1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51
52 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
53
54 /*
55 * Maximum number of mirrors that can be available for all profiles counting
56 * the target device of dev-replace as one. During an active device replace
57 * procedure, the target device of the copy operation is a mirror for the
58 * filesystem data as well that can be used to read data in order to repair
59 * read errors on other disks.
60 *
61 * Current value is derived from RAID1C4 with 4 copies.
62 */
63 #define BTRFS_MAX_MIRRORS (4 + 1)
64
65 #define BTRFS_MAX_LEVEL 8
66
67 #define BTRFS_OLDEST_GENERATION 0ULL
68
69 /*
70 * we can actually store much bigger names, but lets not confuse the rest
71 * of linux
72 */
73 #define BTRFS_NAME_LEN 255
74
75 /*
76 * Theoretical limit is larger, but we keep this down to a sane
77 * value. That should limit greatly the possibility of collisions on
78 * inode ref items.
79 */
80 #define BTRFS_LINK_MAX 65535U
81
82 #define BTRFS_EMPTY_DIR_SIZE 0
83
84 /* ioprio of readahead is set to idle */
85 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
86
87 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M
88
89 /*
90 * Use large batch size to reduce overhead of metadata updates. On the reader
91 * side, we only read it when we are close to ENOSPC and the read overhead is
92 * mostly related to the number of CPUs, so it is OK to use arbitrary large
93 * value here.
94 */
95 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M
96
97 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
98
99 /*
100 * Deltas are an effective way to populate global statistics. Give macro names
101 * to make it clear what we're doing. An example is discard_extents in
102 * btrfs_free_space_ctl.
103 */
104 #define BTRFS_STAT_NR_ENTRIES 2
105 #define BTRFS_STAT_CURR 0
106 #define BTRFS_STAT_PREV 1
107
108 /*
109 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
110 */
count_max_extents(u64 size)111 static inline u32 count_max_extents(u64 size)
112 {
113 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
114 }
115
btrfs_chunk_item_size(int num_stripes)116 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
117 {
118 BUG_ON(num_stripes == 0);
119 return sizeof(struct btrfs_chunk) +
120 sizeof(struct btrfs_stripe) * (num_stripes - 1);
121 }
122
123 /*
124 * Runtime (in-memory) states of filesystem
125 */
126 enum {
127 /* Global indicator of serious filesystem errors */
128 BTRFS_FS_STATE_ERROR,
129 /*
130 * Filesystem is being remounted, allow to skip some operations, like
131 * defrag
132 */
133 BTRFS_FS_STATE_REMOUNTING,
134 /* Filesystem in RO mode */
135 BTRFS_FS_STATE_RO,
136 /* Track if a transaction abort has been reported on this filesystem */
137 BTRFS_FS_STATE_TRANS_ABORTED,
138 /*
139 * Bio operations should be blocked on this filesystem because a source
140 * or target device is being destroyed as part of a device replace
141 */
142 BTRFS_FS_STATE_DEV_REPLACING,
143 /* The btrfs_fs_info created for self-tests */
144 BTRFS_FS_STATE_DUMMY_FS_INFO,
145 };
146
147 #define BTRFS_BACKREF_REV_MAX 256
148 #define BTRFS_BACKREF_REV_SHIFT 56
149 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
150 BTRFS_BACKREF_REV_SHIFT)
151
152 #define BTRFS_OLD_BACKREF_REV 0
153 #define BTRFS_MIXED_BACKREF_REV 1
154
155 /*
156 * every tree block (leaf or node) starts with this header.
157 */
158 struct btrfs_header {
159 /* these first four must match the super block */
160 u8 csum[BTRFS_CSUM_SIZE];
161 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
162 __le64 bytenr; /* which block this node is supposed to live in */
163 __le64 flags;
164
165 /* allowed to be different from the super from here on down */
166 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
167 __le64 generation;
168 __le64 owner;
169 __le32 nritems;
170 u8 level;
171 } __attribute__ ((__packed__));
172
173 /*
174 * this is a very generous portion of the super block, giving us
175 * room to translate 14 chunks with 3 stripes each.
176 */
177 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
178
179 /*
180 * just in case we somehow lose the roots and are not able to mount,
181 * we store an array of the roots from previous transactions
182 * in the super.
183 */
184 #define BTRFS_NUM_BACKUP_ROOTS 4
185 struct btrfs_root_backup {
186 __le64 tree_root;
187 __le64 tree_root_gen;
188
189 __le64 chunk_root;
190 __le64 chunk_root_gen;
191
192 __le64 extent_root;
193 __le64 extent_root_gen;
194
195 __le64 fs_root;
196 __le64 fs_root_gen;
197
198 __le64 dev_root;
199 __le64 dev_root_gen;
200
201 __le64 csum_root;
202 __le64 csum_root_gen;
203
204 __le64 total_bytes;
205 __le64 bytes_used;
206 __le64 num_devices;
207 /* future */
208 __le64 unused_64[4];
209
210 u8 tree_root_level;
211 u8 chunk_root_level;
212 u8 extent_root_level;
213 u8 fs_root_level;
214 u8 dev_root_level;
215 u8 csum_root_level;
216 /* future and to align */
217 u8 unused_8[10];
218 } __attribute__ ((__packed__));
219
220 /*
221 * the super block basically lists the main trees of the FS
222 * it currently lacks any block count etc etc
223 */
224 struct btrfs_super_block {
225 /* the first 4 fields must match struct btrfs_header */
226 u8 csum[BTRFS_CSUM_SIZE];
227 /* FS specific UUID, visible to user */
228 u8 fsid[BTRFS_FSID_SIZE];
229 __le64 bytenr; /* this block number */
230 __le64 flags;
231
232 /* allowed to be different from the btrfs_header from here own down */
233 __le64 magic;
234 __le64 generation;
235 __le64 root;
236 __le64 chunk_root;
237 __le64 log_root;
238
239 /* this will help find the new super based on the log root */
240 __le64 log_root_transid;
241 __le64 total_bytes;
242 __le64 bytes_used;
243 __le64 root_dir_objectid;
244 __le64 num_devices;
245 __le32 sectorsize;
246 __le32 nodesize;
247 __le32 __unused_leafsize;
248 __le32 stripesize;
249 __le32 sys_chunk_array_size;
250 __le64 chunk_root_generation;
251 __le64 compat_flags;
252 __le64 compat_ro_flags;
253 __le64 incompat_flags;
254 __le16 csum_type;
255 u8 root_level;
256 u8 chunk_root_level;
257 u8 log_root_level;
258 struct btrfs_dev_item dev_item;
259
260 char label[BTRFS_LABEL_SIZE];
261
262 __le64 cache_generation;
263 __le64 uuid_tree_generation;
264
265 /* the UUID written into btree blocks */
266 u8 metadata_uuid[BTRFS_FSID_SIZE];
267
268 /* future expansion */
269 __le64 reserved[28];
270 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
271 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
272 } __attribute__ ((__packed__));
273
274 /*
275 * Compat flags that we support. If any incompat flags are set other than the
276 * ones specified below then we will fail to mount
277 */
278 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
279 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
280 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
281
282 #define BTRFS_FEATURE_COMPAT_RO_SUPP \
283 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
284 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
285 BTRFS_FEATURE_COMPAT_RO_VERITY)
286
287 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
288 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
289
290 #define BTRFS_FEATURE_INCOMPAT_SUPP \
291 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
292 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
293 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
294 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
295 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
296 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
297 BTRFS_FEATURE_INCOMPAT_RAID56 | \
298 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
299 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
300 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
301 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
302 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
303 BTRFS_FEATURE_INCOMPAT_ZONED)
304
305 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
306 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
307 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
308
309 /*
310 * A leaf is full of items. offset and size tell us where to find
311 * the item in the leaf (relative to the start of the data area)
312 */
313 struct btrfs_item {
314 struct btrfs_disk_key key;
315 __le32 offset;
316 __le32 size;
317 } __attribute__ ((__packed__));
318
319 /*
320 * leaves have an item area and a data area:
321 * [item0, item1....itemN] [free space] [dataN...data1, data0]
322 *
323 * The data is separate from the items to get the keys closer together
324 * during searches.
325 */
326 struct btrfs_leaf {
327 struct btrfs_header header;
328 struct btrfs_item items[];
329 } __attribute__ ((__packed__));
330
331 /*
332 * all non-leaf blocks are nodes, they hold only keys and pointers to
333 * other blocks
334 */
335 struct btrfs_key_ptr {
336 struct btrfs_disk_key key;
337 __le64 blockptr;
338 __le64 generation;
339 } __attribute__ ((__packed__));
340
341 struct btrfs_node {
342 struct btrfs_header header;
343 struct btrfs_key_ptr ptrs[];
344 } __attribute__ ((__packed__));
345
346 /* Read ahead values for struct btrfs_path.reada */
347 enum {
348 READA_NONE,
349 READA_BACK,
350 READA_FORWARD,
351 /*
352 * Similar to READA_FORWARD but unlike it:
353 *
354 * 1) It will trigger readahead even for leaves that are not close to
355 * each other on disk;
356 * 2) It also triggers readahead for nodes;
357 * 3) During a search, even when a node or leaf is already in memory, it
358 * will still trigger readahead for other nodes and leaves that follow
359 * it.
360 *
361 * This is meant to be used only when we know we are iterating over the
362 * entire tree or a very large part of it.
363 */
364 READA_FORWARD_ALWAYS,
365 };
366
367 /*
368 * btrfs_paths remember the path taken from the root down to the leaf.
369 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
370 * to any other levels that are present.
371 *
372 * The slots array records the index of the item or block pointer
373 * used while walking the tree.
374 */
375 struct btrfs_path {
376 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
377 int slots[BTRFS_MAX_LEVEL];
378 /* if there is real range locking, this locks field will change */
379 u8 locks[BTRFS_MAX_LEVEL];
380 u8 reada;
381 /* keep some upper locks as we walk down */
382 u8 lowest_level;
383
384 /*
385 * set by btrfs_split_item, tells search_slot to keep all locks
386 * and to force calls to keep space in the nodes
387 */
388 unsigned int search_for_split:1;
389 unsigned int keep_locks:1;
390 unsigned int skip_locking:1;
391 unsigned int search_commit_root:1;
392 unsigned int need_commit_sem:1;
393 unsigned int skip_release_on_error:1;
394 /*
395 * Indicate that new item (btrfs_search_slot) is extending already
396 * existing item and ins_len contains only the data size and not item
397 * header (ie. sizeof(struct btrfs_item) is not included).
398 */
399 unsigned int search_for_extension:1;
400 };
401 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
402 sizeof(struct btrfs_item))
403 struct btrfs_dev_replace {
404 u64 replace_state; /* see #define above */
405 time64_t time_started; /* seconds since 1-Jan-1970 */
406 time64_t time_stopped; /* seconds since 1-Jan-1970 */
407 atomic64_t num_write_errors;
408 atomic64_t num_uncorrectable_read_errors;
409
410 u64 cursor_left;
411 u64 committed_cursor_left;
412 u64 cursor_left_last_write_of_item;
413 u64 cursor_right;
414
415 u64 cont_reading_from_srcdev_mode; /* see #define above */
416
417 int is_valid;
418 int item_needs_writeback;
419 struct btrfs_device *srcdev;
420 struct btrfs_device *tgtdev;
421
422 struct mutex lock_finishing_cancel_unmount;
423 struct rw_semaphore rwsem;
424
425 struct btrfs_scrub_progress scrub_progress;
426
427 struct percpu_counter bio_counter;
428 wait_queue_head_t replace_wait;
429 };
430
431 /*
432 * free clusters are used to claim free space in relatively large chunks,
433 * allowing us to do less seeky writes. They are used for all metadata
434 * allocations. In ssd_spread mode they are also used for data allocations.
435 */
436 struct btrfs_free_cluster {
437 spinlock_t lock;
438 spinlock_t refill_lock;
439 struct rb_root root;
440
441 /* largest extent in this cluster */
442 u64 max_size;
443
444 /* first extent starting offset */
445 u64 window_start;
446
447 /* We did a full search and couldn't create a cluster */
448 bool fragmented;
449
450 struct btrfs_block_group *block_group;
451 /*
452 * when a cluster is allocated from a block group, we put the
453 * cluster onto a list in the block group so that it can
454 * be freed before the block group is freed.
455 */
456 struct list_head block_group_list;
457 };
458
459 enum btrfs_caching_type {
460 BTRFS_CACHE_NO,
461 BTRFS_CACHE_STARTED,
462 BTRFS_CACHE_FAST,
463 BTRFS_CACHE_FINISHED,
464 BTRFS_CACHE_ERROR,
465 };
466
467 /*
468 * Tree to record all locked full stripes of a RAID5/6 block group
469 */
470 struct btrfs_full_stripe_locks_tree {
471 struct rb_root root;
472 struct mutex lock;
473 };
474
475 /* Discard control. */
476 /*
477 * Async discard uses multiple lists to differentiate the discard filter
478 * parameters. Index 0 is for completely free block groups where we need to
479 * ensure the entire block group is trimmed without being lossy. Indices
480 * afterwards represent monotonically decreasing discard filter sizes to
481 * prioritize what should be discarded next.
482 */
483 #define BTRFS_NR_DISCARD_LISTS 3
484 #define BTRFS_DISCARD_INDEX_UNUSED 0
485 #define BTRFS_DISCARD_INDEX_START 1
486
487 struct btrfs_discard_ctl {
488 struct workqueue_struct *discard_workers;
489 struct delayed_work work;
490 spinlock_t lock;
491 struct btrfs_block_group *block_group;
492 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
493 u64 prev_discard;
494 u64 prev_discard_time;
495 atomic_t discardable_extents;
496 atomic64_t discardable_bytes;
497 u64 max_discard_size;
498 u64 delay_ms;
499 u32 iops_limit;
500 u32 kbps_limit;
501 u64 discard_extent_bytes;
502 u64 discard_bitmap_bytes;
503 atomic64_t discard_bytes_saved;
504 };
505
506 enum btrfs_orphan_cleanup_state {
507 ORPHAN_CLEANUP_STARTED = 1,
508 ORPHAN_CLEANUP_DONE = 2,
509 };
510
511 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
512
513 /* fs_info */
514 struct reloc_control;
515 struct btrfs_device;
516 struct btrfs_fs_devices;
517 struct btrfs_balance_control;
518 struct btrfs_delayed_root;
519
520 /*
521 * Block group or device which contains an active swapfile. Used for preventing
522 * unsafe operations while a swapfile is active.
