1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) Qu Wenruo 2017. All rights reserved.
4 */
5
6 /*
7 * The module is used to catch unexpected/corrupted tree block data.
8 * Such behavior can be caused either by a fuzzed image or bugs.
9 *
10 * The objective is to do leaf/node validation checks when tree block is read
11 * from disk, and check *every* possible member, so other code won't
12 * need to checking them again.
13 *
14 * Due to the potential and unwanted damage, every checker needs to be
15 * carefully reviewed otherwise so it does not prevent mount of valid images.
16 */
17
18 #include <linux/types.h>
19 #include <linux/stddef.h>
20 #include <linux/error-injection.h>
21 #include "ctree.h"
22 #include "tree-checker.h"
23 #include "disk-io.h"
24 #include "compression.h"
25 #include "volumes.h"
26 #include "misc.h"
27 #include "btrfs_inode.h"
28
29 /*
30 * Error message should follow the following format:
31 * corrupt <type>: <identifier>, <reason>[, <bad_value>]
32 *
33 * @type: leaf or node
34 * @identifier: the necessary info to locate the leaf/node.
35 * It's recommended to decode key.objecitd/offset if it's
36 * meaningful.
37 * @reason: describe the error
38 * @bad_value: optional, it's recommended to output bad value and its
39 * expected value (range).
40 *
41 * Since comma is used to separate the components, only space is allowed
42 * inside each component.
43 */
44
45 /*
46 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
47 * Allows callers to customize the output.
48 */
49 __printf(3, 4)
50 __cold
generic_err(const struct extent_buffer * eb,int slot,const char * fmt,...)51 static void generic_err(const struct extent_buffer *eb, int slot,
52 const char *fmt, ...)
53 {
54 const struct btrfs_fs_info *fs_info = eb->fs_info;
55 struct va_format vaf;
56 va_list args;
57
58 va_start(args, fmt);
59
60 vaf.fmt = fmt;
61 vaf.va = &args;
62
63 btrfs_crit(fs_info,
64 "corrupt %s: root=%llu block=%llu slot=%d, %pV",
65 btrfs_header_level(eb) == 0 ? "leaf" : "node",
66 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
67 va_end(args);
68 }
69
70 /*
71 * Customized reporter for extent data item, since its key objectid and
72 * offset has its own meaning.
73 */
74 __printf(3, 4)
75 __cold
file_extent_err(const struct extent_buffer * eb,int slot,const char * fmt,...)76 static void file_extent_err(const struct extent_buffer *eb, int slot,
77 const char *fmt, ...)
78 {
79 const struct btrfs_fs_info *fs_info = eb->fs_info;
80 struct btrfs_key key;
81 struct va_format vaf;
82 va_list args;
83
84 btrfs_item_key_to_cpu(eb, &key, slot);
85 va_start(args, fmt);
86
87 vaf.fmt = fmt;
88 vaf.va = &args;
89
90 btrfs_crit(fs_info,
91 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
92 btrfs_header_level(eb) == 0 ? "leaf" : "node",
93 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
94 key.objectid, key.offset, &vaf);
95 va_end(args);
96 }
97
98 /*
99 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
100 * Else return 1
101 */
102 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \
103 ({ \
104 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \
105 (alignment)))) \
106 file_extent_err((leaf), (slot), \
107 "invalid %s for file extent, have %llu, should be aligned to %u", \
108 (#name), btrfs_file_extent_##name((leaf), (fi)), \
109 (alignment)); \
110 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
111 })
112
file_extent_end(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_file_extent_item * extent)113 static u64 file_extent_end(struct extent_buffer *leaf,
114 struct btrfs_key *key,
115 struct btrfs_file_extent_item *extent)
116 {
117 u64 end;
118 u64 len;
119
120 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
121 len = btrfs_file_extent_ram_bytes(leaf, extent);
122 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
123 } else {
124 len = btrfs_file_extent_num_bytes(leaf, extent);
125 end = key->offset + len;
126 }
127 return end;
128 }
129
130 /*
131 * Customized report for dir_item, the only new important information is
132 * key->objectid, which represents inode number
133 */
134 __printf(3, 4)
135 __cold
dir_item_err(const struct extent_buffer * eb,int slot,const char * fmt,...)136 static void dir_item_err(const struct extent_buffer *eb, int slot,
137 const char *fmt, ...)
138 {
139 const struct btrfs_fs_info *fs_info = eb->fs_info;
140 struct btrfs_key key;
141 struct va_format vaf;
142 va_list args;
143
144 btrfs_item_key_to_cpu(eb, &key, slot);
145 va_start(args, fmt);
146
147 vaf.fmt = fmt;
148 vaf.va = &args;
149
150 btrfs_crit(fs_info,
151 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
152 btrfs_header_level(eb) == 0 ? "leaf" : "node",
153 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
154 key.objectid, &vaf);
155 va_end(args);
156 }
157
158 /*
159 * This functions checks prev_key->objectid, to ensure current key and prev_key
160 * share the same objectid as inode number.
161 *
162 * This is to detect missing INODE_ITEM in subvolume trees.
163 *
164 * Return true if everything is OK or we don't need to check.
165 * Return false if anything is wrong.
166 */
check_prev_ino(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)167 static bool check_prev_ino(struct extent_buffer *leaf,
168 struct btrfs_key *key, int slot,
169 struct btrfs_key *prev_key)
170 {
171 /* No prev key, skip check */
172 if (slot == 0)
173 return true;
174
175 /* Only these key->types needs to be checked */
176 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
177 key->type == BTRFS_INODE_REF_KEY ||
178 key->type == BTRFS_DIR_INDEX_KEY ||
179 key->type == BTRFS_DIR_ITEM_KEY ||
180 key->type == BTRFS_EXTENT_DATA_KEY);
181
182 /*
183 * Only subvolume trees along with their reloc trees need this check.
184 * Things like log tree doesn't follow this ino requirement.
185 */
186 if (!is_fstree(btrfs_header_owner(leaf)))
187 return true;
188
189 if (key->objectid == prev_key->objectid)
190 return true;
191
192 /* Error found */
193 dir_item_err(leaf, slot,
194 "invalid previous key objectid, have %llu expect %llu",
195 prev_key->objectid, key->objectid);
196 return false;
197 }
check_extent_data_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)198 static int check_extent_data_item(struct extent_buffer *leaf,
199 struct btrfs_key *key, int slot,
200 struct btrfs_key *prev_key)
201 {
202 struct btrfs_fs_info *fs_info = leaf->fs_info;
203 struct btrfs_file_extent_item *fi;
204 u32 sectorsize = fs_info->sectorsize;
205 u32 item_size = btrfs_item_size(leaf, slot);
206 u64 extent_end;
207
208 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
209 file_extent_err(leaf, slot,
210 "unaligned file_offset for file extent, have %llu should be aligned to %u",
211 key->offset, sectorsize);
212 return -EUCLEAN;
213 }
214
215 /*
216 * Previous key must have the same key->objectid (ino).
217 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
218 * But if objectids mismatch, it means we have a missing
219 * INODE_ITEM.
220 */
221 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
222 return -EUCLEAN;
223
224 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
225
226 /*
227 * Make sure the item contains at least inline header, so the file
228 * extent type is not some garbage.
229 */
230 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
231 file_extent_err(leaf, slot,
232 "invalid item size, have %u expect [%zu, %u)",
233 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
234 SZ_4K);
235 return -EUCLEAN;
236 }
237 if (unlikely(btrfs_file_extent_type(leaf, fi) >=
238 BTRFS_NR_FILE_EXTENT_TYPES)) {
239 file_extent_err(leaf, slot,
240 "invalid type for file extent, have %u expect range [0, %u]",
241 btrfs_file_extent_type(leaf, fi),
242 BTRFS_NR_FILE_EXTENT_TYPES - 1);
243 return -EUCLEAN;
244 }
245
246 /*
247 * Support for new compression/encryption must introduce incompat flag,
248 * and must be caught in open_ctree().
