 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
841 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
842 				PAGE_SET_WRITEBACK);
843 		if (btrfs_submit_compressed_write(inode,
844 				    async_extent->start,
845 				    async_extent->ram_size,
846 				    ins.objectid,
847 				    ins.offset, async_extent->pages,
848 				    async_extent->nr_pages,
849 				    async_cow->write_flags)) {
850 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851 			struct page *p = async_extent->pages[0];
852 			const u64 start = async_extent->start;
853 			const u64 end = start + async_extent->ram_size - 1;
854 
855 			p->mapping = inode->i_mapping;
856 			tree->ops->writepage_end_io_hook(p, start, end,
857 							 NULL, 0);
858 			p->mapping = NULL;
859 			extent_clear_unlock_delalloc(inode, start, end, end,
860 						     NULL, 0,
861 						     PAGE_END_WRITEBACK |
862 						     PAGE_SET_ERROR);
863 			free_async_extent_pages(async_extent);
864 		}
865 		alloc_hint = ins.objectid + ins.offset;
866 		kfree(async_extent);
867 		cond_resched();
868 	}
869 	return;
870 out_free_reserve:
871 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
872 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
873 out_free:
874 	extent_clear_unlock_delalloc(inode, async_extent->start,
875 				     async_extent->start +
876 				     async_extent->ram_size - 1,
877 				     async_extent->start +
878 				     async_extent->ram_size - 1,
879 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
880 				     EXTENT_DELALLOC_NEW |
881 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
884 				     PAGE_SET_ERROR);
885 	free_async_extent_pages(async_extent);
886 	kfree(async_extent);
887 	goto again;
888 }
889 
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
891 				      u64 num_bytes)
892 {
893 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894 	struct extent_map *em;
895 	u64 alloc_hint = 0;
896 
897 	read_lock(&em_tree->lock);
898 	em = search_extent_mapping(em_tree, start, num_bytes);
899 	if (em) {
900 		/*
901 		 * if block start isn't an actual block number then find the
902 		 * first block in this inode and use that as a hint.  If that
903 		 * block is also bogus then just don't worry about it.
904 		 */
905 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
906 			free_extent_map(em);
907 			em = search_extent_mapping(em_tree, 0, 0);
908 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909 				alloc_hint = em->block_start;
910 			if (em)
911 				free_extent_map(em);
912 		} else {
913 			alloc_hint = em->block_start;
914 			free_extent_map(em);
915 		}
916 	}
917 	read_unlock(&em_tree->lock);
918 
919 	return alloc_hint;
920 }
921 
922 /*
923  * when extent_io.c finds a delayed allocation range in the file,
924  * the call backs end up in this code.  The basic idea is to
925  * allocate extents on disk for the range, and create ordered data structs
926  * in ram to track those extents.
927  *
928  * locked_page is the page that writepage had locked already.  We use
929  * it to make sure we don't do extra locks or unlocks.
930  *
931  * *page_started is set to one if we unlock locked_page and do everything
932  * required to start IO on it.  It may be clean and already done with
933  * IO when we return.
934  */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,u64 delalloc_end,int * page_started,unsigned long * nr_written,int unlock,struct btrfs_dedupe_hash * hash)935 static noinline int cow_file_range(struct inode *inode,
936 				   struct page *locked_page,
937 				   u64 start, u64 end, u64 delalloc_end,
938 				   int *page_started, unsigned long *nr_written,
939 				   int unlock, struct btrfs_dedupe_hash *hash)
940 {
941 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
942 	struct btrfs_root *root = BTRFS_I(inode)->root;
943 	u64 alloc_hint = 0;
944 	u64 num_bytes;
945 	unsigned long ram_size;
946 	u64 cur_alloc_size = 0;
947 	u64 blocksize = fs_info->sectorsize;
948 	struct btrfs_key ins;
949 	struct extent_map *em;
950 	unsigned clear_bits;
951 	unsigned long page_ops;
952 	bool extent_reserved = false;
953 	int ret = 0;
954 
955 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
956 		WARN_ON_ONCE(1);
957 		ret = -EINVAL;
958 		goto out_unlock;
959 	}
960 
961 	num_bytes = ALIGN(end - start + 1, blocksize);
962 	num_bytes = max(blocksize,  num_bytes);
963 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
964 
965 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
966 
967 	if (start == 0) {
968 		/* lets try to make an inline extent */
969 		ret = cow_file_range_inline(inode, start, end, 0,
970 					    BTRFS_COMPRESS_NONE, NULL);
971 		if (ret == 0) {
972 			/*
973 			 * We use DO_ACCOUNTING here because we need the
974 			 * delalloc_release_metadata to be run _after_ we drop
975 			 * our outstanding extent for clearing delalloc for this
976 			 * range.
977 			 */
978 			extent_clear_unlock_delalloc(inode, start, end,
979 				     delalloc_end, NULL,
980 				     EXTENT_LOCKED | EXTENT_DELALLOC |
981 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
982 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
983 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
984 				     PAGE_END_WRITEBACK);
985 			*nr_written = *nr_written +
986 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
987 			*page_started = 1;
988 			goto out;
989 		} else if (ret < 0) {
990 			goto out_unlock;
991 		}
992 	}
993 
994 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
995 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
996 			start + num_bytes - 1, 0);
997 
998 	while (num_bytes > 0) {
999 		cur_alloc_size = num_bytes;
1000 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1001 					   fs_info->sectorsize, 0, alloc_hint,
1002 					   &ins, 1, 1);
1003 		if (ret < 0)
1004 			goto out_unlock;
1005 		cur_alloc_size = ins.offset;
1006 		extent_reserved = true;
1007 
1008 		ram_size = ins.offset;
1009 		em = create_io_em(inode, start, ins.offset, /* len */
1010 				  start, /* orig_start */
1011 				  ins.objectid, /* block_start */
1012 				  ins.offset, /* block_len */
1013 				  ins.offset, /* orig_block_len */
1014 				  ram_size, /* ram_bytes */
1015 				  BTRFS_COMPRESS_NONE, /* compress_type */
1016 				  BTRFS_ORDERED_REGULAR /* type */);
1017 		if (IS_ERR(em)) {
1018 			ret = PTR_ERR(em);
1019 			goto out_reserve;
1020 		}
1021 		free_extent_map(em);
1022 
1023 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1024 					       ram_size, cur_alloc_size, 0);
1025 		if (ret)
1026 			goto out_drop_extent_cache;
1027 
1028 		if (root->root_key.objectid ==
1029 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030 			ret = btrfs_reloc_clone_csums(inode, start,
1031 						      cur_alloc_size);
1032 			/*
1033 			 * Only drop cache here, and process as normal.
1034 			 *
1035 			 * We must not allow extent_clear_unlock_delalloc()
1036 			 * at out_unlock label to free meta of this ordered
1037 			 * extent, as its meta should be freed by
1038 			 * btrfs_finish_ordered_io().
1039 			 *
1040 			 * So we must continue until @start is increased to
1041 			 * skip current ordered extent.
1042 			 */
1043 			if (ret)
1044 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045 						start + ram_size - 1, 0);
1046 		}
1047 
1048 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1049 
1050 		/* we're not doing compressed IO, don't unlock the first
1051 		 * page (which the caller expects to stay locked), don't
1052 		 * clear any dirty bits and don't set any writeback bits
1053 		 *
1054 		 * Do set the Private2 bit so we know this page was properly
1055 		 * setup for writepage
1056 		 */
1057 		page_ops = unlock ? PAGE_UNLOCK : 0;
1058 		page_ops |= PAGE_SET_PRIVATE2;
1059 
1060 		extent_clear_unlock_delalloc(inode, start,
1061 					     start + ram_size - 1,
1062 					     delalloc_end, locked_page,
1063 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1064 					     page_ops);
1065 		if (num_bytes < cur_alloc_size)
1066 			num_bytes = 0;
1067 		else
1068 			num_bytes -= cur_alloc_size;
1069 		alloc_hint = ins.objectid + ins.offset;
1070 		start += cur_alloc_size;
1071 		extent_reserved = false;
1072 
1073 		/*
1074 		 * btrfs_reloc_clone_csums() error, since start is increased
1075 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 		 * free metadata of current ordered extent, we're OK to exit.
1077 		 */
1078 		if (ret)
1079 			goto out_unlock;
1080 	}
1081 out:
1082 	return ret;
1083 
1084 out_drop_extent_cache:
1085 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1086 out_reserve:
1087 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1088 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1089 out_unlock:
1090 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1092 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1093 		PAGE_END_WRITEBACK;
1094 	/*
1095 	 * If we reserved an extent for our delalloc range (or a subrange) and
1096 	 * failed to create the respective ordered extent, then it means that
1097 	 * when we reserved the extent we decremented the extent's size from
1098 	 * the data space_info's bytes_may_use counter and incremented the
1099 	 * space_info's bytes_reserved counter by the same amount. We must make
1100 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1103 	 */
1104 	if (extent_reserved) {
1105 		extent_clear_unlock_delalloc(inode, start,
1106 					     start + cur_alloc_size,
1107 					     start + cur_alloc_size,
1108 					     locked_page,
1109 					     clear_bits,
1110 					     page_ops);
1111 		start += cur_alloc_size;
1112 		if (start >= end)
1113 			goto out;
1114 	}
1115 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1116 				     locked_page,
1117 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1118 				     page_ops);
1119 	goto out;
1120 }
1121 
1122 /*
1123  * work queue call back to started compression on a file and pages
1124  */
async_cow_start(struct btrfs_work * work)1125 static noinline void async_cow_start(struct btrfs_work *work)
1126 {
1127 	struct async_cow *async_cow;
1128 	int num_added = 0;
1129 	async_cow = container_of(work, struct async_cow, work);
1130 
1131 	compress_file_range(async_cow->inode, async_cow->locked_page,
1132 			    async_cow->start, async_cow->end, async_cow,
1133 			    &num_added);
1134 	if (num_added == 0) {
1135 		btrfs_add_delayed_iput(async_cow->inode);
1136 		async_cow->inode = NULL;
1137 	}
1138 }
1139 
1140 /*
1141  * work queue call back to submit previously compressed pages
1142  */
async_cow_submit(struct btrfs_work * work)1143 static noinline void async_cow_submit(struct btrfs_work *work)
1144 {
1145 	struct btrfs_fs_info *fs_info;
1146 	struct async_cow *async_cow;
1147 	struct btrfs_root *root;
1148 	unsigned long nr_pages;
1149 
1150 	async_cow = container_of(work, struct async_cow, work);
1151 
1152 	root = async_cow->root;
1153 	fs_info = root->fs_info;
1154 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1155 		PAGE_SHIFT;
1156 
1157 	/* atomic_sub_return implies a barrier */
1158 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1159 	    5 * SZ_1M)
1160 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1161 
1162 	if (async_cow->inode)
1163 		submit_compressed_extents(async_cow->inode, async_cow);
1164 }
1165 
async_cow_free(struct btrfs_work * work)1166 static noinline void async_cow_free(struct btrfs_work *work)
1167 {
1168 	struct async_cow *async_cow;
1169 	async_cow = container_of(work, struct async_cow, work);
1170 	if (async_cow->inode)
1171 		btrfs_add_delayed_iput(async_cow->inode);
1172 	kfree(async_cow);
1173 }
1174 
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,unsigned int write_flags)1175 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1176 				u64 start, u64 end, int *page_started,
1177 				unsigned long *nr_written,
1178 				unsigned int write_flags)
1179 {
1180 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1181 	struct async_cow *async_cow;
1182 	struct btrfs_root *root = BTRFS_I(inode)->root;
1183 	unsigned long nr_pages;
1184 	u64 cur_end;
1185 
1186 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1187 			 1, 0, NULL);
1188 	while (start < end) {
1189 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1190 		BUG_ON(!async_cow); /* -ENOMEM */
1191 		async_cow->inode = igrab(inode);
1192 		async_cow->root = root;
1193 		async_cow->locked_page = locked_page;
1194 		async_cow->start = start;
1195 		async_cow->write_flags = write_flags;
1196 
1197 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1198 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1199 			cur_end = end;
1200 		else
1201 			cur_end = min(end, start + SZ_512K - 1);
1202 
1203 		async_cow->end = cur_end;
1204 		INIT_LIST_HEAD(&async_cow->extents);
1205 
1206 		btrfs_init_work(&async_cow->work,
1207 				btrfs_delalloc_helper,
1208 				async_cow_start, async_cow_submit,
1209 				async_cow_free);
1210 
1211 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1212 			PAGE_SHIFT;
1213 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1214 
1215 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1216 
1217 		*nr_written += nr_pages;
1218 		start = cur_end + 1;
1219 	}
1220 	*page_started = 1;
1221 	return 0;
1222 }
1223 
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1224 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1225 					u64 bytenr, u64 num_bytes)
1226 {
1227 	int ret;
1228 	struct btrfs_ordered_sum *sums;
1229 	LIST_HEAD(list);
1230 
1231 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1232 				       bytenr + num_bytes - 1, &list, 0);
1233 	if (ret == 0 && list_empty(&list))
1234 		return 0;
1235 
1236 	while (!list_empty(&list)) {
1237 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1238 		list_del(&sums->list);
1239 		kfree(sums);
1240 	}
1241 	if (ret < 0)
1242 		return ret;
1243 	return 1;
1244 }
1245 
1246 /*
1247  * when nowcow writeback call back.  This checks for snapshots or COW copies
1248  * of the extents that exist in the file, and COWs the file as required.
1249  *
1250  * If no cow copies or snapshots exist, we write directly to the existing
1251  * blocks on disk
1252  */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)1253 static noinline int run_delalloc_nocow(struct inode *inode,
1254 				       struct page *locked_page,
1255 			      u64 start, u64 end, int *page_started, int force,
1256 			      unsigned long *nr_written)
1257 {
1258 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1259 	struct btrfs_root *root = BTRFS_I(inode)->root;
1260 	struct extent_buffer *leaf;
1261 	struct btrfs_path *path;
1262 	struct btrfs_file_extent_item *fi;
1263 	struct btrfs_key found_key;
1264 	struct extent_map *em;
1265 	u64 cow_start;
1266 	u64 cur_offset;
1267 	u64 extent_end;
1268 	u64 extent_offset;
1269 	u64 disk_bytenr;
1270 	u64 num_bytes;
1271 	u64 disk_num_bytes;
1272 	u64 ram_bytes;
1273 	int extent_type;
1274 	int ret;
1275 	int type;
1276 	int nocow;
1277 	int check_prev = 1;
1278 	bool nolock;
1279 	u64 ino = btrfs_ino(BTRFS_I(inode));
1280 
1281 	path = btrfs_alloc_path();
1282 	if (!path) {
1283 		extent_clear_unlock_delalloc(inode, start, end, end,
1284 					     locked_page,
1285 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1286 					     EXTENT_DO_ACCOUNTING |
1287 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1288 					     PAGE_CLEAR_DIRTY |
1289 					     PAGE_SET_WRITEBACK |
1290 					     PAGE_END_WRITEBACK);
1291 		return -ENOMEM;
1292 	}
1293 
1294 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1295 
1296 	cow_start = (u64)-1;
1297 	cur_offset = start;
1298 	while (1) {
1299 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1300 					       cur_offset, 0);
1301 		if (ret < 0)
1302 			goto error;
1303 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1304 			leaf = path->nodes[0];
1305 			btrfs_item_key_to_cpu(leaf, &found_key,
1306 					      path->slots[0] - 1);
1307 			if (found_key.objectid == ino &&
1308 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1309 				path->slots[0]--;
1310 		}
1311 		check_prev = 0;
1312 next_slot:
1313 		leaf = path->nodes[0];
1314 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1315 			ret = btrfs_next_leaf(root, path);
1316 			if (ret < 0) {
1317 				if (cow_start != (u64)-1)
1318 					cur_offset = cow_start;
1319 				goto error;
1320 			}
1321 			if (ret > 0)
1322 				break;
1323 			leaf = path->nodes[0];
1324 		}
1325 
1326 		nocow = 0;
1327 		disk_bytenr = 0;
1328 		num_bytes = 0;
1329 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1330 
1331 		if (found_key.objectid > ino)
1332 			break;
1333 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1334 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1335 			path->slots[0]++;
1336 			goto next_slot;
1337 		}
1338 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1339 		    found_key.offset > end)
1340 			break;
1341 
1342 		if (found_key.offset > cur_offset) {
1343 			extent_end = found_key.offset;
1344 			extent_type = 0;
1345 			goto out_check;
1346 		}
1347 
1348 		fi = btrfs_item_ptr(leaf, path->slots[0],
1349 				    struct btrfs_file_extent_item);
1350 		extent_type = btrfs_file_extent_type(leaf, fi);
1351 
1352 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1353 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1354 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1355 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1356 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1357 			extent_end = found_key.offset +
1358 				btrfs_file_extent_num_bytes(leaf, fi);
1359 			disk_num_bytes =
1360 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1361 			if (extent_end <= start) {
1362 				path->slots[0]++;
1363 				goto next_slot;
1364 			}
1365 			if (disk_bytenr == 0)
1366 				goto out_check;
1367 			if (btrfs_file_extent_compression(leaf, fi) ||
1368 			    btrfs_file_extent_encryption(leaf, fi) ||
1369 			    btrfs_file_extent_other_encoding(leaf, fi))
1370 				goto out_check;
1371 			/*
1372 			 * Do the same check as in btrfs_cross_ref_exist but
1373 			 * without the unnecessary search.
1374 			 */
1375 			if (btrfs_file_extent_generation(leaf, fi) <=
1376 			    btrfs_root_last_snapshot(&root->root_item))
1377 				goto out_check;
1378 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1379 				goto out_check;
1380 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1381 				goto out_check;
1382 			ret = btrfs_cross_ref_exist(root, ino,
1383 						    found_key.offset -
1384 						    extent_offset, disk_bytenr);
1385 			if (ret) {
1386 				/*
1387 				 * ret could be -EIO if the above fails to read
1388 				 * metadata.
1389 				 */
1390 				if (ret < 0) {
1391 					if (cow_start != (u64)-1)
1392 						cur_offset = cow_start;
1393 					goto error;
1394 				}
1395 
1396 				WARN_ON_ONCE(nolock);
1397 				goto out_check;
1398 			}
1399 			disk_bytenr += extent_offset;
1400 			disk_bytenr += cur_offset - found_key.offset;
1401 			num_bytes = min(end + 1, extent_end) - cur_offset;
1402 			/*
1403 			 * if there are pending snapshots for this root,
1404 			 * we fall into common COW way.
1405 			 */
1406 			if (!nolock && atomic_read(&root->snapshot_force_cow))
1407 				goto out_check;
1408 			/*
1409 			 * force cow if csum exists in the range.
1410 			 * this ensure that csum for a given extent are
1411 			 * either valid or do not exist.
1412 			 */
1413 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1414 						  num_bytes);
1415 			if (ret) {
1416 				/*
1417 				 * ret could be -EIO if the above fails to read
1418 				 * metadata.
1419 				 */
1420 				if (ret < 0) {
1421 					if (cow_start != (u64)-1)
1422 						cur_offset = cow_start;
1423 					goto error;
1424 				}
1425 				WARN_ON_ONCE(nolock);
1426 				goto out_check;
1427 			}
1428 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1429 				goto out_check;
1430 			nocow = 1;
1431 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1432 			extent_end = found_key.offset +
1433 				btrfs_file_extent_ram_bytes(leaf, fi);
1434 			extent_end = ALIGN(extent_end,
1435 					   fs_info->sectorsize);
1436 		} else {
1437 			BUG_ON(1);
1438 		}
1439 out_check:
1440 		if (extent_end <= start) {
1441 			path->slots[0]++;
1442 			if (nocow)
1443 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1444 			goto next_slot;
1445 		}
1446 		if (!nocow) {
1447 			if (cow_start == (u64)-1)
1448 				cow_start = cur_offset;
1449 			cur_offset = extent_end;
1450 			if (cur_offset > end)
1451 				break;
1452 			path->slots[0]++;
1453 			goto next_slot;
1454 		}
1455 
1456 		btrfs_release_path(path);
1457 		if (cow_start != (u64)-1) {
1458 			ret = cow_file_range(inode, locked_page,
1459 					     cow_start, found_key.offset - 1,
1460 					     end, page_started, nr_written, 1,
1461 					     NULL);
1462 			if (ret) {
1463 				if (nocow)
1464 					btrfs_dec_nocow_writers(fs_info,
1465 								disk_bytenr);
1466 				goto error;
1467 			}
1468 			cow_start = (u64)-1;
1469 		}
1470 
1471 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1472 			u64 orig_start = found_key.offset - extent_offset;
1473 
1474 			em = create_io_em(inode, cur_offset, num_bytes,
1475 					  orig_start,
1476 					  disk_bytenr, /* block_start */
1477 					  num_bytes, /* block_len */
1478 					  disk_num_bytes, /* orig_block_len */
1479 					  ram_bytes, BTRFS_COMPRESS_NONE,
1480 					  BTRFS_ORDERED_PREALLOC);
1481 			if (IS_ERR(em)) {
1482 				if (nocow)
1483 					btrfs_dec_nocow_writers(fs_info,
1484 								disk_bytenr);
1485 				ret = PTR_ERR(em);
1486 				goto error;
1487 			}
1488 			free_extent_map(em);
1489 		}
1490 
1491 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1492 			type = BTRFS_ORDERED_PREALLOC;
1493 		} else {
1494 			type = BTRFS_ORDERED_NOCOW;
1495 		}
1496 
1497 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1498 					       num_bytes, num_bytes, type);
1499 		if (nocow)
1500 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1501 		BUG_ON(ret); /* -ENOMEM */
1502 
1503 		if (root->root_key.objectid ==
1504 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1505 			/*
1506 			 * Error handled later, as we must prevent
1507 			 * extent_clear_unlock_delalloc() in error handler
1508 			 * from freeing metadata of created ordered extent.
1509 			 */
1510 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1511 						      num_bytes);
1512 
1513 		extent_clear_unlock_delalloc(inode, cur_offset,
1514 					     cur_offset + num_bytes - 1, end,
1515 					     locked_page, EXTENT_LOCKED |
1516 					     EXTENT_DELALLOC |
1517 					     EXTENT_CLEAR_DATA_RESV,
1518 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1519 
1520 		cur_offset = extent_end;
1521 
1522 		/*
1523 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 		 * handler, as metadata for created ordered extent will only
1525 		 * be freed by btrfs_finish_ordered_io().
1526 		 */
1527 		if (ret)
1528 			goto error;
1529 		if (cur_offset > end)
1530 			break;
1531 	}
1532 	btrfs_release_path(path);
1533 
1534 	if (cur_offset <= end && cow_start == (u64)-1) {
1535 		cow_start = cur_offset;
1536 		cur_offset = end;
1537 	}
1538 
1539 	if (cow_start != (u64)-1) {
1540 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541 				     page_started, nr_written, 1, NULL);
1542 		if (ret)
1543 			goto error;
1544 	}
1545 
1546 error:
1547 	if (ret && cur_offset < end)
1548 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1549 					     locked_page, EXTENT_LOCKED |
1550 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1551 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552 					     PAGE_CLEAR_DIRTY |
1553 					     PAGE_SET_WRITEBACK |
1554 					     PAGE_END_WRITEBACK);
1555 	btrfs_free_path(path);
1556 	return ret;
1557 }
1558 
need_force_cow(struct inode * inode,u64 start,u64 end)1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1560 {
1561 
1562 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1564 		return 0;
1565 
1566 	/*
1567 	 * @defrag_bytes is a hint value, no spinlock held here,
1568 	 * if is not zero, it means the file is defragging.
1569 	 * Force cow if given extent needs to be defragged.
1570 	 */
1571 	if (BTRFS_I(inode)->defrag_bytes &&
1572 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573 			   EXTENT_DEFRAG, 0, NULL))
1574 		return 1;
1575 
1576 	return 0;
1577 }
1578 
1579 /*
1580  * extent_io.c call back to do delayed allocation processing
1581  */
run_delalloc_range(void * private_data,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1582 static int run_delalloc_range(void *private_data, struct page *locked_page,
1583 			      u64 start, u64 end, int *page_started,
1584 			      unsigned long *nr_written,
1585 			      struct writeback_control *wbc)
1586 {
1587 	struct inode *inode = private_data;
1588 	int ret;
1589 	int force_cow = need_force_cow(inode, start, end);
1590 	unsigned int write_flags = wbc_to_write_flags(wbc);
1591 
1592 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1593 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1594 					 page_started, 1, nr_written);
1595 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1596 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1597 					 page_started, 0, nr_written);
1598 	} else if (!inode_need_compress(inode, start, end)) {
1599 		ret = cow_file_range(inode, locked_page, start, end, end,
1600 				      page_started, nr_written, 1, NULL);
1601 	} else {
1602 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 			&BTRFS_I(inode)->runtime_flags);
1604 		ret = cow_file_range_async(inode, locked_page, start, end,
1605 					   page_started, nr_written,
1606 					   write_flags);
1607 	}
1608 	if (ret)
1609 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1610 	return ret;
1611 }
1612 
btrfs_split_extent_hook(void * private_data,struct extent_state * orig,u64 split)1613 static void btrfs_split_extent_hook(void *private_data,
1614 				    struct extent_state *orig, u64 split)
1615 {
1616 	struct inode *inode = private_data;
1617 	u64 size;
1618 
1619 	/* not delalloc, ignore it */
1620 	if (!(orig->state & EXTENT_DELALLOC))
1621 		return;
1622 
1623 	size = orig->end - orig->start + 1;
1624 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1625 		u32 num_extents;
1626 		u64 new_size;
1627 
1628 		/*
1629 		 * See the explanation in btrfs_merge_extent_hook, the same
1630 		 * applies here, just in reverse.
1631 		 */
1632 		new_size = orig->end - split + 1;
1633 		num_extents = count_max_extents(new_size);
1634 		new_size = split - orig->start;
1635 		num_extents += count_max_extents(new_size);
1636 		if (count_max_extents(size) >= num_extents)
1637 			return;
1638 	}
1639 
1640 	spin_lock(&BTRFS_I(inode)->lock);
1641 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1642 	spin_unlock(&BTRFS_I(inode)->lock);
1643 }
1644 
1645 /*
1646  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647  * extents so we can keep track of new extents that are just merged onto old
1648  * extents, such as when we are doing sequential writes, so we can properly
1649  * account for the metadata space we'll need.
1650  */
btrfs_merge_extent_hook(void * private_data,struct extent_state * new,struct extent_state * other)1651 static void btrfs_merge_extent_hook(void *private_data,
1652 				    struct extent_state *new,
1653 				    struct extent_state *other)
1654 {
1655 	struct inode *inode = private_data;
1656 	u64 new_size, old_size;
1657 	u32 num_extents;
1658 
1659 	/* not delalloc, ignore it */
1660 	if (!(other->state & EXTENT_DELALLOC))
1661 		return;
1662 
1663 	if (new->start > other->start)
1664 		new_size = new->end - other->start + 1;
1665 	else
1666 		new_size = other->end - new->start + 1;
1667 
1668 	/* we're not bigger than the max, unreserve the space and go */
1669 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1670 		spin_lock(&BTRFS_I(inode)->lock);
1671 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1672 		spin_unlock(&BTRFS_I(inode)->lock);
1673 		return;
1674 	}
1675 
1676 	/*
1677 	 * We have to add up either side to figure out how many extents were
1678 	 * accounted for before we merged into one big extent.  If the number of
1679 	 * extents we accounted for is <= the amount we need for the new range
1680 	 * then we can return, otherwise drop.  Think of it like this
1681 	 *
1682 	 * [ 4k][MAX_SIZE]
1683 	 *
1684 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685 	 * need 2 outstanding extents, on one side we have 1 and the other side
1686 	 * we have 1 so they are == and we can return.  But in this case
1687 	 *
1688 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1689 	 *
1690 	 * Each range on their own accounts for 2 extents, but merged together
1691 	 * they are only 3 extents worth of accounting, so we need to drop in
1692 	 * this case.
1693 	 */
1694 	old_size = other->end - other->start + 1;
1695 	num_extents = count_max_extents(old_size);
1696 	old_size = new->end - new->start + 1;
1697 	num_extents += count_max_extents(old_size);
1698 	if (count_max_extents(new_size) >= num_extents)
1699 		return;
1700 
1701 	spin_lock(&BTRFS_I(inode)->lock);
1702 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1703 	spin_unlock(&BTRFS_I(inode)->lock);
1704 }
1705 
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1706 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1707 				      struct inode *inode)
1708 {
1709 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1710 
1711 	spin_lock(&root->delalloc_lock);
1712 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1713 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1714 			      &root->delalloc_inodes);
1715 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1716 			&BTRFS_I(inode)->runtime_flags);
1717 		root->nr_delalloc_inodes++;
1718 		if (root->nr_delalloc_inodes == 1) {
1719 			spin_lock(&fs_info->delalloc_root_lock);
1720 			BUG_ON(!list_empty(&root->delalloc_root));
1721 			list_add_tail(&root->delalloc_root,
1722 				      &fs_info->delalloc_roots);
1723 			spin_unlock(&fs_info->delalloc_root_lock);
1724 		}
1725 	}
1726 	spin_unlock(&root->delalloc_lock);
1727 }
1728 
1729 
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1730 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1731 				struct btrfs_inode *inode)
1732 {
1733 	struct btrfs_fs_info *fs_info = root->fs_info;
1734 
1735 	if (!list_empty(&inode->delalloc_inodes)) {
1736 		list_del_init(&inode->delalloc_inodes);
1737 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1738 			  &inode->runtime_flags);
1739 		root->nr_delalloc_inodes--;
1740 		if (!root->nr_delalloc_inodes) {
1741 			ASSERT(list_empty(&root->delalloc_inodes));
1742 			spin_lock(&fs_info->delalloc_root_lock);
1743 			BUG_ON(list_empty(&root->delalloc_root));
1744 			list_del_init(&root->delalloc_root);
1745 			spin_unlock(&fs_info->delalloc_root_lock);
1746 		}
1747 	}
1748 }
1749 
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1750 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1751 				     struct btrfs_inode *inode)
1752 {
1753 	spin_lock(&root->delalloc_lock);
1754 	__btrfs_del_delalloc_inode(root, inode);
1755 	spin_unlock(&root->delalloc_lock);
1756 }
1757 
1758 /*
1759  * extent_io.c set_bit_hook, used to track delayed allocation
1760  * bytes in this file, and to maintain the list of inodes that
1761  * have pending delalloc work to be done.
1762  */
btrfs_set_bit_hook(void * private_data,struct extent_state * state,unsigned * bits)1763 static void btrfs_set_bit_hook(void *private_data,
1764 			       struct extent_state *state, unsigned *bits)
1765 {
1766 	struct inode *inode = private_data;
1767 
1768 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769 
1770 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1771 		WARN_ON(1);
1772 	/*
1773 	 * set_bit and clear bit hooks normally require _irqsave/restore
1774 	 * but in this case, we are only testing for the DELALLOC
1775 	 * bit, which is only set or cleared with irqs on
1776 	 */
1777 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1778 		struct btrfs_root *root = BTRFS_I(inode)->root;
1779 		u64 len = state->end + 1 - state->start;
1780 		u32 num_extents = count_max_extents(len);
1781 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1782 
1783 		spin_lock(&BTRFS_I(inode)->lock);
1784 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1785 		spin_unlock(&BTRFS_I(inode)->lock);
1786 
1787 		/* For sanity tests */
1788 		if (btrfs_is_testing(fs_info))
1789 			return;
1790 
1791 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1792 					 fs_info->delalloc_batch);
1793 		spin_lock(&BTRFS_I(inode)->lock);
1794 		BTRFS_I(inode)->delalloc_bytes += len;
1795 		if (*bits & EXTENT_DEFRAG)
1796 			BTRFS_I(inode)->defrag_bytes += len;
1797 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1798 					 &BTRFS_I(inode)->runtime_flags))
1799 			btrfs_add_delalloc_inodes(root, inode);
1800 		spin_unlock(&BTRFS_I(inode)->lock);
1801 	}
1802 
1803 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1804 	    (*bits & EXTENT_DELALLOC_NEW)) {
1805 		spin_lock(&BTRFS_I(inode)->lock);
1806 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1807 			state->start;
1808 		spin_unlock(&BTRFS_I(inode)->lock);
1809 	}
1810 }
1811 
1812 /*
1813  * extent_io.c clear_bit_hook, see set_bit_hook for why
1814  */
btrfs_clear_bit_hook(void * private_data,struct extent_state * state,unsigned * bits)1815 static void btrfs_clear_bit_hook(void *private_data,
1816 				 struct extent_state *state,
1817 				 unsigned *bits)
1818 {
1819 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1820 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1821 	u64 len = state->end + 1 - state->start;
1822 	u32 num_extents = count_max_extents(len);
1823 
1824 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1825 		spin_lock(&inode->lock);
1826 		inode->defrag_bytes -= len;
1827 		spin_unlock(&inode->lock);
1828 	}
1829 
1830 	/*
1831 	 * set_bit and clear bit hooks normally require _irqsave/restore
1832 	 * but in this case, we are only testing for the DELALLOC
1833 	 * bit, which is only set or cleared with irqs on
1834 	 */
1835 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1836 		struct btrfs_root *root = inode->root;
1837 		bool do_list = !btrfs_is_free_space_inode(inode);
1838 
1839 		spin_lock(&inode->lock);
1840 		btrfs_mod_outstanding_extents(inode, -num_extents);
1841 		spin_unlock(&inode->lock);
1842 
1843 		/*
1844 		 * We don't reserve metadata space for space cache inodes so we
1845 		 * don't need to call dellalloc_release_metadata if there is an
1846 		 * error.
1847 		 */
1848 		if (*bits & EXTENT_CLEAR_META_RESV &&
1849 		    root != fs_info->tree_root)
1850 			btrfs_delalloc_release_metadata(inode, len, false);
1851 
1852 		/* For sanity tests. */
1853 		if (btrfs_is_testing(fs_info))
1854 			return;
1855 
1856 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1857 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1858 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1859 			btrfs_free_reserved_data_space_noquota(
1860 					&inode->vfs_inode,
1861 					state->start, len);
1862 
1863 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1864 					 fs_info->delalloc_batch);
1865 		spin_lock(&inode->lock);
1866 		inode->delalloc_bytes -= len;
1867 		if (do_list && inode->delalloc_bytes == 0 &&
1868 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1869 					&inode->runtime_flags))
1870 			btrfs_del_delalloc_inode(root, inode);
1871 		spin_unlock(&inode->lock);
1872 	}
1873 
1874 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1875 	    (*bits & EXTENT_DELALLOC_NEW)) {
1876 		spin_lock(&inode->lock);
1877 		ASSERT(inode->new_delalloc_bytes >= len);
1878 		inode->new_delalloc_bytes -= len;
1879 		spin_unlock(&inode->lock);
1880 	}
1881 }
1882 
1883 /*
1884  * Merge bio hook, this must check the chunk tree to make sure we don't create
1885  * bios that span stripes or chunks
1886  *
1887  * return 1 if page cannot be merged to bio
1888  * return 0 if page can be merged to bio
1889  * return error otherwise
1890  */
btrfs_merge_bio_hook(struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1891 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1892 			 size_t size, struct bio *bio,
1893 			 unsigned long bio_flags)
1894 {
1895 	struct inode *inode = page->mapping->host;
1896 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1897 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1898 	u64 length = 0;
1899 	u64 map_length;
1900 	int ret;
1901 
1902 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1903 		return 0;
1904 
1905 	length = bio->bi_iter.bi_size;
1906 	map_length = length;
1907 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1908 			      NULL, 0);
1909 	if (ret < 0)
1910 		return ret;
1911 	if (map_length < length + size)
1912 		return 1;
1913 	return 0;
1914 }
1915 
1916 /*
1917  * in order to insert checksums into the metadata in large chunks,
1918  * we wait until bio submission time.   All the pages in the bio are
1919  * checksummed and sums are attached onto the ordered extent record.
1920  *
1921  * At IO completion time the cums attached on the ordered extent record
1922  * are inserted into the btree
1923  */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)1924 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1925 				    u64 bio_offset)
1926 {
1927 	struct inode *inode = private_data;
1928 	blk_status_t ret = 0;
1929 
1930 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1931 	BUG_ON(ret); /* -ENOMEM */
1932 	return 0;
1933 }
1934 
1935 /*
1936  * in order to insert checksums into the metadata in large chunks,
1937  * we wait until bio submission time.   All the pages in the bio are
1938  * checksummed and sums are attached onto the ordered extent record.
1939  *
1940  * At IO completion time the cums attached on the ordered extent record
1941  * are inserted into the btree
1942  */
btrfs_submit_bio_done(void * private_data,struct bio * bio,int mirror_num)1943 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1944 			  int mirror_num)
1945 {
1946 	struct inode *inode = private_data;
1947 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1948 	blk_status_t ret;
1949 
1950 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1951 	if (ret) {
1952 		bio->bi_status = ret;
1953 		bio_endio(bio);
1954 	}
1955 	return ret;
1956 }
1957 
1958 /*
1959  * extent_io.c submission hook. This does the right thing for csum calculation
1960  * on write, or reading the csums from the tree before a read.
1961  *
1962  * Rules about async/sync submit,
1963  * a) read:				sync submit
1964  *
1965  * b) write without checksum:		sync submit
1966  *
1967  * c) write with checksum:
1968  *    c-1) if bio is issued by fsync:	sync submit
1969  *         (sync_writers != 0)
1970  *
1971  *    c-2) if root is reloc root:	sync submit
1972  *         (only in case of buffered IO)
1973  *
1974  *    c-3) otherwise:			async submit
1975  */
btrfs_submit_bio_hook(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)1976 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1977 				 int mirror_num, unsigned long bio_flags,
1978 				 u64 bio_offset)
1979 {
1980 	struct inode *inode = private_data;
1981 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1982 	struct btrfs_root *root = BTRFS_I(inode)->root;
1983 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1984 	blk_status_t ret = 0;
1985 	int skip_sum;
1986 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1987 
1988 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1989 
1990 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1991 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1992 
1993 	if (bio_op(bio) != REQ_OP_WRITE) {
1994 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1995 		if (ret)
1996 			goto out;
1997 
1998 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1999 			ret = btrfs_submit_compressed_read(inode, bio,
2000 							   mirror_num,
2001 							   bio_flags);
2002 			goto out;
2003 		} else if (!skip_sum) {
2004 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2005 			if (ret)
2006 				goto out;
2007 		}
2008 		goto mapit;
2009 	} else if (async && !skip_sum) {
2010 		/* csum items have already been cloned */
2011 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2012 			goto mapit;
2013 		/* we're doing a write, do the async checksumming */
2014 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2015 					  bio_offset, inode,
2016 					  btrfs_submit_bio_start);
2017 		goto out;
2018 	} else if (!skip_sum) {
2019 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2020 		if (ret)
2021 			goto out;
2022 	}
2023 
2024 mapit:
2025 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2026 
2027 out:
2028 	if (ret) {
2029 		bio->bi_status = ret;
2030 		bio_endio(bio);
2031 	}
2032 	return ret;
2033 }
2034 
2035 /*
2036  * given a list of ordered sums record them in the inode.  This happens
2037  * at IO completion time based on sums calculated at bio submission time.