523 *
524 * These are sorted on (ptr, inode) (note that a block group or device can
525 * contain more than one swapfile). We compare the pointer values because we
526 * don't actually care what the object is, we just need a quick check whether
527 * the object exists in the rbtree.
528 */
529 struct btrfs_swapfile_pin {
530 struct rb_node node;
531 void *ptr;
532 struct inode *inode;
533 /*
534 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
535 * points to a struct btrfs_device.
536 */
537 bool is_block_group;
538 /*
539 * Only used when 'is_block_group' is true and it is the number of
540 * extents used by a swapfile for this block group ('ptr' field).
541 */
542 int bg_extent_count;
543 };
544
545 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
546
547 enum {
548 BTRFS_FS_BARRIER,
549 BTRFS_FS_CLOSING_START,
550 BTRFS_FS_CLOSING_DONE,
551 BTRFS_FS_LOG_RECOVERING,
552 BTRFS_FS_OPEN,
553 BTRFS_FS_QUOTA_ENABLED,
554 BTRFS_FS_UPDATE_UUID_TREE_GEN,
555 BTRFS_FS_CREATING_FREE_SPACE_TREE,
556 BTRFS_FS_BTREE_ERR,
557 BTRFS_FS_LOG1_ERR,
558 BTRFS_FS_LOG2_ERR,
559 BTRFS_FS_QUOTA_OVERRIDE,
560 /* Used to record internally whether fs has been frozen */
561 BTRFS_FS_FROZEN,
562 /*
563 * Indicate that balance has been set up from the ioctl and is in the
564 * main phase. The fs_info::balance_ctl is initialized.
565 */
566 BTRFS_FS_BALANCE_RUNNING,
567
568 /*
569 * Indicate that relocation of a chunk has started, it's set per chunk
570 * and is toggled between chunks.
571 * Set, tested and cleared while holding fs_info::send_reloc_lock.
572 */
573 BTRFS_FS_RELOC_RUNNING,
574
575 /* Indicate that the cleaner thread is awake and doing something. */
576 BTRFS_FS_CLEANER_RUNNING,
577
578 /*
579 * The checksumming has an optimized version and is considered fast,
580 * so we don't need to offload checksums to workqueues.
581 */
582 BTRFS_FS_CSUM_IMPL_FAST,
583
584 /* Indicate that the discard workqueue can service discards. */
585 BTRFS_FS_DISCARD_RUNNING,
586
587 /* Indicate that we need to cleanup space cache v1 */
588 BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
589
590 /* Indicate that we can't trust the free space tree for caching yet */
591 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
592
593 /* Indicate whether there are any tree modification log users */
594 BTRFS_FS_TREE_MOD_LOG_USERS,
595
596 #if BITS_PER_LONG == 32
597 /* Indicate if we have error/warn message printed on 32bit systems */
598 BTRFS_FS_32BIT_ERROR,
599 BTRFS_FS_32BIT_WARN,
600 #endif
601 };
602
603 /*
604 * Exclusive operations (device replace, resize, device add/remove, balance)
605 */
606 enum btrfs_exclusive_operation {
607 BTRFS_EXCLOP_NONE,
608 BTRFS_EXCLOP_BALANCE,
609 BTRFS_EXCLOP_DEV_ADD,
610 BTRFS_EXCLOP_DEV_REMOVE,
611 BTRFS_EXCLOP_DEV_REPLACE,
612 BTRFS_EXCLOP_RESIZE,
613 BTRFS_EXCLOP_SWAP_ACTIVATE,
614 };
615
616 struct btrfs_fs_info {
617 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
618 unsigned long flags;
619 struct btrfs_root *extent_root;
620 struct btrfs_root *tree_root;
621 struct btrfs_root *chunk_root;
622 struct btrfs_root *dev_root;
623 struct btrfs_root *fs_root;
624 struct btrfs_root *csum_root;
625 struct btrfs_root *quota_root;
626 struct btrfs_root *uuid_root;
627 struct btrfs_root *free_space_root;
628 struct btrfs_root *data_reloc_root;
629
630 /* the log root tree is a directory of all the other log roots */
631 struct btrfs_root *log_root_tree;
632
633 spinlock_t fs_roots_radix_lock;
634 struct radix_tree_root fs_roots_radix;
635
636 /* block group cache stuff */
637 spinlock_t block_group_cache_lock;
638 u64 first_logical_byte;
639 struct rb_root block_group_cache_tree;
640
641 /* keep track of unallocated space */
642 atomic64_t free_chunk_space;
643
644 /* Track ranges which are used by log trees blocks/logged data extents */
645 struct extent_io_tree excluded_extents;
646
647 /* logical->physical extent mapping */
648 struct extent_map_tree mapping_tree;
649
650 /*
651 * block reservation for extent, checksum, root tree and
652 * delayed dir index item
653 */
654 struct btrfs_block_rsv global_block_rsv;
655 /* block reservation for metadata operations */
656 struct btrfs_block_rsv trans_block_rsv;
657 /* block reservation for chunk tree */
658 struct btrfs_block_rsv chunk_block_rsv;
659 /* block reservation for delayed operations */
660 struct btrfs_block_rsv delayed_block_rsv;
661 /* block reservation for delayed refs */
662 struct btrfs_block_rsv delayed_refs_rsv;
663
664 struct btrfs_block_rsv empty_block_rsv;
665
666 u64 generation;
667 u64 last_trans_committed;
668 u64 avg_delayed_ref_runtime;
669
670 /*
671 * this is updated to the current trans every time a full commit
672 * is required instead of the faster short fsync log commits
673 */
674 u64 last_trans_log_full_commit;
675 unsigned long mount_opt;
676 /*
677 * Track requests for actions that need to be done during transaction
678 * commit (like for some mount options).
679 */
680 unsigned long pending_changes;
681 unsigned long compress_type:4;
682 unsigned int compress_level;
683 u32 commit_interval;
684 /*
685 * It is a suggestive number, the read side is safe even it gets a
686 * wrong number because we will write out the data into a regular
687 * extent. The write side(mount/remount) is under ->s_umount lock,
688 * so it is also safe.
689 */
690 u64 max_inline;
691
692 struct btrfs_transaction *running_transaction;
693 wait_queue_head_t transaction_throttle;
694 wait_queue_head_t transaction_wait;
695 wait_queue_head_t transaction_blocked_wait;
696 wait_queue_head_t async_submit_wait;
697
698 /*
699 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
700 * when they are updated.
701 *
702 * Because we do not clear the flags for ever, so we needn't use
703 * the lock on the read side.
704 *
705 * We also needn't use the lock when we mount the fs, because
706 * there is no other task which will update the flag.
707 */
708 spinlock_t super_lock;
709 struct btrfs_super_block *super_copy;
710 struct btrfs_super_block *super_for_commit;
711 struct super_block *sb;
712 struct inode *btree_inode;
713 struct mutex tree_log_mutex;
714 struct mutex transaction_kthread_mutex;
715 struct mutex cleaner_mutex;
716 struct mutex chunk_mutex;
717
718 /*
719 * this is taken to make sure we don't set block groups ro after
720 * the free space cache has been allocated on them
721 */
722 struct mutex ro_block_group_mutex;
723
724 /* this is used during read/modify/write to make sure
725 * no two ios are trying to mod the same stripe at the same
726 * time
727 */
728 struct btrfs_stripe_hash_table *stripe_hash_table;
729
730 /*
731 * this protects the ordered operations list only while we are
732 * processing all of the entries on it. This way we make
733 * sure the commit code doesn't find the list temporarily empty
734 * because another function happens to be doing non-waiting preflush
735 * before jumping into the main commit.
736 */
737 struct mutex ordered_operations_mutex;
738
739 struct rw_semaphore commit_root_sem;
740
741 struct rw_semaphore cleanup_work_sem;
742
743 struct rw_semaphore subvol_sem;
744
745 spinlock_t trans_lock;
746 /*
747 * the reloc mutex goes with the trans lock, it is taken
748 * during commit to protect us from the relocation code
749 */
750 struct mutex reloc_mutex;
751
752 struct list_head trans_list;
753 struct list_head dead_roots;
754 struct list_head caching_block_groups;
755
756 spinlock_t delayed_iput_lock;
757 struct list_head delayed_iputs;
758 atomic_t nr_delayed_iputs;
759 wait_queue_head_t delayed_iputs_wait;
760
761 atomic64_t tree_mod_seq;
762
763 /* this protects tree_mod_log and tree_mod_seq_list */
764 rwlock_t tree_mod_log_lock;
765 struct rb_root tree_mod_log;
766 struct list_head tree_mod_seq_list;
767
768 atomic_t async_delalloc_pages;
769
770 /*
771 * this is used to protect the following list -- ordered_roots.
772 */
773 spinlock_t ordered_root_lock;
774
775 /*
776 * all fs/file tree roots in which there are data=ordered extents
777 * pending writeback are added into this list.
778 *
779 * these can span multiple transactions and basically include
780 * every dirty data page that isn't from nodatacow
781 */
782 struct list_head ordered_roots;
783
784 struct mutex delalloc_root_mutex;
785 spinlock_t delalloc_root_lock;
786 /* all fs/file tree roots that have delalloc inodes. */
787 struct list_head delalloc_roots;
788
789 /*
790 * there is a pool of worker threads for checksumming during writes
791 * and a pool for checksumming after reads. This is because readers
792 * can run with FS locks held, and the writers may be waiting for
793 * those locks. We don't want ordering in the pending list to cause
794 * deadlocks, and so the two are serviced separately.
795 *
796 * A third pool does submit_bio to avoid deadlocking with the other
797 * two
798 */
799 struct btrfs_workqueue *workers;
800 struct btrfs_workqueue *delalloc_workers;
801 struct btrfs_workqueue *flush_workers;
802 struct btrfs_workqueue *endio_workers;
803 struct btrfs_workqueue *endio_meta_workers;
804 struct btrfs_workqueue *endio_raid56_workers;
805 struct btrfs_workqueue *rmw_workers;
806 struct btrfs_workqueue *endio_meta_write_workers;
807 struct btrfs_workqueue *endio_write_workers;
808 struct btrfs_workqueue *endio_freespace_worker;
809 struct btrfs_workqueue *caching_workers;
810 struct btrfs_workqueue *readahead_workers;
811
812 /*
813 * fixup workers take dirty pages that didn't properly go through
814 * the cow mechanism and make them safe to write. It happens
815 * for the sys_munmap function call path
816 */
817 struct btrfs_workqueue *fixup_workers;
818 struct btrfs_workqueue *delayed_workers;
819
820 struct task_struct *transaction_kthread;
821 struct task_struct *cleaner_kthread;
822 u32 thread_pool_size;
823
824 struct kobject *space_info_kobj;
825 struct kobject *qgroups_kobj;
826
827 /* used to keep from writing metadata until there is a nice batch */
828 struct percpu_counter dirty_metadata_bytes;
829 struct percpu_counter delalloc_bytes;
830 struct percpu_counter ordered_bytes;
831 s32 dirty_metadata_batch;
832 s32 delalloc_batch;
833
834 struct list_head dirty_cowonly_roots;
835
836 struct btrfs_fs_devices *fs_devices;
837
838 /*
839 * The space_info list is effectively read only after initial
840 * setup. It is populated at mount time and cleaned up after
841 * all block groups are removed. RCU is used to protect it.
842 */
843 struct list_head space_info;
844
845 struct btrfs_space_info *data_sinfo;
846
847 struct reloc_control *reloc_ctl;
848
849 /* data_alloc_cluster is only used in ssd_spread mode */
850 struct btrfs_free_cluster data_alloc_cluster;
851
852 /* all metadata allocations go through this cluster */
853 struct btrfs_free_cluster meta_alloc_cluster;
854
855 /* auto defrag inodes go here */
856 spinlock_t defrag_inodes_lock;
857 struct rb_root defrag_inodes;
858 atomic_t defrag_running;
859
860 /* Used to protect avail_{data, metadata, system}_alloc_bits */
861 seqlock_t profiles_lock;
862 /*
863 * these three are in extended format (availability of single
864 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
865 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
866 */
867 u64 avail_data_alloc_bits;
868 u64 avail_metadata_alloc_bits;
869 u64 avail_system_alloc_bits;
870
871 /* restriper state */
872 spinlock_t balance_lock;
873 struct mutex balance_mutex;
874 atomic_t balance_pause_req;
875 atomic_t balance_cancel_req;
876 struct btrfs_balance_control *balance_ctl;
877 wait_queue_head_t balance_wait_q;
878
879 /* Cancellation requests for chunk relocation */
880 atomic_t reloc_cancel_req;
881
882 u32 data_chunk_allocations;
883 u32 metadata_ratio;
884
885 void *bdev_holder;
886
887 /* private scrub information */
888 struct mutex scrub_lock;
889 atomic_t scrubs_running;
890 atomic_t scrub_pause_req;
891 atomic_t scrubs_paused;
892 atomic_t scrub_cancel_req;
893 wait_queue_head_t scrub_pause_wait;
894 /*
895 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
896 * running.
897 */
898 refcount_t scrub_workers_refcnt;
899 struct btrfs_workqueue *scrub_workers;
900 struct btrfs_workqueue *scrub_wr_completion_workers;
901 struct btrfs_workqueue *scrub_parity_workers;
902
903 struct btrfs_discard_ctl discard_ctl;
904
905 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
906 u32 check_integrity_print_mask;
907 #endif
908 /* is qgroup tracking in a consistent state? */
909 u64 qgroup_flags;
910
911 /* holds configuration and tracking. Protected by qgroup_lock */
912 struct rb_root qgroup_tree;
913 spinlock_t qgroup_lock;
914
915 /*
916 * used to avoid frequently calling ulist_alloc()/ulist_free()
917 * when doing qgroup accounting, it must be protected by qgroup_lock.
918 */
919 struct ulist *qgroup_ulist;
920
921 /*
922 * Protect user change for quota operations. If a transaction is needed,
923 * it must be started before locking this lock.