249 */
250 if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
251 BTRFS_NR_COMPRESS_TYPES)) {
252 file_extent_err(leaf, slot,
253 "invalid compression for file extent, have %u expect range [0, %u]",
254 btrfs_file_extent_compression(leaf, fi),
255 BTRFS_NR_COMPRESS_TYPES - 1);
256 return -EUCLEAN;
257 }
258 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
259 file_extent_err(leaf, slot,
260 "invalid encryption for file extent, have %u expect 0",
261 btrfs_file_extent_encryption(leaf, fi));
262 return -EUCLEAN;
263 }
264 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
265 /* Inline extent must have 0 as key offset */
266 if (unlikely(key->offset)) {
267 file_extent_err(leaf, slot,
268 "invalid file_offset for inline file extent, have %llu expect 0",
269 key->offset);
270 return -EUCLEAN;
271 }
272
273 /* Compressed inline extent has no on-disk size, skip it */
274 if (btrfs_file_extent_compression(leaf, fi) !=
275 BTRFS_COMPRESS_NONE)
276 return 0;
277
278 /* Uncompressed inline extent size must match item size */
279 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
280 btrfs_file_extent_ram_bytes(leaf, fi))) {
281 file_extent_err(leaf, slot,
282 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
283 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
284 btrfs_file_extent_ram_bytes(leaf, fi));
285 return -EUCLEAN;
286 }
287 return 0;
288 }
289
290 /* Regular or preallocated extent has fixed item size */
291 if (unlikely(item_size != sizeof(*fi))) {
292 file_extent_err(leaf, slot,
293 "invalid item size for reg/prealloc file extent, have %u expect %zu",
294 item_size, sizeof(*fi));
295 return -EUCLEAN;
296 }
297 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
298 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
299 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
300 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
301 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
302 return -EUCLEAN;
303
304 /* Catch extent end overflow */
305 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
306 key->offset, &extent_end))) {
307 file_extent_err(leaf, slot,
308 "extent end overflow, have file offset %llu extent num bytes %llu",
309 key->offset,
310 btrfs_file_extent_num_bytes(leaf, fi));
311 return -EUCLEAN;
312 }
313
314 /*
315 * Check that no two consecutive file extent items, in the same leaf,
316 * present ranges that overlap each other.
317 */
318 if (slot > 0 &&
319 prev_key->objectid == key->objectid &&
320 prev_key->type == BTRFS_EXTENT_DATA_KEY) {
321 struct btrfs_file_extent_item *prev_fi;
322 u64 prev_end;
323
324 prev_fi = btrfs_item_ptr(leaf, slot - 1,
325 struct btrfs_file_extent_item);
326 prev_end = file_extent_end(leaf, prev_key, prev_fi);
327 if (unlikely(prev_end > key->offset)) {
328 file_extent_err(leaf, slot - 1,
329 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
330 prev_end, key->offset);
331 return -EUCLEAN;
332 }
333 }
334
335 return 0;
336 }
337
check_csum_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)338 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
339 int slot, struct btrfs_key *prev_key)
340 {
341 struct btrfs_fs_info *fs_info = leaf->fs_info;
342 u32 sectorsize = fs_info->sectorsize;
343 const u32 csumsize = fs_info->csum_size;
344
345 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
346 generic_err(leaf, slot,
347 "invalid key objectid for csum item, have %llu expect %llu",
348 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
349 return -EUCLEAN;
350 }
351 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
352 generic_err(leaf, slot,
353 "unaligned key offset for csum item, have %llu should be aligned to %u",
354 key->offset, sectorsize);
355 return -EUCLEAN;
356 }
357 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
358 generic_err(leaf, slot,
359 "unaligned item size for csum item, have %u should be aligned to %u",
360 btrfs_item_size(leaf, slot), csumsize);
361 return -EUCLEAN;
362 }
363 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
364 u64 prev_csum_end;
365 u32 prev_item_size;
366
367 prev_item_size = btrfs_item_size(leaf, slot - 1);
368 prev_csum_end = (prev_item_size / csumsize) * sectorsize;
369 prev_csum_end += prev_key->offset;
370 if (unlikely(prev_csum_end > key->offset)) {
371 generic_err(leaf, slot - 1,
372 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
373 prev_csum_end, key->offset);
374 return -EUCLEAN;
375 }
376 }
377 return 0;
378 }
379
380 /* Inode item error output has the same format as dir_item_err() */
381 #define inode_item_err(eb, slot, fmt, ...) \
382 dir_item_err(eb, slot, fmt, __VA_ARGS__)
383
check_inode_key(struct extent_buffer * leaf,struct btrfs_key * key,int slot)384 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
385 int slot)
386 {
387 struct btrfs_key item_key;
388 bool is_inode_item;
389
390 btrfs_item_key_to_cpu(leaf, &item_key, slot);
391 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
392
393 /* For XATTR_ITEM, location key should be all 0 */
394 if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
395 if (unlikely(key->objectid != 0 || key->type != 0 ||
396 key->offset != 0))
397 return -EUCLEAN;
398 return 0;
399 }
400
401 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
402 key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
403 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
404 key->objectid != BTRFS_FREE_INO_OBJECTID)) {
405 if (is_inode_item) {
406 generic_err(leaf, slot,
407 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
408 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
409 BTRFS_FIRST_FREE_OBJECTID,
410 BTRFS_LAST_FREE_OBJECTID,
411 BTRFS_FREE_INO_OBJECTID);
412 } else {
413 dir_item_err(leaf, slot,
414 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
415 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
416 BTRFS_FIRST_FREE_OBJECTID,
417 BTRFS_LAST_FREE_OBJECTID,
418 BTRFS_FREE_INO_OBJECTID);
419 }
420 return -EUCLEAN;
421 }
422 if (unlikely(key->offset != 0)) {
423 if (is_inode_item)
424 inode_item_err(leaf, slot,
425 "invalid key offset: has %llu expect 0",
426 key->offset);
427 else
428 dir_item_err(leaf, slot,
429 "invalid location key offset:has %llu expect 0",
430 key->offset);
431 return -EUCLEAN;
432 }
433 return 0;
434 }
435
check_root_key(struct extent_buffer * leaf,struct btrfs_key * key,int slot)436 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
437 int slot)
438 {
439 struct btrfs_key item_key;
440 bool is_root_item;
441
442 btrfs_item_key_to_cpu(leaf, &item_key, slot);
443 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
444
445 /* No such tree id */
446 if (unlikely(key->objectid == 0)) {
447 if (is_root_item)
448 generic_err(leaf, slot, "invalid root id 0");
449 else
450 dir_item_err(leaf, slot,
451 "invalid location key root id 0");
452 return -EUCLEAN;
453 }
454
455 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
456 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
457 dir_item_err(leaf, slot,
458 "invalid location key objectid, have %llu expect [%llu, %llu]",
459 key->objectid, BTRFS_FIRST_FREE_OBJECTID,
460 BTRFS_LAST_FREE_OBJECTID);
461 return -EUCLEAN;
462 }
463
464 /*
465 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
466 * @offset transid.
467 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
468 *
469 * So here we only check offset for reloc tree whose key->offset must
470 * be a valid tree.
