1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
38 .sub_stripes = 2,
39 .dev_stripes = 1,
40 .devs_max = 0, /* 0 == as many as possible */
41 .devs_min = 2,
42 .tolerated_failures = 1,
43 .devs_increment = 2,
44 .ncopies = 2,
45 .nparity = 0,
46 .raid_name = "raid10",
47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 },
50 [BTRFS_RAID_RAID1] = {
51 .sub_stripes = 1,
52 .dev_stripes = 1,
53 .devs_max = 2,
54 .devs_min = 2,
55 .tolerated_failures = 1,
56 .devs_increment = 2,
57 .ncopies = 2,
58 .nparity = 0,
59 .raid_name = "raid1",
60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 },
63 [BTRFS_RAID_RAID1C3] = {
64 .sub_stripes = 1,
65 .dev_stripes = 1,
66 .devs_max = 3,
67 .devs_min = 3,
68 .tolerated_failures = 2,
69 .devs_increment = 3,
70 .ncopies = 3,
71 .nparity = 0,
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 },
76 [BTRFS_RAID_RAID1C4] = {
77 .sub_stripes = 1,
78 .dev_stripes = 1,
79 .devs_max = 4,
80 .devs_min = 4,
81 .tolerated_failures = 3,
82 .devs_increment = 4,
83 .ncopies = 4,
84 .nparity = 0,
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 },
89 [BTRFS_RAID_DUP] = {
90 .sub_stripes = 1,
91 .dev_stripes = 2,
92 .devs_max = 1,
93 .devs_min = 1,
94 .tolerated_failures = 0,
95 .devs_increment = 1,
96 .ncopies = 2,
97 .nparity = 0,
98 .raid_name = "dup",
99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
100 .mindev_error = 0,
101 },
102 [BTRFS_RAID_RAID0] = {
103 .sub_stripes = 1,
104 .dev_stripes = 1,
105 .devs_max = 0,
106 .devs_min = 1,
107 .tolerated_failures = 0,
108 .devs_increment = 1,
109 .ncopies = 1,
110 .nparity = 0,
111 .raid_name = "raid0",
112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
113 .mindev_error = 0,
114 },
115 [BTRFS_RAID_SINGLE] = {
116 .sub_stripes = 1,
117 .dev_stripes = 1,
118 .devs_max = 1,
119 .devs_min = 1,
120 .tolerated_failures = 0,
121 .devs_increment = 1,
122 .ncopies = 1,
123 .nparity = 0,
124 .raid_name = "single",
125 .bg_flag = 0,
126 .mindev_error = 0,
127 },
128 [BTRFS_RAID_RAID5] = {
129 .sub_stripes = 1,
130 .dev_stripes = 1,
131 .devs_max = 0,
132 .devs_min = 2,
133 .tolerated_failures = 1,
134 .devs_increment = 1,
135 .ncopies = 1,
136 .nparity = 1,
137 .raid_name = "raid5",
138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 },
141 [BTRFS_RAID_RAID6] = {
142 .sub_stripes = 1,
143 .dev_stripes = 1,
144 .devs_max = 0,
145 .devs_min = 3,
146 .tolerated_failures = 2,
147 .devs_increment = 1,
148 .ncopies = 1,
149 .nparity = 2,
150 .raid_name = "raid6",
151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 },
154 };
155
156 /*
157 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158 * can be used as index to access btrfs_raid_array[].
159 */
btrfs_bg_flags_to_raid_index(u64 flags)160 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161 {
162 if (flags & BTRFS_BLOCK_GROUP_RAID10)
163 return BTRFS_RAID_RAID10;
164 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165 return BTRFS_RAID_RAID1;
166 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167 return BTRFS_RAID_RAID1C3;
168 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169 return BTRFS_RAID_RAID1C4;
170 else if (flags & BTRFS_BLOCK_GROUP_DUP)
171 return BTRFS_RAID_DUP;
172 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173 return BTRFS_RAID_RAID0;
174 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175 return BTRFS_RAID_RAID5;
176 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177 return BTRFS_RAID_RAID6;
178
179 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180 }
181
btrfs_bg_type_to_raid_name(u64 flags)182 const char *btrfs_bg_type_to_raid_name(u64 flags)
183 {
184 const int index = btrfs_bg_flags_to_raid_index(flags);
185
186 if (index >= BTRFS_NR_RAID_TYPES)
187 return NULL;
188
189 return btrfs_raid_array[index].raid_name;
190 }
191
192 /*
193 * Fill @buf with textual description of @bg_flags, no more than @size_buf
194 * bytes including terminating null byte.
195 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)196 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197 {
198 int i;
199 int ret;
200 char *bp = buf;
201 u64 flags = bg_flags;
202 u32 size_bp = size_buf;
203
204 if (!flags) {
205 strcpy(bp, "NONE");
206 return;
207 }
208
209 #define DESCRIBE_FLAG(flag, desc) \
210 do { \
211 if (flags & (flag)) { \
212 ret = snprintf(bp, size_bp, "%s|", (desc)); \
213 if (ret < 0 || ret >= size_bp) \
214 goto out_overflow; \
215 size_bp -= ret; \
216 bp += ret; \
217 flags &= ~(flag); \
218 } \
219 } while (0)
220
221 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224
225 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 btrfs_raid_array[i].raid_name);
229 #undef DESCRIBE_FLAG
230
231 if (flags) {
232 ret = snprintf(bp, size_bp, "0x%llx|", flags);
233 size_bp -= ret;
234 }
235
236 if (size_bp < size_buf)
237 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238
239 /*
240 * The text is trimmed, it's up to the caller to provide sufficiently
241 * large buffer
242 */
243 out_overflow:;
244 }
245
246 static int init_first_rw_device(struct btrfs_trans_handle *trans);
247 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
249 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
250 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251 enum btrfs_map_op op,
252 u64 logical, u64 *length,
253 struct btrfs_bio **bbio_ret,
254 int mirror_num, int need_raid_map);
255
256 /*
257 * Device locking
258 * ==============
259 *
260 * There are several mutexes that protect manipulation of devices and low-level
261 * structures like chunks but not block groups, extents or files
262 *
263 * uuid_mutex (global lock)
264 * ------------------------
265 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267 * device) or requested by the device= mount option
268 *
269 * the mutex can be very coarse and can cover long-running operations
270 *
271 * protects: updates to fs_devices counters like missing devices, rw devices,
272 * seeding, structure cloning, opening/closing devices at mount/umount time
273 *
274 * global::fs_devs - add, remove, updates to the global list
275 *
276 * does not protect: manipulation of the fs_devices::devices list in general
277 * but in mount context it could be used to exclude list modifications by eg.
278 * scan ioctl
279 *
280 * btrfs_device::name - renames (write side), read is RCU
281 *
282 * fs_devices::device_list_mutex (per-fs, with RCU)
283 * ------------------------------------------------
284 * protects updates to fs_devices::devices, ie. adding and deleting
285 *
286 * simple list traversal with read-only actions can be done with RCU protection
287 *
288 * may be used to exclude some operations from running concurrently without any
289 * modifications to the list (see write_all_supers)
290 *
291 * Is not required at mount and close times, because our device list is
292 * protected by the uuid_mutex at that point.
293 *
294 * balance_mutex
295 * -------------
296 * protects balance structures (status, state) and context accessed from
297 * several places (internally, ioctl)
298 *
299 * chunk_mutex
300 * -----------
301 * protects chunks, adding or removing during allocation, trim or when a new
302 * device is added/removed. Additionally it also protects post_commit_list of
303 * individual devices, since they can be added to the transaction's
304 * post_commit_list only with chunk_mutex held.
305 *
306 * cleaner_mutex
307 * -------------
308 * a big lock that is held by the cleaner thread and prevents running subvolume
309 * cleaning together with relocation or delayed iputs
310 *
311 *
312 * Lock nesting
313 * ============
314 *
315 * uuid_mutex
316 * device_list_mutex
317 * chunk_mutex
318 * balance_mutex
319 *
320 *
321 * Exclusive operations
322 * ====================
323 *
324 * Maintains the exclusivity of the following operations that apply to the
325 * whole filesystem and cannot run in parallel.
326 *
327 * - Balance (*)
328 * - Device add
329 * - Device remove
330 * - Device replace (*)
331 * - Resize
332 *
333 * The device operations (as above) can be in one of the following states:
334 *
335 * - Running state
336 * - Paused state
337 * - Completed state
338 *
339 * Only device operations marked with (*) can go into the Paused state for the
340 * following reasons:
341 *
342 * - ioctl (only Balance can be Paused through ioctl)
343 * - filesystem remounted as read-only
344 * - filesystem unmounted and mounted as read-only
345 * - system power-cycle and filesystem mounted as read-only
346 * - filesystem or device errors leading to forced read-only
347 *
348 * The status of exclusive operation is set and cleared atomically.
349 * During the course of Paused state, fs_info::exclusive_operation remains set.
350 * A device operation in Paused or Running state can be canceled or resumed
351 * either by ioctl (Balance only) or when remounted as read-write.
352 * The exclusive status is cleared when the device operation is canceled or
353 * completed.
354 */
355
356 DEFINE_MUTEX(uuid_mutex);
357 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)358 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
359 {
360 return &fs_uuids;
361 }
362
363 /*
364 * alloc_fs_devices - allocate struct btrfs_fs_devices
365 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
366 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
367 *
368 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369 * The returned struct is not linked onto any lists and can be destroyed with
370 * kfree() right away.
371 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)372 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373 const u8 *metadata_fsid)
374 {
375 struct btrfs_fs_devices *fs_devs;
376
377 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
378 if (!fs_devs)
379 return ERR_PTR(-ENOMEM);
380
381 mutex_init(&fs_devs->device_list_mutex);
382
383 INIT_LIST_HEAD(&fs_devs->devices);
384 INIT_LIST_HEAD(&fs_devs->alloc_list);
385 INIT_LIST_HEAD(&fs_devs->fs_list);
386 INIT_LIST_HEAD(&fs_devs->seed_list);
387 if (fsid)
388 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
389
390 if (metadata_fsid)
391 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392 else if (fsid)
393 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394
395 return fs_devs;
396 }
397
btrfs_free_device(struct btrfs_device * device)398 void btrfs_free_device(struct btrfs_device *device)
399 {
400 WARN_ON(!list_empty(&device->post_commit_list));
401 rcu_string_free(device->name);
402 extent_io_tree_release(&device->alloc_state);
403 bio_put(device->flush_bio);
404 btrfs_destroy_dev_zone_info(device);
405 kfree(device);
406 }
407
free_fs_devices(struct btrfs_fs_devices * fs_devices)408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409 {
410 struct btrfs_device *device;
411 WARN_ON(fs_devices->opened);
412 while (!list_empty(&fs_devices->devices)) {
413 device = list_entry(fs_devices->devices.next,
414 struct btrfs_device, dev_list);
415 list_del(&device->dev_list);
416 btrfs_free_device(device);
417 }
418 kfree(fs_devices);
419 }
420
btrfs_cleanup_fs_uuids(void)421 void __exit btrfs_cleanup_fs_uuids(void)
422 {
423 struct btrfs_fs_devices *fs_devices;
424
425 while (!list_empty(&fs_uuids)) {
426 fs_devices = list_entry(fs_uuids.next,
427 struct btrfs_fs_devices, fs_list);
428 list_del(&fs_devices->fs_list);
429 free_fs_devices(fs_devices);
430 }
431 }
432
find_fsid(const u8 * fsid,const u8 * metadata_fsid)433 static noinline struct btrfs_fs_devices *find_fsid(
434 const u8 *fsid, const u8 *metadata_fsid)
435 {
436 struct btrfs_fs_devices *fs_devices;
437
438 ASSERT(fsid);
439
440 /* Handle non-split brain cases */
441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 if (metadata_fsid) {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 BTRFS_FSID_SIZE) == 0)
446 return fs_devices;
447 } else {
448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 return fs_devices;
450 }
451 }
452 return NULL;
453 }
454
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 struct btrfs_super_block *disk_super)
457 {
458
459 struct btrfs_fs_devices *fs_devices;
460
461 /*
462 * Handle scanned device having completed its fsid change but
463 * belonging to a fs_devices that was created by first scanning
464 * a device which didn't have its fsid/metadata_uuid changed
465 * at all and the CHANGING_FSID_V2 flag set.
466 */
467 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 if (fs_devices->fsid_change &&
469 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 BTRFS_FSID_SIZE) == 0 &&
471 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 BTRFS_FSID_SIZE) == 0) {
473 return fs_devices;
474 }
475 }
476 /*
477 * Handle scanned device having completed its fsid change but
478 * belonging to a fs_devices that was created by a device that
479 * has an outdated pair of fsid/metadata_uuid and
480 * CHANGING_FSID_V2 flag set.
481 */
482 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 if (fs_devices->fsid_change &&
484 memcmp(fs_devices->metadata_uuid,
485 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 BTRFS_FSID_SIZE) == 0) {
488 return fs_devices;
489 }
490 }
491
492 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493 }
494
495
496 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 int flush, struct block_device **bdev,
499 struct btrfs_super_block **disk_super)
500 {
501 int ret;
502
503 *bdev = blkdev_get_by_path(device_path, flags, holder);
504
505 if (IS_ERR(*bdev)) {
506 ret = PTR_ERR(*bdev);
507 goto error;
508 }
509
510 if (flush)
511 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
512 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
513 if (ret) {
514 blkdev_put(*bdev, flags);
515 goto error;
516 }
517 invalidate_bdev(*bdev);
518 *disk_super = btrfs_read_dev_super(*bdev);
519 if (IS_ERR(*disk_super)) {
520 ret = PTR_ERR(*disk_super);
521 blkdev_put(*bdev, flags);
522 goto error;
523 }
524
525 return 0;
526
527 error:
528 *bdev = NULL;
529 return ret;
530 }
531
device_path_matched(const char * path,struct btrfs_device * device)532 static bool device_path_matched(const char *path, struct btrfs_device *device)
533 {
534 int found;
535
536 rcu_read_lock();
537 found = strcmp(rcu_str_deref(device->name), path);
538 rcu_read_unlock();
539
540 return found == 0;
541 }
542
543 /*
544 * Search and remove all stale (devices which are not mounted) devices.
545 * When both inputs are NULL, it will search and release all stale devices.
546 * path: Optional. When provided will it release all unmounted devices
547 * matching this path only.
548 * skip_dev: Optional. Will skip this device when searching for the stale
549 * devices.
550 * Return: 0 for success or if @path is NULL.
551 * -EBUSY if @path is a mounted device.
552 * -ENOENT if @path does not match any device in the list.
553 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)554 static int btrfs_free_stale_devices(const char *path,
555 struct btrfs_device *skip_device)
556 {
557 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558 struct btrfs_device *device, *tmp_device;
559 int ret = 0;
560
561 lockdep_assert_held(&uuid_mutex);
562
563 if (path)
564 ret = -ENOENT;
565
566 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
567
568 mutex_lock(&fs_devices->device_list_mutex);
569 list_for_each_entry_safe(device, tmp_device,
570 &fs_devices->devices, dev_list) {
571 if (skip_device && skip_device == device)
572 continue;
573 if (path && !device->name)
574 continue;
575 if (path && !device_path_matched(path, device))
576 continue;
577 if (fs_devices->opened) {
578 /* for an already deleted device return 0 */
579 if (path && ret != 0)
580 ret = -EBUSY;
581 break;
582 }
583
584 /* delete the stale device */
585 fs_devices->num_devices--;
586 list_del(&device->dev_list);
587 btrfs_free_device(device);
588
589 ret = 0;
590 }
591 mutex_unlock(&fs_devices->device_list_mutex);
592
593 if (fs_devices->num_devices == 0) {
594 btrfs_sysfs_remove_fsid(fs_devices);
595 list_del(&fs_devices->fs_list);
596 free_fs_devices(fs_devices);
597 }
598 }
599
600 return ret;
601 }
602
603 /*
604 * This is only used on mount, and we are protected from competing things
605 * messing with our fs_devices by the uuid_mutex, thus we do not need the
606 * fs_devices->device_list_mutex here.
607 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)608 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
609 struct btrfs_device *device, fmode_t flags,
610 void *holder)
611 {
612 struct request_queue *q;
613 struct block_device *bdev;
614 struct btrfs_super_block *disk_super;
615 u64 devid;
616 int ret;
617
618 if (device->bdev)
619 return -EINVAL;
620 if (!device->name)
621 return -EINVAL;
622
623 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
624 &bdev, &disk_super);
625 if (ret)
626 return ret;
627
628 devid = btrfs_stack_device_id(&disk_super->dev_item);
629 if (devid != device->devid)
630 goto error_free_page;
631
632 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
633 goto error_free_page;
634
635 device->generation = btrfs_super_generation(disk_super);
636
637 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
638 if (btrfs_super_incompat_flags(disk_super) &
639 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
640 pr_err(
641 "BTRFS: Invalid seeding and uuid-changed device detected\n");
642 goto error_free_page;
643 }
644
645 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
646 fs_devices->seeding = true;
647 } else {
648 if (bdev_read_only(bdev))
649 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
650 else
651 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
652 }
653
654 q = bdev_get_queue(bdev);
655 if (!blk_queue_nonrot(q))
656 fs_devices->rotating = true;
657
658 device->bdev = bdev;
659 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
660 device->mode = flags;
661
662 fs_devices->open_devices++;
663 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
664 device->devid != BTRFS_DEV_REPLACE_DEVID) {
665 fs_devices->rw_devices++;
666 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
667 }
668 btrfs_release_disk_super(disk_super);
669
670 return 0;
671
672 error_free_page:
673 btrfs_release_disk_super(disk_super);
674 blkdev_put(bdev, flags);
675
676 return -EINVAL;
677 }
678
679 /*
680 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
681 * being created with a disk that has already completed its fsid change. Such
682 * disk can belong to an fs which has its FSID changed or to one which doesn't.
683 * Handle both cases here.
684 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)685 static struct btrfs_fs_devices *find_fsid_inprogress(
686 struct btrfs_super_block *disk_super)
687 {
688 struct btrfs_fs_devices *fs_devices;
689
690 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
691 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
692 BTRFS_FSID_SIZE) != 0 &&
693 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
694 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
695 return fs_devices;
696 }
697 }
698
699 return find_fsid(disk_super->fsid, NULL);
700 }
701
702
find_fsid_changed(struct btrfs_super_block * disk_super)703 static struct btrfs_fs_devices *find_fsid_changed(
704 struct btrfs_super_block *disk_super)
705 {
706 struct btrfs_fs_devices *fs_devices;
707
708 /*
709 * Handles the case where scanned device is part of an fs that had
710 * multiple successful changes of FSID but currently device didn't
711 * observe it. Meaning our fsid will be different than theirs. We need
712 * to handle two subcases :
713 * 1 - The fs still continues to have different METADATA/FSID uuids.
714 * 2 - The fs is switched back to its original FSID (METADATA/FSID
715 * are equal).
716 */
717 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
718 /* Changed UUIDs */
719 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720 BTRFS_FSID_SIZE) != 0 &&
721 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
722 BTRFS_FSID_SIZE) == 0 &&
723 memcmp(fs_devices->fsid, disk_super->fsid,
724 BTRFS_FSID_SIZE) != 0)
725 return fs_devices;
726
727 /* Unchanged UUIDs */
728 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
729 BTRFS_FSID_SIZE) == 0 &&
730 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
731 BTRFS_FSID_SIZE) == 0)
732 return fs_devices;
733 }
734
735 return NULL;
736 }
737
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)738 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
739 struct btrfs_super_block *disk_super)
740 {
741 struct btrfs_fs_devices *fs_devices;
742
743 /*
744 * Handle the case where the scanned device is part of an fs whose last
745 * metadata UUID change reverted it to the original FSID. At the same
746 * time * fs_devices was first created by another constitutent device
747 * which didn't fully observe the operation. This results in an
748 * btrfs_fs_devices created with metadata/fsid different AND
749 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
750 * fs_devices equal to the FSID of the disk.
751 */
752 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
753 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
754 BTRFS_FSID_SIZE) != 0 &&
755 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
756 BTRFS_FSID_SIZE) == 0 &&
757 fs_devices->fsid_change)
758 return fs_devices;
759 }
760
761 return NULL;
762 }
763 /*
764 * Add new device to list of registered devices
765 *
766 * Returns:
767 * device pointer which was just added or updated when successful
768 * error pointer when failed
769 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)770 static noinline struct btrfs_device *device_list_add(const char *path,
771 struct btrfs_super_block *disk_super,
772 bool *new_device_added)
773 {
774 struct btrfs_device *device;
775 struct btrfs_fs_devices *fs_devices = NULL;
776 struct rcu_string *name;
777 u64 found_transid = btrfs_super_generation(disk_super);
778 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
779 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
780 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
781 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
782 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
783
784 if (fsid_change_in_progress) {
785 if (!has_metadata_uuid)
786 fs_devices = find_fsid_inprogress(disk_super);
787 else
788 fs_devices = find_fsid_changed(disk_super);
789 } else if (has_metadata_uuid) {
790 fs_devices = find_fsid_with_metadata_uuid(disk_super);
791 } else {
792 fs_devices = find_fsid_reverted_metadata(disk_super);
793 if (!fs_devices)
794 fs_devices = find_fsid(disk_super->fsid, NULL);
795 }
796
797
798 if (!fs_devices) {
799 if (has_metadata_uuid)
800 fs_devices = alloc_fs_devices(disk_super->fsid,
801 disk_super->metadata_uuid);
802 else
803 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
804
805 if (IS_ERR(fs_devices))
806 return ERR_CAST(fs_devices);
807
808 fs_devices->fsid_change = fsid_change_in_progress;
809
810 mutex_lock(&fs_devices->device_list_mutex);
811 list_add(&fs_devices->fs_list, &fs_uuids);
812
813 device = NULL;
814 } else {
815 mutex_lock(&fs_devices->device_list_mutex);
816 device = btrfs_find_device(fs_devices, devid,
817 disk_super->dev_item.uuid, NULL);
818
819 /*
820 * If this disk has been pulled into an fs devices created by
821 * a device which had the CHANGING_FSID_V2 flag then replace the
822 * metadata_uuid/fsid values of the fs_devices.
823 */
824 if (fs_devices->fsid_change &&
825 found_transid > fs_devices->latest_generation) {
826 memcpy(fs_devices->fsid, disk_super->fsid,
827 BTRFS_FSID_SIZE);
828
829 if (has_metadata_uuid)
830 memcpy(fs_devices->metadata_uuid,
831 disk_super->metadata_uuid,
832 BTRFS_FSID_SIZE);
833 else
834 memcpy(fs_devices->metadata_uuid,
835 disk_super->fsid, BTRFS_FSID_SIZE);
836
837 fs_devices->fsid_change = false;
838 }
839 }
840
841 if (!device) {
842 if (fs_devices->opened) {
843 mutex_unlock(&fs_devices->device_list_mutex);
844 return ERR_PTR(-EBUSY);
845 }
846
847 device = btrfs_alloc_device(NULL, &devid,
848 disk_super->dev_item.uuid);
849 if (IS_ERR(device)) {
850 mutex_unlock(&fs_devices->device_list_mutex);
851 /* we can safely leave the fs_devices entry around */
852 return device;
853 }
854
855 name = rcu_string_strdup(path, GFP_NOFS);
856 if (!name) {
857 btrfs_free_device(device);
858 mutex_unlock(&fs_devices->device_list_mutex);
859 return ERR_PTR(-ENOMEM);
860 }
861 rcu_assign_pointer(device->name, name);
862
863 list_add_rcu(&device->dev_list, &fs_devices->devices);
864 fs_devices->num_devices++;
865
866 device->fs_devices = fs_devices;
867 *new_device_added = true;
868
869 if (disk_super->label[0])
870 pr_info(
871 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
872 disk_super->label, devid, found_transid, path,
873 current->comm, task_pid_nr(current));
874 else
875 pr_info(
876 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
877 disk_super->fsid, devid, found_transid, path,
878 current->comm, task_pid_nr(current));
879
880 } else if (!device->name || strcmp(device->name->str, path)) {
881 /*
882 * When FS is already mounted.
883 * 1. If you are here and if the device->name is NULL that
884 * means this device was missing at time of FS mount.
885 * 2. If you are here and if the device->name is different
886 * from 'path' that means either
887 * a. The same device disappeared and reappeared with
888 * different name. or
889 * b. The missing-disk-which-was-replaced, has
890 * reappeared now.
891 *
892 * We must allow 1 and 2a above. But 2b would be a spurious
893 * and unintentional.
894 *
895 * Further in case of 1 and 2a above, the disk at 'path'
896 * would have missed some transaction when it was away and
897 * in case of 2a the stale bdev has to be updated as well.
898 * 2b must not be allowed at all time.
899 */
900
901 /*
902 * For now, we do allow update to btrfs_fs_device through the
903 * btrfs dev scan cli after FS has been mounted. We're still
904 * tracking a problem where systems fail mount by subvolume id
905 * when we reject replacement on a mounted FS.
906 */
907 if (!fs_devices->opened && found_transid < device->generation) {
908 /*
909 * That is if the FS is _not_ mounted and if you
910 * are here, that means there is more than one
911 * disk with same uuid and devid.We keep the one
912 * with larger generation number or the last-in if
913 * generation are equal.
914 */
915 mutex_unlock(&fs_devices->device_list_mutex);
916 return ERR_PTR(-EEXIST);
917 }
918
919 /*
920 * We are going to replace the device path for a given devid,
921 * make sure it's the same device if the device is mounted
922 */
923 if (device->bdev) {
924 int error;
925 dev_t path_dev;
926
927 error = lookup_bdev(path, &path_dev);
928 if (error) {
929 mutex_unlock(&fs_devices->device_list_mutex);
930 return ERR_PTR(error);
931 }
932
933 if (device->bdev->bd_dev != path_dev) {
934 mutex_unlock(&fs_devices->device_list_mutex);
935 /*
936 * device->fs_info may not be reliable here, so
937 * pass in a NULL instead. This avoids a
938 * possible use-after-free when the fs_info and
939 * fs_info->sb are already torn down.
940 */
941 btrfs_warn_in_rcu(NULL,
942 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
943 path, devid, found_transid,
944 current->comm,
945 task_pid_nr(current));
946 return ERR_PTR(-EEXIST);
947 }
948 btrfs_info_in_rcu(device->fs_info,
949 "devid %llu device path %s changed to %s scanned by %s (%d)",
950 devid, rcu_str_deref(device->name),
951 path, current->comm,
952 task_pid_nr(current));
953 }
954
955 name = rcu_string_strdup(path, GFP_NOFS);
956 if (!name) {
957 mutex_unlock(&fs_devices->device_list_mutex);
958 return ERR_PTR(-ENOMEM);
959 }
960 rcu_string_free(device->name);
961 rcu_assign_pointer(device->name, name);
962 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
963 fs_devices->missing_devices--;
964 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
965 }
966 }
967
968 /*
969 * Unmount does not free the btrfs_device struct but would zero
970 * generation along with most of the other members. So just update
971 * it back. We need it to pick the disk with largest generation
972 * (as above).
973 */
974 if (!fs_devices->opened) {
975 device->generation = found_transid;
976 fs_devices->latest_generation = max_t(u64, found_transid,
977 fs_devices->latest_generation);
978 }
979
980 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
981
982 mutex_unlock(&fs_devices->device_list_mutex);
983 return device;
984 }
985
clone_fs_devices(struct btrfs_fs_devices * orig)986 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
987 {
988 struct btrfs_fs_devices *fs_devices;
989 struct btrfs_device *device;
990 struct btrfs_device *orig_dev;
991 int ret = 0;
992
993 lockdep_assert_held(&uuid_mutex);
994
995 fs_devices = alloc_fs_devices(orig->fsid, NULL);
996 if (IS_ERR(fs_devices))
997 return fs_devices;
998
999 fs_devices->total_devices = orig->total_devices;
1000
1001 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002 struct rcu_string *name;
1003
1004 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 orig_dev->uuid);
1006 if (IS_ERR(device)) {
1007 ret = PTR_ERR(device);
1008 goto error;
1009 }
1010
1011 /*
1012 * This is ok to do without rcu read locked because we hold the
1013 * uuid mutex so nothing we touch in here is going to disappear.
1014 */
1015 if (orig_dev->name) {
1016 name = rcu_string_strdup(orig_dev->name->str,
1017 GFP_KERNEL);
1018 if (!name) {
1019 btrfs_free_device(device);
1020 ret = -ENOMEM;
1021 goto error;
1022 }
1023 rcu_assign_pointer(device->name, name);
1024 }
1025
1026 list_add(&device->dev_list, &fs_devices->devices);
1027 device->fs_devices = fs_devices;
1028 fs_devices->num_devices++;
1029 }
1030 return fs_devices;
1031 error:
1032 free_fs_devices(fs_devices);
1033 return ERR_PTR(ret);
1034 }
1035
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1036 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1037 struct btrfs_device **latest_dev)
1038 {
1039 struct btrfs_device *device, *next;
1040
1041 /* This is the initialized path, it is safe to release the devices. */
1042 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1043 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1044 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1045 &device->dev_state) &&
1046 !test_bit(BTRFS_DEV_STATE_MISSING,
1047 &device->dev_state) &&
1048 (!*latest_dev ||
1049 device->generation > (*latest_dev)->generation)) {
1050 *latest_dev = device;
1051 }
1052 continue;
1053 }
1054
1055 /*
1056 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1057 * in btrfs_init_dev_replace() so just continue.
1058 */
1059 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1060 continue;
1061
1062 if (device->bdev) {
1063 blkdev_put(device->bdev, device->mode);
1064 device->bdev = NULL;
1065 fs_devices->open_devices--;
1066 }
1067 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1068 list_del_init(&device->dev_alloc_list);
1069 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1070 fs_devices->rw_devices--;
1071 }
1072 list_del_init(&device->dev_list);
1073 fs_devices->num_devices--;
1074 btrfs_free_device(device);
1075 }
1076
1077 }
1078
1079 /*
1080 * After we have read the system tree and know devids belonging to this
1081 * filesystem, remove the device which does not belong there.
