1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) Qu Wenruo 2017.  All rights reserved.
4  */
5 
6 /*
7  * The module is used to catch unexpected/corrupted tree block data.
8  * Such behavior can be caused either by a fuzzed image or bugs.
9  *
10  * The objective is to do leaf/node validation checks when tree block is read
11  * from disk, and check *every* possible member, so other code won't
12  * need to checking them again.
13  *
14  * Due to the potential and unwanted damage, every checker needs to be
15  * carefully reviewed otherwise so it does not prevent mount of valid images.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/stddef.h>
20 #include <linux/error-injection.h>
21 #include "messages.h"
22 #include "ctree.h"
23 #include "tree-checker.h"
24 #include "disk-io.h"
25 #include "compression.h"
26 #include "volumes.h"
27 #include "misc.h"
28 #include "fs.h"
29 #include "accessors.h"
30 #include "file-item.h"
31 #include "inode-item.h"
32 
33 /*
34  * Error message should follow the following format:
35  * corrupt <type>: <identifier>, <reason>[, <bad_value>]
36  *
37  * @type:	leaf or node
38  * @identifier:	the necessary info to locate the leaf/node.
39  * 		It's recommended to decode key.objecitd/offset if it's
40  * 		meaningful.
41  * @reason:	describe the error
42  * @bad_value:	optional, it's recommended to output bad value and its
43  *		expected value (range).
44  *
45  * Since comma is used to separate the components, only space is allowed
46  * inside each component.
47  */
48 
49 /*
50  * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
51  * Allows callers to customize the output.
52  */
53 __printf(3, 4)
54 __cold
generic_err(const struct extent_buffer * eb,int slot,const char * fmt,...)55 static void generic_err(const struct extent_buffer *eb, int slot,
56 			const char *fmt, ...)
57 {
58 	const struct btrfs_fs_info *fs_info = eb->fs_info;
59 	struct va_format vaf;
60 	va_list args;
61 
62 	va_start(args, fmt);
63 
64 	vaf.fmt = fmt;
65 	vaf.va = &args;
66 
67 	btrfs_crit(fs_info,
68 		"corrupt %s: root=%llu block=%llu slot=%d, %pV",
69 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
70 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
71 	va_end(args);
72 }
73 
74 /*
75  * Customized reporter for extent data item, since its key objectid and
76  * offset has its own meaning.
77  */
78 __printf(3, 4)
79 __cold
file_extent_err(const struct extent_buffer * eb,int slot,const char * fmt,...)80 static void file_extent_err(const struct extent_buffer *eb, int slot,
81 			    const char *fmt, ...)
82 {
83 	const struct btrfs_fs_info *fs_info = eb->fs_info;
84 	struct btrfs_key key;
85 	struct va_format vaf;
86 	va_list args;
87 
88 	btrfs_item_key_to_cpu(eb, &key, slot);
89 	va_start(args, fmt);
90 
91 	vaf.fmt = fmt;
92 	vaf.va = &args;
93 
94 	btrfs_crit(fs_info,
95 	"corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
96 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
97 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
98 		key.objectid, key.offset, &vaf);
99 	va_end(args);
100 }
101 
102 /*
103  * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
104  * Else return 1
105  */
106 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment)		      \
107 ({									      \
108 	if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)),      \
109 				 (alignment))))				      \
110 		file_extent_err((leaf), (slot),				      \
111 	"invalid %s for file extent, have %llu, should be aligned to %u",     \
112 			(#name), btrfs_file_extent_##name((leaf), (fi)),      \
113 			(alignment));					      \
114 	(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment)));   \
115 })
116 
file_extent_end(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_file_extent_item * extent)117 static u64 file_extent_end(struct extent_buffer *leaf,
118 			   struct btrfs_key *key,
119 			   struct btrfs_file_extent_item *extent)
120 {
121 	u64 end;
122 	u64 len;
123 
124 	if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
125 		len = btrfs_file_extent_ram_bytes(leaf, extent);
126 		end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
127 	} else {
128 		len = btrfs_file_extent_num_bytes(leaf, extent);
129 		end = key->offset + len;
130 	}
131 	return end;
132 }
133 
134 /*
135  * Customized report for dir_item, the only new important information is
136  * key->objectid, which represents inode number
137  */
138 __printf(3, 4)
139 __cold
dir_item_err(const struct extent_buffer * eb,int slot,const char * fmt,...)140 static void dir_item_err(const struct extent_buffer *eb, int slot,
141 			 const char *fmt, ...)
142 {
143 	const struct btrfs_fs_info *fs_info = eb->fs_info;
144 	struct btrfs_key key;
145 	struct va_format vaf;
146 	va_list args;
147 
148 	btrfs_item_key_to_cpu(eb, &key, slot);
149 	va_start(args, fmt);
150 
151 	vaf.fmt = fmt;
152 	vaf.va = &args;
153 
154 	btrfs_crit(fs_info,
155 		"corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
156 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
157 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
158 		key.objectid, &vaf);
159 	va_end(args);
160 }
161 
162 /*
163  * This functions checks prev_key->objectid, to ensure current key and prev_key
164  * share the same objectid as inode number.
165  *
166  * This is to detect missing INODE_ITEM in subvolume trees.
167  *
168  * Return true if everything is OK or we don't need to check.
169  * Return false if anything is wrong.
170  */
check_prev_ino(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)171 static bool check_prev_ino(struct extent_buffer *leaf,
172 			   struct btrfs_key *key, int slot,
173 			   struct btrfs_key *prev_key)
174 {
175 	/* No prev key, skip check */
176 	if (slot == 0)
177 		return true;
178 
179 	/* Only these key->types needs to be checked */
180 	ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
181 	       key->type == BTRFS_INODE_REF_KEY ||
182 	       key->type == BTRFS_DIR_INDEX_KEY ||
183 	       key->type == BTRFS_DIR_ITEM_KEY ||
184 	       key->type == BTRFS_EXTENT_DATA_KEY);
185 
186 	/*
187 	 * Only subvolume trees along with their reloc trees need this check.
188 	 * Things like log tree doesn't follow this ino requirement.
189 	 */
190 	if (!is_fstree(btrfs_header_owner(leaf)))
191 		return true;
192 
193 	if (key->objectid == prev_key->objectid)
194 		return true;
195 
196 	/* Error found */
197 	dir_item_err(leaf, slot,
198 		"invalid previous key objectid, have %llu expect %llu",
199 		prev_key->objectid, key->objectid);
200 	return false;
201 }
check_extent_data_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)202 static int check_extent_data_item(struct extent_buffer *leaf,
203 				  struct btrfs_key *key, int slot,
204 				  struct btrfs_key *prev_key)
205 {
206 	struct btrfs_fs_info *fs_info = leaf->fs_info;
207 	struct btrfs_file_extent_item *fi;
208 	u32 sectorsize = fs_info->sectorsize;
209 	u32 item_size = btrfs_item_size(leaf, slot);
210 	u64 extent_end;
211 
212 	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
213 		file_extent_err(leaf, slot,
214 "unaligned file_offset for file extent, have %llu should be aligned to %u",
215 			key->offset, sectorsize);
216 		return -EUCLEAN;
217 	}
218 
219 	/*
220 	 * Previous key must have the same key->objectid (ino).
221 	 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
222 	 * But if objectids mismatch, it means we have a missing
223 	 * INODE_ITEM.
224 	 */
225 	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
226 		return -EUCLEAN;
227 
228 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
229 
230 	/*
231 	 * Make sure the item contains at least inline header, so the file
232 	 * extent type is not some garbage.
233 	 */
234 	if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
235 		file_extent_err(leaf, slot,
236 				"invalid item size, have %u expect [%zu, %u)",
237 				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
238 				SZ_4K);
239 		return -EUCLEAN;
240 	}
241 	if (unlikely(btrfs_file_extent_type(leaf, fi) >=
242 		     BTRFS_NR_FILE_EXTENT_TYPES)) {
243 		file_extent_err(leaf, slot,
244 		"invalid type for file extent, have %u expect range [0, %u]",
245 			btrfs_file_extent_type(leaf, fi),
246 			BTRFS_NR_FILE_EXTENT_TYPES - 1);
247 		return -EUCLEAN;
248 	}
249 
250 	/*
251 	 * Support for new compression/encryption must introduce incompat flag,
252 	 * and must be caught in open_ctree().