471 */
472 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
473 key->offset == 0)) {
474 generic_err(leaf, slot, "invalid root id 0 for reloc tree");
475 return -EUCLEAN;
476 }
477 return 0;
478 }
479
check_dir_item(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)480 static int check_dir_item(struct extent_buffer *leaf,
481 struct btrfs_key *key, struct btrfs_key *prev_key,
482 int slot)
483 {
484 struct btrfs_fs_info *fs_info = leaf->fs_info;
485 struct btrfs_dir_item *di;
486 u32 item_size = btrfs_item_size(leaf, slot);
487 u32 cur = 0;
488
489 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
490 return -EUCLEAN;
491
492 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
493 while (cur < item_size) {
494 struct btrfs_key location_key;
495 u32 name_len;
496 u32 data_len;
497 u32 max_name_len;
498 u32 total_size;
499 u32 name_hash;
500 u8 dir_type;
501 int ret;
502
503 /* header itself should not cross item boundary */
504 if (unlikely(cur + sizeof(*di) > item_size)) {
505 dir_item_err(leaf, slot,
506 "dir item header crosses item boundary, have %zu boundary %u",
507 cur + sizeof(*di), item_size);
508 return -EUCLEAN;
509 }
510
511 /* Location key check */
512 btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
513 if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
514 ret = check_root_key(leaf, &location_key, slot);
515 if (unlikely(ret < 0))
516 return ret;
517 } else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
518 location_key.type == 0) {
519 ret = check_inode_key(leaf, &location_key, slot);
520 if (unlikely(ret < 0))
521 return ret;
522 } else {
523 dir_item_err(leaf, slot,
524 "invalid location key type, have %u, expect %u or %u",
525 location_key.type, BTRFS_ROOT_ITEM_KEY,
526 BTRFS_INODE_ITEM_KEY);
527 return -EUCLEAN;
528 }
529
530 /* dir type check */
531 dir_type = btrfs_dir_type(leaf, di);
532 if (unlikely(dir_type >= BTRFS_FT_MAX)) {
533 dir_item_err(leaf, slot,
534 "invalid dir item type, have %u expect [0, %u)",
535 dir_type, BTRFS_FT_MAX);
536 return -EUCLEAN;
537 }
538
539 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
540 dir_type != BTRFS_FT_XATTR)) {
541 dir_item_err(leaf, slot,
542 "invalid dir item type for XATTR key, have %u expect %u",
543 dir_type, BTRFS_FT_XATTR);
544 return -EUCLEAN;
545 }
546 if (unlikely(dir_type == BTRFS_FT_XATTR &&
547 key->type != BTRFS_XATTR_ITEM_KEY)) {
548 dir_item_err(leaf, slot,
549 "xattr dir type found for non-XATTR key");
550 return -EUCLEAN;
551 }
552 if (dir_type == BTRFS_FT_XATTR)
553 max_name_len = XATTR_NAME_MAX;
554 else
555 max_name_len = BTRFS_NAME_LEN;
556
557 /* Name/data length check */
558 name_len = btrfs_dir_name_len(leaf, di);
559 data_len = btrfs_dir_data_len(leaf, di);
560 if (unlikely(name_len > max_name_len)) {
561 dir_item_err(leaf, slot,
562 "dir item name len too long, have %u max %u",
563 name_len, max_name_len);
564 return -EUCLEAN;
565 }
566 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
567 dir_item_err(leaf, slot,
568 "dir item name and data len too long, have %u max %u",
569 name_len + data_len,
570 BTRFS_MAX_XATTR_SIZE(fs_info));
571 return -EUCLEAN;
572 }
573
574 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
575 dir_item_err(leaf, slot,
576 "dir item with invalid data len, have %u expect 0",
577 data_len);
578 return -EUCLEAN;
579 }
580
581 total_size = sizeof(*di) + name_len + data_len;
582
583 /* header and name/data should not cross item boundary */
584 if (unlikely(cur + total_size > item_size)) {
585 dir_item_err(leaf, slot,
586 "dir item data crosses item boundary, have %u boundary %u",
587 cur + total_size, item_size);
588 return -EUCLEAN;
589 }
590
591 /*
592 * Special check for XATTR/DIR_ITEM, as key->offset is name
593 * hash, should match its name
594 */
595 if (key->type == BTRFS_DIR_ITEM_KEY ||
596 key->type == BTRFS_XATTR_ITEM_KEY) {
597 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
598
599 read_extent_buffer(leaf, namebuf,
600 (unsigned long)(di + 1), name_len);
601 name_hash = btrfs_name_hash(namebuf, name_len);
602 if (unlikely(key->offset != name_hash)) {
603 dir_item_err(leaf, slot,
604 "name hash mismatch with key, have 0x%016x expect 0x%016llx",
605 name_hash, key->offset);
606 return -EUCLEAN;
607 }
608 }
609 cur += total_size;
610 di = (struct btrfs_dir_item *)((void *)di + total_size);
611 }
612 return 0;
613 }
614
615 __printf(3, 4)
616 __cold
block_group_err(const struct extent_buffer * eb,int slot,const char * fmt,...)617 static void block_group_err(const struct extent_buffer *eb, int slot,
618 const char *fmt, ...)
619 {
620 const struct btrfs_fs_info *fs_info = eb->fs_info;
621 struct btrfs_key key;
622 struct va_format vaf;
623 va_list args;
624
625 btrfs_item_key_to_cpu(eb, &key, slot);
626 va_start(args, fmt);
627
628 vaf.fmt = fmt;
629 vaf.va = &args;
630
631 btrfs_crit(fs_info,
632 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
633 btrfs_header_level(eb) == 0 ? "leaf" : "node",
634 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
635 key.objectid, key.offset, &vaf);
636 va_end(args);
637 }
638
check_block_group_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)639 static int check_block_group_item(struct extent_buffer *leaf,
640 struct btrfs_key *key, int slot)
641 {
642 struct btrfs_fs_info *fs_info = leaf->fs_info;
643 struct btrfs_block_group_item bgi;
644 u32 item_size = btrfs_item_size(leaf, slot);
645 u64 chunk_objectid;
646 u64 flags;
647 u64 type;
648
649 /*
650 * Here we don't really care about alignment since extent allocator can
651 * handle it. We care more about the size.
652 */
653 if (unlikely(key->offset == 0)) {
654 block_group_err(leaf, slot,
655 "invalid block group size 0");
656 return -EUCLEAN;
657 }
658
659 if (unlikely(item_size != sizeof(bgi))) {
660 block_group_err(leaf, slot,
661 "invalid item size, have %u expect %zu",
662 item_size, sizeof(bgi));
663 return -EUCLEAN;
664 }
665
666 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
667 sizeof(bgi));
668 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
669 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
670 /*
671 * We don't init the nr_global_roots until we load the global
672 * roots, so this could be 0 at mount time. If it's 0 we'll
673 * just assume we're fine, and later we'll check against our
674 * actual value.
675 */
676 if (unlikely(fs_info->nr_global_roots &&
677 chunk_objectid >= fs_info->nr_global_roots)) {
678 block_group_err(leaf, slot,
679 "invalid block group global root id, have %llu, needs to be <= %llu",
680 chunk_objectid,
681 fs_info->nr_global_roots);
682 return -EUCLEAN;
683 }
684 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
685 block_group_err(leaf, slot,
686 "invalid block group chunk objectid, have %llu expect %llu",
687 btrfs_stack_block_group_chunk_objectid(&bgi),
688 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
689 return -EUCLEAN;
690 }
691
692 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
693 block_group_err(leaf, slot,
694 "invalid block group used, have %llu expect [0, %llu)",
695 btrfs_stack_block_group_used(&bgi), key->offset);
696 return -EUCLEAN;
697 }
698
699 flags = btrfs_stack_block_group_flags(&bgi);
700 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
701 block_group_err(leaf, slot,
702 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
703 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
704 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
705 return -EUCLEAN;
706 }
707
708 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
709 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
710 type != BTRFS_BLOCK_GROUP_METADATA &&
711 type != BTRFS_BLOCK_GROUP_SYSTEM &&
712 type != (BTRFS_BLOCK_GROUP_METADATA |
713 BTRFS_BLOCK_GROUP_DATA))) {
714 block_group_err(leaf, slot,
715 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
716 type, hweight64(type),
717 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
718 BTRFS_BLOCK_GROUP_SYSTEM,
719 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
720 return -EUCLEAN;
721 }
722 return 0;
723 }
724
725 __printf(4, 5)
726 __cold
chunk_err(const struct extent_buffer * leaf,const struct btrfs_chunk * chunk,u64 logical,const char * fmt,...)727 static void chunk_err(const struct extent_buffer *leaf,
728 const struct btrfs_chunk *chunk, u64 logical,
729 const char *fmt, ...)
730 {
731 const struct btrfs_fs_info *fs_info = leaf->fs_info;
732 bool is_sb;
733 struct va_format vaf;
734 va_list args;
735 int i;
736 int slot = -1;
737
738 /* Only superblock eb is able to have such small offset */
739 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
740
741 if (!is_sb) {
742 /*
743 * Get the slot number by iterating through all slots, this
744 * would provide better readability.
745 */
746 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
747 if (btrfs_item_ptr_offset(leaf, i) ==
748 (unsigned long)chunk) {
749 slot = i;
750 break;
751 }
752 }
753 }
754 va_start(args, fmt);
755 vaf.fmt = fmt;
756 vaf.va = &args;
757
758 if (is_sb)
759 btrfs_crit(fs_info,
760 "corrupt superblock syschunk array: chunk_start=%llu, %pV",
761 logical, &vaf);
762 else
763 btrfs_crit(fs_info,
764 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
765 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
766 logical, &vaf);
767 va_end(args);
768 }
769
770 /*
771 * The common chunk check which could also work on super block sys chunk array.