1082 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1083 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1084 {
1085 struct btrfs_device *latest_dev = NULL;
1086 struct btrfs_fs_devices *seed_dev;
1087
1088 mutex_lock(&uuid_mutex);
1089 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1090
1091 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1092 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1093
1094 fs_devices->latest_bdev = latest_dev->bdev;
1095
1096 mutex_unlock(&uuid_mutex);
1097 }
1098
btrfs_close_bdev(struct btrfs_device * device)1099 static void btrfs_close_bdev(struct btrfs_device *device)
1100 {
1101 if (!device->bdev)
1102 return;
1103
1104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105 sync_blockdev(device->bdev);
1106 invalidate_bdev(device->bdev);
1107 }
1108
1109 blkdev_put(device->bdev, device->mode);
1110 }
1111
btrfs_close_one_device(struct btrfs_device * device)1112 static void btrfs_close_one_device(struct btrfs_device *device)
1113 {
1114 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1115
1116 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118 list_del_init(&device->dev_alloc_list);
1119 fs_devices->rw_devices--;
1120 }
1121
1122 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1123 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1124
1125 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1126 fs_devices->missing_devices--;
1127
1128 btrfs_close_bdev(device);
1129 if (device->bdev) {
1130 fs_devices->open_devices--;
1131 device->bdev = NULL;
1132 }
1133 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1134 btrfs_destroy_dev_zone_info(device);
1135
1136 device->fs_info = NULL;
1137 atomic_set(&device->dev_stats_ccnt, 0);
1138 extent_io_tree_release(&device->alloc_state);
1139
1140 /*
1141 * Reset the flush error record. We might have a transient flush error
1142 * in this mount, and if so we aborted the current transaction and set
1143 * the fs to an error state, guaranteeing no super blocks can be further
1144 * committed. However that error might be transient and if we unmount the
1145 * filesystem and mount it again, we should allow the mount to succeed
1146 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1147 * filesystem again we still get flush errors, then we will again abort
1148 * any transaction and set the error state, guaranteeing no commits of
1149 * unsafe super blocks.
1150 */
1151 device->last_flush_error = 0;
1152
1153 /* Verify the device is back in a pristine state */
1154 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1155 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1156 ASSERT(list_empty(&device->dev_alloc_list));
1157 ASSERT(list_empty(&device->post_commit_list));
1158 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1159 }
1160
close_fs_devices(struct btrfs_fs_devices * fs_devices)1161 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1162 {
1163 struct btrfs_device *device, *tmp;
1164
1165 lockdep_assert_held(&uuid_mutex);
1166
1167 if (--fs_devices->opened > 0)
1168 return;
1169
1170 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1171 btrfs_close_one_device(device);
1172
1173 WARN_ON(fs_devices->open_devices);
1174 WARN_ON(fs_devices->rw_devices);
1175 fs_devices->opened = 0;
1176 fs_devices->seeding = false;
1177 fs_devices->fs_info = NULL;
1178 }
1179
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1180 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1181 {
1182 LIST_HEAD(list);
1183 struct btrfs_fs_devices *tmp;
1184
1185 mutex_lock(&uuid_mutex);
1186 close_fs_devices(fs_devices);
1187 if (!fs_devices->opened)
1188 list_splice_init(&fs_devices->seed_list, &list);
1189
1190 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1191 close_fs_devices(fs_devices);
1192 list_del(&fs_devices->seed_list);
1193 free_fs_devices(fs_devices);
1194 }
1195 mutex_unlock(&uuid_mutex);
1196 }
1197
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1198 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1199 fmode_t flags, void *holder)
1200 {
1201 struct btrfs_device *device;
1202 struct btrfs_device *latest_dev = NULL;
1203 struct btrfs_device *tmp_device;
1204
1205 flags |= FMODE_EXCL;
1206
1207 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1208 dev_list) {
1209 int ret;
1210
1211 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1212 if (ret == 0 &&
1213 (!latest_dev || device->generation > latest_dev->generation)) {
1214 latest_dev = device;
1215 } else if (ret == -ENODATA) {
1216 fs_devices->num_devices--;
1217 list_del(&device->dev_list);
1218 btrfs_free_device(device);
1219 }
1220 }
1221 if (fs_devices->open_devices == 0)
1222 return -EINVAL;
1223
1224 fs_devices->opened = 1;
1225 fs_devices->latest_bdev = latest_dev->bdev;
1226 fs_devices->total_rw_bytes = 0;
1227 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1228 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1229
1230 return 0;
1231 }
1232
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1233 static int devid_cmp(void *priv, const struct list_head *a,
1234 const struct list_head *b)
1235 {
1236 const struct btrfs_device *dev1, *dev2;
1237
1238 dev1 = list_entry(a, struct btrfs_device, dev_list);
1239 dev2 = list_entry(b, struct btrfs_device, dev_list);
1240
1241 if (dev1->devid < dev2->devid)
1242 return -1;
1243 else if (dev1->devid > dev2->devid)
1244 return 1;
1245 return 0;
1246 }
1247
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1248 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1249 fmode_t flags, void *holder)
1250 {
1251 int ret;
1252
1253 lockdep_assert_held(&uuid_mutex);
1254 /*
1255 * The device_list_mutex cannot be taken here in case opening the
1256 * underlying device takes further locks like open_mutex.
1257 *
1258 * We also don't need the lock here as this is called during mount and
1259 * exclusion is provided by uuid_mutex
1260 */
1261
1262 if (fs_devices->opened) {
1263 fs_devices->opened++;
1264 ret = 0;
1265 } else {
1266 list_sort(NULL, &fs_devices->devices, devid_cmp);
1267 ret = open_fs_devices(fs_devices, flags, holder);
1268 }
1269
1270 return ret;
1271 }
1272
btrfs_release_disk_super(struct btrfs_super_block * super)1273 void btrfs_release_disk_super(struct btrfs_super_block *super)
1274 {
1275 struct page *page = virt_to_page(super);
1276
1277 put_page(page);
1278 }
1279
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1280 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1281 u64 bytenr, u64 bytenr_orig)
1282 {
1283 struct btrfs_super_block *disk_super;
1284 struct page *page;
1285 void *p;
1286 pgoff_t index;
1287
1288 /* make sure our super fits in the device */
1289 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1290 return ERR_PTR(-EINVAL);
1291
1292 /* make sure our super fits in the page */
1293 if (sizeof(*disk_super) > PAGE_SIZE)
1294 return ERR_PTR(-EINVAL);
1295
1296 /* make sure our super doesn't straddle pages on disk */
1297 index = bytenr >> PAGE_SHIFT;
1298 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1299 return ERR_PTR(-EINVAL);
1300
1301 /* pull in the page with our super */
1302 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1303
1304 if (IS_ERR(page))
1305 return ERR_CAST(page);
1306
1307 p = page_address(page);
1308
1309 /* align our pointer to the offset of the super block */
1310 disk_super = p + offset_in_page(bytenr);
1311
1312 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1313 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1314 btrfs_release_disk_super(p);
1315 return ERR_PTR(-EINVAL);
1316 }
1317
1318 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1319 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1320
1321 return disk_super;
1322 }
1323
btrfs_forget_devices(const char * path)1324 int btrfs_forget_devices(const char *path)
1325 {
1326 int ret;
1327
1328 mutex_lock(&uuid_mutex);
1329 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1330 mutex_unlock(&uuid_mutex);
1331
1332 return ret;
1333 }
1334
1335 /*
1336 * Look for a btrfs signature on a device. This may be called out of the mount path
1337 * and we are not allowed to call set_blocksize during the scan. The superblock
1338 * is read via pagecache
1339 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1340 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1341 void *holder)
1342 {
1343 struct btrfs_super_block *disk_super;
1344 bool new_device_added = false;
1345 struct btrfs_device *device = NULL;
1346 struct block_device *bdev;
1347 u64 bytenr, bytenr_orig;
1348 int ret;
1349
1350 lockdep_assert_held(&uuid_mutex);
1351
1352 /*
1353 * we would like to check all the supers, but that would make
1354 * a btrfs mount succeed after a mkfs from a different FS.
1355 * So, we need to add a special mount option to scan for
1356 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1357 */
1358 flags |= FMODE_EXCL;
1359
1360 bdev = blkdev_get_by_path(path, flags, holder);
1361 if (IS_ERR(bdev))
1362 return ERR_CAST(bdev);
1363
1364 bytenr_orig = btrfs_sb_offset(0);
1365 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1366 if (ret)
1367 return ERR_PTR(ret);
1368
1369 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1370 if (IS_ERR(disk_super)) {
1371 device = ERR_CAST(disk_super);
1372 goto error_bdev_put;
1373 }
1374
1375 device = device_list_add(path, disk_super, &new_device_added);
1376 if (!IS_ERR(device)) {
1377 if (new_device_added)
1378 btrfs_free_stale_devices(path, device);
1379 }
1380
1381 btrfs_release_disk_super(disk_super);
1382
1383 error_bdev_put:
1384 blkdev_put(bdev, flags);
1385
1386 return device;
1387 }
1388
1389 /*
1390 * Try to find a chunk that intersects [start, start + len] range and when one
1391 * such is found, record the end of it in *start
1392 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1393 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394 u64 len)
1395 {
1396 u64 physical_start, physical_end;
1397
1398 lockdep_assert_held(&device->fs_info->chunk_mutex);
1399
1400 if (!find_first_extent_bit(&device->alloc_state, *start,
1401 &physical_start, &physical_end,
1402 CHUNK_ALLOCATED, NULL)) {
1403
1404 if (in_range(physical_start, *start, len) ||
1405 in_range(*start, physical_start,
1406 physical_end - physical_start)) {
1407 *start = physical_end + 1;
1408 return true;
1409 }
1410 }
1411 return false;
1412 }
1413
dev_extent_search_start(struct btrfs_device * device,u64 start)1414 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1415 {
1416 switch (device->fs_devices->chunk_alloc_policy) {
1417 case BTRFS_CHUNK_ALLOC_REGULAR:
1418 /*
1419 * We don't want to overwrite the superblock on the drive nor
1420 * any area used by the boot loader (grub for example), so we
1421 * make sure to start at an offset of at least 1MB.
1422 */
1423 return max_t(u64, start, SZ_1M);
1424 case BTRFS_CHUNK_ALLOC_ZONED:
1425 /*
1426 * We don't care about the starting region like regular
1427 * allocator, because we anyway use/reserve the first two zones
1428 * for superblock logging.
1429 */
1430 return ALIGN(start, device->zone_info->zone_size);
1431 default:
1432 BUG();
1433 }
1434 }
1435
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1436 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1437 u64 *hole_start, u64 *hole_size,
1438 u64 num_bytes)
1439 {
1440 u64 zone_size = device->zone_info->zone_size;
1441 u64 pos;
1442 int ret;
1443 bool changed = false;
1444
1445 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1446
1447 while (*hole_size > 0) {
1448 pos = btrfs_find_allocatable_zones(device, *hole_start,
1449 *hole_start + *hole_size,
1450 num_bytes);
1451 if (pos != *hole_start) {
1452 *hole_size = *hole_start + *hole_size - pos;
1453 *hole_start = pos;
1454 changed = true;
1455 if (*hole_size < num_bytes)
1456 break;
1457 }
1458
1459 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1460
1461 /* Range is ensured to be empty */
1462 if (!ret)
1463 return changed;
1464
1465 /* Given hole range was invalid (outside of device) */
1466 if (ret == -ERANGE) {
1467 *hole_start += *hole_size;
1468 *hole_size = 0;
1469 return true;
1470 }
1471
1472 *hole_start += zone_size;
1473 *hole_size -= zone_size;
1474 changed = true;
1475 }
1476
1477 return changed;
1478 }
1479
1480 /**
1481 * dev_extent_hole_check - check if specified hole is suitable for allocation
1482 * @device: the device which we have the hole
1483 * @hole_start: starting position of the hole
1484 * @hole_size: the size of the hole
1485 * @num_bytes: the size of the free space that we need
1486 *
1487 * This function may modify @hole_start and @hole_size to reflect the suitable
1488 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1489 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1490 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1491 u64 *hole_size, u64 num_bytes)
1492 {
1493 bool changed = false;
1494 u64 hole_end = *hole_start + *hole_size;
1495
1496 for (;;) {
1497 /*
1498 * Check before we set max_hole_start, otherwise we could end up
1499 * sending back this offset anyway.
1500 */
1501 if (contains_pending_extent(device, hole_start, *hole_size)) {
1502 if (hole_end >= *hole_start)
1503 *hole_size = hole_end - *hole_start;
1504 else
1505 *hole_size = 0;
1506 changed = true;
1507 }
1508
1509 switch (device->fs_devices->chunk_alloc_policy) {
1510 case BTRFS_CHUNK_ALLOC_REGULAR:
1511 /* No extra check */
1512 break;
1513 case BTRFS_CHUNK_ALLOC_ZONED:
1514 if (dev_extent_hole_check_zoned(device, hole_start,
1515 hole_size, num_bytes)) {
1516 changed = true;
1517 /*
1518 * The changed hole can contain pending extent.
1519 * Loop again to check that.
1520 */
1521 continue;
1522 }
1523 break;
1524 default:
1525 BUG();
1526 }
1527
1528 break;
1529 }
1530
1531 return changed;
1532 }
1533
1534 /*
1535 * find_free_dev_extent_start - find free space in the specified device
1536 * @device: the device which we search the free space in
1537 * @num_bytes: the size of the free space that we need
1538 * @search_start: the position from which to begin the search
1539 * @start: store the start of the free space.
1540 * @len: the size of the free space. that we find, or the size
1541 * of the max free space if we don't find suitable free space
1542 *
1543 * this uses a pretty simple search, the expectation is that it is
1544 * called very infrequently and that a given device has a small number
1545 * of extents
1546 *
1547 * @start is used to store the start of the free space if we find. But if we
1548 * don't find suitable free space, it will be used to store the start position
1549 * of the max free space.
1550 *
1551 * @len is used to store the size of the free space that we find.
1552 * But if we don't find suitable free space, it is used to store the size of
1553 * the max free space.
1554 *
1555 * NOTE: This function will search *commit* root of device tree, and does extra
1556 * check to ensure dev extents are not double allocated.
1557 * This makes the function safe to allocate dev extents but may not report
1558 * correct usable device space, as device extent freed in current transaction
1559 * is not reported as available.
1560 */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1561 static int find_free_dev_extent_start(struct btrfs_device *device,
1562 u64 num_bytes, u64 search_start, u64 *start,
1563 u64 *len)
1564 {
1565 struct btrfs_fs_info *fs_info = device->fs_info;
1566 struct btrfs_root *root = fs_info->dev_root;
1567 struct btrfs_key key;
1568 struct btrfs_dev_extent *dev_extent;
1569 struct btrfs_path *path;
1570 u64 hole_size;
1571 u64 max_hole_start;
1572 u64 max_hole_size;
1573 u64 extent_end;
1574 u64 search_end = device->total_bytes;
1575 int ret;
1576 int slot;
1577 struct extent_buffer *l;
1578
1579 search_start = dev_extent_search_start(device, search_start);
1580
1581 WARN_ON(device->zone_info &&
1582 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1583
1584 path = btrfs_alloc_path();
1585 if (!path)
1586 return -ENOMEM;
1587
1588 max_hole_start = search_start;
1589 max_hole_size = 0;
1590
1591 again:
1592 if (search_start >= search_end ||
1593 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1594 ret = -ENOSPC;
1595 goto out;
1596 }
1597
1598 path->reada = READA_FORWARD;
1599 path->search_commit_root = 1;
1600 path->skip_locking = 1;
1601
1602 key.objectid = device->devid;
1603 key.offset = search_start;
1604 key.type = BTRFS_DEV_EXTENT_KEY;
1605
1606 ret = btrfs_search_backwards(root, &key, path);
1607 if (ret < 0)
1608 goto out;
1609
1610 while (1) {
1611 l = path->nodes[0];
1612 slot = path->slots[0];
1613 if (slot >= btrfs_header_nritems(l)) {
1614 ret = btrfs_next_leaf(root, path);
1615 if (ret == 0)
1616 continue;
1617 if (ret < 0)
1618 goto out;
1619
1620 break;
1621 }
1622 btrfs_item_key_to_cpu(l, &key, slot);
1623
1624 if (key.objectid < device->devid)
1625 goto next;
1626
1627 if (key.objectid > device->devid)
1628 break;
1629
1630 if (key.type != BTRFS_DEV_EXTENT_KEY)
1631 goto next;
1632
1633 if (key.offset > search_start) {
1634 hole_size = key.offset - search_start;
1635 dev_extent_hole_check(device, &search_start, &hole_size,
1636 num_bytes);
1637
1638 if (hole_size > max_hole_size) {
1639 max_hole_start = search_start;
1640 max_hole_size = hole_size;
1641 }
1642
1643 /*
1644 * If this free space is greater than which we need,
1645 * it must be the max free space that we have found
1646 * until now, so max_hole_start must point to the start
1647 * of this free space and the length of this free space
1648 * is stored in max_hole_size. Thus, we return
1649 * max_hole_start and max_hole_size and go back to the
1650 * caller.
1651 */
1652 if (hole_size >= num_bytes) {
1653 ret = 0;
1654 goto out;
1655 }
1656 }
1657
1658 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1659 extent_end = key.offset + btrfs_dev_extent_length(l,
1660 dev_extent);
1661 if (extent_end > search_start)
1662 search_start = extent_end;
1663 next:
1664 path->slots[0]++;
1665 cond_resched();
1666 }
1667
1668 /*
1669 * At this point, search_start should be the end of
1670 * allocated dev extents, and when shrinking the device,
1671 * search_end may be smaller than search_start.
1672 */
1673 if (search_end > search_start) {
1674 hole_size = search_end - search_start;
1675 if (dev_extent_hole_check(device, &search_start, &hole_size,
1676 num_bytes)) {
1677 btrfs_release_path(path);
1678 goto again;
1679 }
1680
1681 if (hole_size > max_hole_size) {
1682 max_hole_start = search_start;
1683 max_hole_size = hole_size;
1684 }
1685 }
1686
1687 /* See above. */
1688 if (max_hole_size < num_bytes)
1689 ret = -ENOSPC;
1690 else
1691 ret = 0;
1692
1693 out:
1694 btrfs_free_path(path);
1695 *start = max_hole_start;
1696 if (len)
1697 *len = max_hole_size;
1698 return ret;
1699 }
1700
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1701 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1702 u64 *start, u64 *len)
1703 {
1704 /* FIXME use last free of some kind */
1705 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1706 }
1707
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1708 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1709 struct btrfs_device *device,
1710 u64 start, u64 *dev_extent_len)
1711 {
1712 struct btrfs_fs_info *fs_info = device->fs_info;
1713 struct btrfs_root *root = fs_info->dev_root;
1714 int ret;
1715 struct btrfs_path *path;
1716 struct btrfs_key key;
1717 struct btrfs_key found_key;
1718 struct extent_buffer *leaf = NULL;
1719 struct btrfs_dev_extent *extent = NULL;
1720
1721 path = btrfs_alloc_path();
1722 if (!path)
1723 return -ENOMEM;
1724
1725 key.objectid = device->devid;
1726 key.offset = start;
1727 key.type = BTRFS_DEV_EXTENT_KEY;
1728 again:
1729 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1730 if (ret > 0) {
1731 ret = btrfs_previous_item(root, path, key.objectid,
1732 BTRFS_DEV_EXTENT_KEY);
1733 if (ret)
1734 goto out;
1735 leaf = path->nodes[0];
1736 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1737 extent = btrfs_item_ptr(leaf, path->slots[0],
1738 struct btrfs_dev_extent);
1739 BUG_ON(found_key.offset > start || found_key.offset +
1740 btrfs_dev_extent_length(leaf, extent) < start);
1741 key = found_key;
1742 btrfs_release_path(path);
1743 goto again;
1744 } else if (ret == 0) {
1745 leaf = path->nodes[0];
1746 extent = btrfs_item_ptr(leaf, path->slots[0],
1747 struct btrfs_dev_extent);
1748 } else {
1749 goto out;
1750 }
1751
1752 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1753
1754 ret = btrfs_del_item(trans, root, path);
1755 if (ret == 0)
1756 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1757 out:
1758 btrfs_free_path(path);
1759 return ret;
1760 }
1761
find_next_chunk(struct btrfs_fs_info * fs_info)1762 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1763 {
1764 struct extent_map_tree *em_tree;
1765 struct extent_map *em;
1766 struct rb_node *n;
1767 u64 ret = 0;
1768
1769 em_tree = &fs_info->mapping_tree;
1770 read_lock(&em_tree->lock);
1771 n = rb_last(&em_tree->map.rb_root);
1772 if (n) {
1773 em = rb_entry(n, struct extent_map, rb_node);
1774 ret = em->start + em->len;
1775 }
1776 read_unlock(&em_tree->lock);
1777
1778 return ret;
1779 }
1780
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1781 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1782 u64 *devid_ret)
1783 {
1784 int ret;
1785 struct btrfs_key key;
1786 struct btrfs_key found_key;
1787 struct btrfs_path *path;
1788
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
1792
1793 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1794 key.type = BTRFS_DEV_ITEM_KEY;
1795 key.offset = (u64)-1;
1796
1797 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1798 if (ret < 0)
1799 goto error;
1800
1801 if (ret == 0) {
1802 /* Corruption */
1803 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1804 ret = -EUCLEAN;
1805 goto error;
1806 }
1807
1808 ret = btrfs_previous_item(fs_info->chunk_root, path,
1809 BTRFS_DEV_ITEMS_OBJECTID,
1810 BTRFS_DEV_ITEM_KEY);
1811 if (ret) {
1812 *devid_ret = 1;
1813 } else {
1814 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1815 path->slots[0]);
1816 *devid_ret = found_key.offset + 1;
1817 }
1818 ret = 0;
1819 error:
1820 btrfs_free_path(path);
1821 return ret;
1822 }
1823
1824 /*
1825 * the device information is stored in the chunk root
1826 * the btrfs_device struct should be fully filled in
1827 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1828 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1829 struct btrfs_device *device)
1830 {
1831 int ret;
1832 struct btrfs_path *path;
1833 struct btrfs_dev_item *dev_item;
1834 struct extent_buffer *leaf;
1835 struct btrfs_key key;
1836 unsigned long ptr;
1837
1838 path = btrfs_alloc_path();
1839 if (!path)
1840 return -ENOMEM;
1841
1842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1843 key.type = BTRFS_DEV_ITEM_KEY;
1844 key.offset = device->devid;
1845
1846 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1847 &key, sizeof(*dev_item));
1848 if (ret)
1849 goto out;
1850
1851 leaf = path->nodes[0];
1852 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1853
1854 btrfs_set_device_id(leaf, dev_item, device->devid);
1855 btrfs_set_device_generation(leaf, dev_item, 0);
1856 btrfs_set_device_type(leaf, dev_item, device->type);
1857 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1858 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1859 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1860 btrfs_set_device_total_bytes(leaf, dev_item,
1861 btrfs_device_get_disk_total_bytes(device));
1862 btrfs_set_device_bytes_used(leaf, dev_item,
1863 btrfs_device_get_bytes_used(device));
1864 btrfs_set_device_group(leaf, dev_item, 0);
1865 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1866 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1867 btrfs_set_device_start_offset(leaf, dev_item, 0);
1868
1869 ptr = btrfs_device_uuid(dev_item);
1870 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1871 ptr = btrfs_device_fsid(dev_item);
1872 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1873 ptr, BTRFS_FSID_SIZE);
1874 btrfs_mark_buffer_dirty(leaf);
1875
1876 ret = 0;
1877 out:
1878 btrfs_free_path(path);
1879 return ret;
1880 }
1881
1882 /*
1883 * Function to update ctime/mtime for a given device path.
1884 * Mainly used for ctime/mtime based probe like libblkid.
1885 */
update_dev_time(struct block_device * bdev)1886 static void update_dev_time(struct block_device *bdev)
1887 {
1888 struct inode *inode = bdev->bd_inode;
1889 struct timespec64 now;
1890
1891 /* Shouldn't happen but just in case. */
1892 if (!inode)
1893 return;
1894
1895 now = current_time(inode);
1896 generic_update_time(inode, &now, S_MTIME | S_CTIME);
1897 }
1898
btrfs_rm_dev_item(struct btrfs_device * device)1899 static int btrfs_rm_dev_item(struct btrfs_device *device)
1900 {
1901 struct btrfs_root *root = device->fs_info->chunk_root;
1902 int ret;
1903 struct btrfs_path *path;
1904 struct btrfs_key key;
1905 struct btrfs_trans_handle *trans;
1906
1907 path = btrfs_alloc_path();
1908 if (!path)
1909 return -ENOMEM;
1910
1911 trans = btrfs_start_transaction(root, 0);
1912 if (IS_ERR(trans)) {
1913 btrfs_free_path(path);
1914 return PTR_ERR(trans);
1915 }
1916 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1917 key.type = BTRFS_DEV_ITEM_KEY;
1918 key.offset = device->devid;
1919
1920 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1921 if (ret) {
1922 if (ret > 0)
1923 ret = -ENOENT;
1924 btrfs_abort_transaction(trans, ret);
1925 btrfs_end_transaction(trans);
1926 goto out;
1927 }
1928
1929 ret = btrfs_del_item(trans, root, path);
1930 if (ret) {
1931 btrfs_abort_transaction(trans, ret);
1932 btrfs_end_transaction(trans);
1933 }
1934
1935 out:
1936 btrfs_free_path(path);
1937 if (!ret)
1938 ret = btrfs_commit_transaction(trans);
1939 return ret;
1940 }
1941
1942 /*
1943 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1944 * filesystem. It's up to the caller to adjust that number regarding eg. device
1945 * replace.
1946 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1947 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1948 u64 num_devices)
1949 {
1950 u64 all_avail;
1951 unsigned seq;
1952 int i;
1953
1954 do {
1955 seq = read_seqbegin(&fs_info->profiles_lock);
1956
1957 all_avail = fs_info->avail_data_alloc_bits |
1958 fs_info->avail_system_alloc_bits |
1959 fs_info->avail_metadata_alloc_bits;
1960 } while (read_seqretry(&fs_info->profiles_lock, seq));
1961
1962 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1963 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1964 continue;
1965
1966 if (num_devices < btrfs_raid_array[i].devs_min)
1967 return btrfs_raid_array[i].mindev_error;
1968 }
1969
1970 return 0;
1971 }
1972
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1973 static struct btrfs_device * btrfs_find_next_active_device(
1974 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1975 {
1976 struct btrfs_device *next_device;
1977
1978 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1979 if (next_device != device &&
1980 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1981 && next_device->bdev)
1982 return next_device;
1983 }
1984
1985 return NULL;
1986 }
1987
1988 /*
1989 * Helper function to check if the given device is part of s_bdev / latest_bdev
1990 * and replace it with the provided or the next active device, in the context
1991 * where this function called, there should be always be another device (or
1992 * this_dev) which is active.
1993 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)1994 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1995 struct btrfs_device *next_device)
1996 {
1997 struct btrfs_fs_info *fs_info = device->fs_info;
1998
1999 if (!next_device)
2000 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2001 device);
2002 ASSERT(next_device);
2003
2004 if (fs_info->sb->s_bdev &&
2005 (fs_info->sb->s_bdev == device->bdev))
2006 fs_info->sb->s_bdev = next_device->bdev;
2007
2008 if (fs_info->fs_devices->latest_bdev == device->bdev)
2009 fs_info->fs_devices->latest_bdev = next_device->bdev;
2010 }
2011
2012 /*
2013 * Return btrfs_fs_devices::num_devices excluding the device that's being
2014 * currently replaced.
2015 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2016 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2017 {
2018 u64 num_devices = fs_info->fs_devices->num_devices;
2019
2020 down_read(&fs_info->dev_replace.rwsem);
2021 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2022 ASSERT(num_devices > 1);
2023 num_devices--;
2024 }
2025 up_read(&fs_info->dev_replace.rwsem);
2026
2027 return num_devices;
2028 }
2029
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2030 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2031 struct block_device *bdev,
2032 const char *device_path)
2033 {
2034 struct btrfs_super_block *disk_super;
2035 int copy_num;
2036
2037 if (!bdev)
2038 return;
2039
2040 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2041 struct page *page;
2042 int ret;
2043
2044 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2045 if (IS_ERR(disk_super))
2046 continue;
2047
2048 if (bdev_is_zoned(bdev)) {
2049 btrfs_reset_sb_log_zones(bdev, copy_num);
2050 continue;
2051 }
2052
2053 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2054
2055 page = virt_to_page(disk_super);
2056 set_page_dirty(page);
2057 lock_page(page);
2058 /* write_on_page() unlocks the page */
2059 ret = write_one_page(page);
2060 if (ret)
2061 btrfs_warn(fs_info,
2062 "error clearing superblock number %d (%d)",
2063 copy_num, ret);
2064 btrfs_release_disk_super(disk_super);
2065
2066 }
2067
2068 /* Notify udev that device has changed */
2069 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2070
2071 /* Update ctime/mtime for device path for libblkid */
2072 update_dev_time(bdev);
2073 }
2074
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid,struct block_device ** bdev,fmode_t * mode)2075 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2076 u64 devid, struct block_device **bdev, fmode_t *mode)
2077 {
2078 struct btrfs_device *device;
2079 struct btrfs_fs_devices *cur_devices;
2080 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2081 u64 num_devices;
2082 int ret = 0;
2083
2084 mutex_lock(&uuid_mutex);
2085
2086 num_devices = btrfs_num_devices(fs_info);
2087
2088 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2089 if (ret)
2090 goto out;
2091
2092 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2093
2094 if (IS_ERR(device)) {
2095 if (PTR_ERR(device) == -ENOENT &&
2096 device_path && strcmp(device_path, "missing") == 0)
2097 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2098 else
2099 ret = PTR_ERR(device);
2100 goto out;
2101 }
2102
2103 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2104 btrfs_warn_in_rcu(fs_info,
2105 "cannot remove device %s (devid %llu) due to active swapfile",
2106 rcu_str_deref(device->name), device->devid);
2107 ret = -ETXTBSY;
2108 goto out;
2109 }
2110
2111 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2112 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2113 goto out;
2114 }
2115
2116 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2117 fs_info->fs_devices->rw_devices == 1) {
2118 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2119 goto out;
2120 }
2121
2122 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2123 mutex_lock(&fs_info->chunk_mutex);
2124 list_del_init(&device->dev_alloc_list);
2125 device->fs_devices->rw_devices--;
2126 mutex_unlock(&fs_info->chunk_mutex);
2127 }
2128
2129 mutex_unlock(&uuid_mutex);
2130 ret = btrfs_shrink_device(device, 0);
2131 if (!ret)
2132 btrfs_reada_remove_dev(device);
2133 mutex_lock(&uuid_mutex);
2134 if (ret)
2135 goto error_undo;
2136
2137 /*
2138 * TODO: the superblock still includes this device in its num_devices
2139 * counter although write_all_supers() is not locked out. This
2140 * could give a filesystem state which requires a degraded mount.