253 	 */
254 	if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
255 		     BTRFS_NR_COMPRESS_TYPES)) {
256 		file_extent_err(leaf, slot,
257 	"invalid compression for file extent, have %u expect range [0, %u]",
258 			btrfs_file_extent_compression(leaf, fi),
259 			BTRFS_NR_COMPRESS_TYPES - 1);
260 		return -EUCLEAN;
261 	}
262 	if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
263 		file_extent_err(leaf, slot,
264 			"invalid encryption for file extent, have %u expect 0",
265 			btrfs_file_extent_encryption(leaf, fi));
266 		return -EUCLEAN;
267 	}
268 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
269 		/* Inline extent must have 0 as key offset */
270 		if (unlikely(key->offset)) {
271 			file_extent_err(leaf, slot,
272 		"invalid file_offset for inline file extent, have %llu expect 0",
273 				key->offset);
274 			return -EUCLEAN;
275 		}
276 
277 		/* Compressed inline extent has no on-disk size, skip it */
278 		if (btrfs_file_extent_compression(leaf, fi) !=
279 		    BTRFS_COMPRESS_NONE)
280 			return 0;
281 
282 		/* Uncompressed inline extent size must match item size */
283 		if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
284 					  btrfs_file_extent_ram_bytes(leaf, fi))) {
285 			file_extent_err(leaf, slot,
286 	"invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
287 				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
288 				btrfs_file_extent_ram_bytes(leaf, fi));
289 			return -EUCLEAN;
290 		}
291 		return 0;
292 	}
293 
294 	/* Regular or preallocated extent has fixed item size */
295 	if (unlikely(item_size != sizeof(*fi))) {
296 		file_extent_err(leaf, slot,
297 	"invalid item size for reg/prealloc file extent, have %u expect %zu",
298 			item_size, sizeof(*fi));
299 		return -EUCLEAN;
300 	}
301 	if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
302 		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
303 		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
304 		     CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
305 		     CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
306 		return -EUCLEAN;
307 
308 	/* Catch extent end overflow */
309 	if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
310 					key->offset, &extent_end))) {
311 		file_extent_err(leaf, slot,
312 	"extent end overflow, have file offset %llu extent num bytes %llu",
313 				key->offset,
314 				btrfs_file_extent_num_bytes(leaf, fi));
315 		return -EUCLEAN;
316 	}
317 
318 	/*
319 	 * Check that no two consecutive file extent items, in the same leaf,
320 	 * present ranges that overlap each other.
321 	 */
322 	if (slot > 0 &&
323 	    prev_key->objectid == key->objectid &&
324 	    prev_key->type == BTRFS_EXTENT_DATA_KEY) {
325 		struct btrfs_file_extent_item *prev_fi;
326 		u64 prev_end;
327 
328 		prev_fi = btrfs_item_ptr(leaf, slot - 1,
329 					 struct btrfs_file_extent_item);
330 		prev_end = file_extent_end(leaf, prev_key, prev_fi);
331 		if (unlikely(prev_end > key->offset)) {
332 			file_extent_err(leaf, slot - 1,
333 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
334 					prev_end, key->offset);
335 			return -EUCLEAN;
336 		}
337 	}
338 
339 	return 0;
340 }
341 
check_csum_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)342 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
343 			   int slot, struct btrfs_key *prev_key)
344 {
345 	struct btrfs_fs_info *fs_info = leaf->fs_info;
346 	u32 sectorsize = fs_info->sectorsize;
347 	const u32 csumsize = fs_info->csum_size;
348 
349 	if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
350 		generic_err(leaf, slot,
351 		"invalid key objectid for csum item, have %llu expect %llu",
352 			key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
353 		return -EUCLEAN;
354 	}
355 	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
356 		generic_err(leaf, slot,
357 	"unaligned key offset for csum item, have %llu should be aligned to %u",
358 			key->offset, sectorsize);
359 		return -EUCLEAN;
360 	}
361 	if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
362 		generic_err(leaf, slot,
363 	"unaligned item size for csum item, have %u should be aligned to %u",
364 			btrfs_item_size(leaf, slot), csumsize);
365 		return -EUCLEAN;
366 	}
367 	if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
368 		u64 prev_csum_end;
369 		u32 prev_item_size;
370 
371 		prev_item_size = btrfs_item_size(leaf, slot - 1);
372 		prev_csum_end = (prev_item_size / csumsize) * sectorsize;
373 		prev_csum_end += prev_key->offset;
374 		if (unlikely(prev_csum_end > key->offset)) {
375 			generic_err(leaf, slot - 1,
376 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
377 				    prev_csum_end, key->offset);
378 			return -EUCLEAN;
379 		}
380 	}
381 	return 0;
382 }
383 
384 /* Inode item error output has the same format as dir_item_err() */
385 #define inode_item_err(eb, slot, fmt, ...)			\
386 	dir_item_err(eb, slot, fmt, __VA_ARGS__)
387 
check_inode_key(struct extent_buffer * leaf,struct btrfs_key * key,int slot)388 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
389 			   int slot)
390 {
391 	struct btrfs_key item_key;
392 	bool is_inode_item;
393 
394 	btrfs_item_key_to_cpu(leaf, &item_key, slot);
395 	is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
396 
397 	/* For XATTR_ITEM, location key should be all 0 */
398 	if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
399 		if (unlikely(key->objectid != 0 || key->type != 0 ||
400 			     key->offset != 0))
401 			return -EUCLEAN;
402 		return 0;
403 	}
404 
405 	if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
406 		      key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
407 		     key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
408 		     key->objectid != BTRFS_FREE_INO_OBJECTID)) {
409 		if (is_inode_item) {
410 			generic_err(leaf, slot,
411 	"invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
412 				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
413 				BTRFS_FIRST_FREE_OBJECTID,
414 				BTRFS_LAST_FREE_OBJECTID,
415 				BTRFS_FREE_INO_OBJECTID);
416 		} else {
417 			dir_item_err(leaf, slot,
418 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
419 				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
420 				BTRFS_FIRST_FREE_OBJECTID,
421 				BTRFS_LAST_FREE_OBJECTID,
422 				BTRFS_FREE_INO_OBJECTID);
423 		}
424 		return -EUCLEAN;
425 	}
426 	if (unlikely(key->offset != 0)) {
427 		if (is_inode_item)
428 			inode_item_err(leaf, slot,
429 				       "invalid key offset: has %llu expect 0",
430 				       key->offset);
431 		else
432 			dir_item_err(leaf, slot,
433 				"invalid location key offset:has %llu expect 0",
434 				key->offset);
435 		return -EUCLEAN;
436 	}
437 	return 0;
438 }
439 
check_root_key(struct extent_buffer * leaf,struct btrfs_key * key,int slot)440 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
441 			  int slot)
442 {
443 	struct btrfs_key item_key;
444 	bool is_root_item;
445 
446 	btrfs_item_key_to_cpu(leaf, &item_key, slot);
447 	is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
448 
449 	/*
450 	 * Bad rootid for reloc trees.
451 	 *
452 	 * Reloc trees are only for subvolume trees, other trees only need
453 	 * to be COWed to be relocated.
454 	 */
455 	if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
456 		     !is_fstree(key->offset))) {
457 		generic_err(leaf, slot,
458 		"invalid reloc tree for root %lld, root id is not a subvolume tree",
459 			    key->offset);
460 		return -EUCLEAN;
461 	}
462 
463 	/* No such tree id */
464 	if (unlikely(key->objectid == 0)) {
465 		if (is_root_item)
466 			generic_err(leaf, slot, "invalid root id 0");
467 		else
468 			dir_item_err(leaf, slot,
469 				     "invalid location key root id 0");
470 		return -EUCLEAN;
471 	}
472 
473 	/* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
474 	if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
475 		dir_item_err(leaf, slot,
476 		"invalid location key objectid, have %llu expect [%llu, %llu]",
477 				key->objectid, BTRFS_FIRST_FREE_OBJECTID,
478 				BTRFS_LAST_FREE_OBJECTID);
479 		return -EUCLEAN;
480 	}
481 
482 	/*
483 	 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
484 	 * @offset transid.
485 	 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
486 	 *
487 	 * So here we only check offset for reloc tree whose key->offset must
488 	 * be a valid tree.