2038  */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,struct list_head * list)2039 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2040 			     struct inode *inode, struct list_head *list)
2041 {
2042 	struct btrfs_ordered_sum *sum;
2043 	int ret;
2044 
2045 	list_for_each_entry(sum, list, list) {
2046 		trans->adding_csums = true;
2047 		ret = btrfs_csum_file_blocks(trans,
2048 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2049 		trans->adding_csums = false;
2050 		if (ret)
2051 			return ret;
2052 	}
2053 	return 0;
2054 }
2055 
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state,int dedupe)2056 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2057 			      unsigned int extra_bits,
2058 			      struct extent_state **cached_state, int dedupe)
2059 {
2060 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2061 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2062 				   extra_bits, cached_state);
2063 }
2064 
2065 /* see btrfs_writepage_start_hook for details on why this is required */
2066 struct btrfs_writepage_fixup {
2067 	struct page *page;
2068 	struct btrfs_work work;
2069 };
2070 
btrfs_writepage_fixup_worker(struct btrfs_work * work)2071 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2072 {
2073 	struct btrfs_writepage_fixup *fixup;
2074 	struct btrfs_ordered_extent *ordered;
2075 	struct extent_state *cached_state = NULL;
2076 	struct extent_changeset *data_reserved = NULL;
2077 	struct page *page;
2078 	struct inode *inode;
2079 	u64 page_start;
2080 	u64 page_end;
2081 	int ret;
2082 
2083 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2084 	page = fixup->page;
2085 again:
2086 	lock_page(page);
2087 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2088 		ClearPageChecked(page);
2089 		goto out_page;
2090 	}
2091 
2092 	inode = page->mapping->host;
2093 	page_start = page_offset(page);
2094 	page_end = page_offset(page) + PAGE_SIZE - 1;
2095 
2096 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2097 			 &cached_state);
2098 
2099 	/* already ordered? We're done */
2100 	if (PagePrivate2(page))
2101 		goto out;
2102 
2103 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2104 					PAGE_SIZE);
2105 	if (ordered) {
2106 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2107 				     page_end, &cached_state);
2108 		unlock_page(page);
2109 		btrfs_start_ordered_extent(inode, ordered, 1);
2110 		btrfs_put_ordered_extent(ordered);
2111 		goto again;
2112 	}
2113 
2114 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2115 					   PAGE_SIZE);
2116 	if (ret) {
2117 		mapping_set_error(page->mapping, ret);
2118 		end_extent_writepage(page, ret, page_start, page_end);
2119 		ClearPageChecked(page);
2120 		goto out;
2121 	 }
2122 
2123 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2124 					&cached_state, 0);
2125 	if (ret) {
2126 		mapping_set_error(page->mapping, ret);
2127 		end_extent_writepage(page, ret, page_start, page_end);
2128 		ClearPageChecked(page);
2129 		goto out;
2130 	}
2131 
2132 	ClearPageChecked(page);
2133 	set_page_dirty(page);
2134 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2135 out:
2136 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2137 			     &cached_state);
2138 out_page:
2139 	unlock_page(page);
2140 	put_page(page);
2141 	kfree(fixup);
2142 	extent_changeset_free(data_reserved);
2143 }
2144 
2145 /*
2146  * There are a few paths in the higher layers of the kernel that directly
2147  * set the page dirty bit without asking the filesystem if it is a
2148  * good idea.  This causes problems because we want to make sure COW
2149  * properly happens and the data=ordered rules are followed.
2150  *
2151  * In our case any range that doesn't have the ORDERED bit set
2152  * hasn't been properly setup for IO.  We kick off an async process
2153  * to fix it up.  The async helper will wait for ordered extents, set
2154  * the delalloc bit and make it safe to write the page.
2155  */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)2156 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2157 {
2158 	struct inode *inode = page->mapping->host;
2159 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2160 	struct btrfs_writepage_fixup *fixup;
2161 
2162 	/* this page is properly in the ordered list */
2163 	if (TestClearPagePrivate2(page))
2164 		return 0;
2165 
2166 	if (PageChecked(page))
2167 		return -EAGAIN;
2168 
2169 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2170 	if (!fixup)
2171 		return -EAGAIN;
2172 
2173 	SetPageChecked(page);
2174 	get_page(page);
2175 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2176 			btrfs_writepage_fixup_worker, NULL, NULL);
2177 	fixup->page = page;
2178 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2179 	return -EBUSY;
2180 }
2181 
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2182 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2183 				       struct inode *inode, u64 file_pos,
2184 				       u64 disk_bytenr, u64 disk_num_bytes,
2185 				       u64 num_bytes, u64 ram_bytes,
2186 				       u8 compression, u8 encryption,
2187 				       u16 other_encoding, int extent_type)
2188 {
2189 	struct btrfs_root *root = BTRFS_I(inode)->root;
2190 	struct btrfs_file_extent_item *fi;
2191 	struct btrfs_path *path;
2192 	struct extent_buffer *leaf;
2193 	struct btrfs_key ins;
2194 	u64 qg_released;
2195 	int extent_inserted = 0;
2196 	int ret;
2197 
2198 	path = btrfs_alloc_path();
2199 	if (!path)
2200 		return -ENOMEM;
2201 
2202 	/*
2203 	 * we may be replacing one extent in the tree with another.
2204 	 * The new extent is pinned in the extent map, and we don't want
2205 	 * to drop it from the cache until it is completely in the btree.
2206 	 *
2207 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2208 	 * the caller is expected to unpin it and allow it to be merged
2209 	 * with the others.
2210 	 */
2211 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2212 				   file_pos + num_bytes, NULL, 0,
2213 				   1, sizeof(*fi), &extent_inserted);
2214 	if (ret)
2215 		goto out;
2216 
2217 	if (!extent_inserted) {
2218 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2219 		ins.offset = file_pos;
2220 		ins.type = BTRFS_EXTENT_DATA_KEY;
2221 
2222 		path->leave_spinning = 1;
2223 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2224 					      sizeof(*fi));
2225 		if (ret)
2226 			goto out;
2227 	}
2228 	leaf = path->nodes[0];
2229 	fi = btrfs_item_ptr(leaf, path->slots[0],
2230 			    struct btrfs_file_extent_item);
2231 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2232 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2233 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2234 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2235 	btrfs_set_file_extent_offset(leaf, fi, 0);
2236 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2237 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2238 	btrfs_set_file_extent_compression(leaf, fi, compression);
2239 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2240 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2241 
2242 	btrfs_mark_buffer_dirty(leaf);
2243 	btrfs_release_path(path);
2244 
2245 	inode_add_bytes(inode, num_bytes);
2246 
2247 	ins.objectid = disk_bytenr;
2248 	ins.offset = disk_num_bytes;
2249 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2250 
2251 	/*
2252 	 * Release the reserved range from inode dirty range map, as it is
2253 	 * already moved into delayed_ref_head
2254 	 */
2255 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2256 	if (ret < 0)
2257 		goto out;
2258 	qg_released = ret;
2259 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2260 					       btrfs_ino(BTRFS_I(inode)),
2261 					       file_pos, qg_released, &ins);
2262 out:
2263 	btrfs_free_path(path);
2264 
2265 	return ret;
2266 }
2267 
2268 /* snapshot-aware defrag */
2269 struct sa_defrag_extent_backref {
2270 	struct rb_node node;
2271 	struct old_sa_defrag_extent *old;
2272 	u64 root_id;
2273 	u64 inum;
2274 	u64 file_pos;
2275 	u64 extent_offset;
2276 	u64 num_bytes;
2277 	u64 generation;
2278 };
2279 
2280 struct old_sa_defrag_extent {
2281 	struct list_head list;
2282 	struct new_sa_defrag_extent *new;
2283 
2284 	u64 extent_offset;
2285 	u64 bytenr;
2286 	u64 offset;
2287 	u64 len;
2288 	int count;
2289 };
2290 
2291 struct new_sa_defrag_extent {
2292 	struct rb_root root;
2293 	struct list_head head;
2294 	struct btrfs_path *path;
2295 	struct inode *inode;
2296 	u64 file_pos;
2297 	u64 len;
2298 	u64 bytenr;
2299 	u64 disk_len;
2300 	u8 compress_type;
2301 };
2302 
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2303 static int backref_comp(struct sa_defrag_extent_backref *b1,
2304 			struct sa_defrag_extent_backref *b2)
2305 {
2306 	if (b1->root_id < b2->root_id)
2307 		return -1;
2308 	else if (b1->root_id > b2->root_id)
2309 		return 1;
2310 
2311 	if (b1->inum < b2->inum)
2312 		return -1;
2313 	else if (b1->inum > b2->inum)
2314 		return 1;
2315 
2316 	if (b1->file_pos < b2->file_pos)
2317 		return -1;
2318 	else if (b1->file_pos > b2->file_pos)
2319 		return 1;
2320 
2321 	/*
2322 	 * [------------------------------] ===> (a range of space)
2323 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2324 	 * |<---------------------------->| ===> (fs/file tree B)
2325 	 *
2326 	 * A range of space can refer to two file extents in one tree while
2327 	 * refer to only one file extent in another tree.
2328 	 *
2329 	 * So we may process a disk offset more than one time(two extents in A)
2330 	 * and locate at the same extent(one extent in B), then insert two same
2331 	 * backrefs(both refer to the extent in B).
2332 	 */
2333 	return 0;
2334 }
2335 
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2336 static void backref_insert(struct rb_root *root,
2337 			   struct sa_defrag_extent_backref *backref)
2338 {
2339 	struct rb_node **p = &root->rb_node;
2340 	struct rb_node *parent = NULL;
2341 	struct sa_defrag_extent_backref *entry;
2342 	int ret;
2343 
2344 	while (*p) {
2345 		parent = *p;
2346 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2347 
2348 		ret = backref_comp(backref, entry);
2349 		if (ret < 0)
2350 			p = &(*p)->rb_left;
2351 		else
2352 			p = &(*p)->rb_right;
2353 	}
2354 
2355 	rb_link_node(&backref->node, parent, p);
2356 	rb_insert_color(&backref->node, root);
2357 }
2358 
2359 /*
2360  * Note the backref might has changed, and in this case we just return 0.
2361  */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2362 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2363 				       void *ctx)
2364 {
2365 	struct btrfs_file_extent_item *extent;
2366 	struct old_sa_defrag_extent *old = ctx;
2367 	struct new_sa_defrag_extent *new = old->new;
2368 	struct btrfs_path *path = new->path;
2369 	struct btrfs_key key;
2370 	struct btrfs_root *root;
2371 	struct sa_defrag_extent_backref *backref;
2372 	struct extent_buffer *leaf;
2373 	struct inode *inode = new->inode;
2374 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2375 	int slot;
2376 	int ret;
2377 	u64 extent_offset;
2378 	u64 num_bytes;
2379 
2380 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2381 	    inum == btrfs_ino(BTRFS_I(inode)))
2382 		return 0;
2383 
2384 	key.objectid = root_id;
2385 	key.type = BTRFS_ROOT_ITEM_KEY;
2386 	key.offset = (u64)-1;
2387 
2388 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2389 	if (IS_ERR(root)) {
2390 		if (PTR_ERR(root) == -ENOENT)
2391 			return 0;
2392 		WARN_ON(1);
2393 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2394 			 inum, offset, root_id);
2395 		return PTR_ERR(root);
2396 	}
2397 
2398 	key.objectid = inum;
2399 	key.type = BTRFS_EXTENT_DATA_KEY;
2400 	if (offset > (u64)-1 << 32)
2401 		key.offset = 0;
2402 	else
2403 		key.offset = offset;
2404 
2405 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2406 	if (WARN_ON(ret < 0))
2407 		return ret;
2408 	ret = 0;
2409 
2410 	while (1) {
2411 		cond_resched();
2412 
2413 		leaf = path->nodes[0];
2414 		slot = path->slots[0];
2415 
2416 		if (slot >= btrfs_header_nritems(leaf)) {
2417 			ret = btrfs_next_leaf(root, path);
2418 			if (ret < 0) {
2419 				goto out;
2420 			} else if (ret > 0) {
2421 				ret = 0;
2422 				goto out;
2423 			}
2424 			continue;
2425 		}
2426 
2427 		path->slots[0]++;
2428 
2429 		btrfs_item_key_to_cpu(leaf, &key, slot);
2430 
2431 		if (key.objectid > inum)
2432 			goto out;
2433 
2434 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2435 			continue;
2436 
2437 		extent = btrfs_item_ptr(leaf, slot,
2438 					struct btrfs_file_extent_item);
2439 
2440 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2441 			continue;
2442 
2443 		/*
2444 		 * 'offset' refers to the exact key.offset,
2445 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2446 		 * (key.offset - extent_offset).
2447 		 */
2448 		if (key.offset != offset)
2449 			continue;
2450 
2451 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2452 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2453 
2454 		if (extent_offset >= old->extent_offset + old->offset +
2455 		    old->len || extent_offset + num_bytes <=
2456 		    old->extent_offset + old->offset)
2457 			continue;
2458 		break;
2459 	}
2460 
2461 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2462 	if (!backref) {
2463 		ret = -ENOENT;
2464 		goto out;
2465 	}
2466 
2467 	backref->root_id = root_id;
2468 	backref->inum = inum;
2469 	backref->file_pos = offset;
2470 	backref->num_bytes = num_bytes;
2471 	backref->extent_offset = extent_offset;
2472 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2473 	backref->old = old;
2474 	backref_insert(&new->root, backref);
2475 	old->count++;
2476 out:
2477 	btrfs_release_path(path);
2478 	WARN_ON(ret);
2479 	return ret;
2480 }
2481 
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2482 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2483 				   struct new_sa_defrag_extent *new)
2484 {
2485 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2486 	struct old_sa_defrag_extent *old, *tmp;
2487 	int ret;
2488 
2489 	new->path = path;
2490 
2491 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2492 		ret = iterate_inodes_from_logical(old->bytenr +
2493 						  old->extent_offset, fs_info,
2494 						  path, record_one_backref,
2495 						  old, false);
2496 		if (ret < 0 && ret != -ENOENT)
2497 			return false;
2498 
2499 		/* no backref to be processed for this extent */
2500 		if (!old->count) {
2501 			list_del(&old->list);
2502 			kfree(old);
2503 		}
2504 	}
2505 
2506 	if (list_empty(&new->head))
2507 		return false;
2508 
2509 	return true;
2510 }
2511 
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2512 static int relink_is_mergable(struct extent_buffer *leaf,
2513 			      struct btrfs_file_extent_item *fi,
2514 			      struct new_sa_defrag_extent *new)
2515 {
2516 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2517 		return 0;
2518 
2519 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2520 		return 0;
2521 
2522 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2523 		return 0;
2524 
2525 	if (btrfs_file_extent_encryption(leaf, fi) ||
2526 	    btrfs_file_extent_other_encoding(leaf, fi))
2527 		return 0;
2528 
2529 	return 1;
2530 }
2531 
2532 /*
2533  * Note the backref might has changed, and in this case we just return 0.
2534  */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2535 static noinline int relink_extent_backref(struct btrfs_path *path,
2536 				 struct sa_defrag_extent_backref *prev,
2537 				 struct sa_defrag_extent_backref *backref)
2538 {
2539 	struct btrfs_file_extent_item *extent;
2540 	struct btrfs_file_extent_item *item;
2541 	struct btrfs_ordered_extent *ordered;
2542 	struct btrfs_trans_handle *trans;
2543 	struct btrfs_root *root;
2544 	struct btrfs_key key;
2545 	struct extent_buffer *leaf;
2546 	struct old_sa_defrag_extent *old = backref->old;
2547 	struct new_sa_defrag_extent *new = old->new;
2548 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2549 	struct inode *inode;
2550 	struct extent_state *cached = NULL;
2551 	int ret = 0;
2552 	u64 start;
2553 	u64 len;
2554 	u64 lock_start;
2555 	u64 lock_end;
2556 	bool merge = false;
2557 	int index;
2558 
2559 	if (prev && prev->root_id == backref->root_id &&
2560 	    prev->inum == backref->inum &&
2561 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2562 		merge = true;
2563 
2564 	/* step 1: get root */
2565 	key.objectid = backref->root_id;
2566 	key.type = BTRFS_ROOT_ITEM_KEY;
2567 	key.offset = (u64)-1;
2568 
2569 	index = srcu_read_lock(&fs_info->subvol_srcu);
2570 
2571 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2572 	if (IS_ERR(root)) {
2573 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2574 		if (PTR_ERR(root) == -ENOENT)
2575 			return 0;
2576 		return PTR_ERR(root);
2577 	}
2578 
2579 	if (btrfs_root_readonly(root)) {
2580 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2581 		return 0;
2582 	}
2583 
2584 	/* step 2: get inode */
2585 	key.objectid = backref->inum;
2586 	key.type = BTRFS_INODE_ITEM_KEY;
2587 	key.offset = 0;
2588 
2589 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2590 	if (IS_ERR(inode)) {
2591 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2592 		return 0;
2593 	}
2594 
2595 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2596 
2597 	/* step 3: relink backref */
2598 	lock_start = backref->file_pos;
2599 	lock_end = backref->file_pos + backref->num_bytes - 1;
2600 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2601 			 &cached);
2602 
2603 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2604 	if (ordered) {
2605 		btrfs_put_ordered_extent(ordered);
2606 		goto out_unlock;
2607 	}
2608 
2609 	trans = btrfs_join_transaction(root);
2610 	if (IS_ERR(trans)) {
2611 		ret = PTR_ERR(trans);
2612 		goto out_unlock;
2613 	}
2614 
2615 	key.objectid = backref->inum;
2616 	key.type = BTRFS_EXTENT_DATA_KEY;
2617 	key.offset = backref->file_pos;
2618 
2619 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2620 	if (ret < 0) {
2621 		goto out_free_path;
2622 	} else if (ret > 0) {
2623 		ret = 0;
2624 		goto out_free_path;
2625 	}
2626 
2627 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2628 				struct btrfs_file_extent_item);
2629 
2630 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2631 	    backref->generation)
2632 		goto out_free_path;
2633 
2634 	btrfs_release_path(path);
2635 
2636 	start = backref->file_pos;
2637 	if (backref->extent_offset < old->extent_offset + old->offset)
2638 		start += old->extent_offset + old->offset -
2639 			 backref->extent_offset;
2640 
2641 	len = min(backref->extent_offset + backref->num_bytes,
2642 		  old->extent_offset + old->offset + old->len);
2643 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2644 
2645 	ret = btrfs_drop_extents(trans, root, inode, start,
2646 				 start + len, 1);
2647 	if (ret)
2648 		goto out_free_path;
2649 again:
2650 	key.objectid = btrfs_ino(BTRFS_I(inode));
2651 	key.type = BTRFS_EXTENT_DATA_KEY;
2652 	key.offset = start;
2653 
2654 	path->leave_spinning = 1;
2655 	if (merge) {
2656 		struct btrfs_file_extent_item *fi;
2657 		u64 extent_len;
2658 		struct btrfs_key found_key;
2659 
2660 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2661 		if (ret < 0)
2662 			goto out_free_path;
2663 
2664 		path->slots[0]--;
2665 		leaf = path->nodes[0];
2666 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2667 
2668 		fi = btrfs_item_ptr(leaf, path->slots[0],
2669 				    struct btrfs_file_extent_item);
2670 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2671 
2672 		if (extent_len + found_key.offset == start &&
2673 		    relink_is_mergable(leaf, fi, new)) {
2674 			btrfs_set_file_extent_num_bytes(leaf, fi,
2675 							extent_len + len);
2676 			btrfs_mark_buffer_dirty(leaf);
2677 			inode_add_bytes(inode, len);
2678 
2679 			ret = 1;
2680 			goto out_free_path;
2681 		} else {
2682 			merge = false;
2683 			btrfs_release_path(path);
2684 			goto again;
2685 		}
2686 	}
2687 
2688 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2689 					sizeof(*extent));
2690 	if (ret) {
2691 		btrfs_abort_transaction(trans, ret);
2692 		goto out_free_path;
2693 	}
2694 
2695 	leaf = path->nodes[0];
2696 	item = btrfs_item_ptr(leaf, path->slots[0],
2697 				struct btrfs_file_extent_item);
2698 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2699 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2700 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2701 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2702 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2703 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2704 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2705 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2706 	btrfs_set_file_extent_encryption(leaf, item, 0);
2707 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2708 
2709 	btrfs_mark_buffer_dirty(leaf);
2710 	inode_add_bytes(inode, len);
2711 	btrfs_release_path(path);
2712 
2713 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2714 			new->disk_len, 0,
2715 			backref->root_id, backref->inum,
2716 			new->file_pos);	/* start - extent_offset */
2717 	if (ret) {
2718 		btrfs_abort_transaction(trans, ret);
2719 		goto out_free_path;
2720 	}
2721 
2722 	ret = 1;
2723 out_free_path:
2724 	btrfs_release_path(path);
2725 	path->leave_spinning = 0;
2726 	btrfs_end_transaction(trans);
2727 out_unlock:
2728 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2729 			     &cached);
2730 	iput(inode);
2731 	return ret;
2732 }
2733 
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2734 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2735 {
2736 	struct old_sa_defrag_extent *old, *tmp;
2737 
2738 	if (!new)
2739 		return;
2740 
2741 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2742 		kfree(old);
2743 	}
2744 	kfree(new);
2745 }
2746 
relink_file_extents(struct new_sa_defrag_extent * new)2747 static void relink_file_extents(struct new_sa_defrag_extent *new)
2748 {
2749 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2750 	struct btrfs_path *path;
2751 	struct sa_defrag_extent_backref *backref;
2752 	struct sa_defrag_extent_backref *prev = NULL;
2753 	struct inode *inode;
2754 	struct rb_node *node;
2755 	int ret;
2756 
2757 	inode = new->inode;
2758 
2759 	path = btrfs_alloc_path();
2760 	if (!path)
2761 		return;
2762 
2763 	if (!record_extent_backrefs(path, new)) {
2764 		btrfs_free_path(path);
2765 		goto out;
2766 	}
2767 	btrfs_release_path(path);
2768 
2769 	while (1) {
2770 		node = rb_first(&new->root);
2771 		if (!node)
2772 			break;
2773 		rb_erase(node, &new->root);
2774 
2775 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2776 
2777 		ret = relink_extent_backref(path, prev, backref);
2778 		WARN_ON(ret < 0);
2779 
2780 		kfree(prev);
2781 
2782 		if (ret == 1)
2783 			prev = backref;
2784 		else
2785 			prev = NULL;
2786 		cond_resched();
2787 	}
2788 	kfree(prev);
2789 
2790 	btrfs_free_path(path);
2791 out:
2792 	free_sa_defrag_extent(new);
2793 
2794 	atomic_dec(&fs_info->defrag_running);
2795 	wake_up(&fs_info->transaction_wait);
2796 }
2797 
2798 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2799 record_old_file_extents(struct inode *inode,
2800 			struct btrfs_ordered_extent *ordered)
2801 {
2802 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2803 	struct btrfs_root *root = BTRFS_I(inode)->root;
2804 	struct btrfs_path *path;
2805 	struct btrfs_key key;
2806 	struct old_sa_defrag_extent *old;
2807 	struct new_sa_defrag_extent *new;
2808 	int ret;
2809 
2810 	new = kmalloc(sizeof(*new), GFP_NOFS);
2811 	if (!new)
2812 		return NULL;
2813 
2814 	new->inode = inode;
2815 	new->file_pos = ordered->file_offset;
2816 	new->len = ordered->len;
2817 	new->bytenr = ordered->start;
2818 	new->disk_len = ordered->disk_len;
2819 	new->compress_type = ordered->compress_type;
2820 	new->root = RB_ROOT;
2821 	INIT_LIST_HEAD(&new->head);
2822 
2823 	path = btrfs_alloc_path();
2824 	if (!path)
2825 		goto out_kfree;
2826 
2827 	key.objectid = btrfs_ino(BTRFS_I(inode));
2828 	key.type = BTRFS_EXTENT_DATA_KEY;
2829 	key.offset = new->file_pos;
2830 
2831 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2832 	if (ret < 0)
2833 		goto out_free_path;
2834 	if (ret > 0 && path->slots[0] > 0)
2835 		path->slots[0]--;
2836 
2837 	/* find out all the old extents for the file range */
2838 	while (1) {
2839 		struct btrfs_file_extent_item *extent;
2840 		struct extent_buffer *l;
2841 		int slot;
2842 		u64 num_bytes;
2843 		u64 offset;
2844 		u64 end;
2845 		u64 disk_bytenr;
2846 		u64 extent_offset;
2847 
2848 		l = path->nodes[0];
2849 		slot = path->slots[0];
2850 
2851 		if (slot >= btrfs_header_nritems(l)) {
2852 			ret = btrfs_next_leaf(root, path);
2853 			if (ret < 0)
2854 				goto out_free_path;
2855 			else if (ret > 0)
2856 				break;
2857 			continue;
2858 		}
2859 
2860 		btrfs_item_key_to_cpu(l, &key, slot);
2861 
2862 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2863 			break;
2864 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2865 			break;
2866 		if (key.offset >= new->file_pos + new->len)
2867 			break;
2868 
2869 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2870 
2871 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2872 		if (key.offset + num_bytes < new->file_pos)
2873 			goto next;
2874 
2875 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2876 		if (!disk_bytenr)
2877 			goto next;
2878 
2879 		extent_offset = btrfs_file_extent_offset(l, extent);
2880 
2881 		old = kmalloc(sizeof(*old), GFP_NOFS);
2882 		if (!old)
2883 			goto out_free_path;
2884 
2885 		offset = max(new->file_pos, key.offset);
2886 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2887 
2888 		old->bytenr = disk_bytenr;
2889 		old->extent_offset = extent_offset;
2890 		old->offset = offset - key.offset;
2891 		old->len = end - offset;
2892 		old->new = new;
2893 		old->count = 0;
2894 		list_add_tail(&old->list, &new->head);
2895 next:
2896 		path->slots[0]++;
2897 		cond_resched();
2898 	}
2899 
2900 	btrfs_free_path(path);
2901 	atomic_inc(&fs_info->defrag_running);
2902 
2903 	return new;
2904 
2905 out_free_path:
2906 	btrfs_free_path(path);
2907 out_kfree:
2908 	free_sa_defrag_extent(new);
2909 	return NULL;
2910 }
2911 
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2912 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2913 					 u64 start, u64 len)
2914 {
2915 	struct btrfs_block_group_cache *cache;
2916 
2917 	cache = btrfs_lookup_block_group(fs_info, start);
2918 	ASSERT(cache);
2919 
2920 	spin_lock(&cache->lock);
2921 	cache->delalloc_bytes -= len;
2922 	spin_unlock(&cache->lock);
2923 
2924 	btrfs_put_block_group(cache);
2925 }
2926 
2927 /* as ordered data IO finishes, this gets called so we can finish
2928  * an ordered extent if the range of bytes in the file it covers are
2929  * fully written.
2930  */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2931 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2932 {
2933 	struct inode *inode = ordered_extent->inode;
2934 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2935 	struct btrfs_root *root = BTRFS_I(inode)->root;
2936 	struct btrfs_trans_handle *trans = NULL;
2937 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2938 	struct extent_state *cached_state = NULL;
2939 	struct new_sa_defrag_extent *new = NULL;
2940 	int compress_type = 0;
2941 	int ret = 0;
2942 	u64 logical_len = ordered_extent->len;
2943 	bool nolock;
2944 	bool truncated = false;
2945 	bool range_locked = false;
2946 	bool clear_new_delalloc_bytes = false;
2947 
2948 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2949 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2950 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2951 		clear_new_delalloc_bytes = true;
2952 
2953 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2954 
2955 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2956 		ret = -EIO;
2957 		goto out;
2958 	}
2959 
2960 	btrfs_free_io_failure_record(BTRFS_I(inode),
2961 			ordered_extent->file_offset,
2962 			ordered_extent->file_offset +
2963 			ordered_extent->len - 1);
2964 
2965 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2966 		truncated = true;
2967 		logical_len = ordered_extent->truncated_len;
2968 		/* Truncated the entire extent, don't bother adding */
2969 		if (!logical_len)
2970 			goto out;
2971 	}
2972 
2973 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2974 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2975 
2976 		/*
2977 		 * For mwrite(mmap + memset to write) case, we still reserve
2978 		 * space for NOCOW range.
2979 		 * As NOCOW won't cause a new delayed ref, just free the space
2980 		 */
2981 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2982 				       ordered_extent->len);
2983 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2984 		if (nolock)
2985 			trans = btrfs_join_transaction_nolock(root);
2986 		else
2987 			trans = btrfs_join_transaction(root);
2988 		if (IS_ERR(trans)) {
2989 			ret = PTR_ERR(trans);
2990 			trans = NULL;
2991 			goto out;
2992 		}
2993 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2994 		ret = btrfs_update_inode_fallback(trans, root, inode);
2995 		if (ret) /* -ENOMEM or corruption */
2996 			btrfs_abort_transaction(trans, ret);
2997 		goto out;
2998 	}
2999 
3000 	range_locked = true;
3001 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3002 			 ordered_extent->file_offset + ordered_extent->len - 1,
3003 			 &cached_state);
3004 
3005 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3006 			ordered_extent->file_offset + ordered_extent->len - 1,
3007 			EXTENT_DEFRAG, 0, cached_state);
3008 	if (ret) {
3009 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3010 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3011 			/* the inode is shared */
3012 			new = record_old_file_extents(inode, ordered_extent);
3013 
3014 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3015 			ordered_extent->file_offset + ordered_extent->len - 1,
3016 			EXTENT_DEFRAG, 0, 0, &cached_state);
3017 	}
3018 
3019 	if (nolock)
3020 		trans = btrfs_join_transaction_nolock(root);
3021 	else
3022 		trans = btrfs_join_transaction(root);
3023 	if (IS_ERR(trans)) {
3024 		ret = PTR_ERR(trans);
3025 		trans = NULL;
3026 		goto out;
3027 	}
3028 
3029 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3030 
3031 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3032 		compress_type = ordered_extent->compress_type;
3033 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3034 		BUG_ON(compress_type);
3035 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3036 				       ordered_extent->len);
3037 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3038 						ordered_extent->file_offset,
3039 						ordered_extent->file_offset +
3040 						logical_len);
3041 	} else {
3042 		BUG_ON(root == fs_info->tree_root);
3043 		ret = insert_reserved_file_extent(trans, inode,
3044 						ordered_extent->file_offset,
3045 						ordered_extent->start,
3046 						ordered_extent->disk_len,
3047 						logical_len, logical_len,
3048 						compress_type, 0, 0,
3049 						BTRFS_FILE_EXTENT_REG);
3050 		if (!ret)
3051 			btrfs_release_delalloc_bytes(fs_info,
3052 						     ordered_extent->start,
3053 						     ordered_extent->disk_len);
3054 	}
3055 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3056 			   ordered_extent->file_offset, ordered_extent->len,
3057 			   trans->transid);
3058 	if (ret < 0) {
3059 		btrfs_abort_transaction(trans, ret);
3060 		goto out;
3061 	}
3062 
3063 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3064 	if (ret) {
3065 		btrfs_abort_transaction(trans, ret);
3066 		goto out;
3067 	}
3068 
3069 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3070 	ret = btrfs_update_inode_fallback(trans, root, inode);
3071 	if (ret) { /* -ENOMEM or corruption */
3072 		btrfs_abort_transaction(trans, ret);
3073 		goto out;
3074 	}
3075 	ret = 0;
3076 out:
3077 	if (range_locked || clear_new_delalloc_bytes) {
3078 		unsigned int clear_bits = 0;
3079 
3080 		if (range_locked)
3081 			clear_bits |= EXTENT_LOCKED;
3082 		if (clear_new_delalloc_bytes)
3083 			clear_bits |= EXTENT_DELALLOC_NEW;
3084 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3085 				 ordered_extent->file_offset,
3086 				 ordered_extent->file_offset +
3087 				 ordered_extent->len - 1,
3088 				 clear_bits,
3089 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3090 				 0, &cached_state);
3091 	}
3092 
3093 	if (trans)
3094 		btrfs_end_transaction(trans);
3095 
3096 	if (ret || truncated) {
3097 		u64 start, end;
3098 
3099 		if (truncated)
3100 			start = ordered_extent->file_offset + logical_len;
3101 		else
3102 			start = ordered_extent->file_offset;
3103 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3104 		clear_extent_uptodate(io_tree, start, end, NULL);
3105 
3106 		/* Drop the cache for the part of the extent we didn't write. */
3107 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3108 
3109 		/*
3110 		 * If the ordered extent had an IOERR or something else went
3111 		 * wrong we need to return the space for this ordered extent
3112 		 * back to the allocator.  We only free the extent in the
3113 		 * truncated case if we didn't write out the extent at all.
3114 		 */
3115 		if ((ret || !logical_len) &&
3116 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3117 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3118 			btrfs_free_reserved_extent(fs_info,
3119 						   ordered_extent->start,
3120 						   ordered_extent->disk_len, 1);
3121 	}
3122 
3123 
3124 	/*
3125 	 * This needs to be done to make sure anybody waiting knows we are done
3126 	 * updating everything for this ordered extent.
3127 	 */
3128 	btrfs_remove_ordered_extent(inode, ordered_extent);
3129 
3130 	/* for snapshot-aware defrag */
3131 	if (new) {
3132 		if (ret) {
3133 			free_sa_defrag_extent(new);
3134 			atomic_dec(&fs_info->defrag_running);
3135 		} else {
3136 			relink_file_extents(new);
3137 		}
3138 	}
3139 
3140 	/* once for us */
3141 	btrfs_put_ordered_extent(ordered_extent);
3142 	/* once for the tree */
3143 	btrfs_put_ordered_extent(ordered_extent);
3144 
3145 	/* Try to release some metadata so we don't get an OOM but don't wait */
3146 	btrfs_btree_balance_dirty_nodelay(fs_info);
3147 
3148 	return ret;
3149 }
3150 
finish_ordered_fn(struct btrfs_work * work)3151 static void finish_ordered_fn(struct btrfs_work *work)
3152 {
3153 	struct btrfs_ordered_extent *ordered_extent;
3154 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3155 	btrfs_finish_ordered_io(ordered_extent);
3156 }
3157 
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)3158 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3159 				struct extent_state *state, int uptodate)
3160 {
3161 	struct inode *inode = page->mapping->host;
3162 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3163 	struct btrfs_ordered_extent *ordered_extent = NULL;
3164 	struct btrfs_workqueue *wq;
3165 	btrfs_work_func_t func;
3166 
3167 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3168 
3169 	ClearPagePrivate2(page);
3170 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3171 					    end - start + 1, uptodate))
3172 		return;
3173 
3174 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3175 		wq = fs_info->endio_freespace_worker;
3176 		func = btrfs_freespace_write_helper;
3177 	} else {
3178 		wq = fs_info->endio_write_workers;
3179 		func = btrfs_endio_write_helper;
3180 	}
3181 
3182 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3183 			NULL);
3184 	btrfs_queue_work(wq, &ordered_extent->work);
3185 }
3186 
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3187 static int __readpage_endio_check(struct inode *inode,
3188 				  struct btrfs_io_bio *io_bio,
3189 				  int icsum, struct page *page,
3190 				  int pgoff, u64 start, size_t len)
3191 {
3192 	char *kaddr;
3193 	u32 csum_expected;
3194 	u32 csum = ~(u32)0;
3195 
3196 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3197 
3198 	kaddr = kmap_atomic(page);
3199 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3200 	btrfs_csum_final(csum, (u8 *)&csum);
3201 	if (csum != csum_expected)
3202 		goto zeroit;
3203 
3204 	kunmap_atomic(kaddr);
3205 	return 0;
3206 zeroit:
3207 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3208 				    io_bio->mirror_num);
3209 	memset(kaddr + pgoff, 1, len);
3210 	flush_dcache_page(page);
3211 	kunmap_atomic(kaddr);
3212 	return -EIO;
3213 }
3214 
3215 /*
3216  * when reads are done, we need to check csums to verify the data is correct
3217  * if there's a match, we allow the bio to finish.  If not, the code in
3218  * extent_io.c will try to find good copies for us.
3219  */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3220 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3221 				      u64 phy_offset, struct page *page,
3222 				      u64 start, u64 end, int mirror)
3223 {
3224 	size_t offset = start - page_offset(page);
3225 	struct inode *inode = page->mapping->host;
3226 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3227 	struct btrfs_root *root = BTRFS_I(inode)->root;
3228 
3229 	if (PageChecked(page)) {
3230 		ClearPageChecked(page);
3231 		return 0;
3232 	}
3233 
3234 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3235 		return 0;
3236 
3237 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3238 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3239 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3240 		return 0;
3241 	}
3242 
3243 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3244 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3245 				      start, (size_t)(end - start + 1));
3246 }
3247 
3248 /*
3249  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3250  *
3251  * @inode: The inode we want to perform iput on
3252  *
3253  * This function uses the generic vfs_inode::i_count to track whether we should
3254  * just decrement it (in case it's > 1) or if this is the last iput then link
3255  * the inode to the delayed iput machinery. Delayed iputs are processed at
3256  * transaction commit time/superblock commit/cleaner kthread.
3257  */
btrfs_add_delayed_iput(struct inode * inode)3258 void btrfs_add_delayed_iput(struct inode *inode)
3259 {
3260 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3261 	struct btrfs_inode *binode = BTRFS_I(inode);
3262 
3263 	if (atomic_add_unless(&inode->i_count, -1, 1))
3264 		return;
3265 
3266 	spin_lock(&fs_info->delayed_iput_lock);
3267 	ASSERT(list_empty(&binode->delayed_iput));
3268 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3269 	spin_unlock(&fs_info->delayed_iput_lock);
3270 }
3271 
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3272 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3273 {
3274 
3275 	spin_lock(&fs_info->delayed_iput_lock);
3276 	while (!list_empty(&fs_info->delayed_iputs)) {
3277 		struct btrfs_inode *inode;
3278 
3279 		inode = list_first_entry(&fs_info->delayed_iputs,
3280 				struct btrfs_inode, delayed_iput);
3281 		list_del_init(&inode->delayed_iput);
3282 		spin_unlock(&fs_info->delayed_iput_lock);
3283 		iput(&inode->vfs_inode);
3284 		spin_lock(&fs_info->delayed_iput_lock);
3285 	}
3286 	spin_unlock(&fs_info->delayed_iput_lock);
3287 }
3288 
3289 /*
3290  * This creates an orphan entry for the given inode in case something goes wrong
3291  * in the middle of an unlink.
