1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36
37 static struct bio_set btrfs_bioset;
38
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161 };
162
163 /*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
btrfs_bg_flags_to_raid_index(u64 flags)167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176
btrfs_bg_type_to_raid_name(u64 flags)177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185 }
186
btrfs_nr_parity_stripes(u64 type)187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192 }
193
194 /*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211 #define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245 out_overflow:;
246 }
247
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252 enum btrfs_map_op op, u64 logical, u64 *length,
253 struct btrfs_io_context **bioc_ret,
254 struct btrfs_io_stripe *smap,
255 int *mirror_num_ret, int need_raid_map);
256
257 /*
258 * Device locking
259 * ==============
260 *
261 * There are several mutexes that protect manipulation of devices and low-level
262 * structures like chunks but not block groups, extents or files
263 *
264 * uuid_mutex (global lock)
265 * ------------------------
266 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268 * device) or requested by the device= mount option
269 *
270 * the mutex can be very coarse and can cover long-running operations
271 *
272 * protects: updates to fs_devices counters like missing devices, rw devices,
273 * seeding, structure cloning, opening/closing devices at mount/umount time
274 *
275 * global::fs_devs - add, remove, updates to the global list
276 *
277 * does not protect: manipulation of the fs_devices::devices list in general
278 * but in mount context it could be used to exclude list modifications by eg.
279 * scan ioctl
280 *
281 * btrfs_device::name - renames (write side), read is RCU
282 *
283 * fs_devices::device_list_mutex (per-fs, with RCU)
284 * ------------------------------------------------
285 * protects updates to fs_devices::devices, ie. adding and deleting
286 *
287 * simple list traversal with read-only actions can be done with RCU protection
288 *
289 * may be used to exclude some operations from running concurrently without any
290 * modifications to the list (see write_all_supers)
291 *
292 * Is not required at mount and close times, because our device list is
293 * protected by the uuid_mutex at that point.
294 *
295 * balance_mutex
296 * -------------
297 * protects balance structures (status, state) and context accessed from
298 * several places (internally, ioctl)
299 *
300 * chunk_mutex
301 * -----------
302 * protects chunks, adding or removing during allocation, trim or when a new
303 * device is added/removed. Additionally it also protects post_commit_list of
304 * individual devices, since they can be added to the transaction's
305 * post_commit_list only with chunk_mutex held.
306 *
307 * cleaner_mutex
308 * -------------
309 * a big lock that is held by the cleaner thread and prevents running subvolume
310 * cleaning together with relocation or delayed iputs
311 *
312 *
313 * Lock nesting
314 * ============
315 *
316 * uuid_mutex
317 * device_list_mutex
318 * chunk_mutex
319 * balance_mutex
320 *
321 *
322 * Exclusive operations
323 * ====================
324 *
325 * Maintains the exclusivity of the following operations that apply to the
326 * whole filesystem and cannot run in parallel.
327 *
328 * - Balance (*)
329 * - Device add
330 * - Device remove
331 * - Device replace (*)
332 * - Resize
333 *
334 * The device operations (as above) can be in one of the following states:
335 *
336 * - Running state
337 * - Paused state
338 * - Completed state
339 *
340 * Only device operations marked with (*) can go into the Paused state for the
341 * following reasons:
342 *
343 * - ioctl (only Balance can be Paused through ioctl)
344 * - filesystem remounted as read-only
345 * - filesystem unmounted and mounted as read-only
346 * - system power-cycle and filesystem mounted as read-only
347 * - filesystem or device errors leading to forced read-only
348 *
349 * The status of exclusive operation is set and cleared atomically.
350 * During the course of Paused state, fs_info::exclusive_operation remains set.
351 * A device operation in Paused or Running state can be canceled or resumed
352 * either by ioctl (Balance only) or when remounted as read-write.
353 * The exclusive status is cleared when the device operation is canceled or
354 * completed.
355 */
356
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 {
361 return &fs_uuids;
362 }
363
364 /*
365 * alloc_fs_devices - allocate struct btrfs_fs_devices
366 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
367 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
368 *
369 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370 * The returned struct is not linked onto any lists and can be destroyed with
371 * kfree() right away.
372 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374 const u8 *metadata_fsid)
375 {
376 struct btrfs_fs_devices *fs_devs;
377
378 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379 if (!fs_devs)
380 return ERR_PTR(-ENOMEM);
381
382 mutex_init(&fs_devs->device_list_mutex);
383
384 INIT_LIST_HEAD(&fs_devs->devices);
385 INIT_LIST_HEAD(&fs_devs->alloc_list);
386 INIT_LIST_HEAD(&fs_devs->fs_list);
387 INIT_LIST_HEAD(&fs_devs->seed_list);
388 if (fsid)
389 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
390
391 if (metadata_fsid)
392 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393 else if (fsid)
394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395
396 return fs_devs;
397 }
398
btrfs_free_device(struct btrfs_device * device)399 void btrfs_free_device(struct btrfs_device *device)
400 {
401 WARN_ON(!list_empty(&device->post_commit_list));
402 rcu_string_free(device->name);
403 extent_io_tree_release(&device->alloc_state);
404 btrfs_destroy_dev_zone_info(device);
405 kfree(device);
406 }
407
free_fs_devices(struct btrfs_fs_devices * fs_devices)408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409 {
410 struct btrfs_device *device;
411 WARN_ON(fs_devices->opened);
412 while (!list_empty(&fs_devices->devices)) {
413 device = list_entry(fs_devices->devices.next,
414 struct btrfs_device, dev_list);
415 list_del(&device->dev_list);
416 btrfs_free_device(device);
417 }
418 kfree(fs_devices);
419 }
420
btrfs_cleanup_fs_uuids(void)421 void __exit btrfs_cleanup_fs_uuids(void)
422 {
423 struct btrfs_fs_devices *fs_devices;
424
425 while (!list_empty(&fs_uuids)) {
426 fs_devices = list_entry(fs_uuids.next,
427 struct btrfs_fs_devices, fs_list);
428 list_del(&fs_devices->fs_list);
429 free_fs_devices(fs_devices);
430 }
431 }
432
find_fsid(const u8 * fsid,const u8 * metadata_fsid)433 static noinline struct btrfs_fs_devices *find_fsid(
434 const u8 *fsid, const u8 *metadata_fsid)
435 {
436 struct btrfs_fs_devices *fs_devices;
437
438 ASSERT(fsid);
439
440 /* Handle non-split brain cases */
441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 if (metadata_fsid) {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 BTRFS_FSID_SIZE) == 0)
446 return fs_devices;
447 } else {
448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 return fs_devices;
450 }
451 }
452 return NULL;
453 }
454
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 struct btrfs_super_block *disk_super)
457 {
458
459 struct btrfs_fs_devices *fs_devices;
460
461 /*
462 * Handle scanned device having completed its fsid change but
463 * belonging to a fs_devices that was created by first scanning
464 * a device which didn't have its fsid/metadata_uuid changed
465 * at all and the CHANGING_FSID_V2 flag set.
466 */
467 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 if (fs_devices->fsid_change &&
469 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 BTRFS_FSID_SIZE) == 0 &&
471 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 BTRFS_FSID_SIZE) == 0) {
473 return fs_devices;
474 }
475 }
476 /*
477 * Handle scanned device having completed its fsid change but
478 * belonging to a fs_devices that was created by a device that
479 * has an outdated pair of fsid/metadata_uuid and
480 * CHANGING_FSID_V2 flag set.
481 */
482 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 if (fs_devices->fsid_change &&
484 memcmp(fs_devices->metadata_uuid,
485 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 BTRFS_FSID_SIZE) == 0) {
488 return fs_devices;
489 }
490 }
491
492 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493 }
494
495
496 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 int flush, struct block_device **bdev,
499 struct btrfs_super_block **disk_super)
500 {
501 int ret;
502
503 *bdev = blkdev_get_by_path(device_path, flags, holder);
504
505 if (IS_ERR(*bdev)) {
506 ret = PTR_ERR(*bdev);
507 goto error;
508 }
509
510 if (flush)
511 sync_blockdev(*bdev);
512 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
513 if (ret) {
514 blkdev_put(*bdev, flags);
515 goto error;
516 }
517 invalidate_bdev(*bdev);
518 *disk_super = btrfs_read_dev_super(*bdev);
519 if (IS_ERR(*disk_super)) {
520 ret = PTR_ERR(*disk_super);
521 blkdev_put(*bdev, flags);
522 goto error;
523 }
524
525 return 0;
526
527 error:
528 *bdev = NULL;
529 return ret;
530 }
531
532 /**
533 * Search and remove all stale devices (which are not mounted).
534 * When both inputs are NULL, it will search and release all stale devices.
535 *
536 * @devt: Optional. When provided will it release all unmounted devices
537 * matching this devt only.
538 * @skip_device: Optional. Will skip this device when searching for the stale
539 * devices.
540 *
541 * Return: 0 for success or if @devt is 0.
542 * -EBUSY if @devt is a mounted device.
543 * -ENOENT if @devt does not match any device in the list.
544 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)545 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
546 {
547 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
548 struct btrfs_device *device, *tmp_device;
549 int ret = 0;
550
551 lockdep_assert_held(&uuid_mutex);
552
553 if (devt)
554 ret = -ENOENT;
555
556 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
557
558 mutex_lock(&fs_devices->device_list_mutex);
559 list_for_each_entry_safe(device, tmp_device,
560 &fs_devices->devices, dev_list) {
561 if (skip_device && skip_device == device)
562 continue;
563 if (devt && devt != device->devt)
564 continue;
565 if (fs_devices->opened) {
566 /* for an already deleted device return 0 */
567 if (devt && ret != 0)
568 ret = -EBUSY;
569 break;
570 }
571
572 /* delete the stale device */
573 fs_devices->num_devices--;
574 list_del(&device->dev_list);
575 btrfs_free_device(device);
576
577 ret = 0;
578 }
579 mutex_unlock(&fs_devices->device_list_mutex);
580
581 if (fs_devices->num_devices == 0) {
582 btrfs_sysfs_remove_fsid(fs_devices);
583 list_del(&fs_devices->fs_list);
584 free_fs_devices(fs_devices);
585 }
586 }
587
588 return ret;
589 }
590
591 /*
592 * This is only used on mount, and we are protected from competing things
593 * messing with our fs_devices by the uuid_mutex, thus we do not need the
594 * fs_devices->device_list_mutex here.
595 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)596 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
597 struct btrfs_device *device, fmode_t flags,
598 void *holder)
599 {
600 struct block_device *bdev;
601 struct btrfs_super_block *disk_super;
602 u64 devid;
603 int ret;
604
605 if (device->bdev)
606 return -EINVAL;
607 if (!device->name)
608 return -EINVAL;
609
610 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
611 &bdev, &disk_super);
612 if (ret)
613 return ret;
614
615 devid = btrfs_stack_device_id(&disk_super->dev_item);
616 if (devid != device->devid)
617 goto error_free_page;
618
619 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
620 goto error_free_page;
621
622 device->generation = btrfs_super_generation(disk_super);
623
624 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
625 if (btrfs_super_incompat_flags(disk_super) &
626 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
627 pr_err(
628 "BTRFS: Invalid seeding and uuid-changed device detected\n");
629 goto error_free_page;
630 }
631
632 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 fs_devices->seeding = true;
634 } else {
635 if (bdev_read_only(bdev))
636 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
637 else
638 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
639 }
640
641 if (!bdev_nonrot(bdev))
642 fs_devices->rotating = true;
643
644 device->bdev = bdev;
645 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
646 device->mode = flags;
647
648 fs_devices->open_devices++;
649 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
650 device->devid != BTRFS_DEV_REPLACE_DEVID) {
651 fs_devices->rw_devices++;
652 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
653 }
654 btrfs_release_disk_super(disk_super);
655
656 return 0;
657
658 error_free_page:
659 btrfs_release_disk_super(disk_super);
660 blkdev_put(bdev, flags);
661
662 return -EINVAL;
663 }
664
665 /*
666 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
667 * being created with a disk that has already completed its fsid change. Such
668 * disk can belong to an fs which has its FSID changed or to one which doesn't.
669 * Handle both cases here.
670 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)671 static struct btrfs_fs_devices *find_fsid_inprogress(
672 struct btrfs_super_block *disk_super)
673 {
674 struct btrfs_fs_devices *fs_devices;
675
676 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
677 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
678 BTRFS_FSID_SIZE) != 0 &&
679 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
680 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
681 return fs_devices;
682 }
683 }
684
685 return find_fsid(disk_super->fsid, NULL);
686 }
687
688
find_fsid_changed(struct btrfs_super_block * disk_super)689 static struct btrfs_fs_devices *find_fsid_changed(
690 struct btrfs_super_block *disk_super)
691 {
692 struct btrfs_fs_devices *fs_devices;
693
694 /*
695 * Handles the case where scanned device is part of an fs that had
696 * multiple successful changes of FSID but currently device didn't
697 * observe it. Meaning our fsid will be different than theirs. We need
698 * to handle two subcases :
699 * 1 - The fs still continues to have different METADATA/FSID uuids.
700 * 2 - The fs is switched back to its original FSID (METADATA/FSID
701 * are equal).
702 */
703 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
704 /* Changed UUIDs */
705 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
706 BTRFS_FSID_SIZE) != 0 &&
707 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
708 BTRFS_FSID_SIZE) == 0 &&
709 memcmp(fs_devices->fsid, disk_super->fsid,
710 BTRFS_FSID_SIZE) != 0)
711 return fs_devices;
712
713 /* Unchanged UUIDs */
714 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
715 BTRFS_FSID_SIZE) == 0 &&
716 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
717 BTRFS_FSID_SIZE) == 0)
718 return fs_devices;
719 }
720
721 return NULL;
722 }
723
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)724 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
725 struct btrfs_super_block *disk_super)
726 {
727 struct btrfs_fs_devices *fs_devices;
728
729 /*
730 * Handle the case where the scanned device is part of an fs whose last
731 * metadata UUID change reverted it to the original FSID. At the same
732 * time * fs_devices was first created by another constitutent device
733 * which didn't fully observe the operation. This results in an
734 * btrfs_fs_devices created with metadata/fsid different AND
735 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
736 * fs_devices equal to the FSID of the disk.
737 */
738 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
739 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
740 BTRFS_FSID_SIZE) != 0 &&
741 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
742 BTRFS_FSID_SIZE) == 0 &&
743 fs_devices->fsid_change)
744 return fs_devices;
745 }
746
747 return NULL;
748 }
749 /*
750 * Add new device to list of registered devices
751 *
752 * Returns:
753 * device pointer which was just added or updated when successful
754 * error pointer when failed
755 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)756 static noinline struct btrfs_device *device_list_add(const char *path,
757 struct btrfs_super_block *disk_super,
758 bool *new_device_added)
759 {
760 struct btrfs_device *device;
761 struct btrfs_fs_devices *fs_devices = NULL;
762 struct rcu_string *name;
763 u64 found_transid = btrfs_super_generation(disk_super);
764 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
765 dev_t path_devt;
766 int error;
767 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
768 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
769 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
770 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
771
772 error = lookup_bdev(path, &path_devt);
773 if (error)
774 return ERR_PTR(error);
775
776 if (fsid_change_in_progress) {
777 if (!has_metadata_uuid)
778 fs_devices = find_fsid_inprogress(disk_super);
779 else
780 fs_devices = find_fsid_changed(disk_super);
781 } else if (has_metadata_uuid) {
782 fs_devices = find_fsid_with_metadata_uuid(disk_super);
783 } else {
784 fs_devices = find_fsid_reverted_metadata(disk_super);
785 if (!fs_devices)
786 fs_devices = find_fsid(disk_super->fsid, NULL);
787 }
788
789
790 if (!fs_devices) {
791 if (has_metadata_uuid)
792 fs_devices = alloc_fs_devices(disk_super->fsid,
793 disk_super->metadata_uuid);
794 else
795 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
796
797 if (IS_ERR(fs_devices))
798 return ERR_CAST(fs_devices);
799
800 fs_devices->fsid_change = fsid_change_in_progress;
801
802 mutex_lock(&fs_devices->device_list_mutex);
803 list_add(&fs_devices->fs_list, &fs_uuids);
804
805 device = NULL;
806 } else {
807 struct btrfs_dev_lookup_args args = {
808 .devid = devid,
809 .uuid = disk_super->dev_item.uuid,
810 };
811
812 mutex_lock(&fs_devices->device_list_mutex);
813 device = btrfs_find_device(fs_devices, &args);
814
815 /*
816 * If this disk has been pulled into an fs devices created by
817 * a device which had the CHANGING_FSID_V2 flag then replace the
818 * metadata_uuid/fsid values of the fs_devices.