489 	 */
490 	if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
491 		     key->offset == 0)) {
492 		generic_err(leaf, slot, "invalid root id 0 for reloc tree");
493 		return -EUCLEAN;
494 	}
495 	return 0;
496 }
497 
check_dir_item(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)498 static int check_dir_item(struct extent_buffer *leaf,
499 			  struct btrfs_key *key, struct btrfs_key *prev_key,
500 			  int slot)
501 {
502 	struct btrfs_fs_info *fs_info = leaf->fs_info;
503 	struct btrfs_dir_item *di;
504 	u32 item_size = btrfs_item_size(leaf, slot);
505 	u32 cur = 0;
506 
507 	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
508 		return -EUCLEAN;
509 
510 	di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
511 	while (cur < item_size) {
512 		struct btrfs_key location_key;
513 		u32 name_len;
514 		u32 data_len;
515 		u32 max_name_len;
516 		u32 total_size;
517 		u32 name_hash;
518 		u8 dir_type;
519 		int ret;
520 
521 		/* header itself should not cross item boundary */
522 		if (unlikely(cur + sizeof(*di) > item_size)) {
523 			dir_item_err(leaf, slot,
524 		"dir item header crosses item boundary, have %zu boundary %u",
525 				cur + sizeof(*di), item_size);
526 			return -EUCLEAN;
527 		}
528 
529 		/* Location key check */
530 		btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
531 		if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
532 			ret = check_root_key(leaf, &location_key, slot);
533 			if (unlikely(ret < 0))
534 				return ret;
535 		} else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
536 			   location_key.type == 0) {
537 			ret = check_inode_key(leaf, &location_key, slot);
538 			if (unlikely(ret < 0))
539 				return ret;
540 		} else {
541 			dir_item_err(leaf, slot,
542 			"invalid location key type, have %u, expect %u or %u",
543 				     location_key.type, BTRFS_ROOT_ITEM_KEY,
544 				     BTRFS_INODE_ITEM_KEY);
545 			return -EUCLEAN;
546 		}
547 
548 		/* dir type check */
549 		dir_type = btrfs_dir_ftype(leaf, di);
550 		if (unlikely(dir_type >= BTRFS_FT_MAX)) {
551 			dir_item_err(leaf, slot,
552 			"invalid dir item type, have %u expect [0, %u)",
553 				dir_type, BTRFS_FT_MAX);
554 			return -EUCLEAN;
555 		}
556 
557 		if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
558 			     dir_type != BTRFS_FT_XATTR)) {
559 			dir_item_err(leaf, slot,
560 		"invalid dir item type for XATTR key, have %u expect %u",
561 				dir_type, BTRFS_FT_XATTR);
562 			return -EUCLEAN;
563 		}
564 		if (unlikely(dir_type == BTRFS_FT_XATTR &&
565 			     key->type != BTRFS_XATTR_ITEM_KEY)) {
566 			dir_item_err(leaf, slot,
567 			"xattr dir type found for non-XATTR key");
568 			return -EUCLEAN;
569 		}
570 		if (dir_type == BTRFS_FT_XATTR)
571 			max_name_len = XATTR_NAME_MAX;
572 		else
573 			max_name_len = BTRFS_NAME_LEN;
574 
575 		/* Name/data length check */
576 		name_len = btrfs_dir_name_len(leaf, di);
577 		data_len = btrfs_dir_data_len(leaf, di);
578 		if (unlikely(name_len > max_name_len)) {
579 			dir_item_err(leaf, slot,
580 			"dir item name len too long, have %u max %u",
581 				name_len, max_name_len);
582 			return -EUCLEAN;
583 		}
584 		if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
585 			dir_item_err(leaf, slot,
586 			"dir item name and data len too long, have %u max %u",
587 				name_len + data_len,
588 				BTRFS_MAX_XATTR_SIZE(fs_info));
589 			return -EUCLEAN;
590 		}
591 
592 		if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
593 			dir_item_err(leaf, slot,
594 			"dir item with invalid data len, have %u expect 0",
595 				data_len);
596 			return -EUCLEAN;
597 		}
598 
599 		total_size = sizeof(*di) + name_len + data_len;
600 
601 		/* header and name/data should not cross item boundary */
602 		if (unlikely(cur + total_size > item_size)) {
603 			dir_item_err(leaf, slot,
604 		"dir item data crosses item boundary, have %u boundary %u",
605 				cur + total_size, item_size);
606 			return -EUCLEAN;
607 		}
608 
609 		/*
610 		 * Special check for XATTR/DIR_ITEM, as key->offset is name
611 		 * hash, should match its name
612 		 */
613 		if (key->type == BTRFS_DIR_ITEM_KEY ||
614 		    key->type == BTRFS_XATTR_ITEM_KEY) {
615 			char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
616 
617 			read_extent_buffer(leaf, namebuf,
618 					(unsigned long)(di + 1), name_len);
619 			name_hash = btrfs_name_hash(namebuf, name_len);
620 			if (unlikely(key->offset != name_hash)) {
621 				dir_item_err(leaf, slot,
622 		"name hash mismatch with key, have 0x%016x expect 0x%016llx",
623 					name_hash, key->offset);
624 				return -EUCLEAN;
625 			}
626 		}
627 		cur += total_size;
628 		di = (struct btrfs_dir_item *)((void *)di + total_size);
629 	}
630 	return 0;
631 }
632 
633 __printf(3, 4)
634 __cold
block_group_err(const struct extent_buffer * eb,int slot,const char * fmt,...)635 static void block_group_err(const struct extent_buffer *eb, int slot,
636 			    const char *fmt, ...)
637 {
638 	const struct btrfs_fs_info *fs_info = eb->fs_info;
639 	struct btrfs_key key;
640 	struct va_format vaf;
641 	va_list args;
642 
643 	btrfs_item_key_to_cpu(eb, &key, slot);
644 	va_start(args, fmt);
645 
646 	vaf.fmt = fmt;
647 	vaf.va = &args;
648 
649 	btrfs_crit(fs_info,
650 	"corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
651 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
652 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
653 		key.objectid, key.offset, &vaf);
654 	va_end(args);
655 }
656 
check_block_group_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)657 static int check_block_group_item(struct extent_buffer *leaf,
658 				  struct btrfs_key *key, int slot)
659 {
660 	struct btrfs_fs_info *fs_info = leaf->fs_info;
661 	struct btrfs_block_group_item bgi;
662 	u32 item_size = btrfs_item_size(leaf, slot);
663 	u64 chunk_objectid;
664 	u64 flags;
665 	u64 type;
666 
667 	/*
668 	 * Here we don't really care about alignment since extent allocator can
669 	 * handle it.  We care more about the size.
670 	 */
671 	if (unlikely(key->offset == 0)) {
672 		block_group_err(leaf, slot,
673 				"invalid block group size 0");
674 		return -EUCLEAN;
675 	}
676 
677 	if (unlikely(item_size != sizeof(bgi))) {
678 		block_group_err(leaf, slot,
679 			"invalid item size, have %u expect %zu",
680 				item_size, sizeof(bgi));
681 		return -EUCLEAN;
682 	}
683 
684 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
685 			   sizeof(bgi));
686 	chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
687 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
688 		/*
689 		 * We don't init the nr_global_roots until we load the global
690 		 * roots, so this could be 0 at mount time.  If it's 0 we'll
691 		 * just assume we're fine, and later we'll check against our
692 		 * actual value.
693 		 */
694 		if (unlikely(fs_info->nr_global_roots &&
695 			     chunk_objectid >= fs_info->nr_global_roots)) {
696 			block_group_err(leaf, slot,
697 	"invalid block group global root id, have %llu, needs to be <= %llu",
698 					chunk_objectid,
699 					fs_info->nr_global_roots);
700 			return -EUCLEAN;
701 		}
702 	} else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
703 		block_group_err(leaf, slot,
704 		"invalid block group chunk objectid, have %llu expect %llu",
705 				btrfs_stack_block_group_chunk_objectid(&bgi),
706 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
707 		return -EUCLEAN;
708 	}
709 
710 	if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
711 		block_group_err(leaf, slot,
712 			"invalid block group used, have %llu expect [0, %llu)",
713 				btrfs_stack_block_group_used(&bgi), key->offset);
714 		return -EUCLEAN;
715 	}
716 
717 	flags = btrfs_stack_block_group_flags(&bgi);
718 	if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
719 		block_group_err(leaf, slot,
720 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
721 			flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
722 			hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
723 		return -EUCLEAN;
724 	}
725 
726 	type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
727 	if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
728 		     type != BTRFS_BLOCK_GROUP_METADATA &&
729 		     type != BTRFS_BLOCK_GROUP_SYSTEM &&
730 		     type != (BTRFS_BLOCK_GROUP_METADATA |
731 			      BTRFS_BLOCK_GROUP_DATA))) {
732 		block_group_err(leaf, slot,
733 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
734 			type, hweight64(type),
735 			BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
736 			BTRFS_BLOCK_GROUP_SYSTEM,
737 			BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
738 		return -EUCLEAN;
739 	}
740 	return 0;
741 }
742 
743 __printf(4, 5)
744 __cold
chunk_err(const struct extent_buffer * leaf,const struct btrfs_chunk * chunk,u64 logical,const char * fmt,...)745 static void chunk_err(const struct extent_buffer *leaf,
746 		      const struct btrfs_chunk *chunk, u64 logical,
747 		      const char *fmt, ...)
748 {
749 	const struct btrfs_fs_info *fs_info = leaf->fs_info;
750 	bool is_sb;
751 	struct va_format vaf;
752 	va_list args;
753 	int i;
754 	int slot = -1;
755 
756 	/* Only superblock eb is able to have such small offset */
757 	is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
758 
759 	if (!is_sb) {
760 		/*
761 		 * Get the slot number by iterating through all slots, this
762 		 * would provide better readability.
763 		 */
764 		for (i = 0; i < btrfs_header_nritems(leaf); i++) {
765 			if (btrfs_item_ptr_offset(leaf, i) ==
766 					(unsigned long)chunk) {
767 				slot = i;
768 				break;
769 			}
770 		}
771 	}
772 	va_start(args, fmt);
773 	vaf.fmt = fmt;
774 	vaf.va = &args;
775 
776 	if (is_sb)
777 		btrfs_crit(fs_info,
778 		"corrupt superblock syschunk array: chunk_start=%llu, %pV",
779 			   logical, &vaf);
780 	else
781 		btrfs_crit(fs_info,
782 	"corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
783 			   BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
784 			   logical, &vaf);
785 	va_end(args);
786 }
787 
788 /*
789  * The common chunk check which could also work on super block sys chunk array.
790  *
791  * Return -EUCLEAN if anything is corrupted.
792  * Return 0 if everything is OK.