3292  */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3293 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3294 		     struct btrfs_inode *inode)
3295 {
3296 	int ret;
3297 
3298 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3299 	if (ret && ret != -EEXIST) {
3300 		btrfs_abort_transaction(trans, ret);
3301 		return ret;
3302 	}
3303 
3304 	return 0;
3305 }
3306 
3307 /*
3308  * We have done the delete so we can go ahead and remove the orphan item for
3309  * this particular inode.
3310  */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3311 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3312 			    struct btrfs_inode *inode)
3313 {
3314 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3315 }
3316 
3317 /*
3318  * this cleans up any orphans that may be left on the list from the last use
3319  * of this root.
3320  */
btrfs_orphan_cleanup(struct btrfs_root * root)3321 int btrfs_orphan_cleanup(struct btrfs_root *root)
3322 {
3323 	struct btrfs_fs_info *fs_info = root->fs_info;
3324 	struct btrfs_path *path;
3325 	struct extent_buffer *leaf;
3326 	struct btrfs_key key, found_key;
3327 	struct btrfs_trans_handle *trans;
3328 	struct inode *inode;
3329 	u64 last_objectid = 0;
3330 	int ret = 0, nr_unlink = 0;
3331 
3332 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3333 		return 0;
3334 
3335 	path = btrfs_alloc_path();
3336 	if (!path) {
3337 		ret = -ENOMEM;
3338 		goto out;
3339 	}
3340 	path->reada = READA_BACK;
3341 
3342 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3343 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3344 	key.offset = (u64)-1;
3345 
3346 	while (1) {
3347 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348 		if (ret < 0)
3349 			goto out;
3350 
3351 		/*
3352 		 * if ret == 0 means we found what we were searching for, which
3353 		 * is weird, but possible, so only screw with path if we didn't
3354 		 * find the key and see if we have stuff that matches
3355 		 */
3356 		if (ret > 0) {
3357 			ret = 0;
3358 			if (path->slots[0] == 0)
3359 				break;
3360 			path->slots[0]--;
3361 		}
3362 
3363 		/* pull out the item */
3364 		leaf = path->nodes[0];
3365 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3366 
3367 		/* make sure the item matches what we want */
3368 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3369 			break;
3370 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3371 			break;
3372 
3373 		/* release the path since we're done with it */
3374 		btrfs_release_path(path);
3375 
3376 		/*
3377 		 * this is where we are basically btrfs_lookup, without the
3378 		 * crossing root thing.  we store the inode number in the
3379 		 * offset of the orphan item.
3380 		 */
3381 
3382 		if (found_key.offset == last_objectid) {
3383 			btrfs_err(fs_info,
3384 				  "Error removing orphan entry, stopping orphan cleanup");
3385 			ret = -EINVAL;
3386 			goto out;
3387 		}
3388 
3389 		last_objectid = found_key.offset;
3390 
3391 		found_key.objectid = found_key.offset;
3392 		found_key.type = BTRFS_INODE_ITEM_KEY;
3393 		found_key.offset = 0;
3394 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3395 		ret = PTR_ERR_OR_ZERO(inode);
3396 		if (ret && ret != -ENOENT)
3397 			goto out;
3398 
3399 		if (ret == -ENOENT && root == fs_info->tree_root) {
3400 			struct btrfs_root *dead_root;
3401 			struct btrfs_fs_info *fs_info = root->fs_info;
3402 			int is_dead_root = 0;
3403 
3404 			/*
3405 			 * this is an orphan in the tree root. Currently these
3406 			 * could come from 2 sources:
3407 			 *  a) a snapshot deletion in progress
3408 			 *  b) a free space cache inode
3409 			 * We need to distinguish those two, as the snapshot
3410 			 * orphan must not get deleted.
3411 			 * find_dead_roots already ran before us, so if this
3412 			 * is a snapshot deletion, we should find the root
3413 			 * in the dead_roots list
3414 			 */
3415 			spin_lock(&fs_info->trans_lock);
3416 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3417 					    root_list) {
3418 				if (dead_root->root_key.objectid ==
3419 				    found_key.objectid) {
3420 					is_dead_root = 1;
3421 					break;
3422 				}
3423 			}
3424 			spin_unlock(&fs_info->trans_lock);
3425 			if (is_dead_root) {
3426 				/* prevent this orphan from being found again */
3427 				key.offset = found_key.objectid - 1;
3428 				continue;
3429 			}
3430 
3431 		}
3432 
3433 		/*
3434 		 * If we have an inode with links, there are a couple of
3435 		 * possibilities. Old kernels (before v3.12) used to create an
3436 		 * orphan item for truncate indicating that there were possibly
3437 		 * extent items past i_size that needed to be deleted. In v3.12,
3438 		 * truncate was changed to update i_size in sync with the extent
3439 		 * items, but the (useless) orphan item was still created. Since
3440 		 * v4.18, we don't create the orphan item for truncate at all.
3441 		 *
3442 		 * So, this item could mean that we need to do a truncate, but
3443 		 * only if this filesystem was last used on a pre-v3.12 kernel
3444 		 * and was not cleanly unmounted. The odds of that are quite
3445 		 * slim, and it's a pain to do the truncate now, so just delete
3446 		 * the orphan item.
3447 		 *
3448 		 * It's also possible that this orphan item was supposed to be
3449 		 * deleted but wasn't. The inode number may have been reused,
3450 		 * but either way, we can delete the orphan item.
3451 		 */
3452 		if (ret == -ENOENT || inode->i_nlink) {
3453 			if (!ret)
3454 				iput(inode);
3455 			trans = btrfs_start_transaction(root, 1);
3456 			if (IS_ERR(trans)) {
3457 				ret = PTR_ERR(trans);
3458 				goto out;
3459 			}
3460 			btrfs_debug(fs_info, "auto deleting %Lu",
3461 				    found_key.objectid);
3462 			ret = btrfs_del_orphan_item(trans, root,
3463 						    found_key.objectid);
3464 			btrfs_end_transaction(trans);
3465 			if (ret)
3466 				goto out;
3467 			continue;
3468 		}
3469 
3470 		nr_unlink++;
3471 
3472 		/* this will do delete_inode and everything for us */
3473 		iput(inode);
3474 		if (ret)
3475 			goto out;
3476 	}
3477 	/* release the path since we're done with it */
3478 	btrfs_release_path(path);
3479 
3480 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3481 
3482 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3483 		trans = btrfs_join_transaction(root);
3484 		if (!IS_ERR(trans))
3485 			btrfs_end_transaction(trans);
3486 	}
3487 
3488 	if (nr_unlink)
3489 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3490 
3491 out:
3492 	if (ret)
3493 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3494 	btrfs_free_path(path);
3495 	return ret;
3496 }
3497 
3498 /*
3499  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3500  * don't find any xattrs, we know there can't be any acls.
3501  *
3502  * slot is the slot the inode is in, objectid is the objectid of the inode
3503  */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3504 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3505 					  int slot, u64 objectid,
3506 					  int *first_xattr_slot)
3507 {
3508 	u32 nritems = btrfs_header_nritems(leaf);
3509 	struct btrfs_key found_key;
3510 	static u64 xattr_access = 0;
3511 	static u64 xattr_default = 0;
3512 	int scanned = 0;
3513 
3514 	if (!xattr_access) {
3515 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3516 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3517 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3518 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3519 	}
3520 
3521 	slot++;
3522 	*first_xattr_slot = -1;
3523 	while (slot < nritems) {
3524 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3525 
3526 		/* we found a different objectid, there must not be acls */
3527 		if (found_key.objectid != objectid)
3528 			return 0;
3529 
3530 		/* we found an xattr, assume we've got an acl */
3531 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3532 			if (*first_xattr_slot == -1)
3533 				*first_xattr_slot = slot;
3534 			if (found_key.offset == xattr_access ||
3535 			    found_key.offset == xattr_default)
3536 				return 1;
3537 		}
3538 
3539 		/*
3540 		 * we found a key greater than an xattr key, there can't
3541 		 * be any acls later on
3542 		 */
3543 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3544 			return 0;
3545 
3546 		slot++;
3547 		scanned++;
3548 
3549 		/*
3550 		 * it goes inode, inode backrefs, xattrs, extents,
3551 		 * so if there are a ton of hard links to an inode there can
3552 		 * be a lot of backrefs.  Don't waste time searching too hard,
3553 		 * this is just an optimization
3554 		 */
3555 		if (scanned >= 8)
3556 			break;
3557 	}
3558 	/* we hit the end of the leaf before we found an xattr or
3559 	 * something larger than an xattr.  We have to assume the inode
3560 	 * has acls
3561 	 */
3562 	if (*first_xattr_slot == -1)
3563 		*first_xattr_slot = slot;
3564 	return 1;
3565 }
3566 
3567 /*
3568  * read an inode from the btree into the in-memory inode
3569  */
btrfs_read_locked_inode(struct inode * inode)3570 static int btrfs_read_locked_inode(struct inode *inode)
3571 {
3572 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3573 	struct btrfs_path *path;
3574 	struct extent_buffer *leaf;
3575 	struct btrfs_inode_item *inode_item;
3576 	struct btrfs_root *root = BTRFS_I(inode)->root;
3577 	struct btrfs_key location;
3578 	unsigned long ptr;
3579 	int maybe_acls;
3580 	u32 rdev;
3581 	int ret;
3582 	bool filled = false;
3583 	int first_xattr_slot;
3584 
3585 	ret = btrfs_fill_inode(inode, &rdev);
3586 	if (!ret)
3587 		filled = true;
3588 
3589 	path = btrfs_alloc_path();
3590 	if (!path)
3591 		return -ENOMEM;
3592 
3593 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3594 
3595 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3596 	if (ret) {
3597 		btrfs_free_path(path);
3598 		return ret;
3599 	}
3600 
3601 	leaf = path->nodes[0];
3602 
3603 	if (filled)
3604 		goto cache_index;
3605 
3606 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3607 				    struct btrfs_inode_item);
3608 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3609 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3610 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3611 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3612 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3613 
3614 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3615 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3616 
3617 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3618 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3619 
3620 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3621 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3622 
3623 	BTRFS_I(inode)->i_otime.tv_sec =
3624 		btrfs_timespec_sec(leaf, &inode_item->otime);
3625 	BTRFS_I(inode)->i_otime.tv_nsec =
3626 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3627 
3628 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3629 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3630 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3631 
3632 	inode_set_iversion_queried(inode,
3633 				   btrfs_inode_sequence(leaf, inode_item));
3634 	inode->i_generation = BTRFS_I(inode)->generation;
3635 	inode->i_rdev = 0;
3636 	rdev = btrfs_inode_rdev(leaf, inode_item);
3637 
3638 	BTRFS_I(inode)->index_cnt = (u64)-1;
3639 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3640 
3641 cache_index:
3642 	/*
3643 	 * If we were modified in the current generation and evicted from memory
3644 	 * and then re-read we need to do a full sync since we don't have any
3645 	 * idea about which extents were modified before we were evicted from
3646 	 * cache.
3647 	 *
3648 	 * This is required for both inode re-read from disk and delayed inode
3649 	 * in delayed_nodes_tree.
3650 	 */
3651 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3652 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3653 			&BTRFS_I(inode)->runtime_flags);
3654 
3655 	/*
3656 	 * We don't persist the id of the transaction where an unlink operation
3657 	 * against the inode was last made. So here we assume the inode might
3658 	 * have been evicted, and therefore the exact value of last_unlink_trans
3659 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3660 	 * between the inode and its parent if the inode is fsync'ed and the log
3661 	 * replayed. For example, in the scenario:
3662 	 *
3663 	 * touch mydir/foo
3664 	 * ln mydir/foo mydir/bar
3665 	 * sync
3666 	 * unlink mydir/bar
3667 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3668 	 * xfs_io -c fsync mydir/foo
3669 	 * <power failure>
3670 	 * mount fs, triggers fsync log replay
3671 	 *
3672 	 * We must make sure that when we fsync our inode foo we also log its
3673 	 * parent inode, otherwise after log replay the parent still has the
3674 	 * dentry with the "bar" name but our inode foo has a link count of 1
3675 	 * and doesn't have an inode ref with the name "bar" anymore.
3676 	 *
3677 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3678 	 * but it guarantees correctness at the expense of occasional full
3679 	 * transaction commits on fsync if our inode is a directory, or if our
3680 	 * inode is not a directory, logging its parent unnecessarily.
3681 	 */
3682 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3683 
3684 	path->slots[0]++;
3685 	if (inode->i_nlink != 1 ||
3686 	    path->slots[0] >= btrfs_header_nritems(leaf))
3687 		goto cache_acl;
3688 
3689 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3690 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3691 		goto cache_acl;
3692 
3693 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3694 	if (location.type == BTRFS_INODE_REF_KEY) {
3695 		struct btrfs_inode_ref *ref;
3696 
3697 		ref = (struct btrfs_inode_ref *)ptr;
3698 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3699 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3700 		struct btrfs_inode_extref *extref;
3701 
3702 		extref = (struct btrfs_inode_extref *)ptr;
3703 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3704 								     extref);
3705 	}
3706 cache_acl:
3707 	/*
3708 	 * try to precache a NULL acl entry for files that don't have
3709 	 * any xattrs or acls
3710 	 */
3711 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3712 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3713 	if (first_xattr_slot != -1) {
3714 		path->slots[0] = first_xattr_slot;
3715 		ret = btrfs_load_inode_props(inode, path);
3716 		if (ret)
3717 			btrfs_err(fs_info,
3718 				  "error loading props for ino %llu (root %llu): %d",
3719 				  btrfs_ino(BTRFS_I(inode)),
3720 				  root->root_key.objectid, ret);
3721 	}
3722 	btrfs_free_path(path);
3723 
3724 	if (!maybe_acls)
3725 		cache_no_acl(inode);
3726 
3727 	switch (inode->i_mode & S_IFMT) {
3728 	case S_IFREG:
3729 		inode->i_mapping->a_ops = &btrfs_aops;
3730 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3731 		inode->i_fop = &btrfs_file_operations;
3732 		inode->i_op = &btrfs_file_inode_operations;
3733 		break;
3734 	case S_IFDIR:
3735 		inode->i_fop = &btrfs_dir_file_operations;
3736 		inode->i_op = &btrfs_dir_inode_operations;
3737 		break;
3738 	case S_IFLNK:
3739 		inode->i_op = &btrfs_symlink_inode_operations;
3740 		inode_nohighmem(inode);
3741 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3742 		break;
3743 	default:
3744 		inode->i_op = &btrfs_special_inode_operations;
3745 		init_special_inode(inode, inode->i_mode, rdev);
3746 		break;
3747 	}
3748 
3749 	btrfs_sync_inode_flags_to_i_flags(inode);
3750 	return 0;
3751 }
3752 
3753 /*
3754  * given a leaf and an inode, copy the inode fields into the leaf
3755  */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3756 static void fill_inode_item(struct btrfs_trans_handle *trans,
3757 			    struct extent_buffer *leaf,
3758 			    struct btrfs_inode_item *item,
3759 			    struct inode *inode)
3760 {
3761 	struct btrfs_map_token token;
3762 
3763 	btrfs_init_map_token(&token);
3764 
3765 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3766 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3767 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3768 				   &token);
3769 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3770 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3771 
3772 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3773 				     inode->i_atime.tv_sec, &token);
3774 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3775 				      inode->i_atime.tv_nsec, &token);
3776 
3777 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3778 				     inode->i_mtime.tv_sec, &token);
3779 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3780 				      inode->i_mtime.tv_nsec, &token);
3781 
3782 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3783 				     inode->i_ctime.tv_sec, &token);
3784 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3785 				      inode->i_ctime.tv_nsec, &token);
3786 
3787 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3788 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3789 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3790 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3791 
3792 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3793 				     &token);
3794 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3795 					 &token);
3796 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3797 				       &token);
3798 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3799 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3800 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3801 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3802 }
3803 
3804 /*
3805  * copy everything in the in-memory inode into the btree.
3806  */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3807 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3808 				struct btrfs_root *root, struct inode *inode)
3809 {
3810 	struct btrfs_inode_item *inode_item;
3811 	struct btrfs_path *path;
3812 	struct extent_buffer *leaf;
3813 	int ret;
3814 
3815 	path = btrfs_alloc_path();
3816 	if (!path)
3817 		return -ENOMEM;
3818 
3819 	path->leave_spinning = 1;
3820 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3821 				 1);
3822 	if (ret) {
3823 		if (ret > 0)
3824 			ret = -ENOENT;
3825 		goto failed;
3826 	}
3827 
3828 	leaf = path->nodes[0];
3829 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3830 				    struct btrfs_inode_item);
3831 
3832 	fill_inode_item(trans, leaf, inode_item, inode);
3833 	btrfs_mark_buffer_dirty(leaf);
3834 	btrfs_set_inode_last_trans(trans, inode);
3835 	ret = 0;
3836 failed:
3837 	btrfs_free_path(path);
3838 	return ret;
3839 }
3840 
3841 /*
3842  * copy everything in the in-memory inode into the btree.
3843  */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3844 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3845 				struct btrfs_root *root, struct inode *inode)
3846 {
3847 	struct btrfs_fs_info *fs_info = root->fs_info;
3848 	int ret;
3849 
3850 	/*
3851 	 * If the inode is a free space inode, we can deadlock during commit
3852 	 * if we put it into the delayed code.
3853 	 *
3854 	 * The data relocation inode should also be directly updated
3855 	 * without delay
3856 	 */
3857 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3858 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3859 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3860 		btrfs_update_root_times(trans, root);
3861 
3862 		ret = btrfs_delayed_update_inode(trans, root, inode);
3863 		if (!ret)
3864 			btrfs_set_inode_last_trans(trans, inode);
3865 		return ret;
3866 	}
3867 
3868 	return btrfs_update_inode_item(trans, root, inode);
3869 }
3870 
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3871 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3872 					 struct btrfs_root *root,
3873 					 struct inode *inode)
3874 {
3875 	int ret;
3876 
3877 	ret = btrfs_update_inode(trans, root, inode);
3878 	if (ret == -ENOSPC)
3879 		return btrfs_update_inode_item(trans, root, inode);
3880 	return ret;
3881 }
3882 
3883 /*
3884  * unlink helper that gets used here in inode.c and in the tree logging
3885  * recovery code.  It remove a link in a directory with a given name, and
3886  * also drops the back refs in the inode to the directory
3887  */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3888 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3889 				struct btrfs_root *root,
3890 				struct btrfs_inode *dir,
3891 				struct btrfs_inode *inode,
3892 				const char *name, int name_len)
3893 {
3894 	struct btrfs_fs_info *fs_info = root->fs_info;
3895 	struct btrfs_path *path;
3896 	int ret = 0;
3897 	struct extent_buffer *leaf;
3898 	struct btrfs_dir_item *di;
3899 	struct btrfs_key key;
3900 	u64 index;
3901 	u64 ino = btrfs_ino(inode);
3902 	u64 dir_ino = btrfs_ino(dir);
3903 
3904 	path = btrfs_alloc_path();
3905 	if (!path) {
3906 		ret = -ENOMEM;
3907 		goto out;
3908 	}
3909 
3910 	path->leave_spinning = 1;
3911 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3912 				    name, name_len, -1);
3913 	if (IS_ERR(di)) {
3914 		ret = PTR_ERR(di);
3915 		goto err;
3916 	}
3917 	if (!di) {
3918 		ret = -ENOENT;
3919 		goto err;
3920 	}
3921 	leaf = path->nodes[0];
3922 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3923 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3924 	if (ret)
3925 		goto err;
3926 	btrfs_release_path(path);
3927 
3928 	/*
3929 	 * If we don't have dir index, we have to get it by looking up
3930 	 * the inode ref, since we get the inode ref, remove it directly,
3931 	 * it is unnecessary to do delayed deletion.
3932 	 *
3933 	 * But if we have dir index, needn't search inode ref to get it.
3934 	 * Since the inode ref is close to the inode item, it is better
3935 	 * that we delay to delete it, and just do this deletion when
3936 	 * we update the inode item.
3937 	 */
3938 	if (inode->dir_index) {
3939 		ret = btrfs_delayed_delete_inode_ref(inode);
3940 		if (!ret) {
3941 			index = inode->dir_index;
3942 			goto skip_backref;
3943 		}
3944 	}
3945 
3946 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3947 				  dir_ino, &index);
3948 	if (ret) {
3949 		btrfs_info(fs_info,
3950 			"failed to delete reference to %.*s, inode %llu parent %llu",
3951 			name_len, name, ino, dir_ino);
3952 		btrfs_abort_transaction(trans, ret);
3953 		goto err;
3954 	}
3955 skip_backref:
3956 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3957 	if (ret) {
3958 		btrfs_abort_transaction(trans, ret);
3959 		goto err;
3960 	}
3961 
3962 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3963 			dir_ino);
3964 	if (ret != 0 && ret != -ENOENT) {
3965 		btrfs_abort_transaction(trans, ret);
3966 		goto err;
3967 	}
3968 
3969 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3970 			index);
3971 	if (ret == -ENOENT)
3972 		ret = 0;
3973 	else if (ret)
3974 		btrfs_abort_transaction(trans, ret);
3975 err:
3976 	btrfs_free_path(path);
3977 	if (ret)
3978 		goto out;
3979 
3980 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3981 	inode_inc_iversion(&inode->vfs_inode);
3982 	inode_inc_iversion(&dir->vfs_inode);
3983 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3984 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3985 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3986 out:
3987 	return ret;
3988 }
3989 
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3990 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3991 		       struct btrfs_root *root,
3992 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3993 		       const char *name, int name_len)
3994 {
3995 	int ret;
3996 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3997 	if (!ret) {
3998 		drop_nlink(&inode->vfs_inode);
3999 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4000 	}
4001 	return ret;
4002 }
4003 
4004 /*
4005  * helper to start transaction for unlink and rmdir.
4006  *
4007  * unlink and rmdir are special in btrfs, they do not always free space, so
4008  * if we cannot make our reservations the normal way try and see if there is
4009  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4010  * allow the unlink to occur.
4011  */
__unlink_start_trans(struct inode * dir)4012 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4013 {
4014 	struct btrfs_root *root = BTRFS_I(dir)->root;
4015 
4016 	/*
4017 	 * 1 for the possible orphan item
4018 	 * 1 for the dir item
4019 	 * 1 for the dir index
4020 	 * 1 for the inode ref
4021 	 * 1 for the inode
4022 	 */
4023 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4024 }
4025 
btrfs_unlink(struct inode * dir,struct dentry * dentry)4026 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4027 {
4028 	struct btrfs_root *root = BTRFS_I(dir)->root;
4029 	struct btrfs_trans_handle *trans;
4030 	struct inode *inode = d_inode(dentry);
4031 	int ret;
4032 
4033 	trans = __unlink_start_trans(dir);
4034 	if (IS_ERR(trans))
4035 		return PTR_ERR(trans);
4036 
4037 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4038 			0);
4039 
4040 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4041 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4042 			dentry->d_name.len);
4043 	if (ret)
4044 		goto out;
4045 
4046 	if (inode->i_nlink == 0) {
4047 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4048 		if (ret)
4049 			goto out;
4050 	}
4051 
4052 out:
4053 	btrfs_end_transaction(trans);
4054 	btrfs_btree_balance_dirty(root->fs_info);
4055 	return ret;
4056 }
4057 
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,u64 objectid,const char * name,int name_len)4058 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4059 			       struct inode *dir, u64 objectid,
4060 			       const char *name, int name_len)
4061 {
4062 	struct btrfs_root *root = BTRFS_I(dir)->root;
4063 	struct btrfs_path *path;
4064 	struct extent_buffer *leaf;
4065 	struct btrfs_dir_item *di;
4066 	struct btrfs_key key;
4067 	u64 index;
4068 	int ret;
4069 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4070 
4071 	path = btrfs_alloc_path();
4072 	if (!path)
4073 		return -ENOMEM;
4074 
4075 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4076 				   name, name_len, -1);
4077 	if (IS_ERR_OR_NULL(di)) {
4078 		if (!di)
4079 			ret = -ENOENT;
4080 		else
4081 			ret = PTR_ERR(di);
4082 		goto out;
4083 	}
4084 
4085 	leaf = path->nodes[0];
4086 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4087 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4088 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4089 	if (ret) {
4090 		btrfs_abort_transaction(trans, ret);
4091 		goto out;
4092 	}
4093 	btrfs_release_path(path);
4094 
4095 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4096 				 dir_ino, &index, name, name_len);
4097 	if (ret < 0) {
4098 		if (ret != -ENOENT) {
4099 			btrfs_abort_transaction(trans, ret);
4100 			goto out;
4101 		}
4102 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4103 						 name, name_len);
4104 		if (IS_ERR_OR_NULL(di)) {
4105 			if (!di)
4106 				ret = -ENOENT;
4107 			else
4108 				ret = PTR_ERR(di);
4109 			btrfs_abort_transaction(trans, ret);
4110 			goto out;
4111 		}
4112 
4113 		leaf = path->nodes[0];
4114 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4115 		index = key.offset;
4116 	}
4117 	btrfs_release_path(path);
4118 
4119 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4120 	if (ret) {
4121 		btrfs_abort_transaction(trans, ret);
4122 		goto out;
4123 	}
4124 
4125 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4126 	inode_inc_iversion(dir);
4127 	dir->i_mtime = dir->i_ctime = current_time(dir);
4128 	ret = btrfs_update_inode_fallback(trans, root, dir);
4129 	if (ret)
4130 		btrfs_abort_transaction(trans, ret);
4131 out:
4132 	btrfs_free_path(path);
4133 	return ret;
4134 }
4135 
4136 /*
4137  * Helper to check if the subvolume references other subvolumes or if it's
4138  * default.
4139  */
may_destroy_subvol(struct btrfs_root * root)4140 static noinline int may_destroy_subvol(struct btrfs_root *root)
4141 {
4142 	struct btrfs_fs_info *fs_info = root->fs_info;
4143 	struct btrfs_path *path;
4144 	struct btrfs_dir_item *di;
4145 	struct btrfs_key key;
4146 	u64 dir_id;
4147 	int ret;
4148 
4149 	path = btrfs_alloc_path();
4150 	if (!path)
4151 		return -ENOMEM;
4152 
4153 	/* Make sure this root isn't set as the default subvol */
4154 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4155 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4156 				   dir_id, "default", 7, 0);
4157 	if (di && !IS_ERR(di)) {
4158 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4159 		if (key.objectid == root->root_key.objectid) {
4160 			ret = -EPERM;
4161 			btrfs_err(fs_info,
4162 				  "deleting default subvolume %llu is not allowed",
4163 				  key.objectid);
4164 			goto out;
4165 		}
4166 		btrfs_release_path(path);
4167 	}
4168 
4169 	key.objectid = root->root_key.objectid;
4170 	key.type = BTRFS_ROOT_REF_KEY;
4171 	key.offset = (u64)-1;
4172 
4173 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4174 	if (ret < 0)
4175 		goto out;
4176 	BUG_ON(ret == 0);
4177 
4178 	ret = 0;
4179 	if (path->slots[0] > 0) {
4180 		path->slots[0]--;
4181 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4182 		if (key.objectid == root->root_key.objectid &&
4183 		    key.type == BTRFS_ROOT_REF_KEY)
4184 			ret = -ENOTEMPTY;
4185 	}
4186 out:
4187 	btrfs_free_path(path);
4188 	return ret;
4189 }
4190 
4191 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4192 static void btrfs_prune_dentries(struct btrfs_root *root)
4193 {
4194 	struct btrfs_fs_info *fs_info = root->fs_info;
4195 	struct rb_node *node;
4196 	struct rb_node *prev;
4197 	struct btrfs_inode *entry;
4198 	struct inode *inode;
4199 	u64 objectid = 0;
4200 
4201 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4202 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4203 
4204 	spin_lock(&root->inode_lock);
4205 again:
4206 	node = root->inode_tree.rb_node;
4207 	prev = NULL;
4208 	while (node) {
4209 		prev = node;
4210 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4211 
4212 		if (objectid < btrfs_ino(entry))
4213 			node = node->rb_left;
4214 		else if (objectid > btrfs_ino(entry))
4215 			node = node->rb_right;
4216 		else
4217 			break;
4218 	}
4219 	if (!node) {
4220 		while (prev) {
4221 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4222 			if (objectid <= btrfs_ino(entry)) {
4223 				node = prev;
4224 				break;
4225 			}
4226 			prev = rb_next(prev);
4227 		}
4228 	}
4229 	while (node) {
4230 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4231 		objectid = btrfs_ino(entry) + 1;
4232 		inode = igrab(&entry->vfs_inode);
4233 		if (inode) {
4234 			spin_unlock(&root->inode_lock);
4235 			if (atomic_read(&inode->i_count) > 1)
4236 				d_prune_aliases(inode);
4237 			/*
4238 			 * btrfs_drop_inode will have it removed from the inode
4239 			 * cache when its usage count hits zero.
4240 			 */
4241 			iput(inode);
4242 			cond_resched();
4243 			spin_lock(&root->inode_lock);
4244 			goto again;
4245 		}
4246 
4247 		if (cond_resched_lock(&root->inode_lock))
4248 			goto again;
4249 
4250 		node = rb_next(node);
4251 	}
4252 	spin_unlock(&root->inode_lock);
4253 }
4254 
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4255 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4256 {
4257 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4258 	struct btrfs_root *root = BTRFS_I(dir)->root;
4259 	struct inode *inode = d_inode(dentry);
4260 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4261 	struct btrfs_trans_handle *trans;
4262 	struct btrfs_block_rsv block_rsv;
4263 	u64 root_flags;
4264 	int ret;
4265 	int err;
4266 
4267 	/*
4268 	 * Don't allow to delete a subvolume with send in progress. This is
4269 	 * inside the inode lock so the error handling that has to drop the bit
4270 	 * again is not run concurrently.
4271 	 */
4272 	spin_lock(&dest->root_item_lock);
4273 	root_flags = btrfs_root_flags(&dest->root_item);
4274 	if (dest->send_in_progress == 0) {
4275 		btrfs_set_root_flags(&dest->root_item,
4276 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4277 		spin_unlock(&dest->root_item_lock);
4278 	} else {
4279 		spin_unlock(&dest->root_item_lock);
4280 		btrfs_warn(fs_info,
4281 			   "attempt to delete subvolume %llu during send",
4282 			   dest->root_key.objectid);
4283 		return -EPERM;
4284 	}
4285 
4286 	down_write(&fs_info->subvol_sem);
4287 
4288 	err = may_destroy_subvol(dest);
4289 	if (err)
4290 		goto out_up_write;
4291 
4292 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4293 	/*
4294 	 * One for dir inode,
4295 	 * two for dir entries,
4296 	 * two for root ref/backref.
4297 	 */
4298 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4299 	if (err)
4300 		goto out_up_write;
4301 
4302 	trans = btrfs_start_transaction(root, 0);
4303 	if (IS_ERR(trans)) {
4304 		err = PTR_ERR(trans);
4305 		goto out_release;
4306 	}
4307 	trans->block_rsv = &block_rsv;
4308 	trans->bytes_reserved = block_rsv.size;
4309 
4310 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4311 
4312 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4313 				  dentry->d_name.name, dentry->d_name.len);
4314 	if (ret) {
4315 		err = ret;
4316 		btrfs_abort_transaction(trans, ret);
4317 		goto out_end_trans;
4318 	}
4319 
4320 	btrfs_record_root_in_trans(trans, dest);
4321 
4322 	memset(&dest->root_item.drop_progress, 0,
4323 		sizeof(dest->root_item.drop_progress));
4324 	dest->root_item.drop_level = 0;
4325 	btrfs_set_root_refs(&dest->root_item, 0);
4326 
4327 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4328 		ret = btrfs_insert_orphan_item(trans,
4329 					fs_info->tree_root,
4330 					dest->root_key.objectid);
4331 		if (ret) {
4332 			btrfs_abort_transaction(trans, ret);
4333 			err = ret;
4334 			goto out_end_trans;
4335 		}
4336 	}
4337 
4338 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4339 				  BTRFS_UUID_KEY_SUBVOL,
4340 				  dest->root_key.objectid);
4341 	if (ret && ret != -ENOENT) {
4342 		btrfs_abort_transaction(trans, ret);
4343 		err = ret;
4344 		goto out_end_trans;
4345 	}
4346 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4347 		ret = btrfs_uuid_tree_remove(trans,
4348 					  dest->root_item.received_uuid,
4349 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4350 					  dest->root_key.objectid);
4351 		if (ret && ret != -ENOENT) {
4352 			btrfs_abort_transaction(trans, ret);
4353 			err = ret;
4354 			goto out_end_trans;
4355 		}
4356 	}
4357 
4358 out_end_trans:
4359 	trans->block_rsv = NULL;
4360 	trans->bytes_reserved = 0;
4361 	ret = btrfs_end_transaction(trans);
4362 	if (ret && !err)
4363 		err = ret;
4364 	inode->i_flags |= S_DEAD;
4365 out_release:
4366 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4367 out_up_write:
4368 	up_write(&fs_info->subvol_sem);
4369 	if (err) {
4370 		spin_lock(&dest->root_item_lock);
4371 		root_flags = btrfs_root_flags(&dest->root_item);
4372 		btrfs_set_root_flags(&dest->root_item,
4373 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4374 		spin_unlock(&dest->root_item_lock);
4375 	} else {
4376 		d_invalidate(dentry);
4377 		btrfs_prune_dentries(dest);
4378 		ASSERT(dest->send_in_progress == 0);
4379 
4380 		/* the last ref */
4381 		if (dest->ino_cache_inode) {
4382 			iput(dest->ino_cache_inode);
4383 			dest->ino_cache_inode = NULL;
4384 		}
4385 	}
4386 
4387 	return err;
4388 }
4389 
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4390 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4391 {
4392 	struct inode *inode = d_inode(dentry);
4393 	int err = 0;
4394 	struct btrfs_root *root = BTRFS_I(dir)->root;
4395 	struct btrfs_trans_handle *trans;
4396 	u64 last_unlink_trans;
4397 
4398 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4399 		return -ENOTEMPTY;
4400 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4401 		return btrfs_delete_subvolume(dir, dentry);
4402 
4403 	trans = __unlink_start_trans(dir);
4404 	if (IS_ERR(trans))
4405 		return PTR_ERR(trans);
4406 
4407 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4408 		err = btrfs_unlink_subvol(trans, dir,
4409 					  BTRFS_I(inode)->location.objectid,
4410 					  dentry->d_name.name,
4411 					  dentry->d_name.len);
4412 		goto out;
4413 	}
4414 
4415 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4416 	if (err)
4417 		goto out;
4418 
4419 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4420 
4421 	/* now the directory is empty */
4422 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4423 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4424 			dentry->d_name.len);
4425 	if (!err) {
4426 		btrfs_i_size_write(BTRFS_I(inode), 0);
4427 		/*
4428 		 * Propagate the last_unlink_trans value of the deleted dir to
4429 		 * its parent directory. This is to prevent an unrecoverable
4430 		 * log tree in the case we do something like this:
4431 		 * 1) create dir foo
4432 		 * 2) create snapshot under dir foo
4433 		 * 3) delete the snapshot
4434 		 * 4) rmdir foo
4435 		 * 5) mkdir foo
4436 		 * 6) fsync foo or some file inside foo
4437 		 */
4438 		if (last_unlink_trans >= trans->transid)
4439 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4440 	}
4441 out:
4442 	btrfs_end_transaction(trans);
4443 	btrfs_btree_balance_dirty(root->fs_info);
4444 
4445 	return err;
4446 }
4447 
truncate_space_check(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_deleted)4448 static int truncate_space_check(struct btrfs_trans_handle *trans,
4449 				struct btrfs_root *root,
4450 				u64 bytes_deleted)
4451 {
4452 	struct btrfs_fs_info *fs_info = root->fs_info;
4453 	int ret;
4454 
4455 	/*
4456 	 * This is only used to apply pressure to the enospc system, we don't
4457 	 * intend to use this reservation at all.
4458 	 */
4459 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4460 	bytes_deleted *= fs_info->nodesize;
4461 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4462 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4463 	if (!ret) {
4464 		trace_btrfs_space_reservation(fs_info, "transaction",
4465 					      trans->transid,
4466 					      bytes_deleted, 1);
4467 		trans->bytes_reserved += bytes_deleted;
4468 	}
4469 	return ret;
4470 
4471 }
4472 
4473 /*
4474  * Return this if we need to call truncate_block for the last bit of the
4475  * truncate.
4476  */
4477 #define NEED_TRUNCATE_BLOCK 1
4478 
4479 /*
4480  * this can truncate away extent items, csum items and directory items.
4481  * It starts at a high offset and removes keys until it can't find
4482  * any higher than new_size
4483  *
4484  * csum items that cross the new i_size are truncated to the new size
4485  * as well.
4486  *
4487  * min_type is the minimum key type to truncate down to.  If set to 0, this
4488  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4489  */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4490 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4491 			       struct btrfs_root *root,
4492 			       struct inode *inode,
4493 			       u64 new_size, u32 min_type)
4494 {
4495 	struct btrfs_fs_info *fs_info = root->fs_info;
4496 	struct btrfs_path *path;
4497 	struct extent_buffer *leaf;
4498 	struct btrfs_file_extent_item *fi;
4499 	struct btrfs_key key;
4500 	struct btrfs_key found_key;
4501 	u64 extent_start = 0;
4502 	u64 extent_num_bytes = 0;
4503 	u64 extent_offset = 0;
4504 	u64 item_end = 0;
4505 	u64 last_size = new_size;
4506 	u32 found_type = (u8)-1;
4507 	int found_extent;
4508 	int del_item;
4509 	int pending_del_nr = 0;
4510 	int pending_del_slot = 0;
4511 	int extent_type = -1;
4512 	int ret;
4513 	u64 ino = btrfs_ino(BTRFS_I(inode));
4514 	u64 bytes_deleted = 0;
4515 	bool be_nice = false;
4516 	bool should_throttle = false;
4517 	bool should_end = false;
4518 
4519 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4520 
4521 	/*
4522 	 * for non-free space inodes and ref cows, we want to back off from
4523 	 * time to time
4524 	 */
4525 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4526 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4527 		be_nice = true;
4528 
4529 	path = btrfs_alloc_path();
4530 	if (!path)
4531 		return -ENOMEM;
4532 	path->reada = READA_BACK;
4533 
4534 	/*
4535 	 * We want to drop from the next block forward in case this new size is
4536 	 * not block aligned since we will be keeping the last block of the
4537 	 * extent just the way it is.
4538 	 */
4539 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4540 	    root == fs_info->tree_root)
4541 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4542 					fs_info->sectorsize),
4543 					(u64)-1, 0);
4544 
4545 	/*
4546 	 * This function is also used to drop the items in the log tree before
4547 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4548 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4549 	 * items.