2141 */
2142 ret = btrfs_rm_dev_item(device);
2143 if (ret)
2144 goto error_undo;
2145
2146 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2147 btrfs_scrub_cancel_dev(device);
2148
2149 /*
2150 * the device list mutex makes sure that we don't change
2151 * the device list while someone else is writing out all
2152 * the device supers. Whoever is writing all supers, should
2153 * lock the device list mutex before getting the number of
2154 * devices in the super block (super_copy). Conversely,
2155 * whoever updates the number of devices in the super block
2156 * (super_copy) should hold the device list mutex.
2157 */
2158
2159 /*
2160 * In normal cases the cur_devices == fs_devices. But in case
2161 * of deleting a seed device, the cur_devices should point to
2162 * its own fs_devices listed under the fs_devices->seed.
2163 */
2164 cur_devices = device->fs_devices;
2165 mutex_lock(&fs_devices->device_list_mutex);
2166 list_del_rcu(&device->dev_list);
2167
2168 cur_devices->num_devices--;
2169 cur_devices->total_devices--;
2170 /* Update total_devices of the parent fs_devices if it's seed */
2171 if (cur_devices != fs_devices)
2172 fs_devices->total_devices--;
2173
2174 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2175 cur_devices->missing_devices--;
2176
2177 btrfs_assign_next_active_device(device, NULL);
2178
2179 if (device->bdev) {
2180 cur_devices->open_devices--;
2181 /* remove sysfs entry */
2182 btrfs_sysfs_remove_device(device);
2183 }
2184
2185 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2186 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2187 mutex_unlock(&fs_devices->device_list_mutex);
2188
2189 /*
2190 * At this point, the device is zero sized and detached from the
2191 * devices list. All that's left is to zero out the old supers and
2192 * free the device.
2193 *
2194 * We cannot call btrfs_close_bdev() here because we're holding the sb
2195 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2196 * block device and it's dependencies. Instead just flush the device
2197 * and let the caller do the final blkdev_put.
2198 */
2199 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2200 btrfs_scratch_superblocks(fs_info, device->bdev,
2201 device->name->str);
2202 if (device->bdev) {
2203 sync_blockdev(device->bdev);
2204 invalidate_bdev(device->bdev);
2205 }
2206 }
2207
2208 *bdev = device->bdev;
2209 *mode = device->mode;
2210 synchronize_rcu();
2211 btrfs_free_device(device);
2212
2213 if (cur_devices->open_devices == 0) {
2214 list_del_init(&cur_devices->seed_list);
2215 close_fs_devices(cur_devices);
2216 free_fs_devices(cur_devices);
2217 }
2218
2219 out:
2220 mutex_unlock(&uuid_mutex);
2221 return ret;
2222
2223 error_undo:
2224 btrfs_reada_undo_remove_dev(device);
2225 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2226 mutex_lock(&fs_info->chunk_mutex);
2227 list_add(&device->dev_alloc_list,
2228 &fs_devices->alloc_list);
2229 device->fs_devices->rw_devices++;
2230 mutex_unlock(&fs_info->chunk_mutex);
2231 }
2232 goto out;
2233 }
2234
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2235 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2236 {
2237 struct btrfs_fs_devices *fs_devices;
2238
2239 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2240
2241 /*
2242 * in case of fs with no seed, srcdev->fs_devices will point
2243 * to fs_devices of fs_info. However when the dev being replaced is
2244 * a seed dev it will point to the seed's local fs_devices. In short
2245 * srcdev will have its correct fs_devices in both the cases.
2246 */
2247 fs_devices = srcdev->fs_devices;
2248
2249 list_del_rcu(&srcdev->dev_list);
2250 list_del(&srcdev->dev_alloc_list);
2251 fs_devices->num_devices--;
2252 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2253 fs_devices->missing_devices--;
2254
2255 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2256 fs_devices->rw_devices--;
2257
2258 if (srcdev->bdev)
2259 fs_devices->open_devices--;
2260 }
2261
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2262 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2263 {
2264 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2265
2266 mutex_lock(&uuid_mutex);
2267
2268 btrfs_close_bdev(srcdev);
2269 synchronize_rcu();
2270 btrfs_free_device(srcdev);
2271
2272 /* if this is no devs we rather delete the fs_devices */
2273 if (!fs_devices->num_devices) {
2274 /*
2275 * On a mounted FS, num_devices can't be zero unless it's a
2276 * seed. In case of a seed device being replaced, the replace
2277 * target added to the sprout FS, so there will be no more
2278 * device left under the seed FS.
2279 */
2280 ASSERT(fs_devices->seeding);
2281
2282 list_del_init(&fs_devices->seed_list);
2283 close_fs_devices(fs_devices);
2284 free_fs_devices(fs_devices);
2285 }
2286 mutex_unlock(&uuid_mutex);
2287 }
2288
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2289 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2290 {
2291 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2292
2293 mutex_lock(&fs_devices->device_list_mutex);
2294
2295 btrfs_sysfs_remove_device(tgtdev);
2296
2297 if (tgtdev->bdev)
2298 fs_devices->open_devices--;
2299
2300 fs_devices->num_devices--;
2301
2302 btrfs_assign_next_active_device(tgtdev, NULL);
2303
2304 list_del_rcu(&tgtdev->dev_list);
2305
2306 mutex_unlock(&fs_devices->device_list_mutex);
2307
2308 /*
2309 * The update_dev_time() with in btrfs_scratch_superblocks()
2310 * may lead to a call to btrfs_show_devname() which will try
2311 * to hold device_list_mutex. And here this device
2312 * is already out of device list, so we don't have to hold
2313 * the device_list_mutex lock.
2314 */
2315 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2316 tgtdev->name->str);
2317
2318 btrfs_close_bdev(tgtdev);
2319 synchronize_rcu();
2320 btrfs_free_device(tgtdev);
2321 }
2322
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path)2323 static struct btrfs_device *btrfs_find_device_by_path(
2324 struct btrfs_fs_info *fs_info, const char *device_path)
2325 {
2326 int ret = 0;
2327 struct btrfs_super_block *disk_super;
2328 u64 devid;
2329 u8 *dev_uuid;
2330 struct block_device *bdev;
2331 struct btrfs_device *device;
2332
2333 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2334 fs_info->bdev_holder, 0, &bdev, &disk_super);
2335 if (ret)
2336 return ERR_PTR(ret);
2337
2338 devid = btrfs_stack_device_id(&disk_super->dev_item);
2339 dev_uuid = disk_super->dev_item.uuid;
2340 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2341 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2342 disk_super->metadata_uuid);
2343 else
2344 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2345 disk_super->fsid);
2346
2347 btrfs_release_disk_super(disk_super);
2348 if (!device)
2349 device = ERR_PTR(-ENOENT);
2350 blkdev_put(bdev, FMODE_READ);
2351 return device;
2352 }
2353
2354 /*
2355 * Lookup a device given by device id, or the path if the id is 0.
2356 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2357 struct btrfs_device *btrfs_find_device_by_devspec(
2358 struct btrfs_fs_info *fs_info, u64 devid,
2359 const char *device_path)
2360 {
2361 struct btrfs_device *device;
2362
2363 if (devid) {
2364 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2365 NULL);
2366 if (!device)
2367 return ERR_PTR(-ENOENT);
2368 return device;
2369 }
2370
2371 if (!device_path || !device_path[0])
2372 return ERR_PTR(-EINVAL);
2373
2374 if (strcmp(device_path, "missing") == 0) {
2375 /* Find first missing device */
2376 list_for_each_entry(device, &fs_info->fs_devices->devices,
2377 dev_list) {
2378 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2379 &device->dev_state) && !device->bdev)
2380 return device;
2381 }
2382 return ERR_PTR(-ENOENT);
2383 }
2384
2385 return btrfs_find_device_by_path(fs_info, device_path);
2386 }
2387
2388 /*
2389 * does all the dirty work required for changing file system's UUID.
2390 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2391 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2392 {
2393 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2394 struct btrfs_fs_devices *old_devices;
2395 struct btrfs_fs_devices *seed_devices;
2396 struct btrfs_super_block *disk_super = fs_info->super_copy;
2397 struct btrfs_device *device;
2398 u64 super_flags;
2399
2400 lockdep_assert_held(&uuid_mutex);
2401 if (!fs_devices->seeding)
2402 return -EINVAL;
2403
2404 /*
2405 * Private copy of the seed devices, anchored at
2406 * fs_info->fs_devices->seed_list
2407 */
2408 seed_devices = alloc_fs_devices(NULL, NULL);
2409 if (IS_ERR(seed_devices))
2410 return PTR_ERR(seed_devices);
2411
2412 /*
2413 * It's necessary to retain a copy of the original seed fs_devices in
2414 * fs_uuids so that filesystems which have been seeded can successfully
2415 * reference the seed device from open_seed_devices. This also supports
2416 * multiple fs seed.
2417 */
2418 old_devices = clone_fs_devices(fs_devices);
2419 if (IS_ERR(old_devices)) {
2420 kfree(seed_devices);
2421 return PTR_ERR(old_devices);
2422 }
2423
2424 list_add(&old_devices->fs_list, &fs_uuids);
2425
2426 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2427 seed_devices->opened = 1;
2428 INIT_LIST_HEAD(&seed_devices->devices);
2429 INIT_LIST_HEAD(&seed_devices->alloc_list);
2430 mutex_init(&seed_devices->device_list_mutex);
2431
2432 mutex_lock(&fs_devices->device_list_mutex);
2433 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2434 synchronize_rcu);
2435 list_for_each_entry(device, &seed_devices->devices, dev_list)
2436 device->fs_devices = seed_devices;
2437
2438 fs_devices->seeding = false;
2439 fs_devices->num_devices = 0;
2440 fs_devices->open_devices = 0;
2441 fs_devices->missing_devices = 0;
2442 fs_devices->rotating = false;
2443 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2444
2445 generate_random_uuid(fs_devices->fsid);
2446 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2447 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2448 mutex_unlock(&fs_devices->device_list_mutex);
2449
2450 super_flags = btrfs_super_flags(disk_super) &
2451 ~BTRFS_SUPER_FLAG_SEEDING;
2452 btrfs_set_super_flags(disk_super, super_flags);
2453
2454 return 0;
2455 }
2456
2457 /*
2458 * Store the expected generation for seed devices in device items.
2459 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2460 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2461 {
2462 struct btrfs_fs_info *fs_info = trans->fs_info;
2463 struct btrfs_root *root = fs_info->chunk_root;
2464 struct btrfs_path *path;
2465 struct extent_buffer *leaf;
2466 struct btrfs_dev_item *dev_item;
2467 struct btrfs_device *device;
2468 struct btrfs_key key;
2469 u8 fs_uuid[BTRFS_FSID_SIZE];
2470 u8 dev_uuid[BTRFS_UUID_SIZE];
2471 u64 devid;
2472 int ret;
2473
2474 path = btrfs_alloc_path();
2475 if (!path)
2476 return -ENOMEM;
2477
2478 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2479 key.offset = 0;
2480 key.type = BTRFS_DEV_ITEM_KEY;
2481
2482 while (1) {
2483 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2484 if (ret < 0)
2485 goto error;
2486
2487 leaf = path->nodes[0];
2488 next_slot:
2489 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2490 ret = btrfs_next_leaf(root, path);
2491 if (ret > 0)
2492 break;
2493 if (ret < 0)
2494 goto error;
2495 leaf = path->nodes[0];
2496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2497 btrfs_release_path(path);
2498 continue;
2499 }
2500
2501 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2502 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2503 key.type != BTRFS_DEV_ITEM_KEY)
2504 break;
2505
2506 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2507 struct btrfs_dev_item);
2508 devid = btrfs_device_id(leaf, dev_item);
2509 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2510 BTRFS_UUID_SIZE);
2511 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2512 BTRFS_FSID_SIZE);
2513 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2514 fs_uuid);
2515 BUG_ON(!device); /* Logic error */
2516
2517 if (device->fs_devices->seeding) {
2518 btrfs_set_device_generation(leaf, dev_item,
2519 device->generation);
2520 btrfs_mark_buffer_dirty(leaf);
2521 }
2522
2523 path->slots[0]++;
2524 goto next_slot;
2525 }
2526 ret = 0;
2527 error:
2528 btrfs_free_path(path);
2529 return ret;
2530 }
2531
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2532 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2533 {
2534 struct btrfs_root *root = fs_info->dev_root;
2535 struct request_queue *q;
2536 struct btrfs_trans_handle *trans;
2537 struct btrfs_device *device;
2538 struct block_device *bdev;
2539 struct super_block *sb = fs_info->sb;
2540 struct rcu_string *name;
2541 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2542 u64 orig_super_total_bytes;
2543 u64 orig_super_num_devices;
2544 int seeding_dev = 0;
2545 int ret = 0;
2546 bool locked = false;
2547
2548 if (sb_rdonly(sb) && !fs_devices->seeding)
2549 return -EROFS;
2550
2551 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2552 fs_info->bdev_holder);
2553 if (IS_ERR(bdev))
2554 return PTR_ERR(bdev);
2555
2556 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2557 ret = -EINVAL;
2558 goto error;
2559 }
2560
2561 if (fs_devices->seeding) {
2562 seeding_dev = 1;
2563 down_write(&sb->s_umount);
2564 mutex_lock(&uuid_mutex);
2565 locked = true;
2566 }
2567
2568 sync_blockdev(bdev);
2569
2570 rcu_read_lock();
2571 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2572 if (device->bdev == bdev) {
2573 ret = -EEXIST;
2574 rcu_read_unlock();
2575 goto error;
2576 }
2577 }
2578 rcu_read_unlock();
2579
2580 device = btrfs_alloc_device(fs_info, NULL, NULL);
2581 if (IS_ERR(device)) {
2582 /* we can safely leave the fs_devices entry around */
2583 ret = PTR_ERR(device);
2584 goto error;
2585 }
2586
2587 name = rcu_string_strdup(device_path, GFP_KERNEL);
2588 if (!name) {
2589 ret = -ENOMEM;
2590 goto error_free_device;
2591 }
2592 rcu_assign_pointer(device->name, name);
2593
2594 device->fs_info = fs_info;
2595 device->bdev = bdev;
2596
2597 ret = btrfs_get_dev_zone_info(device);
2598 if (ret)
2599 goto error_free_device;
2600
2601 trans = btrfs_start_transaction(root, 0);
2602 if (IS_ERR(trans)) {
2603 ret = PTR_ERR(trans);
2604 goto error_free_zone;
2605 }
2606
2607 q = bdev_get_queue(bdev);
2608 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2609 device->generation = trans->transid;
2610 device->io_width = fs_info->sectorsize;
2611 device->io_align = fs_info->sectorsize;
2612 device->sector_size = fs_info->sectorsize;
2613 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2614 fs_info->sectorsize);
2615 device->disk_total_bytes = device->total_bytes;
2616 device->commit_total_bytes = device->total_bytes;
2617 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2618 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2619 device->mode = FMODE_EXCL;
2620 device->dev_stats_valid = 1;
2621 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2622
2623 if (seeding_dev) {
2624 btrfs_clear_sb_rdonly(sb);
2625 ret = btrfs_prepare_sprout(fs_info);
2626 if (ret) {
2627 btrfs_abort_transaction(trans, ret);
2628 goto error_trans;
2629 }
2630 }
2631
2632 device->fs_devices = fs_devices;
2633
2634 mutex_lock(&fs_devices->device_list_mutex);
2635 mutex_lock(&fs_info->chunk_mutex);
2636 list_add_rcu(&device->dev_list, &fs_devices->devices);
2637 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2638 fs_devices->num_devices++;
2639 fs_devices->open_devices++;
2640 fs_devices->rw_devices++;
2641 fs_devices->total_devices++;
2642 fs_devices->total_rw_bytes += device->total_bytes;
2643
2644 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2645
2646 if (!blk_queue_nonrot(q))
2647 fs_devices->rotating = true;
2648
2649 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2650 btrfs_set_super_total_bytes(fs_info->super_copy,
2651 round_down(orig_super_total_bytes + device->total_bytes,
2652 fs_info->sectorsize));
2653
2654 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2655 btrfs_set_super_num_devices(fs_info->super_copy,
2656 orig_super_num_devices + 1);
2657
2658 /*
2659 * we've got more storage, clear any full flags on the space
2660 * infos
2661 */
2662 btrfs_clear_space_info_full(fs_info);
2663
2664 mutex_unlock(&fs_info->chunk_mutex);
2665
2666 /* Add sysfs device entry */
2667 btrfs_sysfs_add_device(device);
2668
2669 mutex_unlock(&fs_devices->device_list_mutex);
2670
2671 if (seeding_dev) {
2672 mutex_lock(&fs_info->chunk_mutex);
2673 ret = init_first_rw_device(trans);
2674 mutex_unlock(&fs_info->chunk_mutex);
2675 if (ret) {
2676 btrfs_abort_transaction(trans, ret);
2677 goto error_sysfs;
2678 }
2679 }
2680
2681 ret = btrfs_add_dev_item(trans, device);
2682 if (ret) {
2683 btrfs_abort_transaction(trans, ret);
2684 goto error_sysfs;
2685 }
2686
2687 if (seeding_dev) {
2688 ret = btrfs_finish_sprout(trans);
2689 if (ret) {
2690 btrfs_abort_transaction(trans, ret);
2691 goto error_sysfs;
2692 }
2693
2694 /*
2695 * fs_devices now represents the newly sprouted filesystem and
2696 * its fsid has been changed by btrfs_prepare_sprout
2697 */
2698 btrfs_sysfs_update_sprout_fsid(fs_devices);
2699 }
2700
2701 ret = btrfs_commit_transaction(trans);
2702
2703 if (seeding_dev) {
2704 mutex_unlock(&uuid_mutex);
2705 up_write(&sb->s_umount);
2706 locked = false;
2707
2708 if (ret) /* transaction commit */
2709 return ret;
2710
2711 ret = btrfs_relocate_sys_chunks(fs_info);
2712 if (ret < 0)
2713 btrfs_handle_fs_error(fs_info, ret,
2714 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2715 trans = btrfs_attach_transaction(root);
2716 if (IS_ERR(trans)) {
2717 if (PTR_ERR(trans) == -ENOENT)
2718 return 0;
2719 ret = PTR_ERR(trans);
2720 trans = NULL;
2721 goto error_sysfs;
2722 }
2723 ret = btrfs_commit_transaction(trans);
2724 }
2725
2726 /*
2727 * Now that we have written a new super block to this device, check all
2728 * other fs_devices list if device_path alienates any other scanned
2729 * device.
2730 * We can ignore the return value as it typically returns -EINVAL and
2731 * only succeeds if the device was an alien.
2732 */
2733 btrfs_forget_devices(device_path);
2734
2735 /* Update ctime/mtime for blkid or udev */
2736 update_dev_time(bdev);
2737
2738 return ret;
2739
2740 error_sysfs:
2741 btrfs_sysfs_remove_device(device);
2742 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2743 mutex_lock(&fs_info->chunk_mutex);
2744 list_del_rcu(&device->dev_list);
2745 list_del(&device->dev_alloc_list);
2746 fs_info->fs_devices->num_devices--;
2747 fs_info->fs_devices->open_devices--;
2748 fs_info->fs_devices->rw_devices--;
2749 fs_info->fs_devices->total_devices--;
2750 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2751 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2752 btrfs_set_super_total_bytes(fs_info->super_copy,
2753 orig_super_total_bytes);
2754 btrfs_set_super_num_devices(fs_info->super_copy,
2755 orig_super_num_devices);
2756 mutex_unlock(&fs_info->chunk_mutex);
2757 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2758 error_trans:
2759 if (seeding_dev)
2760 btrfs_set_sb_rdonly(sb);
2761 if (trans)
2762 btrfs_end_transaction(trans);
2763 error_free_zone:
2764 btrfs_destroy_dev_zone_info(device);
2765 error_free_device:
2766 btrfs_free_device(device);
2767 error:
2768 blkdev_put(bdev, FMODE_EXCL);
2769 if (locked) {
2770 mutex_unlock(&uuid_mutex);
2771 up_write(&sb->s_umount);
2772 }
2773 return ret;
2774 }
2775
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2776 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2777 struct btrfs_device *device)
2778 {
2779 int ret;
2780 struct btrfs_path *path;
2781 struct btrfs_root *root = device->fs_info->chunk_root;
2782 struct btrfs_dev_item *dev_item;
2783 struct extent_buffer *leaf;
2784 struct btrfs_key key;
2785
2786 path = btrfs_alloc_path();
2787 if (!path)
2788 return -ENOMEM;
2789
2790 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2791 key.type = BTRFS_DEV_ITEM_KEY;
2792 key.offset = device->devid;
2793
2794 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2795 if (ret < 0)
2796 goto out;
2797
2798 if (ret > 0) {
2799 ret = -ENOENT;
2800 goto out;
2801 }
2802
2803 leaf = path->nodes[0];
2804 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2805
2806 btrfs_set_device_id(leaf, dev_item, device->devid);
2807 btrfs_set_device_type(leaf, dev_item, device->type);
2808 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2809 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2810 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2811 btrfs_set_device_total_bytes(leaf, dev_item,
2812 btrfs_device_get_disk_total_bytes(device));
2813 btrfs_set_device_bytes_used(leaf, dev_item,
2814 btrfs_device_get_bytes_used(device));
2815 btrfs_mark_buffer_dirty(leaf);
2816
2817 out:
2818 btrfs_free_path(path);
2819 return ret;
2820 }
2821
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2822 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2823 struct btrfs_device *device, u64 new_size)
2824 {
2825 struct btrfs_fs_info *fs_info = device->fs_info;
2826 struct btrfs_super_block *super_copy = fs_info->super_copy;
2827 u64 old_total;
2828 u64 diff;
2829
2830 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2831 return -EACCES;
2832
2833 new_size = round_down(new_size, fs_info->sectorsize);
2834
2835 mutex_lock(&fs_info->chunk_mutex);
2836 old_total = btrfs_super_total_bytes(super_copy);
2837 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2838
2839 if (new_size <= device->total_bytes ||
2840 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2841 mutex_unlock(&fs_info->chunk_mutex);
2842 return -EINVAL;
2843 }
2844
2845 btrfs_set_super_total_bytes(super_copy,
2846 round_down(old_total + diff, fs_info->sectorsize));
2847 device->fs_devices->total_rw_bytes += diff;
2848
2849 btrfs_device_set_total_bytes(device, new_size);
2850 btrfs_device_set_disk_total_bytes(device, new_size);
2851 btrfs_clear_space_info_full(device->fs_info);
2852 if (list_empty(&device->post_commit_list))
2853 list_add_tail(&device->post_commit_list,
2854 &trans->transaction->dev_update_list);
2855 mutex_unlock(&fs_info->chunk_mutex);
2856
2857 return btrfs_update_device(trans, device);
2858 }
2859
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2860 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2861 {
2862 struct btrfs_fs_info *fs_info = trans->fs_info;
2863 struct btrfs_root *root = fs_info->chunk_root;
2864 int ret;
2865 struct btrfs_path *path;
2866 struct btrfs_key key;
2867
2868 path = btrfs_alloc_path();
2869 if (!path)
2870 return -ENOMEM;
2871
2872 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2873 key.offset = chunk_offset;
2874 key.type = BTRFS_CHUNK_ITEM_KEY;
2875
2876 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2877 if (ret < 0)
2878 goto out;
2879 else if (ret > 0) { /* Logic error or corruption */
2880 btrfs_handle_fs_error(fs_info, -ENOENT,
2881 "Failed lookup while freeing chunk.");
2882 ret = -ENOENT;
2883 goto out;
2884 }
2885
2886 ret = btrfs_del_item(trans, root, path);
2887 if (ret < 0)
2888 btrfs_handle_fs_error(fs_info, ret,
2889 "Failed to delete chunk item.");
2890 out:
2891 btrfs_free_path(path);
2892 return ret;
2893 }
2894
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2895 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2896 {
2897 struct btrfs_super_block *super_copy = fs_info->super_copy;
2898 struct btrfs_disk_key *disk_key;
2899 struct btrfs_chunk *chunk;
2900 u8 *ptr;
2901 int ret = 0;
2902 u32 num_stripes;
2903 u32 array_size;
2904 u32 len = 0;
2905 u32 cur;
2906 struct btrfs_key key;
2907
2908 lockdep_assert_held(&fs_info->chunk_mutex);
2909 array_size = btrfs_super_sys_array_size(super_copy);
2910
2911 ptr = super_copy->sys_chunk_array;
2912 cur = 0;
2913
2914 while (cur < array_size) {
2915 disk_key = (struct btrfs_disk_key *)ptr;
2916 btrfs_disk_key_to_cpu(&key, disk_key);
2917
2918 len = sizeof(*disk_key);
2919
2920 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2921 chunk = (struct btrfs_chunk *)(ptr + len);
2922 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2923 len += btrfs_chunk_item_size(num_stripes);
2924 } else {
2925 ret = -EIO;
2926 break;
2927 }
2928 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2929 key.offset == chunk_offset) {
2930 memmove(ptr, ptr + len, array_size - (cur + len));
2931 array_size -= len;
2932 btrfs_set_super_sys_array_size(super_copy, array_size);
2933 } else {
2934 ptr += len;
2935 cur += len;
2936 }
2937 }
2938 return ret;
2939 }
2940
2941 /*
2942 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2943 * @logical: Logical block offset in bytes.
2944 * @length: Length of extent in bytes.
2945 *
2946 * Return: Chunk mapping or ERR_PTR.
2947 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2948 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2949 u64 logical, u64 length)
2950 {
2951 struct extent_map_tree *em_tree;
2952 struct extent_map *em;
2953
2954 em_tree = &fs_info->mapping_tree;
2955 read_lock(&em_tree->lock);
2956 em = lookup_extent_mapping(em_tree, logical, length);
2957 read_unlock(&em_tree->lock);
2958
2959 if (!em) {
2960 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2961 logical, length);
2962 return ERR_PTR(-EINVAL);
2963 }
2964
2965 if (em->start > logical || em->start + em->len < logical) {
2966 btrfs_crit(fs_info,
2967 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2968 logical, length, em->start, em->start + em->len);
2969 free_extent_map(em);
2970 return ERR_PTR(-EINVAL);
2971 }
2972
2973 /* callers are responsible for dropping em's ref. */
2974 return em;
2975 }
2976
remove_chunk_item(struct btrfs_trans_handle * trans,struct map_lookup * map,u64 chunk_offset)2977 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2978 struct map_lookup *map, u64 chunk_offset)
2979 {
2980 int i;
2981
2982 /*
2983 * Removing chunk items and updating the device items in the chunks btree
2984 * requires holding the chunk_mutex.
2985 * See the comment at btrfs_chunk_alloc() for the details.
2986 */
2987 lockdep_assert_held(&trans->fs_info->chunk_mutex);
2988
2989 for (i = 0; i < map->num_stripes; i++) {
2990 int ret;
2991
2992 ret = btrfs_update_device(trans, map->stripes[i].dev);
2993 if (ret)
2994 return ret;
2995 }
2996
2997 return btrfs_free_chunk(trans, chunk_offset);
2998 }
2999
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3000 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3001 {
3002 struct btrfs_fs_info *fs_info = trans->fs_info;
3003 struct extent_map *em;
3004 struct map_lookup *map;
3005 u64 dev_extent_len = 0;
3006 int i, ret = 0;
3007 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3008
3009 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3010 if (IS_ERR(em)) {
3011 /*
3012 * This is a logic error, but we don't want to just rely on the
3013 * user having built with ASSERT enabled, so if ASSERT doesn't
3014 * do anything we still error out.
3015 */
3016 ASSERT(0);
3017 return PTR_ERR(em);
3018 }
3019 map = em->map_lookup;
3020
3021 /*
3022 * First delete the device extent items from the devices btree.
3023 * We take the device_list_mutex to avoid racing with the finishing phase
3024 * of a device replace operation. See the comment below before acquiring
3025 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3026 * because that can result in a deadlock when deleting the device extent
3027 * items from the devices btree - COWing an extent buffer from the btree
3028 * may result in allocating a new metadata chunk, which would attempt to
3029 * lock again fs_info->chunk_mutex.
3030 */
3031 mutex_lock(&fs_devices->device_list_mutex);
3032 for (i = 0; i < map->num_stripes; i++) {
3033 struct btrfs_device *device = map->stripes[i].dev;
3034 ret = btrfs_free_dev_extent(trans, device,
3035 map->stripes[i].physical,
3036 &dev_extent_len);
3037 if (ret) {
3038 mutex_unlock(&fs_devices->device_list_mutex);
3039 btrfs_abort_transaction(trans, ret);
3040 goto out;
3041 }
3042
3043 if (device->bytes_used > 0) {
3044 mutex_lock(&fs_info->chunk_mutex);
3045 btrfs_device_set_bytes_used(device,
3046 device->bytes_used - dev_extent_len);
3047 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3048 btrfs_clear_space_info_full(fs_info);
3049 mutex_unlock(&fs_info->chunk_mutex);
3050 }
3051 }
3052 mutex_unlock(&fs_devices->device_list_mutex);
3053
3054 /*
3055 * We acquire fs_info->chunk_mutex for 2 reasons:
3056 *
3057 * 1) Just like with the first phase of the chunk allocation, we must
3058 * reserve system space, do all chunk btree updates and deletions, and
3059 * update the system chunk array in the superblock while holding this
3060 * mutex. This is for similar reasons as explained on the comment at
3061 * the top of btrfs_chunk_alloc();
3062 *
3063 * 2) Prevent races with the final phase of a device replace operation
3064 * that replaces the device object associated with the map's stripes,
3065 * because the device object's id can change at any time during that
3066 * final phase of the device replace operation
3067 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3068 * replaced device and then see it with an ID of
3069 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3070 * the device item, which does not exists on the chunk btree.
3071 * The finishing phase of device replace acquires both the
3072 * device_list_mutex and the chunk_mutex, in that order, so we are
3073 * safe by just acquiring the chunk_mutex.
3074 */
3075 trans->removing_chunk = true;
3076 mutex_lock(&fs_info->chunk_mutex);
3077
3078 check_system_chunk(trans, map->type);
3079
3080 ret = remove_chunk_item(trans, map, chunk_offset);
3081 /*
3082 * Normally we should not get -ENOSPC since we reserved space before
3083 * through the call to check_system_chunk().
3084 *
3085 * Despite our system space_info having enough free space, we may not
3086 * be able to allocate extents from its block groups, because all have
3087 * an incompatible profile, which will force us to allocate a new system
3088 * block group with the right profile, or right after we called
3089 * check_system_space() above, a scrub turned the only system block group
3090 * with enough free space into RO mode.
3091 * This is explained with more detail at do_chunk_alloc().