924 */
925 struct mutex qgroup_ioctl_lock;
926
927 /* list of dirty qgroups to be written at next commit */
928 struct list_head dirty_qgroups;
929
930 /* used by qgroup for an efficient tree traversal */
931 u64 qgroup_seq;
932
933 /* qgroup rescan items */
934 struct mutex qgroup_rescan_lock; /* protects the progress item */
935 struct btrfs_key qgroup_rescan_progress;
936 struct btrfs_workqueue *qgroup_rescan_workers;
937 struct completion qgroup_rescan_completion;
938 struct btrfs_work qgroup_rescan_work;
939 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
940
941 /* filesystem state */
942 unsigned long fs_state;
943
944 struct btrfs_delayed_root *delayed_root;
945
946 /* readahead tree */
947 spinlock_t reada_lock;
948 struct radix_tree_root reada_tree;
949
950 /* readahead works cnt */
951 atomic_t reada_works_cnt;
952
953 /* Extent buffer radix tree */
954 spinlock_t buffer_lock;
955 /* Entries are eb->start / sectorsize */
956 struct radix_tree_root buffer_radix;
957
958 /* next backup root to be overwritten */
959 int backup_root_index;
960
961 /* device replace state */
962 struct btrfs_dev_replace dev_replace;
963
964 struct semaphore uuid_tree_rescan_sem;
965
966 /* Used to reclaim the metadata space in the background. */
967 struct work_struct async_reclaim_work;
968 struct work_struct async_data_reclaim_work;
969 struct work_struct preempt_reclaim_work;
970
971 /* Reclaim partially filled block groups in the background */
972 struct work_struct reclaim_bgs_work;
973 struct list_head reclaim_bgs;
974 int bg_reclaim_threshold;
975
976 spinlock_t unused_bgs_lock;
977 struct list_head unused_bgs;
978 struct mutex unused_bg_unpin_mutex;
979 /* Protect block groups that are going to be deleted */
980 struct mutex reclaim_bgs_lock;
981
982 /* Cached block sizes */
983 u32 nodesize;
984 u32 sectorsize;
985 /* ilog2 of sectorsize, use to avoid 64bit division */
986 u32 sectorsize_bits;
987 u32 csum_size;
988 u32 csums_per_leaf;
989 u32 stripesize;
990
991 /* Block groups and devices containing active swapfiles. */
992 spinlock_t swapfile_pins_lock;
993 struct rb_root swapfile_pins;
994
995 struct crypto_shash *csum_shash;
996
997 spinlock_t send_reloc_lock;
998 /*
999 * Number of send operations in progress.
1000 * Updated while holding fs_info::send_reloc_lock.
1001 */
1002 int send_in_progress;
1003
1004 /* Type of exclusive operation running, protected by super_lock */
1005 enum btrfs_exclusive_operation exclusive_operation;
1006
1007 /*
1008 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1009 * if the mode is enabled
1010 */
1011 union {
1012 u64 zone_size;
1013 u64 zoned;
1014 };
1015
1016 struct mutex zoned_meta_io_lock;
1017 spinlock_t treelog_bg_lock;
1018 u64 treelog_bg;
1019
1020 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1021 spinlock_t ref_verify_lock;
1022 struct rb_root block_tree;
1023 #endif
1024
1025 #ifdef CONFIG_BTRFS_DEBUG
1026 struct kobject *debug_kobj;
1027 struct kobject *discard_debug_kobj;
1028 struct list_head allocated_roots;
1029
1030 spinlock_t eb_leak_lock;
1031 struct list_head allocated_ebs;
1032 #endif
1033 };
1034
btrfs_sb(struct super_block * sb)1035 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1036 {
1037 return sb->s_fs_info;
1038 }
1039
1040 /*
1041 * The state of btrfs root
1042 */
1043 enum {
1044 /*
1045 * btrfs_record_root_in_trans is a multi-step process, and it can race
1046 * with the balancing code. But the race is very small, and only the
1047 * first time the root is added to each transaction. So IN_TRANS_SETUP
1048 * is used to tell us when more checks are required
1049 */
1050 BTRFS_ROOT_IN_TRANS_SETUP,
1051
1052 /*
1053 * Set if tree blocks of this root can be shared by other roots.
1054 * Only subvolume trees and their reloc trees have this bit set.
1055 * Conflicts with TRACK_DIRTY bit.
1056 *
1057 * This affects two things:
1058 *
1059 * - How balance works
1060 * For shareable roots, we need to use reloc tree and do path
1061 * replacement for balance, and need various pre/post hooks for
1062 * snapshot creation to handle them.
1063 *
1064 * While for non-shareable trees, we just simply do a tree search
1065 * with COW.
1066 *
1067 * - How dirty roots are tracked
1068 * For shareable roots, btrfs_record_root_in_trans() is needed to
1069 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
1070 * don't need to set this manually.
1071 */
1072 BTRFS_ROOT_SHAREABLE,
1073 BTRFS_ROOT_TRACK_DIRTY,
1074 BTRFS_ROOT_IN_RADIX,
1075 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1076 BTRFS_ROOT_DEFRAG_RUNNING,
1077 BTRFS_ROOT_FORCE_COW,
1078 BTRFS_ROOT_MULTI_LOG_TASKS,
1079 BTRFS_ROOT_DIRTY,
1080 BTRFS_ROOT_DELETING,
1081
1082 /*
1083 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1084 *
1085 * Set for the subvolume tree owning the reloc tree.
1086 */
1087 BTRFS_ROOT_DEAD_RELOC_TREE,
1088 /* Mark dead root stored on device whose cleanup needs to be resumed */
1089 BTRFS_ROOT_DEAD_TREE,
1090 /* The root has a log tree. Used for subvolume roots and the tree root. */
1091 BTRFS_ROOT_HAS_LOG_TREE,
1092 /* Qgroup flushing is in progress */
1093 BTRFS_ROOT_QGROUP_FLUSHING,
1094 };
1095
1096 /*
1097 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1098 * code. For detail check comment in fs/btrfs/qgroup.c.
1099 */
1100 struct btrfs_qgroup_swapped_blocks {
1101 spinlock_t lock;
1102 /* RM_EMPTY_ROOT() of above blocks[] */
1103 bool swapped;
1104 struct rb_root blocks[BTRFS_MAX_LEVEL];
1105 };
1106
1107 /*
1108 * in ram representation of the tree. extent_root is used for all allocations
1109 * and for the extent tree extent_root root.
1110 */
1111 struct btrfs_root {
1112 struct extent_buffer *node;
1113
1114 struct extent_buffer *commit_root;
1115 struct btrfs_root *log_root;
1116 struct btrfs_root *reloc_root;
1117
1118 unsigned long state;
1119 struct btrfs_root_item root_item;
1120 struct btrfs_key root_key;
1121 struct btrfs_fs_info *fs_info;
1122 struct extent_io_tree dirty_log_pages;
1123
1124 struct mutex objectid_mutex;
1125
1126 spinlock_t accounting_lock;
1127 struct btrfs_block_rsv *block_rsv;
1128
1129 struct mutex log_mutex;
1130 wait_queue_head_t log_writer_wait;
1131 wait_queue_head_t log_commit_wait[2];
1132 struct list_head log_ctxs[2];
1133 /* Used only for log trees of subvolumes, not for the log root tree */
1134 atomic_t log_writers;
1135 atomic_t log_commit[2];
1136 /* Used only for log trees of subvolumes, not for the log root tree */
1137 atomic_t log_batch;
1138 int log_transid;
1139 /* No matter the commit succeeds or not*/
1140 int log_transid_committed;
1141 /* Just be updated when the commit succeeds. */
1142 int last_log_commit;
1143 pid_t log_start_pid;
1144
1145 u64 last_trans;
1146
1147 u32 type;
1148
1149 u64 free_objectid;
1150
1151 struct btrfs_key defrag_progress;
1152 struct btrfs_key defrag_max;
1153
1154 /* The dirty list is only used by non-shareable roots */
1155 struct list_head dirty_list;
1156
1157 struct list_head root_list;
1158
1159 spinlock_t log_extents_lock[2];
1160 struct list_head logged_list[2];
1161
1162 int orphan_cleanup_state;
1163
1164 spinlock_t inode_lock;
1165 /* red-black tree that keeps track of in-memory inodes */
1166 struct rb_root inode_tree;
1167
1168 /*
1169 * radix tree that keeps track of delayed nodes of every inode,
1170 * protected by inode_lock
1171 */
1172 struct radix_tree_root delayed_nodes_tree;
1173 /*
1174 * right now this just gets used so that a root has its own devid
1175 * for stat. It may be used for more later
1176 */
1177 dev_t anon_dev;
1178
1179 spinlock_t root_item_lock;
1180 refcount_t refs;
1181
1182 struct mutex delalloc_mutex;
1183 spinlock_t delalloc_lock;
1184 /*
1185 * all of the inodes that have delalloc bytes. It is possible for
1186 * this list to be empty even when there is still dirty data=ordered
1187 * extents waiting to finish IO.
1188 */
1189 struct list_head delalloc_inodes;
1190 struct list_head delalloc_root;
1191 u64 nr_delalloc_inodes;
1192
1193 struct mutex ordered_extent_mutex;
1194 /*
1195 * this is used by the balancing code to wait for all the pending
1196 * ordered extents
1197 */
1198 spinlock_t ordered_extent_lock;
1199
1200 /*
1201 * all of the data=ordered extents pending writeback
1202 * these can span multiple transactions and basically include
1203 * every dirty data page that isn't from nodatacow
1204 */
1205 struct list_head ordered_extents;
1206 struct list_head ordered_root;
1207 u64 nr_ordered_extents;
1208
1209 /*
1210 * Not empty if this subvolume root has gone through tree block swap
1211 * (relocation)
1212 *
1213 * Will be used by reloc_control::dirty_subvol_roots.
1214 */
1215 struct list_head reloc_dirty_list;
1216
1217 /*
1218 * Number of currently running SEND ioctls to prevent
1219 * manipulation with the read-only status via SUBVOL_SETFLAGS
1220 */
1221 int send_in_progress;
1222 /*
1223 * Number of currently running deduplication operations that have a
1224 * destination inode belonging to this root. Protected by the lock
1225 * root_item_lock.
1226 */
1227 int dedupe_in_progress;
1228 /* For exclusion of snapshot creation and nocow writes */
1229 struct btrfs_drew_lock snapshot_lock;
1230
1231 atomic_t snapshot_force_cow;
1232
1233 /* For qgroup metadata reserved space */
1234 spinlock_t qgroup_meta_rsv_lock;
1235 u64 qgroup_meta_rsv_pertrans;
1236 u64 qgroup_meta_rsv_prealloc;
1237 wait_queue_head_t qgroup_flush_wait;
1238
1239 /* Number of active swapfiles */
1240 atomic_t nr_swapfiles;
1241
1242 /* Record pairs of swapped blocks for qgroup */
1243 struct btrfs_qgroup_swapped_blocks swapped_blocks;
1244
1245 /* Used only by log trees, when logging csum items */
1246 struct extent_io_tree log_csum_range;
1247
1248 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1249 u64 alloc_bytenr;
1250 #endif
1251
1252 #ifdef CONFIG_BTRFS_DEBUG
1253 struct list_head leak_list;
1254 #endif
1255 };
1256
1257 /*
1258 * Structure that conveys information about an extent that is going to replace
1259 * all the extents in a file range.
1260 */
1261 struct btrfs_replace_extent_info {
1262 u64 disk_offset;
1263 u64 disk_len;
1264 u64 data_offset;
1265 u64 data_len;
1266 u64 file_offset;
1267 /* Pointer to a file extent item of type regular or prealloc. */
1268 char *extent_buf;
1269 /*
1270 * Set to true when attempting to replace a file range with a new extent
1271 * described by this structure, set to false when attempting to clone an
1272 * existing extent into a file range.
1273 */
1274 bool is_new_extent;
1275 /* Meaningful only if is_new_extent is true. */
1276 int qgroup_reserved;
1277 /*
1278 * Meaningful only if is_new_extent is true.
1279 * Used to track how many extent items we have already inserted in a
1280 * subvolume tree that refer to the extent described by this structure,
1281 * so that we know when to create a new delayed ref or update an existing
1282 * one.
1283 */
1284 int insertions;
1285 };
1286
1287 /* Arguments for btrfs_drop_extents() */
1288 struct btrfs_drop_extents_args {
1289 /* Input parameters */
1290
1291 /*
1292 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1293 * If 'replace_extent' is true, this must not be NULL. Also the path
1294 * is always released except if 'replace_extent' is true and
1295 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1296 * the path is kept locked.
1297 */
1298 struct btrfs_path *path;
1299 /* Start offset of the range to drop extents from */
1300 u64 start;
1301 /* End (exclusive, last byte + 1) of the range to drop extents from */
1302 u64 end;
1303 /* If true drop all the extent maps in the range */
1304 bool drop_cache;
1305 /*
1306 * If true it means we want to insert a new extent after dropping all
1307 * the extents in the range. If this is true, the 'extent_item_size'
1308 * parameter must be set as well and the 'extent_inserted' field will
1309 * be set to true by btrfs_drop_extents() if it could insert the new
1310 * extent.
1311 * Note: when this is set to true the path must not be NULL.
1312 */
1313 bool replace_extent;
1314 /*
1315 * Used if 'replace_extent' is true. Size of the file extent item to
1316 * insert after dropping all existing extents in the range
1317 */
1318 u32 extent_item_size;
1319
1320 /* Output parameters */
1321
1322 /*
1323 * Set to the minimum between the input parameter 'end' and the end
1324 * (exclusive, last byte + 1) of the last dropped extent. This is always
1325 * set even if btrfs_drop_extents() returns an error.
1326 */
1327 u64 drop_end;
1328 /*
1329 * The number of allocated bytes found in the range. This can be smaller
1330 * than the range's length when there are holes in the range.
1331 */
1332 u64 bytes_found;
1333 /*
1334 * Only set if 'replace_extent' is true. Set to true if we were able
1335 * to insert a replacement extent after dropping all extents in the
1336 * range, otherwise set to false by btrfs_drop_extents().
1337 * Also, if btrfs_drop_extents() has set this to true it means it
1338 * returned with the path locked, otherwise if it has set this to
1339 * false it has returned with the path released.
1340 */
1341 bool extent_inserted;
1342 };
1343
1344 struct btrfs_file_private {
1345 void *filldir_buf;
1346 };
1347
1348
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)1349 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1350 {
1351
1352 return info->nodesize - sizeof(struct btrfs_header);
1353 }
1354
1355 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1356
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)1357 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1358 {
1359 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1360 }
1361
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)1362 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1363 {
1364 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1365 }
1366
1367 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1368 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info * info)1369 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1370 {
1371 return BTRFS_MAX_ITEM_SIZE(info) -
1372 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1373 }
1374
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)1375 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1376 {
1377 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1378 }
1379
1380 /*
1381 * Flags for mount options.