793  */
btrfs_check_chunk_valid(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 logical)794 int btrfs_check_chunk_valid(struct extent_buffer *leaf,
795 			    struct btrfs_chunk *chunk, u64 logical)
796 {
797 	struct btrfs_fs_info *fs_info = leaf->fs_info;
798 	u64 length;
799 	u64 chunk_end;
800 	u64 stripe_len;
801 	u16 num_stripes;
802 	u16 sub_stripes;
803 	u64 type;
804 	u64 features;
805 	bool mixed = false;
806 	int raid_index;
807 	int nparity;
808 	int ncopies;
809 
810 	length = btrfs_chunk_length(leaf, chunk);
811 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
812 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
813 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
814 	type = btrfs_chunk_type(leaf, chunk);
815 	raid_index = btrfs_bg_flags_to_raid_index(type);
816 	ncopies = btrfs_raid_array[raid_index].ncopies;
817 	nparity = btrfs_raid_array[raid_index].nparity;
818 
819 	if (unlikely(!num_stripes)) {
820 		chunk_err(leaf, chunk, logical,
821 			  "invalid chunk num_stripes, have %u", num_stripes);
822 		return -EUCLEAN;
823 	}
824 	if (unlikely(num_stripes < ncopies)) {
825 		chunk_err(leaf, chunk, logical,
826 			  "invalid chunk num_stripes < ncopies, have %u < %d",
827 			  num_stripes, ncopies);
828 		return -EUCLEAN;
829 	}
830 	if (unlikely(nparity && num_stripes == nparity)) {
831 		chunk_err(leaf, chunk, logical,
832 			  "invalid chunk num_stripes == nparity, have %u == %d",
833 			  num_stripes, nparity);
834 		return -EUCLEAN;
835 	}
836 	if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
837 		chunk_err(leaf, chunk, logical,
838 		"invalid chunk logical, have %llu should aligned to %u",
839 			  logical, fs_info->sectorsize);
840 		return -EUCLEAN;
841 	}
842 	if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
843 		chunk_err(leaf, chunk, logical,
844 			  "invalid chunk sectorsize, have %u expect %u",
845 			  btrfs_chunk_sector_size(leaf, chunk),
846 			  fs_info->sectorsize);
847 		return -EUCLEAN;
848 	}
849 	if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
850 		chunk_err(leaf, chunk, logical,
851 			  "invalid chunk length, have %llu", length);
852 		return -EUCLEAN;
853 	}
854 	if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
855 		chunk_err(leaf, chunk, logical,
856 "invalid chunk logical start and length, have logical start %llu length %llu",
857 			  logical, length);
858 		return -EUCLEAN;
859 	}
860 	if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
861 		chunk_err(leaf, chunk, logical,
862 			  "invalid chunk stripe length: %llu",
863 			  stripe_len);
864 		return -EUCLEAN;
865 	}
866 	/*
867 	 * We artificially limit the chunk size, so that the number of stripes
868 	 * inside a chunk can be fit into a U32.  The current limit (256G) is
869 	 * way too large for real world usage anyway, and it's also much larger
870 	 * than our existing limit (10G).
871 	 *
872 	 * Thus it should be a good way to catch obvious bitflips.
873 	 */
874 	if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
875 		chunk_err(leaf, chunk, logical,
876 			  "chunk length too large: have %llu limit %llu",
877 			  length, btrfs_stripe_nr_to_offset(U32_MAX));
878 		return -EUCLEAN;
879 	}
880 	if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
881 			      BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
882 		chunk_err(leaf, chunk, logical,
883 			  "unrecognized chunk type: 0x%llx",
884 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
885 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
886 			  btrfs_chunk_type(leaf, chunk));
887 		return -EUCLEAN;
888 	}
889 
890 	if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
891 		     (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
892 		chunk_err(leaf, chunk, logical,
893 		"invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
894 			  type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
895 		return -EUCLEAN;
896 	}
897 	if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
898 		chunk_err(leaf, chunk, logical,
899 	"missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
900 			  type, BTRFS_BLOCK_GROUP_TYPE_MASK);
901 		return -EUCLEAN;
902 	}
903 
904 	if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
905 		     (type & (BTRFS_BLOCK_GROUP_METADATA |
906 			      BTRFS_BLOCK_GROUP_DATA)))) {
907 		chunk_err(leaf, chunk, logical,
908 			  "system chunk with data or metadata type: 0x%llx",
909 			  type);
910 		return -EUCLEAN;
911 	}
912 
913 	features = btrfs_super_incompat_flags(fs_info->super_copy);
914 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
915 		mixed = true;
916 
917 	if (!mixed) {
918 		if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
919 			     (type & BTRFS_BLOCK_GROUP_DATA))) {
920 			chunk_err(leaf, chunk, logical,
921 			"mixed chunk type in non-mixed mode: 0x%llx", type);
922 			return -EUCLEAN;
923 		}
924 	}
925 
926 	if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
927 		      sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
928 		     (type & BTRFS_BLOCK_GROUP_RAID1 &&
929 		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
930 		     (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
931 		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
932 		     (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
933 		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
934 		     (type & BTRFS_BLOCK_GROUP_RAID5 &&
935 		      num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
936 		     (type & BTRFS_BLOCK_GROUP_RAID6 &&
937 		      num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
938 		     (type & BTRFS_BLOCK_GROUP_DUP &&
939 		      num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
940 		     ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
941 		      num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
942 		chunk_err(leaf, chunk, logical,
943 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
944 			num_stripes, sub_stripes,
945 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
946 		return -EUCLEAN;
947 	}
948 
949 	return 0;
950 }
951 
952 /*
953  * Enhanced version of chunk item checker.
954  *
955  * The common btrfs_check_chunk_valid() doesn't check item size since it needs
956  * to work on super block sys_chunk_array which doesn't have full item ptr.
957  */
check_leaf_chunk_item(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_key * key,int slot)958 static int check_leaf_chunk_item(struct extent_buffer *leaf,
959 				 struct btrfs_chunk *chunk,
960 				 struct btrfs_key *key, int slot)
961 {
962 	int num_stripes;
963 
964 	if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
965 		chunk_err(leaf, chunk, key->offset,
966 			"invalid chunk item size: have %u expect [%zu, %u)",
967 			btrfs_item_size(leaf, slot),
968 			sizeof(struct btrfs_chunk),
969 			BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
970 		return -EUCLEAN;
971 	}
972 
973 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
974 	/* Let btrfs_check_chunk_valid() handle this error type */
975 	if (num_stripes == 0)
976 		goto out;
977 
978 	if (unlikely(btrfs_chunk_item_size(num_stripes) !=
979 		     btrfs_item_size(leaf, slot))) {
980 		chunk_err(leaf, chunk, key->offset,
981 			"invalid chunk item size: have %u expect %lu",
982 			btrfs_item_size(leaf, slot),
983 			btrfs_chunk_item_size(num_stripes));
984 		return -EUCLEAN;
985 	}
986 out:
987 	return btrfs_check_chunk_valid(leaf, chunk, key->offset);
988 }
989 
990 __printf(3, 4)
991 __cold
dev_item_err(const struct extent_buffer * eb,int slot,const char * fmt,...)992 static void dev_item_err(const struct extent_buffer *eb, int slot,
993 			 const char *fmt, ...)
994 {
995 	struct btrfs_key key;
996 	struct va_format vaf;
997 	va_list args;
998 
999 	btrfs_item_key_to_cpu(eb, &key, slot);
1000 	va_start(args, fmt);
1001 
1002 	vaf.fmt = fmt;
1003 	vaf.va = &args;
1004 
1005 	btrfs_crit(eb->fs_info,
1006 	"corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1007 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1008 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1009 		key.objectid, &vaf);
1010 	va_end(args);
1011 }
1012 
check_dev_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1013 static int check_dev_item(struct extent_buffer *leaf,
1014 			  struct btrfs_key *key, int slot)
1015 {
1016 	struct btrfs_dev_item *ditem;
1017 	const u32 item_size = btrfs_item_size(leaf, slot);
1018 
1019 	if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1020 		dev_item_err(leaf, slot,
1021 			     "invalid objectid: has=%llu expect=%llu",
1022 			     key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1023 		return -EUCLEAN;
1024 	}
1025 
1026 	if (unlikely(item_size != sizeof(*ditem))) {
1027 		dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1028 			     item_size, sizeof(*ditem));
1029 		return -EUCLEAN;
1030 	}
1031 
1032 	ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1033 	if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1034 		dev_item_err(leaf, slot,
1035 			     "devid mismatch: key has=%llu item has=%llu",
1036 			     key->offset, btrfs_device_id(leaf, ditem));
1037 		return -EUCLEAN;
1038 	}
1039 
1040 	/*
1041 	 * For device total_bytes, we don't have reliable way to check it, as
1042 	 * it can be 0 for device removal. Device size check can only be done
1043 	 * by dev extents check.
1044 	 */
1045 	if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1046 		     btrfs_device_total_bytes(leaf, ditem))) {
1047 		dev_item_err(leaf, slot,
1048 			     "invalid bytes used: have %llu expect [0, %llu]",
1049 			     btrfs_device_bytes_used(leaf, ditem),
1050 			     btrfs_device_total_bytes(leaf, ditem));
1051 		return -EUCLEAN;
1052 	}
1053 	/*
1054 	 * Remaining members like io_align/type/gen/dev_group aren't really
1055 	 * utilized.  Skip them to make later usage of them easier.