819 */
820 if (fs_devices->fsid_change &&
821 found_transid > fs_devices->latest_generation) {
822 memcpy(fs_devices->fsid, disk_super->fsid,
823 BTRFS_FSID_SIZE);
824
825 if (has_metadata_uuid)
826 memcpy(fs_devices->metadata_uuid,
827 disk_super->metadata_uuid,
828 BTRFS_FSID_SIZE);
829 else
830 memcpy(fs_devices->metadata_uuid,
831 disk_super->fsid, BTRFS_FSID_SIZE);
832
833 fs_devices->fsid_change = false;
834 }
835 }
836
837 if (!device) {
838 if (fs_devices->opened) {
839 mutex_unlock(&fs_devices->device_list_mutex);
840 return ERR_PTR(-EBUSY);
841 }
842
843 device = btrfs_alloc_device(NULL, &devid,
844 disk_super->dev_item.uuid);
845 if (IS_ERR(device)) {
846 mutex_unlock(&fs_devices->device_list_mutex);
847 /* we can safely leave the fs_devices entry around */
848 return device;
849 }
850
851 name = rcu_string_strdup(path, GFP_NOFS);
852 if (!name) {
853 btrfs_free_device(device);
854 mutex_unlock(&fs_devices->device_list_mutex);
855 return ERR_PTR(-ENOMEM);
856 }
857 rcu_assign_pointer(device->name, name);
858 device->devt = path_devt;
859
860 list_add_rcu(&device->dev_list, &fs_devices->devices);
861 fs_devices->num_devices++;
862
863 device->fs_devices = fs_devices;
864 *new_device_added = true;
865
866 if (disk_super->label[0])
867 pr_info(
868 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
869 disk_super->label, devid, found_transid, path,
870 current->comm, task_pid_nr(current));
871 else
872 pr_info(
873 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
874 disk_super->fsid, devid, found_transid, path,
875 current->comm, task_pid_nr(current));
876
877 } else if (!device->name || strcmp(device->name->str, path)) {
878 /*
879 * When FS is already mounted.
880 * 1. If you are here and if the device->name is NULL that
881 * means this device was missing at time of FS mount.
882 * 2. If you are here and if the device->name is different
883 * from 'path' that means either
884 * a. The same device disappeared and reappeared with
885 * different name. or
886 * b. The missing-disk-which-was-replaced, has
887 * reappeared now.
888 *
889 * We must allow 1 and 2a above. But 2b would be a spurious
890 * and unintentional.
891 *
892 * Further in case of 1 and 2a above, the disk at 'path'
893 * would have missed some transaction when it was away and
894 * in case of 2a the stale bdev has to be updated as well.
895 * 2b must not be allowed at all time.
896 */
897
898 /*
899 * For now, we do allow update to btrfs_fs_device through the
900 * btrfs dev scan cli after FS has been mounted. We're still
901 * tracking a problem where systems fail mount by subvolume id
902 * when we reject replacement on a mounted FS.
903 */
904 if (!fs_devices->opened && found_transid < device->generation) {
905 /*
906 * That is if the FS is _not_ mounted and if you
907 * are here, that means there is more than one
908 * disk with same uuid and devid.We keep the one
909 * with larger generation number or the last-in if
910 * generation are equal.
911 */
912 mutex_unlock(&fs_devices->device_list_mutex);
913 return ERR_PTR(-EEXIST);
914 }
915
916 /*
917 * We are going to replace the device path for a given devid,
918 * make sure it's the same device if the device is mounted
919 *
920 * NOTE: the device->fs_info may not be reliable here so pass
921 * in a NULL to message helpers instead. This avoids a possible
922 * use-after-free when the fs_info and fs_info->sb are already
923 * torn down.
924 */
925 if (device->bdev) {
926 if (device->devt != path_devt) {
927 mutex_unlock(&fs_devices->device_list_mutex);
928 btrfs_warn_in_rcu(NULL,
929 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
930 path, devid, found_transid,
931 current->comm,
932 task_pid_nr(current));
933 return ERR_PTR(-EEXIST);
934 }
935 btrfs_info_in_rcu(NULL,
936 "devid %llu device path %s changed to %s scanned by %s (%d)",
937 devid, rcu_str_deref(device->name),
938 path, current->comm,
939 task_pid_nr(current));
940 }
941
942 name = rcu_string_strdup(path, GFP_NOFS);
943 if (!name) {
944 mutex_unlock(&fs_devices->device_list_mutex);
945 return ERR_PTR(-ENOMEM);
946 }
947 rcu_string_free(device->name);
948 rcu_assign_pointer(device->name, name);
949 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
950 fs_devices->missing_devices--;
951 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
952 }
953 device->devt = path_devt;
954 }
955
956 /*
957 * Unmount does not free the btrfs_device struct but would zero
958 * generation along with most of the other members. So just update
959 * it back. We need it to pick the disk with largest generation
960 * (as above).
961 */
962 if (!fs_devices->opened) {
963 device->generation = found_transid;
964 fs_devices->latest_generation = max_t(u64, found_transid,
965 fs_devices->latest_generation);
966 }
967
968 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
969
970 mutex_unlock(&fs_devices->device_list_mutex);
971 return device;
972 }
973
clone_fs_devices(struct btrfs_fs_devices * orig)974 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
975 {
976 struct btrfs_fs_devices *fs_devices;
977 struct btrfs_device *device;
978 struct btrfs_device *orig_dev;
979 int ret = 0;
980
981 lockdep_assert_held(&uuid_mutex);
982
983 fs_devices = alloc_fs_devices(orig->fsid, NULL);
984 if (IS_ERR(fs_devices))
985 return fs_devices;
986
987 fs_devices->total_devices = orig->total_devices;
988
989 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
990 struct rcu_string *name;
991
992 device = btrfs_alloc_device(NULL, &orig_dev->devid,
993 orig_dev->uuid);
994 if (IS_ERR(device)) {
995 ret = PTR_ERR(device);
996 goto error;
997 }
998
999 /*
1000 * This is ok to do without rcu read locked because we hold the
1001 * uuid mutex so nothing we touch in here is going to disappear.
1002 */
1003 if (orig_dev->name) {
1004 name = rcu_string_strdup(orig_dev->name->str,
1005 GFP_KERNEL);
1006 if (!name) {
1007 btrfs_free_device(device);
1008 ret = -ENOMEM;
1009 goto error;
1010 }
1011 rcu_assign_pointer(device->name, name);
1012 }
1013
1014 if (orig_dev->zone_info) {
1015 struct btrfs_zoned_device_info *zone_info;
1016
1017 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1018 if (!zone_info) {
1019 btrfs_free_device(device);
1020 ret = -ENOMEM;
1021 goto error;
1022 }
1023 device->zone_info = zone_info;
1024 }
1025
1026 list_add(&device->dev_list, &fs_devices->devices);
1027 device->fs_devices = fs_devices;
1028 fs_devices->num_devices++;
1029 }
1030 return fs_devices;
1031 error:
1032 free_fs_devices(fs_devices);
1033 return ERR_PTR(ret);
1034 }
1035
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1036 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1037 struct btrfs_device **latest_dev)
1038 {
1039 struct btrfs_device *device, *next;
1040
1041 /* This is the initialized path, it is safe to release the devices. */
1042 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1043 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1044 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1045 &device->dev_state) &&
1046 !test_bit(BTRFS_DEV_STATE_MISSING,
1047 &device->dev_state) &&
1048 (!*latest_dev ||
1049 device->generation > (*latest_dev)->generation)) {
1050 *latest_dev = device;
1051 }
1052 continue;
1053 }
1054
1055 /*
1056 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1057 * in btrfs_init_dev_replace() so just continue.
1058 */
1059 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1060 continue;
1061
1062 if (device->bdev) {
1063 blkdev_put(device->bdev, device->mode);
1064 device->bdev = NULL;
1065 fs_devices->open_devices--;
1066 }
1067 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1068 list_del_init(&device->dev_alloc_list);
1069 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1070 fs_devices->rw_devices--;
1071 }
1072 list_del_init(&device->dev_list);
1073 fs_devices->num_devices--;
1074 btrfs_free_device(device);
1075 }
1076
1077 }
1078
1079 /*
1080 * After we have read the system tree and know devids belonging to this
1081 * filesystem, remove the device which does not belong there.
1082 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1083 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1084 {
1085 struct btrfs_device *latest_dev = NULL;
1086 struct btrfs_fs_devices *seed_dev;
1087
1088 mutex_lock(&uuid_mutex);
1089 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1090
1091 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1092 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1093
1094 fs_devices->latest_dev = latest_dev;
1095
1096 mutex_unlock(&uuid_mutex);
1097 }
1098
btrfs_close_bdev(struct btrfs_device * device)1099 static void btrfs_close_bdev(struct btrfs_device *device)
1100 {
1101 if (!device->bdev)
1102 return;
1103
1104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105 sync_blockdev(device->bdev);
1106 invalidate_bdev(device->bdev);
1107 }
1108
1109 blkdev_put(device->bdev, device->mode);
1110 }
1111
btrfs_close_one_device(struct btrfs_device * device)1112 static void btrfs_close_one_device(struct btrfs_device *device)
1113 {
1114 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1115
1116 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118 list_del_init(&device->dev_alloc_list);
1119 fs_devices->rw_devices--;
1120 }
1121
1122 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1123 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1124
1125 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1126 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1127 fs_devices->missing_devices--;
1128 }
1129
1130 btrfs_close_bdev(device);
1131 if (device->bdev) {
1132 fs_devices->open_devices--;
1133 device->bdev = NULL;
1134 }
1135 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1136 btrfs_destroy_dev_zone_info(device);
1137
1138 device->fs_info = NULL;
1139 atomic_set(&device->dev_stats_ccnt, 0);
1140 extent_io_tree_release(&device->alloc_state);
1141
1142 /*
1143 * Reset the flush error record. We might have a transient flush error
1144 * in this mount, and if so we aborted the current transaction and set
1145 * the fs to an error state, guaranteeing no super blocks can be further
1146 * committed. However that error might be transient and if we unmount the
1147 * filesystem and mount it again, we should allow the mount to succeed
1148 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1149 * filesystem again we still get flush errors, then we will again abort
1150 * any transaction and set the error state, guaranteeing no commits of
1151 * unsafe super blocks.
1152 */
1153 device->last_flush_error = 0;
1154
1155 /* Verify the device is back in a pristine state */
1156 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1157 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1158 ASSERT(list_empty(&device->dev_alloc_list));
1159 ASSERT(list_empty(&device->post_commit_list));
1160 }
1161
close_fs_devices(struct btrfs_fs_devices * fs_devices)1162 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1163 {
1164 struct btrfs_device *device, *tmp;
1165
1166 lockdep_assert_held(&uuid_mutex);
1167
1168 if (--fs_devices->opened > 0)
1169 return;
1170
1171 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1172 btrfs_close_one_device(device);
1173
1174 WARN_ON(fs_devices->open_devices);
1175 WARN_ON(fs_devices->rw_devices);
1176 fs_devices->opened = 0;
1177 fs_devices->seeding = false;
1178 fs_devices->fs_info = NULL;
1179 }
1180
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1181 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1182 {
1183 LIST_HEAD(list);
1184 struct btrfs_fs_devices *tmp;
1185
1186 mutex_lock(&uuid_mutex);
1187 close_fs_devices(fs_devices);
1188 if (!fs_devices->opened)
1189 list_splice_init(&fs_devices->seed_list, &list);
1190
1191 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1192 close_fs_devices(fs_devices);
1193 list_del(&fs_devices->seed_list);
1194 free_fs_devices(fs_devices);
1195 }
1196 mutex_unlock(&uuid_mutex);
1197 }
1198
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1199 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1200 fmode_t flags, void *holder)
1201 {
1202 struct btrfs_device *device;
1203 struct btrfs_device *latest_dev = NULL;
1204 struct btrfs_device *tmp_device;
1205
1206 flags |= FMODE_EXCL;
1207
1208 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1209 dev_list) {
1210 int ret;
1211
1212 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1213 if (ret == 0 &&
1214 (!latest_dev || device->generation > latest_dev->generation)) {
1215 latest_dev = device;
1216 } else if (ret == -ENODATA) {
1217 fs_devices->num_devices--;
1218 list_del(&device->dev_list);
1219 btrfs_free_device(device);
1220 }
1221 }
1222 if (fs_devices->open_devices == 0)
1223 return -EINVAL;
1224
1225 fs_devices->opened = 1;
1226 fs_devices->latest_dev = latest_dev;
1227 fs_devices->total_rw_bytes = 0;
1228 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1229 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1230
1231 return 0;
1232 }
1233
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1234 static int devid_cmp(void *priv, const struct list_head *a,
1235 const struct list_head *b)
1236 {
1237 const struct btrfs_device *dev1, *dev2;
1238
1239 dev1 = list_entry(a, struct btrfs_device, dev_list);
1240 dev2 = list_entry(b, struct btrfs_device, dev_list);
1241
1242 if (dev1->devid < dev2->devid)
1243 return -1;
1244 else if (dev1->devid > dev2->devid)
1245 return 1;
1246 return 0;
1247 }
1248
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1249 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1250 fmode_t flags, void *holder)
1251 {
1252 int ret;
1253
1254 lockdep_assert_held(&uuid_mutex);
1255 /*
1256 * The device_list_mutex cannot be taken here in case opening the
1257 * underlying device takes further locks like open_mutex.
1258 *
1259 * We also don't need the lock here as this is called during mount and
1260 * exclusion is provided by uuid_mutex
1261 */
1262
1263 if (fs_devices->opened) {
1264 fs_devices->opened++;
1265 ret = 0;
1266 } else {
1267 list_sort(NULL, &fs_devices->devices, devid_cmp);
1268 ret = open_fs_devices(fs_devices, flags, holder);
1269 }
1270
1271 return ret;
1272 }
1273
btrfs_release_disk_super(struct btrfs_super_block * super)1274 void btrfs_release_disk_super(struct btrfs_super_block *super)
1275 {
1276 struct page *page = virt_to_page(super);
1277
1278 put_page(page);
1279 }
1280
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1281 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1282 u64 bytenr, u64 bytenr_orig)
1283 {
1284 struct btrfs_super_block *disk_super;
1285 struct page *page;
1286 void *p;
1287 pgoff_t index;
1288
1289 /* make sure our super fits in the device */
1290 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1291 return ERR_PTR(-EINVAL);
1292
1293 /* make sure our super fits in the page */
1294 if (sizeof(*disk_super) > PAGE_SIZE)
1295 return ERR_PTR(-EINVAL);
1296
1297 /* make sure our super doesn't straddle pages on disk */
1298 index = bytenr >> PAGE_SHIFT;
1299 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1300 return ERR_PTR(-EINVAL);
1301
1302 /* pull in the page with our super */
1303 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1304
1305 if (IS_ERR(page))
1306 return ERR_CAST(page);
1307
1308 p = page_address(page);
1309
1310 /* align our pointer to the offset of the super block */
1311 disk_super = p + offset_in_page(bytenr);
1312
1313 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1314 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1315 btrfs_release_disk_super(p);
1316 return ERR_PTR(-EINVAL);
1317 }
1318
1319 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1320 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1321
1322 return disk_super;
1323 }
1324
btrfs_forget_devices(dev_t devt)1325 int btrfs_forget_devices(dev_t devt)
1326 {
1327 int ret;
1328
1329 mutex_lock(&uuid_mutex);
1330 ret = btrfs_free_stale_devices(devt, NULL);
1331 mutex_unlock(&uuid_mutex);
1332
1333 return ret;
1334 }
1335
1336 /*
1337 * Look for a btrfs signature on a device. This may be called out of the mount path
1338 * and we are not allowed to call set_blocksize during the scan. The superblock
1339 * is read via pagecache
1340 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1341 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1342 void *holder)
1343 {
1344 struct btrfs_super_block *disk_super;
1345 bool new_device_added = false;
1346 struct btrfs_device *device = NULL;
1347 struct block_device *bdev;
1348 u64 bytenr, bytenr_orig;
1349 int ret;
1350
1351 lockdep_assert_held(&uuid_mutex);
1352
1353 /*
1354 * we would like to check all the supers, but that would make
1355 * a btrfs mount succeed after a mkfs from a different FS.