4550 	 */
4551 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4552 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4553 
4554 	key.objectid = ino;
4555 	key.offset = (u64)-1;
4556 	key.type = (u8)-1;
4557 
4558 search_again:
4559 	/*
4560 	 * with a 16K leaf size and 128MB extents, you can actually queue
4561 	 * up a huge file in a single leaf.  Most of the time that
4562 	 * bytes_deleted is > 0, it will be huge by the time we get here
4563 	 */
4564 	if (be_nice && bytes_deleted > SZ_32M &&
4565 	    btrfs_should_end_transaction(trans)) {
4566 		ret = -EAGAIN;
4567 		goto out;
4568 	}
4569 
4570 	path->leave_spinning = 1;
4571 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4572 	if (ret < 0)
4573 		goto out;
4574 
4575 	if (ret > 0) {
4576 		ret = 0;
4577 		/* there are no items in the tree for us to truncate, we're
4578 		 * done
4579 		 */
4580 		if (path->slots[0] == 0)
4581 			goto out;
4582 		path->slots[0]--;
4583 	}
4584 
4585 	while (1) {
4586 		fi = NULL;
4587 		leaf = path->nodes[0];
4588 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4589 		found_type = found_key.type;
4590 
4591 		if (found_key.objectid != ino)
4592 			break;
4593 
4594 		if (found_type < min_type)
4595 			break;
4596 
4597 		item_end = found_key.offset;
4598 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4599 			fi = btrfs_item_ptr(leaf, path->slots[0],
4600 					    struct btrfs_file_extent_item);
4601 			extent_type = btrfs_file_extent_type(leaf, fi);
4602 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4603 				item_end +=
4604 				    btrfs_file_extent_num_bytes(leaf, fi);
4605 
4606 				trace_btrfs_truncate_show_fi_regular(
4607 					BTRFS_I(inode), leaf, fi,
4608 					found_key.offset);
4609 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4610 				item_end += btrfs_file_extent_ram_bytes(leaf,
4611 									fi);
4612 
4613 				trace_btrfs_truncate_show_fi_inline(
4614 					BTRFS_I(inode), leaf, fi, path->slots[0],
4615 					found_key.offset);
4616 			}
4617 			item_end--;
4618 		}
4619 		if (found_type > min_type) {
4620 			del_item = 1;
4621 		} else {
4622 			if (item_end < new_size)
4623 				break;
4624 			if (found_key.offset >= new_size)
4625 				del_item = 1;
4626 			else
4627 				del_item = 0;
4628 		}
4629 		found_extent = 0;
4630 		/* FIXME, shrink the extent if the ref count is only 1 */
4631 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4632 			goto delete;
4633 
4634 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4635 			u64 num_dec;
4636 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4637 			if (!del_item) {
4638 				u64 orig_num_bytes =
4639 					btrfs_file_extent_num_bytes(leaf, fi);
4640 				extent_num_bytes = ALIGN(new_size -
4641 						found_key.offset,
4642 						fs_info->sectorsize);
4643 				btrfs_set_file_extent_num_bytes(leaf, fi,
4644 							 extent_num_bytes);
4645 				num_dec = (orig_num_bytes -
4646 					   extent_num_bytes);
4647 				if (test_bit(BTRFS_ROOT_REF_COWS,
4648 					     &root->state) &&
4649 				    extent_start != 0)
4650 					inode_sub_bytes(inode, num_dec);
4651 				btrfs_mark_buffer_dirty(leaf);
4652 			} else {
4653 				extent_num_bytes =
4654 					btrfs_file_extent_disk_num_bytes(leaf,
4655 									 fi);
4656 				extent_offset = found_key.offset -
4657 					btrfs_file_extent_offset(leaf, fi);
4658 
4659 				/* FIXME blocksize != 4096 */
4660 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4661 				if (extent_start != 0) {
4662 					found_extent = 1;
4663 					if (test_bit(BTRFS_ROOT_REF_COWS,
4664 						     &root->state))
4665 						inode_sub_bytes(inode, num_dec);
4666 				}
4667 			}
4668 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4669 			/*
4670 			 * we can't truncate inline items that have had
4671 			 * special encodings
4672 			 */
4673 			if (!del_item &&
4674 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4675 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4676 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4677 				u32 size = (u32)(new_size - found_key.offset);
4678 
4679 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4680 				size = btrfs_file_extent_calc_inline_size(size);
4681 				btrfs_truncate_item(root->fs_info, path, size, 1);
4682 			} else if (!del_item) {
4683 				/*
4684 				 * We have to bail so the last_size is set to
4685 				 * just before this extent.
4686 				 */
4687 				ret = NEED_TRUNCATE_BLOCK;
4688 				break;
4689 			}
4690 
4691 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4692 				inode_sub_bytes(inode, item_end + 1 - new_size);
4693 		}
4694 delete:
4695 		if (del_item)
4696 			last_size = found_key.offset;
4697 		else
4698 			last_size = new_size;
4699 		if (del_item) {
4700 			if (!pending_del_nr) {
4701 				/* no pending yet, add ourselves */
4702 				pending_del_slot = path->slots[0];
4703 				pending_del_nr = 1;
4704 			} else if (pending_del_nr &&
4705 				   path->slots[0] + 1 == pending_del_slot) {
4706 				/* hop on the pending chunk */
4707 				pending_del_nr++;
4708 				pending_del_slot = path->slots[0];
4709 			} else {
4710 				BUG();
4711 			}
4712 		} else {
4713 			break;
4714 		}
4715 		should_throttle = false;
4716 
4717 		if (found_extent &&
4718 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4719 		     root == fs_info->tree_root)) {
4720 			btrfs_set_path_blocking(path);
4721 			bytes_deleted += extent_num_bytes;
4722 			ret = btrfs_free_extent(trans, root, extent_start,
4723 						extent_num_bytes, 0,
4724 						btrfs_header_owner(leaf),
4725 						ino, extent_offset);
4726 			if (ret) {
4727 				btrfs_abort_transaction(trans, ret);
4728 				break;
4729 			}
4730 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4731 				btrfs_async_run_delayed_refs(fs_info,
4732 					trans->delayed_ref_updates * 2,
4733 					trans->transid, 0);
4734 			if (be_nice) {
4735 				if (truncate_space_check(trans, root,
4736 							 extent_num_bytes)) {
4737 					should_end = true;
4738 				}
4739 				if (btrfs_should_throttle_delayed_refs(trans,
4740 								       fs_info))
4741 					should_throttle = true;
4742 			}
4743 		}
4744 
4745 		if (found_type == BTRFS_INODE_ITEM_KEY)
4746 			break;
4747 
4748 		if (path->slots[0] == 0 ||
4749 		    path->slots[0] != pending_del_slot ||
4750 		    should_throttle || should_end) {
4751 			if (pending_del_nr) {
4752 				ret = btrfs_del_items(trans, root, path,
4753 						pending_del_slot,
4754 						pending_del_nr);
4755 				if (ret) {
4756 					btrfs_abort_transaction(trans, ret);
4757 					break;
4758 				}
4759 				pending_del_nr = 0;
4760 			}
4761 			btrfs_release_path(path);
4762 			if (should_throttle) {
4763 				unsigned long updates = trans->delayed_ref_updates;
4764 				if (updates) {
4765 					trans->delayed_ref_updates = 0;
4766 					ret = btrfs_run_delayed_refs(trans,
4767 								   updates * 2);
4768 					if (ret)
4769 						break;
4770 				}
4771 			}
4772 			/*
4773 			 * if we failed to refill our space rsv, bail out
4774 			 * and let the transaction restart
4775 			 */
4776 			if (should_end) {
4777 				ret = -EAGAIN;
4778 				break;
4779 			}
4780 			goto search_again;
4781 		} else {
4782 			path->slots[0]--;
4783 		}
4784 	}
4785 out:
4786 	if (ret >= 0 && pending_del_nr) {
4787 		int err;
4788 
4789 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4790 				      pending_del_nr);
4791 		if (err) {
4792 			btrfs_abort_transaction(trans, err);
4793 			ret = err;
4794 		}
4795 	}
4796 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4797 		ASSERT(last_size >= new_size);
4798 		if (!ret && last_size > new_size)
4799 			last_size = new_size;
4800 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4801 	}
4802 
4803 	btrfs_free_path(path);
4804 
4805 	if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4806 		unsigned long updates = trans->delayed_ref_updates;
4807 		int err;
4808 
4809 		if (updates) {
4810 			trans->delayed_ref_updates = 0;
4811 			err = btrfs_run_delayed_refs(trans, updates * 2);
4812 			if (err)
4813 				ret = err;
4814 		}
4815 	}
4816 	return ret;
4817 }
4818 
4819 /*
4820  * btrfs_truncate_block - read, zero a chunk and write a block
4821  * @inode - inode that we're zeroing
4822  * @from - the offset to start zeroing
4823  * @len - the length to zero, 0 to zero the entire range respective to the
4824  *	offset
4825  * @front - zero up to the offset instead of from the offset on
4826  *
4827  * This will find the block for the "from" offset and cow the block and zero the
4828  * part we want to zero.  This is used with truncate and hole punching.
4829  */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4830 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4831 			int front)
4832 {
4833 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4834 	struct address_space *mapping = inode->i_mapping;
4835 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4836 	struct btrfs_ordered_extent *ordered;
4837 	struct extent_state *cached_state = NULL;
4838 	struct extent_changeset *data_reserved = NULL;
4839 	char *kaddr;
4840 	u32 blocksize = fs_info->sectorsize;
4841 	pgoff_t index = from >> PAGE_SHIFT;
4842 	unsigned offset = from & (blocksize - 1);
4843 	struct page *page;
4844 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4845 	int ret = 0;
4846 	u64 block_start;
4847 	u64 block_end;
4848 
4849 	if (IS_ALIGNED(offset, blocksize) &&
4850 	    (!len || IS_ALIGNED(len, blocksize)))
4851 		goto out;
4852 
4853 	block_start = round_down(from, blocksize);
4854 	block_end = block_start + blocksize - 1;
4855 
4856 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4857 					   block_start, blocksize);
4858 	if (ret)
4859 		goto out;
4860 
4861 again:
4862 	page = find_or_create_page(mapping, index, mask);
4863 	if (!page) {
4864 		btrfs_delalloc_release_space(inode, data_reserved,
4865 					     block_start, blocksize, true);
4866 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4867 		ret = -ENOMEM;
4868 		goto out;
4869 	}
4870 
4871 	if (!PageUptodate(page)) {
4872 		ret = btrfs_readpage(NULL, page);
4873 		lock_page(page);
4874 		if (page->mapping != mapping) {
4875 			unlock_page(page);
4876 			put_page(page);
4877 			goto again;
4878 		}
4879 		if (!PageUptodate(page)) {
4880 			ret = -EIO;
4881 			goto out_unlock;
4882 		}
4883 	}
4884 	wait_on_page_writeback(page);
4885 
4886 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4887 	set_page_extent_mapped(page);
4888 
4889 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4890 	if (ordered) {
4891 		unlock_extent_cached(io_tree, block_start, block_end,
4892 				     &cached_state);
4893 		unlock_page(page);
4894 		put_page(page);
4895 		btrfs_start_ordered_extent(inode, ordered, 1);
4896 		btrfs_put_ordered_extent(ordered);
4897 		goto again;
4898 	}
4899 
4900 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4901 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4902 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4903 			  0, 0, &cached_state);
4904 
4905 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4906 					&cached_state, 0);
4907 	if (ret) {
4908 		unlock_extent_cached(io_tree, block_start, block_end,
4909 				     &cached_state);
4910 		goto out_unlock;
4911 	}
4912 
4913 	if (offset != blocksize) {
4914 		if (!len)
4915 			len = blocksize - offset;
4916 		kaddr = kmap(page);
4917 		if (front)
4918 			memset(kaddr + (block_start - page_offset(page)),
4919 				0, offset);
4920 		else
4921 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4922 				0, len);
4923 		flush_dcache_page(page);
4924 		kunmap(page);
4925 	}
4926 	ClearPageChecked(page);
4927 	set_page_dirty(page);
4928 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4929 
4930 out_unlock:
4931 	if (ret)
4932 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4933 					     blocksize, true);
4934 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4935 	unlock_page(page);
4936 	put_page(page);
4937 out:
4938 	extent_changeset_free(data_reserved);
4939 	return ret;
4940 }
4941 
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4942 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4943 			     u64 offset, u64 len)
4944 {
4945 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4946 	struct btrfs_trans_handle *trans;
4947 	int ret;
4948 
4949 	/*
4950 	 * Still need to make sure the inode looks like it's been updated so
4951 	 * that any holes get logged if we fsync.
4952 	 */
4953 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4954 		BTRFS_I(inode)->last_trans = fs_info->generation;
4955 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4956 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4957 		return 0;
4958 	}
4959 
4960 	/*
4961 	 * 1 - for the one we're dropping
4962 	 * 1 - for the one we're adding
4963 	 * 1 - for updating the inode.
4964 	 */
4965 	trans = btrfs_start_transaction(root, 3);
4966 	if (IS_ERR(trans))
4967 		return PTR_ERR(trans);
4968 
4969 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4970 	if (ret) {
4971 		btrfs_abort_transaction(trans, ret);
4972 		btrfs_end_transaction(trans);
4973 		return ret;
4974 	}
4975 
4976 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4977 			offset, 0, 0, len, 0, len, 0, 0, 0);
4978 	if (ret)
4979 		btrfs_abort_transaction(trans, ret);
4980 	else
4981 		btrfs_update_inode(trans, root, inode);
4982 	btrfs_end_transaction(trans);
4983 	return ret;
4984 }
4985 
4986 /*
4987  * This function puts in dummy file extents for the area we're creating a hole
4988  * for.  So if we are truncating this file to a larger size we need to insert
4989  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4990  * the range between oldsize and size
4991  */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)4992 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4993 {
4994 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4995 	struct btrfs_root *root = BTRFS_I(inode)->root;
4996 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4997 	struct extent_map *em = NULL;
4998 	struct extent_state *cached_state = NULL;
4999 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5000 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5001 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5002 	u64 last_byte;
5003 	u64 cur_offset;
5004 	u64 hole_size;
5005 	int err = 0;
5006 
5007 	/*
5008 	 * If our size started in the middle of a block we need to zero out the
5009 	 * rest of the block before we expand the i_size, otherwise we could
5010 	 * expose stale data.
5011 	 */
5012 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5013 	if (err)
5014 		return err;
5015 
5016 	if (size <= hole_start)
5017 		return 0;
5018 
5019 	while (1) {
5020 		struct btrfs_ordered_extent *ordered;
5021 
5022 		lock_extent_bits(io_tree, hole_start, block_end - 1,
5023 				 &cached_state);
5024 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5025 						     block_end - hole_start);
5026 		if (!ordered)
5027 			break;
5028 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
5029 				     &cached_state);
5030 		btrfs_start_ordered_extent(inode, ordered, 1);
5031 		btrfs_put_ordered_extent(ordered);
5032 	}
5033 
5034 	cur_offset = hole_start;
5035 	while (1) {
5036 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5037 				block_end - cur_offset, 0);
5038 		if (IS_ERR(em)) {
5039 			err = PTR_ERR(em);
5040 			em = NULL;
5041 			break;
5042 		}
5043 		last_byte = min(extent_map_end(em), block_end);
5044 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5045 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5046 			struct extent_map *hole_em;
5047 			hole_size = last_byte - cur_offset;
5048 
5049 			err = maybe_insert_hole(root, inode, cur_offset,
5050 						hole_size);
5051 			if (err)
5052 				break;
5053 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5054 						cur_offset + hole_size - 1, 0);
5055 			hole_em = alloc_extent_map();
5056 			if (!hole_em) {
5057 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5058 					&BTRFS_I(inode)->runtime_flags);
5059 				goto next;
5060 			}
5061 			hole_em->start = cur_offset;
5062 			hole_em->len = hole_size;
5063 			hole_em->orig_start = cur_offset;
5064 
5065 			hole_em->block_start = EXTENT_MAP_HOLE;
5066 			hole_em->block_len = 0;
5067 			hole_em->orig_block_len = 0;
5068 			hole_em->ram_bytes = hole_size;
5069 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5070 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5071 			hole_em->generation = fs_info->generation;
5072 
5073 			while (1) {
5074 				write_lock(&em_tree->lock);
5075 				err = add_extent_mapping(em_tree, hole_em, 1);
5076 				write_unlock(&em_tree->lock);
5077 				if (err != -EEXIST)
5078 					break;
5079 				btrfs_drop_extent_cache(BTRFS_I(inode),
5080 							cur_offset,
5081 							cur_offset +
5082 							hole_size - 1, 0);
5083 			}
5084 			free_extent_map(hole_em);
5085 		}
5086 next:
5087 		free_extent_map(em);
5088 		em = NULL;
5089 		cur_offset = last_byte;
5090 		if (cur_offset >= block_end)
5091 			break;
5092 	}
5093 	free_extent_map(em);
5094 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5095 	return err;
5096 }
5097 
btrfs_setsize(struct inode * inode,struct iattr * attr)5098 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5099 {
5100 	struct btrfs_root *root = BTRFS_I(inode)->root;
5101 	struct btrfs_trans_handle *trans;
5102 	loff_t oldsize = i_size_read(inode);
5103 	loff_t newsize = attr->ia_size;
5104 	int mask = attr->ia_valid;
5105 	int ret;
5106 
5107 	/*
5108 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5109 	 * special case where we need to update the times despite not having
5110 	 * these flags set.  For all other operations the VFS set these flags
5111 	 * explicitly if it wants a timestamp update.
5112 	 */
5113 	if (newsize != oldsize) {
5114 		inode_inc_iversion(inode);
5115 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5116 			inode->i_ctime = inode->i_mtime =
5117 				current_time(inode);
5118 	}
5119 
5120 	if (newsize > oldsize) {
5121 		/*
5122 		 * Don't do an expanding truncate while snapshotting is ongoing.
5123 		 * This is to ensure the snapshot captures a fully consistent
5124 		 * state of this file - if the snapshot captures this expanding
5125 		 * truncation, it must capture all writes that happened before
5126 		 * this truncation.
5127 		 */
5128 		btrfs_wait_for_snapshot_creation(root);
5129 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5130 		if (ret) {
5131 			btrfs_end_write_no_snapshotting(root);
5132 			return ret;
5133 		}
5134 
5135 		trans = btrfs_start_transaction(root, 1);
5136 		if (IS_ERR(trans)) {
5137 			btrfs_end_write_no_snapshotting(root);
5138 			return PTR_ERR(trans);
5139 		}
5140 
5141 		i_size_write(inode, newsize);
5142 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5143 		pagecache_isize_extended(inode, oldsize, newsize);
5144 		ret = btrfs_update_inode(trans, root, inode);
5145 		btrfs_end_write_no_snapshotting(root);
5146 		btrfs_end_transaction(trans);
5147 	} else {
5148 
5149 		/*
5150 		 * We're truncating a file that used to have good data down to
5151 		 * zero. Make sure it gets into the ordered flush list so that
5152 		 * any new writes get down to disk quickly.
5153 		 */
5154 		if (newsize == 0)
5155 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5156 				&BTRFS_I(inode)->runtime_flags);
5157 
5158 		truncate_setsize(inode, newsize);
5159 
5160 		/* Disable nonlocked read DIO to avoid the end less truncate */
5161 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5162 		inode_dio_wait(inode);
5163 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5164 
5165 		ret = btrfs_truncate(inode, newsize == oldsize);
5166 		if (ret && inode->i_nlink) {
5167 			int err;
5168 
5169 			/*
5170 			 * Truncate failed, so fix up the in-memory size. We
5171 			 * adjusted disk_i_size down as we removed extents, so
5172 			 * wait for disk_i_size to be stable and then update the
5173 			 * in-memory size to match.
5174 			 */
5175 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5176 			if (err)
5177 				return err;
5178 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5179 		}
5180 	}
5181 
5182 	return ret;
5183 }
5184 
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5185 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5186 {
5187 	struct inode *inode = d_inode(dentry);
5188 	struct btrfs_root *root = BTRFS_I(inode)->root;
5189 	int err;
5190 
5191 	if (btrfs_root_readonly(root))
5192 		return -EROFS;
5193 
5194 	err = setattr_prepare(dentry, attr);
5195 	if (err)
5196 		return err;
5197 
5198 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5199 		err = btrfs_setsize(inode, attr);
5200 		if (err)
5201 			return err;
5202 	}
5203 
5204 	if (attr->ia_valid) {
5205 		setattr_copy(inode, attr);
5206 		inode_inc_iversion(inode);
5207 		err = btrfs_dirty_inode(inode);
5208 
5209 		if (!err && attr->ia_valid & ATTR_MODE)
5210 			err = posix_acl_chmod(inode, inode->i_mode);
5211 	}
5212 
5213 	return err;
5214 }
5215 
5216 /*
5217  * While truncating the inode pages during eviction, we get the VFS calling
5218  * btrfs_invalidatepage() against each page of the inode. This is slow because
5219  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5220  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5221  * extent_state structures over and over, wasting lots of time.
5222  *
5223  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5224  * those expensive operations on a per page basis and do only the ordered io
5225  * finishing, while we release here the extent_map and extent_state structures,
5226  * without the excessive merging and splitting.
5227  */
evict_inode_truncate_pages(struct inode * inode)5228 static void evict_inode_truncate_pages(struct inode *inode)
5229 {
5230 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5231 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5232 	struct rb_node *node;
5233 
5234 	ASSERT(inode->i_state & I_FREEING);
5235 	truncate_inode_pages_final(&inode->i_data);
5236 
5237 	write_lock(&map_tree->lock);
5238 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5239 		struct extent_map *em;
5240 
5241 		node = rb_first(&map_tree->map);
5242 		em = rb_entry(node, struct extent_map, rb_node);
5243 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5244 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5245 		remove_extent_mapping(map_tree, em);
5246 		free_extent_map(em);
5247 		if (need_resched()) {
5248 			write_unlock(&map_tree->lock);
5249 			cond_resched();
5250 			write_lock(&map_tree->lock);
5251 		}
5252 	}
5253 	write_unlock(&map_tree->lock);
5254 
5255 	/*
5256 	 * Keep looping until we have no more ranges in the io tree.
5257 	 * We can have ongoing bios started by readpages (called from readahead)
5258 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5259 	 * still in progress (unlocked the pages in the bio but did not yet
5260 	 * unlocked the ranges in the io tree). Therefore this means some
5261 	 * ranges can still be locked and eviction started because before
5262 	 * submitting those bios, which are executed by a separate task (work
5263 	 * queue kthread), inode references (inode->i_count) were not taken
5264 	 * (which would be dropped in the end io callback of each bio).
5265 	 * Therefore here we effectively end up waiting for those bios and
5266 	 * anyone else holding locked ranges without having bumped the inode's
5267 	 * reference count - if we don't do it, when they access the inode's
5268 	 * io_tree to unlock a range it may be too late, leading to an
5269 	 * use-after-free issue.
5270 	 */
5271 	spin_lock(&io_tree->lock);
5272 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5273 		struct extent_state *state;
5274 		struct extent_state *cached_state = NULL;
5275 		u64 start;
5276 		u64 end;
5277 
5278 		node = rb_first(&io_tree->state);
5279 		state = rb_entry(node, struct extent_state, rb_node);
5280 		start = state->start;
5281 		end = state->end;
5282 		spin_unlock(&io_tree->lock);
5283 
5284 		lock_extent_bits(io_tree, start, end, &cached_state);
5285 
5286 		/*
5287 		 * If still has DELALLOC flag, the extent didn't reach disk,
5288 		 * and its reserved space won't be freed by delayed_ref.
5289 		 * So we need to free its reserved space here.
5290 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5291 		 *
5292 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5293 		 */
5294 		if (state->state & EXTENT_DELALLOC)
5295 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5296 
5297 		clear_extent_bit(io_tree, start, end,
5298 				 EXTENT_LOCKED | EXTENT_DIRTY |
5299 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5300 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5301 
5302 		cond_resched();
5303 		spin_lock(&io_tree->lock);
5304 	}
5305 	spin_unlock(&io_tree->lock);
5306 }
5307 
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv,u64 min_size)5308 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5309 							struct btrfs_block_rsv *rsv,
5310 							u64 min_size)
5311 {
5312 	struct btrfs_fs_info *fs_info = root->fs_info;
5313 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5314 	int failures = 0;
5315 
5316 	for (;;) {
5317 		struct btrfs_trans_handle *trans;
5318 		int ret;
5319 
5320 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5321 					     BTRFS_RESERVE_FLUSH_LIMIT);
5322 
5323 		if (ret && ++failures > 2) {
5324 			btrfs_warn(fs_info,
5325 				   "could not allocate space for a delete; will truncate on mount");
5326 			return ERR_PTR(-ENOSPC);
5327 		}
5328 
5329 		trans = btrfs_join_transaction(root);
5330 		if (IS_ERR(trans) || !ret)
5331 			return trans;
5332 
5333 		/*
5334 		 * Try to steal from the global reserve if there is space for
5335 		 * it.
5336 		 */
5337 		if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5338 		    !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5339 			return trans;
5340 
5341 		/* If not, commit and try again. */
5342 		ret = btrfs_commit_transaction(trans);
5343 		if (ret)
5344 			return ERR_PTR(ret);
5345 	}
5346 }
5347 
btrfs_evict_inode(struct inode * inode)5348 void btrfs_evict_inode(struct inode *inode)
5349 {
5350 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5351 	struct btrfs_trans_handle *trans;
5352 	struct btrfs_root *root = BTRFS_I(inode)->root;
5353 	struct btrfs_block_rsv *rsv;
5354 	u64 min_size;
5355 	int ret;
5356 
5357 	trace_btrfs_inode_evict(inode);
5358 
5359 	if (!root) {
5360 		clear_inode(inode);
5361 		return;
5362 	}
5363 
5364 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5365 
5366 	evict_inode_truncate_pages(inode);
5367 
5368 	if (inode->i_nlink &&
5369 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5370 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5371 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5372 		goto no_delete;
5373 
5374 	if (is_bad_inode(inode))
5375 		goto no_delete;
5376 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5377 	if (!special_file(inode->i_mode))
5378 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5379 
5380 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5381 
5382 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5383 		goto no_delete;
5384 
5385 	if (inode->i_nlink > 0) {
5386 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5387 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5388 		goto no_delete;
5389 	}
5390 
5391 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5392 	if (ret)
5393 		goto no_delete;
5394 
5395 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5396 	if (!rsv)
5397 		goto no_delete;
5398 	rsv->size = min_size;
5399 	rsv->failfast = 1;
5400 
5401 	btrfs_i_size_write(BTRFS_I(inode), 0);
5402 
5403 	while (1) {
5404 		trans = evict_refill_and_join(root, rsv, min_size);
5405 		if (IS_ERR(trans))
5406 			goto free_rsv;
5407 
5408 		trans->block_rsv = rsv;
5409 
5410 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5411 		trans->block_rsv = &fs_info->trans_block_rsv;
5412 		btrfs_end_transaction(trans);
5413 		btrfs_btree_balance_dirty(fs_info);
5414 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5415 			goto free_rsv;
5416 		else if (!ret)
5417 			break;
5418 	}
5419 
5420 	/*
5421 	 * Errors here aren't a big deal, it just means we leave orphan items in
5422 	 * the tree. They will be cleaned up on the next mount. If the inode
5423 	 * number gets reused, cleanup deletes the orphan item without doing
5424 	 * anything, and unlink reuses the existing orphan item.
5425 	 *
5426 	 * If it turns out that we are dropping too many of these, we might want
5427 	 * to add a mechanism for retrying these after a commit.
5428 	 */
5429 	trans = evict_refill_and_join(root, rsv, min_size);
5430 	if (!IS_ERR(trans)) {
5431 		trans->block_rsv = rsv;
5432 		btrfs_orphan_del(trans, BTRFS_I(inode));
5433 		trans->block_rsv = &fs_info->trans_block_rsv;
5434 		btrfs_end_transaction(trans);
5435 	}
5436 
5437 	if (!(root == fs_info->tree_root ||
5438 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5439 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5440 
5441 free_rsv:
5442 	btrfs_free_block_rsv(fs_info, rsv);
5443 no_delete:
5444 	/*
5445 	 * If we didn't successfully delete, the orphan item will still be in
5446 	 * the tree and we'll retry on the next mount. Again, we might also want
5447 	 * to retry these periodically in the future.
5448 	 */
5449 	btrfs_remove_delayed_node(BTRFS_I(inode));
5450 	clear_inode(inode);
5451 }
5452 
5453 /*
5454  * this returns the key found in the dir entry in the location pointer.
5455  * If no dir entries were found, returns -ENOENT.
5456  * If found a corrupted location in dir entry, returns -EUCLEAN.
5457  */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location)5458 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5459 			       struct btrfs_key *location)
5460 {
5461 	const char *name = dentry->d_name.name;
5462 	int namelen = dentry->d_name.len;
5463 	struct btrfs_dir_item *di;
5464 	struct btrfs_path *path;
5465 	struct btrfs_root *root = BTRFS_I(dir)->root;
5466 	int ret = 0;
5467 
5468 	path = btrfs_alloc_path();
5469 	if (!path)
5470 		return -ENOMEM;
5471 
5472 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5473 			name, namelen, 0);
5474 	if (!di) {
5475 		ret = -ENOENT;
5476 		goto out;
5477 	}
5478 	if (IS_ERR(di)) {
5479 		ret = PTR_ERR(di);
5480 		goto out;
5481 	}
5482 
5483 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5484 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5485 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5486 		ret = -EUCLEAN;
5487 		btrfs_warn(root->fs_info,
5488 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5489 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5490 			   location->objectid, location->type, location->offset);
5491 	}
5492 out:
5493 	btrfs_free_path(path);
5494 	return ret;
5495 }
5496 
5497 /*
5498  * when we hit a tree root in a directory, the btrfs part of the inode
5499  * needs to be changed to reflect the root directory of the tree root.  This
5500  * is kind of like crossing a mount point.
5501  */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5502 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5503 				    struct inode *dir,
5504 				    struct dentry *dentry,
5505 				    struct btrfs_key *location,
5506 				    struct btrfs_root **sub_root)
5507 {
5508 	struct btrfs_path *path;
5509 	struct btrfs_root *new_root;
5510 	struct btrfs_root_ref *ref;
5511 	struct extent_buffer *leaf;
5512 	struct btrfs_key key;
5513 	int ret;
5514 	int err = 0;
5515 
5516 	path = btrfs_alloc_path();
5517 	if (!path) {
5518 		err = -ENOMEM;
5519 		goto out;
5520 	}
5521 
5522 	err = -ENOENT;
5523 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5524 	key.type = BTRFS_ROOT_REF_KEY;
5525 	key.offset = location->objectid;
5526 
5527 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5528 	if (ret) {
5529 		if (ret < 0)
5530 			err = ret;
5531 		goto out;
5532 	}
5533 
5534 	leaf = path->nodes[0];
5535 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5536 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5537 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5538 		goto out;
5539 
5540 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5541 				   (unsigned long)(ref + 1),
5542 				   dentry->d_name.len);
5543 	if (ret)
5544 		goto out;
5545 
5546 	btrfs_release_path(path);
5547 
5548 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5549 	if (IS_ERR(new_root)) {
5550 		err = PTR_ERR(new_root);
5551 		goto out;
5552 	}
5553 
5554 	*sub_root = new_root;
5555 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5556 	location->type = BTRFS_INODE_ITEM_KEY;
5557 	location->offset = 0;
5558 	err = 0;
5559 out:
5560 	btrfs_free_path(path);
5561 	return err;
5562 }
5563 
inode_tree_add(struct inode * inode)5564 static void inode_tree_add(struct inode *inode)
5565 {
5566 	struct btrfs_root *root = BTRFS_I(inode)->root;
5567 	struct btrfs_inode *entry;
5568 	struct rb_node **p;
5569 	struct rb_node *parent;
5570 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5571 	u64 ino = btrfs_ino(BTRFS_I(inode));
5572 
5573 	if (inode_unhashed(inode))
5574 		return;
5575 	parent = NULL;
5576 	spin_lock(&root->inode_lock);
5577 	p = &root->inode_tree.rb_node;
5578 	while (*p) {
5579 		parent = *p;
5580 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5581 
5582 		if (ino < btrfs_ino(entry))
5583 			p = &parent->rb_left;
5584 		else if (ino > btrfs_ino(entry))
5585 			p = &parent->rb_right;
5586 		else {
5587 			WARN_ON(!(entry->vfs_inode.i_state &
5588 				  (I_WILL_FREE | I_FREEING)));
5589 			rb_replace_node(parent, new, &root->inode_tree);
5590 			RB_CLEAR_NODE(parent);
5591 			spin_unlock(&root->inode_lock);
5592 			return;
5593 		}
5594 	}
5595 	rb_link_node(new, parent, p);
5596 	rb_insert_color(new, &root->inode_tree);
5597 	spin_unlock(&root->inode_lock);
5598 }
5599 
inode_tree_del(struct inode * inode)5600 static void inode_tree_del(struct inode *inode)
5601 {
5602 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5603 	struct btrfs_root *root = BTRFS_I(inode)->root;
5604 	int empty = 0;
5605 
5606 	spin_lock(&root->inode_lock);
5607 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5608 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5609 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5610 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5611 	}
5612 	spin_unlock(&root->inode_lock);
5613 
5614 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5615 		synchronize_srcu(&fs_info->subvol_srcu);
5616 		spin_lock(&root->inode_lock);
5617 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5618 		spin_unlock(&root->inode_lock);
5619 		if (empty)
5620 			btrfs_add_dead_root(root);
5621 	}
5622 }
5623 
5624 
btrfs_init_locked_inode(struct inode * inode,void * p)5625 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5626 {
5627 	struct btrfs_iget_args *args = p;
5628 	inode->i_ino = args->location->objectid;
5629 	memcpy(&BTRFS_I(inode)->location, args->location,
5630 	       sizeof(*args->location));
5631 	BTRFS_I(inode)->root = args->root;
5632 	return 0;
5633 }
5634 
btrfs_find_actor(struct inode * inode,void * opaque)5635 static int btrfs_find_actor(struct inode *inode, void *opaque)
5636 {
5637 	struct btrfs_iget_args *args = opaque;
5638 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5639 		args->root == BTRFS_I(inode)->root;
5640 }
5641 
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5642 static struct inode *btrfs_iget_locked(struct super_block *s,
5643 				       struct btrfs_key *location,
5644 				       struct btrfs_root *root)
5645 {
5646 	struct inode *inode;
5647 	struct btrfs_iget_args args;
5648 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5649 
5650 	args.location = location;
5651 	args.root = root;
5652 
5653 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5654 			     btrfs_init_locked_inode,
5655 			     (void *)&args);
5656 	return inode;
5657 }
5658 
5659 /* Get an inode object given its location and corresponding root.
5660  * Returns in *is_new if the inode was read from disk
5661  */
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5662 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5663 			 struct btrfs_root *root, int *new)
5664 {
5665 	struct inode *inode;
5666 
5667 	inode = btrfs_iget_locked(s, location, root);
5668 	if (!inode)
5669 		return ERR_PTR(-ENOMEM);
5670 
5671 	if (inode->i_state & I_NEW) {
5672 		int ret;
5673 
5674 		ret = btrfs_read_locked_inode(inode);
5675 		if (!ret) {
5676 			inode_tree_add(inode);
5677 			unlock_new_inode(inode);
5678 			if (new)
5679 				*new = 1;
5680 		} else {
5681 			iget_failed(inode);
5682 			/*
5683 			 * ret > 0 can come from btrfs_search_slot called by
5684 			 * btrfs_read_locked_inode, this means the inode item
5685 			 * was not found.
5686 			 */
5687 			if (ret > 0)
5688 				ret = -ENOENT;
5689 			inode = ERR_PTR(ret);
5690 		}
5691 	}
5692 
5693 	return inode;
5694 }
5695 
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5696 static struct inode *new_simple_dir(struct super_block *s,
5697 				    struct btrfs_key *key,
5698 				    struct btrfs_root *root)
5699 {
5700 	struct inode *inode = new_inode(s);
5701 
5702 	if (!inode)
5703 		return ERR_PTR(-ENOMEM);
5704 
5705 	BTRFS_I(inode)->root = root;
5706 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5707 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5708 
5709 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5710 	inode->i_op = &btrfs_dir_ro_inode_operations;
5711 	inode->i_opflags &= ~IOP_XATTR;
5712 	inode->i_fop = &simple_dir_operations;
5713 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5714 	inode->i_mtime = current_time(inode);
5715 	inode->i_atime = inode->i_mtime;
5716 	inode->i_ctime = inode->i_mtime;
5717 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5718 
5719 	return inode;
5720 }
5721 
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5722 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5723 {
5724 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5725 	struct inode *inode;
5726 	struct btrfs_root *root = BTRFS_I(dir)->root;
5727 	struct btrfs_root *sub_root = root;
5728 	struct btrfs_key location;
5729 	int index;
5730 	int ret = 0;
5731 
5732 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5733 		return ERR_PTR(-ENAMETOOLONG);
5734 
5735 	ret = btrfs_inode_by_name(dir, dentry, &location);
5736 	if (ret < 0)
5737 		return ERR_PTR(ret);
5738 
5739 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5740 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5741 		return inode;
5742 	}
5743 
5744 	index = srcu_read_lock(&fs_info->subvol_srcu);
5745 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5746 				       &location, &sub_root);
5747 	if (ret < 0) {
5748 		if (ret != -ENOENT)
5749 			inode = ERR_PTR(ret);
5750 		else
5751 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5752 	} else {
5753 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5754 	}
5755 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5756 
5757 	if (!IS_ERR(inode) && root != sub_root) {
5758 		down_read(&fs_info->cleanup_work_sem);
5759 		if (!sb_rdonly(inode->i_sb))
5760 			ret = btrfs_orphan_cleanup(sub_root);
5761 		up_read(&fs_info->cleanup_work_sem);
5762 		if (ret) {
5763 			iput(inode);
5764 			inode = ERR_PTR(ret);
5765 		}
5766 	}
5767 
5768 	return inode;
5769 }
5770 
btrfs_dentry_delete(const struct dentry * dentry)5771 static int btrfs_dentry_delete(const struct dentry *dentry)
5772 {
5773 	struct btrfs_root *root;
5774 	struct inode *inode = d_inode(dentry);
5775 
5776 	if (!inode && !IS_ROOT(dentry))
5777 		inode = d_inode(dentry->d_parent);
5778 
5779 	if (inode) {
5780 		root = BTRFS_I(inode)->root;
5781 		if (btrfs_root_refs(&root->root_item) == 0)
5782 			return 1;
5783 
5784 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5785 			return 1;
5786 	}
5787 	return 0;
5788 }
5789 
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5790 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5791 				   unsigned int flags)
5792 {
5793 	struct inode *inode;
5794 
5795 	inode = btrfs_lookup_dentry(dir, dentry);
5796 	if (IS_ERR(inode)) {
5797 		if (PTR_ERR(inode) == -ENOENT)
5798 			inode = NULL;
5799 		else
5800 			return ERR_CAST(inode);
5801 	}
5802 
5803 	return d_splice_alias(inode, dentry);
5804 }
5805 
5806 unsigned char btrfs_filetype_table[] = {
5807 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5808 };
5809 
5810 /*
5811  * All this infrastructure exists because dir_emit can fault, and we are holding
5812  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5813  * our information into that, and then dir_emit from the buffer.  This is
5814  * similar to what NFS does, only we don't keep the buffer around in pagecache
5815  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5816  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5817  * tree lock.