1382 *
1383 * Note: don't forget to add new options to btrfs_show_options()
1384 */
1385 enum {
1386 BTRFS_MOUNT_NODATASUM = (1UL << 0),
1387 BTRFS_MOUNT_NODATACOW = (1UL << 1),
1388 BTRFS_MOUNT_NOBARRIER = (1UL << 2),
1389 BTRFS_MOUNT_SSD = (1UL << 3),
1390 BTRFS_MOUNT_DEGRADED = (1UL << 4),
1391 BTRFS_MOUNT_COMPRESS = (1UL << 5),
1392 BTRFS_MOUNT_NOTREELOG = (1UL << 6),
1393 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7),
1394 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8),
1395 BTRFS_MOUNT_NOSSD = (1UL << 9),
1396 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10),
1397 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11),
1398 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12),
1399 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13),
1400 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14),
1401 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15),
1402 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16),
1403 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17),
1404 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18),
1405 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19),
1406 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20),
1407 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21),
1408 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22),
1409 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23),
1410 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24),
1411 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25),
1412 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26),
1413 BTRFS_MOUNT_REF_VERIFY = (1UL << 27),
1414 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28),
1415 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29),
1416 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30),
1417 };
1418
1419 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1420 #define BTRFS_DEFAULT_MAX_INLINE (2048)
1421
1422 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1423 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1424 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1425 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1426 BTRFS_MOUNT_##opt)
1427
1428 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1429 do { \
1430 if (!btrfs_test_opt(fs_info, opt)) \
1431 btrfs_info(fs_info, fmt, ##args); \
1432 btrfs_set_opt(fs_info->mount_opt, opt); \
1433 } while (0)
1434
1435 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1436 do { \
1437 if (btrfs_test_opt(fs_info, opt)) \
1438 btrfs_info(fs_info, fmt, ##args); \
1439 btrfs_clear_opt(fs_info->mount_opt, opt); \
1440 } while (0)
1441
1442 /*
1443 * Requests for changes that need to be done during transaction commit.
1444 *
1445 * Internal mount options that are used for special handling of the real
1446 * mount options (eg. cannot be set during remount and have to be set during
1447 * transaction commit)
1448 */
1449
1450 #define BTRFS_PENDING_COMMIT (0)
1451
1452 #define btrfs_test_pending(info, opt) \
1453 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1454 #define btrfs_set_pending(info, opt) \
1455 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1456 #define btrfs_clear_pending(info, opt) \
1457 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1458
1459 /*
1460 * Helpers for setting pending mount option changes.
1461 *
1462 * Expects corresponding macros
1463 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1464 */
1465 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1466 do { \
1467 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1468 btrfs_info((info), fmt, ##args); \
1469 btrfs_set_pending((info), SET_##opt); \
1470 btrfs_clear_pending((info), CLEAR_##opt); \
1471 } \
1472 } while(0)
1473
1474 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1475 do { \
1476 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1477 btrfs_info((info), fmt, ##args); \
1478 btrfs_set_pending((info), CLEAR_##opt); \
1479 btrfs_clear_pending((info), SET_##opt); \
1480 } \
1481 } while(0)
1482
1483 /*
1484 * Inode flags
1485 */
1486 #define BTRFS_INODE_NODATASUM (1U << 0)
1487 #define BTRFS_INODE_NODATACOW (1U << 1)
1488 #define BTRFS_INODE_READONLY (1U << 2)
1489 #define BTRFS_INODE_NOCOMPRESS (1U << 3)
1490 #define BTRFS_INODE_PREALLOC (1U << 4)
1491 #define BTRFS_INODE_SYNC (1U << 5)
1492 #define BTRFS_INODE_IMMUTABLE (1U << 6)
1493 #define BTRFS_INODE_APPEND (1U << 7)
1494 #define BTRFS_INODE_NODUMP (1U << 8)
1495 #define BTRFS_INODE_NOATIME (1U << 9)
1496 #define BTRFS_INODE_DIRSYNC (1U << 10)
1497 #define BTRFS_INODE_COMPRESS (1U << 11)
1498
1499 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31)
1500
1501 #define BTRFS_INODE_FLAG_MASK \
1502 (BTRFS_INODE_NODATASUM | \
1503 BTRFS_INODE_NODATACOW | \
1504 BTRFS_INODE_READONLY | \
1505 BTRFS_INODE_NOCOMPRESS | \
1506 BTRFS_INODE_PREALLOC | \
1507 BTRFS_INODE_SYNC | \
1508 BTRFS_INODE_IMMUTABLE | \
1509 BTRFS_INODE_APPEND | \
1510 BTRFS_INODE_NODUMP | \
1511 BTRFS_INODE_NOATIME | \
1512 BTRFS_INODE_DIRSYNC | \
1513 BTRFS_INODE_COMPRESS | \
1514 BTRFS_INODE_ROOT_ITEM_INIT)
1515
1516 #define BTRFS_INODE_RO_VERITY (1U << 0)
1517
1518 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY)
1519
1520 struct btrfs_map_token {
1521 struct extent_buffer *eb;
1522 char *kaddr;
1523 unsigned long offset;
1524 };
1525
1526 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1527 ((bytes) >> (fs_info)->sectorsize_bits)
1528
btrfs_init_map_token(struct btrfs_map_token * token,struct extent_buffer * eb)1529 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1530 struct extent_buffer *eb)
1531 {
1532 token->eb = eb;
1533 token->kaddr = page_address(eb->pages[0]);
1534 token->offset = 0;
1535 }
1536
1537 /* some macros to generate set/get functions for the struct fields. This
1538 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1539 * one for u8:
1540 */
1541 #define le8_to_cpu(v) (v)
1542 #define cpu_to_le8(v) (v)
1543 #define __le8 u8
1544
get_unaligned_le8(const void * p)1545 static inline u8 get_unaligned_le8(const void *p)
1546 {
1547 return *(u8 *)p;
1548 }
1549
put_unaligned_le8(u8 val,void * p)1550 static inline void put_unaligned_le8(u8 val, void *p)
1551 {
1552 *(u8 *)p = val;
1553 }
1554
1555 #define read_eb_member(eb, ptr, type, member, result) (\
1556 read_extent_buffer(eb, (char *)(result), \
1557 ((unsigned long)(ptr)) + \
1558 offsetof(type, member), \
1559 sizeof(((type *)0)->member)))
1560
1561 #define write_eb_member(eb, ptr, type, member, result) (\
1562 write_extent_buffer(eb, (char *)(result), \
1563 ((unsigned long)(ptr)) + \
1564 offsetof(type, member), \
1565 sizeof(((type *)0)->member)))
1566
1567 #define DECLARE_BTRFS_SETGET_BITS(bits) \
1568 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \
1569 const void *ptr, unsigned long off); \
1570 void btrfs_set_token_##bits(struct btrfs_map_token *token, \
1571 const void *ptr, unsigned long off, \
1572 u##bits val); \
1573 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1574 const void *ptr, unsigned long off); \
1575 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \
1576 unsigned long off, u##bits val);
1577
1578 DECLARE_BTRFS_SETGET_BITS(8)
1579 DECLARE_BTRFS_SETGET_BITS(16)
1580 DECLARE_BTRFS_SETGET_BITS(32)
1581 DECLARE_BTRFS_SETGET_BITS(64)
1582
1583 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1584 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1585 const type *s) \
1586 { \
1587 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1588 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1589 } \
1590 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1591 u##bits val) \
1592 { \
1593 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1594 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1595 } \
1596 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \
1597 const type *s) \
1598 { \
1599 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1600 return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1601 } \
1602 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1603 type *s, u##bits val) \
1604 { \
1605 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1606 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \
1607 }
1608
1609 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1610 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1611 { \
1612 const type *p = page_address(eb->pages[0]) + \
1613 offset_in_page(eb->start); \
1614 return get_unaligned_le##bits(&p->member); \
1615 } \
1616 static inline void btrfs_set_##name(const struct extent_buffer *eb, \
1617 u##bits val) \
1618 { \
1619 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1620 put_unaligned_le##bits(val, &p->member); \
1621 }
1622
1623 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1624 static inline u##bits btrfs_##name(const type *s) \
1625 { \
1626 return get_unaligned_le##bits(&s->member); \
1627 } \
1628 static inline void btrfs_set_##name(type *s, u##bits val) \
1629 { \
1630 put_unaligned_le##bits(val, &s->member); \
1631 }
1632
btrfs_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s)1633 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1634 struct btrfs_dev_item *s)
1635 {
1636 BUILD_BUG_ON(sizeof(u64) !=
1637 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1638 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1639 total_bytes));
1640 }
btrfs_set_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s,u64 val)1641 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1642 struct btrfs_dev_item *s,
1643 u64 val)
1644 {
1645 BUILD_BUG_ON(sizeof(u64) !=
1646 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1647 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1648 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1649 }
1650
1651
1652 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1653 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1654 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1655 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1656 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1657 start_offset, 64);
1658 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1659 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1660 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1661 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1662 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1663 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1664
1665 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1666 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1667 total_bytes, 64);
1668 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1669 bytes_used, 64);
1670 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1671 io_align, 32);
1672 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1673 io_width, 32);
1674 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1675 sector_size, 32);
1676 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1677 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1678 dev_group, 32);
1679 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1680 seek_speed, 8);
1681 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1682 bandwidth, 8);
1683 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1684 generation, 64);
1685
btrfs_device_uuid(struct btrfs_dev_item * d)1686 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1687 {
1688 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1689 }
1690
btrfs_device_fsid(struct btrfs_dev_item * d)1691 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1692 {
1693 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1694 }
1695
1696 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1697 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1698 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1699 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1700 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1701 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1702 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1703 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1704 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1705 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1706 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1707
btrfs_stripe_dev_uuid(struct btrfs_stripe * s)1708 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1709 {
1710 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1711 }
1712
1713 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1714 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1715 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1716 stripe_len, 64);
1717 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1718 io_align, 32);
1719 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1720 io_width, 32);
1721 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1722 sector_size, 32);
1723 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1724 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1725 num_stripes, 16);
1726 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1727 sub_stripes, 16);
1728 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1729 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1730
btrfs_stripe_nr(struct btrfs_chunk * c,int nr)1731 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1732 int nr)
1733 {
1734 unsigned long offset = (unsigned long)c;
1735 offset += offsetof(struct btrfs_chunk, stripe);
1736 offset += nr * sizeof(struct btrfs_stripe);
1737 return (struct btrfs_stripe *)offset;
1738 }
1739
btrfs_stripe_dev_uuid_nr(struct btrfs_chunk * c,int nr)1740 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1741 {
1742 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1743 }
1744
btrfs_stripe_offset_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1745 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1746 struct btrfs_chunk *c, int nr)
1747 {
1748 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1749 }
1750
btrfs_stripe_devid_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1751 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1752 struct btrfs_chunk *c, int nr)
1753 {
1754 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1755 }
1756
1757 /* struct btrfs_block_group_item */
1758 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1759 used, 64);
1760 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1761 used, 64);
1762 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1763 struct btrfs_block_group_item, chunk_objectid, 64);
1764
1765 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1766 struct btrfs_block_group_item, chunk_objectid, 64);
1767 BTRFS_SETGET_FUNCS(block_group_flags,
1768 struct btrfs_block_group_item, flags, 64);
1769 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1770 struct btrfs_block_group_item, flags, 64);
1771
1772 /* struct btrfs_free_space_info */
1773 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1774 extent_count, 32);
1775 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1776
1777 /* struct btrfs_inode_ref */
1778 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1779 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1780
1781 /* struct btrfs_inode_extref */
1782 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1783 parent_objectid, 64);
1784 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1785 name_len, 16);
1786 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1787
1788 /* struct btrfs_inode_item */
1789 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1790 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1791 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1792 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1793 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1794 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1795 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1796 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1797 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1798 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1799 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1800 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1801 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1802 generation, 64);
1803 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1804 sequence, 64);
1805 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1806 transid, 64);
1807 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1808 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1809 nbytes, 64);
1810 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1811 block_group, 64);
1812 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1813 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1814 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1815 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1816 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1817 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1818 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1819 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1820 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1821 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1822
1823 /* struct btrfs_dev_extent */
1824 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1825 chunk_tree, 64);
1826 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1827 chunk_objectid, 64);
1828 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1829 chunk_offset, 64);
1830 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1831 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1832 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1833 generation, 64);
1834 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1835
1836 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1837
btrfs_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)1838 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1839 struct btrfs_tree_block_info *item,
1840 struct btrfs_disk_key *key)
1841 {
1842 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1843 }
1844
btrfs_set_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)1845 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1846 struct btrfs_tree_block_info *item,
1847 struct btrfs_disk_key *key)
1848 {
1849 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1850 }
1851
1852 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1853 root, 64);
1854 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1855 objectid, 64);
1856 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1857 offset, 64);
1858 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1859 count, 32);
1860
1861 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1862 count, 32);
1863
1864 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1865 type, 8);
1866 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1867 offset, 64);
1868
btrfs_extent_inline_ref_size(int type)1869 static inline u32 btrfs_extent_inline_ref_size(int type)
1870 {
1871 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1872 type == BTRFS_SHARED_BLOCK_REF_KEY)
1873 return sizeof(struct btrfs_extent_inline_ref);
1874 if (type == BTRFS_SHARED_DATA_REF_KEY)
1875 return sizeof(struct btrfs_shared_data_ref) +
1876 sizeof(struct btrfs_extent_inline_ref);
1877 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1878 return sizeof(struct btrfs_extent_data_ref) +
1879 offsetof(struct btrfs_extent_inline_ref, offset);
1880 return 0;
1881 }
1882
1883 /* struct btrfs_node */
1884 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1885 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1886 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1887 blockptr, 64);
1888 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1889 generation, 64);
1890
btrfs_node_blockptr(const struct extent_buffer * eb,int nr)1891 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1892 {
1893 unsigned long ptr;
1894 ptr = offsetof(struct btrfs_node, ptrs) +
1895 sizeof(struct btrfs_key_ptr) * nr;
1896 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1897 }
1898
btrfs_set_node_blockptr(const struct extent_buffer * eb,int nr,u64 val)1899 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1900 int nr, u64 val)
1901 {
1902 unsigned long ptr;
1903 ptr = offsetof(struct btrfs_node, ptrs) +
1904 sizeof(struct btrfs_key_ptr) * nr;
1905 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1906 }
1907
btrfs_node_ptr_generation(const struct extent_buffer * eb,int nr)1908 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1909 {