772 *
773 * Return -EUCLEAN if anything is corrupted.
774 * Return 0 if everything is OK.
775 */
btrfs_check_chunk_valid(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 logical)776 int btrfs_check_chunk_valid(struct extent_buffer *leaf,
777 struct btrfs_chunk *chunk, u64 logical)
778 {
779 struct btrfs_fs_info *fs_info = leaf->fs_info;
780 u64 length;
781 u64 chunk_end;
782 u64 stripe_len;
783 u16 num_stripes;
784 u16 sub_stripes;
785 u64 type;
786 u64 features;
787 bool mixed = false;
788 int raid_index;
789 int nparity;
790 int ncopies;
791
792 length = btrfs_chunk_length(leaf, chunk);
793 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
794 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
795 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
796 type = btrfs_chunk_type(leaf, chunk);
797 raid_index = btrfs_bg_flags_to_raid_index(type);
798 ncopies = btrfs_raid_array[raid_index].ncopies;
799 nparity = btrfs_raid_array[raid_index].nparity;
800
801 if (unlikely(!num_stripes)) {
802 chunk_err(leaf, chunk, logical,
803 "invalid chunk num_stripes, have %u", num_stripes);
804 return -EUCLEAN;
805 }
806 if (unlikely(num_stripes < ncopies)) {
807 chunk_err(leaf, chunk, logical,
808 "invalid chunk num_stripes < ncopies, have %u < %d",
809 num_stripes, ncopies);
810 return -EUCLEAN;
811 }
812 if (unlikely(nparity && num_stripes == nparity)) {
813 chunk_err(leaf, chunk, logical,
814 "invalid chunk num_stripes == nparity, have %u == %d",
815 num_stripes, nparity);
816 return -EUCLEAN;
817 }
818 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
819 chunk_err(leaf, chunk, logical,
820 "invalid chunk logical, have %llu should aligned to %u",
821 logical, fs_info->sectorsize);
822 return -EUCLEAN;
823 }
824 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
825 chunk_err(leaf, chunk, logical,
826 "invalid chunk sectorsize, have %u expect %u",
827 btrfs_chunk_sector_size(leaf, chunk),
828 fs_info->sectorsize);
829 return -EUCLEAN;
830 }
831 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
832 chunk_err(leaf, chunk, logical,
833 "invalid chunk length, have %llu", length);
834 return -EUCLEAN;
835 }
836 if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
837 chunk_err(leaf, chunk, logical,
838 "invalid chunk logical start and length, have logical start %llu length %llu",
839 logical, length);
840 return -EUCLEAN;
841 }
842 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
843 chunk_err(leaf, chunk, logical,
844 "invalid chunk stripe length: %llu",
845 stripe_len);
846 return -EUCLEAN;
847 }
848 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
849 BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
850 chunk_err(leaf, chunk, logical,
851 "unrecognized chunk type: 0x%llx",
852 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
853 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
854 btrfs_chunk_type(leaf, chunk));
855 return -EUCLEAN;
856 }
857
858 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
859 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
860 chunk_err(leaf, chunk, logical,
861 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
862 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
863 return -EUCLEAN;
864 }
865 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
866 chunk_err(leaf, chunk, logical,
867 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
868 type, BTRFS_BLOCK_GROUP_TYPE_MASK);
869 return -EUCLEAN;
870 }
871
872 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
873 (type & (BTRFS_BLOCK_GROUP_METADATA |
874 BTRFS_BLOCK_GROUP_DATA)))) {
875 chunk_err(leaf, chunk, logical,
876 "system chunk with data or metadata type: 0x%llx",
877 type);
878 return -EUCLEAN;
879 }
880
881 features = btrfs_super_incompat_flags(fs_info->super_copy);
882 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
883 mixed = true;
884
885 if (!mixed) {
886 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
887 (type & BTRFS_BLOCK_GROUP_DATA))) {
888 chunk_err(leaf, chunk, logical,
889 "mixed chunk type in non-mixed mode: 0x%llx", type);
890 return -EUCLEAN;
891 }
892 }
893
894 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
895 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
896 (type & BTRFS_BLOCK_GROUP_RAID1 &&
897 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
898 (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
899 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
900 (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
901 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
902 (type & BTRFS_BLOCK_GROUP_RAID5 &&
903 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
904 (type & BTRFS_BLOCK_GROUP_RAID6 &&
905 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
906 (type & BTRFS_BLOCK_GROUP_DUP &&
907 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
908 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
909 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
910 chunk_err(leaf, chunk, logical,
911 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
912 num_stripes, sub_stripes,
913 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
914 return -EUCLEAN;
915 }
916
917 return 0;
918 }
919
920 /*
921 * Enhanced version of chunk item checker.
922 *
923 * The common btrfs_check_chunk_valid() doesn't check item size since it needs
924 * to work on super block sys_chunk_array which doesn't have full item ptr.
925 */
check_leaf_chunk_item(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_key * key,int slot)926 static int check_leaf_chunk_item(struct extent_buffer *leaf,
927 struct btrfs_chunk *chunk,
928 struct btrfs_key *key, int slot)
929 {
930 int num_stripes;
931
932 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
933 chunk_err(leaf, chunk, key->offset,
934 "invalid chunk item size: have %u expect [%zu, %u)",
935 btrfs_item_size(leaf, slot),
936 sizeof(struct btrfs_chunk),
937 BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
938 return -EUCLEAN;
939 }
940
941 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
942 /* Let btrfs_check_chunk_valid() handle this error type */
943 if (num_stripes == 0)
944 goto out;
945
946 if (unlikely(btrfs_chunk_item_size(num_stripes) !=
947 btrfs_item_size(leaf, slot))) {
948 chunk_err(leaf, chunk, key->offset,
949 "invalid chunk item size: have %u expect %lu",
950 btrfs_item_size(leaf, slot),
951 btrfs_chunk_item_size(num_stripes));
952 return -EUCLEAN;
953 }
954 out:
955 return btrfs_check_chunk_valid(leaf, chunk, key->offset);
956 }
957
958 __printf(3, 4)
959 __cold
dev_item_err(const struct extent_buffer * eb,int slot,const char * fmt,...)960 static void dev_item_err(const struct extent_buffer *eb, int slot,
961 const char *fmt, ...)
962 {
963 struct btrfs_key key;
964 struct va_format vaf;
965 va_list args;
966
967 btrfs_item_key_to_cpu(eb, &key, slot);
968 va_start(args, fmt);
969
970 vaf.fmt = fmt;
971 vaf.va = &args;
972
973 btrfs_crit(eb->fs_info,
974 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
975 btrfs_header_level(eb) == 0 ? "leaf" : "node",
976 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
977 key.objectid, &vaf);
978 va_end(args);
979 }
980
check_dev_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)981 static int check_dev_item(struct extent_buffer *leaf,
982 struct btrfs_key *key, int slot)
983 {
984 struct btrfs_dev_item *ditem;
985 const u32 item_size = btrfs_item_size(leaf, slot);
986
987 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
988 dev_item_err(leaf, slot,
989 "invalid objectid: has=%llu expect=%llu",
990 key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
991 return -EUCLEAN;
992 }
993
994 if (unlikely(item_size != sizeof(*ditem))) {
995 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
996 item_size, sizeof(*ditem));
997 return -EUCLEAN;
998 }
999
1000 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1001 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1002 dev_item_err(leaf, slot,
1003 "devid mismatch: key has=%llu item has=%llu",
1004 key->offset, btrfs_device_id(leaf, ditem));
1005 return -EUCLEAN;
1006 }
1007
1008 /*
1009 * For device total_bytes, we don't have reliable way to check it, as
1010 * it can be 0 for device removal. Device size check can only be done
1011 * by dev extents check.