5818  */
btrfs_opendir(struct inode * inode,struct file * file)5819 static int btrfs_opendir(struct inode *inode, struct file *file)
5820 {
5821 	struct btrfs_file_private *private;
5822 
5823 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5824 	if (!private)
5825 		return -ENOMEM;
5826 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5827 	if (!private->filldir_buf) {
5828 		kfree(private);
5829 		return -ENOMEM;
5830 	}
5831 	file->private_data = private;
5832 	return 0;
5833 }
5834 
5835 struct dir_entry {
5836 	u64 ino;
5837 	u64 offset;
5838 	unsigned type;
5839 	int name_len;
5840 };
5841 
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5842 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5843 {
5844 	while (entries--) {
5845 		struct dir_entry *entry = addr;
5846 		char *name = (char *)(entry + 1);
5847 
5848 		ctx->pos = get_unaligned(&entry->offset);
5849 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5850 					 get_unaligned(&entry->ino),
5851 					 get_unaligned(&entry->type)))
5852 			return 1;
5853 		addr += sizeof(struct dir_entry) +
5854 			get_unaligned(&entry->name_len);
5855 		ctx->pos++;
5856 	}
5857 	return 0;
5858 }
5859 
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5860 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5861 {
5862 	struct inode *inode = file_inode(file);
5863 	struct btrfs_root *root = BTRFS_I(inode)->root;
5864 	struct btrfs_file_private *private = file->private_data;
5865 	struct btrfs_dir_item *di;
5866 	struct btrfs_key key;
5867 	struct btrfs_key found_key;
5868 	struct btrfs_path *path;
5869 	void *addr;
5870 	struct list_head ins_list;
5871 	struct list_head del_list;
5872 	int ret;
5873 	struct extent_buffer *leaf;
5874 	int slot;
5875 	char *name_ptr;
5876 	int name_len;
5877 	int entries = 0;
5878 	int total_len = 0;
5879 	bool put = false;
5880 	struct btrfs_key location;
5881 
5882 	if (!dir_emit_dots(file, ctx))
5883 		return 0;
5884 
5885 	path = btrfs_alloc_path();
5886 	if (!path)
5887 		return -ENOMEM;
5888 
5889 	addr = private->filldir_buf;
5890 	path->reada = READA_FORWARD;
5891 
5892 	INIT_LIST_HEAD(&ins_list);
5893 	INIT_LIST_HEAD(&del_list);
5894 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5895 
5896 again:
5897 	key.type = BTRFS_DIR_INDEX_KEY;
5898 	key.offset = ctx->pos;
5899 	key.objectid = btrfs_ino(BTRFS_I(inode));
5900 
5901 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5902 	if (ret < 0)
5903 		goto err;
5904 
5905 	while (1) {
5906 		struct dir_entry *entry;
5907 
5908 		leaf = path->nodes[0];
5909 		slot = path->slots[0];
5910 		if (slot >= btrfs_header_nritems(leaf)) {
5911 			ret = btrfs_next_leaf(root, path);
5912 			if (ret < 0)
5913 				goto err;
5914 			else if (ret > 0)
5915 				break;
5916 			continue;
5917 		}
5918 
5919 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5920 
5921 		if (found_key.objectid != key.objectid)
5922 			break;
5923 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5924 			break;
5925 		if (found_key.offset < ctx->pos)
5926 			goto next;
5927 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5928 			goto next;
5929 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5930 		name_len = btrfs_dir_name_len(leaf, di);
5931 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5932 		    PAGE_SIZE) {
5933 			btrfs_release_path(path);
5934 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5935 			if (ret)
5936 				goto nopos;
5937 			addr = private->filldir_buf;
5938 			entries = 0;
5939 			total_len = 0;
5940 			goto again;
5941 		}
5942 
5943 		entry = addr;
5944 		put_unaligned(name_len, &entry->name_len);
5945 		name_ptr = (char *)(entry + 1);
5946 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5947 				   name_len);
5948 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5949 				&entry->type);
5950 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5951 		put_unaligned(location.objectid, &entry->ino);
5952 		put_unaligned(found_key.offset, &entry->offset);
5953 		entries++;
5954 		addr += sizeof(struct dir_entry) + name_len;
5955 		total_len += sizeof(struct dir_entry) + name_len;
5956 next:
5957 		path->slots[0]++;
5958 	}
5959 	btrfs_release_path(path);
5960 
5961 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5962 	if (ret)
5963 		goto nopos;
5964 
5965 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5966 	if (ret)
5967 		goto nopos;
5968 
5969 	/*
5970 	 * Stop new entries from being returned after we return the last
5971 	 * entry.
5972 	 *
5973 	 * New directory entries are assigned a strictly increasing
5974 	 * offset.  This means that new entries created during readdir
5975 	 * are *guaranteed* to be seen in the future by that readdir.
5976 	 * This has broken buggy programs which operate on names as
5977 	 * they're returned by readdir.  Until we re-use freed offsets
5978 	 * we have this hack to stop new entries from being returned
5979 	 * under the assumption that they'll never reach this huge
5980 	 * offset.
5981 	 *
5982 	 * This is being careful not to overflow 32bit loff_t unless the
5983 	 * last entry requires it because doing so has broken 32bit apps
5984 	 * in the past.
5985 	 */
5986 	if (ctx->pos >= INT_MAX)
5987 		ctx->pos = LLONG_MAX;
5988 	else
5989 		ctx->pos = INT_MAX;
5990 nopos:
5991 	ret = 0;
5992 err:
5993 	if (put)
5994 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5995 	btrfs_free_path(path);
5996 	return ret;
5997 }
5998 
5999 /*
6000  * This is somewhat expensive, updating the tree every time the
6001  * inode changes.  But, it is most likely to find the inode in cache.
6002  * FIXME, needs more benchmarking...there are no reasons other than performance
6003  * to keep or drop this code.
6004  */
btrfs_dirty_inode(struct inode * inode)6005 static int btrfs_dirty_inode(struct inode *inode)
6006 {
6007 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6008 	struct btrfs_root *root = BTRFS_I(inode)->root;
6009 	struct btrfs_trans_handle *trans;
6010 	int ret;
6011 
6012 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6013 		return 0;
6014 
6015 	trans = btrfs_join_transaction(root);
6016 	if (IS_ERR(trans))
6017 		return PTR_ERR(trans);
6018 
6019 	ret = btrfs_update_inode(trans, root, inode);
6020 	if (ret && ret == -ENOSPC) {
6021 		/* whoops, lets try again with the full transaction */
6022 		btrfs_end_transaction(trans);
6023 		trans = btrfs_start_transaction(root, 1);
6024 		if (IS_ERR(trans))
6025 			return PTR_ERR(trans);
6026 
6027 		ret = btrfs_update_inode(trans, root, inode);
6028 	}
6029 	btrfs_end_transaction(trans);
6030 	if (BTRFS_I(inode)->delayed_node)
6031 		btrfs_balance_delayed_items(fs_info);
6032 
6033 	return ret;
6034 }
6035 
6036 /*
6037  * This is a copy of file_update_time.  We need this so we can return error on
6038  * ENOSPC for updating the inode in the case of file write and mmap writes.
6039  */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6040 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6041 			     int flags)
6042 {
6043 	struct btrfs_root *root = BTRFS_I(inode)->root;
6044 	bool dirty = flags & ~S_VERSION;
6045 
6046 	if (btrfs_root_readonly(root))
6047 		return -EROFS;
6048 
6049 	if (flags & S_VERSION)
6050 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6051 	if (flags & S_CTIME)
6052 		inode->i_ctime = *now;
6053 	if (flags & S_MTIME)
6054 		inode->i_mtime = *now;
6055 	if (flags & S_ATIME)
6056 		inode->i_atime = *now;
6057 	return dirty ? btrfs_dirty_inode(inode) : 0;
6058 }
6059 
6060 /*
6061  * find the highest existing sequence number in a directory
6062  * and then set the in-memory index_cnt variable to reflect
6063  * free sequence numbers
6064  */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6065 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6066 {
6067 	struct btrfs_root *root = inode->root;
6068 	struct btrfs_key key, found_key;
6069 	struct btrfs_path *path;
6070 	struct extent_buffer *leaf;
6071 	int ret;
6072 
6073 	key.objectid = btrfs_ino(inode);
6074 	key.type = BTRFS_DIR_INDEX_KEY;
6075 	key.offset = (u64)-1;
6076 
6077 	path = btrfs_alloc_path();
6078 	if (!path)
6079 		return -ENOMEM;
6080 
6081 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6082 	if (ret < 0)
6083 		goto out;
6084 	/* FIXME: we should be able to handle this */
6085 	if (ret == 0)
6086 		goto out;
6087 	ret = 0;
6088 
6089 	/*
6090 	 * MAGIC NUMBER EXPLANATION:
6091 	 * since we search a directory based on f_pos we have to start at 2
6092 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6093 	 * else has to start at 2
6094 	 */
6095 	if (path->slots[0] == 0) {
6096 		inode->index_cnt = 2;
6097 		goto out;
6098 	}
6099 
6100 	path->slots[0]--;
6101 
6102 	leaf = path->nodes[0];
6103 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6104 
6105 	if (found_key.objectid != btrfs_ino(inode) ||
6106 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6107 		inode->index_cnt = 2;
6108 		goto out;
6109 	}
6110 
6111 	inode->index_cnt = found_key.offset + 1;
6112 out:
6113 	btrfs_free_path(path);
6114 	return ret;
6115 }
6116 
6117 /*
6118  * helper to find a free sequence number in a given directory.  This current
6119  * code is very simple, later versions will do smarter things in the btree
6120  */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6121 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6122 {
6123 	int ret = 0;
6124 
6125 	if (dir->index_cnt == (u64)-1) {
6126 		ret = btrfs_inode_delayed_dir_index_count(dir);
6127 		if (ret) {
6128 			ret = btrfs_set_inode_index_count(dir);
6129 			if (ret)
6130 				return ret;
6131 		}
6132 	}
6133 
6134 	*index = dir->index_cnt;
6135 	dir->index_cnt++;
6136 
6137 	return ret;
6138 }
6139 
btrfs_insert_inode_locked(struct inode * inode)6140 static int btrfs_insert_inode_locked(struct inode *inode)
6141 {
6142 	struct btrfs_iget_args args;
6143 	args.location = &BTRFS_I(inode)->location;
6144 	args.root = BTRFS_I(inode)->root;
6145 
6146 	return insert_inode_locked4(inode,
6147 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6148 		   btrfs_find_actor, &args);
6149 }
6150 
6151 /*
6152  * Inherit flags from the parent inode.
6153  *
6154  * Currently only the compression flags and the cow flags are inherited.
6155  */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6156 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6157 {
6158 	unsigned int flags;
6159 
6160 	if (!dir)
6161 		return;
6162 
6163 	flags = BTRFS_I(dir)->flags;
6164 
6165 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6166 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6167 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6168 	} else if (flags & BTRFS_INODE_COMPRESS) {
6169 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6170 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6171 	}
6172 
6173 	if (flags & BTRFS_INODE_NODATACOW) {
6174 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6175 		if (S_ISREG(inode->i_mode))
6176 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6177 	}
6178 
6179 	btrfs_sync_inode_flags_to_i_flags(inode);
6180 }
6181 
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6182 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6183 				     struct btrfs_root *root,
6184 				     struct inode *dir,
6185 				     const char *name, int name_len,
6186 				     u64 ref_objectid, u64 objectid,
6187 				     umode_t mode, u64 *index)
6188 {
6189 	struct btrfs_fs_info *fs_info = root->fs_info;
6190 	struct inode *inode;
6191 	struct btrfs_inode_item *inode_item;
6192 	struct btrfs_key *location;
6193 	struct btrfs_path *path;
6194 	struct btrfs_inode_ref *ref;
6195 	struct btrfs_key key[2];
6196 	u32 sizes[2];
6197 	int nitems = name ? 2 : 1;
6198 	unsigned long ptr;
6199 	int ret;
6200 
6201 	path = btrfs_alloc_path();
6202 	if (!path)
6203 		return ERR_PTR(-ENOMEM);
6204 
6205 	inode = new_inode(fs_info->sb);
6206 	if (!inode) {
6207 		btrfs_free_path(path);
6208 		return ERR_PTR(-ENOMEM);
6209 	}
6210 
6211 	/*
6212 	 * O_TMPFILE, set link count to 0, so that after this point,
6213 	 * we fill in an inode item with the correct link count.
6214 	 */
6215 	if (!name)
6216 		set_nlink(inode, 0);
6217 
6218 	/*
6219 	 * we have to initialize this early, so we can reclaim the inode
6220 	 * number if we fail afterwards in this function.
6221 	 */
6222 	inode->i_ino = objectid;
6223 
6224 	if (dir && name) {
6225 		trace_btrfs_inode_request(dir);
6226 
6227 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6228 		if (ret) {
6229 			btrfs_free_path(path);
6230 			iput(inode);
6231 			return ERR_PTR(ret);
6232 		}
6233 	} else if (dir) {
6234 		*index = 0;
6235 	}
6236 	/*
6237 	 * index_cnt is ignored for everything but a dir,
6238 	 * btrfs_set_inode_index_count has an explanation for the magic
6239 	 * number
6240 	 */
6241 	BTRFS_I(inode)->index_cnt = 2;
6242 	BTRFS_I(inode)->dir_index = *index;
6243 	BTRFS_I(inode)->root = root;
6244 	BTRFS_I(inode)->generation = trans->transid;
6245 	inode->i_generation = BTRFS_I(inode)->generation;
6246 
6247 	/*
6248 	 * We could have gotten an inode number from somebody who was fsynced
6249 	 * and then removed in this same transaction, so let's just set full
6250 	 * sync since it will be a full sync anyway and this will blow away the
6251 	 * old info in the log.
6252 	 */
6253 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6254 
6255 	key[0].objectid = objectid;
6256 	key[0].type = BTRFS_INODE_ITEM_KEY;
6257 	key[0].offset = 0;
6258 
6259 	sizes[0] = sizeof(struct btrfs_inode_item);
6260 
6261 	if (name) {
6262 		/*
6263 		 * Start new inodes with an inode_ref. This is slightly more
6264 		 * efficient for small numbers of hard links since they will
6265 		 * be packed into one item. Extended refs will kick in if we
6266 		 * add more hard links than can fit in the ref item.
6267 		 */
6268 		key[1].objectid = objectid;
6269 		key[1].type = BTRFS_INODE_REF_KEY;
6270 		key[1].offset = ref_objectid;
6271 
6272 		sizes[1] = name_len + sizeof(*ref);
6273 	}
6274 
6275 	location = &BTRFS_I(inode)->location;
6276 	location->objectid = objectid;
6277 	location->offset = 0;
6278 	location->type = BTRFS_INODE_ITEM_KEY;
6279 
6280 	ret = btrfs_insert_inode_locked(inode);
6281 	if (ret < 0) {
6282 		iput(inode);
6283 		goto fail;
6284 	}
6285 
6286 	path->leave_spinning = 1;
6287 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6288 	if (ret != 0)
6289 		goto fail_unlock;
6290 
6291 	inode_init_owner(inode, dir, mode);
6292 	inode_set_bytes(inode, 0);
6293 
6294 	inode->i_mtime = current_time(inode);
6295 	inode->i_atime = inode->i_mtime;
6296 	inode->i_ctime = inode->i_mtime;
6297 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6298 
6299 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6300 				  struct btrfs_inode_item);
6301 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6302 			     sizeof(*inode_item));
6303 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6304 
6305 	if (name) {
6306 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6307 				     struct btrfs_inode_ref);
6308 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6309 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6310 		ptr = (unsigned long)(ref + 1);
6311 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6312 	}
6313 
6314 	btrfs_mark_buffer_dirty(path->nodes[0]);
6315 	btrfs_free_path(path);
6316 
6317 	btrfs_inherit_iflags(inode, dir);
6318 
6319 	if (S_ISREG(mode)) {
6320 		if (btrfs_test_opt(fs_info, NODATASUM))
6321 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6322 		if (btrfs_test_opt(fs_info, NODATACOW))
6323 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6324 				BTRFS_INODE_NODATASUM;
6325 	}
6326 
6327 	inode_tree_add(inode);
6328 
6329 	trace_btrfs_inode_new(inode);
6330 	btrfs_set_inode_last_trans(trans, inode);
6331 
6332 	btrfs_update_root_times(trans, root);
6333 
6334 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6335 	if (ret)
6336 		btrfs_err(fs_info,
6337 			  "error inheriting props for ino %llu (root %llu): %d",
6338 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6339 
6340 	return inode;
6341 
6342 fail_unlock:
6343 	discard_new_inode(inode);
6344 fail:
6345 	if (dir && name)
6346 		BTRFS_I(dir)->index_cnt--;
6347 	btrfs_free_path(path);
6348 	return ERR_PTR(ret);
6349 }
6350 
btrfs_inode_type(struct inode * inode)6351 static inline u8 btrfs_inode_type(struct inode *inode)
6352 {
6353 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6354 }
6355 
6356 /*
6357  * utility function to add 'inode' into 'parent_inode' with
6358  * a give name and a given sequence number.
6359  * if 'add_backref' is true, also insert a backref from the
6360  * inode to the parent directory.
6361  */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6362 int btrfs_add_link(struct btrfs_trans_handle *trans,
6363 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6364 		   const char *name, int name_len, int add_backref, u64 index)
6365 {
6366 	int ret = 0;
6367 	struct btrfs_key key;
6368 	struct btrfs_root *root = parent_inode->root;
6369 	u64 ino = btrfs_ino(inode);
6370 	u64 parent_ino = btrfs_ino(parent_inode);
6371 
6372 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6373 		memcpy(&key, &inode->root->root_key, sizeof(key));
6374 	} else {
6375 		key.objectid = ino;
6376 		key.type = BTRFS_INODE_ITEM_KEY;
6377 		key.offset = 0;
6378 	}
6379 
6380 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6381 		ret = btrfs_add_root_ref(trans, key.objectid,
6382 					 root->root_key.objectid, parent_ino,
6383 					 index, name, name_len);
6384 	} else if (add_backref) {
6385 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6386 					     parent_ino, index);
6387 	}
6388 
6389 	/* Nothing to clean up yet */
6390 	if (ret)
6391 		return ret;
6392 
6393 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6394 				    parent_inode, &key,
6395 				    btrfs_inode_type(&inode->vfs_inode), index);
6396 	if (ret == -EEXIST || ret == -EOVERFLOW)
6397 		goto fail_dir_item;
6398 	else if (ret) {
6399 		btrfs_abort_transaction(trans, ret);
6400 		return ret;
6401 	}
6402 
6403 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6404 			   name_len * 2);
6405 	inode_inc_iversion(&parent_inode->vfs_inode);
6406 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6407 		current_time(&parent_inode->vfs_inode);
6408 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6409 	if (ret)
6410 		btrfs_abort_transaction(trans, ret);
6411 	return ret;
6412 
6413 fail_dir_item:
6414 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6415 		u64 local_index;
6416 		int err;
6417 		err = btrfs_del_root_ref(trans, key.objectid,
6418 					 root->root_key.objectid, parent_ino,
6419 					 &local_index, name, name_len);
6420 
6421 	} else if (add_backref) {
6422 		u64 local_index;
6423 		int err;
6424 
6425 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6426 					  ino, parent_ino, &local_index);
6427 	}
6428 	return ret;
6429 }
6430 
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6431 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6432 			    struct btrfs_inode *dir, struct dentry *dentry,
6433 			    struct btrfs_inode *inode, int backref, u64 index)
6434 {
6435 	int err = btrfs_add_link(trans, dir, inode,
6436 				 dentry->d_name.name, dentry->d_name.len,
6437 				 backref, index);
6438 	if (err > 0)
6439 		err = -EEXIST;
6440 	return err;
6441 }
6442 
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6443 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6444 			umode_t mode, dev_t rdev)
6445 {
6446 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6447 	struct btrfs_trans_handle *trans;
6448 	struct btrfs_root *root = BTRFS_I(dir)->root;
6449 	struct inode *inode = NULL;
6450 	int err;
6451 	u64 objectid;
6452 	u64 index = 0;
6453 
6454 	/*
6455 	 * 2 for inode item and ref
6456 	 * 2 for dir items
6457 	 * 1 for xattr if selinux is on
6458 	 */
6459 	trans = btrfs_start_transaction(root, 5);
6460 	if (IS_ERR(trans))
6461 		return PTR_ERR(trans);
6462 
6463 	err = btrfs_find_free_ino(root, &objectid);
6464 	if (err)
6465 		goto out_unlock;
6466 
6467 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6468 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6469 			mode, &index);
6470 	if (IS_ERR(inode)) {
6471 		err = PTR_ERR(inode);
6472 		inode = NULL;
6473 		goto out_unlock;
6474 	}
6475 
6476 	/*
6477 	* If the active LSM wants to access the inode during
6478 	* d_instantiate it needs these. Smack checks to see
6479 	* if the filesystem supports xattrs by looking at the
6480 	* ops vector.
6481 	*/
6482 	inode->i_op = &btrfs_special_inode_operations;
6483 	init_special_inode(inode, inode->i_mode, rdev);
6484 
6485 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6486 	if (err)
6487 		goto out_unlock;
6488 
6489 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6490 			0, index);
6491 	if (err)
6492 		goto out_unlock;
6493 
6494 	btrfs_update_inode(trans, root, inode);
6495 	d_instantiate_new(dentry, inode);
6496 
6497 out_unlock:
6498 	btrfs_end_transaction(trans);
6499 	btrfs_btree_balance_dirty(fs_info);
6500 	if (err && inode) {
6501 		inode_dec_link_count(inode);
6502 		discard_new_inode(inode);
6503 	}
6504 	return err;
6505 }
6506 
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6507 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6508 			umode_t mode, bool excl)
6509 {
6510 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6511 	struct btrfs_trans_handle *trans;
6512 	struct btrfs_root *root = BTRFS_I(dir)->root;
6513 	struct inode *inode = NULL;
6514 	int err;
6515 	u64 objectid;
6516 	u64 index = 0;
6517 
6518 	/*
6519 	 * 2 for inode item and ref
6520 	 * 2 for dir items
6521 	 * 1 for xattr if selinux is on
6522 	 */
6523 	trans = btrfs_start_transaction(root, 5);
6524 	if (IS_ERR(trans))
6525 		return PTR_ERR(trans);
6526 
6527 	err = btrfs_find_free_ino(root, &objectid);
6528 	if (err)
6529 		goto out_unlock;
6530 
6531 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6532 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6533 			mode, &index);
6534 	if (IS_ERR(inode)) {
6535 		err = PTR_ERR(inode);
6536 		inode = NULL;
6537 		goto out_unlock;
6538 	}
6539 	/*
6540 	* If the active LSM wants to access the inode during
6541 	* d_instantiate it needs these. Smack checks to see
6542 	* if the filesystem supports xattrs by looking at the
6543 	* ops vector.
6544 	*/
6545 	inode->i_fop = &btrfs_file_operations;
6546 	inode->i_op = &btrfs_file_inode_operations;
6547 	inode->i_mapping->a_ops = &btrfs_aops;
6548 
6549 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6550 	if (err)
6551 		goto out_unlock;
6552 
6553 	err = btrfs_update_inode(trans, root, inode);
6554 	if (err)
6555 		goto out_unlock;
6556 
6557 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6558 			0, index);
6559 	if (err)
6560 		goto out_unlock;
6561 
6562 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6563 	d_instantiate_new(dentry, inode);
6564 
6565 out_unlock:
6566 	btrfs_end_transaction(trans);
6567 	if (err && inode) {
6568 		inode_dec_link_count(inode);
6569 		discard_new_inode(inode);
6570 	}
6571 	btrfs_btree_balance_dirty(fs_info);
6572 	return err;
6573 }
6574 
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6575 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6576 		      struct dentry *dentry)
6577 {
6578 	struct btrfs_trans_handle *trans = NULL;
6579 	struct btrfs_root *root = BTRFS_I(dir)->root;
6580 	struct inode *inode = d_inode(old_dentry);
6581 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6582 	u64 index;
6583 	int err;
6584 	int drop_inode = 0;
6585 
6586 	/* do not allow sys_link's with other subvols of the same device */
6587 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6588 		return -EXDEV;
6589 
6590 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6591 		return -EMLINK;
6592 
6593 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6594 	if (err)
6595 		goto fail;
6596 
6597 	/*
6598 	 * 2 items for inode and inode ref
6599 	 * 2 items for dir items
6600 	 * 1 item for parent inode
6601 	 * 1 item for orphan item deletion if O_TMPFILE
6602 	 */
6603 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6604 	if (IS_ERR(trans)) {
6605 		err = PTR_ERR(trans);
6606 		trans = NULL;
6607 		goto fail;
6608 	}
6609 
6610 	/* There are several dir indexes for this inode, clear the cache. */
6611 	BTRFS_I(inode)->dir_index = 0ULL;
6612 	inc_nlink(inode);
6613 	inode_inc_iversion(inode);
6614 	inode->i_ctime = current_time(inode);
6615 	ihold(inode);
6616 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6617 
6618 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6619 			1, index);
6620 
6621 	if (err) {
6622 		drop_inode = 1;
6623 	} else {
6624 		struct dentry *parent = dentry->d_parent;
6625 		int ret;
6626 
6627 		err = btrfs_update_inode(trans, root, inode);
6628 		if (err)
6629 			goto fail;
6630 		if (inode->i_nlink == 1) {
6631 			/*
6632 			 * If new hard link count is 1, it's a file created
6633 			 * with open(2) O_TMPFILE flag.
6634 			 */
6635 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6636 			if (err)
6637 				goto fail;
6638 		}
6639 		d_instantiate(dentry, inode);
6640 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6641 					 true, NULL);
6642 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6643 			err = btrfs_commit_transaction(trans);
6644 			trans = NULL;
6645 		}
6646 	}
6647 
6648 fail:
6649 	if (trans)
6650 		btrfs_end_transaction(trans);
6651 	if (drop_inode) {
6652 		inode_dec_link_count(inode);
6653 		iput(inode);
6654 	}
6655 	btrfs_btree_balance_dirty(fs_info);
6656 	return err;
6657 }
6658 
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6659 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6660 {
6661 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6662 	struct inode *inode = NULL;
6663 	struct btrfs_trans_handle *trans;
6664 	struct btrfs_root *root = BTRFS_I(dir)->root;
6665 	int err = 0;
6666 	int drop_on_err = 0;
6667 	u64 objectid = 0;
6668 	u64 index = 0;
6669 
6670 	/*
6671 	 * 2 items for inode and ref
6672 	 * 2 items for dir items
6673 	 * 1 for xattr if selinux is on
6674 	 */
6675 	trans = btrfs_start_transaction(root, 5);
6676 	if (IS_ERR(trans))
6677 		return PTR_ERR(trans);
6678 
6679 	err = btrfs_find_free_ino(root, &objectid);
6680 	if (err)
6681 		goto out_fail;
6682 
6683 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6684 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6685 			S_IFDIR | mode, &index);
6686 	if (IS_ERR(inode)) {
6687 		err = PTR_ERR(inode);
6688 		inode = NULL;
6689 		goto out_fail;
6690 	}
6691 
6692 	drop_on_err = 1;
6693 	/* these must be set before we unlock the inode */
6694 	inode->i_op = &btrfs_dir_inode_operations;
6695 	inode->i_fop = &btrfs_dir_file_operations;
6696 
6697 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6698 	if (err)
6699 		goto out_fail;
6700 
6701 	btrfs_i_size_write(BTRFS_I(inode), 0);
6702 	err = btrfs_update_inode(trans, root, inode);
6703 	if (err)
6704 		goto out_fail;
6705 
6706 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6707 			dentry->d_name.name,
6708 			dentry->d_name.len, 0, index);
6709 	if (err)
6710 		goto out_fail;
6711 
6712 	d_instantiate_new(dentry, inode);
6713 	drop_on_err = 0;
6714 
6715 out_fail:
6716 	btrfs_end_transaction(trans);
6717 	if (err && inode) {
6718 		inode_dec_link_count(inode);
6719 		discard_new_inode(inode);
6720 	}
6721 	btrfs_btree_balance_dirty(fs_info);
6722 	return err;
6723 }
6724 
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6725 static noinline int uncompress_inline(struct btrfs_path *path,
6726 				      struct page *page,
6727 				      size_t pg_offset, u64 extent_offset,
6728 				      struct btrfs_file_extent_item *item)
6729 {
6730 	int ret;
6731 	struct extent_buffer *leaf = path->nodes[0];
6732 	char *tmp;
6733 	size_t max_size;
6734 	unsigned long inline_size;
6735 	unsigned long ptr;
6736 	int compress_type;
6737 
6738 	WARN_ON(pg_offset != 0);
6739 	compress_type = btrfs_file_extent_compression(leaf, item);
6740 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6741 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6742 					btrfs_item_nr(path->slots[0]));
6743 	tmp = kmalloc(inline_size, GFP_NOFS);
6744 	if (!tmp)
6745 		return -ENOMEM;
6746 	ptr = btrfs_file_extent_inline_start(item);
6747 
6748 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6749 
6750 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6751 	ret = btrfs_decompress(compress_type, tmp, page,
6752 			       extent_offset, inline_size, max_size);
6753 
6754 	/*
6755 	 * decompression code contains a memset to fill in any space between the end
6756 	 * of the uncompressed data and the end of max_size in case the decompressed
6757 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6758 	 * the end of an inline extent and the beginning of the next block, so we
6759 	 * cover that region here.
6760 	 */
6761 
6762 	if (max_size + pg_offset < PAGE_SIZE) {
6763 		char *map = kmap(page);
6764 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6765 		kunmap(page);
6766 	}
6767 	kfree(tmp);
6768 	return ret;
6769 }
6770 
6771 /*
6772  * a bit scary, this does extent mapping from logical file offset to the disk.
6773  * the ugly parts come from merging extents from the disk with the in-ram
6774  * representation.  This gets more complex because of the data=ordered code,
6775  * where the in-ram extents might be locked pending data=ordered completion.
6776  *
6777  * This also copies inline extents directly into the page.
6778  */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6779 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6780 		struct page *page,
6781 	    size_t pg_offset, u64 start, u64 len,
6782 		int create)
6783 {
6784 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6785 	int ret;
6786 	int err = 0;
6787 	u64 extent_start = 0;
6788 	u64 extent_end = 0;
6789 	u64 objectid = btrfs_ino(inode);
6790 	u32 found_type;
6791 	struct btrfs_path *path = NULL;
6792 	struct btrfs_root *root = inode->root;
6793 	struct btrfs_file_extent_item *item;
6794 	struct extent_buffer *leaf;
6795 	struct btrfs_key found_key;
6796 	struct extent_map *em = NULL;
6797 	struct extent_map_tree *em_tree = &inode->extent_tree;
6798 	struct extent_io_tree *io_tree = &inode->io_tree;
6799 	const bool new_inline = !page || create;
6800 
6801 	read_lock(&em_tree->lock);
6802 	em = lookup_extent_mapping(em_tree, start, len);
6803 	if (em)
6804 		em->bdev = fs_info->fs_devices->latest_bdev;
6805 	read_unlock(&em_tree->lock);
6806 
6807 	if (em) {
6808 		if (em->start > start || em->start + em->len <= start)
6809 			free_extent_map(em);
6810 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6811 			free_extent_map(em);
6812 		else
6813 			goto out;
6814 	}
6815 	em = alloc_extent_map();
6816 	if (!em) {
6817 		err = -ENOMEM;
6818 		goto out;
6819 	}
6820 	em->bdev = fs_info->fs_devices->latest_bdev;
6821 	em->start = EXTENT_MAP_HOLE;
6822 	em->orig_start = EXTENT_MAP_HOLE;
6823 	em->len = (u64)-1;
6824 	em->block_len = (u64)-1;
6825 
6826 	if (!path) {
6827 		path = btrfs_alloc_path();
6828 		if (!path) {
6829 			err = -ENOMEM;
6830 			goto out;
6831 		}
6832 		/*
6833 		 * Chances are we'll be called again, so go ahead and do
6834 		 * readahead
6835 		 */
6836 		path->reada = READA_FORWARD;
6837 	}
6838 
6839 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6840 	if (ret < 0) {
6841 		err = ret;
6842 		goto out;
6843 	}
6844 
6845 	if (ret != 0) {
6846 		if (path->slots[0] == 0)
6847 			goto not_found;
6848 		path->slots[0]--;
6849 	}
6850 
6851 	leaf = path->nodes[0];
6852 	item = btrfs_item_ptr(leaf, path->slots[0],
6853 			      struct btrfs_file_extent_item);
6854 	/* are we inside the extent that was found? */
6855 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6856 	found_type = found_key.type;
6857 	if (found_key.objectid != objectid ||
6858 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6859 		/*
6860 		 * If we backup past the first extent we want to move forward
6861 		 * and see if there is an extent in front of us, otherwise we'll
6862 		 * say there is a hole for our whole search range which can
6863 		 * cause problems.
6864 		 */
6865 		extent_end = start;
6866 		goto next;
6867 	}
6868 
6869 	found_type = btrfs_file_extent_type(leaf, item);
6870 	extent_start = found_key.offset;
6871 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6872 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6873 		extent_end = extent_start +
6874 		       btrfs_file_extent_num_bytes(leaf, item);
6875 
6876 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6877 						       extent_start);
6878 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6879 		size_t size;
6880 
6881 		size = btrfs_file_extent_ram_bytes(leaf, item);
6882 		extent_end = ALIGN(extent_start + size,
6883 				   fs_info->sectorsize);
6884 
6885 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6886 						      path->slots[0],
6887 						      extent_start);
6888 	}
6889 next:
6890 	if (start >= extent_end) {
6891 		path->slots[0]++;
6892 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6893 			ret = btrfs_next_leaf(root, path);
6894 			if (ret < 0) {
6895 				err = ret;
6896 				goto out;
6897 			}
6898 			if (ret > 0)
6899 				goto not_found;
6900 			leaf = path->nodes[0];
6901 		}
6902 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6903 		if (found_key.objectid != objectid ||
6904 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6905 			goto not_found;
6906 		if (start + len <= found_key.offset)
6907 			goto not_found;
6908 		if (start > found_key.offset)
6909 			goto next;
6910 		em->start = start;
6911 		em->orig_start = start;
6912 		em->len = found_key.offset - start;
6913 		goto not_found_em;
6914 	}
6915 
6916 	btrfs_extent_item_to_extent_map(inode, path, item,
6917 			new_inline, em);
6918 
6919 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6920 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6921 		goto insert;
6922 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6923 		unsigned long ptr;
6924 		char *map;
6925 		size_t size;
6926 		size_t extent_offset;
6927 		size_t copy_size;
6928 
6929 		if (new_inline)
6930 			goto out;
6931 
6932 		size = btrfs_file_extent_ram_bytes(leaf, item);
6933 		extent_offset = page_offset(page) + pg_offset - extent_start;
6934 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6935 				  size - extent_offset);
6936 		em->start = extent_start + extent_offset;
6937 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6938 		em->orig_block_len = em->len;
6939 		em->orig_start = em->start;
6940 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6941 		if (!PageUptodate(page)) {
6942 			if (btrfs_file_extent_compression(leaf, item) !=
6943 			    BTRFS_COMPRESS_NONE) {
6944 				ret = uncompress_inline(path, page, pg_offset,
6945 							extent_offset, item);
6946 				if (ret) {
6947 					err = ret;
6948 					goto out;
6949 				}
6950 			} else {
6951 				map = kmap(page);
6952 				read_extent_buffer(leaf, map + pg_offset, ptr,
6953 						   copy_size);
6954 				if (pg_offset + copy_size < PAGE_SIZE) {
6955 					memset(map + pg_offset + copy_size, 0,
6956 					       PAGE_SIZE - pg_offset -
6957 					       copy_size);
6958 				}
6959 				kunmap(page);
6960 			}
6961 			flush_dcache_page(page);
6962 		}
6963 		set_extent_uptodate(io_tree, em->start,
6964 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6965 		goto insert;
6966 	}
6967 not_found:
6968 	em->start = start;
6969 	em->orig_start = start;
6970 	em->len = len;
6971 not_found_em:
6972 	em->block_start = EXTENT_MAP_HOLE;
6973 insert:
6974 	btrfs_release_path(path);
6975 	if (em->start > start || extent_map_end(em) <= start) {
6976 		btrfs_err(fs_info,
6977 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6978 			  em->start, em->len, start, len);
6979 		err = -EIO;
6980 		goto out;
6981 	}
6982 
6983 	err = 0;
6984 	write_lock(&em_tree->lock);
6985 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6986 	write_unlock(&em_tree->lock);
6987 out:
6988 
6989 	trace_btrfs_get_extent(root, inode, em);
6990 
6991 	btrfs_free_path(path);
6992 	if (err) {
6993 		free_extent_map(em);
6994 		return ERR_PTR(err);
6995 	}
6996 	BUG_ON(!em); /* Error is always set */
6997 	return em;
6998 }
6999 
btrfs_get_extent_fiemap(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7000 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7001 		struct page *page,
7002 		size_t pg_offset, u64 start, u64 len,
7003 		int create)
7004 {
7005 	struct extent_map *em;
7006 	struct extent_map *hole_em = NULL;
7007 	u64 range_start = start;
7008 	u64 end;
7009 	u64 found;
7010 	u64 found_end;
7011 	int err = 0;
7012 
7013 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7014 	if (IS_ERR(em))
7015 		return em;
7016 	/*
7017 	 * If our em maps to:
7018 	 * - a hole or
7019 	 * - a pre-alloc extent,
7020 	 * there might actually be delalloc bytes behind it.