3092 *
3093 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3094 */
3095 if (ret == -ENOSPC) {
3096 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3097 struct btrfs_block_group *sys_bg;
3098
3099 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3100 if (IS_ERR(sys_bg)) {
3101 ret = PTR_ERR(sys_bg);
3102 btrfs_abort_transaction(trans, ret);
3103 goto out;
3104 }
3105
3106 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3107 if (ret) {
3108 btrfs_abort_transaction(trans, ret);
3109 goto out;
3110 }
3111
3112 ret = remove_chunk_item(trans, map, chunk_offset);
3113 if (ret) {
3114 btrfs_abort_transaction(trans, ret);
3115 goto out;
3116 }
3117 } else if (ret) {
3118 btrfs_abort_transaction(trans, ret);
3119 goto out;
3120 }
3121
3122 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3123
3124 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3125 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3126 if (ret) {
3127 btrfs_abort_transaction(trans, ret);
3128 goto out;
3129 }
3130 }
3131
3132 mutex_unlock(&fs_info->chunk_mutex);
3133 trans->removing_chunk = false;
3134
3135 /*
3136 * We are done with chunk btree updates and deletions, so release the
3137 * system space we previously reserved (with check_system_chunk()).
3138 */
3139 btrfs_trans_release_chunk_metadata(trans);
3140
3141 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3142 if (ret) {
3143 btrfs_abort_transaction(trans, ret);
3144 goto out;
3145 }
3146
3147 out:
3148 if (trans->removing_chunk) {
3149 mutex_unlock(&fs_info->chunk_mutex);
3150 trans->removing_chunk = false;
3151 }
3152 /* once for us */
3153 free_extent_map(em);
3154 return ret;
3155 }
3156
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3157 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3158 {
3159 struct btrfs_root *root = fs_info->chunk_root;
3160 struct btrfs_trans_handle *trans;
3161 struct btrfs_block_group *block_group;
3162 u64 length;
3163 int ret;
3164
3165 /*
3166 * Prevent races with automatic removal of unused block groups.
3167 * After we relocate and before we remove the chunk with offset
3168 * chunk_offset, automatic removal of the block group can kick in,
3169 * resulting in a failure when calling btrfs_remove_chunk() below.
3170 *
3171 * Make sure to acquire this mutex before doing a tree search (dev
3172 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3173 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3174 * we release the path used to search the chunk/dev tree and before
3175 * the current task acquires this mutex and calls us.
3176 */
3177 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3178
3179 /* step one, relocate all the extents inside this chunk */
3180 btrfs_scrub_pause(fs_info);
3181 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3182 btrfs_scrub_continue(fs_info);
3183 if (ret)
3184 return ret;
3185
3186 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3187 if (!block_group)
3188 return -ENOENT;
3189 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3190 length = block_group->length;
3191 btrfs_put_block_group(block_group);
3192
3193 /*
3194 * On a zoned file system, discard the whole block group, this will
3195 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3196 * resetting the zone fails, don't treat it as a fatal problem from the
3197 * filesystem's point of view.
3198 */
3199 if (btrfs_is_zoned(fs_info)) {
3200 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3201 if (ret)
3202 btrfs_info(fs_info,
3203 "failed to reset zone %llu after relocation",
3204 chunk_offset);
3205 }
3206
3207 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3208 chunk_offset);
3209 if (IS_ERR(trans)) {
3210 ret = PTR_ERR(trans);
3211 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3212 return ret;
3213 }
3214
3215 /*
3216 * step two, delete the device extents and the
3217 * chunk tree entries
3218 */
3219 ret = btrfs_remove_chunk(trans, chunk_offset);
3220 btrfs_end_transaction(trans);
3221 return ret;
3222 }
3223
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3224 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3225 {
3226 struct btrfs_root *chunk_root = fs_info->chunk_root;
3227 struct btrfs_path *path;
3228 struct extent_buffer *leaf;
3229 struct btrfs_chunk *chunk;
3230 struct btrfs_key key;
3231 struct btrfs_key found_key;
3232 u64 chunk_type;
3233 bool retried = false;
3234 int failed = 0;
3235 int ret;
3236
3237 path = btrfs_alloc_path();
3238 if (!path)
3239 return -ENOMEM;
3240
3241 again:
3242 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3243 key.offset = (u64)-1;
3244 key.type = BTRFS_CHUNK_ITEM_KEY;
3245
3246 while (1) {
3247 mutex_lock(&fs_info->reclaim_bgs_lock);
3248 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3249 if (ret < 0) {
3250 mutex_unlock(&fs_info->reclaim_bgs_lock);
3251 goto error;
3252 }
3253 BUG_ON(ret == 0); /* Corruption */
3254
3255 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3256 key.type);
3257 if (ret)
3258 mutex_unlock(&fs_info->reclaim_bgs_lock);
3259 if (ret < 0)
3260 goto error;
3261 if (ret > 0)
3262 break;
3263
3264 leaf = path->nodes[0];
3265 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3266
3267 chunk = btrfs_item_ptr(leaf, path->slots[0],
3268 struct btrfs_chunk);
3269 chunk_type = btrfs_chunk_type(leaf, chunk);
3270 btrfs_release_path(path);
3271
3272 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3273 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3274 if (ret == -ENOSPC)
3275 failed++;
3276 else
3277 BUG_ON(ret);
3278 }
3279 mutex_unlock(&fs_info->reclaim_bgs_lock);
3280
3281 if (found_key.offset == 0)
3282 break;
3283 key.offset = found_key.offset - 1;
3284 }
3285 ret = 0;
3286 if (failed && !retried) {
3287 failed = 0;
3288 retried = true;
3289 goto again;
3290 } else if (WARN_ON(failed && retried)) {
3291 ret = -ENOSPC;
3292 }
3293 error:
3294 btrfs_free_path(path);
3295 return ret;
3296 }
3297
3298 /*
3299 * return 1 : allocate a data chunk successfully,
3300 * return <0: errors during allocating a data chunk,
3301 * return 0 : no need to allocate a data chunk.
3302 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3303 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3304 u64 chunk_offset)
3305 {
3306 struct btrfs_block_group *cache;
3307 u64 bytes_used;
3308 u64 chunk_type;
3309
3310 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3311 ASSERT(cache);
3312 chunk_type = cache->flags;
3313 btrfs_put_block_group(cache);
3314
3315 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3316 return 0;
3317
3318 spin_lock(&fs_info->data_sinfo->lock);
3319 bytes_used = fs_info->data_sinfo->bytes_used;
3320 spin_unlock(&fs_info->data_sinfo->lock);
3321
3322 if (!bytes_used) {
3323 struct btrfs_trans_handle *trans;
3324 int ret;
3325
3326 trans = btrfs_join_transaction(fs_info->tree_root);
3327 if (IS_ERR(trans))
3328 return PTR_ERR(trans);
3329
3330 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3331 btrfs_end_transaction(trans);
3332 if (ret < 0)
3333 return ret;
3334 return 1;
3335 }
3336
3337 return 0;
3338 }
3339
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3340 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3341 struct btrfs_balance_control *bctl)
3342 {
3343 struct btrfs_root *root = fs_info->tree_root;
3344 struct btrfs_trans_handle *trans;
3345 struct btrfs_balance_item *item;
3346 struct btrfs_disk_balance_args disk_bargs;
3347 struct btrfs_path *path;
3348 struct extent_buffer *leaf;
3349 struct btrfs_key key;
3350 int ret, err;
3351
3352 path = btrfs_alloc_path();
3353 if (!path)
3354 return -ENOMEM;
3355
3356 trans = btrfs_start_transaction(root, 0);
3357 if (IS_ERR(trans)) {
3358 btrfs_free_path(path);
3359 return PTR_ERR(trans);
3360 }
3361
3362 key.objectid = BTRFS_BALANCE_OBJECTID;
3363 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3364 key.offset = 0;
3365
3366 ret = btrfs_insert_empty_item(trans, root, path, &key,
3367 sizeof(*item));
3368 if (ret)
3369 goto out;
3370
3371 leaf = path->nodes[0];
3372 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3373
3374 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3375
3376 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3377 btrfs_set_balance_data(leaf, item, &disk_bargs);
3378 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3379 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3380 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3381 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3382
3383 btrfs_set_balance_flags(leaf, item, bctl->flags);
3384
3385 btrfs_mark_buffer_dirty(leaf);
3386 out:
3387 btrfs_free_path(path);
3388 err = btrfs_commit_transaction(trans);
3389 if (err && !ret)
3390 ret = err;
3391 return ret;
3392 }
3393
del_balance_item(struct btrfs_fs_info * fs_info)3394 static int del_balance_item(struct btrfs_fs_info *fs_info)
3395 {
3396 struct btrfs_root *root = fs_info->tree_root;
3397 struct btrfs_trans_handle *trans;
3398 struct btrfs_path *path;
3399 struct btrfs_key key;
3400 int ret, err;
3401
3402 path = btrfs_alloc_path();
3403 if (!path)
3404 return -ENOMEM;
3405
3406 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3407 if (IS_ERR(trans)) {
3408 btrfs_free_path(path);
3409 return PTR_ERR(trans);
3410 }
3411
3412 key.objectid = BTRFS_BALANCE_OBJECTID;
3413 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3414 key.offset = 0;
3415
3416 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3417 if (ret < 0)
3418 goto out;
3419 if (ret > 0) {
3420 ret = -ENOENT;
3421 goto out;
3422 }
3423
3424 ret = btrfs_del_item(trans, root, path);
3425 out:
3426 btrfs_free_path(path);
3427 err = btrfs_commit_transaction(trans);
3428 if (err && !ret)
3429 ret = err;
3430 return ret;
3431 }
3432
3433 /*
3434 * This is a heuristic used to reduce the number of chunks balanced on
3435 * resume after balance was interrupted.
3436 */
update_balance_args(struct btrfs_balance_control * bctl)3437 static void update_balance_args(struct btrfs_balance_control *bctl)
3438 {
3439 /*
3440 * Turn on soft mode for chunk types that were being converted.
3441 */
3442 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3443 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3444 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3445 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3446 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3447 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3448
3449 /*
3450 * Turn on usage filter if is not already used. The idea is
3451 * that chunks that we have already balanced should be
3452 * reasonably full. Don't do it for chunks that are being
3453 * converted - that will keep us from relocating unconverted
3454 * (albeit full) chunks.
3455 */
3456 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3457 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3458 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3459 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3460 bctl->data.usage = 90;
3461 }
3462 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3463 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3464 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3465 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3466 bctl->sys.usage = 90;
3467 }
3468 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3469 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3470 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3471 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3472 bctl->meta.usage = 90;
3473 }
3474 }
3475
3476 /*
3477 * Clear the balance status in fs_info and delete the balance item from disk.
3478 */
reset_balance_state(struct btrfs_fs_info * fs_info)3479 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3480 {
3481 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3482 int ret;
3483
3484 BUG_ON(!fs_info->balance_ctl);
3485
3486 spin_lock(&fs_info->balance_lock);
3487 fs_info->balance_ctl = NULL;
3488 spin_unlock(&fs_info->balance_lock);
3489
3490 kfree(bctl);
3491 ret = del_balance_item(fs_info);
3492 if (ret)
3493 btrfs_handle_fs_error(fs_info, ret, NULL);
3494 }
3495
3496 /*
3497 * Balance filters. Return 1 if chunk should be filtered out
3498 * (should not be balanced).
3499 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3500 static int chunk_profiles_filter(u64 chunk_type,
3501 struct btrfs_balance_args *bargs)
3502 {
3503 chunk_type = chunk_to_extended(chunk_type) &
3504 BTRFS_EXTENDED_PROFILE_MASK;
3505
3506 if (bargs->profiles & chunk_type)
3507 return 0;
3508
3509 return 1;
3510 }
3511
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3512 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3513 struct btrfs_balance_args *bargs)
3514 {
3515 struct btrfs_block_group *cache;
3516 u64 chunk_used;
3517 u64 user_thresh_min;
3518 u64 user_thresh_max;
3519 int ret = 1;
3520
3521 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3522 chunk_used = cache->used;
3523
3524 if (bargs->usage_min == 0)
3525 user_thresh_min = 0;
3526 else
3527 user_thresh_min = div_factor_fine(cache->length,
3528 bargs->usage_min);
3529
3530 if (bargs->usage_max == 0)
3531 user_thresh_max = 1;
3532 else if (bargs->usage_max > 100)
3533 user_thresh_max = cache->length;
3534 else
3535 user_thresh_max = div_factor_fine(cache->length,
3536 bargs->usage_max);
3537
3538 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3539 ret = 0;
3540
3541 btrfs_put_block_group(cache);
3542 return ret;
3543 }
3544
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3545 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3546 u64 chunk_offset, struct btrfs_balance_args *bargs)
3547 {
3548 struct btrfs_block_group *cache;
3549 u64 chunk_used, user_thresh;
3550 int ret = 1;
3551
3552 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3553 chunk_used = cache->used;
3554
3555 if (bargs->usage_min == 0)
3556 user_thresh = 1;
3557 else if (bargs->usage > 100)
3558 user_thresh = cache->length;
3559 else
3560 user_thresh = div_factor_fine(cache->length, bargs->usage);
3561
3562 if (chunk_used < user_thresh)
3563 ret = 0;
3564
3565 btrfs_put_block_group(cache);
3566 return ret;
3567 }
3568
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3569 static int chunk_devid_filter(struct extent_buffer *leaf,
3570 struct btrfs_chunk *chunk,
3571 struct btrfs_balance_args *bargs)
3572 {
3573 struct btrfs_stripe *stripe;
3574 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3575 int i;
3576
3577 for (i = 0; i < num_stripes; i++) {
3578 stripe = btrfs_stripe_nr(chunk, i);
3579 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3580 return 0;
3581 }
3582
3583 return 1;
3584 }
3585
calc_data_stripes(u64 type,int num_stripes)3586 static u64 calc_data_stripes(u64 type, int num_stripes)
3587 {
3588 const int index = btrfs_bg_flags_to_raid_index(type);
3589 const int ncopies = btrfs_raid_array[index].ncopies;
3590 const int nparity = btrfs_raid_array[index].nparity;
3591
3592 return (num_stripes - nparity) / ncopies;
3593 }
3594
3595 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3596 static int chunk_drange_filter(struct extent_buffer *leaf,
3597 struct btrfs_chunk *chunk,
3598 struct btrfs_balance_args *bargs)
3599 {
3600 struct btrfs_stripe *stripe;
3601 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3602 u64 stripe_offset;
3603 u64 stripe_length;
3604 u64 type;
3605 int factor;
3606 int i;
3607
3608 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3609 return 0;
3610
3611 type = btrfs_chunk_type(leaf, chunk);
3612 factor = calc_data_stripes(type, num_stripes);
3613
3614 for (i = 0; i < num_stripes; i++) {
3615 stripe = btrfs_stripe_nr(chunk, i);
3616 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3617 continue;
3618
3619 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3620 stripe_length = btrfs_chunk_length(leaf, chunk);
3621 stripe_length = div_u64(stripe_length, factor);
3622
3623 if (stripe_offset < bargs->pend &&
3624 stripe_offset + stripe_length > bargs->pstart)
3625 return 0;
3626 }
3627
3628 return 1;
3629 }
3630
3631 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3632 static int chunk_vrange_filter(struct extent_buffer *leaf,
3633 struct btrfs_chunk *chunk,
3634 u64 chunk_offset,
3635 struct btrfs_balance_args *bargs)
3636 {
3637 if (chunk_offset < bargs->vend &&
3638 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3639 /* at least part of the chunk is inside this vrange */
3640 return 0;
3641
3642 return 1;
3643 }
3644
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3645 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3646 struct btrfs_chunk *chunk,
3647 struct btrfs_balance_args *bargs)
3648 {
3649 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3650
3651 if (bargs->stripes_min <= num_stripes
3652 && num_stripes <= bargs->stripes_max)
3653 return 0;
3654
3655 return 1;
3656 }
3657
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3658 static int chunk_soft_convert_filter(u64 chunk_type,
3659 struct btrfs_balance_args *bargs)
3660 {
3661 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3662 return 0;
3663
3664 chunk_type = chunk_to_extended(chunk_type) &
3665 BTRFS_EXTENDED_PROFILE_MASK;
3666
3667 if (bargs->target == chunk_type)
3668 return 1;
3669
3670 return 0;
3671 }
3672
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3673 static int should_balance_chunk(struct extent_buffer *leaf,
3674 struct btrfs_chunk *chunk, u64 chunk_offset)
3675 {
3676 struct btrfs_fs_info *fs_info = leaf->fs_info;
3677 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3678 struct btrfs_balance_args *bargs = NULL;
3679 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3680
3681 /* type filter */
3682 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3683 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3684 return 0;
3685 }
3686
3687 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3688 bargs = &bctl->data;
3689 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3690 bargs = &bctl->sys;
3691 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3692 bargs = &bctl->meta;
3693
3694 /* profiles filter */
3695 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3696 chunk_profiles_filter(chunk_type, bargs)) {
3697 return 0;
3698 }
3699
3700 /* usage filter */
3701 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3702 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3703 return 0;
3704 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3705 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3706 return 0;
3707 }
3708
3709 /* devid filter */
3710 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3711 chunk_devid_filter(leaf, chunk, bargs)) {
3712 return 0;
3713 }
3714
3715 /* drange filter, makes sense only with devid filter */
3716 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3717 chunk_drange_filter(leaf, chunk, bargs)) {
3718 return 0;
3719 }
3720
3721 /* vrange filter */
3722 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3723 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3724 return 0;
3725 }
3726
3727 /* stripes filter */
3728 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3729 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3730 return 0;
3731 }
3732
3733 /* soft profile changing mode */
3734 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3735 chunk_soft_convert_filter(chunk_type, bargs)) {
3736 return 0;
3737 }
3738
3739 /*
3740 * limited by count, must be the last filter
3741 */
3742 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3743 if (bargs->limit == 0)
3744 return 0;
3745 else
3746 bargs->limit--;
3747 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3748 /*
3749 * Same logic as the 'limit' filter; the minimum cannot be
3750 * determined here because we do not have the global information
3751 * about the count of all chunks that satisfy the filters.
3752 */
3753 if (bargs->limit_max == 0)
3754 return 0;
3755 else
3756 bargs->limit_max--;
3757 }
3758
3759 return 1;
3760 }
3761
__btrfs_balance(struct btrfs_fs_info * fs_info)3762 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3763 {
3764 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3765 struct btrfs_root *chunk_root = fs_info->chunk_root;
3766 u64 chunk_type;
3767 struct btrfs_chunk *chunk;
3768 struct btrfs_path *path = NULL;
3769 struct btrfs_key key;
3770 struct btrfs_key found_key;
3771 struct extent_buffer *leaf;
3772 int slot;
3773 int ret;
3774 int enospc_errors = 0;
3775 bool counting = true;
3776 /* The single value limit and min/max limits use the same bytes in the */
3777 u64 limit_data = bctl->data.limit;
3778 u64 limit_meta = bctl->meta.limit;
3779 u64 limit_sys = bctl->sys.limit;
3780 u32 count_data = 0;
3781 u32 count_meta = 0;
3782 u32 count_sys = 0;
3783 int chunk_reserved = 0;
3784
3785 path = btrfs_alloc_path();
3786 if (!path) {
3787 ret = -ENOMEM;
3788 goto error;
3789 }
3790
3791 /* zero out stat counters */
3792 spin_lock(&fs_info->balance_lock);
3793 memset(&bctl->stat, 0, sizeof(bctl->stat));
3794 spin_unlock(&fs_info->balance_lock);
3795 again:
3796 if (!counting) {
3797 /*
3798 * The single value limit and min/max limits use the same bytes
3799 * in the
3800 */
3801 bctl->data.limit = limit_data;
3802 bctl->meta.limit = limit_meta;
3803 bctl->sys.limit = limit_sys;
3804 }
3805 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3806 key.offset = (u64)-1;
3807 key.type = BTRFS_CHUNK_ITEM_KEY;
3808
3809 while (1) {
3810 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3811 atomic_read(&fs_info->balance_cancel_req)) {
3812 ret = -ECANCELED;
3813 goto error;
3814 }
3815
3816 mutex_lock(&fs_info->reclaim_bgs_lock);
3817 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3818 if (ret < 0) {
3819 mutex_unlock(&fs_info->reclaim_bgs_lock);
3820 goto error;
3821 }
3822
3823 /*
3824 * this shouldn't happen, it means the last relocate
3825 * failed
3826 */
3827 if (ret == 0)
3828 BUG(); /* FIXME break ? */
3829
3830 ret = btrfs_previous_item(chunk_root, path, 0,
3831 BTRFS_CHUNK_ITEM_KEY);
3832 if (ret) {
3833 mutex_unlock(&fs_info->reclaim_bgs_lock);
3834 ret = 0;
3835 break;
3836 }
3837
3838 leaf = path->nodes[0];
3839 slot = path->slots[0];
3840 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3841
3842 if (found_key.objectid != key.objectid) {
3843 mutex_unlock(&fs_info->reclaim_bgs_lock);
3844 break;
3845 }
3846
3847 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3848 chunk_type = btrfs_chunk_type(leaf, chunk);
3849
3850 if (!counting) {
3851 spin_lock(&fs_info->balance_lock);
3852 bctl->stat.considered++;
3853 spin_unlock(&fs_info->balance_lock);
3854 }
3855
3856 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3857
3858 btrfs_release_path(path);
3859 if (!ret) {
3860 mutex_unlock(&fs_info->reclaim_bgs_lock);
3861 goto loop;
3862 }
3863
3864 if (counting) {
3865 mutex_unlock(&fs_info->reclaim_bgs_lock);
3866 spin_lock(&fs_info->balance_lock);
3867 bctl->stat.expected++;
3868 spin_unlock(&fs_info->balance_lock);
3869
3870 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3871 count_data++;
3872 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3873 count_sys++;
3874 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3875 count_meta++;
3876
3877 goto loop;
3878 }
3879
3880 /*
3881 * Apply limit_min filter, no need to check if the LIMITS
3882 * filter is used, limit_min is 0 by default
3883 */
3884 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3885 count_data < bctl->data.limit_min)
3886 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3887 count_meta < bctl->meta.limit_min)
3888 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3889 count_sys < bctl->sys.limit_min)) {
3890 mutex_unlock(&fs_info->reclaim_bgs_lock);
3891 goto loop;
3892 }
3893
3894 if (!chunk_reserved) {
3895 /*
3896 * We may be relocating the only data chunk we have,
3897 * which could potentially end up with losing data's
3898 * raid profile, so lets allocate an empty one in
3899 * advance.
3900 */
3901 ret = btrfs_may_alloc_data_chunk(fs_info,
3902 found_key.offset);
3903 if (ret < 0) {
3904 mutex_unlock(&fs_info->reclaim_bgs_lock);
3905 goto error;
3906 } else if (ret == 1) {
3907 chunk_reserved = 1;
3908 }
3909 }
3910
3911 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3912 mutex_unlock(&fs_info->reclaim_bgs_lock);
3913 if (ret == -ENOSPC) {
3914 enospc_errors++;
3915 } else if (ret == -ETXTBSY) {
3916 btrfs_info(fs_info,
3917 "skipping relocation of block group %llu due to active swapfile",
3918 found_key.offset);
3919 ret = 0;
3920 } else if (ret) {
3921 goto error;
3922 } else {
3923 spin_lock(&fs_info->balance_lock);
3924 bctl->stat.completed++;
3925 spin_unlock(&fs_info->balance_lock);
3926 }
3927 loop:
3928 if (found_key.offset == 0)
3929 break;
3930 key.offset = found_key.offset - 1;
3931 }
3932
3933 if (counting) {
3934 btrfs_release_path(path);
3935 counting = false;
3936 goto again;
3937 }
3938 error:
3939 btrfs_free_path(path);
3940 if (enospc_errors) {
3941 btrfs_info(fs_info, "%d enospc errors during balance",
3942 enospc_errors);
3943 if (!ret)
3944 ret = -ENOSPC;
3945 }
3946
3947 return ret;
3948 }
3949
3950 /**
3951 * alloc_profile_is_valid - see if a given profile is valid and reduced
3952 * @flags: profile to validate
3953 * @extended: if true @flags is treated as an extended profile
3954 */
alloc_profile_is_valid(u64 flags,int extended)3955 static int alloc_profile_is_valid(u64 flags, int extended)
3956 {
3957 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3958 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3959
3960 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3961
3962 /* 1) check that all other bits are zeroed */
3963 if (flags & ~mask)
3964 return 0;
3965
3966 /* 2) see if profile is reduced */
3967 if (flags == 0)
3968 return !extended; /* "0" is valid for usual profiles */
3969
3970 return has_single_bit_set(flags);
3971 }
3972
balance_need_close(struct btrfs_fs_info * fs_info)3973 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3974 {
3975 /* cancel requested || normal exit path */
3976 return atomic_read(&fs_info->balance_cancel_req) ||
3977 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3978 atomic_read(&fs_info->balance_cancel_req) == 0);
3979 }
3980
3981 /*
3982 * Validate target profile against allowed profiles and return true if it's OK.
3983 * Otherwise print the error message and return false.
3984 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)3985 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3986 const struct btrfs_balance_args *bargs,
3987 u64 allowed, const char *type)
3988 {
3989 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3990 return true;
3991
3992 if (fs_info->sectorsize < PAGE_SIZE &&
3993 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3994 btrfs_err(fs_info,
3995 "RAID56 is not yet supported for sectorsize %u with page size %lu",
3996 fs_info->sectorsize, PAGE_SIZE);
3997 return false;
3998 }
3999 /* Profile is valid and does not have bits outside of the allowed set */
4000 if (alloc_profile_is_valid(bargs->target, 1) &&
4001 (bargs->target & ~allowed) == 0)
4002 return true;
4003
4004 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4005 type, btrfs_bg_type_to_raid_name(bargs->target));
4006 return false;
4007 }
4008
4009 /*
4010 * Fill @buf with textual description of balance filter flags @bargs, up to
4011 * @size_buf including the terminating null. The output may be trimmed if it
4012 * does not fit into the provided buffer.
4013 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4014 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4015 u32 size_buf)
4016 {
4017 int ret;
4018 u32 size_bp = size_buf;
4019 char *bp = buf;
4020 u64 flags = bargs->flags;
4021 char tmp_buf[128] = {'\0'};
4022
4023 if (!flags)
4024 return;
4025
4026 #define CHECK_APPEND_NOARG(a) \
4027 do { \
4028 ret = snprintf(bp, size_bp, (a)); \
4029 if (ret < 0 || ret >= size_bp) \
4030 goto out_overflow; \
4031 size_bp -= ret; \
4032 bp += ret; \
4033 } while (0)
4034
4035 #define CHECK_APPEND_1ARG(a, v1) \
4036 do { \
4037 ret = snprintf(bp, size_bp, (a), (v1)); \
4038 if (ret < 0 || ret >= size_bp) \
4039 goto out_overflow; \
4040 size_bp -= ret; \
4041 bp += ret; \
4042 } while (0)
4043
4044 #define CHECK_APPEND_2ARG(a, v1, v2) \
4045 do { \
4046 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4047 if (ret < 0 || ret >= size_bp) \
4048 goto out_overflow; \
4049 size_bp -= ret; \
4050 bp += ret; \
4051 } while (0)
4052
4053 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4054 CHECK_APPEND_1ARG("convert=%s,",
4055 btrfs_bg_type_to_raid_name(bargs->target));
4056
4057 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4058 CHECK_APPEND_NOARG("soft,");
4059
4060 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4061 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4062 sizeof(tmp_buf));
4063 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4064 }
4065
4066 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4067 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4068
4069 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4070 CHECK_APPEND_2ARG("usage=%u..%u,",
4071 bargs->usage_min, bargs->usage_max);
4072
4073 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4074 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4075
4076 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4077 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4078 bargs->pstart, bargs->pend);
4079
4080 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4081 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4082 bargs->vstart, bargs->vend);
4083
4084 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4085 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4086
4087 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4088 CHECK_APPEND_2ARG("limit=%u..%u,",
4089 bargs->limit_min, bargs->limit_max);
4090
4091 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4092 CHECK_APPEND_2ARG("stripes=%u..%u,",
4093 bargs->stripes_min, bargs->stripes_max);
4094
4095 #undef CHECK_APPEND_2ARG
4096 #undef CHECK_APPEND_1ARG
4097 #undef CHECK_APPEND_NOARG
4098
4099 out_overflow:
4100
4101 if (size_bp < size_buf)
4102 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4103 else
4104 buf[0] = '\0';
4105 }
4106
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4107 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4108 {
4109 u32 size_buf = 1024;
4110 char tmp_buf[192] = {'\0'};
4111 char *buf;
4112 char *bp;
4113 u32 size_bp = size_buf;
4114 int ret;
4115 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4116
4117 buf = kzalloc(size_buf, GFP_KERNEL);
4118 if (!buf)
4119 return;
4120
4121 bp = buf;
4122
4123 #define CHECK_APPEND_1ARG(a, v1) \
4124 do { \
4125 ret = snprintf(bp, size_bp, (a), (v1)); \
4126 if (ret < 0 || ret >= size_bp) \
4127 goto out_overflow; \
4128 size_bp -= ret; \
4129 bp += ret; \
4130 } while (0)
4131
4132 if (bctl->flags & BTRFS_BALANCE_FORCE)
4133 CHECK_APPEND_1ARG("%s", "-f ");
4134
4135 if (bctl->flags & BTRFS_BALANCE_DATA) {
4136 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4137 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4138 }
4139
4140 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4141 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4142 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4143 }
4144
4145 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4146 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4147 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4148 }
4149
4150 #undef CHECK_APPEND_1ARG
4151
4152 out_overflow:
4153
4154 if (size_bp < size_buf)
4155 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4156 btrfs_info(fs_info, "balance: %s %s",
4157 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4158 "resume" : "start", buf);
4159
4160 kfree(buf);
4161 }
4162
4163 /*
4164 * Should be called with balance mutexe held
4165 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4166 int btrfs_balance(struct btrfs_fs_info *fs_info,
4167 struct btrfs_balance_control *bctl,
4168 struct btrfs_ioctl_balance_args *bargs)
4169 {
4170 u64 meta_target, data_target;
4171 u64 allowed;
4172 int mixed = 0;
4173 int ret;
4174 u64 num_devices;
4175 unsigned seq;
4176 bool reducing_redundancy;
4177 int i;
4178
4179 if (btrfs_fs_closing(fs_info) ||
4180 atomic_read(&fs_info->balance_pause_req) ||
4181 btrfs_should_cancel_balance(fs_info)) {
4182 ret = -EINVAL;
4183 goto out;
4184 }
4185
4186 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4187 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4188 mixed = 1;
4189
4190 /*
4191 * In case of mixed groups both data and meta should be picked,
4192 * and identical options should be given for both of them.