1356 * So, we need to add a special mount option to scan for
1357 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1358 */
1359 flags |= FMODE_EXCL;
1360
1361 bdev = blkdev_get_by_path(path, flags, holder);
1362 if (IS_ERR(bdev))
1363 return ERR_CAST(bdev);
1364
1365 bytenr_orig = btrfs_sb_offset(0);
1366 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1367 if (ret) {
1368 device = ERR_PTR(ret);
1369 goto error_bdev_put;
1370 }
1371
1372 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1373 if (IS_ERR(disk_super)) {
1374 device = ERR_CAST(disk_super);
1375 goto error_bdev_put;
1376 }
1377
1378 device = device_list_add(path, disk_super, &new_device_added);
1379 if (!IS_ERR(device) && new_device_added)
1380 btrfs_free_stale_devices(device->devt, device);
1381
1382 btrfs_release_disk_super(disk_super);
1383
1384 error_bdev_put:
1385 blkdev_put(bdev, flags);
1386
1387 return device;
1388 }
1389
1390 /*
1391 * Try to find a chunk that intersects [start, start + len] range and when one
1392 * such is found, record the end of it in *start
1393 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1394 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1395 u64 len)
1396 {
1397 u64 physical_start, physical_end;
1398
1399 lockdep_assert_held(&device->fs_info->chunk_mutex);
1400
1401 if (!find_first_extent_bit(&device->alloc_state, *start,
1402 &physical_start, &physical_end,
1403 CHUNK_ALLOCATED, NULL)) {
1404
1405 if (in_range(physical_start, *start, len) ||
1406 in_range(*start, physical_start,
1407 physical_end - physical_start)) {
1408 *start = physical_end + 1;
1409 return true;
1410 }
1411 }
1412 return false;
1413 }
1414
dev_extent_search_start(struct btrfs_device * device,u64 start)1415 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1416 {
1417 switch (device->fs_devices->chunk_alloc_policy) {
1418 case BTRFS_CHUNK_ALLOC_REGULAR:
1419 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1420 case BTRFS_CHUNK_ALLOC_ZONED:
1421 /*
1422 * We don't care about the starting region like regular
1423 * allocator, because we anyway use/reserve the first two zones
1424 * for superblock logging.
1425 */
1426 return ALIGN(start, device->zone_info->zone_size);
1427 default:
1428 BUG();
1429 }
1430 }
1431
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1432 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1433 u64 *hole_start, u64 *hole_size,
1434 u64 num_bytes)
1435 {
1436 u64 zone_size = device->zone_info->zone_size;
1437 u64 pos;
1438 int ret;
1439 bool changed = false;
1440
1441 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1442
1443 while (*hole_size > 0) {
1444 pos = btrfs_find_allocatable_zones(device, *hole_start,
1445 *hole_start + *hole_size,
1446 num_bytes);
1447 if (pos != *hole_start) {
1448 *hole_size = *hole_start + *hole_size - pos;
1449 *hole_start = pos;
1450 changed = true;
1451 if (*hole_size < num_bytes)
1452 break;
1453 }
1454
1455 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1456
1457 /* Range is ensured to be empty */
1458 if (!ret)
1459 return changed;
1460
1461 /* Given hole range was invalid (outside of device) */
1462 if (ret == -ERANGE) {
1463 *hole_start += *hole_size;
1464 *hole_size = 0;
1465 return true;
1466 }
1467
1468 *hole_start += zone_size;
1469 *hole_size -= zone_size;
1470 changed = true;
1471 }
1472
1473 return changed;
1474 }
1475
1476 /**
1477 * dev_extent_hole_check - check if specified hole is suitable for allocation
1478 * @device: the device which we have the hole
1479 * @hole_start: starting position of the hole
1480 * @hole_size: the size of the hole
1481 * @num_bytes: the size of the free space that we need
1482 *
1483 * This function may modify @hole_start and @hole_size to reflect the suitable
1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1486 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487 u64 *hole_size, u64 num_bytes)
1488 {
1489 bool changed = false;
1490 u64 hole_end = *hole_start + *hole_size;
1491
1492 for (;;) {
1493 /*
1494 * Check before we set max_hole_start, otherwise we could end up
1495 * sending back this offset anyway.
1496 */
1497 if (contains_pending_extent(device, hole_start, *hole_size)) {
1498 if (hole_end >= *hole_start)
1499 *hole_size = hole_end - *hole_start;
1500 else
1501 *hole_size = 0;
1502 changed = true;
1503 }
1504
1505 switch (device->fs_devices->chunk_alloc_policy) {
1506 case BTRFS_CHUNK_ALLOC_REGULAR:
1507 /* No extra check */
1508 break;
1509 case BTRFS_CHUNK_ALLOC_ZONED:
1510 if (dev_extent_hole_check_zoned(device, hole_start,
1511 hole_size, num_bytes)) {
1512 changed = true;
1513 /*
1514 * The changed hole can contain pending extent.
1515 * Loop again to check that.
1516 */
1517 continue;
1518 }
1519 break;
1520 default:
1521 BUG();
1522 }
1523
1524 break;
1525 }
1526
1527 return changed;
1528 }
1529
1530 /*
1531 * find_free_dev_extent_start - find free space in the specified device
1532 * @device: the device which we search the free space in
1533 * @num_bytes: the size of the free space that we need
1534 * @search_start: the position from which to begin the search
1535 * @start: store the start of the free space.
1536 * @len: the size of the free space. that we find, or the size
1537 * of the max free space if we don't find suitable free space
1538 *
1539 * this uses a pretty simple search, the expectation is that it is
1540 * called very infrequently and that a given device has a small number
1541 * of extents
1542 *
1543 * @start is used to store the start of the free space if we find. But if we
1544 * don't find suitable free space, it will be used to store the start position
1545 * of the max free space.
1546 *
1547 * @len is used to store the size of the free space that we find.
1548 * But if we don't find suitable free space, it is used to store the size of
1549 * the max free space.
1550 *
1551 * NOTE: This function will search *commit* root of device tree, and does extra
1552 * check to ensure dev extents are not double allocated.
1553 * This makes the function safe to allocate dev extents but may not report
1554 * correct usable device space, as device extent freed in current transaction
1555 * is not reported as available.
1556 */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1557 static int find_free_dev_extent_start(struct btrfs_device *device,
1558 u64 num_bytes, u64 search_start, u64 *start,
1559 u64 *len)
1560 {
1561 struct btrfs_fs_info *fs_info = device->fs_info;
1562 struct btrfs_root *root = fs_info->dev_root;
1563 struct btrfs_key key;
1564 struct btrfs_dev_extent *dev_extent;
1565 struct btrfs_path *path;
1566 u64 hole_size;
1567 u64 max_hole_start;
1568 u64 max_hole_size;
1569 u64 extent_end;
1570 u64 search_end = device->total_bytes;
1571 int ret;
1572 int slot;
1573 struct extent_buffer *l;
1574
1575 search_start = dev_extent_search_start(device, search_start);
1576
1577 WARN_ON(device->zone_info &&
1578 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1579
1580 path = btrfs_alloc_path();
1581 if (!path)
1582 return -ENOMEM;
1583
1584 max_hole_start = search_start;
1585 max_hole_size = 0;
1586
1587 again:
1588 if (search_start >= search_end ||
1589 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1590 ret = -ENOSPC;
1591 goto out;
1592 }
1593
1594 path->reada = READA_FORWARD;
1595 path->search_commit_root = 1;
1596 path->skip_locking = 1;
1597
1598 key.objectid = device->devid;
1599 key.offset = search_start;
1600 key.type = BTRFS_DEV_EXTENT_KEY;
1601
1602 ret = btrfs_search_backwards(root, &key, path);
1603 if (ret < 0)
1604 goto out;
1605
1606 while (1) {
1607 l = path->nodes[0];
1608 slot = path->slots[0];
1609 if (slot >= btrfs_header_nritems(l)) {
1610 ret = btrfs_next_leaf(root, path);
1611 if (ret == 0)
1612 continue;
1613 if (ret < 0)
1614 goto out;
1615
1616 break;
1617 }
1618 btrfs_item_key_to_cpu(l, &key, slot);
1619
1620 if (key.objectid < device->devid)
1621 goto next;
1622
1623 if (key.objectid > device->devid)
1624 break;
1625
1626 if (key.type != BTRFS_DEV_EXTENT_KEY)
1627 goto next;
1628
1629 if (key.offset > search_start) {
1630 hole_size = key.offset - search_start;
1631 dev_extent_hole_check(device, &search_start, &hole_size,
1632 num_bytes);
1633
1634 if (hole_size > max_hole_size) {
1635 max_hole_start = search_start;
1636 max_hole_size = hole_size;
1637 }
1638
1639 /*
1640 * If this free space is greater than which we need,
1641 * it must be the max free space that we have found
1642 * until now, so max_hole_start must point to the start
1643 * of this free space and the length of this free space
1644 * is stored in max_hole_size. Thus, we return
1645 * max_hole_start and max_hole_size and go back to the
1646 * caller.
1647 */
1648 if (hole_size >= num_bytes) {
1649 ret = 0;
1650 goto out;
1651 }
1652 }
1653
1654 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1655 extent_end = key.offset + btrfs_dev_extent_length(l,
1656 dev_extent);
1657 if (extent_end > search_start)
1658 search_start = extent_end;
1659 next:
1660 path->slots[0]++;
1661 cond_resched();
1662 }
1663
1664 /*
1665 * At this point, search_start should be the end of
1666 * allocated dev extents, and when shrinking the device,
1667 * search_end may be smaller than search_start.
1668 */
1669 if (search_end > search_start) {
1670 hole_size = search_end - search_start;
1671 if (dev_extent_hole_check(device, &search_start, &hole_size,
1672 num_bytes)) {
1673 btrfs_release_path(path);
1674 goto again;
1675 }
1676
1677 if (hole_size > max_hole_size) {
1678 max_hole_start = search_start;
1679 max_hole_size = hole_size;
1680 }
1681 }
1682
1683 /* See above. */
1684 if (max_hole_size < num_bytes)
1685 ret = -ENOSPC;
1686 else
1687 ret = 0;
1688
1689 out:
1690 btrfs_free_path(path);
1691 *start = max_hole_start;
1692 if (len)
1693 *len = max_hole_size;
1694 return ret;
1695 }
1696
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1697 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1698 u64 *start, u64 *len)
1699 {
1700 /* FIXME use last free of some kind */
1701 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1702 }
1703
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1704 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1705 struct btrfs_device *device,
1706 u64 start, u64 *dev_extent_len)
1707 {
1708 struct btrfs_fs_info *fs_info = device->fs_info;
1709 struct btrfs_root *root = fs_info->dev_root;
1710 int ret;
1711 struct btrfs_path *path;
1712 struct btrfs_key key;
1713 struct btrfs_key found_key;
1714 struct extent_buffer *leaf = NULL;
1715 struct btrfs_dev_extent *extent = NULL;
1716
1717 path = btrfs_alloc_path();
1718 if (!path)
1719 return -ENOMEM;
1720
1721 key.objectid = device->devid;
1722 key.offset = start;
1723 key.type = BTRFS_DEV_EXTENT_KEY;
1724 again:
1725 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1726 if (ret > 0) {
1727 ret = btrfs_previous_item(root, path, key.objectid,
1728 BTRFS_DEV_EXTENT_KEY);
1729 if (ret)
1730 goto out;
1731 leaf = path->nodes[0];
1732 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1733 extent = btrfs_item_ptr(leaf, path->slots[0],
1734 struct btrfs_dev_extent);
1735 BUG_ON(found_key.offset > start || found_key.offset +
1736 btrfs_dev_extent_length(leaf, extent) < start);
1737 key = found_key;
1738 btrfs_release_path(path);
1739 goto again;
1740 } else if (ret == 0) {
1741 leaf = path->nodes[0];
1742 extent = btrfs_item_ptr(leaf, path->slots[0],
1743 struct btrfs_dev_extent);
1744 } else {
1745 goto out;
1746 }
1747
1748 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1749
1750 ret = btrfs_del_item(trans, root, path);
1751 if (ret == 0)
1752 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1753 out:
1754 btrfs_free_path(path);
1755 return ret;
1756 }
1757
find_next_chunk(struct btrfs_fs_info * fs_info)1758 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1759 {
1760 struct extent_map_tree *em_tree;
1761 struct extent_map *em;
1762 struct rb_node *n;
1763 u64 ret = 0;
1764
1765 em_tree = &fs_info->mapping_tree;
1766 read_lock(&em_tree->lock);
1767 n = rb_last(&em_tree->map.rb_root);
1768 if (n) {
1769 em = rb_entry(n, struct extent_map, rb_node);
1770 ret = em->start + em->len;
1771 }
1772 read_unlock(&em_tree->lock);
1773
1774 return ret;
1775 }
1776
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1777 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1778 u64 *devid_ret)
1779 {
1780 int ret;
1781 struct btrfs_key key;
1782 struct btrfs_key found_key;
1783 struct btrfs_path *path;
1784
1785 path = btrfs_alloc_path();
1786 if (!path)
1787 return -ENOMEM;
1788
1789 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1790 key.type = BTRFS_DEV_ITEM_KEY;
1791 key.offset = (u64)-1;
1792
1793 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1794 if (ret < 0)
1795 goto error;
1796
1797 if (ret == 0) {
1798 /* Corruption */
1799 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1800 ret = -EUCLEAN;
1801 goto error;
1802 }
1803
1804 ret = btrfs_previous_item(fs_info->chunk_root, path,
1805 BTRFS_DEV_ITEMS_OBJECTID,
1806 BTRFS_DEV_ITEM_KEY);
1807 if (ret) {
1808 *devid_ret = 1;
1809 } else {
1810 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1811 path->slots[0]);
1812 *devid_ret = found_key.offset + 1;
1813 }
1814 ret = 0;
1815 error:
1816 btrfs_free_path(path);
1817 return ret;
1818 }
1819
1820 /*
1821 * the device information is stored in the chunk root
1822 * the btrfs_device struct should be fully filled in
1823 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1824 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1825 struct btrfs_device *device)
1826 {
1827 int ret;
1828 struct btrfs_path *path;
1829 struct btrfs_dev_item *dev_item;
1830 struct extent_buffer *leaf;
1831 struct btrfs_key key;
1832 unsigned long ptr;
1833
1834 path = btrfs_alloc_path();
1835 if (!path)
1836 return -ENOMEM;
1837
1838 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1839 key.type = BTRFS_DEV_ITEM_KEY;
1840 key.offset = device->devid;
1841
1842 btrfs_reserve_chunk_metadata(trans, true);
1843 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1844 &key, sizeof(*dev_item));
1845 btrfs_trans_release_chunk_metadata(trans);
1846 if (ret)
1847 goto out;
1848
1849 leaf = path->nodes[0];
1850 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1851
1852 btrfs_set_device_id(leaf, dev_item, device->devid);
1853 btrfs_set_device_generation(leaf, dev_item, 0);
1854 btrfs_set_device_type(leaf, dev_item, device->type);
1855 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1856 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1857 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1858 btrfs_set_device_total_bytes(leaf, dev_item,
1859 btrfs_device_get_disk_total_bytes(device));
1860 btrfs_set_device_bytes_used(leaf, dev_item,
1861 btrfs_device_get_bytes_used(device));
1862 btrfs_set_device_group(leaf, dev_item, 0);
1863 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1864 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1865 btrfs_set_device_start_offset(leaf, dev_item, 0);
1866
1867 ptr = btrfs_device_uuid(dev_item);
1868 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1869 ptr = btrfs_device_fsid(dev_item);
1870 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1871 ptr, BTRFS_FSID_SIZE);
1872 btrfs_mark_buffer_dirty(leaf);
1873
1874 ret = 0;
1875 out:
1876 btrfs_free_path(path);
1877 return ret;
1878 }
1879
1880 /*
1881 * Function to update ctime/mtime for a given device path.
1882 * Mainly used for ctime/mtime based probe like libblkid.
1883 *
1884 * We don't care about errors here, this is just to be kind to userspace.
1885 */
update_dev_time(const char * device_path)1886 static void update_dev_time(const char *device_path)
1887 {
1888 struct path path;
1889 struct timespec64 now;
1890 int ret;
1891
1892 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1893 if (ret)
1894 return;
1895
1896 now = current_time(d_inode(path.dentry));
1897 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1898 path_put(&path);
1899 }
1900
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1901 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1902 struct btrfs_device *device)
1903 {
1904 struct btrfs_root *root = device->fs_info->chunk_root;
1905 int ret;
1906 struct btrfs_path *path;
1907 struct btrfs_key key;
1908
1909 path = btrfs_alloc_path();
1910 if (!path)
1911 return -ENOMEM;
1912
1913 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1914 key.type = BTRFS_DEV_ITEM_KEY;
1915 key.offset = device->devid;
1916
1917 btrfs_reserve_chunk_metadata(trans, false);
1918 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1919 btrfs_trans_release_chunk_metadata(trans);
1920 if (ret) {
1921 if (ret > 0)
1922 ret = -ENOENT;
1923 goto out;
1924 }
1925
1926 ret = btrfs_del_item(trans, root, path);
1927 out:
1928 btrfs_free_path(path);
1929 return ret;
1930 }
1931
1932 /*
1933 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1934 * filesystem. It's up to the caller to adjust that number regarding eg. device
1935 * replace.