7021 	 */
7022 	if (em->block_start != EXTENT_MAP_HOLE &&
7023 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7024 		return em;
7025 	else
7026 		hole_em = em;
7027 
7028 	/* check to see if we've wrapped (len == -1 or similar) */
7029 	end = start + len;
7030 	if (end < start)
7031 		end = (u64)-1;
7032 	else
7033 		end -= 1;
7034 
7035 	em = NULL;
7036 
7037 	/* ok, we didn't find anything, lets look for delalloc */
7038 	found = count_range_bits(&inode->io_tree, &range_start,
7039 				 end, len, EXTENT_DELALLOC, 1);
7040 	found_end = range_start + found;
7041 	if (found_end < range_start)
7042 		found_end = (u64)-1;
7043 
7044 	/*
7045 	 * we didn't find anything useful, return
7046 	 * the original results from get_extent()
7047 	 */
7048 	if (range_start > end || found_end <= start) {
7049 		em = hole_em;
7050 		hole_em = NULL;
7051 		goto out;
7052 	}
7053 
7054 	/* adjust the range_start to make sure it doesn't
7055 	 * go backwards from the start they passed in
7056 	 */
7057 	range_start = max(start, range_start);
7058 	found = found_end - range_start;
7059 
7060 	if (found > 0) {
7061 		u64 hole_start = start;
7062 		u64 hole_len = len;
7063 
7064 		em = alloc_extent_map();
7065 		if (!em) {
7066 			err = -ENOMEM;
7067 			goto out;
7068 		}
7069 		/*
7070 		 * when btrfs_get_extent can't find anything it
7071 		 * returns one huge hole
7072 		 *
7073 		 * make sure what it found really fits our range, and
7074 		 * adjust to make sure it is based on the start from
7075 		 * the caller
7076 		 */
7077 		if (hole_em) {
7078 			u64 calc_end = extent_map_end(hole_em);
7079 
7080 			if (calc_end <= start || (hole_em->start > end)) {
7081 				free_extent_map(hole_em);
7082 				hole_em = NULL;
7083 			} else {
7084 				hole_start = max(hole_em->start, start);
7085 				hole_len = calc_end - hole_start;
7086 			}
7087 		}
7088 		em->bdev = NULL;
7089 		if (hole_em && range_start > hole_start) {
7090 			/* our hole starts before our delalloc, so we
7091 			 * have to return just the parts of the hole
7092 			 * that go until  the delalloc starts
7093 			 */
7094 			em->len = min(hole_len,
7095 				      range_start - hole_start);
7096 			em->start = hole_start;
7097 			em->orig_start = hole_start;
7098 			/*
7099 			 * don't adjust block start at all,
7100 			 * it is fixed at EXTENT_MAP_HOLE
7101 			 */
7102 			em->block_start = hole_em->block_start;
7103 			em->block_len = hole_len;
7104 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7105 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7106 		} else {
7107 			em->start = range_start;
7108 			em->len = found;
7109 			em->orig_start = range_start;
7110 			em->block_start = EXTENT_MAP_DELALLOC;
7111 			em->block_len = found;
7112 		}
7113 	} else {
7114 		return hole_em;
7115 	}
7116 out:
7117 
7118 	free_extent_map(hole_em);
7119 	if (err) {
7120 		free_extent_map(em);
7121 		return ERR_PTR(err);
7122 	}
7123 	return em;
7124 }
7125 
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7126 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7127 						  const u64 start,
7128 						  const u64 len,
7129 						  const u64 orig_start,
7130 						  const u64 block_start,
7131 						  const u64 block_len,
7132 						  const u64 orig_block_len,
7133 						  const u64 ram_bytes,
7134 						  const int type)
7135 {
7136 	struct extent_map *em = NULL;
7137 	int ret;
7138 
7139 	if (type != BTRFS_ORDERED_NOCOW) {
7140 		em = create_io_em(inode, start, len, orig_start,
7141 				  block_start, block_len, orig_block_len,
7142 				  ram_bytes,
7143 				  BTRFS_COMPRESS_NONE, /* compress_type */
7144 				  type);
7145 		if (IS_ERR(em))
7146 			goto out;
7147 	}
7148 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7149 					   len, block_len, type);
7150 	if (ret) {
7151 		if (em) {
7152 			free_extent_map(em);
7153 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7154 						start + len - 1, 0);
7155 		}
7156 		em = ERR_PTR(ret);
7157 	}
7158  out:
7159 
7160 	return em;
7161 }
7162 
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7163 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7164 						  u64 start, u64 len)
7165 {
7166 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7167 	struct btrfs_root *root = BTRFS_I(inode)->root;
7168 	struct extent_map *em;
7169 	struct btrfs_key ins;
7170 	u64 alloc_hint;
7171 	int ret;
7172 
7173 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7174 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7175 				   0, alloc_hint, &ins, 1, 1);
7176 	if (ret)
7177 		return ERR_PTR(ret);
7178 
7179 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7180 				     ins.objectid, ins.offset, ins.offset,
7181 				     ins.offset, BTRFS_ORDERED_REGULAR);
7182 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7183 	if (IS_ERR(em))
7184 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7185 					   ins.offset, 1);
7186 
7187 	return em;
7188 }
7189 
7190 /*
7191  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7192  * block must be cow'd
7193  */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7194 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7195 			      u64 *orig_start, u64 *orig_block_len,
7196 			      u64 *ram_bytes)
7197 {
7198 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7199 	struct btrfs_path *path;
7200 	int ret;
7201 	struct extent_buffer *leaf;
7202 	struct btrfs_root *root = BTRFS_I(inode)->root;
7203 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7204 	struct btrfs_file_extent_item *fi;
7205 	struct btrfs_key key;
7206 	u64 disk_bytenr;
7207 	u64 backref_offset;
7208 	u64 extent_end;
7209 	u64 num_bytes;
7210 	int slot;
7211 	int found_type;
7212 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7213 
7214 	path = btrfs_alloc_path();
7215 	if (!path)
7216 		return -ENOMEM;
7217 
7218 	ret = btrfs_lookup_file_extent(NULL, root, path,
7219 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7220 	if (ret < 0)
7221 		goto out;
7222 
7223 	slot = path->slots[0];
7224 	if (ret == 1) {
7225 		if (slot == 0) {
7226 			/* can't find the item, must cow */
7227 			ret = 0;
7228 			goto out;
7229 		}
7230 		slot--;
7231 	}
7232 	ret = 0;
7233 	leaf = path->nodes[0];
7234 	btrfs_item_key_to_cpu(leaf, &key, slot);
7235 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7236 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7237 		/* not our file or wrong item type, must cow */
7238 		goto out;
7239 	}
7240 
7241 	if (key.offset > offset) {
7242 		/* Wrong offset, must cow */
7243 		goto out;
7244 	}
7245 
7246 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7247 	found_type = btrfs_file_extent_type(leaf, fi);
7248 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7249 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7250 		/* not a regular extent, must cow */
7251 		goto out;
7252 	}
7253 
7254 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7255 		goto out;
7256 
7257 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7258 	if (extent_end <= offset)
7259 		goto out;
7260 
7261 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7262 	if (disk_bytenr == 0)
7263 		goto out;
7264 
7265 	if (btrfs_file_extent_compression(leaf, fi) ||
7266 	    btrfs_file_extent_encryption(leaf, fi) ||
7267 	    btrfs_file_extent_other_encoding(leaf, fi))
7268 		goto out;
7269 
7270 	/*
7271 	 * Do the same check as in btrfs_cross_ref_exist but without the
7272 	 * unnecessary search.
7273 	 */
7274 	if (btrfs_file_extent_generation(leaf, fi) <=
7275 	    btrfs_root_last_snapshot(&root->root_item))
7276 		goto out;
7277 
7278 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7279 
7280 	if (orig_start) {
7281 		*orig_start = key.offset - backref_offset;
7282 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7283 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7284 	}
7285 
7286 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7287 		goto out;
7288 
7289 	num_bytes = min(offset + *len, extent_end) - offset;
7290 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7291 		u64 range_end;
7292 
7293 		range_end = round_up(offset + num_bytes,
7294 				     root->fs_info->sectorsize) - 1;
7295 		ret = test_range_bit(io_tree, offset, range_end,
7296 				     EXTENT_DELALLOC, 0, NULL);
7297 		if (ret) {
7298 			ret = -EAGAIN;
7299 			goto out;
7300 		}
7301 	}
7302 
7303 	btrfs_release_path(path);
7304 
7305 	/*
7306 	 * look for other files referencing this extent, if we
7307 	 * find any we must cow
7308 	 */
7309 
7310 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7311 				    key.offset - backref_offset, disk_bytenr);
7312 	if (ret) {
7313 		ret = 0;
7314 		goto out;
7315 	}
7316 
7317 	/*
7318 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7319 	 * in this extent we are about to write.  If there
7320 	 * are any csums in that range we have to cow in order
7321 	 * to keep the csums correct
7322 	 */
7323 	disk_bytenr += backref_offset;
7324 	disk_bytenr += offset - key.offset;
7325 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7326 		goto out;
7327 	/*
7328 	 * all of the above have passed, it is safe to overwrite this extent
7329 	 * without cow
7330 	 */
7331 	*len = num_bytes;
7332 	ret = 1;
7333 out:
7334 	btrfs_free_path(path);
7335 	return ret;
7336 }
7337 
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7338 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7339 			      struct extent_state **cached_state, int writing)
7340 {
7341 	struct btrfs_ordered_extent *ordered;
7342 	int ret = 0;
7343 
7344 	while (1) {
7345 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7346 				 cached_state);
7347 		/*
7348 		 * We're concerned with the entire range that we're going to be
7349 		 * doing DIO to, so we need to make sure there's no ordered
7350 		 * extents in this range.
7351 		 */
7352 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7353 						     lockend - lockstart + 1);
7354 
7355 		/*
7356 		 * We need to make sure there are no buffered pages in this
7357 		 * range either, we could have raced between the invalidate in
7358 		 * generic_file_direct_write and locking the extent.  The
7359 		 * invalidate needs to happen so that reads after a write do not
7360 		 * get stale data.
7361 		 */
7362 		if (!ordered &&
7363 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7364 							 lockstart, lockend)))
7365 			break;
7366 
7367 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7368 				     cached_state);
7369 
7370 		if (ordered) {
7371 			/*
7372 			 * If we are doing a DIO read and the ordered extent we
7373 			 * found is for a buffered write, we can not wait for it
7374 			 * to complete and retry, because if we do so we can
7375 			 * deadlock with concurrent buffered writes on page
7376 			 * locks. This happens only if our DIO read covers more
7377 			 * than one extent map, if at this point has already
7378 			 * created an ordered extent for a previous extent map
7379 			 * and locked its range in the inode's io tree, and a
7380 			 * concurrent write against that previous extent map's
7381 			 * range and this range started (we unlock the ranges
7382 			 * in the io tree only when the bios complete and
7383 			 * buffered writes always lock pages before attempting
7384 			 * to lock range in the io tree).
7385 			 */
7386 			if (writing ||
7387 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7388 				btrfs_start_ordered_extent(inode, ordered, 1);
7389 			else
7390 				ret = -ENOTBLK;
7391 			btrfs_put_ordered_extent(ordered);
7392 		} else {
7393 			/*
7394 			 * We could trigger writeback for this range (and wait
7395 			 * for it to complete) and then invalidate the pages for
7396 			 * this range (through invalidate_inode_pages2_range()),
7397 			 * but that can lead us to a deadlock with a concurrent
7398 			 * call to readpages() (a buffered read or a defrag call
7399 			 * triggered a readahead) on a page lock due to an
7400 			 * ordered dio extent we created before but did not have
7401 			 * yet a corresponding bio submitted (whence it can not
7402 			 * complete), which makes readpages() wait for that
7403 			 * ordered extent to complete while holding a lock on
7404 			 * that page.
7405 			 */
7406 			ret = -ENOTBLK;
7407 		}
7408 
7409 		if (ret)
7410 			break;
7411 
7412 		cond_resched();
7413 	}
7414 
7415 	return ret;
7416 }
7417 
7418 /* The callers of this must take lock_extent() */
create_io_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7419 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7420 				       u64 orig_start, u64 block_start,
7421 				       u64 block_len, u64 orig_block_len,
7422 				       u64 ram_bytes, int compress_type,
7423 				       int type)
7424 {
7425 	struct extent_map_tree *em_tree;
7426 	struct extent_map *em;
7427 	struct btrfs_root *root = BTRFS_I(inode)->root;
7428 	int ret;
7429 
7430 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7431 	       type == BTRFS_ORDERED_COMPRESSED ||
7432 	       type == BTRFS_ORDERED_NOCOW ||
7433 	       type == BTRFS_ORDERED_REGULAR);
7434 
7435 	em_tree = &BTRFS_I(inode)->extent_tree;
7436 	em = alloc_extent_map();
7437 	if (!em)
7438 		return ERR_PTR(-ENOMEM);
7439 
7440 	em->start = start;
7441 	em->orig_start = orig_start;
7442 	em->len = len;
7443 	em->block_len = block_len;
7444 	em->block_start = block_start;
7445 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7446 	em->orig_block_len = orig_block_len;
7447 	em->ram_bytes = ram_bytes;
7448 	em->generation = -1;
7449 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7450 	if (type == BTRFS_ORDERED_PREALLOC) {
7451 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7452 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7453 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7454 		em->compress_type = compress_type;
7455 	}
7456 
7457 	do {
7458 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7459 				em->start + em->len - 1, 0);
7460 		write_lock(&em_tree->lock);
7461 		ret = add_extent_mapping(em_tree, em, 1);
7462 		write_unlock(&em_tree->lock);
7463 		/*
7464 		 * The caller has taken lock_extent(), who could race with us
7465 		 * to add em?
7466 		 */
7467 	} while (ret == -EEXIST);
7468 
7469 	if (ret) {
7470 		free_extent_map(em);
7471 		return ERR_PTR(ret);
7472 	}
7473 
7474 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7475 	return em;
7476 }
7477 
7478 
btrfs_get_blocks_direct_read(struct extent_map * em,struct buffer_head * bh_result,struct inode * inode,u64 start,u64 len)7479 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7480 					struct buffer_head *bh_result,
7481 					struct inode *inode,
7482 					u64 start, u64 len)
7483 {
7484 	if (em->block_start == EXTENT_MAP_HOLE ||
7485 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7486 		return -ENOENT;
7487 
7488 	len = min(len, em->len - (start - em->start));
7489 
7490 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7491 		inode->i_blkbits;
7492 	bh_result->b_size = len;
7493 	bh_result->b_bdev = em->bdev;
7494 	set_buffer_mapped(bh_result);
7495 
7496 	return 0;
7497 }
7498 
btrfs_get_blocks_direct_write(struct extent_map ** map,struct buffer_head * bh_result,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7499 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7500 					 struct buffer_head *bh_result,
7501 					 struct inode *inode,
7502 					 struct btrfs_dio_data *dio_data,
7503 					 u64 start, u64 len)
7504 {
7505 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7506 	struct extent_map *em = *map;
7507 	int ret = 0;
7508 
7509 	/*
7510 	 * We don't allocate a new extent in the following cases
7511 	 *
7512 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7513 	 * existing extent.
7514 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7515 	 * just use the extent.
7516 	 *
7517 	 */
7518 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7519 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7520 	     em->block_start != EXTENT_MAP_HOLE)) {
7521 		int type;
7522 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7523 
7524 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7525 			type = BTRFS_ORDERED_PREALLOC;
7526 		else
7527 			type = BTRFS_ORDERED_NOCOW;
7528 		len = min(len, em->len - (start - em->start));
7529 		block_start = em->block_start + (start - em->start);
7530 
7531 		if (can_nocow_extent(inode, start, &len, &orig_start,
7532 				     &orig_block_len, &ram_bytes) == 1 &&
7533 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7534 			struct extent_map *em2;
7535 
7536 			em2 = btrfs_create_dio_extent(inode, start, len,
7537 						      orig_start, block_start,
7538 						      len, orig_block_len,
7539 						      ram_bytes, type);
7540 			btrfs_dec_nocow_writers(fs_info, block_start);
7541 			if (type == BTRFS_ORDERED_PREALLOC) {
7542 				free_extent_map(em);
7543 				*map = em = em2;
7544 			}
7545 
7546 			if (em2 && IS_ERR(em2)) {
7547 				ret = PTR_ERR(em2);
7548 				goto out;
7549 			}
7550 			/*
7551 			 * For inode marked NODATACOW or extent marked PREALLOC,
7552 			 * use the existing or preallocated extent, so does not
7553 			 * need to adjust btrfs_space_info's bytes_may_use.
7554 			 */
7555 			btrfs_free_reserved_data_space_noquota(inode, start,
7556 							       len);
7557 			goto skip_cow;
7558 		}
7559 	}
7560 
7561 	/* this will cow the extent */
7562 	len = bh_result->b_size;
7563 	free_extent_map(em);
7564 	*map = em = btrfs_new_extent_direct(inode, start, len);
7565 	if (IS_ERR(em)) {
7566 		ret = PTR_ERR(em);
7567 		goto out;
7568 	}
7569 
7570 	len = min(len, em->len - (start - em->start));
7571 
7572 skip_cow:
7573 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7574 		inode->i_blkbits;
7575 	bh_result->b_size = len;
7576 	bh_result->b_bdev = em->bdev;
7577 	set_buffer_mapped(bh_result);
7578 
7579 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7580 		set_buffer_new(bh_result);
7581 
7582 	/*
7583 	 * Need to update the i_size under the extent lock so buffered
7584 	 * readers will get the updated i_size when we unlock.
7585 	 */
7586 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7587 		i_size_write(inode, start + len);
7588 
7589 	WARN_ON(dio_data->reserve < len);
7590 	dio_data->reserve -= len;
7591 	dio_data->unsubmitted_oe_range_end = start + len;
7592 	current->journal_info = dio_data;
7593 out:
7594 	return ret;
7595 }
7596 
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7597 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7598 				   struct buffer_head *bh_result, int create)
7599 {
7600 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7601 	struct extent_map *em;
7602 	struct extent_state *cached_state = NULL;
7603 	struct btrfs_dio_data *dio_data = NULL;
7604 	u64 start = iblock << inode->i_blkbits;
7605 	u64 lockstart, lockend;
7606 	u64 len = bh_result->b_size;
7607 	int unlock_bits = EXTENT_LOCKED;
7608 	int ret = 0;
7609 
7610 	if (create)
7611 		unlock_bits |= EXTENT_DIRTY;
7612 	else
7613 		len = min_t(u64, len, fs_info->sectorsize);
7614 
7615 	lockstart = start;
7616 	lockend = start + len - 1;
7617 
7618 	if (current->journal_info) {
7619 		/*
7620 		 * Need to pull our outstanding extents and set journal_info to NULL so
7621 		 * that anything that needs to check if there's a transaction doesn't get
7622 		 * confused.
7623 		 */
7624 		dio_data = current->journal_info;
7625 		current->journal_info = NULL;
7626 	}
7627 
7628 	/*
7629 	 * If this errors out it's because we couldn't invalidate pagecache for
7630 	 * this range and we need to fallback to buffered.
7631 	 */
7632 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7633 			       create)) {
7634 		ret = -ENOTBLK;
7635 		goto err;
7636 	}
7637 
7638 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7639 	if (IS_ERR(em)) {
7640 		ret = PTR_ERR(em);
7641 		goto unlock_err;
7642 	}
7643 
7644 	/*
7645 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7646 	 * io.  INLINE is special, and we could probably kludge it in here, but
7647 	 * it's still buffered so for safety lets just fall back to the generic
7648 	 * buffered path.
7649 	 *
7650 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7651 	 * decompress it, so there will be buffering required no matter what we
7652 	 * do, so go ahead and fallback to buffered.
7653 	 *
7654 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7655 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7656 	 * the generic code.
7657 	 */
7658 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7659 	    em->block_start == EXTENT_MAP_INLINE) {
7660 		free_extent_map(em);
7661 		ret = -ENOTBLK;
7662 		goto unlock_err;
7663 	}
7664 
7665 	if (create) {
7666 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7667 						    dio_data, start, len);
7668 		if (ret < 0)
7669 			goto unlock_err;
7670 
7671 		/* clear and unlock the entire range */
7672 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7673 				 unlock_bits, 1, 0, &cached_state);
7674 	} else {
7675 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7676 						   start, len);
7677 		/* Can be negative only if we read from a hole */
7678 		if (ret < 0) {
7679 			ret = 0;
7680 			free_extent_map(em);
7681 			goto unlock_err;
7682 		}
7683 		/*
7684 		 * We need to unlock only the end area that we aren't using.
7685 		 * The rest is going to be unlocked by the endio routine.
7686 		 */
7687 		lockstart = start + bh_result->b_size;
7688 		if (lockstart < lockend) {
7689 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7690 					 lockend, unlock_bits, 1, 0,
7691 					 &cached_state);
7692 		} else {
7693 			free_extent_state(cached_state);
7694 		}
7695 	}
7696 
7697 	free_extent_map(em);
7698 
7699 	return 0;
7700 
7701 unlock_err:
7702 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7703 			 unlock_bits, 1, 0, &cached_state);
7704 err:
7705 	if (dio_data)
7706 		current->journal_info = dio_data;
7707 	return ret;
7708 }
7709 
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)7710 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7711 						 struct bio *bio,
7712 						 int mirror_num)
7713 {
7714 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7715 	blk_status_t ret;
7716 
7717 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7718 
7719 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7720 	if (ret)
7721 		return ret;
7722 
7723 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7724 
7725 	return ret;
7726 }
7727 
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7728 static int btrfs_check_dio_repairable(struct inode *inode,
7729 				      struct bio *failed_bio,
7730 				      struct io_failure_record *failrec,
7731 				      int failed_mirror)
7732 {
7733 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7734 	int num_copies;
7735 
7736 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7737 	if (num_copies == 1) {
7738 		/*
7739 		 * we only have a single copy of the data, so don't bother with
7740 		 * all the retry and error correction code that follows. no
7741 		 * matter what the error is, it is very likely to persist.
7742 		 */
7743 		btrfs_debug(fs_info,
7744 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7745 			num_copies, failrec->this_mirror, failed_mirror);
7746 		return 0;
7747 	}
7748 
7749 	failrec->failed_mirror = failed_mirror;
7750 	failrec->this_mirror++;
7751 	if (failrec->this_mirror == failed_mirror)
7752 		failrec->this_mirror++;
7753 
7754 	if (failrec->this_mirror > num_copies) {
7755 		btrfs_debug(fs_info,
7756 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7757 			num_copies, failrec->this_mirror, failed_mirror);
7758 		return 0;
7759 	}
7760 
7761 	return 1;
7762 }
7763 
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7764 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7765 				   struct page *page, unsigned int pgoff,
7766 				   u64 start, u64 end, int failed_mirror,
7767 				   bio_end_io_t *repair_endio, void *repair_arg)
7768 {
7769 	struct io_failure_record *failrec;
7770 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7771 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7772 	struct bio *bio;
7773 	int isector;
7774 	unsigned int read_mode = 0;
7775 	int segs;
7776 	int ret;
7777 	blk_status_t status;
7778 	struct bio_vec bvec;
7779 
7780 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7781 
7782 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7783 	if (ret)
7784 		return errno_to_blk_status(ret);
7785 
7786 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7787 					 failed_mirror);
7788 	if (!ret) {
7789 		free_io_failure(failure_tree, io_tree, failrec);
7790 		return BLK_STS_IOERR;
7791 	}
7792 
7793 	segs = bio_segments(failed_bio);
7794 	bio_get_first_bvec(failed_bio, &bvec);
7795 	if (segs > 1 ||
7796 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7797 		read_mode |= REQ_FAILFAST_DEV;
7798 
7799 	isector = start - btrfs_io_bio(failed_bio)->logical;
7800 	isector >>= inode->i_sb->s_blocksize_bits;
7801 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7802 				pgoff, isector, repair_endio, repair_arg);
7803 	bio->bi_opf = REQ_OP_READ | read_mode;
7804 
7805 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7806 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7807 		    read_mode, failrec->this_mirror, failrec->in_validation);
7808 
7809 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7810 	if (status) {
7811 		free_io_failure(failure_tree, io_tree, failrec);
7812 		bio_put(bio);
7813 	}
7814 
7815 	return status;
7816 }
7817 
7818 struct btrfs_retry_complete {
7819 	struct completion done;
7820 	struct inode *inode;
7821 	u64 start;
7822 	int uptodate;
7823 };
7824 
btrfs_retry_endio_nocsum(struct bio * bio)7825 static void btrfs_retry_endio_nocsum(struct bio *bio)
7826 {
7827 	struct btrfs_retry_complete *done = bio->bi_private;
7828 	struct inode *inode = done->inode;
7829 	struct bio_vec *bvec;
7830 	struct extent_io_tree *io_tree, *failure_tree;
7831 	int i;
7832 
7833 	if (bio->bi_status)
7834 		goto end;
7835 
7836 	ASSERT(bio->bi_vcnt == 1);
7837 	io_tree = &BTRFS_I(inode)->io_tree;
7838 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7839 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7840 
7841 	done->uptodate = 1;
7842 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7843 	bio_for_each_segment_all(bvec, bio, i)
7844 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7845 				 io_tree, done->start, bvec->bv_page,
7846 				 btrfs_ino(BTRFS_I(inode)), 0);
7847 end:
7848 	complete(&done->done);
7849 	bio_put(bio);
7850 }
7851 
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)7852 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7853 						struct btrfs_io_bio *io_bio)
7854 {
7855 	struct btrfs_fs_info *fs_info;
7856 	struct bio_vec bvec;
7857 	struct bvec_iter iter;
7858 	struct btrfs_retry_complete done;
7859 	u64 start;
7860 	unsigned int pgoff;
7861 	u32 sectorsize;
7862 	int nr_sectors;
7863 	blk_status_t ret;
7864 	blk_status_t err = BLK_STS_OK;
7865 
7866 	fs_info = BTRFS_I(inode)->root->fs_info;
7867 	sectorsize = fs_info->sectorsize;
7868 
7869 	start = io_bio->logical;
7870 	done.inode = inode;
7871 	io_bio->bio.bi_iter = io_bio->iter;
7872 
7873 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7874 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7875 		pgoff = bvec.bv_offset;
7876 
7877 next_block_or_try_again:
7878 		done.uptodate = 0;
7879 		done.start = start;
7880 		init_completion(&done.done);
7881 
7882 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7883 				pgoff, start, start + sectorsize - 1,
7884 				io_bio->mirror_num,
7885 				btrfs_retry_endio_nocsum, &done);
7886 		if (ret) {
7887 			err = ret;
7888 			goto next;
7889 		}
7890 
7891 		wait_for_completion_io(&done.done);
7892 
7893 		if (!done.uptodate) {
7894 			/* We might have another mirror, so try again */
7895 			goto next_block_or_try_again;
7896 		}
7897 
7898 next:
7899 		start += sectorsize;
7900 
7901 		nr_sectors--;
7902 		if (nr_sectors) {
7903 			pgoff += sectorsize;
7904 			ASSERT(pgoff < PAGE_SIZE);
7905 			goto next_block_or_try_again;
7906 		}
7907 	}
7908 
7909 	return err;
7910 }
7911 
btrfs_retry_endio(struct bio * bio)7912 static void btrfs_retry_endio(struct bio *bio)
7913 {
7914 	struct btrfs_retry_complete *done = bio->bi_private;
7915 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7916 	struct extent_io_tree *io_tree, *failure_tree;
7917 	struct inode *inode = done->inode;
7918 	struct bio_vec *bvec;
7919 	int uptodate;
7920 	int ret;
7921 	int i;
7922 
7923 	if (bio->bi_status)
7924 		goto end;
7925 
7926 	uptodate = 1;
7927 
7928 	ASSERT(bio->bi_vcnt == 1);
7929 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7930 
7931 	io_tree = &BTRFS_I(inode)->io_tree;
7932 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7933 
7934 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7935 	bio_for_each_segment_all(bvec, bio, i) {
7936 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7937 					     bvec->bv_offset, done->start,
7938 					     bvec->bv_len);
7939 		if (!ret)
7940 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7941 					 failure_tree, io_tree, done->start,
7942 					 bvec->bv_page,
7943 					 btrfs_ino(BTRFS_I(inode)),
7944 					 bvec->bv_offset);
7945 		else
7946 			uptodate = 0;
7947 	}
7948 
7949 	done->uptodate = uptodate;
7950 end:
7951 	complete(&done->done);
7952 	bio_put(bio);
7953 }
7954 
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)7955 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7956 		struct btrfs_io_bio *io_bio, blk_status_t err)
7957 {
7958 	struct btrfs_fs_info *fs_info;
7959 	struct bio_vec bvec;
7960 	struct bvec_iter iter;
7961 	struct btrfs_retry_complete done;
7962 	u64 start;
7963 	u64 offset = 0;
7964 	u32 sectorsize;
7965 	int nr_sectors;
7966 	unsigned int pgoff;
7967 	int csum_pos;
7968 	bool uptodate = (err == 0);
7969 	int ret;
7970 	blk_status_t status;
7971 
7972 	fs_info = BTRFS_I(inode)->root->fs_info;
7973 	sectorsize = fs_info->sectorsize;
7974 
7975 	err = BLK_STS_OK;
7976 	start = io_bio->logical;
7977 	done.inode = inode;
7978 	io_bio->bio.bi_iter = io_bio->iter;
7979 
7980 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7981 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7982 
7983 		pgoff = bvec.bv_offset;
7984 next_block:
7985 		if (uptodate) {
7986 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7987 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
7988 					bvec.bv_page, pgoff, start, sectorsize);
7989 			if (likely(!ret))
7990 				goto next;
7991 		}
7992 try_again:
7993 		done.uptodate = 0;
7994 		done.start = start;
7995 		init_completion(&done.done);
7996 
7997 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7998 					pgoff, start, start + sectorsize - 1,
7999 					io_bio->mirror_num, btrfs_retry_endio,
8000 					&done);
8001 		if (status) {
8002 			err = status;
8003 			goto next;
8004 		}
8005 
8006 		wait_for_completion_io(&done.done);
8007 
8008 		if (!done.uptodate) {
8009 			/* We might have another mirror, so try again */
8010 			goto try_again;
8011 		}
8012 next:
8013 		offset += sectorsize;
8014 		start += sectorsize;
8015 
8016 		ASSERT(nr_sectors);
8017 
8018 		nr_sectors--;
8019 		if (nr_sectors) {
8020 			pgoff += sectorsize;
8021 			ASSERT(pgoff < PAGE_SIZE);
8022 			goto next_block;
8023 		}
8024 	}
8025 
8026 	return err;
8027 }
8028 
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8029 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8030 		struct btrfs_io_bio *io_bio, blk_status_t err)
8031 {
8032 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8033 
8034 	if (skip_csum) {
8035 		if (unlikely(err))
8036 			return __btrfs_correct_data_nocsum(inode, io_bio);
8037 		else
8038 			return BLK_STS_OK;
8039 	} else {
8040 		return __btrfs_subio_endio_read(inode, io_bio, err);
8041 	}
8042 }
8043 
btrfs_endio_direct_read(struct bio * bio)8044 static void btrfs_endio_direct_read(struct bio *bio)
8045 {
8046 	struct btrfs_dio_private *dip = bio->bi_private;
8047 	struct inode *inode = dip->inode;
8048 	struct bio *dio_bio;
8049 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8050 	blk_status_t err = bio->bi_status;
8051 
8052 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8053 		err = btrfs_subio_endio_read(inode, io_bio, err);
8054 
8055 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8056 		      dip->logical_offset + dip->bytes - 1);
8057 	dio_bio = dip->dio_bio;
8058 
8059 	kfree(dip);
8060 
8061 	dio_bio->bi_status = err;
8062 	dio_end_io(dio_bio);
8063 
8064 	if (io_bio->end_io)
8065 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8066 	bio_put(bio);
8067 }
8068 
__endio_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8069 static void __endio_write_update_ordered(struct inode *inode,
8070 					 const u64 offset, const u64 bytes,
8071 					 const bool uptodate)
8072 {
8073 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8074 	struct btrfs_ordered_extent *ordered = NULL;
8075 	struct btrfs_workqueue *wq;
8076 	btrfs_work_func_t func;
8077 	u64 ordered_offset = offset;
8078 	u64 ordered_bytes = bytes;
8079 	u64 last_offset;
8080 
8081 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8082 		wq = fs_info->endio_freespace_worker;
8083 		func = btrfs_freespace_write_helper;
8084 	} else {
8085 		wq = fs_info->endio_write_workers;
8086 		func = btrfs_endio_write_helper;
8087 	}
8088 
8089 	while (ordered_offset < offset + bytes) {
8090 		last_offset = ordered_offset;
8091 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8092 							   &ordered_offset,
8093 							   ordered_bytes,
8094 							   uptodate)) {
8095 			btrfs_init_work(&ordered->work, func,
8096 					finish_ordered_fn,
8097 					NULL, NULL);
8098 			btrfs_queue_work(wq, &ordered->work);
8099 		}
8100 		/*
8101 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8102 		 * extent in the range, we can exit.
8103 		 */
8104 		if (ordered_offset == last_offset)
8105 			return;
8106 		/*
8107 		 * Our bio might span multiple ordered extents. In this case
8108 		 * we keep goin until we have accounted the whole dio.
8109 		 */
8110 		if (ordered_offset < offset + bytes) {
8111 			ordered_bytes = offset + bytes - ordered_offset;
8112 			ordered = NULL;
8113 		}
8114 	}
8115 }
8116 
btrfs_endio_direct_write(struct bio * bio)8117 static void btrfs_endio_direct_write(struct bio *bio)
8118 {
8119 	struct btrfs_dio_private *dip = bio->bi_private;
8120 	struct bio *dio_bio = dip->dio_bio;
8121 
8122 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8123 				     dip->bytes, !bio->bi_status);
8124 
8125 	kfree(dip);
8126 
8127 	dio_bio->bi_status = bio->bi_status;
8128 	dio_end_io(dio_bio);
8129 	bio_put(bio);
8130 }
8131 
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)8132 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8133 				    struct bio *bio, u64 offset)
8134 {
8135 	struct inode *inode = private_data;
8136 	blk_status_t ret;
8137 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8138 	BUG_ON(ret); /* -ENOMEM */
8139 	return 0;
8140 }
8141 
btrfs_end_dio_bio(struct bio * bio)8142 static void btrfs_end_dio_bio(struct bio *bio)
8143 {
8144 	struct btrfs_dio_private *dip = bio->bi_private;
8145 	blk_status_t err = bio->bi_status;
8146 
8147 	if (err)
8148 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8149 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8150 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8151 			   bio->bi_opf,
8152 			   (unsigned long long)bio->bi_iter.bi_sector,
8153 			   bio->bi_iter.bi_size, err);
8154 
8155 	if (dip->subio_endio)
8156 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8157 
8158 	if (err) {
8159 		/*
8160 		 * We want to perceive the errors flag being set before
8161 		 * decrementing the reference count. We don't need a barrier
8162 		 * since atomic operations with a return value are fully
8163 		 * ordered as per atomic_t.txt
8164 		 */
8165 		dip->errors = 1;
8166 	}
8167 
8168 	/* if there are more bios still pending for this dio, just exit */
8169 	if (!atomic_dec_and_test(&dip->pending_bios))
8170 		goto out;
8171 
8172 	if (dip->errors) {
8173 		bio_io_error(dip->orig_bio);
8174 	} else {
8175 		dip->dio_bio->bi_status = BLK_STS_OK;
8176 		bio_endio(dip->orig_bio);
8177 	}
8178 out:
8179 	bio_put(bio);
8180 }
8181 
btrfs_lookup_and_bind_dio_csum(struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8182 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8183 						 struct btrfs_dio_private *dip,
8184 						 struct bio *bio,
8185 						 u64 file_offset)
8186 {
8187 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8188 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8189 	blk_status_t ret;
8190 
8191 	/*
8192 	 * We load all the csum data we need when we submit
8193 	 * the first bio to reduce the csum tree search and
8194 	 * contention.
8195 	 */
8196 	if (dip->logical_offset == file_offset) {
8197 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8198 						file_offset);
8199 		if (ret)
8200 			return ret;
8201 	}
8202 
8203 	if (bio == dip->orig_bio)
8204 		return 0;
8205 
8206 	file_offset -= dip->logical_offset;
8207 	file_offset >>= inode->i_sb->s_blocksize_bits;
8208 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8209 
8210 	return 0;
8211 }
8212 
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8213 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8214 		struct inode *inode, u64 file_offset, int async_submit)
8215 {
8216 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8217 	struct btrfs_dio_private *dip = bio->bi_private;
8218 	bool write = bio_op(bio) == REQ_OP_WRITE;
8219 	blk_status_t ret;
8220 
8221 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8222 	if (async_submit)
8223 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8224 
8225 	if (!write) {
8226 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8227 		if (ret)
8228 			goto err;
8229 	}
8230 
8231 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8232 		goto map;
8233 
8234 	if (write && async_submit) {
8235 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8236 					  file_offset, inode,
8237 					  btrfs_submit_bio_start_direct_io);
8238 		goto err;
8239 	} else if (write) {
8240 		/*
8241 		 * If we aren't doing async submit, calculate the csum of the
8242 		 * bio now.
8243 		 */
8244 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8245 		if (ret)
8246 			goto err;
8247 	} else {
8248 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8249 						     file_offset);
8250 		if (ret)
8251 			goto err;
8252 	}
8253 map:
8254 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8255 err:
8256 	return ret;
8257 }
8258 
btrfs_submit_direct_hook(struct btrfs_dio_private * dip)8259 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8260 {
8261 	struct inode *inode = dip->inode;
8262 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8263 	struct bio *bio;
8264 	struct bio *orig_bio = dip->orig_bio;
8265 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8266 	u64 file_offset = dip->logical_offset;
8267 	u64 map_length;
8268 	int async_submit = 0;
8269 	u64 submit_len;
8270 	int clone_offset = 0;
8271 	int clone_len;
8272 	int ret;
8273 	blk_status_t status;
8274 
8275 	map_length = orig_bio->bi_iter.bi_size;
8276 	submit_len = map_length;
8277 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8278 			      &map_length, NULL, 0);
8279 	if (ret)
8280 		return -EIO;
8281 
8282 	if (map_length >= submit_len) {
8283 		bio = orig_bio;
8284 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8285 		goto submit;
8286 	}
8287 
8288 	/* async crcs make it difficult to collect full stripe writes. */
8289 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8290 		async_submit = 0;
8291 	else
8292 		async_submit = 1;
8293 
8294 	/* bio split */
8295 	ASSERT(map_length <= INT_MAX);
8296 	atomic_inc(&dip->pending_bios);
8297 	do {
8298 		clone_len = min_t(int, submit_len, map_length);
8299 
8300 		/*
8301 		 * This will never fail as it's passing GPF_NOFS and
8302 		 * the allocation is backed by btrfs_bioset.