4193 */
4194 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4195 if (mixed && (bctl->flags & allowed)) {
4196 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4197 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4198 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4199 btrfs_err(fs_info,
4200 "balance: mixed groups data and metadata options must be the same");
4201 ret = -EINVAL;
4202 goto out;
4203 }
4204 }
4205
4206 /*
4207 * rw_devices will not change at the moment, device add/delete/replace
4208 * are exclusive
4209 */
4210 num_devices = fs_info->fs_devices->rw_devices;
4211
4212 /*
4213 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4214 * special bit for it, to make it easier to distinguish. Thus we need
4215 * to set it manually, or balance would refuse the profile.
4216 */
4217 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4218 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4219 if (num_devices >= btrfs_raid_array[i].devs_min)
4220 allowed |= btrfs_raid_array[i].bg_flag;
4221
4222 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4223 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4224 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4225 ret = -EINVAL;
4226 goto out;
4227 }
4228
4229 /*
4230 * Allow to reduce metadata or system integrity only if force set for
4231 * profiles with redundancy (copies, parity)
4232 */
4233 allowed = 0;
4234 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4235 if (btrfs_raid_array[i].ncopies >= 2 ||
4236 btrfs_raid_array[i].tolerated_failures >= 1)
4237 allowed |= btrfs_raid_array[i].bg_flag;
4238 }
4239 do {
4240 seq = read_seqbegin(&fs_info->profiles_lock);
4241
4242 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4243 (fs_info->avail_system_alloc_bits & allowed) &&
4244 !(bctl->sys.target & allowed)) ||
4245 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4246 (fs_info->avail_metadata_alloc_bits & allowed) &&
4247 !(bctl->meta.target & allowed)))
4248 reducing_redundancy = true;
4249 else
4250 reducing_redundancy = false;
4251
4252 /* if we're not converting, the target field is uninitialized */
4253 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4254 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4255 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4256 bctl->data.target : fs_info->avail_data_alloc_bits;
4257 } while (read_seqretry(&fs_info->profiles_lock, seq));
4258
4259 if (reducing_redundancy) {
4260 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4261 btrfs_info(fs_info,
4262 "balance: force reducing metadata redundancy");
4263 } else {
4264 btrfs_err(fs_info,
4265 "balance: reduces metadata redundancy, use --force if you want this");
4266 ret = -EINVAL;
4267 goto out;
4268 }
4269 }
4270
4271 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4272 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4273 btrfs_warn(fs_info,
4274 "balance: metadata profile %s has lower redundancy than data profile %s",
4275 btrfs_bg_type_to_raid_name(meta_target),
4276 btrfs_bg_type_to_raid_name(data_target));
4277 }
4278
4279 ret = insert_balance_item(fs_info, bctl);
4280 if (ret && ret != -EEXIST)
4281 goto out;
4282
4283 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4284 BUG_ON(ret == -EEXIST);
4285 BUG_ON(fs_info->balance_ctl);
4286 spin_lock(&fs_info->balance_lock);
4287 fs_info->balance_ctl = bctl;
4288 spin_unlock(&fs_info->balance_lock);
4289 } else {
4290 BUG_ON(ret != -EEXIST);
4291 spin_lock(&fs_info->balance_lock);
4292 update_balance_args(bctl);
4293 spin_unlock(&fs_info->balance_lock);
4294 }
4295
4296 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4297 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4298 describe_balance_start_or_resume(fs_info);
4299 mutex_unlock(&fs_info->balance_mutex);
4300
4301 ret = __btrfs_balance(fs_info);
4302
4303 mutex_lock(&fs_info->balance_mutex);
4304 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4305 btrfs_info(fs_info, "balance: paused");
4306 /*
4307 * Balance can be canceled by:
4308 *
4309 * - Regular cancel request
4310 * Then ret == -ECANCELED and balance_cancel_req > 0
4311 *
4312 * - Fatal signal to "btrfs" process
4313 * Either the signal caught by wait_reserve_ticket() and callers
4314 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4315 * got -ECANCELED.
4316 * Either way, in this case balance_cancel_req = 0, and
4317 * ret == -EINTR or ret == -ECANCELED.
4318 *
4319 * So here we only check the return value to catch canceled balance.
4320 */
4321 else if (ret == -ECANCELED || ret == -EINTR)
4322 btrfs_info(fs_info, "balance: canceled");
4323 else
4324 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4325
4326 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4327
4328 if (bargs) {
4329 memset(bargs, 0, sizeof(*bargs));
4330 btrfs_update_ioctl_balance_args(fs_info, bargs);
4331 }
4332
4333 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4334 balance_need_close(fs_info)) {
4335 reset_balance_state(fs_info);
4336 btrfs_exclop_finish(fs_info);
4337 }
4338
4339 wake_up(&fs_info->balance_wait_q);
4340
4341 return ret;
4342 out:
4343 if (bctl->flags & BTRFS_BALANCE_RESUME)
4344 reset_balance_state(fs_info);
4345 else
4346 kfree(bctl);
4347 btrfs_exclop_finish(fs_info);
4348
4349 return ret;
4350 }
4351
balance_kthread(void * data)4352 static int balance_kthread(void *data)
4353 {
4354 struct btrfs_fs_info *fs_info = data;
4355 int ret = 0;
4356
4357 mutex_lock(&fs_info->balance_mutex);
4358 if (fs_info->balance_ctl)
4359 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4360 mutex_unlock(&fs_info->balance_mutex);
4361
4362 return ret;
4363 }
4364
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4365 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4366 {
4367 struct task_struct *tsk;
4368
4369 mutex_lock(&fs_info->balance_mutex);
4370 if (!fs_info->balance_ctl) {
4371 mutex_unlock(&fs_info->balance_mutex);
4372 return 0;
4373 }
4374 mutex_unlock(&fs_info->balance_mutex);
4375
4376 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4377 btrfs_info(fs_info, "balance: resume skipped");
4378 return 0;
4379 }
4380
4381 /*
4382 * A ro->rw remount sequence should continue with the paused balance
4383 * regardless of who pauses it, system or the user as of now, so set
4384 * the resume flag.
4385 */
4386 spin_lock(&fs_info->balance_lock);
4387 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4388 spin_unlock(&fs_info->balance_lock);
4389
4390 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4391 return PTR_ERR_OR_ZERO(tsk);
4392 }
4393
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4394 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4395 {
4396 struct btrfs_balance_control *bctl;
4397 struct btrfs_balance_item *item;
4398 struct btrfs_disk_balance_args disk_bargs;
4399 struct btrfs_path *path;
4400 struct extent_buffer *leaf;
4401 struct btrfs_key key;
4402 int ret;
4403
4404 path = btrfs_alloc_path();
4405 if (!path)
4406 return -ENOMEM;
4407
4408 key.objectid = BTRFS_BALANCE_OBJECTID;
4409 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4410 key.offset = 0;
4411
4412 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4413 if (ret < 0)
4414 goto out;
4415 if (ret > 0) { /* ret = -ENOENT; */
4416 ret = 0;
4417 goto out;
4418 }
4419
4420 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4421 if (!bctl) {
4422 ret = -ENOMEM;
4423 goto out;
4424 }
4425
4426 leaf = path->nodes[0];
4427 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4428
4429 bctl->flags = btrfs_balance_flags(leaf, item);
4430 bctl->flags |= BTRFS_BALANCE_RESUME;
4431
4432 btrfs_balance_data(leaf, item, &disk_bargs);
4433 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4434 btrfs_balance_meta(leaf, item, &disk_bargs);
4435 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4436 btrfs_balance_sys(leaf, item, &disk_bargs);
4437 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4438
4439 /*
4440 * This should never happen, as the paused balance state is recovered
4441 * during mount without any chance of other exclusive ops to collide.
4442 *
4443 * This gives the exclusive op status to balance and keeps in paused
4444 * state until user intervention (cancel or umount). If the ownership
4445 * cannot be assigned, show a message but do not fail. The balance
4446 * is in a paused state and must have fs_info::balance_ctl properly
4447 * set up.
4448 */
4449 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4450 btrfs_warn(fs_info,
4451 "balance: cannot set exclusive op status, resume manually");
4452
4453 btrfs_release_path(path);
4454
4455 mutex_lock(&fs_info->balance_mutex);
4456 BUG_ON(fs_info->balance_ctl);
4457 spin_lock(&fs_info->balance_lock);
4458 fs_info->balance_ctl = bctl;
4459 spin_unlock(&fs_info->balance_lock);
4460 mutex_unlock(&fs_info->balance_mutex);
4461 out:
4462 btrfs_free_path(path);
4463 return ret;
4464 }
4465
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4466 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4467 {
4468 int ret = 0;
4469
4470 mutex_lock(&fs_info->balance_mutex);
4471 if (!fs_info->balance_ctl) {
4472 mutex_unlock(&fs_info->balance_mutex);
4473 return -ENOTCONN;
4474 }
4475
4476 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4477 atomic_inc(&fs_info->balance_pause_req);
4478 mutex_unlock(&fs_info->balance_mutex);
4479
4480 wait_event(fs_info->balance_wait_q,
4481 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4482
4483 mutex_lock(&fs_info->balance_mutex);
4484 /* we are good with balance_ctl ripped off from under us */
4485 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4486 atomic_dec(&fs_info->balance_pause_req);
4487 } else {
4488 ret = -ENOTCONN;
4489 }
4490
4491 mutex_unlock(&fs_info->balance_mutex);
4492 return ret;
4493 }
4494
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4495 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4496 {
4497 mutex_lock(&fs_info->balance_mutex);
4498 if (!fs_info->balance_ctl) {
4499 mutex_unlock(&fs_info->balance_mutex);
4500 return -ENOTCONN;
4501 }
4502
4503 /*
4504 * A paused balance with the item stored on disk can be resumed at
4505 * mount time if the mount is read-write. Otherwise it's still paused
4506 * and we must not allow cancelling as it deletes the item.
4507 */
4508 if (sb_rdonly(fs_info->sb)) {
4509 mutex_unlock(&fs_info->balance_mutex);
4510 return -EROFS;
4511 }
4512
4513 atomic_inc(&fs_info->balance_cancel_req);
4514 /*
4515 * if we are running just wait and return, balance item is
4516 * deleted in btrfs_balance in this case
4517 */
4518 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4519 mutex_unlock(&fs_info->balance_mutex);
4520 wait_event(fs_info->balance_wait_q,
4521 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4522 mutex_lock(&fs_info->balance_mutex);
4523 } else {
4524 mutex_unlock(&fs_info->balance_mutex);
4525 /*
4526 * Lock released to allow other waiters to continue, we'll
4527 * reexamine the status again.
4528 */
4529 mutex_lock(&fs_info->balance_mutex);
4530
4531 if (fs_info->balance_ctl) {
4532 reset_balance_state(fs_info);
4533 btrfs_exclop_finish(fs_info);
4534 btrfs_info(fs_info, "balance: canceled");
4535 }
4536 }
4537
4538 BUG_ON(fs_info->balance_ctl ||
4539 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4540 atomic_dec(&fs_info->balance_cancel_req);
4541 mutex_unlock(&fs_info->balance_mutex);
4542 return 0;
4543 }
4544
btrfs_uuid_scan_kthread(void * data)4545 int btrfs_uuid_scan_kthread(void *data)
4546 {
4547 struct btrfs_fs_info *fs_info = data;
4548 struct btrfs_root *root = fs_info->tree_root;
4549 struct btrfs_key key;
4550 struct btrfs_path *path = NULL;
4551 int ret = 0;
4552 struct extent_buffer *eb;
4553 int slot;
4554 struct btrfs_root_item root_item;
4555 u32 item_size;
4556 struct btrfs_trans_handle *trans = NULL;
4557 bool closing = false;
4558
4559 path = btrfs_alloc_path();
4560 if (!path) {
4561 ret = -ENOMEM;
4562 goto out;
4563 }
4564
4565 key.objectid = 0;
4566 key.type = BTRFS_ROOT_ITEM_KEY;
4567 key.offset = 0;
4568
4569 while (1) {
4570 if (btrfs_fs_closing(fs_info)) {
4571 closing = true;
4572 break;
4573 }
4574 ret = btrfs_search_forward(root, &key, path,
4575 BTRFS_OLDEST_GENERATION);
4576 if (ret) {
4577 if (ret > 0)
4578 ret = 0;
4579 break;
4580 }
4581
4582 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4583 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4584 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4585 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4586 goto skip;
4587
4588 eb = path->nodes[0];
4589 slot = path->slots[0];
4590 item_size = btrfs_item_size_nr(eb, slot);
4591 if (item_size < sizeof(root_item))
4592 goto skip;
4593
4594 read_extent_buffer(eb, &root_item,
4595 btrfs_item_ptr_offset(eb, slot),
4596 (int)sizeof(root_item));
4597 if (btrfs_root_refs(&root_item) == 0)
4598 goto skip;
4599
4600 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4601 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4602 if (trans)
4603 goto update_tree;
4604
4605 btrfs_release_path(path);
4606 /*
4607 * 1 - subvol uuid item
4608 * 1 - received_subvol uuid item
4609 */
4610 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4611 if (IS_ERR(trans)) {
4612 ret = PTR_ERR(trans);
4613 break;
4614 }
4615 continue;
4616 } else {
4617 goto skip;
4618 }
4619 update_tree:
4620 btrfs_release_path(path);
4621 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4622 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4623 BTRFS_UUID_KEY_SUBVOL,
4624 key.objectid);
4625 if (ret < 0) {
4626 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4627 ret);
4628 break;
4629 }
4630 }
4631
4632 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4633 ret = btrfs_uuid_tree_add(trans,
4634 root_item.received_uuid,
4635 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4636 key.objectid);
4637 if (ret < 0) {
4638 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4639 ret);
4640 break;
4641 }
4642 }
4643
4644 skip:
4645 btrfs_release_path(path);
4646 if (trans) {
4647 ret = btrfs_end_transaction(trans);
4648 trans = NULL;
4649 if (ret)
4650 break;
4651 }
4652
4653 if (key.offset < (u64)-1) {
4654 key.offset++;
4655 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4656 key.offset = 0;
4657 key.type = BTRFS_ROOT_ITEM_KEY;
4658 } else if (key.objectid < (u64)-1) {
4659 key.offset = 0;
4660 key.type = BTRFS_ROOT_ITEM_KEY;
4661 key.objectid++;
4662 } else {
4663 break;
4664 }
4665 cond_resched();
4666 }
4667
4668 out:
4669 btrfs_free_path(path);
4670 if (trans && !IS_ERR(trans))
4671 btrfs_end_transaction(trans);
4672 if (ret)
4673 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4674 else if (!closing)
4675 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4676 up(&fs_info->uuid_tree_rescan_sem);
4677 return 0;
4678 }
4679
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4680 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4681 {
4682 struct btrfs_trans_handle *trans;
4683 struct btrfs_root *tree_root = fs_info->tree_root;
4684 struct btrfs_root *uuid_root;
4685 struct task_struct *task;
4686 int ret;
4687
4688 /*
4689 * 1 - root node
4690 * 1 - root item
4691 */
4692 trans = btrfs_start_transaction(tree_root, 2);
4693 if (IS_ERR(trans))
4694 return PTR_ERR(trans);
4695
4696 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4697 if (IS_ERR(uuid_root)) {
4698 ret = PTR_ERR(uuid_root);
4699 btrfs_abort_transaction(trans, ret);
4700 btrfs_end_transaction(trans);
4701 return ret;
4702 }
4703
4704 fs_info->uuid_root = uuid_root;
4705
4706 ret = btrfs_commit_transaction(trans);
4707 if (ret)
4708 return ret;
4709
4710 down(&fs_info->uuid_tree_rescan_sem);
4711 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4712 if (IS_ERR(task)) {
4713 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4714 btrfs_warn(fs_info, "failed to start uuid_scan task");
4715 up(&fs_info->uuid_tree_rescan_sem);
4716 return PTR_ERR(task);
4717 }
4718
4719 return 0;
4720 }
4721
4722 /*
4723 * shrinking a device means finding all of the device extents past
4724 * the new size, and then following the back refs to the chunks.
4725 * The chunk relocation code actually frees the device extent
4726 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4727 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4728 {
4729 struct btrfs_fs_info *fs_info = device->fs_info;
4730 struct btrfs_root *root = fs_info->dev_root;
4731 struct btrfs_trans_handle *trans;
4732 struct btrfs_dev_extent *dev_extent = NULL;
4733 struct btrfs_path *path;
4734 u64 length;
4735 u64 chunk_offset;
4736 int ret;
4737 int slot;
4738 int failed = 0;
4739 bool retried = false;
4740 struct extent_buffer *l;
4741 struct btrfs_key key;
4742 struct btrfs_super_block *super_copy = fs_info->super_copy;
4743 u64 old_total = btrfs_super_total_bytes(super_copy);
4744 u64 old_size = btrfs_device_get_total_bytes(device);
4745 u64 diff;
4746 u64 start;
4747
4748 new_size = round_down(new_size, fs_info->sectorsize);
4749 start = new_size;
4750 diff = round_down(old_size - new_size, fs_info->sectorsize);
4751
4752 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4753 return -EINVAL;
4754
4755 path = btrfs_alloc_path();
4756 if (!path)
4757 return -ENOMEM;
4758
4759 path->reada = READA_BACK;
4760
4761 trans = btrfs_start_transaction(root, 0);
4762 if (IS_ERR(trans)) {
4763 btrfs_free_path(path);
4764 return PTR_ERR(trans);
4765 }
4766
4767 mutex_lock(&fs_info->chunk_mutex);
4768
4769 btrfs_device_set_total_bytes(device, new_size);
4770 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4771 device->fs_devices->total_rw_bytes -= diff;
4772 atomic64_sub(diff, &fs_info->free_chunk_space);
4773 }
4774
4775 /*
4776 * Once the device's size has been set to the new size, ensure all
4777 * in-memory chunks are synced to disk so that the loop below sees them
4778 * and relocates them accordingly.
4779 */
4780 if (contains_pending_extent(device, &start, diff)) {
4781 mutex_unlock(&fs_info->chunk_mutex);
4782 ret = btrfs_commit_transaction(trans);
4783 if (ret)
4784 goto done;
4785 } else {
4786 mutex_unlock(&fs_info->chunk_mutex);
4787 btrfs_end_transaction(trans);
4788 }
4789
4790 again:
4791 key.objectid = device->devid;
4792 key.offset = (u64)-1;
4793 key.type = BTRFS_DEV_EXTENT_KEY;
4794
4795 do {
4796 mutex_lock(&fs_info->reclaim_bgs_lock);
4797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4798 if (ret < 0) {
4799 mutex_unlock(&fs_info->reclaim_bgs_lock);
4800 goto done;
4801 }
4802
4803 ret = btrfs_previous_item(root, path, 0, key.type);
4804 if (ret) {
4805 mutex_unlock(&fs_info->reclaim_bgs_lock);
4806 if (ret < 0)
4807 goto done;
4808 ret = 0;
4809 btrfs_release_path(path);
4810 break;
4811 }
4812
4813 l = path->nodes[0];
4814 slot = path->slots[0];
4815 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4816
4817 if (key.objectid != device->devid) {
4818 mutex_unlock(&fs_info->reclaim_bgs_lock);
4819 btrfs_release_path(path);
4820 break;
4821 }
4822
4823 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4824 length = btrfs_dev_extent_length(l, dev_extent);
4825
4826 if (key.offset + length <= new_size) {
4827 mutex_unlock(&fs_info->reclaim_bgs_lock);
4828 btrfs_release_path(path);
4829 break;
4830 }
4831
4832 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4833 btrfs_release_path(path);
4834
4835 /*
4836 * We may be relocating the only data chunk we have,
4837 * which could potentially end up with losing data's
4838 * raid profile, so lets allocate an empty one in
4839 * advance.
4840 */
4841 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4842 if (ret < 0) {
4843 mutex_unlock(&fs_info->reclaim_bgs_lock);
4844 goto done;
4845 }
4846
4847 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4848 mutex_unlock(&fs_info->reclaim_bgs_lock);
4849 if (ret == -ENOSPC) {
4850 failed++;
4851 } else if (ret) {
4852 if (ret == -ETXTBSY) {
4853 btrfs_warn(fs_info,
4854 "could not shrink block group %llu due to active swapfile",
4855 chunk_offset);
4856 }
4857 goto done;
4858 }
4859 } while (key.offset-- > 0);
4860
4861 if (failed && !retried) {
4862 failed = 0;
4863 retried = true;
4864 goto again;
4865 } else if (failed && retried) {
4866 ret = -ENOSPC;
4867 goto done;
4868 }
4869
4870 /* Shrinking succeeded, else we would be at "done". */
4871 trans = btrfs_start_transaction(root, 0);
4872 if (IS_ERR(trans)) {
4873 ret = PTR_ERR(trans);
4874 goto done;
4875 }
4876
4877 mutex_lock(&fs_info->chunk_mutex);
4878 /* Clear all state bits beyond the shrunk device size */
4879 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4880 CHUNK_STATE_MASK);
4881
4882 btrfs_device_set_disk_total_bytes(device, new_size);
4883 if (list_empty(&device->post_commit_list))
4884 list_add_tail(&device->post_commit_list,
4885 &trans->transaction->dev_update_list);
4886
4887 WARN_ON(diff > old_total);
4888 btrfs_set_super_total_bytes(super_copy,
4889 round_down(old_total - diff, fs_info->sectorsize));
4890 mutex_unlock(&fs_info->chunk_mutex);
4891
4892 /* Now btrfs_update_device() will change the on-disk size. */
4893 ret = btrfs_update_device(trans, device);
4894 if (ret < 0) {
4895 btrfs_abort_transaction(trans, ret);
4896 btrfs_end_transaction(trans);
4897 } else {
4898 ret = btrfs_commit_transaction(trans);
4899 }
4900 done:
4901 btrfs_free_path(path);
4902 if (ret) {
4903 mutex_lock(&fs_info->chunk_mutex);
4904 btrfs_device_set_total_bytes(device, old_size);
4905 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4906 device->fs_devices->total_rw_bytes += diff;
4907 atomic64_add(diff, &fs_info->free_chunk_space);
4908 mutex_unlock(&fs_info->chunk_mutex);
4909 }
4910 return ret;
4911 }
4912
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4913 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4914 struct btrfs_key *key,
4915 struct btrfs_chunk *chunk, int item_size)
4916 {
4917 struct btrfs_super_block *super_copy = fs_info->super_copy;
4918 struct btrfs_disk_key disk_key;
4919 u32 array_size;
4920 u8 *ptr;
4921
4922 lockdep_assert_held(&fs_info->chunk_mutex);
4923
4924 array_size = btrfs_super_sys_array_size(super_copy);
4925 if (array_size + item_size + sizeof(disk_key)
4926 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4927 return -EFBIG;
4928
4929 ptr = super_copy->sys_chunk_array + array_size;
4930 btrfs_cpu_key_to_disk(&disk_key, key);
4931 memcpy(ptr, &disk_key, sizeof(disk_key));
4932 ptr += sizeof(disk_key);
4933 memcpy(ptr, chunk, item_size);
4934 item_size += sizeof(disk_key);
4935 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4936
4937 return 0;
4938 }
4939
4940 /*
4941 * sort the devices in descending order by max_avail, total_avail
4942 */
btrfs_cmp_device_info(const void * a,const void * b)4943 static int btrfs_cmp_device_info(const void *a, const void *b)
4944 {
4945 const struct btrfs_device_info *di_a = a;
4946 const struct btrfs_device_info *di_b = b;
4947
4948 if (di_a->max_avail > di_b->max_avail)
4949 return -1;
4950 if (di_a->max_avail < di_b->max_avail)
4951 return 1;
4952 if (di_a->total_avail > di_b->total_avail)
4953 return -1;
4954 if (di_a->total_avail < di_b->total_avail)
4955 return 1;
4956 return 0;
4957 }
4958
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4959 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4960 {
4961 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4962 return;
4963
4964 btrfs_set_fs_incompat(info, RAID56);
4965 }
4966
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)4967 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4968 {
4969 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4970 return;
4971
4972 btrfs_set_fs_incompat(info, RAID1C34);
4973 }
4974
4975 /*
4976 * Structure used internally for __btrfs_alloc_chunk() function.
4977 * Wraps needed parameters.
4978 */
4979 struct alloc_chunk_ctl {
4980 u64 start;
4981 u64 type;
4982 /* Total number of stripes to allocate */
4983 int num_stripes;
4984 /* sub_stripes info for map */
4985 int sub_stripes;
4986 /* Stripes per device */
4987 int dev_stripes;
4988 /* Maximum number of devices to use */
4989 int devs_max;
4990 /* Minimum number of devices to use */
4991 int devs_min;
4992 /* ndevs has to be a multiple of this */
4993 int devs_increment;
4994 /* Number of copies */
4995 int ncopies;
4996 /* Number of stripes worth of bytes to store parity information */
4997 int nparity;
4998 u64 max_stripe_size;
4999 u64 max_chunk_size;
5000 u64 dev_extent_min;
5001 u64 stripe_size;
5002 u64 chunk_size;
5003 int ndevs;
5004 };
5005
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5006 static void init_alloc_chunk_ctl_policy_regular(
5007 struct btrfs_fs_devices *fs_devices,
5008 struct alloc_chunk_ctl *ctl)
5009 {
5010 u64 type = ctl->type;
5011
5012 if (type & BTRFS_BLOCK_GROUP_DATA) {
5013 ctl->max_stripe_size = SZ_1G;
5014 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5015 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5016 /* For larger filesystems, use larger metadata chunks */
5017 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5018 ctl->max_stripe_size = SZ_1G;
5019 else
5020 ctl->max_stripe_size = SZ_256M;
5021 ctl->max_chunk_size = ctl->max_stripe_size;
5022 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5023 ctl->max_stripe_size = SZ_32M;
5024 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5025 ctl->devs_max = min_t(int, ctl->devs_max,
5026 BTRFS_MAX_DEVS_SYS_CHUNK);
5027 } else {
5028 BUG();
5029 }
5030
5031 /* We don't want a chunk larger than 10% of writable space */
5032 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5033 ctl->max_chunk_size);
5034 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5035 }
5036
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5037 static void init_alloc_chunk_ctl_policy_zoned(
5038 struct btrfs_fs_devices *fs_devices,
5039 struct alloc_chunk_ctl *ctl)
5040 {
5041 u64 zone_size = fs_devices->fs_info->zone_size;
5042 u64 limit;
5043 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5044 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5045 u64 min_chunk_size = min_data_stripes * zone_size;
5046 u64 type = ctl->type;
5047
5048 ctl->max_stripe_size = zone_size;
5049 if (type & BTRFS_BLOCK_GROUP_DATA) {
5050 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5051 zone_size);
5052 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5053 ctl->max_chunk_size = ctl->max_stripe_size;
5054 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5055 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5056 ctl->devs_max = min_t(int, ctl->devs_max,
5057 BTRFS_MAX_DEVS_SYS_CHUNK);
5058 } else {
5059 BUG();
5060 }
5061
5062 /* We don't want a chunk larger than 10% of writable space */
5063 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5064 zone_size),
5065 min_chunk_size);
5066 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5067 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5068 }
5069
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5070 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5071 struct alloc_chunk_ctl *ctl)
5072 {
5073 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5074
5075 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5076 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5077 ctl->devs_max = btrfs_raid_array[index].devs_max;
5078 if (!ctl->devs_max)
5079 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5080 ctl->devs_min = btrfs_raid_array[index].devs_min;
5081 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5082 ctl->ncopies = btrfs_raid_array[index].ncopies;
5083 ctl->nparity = btrfs_raid_array[index].nparity;
5084 ctl->ndevs = 0;
5085
5086 switch (fs_devices->chunk_alloc_policy) {
5087 case BTRFS_CHUNK_ALLOC_REGULAR:
5088 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5089 break;
5090 case BTRFS_CHUNK_ALLOC_ZONED:
5091 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5092 break;
5093 default:
5094 BUG();
5095 }
5096 }
5097
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5098 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5099 struct alloc_chunk_ctl *ctl,
5100 struct btrfs_device_info *devices_info)
5101 {
5102 struct btrfs_fs_info *info = fs_devices->fs_info;
5103 struct btrfs_device *device;
5104 u64 total_avail;
5105 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5106 int ret;
5107 int ndevs = 0;
5108 u64 max_avail;
5109 u64 dev_offset;
5110
5111 /*
5112 * in the first pass through the devices list, we gather information
5113 * about the available holes on each device.
5114 */
5115 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5116 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5117 WARN(1, KERN_ERR
5118 "BTRFS: read-only device in alloc_list\n");
5119 continue;
5120 }
5121
5122 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5123 &device->dev_state) ||
5124 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5125 continue;
5126
5127 if (device->total_bytes > device->bytes_used)
5128 total_avail = device->total_bytes - device->bytes_used;
5129 else
5130 total_avail = 0;
5131
5132 /* If there is no space on this device, skip it. */
5133 if (total_avail < ctl->dev_extent_min)
5134 continue;
5135
5136 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5137 &max_avail);
5138 if (ret && ret != -ENOSPC)
5139 return ret;
5140
5141 if (ret == 0)
5142 max_avail = dev_extent_want;
5143
5144 if (max_avail < ctl->dev_extent_min) {
5145 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5146 btrfs_debug(info,
5147 "%s: devid %llu has no free space, have=%llu want=%llu",
5148 __func__, device->devid, max_avail,
5149 ctl->dev_extent_min);
5150 continue;
5151 }
5152
5153 if (ndevs == fs_devices->rw_devices) {
5154 WARN(1, "%s: found more than %llu devices\n",
5155 __func__, fs_devices->rw_devices);
5156 break;
5157 }
5158 devices_info[ndevs].dev_offset = dev_offset;
5159 devices_info[ndevs].max_avail = max_avail;
5160 devices_info[ndevs].total_avail = total_avail;
5161 devices_info[ndevs].dev = device;
5162 ++ndevs;
5163 }
5164 ctl->ndevs = ndevs;
5165
5166 /*
5167 * now sort the devices by hole size / available space
5168 */
5169 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5170 btrfs_cmp_device_info, NULL);
5171
5172 return 0;
5173 }
5174
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5175 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5176 struct btrfs_device_info *devices_info)
5177 {
5178 /* Number of stripes that count for block group size */
5179 int data_stripes;
5180
5181 /*
5182 * The primary goal is to maximize the number of stripes, so use as
5183 * many devices as possible, even if the stripes are not maximum sized.
5184 *
5185 * The DUP profile stores more than one stripe per device, the
5186 * max_avail is the total size so we have to adjust.