1936 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1937 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1938 u64 num_devices)
1939 {
1940 u64 all_avail;
1941 unsigned seq;
1942 int i;
1943
1944 do {
1945 seq = read_seqbegin(&fs_info->profiles_lock);
1946
1947 all_avail = fs_info->avail_data_alloc_bits |
1948 fs_info->avail_system_alloc_bits |
1949 fs_info->avail_metadata_alloc_bits;
1950 } while (read_seqretry(&fs_info->profiles_lock, seq));
1951
1952 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1953 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1954 continue;
1955
1956 if (num_devices < btrfs_raid_array[i].devs_min)
1957 return btrfs_raid_array[i].mindev_error;
1958 }
1959
1960 return 0;
1961 }
1962
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1963 static struct btrfs_device * btrfs_find_next_active_device(
1964 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1965 {
1966 struct btrfs_device *next_device;
1967
1968 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1969 if (next_device != device &&
1970 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1971 && next_device->bdev)
1972 return next_device;
1973 }
1974
1975 return NULL;
1976 }
1977
1978 /*
1979 * Helper function to check if the given device is part of s_bdev / latest_dev
1980 * and replace it with the provided or the next active device, in the context
1981 * where this function called, there should be always be another device (or
1982 * this_dev) which is active.
1983 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)1984 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1985 struct btrfs_device *next_device)
1986 {
1987 struct btrfs_fs_info *fs_info = device->fs_info;
1988
1989 if (!next_device)
1990 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1991 device);
1992 ASSERT(next_device);
1993
1994 if (fs_info->sb->s_bdev &&
1995 (fs_info->sb->s_bdev == device->bdev))
1996 fs_info->sb->s_bdev = next_device->bdev;
1997
1998 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1999 fs_info->fs_devices->latest_dev = next_device;
2000 }
2001
2002 /*
2003 * Return btrfs_fs_devices::num_devices excluding the device that's being
2004 * currently replaced.
2005 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2006 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2007 {
2008 u64 num_devices = fs_info->fs_devices->num_devices;
2009
2010 down_read(&fs_info->dev_replace.rwsem);
2011 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2012 ASSERT(num_devices > 1);
2013 num_devices--;
2014 }
2015 up_read(&fs_info->dev_replace.rwsem);
2016
2017 return num_devices;
2018 }
2019
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2020 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2021 struct block_device *bdev,
2022 const char *device_path)
2023 {
2024 struct btrfs_super_block *disk_super;
2025 int copy_num;
2026
2027 if (!bdev)
2028 return;
2029
2030 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2031 struct page *page;
2032 int ret;
2033
2034 disk_super = btrfs_read_dev_one_super(bdev, copy_num, false);
2035 if (IS_ERR(disk_super))
2036 continue;
2037
2038 if (bdev_is_zoned(bdev)) {
2039 btrfs_reset_sb_log_zones(bdev, copy_num);
2040 continue;
2041 }
2042
2043 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2044
2045 page = virt_to_page(disk_super);
2046 set_page_dirty(page);
2047 lock_page(page);
2048 /* write_on_page() unlocks the page */
2049 ret = write_one_page(page);
2050 if (ret)
2051 btrfs_warn(fs_info,
2052 "error clearing superblock number %d (%d)",
2053 copy_num, ret);
2054 btrfs_release_disk_super(disk_super);
2055
2056 }
2057
2058 /* Notify udev that device has changed */
2059 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2060
2061 /* Update ctime/mtime for device path for libblkid */
2062 update_dev_time(device_path);
2063 }
2064
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct block_device ** bdev,fmode_t * mode)2065 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2066 struct btrfs_dev_lookup_args *args,
2067 struct block_device **bdev, fmode_t *mode)
2068 {
2069 struct btrfs_trans_handle *trans;
2070 struct btrfs_device *device;
2071 struct btrfs_fs_devices *cur_devices;
2072 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2073 u64 num_devices;
2074 int ret = 0;
2075
2076 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2077 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2078 return -EINVAL;
2079 }
2080
2081 /*
2082 * The device list in fs_devices is accessed without locks (neither
2083 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2084 * filesystem and another device rm cannot run.
2085 */
2086 num_devices = btrfs_num_devices(fs_info);
2087
2088 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2089 if (ret)
2090 return ret;
2091
2092 device = btrfs_find_device(fs_info->fs_devices, args);
2093 if (!device) {
2094 if (args->missing)
2095 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2096 else
2097 ret = -ENOENT;
2098 return ret;
2099 }
2100
2101 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2102 btrfs_warn_in_rcu(fs_info,
2103 "cannot remove device %s (devid %llu) due to active swapfile",
2104 rcu_str_deref(device->name), device->devid);
2105 return -ETXTBSY;
2106 }
2107
2108 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2109 return BTRFS_ERROR_DEV_TGT_REPLACE;
2110
2111 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2112 fs_info->fs_devices->rw_devices == 1)
2113 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2114
2115 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2116 mutex_lock(&fs_info->chunk_mutex);
2117 list_del_init(&device->dev_alloc_list);
2118 device->fs_devices->rw_devices--;
2119 mutex_unlock(&fs_info->chunk_mutex);
2120 }
2121
2122 ret = btrfs_shrink_device(device, 0);
2123 if (ret)
2124 goto error_undo;
2125
2126 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2127 if (IS_ERR(trans)) {
2128 ret = PTR_ERR(trans);
2129 goto error_undo;
2130 }
2131
2132 ret = btrfs_rm_dev_item(trans, device);
2133 if (ret) {
2134 /* Any error in dev item removal is critical */
2135 btrfs_crit(fs_info,
2136 "failed to remove device item for devid %llu: %d",
2137 device->devid, ret);
2138 btrfs_abort_transaction(trans, ret);
2139 btrfs_end_transaction(trans);
2140 return ret;
2141 }
2142
2143 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2144 btrfs_scrub_cancel_dev(device);
2145
2146 /*
2147 * the device list mutex makes sure that we don't change
2148 * the device list while someone else is writing out all
2149 * the device supers. Whoever is writing all supers, should
2150 * lock the device list mutex before getting the number of
2151 * devices in the super block (super_copy). Conversely,
2152 * whoever updates the number of devices in the super block
2153 * (super_copy) should hold the device list mutex.
2154 */
2155
2156 /*
2157 * In normal cases the cur_devices == fs_devices. But in case
2158 * of deleting a seed device, the cur_devices should point to
2159 * its own fs_devices listed under the fs_devices->seed_list.
2160 */
2161 cur_devices = device->fs_devices;
2162 mutex_lock(&fs_devices->device_list_mutex);
2163 list_del_rcu(&device->dev_list);
2164
2165 cur_devices->num_devices--;
2166 cur_devices->total_devices--;
2167 /* Update total_devices of the parent fs_devices if it's seed */
2168 if (cur_devices != fs_devices)
2169 fs_devices->total_devices--;
2170
2171 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2172 cur_devices->missing_devices--;
2173
2174 btrfs_assign_next_active_device(device, NULL);
2175
2176 if (device->bdev) {
2177 cur_devices->open_devices--;
2178 /* remove sysfs entry */
2179 btrfs_sysfs_remove_device(device);
2180 }
2181
2182 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2183 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2184 mutex_unlock(&fs_devices->device_list_mutex);
2185
2186 /*
2187 * At this point, the device is zero sized and detached from the
2188 * devices list. All that's left is to zero out the old supers and
2189 * free the device.
2190 *
2191 * We cannot call btrfs_close_bdev() here because we're holding the sb
2192 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2193 * block device and it's dependencies. Instead just flush the device
2194 * and let the caller do the final blkdev_put.
2195 */
2196 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2197 btrfs_scratch_superblocks(fs_info, device->bdev,
2198 device->name->str);
2199 if (device->bdev) {
2200 sync_blockdev(device->bdev);
2201 invalidate_bdev(device->bdev);
2202 }
2203 }
2204
2205 *bdev = device->bdev;
2206 *mode = device->mode;
2207 synchronize_rcu();
2208 btrfs_free_device(device);
2209
2210 /*
2211 * This can happen if cur_devices is the private seed devices list. We
2212 * cannot call close_fs_devices() here because it expects the uuid_mutex
2213 * to be held, but in fact we don't need that for the private
2214 * seed_devices, we can simply decrement cur_devices->opened and then
2215 * remove it from our list and free the fs_devices.
2216 */
2217 if (cur_devices->num_devices == 0) {
2218 list_del_init(&cur_devices->seed_list);
2219 ASSERT(cur_devices->opened == 1);
2220 cur_devices->opened--;
2221 free_fs_devices(cur_devices);
2222 }
2223
2224 ret = btrfs_commit_transaction(trans);
2225
2226 return ret;
2227
2228 error_undo:
2229 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2230 mutex_lock(&fs_info->chunk_mutex);
2231 list_add(&device->dev_alloc_list,
2232 &fs_devices->alloc_list);
2233 device->fs_devices->rw_devices++;
2234 mutex_unlock(&fs_info->chunk_mutex);
2235 }
2236 return ret;
2237 }
2238
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2239 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2240 {
2241 struct btrfs_fs_devices *fs_devices;
2242
2243 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2244
2245 /*
2246 * in case of fs with no seed, srcdev->fs_devices will point
2247 * to fs_devices of fs_info. However when the dev being replaced is
2248 * a seed dev it will point to the seed's local fs_devices. In short
2249 * srcdev will have its correct fs_devices in both the cases.
2250 */
2251 fs_devices = srcdev->fs_devices;
2252
2253 list_del_rcu(&srcdev->dev_list);
2254 list_del(&srcdev->dev_alloc_list);
2255 fs_devices->num_devices--;
2256 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2257 fs_devices->missing_devices--;
2258
2259 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2260 fs_devices->rw_devices--;
2261
2262 if (srcdev->bdev)
2263 fs_devices->open_devices--;
2264 }
2265
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2266 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2267 {
2268 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2269
2270 mutex_lock(&uuid_mutex);
2271
2272 btrfs_close_bdev(srcdev);
2273 synchronize_rcu();
2274 btrfs_free_device(srcdev);
2275
2276 /* if this is no devs we rather delete the fs_devices */
2277 if (!fs_devices->num_devices) {
2278 /*
2279 * On a mounted FS, num_devices can't be zero unless it's a
2280 * seed. In case of a seed device being replaced, the replace
2281 * target added to the sprout FS, so there will be no more
2282 * device left under the seed FS.
2283 */
2284 ASSERT(fs_devices->seeding);
2285
2286 list_del_init(&fs_devices->seed_list);
2287 close_fs_devices(fs_devices);
2288 free_fs_devices(fs_devices);
2289 }
2290 mutex_unlock(&uuid_mutex);
2291 }
2292
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2293 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2294 {
2295 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2296
2297 mutex_lock(&fs_devices->device_list_mutex);
2298
2299 btrfs_sysfs_remove_device(tgtdev);
2300
2301 if (tgtdev->bdev)
2302 fs_devices->open_devices--;
2303
2304 fs_devices->num_devices--;
2305
2306 btrfs_assign_next_active_device(tgtdev, NULL);
2307
2308 list_del_rcu(&tgtdev->dev_list);
2309
2310 mutex_unlock(&fs_devices->device_list_mutex);
2311
2312 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2313 tgtdev->name->str);
2314
2315 btrfs_close_bdev(tgtdev);
2316 synchronize_rcu();
2317 btrfs_free_device(tgtdev);
2318 }
2319
2320 /**
2321 * Populate args from device at path
2322 *
2323 * @fs_info: the filesystem
2324 * @args: the args to populate
2325 * @path: the path to the device
2326 *
2327 * This will read the super block of the device at @path and populate @args with
2328 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2329 * lookup a device to operate on, but need to do it before we take any locks.
2330 * This properly handles the special case of "missing" that a user may pass in,
2331 * and does some basic sanity checks. The caller must make sure that @path is
2332 * properly NUL terminated before calling in, and must call
2333 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2334 * uuid buffers.
2335 *
2336 * Return: 0 for success, -errno for failure
2337 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2338 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2339 struct btrfs_dev_lookup_args *args,
2340 const char *path)
2341 {
2342 struct btrfs_super_block *disk_super;
2343 struct block_device *bdev;
2344 int ret;
2345
2346 if (!path || !path[0])
2347 return -EINVAL;
2348 if (!strcmp(path, "missing")) {
2349 args->missing = true;
2350 return 0;
2351 }
2352
2353 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2354 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2355 if (!args->uuid || !args->fsid) {
2356 btrfs_put_dev_args_from_path(args);
2357 return -ENOMEM;
2358 }
2359
2360 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2361 &bdev, &disk_super);
2362 if (ret) {
2363 btrfs_put_dev_args_from_path(args);
2364 return ret;
2365 }
2366
2367 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2368 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2369 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2370 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2371 else
2372 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2373 btrfs_release_disk_super(disk_super);
2374 blkdev_put(bdev, FMODE_READ);
2375 return 0;
2376 }
2377
2378 /*
2379 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2380 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2381 * that don't need to be freed.
2382 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2383 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2384 {
2385 kfree(args->uuid);
2386 kfree(args->fsid);
2387 args->uuid = NULL;
2388 args->fsid = NULL;
2389 }
2390
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2391 struct btrfs_device *btrfs_find_device_by_devspec(
2392 struct btrfs_fs_info *fs_info, u64 devid,
2393 const char *device_path)
2394 {
2395 BTRFS_DEV_LOOKUP_ARGS(args);
2396 struct btrfs_device *device;
2397 int ret;
2398
2399 if (devid) {
2400 args.devid = devid;
2401 device = btrfs_find_device(fs_info->fs_devices, &args);
2402 if (!device)
2403 return ERR_PTR(-ENOENT);
2404 return device;
2405 }
2406
2407 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2408 if (ret)
2409 return ERR_PTR(ret);
2410 device = btrfs_find_device(fs_info->fs_devices, &args);
2411 btrfs_put_dev_args_from_path(&args);
2412 if (!device)
2413 return ERR_PTR(-ENOENT);
2414 return device;
2415 }
2416
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2417 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2418 {
2419 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2420 struct btrfs_fs_devices *old_devices;
2421 struct btrfs_fs_devices *seed_devices;
2422
2423 lockdep_assert_held(&uuid_mutex);
2424 if (!fs_devices->seeding)
2425 return ERR_PTR(-EINVAL);
2426
2427 /*
2428 * Private copy of the seed devices, anchored at
2429 * fs_info->fs_devices->seed_list
2430 */
2431 seed_devices = alloc_fs_devices(NULL, NULL);
2432 if (IS_ERR(seed_devices))
2433 return seed_devices;
2434
2435 /*
2436 * It's necessary to retain a copy of the original seed fs_devices in
2437 * fs_uuids so that filesystems which have been seeded can successfully
2438 * reference the seed device from open_seed_devices. This also supports
2439 * multiple fs seed.
2440 */
2441 old_devices = clone_fs_devices(fs_devices);
2442 if (IS_ERR(old_devices)) {
2443 kfree(seed_devices);
2444 return old_devices;
2445 }
2446
2447 list_add(&old_devices->fs_list, &fs_uuids);
2448
2449 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2450 seed_devices->opened = 1;
2451 INIT_LIST_HEAD(&seed_devices->devices);
2452 INIT_LIST_HEAD(&seed_devices->alloc_list);
2453 mutex_init(&seed_devices->device_list_mutex);
2454
2455 return seed_devices;
2456 }
2457
2458 /*
2459 * Splice seed devices into the sprout fs_devices.
2460 * Generate a new fsid for the sprouted read-write filesystem.
2461 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2462 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2463 struct btrfs_fs_devices *seed_devices)
2464 {
2465 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2466 struct btrfs_super_block *disk_super = fs_info->super_copy;
2467 struct btrfs_device *device;
2468 u64 super_flags;
2469
2470 /*
2471 * We are updating the fsid, the thread leading to device_list_add()
2472 * could race, so uuid_mutex is needed.
2473 */
2474 lockdep_assert_held(&uuid_mutex);
2475
2476 /*
2477 * The threads listed below may traverse dev_list but can do that without
2478 * device_list_mutex:
2479 * - All device ops and balance - as we are in btrfs_exclop_start.
2480 * - Various dev_list readers - are using RCU.
2481 * - btrfs_ioctl_fitrim() - is using RCU.
2482 *
2483 * For-read threads as below are using device_list_mutex:
2484 * - Readonly scrub btrfs_scrub_dev()
2485 * - Readonly scrub btrfs_scrub_progress()
2486 * - btrfs_get_dev_stats()
2487 */
2488 lockdep_assert_held(&fs_devices->device_list_mutex);
2489
2490 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2491 synchronize_rcu);
2492 list_for_each_entry(device, &seed_devices->devices, dev_list)
2493 device->fs_devices = seed_devices;
2494
2495 fs_devices->seeding = false;
2496 fs_devices->num_devices = 0;
2497 fs_devices->open_devices = 0;
2498 fs_devices->missing_devices = 0;
2499 fs_devices->rotating = false;
2500 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2501
2502 generate_random_uuid(fs_devices->fsid);
2503 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2504 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2505
2506 super_flags = btrfs_super_flags(disk_super) &
2507 ~BTRFS_SUPER_FLAG_SEEDING;
2508 btrfs_set_super_flags(disk_super, super_flags);
2509 }
2510
2511 /*
2512 * Store the expected generation for seed devices in device items.