1056 	 */
1057 	return 0;
1058 }
1059 
check_inode_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1060 static int check_inode_item(struct extent_buffer *leaf,
1061 			    struct btrfs_key *key, int slot)
1062 {
1063 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1064 	struct btrfs_inode_item *iitem;
1065 	u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1066 	u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1067 	const u32 item_size = btrfs_item_size(leaf, slot);
1068 	u32 mode;
1069 	int ret;
1070 	u32 flags;
1071 	u32 ro_flags;
1072 
1073 	ret = check_inode_key(leaf, key, slot);
1074 	if (unlikely(ret < 0))
1075 		return ret;
1076 
1077 	if (unlikely(item_size != sizeof(*iitem))) {
1078 		generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1079 			    item_size, sizeof(*iitem));
1080 		return -EUCLEAN;
1081 	}
1082 
1083 	iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1084 
1085 	/* Here we use super block generation + 1 to handle log tree */
1086 	if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1087 		inode_item_err(leaf, slot,
1088 			"invalid inode generation: has %llu expect (0, %llu]",
1089 			       btrfs_inode_generation(leaf, iitem),
1090 			       super_gen + 1);
1091 		return -EUCLEAN;
1092 	}
1093 	/* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1094 	if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1095 		inode_item_err(leaf, slot,
1096 			"invalid inode transid: has %llu expect [0, %llu]",
1097 			       btrfs_inode_transid(leaf, iitem), super_gen + 1);
1098 		return -EUCLEAN;
1099 	}
1100 
1101 	/*
1102 	 * For size and nbytes it's better not to be too strict, as for dir
1103 	 * item its size/nbytes can easily get wrong, but doesn't affect
1104 	 * anything in the fs. So here we skip the check.
1105 	 */
1106 	mode = btrfs_inode_mode(leaf, iitem);
1107 	if (unlikely(mode & ~valid_mask)) {
1108 		inode_item_err(leaf, slot,
1109 			       "unknown mode bit detected: 0x%x",
1110 			       mode & ~valid_mask);
1111 		return -EUCLEAN;
1112 	}
1113 
1114 	/*
1115 	 * S_IFMT is not bit mapped so we can't completely rely on
1116 	 * is_power_of_2/has_single_bit_set, but it can save us from checking
1117 	 * FIFO/CHR/DIR/REG.  Only needs to check BLK, LNK and SOCKS
1118 	 */
1119 	if (!has_single_bit_set(mode & S_IFMT)) {
1120 		if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1121 			inode_item_err(leaf, slot,
1122 			"invalid mode: has 0%o expect valid S_IF* bit(s)",
1123 				       mode & S_IFMT);
1124 			return -EUCLEAN;
1125 		}
1126 	}
1127 	if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1128 		inode_item_err(leaf, slot,
1129 		       "invalid nlink: has %u expect no more than 1 for dir",
1130 			btrfs_inode_nlink(leaf, iitem));
1131 		return -EUCLEAN;
1132 	}
1133 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1134 	if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1135 		inode_item_err(leaf, slot,
1136 			       "unknown incompat flags detected: 0x%x", flags);
1137 		return -EUCLEAN;
1138 	}
1139 	if (unlikely(!sb_rdonly(fs_info->sb) &&
1140 		     (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1141 		inode_item_err(leaf, slot,
1142 			"unknown ro-compat flags detected on writeable mount: 0x%x",
1143 			ro_flags);
1144 		return -EUCLEAN;
1145 	}
1146 	return 0;
1147 }
1148 
check_root_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1149 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1150 			   int slot)
1151 {
1152 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1153 	struct btrfs_root_item ri = { 0 };
1154 	const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1155 				     BTRFS_ROOT_SUBVOL_DEAD;
1156 	int ret;
1157 
1158 	ret = check_root_key(leaf, key, slot);
1159 	if (unlikely(ret < 0))
1160 		return ret;
1161 
1162 	if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1163 		     btrfs_item_size(leaf, slot) !=
1164 		     btrfs_legacy_root_item_size())) {
1165 		generic_err(leaf, slot,
1166 			    "invalid root item size, have %u expect %zu or %u",
1167 			    btrfs_item_size(leaf, slot), sizeof(ri),
1168 			    btrfs_legacy_root_item_size());
1169 		return -EUCLEAN;
1170 	}
1171 
1172 	/*
1173 	 * For legacy root item, the members starting at generation_v2 will be
1174 	 * all filled with 0.
1175 	 * And since we allow geneartion_v2 as 0, it will still pass the check.
1176 	 */
1177 	read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1178 			   btrfs_item_size(leaf, slot));
1179 
1180 	/* Generation related */
1181 	if (unlikely(btrfs_root_generation(&ri) >
1182 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1183 		generic_err(leaf, slot,
1184 			"invalid root generation, have %llu expect (0, %llu]",
1185 			    btrfs_root_generation(&ri),
1186 			    btrfs_super_generation(fs_info->super_copy) + 1);
1187 		return -EUCLEAN;
1188 	}
1189 	if (unlikely(btrfs_root_generation_v2(&ri) >
1190 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1191 		generic_err(leaf, slot,
1192 		"invalid root v2 generation, have %llu expect (0, %llu]",
1193 			    btrfs_root_generation_v2(&ri),
1194 			    btrfs_super_generation(fs_info->super_copy) + 1);
1195 		return -EUCLEAN;
1196 	}
1197 	if (unlikely(btrfs_root_last_snapshot(&ri) >
1198 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1199 		generic_err(leaf, slot,
1200 		"invalid root last_snapshot, have %llu expect (0, %llu]",
1201 			    btrfs_root_last_snapshot(&ri),
1202 			    btrfs_super_generation(fs_info->super_copy) + 1);
1203 		return -EUCLEAN;
1204 	}
1205 
1206 	/* Alignment and level check */
1207 	if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1208 		generic_err(leaf, slot,
1209 		"invalid root bytenr, have %llu expect to be aligned to %u",
1210 			    btrfs_root_bytenr(&ri), fs_info->sectorsize);
1211 		return -EUCLEAN;
1212 	}
1213 	if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1214 		generic_err(leaf, slot,
1215 			    "invalid root level, have %u expect [0, %u]",
1216 			    btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1217 		return -EUCLEAN;
1218 	}
1219 	if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1220 		generic_err(leaf, slot,
1221 			    "invalid root level, have %u expect [0, %u]",
1222 			    btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1223 		return -EUCLEAN;
1224 	}
1225 
1226 	/* Flags check */
1227 	if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1228 		generic_err(leaf, slot,
1229 			    "invalid root flags, have 0x%llx expect mask 0x%llx",
1230 			    btrfs_root_flags(&ri), valid_root_flags);
1231 		return -EUCLEAN;
1232 	}
1233 	return 0;
1234 }
1235 
1236 __printf(3,4)
1237 __cold
extent_err(const struct extent_buffer * eb,int slot,const char * fmt,...)1238 static void extent_err(const struct extent_buffer *eb, int slot,
1239 		       const char *fmt, ...)
1240 {
1241 	struct btrfs_key key;
1242 	struct va_format vaf;
1243 	va_list args;
1244 	u64 bytenr;
1245 	u64 len;
1246 
1247 	btrfs_item_key_to_cpu(eb, &key, slot);
1248 	bytenr = key.objectid;
1249 	if (key.type == BTRFS_METADATA_ITEM_KEY ||
1250 	    key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1251 	    key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1252 		len = eb->fs_info->nodesize;
1253 	else
1254 		len = key.offset;
1255 	va_start(args, fmt);
1256 
1257 	vaf.fmt = fmt;
1258 	vaf.va = &args;
1259 
1260 	btrfs_crit(eb->fs_info,
1261 	"corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1262 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1263 		eb->start, slot, bytenr, len, &vaf);
1264 	va_end(args);
1265 }
1266 
check_extent_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1267 static int check_extent_item(struct extent_buffer *leaf,
1268 			     struct btrfs_key *key, int slot,
1269 			     struct btrfs_key *prev_key)
1270 {
1271 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1272 	struct btrfs_extent_item *ei;
1273 	bool is_tree_block = false;
1274 	unsigned long ptr;	/* Current pointer inside inline refs */
1275 	unsigned long end;	/* Extent item end */
1276 	const u32 item_size = btrfs_item_size(leaf, slot);
1277 	u64 flags;
1278 	u64 generation;
1279 	u64 total_refs;		/* Total refs in btrfs_extent_item */
1280 	u64 inline_refs = 0;	/* found total inline refs */
1281 
1282 	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1283 		     !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1284 		generic_err(leaf, slot,
1285 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1286 		return -EUCLEAN;
1287 	}
1288 	/* key->objectid is the bytenr for both key types */
1289 	if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1290 		generic_err(leaf, slot,
1291 		"invalid key objectid, have %llu expect to be aligned to %u",
1292 			   key->objectid, fs_info->sectorsize);
1293 		return -EUCLEAN;
1294 	}
1295 
1296 	/* key->offset is tree level for METADATA_ITEM_KEY */
1297 	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1298 		     key->offset >= BTRFS_MAX_LEVEL)) {
1299 		extent_err(leaf, slot,
1300 			   "invalid tree level, have %llu expect [0, %u]",
1301 			   key->offset, BTRFS_MAX_LEVEL - 1);
1302 		return -EUCLEAN;
1303 	}
1304 
1305 	/*
1306 	 * EXTENT/METADATA_ITEM consists of:
1307 	 * 1) One btrfs_extent_item
1308 	 *    Records the total refs, type and generation of the extent.