1012 */
1013 if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1014 btrfs_device_total_bytes(leaf, ditem))) {
1015 dev_item_err(leaf, slot,
1016 "invalid bytes used: have %llu expect [0, %llu]",
1017 btrfs_device_bytes_used(leaf, ditem),
1018 btrfs_device_total_bytes(leaf, ditem));
1019 return -EUCLEAN;
1020 }
1021 /*
1022 * Remaining members like io_align/type/gen/dev_group aren't really
1023 * utilized. Skip them to make later usage of them easier.
1024 */
1025 return 0;
1026 }
1027
check_inode_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1028 static int check_inode_item(struct extent_buffer *leaf,
1029 struct btrfs_key *key, int slot)
1030 {
1031 struct btrfs_fs_info *fs_info = leaf->fs_info;
1032 struct btrfs_inode_item *iitem;
1033 u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1034 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1035 const u32 item_size = btrfs_item_size(leaf, slot);
1036 u32 mode;
1037 int ret;
1038 u32 flags;
1039 u32 ro_flags;
1040
1041 ret = check_inode_key(leaf, key, slot);
1042 if (unlikely(ret < 0))
1043 return ret;
1044
1045 if (unlikely(item_size != sizeof(*iitem))) {
1046 generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1047 item_size, sizeof(*iitem));
1048 return -EUCLEAN;
1049 }
1050
1051 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1052
1053 /* Here we use super block generation + 1 to handle log tree */
1054 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1055 inode_item_err(leaf, slot,
1056 "invalid inode generation: has %llu expect (0, %llu]",
1057 btrfs_inode_generation(leaf, iitem),
1058 super_gen + 1);
1059 return -EUCLEAN;
1060 }
1061 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1062 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1063 inode_item_err(leaf, slot,
1064 "invalid inode transid: has %llu expect [0, %llu]",
1065 btrfs_inode_transid(leaf, iitem), super_gen + 1);
1066 return -EUCLEAN;
1067 }
1068
1069 /*
1070 * For size and nbytes it's better not to be too strict, as for dir
1071 * item its size/nbytes can easily get wrong, but doesn't affect
1072 * anything in the fs. So here we skip the check.
1073 */
1074 mode = btrfs_inode_mode(leaf, iitem);
1075 if (unlikely(mode & ~valid_mask)) {
1076 inode_item_err(leaf, slot,
1077 "unknown mode bit detected: 0x%x",
1078 mode & ~valid_mask);
1079 return -EUCLEAN;
1080 }
1081
1082 /*
1083 * S_IFMT is not bit mapped so we can't completely rely on
1084 * is_power_of_2/has_single_bit_set, but it can save us from checking
1085 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS
1086 */
1087 if (!has_single_bit_set(mode & S_IFMT)) {
1088 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1089 inode_item_err(leaf, slot,
1090 "invalid mode: has 0%o expect valid S_IF* bit(s)",
1091 mode & S_IFMT);
1092 return -EUCLEAN;
1093 }
1094 }
1095 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1096 inode_item_err(leaf, slot,
1097 "invalid nlink: has %u expect no more than 1 for dir",
1098 btrfs_inode_nlink(leaf, iitem));
1099 return -EUCLEAN;
1100 }
1101 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1102 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1103 inode_item_err(leaf, slot,
1104 "unknown incompat flags detected: 0x%x", flags);
1105 return -EUCLEAN;
1106 }
1107 if (unlikely(!sb_rdonly(fs_info->sb) &&
1108 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1109 inode_item_err(leaf, slot,
1110 "unknown ro-compat flags detected on writeable mount: 0x%x",
1111 ro_flags);
1112 return -EUCLEAN;
1113 }
1114 return 0;
1115 }
1116
check_root_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1117 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1118 int slot)
1119 {
1120 struct btrfs_fs_info *fs_info = leaf->fs_info;
1121 struct btrfs_root_item ri = { 0 };
1122 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1123 BTRFS_ROOT_SUBVOL_DEAD;
1124 int ret;
1125
1126 ret = check_root_key(leaf, key, slot);
1127 if (unlikely(ret < 0))
1128 return ret;
1129
1130 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1131 btrfs_item_size(leaf, slot) !=
1132 btrfs_legacy_root_item_size())) {
1133 generic_err(leaf, slot,
1134 "invalid root item size, have %u expect %zu or %u",
1135 btrfs_item_size(leaf, slot), sizeof(ri),
1136 btrfs_legacy_root_item_size());
1137 return -EUCLEAN;
1138 }
1139
1140 /*
1141 * For legacy root item, the members starting at generation_v2 will be
1142 * all filled with 0.
1143 * And since we allow geneartion_v2 as 0, it will still pass the check.
1144 */
1145 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1146 btrfs_item_size(leaf, slot));
1147
1148 /* Generation related */
1149 if (unlikely(btrfs_root_generation(&ri) >
1150 btrfs_super_generation(fs_info->super_copy) + 1)) {
1151 generic_err(leaf, slot,
1152 "invalid root generation, have %llu expect (0, %llu]",
1153 btrfs_root_generation(&ri),
1154 btrfs_super_generation(fs_info->super_copy) + 1);
1155 return -EUCLEAN;
1156 }
1157 if (unlikely(btrfs_root_generation_v2(&ri) >
1158 btrfs_super_generation(fs_info->super_copy) + 1)) {
1159 generic_err(leaf, slot,
1160 "invalid root v2 generation, have %llu expect (0, %llu]",
1161 btrfs_root_generation_v2(&ri),
1162 btrfs_super_generation(fs_info->super_copy) + 1);
1163 return -EUCLEAN;
1164 }
1165 if (unlikely(btrfs_root_last_snapshot(&ri) >
1166 btrfs_super_generation(fs_info->super_copy) + 1)) {
1167 generic_err(leaf, slot,
1168 "invalid root last_snapshot, have %llu expect (0, %llu]",
1169 btrfs_root_last_snapshot(&ri),
1170 btrfs_super_generation(fs_info->super_copy) + 1);
1171 return -EUCLEAN;
1172 }
1173
1174 /* Alignment and level check */
1175 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1176 generic_err(leaf, slot,
1177 "invalid root bytenr, have %llu expect to be aligned to %u",
1178 btrfs_root_bytenr(&ri), fs_info->sectorsize);
1179 return -EUCLEAN;
1180 }
1181 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1182 generic_err(leaf, slot,
1183 "invalid root level, have %u expect [0, %u]",
1184 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1185 return -EUCLEAN;
1186 }
1187 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1188 generic_err(leaf, slot,
1189 "invalid root level, have %u expect [0, %u]",
1190 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1191 return -EUCLEAN;
1192 }
1193
1194 /* Flags check */
1195 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1196 generic_err(leaf, slot,
1197 "invalid root flags, have 0x%llx expect mask 0x%llx",
1198 btrfs_root_flags(&ri), valid_root_flags);
1199 return -EUCLEAN;
1200 }
1201 return 0;
1202 }
1203
1204 __printf(3,4)
1205 __cold
extent_err(const struct extent_buffer * eb,int slot,const char * fmt,...)1206 static void extent_err(const struct extent_buffer *eb, int slot,
1207 const char *fmt, ...)
1208 {
1209 struct btrfs_key key;
1210 struct va_format vaf;
1211 va_list args;
1212 u64 bytenr;
1213 u64 len;
1214
1215 btrfs_item_key_to_cpu(eb, &key, slot);
1216 bytenr = key.objectid;
1217 if (key.type == BTRFS_METADATA_ITEM_KEY ||
1218 key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1219 key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1220 len = eb->fs_info->nodesize;
1221 else
1222 len = key.offset;
1223 va_start(args, fmt);
1224
1225 vaf.fmt = fmt;
1226 vaf.va = &args;
1227
1228 btrfs_crit(eb->fs_info,
1229 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1230 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1231 eb->start, slot, bytenr, len, &vaf);
1232 va_end(args);
1233 }
1234
check_extent_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1235 static int check_extent_item(struct extent_buffer *leaf,
1236 struct btrfs_key *key, int slot,
1237 struct btrfs_key *prev_key)
1238 {
1239 struct btrfs_fs_info *fs_info = leaf->fs_info;
1240 struct btrfs_extent_item *ei;
1241 bool is_tree_block = false;
1242 unsigned long ptr; /* Current pointer inside inline refs */
1243 unsigned long end; /* Extent item end */
1244 const u32 item_size = btrfs_item_size(leaf, slot);
1245 u64 flags;
1246 u64 generation;
1247 u64 total_refs; /* Total refs in btrfs_extent_item */
1248 u64 inline_refs = 0; /* found total inline refs */
1249
1250 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1251 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1252 generic_err(leaf, slot,
1253 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1254 return -EUCLEAN;
1255 }
1256 /* key->objectid is the bytenr for both key types */
1257 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1258 generic_err(leaf, slot,
1259 "invalid key objectid, have %llu expect to be aligned to %u",
1260 key->objectid, fs_info->sectorsize);
1261 return -EUCLEAN;
1262 }
1263
1264 /* key->offset is tree level for METADATA_ITEM_KEY */
1265 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1266 key->offset >= BTRFS_MAX_LEVEL)) {
1267 extent_err(leaf, slot,
1268 "invalid tree level, have %llu expect [0, %u]",
1269 key->offset, BTRFS_MAX_LEVEL - 1);
1270 return -EUCLEAN;
1271 }
1272
1273 /*
1274 * EXTENT/METADATA_ITEM consists of:
1275 * 1) One btrfs_extent_item
1276 * Records the total refs, type and generation of the extent.