5187 */
5188 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5189 ctl->dev_stripes);
5190 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5191
5192 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5193 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5194
5195 /*
5196 * Use the number of data stripes to figure out how big this chunk is
5197 * really going to be in terms of logical address space, and compare
5198 * that answer with the max chunk size. If it's higher, we try to
5199 * reduce stripe_size.
5200 */
5201 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5202 /*
5203 * Reduce stripe_size, round it up to a 16MB boundary again and
5204 * then use it, unless it ends up being even bigger than the
5205 * previous value we had already.
5206 */
5207 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5208 data_stripes), SZ_16M),
5209 ctl->stripe_size);
5210 }
5211
5212 /* Align to BTRFS_STRIPE_LEN */
5213 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5214 ctl->chunk_size = ctl->stripe_size * data_stripes;
5215
5216 return 0;
5217 }
5218
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5219 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5220 struct btrfs_device_info *devices_info)
5221 {
5222 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5223 /* Number of stripes that count for block group size */
5224 int data_stripes;
5225
5226 /*
5227 * It should hold because:
5228 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5229 */
5230 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5231
5232 ctl->stripe_size = zone_size;
5233 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5234 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5235
5236 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5237 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5238 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5239 ctl->stripe_size) + ctl->nparity,
5240 ctl->dev_stripes);
5241 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5242 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5243 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5244 }
5245
5246 ctl->chunk_size = ctl->stripe_size * data_stripes;
5247
5248 return 0;
5249 }
5250
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5251 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5252 struct alloc_chunk_ctl *ctl,
5253 struct btrfs_device_info *devices_info)
5254 {
5255 struct btrfs_fs_info *info = fs_devices->fs_info;
5256
5257 /*
5258 * Round down to number of usable stripes, devs_increment can be any
5259 * number so we can't use round_down() that requires power of 2, while
5260 * rounddown is safe.
5261 */
5262 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5263
5264 if (ctl->ndevs < ctl->devs_min) {
5265 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5266 btrfs_debug(info,
5267 "%s: not enough devices with free space: have=%d minimum required=%d",
5268 __func__, ctl->ndevs, ctl->devs_min);
5269 }
5270 return -ENOSPC;
5271 }
5272
5273 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5274
5275 switch (fs_devices->chunk_alloc_policy) {
5276 case BTRFS_CHUNK_ALLOC_REGULAR:
5277 return decide_stripe_size_regular(ctl, devices_info);
5278 case BTRFS_CHUNK_ALLOC_ZONED:
5279 return decide_stripe_size_zoned(ctl, devices_info);
5280 default:
5281 BUG();
5282 }
5283 }
5284
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5285 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5286 struct alloc_chunk_ctl *ctl,
5287 struct btrfs_device_info *devices_info)
5288 {
5289 struct btrfs_fs_info *info = trans->fs_info;
5290 struct map_lookup *map = NULL;
5291 struct extent_map_tree *em_tree;
5292 struct btrfs_block_group *block_group;
5293 struct extent_map *em;
5294 u64 start = ctl->start;
5295 u64 type = ctl->type;
5296 int ret;
5297 int i;
5298 int j;
5299
5300 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5301 if (!map)
5302 return ERR_PTR(-ENOMEM);
5303 map->num_stripes = ctl->num_stripes;
5304
5305 for (i = 0; i < ctl->ndevs; ++i) {
5306 for (j = 0; j < ctl->dev_stripes; ++j) {
5307 int s = i * ctl->dev_stripes + j;
5308 map->stripes[s].dev = devices_info[i].dev;
5309 map->stripes[s].physical = devices_info[i].dev_offset +
5310 j * ctl->stripe_size;
5311 }
5312 }
5313 map->stripe_len = BTRFS_STRIPE_LEN;
5314 map->io_align = BTRFS_STRIPE_LEN;
5315 map->io_width = BTRFS_STRIPE_LEN;
5316 map->type = type;
5317 map->sub_stripes = ctl->sub_stripes;
5318
5319 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5320
5321 em = alloc_extent_map();
5322 if (!em) {
5323 kfree(map);
5324 return ERR_PTR(-ENOMEM);
5325 }
5326 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5327 em->map_lookup = map;
5328 em->start = start;
5329 em->len = ctl->chunk_size;
5330 em->block_start = 0;
5331 em->block_len = em->len;
5332 em->orig_block_len = ctl->stripe_size;
5333
5334 em_tree = &info->mapping_tree;
5335 write_lock(&em_tree->lock);
5336 ret = add_extent_mapping(em_tree, em, 0);
5337 if (ret) {
5338 write_unlock(&em_tree->lock);
5339 free_extent_map(em);
5340 return ERR_PTR(ret);
5341 }
5342 write_unlock(&em_tree->lock);
5343
5344 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5345 if (IS_ERR(block_group))
5346 goto error_del_extent;
5347
5348 for (i = 0; i < map->num_stripes; i++) {
5349 struct btrfs_device *dev = map->stripes[i].dev;
5350
5351 btrfs_device_set_bytes_used(dev,
5352 dev->bytes_used + ctl->stripe_size);
5353 if (list_empty(&dev->post_commit_list))
5354 list_add_tail(&dev->post_commit_list,
5355 &trans->transaction->dev_update_list);
5356 }
5357
5358 atomic64_sub(ctl->stripe_size * map->num_stripes,
5359 &info->free_chunk_space);
5360
5361 free_extent_map(em);
5362 check_raid56_incompat_flag(info, type);
5363 check_raid1c34_incompat_flag(info, type);
5364
5365 return block_group;
5366
5367 error_del_extent:
5368 write_lock(&em_tree->lock);
5369 remove_extent_mapping(em_tree, em);
5370 write_unlock(&em_tree->lock);
5371
5372 /* One for our allocation */
5373 free_extent_map(em);
5374 /* One for the tree reference */
5375 free_extent_map(em);
5376
5377 return block_group;
5378 }
5379
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)5380 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5381 u64 type)
5382 {
5383 struct btrfs_fs_info *info = trans->fs_info;
5384 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5385 struct btrfs_device_info *devices_info = NULL;
5386 struct alloc_chunk_ctl ctl;
5387 struct btrfs_block_group *block_group;
5388 int ret;
5389
5390 lockdep_assert_held(&info->chunk_mutex);
5391
5392 if (!alloc_profile_is_valid(type, 0)) {
5393 ASSERT(0);
5394 return ERR_PTR(-EINVAL);
5395 }
5396
5397 if (list_empty(&fs_devices->alloc_list)) {
5398 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5399 btrfs_debug(info, "%s: no writable device", __func__);
5400 return ERR_PTR(-ENOSPC);
5401 }
5402
5403 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5404 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5405 ASSERT(0);
5406 return ERR_PTR(-EINVAL);
5407 }
5408
5409 ctl.start = find_next_chunk(info);
5410 ctl.type = type;
5411 init_alloc_chunk_ctl(fs_devices, &ctl);
5412
5413 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5414 GFP_NOFS);
5415 if (!devices_info)
5416 return ERR_PTR(-ENOMEM);
5417
5418 ret = gather_device_info(fs_devices, &ctl, devices_info);
5419 if (ret < 0) {
5420 block_group = ERR_PTR(ret);
5421 goto out;
5422 }
5423
5424 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5425 if (ret < 0) {
5426 block_group = ERR_PTR(ret);
5427 goto out;
5428 }
5429
5430 block_group = create_chunk(trans, &ctl, devices_info);
5431
5432 out:
5433 kfree(devices_info);
5434 return block_group;
5435 }
5436
5437 /*
5438 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5439 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5440 * chunks.
5441 *
5442 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5443 * phases.
5444 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5445 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5446 struct btrfs_block_group *bg)
5447 {
5448 struct btrfs_fs_info *fs_info = trans->fs_info;
5449 struct btrfs_root *extent_root = fs_info->extent_root;
5450 struct btrfs_root *chunk_root = fs_info->chunk_root;
5451 struct btrfs_key key;
5452 struct btrfs_chunk *chunk;
5453 struct btrfs_stripe *stripe;
5454 struct extent_map *em;
5455 struct map_lookup *map;
5456 size_t item_size;
5457 int i;
5458 int ret;
5459
5460 /*
5461 * We take the chunk_mutex for 2 reasons:
5462 *
5463 * 1) Updates and insertions in the chunk btree must be done while holding
5464 * the chunk_mutex, as well as updating the system chunk array in the
5465 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5466 * details;
5467 *
5468 * 2) To prevent races with the final phase of a device replace operation
5469 * that replaces the device object associated with the map's stripes,
5470 * because the device object's id can change at any time during that
5471 * final phase of the device replace operation
5472 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5473 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5474 * which would cause a failure when updating the device item, which does
5475 * not exists, or persisting a stripe of the chunk item with such ID.
5476 * Here we can't use the device_list_mutex because our caller already
5477 * has locked the chunk_mutex, and the final phase of device replace
5478 * acquires both mutexes - first the device_list_mutex and then the
5479 * chunk_mutex. Using any of those two mutexes protects us from a
5480 * concurrent device replace.
5481 */
5482 lockdep_assert_held(&fs_info->chunk_mutex);
5483
5484 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5485 if (IS_ERR(em)) {
5486 ret = PTR_ERR(em);
5487 btrfs_abort_transaction(trans, ret);
5488 return ret;
5489 }
5490
5491 map = em->map_lookup;
5492 item_size = btrfs_chunk_item_size(map->num_stripes);
5493
5494 chunk = kzalloc(item_size, GFP_NOFS);
5495 if (!chunk) {
5496 ret = -ENOMEM;
5497 btrfs_abort_transaction(trans, ret);
5498 goto out;
5499 }
5500
5501 for (i = 0; i < map->num_stripes; i++) {
5502 struct btrfs_device *device = map->stripes[i].dev;
5503
5504 ret = btrfs_update_device(trans, device);
5505 if (ret)
5506 goto out;
5507 }
5508
5509 stripe = &chunk->stripe;
5510 for (i = 0; i < map->num_stripes; i++) {
5511 struct btrfs_device *device = map->stripes[i].dev;
5512 const u64 dev_offset = map->stripes[i].physical;
5513
5514 btrfs_set_stack_stripe_devid(stripe, device->devid);
5515 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5516 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5517 stripe++;
5518 }
5519
5520 btrfs_set_stack_chunk_length(chunk, bg->length);
5521 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5522 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5523 btrfs_set_stack_chunk_type(chunk, map->type);
5524 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5525 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5526 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5527 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5528 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5529
5530 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5531 key.type = BTRFS_CHUNK_ITEM_KEY;
5532 key.offset = bg->start;
5533
5534 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5535 if (ret)
5536 goto out;
5537
5538 bg->chunk_item_inserted = 1;
5539
5540 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5541 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5542 if (ret)
5543 goto out;
5544 }
5545
5546 out:
5547 kfree(chunk);
5548 free_extent_map(em);
5549 return ret;
5550 }
5551
init_first_rw_device(struct btrfs_trans_handle * trans)5552 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5553 {
5554 struct btrfs_fs_info *fs_info = trans->fs_info;
5555 u64 alloc_profile;
5556 struct btrfs_block_group *meta_bg;
5557 struct btrfs_block_group *sys_bg;
5558
5559 /*
5560 * When adding a new device for sprouting, the seed device is read-only
5561 * so we must first allocate a metadata and a system chunk. But before
5562 * adding the block group items to the extent, device and chunk btrees,
5563 * we must first:
5564 *
5565 * 1) Create both chunks without doing any changes to the btrees, as
5566 * otherwise we would get -ENOSPC since the block groups from the
5567 * seed device are read-only;
5568 *
5569 * 2) Add the device item for the new sprout device - finishing the setup
5570 * of a new block group requires updating the device item in the chunk
5571 * btree, so it must exist when we attempt to do it. The previous step
5572 * ensures this does not fail with -ENOSPC.
5573 *
5574 * After that we can add the block group items to their btrees:
5575 * update existing device item in the chunk btree, add a new block group
5576 * item to the extent btree, add a new chunk item to the chunk btree and
5577 * finally add the new device extent items to the devices btree.
5578 */
5579
5580 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5581 meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5582 if (IS_ERR(meta_bg))
5583 return PTR_ERR(meta_bg);
5584
5585 alloc_profile = btrfs_system_alloc_profile(fs_info);
5586 sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5587 if (IS_ERR(sys_bg))
5588 return PTR_ERR(sys_bg);
5589
5590 return 0;
5591 }
5592
btrfs_chunk_max_errors(struct map_lookup * map)5593 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5594 {
5595 const int index = btrfs_bg_flags_to_raid_index(map->type);
5596
5597 return btrfs_raid_array[index].tolerated_failures;
5598 }
5599
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5600 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5601 {
5602 struct extent_map *em;
5603 struct map_lookup *map;
5604 int readonly = 0;
5605 int miss_ndevs = 0;
5606 int i;
5607
5608 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5609 if (IS_ERR(em))
5610 return 1;
5611
5612 map = em->map_lookup;
5613 for (i = 0; i < map->num_stripes; i++) {
5614 if (test_bit(BTRFS_DEV_STATE_MISSING,
5615 &map->stripes[i].dev->dev_state)) {
5616 miss_ndevs++;
5617 continue;
5618 }
5619 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5620 &map->stripes[i].dev->dev_state)) {
5621 readonly = 1;
5622 goto end;
5623 }
5624 }
5625
5626 /*
5627 * If the number of missing devices is larger than max errors,
5628 * we can not write the data into that chunk successfully, so
5629 * set it readonly.
5630 */
5631 if (miss_ndevs > btrfs_chunk_max_errors(map))
5632 readonly = 1;
5633 end:
5634 free_extent_map(em);
5635 return readonly;
5636 }
5637
btrfs_mapping_tree_free(struct extent_map_tree * tree)5638 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5639 {
5640 struct extent_map *em;
5641
5642 while (1) {
5643 write_lock(&tree->lock);
5644 em = lookup_extent_mapping(tree, 0, (u64)-1);
5645 if (em)
5646 remove_extent_mapping(tree, em);
5647 write_unlock(&tree->lock);
5648 if (!em)
5649 break;
5650 /* once for us */
5651 free_extent_map(em);
5652 /* once for the tree */
5653 free_extent_map(em);
5654 }
5655 }
5656
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5657 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5658 {
5659 struct extent_map *em;
5660 struct map_lookup *map;
5661 int ret;
5662
5663 em = btrfs_get_chunk_map(fs_info, logical, len);
5664 if (IS_ERR(em))
5665 /*
5666 * We could return errors for these cases, but that could get
5667 * ugly and we'd probably do the same thing which is just not do
5668 * anything else and exit, so return 1 so the callers don't try
5669 * to use other copies.
5670 */
5671 return 1;
5672
5673 map = em->map_lookup;
5674 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5675 ret = map->num_stripes;
5676 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5677 ret = map->sub_stripes;
5678 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5679 ret = 2;
5680 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5681 /*
5682 * There could be two corrupted data stripes, we need
5683 * to loop retry in order to rebuild the correct data.
5684 *
5685 * Fail a stripe at a time on every retry except the
5686 * stripe under reconstruction.
5687 */
5688 ret = map->num_stripes;
5689 else
5690 ret = 1;
5691 free_extent_map(em);
5692
5693 down_read(&fs_info->dev_replace.rwsem);
5694 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5695 fs_info->dev_replace.tgtdev)
5696 ret++;
5697 up_read(&fs_info->dev_replace.rwsem);
5698
5699 return ret;
5700 }
5701
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5702 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5703 u64 logical)
5704 {
5705 struct extent_map *em;
5706 struct map_lookup *map;
5707 unsigned long len = fs_info->sectorsize;
5708
5709 em = btrfs_get_chunk_map(fs_info, logical, len);
5710
5711 if (!WARN_ON(IS_ERR(em))) {
5712 map = em->map_lookup;
5713 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5714 len = map->stripe_len * nr_data_stripes(map);
5715 free_extent_map(em);
5716 }
5717 return len;
5718 }
5719
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5720 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5721 {
5722 struct extent_map *em;
5723 struct map_lookup *map;
5724 int ret = 0;
5725
5726 em = btrfs_get_chunk_map(fs_info, logical, len);
5727
5728 if(!WARN_ON(IS_ERR(em))) {
5729 map = em->map_lookup;
5730 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5731 ret = 1;
5732 free_extent_map(em);
5733 }
5734 return ret;
5735 }
5736
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5737 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5738 struct map_lookup *map, int first,
5739 int dev_replace_is_ongoing)
5740 {
5741 int i;
5742 int num_stripes;
5743 int preferred_mirror;
5744 int tolerance;
5745 struct btrfs_device *srcdev;
5746
5747 ASSERT((map->type &
5748 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5749
5750 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5751 num_stripes = map->sub_stripes;
5752 else
5753 num_stripes = map->num_stripes;
5754
5755 switch (fs_info->fs_devices->read_policy) {
5756 default:
5757 /* Shouldn't happen, just warn and use pid instead of failing */
5758 btrfs_warn_rl(fs_info,
5759 "unknown read_policy type %u, reset to pid",
5760 fs_info->fs_devices->read_policy);
5761 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5762 fallthrough;
5763 case BTRFS_READ_POLICY_PID:
5764 preferred_mirror = first + (current->pid % num_stripes);
5765 break;
5766 }
5767
5768 if (dev_replace_is_ongoing &&
5769 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5770 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5771 srcdev = fs_info->dev_replace.srcdev;
5772 else
5773 srcdev = NULL;
5774
5775 /*
5776 * try to avoid the drive that is the source drive for a
5777 * dev-replace procedure, only choose it if no other non-missing
5778 * mirror is available
5779 */
5780 for (tolerance = 0; tolerance < 2; tolerance++) {
5781 if (map->stripes[preferred_mirror].dev->bdev &&
5782 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5783 return preferred_mirror;
5784 for (i = first; i < first + num_stripes; i++) {
5785 if (map->stripes[i].dev->bdev &&
5786 (tolerance || map->stripes[i].dev != srcdev))
5787 return i;
5788 }
5789 }
5790
5791 /* we couldn't find one that doesn't fail. Just return something
5792 * and the io error handling code will clean up eventually
5793 */
5794 return preferred_mirror;
5795 }
5796
5797 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5798 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5799 {
5800 int i;
5801 int again = 1;
5802
5803 while (again) {
5804 again = 0;
5805 for (i = 0; i < num_stripes - 1; i++) {
5806 /* Swap if parity is on a smaller index */
5807 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5808 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5809 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5810 again = 1;
5811 }
5812 }
5813 }
5814 }
5815
alloc_btrfs_bio(int total_stripes,int real_stripes)5816 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5817 {
5818 struct btrfs_bio *bbio = kzalloc(
5819 /* the size of the btrfs_bio */
5820 sizeof(struct btrfs_bio) +
5821 /* plus the variable array for the stripes */
5822 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5823 /* plus the variable array for the tgt dev */
5824 sizeof(int) * (real_stripes) +
5825 /*
5826 * plus the raid_map, which includes both the tgt dev
5827 * and the stripes
5828 */
5829 sizeof(u64) * (total_stripes),
5830 GFP_NOFS|__GFP_NOFAIL);
5831
5832 atomic_set(&bbio->error, 0);
5833 refcount_set(&bbio->refs, 1);
5834
5835 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5836 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5837
5838 return bbio;
5839 }
5840
btrfs_get_bbio(struct btrfs_bio * bbio)5841 void btrfs_get_bbio(struct btrfs_bio *bbio)
5842 {
5843 WARN_ON(!refcount_read(&bbio->refs));
5844 refcount_inc(&bbio->refs);
5845 }
5846
btrfs_put_bbio(struct btrfs_bio * bbio)5847 void btrfs_put_bbio(struct btrfs_bio *bbio)
5848 {
5849 if (!bbio)
5850 return;
5851 if (refcount_dec_and_test(&bbio->refs))
5852 kfree(bbio);
5853 }
5854
5855 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5856 /*
5857 * Please note that, discard won't be sent to target device of device
5858 * replace.
5859 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,struct btrfs_bio ** bbio_ret)5860 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5861 u64 logical, u64 *length_ret,
5862 struct btrfs_bio **bbio_ret)
5863 {
5864 struct extent_map *em;
5865 struct map_lookup *map;
5866 struct btrfs_bio *bbio;
5867 u64 length = *length_ret;
5868 u64 offset;
5869 u64 stripe_nr;
5870 u64 stripe_nr_end;
5871 u64 stripe_end_offset;
5872 u64 stripe_cnt;
5873 u64 stripe_len;
5874 u64 stripe_offset;
5875 u64 num_stripes;
5876 u32 stripe_index;
5877 u32 factor = 0;
5878 u32 sub_stripes = 0;
5879 u64 stripes_per_dev = 0;
5880 u32 remaining_stripes = 0;
5881 u32 last_stripe = 0;
5882 int ret = 0;
5883 int i;
5884
5885 /* discard always return a bbio */
5886 ASSERT(bbio_ret);
5887
5888 em = btrfs_get_chunk_map(fs_info, logical, length);
5889 if (IS_ERR(em))
5890 return PTR_ERR(em);
5891
5892 map = em->map_lookup;
5893 /* we don't discard raid56 yet */
5894 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5895 ret = -EOPNOTSUPP;
5896 goto out;
5897 }
5898
5899 offset = logical - em->start;
5900 length = min_t(u64, em->start + em->len - logical, length);
5901 *length_ret = length;
5902
5903 stripe_len = map->stripe_len;
5904 /*
5905 * stripe_nr counts the total number of stripes we have to stride
5906 * to get to this block
5907 */
5908 stripe_nr = div64_u64(offset, stripe_len);
5909
5910 /* stripe_offset is the offset of this block in its stripe */
5911 stripe_offset = offset - stripe_nr * stripe_len;
5912
5913 stripe_nr_end = round_up(offset + length, map->stripe_len);
5914 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5915 stripe_cnt = stripe_nr_end - stripe_nr;
5916 stripe_end_offset = stripe_nr_end * map->stripe_len -
5917 (offset + length);
5918 /*
5919 * after this, stripe_nr is the number of stripes on this
5920 * device we have to walk to find the data, and stripe_index is
5921 * the number of our device in the stripe array
5922 */
5923 num_stripes = 1;
5924 stripe_index = 0;
5925 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5926 BTRFS_BLOCK_GROUP_RAID10)) {
5927 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5928 sub_stripes = 1;
5929 else
5930 sub_stripes = map->sub_stripes;
5931
5932 factor = map->num_stripes / sub_stripes;
5933 num_stripes = min_t(u64, map->num_stripes,
5934 sub_stripes * stripe_cnt);
5935 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5936 stripe_index *= sub_stripes;
5937 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5938 &remaining_stripes);
5939 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5940 last_stripe *= sub_stripes;
5941 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5942 BTRFS_BLOCK_GROUP_DUP)) {
5943 num_stripes = map->num_stripes;
5944 } else {
5945 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5946 &stripe_index);
5947 }
5948
5949 bbio = alloc_btrfs_bio(num_stripes, 0);
5950 if (!bbio) {
5951 ret = -ENOMEM;
5952 goto out;
5953 }
5954
5955 for (i = 0; i < num_stripes; i++) {
5956 bbio->stripes[i].physical =
5957 map->stripes[stripe_index].physical +
5958 stripe_offset + stripe_nr * map->stripe_len;
5959 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5960
5961 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5962 BTRFS_BLOCK_GROUP_RAID10)) {
5963 bbio->stripes[i].length = stripes_per_dev *
5964 map->stripe_len;
5965
5966 if (i / sub_stripes < remaining_stripes)
5967 bbio->stripes[i].length +=
5968 map->stripe_len;
5969
5970 /*
5971 * Special for the first stripe and
5972 * the last stripe:
5973 *
5974 * |-------|...|-------|
5975 * |----------|
5976 * off end_off
5977 */
5978 if (i < sub_stripes)
5979 bbio->stripes[i].length -=
5980 stripe_offset;
5981
5982 if (stripe_index >= last_stripe &&
5983 stripe_index <= (last_stripe +
5984 sub_stripes - 1))
5985 bbio->stripes[i].length -=
5986 stripe_end_offset;
5987
5988 if (i == sub_stripes - 1)
5989 stripe_offset = 0;
5990 } else {
5991 bbio->stripes[i].length = length;
5992 }
5993
5994 stripe_index++;
5995 if (stripe_index == map->num_stripes) {
5996 stripe_index = 0;
5997 stripe_nr++;
5998 }
5999 }
6000
6001 *bbio_ret = bbio;
6002 bbio->map_type = map->type;
6003 bbio->num_stripes = num_stripes;
6004 out:
6005 free_extent_map(em);
6006 return ret;
6007 }
6008
6009 /*
6010 * In dev-replace case, for repair case (that's the only case where the mirror
6011 * is selected explicitly when calling btrfs_map_block), blocks left of the
6012 * left cursor can also be read from the target drive.
6013 *
6014 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6015 * array of stripes.
6016 * For READ, it also needs to be supported using the same mirror number.
6017 *
6018 * If the requested block is not left of the left cursor, EIO is returned. This
6019 * can happen because btrfs_num_copies() returns one more in the dev-replace
6020 * case.
6021 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)6022 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6023 u64 logical, u64 length,
6024 u64 srcdev_devid, int *mirror_num,
6025 u64 *physical)
6026 {
6027 struct btrfs_bio *bbio = NULL;
6028 int num_stripes;
6029 int index_srcdev = 0;
6030 int found = 0;
6031 u64 physical_of_found = 0;
6032 int i;
6033 int ret = 0;
6034
6035 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6036 logical, &length, &bbio, 0, 0);
6037 if (ret) {
6038 ASSERT(bbio == NULL);
6039 return ret;
6040 }
6041
6042 num_stripes = bbio->num_stripes;
6043 if (*mirror_num > num_stripes) {
6044 /*
6045 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6046 * that means that the requested area is not left of the left
6047 * cursor
6048 */
6049 btrfs_put_bbio(bbio);
6050 return -EIO;
6051 }
6052
6053 /*
6054 * process the rest of the function using the mirror_num of the source
6055 * drive. Therefore look it up first. At the end, patch the device
6056 * pointer to the one of the target drive.
6057 */
6058 for (i = 0; i < num_stripes; i++) {
6059 if (bbio->stripes[i].dev->devid != srcdev_devid)
6060 continue;
6061
6062 /*
6063 * In case of DUP, in order to keep it simple, only add the
6064 * mirror with the lowest physical address
6065 */
6066 if (found &&
6067 physical_of_found <= bbio->stripes[i].physical)
6068 continue;
6069
6070 index_srcdev = i;
6071 found = 1;
6072 physical_of_found = bbio->stripes[i].physical;
6073 }
6074
6075 btrfs_put_bbio(bbio);
6076
6077 ASSERT(found);
6078 if (!found)
6079 return -EIO;
6080
6081 *mirror_num = index_srcdev + 1;
6082 *physical = physical_of_found;
6083 return ret;
6084 }
6085
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6086 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6087 {
6088 struct btrfs_block_group *cache;
6089 bool ret;
6090
6091 /* Non zoned filesystem does not use "to_copy" flag */
6092 if (!btrfs_is_zoned(fs_info))
6093 return false;
6094
6095 cache = btrfs_lookup_block_group(fs_info, logical);
6096
6097 spin_lock(&cache->lock);
6098 ret = cache->to_copy;
6099 spin_unlock(&cache->lock);
6100
6101 btrfs_put_block_group(cache);
6102 return ret;
6103 }
6104
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,u64 logical,int * num_stripes_ret,int * max_errors_ret)6105 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6106 struct btrfs_bio **bbio_ret,
6107 struct btrfs_dev_replace *dev_replace,
6108 u64 logical,
6109 int *num_stripes_ret, int *max_errors_ret)
6110 {
6111 struct btrfs_bio *bbio = *bbio_ret;
6112 u64 srcdev_devid = dev_replace->srcdev->devid;
6113 int tgtdev_indexes = 0;
6114 int num_stripes = *num_stripes_ret;
6115 int max_errors = *max_errors_ret;
6116 int i;
6117
6118 if (op == BTRFS_MAP_WRITE) {
6119 int index_where_to_add;
6120
6121 /*
6122 * A block group which have "to_copy" set will eventually
6123 * copied by dev-replace process. We can avoid cloning IO here.
6124 */
6125 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6126 return;
6127
6128 /*
6129 * duplicate the write operations while the dev replace
6130 * procedure is running. Since the copying of the old disk to
6131 * the new disk takes place at run time while the filesystem is
6132 * mounted writable, the regular write operations to the old
6133 * disk have to be duplicated to go to the new disk as well.
6134 *
6135 * Note that device->missing is handled by the caller, and that
6136 * the write to the old disk is already set up in the stripes
6137 * array.
6138 */
6139 index_where_to_add = num_stripes;
6140 for (i = 0; i < num_stripes; i++) {
6141 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6142 /* write to new disk, too */
6143 struct btrfs_bio_stripe *new =
6144 bbio->stripes + index_where_to_add;
6145 struct btrfs_bio_stripe *old =
6146 bbio->stripes + i;
6147
6148 new->physical = old->physical;
6149 new->length = old->length;
6150 new->dev = dev_replace->tgtdev;
6151 bbio->tgtdev_map[i] = index_where_to_add;
6152 index_where_to_add++;
6153 max_errors++;
6154 tgtdev_indexes++;
6155 }
6156 }
6157 num_stripes = index_where_to_add;
6158 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6159 int index_srcdev = 0;
6160 int found = 0;
6161 u64 physical_of_found = 0;
6162
6163 /*
6164 * During the dev-replace procedure, the target drive can also
6165 * be used to read data in case it is needed to repair a corrupt
6166 * block elsewhere. This is possible if the requested area is
6167 * left of the left cursor. In this area, the target drive is a
6168 * full copy of the source drive.
6169 */
6170 for (i = 0; i < num_stripes; i++) {
6171 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6172 /*
6173 * In case of DUP, in order to keep it simple,
6174 * only add the mirror with the lowest physical
6175 * address
6176 */
6177 if (found &&
6178 physical_of_found <=
6179 bbio->stripes[i].physical)
6180 continue;
6181 index_srcdev = i;
6182 found = 1;
6183 physical_of_found = bbio->stripes[i].physical;
6184 }
6185 }
6186 if (found) {
6187 struct btrfs_bio_stripe *tgtdev_stripe =
6188 bbio->stripes + num_stripes;
6189
6190 tgtdev_stripe->physical = physical_of_found;
6191 tgtdev_stripe->length =
6192 bbio->stripes[index_srcdev].length;
6193 tgtdev_stripe->dev = dev_replace->tgtdev;
6194 bbio->tgtdev_map[index_srcdev] = num_stripes;
6195
6196 tgtdev_indexes++;
6197 num_stripes++;
6198 }
6199 }
6200
6201 *num_stripes_ret = num_stripes;
6202 *max_errors_ret = max_errors;
6203 bbio->num_tgtdevs = tgtdev_indexes;
6204 *bbio_ret = bbio;
6205 }
6206
need_full_stripe(enum btrfs_map_op op)6207 static bool need_full_stripe(enum btrfs_map_op op)
6208 {
6209 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6210 }
6211
6212 /*
6213 * Calculate the geometry of a particular (address, len) tuple. This
6214 * information is used to calculate how big a particular bio can get before it
6215 * straddles a stripe.