2513 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2514 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2515 {
2516 BTRFS_DEV_LOOKUP_ARGS(args);
2517 struct btrfs_fs_info *fs_info = trans->fs_info;
2518 struct btrfs_root *root = fs_info->chunk_root;
2519 struct btrfs_path *path;
2520 struct extent_buffer *leaf;
2521 struct btrfs_dev_item *dev_item;
2522 struct btrfs_device *device;
2523 struct btrfs_key key;
2524 u8 fs_uuid[BTRFS_FSID_SIZE];
2525 u8 dev_uuid[BTRFS_UUID_SIZE];
2526 int ret;
2527
2528 path = btrfs_alloc_path();
2529 if (!path)
2530 return -ENOMEM;
2531
2532 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2533 key.offset = 0;
2534 key.type = BTRFS_DEV_ITEM_KEY;
2535
2536 while (1) {
2537 btrfs_reserve_chunk_metadata(trans, false);
2538 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2539 btrfs_trans_release_chunk_metadata(trans);
2540 if (ret < 0)
2541 goto error;
2542
2543 leaf = path->nodes[0];
2544 next_slot:
2545 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2546 ret = btrfs_next_leaf(root, path);
2547 if (ret > 0)
2548 break;
2549 if (ret < 0)
2550 goto error;
2551 leaf = path->nodes[0];
2552 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2553 btrfs_release_path(path);
2554 continue;
2555 }
2556
2557 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2558 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2559 key.type != BTRFS_DEV_ITEM_KEY)
2560 break;
2561
2562 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2563 struct btrfs_dev_item);
2564 args.devid = btrfs_device_id(leaf, dev_item);
2565 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2566 BTRFS_UUID_SIZE);
2567 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2568 BTRFS_FSID_SIZE);
2569 args.uuid = dev_uuid;
2570 args.fsid = fs_uuid;
2571 device = btrfs_find_device(fs_info->fs_devices, &args);
2572 BUG_ON(!device); /* Logic error */
2573
2574 if (device->fs_devices->seeding) {
2575 btrfs_set_device_generation(leaf, dev_item,
2576 device->generation);
2577 btrfs_mark_buffer_dirty(leaf);
2578 }
2579
2580 path->slots[0]++;
2581 goto next_slot;
2582 }
2583 ret = 0;
2584 error:
2585 btrfs_free_path(path);
2586 return ret;
2587 }
2588
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2589 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2590 {
2591 struct btrfs_root *root = fs_info->dev_root;
2592 struct btrfs_trans_handle *trans;
2593 struct btrfs_device *device;
2594 struct block_device *bdev;
2595 struct super_block *sb = fs_info->sb;
2596 struct rcu_string *name;
2597 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2598 struct btrfs_fs_devices *seed_devices;
2599 u64 orig_super_total_bytes;
2600 u64 orig_super_num_devices;
2601 int ret = 0;
2602 bool seeding_dev = false;
2603 bool locked = false;
2604
2605 if (sb_rdonly(sb) && !fs_devices->seeding)
2606 return -EROFS;
2607
2608 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2609 fs_info->bdev_holder);
2610 if (IS_ERR(bdev))
2611 return PTR_ERR(bdev);
2612
2613 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2614 ret = -EINVAL;
2615 goto error;
2616 }
2617
2618 if (fs_devices->seeding) {
2619 seeding_dev = true;
2620 down_write(&sb->s_umount);
2621 mutex_lock(&uuid_mutex);
2622 locked = true;
2623 }
2624
2625 sync_blockdev(bdev);
2626
2627 rcu_read_lock();
2628 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2629 if (device->bdev == bdev) {
2630 ret = -EEXIST;
2631 rcu_read_unlock();
2632 goto error;
2633 }
2634 }
2635 rcu_read_unlock();
2636
2637 device = btrfs_alloc_device(fs_info, NULL, NULL);
2638 if (IS_ERR(device)) {
2639 /* we can safely leave the fs_devices entry around */
2640 ret = PTR_ERR(device);
2641 goto error;
2642 }
2643
2644 name = rcu_string_strdup(device_path, GFP_KERNEL);
2645 if (!name) {
2646 ret = -ENOMEM;
2647 goto error_free_device;
2648 }
2649 rcu_assign_pointer(device->name, name);
2650
2651 device->fs_info = fs_info;
2652 device->bdev = bdev;
2653 ret = lookup_bdev(device_path, &device->devt);
2654 if (ret)
2655 goto error_free_device;
2656
2657 ret = btrfs_get_dev_zone_info(device, false);
2658 if (ret)
2659 goto error_free_device;
2660
2661 trans = btrfs_start_transaction(root, 0);
2662 if (IS_ERR(trans)) {
2663 ret = PTR_ERR(trans);
2664 goto error_free_zone;
2665 }
2666
2667 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2668 device->generation = trans->transid;
2669 device->io_width = fs_info->sectorsize;
2670 device->io_align = fs_info->sectorsize;
2671 device->sector_size = fs_info->sectorsize;
2672 device->total_bytes =
2673 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2674 device->disk_total_bytes = device->total_bytes;
2675 device->commit_total_bytes = device->total_bytes;
2676 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2677 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2678 device->mode = FMODE_EXCL;
2679 device->dev_stats_valid = 1;
2680 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2681
2682 if (seeding_dev) {
2683 btrfs_clear_sb_rdonly(sb);
2684
2685 /* GFP_KERNEL allocation must not be under device_list_mutex */
2686 seed_devices = btrfs_init_sprout(fs_info);
2687 if (IS_ERR(seed_devices)) {
2688 ret = PTR_ERR(seed_devices);
2689 btrfs_abort_transaction(trans, ret);
2690 goto error_trans;
2691 }
2692 }
2693
2694 mutex_lock(&fs_devices->device_list_mutex);
2695 if (seeding_dev) {
2696 btrfs_setup_sprout(fs_info, seed_devices);
2697 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2698 device);
2699 }
2700
2701 device->fs_devices = fs_devices;
2702
2703 mutex_lock(&fs_info->chunk_mutex);
2704 list_add_rcu(&device->dev_list, &fs_devices->devices);
2705 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2706 fs_devices->num_devices++;
2707 fs_devices->open_devices++;
2708 fs_devices->rw_devices++;
2709 fs_devices->total_devices++;
2710 fs_devices->total_rw_bytes += device->total_bytes;
2711
2712 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2713
2714 if (!bdev_nonrot(bdev))
2715 fs_devices->rotating = true;
2716
2717 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2718 btrfs_set_super_total_bytes(fs_info->super_copy,
2719 round_down(orig_super_total_bytes + device->total_bytes,
2720 fs_info->sectorsize));
2721
2722 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2723 btrfs_set_super_num_devices(fs_info->super_copy,
2724 orig_super_num_devices + 1);
2725
2726 /*
2727 * we've got more storage, clear any full flags on the space
2728 * infos
2729 */
2730 btrfs_clear_space_info_full(fs_info);
2731
2732 mutex_unlock(&fs_info->chunk_mutex);
2733
2734 /* Add sysfs device entry */
2735 btrfs_sysfs_add_device(device);
2736
2737 mutex_unlock(&fs_devices->device_list_mutex);
2738
2739 if (seeding_dev) {
2740 mutex_lock(&fs_info->chunk_mutex);
2741 ret = init_first_rw_device(trans);
2742 mutex_unlock(&fs_info->chunk_mutex);
2743 if (ret) {
2744 btrfs_abort_transaction(trans, ret);
2745 goto error_sysfs;
2746 }
2747 }
2748
2749 ret = btrfs_add_dev_item(trans, device);
2750 if (ret) {
2751 btrfs_abort_transaction(trans, ret);
2752 goto error_sysfs;
2753 }
2754
2755 if (seeding_dev) {
2756 ret = btrfs_finish_sprout(trans);
2757 if (ret) {
2758 btrfs_abort_transaction(trans, ret);
2759 goto error_sysfs;
2760 }
2761
2762 /*
2763 * fs_devices now represents the newly sprouted filesystem and
2764 * its fsid has been changed by btrfs_sprout_splice().
2765 */
2766 btrfs_sysfs_update_sprout_fsid(fs_devices);
2767 }
2768
2769 ret = btrfs_commit_transaction(trans);
2770
2771 if (seeding_dev) {
2772 mutex_unlock(&uuid_mutex);
2773 up_write(&sb->s_umount);
2774 locked = false;
2775
2776 if (ret) /* transaction commit */
2777 return ret;
2778
2779 ret = btrfs_relocate_sys_chunks(fs_info);
2780 if (ret < 0)
2781 btrfs_handle_fs_error(fs_info, ret,
2782 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2783 trans = btrfs_attach_transaction(root);
2784 if (IS_ERR(trans)) {
2785 if (PTR_ERR(trans) == -ENOENT)
2786 return 0;
2787 ret = PTR_ERR(trans);
2788 trans = NULL;
2789 goto error_sysfs;
2790 }
2791 ret = btrfs_commit_transaction(trans);
2792 }
2793
2794 /*
2795 * Now that we have written a new super block to this device, check all
2796 * other fs_devices list if device_path alienates any other scanned
2797 * device.
2798 * We can ignore the return value as it typically returns -EINVAL and
2799 * only succeeds if the device was an alien.
2800 */
2801 btrfs_forget_devices(device->devt);
2802
2803 /* Update ctime/mtime for blkid or udev */
2804 update_dev_time(device_path);
2805
2806 return ret;
2807
2808 error_sysfs:
2809 btrfs_sysfs_remove_device(device);
2810 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2811 mutex_lock(&fs_info->chunk_mutex);
2812 list_del_rcu(&device->dev_list);
2813 list_del(&device->dev_alloc_list);
2814 fs_info->fs_devices->num_devices--;
2815 fs_info->fs_devices->open_devices--;
2816 fs_info->fs_devices->rw_devices--;
2817 fs_info->fs_devices->total_devices--;
2818 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2819 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2820 btrfs_set_super_total_bytes(fs_info->super_copy,
2821 orig_super_total_bytes);
2822 btrfs_set_super_num_devices(fs_info->super_copy,
2823 orig_super_num_devices);
2824 mutex_unlock(&fs_info->chunk_mutex);
2825 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2826 error_trans:
2827 if (seeding_dev)
2828 btrfs_set_sb_rdonly(sb);
2829 if (trans)
2830 btrfs_end_transaction(trans);
2831 error_free_zone:
2832 btrfs_destroy_dev_zone_info(device);
2833 error_free_device:
2834 btrfs_free_device(device);
2835 error:
2836 blkdev_put(bdev, FMODE_EXCL);
2837 if (locked) {
2838 mutex_unlock(&uuid_mutex);
2839 up_write(&sb->s_umount);
2840 }
2841 return ret;
2842 }
2843
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2844 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2845 struct btrfs_device *device)
2846 {
2847 int ret;
2848 struct btrfs_path *path;
2849 struct btrfs_root *root = device->fs_info->chunk_root;
2850 struct btrfs_dev_item *dev_item;
2851 struct extent_buffer *leaf;
2852 struct btrfs_key key;
2853
2854 path = btrfs_alloc_path();
2855 if (!path)
2856 return -ENOMEM;
2857
2858 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2859 key.type = BTRFS_DEV_ITEM_KEY;
2860 key.offset = device->devid;
2861
2862 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2863 if (ret < 0)
2864 goto out;
2865
2866 if (ret > 0) {
2867 ret = -ENOENT;
2868 goto out;
2869 }
2870
2871 leaf = path->nodes[0];
2872 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2873
2874 btrfs_set_device_id(leaf, dev_item, device->devid);
2875 btrfs_set_device_type(leaf, dev_item, device->type);
2876 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2877 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2878 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2879 btrfs_set_device_total_bytes(leaf, dev_item,
2880 btrfs_device_get_disk_total_bytes(device));
2881 btrfs_set_device_bytes_used(leaf, dev_item,
2882 btrfs_device_get_bytes_used(device));
2883 btrfs_mark_buffer_dirty(leaf);
2884
2885 out:
2886 btrfs_free_path(path);
2887 return ret;
2888 }
2889
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2890 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2891 struct btrfs_device *device, u64 new_size)
2892 {
2893 struct btrfs_fs_info *fs_info = device->fs_info;
2894 struct btrfs_super_block *super_copy = fs_info->super_copy;
2895 u64 old_total;
2896 u64 diff;
2897 int ret;
2898
2899 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2900 return -EACCES;
2901
2902 new_size = round_down(new_size, fs_info->sectorsize);
2903
2904 mutex_lock(&fs_info->chunk_mutex);
2905 old_total = btrfs_super_total_bytes(super_copy);
2906 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2907
2908 if (new_size <= device->total_bytes ||
2909 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2910 mutex_unlock(&fs_info->chunk_mutex);
2911 return -EINVAL;
2912 }
2913
2914 btrfs_set_super_total_bytes(super_copy,
2915 round_down(old_total + diff, fs_info->sectorsize));
2916 device->fs_devices->total_rw_bytes += diff;
2917
2918 btrfs_device_set_total_bytes(device, new_size);
2919 btrfs_device_set_disk_total_bytes(device, new_size);
2920 btrfs_clear_space_info_full(device->fs_info);
2921 if (list_empty(&device->post_commit_list))
2922 list_add_tail(&device->post_commit_list,
2923 &trans->transaction->dev_update_list);
2924 mutex_unlock(&fs_info->chunk_mutex);
2925
2926 btrfs_reserve_chunk_metadata(trans, false);
2927 ret = btrfs_update_device(trans, device);
2928 btrfs_trans_release_chunk_metadata(trans);
2929
2930 return ret;
2931 }
2932
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2933 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2934 {
2935 struct btrfs_fs_info *fs_info = trans->fs_info;
2936 struct btrfs_root *root = fs_info->chunk_root;
2937 int ret;
2938 struct btrfs_path *path;
2939 struct btrfs_key key;
2940
2941 path = btrfs_alloc_path();
2942 if (!path)
2943 return -ENOMEM;
2944
2945 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2946 key.offset = chunk_offset;
2947 key.type = BTRFS_CHUNK_ITEM_KEY;
2948
2949 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2950 if (ret < 0)
2951 goto out;
2952 else if (ret > 0) { /* Logic error or corruption */
2953 btrfs_handle_fs_error(fs_info, -ENOENT,
2954 "Failed lookup while freeing chunk.");
2955 ret = -ENOENT;
2956 goto out;
2957 }
2958
2959 ret = btrfs_del_item(trans, root, path);
2960 if (ret < 0)
2961 btrfs_handle_fs_error(fs_info, ret,
2962 "Failed to delete chunk item.");
2963 out:
2964 btrfs_free_path(path);
2965 return ret;
2966 }
2967
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2968 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2969 {
2970 struct btrfs_super_block *super_copy = fs_info->super_copy;
2971 struct btrfs_disk_key *disk_key;
2972 struct btrfs_chunk *chunk;
2973 u8 *ptr;
2974 int ret = 0;
2975 u32 num_stripes;
2976 u32 array_size;
2977 u32 len = 0;
2978 u32 cur;
2979 struct btrfs_key key;
2980
2981 lockdep_assert_held(&fs_info->chunk_mutex);
2982 array_size = btrfs_super_sys_array_size(super_copy);
2983
2984 ptr = super_copy->sys_chunk_array;
2985 cur = 0;
2986
2987 while (cur < array_size) {
2988 disk_key = (struct btrfs_disk_key *)ptr;
2989 btrfs_disk_key_to_cpu(&key, disk_key);
2990
2991 len = sizeof(*disk_key);
2992
2993 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2994 chunk = (struct btrfs_chunk *)(ptr + len);
2995 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2996 len += btrfs_chunk_item_size(num_stripes);
2997 } else {
2998 ret = -EIO;
2999 break;
3000 }
3001 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3002 key.offset == chunk_offset) {
3003 memmove(ptr, ptr + len, array_size - (cur + len));
3004 array_size -= len;
3005 btrfs_set_super_sys_array_size(super_copy, array_size);
3006 } else {
3007 ptr += len;
3008 cur += len;
3009 }
3010 }
3011 return ret;
3012 }
3013
3014 /*
3015 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3016 * @logical: Logical block offset in bytes.
3017 * @length: Length of extent in bytes.
3018 *
3019 * Return: Chunk mapping or ERR_PTR.