1277 *
1278 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1279 * Records the first key and level of the tree block.
1280 *
1281 * 2) Zero or more btrfs_extent_inline_ref(s)
1282 * Each inline ref has one btrfs_extent_inline_ref shows:
1283 * 2.1) The ref type, one of the 4
1284 * TREE_BLOCK_REF Tree block only
1285 * SHARED_BLOCK_REF Tree block only
1286 * EXTENT_DATA_REF Data only
1287 * SHARED_DATA_REF Data only
1288 * 2.2) Ref type specific data
1289 * Either using btrfs_extent_inline_ref::offset, or specific
1290 * data structure.
1291 */
1292 if (unlikely(item_size < sizeof(*ei))) {
1293 extent_err(leaf, slot,
1294 "invalid item size, have %u expect [%zu, %u)",
1295 item_size, sizeof(*ei),
1296 BTRFS_LEAF_DATA_SIZE(fs_info));
1297 return -EUCLEAN;
1298 }
1299 end = item_size + btrfs_item_ptr_offset(leaf, slot);
1300
1301 /* Checks against extent_item */
1302 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1303 flags = btrfs_extent_flags(leaf, ei);
1304 total_refs = btrfs_extent_refs(leaf, ei);
1305 generation = btrfs_extent_generation(leaf, ei);
1306 if (unlikely(generation >
1307 btrfs_super_generation(fs_info->super_copy) + 1)) {
1308 extent_err(leaf, slot,
1309 "invalid generation, have %llu expect (0, %llu]",
1310 generation,
1311 btrfs_super_generation(fs_info->super_copy) + 1);
1312 return -EUCLEAN;
1313 }
1314 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1315 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1316 extent_err(leaf, slot,
1317 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1318 flags, BTRFS_EXTENT_FLAG_DATA |
1319 BTRFS_EXTENT_FLAG_TREE_BLOCK);
1320 return -EUCLEAN;
1321 }
1322 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1323 if (is_tree_block) {
1324 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1325 key->offset != fs_info->nodesize)) {
1326 extent_err(leaf, slot,
1327 "invalid extent length, have %llu expect %u",
1328 key->offset, fs_info->nodesize);
1329 return -EUCLEAN;
1330 }
1331 } else {
1332 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1333 extent_err(leaf, slot,
1334 "invalid key type, have %u expect %u for data backref",
1335 key->type, BTRFS_EXTENT_ITEM_KEY);
1336 return -EUCLEAN;
1337 }
1338 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1339 extent_err(leaf, slot,
1340 "invalid extent length, have %llu expect aligned to %u",
1341 key->offset, fs_info->sectorsize);
1342 return -EUCLEAN;
1343 }
1344 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1345 extent_err(leaf, slot,
1346 "invalid extent flag, data has full backref set");
1347 return -EUCLEAN;
1348 }
1349 }
1350 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1351
1352 /* Check the special case of btrfs_tree_block_info */
1353 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1354 struct btrfs_tree_block_info *info;
1355
1356 info = (struct btrfs_tree_block_info *)ptr;
1357 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1358 extent_err(leaf, slot,
1359 "invalid tree block info level, have %u expect [0, %u]",
1360 btrfs_tree_block_level(leaf, info),
1361 BTRFS_MAX_LEVEL - 1);
1362 return -EUCLEAN;
1363 }
1364 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1365 }
1366
1367 /* Check inline refs */
1368 while (ptr < end) {
1369 struct btrfs_extent_inline_ref *iref;
1370 struct btrfs_extent_data_ref *dref;
1371 struct btrfs_shared_data_ref *sref;
1372 u64 dref_offset;
1373 u64 inline_offset;
1374 u8 inline_type;
1375
1376 if (unlikely(ptr + sizeof(*iref) > end)) {
1377 extent_err(leaf, slot,
1378 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1379 ptr, sizeof(*iref), end);
1380 return -EUCLEAN;
1381 }
1382 iref = (struct btrfs_extent_inline_ref *)ptr;
1383 inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1384 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1385 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1386 extent_err(leaf, slot,
1387 "inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1388 ptr, inline_type, end);
1389 return -EUCLEAN;
1390 }
1391
1392 switch (inline_type) {
1393 /* inline_offset is subvolid of the owner, no need to check */
1394 case BTRFS_TREE_BLOCK_REF_KEY:
1395 inline_refs++;
1396 break;
1397 /* Contains parent bytenr */
1398 case BTRFS_SHARED_BLOCK_REF_KEY:
1399 if (unlikely(!IS_ALIGNED(inline_offset,
1400 fs_info->sectorsize))) {
1401 extent_err(leaf, slot,
1402 "invalid tree parent bytenr, have %llu expect aligned to %u",
1403 inline_offset, fs_info->sectorsize);
1404 return -EUCLEAN;
1405 }
1406 inline_refs++;
1407 break;
1408 /*
1409 * Contains owner subvolid, owner key objectid, adjusted offset.
1410 * The only obvious corruption can happen in that offset.