1309 	 *
1310 	 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1311 	 *    Records the first key and level of the tree block.
1312 	 *
1313 	 * 2) Zero or more btrfs_extent_inline_ref(s)
1314 	 *    Each inline ref has one btrfs_extent_inline_ref shows:
1315 	 *    2.1) The ref type, one of the 4
1316 	 *         TREE_BLOCK_REF	Tree block only
1317 	 *         SHARED_BLOCK_REF	Tree block only
1318 	 *         EXTENT_DATA_REF	Data only
1319 	 *         SHARED_DATA_REF	Data only
1320 	 *    2.2) Ref type specific data
1321 	 *         Either using btrfs_extent_inline_ref::offset, or specific
1322 	 *         data structure.
1323 	 */
1324 	if (unlikely(item_size < sizeof(*ei))) {
1325 		extent_err(leaf, slot,
1326 			   "invalid item size, have %u expect [%zu, %u)",
1327 			   item_size, sizeof(*ei),
1328 			   BTRFS_LEAF_DATA_SIZE(fs_info));
1329 		return -EUCLEAN;
1330 	}
1331 	end = item_size + btrfs_item_ptr_offset(leaf, slot);
1332 
1333 	/* Checks against extent_item */
1334 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1335 	flags = btrfs_extent_flags(leaf, ei);
1336 	total_refs = btrfs_extent_refs(leaf, ei);
1337 	generation = btrfs_extent_generation(leaf, ei);
1338 	if (unlikely(generation >
1339 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1340 		extent_err(leaf, slot,
1341 			   "invalid generation, have %llu expect (0, %llu]",
1342 			   generation,
1343 			   btrfs_super_generation(fs_info->super_copy) + 1);
1344 		return -EUCLEAN;
1345 	}
1346 	if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1347 						  BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1348 		extent_err(leaf, slot,
1349 		"invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1350 			flags, BTRFS_EXTENT_FLAG_DATA |
1351 			BTRFS_EXTENT_FLAG_TREE_BLOCK);
1352 		return -EUCLEAN;
1353 	}
1354 	is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1355 	if (is_tree_block) {
1356 		if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1357 			     key->offset != fs_info->nodesize)) {
1358 			extent_err(leaf, slot,
1359 				   "invalid extent length, have %llu expect %u",
1360 				   key->offset, fs_info->nodesize);
1361 			return -EUCLEAN;
1362 		}
1363 	} else {
1364 		if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1365 			extent_err(leaf, slot,
1366 			"invalid key type, have %u expect %u for data backref",
1367 				   key->type, BTRFS_EXTENT_ITEM_KEY);
1368 			return -EUCLEAN;
1369 		}
1370 		if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1371 			extent_err(leaf, slot,
1372 			"invalid extent length, have %llu expect aligned to %u",
1373 				   key->offset, fs_info->sectorsize);
1374 			return -EUCLEAN;
1375 		}
1376 		if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1377 			extent_err(leaf, slot,
1378 			"invalid extent flag, data has full backref set");
1379 			return -EUCLEAN;
1380 		}
1381 	}
1382 	ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1383 
1384 	/* Check the special case of btrfs_tree_block_info */
1385 	if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1386 		struct btrfs_tree_block_info *info;
1387 
1388 		info = (struct btrfs_tree_block_info *)ptr;
1389 		if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1390 			extent_err(leaf, slot,
1391 			"invalid tree block info level, have %u expect [0, %u]",
1392 				   btrfs_tree_block_level(leaf, info),
1393 				   BTRFS_MAX_LEVEL - 1);
1394 			return -EUCLEAN;
1395 		}
1396 		ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1397 	}
1398 
1399 	/* Check inline refs */
1400 	while (ptr < end) {
1401 		struct btrfs_extent_inline_ref *iref;
1402 		struct btrfs_extent_data_ref *dref;
1403 		struct btrfs_shared_data_ref *sref;
1404 		u64 dref_offset;
1405 		u64 inline_offset;
1406 		u8 inline_type;
1407 
1408 		if (unlikely(ptr + sizeof(*iref) > end)) {
1409 			extent_err(leaf, slot,
1410 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1411 				   ptr, sizeof(*iref), end);
1412 			return -EUCLEAN;
1413 		}
1414 		iref = (struct btrfs_extent_inline_ref *)ptr;
1415 		inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1416 		inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1417 		if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1418 			extent_err(leaf, slot,
1419 "inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1420 				   ptr, inline_type, end);
1421 			return -EUCLEAN;
1422 		}
1423 
1424 		switch (inline_type) {
1425 		/* inline_offset is subvolid of the owner, no need to check */
1426 		case BTRFS_TREE_BLOCK_REF_KEY:
1427 			inline_refs++;
1428 			break;
1429 		/* Contains parent bytenr */
1430 		case BTRFS_SHARED_BLOCK_REF_KEY:
1431 			if (unlikely(!IS_ALIGNED(inline_offset,
1432 						 fs_info->sectorsize))) {
1433 				extent_err(leaf, slot,
1434 		"invalid tree parent bytenr, have %llu expect aligned to %u",
1435 					   inline_offset, fs_info->sectorsize);
1436 				return -EUCLEAN;
1437 			}
1438 			inline_refs++;
1439 			break;
1440 		/*
1441 		 * Contains owner subvolid, owner key objectid, adjusted offset.
1442 		 * The only obvious corruption can happen in that offset.
1443 		 */
1444 		case BTRFS_EXTENT_DATA_REF_KEY:
1445 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1446 			dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1447 			if (unlikely(!IS_ALIGNED(dref_offset,
1448 						 fs_info->sectorsize))) {
1449 				extent_err(leaf, slot,
1450 		"invalid data ref offset, have %llu expect aligned to %u",
1451 					   dref_offset, fs_info->sectorsize);
1452 				return -EUCLEAN;
1453 			}
1454 			inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1455 			break;
1456 		/* Contains parent bytenr and ref count */
1457 		case BTRFS_SHARED_DATA_REF_KEY:
1458 			sref = (struct btrfs_shared_data_ref *)(iref + 1);
1459 			if (unlikely(!IS_ALIGNED(inline_offset,
1460 						 fs_info->sectorsize))) {
1461 				extent_err(leaf, slot,
1462 		"invalid data parent bytenr, have %llu expect aligned to %u",
1463 					   inline_offset, fs_info->sectorsize);
1464 				return -EUCLEAN;
1465 			}
1466 			inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1467 			break;
1468 		default:
1469 			extent_err(leaf, slot, "unknown inline ref type: %u",
1470 				   inline_type);
1471 			return -EUCLEAN;
1472 		}
1473 		ptr += btrfs_extent_inline_ref_size(inline_type);
1474 	}
1475 	/* No padding is allowed */
1476 	if (unlikely(ptr != end)) {
1477 		extent_err(leaf, slot,
1478 			   "invalid extent item size, padding bytes found");
1479 		return -EUCLEAN;
1480 	}
1481 
1482 	/* Finally, check the inline refs against total refs */
1483 	if (unlikely(inline_refs > total_refs)) {
1484 		extent_err(leaf, slot,
1485 			"invalid extent refs, have %llu expect >= inline %llu",
1486 			   total_refs, inline_refs);
1487 		return -EUCLEAN;
1488 	}
1489 
1490 	if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1491 	    (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1492 		u64 prev_end = prev_key->objectid;
1493 
1494 		if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1495 			prev_end += fs_info->nodesize;
1496 		else
1497 			prev_end += prev_key->offset;
1498 
1499 		if (unlikely(prev_end > key->objectid)) {
1500 			extent_err(leaf, slot,
1501 	"previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1502 				   prev_key->objectid, prev_key->type,
1503 				   prev_key->offset, key->objectid, key->type,
1504 				   key->offset);
1505 			return -EUCLEAN;
1506 		}
1507 	}
1508 
1509 	return 0;
1510 }
1511 
check_simple_keyed_refs(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1512 static int check_simple_keyed_refs(struct extent_buffer *leaf,
1513 				   struct btrfs_key *key, int slot)
1514 {
1515 	u32 expect_item_size = 0;
1516 
1517 	if (key->type == BTRFS_SHARED_DATA_REF_KEY)
1518 		expect_item_size = sizeof(struct btrfs_shared_data_ref);
1519 
1520 	if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1521 		generic_err(leaf, slot,
1522 		"invalid item size, have %u expect %u for key type %u",
1523 			    btrfs_item_size(leaf, slot),
1524 			    expect_item_size, key->type);
1525 		return -EUCLEAN;
1526 	}
1527 	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1528 		generic_err(leaf, slot,
1529 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1530 			    key->objectid, leaf->fs_info->sectorsize);
1531 		return -EUCLEAN;
1532 	}
1533 	if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1534 		     !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1535 		extent_err(leaf, slot,
1536 		"invalid tree parent bytenr, have %llu expect aligned to %u",
1537 			   key->offset, leaf->fs_info->sectorsize);
1538 		return -EUCLEAN;
1539 	}
1540 	return 0;
1541 }
1542 
check_extent_data_ref(struct extent_buffer * leaf,struct btrfs_key * key,int slot)1543 static int check_extent_data_ref(struct extent_buffer *leaf,
1544 				 struct btrfs_key *key, int slot)
1545 {
1546 	struct btrfs_extent_data_ref *dref;
1547 	unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1548 	const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1549 
1550 	if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1551 		generic_err(leaf, slot,
1552 	"invalid item size, have %u expect aligned to %zu for key type %u",
1553 			    btrfs_item_size(leaf, slot),
1554 			    sizeof(*dref), key->type);
1555 		return -EUCLEAN;
1556 	}
1557 	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1558 		generic_err(leaf, slot,
1559 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1560 			    key->objectid, leaf->fs_info->sectorsize);
1561 		return -EUCLEAN;
1562 	}
1563 	for (; ptr < end; ptr += sizeof(*dref)) {
1564 		u64 offset;
1565 
1566 		/*
1567 		 * We cannot check the extent_data_ref hash due to possible
1568 		 * overflow from the leaf due to hash collisions.