3020 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3021 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3022 u64 logical, u64 length)
3023 {
3024 struct extent_map_tree *em_tree;
3025 struct extent_map *em;
3026
3027 em_tree = &fs_info->mapping_tree;
3028 read_lock(&em_tree->lock);
3029 em = lookup_extent_mapping(em_tree, logical, length);
3030 read_unlock(&em_tree->lock);
3031
3032 if (!em) {
3033 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3034 logical, length);
3035 return ERR_PTR(-EINVAL);
3036 }
3037
3038 if (em->start > logical || em->start + em->len < logical) {
3039 btrfs_crit(fs_info,
3040 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3041 logical, length, em->start, em->start + em->len);
3042 free_extent_map(em);
3043 return ERR_PTR(-EINVAL);
3044 }
3045
3046 /* callers are responsible for dropping em's ref. */
3047 return em;
3048 }
3049
remove_chunk_item(struct btrfs_trans_handle * trans,struct map_lookup * map,u64 chunk_offset)3050 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3051 struct map_lookup *map, u64 chunk_offset)
3052 {
3053 int i;
3054
3055 /*
3056 * Removing chunk items and updating the device items in the chunks btree
3057 * requires holding the chunk_mutex.
3058 * See the comment at btrfs_chunk_alloc() for the details.
3059 */
3060 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3061
3062 for (i = 0; i < map->num_stripes; i++) {
3063 int ret;
3064
3065 ret = btrfs_update_device(trans, map->stripes[i].dev);
3066 if (ret)
3067 return ret;
3068 }
3069
3070 return btrfs_free_chunk(trans, chunk_offset);
3071 }
3072
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3073 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3074 {
3075 struct btrfs_fs_info *fs_info = trans->fs_info;
3076 struct extent_map *em;
3077 struct map_lookup *map;
3078 u64 dev_extent_len = 0;
3079 int i, ret = 0;
3080 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3081
3082 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3083 if (IS_ERR(em)) {
3084 /*
3085 * This is a logic error, but we don't want to just rely on the
3086 * user having built with ASSERT enabled, so if ASSERT doesn't
3087 * do anything we still error out.
3088 */
3089 ASSERT(0);
3090 return PTR_ERR(em);
3091 }
3092 map = em->map_lookup;
3093
3094 /*
3095 * First delete the device extent items from the devices btree.
3096 * We take the device_list_mutex to avoid racing with the finishing phase
3097 * of a device replace operation. See the comment below before acquiring
3098 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3099 * because that can result in a deadlock when deleting the device extent
3100 * items from the devices btree - COWing an extent buffer from the btree
3101 * may result in allocating a new metadata chunk, which would attempt to
3102 * lock again fs_info->chunk_mutex.
3103 */
3104 mutex_lock(&fs_devices->device_list_mutex);
3105 for (i = 0; i < map->num_stripes; i++) {
3106 struct btrfs_device *device = map->stripes[i].dev;
3107 ret = btrfs_free_dev_extent(trans, device,
3108 map->stripes[i].physical,
3109 &dev_extent_len);
3110 if (ret) {
3111 mutex_unlock(&fs_devices->device_list_mutex);
3112 btrfs_abort_transaction(trans, ret);
3113 goto out;
3114 }
3115
3116 if (device->bytes_used > 0) {
3117 mutex_lock(&fs_info->chunk_mutex);
3118 btrfs_device_set_bytes_used(device,
3119 device->bytes_used - dev_extent_len);
3120 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3121 btrfs_clear_space_info_full(fs_info);
3122 mutex_unlock(&fs_info->chunk_mutex);
3123 }
3124 }
3125 mutex_unlock(&fs_devices->device_list_mutex);
3126
3127 /*
3128 * We acquire fs_info->chunk_mutex for 2 reasons:
3129 *
3130 * 1) Just like with the first phase of the chunk allocation, we must
3131 * reserve system space, do all chunk btree updates and deletions, and
3132 * update the system chunk array in the superblock while holding this
3133 * mutex. This is for similar reasons as explained on the comment at
3134 * the top of btrfs_chunk_alloc();
3135 *
3136 * 2) Prevent races with the final phase of a device replace operation
3137 * that replaces the device object associated with the map's stripes,
3138 * because the device object's id can change at any time during that
3139 * final phase of the device replace operation
3140 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3141 * replaced device and then see it with an ID of
3142 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3143 * the device item, which does not exists on the chunk btree.
3144 * The finishing phase of device replace acquires both the
3145 * device_list_mutex and the chunk_mutex, in that order, so we are
3146 * safe by just acquiring the chunk_mutex.
3147 */
3148 trans->removing_chunk = true;
3149 mutex_lock(&fs_info->chunk_mutex);
3150
3151 check_system_chunk(trans, map->type);
3152
3153 ret = remove_chunk_item(trans, map, chunk_offset);
3154 /*
3155 * Normally we should not get -ENOSPC since we reserved space before
3156 * through the call to check_system_chunk().
3157 *
3158 * Despite our system space_info having enough free space, we may not
3159 * be able to allocate extents from its block groups, because all have
3160 * an incompatible profile, which will force us to allocate a new system
3161 * block group with the right profile, or right after we called
3162 * check_system_space() above, a scrub turned the only system block group
3163 * with enough free space into RO mode.
3164 * This is explained with more detail at do_chunk_alloc().
3165 *
3166 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3167 */
3168 if (ret == -ENOSPC) {
3169 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3170 struct btrfs_block_group *sys_bg;
3171
3172 sys_bg = btrfs_create_chunk(trans, sys_flags);
3173 if (IS_ERR(sys_bg)) {
3174 ret = PTR_ERR(sys_bg);
3175 btrfs_abort_transaction(trans, ret);
3176 goto out;
3177 }
3178
3179 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3180 if (ret) {
3181 btrfs_abort_transaction(trans, ret);
3182 goto out;
3183 }
3184
3185 ret = remove_chunk_item(trans, map, chunk_offset);
3186 if (ret) {
3187 btrfs_abort_transaction(trans, ret);
3188 goto out;
3189 }
3190 } else if (ret) {
3191 btrfs_abort_transaction(trans, ret);
3192 goto out;
3193 }
3194
3195 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3196
3197 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3198 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3199 if (ret) {
3200 btrfs_abort_transaction(trans, ret);
3201 goto out;
3202 }
3203 }
3204
3205 mutex_unlock(&fs_info->chunk_mutex);
3206 trans->removing_chunk = false;
3207
3208 /*
3209 * We are done with chunk btree updates and deletions, so release the
3210 * system space we previously reserved (with check_system_chunk()).
3211 */
3212 btrfs_trans_release_chunk_metadata(trans);
3213
3214 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3215 if (ret) {
3216 btrfs_abort_transaction(trans, ret);
3217 goto out;
3218 }
3219
3220 out:
3221 if (trans->removing_chunk) {
3222 mutex_unlock(&fs_info->chunk_mutex);
3223 trans->removing_chunk = false;
3224 }
3225 /* once for us */
3226 free_extent_map(em);
3227 return ret;
3228 }
3229
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3230 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3231 {
3232 struct btrfs_root *root = fs_info->chunk_root;
3233 struct btrfs_trans_handle *trans;
3234 struct btrfs_block_group *block_group;
3235 u64 length;
3236 int ret;
3237
3238 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3239 btrfs_err(fs_info,
3240 "relocate: not supported on extent tree v2 yet");
3241 return -EINVAL;
3242 }
3243
3244 /*
3245 * Prevent races with automatic removal of unused block groups.
3246 * After we relocate and before we remove the chunk with offset
3247 * chunk_offset, automatic removal of the block group can kick in,
3248 * resulting in a failure when calling btrfs_remove_chunk() below.
3249 *
3250 * Make sure to acquire this mutex before doing a tree search (dev
3251 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3252 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3253 * we release the path used to search the chunk/dev tree and before
3254 * the current task acquires this mutex and calls us.
3255 */
3256 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3257
3258 /* step one, relocate all the extents inside this chunk */
3259 btrfs_scrub_pause(fs_info);
3260 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3261 btrfs_scrub_continue(fs_info);
3262 if (ret)
3263 return ret;
3264
3265 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3266 if (!block_group)
3267 return -ENOENT;
3268 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3269 length = block_group->length;
3270 btrfs_put_block_group(block_group);
3271
3272 /*
3273 * On a zoned file system, discard the whole block group, this will
3274 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3275 * resetting the zone fails, don't treat it as a fatal problem from the
3276 * filesystem's point of view.
3277 */
3278 if (btrfs_is_zoned(fs_info)) {
3279 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3280 if (ret)
3281 btrfs_info(fs_info,
3282 "failed to reset zone %llu after relocation",
3283 chunk_offset);
3284 }
3285
3286 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3287 chunk_offset);
3288 if (IS_ERR(trans)) {
3289 ret = PTR_ERR(trans);
3290 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3291 return ret;
3292 }
3293
3294 /*
3295 * step two, delete the device extents and the
3296 * chunk tree entries
3297 */
3298 ret = btrfs_remove_chunk(trans, chunk_offset);
3299 btrfs_end_transaction(trans);
3300 return ret;
3301 }
3302
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3303 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3304 {
3305 struct btrfs_root *chunk_root = fs_info->chunk_root;
3306 struct btrfs_path *path;
3307 struct extent_buffer *leaf;
3308 struct btrfs_chunk *chunk;
3309 struct btrfs_key key;
3310 struct btrfs_key found_key;
3311 u64 chunk_type;
3312 bool retried = false;
3313 int failed = 0;
3314 int ret;
3315
3316 path = btrfs_alloc_path();
3317 if (!path)
3318 return -ENOMEM;
3319
3320 again:
3321 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3322 key.offset = (u64)-1;
3323 key.type = BTRFS_CHUNK_ITEM_KEY;
3324
3325 while (1) {
3326 mutex_lock(&fs_info->reclaim_bgs_lock);
3327 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3328 if (ret < 0) {
3329 mutex_unlock(&fs_info->reclaim_bgs_lock);
3330 goto error;
3331 }
3332 BUG_ON(ret == 0); /* Corruption */
3333
3334 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3335 key.type);
3336 if (ret)
3337 mutex_unlock(&fs_info->reclaim_bgs_lock);
3338 if (ret < 0)
3339 goto error;
3340 if (ret > 0)
3341 break;
3342
3343 leaf = path->nodes[0];
3344 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3345
3346 chunk = btrfs_item_ptr(leaf, path->slots[0],
3347 struct btrfs_chunk);
3348 chunk_type = btrfs_chunk_type(leaf, chunk);
3349 btrfs_release_path(path);
3350
3351 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3352 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3353 if (ret == -ENOSPC)
3354 failed++;
3355 else
3356 BUG_ON(ret);
3357 }
3358 mutex_unlock(&fs_info->reclaim_bgs_lock);
3359
3360 if (found_key.offset == 0)
3361 break;
3362 key.offset = found_key.offset - 1;
3363 }
3364 ret = 0;
3365 if (failed && !retried) {
3366 failed = 0;
3367 retried = true;
3368 goto again;
3369 } else if (WARN_ON(failed && retried)) {
3370 ret = -ENOSPC;
3371 }
3372 error:
3373 btrfs_free_path(path);
3374 return ret;
3375 }
3376
3377 /*
3378 * return 1 : allocate a data chunk successfully,
3379 * return <0: errors during allocating a data chunk,
3380 * return 0 : no need to allocate a data chunk.
3381 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3382 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3383 u64 chunk_offset)
3384 {
3385 struct btrfs_block_group *cache;
3386 u64 bytes_used;
3387 u64 chunk_type;
3388
3389 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3390 ASSERT(cache);
3391 chunk_type = cache->flags;
3392 btrfs_put_block_group(cache);
3393
3394 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3395 return 0;
3396
3397 spin_lock(&fs_info->data_sinfo->lock);
3398 bytes_used = fs_info->data_sinfo->bytes_used;
3399 spin_unlock(&fs_info->data_sinfo->lock);
3400
3401 if (!bytes_used) {
3402 struct btrfs_trans_handle *trans;
3403 int ret;
3404
3405 trans = btrfs_join_transaction(fs_info->tree_root);
3406 if (IS_ERR(trans))
3407 return PTR_ERR(trans);
3408
3409 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3410 btrfs_end_transaction(trans);
3411 if (ret < 0)
3412 return ret;
3413 return 1;
3414 }
3415
3416 return 0;
3417 }
3418
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3419 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3420 struct btrfs_balance_control *bctl)
3421 {
3422 struct btrfs_root *root = fs_info->tree_root;
3423 struct btrfs_trans_handle *trans;
3424 struct btrfs_balance_item *item;
3425 struct btrfs_disk_balance_args disk_bargs;
3426 struct btrfs_path *path;
3427 struct extent_buffer *leaf;
3428 struct btrfs_key key;
3429 int ret, err;
3430
3431 path = btrfs_alloc_path();
3432 if (!path)
3433 return -ENOMEM;
3434
3435 trans = btrfs_start_transaction(root, 0);
3436 if (IS_ERR(trans)) {
3437 btrfs_free_path(path);
3438 return PTR_ERR(trans);
3439 }
3440
3441 key.objectid = BTRFS_BALANCE_OBJECTID;
3442 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3443 key.offset = 0;
3444
3445 ret = btrfs_insert_empty_item(trans, root, path, &key,
3446 sizeof(*item));
3447 if (ret)
3448 goto out;
3449
3450 leaf = path->nodes[0];
3451 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3452
3453 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3454
3455 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3456 btrfs_set_balance_data(leaf, item, &disk_bargs);
3457 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3458 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3459 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3460 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3461
3462 btrfs_set_balance_flags(leaf, item, bctl->flags);
3463
3464 btrfs_mark_buffer_dirty(leaf);
3465 out:
3466 btrfs_free_path(path);
3467 err = btrfs_commit_transaction(trans);
3468 if (err && !ret)
3469 ret = err;
3470 return ret;
3471 }
3472
del_balance_item(struct btrfs_fs_info * fs_info)3473 static int del_balance_item(struct btrfs_fs_info *fs_info)
3474 {
3475 struct btrfs_root *root = fs_info->tree_root;
3476 struct btrfs_trans_handle *trans;
3477 struct btrfs_path *path;
3478 struct btrfs_key key;
3479 int ret, err;
3480
3481 path = btrfs_alloc_path();
3482 if (!path)
3483 return -ENOMEM;
3484
3485 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3486 if (IS_ERR(trans)) {
3487 btrfs_free_path(path);
3488 return PTR_ERR(trans);
3489 }
3490
3491 key.objectid = BTRFS_BALANCE_OBJECTID;
3492 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3493 key.offset = 0;
3494
3495 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3496 if (ret < 0)
3497 goto out;
3498 if (ret > 0) {
3499 ret = -ENOENT;
3500 goto out;
3501 }
3502
3503 ret = btrfs_del_item(trans, root, path);
3504 out:
3505 btrfs_free_path(path);
3506 err = btrfs_commit_transaction(trans);
3507 if (err && !ret)
3508 ret = err;
3509 return ret;
3510 }
3511
3512 /*
3513 * This is a heuristic used to reduce the number of chunks balanced on
3514 * resume after balance was interrupted.
3515 */
update_balance_args(struct btrfs_balance_control * bctl)3516 static void update_balance_args(struct btrfs_balance_control *bctl)
3517 {
3518 /*
3519 * Turn on soft mode for chunk types that were being converted.
3520 */
3521 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3522 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3523 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3524 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3525 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3526 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3527
3528 /*
3529 * Turn on usage filter if is not already used. The idea is
3530 * that chunks that we have already balanced should be
3531 * reasonably full. Don't do it for chunks that are being
3532 * converted - that will keep us from relocating unconverted
3533 * (albeit full) chunks.
3534 */
3535 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3536 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3537 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3538 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3539 bctl->data.usage = 90;
3540 }
3541 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3542 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3543 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3544 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3545 bctl->sys.usage = 90;
3546 }
3547 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3548 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3549 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3550 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3551 bctl->meta.usage = 90;
3552 }
3553 }
3554
3555 /*
3556 * Clear the balance status in fs_info and delete the balance item from disk.
3557 */
reset_balance_state(struct btrfs_fs_info * fs_info)3558 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3559 {
3560 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3561 int ret;
3562
3563 BUG_ON(!fs_info->balance_ctl);
3564
3565 spin_lock(&fs_info->balance_lock);
3566 fs_info->balance_ctl = NULL;
3567 spin_unlock(&fs_info->balance_lock);
3568
3569 kfree(bctl);
3570 ret = del_balance_item(fs_info);
3571 if (ret)
3572 btrfs_handle_fs_error(fs_info, ret, NULL);
3573 }
3574
3575 /*
3576 * Balance filters. Return 1 if chunk should be filtered out
3577 * (should not be balanced).