1910 unsigned long ptr;
1911 ptr = offsetof(struct btrfs_node, ptrs) +
1912 sizeof(struct btrfs_key_ptr) * nr;
1913 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1914 }
1915
btrfs_set_node_ptr_generation(const struct extent_buffer * eb,int nr,u64 val)1916 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1917 int nr, u64 val)
1918 {
1919 unsigned long ptr;
1920 ptr = offsetof(struct btrfs_node, ptrs) +
1921 sizeof(struct btrfs_key_ptr) * nr;
1922 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1923 }
1924
btrfs_node_key_ptr_offset(int nr)1925 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1926 {
1927 return offsetof(struct btrfs_node, ptrs) +
1928 sizeof(struct btrfs_key_ptr) * nr;
1929 }
1930
1931 void btrfs_node_key(const struct extent_buffer *eb,
1932 struct btrfs_disk_key *disk_key, int nr);
1933
btrfs_set_node_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)1934 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1935 struct btrfs_disk_key *disk_key, int nr)
1936 {
1937 unsigned long ptr;
1938 ptr = btrfs_node_key_ptr_offset(nr);
1939 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1940 struct btrfs_key_ptr, key, disk_key);
1941 }
1942
1943 /* struct btrfs_item */
1944 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1945 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1946 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1947 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1948
btrfs_item_nr_offset(int nr)1949 static inline unsigned long btrfs_item_nr_offset(int nr)
1950 {
1951 return offsetof(struct btrfs_leaf, items) +
1952 sizeof(struct btrfs_item) * nr;
1953 }
1954
btrfs_item_nr(int nr)1955 static inline struct btrfs_item *btrfs_item_nr(int nr)
1956 {
1957 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1958 }
1959
btrfs_item_end(const struct extent_buffer * eb,struct btrfs_item * item)1960 static inline u32 btrfs_item_end(const struct extent_buffer *eb,
1961 struct btrfs_item *item)
1962 {
1963 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1964 }
1965
btrfs_item_end_nr(const struct extent_buffer * eb,int nr)1966 static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr)
1967 {
1968 return btrfs_item_end(eb, btrfs_item_nr(nr));
1969 }
1970
btrfs_item_offset_nr(const struct extent_buffer * eb,int nr)1971 static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr)
1972 {
1973 return btrfs_item_offset(eb, btrfs_item_nr(nr));
1974 }
1975
btrfs_item_size_nr(const struct extent_buffer * eb,int nr)1976 static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr)
1977 {
1978 return btrfs_item_size(eb, btrfs_item_nr(nr));
1979 }
1980
btrfs_item_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)1981 static inline void btrfs_item_key(const struct extent_buffer *eb,
1982 struct btrfs_disk_key *disk_key, int nr)
1983 {
1984 struct btrfs_item *item = btrfs_item_nr(nr);
1985 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1986 }
1987
btrfs_set_item_key(struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)1988 static inline void btrfs_set_item_key(struct extent_buffer *eb,
1989 struct btrfs_disk_key *disk_key, int nr)
1990 {
1991 struct btrfs_item *item = btrfs_item_nr(nr);
1992 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
1993 }
1994
1995 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
1996
1997 /*
1998 * struct btrfs_root_ref
1999 */
2000 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2001 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2002 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2003
2004 /* struct btrfs_dir_item */
2005 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2006 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2007 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2008 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2009 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2010 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2011 data_len, 16);
2012 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2013 name_len, 16);
2014 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2015 transid, 64);
2016
btrfs_dir_item_key(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_disk_key * key)2017 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2018 const struct btrfs_dir_item *item,
2019 struct btrfs_disk_key *key)
2020 {
2021 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2022 }
2023
btrfs_set_dir_item_key(struct extent_buffer * eb,struct btrfs_dir_item * item,const struct btrfs_disk_key * key)2024 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2025 struct btrfs_dir_item *item,
2026 const struct btrfs_disk_key *key)
2027 {
2028 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2029 }
2030
2031 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2032 num_entries, 64);
2033 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2034 num_bitmaps, 64);
2035 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2036 generation, 64);
2037
btrfs_free_space_key(const struct extent_buffer * eb,const struct btrfs_free_space_header * h,struct btrfs_disk_key * key)2038 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2039 const struct btrfs_free_space_header *h,
2040 struct btrfs_disk_key *key)
2041 {
2042 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2043 }
2044
btrfs_set_free_space_key(struct extent_buffer * eb,struct btrfs_free_space_header * h,const struct btrfs_disk_key * key)2045 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2046 struct btrfs_free_space_header *h,
2047 const struct btrfs_disk_key *key)
2048 {
2049 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2050 }
2051
2052 /* struct btrfs_disk_key */
2053 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2054 objectid, 64);
2055 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2056 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2057
2058 #ifdef __LITTLE_ENDIAN
2059
2060 /*
2061 * Optimized helpers for little-endian architectures where CPU and on-disk
2062 * structures have the same endianness and we can skip conversions.
2063 */
2064
btrfs_disk_key_to_cpu(struct btrfs_key * cpu_key,const struct btrfs_disk_key * disk_key)2065 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2066 const struct btrfs_disk_key *disk_key)
2067 {
2068 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2069 }
2070
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk_key,const struct btrfs_key * cpu_key)2071 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2072 const struct btrfs_key *cpu_key)
2073 {
2074 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2075 }
2076
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2077 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2078 struct btrfs_key *cpu_key, int nr)
2079 {
2080 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2081
2082 btrfs_node_key(eb, disk_key, nr);
2083 }
2084
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2085 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2086 struct btrfs_key *cpu_key, int nr)
2087 {
2088 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2089
2090 btrfs_item_key(eb, disk_key, nr);
2091 }
2092
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * cpu_key)2093 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2094 const struct btrfs_dir_item *item,
2095 struct btrfs_key *cpu_key)
2096 {
2097 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2098
2099 btrfs_dir_item_key(eb, item, disk_key);
2100 }
2101
2102 #else
2103
btrfs_disk_key_to_cpu(struct btrfs_key * cpu,const struct btrfs_disk_key * disk)2104 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2105 const struct btrfs_disk_key *disk)
2106 {
2107 cpu->offset = le64_to_cpu(disk->offset);
2108 cpu->type = disk->type;
2109 cpu->objectid = le64_to_cpu(disk->objectid);
2110 }
2111
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk,const struct btrfs_key * cpu)2112 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2113 const struct btrfs_key *cpu)
2114 {
2115 disk->offset = cpu_to_le64(cpu->offset);
2116 disk->type = cpu->type;
2117 disk->objectid = cpu_to_le64(cpu->objectid);
2118 }
2119
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2120 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2121 struct btrfs_key *key, int nr)
2122 {
2123 struct btrfs_disk_key disk_key;
2124 btrfs_node_key(eb, &disk_key, nr);
2125 btrfs_disk_key_to_cpu(key, &disk_key);
2126 }
2127
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2128 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2129 struct btrfs_key *key, int nr)
2130 {
2131 struct btrfs_disk_key disk_key;
2132 btrfs_item_key(eb, &disk_key, nr);
2133 btrfs_disk_key_to_cpu(key, &disk_key);
2134 }
2135
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * key)2136 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2137 const struct btrfs_dir_item *item,
2138 struct btrfs_key *key)
2139 {
2140 struct btrfs_disk_key disk_key;
2141 btrfs_dir_item_key(eb, item, &disk_key);
2142 btrfs_disk_key_to_cpu(key, &disk_key);
2143 }
2144
2145 #endif
2146
2147 /* struct btrfs_header */
2148 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2149 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2150 generation, 64);
2151 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2152 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2153 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2154 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2155 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2156 generation, 64);
2157 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2158 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2159 nritems, 32);
2160 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2161
btrfs_header_flag(const struct extent_buffer * eb,u64 flag)2162 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2163 {
2164 return (btrfs_header_flags(eb) & flag) == flag;
2165 }
2166
btrfs_set_header_flag(struct extent_buffer * eb,u64 flag)2167 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2168 {
2169 u64 flags = btrfs_header_flags(eb);
2170 btrfs_set_header_flags(eb, flags | flag);
2171 }
2172
btrfs_clear_header_flag(struct extent_buffer * eb,u64 flag)2173 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2174 {
2175 u64 flags = btrfs_header_flags(eb);
2176 btrfs_set_header_flags(eb, flags & ~flag);
2177 }
2178
btrfs_header_backref_rev(const struct extent_buffer * eb)2179 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2180 {
2181 u64 flags = btrfs_header_flags(eb);
2182 return flags >> BTRFS_BACKREF_REV_SHIFT;
2183 }
2184
btrfs_set_header_backref_rev(struct extent_buffer * eb,int rev)2185 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2186 int rev)
2187 {
2188 u64 flags = btrfs_header_flags(eb);
2189 flags &= ~BTRFS_BACKREF_REV_MASK;
2190 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2191 btrfs_set_header_flags(eb, flags);
2192 }
2193
btrfs_is_leaf(const struct extent_buffer * eb)2194 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2195 {
2196 return btrfs_header_level(eb) == 0;
2197 }
2198
2199 /* struct btrfs_root_item */
2200 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2201 generation, 64);
2202 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2203 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2204 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2205
2206 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2207 generation, 64);
2208 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2209 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2210 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2211 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2212 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2213 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2214 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2215 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2216 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2217 last_snapshot, 64);
2218 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2219 generation_v2, 64);
2220 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2221 ctransid, 64);
2222 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2223 otransid, 64);
2224 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2225 stransid, 64);
2226 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2227 rtransid, 64);
2228
btrfs_root_readonly(const struct btrfs_root * root)2229 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2230 {
2231 /* Byte-swap the constant at compile time, root_item::flags is LE */
2232 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2233 }
2234
btrfs_root_dead(const struct btrfs_root * root)2235 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2236 {
2237 /* Byte-swap the constant at compile time, root_item::flags is LE */
2238 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2239 }
2240
2241 /* struct btrfs_root_backup */
2242 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2243 tree_root, 64);
2244 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2245 tree_root_gen, 64);
2246 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2247 tree_root_level, 8);
2248
2249 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2250 chunk_root, 64);
2251 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2252 chunk_root_gen, 64);
2253 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2254 chunk_root_level, 8);
2255
2256 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2257 extent_root, 64);
2258 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2259 extent_root_gen, 64);
2260 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2261 extent_root_level, 8);
2262
2263 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2264 fs_root, 64);
2265 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2266 fs_root_gen, 64);
2267 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2268 fs_root_level, 8);
2269
2270 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2271 dev_root, 64);
2272 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2273 dev_root_gen, 64);
2274 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2275 dev_root_level, 8);
2276
2277 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2278 csum_root, 64);
2279 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2280 csum_root_gen, 64);
2281 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2282 csum_root_level, 8);
2283 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2284 total_bytes, 64);
2285 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2286 bytes_used, 64);
2287 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2288 num_devices, 64);
2289
2290 /* struct btrfs_balance_item */
2291 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2292
btrfs_balance_data(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2293 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2294 const struct btrfs_balance_item *bi,
2295 struct btrfs_disk_balance_args *ba)
2296 {
2297 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2298 }
2299
btrfs_set_balance_data(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2300 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2301 struct btrfs_balance_item *bi,
2302 const struct btrfs_disk_balance_args *ba)
2303 {
2304 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2305 }
2306
btrfs_balance_meta(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2307 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2308 const struct btrfs_balance_item *bi,
2309 struct btrfs_disk_balance_args *ba)
2310 {
2311 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2312 }
2313
btrfs_set_balance_meta(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2314 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2315 struct btrfs_balance_item *bi,
2316 const struct btrfs_disk_balance_args *ba)
2317 {
2318 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2319 }
2320
btrfs_balance_sys(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2321 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2322 const struct btrfs_balance_item *bi,
2323 struct btrfs_disk_balance_args *ba)
2324 {
2325 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2326 }
2327
btrfs_set_balance_sys(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2328 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2329 struct btrfs_balance_item *bi,
2330 const struct btrfs_disk_balance_args *ba)
2331 {
2332 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2333 }
2334
2335 static inline void
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)2336 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2337 const struct btrfs_disk_balance_args *disk)
2338 {
2339 memset(cpu, 0, sizeof(*cpu));
2340
2341 cpu->profiles = le64_to_cpu(disk->profiles);
2342 cpu->usage = le64_to_cpu(disk->usage);
2343 cpu->devid = le64_to_cpu(disk->devid);
2344 cpu->pstart = le64_to_cpu(disk->pstart);
2345 cpu->pend = le64_to_cpu(disk->pend);
2346 cpu->vstart = le64_to_cpu(disk->vstart);
2347 cpu->vend = le64_to_cpu(disk->vend);
2348 cpu->target = le64_to_cpu(disk->target);
2349 cpu->flags = le64_to_cpu(disk->flags);
2350 cpu->limit = le64_to_cpu(disk->limit);
2351 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2352 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2353 }
2354
2355 static inline void
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)2356 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2357 const struct btrfs_balance_args *cpu)
2358 {
2359 memset(disk, 0, sizeof(*disk));
2360
2361 disk->profiles = cpu_to_le64(cpu->profiles);
2362 disk->usage = cpu_to_le64(cpu->usage);
2363 disk->devid = cpu_to_le64(cpu->devid);
2364 disk->pstart = cpu_to_le64(cpu->pstart);
2365 disk->pend = cpu_to_le64(cpu->pend);
2366 disk->vstart = cpu_to_le64(cpu->vstart);
2367 disk->vend = cpu_to_le64(cpu->vend);
2368 disk->target = cpu_to_le64(cpu->target);
2369 disk->flags = cpu_to_le64(cpu->flags);
2370 disk->limit = cpu_to_le64(cpu->limit);
2371 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2372 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2373 }
2374
2375 /* struct btrfs_super_block */
2376 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2377 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2378 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2379 generation, 64);
2380 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2381 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2382 struct btrfs_super_block, sys_chunk_array_size, 32);
2383 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2384 struct btrfs_super_block, chunk_root_generation, 64);
2385 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2386 root_level, 8);
2387 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2388 chunk_root, 64);
2389 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2390 chunk_root_level, 8);
2391 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2392 log_root, 64);
2393 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2394 log_root_transid, 64);
2395 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2396 log_root_level, 8);
2397 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2398 total_bytes, 64);
2399 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2400 bytes_used, 64);
2401 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2402 sectorsize, 32);
2403 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2404 nodesize, 32);
2405 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2406 stripesize, 32);
2407 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2408 root_dir_objectid, 64);
2409 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2410 num_devices, 64);
2411 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2412 compat_flags, 64);
2413 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2414 compat_ro_flags, 64);
2415 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2416 incompat_flags, 64);
2417 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2418 csum_type, 16);
2419 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2420 cache_generation, 64);
2421 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2422 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2423 uuid_tree_generation, 64);
2424
2425 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2426 const char *btrfs_super_csum_name(u16 csum_type);
2427 const char *btrfs_super_csum_driver(u16 csum_type);
2428 size_t __attribute_const__ btrfs_get_num_csums(void);
2429
2430
2431 /*
2432 * The leaf data grows from end-to-front in the node.