1569 		 */
1570 		dref = (struct btrfs_extent_data_ref *)ptr;
1571 		offset = btrfs_extent_data_ref_offset(leaf, dref);
1572 		if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1573 			extent_err(leaf, slot,
1574 	"invalid extent data backref offset, have %llu expect aligned to %u",
1575 				   offset, leaf->fs_info->sectorsize);
1576 			return -EUCLEAN;
1577 		}
1578 	}
1579 	return 0;
1580 }
1581 
1582 #define inode_ref_err(eb, slot, fmt, args...)			\
1583 	inode_item_err(eb, slot, fmt, ##args)
check_inode_ref(struct extent_buffer * leaf,struct btrfs_key * key,struct btrfs_key * prev_key,int slot)1584 static int check_inode_ref(struct extent_buffer *leaf,
1585 			   struct btrfs_key *key, struct btrfs_key *prev_key,
1586 			   int slot)
1587 {
1588 	struct btrfs_inode_ref *iref;
1589 	unsigned long ptr;
1590 	unsigned long end;
1591 
1592 	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1593 		return -EUCLEAN;
1594 	/* namelen can't be 0, so item_size == sizeof() is also invalid */
1595 	if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1596 		inode_ref_err(leaf, slot,
1597 			"invalid item size, have %u expect (%zu, %u)",
1598 			btrfs_item_size(leaf, slot),
1599 			sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1600 		return -EUCLEAN;
1601 	}
1602 
1603 	ptr = btrfs_item_ptr_offset(leaf, slot);
1604 	end = ptr + btrfs_item_size(leaf, slot);
1605 	while (ptr < end) {
1606 		u16 namelen;
1607 
1608 		if (unlikely(ptr + sizeof(iref) > end)) {
1609 			inode_ref_err(leaf, slot,
1610 			"inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1611 				ptr, end, sizeof(iref));
1612 			return -EUCLEAN;
1613 		}
1614 
1615 		iref = (struct btrfs_inode_ref *)ptr;
1616 		namelen = btrfs_inode_ref_name_len(leaf, iref);
1617 		if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1618 			inode_ref_err(leaf, slot,
1619 				"inode ref overflow, ptr %lu end %lu namelen %u",
1620 				ptr, end, namelen);
1621 			return -EUCLEAN;
1622 		}
1623 
1624 		/*
1625 		 * NOTE: In theory we should record all found index numbers
1626 		 * to find any duplicated indexes, but that will be too time
1627 		 * consuming for inodes with too many hard links.
1628 		 */
1629 		ptr += sizeof(*iref) + namelen;
1630 	}
1631 	return 0;
1632 }
1633 
1634 /*
1635  * Common point to switch the item-specific validation.
1636  */
check_leaf_item(struct extent_buffer * leaf,struct btrfs_key * key,int slot,struct btrfs_key * prev_key)1637 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1638 						    struct btrfs_key *key,
1639 						    int slot,
1640 						    struct btrfs_key *prev_key)
1641 {
1642 	int ret = 0;
1643 	struct btrfs_chunk *chunk;
1644 
1645 	switch (key->type) {
1646 	case BTRFS_EXTENT_DATA_KEY:
1647 		ret = check_extent_data_item(leaf, key, slot, prev_key);
1648 		break;
1649 	case BTRFS_EXTENT_CSUM_KEY:
1650 		ret = check_csum_item(leaf, key, slot, prev_key);
1651 		break;
1652 	case BTRFS_DIR_ITEM_KEY:
1653 	case BTRFS_DIR_INDEX_KEY:
1654 	case BTRFS_XATTR_ITEM_KEY:
1655 		ret = check_dir_item(leaf, key, prev_key, slot);
1656 		break;
1657 	case BTRFS_INODE_REF_KEY:
1658 		ret = check_inode_ref(leaf, key, prev_key, slot);
1659 		break;
1660 	case BTRFS_BLOCK_GROUP_ITEM_KEY:
1661 		ret = check_block_group_item(leaf, key, slot);
1662 		break;
1663 	case BTRFS_CHUNK_ITEM_KEY:
1664 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1665 		ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1666 		break;
1667 	case BTRFS_DEV_ITEM_KEY:
1668 		ret = check_dev_item(leaf, key, slot);
1669 		break;
1670 	case BTRFS_INODE_ITEM_KEY:
1671 		ret = check_inode_item(leaf, key, slot);
1672 		break;
1673 	case BTRFS_ROOT_ITEM_KEY:
1674 		ret = check_root_item(leaf, key, slot);
1675 		break;
1676 	case BTRFS_EXTENT_ITEM_KEY:
1677 	case BTRFS_METADATA_ITEM_KEY:
1678 		ret = check_extent_item(leaf, key, slot, prev_key);
1679 		break;
1680 	case BTRFS_TREE_BLOCK_REF_KEY:
1681 	case BTRFS_SHARED_DATA_REF_KEY:
1682 	case BTRFS_SHARED_BLOCK_REF_KEY:
1683 		ret = check_simple_keyed_refs(leaf, key, slot);
1684 		break;
1685 	case BTRFS_EXTENT_DATA_REF_KEY:
1686 		ret = check_extent_data_ref(leaf, key, slot);
1687 		break;
1688 	}
1689 
1690 	if (ret)
1691 		return BTRFS_TREE_BLOCK_INVALID_ITEM;
1692 	return BTRFS_TREE_BLOCK_CLEAN;
1693 }
1694 
__btrfs_check_leaf(struct extent_buffer * leaf)1695 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1696 {
1697 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1698 	/* No valid key type is 0, so all key should be larger than this key */
1699 	struct btrfs_key prev_key = {0, 0, 0};
1700 	struct btrfs_key key;
1701 	u32 nritems = btrfs_header_nritems(leaf);
1702 	int slot;
1703 
1704 	if (unlikely(btrfs_header_level(leaf) != 0)) {
1705 		generic_err(leaf, 0,
1706 			"invalid level for leaf, have %d expect 0",
1707 			btrfs_header_level(leaf));
1708 		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1709 	}
1710 
1711 	/*
1712 	 * Extent buffers from a relocation tree have a owner field that
1713 	 * corresponds to the subvolume tree they are based on. So just from an
1714 	 * extent buffer alone we can not find out what is the id of the
1715 	 * corresponding subvolume tree, so we can not figure out if the extent
1716 	 * buffer corresponds to the root of the relocation tree or not. So
1717 	 * skip this check for relocation trees.
1718 	 */
1719 	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1720 		u64 owner = btrfs_header_owner(leaf);
1721 
1722 		/* These trees must never be empty */
1723 		if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1724 			     owner == BTRFS_CHUNK_TREE_OBJECTID ||
1725 			     owner == BTRFS_DEV_TREE_OBJECTID ||
1726 			     owner == BTRFS_FS_TREE_OBJECTID ||
1727 			     owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1728 			generic_err(leaf, 0,
1729 			"invalid root, root %llu must never be empty",
1730 				    owner);
1731 			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1732 		}
1733 
1734 		/* Unknown tree */
1735 		if (unlikely(owner == 0)) {
1736 			generic_err(leaf, 0,
1737 				"invalid owner, root 0 is not defined");
1738 			return BTRFS_TREE_BLOCK_INVALID_OWNER;
1739 		}
1740 
1741 		/* EXTENT_TREE_V2 can have empty extent trees. */
1742 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1743 			return BTRFS_TREE_BLOCK_CLEAN;
1744 
1745 		if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1746 			generic_err(leaf, 0,
1747 			"invalid root, root %llu must never be empty",
1748 				    owner);
1749 			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1750 		}
1751 
1752 		return BTRFS_TREE_BLOCK_CLEAN;
1753 	}
1754 
1755 	if (unlikely(nritems == 0))
1756 		return BTRFS_TREE_BLOCK_CLEAN;
1757 
1758 	/*
1759 	 * Check the following things to make sure this is a good leaf, and
1760 	 * leaf users won't need to bother with similar sanity checks:
1761 	 *
1762 	 * 1) key ordering
1763 	 * 2) item offset and size
1764 	 *    No overlap, no hole, all inside the leaf.
1765 	 * 3) item content
1766 	 *    If possible, do comprehensive sanity check.
1767 	 *    NOTE: All checks must only rely on the item data itself.