3578 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3579 static int chunk_profiles_filter(u64 chunk_type,
3580 struct btrfs_balance_args *bargs)
3581 {
3582 chunk_type = chunk_to_extended(chunk_type) &
3583 BTRFS_EXTENDED_PROFILE_MASK;
3584
3585 if (bargs->profiles & chunk_type)
3586 return 0;
3587
3588 return 1;
3589 }
3590
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3591 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3592 struct btrfs_balance_args *bargs)
3593 {
3594 struct btrfs_block_group *cache;
3595 u64 chunk_used;
3596 u64 user_thresh_min;
3597 u64 user_thresh_max;
3598 int ret = 1;
3599
3600 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3601 chunk_used = cache->used;
3602
3603 if (bargs->usage_min == 0)
3604 user_thresh_min = 0;
3605 else
3606 user_thresh_min = div_factor_fine(cache->length,
3607 bargs->usage_min);
3608
3609 if (bargs->usage_max == 0)
3610 user_thresh_max = 1;
3611 else if (bargs->usage_max > 100)
3612 user_thresh_max = cache->length;
3613 else
3614 user_thresh_max = div_factor_fine(cache->length,
3615 bargs->usage_max);
3616
3617 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3618 ret = 0;
3619
3620 btrfs_put_block_group(cache);
3621 return ret;
3622 }
3623
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3624 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3625 u64 chunk_offset, struct btrfs_balance_args *bargs)
3626 {
3627 struct btrfs_block_group *cache;
3628 u64 chunk_used, user_thresh;
3629 int ret = 1;
3630
3631 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3632 chunk_used = cache->used;
3633
3634 if (bargs->usage_min == 0)
3635 user_thresh = 1;
3636 else if (bargs->usage > 100)
3637 user_thresh = cache->length;
3638 else
3639 user_thresh = div_factor_fine(cache->length, bargs->usage);
3640
3641 if (chunk_used < user_thresh)
3642 ret = 0;
3643
3644 btrfs_put_block_group(cache);
3645 return ret;
3646 }
3647
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3648 static int chunk_devid_filter(struct extent_buffer *leaf,
3649 struct btrfs_chunk *chunk,
3650 struct btrfs_balance_args *bargs)
3651 {
3652 struct btrfs_stripe *stripe;
3653 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3654 int i;
3655
3656 for (i = 0; i < num_stripes; i++) {
3657 stripe = btrfs_stripe_nr(chunk, i);
3658 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3659 return 0;
3660 }
3661
3662 return 1;
3663 }
3664
calc_data_stripes(u64 type,int num_stripes)3665 static u64 calc_data_stripes(u64 type, int num_stripes)
3666 {
3667 const int index = btrfs_bg_flags_to_raid_index(type);
3668 const int ncopies = btrfs_raid_array[index].ncopies;
3669 const int nparity = btrfs_raid_array[index].nparity;
3670
3671 return (num_stripes - nparity) / ncopies;
3672 }
3673
3674 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3675 static int chunk_drange_filter(struct extent_buffer *leaf,
3676 struct btrfs_chunk *chunk,
3677 struct btrfs_balance_args *bargs)
3678 {
3679 struct btrfs_stripe *stripe;
3680 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3681 u64 stripe_offset;
3682 u64 stripe_length;
3683 u64 type;
3684 int factor;
3685 int i;
3686
3687 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3688 return 0;
3689
3690 type = btrfs_chunk_type(leaf, chunk);
3691 factor = calc_data_stripes(type, num_stripes);
3692
3693 for (i = 0; i < num_stripes; i++) {
3694 stripe = btrfs_stripe_nr(chunk, i);
3695 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3696 continue;
3697
3698 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3699 stripe_length = btrfs_chunk_length(leaf, chunk);
3700 stripe_length = div_u64(stripe_length, factor);
3701
3702 if (stripe_offset < bargs->pend &&
3703 stripe_offset + stripe_length > bargs->pstart)
3704 return 0;
3705 }
3706
3707 return 1;
3708 }
3709
3710 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3711 static int chunk_vrange_filter(struct extent_buffer *leaf,
3712 struct btrfs_chunk *chunk,
3713 u64 chunk_offset,
3714 struct btrfs_balance_args *bargs)
3715 {
3716 if (chunk_offset < bargs->vend &&
3717 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3718 /* at least part of the chunk is inside this vrange */
3719 return 0;
3720
3721 return 1;
3722 }
3723
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3724 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3725 struct btrfs_chunk *chunk,
3726 struct btrfs_balance_args *bargs)
3727 {
3728 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3729
3730 if (bargs->stripes_min <= num_stripes
3731 && num_stripes <= bargs->stripes_max)
3732 return 0;
3733
3734 return 1;
3735 }
3736
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3737 static int chunk_soft_convert_filter(u64 chunk_type,
3738 struct btrfs_balance_args *bargs)
3739 {
3740 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3741 return 0;
3742
3743 chunk_type = chunk_to_extended(chunk_type) &
3744 BTRFS_EXTENDED_PROFILE_MASK;
3745
3746 if (bargs->target == chunk_type)
3747 return 1;
3748
3749 return 0;
3750 }
3751
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3752 static int should_balance_chunk(struct extent_buffer *leaf,
3753 struct btrfs_chunk *chunk, u64 chunk_offset)
3754 {
3755 struct btrfs_fs_info *fs_info = leaf->fs_info;
3756 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3757 struct btrfs_balance_args *bargs = NULL;
3758 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3759
3760 /* type filter */
3761 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3762 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3763 return 0;
3764 }
3765
3766 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3767 bargs = &bctl->data;
3768 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3769 bargs = &bctl->sys;
3770 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3771 bargs = &bctl->meta;
3772
3773 /* profiles filter */
3774 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3775 chunk_profiles_filter(chunk_type, bargs)) {
3776 return 0;
3777 }
3778
3779 /* usage filter */
3780 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3781 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3782 return 0;
3783 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3784 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3785 return 0;
3786 }
3787
3788 /* devid filter */
3789 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3790 chunk_devid_filter(leaf, chunk, bargs)) {
3791 return 0;
3792 }
3793
3794 /* drange filter, makes sense only with devid filter */
3795 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3796 chunk_drange_filter(leaf, chunk, bargs)) {
3797 return 0;
3798 }
3799
3800 /* vrange filter */
3801 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3802 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3803 return 0;
3804 }
3805
3806 /* stripes filter */
3807 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3808 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3809 return 0;
3810 }
3811
3812 /* soft profile changing mode */
3813 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3814 chunk_soft_convert_filter(chunk_type, bargs)) {
3815 return 0;
3816 }
3817
3818 /*
3819 * limited by count, must be the last filter
3820 */
3821 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3822 if (bargs->limit == 0)
3823 return 0;
3824 else
3825 bargs->limit--;
3826 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3827 /*
3828 * Same logic as the 'limit' filter; the minimum cannot be
3829 * determined here because we do not have the global information
3830 * about the count of all chunks that satisfy the filters.
3831 */
3832 if (bargs->limit_max == 0)
3833 return 0;
3834 else
3835 bargs->limit_max--;
3836 }
3837
3838 return 1;
3839 }
3840
__btrfs_balance(struct btrfs_fs_info * fs_info)3841 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3842 {
3843 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3844 struct btrfs_root *chunk_root = fs_info->chunk_root;
3845 u64 chunk_type;
3846 struct btrfs_chunk *chunk;
3847 struct btrfs_path *path = NULL;
3848 struct btrfs_key key;
3849 struct btrfs_key found_key;
3850 struct extent_buffer *leaf;
3851 int slot;
3852 int ret;
3853 int enospc_errors = 0;
3854 bool counting = true;
3855 /* The single value limit and min/max limits use the same bytes in the */
3856 u64 limit_data = bctl->data.limit;
3857 u64 limit_meta = bctl->meta.limit;
3858 u64 limit_sys = bctl->sys.limit;
3859 u32 count_data = 0;
3860 u32 count_meta = 0;
3861 u32 count_sys = 0;
3862 int chunk_reserved = 0;
3863
3864 path = btrfs_alloc_path();
3865 if (!path) {
3866 ret = -ENOMEM;
3867 goto error;
3868 }
3869
3870 /* zero out stat counters */
3871 spin_lock(&fs_info->balance_lock);
3872 memset(&bctl->stat, 0, sizeof(bctl->stat));
3873 spin_unlock(&fs_info->balance_lock);
3874 again:
3875 if (!counting) {
3876 /*
3877 * The single value limit and min/max limits use the same bytes
3878 * in the
3879 */
3880 bctl->data.limit = limit_data;
3881 bctl->meta.limit = limit_meta;
3882 bctl->sys.limit = limit_sys;
3883 }
3884 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3885 key.offset = (u64)-1;
3886 key.type = BTRFS_CHUNK_ITEM_KEY;
3887
3888 while (1) {
3889 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3890 atomic_read(&fs_info->balance_cancel_req)) {
3891 ret = -ECANCELED;
3892 goto error;
3893 }
3894
3895 mutex_lock(&fs_info->reclaim_bgs_lock);
3896 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3897 if (ret < 0) {
3898 mutex_unlock(&fs_info->reclaim_bgs_lock);
3899 goto error;
3900 }
3901
3902 /*
3903 * this shouldn't happen, it means the last relocate
3904 * failed
3905 */
3906 if (ret == 0)
3907 BUG(); /* FIXME break ? */
3908
3909 ret = btrfs_previous_item(chunk_root, path, 0,
3910 BTRFS_CHUNK_ITEM_KEY);
3911 if (ret) {
3912 mutex_unlock(&fs_info->reclaim_bgs_lock);
3913 ret = 0;
3914 break;
3915 }
3916
3917 leaf = path->nodes[0];
3918 slot = path->slots[0];
3919 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3920
3921 if (found_key.objectid != key.objectid) {
3922 mutex_unlock(&fs_info->reclaim_bgs_lock);
3923 break;
3924 }
3925
3926 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3927 chunk_type = btrfs_chunk_type(leaf, chunk);
3928
3929 if (!counting) {
3930 spin_lock(&fs_info->balance_lock);
3931 bctl->stat.considered++;
3932 spin_unlock(&fs_info->balance_lock);
3933 }
3934
3935 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3936
3937 btrfs_release_path(path);
3938 if (!ret) {
3939 mutex_unlock(&fs_info->reclaim_bgs_lock);
3940 goto loop;
3941 }
3942
3943 if (counting) {
3944 mutex_unlock(&fs_info->reclaim_bgs_lock);
3945 spin_lock(&fs_info->balance_lock);
3946 bctl->stat.expected++;
3947 spin_unlock(&fs_info->balance_lock);
3948
3949 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3950 count_data++;
3951 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3952 count_sys++;
3953 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3954 count_meta++;
3955
3956 goto loop;
3957 }
3958
3959 /*
3960 * Apply limit_min filter, no need to check if the LIMITS
3961 * filter is used, limit_min is 0 by default
3962 */
3963 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3964 count_data < bctl->data.limit_min)
3965 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3966 count_meta < bctl->meta.limit_min)
3967 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3968 count_sys < bctl->sys.limit_min)) {
3969 mutex_unlock(&fs_info->reclaim_bgs_lock);
3970 goto loop;
3971 }
3972
3973 if (!chunk_reserved) {
3974 /*
3975 * We may be relocating the only data chunk we have,
3976 * which could potentially end up with losing data's
3977 * raid profile, so lets allocate an empty one in
3978 * advance.
3979 */
3980 ret = btrfs_may_alloc_data_chunk(fs_info,
3981 found_key.offset);
3982 if (ret < 0) {
3983 mutex_unlock(&fs_info->reclaim_bgs_lock);
3984 goto error;
3985 } else if (ret == 1) {
3986 chunk_reserved = 1;
3987 }
3988 }
3989
3990 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3991 mutex_unlock(&fs_info->reclaim_bgs_lock);
3992 if (ret == -ENOSPC) {
3993 enospc_errors++;
3994 } else if (ret == -ETXTBSY) {
3995 btrfs_info(fs_info,
3996 "skipping relocation of block group %llu due to active swapfile",
3997 found_key.offset);
3998 ret = 0;
3999 } else if (ret) {
4000 goto error;
4001 } else {
4002 spin_lock(&fs_info->balance_lock);
4003 bctl->stat.completed++;
4004 spin_unlock(&fs_info->balance_lock);
4005 }
4006 loop:
4007 if (found_key.offset == 0)
4008 break;
4009 key.offset = found_key.offset - 1;
4010 }
4011
4012 if (counting) {
4013 btrfs_release_path(path);
4014 counting = false;
4015 goto again;
4016 }
4017 error:
4018 btrfs_free_path(path);
4019 if (enospc_errors) {
4020 btrfs_info(fs_info, "%d enospc errors during balance",
4021 enospc_errors);
4022 if (!ret)
4023 ret = -ENOSPC;
4024 }
4025
4026 return ret;
4027 }
4028
4029 /**
4030 * alloc_profile_is_valid - see if a given profile is valid and reduced
4031 * @flags: profile to validate
4032 * @extended: if true @flags is treated as an extended profile
4033 */
alloc_profile_is_valid(u64 flags,int extended)4034 static int alloc_profile_is_valid(u64 flags, int extended)
4035 {
4036 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4037 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4038
4039 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4040
4041 /* 1) check that all other bits are zeroed */
4042 if (flags & ~mask)
4043 return 0;
4044
4045 /* 2) see if profile is reduced */
4046 if (flags == 0)
4047 return !extended; /* "0" is valid for usual profiles */
4048
4049 return has_single_bit_set(flags);
4050 }
4051
balance_need_close(struct btrfs_fs_info * fs_info)4052 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4053 {
4054 /* cancel requested || normal exit path */
4055 return atomic_read(&fs_info->balance_cancel_req) ||
4056 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4057 atomic_read(&fs_info->balance_cancel_req) == 0);
4058 }
4059
4060 /*
4061 * Validate target profile against allowed profiles and return true if it's OK.
4062 * Otherwise print the error message and return false.
4063 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4064 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4065 const struct btrfs_balance_args *bargs,
4066 u64 allowed, const char *type)
4067 {
4068 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4069 return true;
4070
4071 /* Profile is valid and does not have bits outside of the allowed set */
4072 if (alloc_profile_is_valid(bargs->target, 1) &&
4073 (bargs->target & ~allowed) == 0)
4074 return true;
4075
4076 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4077 type, btrfs_bg_type_to_raid_name(bargs->target));
4078 return false;
4079 }
4080
4081 /*
4082 * Fill @buf with textual description of balance filter flags @bargs, up to
4083 * @size_buf including the terminating null. The output may be trimmed if it
4084 * does not fit into the provided buffer.