2433 * this returns the address of the start of the last item,
2434 * which is the stop of the leaf data stack
2435 */
leaf_data_end(const struct extent_buffer * leaf)2436 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2437 {
2438 u32 nr = btrfs_header_nritems(leaf);
2439
2440 if (nr == 0)
2441 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2442 return btrfs_item_offset_nr(leaf, nr - 1);
2443 }
2444
2445 /* struct btrfs_file_extent_item */
2446 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2447 type, 8);
2448 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2449 struct btrfs_file_extent_item, disk_bytenr, 64);
2450 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2451 struct btrfs_file_extent_item, offset, 64);
2452 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2453 struct btrfs_file_extent_item, generation, 64);
2454 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2455 struct btrfs_file_extent_item, num_bytes, 64);
2456 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2457 struct btrfs_file_extent_item, ram_bytes, 64);
2458 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2459 struct btrfs_file_extent_item, disk_num_bytes, 64);
2460 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2461 struct btrfs_file_extent_item, compression, 8);
2462
2463 static inline unsigned long
btrfs_file_extent_inline_start(const struct btrfs_file_extent_item * e)2464 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2465 {
2466 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2467 }
2468
btrfs_file_extent_calc_inline_size(u32 datasize)2469 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2470 {
2471 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2472 }
2473
2474 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2475 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2476 disk_bytenr, 64);
2477 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2478 generation, 64);
2479 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2480 disk_num_bytes, 64);
2481 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2482 offset, 64);
2483 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2484 num_bytes, 64);
2485 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2486 ram_bytes, 64);
2487 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2488 compression, 8);
2489 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2490 encryption, 8);
2491 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2492 other_encoding, 16);
2493
2494 /*
2495 * this returns the number of bytes used by the item on disk, minus the
2496 * size of any extent headers. If a file is compressed on disk, this is
2497 * the compressed size
2498 */
btrfs_file_extent_inline_item_len(const struct extent_buffer * eb,struct btrfs_item * e)2499 static inline u32 btrfs_file_extent_inline_item_len(
2500 const struct extent_buffer *eb,
2501 struct btrfs_item *e)
2502 {
2503 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2504 }
2505
2506 /* btrfs_qgroup_status_item */
2507 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2508 generation, 64);
2509 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2510 version, 64);
2511 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2512 flags, 64);
2513 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2514 rescan, 64);
2515
2516 /* btrfs_qgroup_info_item */
2517 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2518 generation, 64);
2519 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2520 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2521 rfer_cmpr, 64);
2522 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2523 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2524 excl_cmpr, 64);
2525
2526 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2527 struct btrfs_qgroup_info_item, generation, 64);
2528 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2529 rfer, 64);
2530 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2531 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2532 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2533 excl, 64);
2534 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2535 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2536
2537 /* btrfs_qgroup_limit_item */
2538 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2539 flags, 64);
2540 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2541 max_rfer, 64);
2542 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2543 max_excl, 64);
2544 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2545 rsv_rfer, 64);
2546 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2547 rsv_excl, 64);
2548
2549 /* btrfs_dev_replace_item */
2550 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2551 struct btrfs_dev_replace_item, src_devid, 64);
2552 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2553 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2554 64);
2555 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2556 replace_state, 64);
2557 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2558 time_started, 64);
2559 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2560 time_stopped, 64);
2561 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2562 num_write_errors, 64);
2563 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2564 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2565 64);
2566 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2567 cursor_left, 64);
2568 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2569 cursor_right, 64);
2570
2571 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2572 struct btrfs_dev_replace_item, src_devid, 64);
2573 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2574 struct btrfs_dev_replace_item,
2575 cont_reading_from_srcdev_mode, 64);
2576 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2577 struct btrfs_dev_replace_item, replace_state, 64);
2578 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2579 struct btrfs_dev_replace_item, time_started, 64);
2580 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2581 struct btrfs_dev_replace_item, time_stopped, 64);
2582 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2583 struct btrfs_dev_replace_item, num_write_errors, 64);
2584 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2585 struct btrfs_dev_replace_item,
2586 num_uncorrectable_read_errors, 64);
2587 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2588 struct btrfs_dev_replace_item, cursor_left, 64);
2589 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2590 struct btrfs_dev_replace_item, cursor_right, 64);
2591
2592 /* helper function to cast into the data area of the leaf. */
2593 #define btrfs_item_ptr(leaf, slot, type) \
2594 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2595 btrfs_item_offset_nr(leaf, slot)))
2596
2597 #define btrfs_item_ptr_offset(leaf, slot) \
2598 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2599 btrfs_item_offset_nr(leaf, slot)))
2600
btrfs_crc32c(u32 crc,const void * address,unsigned length)2601 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2602 {
2603 return crc32c(crc, address, length);
2604 }
2605
btrfs_crc32c_final(u32 crc,u8 * result)2606 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2607 {
2608 put_unaligned_le32(~crc, result);
2609 }
2610
btrfs_name_hash(const char * name,int len)2611 static inline u64 btrfs_name_hash(const char *name, int len)
2612 {
2613 return crc32c((u32)~1, name, len);
2614 }
2615
2616 /*
2617 * Figure the key offset of an extended inode ref
2618 */
btrfs_extref_hash(u64 parent_objectid,const char * name,int len)2619 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2620 int len)
2621 {
2622 return (u64) crc32c(parent_objectid, name, len);
2623 }
2624
btrfs_alloc_write_mask(struct address_space * mapping)2625 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2626 {
2627 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2628 }
2629
2630 /* extent-tree.c */
2631
2632 enum btrfs_inline_ref_type {
2633 BTRFS_REF_TYPE_INVALID,
2634 BTRFS_REF_TYPE_BLOCK,
2635 BTRFS_REF_TYPE_DATA,
2636 BTRFS_REF_TYPE_ANY,
2637 };
2638
2639 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2640 struct btrfs_extent_inline_ref *iref,
2641 enum btrfs_inline_ref_type is_data);
2642 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2643
2644 /*
2645 * Take the number of bytes to be checksummmed and figure out how many leaves
2646 * it would require to store the csums for that many bytes.
2647 */
btrfs_csum_bytes_to_leaves(const struct btrfs_fs_info * fs_info,u64 csum_bytes)2648 static inline u64 btrfs_csum_bytes_to_leaves(
2649 const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2650 {
2651 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2652
2653 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2654 }
2655
2656 /*
2657 * Use this if we would be adding new items, as we could split nodes as we cow
2658 * down the tree.
2659 */
btrfs_calc_insert_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)2660 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2661 unsigned num_items)
2662 {
2663 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2664 }
2665
2666 /*
2667 * Doing a truncate or a modification won't result in new nodes or leaves, just
2668 * what we need for COW.
2669 */
btrfs_calc_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)2670 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2671 unsigned num_items)
2672 {
2673 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2674 }
2675
2676 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2677 u64 start, u64 num_bytes);
2678 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2679 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2680 unsigned long count);
2681 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2682 struct btrfs_delayed_ref_root *delayed_refs,
2683 struct btrfs_delayed_ref_head *head);
2684 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2685 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2686 struct btrfs_fs_info *fs_info, u64 bytenr,
2687 u64 offset, int metadata, u64 *refs, u64 *flags);
2688 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2689 int reserved);
2690 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2691 u64 bytenr, u64 num_bytes);
2692 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2693 int btrfs_cross_ref_exist(struct btrfs_root *root,
2694 u64 objectid, u64 offset, u64 bytenr, bool strict);
2695 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2696 struct btrfs_root *root,
2697 u64 parent, u64 root_objectid,
2698 const struct btrfs_disk_key *key,
2699 int level, u64 hint,
2700 u64 empty_size,
2701 enum btrfs_lock_nesting nest);
2702 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2703 struct btrfs_root *root,
2704 struct extent_buffer *buf,
2705 u64 parent, int last_ref);
2706 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2707 struct btrfs_root *root, u64 owner,
2708 u64 offset, u64 ram_bytes,
2709 struct btrfs_key *ins);
2710 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2711 u64 root_objectid, u64 owner, u64 offset,
2712 struct btrfs_key *ins);
2713 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2714 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2715 struct btrfs_key *ins, int is_data, int delalloc);
2716 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2717 struct extent_buffer *buf, int full_backref);
2718 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2719 struct extent_buffer *buf, int full_backref);
2720 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2721 struct extent_buffer *eb, u64 flags,
2722 int level, int is_data);
2723 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2724
2725 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2726 u64 start, u64 len, int delalloc);
2727 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2728 u64 len);
2729 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2730 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2731 struct btrfs_ref *generic_ref);
2732
2733 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2734
2735 /*
2736 * Different levels for to flush space when doing space reservations.
2737 *
2738 * The higher the level, the more methods we try to reclaim space.
2739 */
2740 enum btrfs_reserve_flush_enum {
2741 /* If we are in the transaction, we can't flush anything.*/
2742 BTRFS_RESERVE_NO_FLUSH,
2743
2744 /*
2745 * Flush space by:
2746 * - Running delayed inode items
2747 * - Allocating a new chunk
2748 */
2749 BTRFS_RESERVE_FLUSH_LIMIT,
2750
2751 /*
2752 * Flush space by:
2753 * - Running delayed inode items
2754 * - Running delayed refs
2755 * - Running delalloc and waiting for ordered extents
2756 * - Allocating a new chunk
2757 */
2758 BTRFS_RESERVE_FLUSH_EVICT,
2759
2760 /*
2761 * Flush space by above mentioned methods and by:
2762 * - Running delayed iputs
2763 * - Committing transaction
2764 *
2765 * Can be interrupted by a fatal signal.
2766 */
2767 BTRFS_RESERVE_FLUSH_DATA,
2768 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2769 BTRFS_RESERVE_FLUSH_ALL,
2770
2771 /*
2772 * Pretty much the same as FLUSH_ALL, but can also steal space from
2773 * global rsv.
2774 *
2775 * Can be interrupted by a fatal signal.
2776 */
2777 BTRFS_RESERVE_FLUSH_ALL_STEAL,
2778 };
2779
2780 enum btrfs_flush_state {
2781 FLUSH_DELAYED_ITEMS_NR = 1,
2782 FLUSH_DELAYED_ITEMS = 2,
2783 FLUSH_DELAYED_REFS_NR = 3,
2784 FLUSH_DELAYED_REFS = 4,
2785 FLUSH_DELALLOC = 5,
2786 FLUSH_DELALLOC_WAIT = 6,
2787 FLUSH_DELALLOC_FULL = 7,
2788 ALLOC_CHUNK = 8,
2789 ALLOC_CHUNK_FORCE = 9,
2790 RUN_DELAYED_IPUTS = 10,
2791 COMMIT_TRANS = 11,
2792 };
2793
2794 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2795 struct btrfs_block_rsv *rsv,
2796 int nitems, bool use_global_rsv);
2797 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2798 struct btrfs_block_rsv *rsv);
2799 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2800
2801 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2802 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2803 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2804 u64 start, u64 end);
2805 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2806 u64 num_bytes, u64 *actual_bytes);
2807 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2808
2809 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2810 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2811 struct btrfs_fs_info *fs_info);
2812 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2813 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2814 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2815
2816 /* ctree.c */
2817 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2818 int *slot);
2819 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2820 int btrfs_previous_item(struct btrfs_root *root,
2821 struct btrfs_path *path, u64 min_objectid,
2822 int type);
2823 int btrfs_previous_extent_item(struct btrfs_root *root,
2824 struct btrfs_path *path, u64 min_objectid);
2825 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2826 struct btrfs_path *path,
2827 const struct btrfs_key *new_key);
2828 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2829 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2830 struct btrfs_key *key, int lowest_level,
2831 u64 min_trans);
2832 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2833 struct btrfs_path *path,
2834 u64 min_trans);
2835 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2836 int slot);
2837
2838 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *root, struct extent_buffer *buf,
2840 struct extent_buffer *parent, int parent_slot,
2841 struct extent_buffer **cow_ret,
2842 enum btrfs_lock_nesting nest);
2843 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root,
2845 struct extent_buffer *buf,
2846 struct extent_buffer **cow_ret, u64 new_root_objectid);
2847 int btrfs_block_can_be_shared(struct btrfs_root *root,
2848 struct extent_buffer *buf);
2849 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2850 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2851 int btrfs_split_item(struct btrfs_trans_handle *trans,
2852 struct btrfs_root *root,
2853 struct btrfs_path *path,
2854 const struct btrfs_key *new_key,
2855 unsigned long split_offset);
2856 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2857 struct btrfs_root *root,
2858 struct btrfs_path *path,
2859 const struct btrfs_key *new_key);
2860 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2861 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2862 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2863 const struct btrfs_key *key, struct btrfs_path *p,
2864 int ins_len, int cow);
2865 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2866 struct btrfs_path *p, u64 time_seq);
2867 int btrfs_search_slot_for_read(struct btrfs_root *root,
2868 const struct btrfs_key *key,
2869 struct btrfs_path *p, int find_higher,
2870 int return_any);
2871 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2872 struct btrfs_root *root, struct extent_buffer *parent,
2873 int start_slot, u64 *last_ret,
2874 struct btrfs_key *progress);
2875 void btrfs_release_path(struct btrfs_path *p);
2876 struct btrfs_path *btrfs_alloc_path(void);
2877 void btrfs_free_path(struct btrfs_path *p);
2878
2879 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2880 struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)2881 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2882 struct btrfs_root *root,
2883 struct btrfs_path *path)
2884 {
2885 return btrfs_del_items(trans, root, path, path->slots[0], 1);
2886 }
2887
2888 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
2889 const struct btrfs_key *cpu_key, u32 *data_size,
2890 int nr);
2891 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2892 const struct btrfs_key *key, void *data, u32 data_size);
2893 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2894 struct btrfs_root *root,
2895 struct btrfs_path *path,
2896 const struct btrfs_key *cpu_key, u32 *data_size,
2897 int nr);
2898
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)2899 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 const struct btrfs_key *key,
2903 u32 data_size)
2904 {
2905 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
2906 }
2907
2908 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2909 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2910 u64 time_seq);
2911
2912 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2913 struct btrfs_path *path);
2914
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * p,u64 time_seq)2915 static inline int btrfs_next_old_item(struct btrfs_root *root,
2916 struct btrfs_path *p, u64 time_seq)
2917 {
2918 ++p->slots[0];
2919 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2920 return btrfs_next_old_leaf(root, p, time_seq);
2921 return 0;
2922 }
2923
2924 /*
2925 * Search the tree again to find a leaf with greater keys.