1411 */
1412 case BTRFS_EXTENT_DATA_REF_KEY:
1413 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1414 dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1415 if (unlikely(!IS_ALIGNED(dref_offset,
1416 fs_info->sectorsize))) {
1417 extent_err(leaf, slot,
1418 "invalid data ref offset, have %llu expect aligned to %u",
1419 dref_offset, fs_info->sectorsize);
1420 return -EUCLEAN;
1421 }
1422 inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1423 break;
1424 /* Contains parent bytenr and ref count */
1425 case BTRFS_SHARED_DATA_REF_KEY:
1426 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1427 if (unlikely(!IS_ALIGNED(inline_offset,
1428 fs_info->sectorsize))) {
1429 extent_err(leaf, slot,
1430 "invalid data parent bytenr, have %llu expect aligned to %u",
1431 inline_offset, fs_info->sectorsize);
1432 return -EUCLEAN;
1433 }
1434 inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1435 break;
1436 default:
1437 extent_err(leaf, slot, "unknown inline ref type: %u",
1438 inline_type);
1439 return -EUCLEAN;
1440 }
1441 ptr += btrfs_extent_inline_ref_size(inline_type);
1442 }
1443 /* No padding is allowed */
1444 if (unlikely(ptr != end)) {
1445 extent_err(leaf, slot,
1446 "invalid extent item size, padding bytes found");
1447 return -EUCLEAN;
1448 }
1449
1450 /* Finally, check the inline refs against total refs */
1451 if (unlikely(inline_refs > total_refs)) {
1452 extent_err(leaf, slot,
1453 "invalid extent refs, have %llu expect >= inline %llu",
1454 total_refs, inline_refs);
1455 return -EUCLEAN;
1456 }
1457
1458 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1459 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1460 u64 prev_end = prev_key->objectid;
1461
1462 if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1463 prev_end += fs_info->nodesize;
1464 else
1465 prev_end += prev_key->offset;
1466
1467 if (unlikely(prev_end > key->objectid)) {
1468 extent_err(leaf, slot,
1469 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1470 prev_key->objectid, prev_key->type,
1471 prev_key->offset, key->objectid, key->type,
1472 key->offset);
1473 return -EUCLEAN;
1474 }
1475 }
1476
1477 return 0;
1478 }
1479
check_simple_keyed_refs(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1480 static int check_simple_keyed_refs(struct extent_buffer *leaf,
1481 struct btrfs_key *key, int slot)
1482 {
1483 u32 expect_item_size = 0;
1484
1485 if (key->type == BTRFS_SHARED_DATA_REF_KEY)
1486 expect_item_size = sizeof(struct btrfs_shared_data_ref);
1487
1488 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1489 generic_err(leaf, slot,
1490 "invalid item size, have %u expect %u for key type %u",
1491 btrfs_item_size(leaf, slot),
1492 expect_item_size, key->type);
1493 return -EUCLEAN;
1494 }
1495 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1496 generic_err(leaf, slot,
1497 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1498 key->objectid, leaf->fs_info->sectorsize);
1499 return -EUCLEAN;
1500 }
1501 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1502 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1503 extent_err(leaf, slot,
1504 "invalid tree parent bytenr, have %llu expect aligned to %u",
1505 key->offset, leaf->fs_info->sectorsize);
1506 return -EUCLEAN;
1507 }
1508 return 0;
1509 }
1510
check_extent_data_ref(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1511 static int check_extent_data_ref(struct extent_buffer *leaf,
1512 struct btrfs_key *key, int slot)
1513 {
1514 struct btrfs_extent_data_ref *dref;
1515 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1516 const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1517
1518 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1519 generic_err(leaf, slot,
1520 "invalid item size, have %u expect aligned to %zu for key type %u",
1521 btrfs_item_size(leaf, slot),
1522 sizeof(*dref), key->type);
1523 return -EUCLEAN;
1524 }
1525 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1526 generic_err(leaf, slot,
1527 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1528 key->objectid, leaf->fs_info->sectorsize);
1529 return -EUCLEAN;
1530 }
1531 for (; ptr < end; ptr += sizeof(*dref)) {
1532 u64 offset;
1533
1534 /*
1535 * We cannot check the extent_data_ref hash due to possible
1536 * overflow from the leaf due to hash collisions.
1537 */
1538 dref = (struct btrfs_extent_data_ref *)ptr;
1539 offset = btrfs_extent_data_ref_offset(leaf, dref);
1540 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1541 extent_err(leaf, slot,
1542 "invalid extent data backref offset, have %llu expect aligned to %u",
1543 offset, leaf->fs_info->sectorsize);
1544 return -EUCLEAN;
1545 }
1546 }
1547 return 0;
1548 }
1549
1550 #define inode_ref_err(eb, slot, fmt, args...) \
1551 inode_item_err(eb, slot, fmt, ##args)
check_inode_ref(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)1552 static int check_inode_ref(struct extent_buffer *leaf,
1553 struct btrfs_key *key, struct btrfs_key *prev_key,
1554 int slot)
1555 {
1556 struct btrfs_inode_ref *iref;
1557 unsigned long ptr;
1558 unsigned long end;
1559
1560 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1561 return -EUCLEAN;
1562 /* namelen can't be 0, so item_size == sizeof() is also invalid */
1563 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1564 inode_ref_err(leaf, slot,
1565 "invalid item size, have %u expect (%zu, %u)",
1566 btrfs_item_size(leaf, slot),
1567 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1568 return -EUCLEAN;
1569 }
1570
1571 ptr = btrfs_item_ptr_offset(leaf, slot);
1572 end = ptr + btrfs_item_size(leaf, slot);
1573 while (ptr < end) {
1574 u16 namelen;
1575
1576 if (unlikely(ptr + sizeof(iref) > end)) {
1577 inode_ref_err(leaf, slot,
1578 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1579 ptr, end, sizeof(iref));
1580 return -EUCLEAN;
1581 }
1582
1583 iref = (struct btrfs_inode_ref *)ptr;
1584 namelen = btrfs_inode_ref_name_len(leaf, iref);
1585 if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1586 inode_ref_err(leaf, slot,
1587 "inode ref overflow, ptr %lu end %lu namelen %u",
1588 ptr, end, namelen);
1589 return -EUCLEAN;
1590 }
1591
1592 /*
1593 * NOTE: In theory we should record all found index numbers
1594 * to find any duplicated indexes, but that will be too time
1595 * consuming for inodes with too many hard links.
1596 */
1597 ptr += sizeof(*iref) + namelen;
1598 }
1599 return 0;
1600 }
1601
1602 /*
1603 * Common point to switch the item-specific validation.
1604 */
check_leaf_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1605 static int check_leaf_item(struct extent_buffer *leaf,
1606 struct btrfs_key *key, int slot,
1607 struct btrfs_key *prev_key)
1608 {
1609 int ret = 0;
1610 struct btrfs_chunk *chunk;
1611
1612 switch (key->type) {
1613 case BTRFS_EXTENT_DATA_KEY:
1614 ret = check_extent_data_item(leaf, key, slot, prev_key);
1615 break;
1616 case BTRFS_EXTENT_CSUM_KEY:
1617 ret = check_csum_item(leaf, key, slot, prev_key);
1618 break;
1619 case BTRFS_DIR_ITEM_KEY:
1620 case BTRFS_DIR_INDEX_KEY:
1621 case BTRFS_XATTR_ITEM_KEY:
1622 ret = check_dir_item(leaf, key, prev_key, slot);
1623 break;
1624 case BTRFS_INODE_REF_KEY:
1625 ret = check_inode_ref(leaf, key, prev_key, slot);
1626 break;
1627 case BTRFS_BLOCK_GROUP_ITEM_KEY:
1628 ret = check_block_group_item(leaf, key, slot);
1629 break;
1630 case BTRFS_CHUNK_ITEM_KEY:
1631 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1632 ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1633 break;
1634 case BTRFS_DEV_ITEM_KEY:
1635 ret = check_dev_item(leaf, key, slot);
1636 break;
1637 case BTRFS_INODE_ITEM_KEY:
1638 ret = check_inode_item(leaf, key, slot);
1639 break;
1640 case BTRFS_ROOT_ITEM_KEY:
1641 ret = check_root_item(leaf, key, slot);
1642 break;
1643 case BTRFS_EXTENT_ITEM_KEY:
1644 case BTRFS_METADATA_ITEM_KEY:
1645 ret = check_extent_item(leaf, key, slot, prev_key);
1646 break;
1647 case BTRFS_TREE_BLOCK_REF_KEY:
1648 case BTRFS_SHARED_DATA_REF_KEY:
1649 case BTRFS_SHARED_BLOCK_REF_KEY:
1650 ret = check_simple_keyed_refs(leaf, key, slot);
1651 break;
1652 case BTRFS_EXTENT_DATA_REF_KEY:
1653 ret = check_extent_data_ref(leaf, key, slot);
1654 break;
1655 }
1656 return ret;
1657 }
1658
check_leaf(struct extent_buffer * leaf,bool check_item_data)1659 static int check_leaf(struct extent_buffer *leaf, bool check_item_data)
1660 {
1661 struct btrfs_fs_info *fs_info = leaf->fs_info;
1662 /* No valid key type is 0, so all key should be larger than this key */
1663 struct btrfs_key prev_key = {0, 0, 0};
1664 struct btrfs_key key;
1665 u32 nritems = btrfs_header_nritems(leaf);
1666 int slot;
1667
1668 if (unlikely(btrfs_header_level(leaf) != 0)) {
1669 generic_err(leaf, 0,
1670 "invalid level for leaf, have %d expect 0",
1671 btrfs_header_level(leaf));
1672 return -EUCLEAN;
1673 }
1674
1675 /*
1676 * Extent buffers from a relocation tree have a owner field that
1677 * corresponds to the subvolume tree they are based on. So just from an
1678 * extent buffer alone we can not find out what is the id of the
1679 * corresponding subvolume tree, so we can not figure out if the extent
1680 * buffer corresponds to the root of the relocation tree or not. So
1681 * skip this check for relocation trees.