8303 		 */
8304 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8305 					      clone_len);
8306 		bio->bi_private = dip;
8307 		bio->bi_end_io = btrfs_end_dio_bio;
8308 		btrfs_io_bio(bio)->logical = file_offset;
8309 
8310 		ASSERT(submit_len >= clone_len);
8311 		submit_len -= clone_len;
8312 		if (submit_len == 0)
8313 			break;
8314 
8315 		/*
8316 		 * Increase the count before we submit the bio so we know
8317 		 * the end IO handler won't happen before we increase the
8318 		 * count. Otherwise, the dip might get freed before we're
8319 		 * done setting it up.
8320 		 */
8321 		atomic_inc(&dip->pending_bios);
8322 
8323 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8324 						async_submit);
8325 		if (status) {
8326 			bio_put(bio);
8327 			atomic_dec(&dip->pending_bios);
8328 			goto out_err;
8329 		}
8330 
8331 		clone_offset += clone_len;
8332 		start_sector += clone_len >> 9;
8333 		file_offset += clone_len;
8334 
8335 		map_length = submit_len;
8336 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8337 				      start_sector << 9, &map_length, NULL, 0);
8338 		if (ret)
8339 			goto out_err;
8340 	} while (submit_len > 0);
8341 
8342 submit:
8343 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8344 	if (!status)
8345 		return 0;
8346 
8347 	bio_put(bio);
8348 out_err:
8349 	dip->errors = 1;
8350 	/*
8351 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8352 	 * perceived to be set. This ordering is ensured by the fact that an
8353 	 * atomic operations with a return value are fully ordered as per
8354 	 * atomic_t.txt
8355 	 */
8356 	if (atomic_dec_and_test(&dip->pending_bios))
8357 		bio_io_error(dip->orig_bio);
8358 
8359 	/* bio_end_io() will handle error, so we needn't return it */
8360 	return 0;
8361 }
8362 
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8363 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8364 				loff_t file_offset)
8365 {
8366 	struct btrfs_dio_private *dip = NULL;
8367 	struct bio *bio = NULL;
8368 	struct btrfs_io_bio *io_bio;
8369 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8370 	int ret = 0;
8371 
8372 	bio = btrfs_bio_clone(dio_bio);
8373 
8374 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8375 	if (!dip) {
8376 		ret = -ENOMEM;
8377 		goto free_ordered;
8378 	}
8379 
8380 	dip->private = dio_bio->bi_private;
8381 	dip->inode = inode;
8382 	dip->logical_offset = file_offset;
8383 	dip->bytes = dio_bio->bi_iter.bi_size;
8384 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8385 	bio->bi_private = dip;
8386 	dip->orig_bio = bio;
8387 	dip->dio_bio = dio_bio;
8388 	atomic_set(&dip->pending_bios, 0);
8389 	io_bio = btrfs_io_bio(bio);
8390 	io_bio->logical = file_offset;
8391 
8392 	if (write) {
8393 		bio->bi_end_io = btrfs_endio_direct_write;
8394 	} else {
8395 		bio->bi_end_io = btrfs_endio_direct_read;
8396 		dip->subio_endio = btrfs_subio_endio_read;
8397 	}
8398 
8399 	/*
8400 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8401 	 * even if we fail to submit a bio, because in such case we do the
8402 	 * corresponding error handling below and it must not be done a second
8403 	 * time by btrfs_direct_IO().
8404 	 */
8405 	if (write) {
8406 		struct btrfs_dio_data *dio_data = current->journal_info;
8407 
8408 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8409 			dip->bytes;
8410 		dio_data->unsubmitted_oe_range_start =
8411 			dio_data->unsubmitted_oe_range_end;
8412 	}
8413 
8414 	ret = btrfs_submit_direct_hook(dip);
8415 	if (!ret)
8416 		return;
8417 
8418 	if (io_bio->end_io)
8419 		io_bio->end_io(io_bio, ret);
8420 
8421 free_ordered:
8422 	/*
8423 	 * If we arrived here it means either we failed to submit the dip
8424 	 * or we either failed to clone the dio_bio or failed to allocate the
8425 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8426 	 * call bio_endio against our io_bio so that we get proper resource
8427 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8428 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8429 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8430 	 */
8431 	if (bio && dip) {
8432 		bio_io_error(bio);
8433 		/*
8434 		 * The end io callbacks free our dip, do the final put on bio
8435 		 * and all the cleanup and final put for dio_bio (through
8436 		 * dio_end_io()).
8437 		 */
8438 		dip = NULL;
8439 		bio = NULL;
8440 	} else {
8441 		if (write)
8442 			__endio_write_update_ordered(inode,
8443 						file_offset,
8444 						dio_bio->bi_iter.bi_size,
8445 						false);
8446 		else
8447 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8448 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8449 
8450 		dio_bio->bi_status = BLK_STS_IOERR;
8451 		/*
8452 		 * Releases and cleans up our dio_bio, no need to bio_put()
8453 		 * nor bio_endio()/bio_io_error() against dio_bio.
8454 		 */
8455 		dio_end_io(dio_bio);
8456 	}
8457 	if (bio)
8458 		bio_put(bio);
8459 	kfree(dip);
8460 }
8461 
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)8462 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8463 			       const struct iov_iter *iter, loff_t offset)
8464 {
8465 	int seg;
8466 	int i;
8467 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8468 	ssize_t retval = -EINVAL;
8469 
8470 	if (offset & blocksize_mask)
8471 		goto out;
8472 
8473 	if (iov_iter_alignment(iter) & blocksize_mask)
8474 		goto out;
8475 
8476 	/* If this is a write we don't need to check anymore */
8477 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8478 		return 0;
8479 	/*
8480 	 * Check to make sure we don't have duplicate iov_base's in this
8481 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8482 	 * when reading back.
8483 	 */
8484 	for (seg = 0; seg < iter->nr_segs; seg++) {
8485 		for (i = seg + 1; i < iter->nr_segs; i++) {
8486 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8487 				goto out;
8488 		}
8489 	}
8490 	retval = 0;
8491 out:
8492 	return retval;
8493 }
8494 
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8495 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8496 {
8497 	struct file *file = iocb->ki_filp;
8498 	struct inode *inode = file->f_mapping->host;
8499 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8500 	struct btrfs_dio_data dio_data = { 0 };
8501 	struct extent_changeset *data_reserved = NULL;
8502 	loff_t offset = iocb->ki_pos;
8503 	size_t count = 0;
8504 	int flags = 0;
8505 	bool wakeup = true;
8506 	bool relock = false;
8507 	ssize_t ret;
8508 
8509 	if (check_direct_IO(fs_info, iter, offset))
8510 		return 0;
8511 
8512 	inode_dio_begin(inode);
8513 
8514 	/*
8515 	 * The generic stuff only does filemap_write_and_wait_range, which
8516 	 * isn't enough if we've written compressed pages to this area, so
8517 	 * we need to flush the dirty pages again to make absolutely sure
8518 	 * that any outstanding dirty pages are on disk.
8519 	 */
8520 	count = iov_iter_count(iter);
8521 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8522 		     &BTRFS_I(inode)->runtime_flags))
8523 		filemap_fdatawrite_range(inode->i_mapping, offset,
8524 					 offset + count - 1);
8525 
8526 	if (iov_iter_rw(iter) == WRITE) {
8527 		/*
8528 		 * If the write DIO is beyond the EOF, we need update
8529 		 * the isize, but it is protected by i_mutex. So we can
8530 		 * not unlock the i_mutex at this case.
8531 		 */
8532 		if (offset + count <= inode->i_size) {
8533 			dio_data.overwrite = 1;
8534 			inode_unlock(inode);
8535 			relock = true;
8536 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8537 			ret = -EAGAIN;
8538 			goto out;
8539 		}
8540 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8541 						   offset, count);
8542 		if (ret)
8543 			goto out;
8544 
8545 		/*
8546 		 * We need to know how many extents we reserved so that we can
8547 		 * do the accounting properly if we go over the number we
8548 		 * originally calculated.  Abuse current->journal_info for this.
8549 		 */
8550 		dio_data.reserve = round_up(count,
8551 					    fs_info->sectorsize);
8552 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8553 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8554 		current->journal_info = &dio_data;
8555 		down_read(&BTRFS_I(inode)->dio_sem);
8556 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8557 				     &BTRFS_I(inode)->runtime_flags)) {
8558 		inode_dio_end(inode);
8559 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8560 		wakeup = false;
8561 	}
8562 
8563 	ret = __blockdev_direct_IO(iocb, inode,
8564 				   fs_info->fs_devices->latest_bdev,
8565 				   iter, btrfs_get_blocks_direct, NULL,
8566 				   btrfs_submit_direct, flags);
8567 	if (iov_iter_rw(iter) == WRITE) {
8568 		up_read(&BTRFS_I(inode)->dio_sem);
8569 		current->journal_info = NULL;
8570 		if (ret < 0 && ret != -EIOCBQUEUED) {
8571 			if (dio_data.reserve)
8572 				btrfs_delalloc_release_space(inode, data_reserved,
8573 					offset, dio_data.reserve, true);
8574 			/*
8575 			 * On error we might have left some ordered extents
8576 			 * without submitting corresponding bios for them, so
8577 			 * cleanup them up to avoid other tasks getting them
8578 			 * and waiting for them to complete forever.
8579 			 */
8580 			if (dio_data.unsubmitted_oe_range_start <
8581 			    dio_data.unsubmitted_oe_range_end)
8582 				__endio_write_update_ordered(inode,
8583 					dio_data.unsubmitted_oe_range_start,
8584 					dio_data.unsubmitted_oe_range_end -
8585 					dio_data.unsubmitted_oe_range_start,
8586 					false);
8587 		} else if (ret >= 0 && (size_t)ret < count)
8588 			btrfs_delalloc_release_space(inode, data_reserved,
8589 					offset, count - (size_t)ret, true);
8590 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8591 	}
8592 out:
8593 	if (wakeup)
8594 		inode_dio_end(inode);
8595 	if (relock)
8596 		inode_lock(inode);
8597 
8598 	extent_changeset_free(data_reserved);
8599 	return ret;
8600 }
8601 
8602 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8603 
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8604 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8605 		__u64 start, __u64 len)
8606 {
8607 	int	ret;
8608 
8609 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8610 	if (ret)
8611 		return ret;
8612 
8613 	return extent_fiemap(inode, fieinfo, start, len);
8614 }
8615 
btrfs_readpage(struct file * file,struct page * page)8616 int btrfs_readpage(struct file *file, struct page *page)
8617 {
8618 	struct extent_io_tree *tree;
8619 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8620 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8621 }
8622 
btrfs_writepage(struct page * page,struct writeback_control * wbc)8623 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8624 {
8625 	struct inode *inode = page->mapping->host;
8626 	int ret;
8627 
8628 	if (current->flags & PF_MEMALLOC) {
8629 		redirty_page_for_writepage(wbc, page);
8630 		unlock_page(page);
8631 		return 0;
8632 	}
8633 
8634 	/*
8635 	 * If we are under memory pressure we will call this directly from the
8636 	 * VM, we need to make sure we have the inode referenced for the ordered
8637 	 * extent.  If not just return like we didn't do anything.
8638 	 */
8639 	if (!igrab(inode)) {
8640 		redirty_page_for_writepage(wbc, page);
8641 		return AOP_WRITEPAGE_ACTIVATE;
8642 	}
8643 	ret = extent_write_full_page(page, wbc);
8644 	btrfs_add_delayed_iput(inode);
8645 	return ret;
8646 }
8647 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8648 static int btrfs_writepages(struct address_space *mapping,
8649 			    struct writeback_control *wbc)
8650 {
8651 	return extent_writepages(mapping, wbc);
8652 }
8653 
8654 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8655 btrfs_readpages(struct file *file, struct address_space *mapping,
8656 		struct list_head *pages, unsigned nr_pages)
8657 {
8658 	return extent_readpages(mapping, pages, nr_pages);
8659 }
8660 
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8661 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8662 {
8663 	int ret = try_release_extent_mapping(page, gfp_flags);
8664 	if (ret == 1) {
8665 		ClearPagePrivate(page);
8666 		set_page_private(page, 0);
8667 		put_page(page);
8668 	}
8669 	return ret;
8670 }
8671 
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8672 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8673 {
8674 	if (PageWriteback(page) || PageDirty(page))
8675 		return 0;
8676 	return __btrfs_releasepage(page, gfp_flags);
8677 }
8678 
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8679 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8680 				 unsigned int length)
8681 {
8682 	struct inode *inode = page->mapping->host;
8683 	struct extent_io_tree *tree;
8684 	struct btrfs_ordered_extent *ordered;
8685 	struct extent_state *cached_state = NULL;
8686 	u64 page_start = page_offset(page);
8687 	u64 page_end = page_start + PAGE_SIZE - 1;
8688 	u64 start;
8689 	u64 end;
8690 	int inode_evicting = inode->i_state & I_FREEING;
8691 
8692 	/*
8693 	 * we have the page locked, so new writeback can't start,
8694 	 * and the dirty bit won't be cleared while we are here.
8695 	 *
8696 	 * Wait for IO on this page so that we can safely clear
8697 	 * the PagePrivate2 bit and do ordered accounting
8698 	 */
8699 	wait_on_page_writeback(page);
8700 
8701 	tree = &BTRFS_I(inode)->io_tree;
8702 	if (offset) {
8703 		btrfs_releasepage(page, GFP_NOFS);
8704 		return;
8705 	}
8706 
8707 	if (!inode_evicting)
8708 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8709 again:
8710 	start = page_start;
8711 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8712 					page_end - start + 1);
8713 	if (ordered) {
8714 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8715 		/*
8716 		 * IO on this page will never be started, so we need
8717 		 * to account for any ordered extents now
8718 		 */
8719 		if (!inode_evicting)
8720 			clear_extent_bit(tree, start, end,
8721 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8722 					 EXTENT_DELALLOC_NEW |
8723 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8724 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8725 		/*
8726 		 * whoever cleared the private bit is responsible
8727 		 * for the finish_ordered_io
8728 		 */
8729 		if (TestClearPagePrivate2(page)) {
8730 			struct btrfs_ordered_inode_tree *tree;
8731 			u64 new_len;
8732 
8733 			tree = &BTRFS_I(inode)->ordered_tree;
8734 
8735 			spin_lock_irq(&tree->lock);
8736 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8737 			new_len = start - ordered->file_offset;
8738 			if (new_len < ordered->truncated_len)
8739 				ordered->truncated_len = new_len;
8740 			spin_unlock_irq(&tree->lock);
8741 
8742 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8743 							   start,
8744 							   end - start + 1, 1))
8745 				btrfs_finish_ordered_io(ordered);
8746 		}
8747 		btrfs_put_ordered_extent(ordered);
8748 		if (!inode_evicting) {
8749 			cached_state = NULL;
8750 			lock_extent_bits(tree, start, end,
8751 					 &cached_state);
8752 		}
8753 
8754 		start = end + 1;
8755 		if (start < page_end)
8756 			goto again;
8757 	}
8758 
8759 	/*
8760 	 * Qgroup reserved space handler
8761 	 * Page here will be either
8762 	 * 1) Already written to disk
8763 	 *    In this case, its reserved space is released from data rsv map
8764 	 *    and will be freed by delayed_ref handler finally.
8765 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8766 	 *    space.
8767 	 * 2) Not written to disk
8768 	 *    This means the reserved space should be freed here. However,
8769 	 *    if a truncate invalidates the page (by clearing PageDirty)
8770 	 *    and the page is accounted for while allocating extent
8771 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8772 	 *    free the entire extent.
8773 	 */
8774 	if (PageDirty(page))
8775 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8776 	if (!inode_evicting) {
8777 		clear_extent_bit(tree, page_start, page_end,
8778 				 EXTENT_LOCKED | EXTENT_DIRTY |
8779 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8780 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8781 				 &cached_state);
8782 
8783 		__btrfs_releasepage(page, GFP_NOFS);
8784 	}
8785 
8786 	ClearPageChecked(page);
8787 	if (PagePrivate(page)) {
8788 		ClearPagePrivate(page);
8789 		set_page_private(page, 0);
8790 		put_page(page);
8791 	}
8792 }
8793 
8794 /*
8795  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8796  * called from a page fault handler when a page is first dirtied. Hence we must
8797  * be careful to check for EOF conditions here. We set the page up correctly
8798  * for a written page which means we get ENOSPC checking when writing into
8799  * holes and correct delalloc and unwritten extent mapping on filesystems that
8800  * support these features.
8801  *
8802  * We are not allowed to take the i_mutex here so we have to play games to
8803  * protect against truncate races as the page could now be beyond EOF.  Because
8804  * truncate_setsize() writes the inode size before removing pages, once we have
8805  * the page lock we can determine safely if the page is beyond EOF. If it is not
8806  * beyond EOF, then the page is guaranteed safe against truncation until we
8807  * unlock the page.
8808  */
btrfs_page_mkwrite(struct vm_fault * vmf)8809 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8810 {
8811 	struct page *page = vmf->page;
8812 	struct inode *inode = file_inode(vmf->vma->vm_file);
8813 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8814 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8815 	struct btrfs_ordered_extent *ordered;
8816 	struct extent_state *cached_state = NULL;
8817 	struct extent_changeset *data_reserved = NULL;
8818 	char *kaddr;
8819 	unsigned long zero_start;
8820 	loff_t size;
8821 	vm_fault_t ret;
8822 	int ret2;
8823 	int reserved = 0;
8824 	u64 reserved_space;
8825 	u64 page_start;
8826 	u64 page_end;
8827 	u64 end;
8828 
8829 	reserved_space = PAGE_SIZE;
8830 
8831 	sb_start_pagefault(inode->i_sb);
8832 	page_start = page_offset(page);
8833 	page_end = page_start + PAGE_SIZE - 1;
8834 	end = page_end;
8835 
8836 	/*
8837 	 * Reserving delalloc space after obtaining the page lock can lead to
8838 	 * deadlock. For example, if a dirty page is locked by this function
8839 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8840 	 * dirty page write out, then the btrfs_writepage() function could
8841 	 * end up waiting indefinitely to get a lock on the page currently
8842 	 * being processed by btrfs_page_mkwrite() function.
8843 	 */
8844 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8845 					   reserved_space);
8846 	if (!ret2) {
8847 		ret2 = file_update_time(vmf->vma->vm_file);
8848 		reserved = 1;
8849 	}
8850 	if (ret2) {
8851 		ret = vmf_error(ret2);
8852 		if (reserved)
8853 			goto out;
8854 		goto out_noreserve;
8855 	}
8856 
8857 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8858 again:
8859 	lock_page(page);
8860 	size = i_size_read(inode);
8861 
8862 	if ((page->mapping != inode->i_mapping) ||
8863 	    (page_start >= size)) {
8864 		/* page got truncated out from underneath us */
8865 		goto out_unlock;
8866 	}
8867 	wait_on_page_writeback(page);
8868 
8869 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8870 	set_page_extent_mapped(page);
8871 
8872 	/*
8873 	 * we can't set the delalloc bits if there are pending ordered
8874 	 * extents.  Drop our locks and wait for them to finish
8875 	 */
8876 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8877 			PAGE_SIZE);
8878 	if (ordered) {
8879 		unlock_extent_cached(io_tree, page_start, page_end,
8880 				     &cached_state);
8881 		unlock_page(page);
8882 		btrfs_start_ordered_extent(inode, ordered, 1);
8883 		btrfs_put_ordered_extent(ordered);
8884 		goto again;
8885 	}
8886 
8887 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8888 		reserved_space = round_up(size - page_start,
8889 					  fs_info->sectorsize);
8890 		if (reserved_space < PAGE_SIZE) {
8891 			end = page_start + reserved_space - 1;
8892 			btrfs_delalloc_release_space(inode, data_reserved,
8893 					page_start, PAGE_SIZE - reserved_space,
8894 					true);
8895 		}
8896 	}
8897 
8898 	/*
8899 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8900 	 * faulted in, but write(2) could also dirty a page and set delalloc
8901 	 * bits, thus in this case for space account reason, we still need to
8902 	 * clear any delalloc bits within this page range since we have to
8903 	 * reserve data&meta space before lock_page() (see above comments).
8904 	 */
8905 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8906 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8907 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8908 			  0, 0, &cached_state);
8909 
8910 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8911 					&cached_state, 0);
8912 	if (ret2) {
8913 		unlock_extent_cached(io_tree, page_start, page_end,
8914 				     &cached_state);
8915 		ret = VM_FAULT_SIGBUS;
8916 		goto out_unlock;
8917 	}
8918 	ret2 = 0;
8919 
8920 	/* page is wholly or partially inside EOF */
8921 	if (page_start + PAGE_SIZE > size)
8922 		zero_start = size & ~PAGE_MASK;
8923 	else
8924 		zero_start = PAGE_SIZE;
8925 
8926 	if (zero_start != PAGE_SIZE) {
8927 		kaddr = kmap(page);
8928 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8929 		flush_dcache_page(page);
8930 		kunmap(page);
8931 	}
8932 	ClearPageChecked(page);
8933 	set_page_dirty(page);
8934 	SetPageUptodate(page);
8935 
8936 	BTRFS_I(inode)->last_trans = fs_info->generation;
8937 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8938 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8939 
8940 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8941 
8942 	if (!ret2) {
8943 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8944 		sb_end_pagefault(inode->i_sb);
8945 		extent_changeset_free(data_reserved);
8946 		return VM_FAULT_LOCKED;
8947 	}
8948 
8949 out_unlock:
8950 	unlock_page(page);
8951 out:
8952 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8953 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
8954 				     reserved_space, (ret != 0));
8955 out_noreserve:
8956 	sb_end_pagefault(inode->i_sb);
8957 	extent_changeset_free(data_reserved);
8958 	return ret;
8959 }
8960 
btrfs_truncate(struct inode * inode,bool skip_writeback)8961 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8962 {
8963 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8964 	struct btrfs_root *root = BTRFS_I(inode)->root;
8965 	struct btrfs_block_rsv *rsv;
8966 	int ret;
8967 	struct btrfs_trans_handle *trans;
8968 	u64 mask = fs_info->sectorsize - 1;
8969 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8970 
8971 	if (!skip_writeback) {
8972 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8973 					       (u64)-1);
8974 		if (ret)
8975 			return ret;
8976 	}
8977 
8978 	/*
8979 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8980 	 * things going on here:
8981 	 *
8982 	 * 1) We need to reserve space to update our inode.
8983 	 *
8984 	 * 2) We need to have something to cache all the space that is going to
8985 	 * be free'd up by the truncate operation, but also have some slack
8986 	 * space reserved in case it uses space during the truncate (thank you
8987 	 * very much snapshotting).
8988 	 *
8989 	 * And we need these to be separate.  The fact is we can use a lot of
8990 	 * space doing the truncate, and we have no earthly idea how much space
8991 	 * we will use, so we need the truncate reservation to be separate so it
8992 	 * doesn't end up using space reserved for updating the inode.  We also
8993 	 * need to be able to stop the transaction and start a new one, which
8994 	 * means we need to be able to update the inode several times, and we
8995 	 * have no idea of knowing how many times that will be, so we can't just
8996 	 * reserve 1 item for the entirety of the operation, so that has to be
8997 	 * done separately as well.
8998 	 *
8999 	 * So that leaves us with
9000 	 *
9001 	 * 1) rsv - for the truncate reservation, which we will steal from the
9002 	 * transaction reservation.
9003 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9004 	 * updating the inode.
9005 	 */
9006 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9007 	if (!rsv)
9008 		return -ENOMEM;
9009 	rsv->size = min_size;
9010 	rsv->failfast = 1;
9011 
9012 	/*
9013 	 * 1 for the truncate slack space
9014 	 * 1 for updating the inode.
9015 	 */
9016 	trans = btrfs_start_transaction(root, 2);
9017 	if (IS_ERR(trans)) {
9018 		ret = PTR_ERR(trans);
9019 		goto out;
9020 	}
9021 
9022 	/* Migrate the slack space for the truncate to our reserve */
9023 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9024 				      min_size, 0);
9025 	BUG_ON(ret);
9026 
9027 	/*
9028 	 * So if we truncate and then write and fsync we normally would just
9029 	 * write the extents that changed, which is a problem if we need to
9030 	 * first truncate that entire inode.  So set this flag so we write out
9031 	 * all of the extents in the inode to the sync log so we're completely
9032 	 * safe.
9033 	 */
9034 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9035 	trans->block_rsv = rsv;
9036 
9037 	while (1) {
9038 		ret = btrfs_truncate_inode_items(trans, root, inode,
9039 						 inode->i_size,
9040 						 BTRFS_EXTENT_DATA_KEY);
9041 		trans->block_rsv = &fs_info->trans_block_rsv;
9042 		if (ret != -ENOSPC && ret != -EAGAIN)
9043 			break;
9044 
9045 		ret = btrfs_update_inode(trans, root, inode);
9046 		if (ret)
9047 			break;
9048 
9049 		btrfs_end_transaction(trans);
9050 		btrfs_btree_balance_dirty(fs_info);
9051 
9052 		trans = btrfs_start_transaction(root, 2);
9053 		if (IS_ERR(trans)) {
9054 			ret = PTR_ERR(trans);
9055 			trans = NULL;
9056 			break;
9057 		}
9058 
9059 		btrfs_block_rsv_release(fs_info, rsv, -1);
9060 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9061 					      rsv, min_size, 0);
9062 		BUG_ON(ret);	/* shouldn't happen */
9063 		trans->block_rsv = rsv;
9064 	}
9065 
9066 	/*
9067 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9068 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9069 	 * we've truncated everything except the last little bit, and can do
9070 	 * btrfs_truncate_block and then update the disk_i_size.
9071 	 */
9072 	if (ret == NEED_TRUNCATE_BLOCK) {
9073 		btrfs_end_transaction(trans);
9074 		btrfs_btree_balance_dirty(fs_info);
9075 
9076 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9077 		if (ret)
9078 			goto out;
9079 		trans = btrfs_start_transaction(root, 1);
9080 		if (IS_ERR(trans)) {
9081 			ret = PTR_ERR(trans);
9082 			goto out;
9083 		}
9084 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9085 	}
9086 
9087 	if (trans) {
9088 		int ret2;
9089 
9090 		trans->block_rsv = &fs_info->trans_block_rsv;
9091 		ret2 = btrfs_update_inode(trans, root, inode);
9092 		if (ret2 && !ret)
9093 			ret = ret2;
9094 
9095 		ret2 = btrfs_end_transaction(trans);
9096 		if (ret2 && !ret)
9097 			ret = ret2;
9098 		btrfs_btree_balance_dirty(fs_info);
9099 	}
9100 out:
9101 	btrfs_free_block_rsv(fs_info, rsv);
9102 
9103 	return ret;
9104 }
9105 
9106 /*
9107  * create a new subvolume directory/inode (helper for the ioctl).
9108  */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9109 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9110 			     struct btrfs_root *new_root,
9111 			     struct btrfs_root *parent_root,
9112 			     u64 new_dirid)
9113 {
9114 	struct inode *inode;
9115 	int err;
9116 	u64 index = 0;
9117 
9118 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9119 				new_dirid, new_dirid,
9120 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9121 				&index);
9122 	if (IS_ERR(inode))
9123 		return PTR_ERR(inode);
9124 	inode->i_op = &btrfs_dir_inode_operations;
9125 	inode->i_fop = &btrfs_dir_file_operations;
9126 
9127 	set_nlink(inode, 1);
9128 	btrfs_i_size_write(BTRFS_I(inode), 0);
9129 	unlock_new_inode(inode);
9130 
9131 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9132 	if (err)
9133 		btrfs_err(new_root->fs_info,
9134 			  "error inheriting subvolume %llu properties: %d",
9135 			  new_root->root_key.objectid, err);
9136 
9137 	err = btrfs_update_inode(trans, new_root, inode);
9138 
9139 	iput(inode);
9140 	return err;
9141 }
9142 
btrfs_alloc_inode(struct super_block * sb)9143 struct inode *btrfs_alloc_inode(struct super_block *sb)
9144 {
9145 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9146 	struct btrfs_inode *ei;
9147 	struct inode *inode;
9148 
9149 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9150 	if (!ei)
9151 		return NULL;
9152 
9153 	ei->root = NULL;
9154 	ei->generation = 0;
9155 	ei->last_trans = 0;
9156 	ei->last_sub_trans = 0;
9157 	ei->logged_trans = 0;
9158 	ei->delalloc_bytes = 0;
9159 	ei->new_delalloc_bytes = 0;
9160 	ei->defrag_bytes = 0;
9161 	ei->disk_i_size = 0;
9162 	ei->flags = 0;
9163 	ei->csum_bytes = 0;
9164 	ei->index_cnt = (u64)-1;
9165 	ei->dir_index = 0;
9166 	ei->last_unlink_trans = 0;
9167 	ei->last_log_commit = 0;
9168 
9169 	spin_lock_init(&ei->lock);
9170 	ei->outstanding_extents = 0;
9171 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9172 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9173 					      BTRFS_BLOCK_RSV_DELALLOC);
9174 	ei->runtime_flags = 0;
9175 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9176 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9177 
9178 	ei->delayed_node = NULL;
9179 
9180 	ei->i_otime.tv_sec = 0;
9181 	ei->i_otime.tv_nsec = 0;
9182 
9183 	inode = &ei->vfs_inode;
9184 	extent_map_tree_init(&ei->extent_tree);
9185 	extent_io_tree_init(&ei->io_tree, inode);
9186 	extent_io_tree_init(&ei->io_failure_tree, inode);
9187 	ei->io_tree.track_uptodate = 1;
9188 	ei->io_failure_tree.track_uptodate = 1;
9189 	atomic_set(&ei->sync_writers, 0);
9190 	mutex_init(&ei->log_mutex);
9191 	mutex_init(&ei->delalloc_mutex);
9192 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9193 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9194 	INIT_LIST_HEAD(&ei->delayed_iput);
9195 	RB_CLEAR_NODE(&ei->rb_node);
9196 	init_rwsem(&ei->dio_sem);
9197 
9198 	return inode;
9199 }
9200 
9201 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9202 void btrfs_test_destroy_inode(struct inode *inode)
9203 {
9204 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9205 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9206 }
9207 #endif
9208 
btrfs_i_callback(struct rcu_head * head)9209 static void btrfs_i_callback(struct rcu_head *head)
9210 {
9211 	struct inode *inode = container_of(head, struct inode, i_rcu);
9212 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9213 }
9214 
btrfs_destroy_inode(struct inode * inode)9215 void btrfs_destroy_inode(struct inode *inode)
9216 {
9217 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9218 	struct btrfs_ordered_extent *ordered;
9219 	struct btrfs_root *root = BTRFS_I(inode)->root;
9220 
9221 	WARN_ON(!hlist_empty(&inode->i_dentry));
9222 	WARN_ON(inode->i_data.nrpages);
9223 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9224 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9225 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9226 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9227 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9228 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9229 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9230 
9231 	/*
9232 	 * This can happen where we create an inode, but somebody else also
9233 	 * created the same inode and we need to destroy the one we already
9234 	 * created.
9235 	 */
9236 	if (!root)
9237 		goto free;
9238 
9239 	while (1) {
9240 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9241 		if (!ordered)
9242 			break;
9243 		else {
9244 			btrfs_err(fs_info,
9245 				  "found ordered extent %llu %llu on inode cleanup",
9246 				  ordered->file_offset, ordered->len);
9247 			btrfs_remove_ordered_extent(inode, ordered);
9248 			btrfs_put_ordered_extent(ordered);
9249 			btrfs_put_ordered_extent(ordered);
9250 		}
9251 	}
9252 	btrfs_qgroup_check_reserved_leak(inode);
9253 	inode_tree_del(inode);
9254 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9255 free:
9256 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9257 }
9258 
btrfs_drop_inode(struct inode * inode)9259 int btrfs_drop_inode(struct inode *inode)
9260 {
9261 	struct btrfs_root *root = BTRFS_I(inode)->root;
9262 
9263 	if (root == NULL)
9264 		return 1;
9265 
9266 	/* the snap/subvol tree is on deleting */
9267 	if (btrfs_root_refs(&root->root_item) == 0)
9268 		return 1;
9269 	else
9270 		return generic_drop_inode(inode);
9271 }
9272 
init_once(void * foo)9273 static void init_once(void *foo)
9274 {
9275 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9276 
9277 	inode_init_once(&ei->vfs_inode);
9278 }
9279 
btrfs_destroy_cachep(void)9280 void __cold btrfs_destroy_cachep(void)
9281 {
9282 	/*
9283 	 * Make sure all delayed rcu free inodes are flushed before we
9284 	 * destroy cache.
9285 	 */
9286 	rcu_barrier();
9287 	kmem_cache_destroy(btrfs_inode_cachep);
9288 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9289 	kmem_cache_destroy(btrfs_path_cachep);
9290 	kmem_cache_destroy(btrfs_free_space_cachep);
9291 }
9292 
btrfs_init_cachep(void)9293 int __init btrfs_init_cachep(void)
9294 {
9295 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9296 			sizeof(struct btrfs_inode), 0,
9297 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9298 			init_once);
9299 	if (!btrfs_inode_cachep)
9300 		goto fail;
9301 
9302 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9303 			sizeof(struct btrfs_trans_handle), 0,
9304 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9305 	if (!btrfs_trans_handle_cachep)
9306 		goto fail;
9307 
9308 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9309 			sizeof(struct btrfs_path), 0,
9310 			SLAB_MEM_SPREAD, NULL);
9311 	if (!btrfs_path_cachep)
9312 		goto fail;
9313 
9314 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9315 			sizeof(struct btrfs_free_space), 0,
9316 			SLAB_MEM_SPREAD, NULL);
9317 	if (!btrfs_free_space_cachep)
9318 		goto fail;
9319 
9320 	return 0;
9321 fail:
9322 	btrfs_destroy_cachep();
9323 	return -ENOMEM;
9324 }
9325 
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9326 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9327 			 u32 request_mask, unsigned int flags)
9328 {
9329 	u64 delalloc_bytes;
9330 	struct inode *inode = d_inode(path->dentry);
9331 	u32 blocksize = inode->i_sb->s_blocksize;
9332 	u32 bi_flags = BTRFS_I(inode)->flags;
9333 
9334 	stat->result_mask |= STATX_BTIME;
9335 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9336 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9337 	if (bi_flags & BTRFS_INODE_APPEND)
9338 		stat->attributes |= STATX_ATTR_APPEND;
9339 	if (bi_flags & BTRFS_INODE_COMPRESS)
9340 		stat->attributes |= STATX_ATTR_COMPRESSED;
9341 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9342 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9343 	if (bi_flags & BTRFS_INODE_NODUMP)
9344 		stat->attributes |= STATX_ATTR_NODUMP;
9345 
9346 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9347 				  STATX_ATTR_COMPRESSED |
9348 				  STATX_ATTR_IMMUTABLE |
9349 				  STATX_ATTR_NODUMP);
9350 
9351 	generic_fillattr(inode, stat);
9352 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9353 
9354 	spin_lock(&BTRFS_I(inode)->lock);
9355 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9356 	spin_unlock(&BTRFS_I(inode)->lock);
9357 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9358 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9359 	return 0;
9360 }
9361 
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9362 static int btrfs_rename_exchange(struct inode *old_dir,
9363 			      struct dentry *old_dentry,
9364 			      struct inode *new_dir,
9365 			      struct dentry *new_dentry)
9366 {
9367 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9368 	struct btrfs_trans_handle *trans;
9369 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9370 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9371 	struct inode *new_inode = new_dentry->d_inode;
9372 	struct inode *old_inode = old_dentry->d_inode;
9373 	struct timespec64 ctime = current_time(old_inode);
9374 	struct dentry *parent;
9375 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9376 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9377 	u64 old_idx = 0;
9378 	u64 new_idx = 0;
9379 	u64 root_objectid;
9380 	int ret;
9381 	bool root_log_pinned = false;
9382 	bool dest_log_pinned = false;
9383 	struct btrfs_log_ctx ctx_root;
9384 	struct btrfs_log_ctx ctx_dest;
9385 	bool sync_log_root = false;
9386 	bool sync_log_dest = false;
9387 	bool commit_transaction = false;
9388 
9389 	/* we only allow rename subvolume link between subvolumes */
9390 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9391 		return -EXDEV;
9392 
9393 	btrfs_init_log_ctx(&ctx_root, old_inode);
9394 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9395 
9396 	/* close the race window with snapshot create/destroy ioctl */
9397 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9398 		down_read(&fs_info->subvol_sem);
9399 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9400 		down_read(&fs_info->subvol_sem);
9401 
9402 	/*
9403 	 * We want to reserve the absolute worst case amount of items.  So if
9404 	 * both inodes are subvols and we need to unlink them then that would
9405 	 * require 4 item modifications, but if they are both normal inodes it
9406 	 * would require 5 item modifications, so we'll assume their normal
9407 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9408 	 * should cover the worst case number of items we'll modify.
9409 	 */
9410 	trans = btrfs_start_transaction(root, 12);
9411 	if (IS_ERR(trans)) {
9412 		ret = PTR_ERR(trans);
9413 		goto out_notrans;
9414 	}
9415 
9416 	/*
9417 	 * We need to find a free sequence number both in the source and
9418 	 * in the destination directory for the exchange.