2926 *
2927 * Returns 0 if it found something or 1 if there are no greater leaves.
2928 * Returns < 0 on error.
2929 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)2930 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2931 {
2932 return btrfs_next_old_leaf(root, path, 0);
2933 }
2934
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)2935 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2936 {
2937 return btrfs_next_old_item(root, p, 0);
2938 }
2939 int btrfs_leaf_free_space(struct extent_buffer *leaf);
2940 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
2941 int for_reloc);
2942 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2943 struct btrfs_root *root,
2944 struct extent_buffer *node,
2945 struct extent_buffer *parent);
btrfs_fs_closing(struct btrfs_fs_info * fs_info)2946 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2947 {
2948 /*
2949 * Do it this way so we only ever do one test_bit in the normal case.
2950 */
2951 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
2952 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
2953 return 2;
2954 return 1;
2955 }
2956 return 0;
2957 }
2958
2959 /*
2960 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
2961 * anything except sleeping. This function is used to check the status of
2962 * the fs.
2963 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
2964 * since setting and checking for SB_RDONLY in the superblock's flags is not
2965 * atomic.
2966 */
btrfs_need_cleaner_sleep(struct btrfs_fs_info * fs_info)2967 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
2968 {
2969 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
2970 btrfs_fs_closing(fs_info);
2971 }
2972
btrfs_set_sb_rdonly(struct super_block * sb)2973 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
2974 {
2975 sb->s_flags |= SB_RDONLY;
2976 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
2977 }
2978
btrfs_clear_sb_rdonly(struct super_block * sb)2979 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
2980 {
2981 sb->s_flags &= ~SB_RDONLY;
2982 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
2983 }
2984
2985 /* root-item.c */
2986 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2987 u64 ref_id, u64 dirid, u64 sequence, const char *name,
2988 int name_len);
2989 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2990 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
2991 int name_len);
2992 int btrfs_del_root(struct btrfs_trans_handle *trans,
2993 const struct btrfs_key *key);
2994 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2995 const struct btrfs_key *key,
2996 struct btrfs_root_item *item);
2997 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
2998 struct btrfs_root *root,
2999 struct btrfs_key *key,
3000 struct btrfs_root_item *item);
3001 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3002 struct btrfs_path *path, struct btrfs_root_item *root_item,
3003 struct btrfs_key *root_key);
3004 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3005 void btrfs_set_root_node(struct btrfs_root_item *item,
3006 struct extent_buffer *node);
3007 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3008 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3009 struct btrfs_root *root);
3010
3011 /* uuid-tree.c */
3012 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3013 u64 subid);
3014 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3015 u64 subid);
3016 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3017
3018 /* dir-item.c */
3019 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3020 const char *name, int name_len);
3021 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3022 int name_len, struct btrfs_inode *dir,
3023 struct btrfs_key *location, u8 type, u64 index);
3024 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3025 struct btrfs_root *root,
3026 struct btrfs_path *path, u64 dir,
3027 const char *name, int name_len,
3028 int mod);
3029 struct btrfs_dir_item *
3030 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3031 struct btrfs_root *root,
3032 struct btrfs_path *path, u64 dir,
3033 u64 index, const char *name, int name_len,
3034 int mod);
3035 struct btrfs_dir_item *
3036 btrfs_search_dir_index_item(struct btrfs_root *root,
3037 struct btrfs_path *path, u64 dirid,
3038 const char *name, int name_len);
3039 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root,
3041 struct btrfs_path *path,
3042 struct btrfs_dir_item *di);
3043 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3044 struct btrfs_root *root,
3045 struct btrfs_path *path, u64 objectid,
3046 const char *name, u16 name_len,
3047 const void *data, u16 data_len);
3048 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3049 struct btrfs_root *root,
3050 struct btrfs_path *path, u64 dir,
3051 const char *name, u16 name_len,
3052 int mod);
3053 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3054 struct btrfs_path *path,
3055 const char *name,
3056 int name_len);
3057
3058 /* orphan.c */
3059 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3060 struct btrfs_root *root, u64 offset);
3061 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3062 struct btrfs_root *root, u64 offset);
3063 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3064
3065 /* inode-item.c */
3066 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3067 struct btrfs_root *root,
3068 const char *name, int name_len,
3069 u64 inode_objectid, u64 ref_objectid, u64 index);
3070 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3071 struct btrfs_root *root,
3072 const char *name, int name_len,
3073 u64 inode_objectid, u64 ref_objectid, u64 *index);
3074 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3075 struct btrfs_root *root,
3076 struct btrfs_path *path, u64 objectid);
3077 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3078 *root, struct btrfs_path *path,
3079 struct btrfs_key *location, int mod);
3080
3081 struct btrfs_inode_extref *
3082 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3083 struct btrfs_root *root,
3084 struct btrfs_path *path,
3085 const char *name, int name_len,
3086 u64 inode_objectid, u64 ref_objectid, int ins_len,
3087 int cow);
3088
3089 struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf,
3090 int slot, const char *name,
3091 int name_len);
3092 struct btrfs_inode_extref *btrfs_find_name_in_ext_backref(
3093 struct extent_buffer *leaf, int slot, u64 ref_objectid,
3094 const char *name, int name_len);
3095 /* file-item.c */
3096 struct btrfs_dio_private;
3097 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3098 struct btrfs_root *root, u64 bytenr, u64 len);
3099 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3100 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3101 struct btrfs_root *root,
3102 u64 objectid, u64 pos,
3103 u64 disk_offset, u64 disk_num_bytes,
3104 u64 num_bytes, u64 offset, u64 ram_bytes,
3105 u8 compression, u8 encryption, u16 other_encoding);
3106 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3107 struct btrfs_root *root,
3108 struct btrfs_path *path, u64 objectid,
3109 u64 bytenr, int mod);
3110 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3111 struct btrfs_root *root,
3112 struct btrfs_ordered_sum *sums);
3113 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3114 u64 file_start, int contig);
3115 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3116 struct list_head *list, int search_commit);
3117 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3118 const struct btrfs_path *path,
3119 struct btrfs_file_extent_item *fi,
3120 const bool new_inline,
3121 struct extent_map *em);
3122 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3123 u64 len);
3124 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3125 u64 len);
3126 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3127 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3128
3129 /* inode.c */
3130 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3131 int mirror_num, unsigned long bio_flags);
3132 unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3133 struct page *page, u64 start, u64 end);
3134 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3135 u64 start, u64 len);
3136 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3137 u64 *orig_start, u64 *orig_block_len,
3138 u64 *ram_bytes, bool strict);
3139
3140 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3141 struct btrfs_inode *inode);
3142 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3143 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3144 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3145 struct btrfs_root *root,
3146 struct btrfs_inode *dir, struct btrfs_inode *inode,
3147 const char *name, int name_len);
3148 int btrfs_add_link(struct btrfs_trans_handle *trans,
3149 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3150 const char *name, int name_len, int add_backref, u64 index);
3151 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3152 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3153 int front);
3154 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3155 struct btrfs_root *root,
3156 struct btrfs_inode *inode, u64 new_size,
3157 u32 min_type, u64 *extents_found);
3158
3159 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3160 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3161 bool in_reclaim_context);
3162 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3163 unsigned int extra_bits,
3164 struct extent_state **cached_state);
3165 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3166 struct btrfs_root *new_root,
3167 struct btrfs_root *parent_root,
3168 struct user_namespace *mnt_userns);
3169 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3170 unsigned *bits);
3171 void btrfs_clear_delalloc_extent(struct inode *inode,
3172 struct extent_state *state, unsigned *bits);
3173 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3174 struct extent_state *other);
3175 void btrfs_split_delalloc_extent(struct inode *inode,
3176 struct extent_state *orig, u64 split);
3177 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
3178 unsigned long bio_flags);
3179 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3180 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3181 int btrfs_readpage(struct file *file, struct page *page);
3182 void btrfs_evict_inode(struct inode *inode);
3183 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3184 struct inode *btrfs_alloc_inode(struct super_block *sb);
3185 void btrfs_destroy_inode(struct inode *inode);
3186 void btrfs_free_inode(struct inode *inode);
3187 int btrfs_drop_inode(struct inode *inode);
3188 int __init btrfs_init_cachep(void);
3189 void __cold btrfs_destroy_cachep(void);
3190 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3191 struct btrfs_root *root, struct btrfs_path *path);
3192 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3193 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3194 struct page *page, size_t pg_offset,
3195 u64 start, u64 end);
3196 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3197 struct btrfs_root *root, struct btrfs_inode *inode);
3198 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3199 struct btrfs_root *root, struct btrfs_inode *inode);
3200 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3201 struct btrfs_inode *inode);
3202 int btrfs_orphan_cleanup(struct btrfs_root *root);
3203 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3204 void btrfs_add_delayed_iput(struct inode *inode);
3205 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3206 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3207 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3208 u64 start, u64 num_bytes, u64 min_size,
3209 loff_t actual_len, u64 *alloc_hint);
3210 int btrfs_prealloc_file_range_trans(struct inode *inode,
3211 struct btrfs_trans_handle *trans, int mode,
3212 u64 start, u64 num_bytes, u64 min_size,
3213 loff_t actual_len, u64 *alloc_hint);
3214 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3215 u64 start, u64 end, int *page_started, unsigned long *nr_written,
3216 struct writeback_control *wbc);
3217 int btrfs_writepage_cow_fixup(struct page *page);
3218 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3219 struct page *page, u64 start,
3220 u64 end, bool uptodate);
3221 extern const struct dentry_operations btrfs_dentry_operations;
3222 extern const struct iomap_ops btrfs_dio_iomap_ops;
3223 extern const struct iomap_dio_ops btrfs_dio_ops;
3224
3225 /* Inode locking type flags, by default the exclusive lock is taken */
3226 #define BTRFS_ILOCK_SHARED (1U << 0)
3227 #define BTRFS_ILOCK_TRY (1U << 1)
3228 #define BTRFS_ILOCK_MMAP (1U << 2)
3229
3230 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3231 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3232 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3233 const u64 add_bytes,
3234 const u64 del_bytes);
3235
3236 /* ioctl.c */
3237 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3238 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3239 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3240 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3241 struct dentry *dentry, struct fileattr *fa);
3242 int btrfs_ioctl_get_supported_features(void __user *arg);
3243 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3244 int __pure btrfs_is_empty_uuid(u8 *uuid);
3245 int btrfs_defrag_file(struct inode *inode, struct file *file,
3246 struct btrfs_ioctl_defrag_range_args *range,
3247 u64 newer_than, unsigned long max_pages);
3248 void btrfs_get_block_group_info(struct list_head *groups_list,
3249 struct btrfs_ioctl_space_info *space);
3250 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3251 struct btrfs_ioctl_balance_args *bargs);
3252 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3253 enum btrfs_exclusive_operation type);
3254 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3255 enum btrfs_exclusive_operation type);
3256 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3257 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3258
3259 /* file.c */
3260 int __init btrfs_auto_defrag_init(void);
3261 void __cold btrfs_auto_defrag_exit(void);
3262 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3263 struct btrfs_inode *inode);
3264 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3266 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3267 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3268 int skip_pinned);
3269 extern const struct file_operations btrfs_file_operations;
3270 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3271 struct btrfs_root *root, struct btrfs_inode *inode,
3272 struct btrfs_drop_extents_args *args);
3273 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3274 struct btrfs_path *path, const u64 start,
3275 const u64 end,
3276 struct btrfs_replace_extent_info *extent_info,
3277 struct btrfs_trans_handle **trans_out);
3278 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3279 struct btrfs_inode *inode, u64 start, u64 end);
3280 int btrfs_release_file(struct inode *inode, struct file *file);
3281 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3282 size_t num_pages, loff_t pos, size_t write_bytes,
3283 struct extent_state **cached, bool noreserve);
3284 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3285 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3286 size_t *write_bytes);
3287 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3288
3289 /* tree-defrag.c */
3290 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3291 struct btrfs_root *root);
3292
3293 /* super.c */
3294 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3295 unsigned long new_flags);
3296 int btrfs_sync_fs(struct super_block *sb, int wait);
3297 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3298 u64 subvol_objectid);
3299
3300 static inline __printf(2, 3) __cold
btrfs_no_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)3301 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3302 {
3303 }
3304
3305 #ifdef CONFIG_PRINTK
3306 __printf(2, 3)
3307 __cold
3308 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3309 #else
3310 #define btrfs_printk(fs_info, fmt, args...) \
3311 btrfs_no_printk(fs_info, fmt, ##args)
3312 #endif
3313
3314 #define btrfs_emerg(fs_info, fmt, args...) \
3315 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3316 #define btrfs_alert(fs_info, fmt, args...) \
3317 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3318 #define btrfs_crit(fs_info, fmt, args...) \
3319 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3320 #define btrfs_err(fs_info, fmt, args...) \
3321 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3322 #define btrfs_warn(fs_info, fmt, args...) \
3323 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3324 #define btrfs_notice(fs_info, fmt, args...) \
3325 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3326 #define btrfs_info(fs_info, fmt, args...) \
3327 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3328
3329 /*
3330 * Wrappers that use printk_in_rcu
3331 */
3332 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3333 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3334 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3335 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3336 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3337 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3338 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3339 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3340 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3341 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3342 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3343 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3344 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3345 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3346
3347 /*
3348 * Wrappers that use a ratelimited printk_in_rcu
3349 */
3350 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3351 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3352 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3353 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3354 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3355 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3356 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3357 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3358 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3359 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3360 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3361 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3362 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3363 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3364
3365 /*
3366 * Wrappers that use a ratelimited printk
3367 */
3368 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3369 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3370 #define btrfs_alert_rl(fs_info, fmt, args...) \
3371 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3372 #define btrfs_crit_rl(fs_info, fmt, args...) \
3373 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3374 #define btrfs_err_rl(fs_info, fmt, args...) \
3375 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3376 #define btrfs_warn_rl(fs_info, fmt, args...) \
3377 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3378 #define btrfs_notice_rl(fs_info, fmt, args...) \
3379 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3380 #define btrfs_info_rl(fs_info, fmt, args...) \
3381 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3382
3383 #if defined(CONFIG_DYNAMIC_DEBUG)
3384 #define btrfs_debug(fs_info, fmt, args...) \
3385 _dynamic_func_call_no_desc(fmt, btrfs_printk, \
3386 fs_info, KERN_DEBUG fmt, ##args)
3387 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3388 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \
3389 fs_info, KERN_DEBUG fmt, ##args)
3390 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3391 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \
3392 fs_info, KERN_DEBUG fmt, ##args)
3393 #define btrfs_debug_rl(fs_info, fmt, args...) \
3394 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \
3395 fs_info, KERN_DEBUG fmt, ##args)
3396 #elif defined(DEBUG)
3397 #define btrfs_debug(fs_info, fmt, args...) \
3398 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3399 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3400 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3401 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3402 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3403 #define btrfs_debug_rl(fs_info, fmt, args...) \
3404 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3405 #else
3406 #define btrfs_debug(fs_info, fmt, args...) \
3407 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3408 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3409 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3410 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3411 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3412 #define btrfs_debug_rl(fs_info, fmt, args...) \
3413 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3414 #endif
3415
3416 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3417 do { \
3418 rcu_read_lock(); \
3419 btrfs_printk(fs_info, fmt, ##args); \
3420 rcu_read_unlock(); \
3421 } while (0)
3422
3423 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \
3424 do { \
3425 rcu_read_lock(); \
3426 btrfs_no_printk(fs_info, fmt, ##args); \
3427 rcu_read_unlock(); \
3428 } while (0)
3429
3430 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3431 do { \
3432 static DEFINE_RATELIMIT_STATE(_rs, \
3433 DEFAULT_RATELIMIT_INTERVAL, \
3434 DEFAULT_RATELIMIT_BURST); \
3435 if (__ratelimit(&_rs)) \
3436 btrfs_printk(fs_info, fmt, ##args); \
3437 } while (0)
3438
3439 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3440 do { \
3441 rcu_read_lock(); \
3442 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3443 rcu_read_unlock(); \
3444 } while (0)
3445
3446 #ifdef CONFIG_BTRFS_ASSERT
3447 __cold __noreturn
assertfail(const char * expr,const char * file,int line)3448 static inline void assertfail(const char *expr, const char *file, int line)
3449 {
3450 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3451 BUG();
3452 }
3453
3454 #define ASSERT(expr) \
3455 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3456
3457 #else
assertfail(const char * expr,const char * file,int line)3458 static inline void assertfail(const char *expr, const char* file, int line) { }
3459 #define ASSERT(expr) (void)(expr)
3460 #endif
3461
3462 #if BITS_PER_LONG == 32
3463 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3464 /*
3465 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3466 * addresses of extents.