1682 */
1683 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1684 u64 owner = btrfs_header_owner(leaf);
1685
1686 /* These trees must never be empty */
1687 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1688 owner == BTRFS_CHUNK_TREE_OBJECTID ||
1689 owner == BTRFS_DEV_TREE_OBJECTID ||
1690 owner == BTRFS_FS_TREE_OBJECTID ||
1691 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1692 generic_err(leaf, 0,
1693 "invalid root, root %llu must never be empty",
1694 owner);
1695 return -EUCLEAN;
1696 }
1697
1698 /* Unknown tree */
1699 if (unlikely(owner == 0)) {
1700 generic_err(leaf, 0,
1701 "invalid owner, root 0 is not defined");
1702 return -EUCLEAN;
1703 }
1704
1705 /* EXTENT_TREE_V2 can have empty extent trees. */
1706 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1707 return 0;
1708
1709 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1710 generic_err(leaf, 0,
1711 "invalid root, root %llu must never be empty",
1712 owner);
1713 return -EUCLEAN;
1714 }
1715
1716 return 0;
1717 }
1718
1719 if (unlikely(nritems == 0))
1720 return 0;
1721
1722 /*
1723 * Check the following things to make sure this is a good leaf, and
1724 * leaf users won't need to bother with similar sanity checks:
1725 *
1726 * 1) key ordering
1727 * 2) item offset and size
1728 * No overlap, no hole, all inside the leaf.
1729 * 3) item content
1730 * If possible, do comprehensive sanity check.
1731 * NOTE: All checks must only rely on the item data itself.
1732 */
1733 for (slot = 0; slot < nritems; slot++) {
1734 u32 item_end_expected;
1735 u64 item_data_end;
1736 int ret;
1737
1738 btrfs_item_key_to_cpu(leaf, &key, slot);
1739
1740 /* Make sure the keys are in the right order */
1741 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
1742 generic_err(leaf, slot,
1743 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
1744 prev_key.objectid, prev_key.type,
1745 prev_key.offset, key.objectid, key.type,
1746 key.offset);
1747 return -EUCLEAN;
1748 }
1749
1750 item_data_end = (u64)btrfs_item_offset(leaf, slot) +
1751 btrfs_item_size(leaf, slot);
1752 /*
1753 * Make sure the offset and ends are right, remember that the
1754 * item data starts at the end of the leaf and grows towards the
1755 * front.
1756 */
1757 if (slot == 0)
1758 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
1759 else
1760 item_end_expected = btrfs_item_offset(leaf,
1761 slot - 1);
1762 if (unlikely(item_data_end != item_end_expected)) {
1763 generic_err(leaf, slot,
1764 "unexpected item end, have %llu expect %u",
1765 item_data_end, item_end_expected);
1766 return -EUCLEAN;
1767 }
1768
1769 /*
1770 * Check to make sure that we don't point outside of the leaf,
1771 * just in case all the items are consistent to each other, but
1772 * all point outside of the leaf.
1773 */
1774 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
1775 generic_err(leaf, slot,
1776 "slot end outside of leaf, have %llu expect range [0, %u]",
1777 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
1778 return -EUCLEAN;
1779 }
1780
1781 /* Also check if the item pointer overlaps with btrfs item. */
1782 if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
1783 btrfs_item_nr_offset(slot) + sizeof(struct btrfs_item))) {
1784 generic_err(leaf, slot,
1785 "slot overlaps with its data, item end %lu data start %lu",
1786 btrfs_item_nr_offset(slot) +
1787 sizeof(struct btrfs_item),
1788 btrfs_item_ptr_offset(leaf, slot));
1789 return -EUCLEAN;
1790 }
1791
1792 if (check_item_data) {
1793 /*
1794 * Check if the item size and content meet other
1795 * criteria
1796 */
1797 ret = check_leaf_item(leaf, &key, slot, &prev_key);
1798 if (unlikely(ret < 0))
1799 return ret;
1800 }
1801
1802 prev_key.objectid = key.objectid;
1803 prev_key.type = key.type;
1804 prev_key.offset = key.offset;
1805 }
1806
1807 return 0;
1808 }
1809
btrfs_check_leaf_full(struct extent_buffer * leaf)1810 int btrfs_check_leaf_full(struct extent_buffer *leaf)
1811 {
1812 return check_leaf(leaf, true);
1813 }
1814 ALLOW_ERROR_INJECTION(btrfs_check_leaf_full, ERRNO);
1815
btrfs_check_leaf_relaxed(struct extent_buffer * leaf)1816 int btrfs_check_leaf_relaxed(struct extent_buffer *leaf)
1817 {
1818 return check_leaf(leaf, false);
1819 }
1820
btrfs_check_node(struct extent_buffer * node)1821 int btrfs_check_node(struct extent_buffer *node)
1822 {
1823 struct btrfs_fs_info *fs_info = node->fs_info;
1824 unsigned long nr = btrfs_header_nritems(node);
1825 struct btrfs_key key, next_key;
1826 int slot;
1827 int level = btrfs_header_level(node);
1828 u64 bytenr;
1829 int ret = 0;
1830
1831 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
1832 generic_err(node, 0,
1833 "invalid level for node, have %d expect [1, %d]",
1834 level, BTRFS_MAX_LEVEL - 1);
1835 return -EUCLEAN;
1836 }
1837 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
1838 btrfs_crit(fs_info,
1839 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
1840 btrfs_header_owner(node), node->start,
1841 nr == 0 ? "small" : "large", nr,
1842 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1843 return -EUCLEAN;
1844 }
1845
1846 for (slot = 0; slot < nr - 1; slot++) {
1847 bytenr = btrfs_node_blockptr(node, slot);
1848 btrfs_node_key_to_cpu(node, &key, slot);
1849 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
1850
1851 if (unlikely(!bytenr)) {
1852 generic_err(node, slot,
1853 "invalid NULL node pointer");
1854 ret = -EUCLEAN;
1855 goto out;
1856 }
1857 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
1858 generic_err(node, slot,
1859 "unaligned pointer, have %llu should be aligned to %u",
1860 bytenr, fs_info->sectorsize);
1861 ret = -EUCLEAN;
1862 goto out;
1863 }
1864
1865 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
1866 generic_err(node, slot,
1867 "bad key order, current (%llu %u %llu) next (%llu %u %llu)",
1868 key.objectid, key.type, key.offset,
1869 next_key.objectid, next_key.type,
1870 next_key.offset);
1871 ret = -EUCLEAN;
1872 goto out;
1873 }
1874 }
1875 out:
1876 return ret;
1877 }
1878 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
1879
btrfs_check_eb_owner(const struct extent_buffer * eb,u64 root_owner)1880 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
1881 {
1882 const bool is_subvol = is_fstree(root_owner);
1883 const u64 eb_owner = btrfs_header_owner(eb);
1884
1885 /*
1886 * Skip dummy fs, as selftests don't create unique ebs for each dummy
1887 * root.
1888 */
1889 if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state))
1890 return 0;
1891 /*
1892 * There are several call sites (backref walking, qgroup, and data
1893 * reloc) passing 0 as @root_owner, as they are not holding the
1894 * tree root. In that case, we can not do a reliable ownership check,
1895 * so just exit.
1896 */
1897 if (root_owner == 0)
1898 return 0;
1899 /*
1900 * These trees use key.offset as their owner, our callers don't have
1901 * the extra capacity to pass key.offset here. So we just skip them.
1902 */
1903 if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
1904 root_owner == BTRFS_TREE_RELOC_OBJECTID)
1905 return 0;
1906
1907 if (!is_subvol) {
1908 /* For non-subvolume trees, the eb owner should match root owner */
1909 if (unlikely(root_owner != eb_owner)) {
1910 btrfs_crit(eb->fs_info,
1911 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
1912 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1913 root_owner, btrfs_header_bytenr(eb), eb_owner,
1914 root_owner);
1915 return -EUCLEAN;
1916 }
1917 return 0;
1918 }
1919
1920 /*
1921 * For subvolume trees, owners can mismatch, but they should all belong
1922 * to subvolume trees.
1923 */
1924 if (unlikely(is_subvol != is_fstree(eb_owner))) {
1925 btrfs_crit(eb->fs_info,
1926 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
1927 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1928 root_owner, btrfs_header_bytenr(eb), eb_owner,
1929 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
1930 return -EUCLEAN;
1931 }
1932 return 0;
1933 }
1934