9419 	 */
9420 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9421 	if (ret)
9422 		goto out_fail;
9423 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9424 	if (ret)
9425 		goto out_fail;
9426 
9427 	BTRFS_I(old_inode)->dir_index = 0ULL;
9428 	BTRFS_I(new_inode)->dir_index = 0ULL;
9429 
9430 	/* Reference for the source. */
9431 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9432 		/* force full log commit if subvolume involved. */
9433 		btrfs_set_log_full_commit(fs_info, trans);
9434 	} else {
9435 		btrfs_pin_log_trans(root);
9436 		root_log_pinned = true;
9437 		ret = btrfs_insert_inode_ref(trans, dest,
9438 					     new_dentry->d_name.name,
9439 					     new_dentry->d_name.len,
9440 					     old_ino,
9441 					     btrfs_ino(BTRFS_I(new_dir)),
9442 					     old_idx);
9443 		if (ret)
9444 			goto out_fail;
9445 	}
9446 
9447 	/* And now for the dest. */
9448 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9449 		/* force full log commit if subvolume involved. */
9450 		btrfs_set_log_full_commit(fs_info, trans);
9451 	} else {
9452 		btrfs_pin_log_trans(dest);
9453 		dest_log_pinned = true;
9454 		ret = btrfs_insert_inode_ref(trans, root,
9455 					     old_dentry->d_name.name,
9456 					     old_dentry->d_name.len,
9457 					     new_ino,
9458 					     btrfs_ino(BTRFS_I(old_dir)),
9459 					     new_idx);
9460 		if (ret)
9461 			goto out_fail;
9462 	}
9463 
9464 	/* Update inode version and ctime/mtime. */
9465 	inode_inc_iversion(old_dir);
9466 	inode_inc_iversion(new_dir);
9467 	inode_inc_iversion(old_inode);
9468 	inode_inc_iversion(new_inode);
9469 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9470 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9471 	old_inode->i_ctime = ctime;
9472 	new_inode->i_ctime = ctime;
9473 
9474 	if (old_dentry->d_parent != new_dentry->d_parent) {
9475 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9476 				BTRFS_I(old_inode), 1);
9477 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9478 				BTRFS_I(new_inode), 1);
9479 	}
9480 
9481 	/* src is a subvolume */
9482 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9483 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9484 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9485 					  old_dentry->d_name.name,
9486 					  old_dentry->d_name.len);
9487 	} else { /* src is an inode */
9488 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9489 					   BTRFS_I(old_dentry->d_inode),
9490 					   old_dentry->d_name.name,
9491 					   old_dentry->d_name.len);
9492 		if (!ret)
9493 			ret = btrfs_update_inode(trans, root, old_inode);
9494 	}
9495 	if (ret) {
9496 		btrfs_abort_transaction(trans, ret);
9497 		goto out_fail;
9498 	}
9499 
9500 	/* dest is a subvolume */
9501 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9502 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9503 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9504 					  new_dentry->d_name.name,
9505 					  new_dentry->d_name.len);
9506 	} else { /* dest is an inode */
9507 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9508 					   BTRFS_I(new_dentry->d_inode),
9509 					   new_dentry->d_name.name,
9510 					   new_dentry->d_name.len);
9511 		if (!ret)
9512 			ret = btrfs_update_inode(trans, dest, new_inode);
9513 	}
9514 	if (ret) {
9515 		btrfs_abort_transaction(trans, ret);
9516 		goto out_fail;
9517 	}
9518 
9519 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9520 			     new_dentry->d_name.name,
9521 			     new_dentry->d_name.len, 0, old_idx);
9522 	if (ret) {
9523 		btrfs_abort_transaction(trans, ret);
9524 		goto out_fail;
9525 	}
9526 
9527 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9528 			     old_dentry->d_name.name,
9529 			     old_dentry->d_name.len, 0, new_idx);
9530 	if (ret) {
9531 		btrfs_abort_transaction(trans, ret);
9532 		goto out_fail;
9533 	}
9534 
9535 	if (old_inode->i_nlink == 1)
9536 		BTRFS_I(old_inode)->dir_index = old_idx;
9537 	if (new_inode->i_nlink == 1)
9538 		BTRFS_I(new_inode)->dir_index = new_idx;
9539 
9540 	if (root_log_pinned) {
9541 		parent = new_dentry->d_parent;
9542 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9543 					 BTRFS_I(old_dir), parent,
9544 					 false, &ctx_root);
9545 		if (ret == BTRFS_NEED_LOG_SYNC)
9546 			sync_log_root = true;
9547 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9548 			commit_transaction = true;
9549 		ret = 0;
9550 		btrfs_end_log_trans(root);
9551 		root_log_pinned = false;
9552 	}
9553 	if (dest_log_pinned) {
9554 		if (!commit_transaction) {
9555 			parent = old_dentry->d_parent;
9556 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9557 						 BTRFS_I(new_dir), parent,
9558 						 false, &ctx_dest);
9559 			if (ret == BTRFS_NEED_LOG_SYNC)
9560 				sync_log_dest = true;
9561 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9562 				commit_transaction = true;
9563 			ret = 0;
9564 		}
9565 		btrfs_end_log_trans(dest);
9566 		dest_log_pinned = false;
9567 	}
9568 out_fail:
9569 	/*
9570 	 * If we have pinned a log and an error happened, we unpin tasks
9571 	 * trying to sync the log and force them to fallback to a transaction
9572 	 * commit if the log currently contains any of the inodes involved in
9573 	 * this rename operation (to ensure we do not persist a log with an
9574 	 * inconsistent state for any of these inodes or leading to any
9575 	 * inconsistencies when replayed). If the transaction was aborted, the
9576 	 * abortion reason is propagated to userspace when attempting to commit
9577 	 * the transaction. If the log does not contain any of these inodes, we
9578 	 * allow the tasks to sync it.
9579 	 */
9580 	if (ret && (root_log_pinned || dest_log_pinned)) {
9581 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9582 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9583 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9584 		    (new_inode &&
9585 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9586 			btrfs_set_log_full_commit(fs_info, trans);
9587 
9588 		if (root_log_pinned) {
9589 			btrfs_end_log_trans(root);
9590 			root_log_pinned = false;
9591 		}
9592 		if (dest_log_pinned) {
9593 			btrfs_end_log_trans(dest);
9594 			dest_log_pinned = false;
9595 		}
9596 	}
9597 	if (!ret && sync_log_root && !commit_transaction) {
9598 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9599 				     &ctx_root);
9600 		if (ret)
9601 			commit_transaction = true;
9602 	}
9603 	if (!ret && sync_log_dest && !commit_transaction) {
9604 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9605 				     &ctx_dest);
9606 		if (ret)
9607 			commit_transaction = true;
9608 	}
9609 	if (commit_transaction) {
9610 		ret = btrfs_commit_transaction(trans);
9611 	} else {
9612 		int ret2;
9613 
9614 		ret2 = btrfs_end_transaction(trans);
9615 		ret = ret ? ret : ret2;
9616 	}
9617 out_notrans:
9618 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9619 		up_read(&fs_info->subvol_sem);
9620 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9621 		up_read(&fs_info->subvol_sem);
9622 
9623 	return ret;
9624 }
9625 
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9626 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9627 				     struct btrfs_root *root,
9628 				     struct inode *dir,
9629 				     struct dentry *dentry)
9630 {
9631 	int ret;
9632 	struct inode *inode;
9633 	u64 objectid;
9634 	u64 index;
9635 
9636 	ret = btrfs_find_free_ino(root, &objectid);
9637 	if (ret)
9638 		return ret;
9639 
9640 	inode = btrfs_new_inode(trans, root, dir,
9641 				dentry->d_name.name,
9642 				dentry->d_name.len,
9643 				btrfs_ino(BTRFS_I(dir)),
9644 				objectid,
9645 				S_IFCHR | WHITEOUT_MODE,
9646 				&index);
9647 
9648 	if (IS_ERR(inode)) {
9649 		ret = PTR_ERR(inode);
9650 		return ret;
9651 	}
9652 
9653 	inode->i_op = &btrfs_special_inode_operations;
9654 	init_special_inode(inode, inode->i_mode,
9655 		WHITEOUT_DEV);
9656 
9657 	ret = btrfs_init_inode_security(trans, inode, dir,
9658 				&dentry->d_name);
9659 	if (ret)
9660 		goto out;
9661 
9662 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9663 				BTRFS_I(inode), 0, index);
9664 	if (ret)
9665 		goto out;
9666 
9667 	ret = btrfs_update_inode(trans, root, inode);
9668 out:
9669 	unlock_new_inode(inode);
9670 	if (ret)
9671 		inode_dec_link_count(inode);
9672 	iput(inode);
9673 
9674 	return ret;
9675 }
9676 
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9677 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9678 			   struct inode *new_dir, struct dentry *new_dentry,
9679 			   unsigned int flags)
9680 {
9681 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9682 	struct btrfs_trans_handle *trans;
9683 	unsigned int trans_num_items;
9684 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9685 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9686 	struct inode *new_inode = d_inode(new_dentry);
9687 	struct inode *old_inode = d_inode(old_dentry);
9688 	u64 index = 0;
9689 	u64 root_objectid;
9690 	int ret;
9691 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9692 	bool log_pinned = false;
9693 	struct btrfs_log_ctx ctx;
9694 	bool sync_log = false;
9695 	bool commit_transaction = false;
9696 
9697 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9698 		return -EPERM;
9699 
9700 	/* we only allow rename subvolume link between subvolumes */
9701 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9702 		return -EXDEV;
9703 
9704 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9705 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9706 		return -ENOTEMPTY;
9707 
9708 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9709 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9710 		return -ENOTEMPTY;
9711 
9712 
9713 	/* check for collisions, even if the  name isn't there */
9714 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9715 			     new_dentry->d_name.name,
9716 			     new_dentry->d_name.len);
9717 
9718 	if (ret) {
9719 		if (ret == -EEXIST) {
9720 			/* we shouldn't get
9721 			 * eexist without a new_inode */
9722 			if (WARN_ON(!new_inode)) {
9723 				return ret;
9724 			}
9725 		} else {
9726 			/* maybe -EOVERFLOW */
9727 			return ret;
9728 		}
9729 	}
9730 	ret = 0;
9731 
9732 	/*
9733 	 * we're using rename to replace one file with another.  Start IO on it
9734 	 * now so  we don't add too much work to the end of the transaction
9735 	 */
9736 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9737 		filemap_flush(old_inode->i_mapping);
9738 
9739 	/* close the racy window with snapshot create/destroy ioctl */
9740 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9741 		down_read(&fs_info->subvol_sem);
9742 	/*
9743 	 * We want to reserve the absolute worst case amount of items.  So if
9744 	 * both inodes are subvols and we need to unlink them then that would
9745 	 * require 4 item modifications, but if they are both normal inodes it
9746 	 * would require 5 item modifications, so we'll assume they are normal
9747 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9748 	 * should cover the worst case number of items we'll modify.
9749 	 * If our rename has the whiteout flag, we need more 5 units for the
9750 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9751 	 * when selinux is enabled).
9752 	 */
9753 	trans_num_items = 11;
9754 	if (flags & RENAME_WHITEOUT)
9755 		trans_num_items += 5;
9756 	trans = btrfs_start_transaction(root, trans_num_items);
9757 	if (IS_ERR(trans)) {
9758 		ret = PTR_ERR(trans);
9759 		goto out_notrans;
9760 	}
9761 
9762 	if (dest != root)
9763 		btrfs_record_root_in_trans(trans, dest);
9764 
9765 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9766 	if (ret)
9767 		goto out_fail;
9768 
9769 	BTRFS_I(old_inode)->dir_index = 0ULL;
9770 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9771 		/* force full log commit if subvolume involved. */
9772 		btrfs_set_log_full_commit(fs_info, trans);
9773 	} else {
9774 		btrfs_pin_log_trans(root);
9775 		log_pinned = true;
9776 		ret = btrfs_insert_inode_ref(trans, dest,
9777 					     new_dentry->d_name.name,
9778 					     new_dentry->d_name.len,
9779 					     old_ino,
9780 					     btrfs_ino(BTRFS_I(new_dir)), index);
9781 		if (ret)
9782 			goto out_fail;
9783 	}
9784 
9785 	inode_inc_iversion(old_dir);
9786 	inode_inc_iversion(new_dir);
9787 	inode_inc_iversion(old_inode);
9788 	old_dir->i_ctime = old_dir->i_mtime =
9789 	new_dir->i_ctime = new_dir->i_mtime =
9790 	old_inode->i_ctime = current_time(old_dir);
9791 
9792 	if (old_dentry->d_parent != new_dentry->d_parent)
9793 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9794 				BTRFS_I(old_inode), 1);
9795 
9796 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9797 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9798 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9799 					old_dentry->d_name.name,
9800 					old_dentry->d_name.len);
9801 	} else {
9802 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9803 					BTRFS_I(d_inode(old_dentry)),
9804 					old_dentry->d_name.name,
9805 					old_dentry->d_name.len);
9806 		if (!ret)
9807 			ret = btrfs_update_inode(trans, root, old_inode);
9808 	}
9809 	if (ret) {
9810 		btrfs_abort_transaction(trans, ret);
9811 		goto out_fail;
9812 	}
9813 
9814 	if (new_inode) {
9815 		inode_inc_iversion(new_inode);
9816 		new_inode->i_ctime = current_time(new_inode);
9817 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9818 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9819 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9820 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9821 						new_dentry->d_name.name,
9822 						new_dentry->d_name.len);
9823 			BUG_ON(new_inode->i_nlink == 0);
9824 		} else {
9825 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9826 						 BTRFS_I(d_inode(new_dentry)),
9827 						 new_dentry->d_name.name,
9828 						 new_dentry->d_name.len);
9829 		}
9830 		if (!ret && new_inode->i_nlink == 0)
9831 			ret = btrfs_orphan_add(trans,
9832 					BTRFS_I(d_inode(new_dentry)));
9833 		if (ret) {
9834 			btrfs_abort_transaction(trans, ret);
9835 			goto out_fail;
9836 		}
9837 	}
9838 
9839 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9840 			     new_dentry->d_name.name,
9841 			     new_dentry->d_name.len, 0, index);
9842 	if (ret) {
9843 		btrfs_abort_transaction(trans, ret);
9844 		goto out_fail;
9845 	}
9846 
9847 	if (old_inode->i_nlink == 1)
9848 		BTRFS_I(old_inode)->dir_index = index;
9849 
9850 	if (log_pinned) {
9851 		struct dentry *parent = new_dentry->d_parent;
9852 
9853 		btrfs_init_log_ctx(&ctx, old_inode);
9854 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9855 					 BTRFS_I(old_dir), parent,
9856 					 false, &ctx);
9857 		if (ret == BTRFS_NEED_LOG_SYNC)
9858 			sync_log = true;
9859 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9860 			commit_transaction = true;
9861 		ret = 0;
9862 		btrfs_end_log_trans(root);
9863 		log_pinned = false;
9864 	}
9865 
9866 	if (flags & RENAME_WHITEOUT) {
9867 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9868 						old_dentry);
9869 
9870 		if (ret) {
9871 			btrfs_abort_transaction(trans, ret);
9872 			goto out_fail;
9873 		}
9874 	}
9875 out_fail:
9876 	/*
9877 	 * If we have pinned the log and an error happened, we unpin tasks
9878 	 * trying to sync the log and force them to fallback to a transaction
9879 	 * commit if the log currently contains any of the inodes involved in
9880 	 * this rename operation (to ensure we do not persist a log with an
9881 	 * inconsistent state for any of these inodes or leading to any
9882 	 * inconsistencies when replayed). If the transaction was aborted, the
9883 	 * abortion reason is propagated to userspace when attempting to commit
9884 	 * the transaction. If the log does not contain any of these inodes, we
9885 	 * allow the tasks to sync it.
9886 	 */
9887 	if (ret && log_pinned) {
9888 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9889 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9890 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9891 		    (new_inode &&
9892 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9893 			btrfs_set_log_full_commit(fs_info, trans);
9894 
9895 		btrfs_end_log_trans(root);
9896 		log_pinned = false;
9897 	}
9898 	if (!ret && sync_log) {
9899 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9900 		if (ret)
9901 			commit_transaction = true;
9902 	}
9903 	if (commit_transaction) {
9904 		ret = btrfs_commit_transaction(trans);
9905 	} else {
9906 		int ret2;
9907 
9908 		ret2 = btrfs_end_transaction(trans);
9909 		ret = ret ? ret : ret2;
9910 	}
9911 out_notrans:
9912 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9913 		up_read(&fs_info->subvol_sem);
9914 
9915 	return ret;
9916 }
9917 
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9918 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9919 			 struct inode *new_dir, struct dentry *new_dentry,
9920 			 unsigned int flags)
9921 {
9922 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9923 		return -EINVAL;
9924 
9925 	if (flags & RENAME_EXCHANGE)
9926 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9927 					  new_dentry);
9928 
9929 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9930 }
9931 
9932 struct btrfs_delalloc_work {
9933 	struct inode *inode;
9934 	struct completion completion;
9935 	struct list_head list;
9936 	struct btrfs_work work;
9937 };
9938 
btrfs_run_delalloc_work(struct btrfs_work * work)9939 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9940 {
9941 	struct btrfs_delalloc_work *delalloc_work;
9942 	struct inode *inode;
9943 
9944 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9945 				     work);
9946 	inode = delalloc_work->inode;
9947 	filemap_flush(inode->i_mapping);
9948 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9949 				&BTRFS_I(inode)->runtime_flags))
9950 		filemap_flush(inode->i_mapping);
9951 
9952 	iput(inode);
9953 	complete(&delalloc_work->completion);
9954 }
9955 
btrfs_alloc_delalloc_work(struct inode * inode)9956 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9957 {
9958 	struct btrfs_delalloc_work *work;
9959 
9960 	work = kmalloc(sizeof(*work), GFP_NOFS);
9961 	if (!work)
9962 		return NULL;
9963 
9964 	init_completion(&work->completion);
9965 	INIT_LIST_HEAD(&work->list);
9966 	work->inode = inode;
9967 	WARN_ON_ONCE(!inode);
9968 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9969 			btrfs_run_delalloc_work, NULL, NULL);
9970 
9971 	return work;
9972 }
9973 
9974 /*
9975  * some fairly slow code that needs optimization. This walks the list
9976  * of all the inodes with pending delalloc and forces them to disk.
9977  */
start_delalloc_inodes(struct btrfs_root * root,int nr)9978 static int start_delalloc_inodes(struct btrfs_root *root, int nr)
9979 {
9980 	struct btrfs_inode *binode;
9981 	struct inode *inode;
9982 	struct btrfs_delalloc_work *work, *next;
9983 	struct list_head works;
9984 	struct list_head splice;
9985 	int ret = 0;
9986 
9987 	INIT_LIST_HEAD(&works);
9988 	INIT_LIST_HEAD(&splice);
9989 
9990 	mutex_lock(&root->delalloc_mutex);
9991 	spin_lock(&root->delalloc_lock);
9992 	list_splice_init(&root->delalloc_inodes, &splice);
9993 	while (!list_empty(&splice)) {
9994 		binode = list_entry(splice.next, struct btrfs_inode,
9995 				    delalloc_inodes);
9996 
9997 		list_move_tail(&binode->delalloc_inodes,
9998 			       &root->delalloc_inodes);
9999 		inode = igrab(&binode->vfs_inode);
10000 		if (!inode) {
10001 			cond_resched_lock(&root->delalloc_lock);
10002 			continue;
10003 		}
10004 		spin_unlock(&root->delalloc_lock);
10005 
10006 		work = btrfs_alloc_delalloc_work(inode);
10007 		if (!work) {
10008 			iput(inode);
10009 			ret = -ENOMEM;
10010 			goto out;
10011 		}
10012 		list_add_tail(&work->list, &works);
10013 		btrfs_queue_work(root->fs_info->flush_workers,
10014 				 &work->work);
10015 		ret++;
10016 		if (nr != -1 && ret >= nr)
10017 			goto out;
10018 		cond_resched();
10019 		spin_lock(&root->delalloc_lock);
10020 	}
10021 	spin_unlock(&root->delalloc_lock);
10022 
10023 out:
10024 	list_for_each_entry_safe(work, next, &works, list) {
10025 		list_del_init(&work->list);
10026 		wait_for_completion(&work->completion);
10027 		kfree(work);
10028 	}
10029 
10030 	if (!list_empty(&splice)) {
10031 		spin_lock(&root->delalloc_lock);
10032 		list_splice_tail(&splice, &root->delalloc_inodes);
10033 		spin_unlock(&root->delalloc_lock);
10034 	}
10035 	mutex_unlock(&root->delalloc_mutex);
10036 	return ret;
10037 }
10038 
btrfs_start_delalloc_inodes(struct btrfs_root * root)10039 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
10040 {
10041 	struct btrfs_fs_info *fs_info = root->fs_info;
10042 	int ret;
10043 
10044 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10045 		return -EROFS;
10046 
10047 	ret = start_delalloc_inodes(root, -1);
10048 	if (ret > 0)
10049 		ret = 0;
10050 	return ret;
10051 }
10052 
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int nr)10053 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10054 {
10055 	struct btrfs_root *root;
10056 	struct list_head splice;
10057 	int ret;
10058 
10059 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10060 		return -EROFS;
10061 
10062 	INIT_LIST_HEAD(&splice);
10063 
10064 	mutex_lock(&fs_info->delalloc_root_mutex);
10065 	spin_lock(&fs_info->delalloc_root_lock);
10066 	list_splice_init(&fs_info->delalloc_roots, &splice);
10067 	while (!list_empty(&splice) && nr) {
10068 		root = list_first_entry(&splice, struct btrfs_root,
10069 					delalloc_root);
10070 		root = btrfs_grab_fs_root(root);
10071 		BUG_ON(!root);
10072 		list_move_tail(&root->delalloc_root,
10073 			       &fs_info->delalloc_roots);
10074 		spin_unlock(&fs_info->delalloc_root_lock);
10075 
10076 		ret = start_delalloc_inodes(root, nr);
10077 		btrfs_put_fs_root(root);
10078 		if (ret < 0)
10079 			goto out;
10080 
10081 		if (nr != -1) {
10082 			nr -= ret;
10083 			WARN_ON(nr < 0);
10084 		}
10085 		spin_lock(&fs_info->delalloc_root_lock);
10086 	}
10087 	spin_unlock(&fs_info->delalloc_root_lock);
10088 
10089 	ret = 0;
10090 out:
10091 	if (!list_empty(&splice)) {
10092 		spin_lock(&fs_info->delalloc_root_lock);
10093 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10094 		spin_unlock(&fs_info->delalloc_root_lock);
10095 	}
10096 	mutex_unlock(&fs_info->delalloc_root_mutex);
10097 	return ret;
10098 }
10099 
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10100 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10101 			 const char *symname)
10102 {
10103 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10104 	struct btrfs_trans_handle *trans;
10105 	struct btrfs_root *root = BTRFS_I(dir)->root;
10106 	struct btrfs_path *path;
10107 	struct btrfs_key key;
10108 	struct inode *inode = NULL;
10109 	int err;
10110 	u64 objectid;
10111 	u64 index = 0;
10112 	int name_len;
10113 	int datasize;
10114 	unsigned long ptr;
10115 	struct btrfs_file_extent_item *ei;
10116 	struct extent_buffer *leaf;
10117 
10118 	name_len = strlen(symname);
10119 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10120 		return -ENAMETOOLONG;
10121 
10122 	/*
10123 	 * 2 items for inode item and ref
10124 	 * 2 items for dir items
10125 	 * 1 item for updating parent inode item
10126 	 * 1 item for the inline extent item
10127 	 * 1 item for xattr if selinux is on
10128 	 */
10129 	trans = btrfs_start_transaction(root, 7);
10130 	if (IS_ERR(trans))
10131 		return PTR_ERR(trans);
10132 
10133 	err = btrfs_find_free_ino(root, &objectid);
10134 	if (err)
10135 		goto out_unlock;
10136 
10137 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10138 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10139 				objectid, S_IFLNK|S_IRWXUGO, &index);
10140 	if (IS_ERR(inode)) {
10141 		err = PTR_ERR(inode);
10142 		inode = NULL;
10143 		goto out_unlock;
10144 	}
10145 
10146 	/*
10147 	* If the active LSM wants to access the inode during
10148 	* d_instantiate it needs these. Smack checks to see
10149 	* if the filesystem supports xattrs by looking at the
10150 	* ops vector.
10151 	*/
10152 	inode->i_fop = &btrfs_file_operations;
10153 	inode->i_op = &btrfs_file_inode_operations;
10154 	inode->i_mapping->a_ops = &btrfs_aops;
10155 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10156 
10157 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10158 	if (err)
10159 		goto out_unlock;
10160 
10161 	path = btrfs_alloc_path();
10162 	if (!path) {
10163 		err = -ENOMEM;
10164 		goto out_unlock;
10165 	}
10166 	key.objectid = btrfs_ino(BTRFS_I(inode));
10167 	key.offset = 0;
10168 	key.type = BTRFS_EXTENT_DATA_KEY;
10169 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10170 	err = btrfs_insert_empty_item(trans, root, path, &key,
10171 				      datasize);
10172 	if (err) {
10173 		btrfs_free_path(path);
10174 		goto out_unlock;
10175 	}
10176 	leaf = path->nodes[0];
10177 	ei = btrfs_item_ptr(leaf, path->slots[0],
10178 			    struct btrfs_file_extent_item);
10179 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10180 	btrfs_set_file_extent_type(leaf, ei,
10181 				   BTRFS_FILE_EXTENT_INLINE);
10182 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10183 	btrfs_set_file_extent_compression(leaf, ei, 0);
10184 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10185 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10186 
10187 	ptr = btrfs_file_extent_inline_start(ei);
10188 	write_extent_buffer(leaf, symname, ptr, name_len);
10189 	btrfs_mark_buffer_dirty(leaf);
10190 	btrfs_free_path(path);
10191 
10192 	inode->i_op = &btrfs_symlink_inode_operations;
10193 	inode_nohighmem(inode);
10194 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10195 	inode_set_bytes(inode, name_len);
10196 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10197 	err = btrfs_update_inode(trans, root, inode);
10198 	/*
10199 	 * Last step, add directory indexes for our symlink inode. This is the
10200 	 * last step to avoid extra cleanup of these indexes if an error happens
10201 	 * elsewhere above.
10202 	 */
10203 	if (!err)
10204 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10205 				BTRFS_I(inode), 0, index);
10206 	if (err)
10207 		goto out_unlock;
10208 
10209 	d_instantiate_new(dentry, inode);
10210 
10211 out_unlock:
10212 	btrfs_end_transaction(trans);
10213 	if (err && inode) {
10214 		inode_dec_link_count(inode);
10215 		discard_new_inode(inode);
10216 	}
10217 	btrfs_btree_balance_dirty(fs_info);
10218 	return err;
10219 }
10220 
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10221 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10222 				       u64 start, u64 num_bytes, u64 min_size,
10223 				       loff_t actual_len, u64 *alloc_hint,
10224 				       struct btrfs_trans_handle *trans)
10225 {
10226 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10227 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10228 	struct extent_map *em;
10229 	struct btrfs_root *root = BTRFS_I(inode)->root;
10230 	struct btrfs_key ins;
10231 	u64 cur_offset = start;
10232 	u64 i_size;
10233 	u64 cur_bytes;
10234 	u64 last_alloc = (u64)-1;
10235 	int ret = 0;
10236 	bool own_trans = true;
10237 	u64 end = start + num_bytes - 1;
10238 
10239 	if (trans)
10240 		own_trans = false;
10241 	while (num_bytes > 0) {
10242 		if (own_trans) {
10243 			trans = btrfs_start_transaction(root, 3);
10244 			if (IS_ERR(trans)) {
10245 				ret = PTR_ERR(trans);
10246 				break;
10247 			}
10248 		}
10249 
10250 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10251 		cur_bytes = max(cur_bytes, min_size);
10252 		/*
10253 		 * If we are severely fragmented we could end up with really
10254 		 * small allocations, so if the allocator is returning small
10255 		 * chunks lets make its job easier by only searching for those
10256 		 * sized chunks.
10257 		 */
10258 		cur_bytes = min(cur_bytes, last_alloc);
10259 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10260 				min_size, 0, *alloc_hint, &ins, 1, 0);
10261 		if (ret) {
10262 			if (own_trans)
10263 				btrfs_end_transaction(trans);
10264 			break;
10265 		}
10266 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10267 
10268 		last_alloc = ins.offset;
10269 		ret = insert_reserved_file_extent(trans, inode,
10270 						  cur_offset, ins.objectid,
10271 						  ins.offset, ins.offset,
10272 						  ins.offset, 0, 0, 0,
10273 						  BTRFS_FILE_EXTENT_PREALLOC);
10274 		if (ret) {
10275 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10276 						   ins.offset, 0);
10277 			btrfs_abort_transaction(trans, ret);
10278 			if (own_trans)
10279 				btrfs_end_transaction(trans);
10280 			break;
10281 		}
10282 
10283 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10284 					cur_offset + ins.offset -1, 0);
10285 
10286 		em = alloc_extent_map();
10287 		if (!em) {
10288 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10289 				&BTRFS_I(inode)->runtime_flags);
10290 			goto next;
10291 		}
10292 
10293 		em->start = cur_offset;
10294 		em->orig_start = cur_offset;
10295 		em->len = ins.offset;
10296 		em->block_start = ins.objectid;
10297 		em->block_len = ins.offset;
10298 		em->orig_block_len = ins.offset;
10299 		em->ram_bytes = ins.offset;
10300 		em->bdev = fs_info->fs_devices->latest_bdev;
10301 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10302 		em->generation = trans->transid;
10303 
10304 		while (1) {
10305 			write_lock(&em_tree->lock);
10306 			ret = add_extent_mapping(em_tree, em, 1);
10307 			write_unlock(&em_tree->lock);
10308 			if (ret != -EEXIST)
10309 				break;
10310 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10311 						cur_offset + ins.offset - 1,
10312 						0);
10313 		}
10314 		free_extent_map(em);
10315 next:
10316 		num_bytes -= ins.offset;
10317 		cur_offset += ins.offset;
10318 		*alloc_hint = ins.objectid + ins.offset;
10319 
10320 		inode_inc_iversion(inode);
10321 		inode->i_ctime = current_time(inode);
10322 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10323 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10324 		    (actual_len > inode->i_size) &&
10325 		    (cur_offset > inode->i_size)) {
10326 			if (cur_offset > actual_len)
10327 				i_size = actual_len;
10328 			else
10329 				i_size = cur_offset;
10330 			i_size_write(inode, i_size);
10331 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10332 		}
10333 
10334 		ret = btrfs_update_inode(trans, root, inode);
10335 
10336 		if (ret) {
10337 			btrfs_abort_transaction(trans, ret);
10338 			if (own_trans)
10339 				btrfs_end_transaction(trans);
10340 			break;
10341 		}
10342 
10343 		if (own_trans)
10344 			btrfs_end_transaction(trans);
10345 	}
10346 	if (cur_offset < end)
10347 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10348 			end - cur_offset + 1);
10349 	return ret;
10350 }
10351 
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10352 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10353 			      u64 start, u64 num_bytes, u64 min_size,
10354 			      loff_t actual_len, u64 *alloc_hint)
10355 {
10356 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10357 					   min_size, actual_len, alloc_hint,
10358 					   NULL);
10359 }
10360 
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10361 int btrfs_prealloc_file_range_trans(struct inode *inode,
10362 				    struct btrfs_trans_handle *trans, int mode,
10363 				    u64 start, u64 num_bytes, u64 min_size,
10364 				    loff_t actual_len, u64 *alloc_hint)
10365 {
10366 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10367 					   min_size, actual_len, alloc_hint, trans);
10368 }
10369 
btrfs_set_page_dirty(struct page * page)10370 static int btrfs_set_page_dirty(struct page *page)
10371 {
10372 	return __set_page_dirty_nobuffers(page);
10373 }
10374 
btrfs_permission(struct inode * inode,int mask)10375 static int btrfs_permission(struct inode *inode, int mask)
10376 {
10377 	struct btrfs_root *root = BTRFS_I(inode)->root;
10378 	umode_t mode = inode->i_mode;
10379 
10380 	if (mask & MAY_WRITE &&
10381 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10382 		if (btrfs_root_readonly(root))
10383 			return -EROFS;
10384 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10385 			return -EACCES;
10386 	}
10387 	return generic_permission(inode, mask);
10388 }
10389 
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10390 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10391 {
10392 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10393 	struct btrfs_trans_handle *trans;
10394 	struct btrfs_root *root = BTRFS_I(dir)->root;
10395 	struct inode *inode = NULL;
10396 	u64 objectid;
10397 	u64 index;
10398 	int ret = 0;
10399 
10400 	/*
10401 	 * 5 units required for adding orphan entry
10402 	 */
10403 	trans = btrfs_start_transaction(root, 5);
10404 	if (IS_ERR(trans))
10405 		return PTR_ERR(trans);
10406 
10407 	ret = btrfs_find_free_ino(root, &objectid);
10408 	if (ret)
10409 		goto out;
10410 
10411 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10412 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10413 	if (IS_ERR(inode)) {
10414 		ret = PTR_ERR(inode);
10415 		inode = NULL;
10416 		goto out;
10417 	}
10418 
10419 	inode->i_fop = &btrfs_file_operations;
10420 	inode->i_op = &btrfs_file_inode_operations;
10421 
10422 	inode->i_mapping->a_ops = &btrfs_aops;
10423 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10424 
10425 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10426 	if (ret)
10427 		goto out;
10428 
10429 	ret = btrfs_update_inode(trans, root, inode);
10430 	if (ret)
10431 		goto out;
10432 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10433 	if (ret)
10434 		goto out;
10435 
10436 	/*
10437 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10438 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10439 	 * through:
10440 	 *
10441 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10442 	 */
10443 	set_nlink(inode, 1);
10444 	d_tmpfile(dentry, inode);
10445 	unlock_new_inode(inode);
10446 	mark_inode_dirty(inode);
10447 out:
10448 	btrfs_end_transaction(trans);
10449 	if (ret && inode)
10450 		discard_new_inode(inode);
10451 	btrfs_btree_balance_dirty(fs_info);
10452 	return ret;
10453 }
10454 
10455 __attribute__((const))
btrfs_readpage_io_failed_hook(struct page * page,int failed_mirror)10456 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10457 {
10458 	return -EAGAIN;
10459 }
10460 
btrfs_check_extent_io_range(void * private_data,const char * caller,u64 start,u64 end)10461 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10462 					u64 start, u64 end)
10463 {
10464 	struct inode *inode = private_data;
10465 	u64 isize;
10466 
10467 	isize = i_size_read(inode);
10468 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10469 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10470 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10471 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10472 	}
10473 }
10474 
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10475 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10476 {
10477 	struct inode *inode = tree->private_data;
10478 	unsigned long index = start >> PAGE_SHIFT;
10479 	unsigned long end_index = end >> PAGE_SHIFT;
10480 	struct page *page;
10481 
10482 	while (index <= end_index) {
10483 		page = find_get_page(inode->i_mapping, index);
10484 		ASSERT(page); /* Pages should be in the extent_io_tree */
10485 		set_page_writeback(page);
10486 		put_page(page);
10487 		index++;
10488 	}
10489 }
10490 
10491 static const struct inode_operations btrfs_dir_inode_operations = {
10492 	.getattr	= btrfs_getattr,
10493 	.lookup		= btrfs_lookup,
10494 	.create		= btrfs_create,
10495 	.unlink		= btrfs_unlink,
10496 	.link		= btrfs_link,
10497 	.mkdir		= btrfs_mkdir,
10498 	.rmdir		= btrfs_rmdir,
10499 	.rename		= btrfs_rename2,
10500 	.symlink	= btrfs_symlink,
10501 	.setattr	= btrfs_setattr,
10502 	.mknod		= btrfs_mknod,
10503 	.listxattr	= btrfs_listxattr,
10504 	.permission	= btrfs_permission,
10505 	.get_acl	= btrfs_get_acl,
10506 	.set_acl	= btrfs_set_acl,
10507 	.update_time	= btrfs_update_time,
10508 	.tmpfile        = btrfs_tmpfile,
10509 };
10510 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10511 	.lookup		= btrfs_lookup,
10512 	.permission	= btrfs_permission,
10513 	.update_time	= btrfs_update_time,
10514 };
10515 
10516 static const struct file_operations btrfs_dir_file_operations = {
10517 	.llseek		= generic_file_llseek,
10518 	.read		= generic_read_dir,
10519 	.iterate_shared	= btrfs_real_readdir,
10520 	.open		= btrfs_opendir,
10521 	.unlocked_ioctl	= btrfs_ioctl,
10522 #ifdef CONFIG_COMPAT
10523 	.compat_ioctl	= btrfs_compat_ioctl,
10524 #endif
10525 	.release        = btrfs_release_file,
10526 	.fsync		= btrfs_sync_file,
10527 };
10528 
10529 static const struct extent_io_ops btrfs_extent_io_ops = {
10530 	/* mandatory callbacks */
10531 	.submit_bio_hook = btrfs_submit_bio_hook,
10532 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10533 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10534 
10535 	/* optional callbacks */
10536 	.fill_delalloc = run_delalloc_range,
10537 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10538 	.writepage_start_hook = btrfs_writepage_start_hook,
10539 	.set_bit_hook = btrfs_set_bit_hook,
10540 	.clear_bit_hook = btrfs_clear_bit_hook,
10541 	.merge_extent_hook = btrfs_merge_extent_hook,
10542 	.split_extent_hook = btrfs_split_extent_hook,
10543 	.check_extent_io_range = btrfs_check_extent_io_range,
10544 };
10545 
10546 /*
10547  * btrfs doesn't support the bmap operation because swapfiles
10548  * use bmap to make a mapping of extents in the file.  They assume
10549  * these extents won't change over the life of the file and they
10550  * use the bmap result to do IO directly to the drive.
10551  *
10552  * the btrfs bmap call would return logical addresses that aren't
10553  * suitable for IO and they also will change frequently as COW
10554  * operations happen.  So, swapfile + btrfs == corruption.
10555  *
10556  * For now we're avoiding this by dropping bmap.
10557  */
10558 static const struct address_space_operations btrfs_aops = {
10559 	.readpage	= btrfs_readpage,
10560 	.writepage	= btrfs_writepage,
10561 	.writepages	= btrfs_writepages,
10562 	.readpages	= btrfs_readpages,
10563 	.direct_IO	= btrfs_direct_IO,
10564 	.invalidatepage = btrfs_invalidatepage,
10565 	.releasepage	= btrfs_releasepage,
10566 	.set_page_dirty	= btrfs_set_page_dirty,
10567 	.error_remove_page = generic_error_remove_page,
10568 };
10569 
10570 static const struct address_space_operations btrfs_symlink_aops = {
10571 	.readpage	= btrfs_readpage,
10572 	.writepage	= btrfs_writepage,
10573 	.invalidatepage = btrfs_invalidatepage,
10574 	.releasepage	= btrfs_releasepage,
10575 };
10576 
10577 static const struct inode_operations btrfs_file_inode_operations = {
10578 	.getattr	= btrfs_getattr,
10579 	.setattr	= btrfs_setattr,
10580 	.listxattr      = btrfs_listxattr,
10581 	.permission	= btrfs_permission,
10582 	.fiemap		= btrfs_fiemap,
10583 	.get_acl	= btrfs_get_acl,
10584 	.set_acl	= btrfs_set_acl,
10585 	.update_time	= btrfs_update_time,
10586 };
10587 static const struct inode_operations btrfs_special_inode_operations = {
10588 	.getattr	= btrfs_getattr,
10589 	.setattr	= btrfs_setattr,
10590 	.permission	= btrfs_permission,
10591 	.listxattr	= btrfs_listxattr,
10592 	.get_acl	= btrfs_get_acl,
10593 	.set_acl	= btrfs_set_acl,
10594 	.update_time	= btrfs_update_time,
10595 };
10596 static const struct inode_operations btrfs_symlink_inode_operations = {
10597 	.get_link	= page_get_link,
10598 	.getattr	= btrfs_getattr,
10599 	.setattr	= btrfs_setattr,
10600 	.permission	= btrfs_permission,
10601 	.listxattr	= btrfs_listxattr,
10602 	.update_time	= btrfs_update_time,
10603 };
10604 
10605 const struct dentry_operations btrfs_dentry_operations = {
10606 	.d_delete	= btrfs_dentry_delete,
10607 };
10608