1768 	 */
1769 	for (slot = 0; slot < nritems; slot++) {
1770 		u32 item_end_expected;
1771 		u64 item_data_end;
1772 
1773 		btrfs_item_key_to_cpu(leaf, &key, slot);
1774 
1775 		/* Make sure the keys are in the right order */
1776 		if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
1777 			generic_err(leaf, slot,
1778 	"bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
1779 				prev_key.objectid, prev_key.type,
1780 				prev_key.offset, key.objectid, key.type,
1781 				key.offset);
1782 			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1783 		}
1784 
1785 		item_data_end = (u64)btrfs_item_offset(leaf, slot) +
1786 				btrfs_item_size(leaf, slot);
1787 		/*
1788 		 * Make sure the offset and ends are right, remember that the
1789 		 * item data starts at the end of the leaf and grows towards the
1790 		 * front.
1791 		 */
1792 		if (slot == 0)
1793 			item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
1794 		else
1795 			item_end_expected = btrfs_item_offset(leaf,
1796 								 slot - 1);
1797 		if (unlikely(item_data_end != item_end_expected)) {
1798 			generic_err(leaf, slot,
1799 				"unexpected item end, have %llu expect %u",
1800 				item_data_end, item_end_expected);
1801 			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1802 		}
1803 
1804 		/*
1805 		 * Check to make sure that we don't point outside of the leaf,
1806 		 * just in case all the items are consistent to each other, but
1807 		 * all point outside of the leaf.
1808 		 */
1809 		if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
1810 			generic_err(leaf, slot,
1811 			"slot end outside of leaf, have %llu expect range [0, %u]",
1812 				item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
1813 			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1814 		}
1815 
1816 		/* Also check if the item pointer overlaps with btrfs item. */
1817 		if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
1818 			     btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
1819 			generic_err(leaf, slot,
1820 		"slot overlaps with its data, item end %lu data start %lu",
1821 				btrfs_item_nr_offset(leaf, slot) +
1822 				sizeof(struct btrfs_item),
1823 				btrfs_item_ptr_offset(leaf, slot));
1824 			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1825 		}
1826 
1827 		/*
1828 		 * We only want to do this if WRITTEN is set, otherwise the leaf
1829 		 * may be in some intermediate state and won't appear valid.
1830 		 */
1831 		if (btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN)) {
1832 			enum btrfs_tree_block_status ret;
1833 
1834 			/*
1835 			 * Check if the item size and content meet other
1836 			 * criteria
1837 			 */
1838 			ret = check_leaf_item(leaf, &key, slot, &prev_key);
1839 			if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1840 				return ret;
1841 		}
1842 
1843 		prev_key.objectid = key.objectid;
1844 		prev_key.type = key.type;
1845 		prev_key.offset = key.offset;
1846 	}
1847 
1848 	return BTRFS_TREE_BLOCK_CLEAN;
1849 }
1850 
btrfs_check_leaf(struct extent_buffer * leaf)1851 int btrfs_check_leaf(struct extent_buffer *leaf)
1852 {
1853 	enum btrfs_tree_block_status ret;
1854 
1855 	ret = __btrfs_check_leaf(leaf);
1856 	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1857 		return -EUCLEAN;
1858 	return 0;
1859 }
1860 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
1861 
__btrfs_check_node(struct extent_buffer * node)1862 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
1863 {
1864 	struct btrfs_fs_info *fs_info = node->fs_info;
1865 	unsigned long nr = btrfs_header_nritems(node);
1866 	struct btrfs_key key, next_key;
1867 	int slot;
1868 	int level = btrfs_header_level(node);
1869 	u64 bytenr;
1870 
1871 	if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
1872 		generic_err(node, 0,
1873 			"invalid level for node, have %d expect [1, %d]",
1874 			level, BTRFS_MAX_LEVEL - 1);
1875 		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1876 	}
1877 	if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
1878 		btrfs_crit(fs_info,
1879 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
1880 			   btrfs_header_owner(node), node->start,
1881 			   nr == 0 ? "small" : "large", nr,
1882 			   BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1883 		return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1884 	}
1885 
1886 	for (slot = 0; slot < nr - 1; slot++) {
1887 		bytenr = btrfs_node_blockptr(node, slot);
1888 		btrfs_node_key_to_cpu(node, &key, slot);
1889 		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
1890 
1891 		if (unlikely(!bytenr)) {
1892 			generic_err(node, slot,
1893 				"invalid NULL node pointer");
1894 			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1895 		}
1896 		if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
1897 			generic_err(node, slot,
1898 			"unaligned pointer, have %llu should be aligned to %u",
1899 				bytenr, fs_info->sectorsize);
1900 			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1901 		}
1902 
1903 		if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
1904 			generic_err(node, slot,
1905 	"bad key order, current (%llu %u %llu) next (%llu %u %llu)",
1906 				key.objectid, key.type, key.offset,
1907 				next_key.objectid, next_key.type,
1908 				next_key.offset);
1909 			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1910 		}
1911 	}
1912 	return BTRFS_TREE_BLOCK_CLEAN;
1913 }
1914 
btrfs_check_node(struct extent_buffer * node)1915 int btrfs_check_node(struct extent_buffer *node)
1916 {
1917 	enum btrfs_tree_block_status ret;
1918 
1919 	ret = __btrfs_check_node(node);
1920 	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1921 		return -EUCLEAN;
1922 	return 0;
1923 }
1924 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
1925 
btrfs_check_eb_owner(const struct extent_buffer * eb,u64 root_owner)1926 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
1927 {
1928 	const bool is_subvol = is_fstree(root_owner);
1929 	const u64 eb_owner = btrfs_header_owner(eb);
1930 
1931 	/*
1932 	 * Skip dummy fs, as selftests don't create unique ebs for each dummy
1933 	 * root.
1934 	 */
1935 	if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state))
1936 		return 0;
1937 	/*
1938 	 * There are several call sites (backref walking, qgroup, and data
1939 	 * reloc) passing 0 as @root_owner, as they are not holding the
1940 	 * tree root.  In that case, we can not do a reliable ownership check,
1941 	 * so just exit.
1942 	 */
1943 	if (root_owner == 0)
1944 		return 0;
1945 	/*
1946 	 * These trees use key.offset as their owner, our callers don't have
1947 	 * the extra capacity to pass key.offset here.  So we just skip them.
1948 	 */
1949 	if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
1950 	    root_owner == BTRFS_TREE_RELOC_OBJECTID)
1951 		return 0;
1952 
1953 	if (!is_subvol) {
1954 		/* For non-subvolume trees, the eb owner should match root owner */
1955 		if (unlikely(root_owner != eb_owner)) {
1956 			btrfs_crit(eb->fs_info,
1957 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
1958 				btrfs_header_level(eb) == 0 ? "leaf" : "node",
1959 				root_owner, btrfs_header_bytenr(eb), eb_owner,
1960 				root_owner);
1961 			return -EUCLEAN;
1962 		}
1963 		return 0;
1964 	}
1965 
1966 	/*
1967 	 * For subvolume trees, owners can mismatch, but they should all belong
1968 	 * to subvolume trees.
1969 	 */
1970 	if (unlikely(is_subvol != is_fstree(eb_owner))) {
1971 		btrfs_crit(eb->fs_info,
1972 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
1973 			btrfs_header_level(eb) == 0 ? "leaf" : "node",
1974 			root_owner, btrfs_header_bytenr(eb), eb_owner,
1975 			BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
1976 		return -EUCLEAN;
1977 	}
1978 	return 0;
1979 }
1980 
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)1981 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
1982 			   struct btrfs_key *first_key, u64 parent_transid)
1983 {
1984 	struct btrfs_fs_info *fs_info = eb->fs_info;
1985 	int found_level;
1986 	struct btrfs_key found_key;
1987 	int ret;
1988 
1989 	found_level = btrfs_header_level(eb);
1990 	if (found_level != level) {
1991 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
1992 		     KERN_ERR "BTRFS: tree level check failed\n");
1993 		btrfs_err(fs_info,
1994 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
1995 			  eb->start, level, found_level);
1996 		return -EIO;
1997 	}
1998 
1999 	if (!first_key)
2000 		return 0;
2001 
2002 	/*
2003 	 * For live tree block (new tree blocks in current transaction),
2004 	 * we need proper lock context to avoid race, which is impossible here.
2005 	 * So we only checks tree blocks which is read from disk, whose
2006 	 * generation <= fs_info->last_trans_committed.
2007 	 */
2008 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
2009 		return 0;
2010 
2011 	/* We have @first_key, so this @eb must have at least one item */
2012 	if (btrfs_header_nritems(eb) == 0) {
2013 		btrfs_err(fs_info,
2014 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2015 			  eb->start);
2016 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2017 		return -EUCLEAN;
2018 	}
2019 
2020 	if (found_level)
2021 		btrfs_node_key_to_cpu(eb, &found_key, 0);
2022 	else
2023 		btrfs_item_key_to_cpu(eb, &found_key, 0);
2024 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
2025 
2026 	if (ret) {
2027 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2028 		     KERN_ERR "BTRFS: tree first key check failed\n");
2029 		btrfs_err(fs_info,
2030 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2031 			  eb->start, parent_transid, first_key->objectid,
2032 			  first_key->type, first_key->offset,
2033 			  found_key.objectid, found_key.type,
2034 			  found_key.offset);
2035 	}
2036 	return ret;
2037 }
2038