6216 *
6217 * @fs_info: the filesystem
6218 * @em: mapping containing the logical extent
6219 * @op: type of operation - write or read
6220 * @logical: address that we want to figure out the geometry of
6221 * @io_geom: pointer used to return values
6222 *
6223 * Returns < 0 in case a chunk for the given logical address cannot be found,
6224 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6225 */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,struct extent_map * em,enum btrfs_map_op op,u64 logical,struct btrfs_io_geometry * io_geom)6226 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6227 enum btrfs_map_op op, u64 logical,
6228 struct btrfs_io_geometry *io_geom)
6229 {
6230 struct map_lookup *map;
6231 u64 len;
6232 u64 offset;
6233 u64 stripe_offset;
6234 u64 stripe_nr;
6235 u64 stripe_len;
6236 u64 raid56_full_stripe_start = (u64)-1;
6237 int data_stripes;
6238
6239 ASSERT(op != BTRFS_MAP_DISCARD);
6240
6241 map = em->map_lookup;
6242 /* Offset of this logical address in the chunk */
6243 offset = logical - em->start;
6244 /* Len of a stripe in a chunk */
6245 stripe_len = map->stripe_len;
6246 /* Stripe where this block falls in */
6247 stripe_nr = div64_u64(offset, stripe_len);
6248 /* Offset of stripe in the chunk */
6249 stripe_offset = stripe_nr * stripe_len;
6250 if (offset < stripe_offset) {
6251 btrfs_crit(fs_info,
6252 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6253 stripe_offset, offset, em->start, logical, stripe_len);
6254 return -EINVAL;
6255 }
6256
6257 /* stripe_offset is the offset of this block in its stripe */
6258 stripe_offset = offset - stripe_offset;
6259 data_stripes = nr_data_stripes(map);
6260
6261 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6262 u64 max_len = stripe_len - stripe_offset;
6263
6264 /*
6265 * In case of raid56, we need to know the stripe aligned start
6266 */
6267 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6268 unsigned long full_stripe_len = stripe_len * data_stripes;
6269 raid56_full_stripe_start = offset;
6270
6271 /*
6272 * Allow a write of a full stripe, but make sure we
6273 * don't allow straddling of stripes
6274 */
6275 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6276 full_stripe_len);
6277 raid56_full_stripe_start *= full_stripe_len;
6278
6279 /*
6280 * For writes to RAID[56], allow a full stripeset across
6281 * all disks. For other RAID types and for RAID[56]
6282 * reads, just allow a single stripe (on a single disk).
6283 */
6284 if (op == BTRFS_MAP_WRITE) {
6285 max_len = stripe_len * data_stripes -
6286 (offset - raid56_full_stripe_start);
6287 }
6288 }
6289 len = min_t(u64, em->len - offset, max_len);
6290 } else {
6291 len = em->len - offset;
6292 }
6293
6294 io_geom->len = len;
6295 io_geom->offset = offset;
6296 io_geom->stripe_len = stripe_len;
6297 io_geom->stripe_nr = stripe_nr;
6298 io_geom->stripe_offset = stripe_offset;
6299 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6300
6301 return 0;
6302 }
6303
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)6304 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6305 enum btrfs_map_op op,
6306 u64 logical, u64 *length,
6307 struct btrfs_bio **bbio_ret,
6308 int mirror_num, int need_raid_map)
6309 {
6310 struct extent_map *em;
6311 struct map_lookup *map;
6312 u64 stripe_offset;
6313 u64 stripe_nr;
6314 u64 stripe_len;
6315 u32 stripe_index;
6316 int data_stripes;
6317 int i;
6318 int ret = 0;
6319 int num_stripes;
6320 int max_errors = 0;
6321 int tgtdev_indexes = 0;
6322 struct btrfs_bio *bbio = NULL;
6323 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6324 int dev_replace_is_ongoing = 0;
6325 int num_alloc_stripes;
6326 int patch_the_first_stripe_for_dev_replace = 0;
6327 u64 physical_to_patch_in_first_stripe = 0;
6328 u64 raid56_full_stripe_start = (u64)-1;
6329 struct btrfs_io_geometry geom;
6330
6331 ASSERT(bbio_ret);
6332 ASSERT(op != BTRFS_MAP_DISCARD);
6333
6334 em = btrfs_get_chunk_map(fs_info, logical, *length);
6335 ASSERT(!IS_ERR(em));
6336
6337 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6338 if (ret < 0)
6339 return ret;
6340
6341 map = em->map_lookup;
6342
6343 *length = geom.len;
6344 stripe_len = geom.stripe_len;
6345 stripe_nr = geom.stripe_nr;
6346 stripe_offset = geom.stripe_offset;
6347 raid56_full_stripe_start = geom.raid56_stripe_offset;
6348 data_stripes = nr_data_stripes(map);
6349
6350 down_read(&dev_replace->rwsem);
6351 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6352 /*
6353 * Hold the semaphore for read during the whole operation, write is
6354 * requested at commit time but must wait.
6355 */
6356 if (!dev_replace_is_ongoing)
6357 up_read(&dev_replace->rwsem);
6358
6359 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6360 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6361 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6362 dev_replace->srcdev->devid,
6363 &mirror_num,
6364 &physical_to_patch_in_first_stripe);
6365 if (ret)
6366 goto out;
6367 else
6368 patch_the_first_stripe_for_dev_replace = 1;
6369 } else if (mirror_num > map->num_stripes) {
6370 mirror_num = 0;
6371 }
6372
6373 num_stripes = 1;
6374 stripe_index = 0;
6375 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6376 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6377 &stripe_index);
6378 if (!need_full_stripe(op))
6379 mirror_num = 1;
6380 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6381 if (need_full_stripe(op))
6382 num_stripes = map->num_stripes;
6383 else if (mirror_num)
6384 stripe_index = mirror_num - 1;
6385 else {
6386 stripe_index = find_live_mirror(fs_info, map, 0,
6387 dev_replace_is_ongoing);
6388 mirror_num = stripe_index + 1;
6389 }
6390
6391 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6392 if (need_full_stripe(op)) {
6393 num_stripes = map->num_stripes;
6394 } else if (mirror_num) {
6395 stripe_index = mirror_num - 1;
6396 } else {
6397 mirror_num = 1;
6398 }
6399
6400 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6401 u32 factor = map->num_stripes / map->sub_stripes;
6402
6403 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6404 stripe_index *= map->sub_stripes;
6405
6406 if (need_full_stripe(op))
6407 num_stripes = map->sub_stripes;
6408 else if (mirror_num)
6409 stripe_index += mirror_num - 1;
6410 else {
6411 int old_stripe_index = stripe_index;
6412 stripe_index = find_live_mirror(fs_info, map,
6413 stripe_index,
6414 dev_replace_is_ongoing);
6415 mirror_num = stripe_index - old_stripe_index + 1;
6416 }
6417
6418 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6419 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6420 /* push stripe_nr back to the start of the full stripe */
6421 stripe_nr = div64_u64(raid56_full_stripe_start,
6422 stripe_len * data_stripes);
6423
6424 /* RAID[56] write or recovery. Return all stripes */
6425 num_stripes = map->num_stripes;
6426 max_errors = nr_parity_stripes(map);
6427
6428 *length = map->stripe_len;
6429 stripe_index = 0;
6430 stripe_offset = 0;
6431 } else {
6432 /*
6433 * Mirror #0 or #1 means the original data block.
6434 * Mirror #2 is RAID5 parity block.
6435 * Mirror #3 is RAID6 Q block.
6436 */
6437 stripe_nr = div_u64_rem(stripe_nr,
6438 data_stripes, &stripe_index);
6439 if (mirror_num > 1)
6440 stripe_index = data_stripes + mirror_num - 2;
6441
6442 /* We distribute the parity blocks across stripes */
6443 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6444 &stripe_index);
6445 if (!need_full_stripe(op) && mirror_num <= 1)
6446 mirror_num = 1;
6447 }
6448 } else {
6449 /*
6450 * after this, stripe_nr is the number of stripes on this
6451 * device we have to walk to find the data, and stripe_index is
6452 * the number of our device in the stripe array
6453 */
6454 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6455 &stripe_index);
6456 mirror_num = stripe_index + 1;
6457 }
6458 if (stripe_index >= map->num_stripes) {
6459 btrfs_crit(fs_info,
6460 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6461 stripe_index, map->num_stripes);
6462 ret = -EINVAL;
6463 goto out;
6464 }
6465
6466 num_alloc_stripes = num_stripes;
6467 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6468 if (op == BTRFS_MAP_WRITE)
6469 num_alloc_stripes <<= 1;
6470 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6471 num_alloc_stripes++;
6472 tgtdev_indexes = num_stripes;
6473 }
6474
6475 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6476 if (!bbio) {
6477 ret = -ENOMEM;
6478 goto out;
6479 }
6480
6481 for (i = 0; i < num_stripes; i++) {
6482 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6483 stripe_offset + stripe_nr * map->stripe_len;
6484 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6485 stripe_index++;
6486 }
6487
6488 /* build raid_map */
6489 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6490 (need_full_stripe(op) || mirror_num > 1)) {
6491 u64 tmp;
6492 unsigned rot;
6493
6494 /* Work out the disk rotation on this stripe-set */
6495 div_u64_rem(stripe_nr, num_stripes, &rot);
6496
6497 /* Fill in the logical address of each stripe */
6498 tmp = stripe_nr * data_stripes;
6499 for (i = 0; i < data_stripes; i++)
6500 bbio->raid_map[(i+rot) % num_stripes] =
6501 em->start + (tmp + i) * map->stripe_len;
6502
6503 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6504 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6505 bbio->raid_map[(i+rot+1) % num_stripes] =
6506 RAID6_Q_STRIPE;
6507
6508 sort_parity_stripes(bbio, num_stripes);
6509 }
6510
6511 if (need_full_stripe(op))
6512 max_errors = btrfs_chunk_max_errors(map);
6513
6514 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6515 need_full_stripe(op)) {
6516 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6517 &num_stripes, &max_errors);
6518 }
6519
6520 *bbio_ret = bbio;
6521 bbio->map_type = map->type;
6522 bbio->num_stripes = num_stripes;
6523 bbio->max_errors = max_errors;
6524 bbio->mirror_num = mirror_num;
6525
6526 /*
6527 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6528 * mirror_num == num_stripes + 1 && dev_replace target drive is
6529 * available as a mirror
6530 */
6531 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6532 WARN_ON(num_stripes > 1);
6533 bbio->stripes[0].dev = dev_replace->tgtdev;
6534 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6535 bbio->mirror_num = map->num_stripes + 1;
6536 }
6537 out:
6538 if (dev_replace_is_ongoing) {
6539 lockdep_assert_held(&dev_replace->rwsem);
6540 /* Unlock and let waiting writers proceed */
6541 up_read(&dev_replace->rwsem);
6542 }
6543 free_extent_map(em);
6544 return ret;
6545 }
6546
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)6547 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6548 u64 logical, u64 *length,
6549 struct btrfs_bio **bbio_ret, int mirror_num)
6550 {
6551 if (op == BTRFS_MAP_DISCARD)
6552 return __btrfs_map_block_for_discard(fs_info, logical,
6553 length, bbio_ret);
6554
6555 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6556 mirror_num, 0);
6557 }
6558
6559 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)6560 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6561 u64 logical, u64 *length,
6562 struct btrfs_bio **bbio_ret)
6563 {
6564 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6565 }
6566
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6567 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6568 {
6569 bio->bi_private = bbio->private;
6570 bio->bi_end_io = bbio->end_io;
6571 bio_endio(bio);
6572
6573 btrfs_put_bbio(bbio);
6574 }
6575
btrfs_end_bio(struct bio * bio)6576 static void btrfs_end_bio(struct bio *bio)
6577 {
6578 struct btrfs_bio *bbio = bio->bi_private;
6579 int is_orig_bio = 0;
6580
6581 if (bio->bi_status) {
6582 atomic_inc(&bbio->error);
6583 if (bio->bi_status == BLK_STS_IOERR ||
6584 bio->bi_status == BLK_STS_TARGET) {
6585 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6586
6587 ASSERT(dev->bdev);
6588 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6589 btrfs_dev_stat_inc_and_print(dev,
6590 BTRFS_DEV_STAT_WRITE_ERRS);
6591 else if (!(bio->bi_opf & REQ_RAHEAD))
6592 btrfs_dev_stat_inc_and_print(dev,
6593 BTRFS_DEV_STAT_READ_ERRS);
6594 if (bio->bi_opf & REQ_PREFLUSH)
6595 btrfs_dev_stat_inc_and_print(dev,
6596 BTRFS_DEV_STAT_FLUSH_ERRS);
6597 }
6598 }
6599
6600 if (bio == bbio->orig_bio)
6601 is_orig_bio = 1;
6602
6603 btrfs_bio_counter_dec(bbio->fs_info);
6604
6605 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6606 if (!is_orig_bio) {
6607 bio_put(bio);
6608 bio = bbio->orig_bio;
6609 }
6610
6611 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6612 /* only send an error to the higher layers if it is
6613 * beyond the tolerance of the btrfs bio
6614 */
6615 if (atomic_read(&bbio->error) > bbio->max_errors) {
6616 bio->bi_status = BLK_STS_IOERR;
6617 } else {
6618 /*
6619 * this bio is actually up to date, we didn't
6620 * go over the max number of errors
6621 */
6622 bio->bi_status = BLK_STS_OK;
6623 }
6624
6625 btrfs_end_bbio(bbio, bio);
6626 } else if (!is_orig_bio) {
6627 bio_put(bio);
6628 }
6629 }
6630
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,struct btrfs_device * dev)6631 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6632 u64 physical, struct btrfs_device *dev)
6633 {
6634 struct btrfs_fs_info *fs_info = bbio->fs_info;
6635
6636 bio->bi_private = bbio;
6637 btrfs_io_bio(bio)->device = dev;
6638 bio->bi_end_io = btrfs_end_bio;
6639 bio->bi_iter.bi_sector = physical >> 9;
6640 /*
6641 * For zone append writing, bi_sector must point the beginning of the
6642 * zone
6643 */
6644 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6645 if (btrfs_dev_is_sequential(dev, physical)) {
6646 u64 zone_start = round_down(physical, fs_info->zone_size);
6647
6648 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6649 } else {
6650 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6651 bio->bi_opf |= REQ_OP_WRITE;
6652 }
6653 }
6654 btrfs_debug_in_rcu(fs_info,
6655 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6656 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6657 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6658 dev->devid, bio->bi_iter.bi_size);
6659 bio_set_dev(bio, dev->bdev);
6660
6661 btrfs_bio_counter_inc_noblocked(fs_info);
6662
6663 btrfsic_submit_bio(bio);
6664 }
6665
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6666 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6667 {
6668 atomic_inc(&bbio->error);
6669 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6670 /* Should be the original bio. */
6671 WARN_ON(bio != bbio->orig_bio);
6672
6673 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6674 bio->bi_iter.bi_sector = logical >> 9;
6675 if (atomic_read(&bbio->error) > bbio->max_errors)
6676 bio->bi_status = BLK_STS_IOERR;
6677 else
6678 bio->bi_status = BLK_STS_OK;
6679 btrfs_end_bbio(bbio, bio);
6680 }
6681 }
6682
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num)6683 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6684 int mirror_num)
6685 {
6686 struct btrfs_device *dev;
6687 struct bio *first_bio = bio;
6688 u64 logical = bio->bi_iter.bi_sector << 9;
6689 u64 length = 0;
6690 u64 map_length;
6691 int ret;
6692 int dev_nr;
6693 int total_devs;
6694 struct btrfs_bio *bbio = NULL;
6695
6696 length = bio->bi_iter.bi_size;
6697 map_length = length;
6698
6699 btrfs_bio_counter_inc_blocked(fs_info);
6700 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6701 &map_length, &bbio, mirror_num, 1);
6702 if (ret) {
6703 btrfs_bio_counter_dec(fs_info);
6704 return errno_to_blk_status(ret);
6705 }
6706
6707 total_devs = bbio->num_stripes;
6708 bbio->orig_bio = first_bio;
6709 bbio->private = first_bio->bi_private;
6710 bbio->end_io = first_bio->bi_end_io;
6711 bbio->fs_info = fs_info;
6712 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6713
6714 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6715 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6716 /* In this case, map_length has been set to the length of
6717 a single stripe; not the whole write */
6718 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6719 ret = raid56_parity_write(fs_info, bio, bbio,
6720 map_length);
6721 } else {
6722 ret = raid56_parity_recover(fs_info, bio, bbio,
6723 map_length, mirror_num, 1);
6724 }
6725
6726 btrfs_bio_counter_dec(fs_info);
6727 return errno_to_blk_status(ret);
6728 }
6729
6730 if (map_length < length) {
6731 btrfs_crit(fs_info,
6732 "mapping failed logical %llu bio len %llu len %llu",
6733 logical, length, map_length);
6734 BUG();
6735 }
6736
6737 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6738 dev = bbio->stripes[dev_nr].dev;
6739 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6740 &dev->dev_state) ||
6741 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6742 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6743 bbio_error(bbio, first_bio, logical);
6744 continue;
6745 }
6746
6747 if (dev_nr < total_devs - 1)
6748 bio = btrfs_bio_clone(first_bio);
6749 else
6750 bio = first_bio;
6751
6752 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6753 }
6754 btrfs_bio_counter_dec(fs_info);
6755 return BLK_STS_OK;
6756 }
6757
6758 /*
6759 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6760 * return NULL.
6761 *
6762 * If devid and uuid are both specified, the match must be exact, otherwise
6763 * only devid is used.
6764 */
btrfs_find_device(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * uuid,u8 * fsid)6765 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6766 u64 devid, u8 *uuid, u8 *fsid)
6767 {
6768 struct btrfs_device *device;
6769 struct btrfs_fs_devices *seed_devs;
6770
6771 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6772 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6773 if (device->devid == devid &&
6774 (!uuid || memcmp(device->uuid, uuid,
6775 BTRFS_UUID_SIZE) == 0))
6776 return device;
6777 }
6778 }
6779
6780 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6781 if (!fsid ||
6782 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6783 list_for_each_entry(device, &seed_devs->devices,
6784 dev_list) {
6785 if (device->devid == devid &&
6786 (!uuid || memcmp(device->uuid, uuid,
6787 BTRFS_UUID_SIZE) == 0))
6788 return device;
6789 }
6790 }
6791 }
6792
6793 return NULL;
6794 }
6795
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6796 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6797 u64 devid, u8 *dev_uuid)
6798 {
6799 struct btrfs_device *device;
6800 unsigned int nofs_flag;
6801
6802 /*
6803 * We call this under the chunk_mutex, so we want to use NOFS for this
6804 * allocation, however we don't want to change btrfs_alloc_device() to
6805 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6806 * places.
6807 */
6808 nofs_flag = memalloc_nofs_save();
6809 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6810 memalloc_nofs_restore(nofs_flag);
6811 if (IS_ERR(device))
6812 return device;
6813
6814 list_add(&device->dev_list, &fs_devices->devices);
6815 device->fs_devices = fs_devices;
6816 fs_devices->num_devices++;
6817
6818 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6819 fs_devices->missing_devices++;
6820
6821 return device;
6822 }
6823
6824 /**
6825 * btrfs_alloc_device - allocate struct btrfs_device
6826 * @fs_info: used only for generating a new devid, can be NULL if
6827 * devid is provided (i.e. @devid != NULL).
6828 * @devid: a pointer to devid for this device. If NULL a new devid
6829 * is generated.
6830 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6831 * is generated.
6832 *
6833 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6834 * on error. Returned struct is not linked onto any lists and must be
6835 * destroyed with btrfs_free_device.
6836 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6837 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6838 const u64 *devid,
6839 const u8 *uuid)
6840 {
6841 struct btrfs_device *dev;
6842 u64 tmp;
6843
6844 if (WARN_ON(!devid && !fs_info))
6845 return ERR_PTR(-EINVAL);
6846
6847 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6848 if (!dev)
6849 return ERR_PTR(-ENOMEM);
6850
6851 /*
6852 * Preallocate a bio that's always going to be used for flushing device
6853 * barriers and matches the device lifespan
6854 */
6855 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6856 if (!dev->flush_bio) {
6857 kfree(dev);
6858 return ERR_PTR(-ENOMEM);
6859 }
6860
6861 INIT_LIST_HEAD(&dev->dev_list);
6862 INIT_LIST_HEAD(&dev->dev_alloc_list);
6863 INIT_LIST_HEAD(&dev->post_commit_list);
6864
6865 atomic_set(&dev->reada_in_flight, 0);
6866 atomic_set(&dev->dev_stats_ccnt, 0);
6867 btrfs_device_data_ordered_init(dev);
6868 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6869 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6870 extent_io_tree_init(fs_info, &dev->alloc_state,
6871 IO_TREE_DEVICE_ALLOC_STATE, NULL);
6872
6873 if (devid)
6874 tmp = *devid;
6875 else {
6876 int ret;
6877
6878 ret = find_next_devid(fs_info, &tmp);
6879 if (ret) {
6880 btrfs_free_device(dev);
6881 return ERR_PTR(ret);
6882 }
6883 }
6884 dev->devid = tmp;
6885
6886 if (uuid)
6887 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6888 else
6889 generate_random_uuid(dev->uuid);
6890
6891 return dev;
6892 }
6893
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6894 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6895 u64 devid, u8 *uuid, bool error)
6896 {
6897 if (error)
6898 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6899 devid, uuid);
6900 else
6901 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6902 devid, uuid);
6903 }
6904
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)6905 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6906 {
6907 const int data_stripes = calc_data_stripes(type, num_stripes);
6908
6909 return div_u64(chunk_len, data_stripes);
6910 }
6911
6912 #if BITS_PER_LONG == 32
6913 /*
6914 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6915 * can't be accessed on 32bit systems.
6916 *
6917 * This function do mount time check to reject the fs if it already has
6918 * metadata chunk beyond that limit.
6919 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6920 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6921 u64 logical, u64 length, u64 type)
6922 {
6923 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6924 return 0;
6925
6926 if (logical + length < MAX_LFS_FILESIZE)
6927 return 0;
6928
6929 btrfs_err_32bit_limit(fs_info);
6930 return -EOVERFLOW;
6931 }
6932
6933 /*
6934 * This is to give early warning for any metadata chunk reaching
6935 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6936 * Although we can still access the metadata, it's not going to be possible
6937 * once the limit is reached.
6938 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6939 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6940 u64 logical, u64 length, u64 type)
6941 {
6942 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6943 return;
6944
6945 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6946 return;
6947
6948 btrfs_warn_32bit_limit(fs_info);
6949 }
6950 #endif
6951
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6952 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6953 struct btrfs_chunk *chunk)
6954 {
6955 struct btrfs_fs_info *fs_info = leaf->fs_info;
6956 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6957 struct map_lookup *map;
6958 struct extent_map *em;
6959 u64 logical;
6960 u64 length;
6961 u64 devid;
6962 u64 type;
6963 u8 uuid[BTRFS_UUID_SIZE];
6964 int num_stripes;
6965 int ret;
6966 int i;
6967
6968 logical = key->offset;
6969 length = btrfs_chunk_length(leaf, chunk);
6970 type = btrfs_chunk_type(leaf, chunk);
6971 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6972
6973 #if BITS_PER_LONG == 32
6974 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6975 if (ret < 0)
6976 return ret;
6977 warn_32bit_meta_chunk(fs_info, logical, length, type);
6978 #endif
6979
6980 /*
6981 * Only need to verify chunk item if we're reading from sys chunk array,
6982 * as chunk item in tree block is already verified by tree-checker.
6983 */
6984 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6985 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6986 if (ret)
6987 return ret;
6988 }
6989
6990 read_lock(&map_tree->lock);
6991 em = lookup_extent_mapping(map_tree, logical, 1);
6992 read_unlock(&map_tree->lock);
6993
6994 /* already mapped? */
6995 if (em && em->start <= logical && em->start + em->len > logical) {
6996 free_extent_map(em);
6997 return 0;
6998 } else if (em) {
6999 free_extent_map(em);
7000 }
7001
7002 em = alloc_extent_map();
7003 if (!em)
7004 return -ENOMEM;
7005 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7006 if (!map) {
7007 free_extent_map(em);
7008 return -ENOMEM;
7009 }
7010
7011 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7012 em->map_lookup = map;
7013 em->start = logical;
7014 em->len = length;
7015 em->orig_start = 0;
7016 em->block_start = 0;
7017 em->block_len = em->len;
7018
7019 map->num_stripes = num_stripes;
7020 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7021 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7022 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7023 map->type = type;
7024 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7025 map->verified_stripes = 0;
7026 em->orig_block_len = calc_stripe_length(type, em->len,
7027 map->num_stripes);
7028 for (i = 0; i < num_stripes; i++) {
7029 map->stripes[i].physical =
7030 btrfs_stripe_offset_nr(leaf, chunk, i);
7031 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7032 read_extent_buffer(leaf, uuid, (unsigned long)
7033 btrfs_stripe_dev_uuid_nr(chunk, i),
7034 BTRFS_UUID_SIZE);
7035 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7036 devid, uuid, NULL);
7037 if (!map->stripes[i].dev &&
7038 !btrfs_test_opt(fs_info, DEGRADED)) {
7039 free_extent_map(em);
7040 btrfs_report_missing_device(fs_info, devid, uuid, true);
7041 return -ENOENT;
7042 }
7043 if (!map->stripes[i].dev) {
7044 map->stripes[i].dev =
7045 add_missing_dev(fs_info->fs_devices, devid,
7046 uuid);
7047 if (IS_ERR(map->stripes[i].dev)) {
7048 free_extent_map(em);
7049 btrfs_err(fs_info,
7050 "failed to init missing dev %llu: %ld",
7051 devid, PTR_ERR(map->stripes[i].dev));
7052 return PTR_ERR(map->stripes[i].dev);
7053 }
7054 btrfs_report_missing_device(fs_info, devid, uuid, false);
7055 }
7056 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7057 &(map->stripes[i].dev->dev_state));
7058
7059 }
7060
7061 write_lock(&map_tree->lock);
7062 ret = add_extent_mapping(map_tree, em, 0);
7063 write_unlock(&map_tree->lock);
7064 if (ret < 0) {
7065 btrfs_err(fs_info,
7066 "failed to add chunk map, start=%llu len=%llu: %d",
7067 em->start, em->len, ret);
7068 }
7069 free_extent_map(em);
7070
7071 return ret;
7072 }
7073
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7074 static void fill_device_from_item(struct extent_buffer *leaf,
7075 struct btrfs_dev_item *dev_item,
7076 struct btrfs_device *device)
7077 {
7078 unsigned long ptr;
7079
7080 device->devid = btrfs_device_id(leaf, dev_item);
7081 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7082 device->total_bytes = device->disk_total_bytes;
7083 device->commit_total_bytes = device->disk_total_bytes;
7084 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7085 device->commit_bytes_used = device->bytes_used;
7086 device->type = btrfs_device_type(leaf, dev_item);
7087 device->io_align = btrfs_device_io_align(leaf, dev_item);
7088 device->io_width = btrfs_device_io_width(leaf, dev_item);
7089 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7090 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7091 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7092
7093 ptr = btrfs_device_uuid(dev_item);
7094 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7095 }
7096
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7097 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7098 u8 *fsid)
7099 {
7100 struct btrfs_fs_devices *fs_devices;
7101 int ret;
7102
7103 lockdep_assert_held(&uuid_mutex);
7104 ASSERT(fsid);
7105
7106 /* This will match only for multi-device seed fs */
7107 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7108 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7109 return fs_devices;
7110
7111
7112 fs_devices = find_fsid(fsid, NULL);
7113 if (!fs_devices) {
7114 if (!btrfs_test_opt(fs_info, DEGRADED))
7115 return ERR_PTR(-ENOENT);
7116
7117 fs_devices = alloc_fs_devices(fsid, NULL);
7118 if (IS_ERR(fs_devices))
7119 return fs_devices;
7120
7121 fs_devices->seeding = true;
7122 fs_devices->opened = 1;
7123 return fs_devices;
7124 }
7125
7126 /*
7127 * Upon first call for a seed fs fsid, just create a private copy of the
7128 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7129 */
7130 fs_devices = clone_fs_devices(fs_devices);
7131 if (IS_ERR(fs_devices))
7132 return fs_devices;
7133
7134 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7135 if (ret) {
7136 free_fs_devices(fs_devices);
7137 return ERR_PTR(ret);
7138 }
7139
7140 if (!fs_devices->seeding) {
7141 close_fs_devices(fs_devices);
7142 free_fs_devices(fs_devices);
7143 return ERR_PTR(-EINVAL);
7144 }
7145
7146 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7147
7148 return fs_devices;
7149 }
7150
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7151 static int read_one_dev(struct extent_buffer *leaf,
7152 struct btrfs_dev_item *dev_item)
7153 {
7154 struct btrfs_fs_info *fs_info = leaf->fs_info;
7155 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7156 struct btrfs_device *device;
7157 u64 devid;
7158 int ret;
7159 u8 fs_uuid[BTRFS_FSID_SIZE];
7160 u8 dev_uuid[BTRFS_UUID_SIZE];
7161
7162 devid = btrfs_device_id(leaf, dev_item);
7163 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7164 BTRFS_UUID_SIZE);
7165 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7166 BTRFS_FSID_SIZE);
7167
7168 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7169 fs_devices = open_seed_devices(fs_info, fs_uuid);
7170 if (IS_ERR(fs_devices))
7171 return PTR_ERR(fs_devices);
7172 }
7173
7174 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7175 fs_uuid);
7176 if (!device) {
7177 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7178 btrfs_report_missing_device(fs_info, devid,
7179 dev_uuid, true);
7180 return -ENOENT;
7181 }
7182
7183 device = add_missing_dev(fs_devices, devid, dev_uuid);
7184 if (IS_ERR(device)) {
7185 btrfs_err(fs_info,
7186 "failed to add missing dev %llu: %ld",
7187 devid, PTR_ERR(device));
7188 return PTR_ERR(device);
7189 }
7190 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7191 } else {
7192 if (!device->bdev) {
7193 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7194 btrfs_report_missing_device(fs_info,
7195 devid, dev_uuid, true);
7196 return -ENOENT;
7197 }
7198 btrfs_report_missing_device(fs_info, devid,
7199 dev_uuid, false);
7200 }
7201
7202 if (!device->bdev &&
7203 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7204 /*
7205 * this happens when a device that was properly setup
7206 * in the device info lists suddenly goes bad.