3467 *
3468 * For 4K page size it's about 10T, for 64K it's 160T.
3469 */
3470 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3471 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3472 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3473 #endif
3474
3475 /*
3476 * Get the correct offset inside the page of extent buffer.
3477 *
3478 * @eb: target extent buffer
3479 * @start: offset inside the extent buffer
3480 *
3481 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3482 */
get_eb_offset_in_page(const struct extent_buffer * eb,unsigned long offset)3483 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3484 unsigned long offset)
3485 {
3486 /*
3487 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3488 * to PAGE_SIZE, thus adding it won't cause any difference.
3489 *
3490 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3491 * to the eb, thus we have to take the eb->start into consideration.
3492 */
3493 return offset_in_page(offset + eb->start);
3494 }
3495
get_eb_page_index(unsigned long offset)3496 static inline unsigned long get_eb_page_index(unsigned long offset)
3497 {
3498 /*
3499 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3500 *
3501 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3502 * and have ensured that all tree blocks are contained in one page,
3503 * thus we always get index == 0.
3504 */
3505 return offset >> PAGE_SHIFT;
3506 }
3507
3508 /*
3509 * Use that for functions that are conditionally exported for sanity tests but
3510 * otherwise static
3511 */
3512 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3513 #define EXPORT_FOR_TESTS static
3514 #else
3515 #define EXPORT_FOR_TESTS
3516 #endif
3517
3518 __cold
btrfs_print_v0_err(struct btrfs_fs_info * fs_info)3519 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3520 {
3521 btrfs_err(fs_info,
3522 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3523 }
3524
3525 __printf(5, 6)
3526 __cold
3527 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3528 unsigned int line, int errno, const char *fmt, ...);
3529
3530 const char * __attribute_const__ btrfs_decode_error(int errno);
3531
3532 __cold
3533 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3534 const char *function,
3535 unsigned int line, int errno);
3536
3537 /*
3538 * Call btrfs_abort_transaction as early as possible when an error condition is
3539 * detected, that way the exact line number is reported.
3540 */
3541 #define btrfs_abort_transaction(trans, errno) \
3542 do { \
3543 /* Report first abort since mount */ \
3544 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3545 &((trans)->fs_info->fs_state))) { \
3546 if ((errno) != -EIO && (errno) != -EROFS) { \
3547 WARN(1, KERN_DEBUG \
3548 "BTRFS: Transaction aborted (error %d)\n", \
3549 (errno)); \
3550 } else { \
3551 btrfs_debug((trans)->fs_info, \
3552 "Transaction aborted (error %d)", \
3553 (errno)); \
3554 } \
3555 } \
3556 __btrfs_abort_transaction((trans), __func__, \
3557 __LINE__, (errno)); \
3558 } while (0)
3559
3560 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3561 do { \
3562 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3563 (errno), fmt, ##args); \
3564 } while (0)
3565
3566 __printf(5, 6)
3567 __cold
3568 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3569 unsigned int line, int errno, const char *fmt, ...);
3570 /*
3571 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3572 * will panic(). Otherwise we BUG() here.
3573 */
3574 #define btrfs_panic(fs_info, errno, fmt, args...) \
3575 do { \
3576 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3577 BUG(); \
3578 } while (0)
3579
3580
3581 /* compatibility and incompatibility defines */
3582
3583 #define btrfs_set_fs_incompat(__fs_info, opt) \
3584 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3585 #opt)
3586
__btrfs_set_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3587 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3588 u64 flag, const char* name)
3589 {
3590 struct btrfs_super_block *disk_super;
3591 u64 features;
3592
3593 disk_super = fs_info->super_copy;
3594 features = btrfs_super_incompat_flags(disk_super);
3595 if (!(features & flag)) {
3596 spin_lock(&fs_info->super_lock);
3597 features = btrfs_super_incompat_flags(disk_super);
3598 if (!(features & flag)) {
3599 features |= flag;
3600 btrfs_set_super_incompat_flags(disk_super, features);
3601 btrfs_info(fs_info,
3602 "setting incompat feature flag for %s (0x%llx)",
3603 name, flag);
3604 }
3605 spin_unlock(&fs_info->super_lock);
3606 }
3607 }
3608
3609 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3610 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3611 #opt)
3612
__btrfs_clear_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3613 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3614 u64 flag, const char* name)
3615 {
3616 struct btrfs_super_block *disk_super;
3617 u64 features;
3618
3619 disk_super = fs_info->super_copy;
3620 features = btrfs_super_incompat_flags(disk_super);
3621 if (features & flag) {
3622 spin_lock(&fs_info->super_lock);
3623 features = btrfs_super_incompat_flags(disk_super);
3624 if (features & flag) {
3625 features &= ~flag;
3626 btrfs_set_super_incompat_flags(disk_super, features);
3627 btrfs_info(fs_info,
3628 "clearing incompat feature flag for %s (0x%llx)",
3629 name, flag);
3630 }
3631 spin_unlock(&fs_info->super_lock);
3632 }
3633 }
3634
3635 #define btrfs_fs_incompat(fs_info, opt) \
3636 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3637
__btrfs_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag)3638 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3639 {
3640 struct btrfs_super_block *disk_super;
3641 disk_super = fs_info->super_copy;
3642 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3643 }
3644
3645 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3646 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3647 #opt)
3648
__btrfs_set_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3649 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3650 u64 flag, const char *name)
3651 {
3652 struct btrfs_super_block *disk_super;
3653 u64 features;
3654
3655 disk_super = fs_info->super_copy;
3656 features = btrfs_super_compat_ro_flags(disk_super);
3657 if (!(features & flag)) {
3658 spin_lock(&fs_info->super_lock);
3659 features = btrfs_super_compat_ro_flags(disk_super);
3660 if (!(features & flag)) {
3661 features |= flag;
3662 btrfs_set_super_compat_ro_flags(disk_super, features);
3663 btrfs_info(fs_info,
3664 "setting compat-ro feature flag for %s (0x%llx)",
3665 name, flag);
3666 }
3667 spin_unlock(&fs_info->super_lock);
3668 }
3669 }
3670
3671 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3672 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3673 #opt)
3674
__btrfs_clear_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3675 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3676 u64 flag, const char *name)
3677 {
3678 struct btrfs_super_block *disk_super;
3679 u64 features;
3680
3681 disk_super = fs_info->super_copy;
3682 features = btrfs_super_compat_ro_flags(disk_super);
3683 if (features & flag) {
3684 spin_lock(&fs_info->super_lock);
3685 features = btrfs_super_compat_ro_flags(disk_super);
3686 if (features & flag) {
3687 features &= ~flag;
3688 btrfs_set_super_compat_ro_flags(disk_super, features);
3689 btrfs_info(fs_info,
3690 "clearing compat-ro feature flag for %s (0x%llx)",
3691 name, flag);
3692 }
3693 spin_unlock(&fs_info->super_lock);
3694 }
3695 }
3696
3697 #define btrfs_fs_compat_ro(fs_info, opt) \
3698 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3699
__btrfs_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag)3700 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3701 {
3702 struct btrfs_super_block *disk_super;
3703 disk_super = fs_info->super_copy;
3704 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3705 }
3706
3707 /* acl.c */
3708 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3709 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3710 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3711 struct posix_acl *acl, int type);
3712 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3713 struct inode *inode, struct inode *dir);
3714 #else
3715 #define btrfs_get_acl NULL
3716 #define btrfs_set_acl NULL
btrfs_init_acl(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir)3717 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3718 struct inode *inode, struct inode *dir)
3719 {
3720 return 0;
3721 }
3722 #endif
3723
3724 /* relocation.c */
3725 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3726 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3727 struct btrfs_root *root);
3728 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3729 struct btrfs_root *root);
3730 int btrfs_recover_relocation(struct btrfs_root *root);
3731 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3732 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3733 struct btrfs_root *root, struct extent_buffer *buf,
3734 struct extent_buffer *cow);
3735 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3736 u64 *bytes_to_reserve);
3737 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3738 struct btrfs_pending_snapshot *pending);
3739 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3740 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3741 u64 bytenr);
3742 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3743
3744 /* scrub.c */
3745 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3746 u64 end, struct btrfs_scrub_progress *progress,
3747 int readonly, int is_dev_replace);
3748 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3749 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3750 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3751 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3752 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3753 struct btrfs_scrub_progress *progress);
btrfs_init_full_stripe_locks_tree(struct btrfs_full_stripe_locks_tree * locks_root)3754 static inline void btrfs_init_full_stripe_locks_tree(
3755 struct btrfs_full_stripe_locks_tree *locks_root)
3756 {
3757 locks_root->root = RB_ROOT;
3758 mutex_init(&locks_root->lock);
3759 }
3760
3761 /* dev-replace.c */
3762 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3763 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3764 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3765
btrfs_bio_counter_dec(struct btrfs_fs_info * fs_info)3766 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3767 {
3768 btrfs_bio_counter_sub(fs_info, 1);
3769 }
3770
3771 /* reada.c */
3772 struct reada_control {
3773 struct btrfs_fs_info *fs_info; /* tree to prefetch */
3774 struct btrfs_key key_start;
3775 struct btrfs_key key_end; /* exclusive */
3776 atomic_t elems;
3777 struct kref refcnt;
3778 wait_queue_head_t wait;
3779 };
3780 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3781 struct btrfs_key *start, struct btrfs_key *end);
3782 int btrfs_reada_wait(void *handle);
3783 void btrfs_reada_detach(void *handle);
3784 int btree_readahead_hook(struct extent_buffer *eb, int err);
3785 void btrfs_reada_remove_dev(struct btrfs_device *dev);
3786 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev);
3787
is_fstree(u64 rootid)3788 static inline int is_fstree(u64 rootid)
3789 {
3790 if (rootid == BTRFS_FS_TREE_OBJECTID ||
3791 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3792 !btrfs_qgroup_level(rootid)))
3793 return 1;
3794 return 0;
3795 }
3796
btrfs_defrag_cancelled(struct btrfs_fs_info * fs_info)3797 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3798 {
3799 return signal_pending(current);
3800 }
3801
3802 /* verity.c */
3803 #ifdef CONFIG_FS_VERITY
3804
3805 extern const struct fsverity_operations btrfs_verityops;
3806 int btrfs_drop_verity_items(struct btrfs_inode *inode);
3807
3808 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3809 encryption, 8);
3810 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3811 size, 64);
3812 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3813 struct btrfs_verity_descriptor_item, encryption, 8);
3814 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3815 struct btrfs_verity_descriptor_item, size, 64);
3816
3817 #else
3818
btrfs_drop_verity_items(struct btrfs_inode * inode)3819 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3820 {
3821 return 0;
3822 }
3823
3824 #endif
3825
3826 /* Sanity test specific functions */
3827 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3828 void btrfs_test_destroy_inode(struct inode *inode);
btrfs_is_testing(struct btrfs_fs_info * fs_info)3829 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3830 {
3831 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3832 }
3833 #else
btrfs_is_testing(struct btrfs_fs_info * fs_info)3834 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3835 {
3836 return 0;
3837 }
3838 #endif
3839
btrfs_is_zoned(const struct btrfs_fs_info * fs_info)3840 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3841 {
3842 return fs_info->zoned != 0;
3843 }
3844
3845 /*
3846 * We use page status Private2 to indicate there is an ordered extent with
3847 * unfinished IO.
3848 *
3849 * Rename the Private2 accessors to Ordered, to improve readability.
3850 */
3851 #define PageOrdered(page) PagePrivate2(page)
3852 #define SetPageOrdered(page) SetPagePrivate2(page)
3853 #define ClearPageOrdered(page) ClearPagePrivate2(page)
3854
3855 #endif
3856