7207 * device->bdev is NULL, and so we have to set
7208 * device->missing to one here
7209 */
7210 device->fs_devices->missing_devices++;
7211 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7212 }
7213
7214 /* Move the device to its own fs_devices */
7215 if (device->fs_devices != fs_devices) {
7216 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7217 &device->dev_state));
7218
7219 list_move(&device->dev_list, &fs_devices->devices);
7220 device->fs_devices->num_devices--;
7221 fs_devices->num_devices++;
7222
7223 device->fs_devices->missing_devices--;
7224 fs_devices->missing_devices++;
7225
7226 device->fs_devices = fs_devices;
7227 }
7228 }
7229
7230 if (device->fs_devices != fs_info->fs_devices) {
7231 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7232 if (device->generation !=
7233 btrfs_device_generation(leaf, dev_item))
7234 return -EINVAL;
7235 }
7236
7237 fill_device_from_item(leaf, dev_item, device);
7238 if (device->bdev) {
7239 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7240
7241 if (device->total_bytes > max_total_bytes) {
7242 btrfs_err(fs_info,
7243 "device total_bytes should be at most %llu but found %llu",
7244 max_total_bytes, device->total_bytes);
7245 return -EINVAL;
7246 }
7247 }
7248 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7249 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7250 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7251 device->fs_devices->total_rw_bytes += device->total_bytes;
7252 atomic64_add(device->total_bytes - device->bytes_used,
7253 &fs_info->free_chunk_space);
7254 }
7255 ret = 0;
7256 return ret;
7257 }
7258
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7259 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7260 {
7261 struct btrfs_root *root = fs_info->tree_root;
7262 struct btrfs_super_block *super_copy = fs_info->super_copy;
7263 struct extent_buffer *sb;
7264 struct btrfs_disk_key *disk_key;
7265 struct btrfs_chunk *chunk;
7266 u8 *array_ptr;
7267 unsigned long sb_array_offset;
7268 int ret = 0;
7269 u32 num_stripes;
7270 u32 array_size;
7271 u32 len = 0;
7272 u32 cur_offset;
7273 u64 type;
7274 struct btrfs_key key;
7275
7276 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7277 /*
7278 * This will create extent buffer of nodesize, superblock size is
7279 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7280 * overallocate but we can keep it as-is, only the first page is used.
7281 */
7282 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7283 root->root_key.objectid, 0);
7284 if (IS_ERR(sb))
7285 return PTR_ERR(sb);
7286 set_extent_buffer_uptodate(sb);
7287 /*
7288 * The sb extent buffer is artificial and just used to read the system array.
7289 * set_extent_buffer_uptodate() call does not properly mark all it's
7290 * pages up-to-date when the page is larger: extent does not cover the
7291 * whole page and consequently check_page_uptodate does not find all
7292 * the page's extents up-to-date (the hole beyond sb),
7293 * write_extent_buffer then triggers a WARN_ON.
7294 *
7295 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7296 * but sb spans only this function. Add an explicit SetPageUptodate call
7297 * to silence the warning eg. on PowerPC 64.
7298 */
7299 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7300 SetPageUptodate(sb->pages[0]);
7301
7302 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7303 array_size = btrfs_super_sys_array_size(super_copy);
7304
7305 array_ptr = super_copy->sys_chunk_array;
7306 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7307 cur_offset = 0;
7308
7309 while (cur_offset < array_size) {
7310 disk_key = (struct btrfs_disk_key *)array_ptr;
7311 len = sizeof(*disk_key);
7312 if (cur_offset + len > array_size)
7313 goto out_short_read;
7314
7315 btrfs_disk_key_to_cpu(&key, disk_key);
7316
7317 array_ptr += len;
7318 sb_array_offset += len;
7319 cur_offset += len;
7320
7321 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7322 btrfs_err(fs_info,
7323 "unexpected item type %u in sys_array at offset %u",
7324 (u32)key.type, cur_offset);
7325 ret = -EIO;
7326 break;
7327 }
7328
7329 chunk = (struct btrfs_chunk *)sb_array_offset;
7330 /*
7331 * At least one btrfs_chunk with one stripe must be present,
7332 * exact stripe count check comes afterwards
7333 */
7334 len = btrfs_chunk_item_size(1);
7335 if (cur_offset + len > array_size)
7336 goto out_short_read;
7337
7338 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7339 if (!num_stripes) {
7340 btrfs_err(fs_info,
7341 "invalid number of stripes %u in sys_array at offset %u",
7342 num_stripes, cur_offset);
7343 ret = -EIO;
7344 break;
7345 }
7346
7347 type = btrfs_chunk_type(sb, chunk);
7348 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7349 btrfs_err(fs_info,
7350 "invalid chunk type %llu in sys_array at offset %u",
7351 type, cur_offset);
7352 ret = -EIO;
7353 break;
7354 }
7355
7356 len = btrfs_chunk_item_size(num_stripes);
7357 if (cur_offset + len > array_size)
7358 goto out_short_read;
7359
7360 ret = read_one_chunk(&key, sb, chunk);
7361 if (ret)
7362 break;
7363
7364 array_ptr += len;
7365 sb_array_offset += len;
7366 cur_offset += len;
7367 }
7368 clear_extent_buffer_uptodate(sb);
7369 free_extent_buffer_stale(sb);
7370 return ret;
7371
7372 out_short_read:
7373 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7374 len, cur_offset);
7375 clear_extent_buffer_uptodate(sb);
7376 free_extent_buffer_stale(sb);
7377 return -EIO;
7378 }
7379
7380 /*
7381 * Check if all chunks in the fs are OK for read-write degraded mount
7382 *
7383 * If the @failing_dev is specified, it's accounted as missing.
7384 *
7385 * Return true if all chunks meet the minimal RW mount requirements.
7386 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7387 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7388 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7389 struct btrfs_device *failing_dev)
7390 {
7391 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7392 struct extent_map *em;
7393 u64 next_start = 0;
7394 bool ret = true;
7395
7396 read_lock(&map_tree->lock);
7397 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7398 read_unlock(&map_tree->lock);
7399 /* No chunk at all? Return false anyway */
7400 if (!em) {
7401 ret = false;
7402 goto out;
7403 }
7404 while (em) {
7405 struct map_lookup *map;
7406 int missing = 0;
7407 int max_tolerated;
7408 int i;
7409
7410 map = em->map_lookup;
7411 max_tolerated =
7412 btrfs_get_num_tolerated_disk_barrier_failures(
7413 map->type);
7414 for (i = 0; i < map->num_stripes; i++) {
7415 struct btrfs_device *dev = map->stripes[i].dev;
7416
7417 if (!dev || !dev->bdev ||
7418 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7419 dev->last_flush_error)
7420 missing++;
7421 else if (failing_dev && failing_dev == dev)
7422 missing++;
7423 }
7424 if (missing > max_tolerated) {
7425 if (!failing_dev)
7426 btrfs_warn(fs_info,
7427 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7428 em->start, missing, max_tolerated);
7429 free_extent_map(em);
7430 ret = false;
7431 goto out;
7432 }
7433 next_start = extent_map_end(em);
7434 free_extent_map(em);
7435
7436 read_lock(&map_tree->lock);
7437 em = lookup_extent_mapping(map_tree, next_start,
7438 (u64)(-1) - next_start);
7439 read_unlock(&map_tree->lock);
7440 }
7441 out:
7442 return ret;
7443 }
7444
readahead_tree_node_children(struct extent_buffer * node)7445 static void readahead_tree_node_children(struct extent_buffer *node)
7446 {
7447 int i;
7448 const int nr_items = btrfs_header_nritems(node);
7449
7450 for (i = 0; i < nr_items; i++)
7451 btrfs_readahead_node_child(node, i);
7452 }
7453
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7454 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7455 {
7456 struct btrfs_root *root = fs_info->chunk_root;
7457 struct btrfs_path *path;
7458 struct extent_buffer *leaf;
7459 struct btrfs_key key;
7460 struct btrfs_key found_key;
7461 int ret;
7462 int slot;
7463 u64 total_dev = 0;
7464 u64 last_ra_node = 0;
7465
7466 path = btrfs_alloc_path();
7467 if (!path)
7468 return -ENOMEM;
7469
7470 /*
7471 * uuid_mutex is needed only if we are mounting a sprout FS
7472 * otherwise we don't need it.
7473 */
7474 mutex_lock(&uuid_mutex);
7475
7476 /*
7477 * It is possible for mount and umount to race in such a way that
7478 * we execute this code path, but open_fs_devices failed to clear
7479 * total_rw_bytes. We certainly want it cleared before reading the
7480 * device items, so clear it here.
7481 */
7482 fs_info->fs_devices->total_rw_bytes = 0;
7483
7484 /*
7485 * Read all device items, and then all the chunk items. All
7486 * device items are found before any chunk item (their object id
7487 * is smaller than the lowest possible object id for a chunk
7488 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7489 */
7490 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7491 key.offset = 0;
7492 key.type = 0;
7493 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7494 if (ret < 0)
7495 goto error;
7496 while (1) {
7497 struct extent_buffer *node;
7498
7499 leaf = path->nodes[0];
7500 slot = path->slots[0];
7501 if (slot >= btrfs_header_nritems(leaf)) {
7502 ret = btrfs_next_leaf(root, path);
7503 if (ret == 0)
7504 continue;
7505 if (ret < 0)
7506 goto error;
7507 break;
7508 }
7509 /*
7510 * The nodes on level 1 are not locked but we don't need to do
7511 * that during mount time as nothing else can access the tree
7512 */
7513 node = path->nodes[1];
7514 if (node) {
7515 if (last_ra_node != node->start) {
7516 readahead_tree_node_children(node);
7517 last_ra_node = node->start;
7518 }
7519 }
7520 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7521 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7522 struct btrfs_dev_item *dev_item;
7523 dev_item = btrfs_item_ptr(leaf, slot,
7524 struct btrfs_dev_item);
7525 ret = read_one_dev(leaf, dev_item);
7526 if (ret)
7527 goto error;
7528 total_dev++;
7529 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7530 struct btrfs_chunk *chunk;
7531
7532 /*
7533 * We are only called at mount time, so no need to take
7534 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7535 * we always lock first fs_info->chunk_mutex before
7536 * acquiring any locks on the chunk tree. This is a
7537 * requirement for chunk allocation, see the comment on
7538 * top of btrfs_chunk_alloc() for details.
7539 */
7540 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7541 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7542 ret = read_one_chunk(&found_key, leaf, chunk);
7543 if (ret)
7544 goto error;
7545 }
7546 path->slots[0]++;
7547 }
7548
7549 /*
7550 * After loading chunk tree, we've got all device information,
7551 * do another round of validation checks.
7552 */
7553 if (total_dev != fs_info->fs_devices->total_devices) {
7554 btrfs_err(fs_info,
7555 "super_num_devices %llu mismatch with num_devices %llu found here",
7556 btrfs_super_num_devices(fs_info->super_copy),
7557 total_dev);
7558 ret = -EINVAL;
7559 goto error;
7560 }
7561 if (btrfs_super_total_bytes(fs_info->super_copy) <
7562 fs_info->fs_devices->total_rw_bytes) {
7563 btrfs_err(fs_info,
7564 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7565 btrfs_super_total_bytes(fs_info->super_copy),
7566 fs_info->fs_devices->total_rw_bytes);
7567 ret = -EINVAL;
7568 goto error;
7569 }
7570 ret = 0;
7571 error:
7572 mutex_unlock(&uuid_mutex);
7573
7574 btrfs_free_path(path);
7575 return ret;
7576 }
7577
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7578 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7579 {
7580 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7581 struct btrfs_device *device;
7582
7583 fs_devices->fs_info = fs_info;
7584
7585 mutex_lock(&fs_devices->device_list_mutex);
7586 list_for_each_entry(device, &fs_devices->devices, dev_list)
7587 device->fs_info = fs_info;
7588
7589 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7590 list_for_each_entry(device, &seed_devs->devices, dev_list)
7591 device->fs_info = fs_info;
7592
7593 seed_devs->fs_info = fs_info;
7594 }
7595 mutex_unlock(&fs_devices->device_list_mutex);
7596 }
7597
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7598 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7599 const struct btrfs_dev_stats_item *ptr,
7600 int index)
7601 {
7602 u64 val;
7603
7604 read_extent_buffer(eb, &val,
7605 offsetof(struct btrfs_dev_stats_item, values) +
7606 ((unsigned long)ptr) + (index * sizeof(u64)),
7607 sizeof(val));
7608 return val;
7609 }
7610
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7611 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7612 struct btrfs_dev_stats_item *ptr,
7613 int index, u64 val)
7614 {
7615 write_extent_buffer(eb, &val,
7616 offsetof(struct btrfs_dev_stats_item, values) +
7617 ((unsigned long)ptr) + (index * sizeof(u64)),
7618 sizeof(val));
7619 }
7620
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7621 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7622 struct btrfs_path *path)
7623 {
7624 struct btrfs_dev_stats_item *ptr;
7625 struct extent_buffer *eb;
7626 struct btrfs_key key;
7627 int item_size;
7628 int i, ret, slot;
7629
7630 if (!device->fs_info->dev_root)
7631 return 0;
7632
7633 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7634 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7635 key.offset = device->devid;
7636 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7637 if (ret) {
7638 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7639 btrfs_dev_stat_set(device, i, 0);
7640 device->dev_stats_valid = 1;
7641 btrfs_release_path(path);
7642 return ret < 0 ? ret : 0;
7643 }
7644 slot = path->slots[0];
7645 eb = path->nodes[0];
7646 item_size = btrfs_item_size_nr(eb, slot);
7647
7648 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7649
7650 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7651 if (item_size >= (1 + i) * sizeof(__le64))
7652 btrfs_dev_stat_set(device, i,
7653 btrfs_dev_stats_value(eb, ptr, i));
7654 else
7655 btrfs_dev_stat_set(device, i, 0);
7656 }
7657
7658 device->dev_stats_valid = 1;
7659 btrfs_dev_stat_print_on_load(device);
7660 btrfs_release_path(path);
7661
7662 return 0;
7663 }
7664
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7665 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7666 {
7667 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7668 struct btrfs_device *device;
7669 struct btrfs_path *path = NULL;
7670 int ret = 0;
7671
7672 path = btrfs_alloc_path();
7673 if (!path)
7674 return -ENOMEM;
7675
7676 mutex_lock(&fs_devices->device_list_mutex);
7677 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7678 ret = btrfs_device_init_dev_stats(device, path);
7679 if (ret)
7680 goto out;
7681 }
7682 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7683 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7684 ret = btrfs_device_init_dev_stats(device, path);
7685 if (ret)
7686 goto out;
7687 }
7688 }
7689 out:
7690 mutex_unlock(&fs_devices->device_list_mutex);
7691
7692 btrfs_free_path(path);
7693 return ret;
7694 }
7695
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7696 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7697 struct btrfs_device *device)
7698 {
7699 struct btrfs_fs_info *fs_info = trans->fs_info;
7700 struct btrfs_root *dev_root = fs_info->dev_root;
7701 struct btrfs_path *path;
7702 struct btrfs_key key;
7703 struct extent_buffer *eb;
7704 struct btrfs_dev_stats_item *ptr;
7705 int ret;
7706 int i;
7707
7708 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7709 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7710 key.offset = device->devid;
7711
7712 path = btrfs_alloc_path();
7713 if (!path)
7714 return -ENOMEM;
7715 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7716 if (ret < 0) {
7717 btrfs_warn_in_rcu(fs_info,
7718 "error %d while searching for dev_stats item for device %s",
7719 ret, rcu_str_deref(device->name));
7720 goto out;
7721 }
7722
7723 if (ret == 0 &&
7724 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7725 /* need to delete old one and insert a new one */
7726 ret = btrfs_del_item(trans, dev_root, path);
7727 if (ret != 0) {
7728 btrfs_warn_in_rcu(fs_info,
7729 "delete too small dev_stats item for device %s failed %d",
7730 rcu_str_deref(device->name), ret);
7731 goto out;
7732 }
7733 ret = 1;
7734 }
7735
7736 if (ret == 1) {
7737 /* need to insert a new item */
7738 btrfs_release_path(path);
7739 ret = btrfs_insert_empty_item(trans, dev_root, path,
7740 &key, sizeof(*ptr));
7741 if (ret < 0) {
7742 btrfs_warn_in_rcu(fs_info,
7743 "insert dev_stats item for device %s failed %d",
7744 rcu_str_deref(device->name), ret);
7745 goto out;
7746 }
7747 }
7748
7749 eb = path->nodes[0];
7750 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7751 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7752 btrfs_set_dev_stats_value(eb, ptr, i,
7753 btrfs_dev_stat_read(device, i));
7754 btrfs_mark_buffer_dirty(eb);
7755
7756 out:
7757 btrfs_free_path(path);
7758 return ret;
7759 }
7760
7761 /*
7762 * called from commit_transaction. Writes all changed device stats to disk.
7763 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7764 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7765 {
7766 struct btrfs_fs_info *fs_info = trans->fs_info;
7767 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7768 struct btrfs_device *device;
7769 int stats_cnt;
7770 int ret = 0;
7771
7772 mutex_lock(&fs_devices->device_list_mutex);
7773 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7774 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7775 if (!device->dev_stats_valid || stats_cnt == 0)
7776 continue;
7777
7778
7779 /*
7780 * There is a LOAD-LOAD control dependency between the value of
7781 * dev_stats_ccnt and updating the on-disk values which requires
7782 * reading the in-memory counters. Such control dependencies
7783 * require explicit read memory barriers.
7784 *
7785 * This memory barriers pairs with smp_mb__before_atomic in
7786 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7787 * barrier implied by atomic_xchg in
7788 * btrfs_dev_stats_read_and_reset
7789 */
7790 smp_rmb();
7791
7792 ret = update_dev_stat_item(trans, device);
7793 if (!ret)
7794 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7795 }
7796 mutex_unlock(&fs_devices->device_list_mutex);
7797
7798 return ret;
7799 }
7800
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7801 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7802 {
7803 btrfs_dev_stat_inc(dev, index);
7804 btrfs_dev_stat_print_on_error(dev);
7805 }
7806
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7807 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7808 {
7809 if (!dev->dev_stats_valid)
7810 return;
7811 btrfs_err_rl_in_rcu(dev->fs_info,
7812 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7813 rcu_str_deref(dev->name),
7814 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7815 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7816 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7817 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7818 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7819 }
7820
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7821 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7822 {
7823 int i;
7824
7825 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7826 if (btrfs_dev_stat_read(dev, i) != 0)
7827 break;
7828 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7829 return; /* all values == 0, suppress message */
7830
7831 btrfs_info_in_rcu(dev->fs_info,
7832 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7833 rcu_str_deref(dev->name),
7834 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7835 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7836 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7837 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7838 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7839 }
7840
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7841 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7842 struct btrfs_ioctl_get_dev_stats *stats)
7843 {
7844 struct btrfs_device *dev;
7845 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7846 int i;
7847
7848 mutex_lock(&fs_devices->device_list_mutex);
7849 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7850 mutex_unlock(&fs_devices->device_list_mutex);
7851
7852 if (!dev) {
7853 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7854 return -ENODEV;
7855 } else if (!dev->dev_stats_valid) {
7856 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7857 return -ENODEV;
7858 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7859 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7860 if (stats->nr_items > i)
7861 stats->values[i] =
7862 btrfs_dev_stat_read_and_reset(dev, i);
7863 else
7864 btrfs_dev_stat_set(dev, i, 0);
7865 }
7866 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7867 current->comm, task_pid_nr(current));
7868 } else {
7869 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7870 if (stats->nr_items > i)
7871 stats->values[i] = btrfs_dev_stat_read(dev, i);
7872 }
7873 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7874 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7875 return 0;
7876 }
7877
7878 /*
7879 * Update the size and bytes used for each device where it changed. This is
7880 * delayed since we would otherwise get errors while writing out the
7881 * superblocks.
7882 *
7883 * Must be invoked during transaction commit.
7884 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7885 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7886 {
7887 struct btrfs_device *curr, *next;
7888
7889 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7890
7891 if (list_empty(&trans->dev_update_list))
7892 return;
7893
7894 /*
7895 * We don't need the device_list_mutex here. This list is owned by the
7896 * transaction and the transaction must complete before the device is
7897 * released.
7898 */
7899 mutex_lock(&trans->fs_info->chunk_mutex);
7900 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7901 post_commit_list) {
7902 list_del_init(&curr->post_commit_list);
7903 curr->commit_total_bytes = curr->disk_total_bytes;
7904 curr->commit_bytes_used = curr->bytes_used;
7905 }
7906 mutex_unlock(&trans->fs_info->chunk_mutex);
7907 }
7908
7909 /*
7910 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7911 */
btrfs_bg_type_to_factor(u64 flags)7912 int btrfs_bg_type_to_factor(u64 flags)
7913 {
7914 const int index = btrfs_bg_flags_to_raid_index(flags);
7915
7916 return btrfs_raid_array[index].ncopies;
7917 }
7918
7919
7920
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7921 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7922 u64 chunk_offset, u64 devid,
7923 u64 physical_offset, u64 physical_len)
7924 {
7925 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7926 struct extent_map *em;
7927 struct map_lookup *map;
7928 struct btrfs_device *dev;
7929 u64 stripe_len;
7930 bool found = false;
7931 int ret = 0;
7932 int i;
7933
7934 read_lock(&em_tree->lock);
7935 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7936 read_unlock(&em_tree->lock);
7937
7938 if (!em) {
7939 btrfs_err(fs_info,
7940 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7941 physical_offset, devid);
7942 ret = -EUCLEAN;
7943 goto out;
7944 }
7945
7946 map = em->map_lookup;
7947 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7948 if (physical_len != stripe_len) {
7949 btrfs_err(fs_info,
7950 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7951 physical_offset, devid, em->start, physical_len,
7952 stripe_len);
7953 ret = -EUCLEAN;
7954 goto out;
7955 }
7956
7957 for (i = 0; i < map->num_stripes; i++) {
7958 if (map->stripes[i].dev->devid == devid &&
7959 map->stripes[i].physical == physical_offset) {
7960 found = true;
7961 if (map->verified_stripes >= map->num_stripes) {
7962 btrfs_err(fs_info,
7963 "too many dev extents for chunk %llu found",
7964 em->start);
7965 ret = -EUCLEAN;
7966 goto out;
7967 }
7968 map->verified_stripes++;
7969 break;
7970 }
7971 }
7972 if (!found) {
7973 btrfs_err(fs_info,
7974 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7975 physical_offset, devid);
7976 ret = -EUCLEAN;
7977 }
7978
7979 /* Make sure no dev extent is beyond device boundary */
7980 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7981 if (!dev) {
7982 btrfs_err(fs_info, "failed to find devid %llu", devid);
7983 ret = -EUCLEAN;
7984 goto out;
7985 }
7986
7987 if (physical_offset + physical_len > dev->disk_total_bytes) {
7988 btrfs_err(fs_info,
7989 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7990 devid, physical_offset, physical_len,
7991 dev->disk_total_bytes);
7992 ret = -EUCLEAN;
7993 goto out;
7994 }
7995
7996 if (dev->zone_info) {
7997 u64 zone_size = dev->zone_info->zone_size;
7998
7999 if (!IS_ALIGNED(physical_offset, zone_size) ||
8000 !IS_ALIGNED(physical_len, zone_size)) {
8001 btrfs_err(fs_info,
8002 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8003 devid, physical_offset, physical_len);
8004 ret = -EUCLEAN;
8005 goto out;
8006 }
8007 }
8008
8009 out:
8010 free_extent_map(em);
8011 return ret;
8012 }
8013
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8014 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8015 {
8016 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8017 struct extent_map *em;
8018 struct rb_node *node;
8019 int ret = 0;
8020
8021 read_lock(&em_tree->lock);
8022 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8023 em = rb_entry(node, struct extent_map, rb_node);
8024 if (em->map_lookup->num_stripes !=
8025 em->map_lookup->verified_stripes) {
8026 btrfs_err(fs_info,
8027 "chunk %llu has missing dev extent, have %d expect %d",
8028 em->start, em->map_lookup->verified_stripes,
8029 em->map_lookup->num_stripes);
8030 ret = -EUCLEAN;
8031 goto out;
8032 }
8033 }
8034 out:
8035 read_unlock(&em_tree->lock);
8036 return ret;
8037 }
8038
8039 /*
8040 * Ensure that all dev extents are mapped to correct chunk, otherwise
8041 * later chunk allocation/free would cause unexpected behavior.
8042 *
8043 * NOTE: This will iterate through the whole device tree, which should be of
8044 * the same size level as the chunk tree. This slightly increases mount time.
8045 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8046 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8047 {
8048 struct btrfs_path *path;
8049 struct btrfs_root *root = fs_info->dev_root;
8050 struct btrfs_key key;
8051 u64 prev_devid = 0;
8052 u64 prev_dev_ext_end = 0;
8053 int ret = 0;
8054
8055 /*
8056 * We don't have a dev_root because we mounted with ignorebadroots and
8057 * failed to load the root, so we want to skip the verification in this
8058 * case for sure.
8059 *
8060 * However if the dev root is fine, but the tree itself is corrupted
8061 * we'd still fail to mount. This verification is only to make sure
8062 * writes can happen safely, so instead just bypass this check
8063 * completely in the case of IGNOREBADROOTS.
8064 */
8065 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8066 return 0;
8067
8068 key.objectid = 1;
8069 key.type = BTRFS_DEV_EXTENT_KEY;
8070 key.offset = 0;
8071
8072 path = btrfs_alloc_path();
8073 if (!path)
8074 return -ENOMEM;
8075
8076 path->reada = READA_FORWARD;
8077 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8078 if (ret < 0)
8079 goto out;
8080
8081 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8082 ret = btrfs_next_leaf(root, path);
8083 if (ret < 0)
8084 goto out;
8085 /* No dev extents at all? Not good */
8086 if (ret > 0) {
8087 ret = -EUCLEAN;
8088 goto out;
8089 }
8090 }
8091 while (1) {
8092 struct extent_buffer *leaf = path->nodes[0];
8093 struct btrfs_dev_extent *dext;
8094 int slot = path->slots[0];
8095 u64 chunk_offset;
8096 u64 physical_offset;
8097 u64 physical_len;
8098 u64 devid;
8099
8100 btrfs_item_key_to_cpu(leaf, &key, slot);
8101 if (key.type != BTRFS_DEV_EXTENT_KEY)
8102 break;
8103 devid = key.objectid;
8104 physical_offset = key.offset;
8105
8106 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8107 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8108 physical_len = btrfs_dev_extent_length(leaf, dext);
8109
8110 /* Check if this dev extent overlaps with the previous one */
8111 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8112 btrfs_err(fs_info,
8113 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8114 devid, physical_offset, prev_dev_ext_end);
8115 ret = -EUCLEAN;
8116 goto out;
8117 }
8118
8119 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8120 physical_offset, physical_len);
8121 if (ret < 0)
8122 goto out;
8123 prev_devid = devid;
8124 prev_dev_ext_end = physical_offset + physical_len;
8125
8126 ret = btrfs_next_item(root, path);
8127 if (ret < 0)
8128 goto out;
8129 if (ret > 0) {
8130 ret = 0;
8131 break;
8132 }
8133 }
8134
8135 /* Ensure all chunks have corresponding dev extents */
8136 ret = verify_chunk_dev_extent_mapping(fs_info);
8137 out:
8138 btrfs_free_path(path);
8139 return ret;
8140 }
8141
8142 /*
8143 * Check whether the given block group or device is pinned by any inode being
8144 * used as a swapfile.
8145 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8146 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8147 {
8148 struct btrfs_swapfile_pin *sp;
8149 struct rb_node *node;
8150
8151 spin_lock(&fs_info->swapfile_pins_lock);
8152 node = fs_info->swapfile_pins.rb_node;
8153 while (node) {
8154 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8155 if (ptr < sp->ptr)
8156 node = node->rb_left;
8157 else if (ptr > sp->ptr)
8158 node = node->rb_right;
8159 else
8160 break;
8161 }
8162 spin_unlock(&fs_info->swapfile_pins_lock);
8163 return node != NULL;
8164 }
8165
relocating_repair_kthread(void * data)8166 static int relocating_repair_kthread(void *data)
8167 {
8168 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8169 struct btrfs_fs_info *fs_info = cache->fs_info;
8170 u64 target;
8171 int ret = 0;
8172
8173 target = cache->start;
8174 btrfs_put_block_group(cache);
8175
8176 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8177 btrfs_info(fs_info,
8178 "zoned: skip relocating block group %llu to repair: EBUSY",
8179 target);
8180 return -EBUSY;
8181 }
8182
8183 mutex_lock(&fs_info->reclaim_bgs_lock);
8184
8185 /* Ensure block group still exists */
8186 cache = btrfs_lookup_block_group(fs_info, target);
8187 if (!cache)
8188 goto out;
8189
8190 if (!cache->relocating_repair)
8191 goto out;
8192
8193 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8194 if (ret < 0)
8195 goto out;
8196
8197 btrfs_info(fs_info,
8198 "zoned: relocating block group %llu to repair IO failure",
8199 target);
8200 ret = btrfs_relocate_chunk(fs_info, target);
8201
8202 out:
8203 if (cache)
8204 btrfs_put_block_group(cache);
8205 mutex_unlock(&fs_info->reclaim_bgs_lock);
8206 btrfs_exclop_finish(fs_info);
8207
8208 return ret;
8209 }
8210
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8211 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8212 {
8213 struct btrfs_block_group *cache;
8214
8215 /* Do not attempt to repair in degraded state */
8216 if (btrfs_test_opt(fs_info, DEGRADED))
8217 return 0;
8218
8219 cache = btrfs_lookup_block_group(fs_info, logical);
8220 if (!cache)
8221 return 0;
8222
8223 spin_lock(&cache->lock);
8224 if (cache->relocating_repair) {
8225 spin_unlock(&cache->lock);
8226 btrfs_put_block_group(cache);
8227 return 0;
8228 }
8229 cache->relocating_repair = 1;
8230 spin_unlock(&cache->lock);
8231
8232 kthread_run(relocating_repair_kthread, cache,
8233 "btrfs-relocating-repair");
8234
8235 return 0;
8236 }
8237