4085 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4086 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4087 u32 size_buf)
4088 {
4089 int ret;
4090 u32 size_bp = size_buf;
4091 char *bp = buf;
4092 u64 flags = bargs->flags;
4093 char tmp_buf[128] = {'\0'};
4094
4095 if (!flags)
4096 return;
4097
4098 #define CHECK_APPEND_NOARG(a) \
4099 do { \
4100 ret = snprintf(bp, size_bp, (a)); \
4101 if (ret < 0 || ret >= size_bp) \
4102 goto out_overflow; \
4103 size_bp -= ret; \
4104 bp += ret; \
4105 } while (0)
4106
4107 #define CHECK_APPEND_1ARG(a, v1) \
4108 do { \
4109 ret = snprintf(bp, size_bp, (a), (v1)); \
4110 if (ret < 0 || ret >= size_bp) \
4111 goto out_overflow; \
4112 size_bp -= ret; \
4113 bp += ret; \
4114 } while (0)
4115
4116 #define CHECK_APPEND_2ARG(a, v1, v2) \
4117 do { \
4118 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4119 if (ret < 0 || ret >= size_bp) \
4120 goto out_overflow; \
4121 size_bp -= ret; \
4122 bp += ret; \
4123 } while (0)
4124
4125 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4126 CHECK_APPEND_1ARG("convert=%s,",
4127 btrfs_bg_type_to_raid_name(bargs->target));
4128
4129 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4130 CHECK_APPEND_NOARG("soft,");
4131
4132 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4133 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4134 sizeof(tmp_buf));
4135 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4136 }
4137
4138 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4139 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4140
4141 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4142 CHECK_APPEND_2ARG("usage=%u..%u,",
4143 bargs->usage_min, bargs->usage_max);
4144
4145 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4146 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4147
4148 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4149 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4150 bargs->pstart, bargs->pend);
4151
4152 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4153 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4154 bargs->vstart, bargs->vend);
4155
4156 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4157 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4158
4159 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4160 CHECK_APPEND_2ARG("limit=%u..%u,",
4161 bargs->limit_min, bargs->limit_max);
4162
4163 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4164 CHECK_APPEND_2ARG("stripes=%u..%u,",
4165 bargs->stripes_min, bargs->stripes_max);
4166
4167 #undef CHECK_APPEND_2ARG
4168 #undef CHECK_APPEND_1ARG
4169 #undef CHECK_APPEND_NOARG
4170
4171 out_overflow:
4172
4173 if (size_bp < size_buf)
4174 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4175 else
4176 buf[0] = '\0';
4177 }
4178
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4179 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4180 {
4181 u32 size_buf = 1024;
4182 char tmp_buf[192] = {'\0'};
4183 char *buf;
4184 char *bp;
4185 u32 size_bp = size_buf;
4186 int ret;
4187 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4188
4189 buf = kzalloc(size_buf, GFP_KERNEL);
4190 if (!buf)
4191 return;
4192
4193 bp = buf;
4194
4195 #define CHECK_APPEND_1ARG(a, v1) \
4196 do { \
4197 ret = snprintf(bp, size_bp, (a), (v1)); \
4198 if (ret < 0 || ret >= size_bp) \
4199 goto out_overflow; \
4200 size_bp -= ret; \
4201 bp += ret; \
4202 } while (0)
4203
4204 if (bctl->flags & BTRFS_BALANCE_FORCE)
4205 CHECK_APPEND_1ARG("%s", "-f ");
4206
4207 if (bctl->flags & BTRFS_BALANCE_DATA) {
4208 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4209 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4210 }
4211
4212 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4213 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4214 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4215 }
4216
4217 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4218 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4219 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4220 }
4221
4222 #undef CHECK_APPEND_1ARG
4223
4224 out_overflow:
4225
4226 if (size_bp < size_buf)
4227 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4228 btrfs_info(fs_info, "balance: %s %s",
4229 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4230 "resume" : "start", buf);
4231
4232 kfree(buf);
4233 }
4234
4235 /*
4236 * Should be called with balance mutexe held
4237 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4238 int btrfs_balance(struct btrfs_fs_info *fs_info,
4239 struct btrfs_balance_control *bctl,
4240 struct btrfs_ioctl_balance_args *bargs)
4241 {
4242 u64 meta_target, data_target;
4243 u64 allowed;
4244 int mixed = 0;
4245 int ret;
4246 u64 num_devices;
4247 unsigned seq;
4248 bool reducing_redundancy;
4249 int i;
4250
4251 if (btrfs_fs_closing(fs_info) ||
4252 atomic_read(&fs_info->balance_pause_req) ||
4253 btrfs_should_cancel_balance(fs_info)) {
4254 ret = -EINVAL;
4255 goto out;
4256 }
4257
4258 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4259 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4260 mixed = 1;
4261
4262 /*
4263 * In case of mixed groups both data and meta should be picked,
4264 * and identical options should be given for both of them.
4265 */
4266 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4267 if (mixed && (bctl->flags & allowed)) {
4268 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4269 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4270 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4271 btrfs_err(fs_info,
4272 "balance: mixed groups data and metadata options must be the same");
4273 ret = -EINVAL;
4274 goto out;
4275 }
4276 }
4277
4278 /*
4279 * rw_devices will not change at the moment, device add/delete/replace
4280 * are exclusive
4281 */
4282 num_devices = fs_info->fs_devices->rw_devices;
4283
4284 /*
4285 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4286 * special bit for it, to make it easier to distinguish. Thus we need
4287 * to set it manually, or balance would refuse the profile.
4288 */
4289 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4290 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4291 if (num_devices >= btrfs_raid_array[i].devs_min)
4292 allowed |= btrfs_raid_array[i].bg_flag;
4293
4294 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4295 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4296 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4297 ret = -EINVAL;
4298 goto out;
4299 }
4300
4301 /*
4302 * Allow to reduce metadata or system integrity only if force set for
4303 * profiles with redundancy (copies, parity)
4304 */
4305 allowed = 0;
4306 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4307 if (btrfs_raid_array[i].ncopies >= 2 ||
4308 btrfs_raid_array[i].tolerated_failures >= 1)
4309 allowed |= btrfs_raid_array[i].bg_flag;
4310 }
4311 do {
4312 seq = read_seqbegin(&fs_info->profiles_lock);
4313
4314 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4315 (fs_info->avail_system_alloc_bits & allowed) &&
4316 !(bctl->sys.target & allowed)) ||
4317 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4318 (fs_info->avail_metadata_alloc_bits & allowed) &&
4319 !(bctl->meta.target & allowed)))
4320 reducing_redundancy = true;
4321 else
4322 reducing_redundancy = false;
4323
4324 /* if we're not converting, the target field is uninitialized */
4325 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4326 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4327 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4328 bctl->data.target : fs_info->avail_data_alloc_bits;
4329 } while (read_seqretry(&fs_info->profiles_lock, seq));
4330
4331 if (reducing_redundancy) {
4332 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4333 btrfs_info(fs_info,
4334 "balance: force reducing metadata redundancy");
4335 } else {
4336 btrfs_err(fs_info,
4337 "balance: reduces metadata redundancy, use --force if you want this");
4338 ret = -EINVAL;
4339 goto out;
4340 }
4341 }
4342
4343 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4344 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4345 btrfs_warn(fs_info,
4346 "balance: metadata profile %s has lower redundancy than data profile %s",
4347 btrfs_bg_type_to_raid_name(meta_target),
4348 btrfs_bg_type_to_raid_name(data_target));
4349 }
4350
4351 ret = insert_balance_item(fs_info, bctl);
4352 if (ret && ret != -EEXIST)
4353 goto out;
4354
4355 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4356 BUG_ON(ret == -EEXIST);
4357 BUG_ON(fs_info->balance_ctl);
4358 spin_lock(&fs_info->balance_lock);
4359 fs_info->balance_ctl = bctl;
4360 spin_unlock(&fs_info->balance_lock);
4361 } else {
4362 BUG_ON(ret != -EEXIST);
4363 spin_lock(&fs_info->balance_lock);
4364 update_balance_args(bctl);
4365 spin_unlock(&fs_info->balance_lock);
4366 }
4367
4368 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4369 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4370 describe_balance_start_or_resume(fs_info);
4371 mutex_unlock(&fs_info->balance_mutex);
4372
4373 ret = __btrfs_balance(fs_info);
4374
4375 mutex_lock(&fs_info->balance_mutex);
4376 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4377 btrfs_info(fs_info, "balance: paused");
4378 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4379 }
4380 /*
4381 * Balance can be canceled by:
4382 *
4383 * - Regular cancel request
4384 * Then ret == -ECANCELED and balance_cancel_req > 0
4385 *
4386 * - Fatal signal to "btrfs" process
4387 * Either the signal caught by wait_reserve_ticket() and callers
4388 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4389 * got -ECANCELED.
4390 * Either way, in this case balance_cancel_req = 0, and
4391 * ret == -EINTR or ret == -ECANCELED.
4392 *
4393 * So here we only check the return value to catch canceled balance.
4394 */
4395 else if (ret == -ECANCELED || ret == -EINTR)
4396 btrfs_info(fs_info, "balance: canceled");
4397 else
4398 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4399
4400 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4401
4402 if (bargs) {
4403 memset(bargs, 0, sizeof(*bargs));
4404 btrfs_update_ioctl_balance_args(fs_info, bargs);
4405 }
4406
4407 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4408 balance_need_close(fs_info)) {
4409 reset_balance_state(fs_info);
4410 btrfs_exclop_finish(fs_info);
4411 }
4412
4413 wake_up(&fs_info->balance_wait_q);
4414
4415 return ret;
4416 out:
4417 if (bctl->flags & BTRFS_BALANCE_RESUME)
4418 reset_balance_state(fs_info);
4419 else
4420 kfree(bctl);
4421 btrfs_exclop_finish(fs_info);
4422
4423 return ret;
4424 }
4425
balance_kthread(void * data)4426 static int balance_kthread(void *data)
4427 {
4428 struct btrfs_fs_info *fs_info = data;
4429 int ret = 0;
4430
4431 sb_start_write(fs_info->sb);
4432 mutex_lock(&fs_info->balance_mutex);
4433 if (fs_info->balance_ctl)
4434 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4435 mutex_unlock(&fs_info->balance_mutex);
4436 sb_end_write(fs_info->sb);
4437
4438 return ret;
4439 }
4440
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4441 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4442 {
4443 struct task_struct *tsk;
4444
4445 mutex_lock(&fs_info->balance_mutex);
4446 if (!fs_info->balance_ctl) {
4447 mutex_unlock(&fs_info->balance_mutex);
4448 return 0;
4449 }
4450 mutex_unlock(&fs_info->balance_mutex);
4451
4452 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4453 btrfs_info(fs_info, "balance: resume skipped");
4454 return 0;
4455 }
4456
4457 spin_lock(&fs_info->super_lock);
4458 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4459 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4460 spin_unlock(&fs_info->super_lock);
4461 /*
4462 * A ro->rw remount sequence should continue with the paused balance
4463 * regardless of who pauses it, system or the user as of now, so set
4464 * the resume flag.
4465 */
4466 spin_lock(&fs_info->balance_lock);
4467 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4468 spin_unlock(&fs_info->balance_lock);
4469
4470 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4471 return PTR_ERR_OR_ZERO(tsk);
4472 }
4473
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4474 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4475 {
4476 struct btrfs_balance_control *bctl;
4477 struct btrfs_balance_item *item;
4478 struct btrfs_disk_balance_args disk_bargs;
4479 struct btrfs_path *path;
4480 struct extent_buffer *leaf;
4481 struct btrfs_key key;
4482 int ret;
4483
4484 path = btrfs_alloc_path();
4485 if (!path)
4486 return -ENOMEM;
4487
4488 key.objectid = BTRFS_BALANCE_OBJECTID;
4489 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4490 key.offset = 0;
4491
4492 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4493 if (ret < 0)
4494 goto out;
4495 if (ret > 0) { /* ret = -ENOENT; */
4496 ret = 0;
4497 goto out;
4498 }
4499
4500 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4501 if (!bctl) {
4502 ret = -ENOMEM;
4503 goto out;
4504 }
4505
4506 leaf = path->nodes[0];
4507 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4508
4509 bctl->flags = btrfs_balance_flags(leaf, item);
4510 bctl->flags |= BTRFS_BALANCE_RESUME;
4511
4512 btrfs_balance_data(leaf, item, &disk_bargs);
4513 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4514 btrfs_balance_meta(leaf, item, &disk_bargs);
4515 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4516 btrfs_balance_sys(leaf, item, &disk_bargs);
4517 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4518
4519 /*
4520 * This should never happen, as the paused balance state is recovered
4521 * during mount without any chance of other exclusive ops to collide.
4522 *
4523 * This gives the exclusive op status to balance and keeps in paused
4524 * state until user intervention (cancel or umount). If the ownership
4525 * cannot be assigned, show a message but do not fail. The balance
4526 * is in a paused state and must have fs_info::balance_ctl properly
4527 * set up.
4528 */
4529 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4530 btrfs_warn(fs_info,
4531 "balance: cannot set exclusive op status, resume manually");
4532
4533 btrfs_release_path(path);
4534
4535 mutex_lock(&fs_info->balance_mutex);
4536 BUG_ON(fs_info->balance_ctl);
4537 spin_lock(&fs_info->balance_lock);
4538 fs_info->balance_ctl = bctl;
4539 spin_unlock(&fs_info->balance_lock);
4540 mutex_unlock(&fs_info->balance_mutex);
4541 out:
4542 btrfs_free_path(path);
4543 return ret;
4544 }
4545
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4546 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4547 {
4548 int ret = 0;
4549
4550 mutex_lock(&fs_info->balance_mutex);
4551 if (!fs_info->balance_ctl) {
4552 mutex_unlock(&fs_info->balance_mutex);
4553 return -ENOTCONN;
4554 }
4555
4556 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4557 atomic_inc(&fs_info->balance_pause_req);
4558 mutex_unlock(&fs_info->balance_mutex);
4559
4560 wait_event(fs_info->balance_wait_q,
4561 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4562
4563 mutex_lock(&fs_info->balance_mutex);
4564 /* we are good with balance_ctl ripped off from under us */
4565 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4566 atomic_dec(&fs_info->balance_pause_req);
4567 } else {
4568 ret = -ENOTCONN;
4569 }
4570
4571 mutex_unlock(&fs_info->balance_mutex);
4572 return ret;
4573 }
4574
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4575 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4576 {
4577 mutex_lock(&fs_info->balance_mutex);
4578 if (!fs_info->balance_ctl) {
4579 mutex_unlock(&fs_info->balance_mutex);
4580 return -ENOTCONN;
4581 }
4582
4583 /*
4584 * A paused balance with the item stored on disk can be resumed at
4585 * mount time if the mount is read-write. Otherwise it's still paused
4586 * and we must not allow cancelling as it deletes the item.
4587 */
4588 if (sb_rdonly(fs_info->sb)) {
4589 mutex_unlock(&fs_info->balance_mutex);
4590 return -EROFS;
4591 }
4592
4593 atomic_inc(&fs_info->balance_cancel_req);
4594 /*
4595 * if we are running just wait and return, balance item is
4596 * deleted in btrfs_balance in this case
4597 */
4598 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4599 mutex_unlock(&fs_info->balance_mutex);
4600 wait_event(fs_info->balance_wait_q,
4601 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4602 mutex_lock(&fs_info->balance_mutex);
4603 } else {
4604 mutex_unlock(&fs_info->balance_mutex);
4605 /*
4606 * Lock released to allow other waiters to continue, we'll
4607 * reexamine the status again.
4608 */
4609 mutex_lock(&fs_info->balance_mutex);
4610
4611 if (fs_info->balance_ctl) {
4612 reset_balance_state(fs_info);
4613 btrfs_exclop_finish(fs_info);
4614 btrfs_info(fs_info, "balance: canceled");
4615 }
4616 }
4617
4618 BUG_ON(fs_info->balance_ctl ||
4619 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4620 atomic_dec(&fs_info->balance_cancel_req);
4621 mutex_unlock(&fs_info->balance_mutex);
4622 return 0;
4623 }
4624
btrfs_uuid_scan_kthread(void * data)4625 int btrfs_uuid_scan_kthread(void *data)
4626 {
4627 struct btrfs_fs_info *fs_info = data;
4628 struct btrfs_root *root = fs_info->tree_root;
4629 struct btrfs_key key;
4630 struct btrfs_path *path = NULL;
4631 int ret = 0;
4632 struct extent_buffer *eb;
4633 int slot;
4634 struct btrfs_root_item root_item;
4635 u32 item_size;
4636 struct btrfs_trans_handle *trans = NULL;
4637 bool closing = false;
4638
4639 path = btrfs_alloc_path();
4640 if (!path) {
4641 ret = -ENOMEM;
4642 goto out;
4643 }
4644
4645 key.objectid = 0;
4646 key.type = BTRFS_ROOT_ITEM_KEY;
4647 key.offset = 0;
4648
4649 while (1) {
4650 if (btrfs_fs_closing(fs_info)) {
4651 closing = true;
4652 break;
4653 }
4654 ret = btrfs_search_forward(root, &key, path,
4655 BTRFS_OLDEST_GENERATION);
4656 if (ret) {
4657 if (ret > 0)
4658 ret = 0;
4659 break;
4660 }
4661
4662 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4663 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4664 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4665 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4666 goto skip;
4667
4668 eb = path->nodes[0];
4669 slot = path->slots[0];
4670 item_size = btrfs_item_size(eb, slot);
4671 if (item_size < sizeof(root_item))
4672 goto skip;
4673
4674 read_extent_buffer(eb, &root_item,
4675 btrfs_item_ptr_offset(eb, slot),
4676 (int)sizeof(root_item));
4677 if (btrfs_root_refs(&root_item) == 0)
4678 goto skip;
4679
4680 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4681 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4682 if (trans)
4683 goto update_tree;
4684
4685 btrfs_release_path(path);
4686 /*
4687 * 1 - subvol uuid item
4688 * 1 - received_subvol uuid item
4689 */
4690 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4691 if (IS_ERR(trans)) {
4692 ret = PTR_ERR(trans);
4693 break;
4694 }
4695 continue;
4696 } else {
4697 goto skip;
4698 }
4699 update_tree:
4700 btrfs_release_path(path);
4701 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4702 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4703 BTRFS_UUID_KEY_SUBVOL,
4704 key.objectid);
4705 if (ret < 0) {
4706 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4707 ret);
4708 break;
4709 }
4710 }
4711
4712 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4713 ret = btrfs_uuid_tree_add(trans,
4714 root_item.received_uuid,
4715 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4716 key.objectid);
4717 if (ret < 0) {
4718 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4719 ret);
4720 break;
4721 }
4722 }
4723
4724 skip:
4725 btrfs_release_path(path);
4726 if (trans) {
4727 ret = btrfs_end_transaction(trans);
4728 trans = NULL;
4729 if (ret)
4730 break;
4731 }
4732
4733 if (key.offset < (u64)-1) {
4734 key.offset++;
4735 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4736 key.offset = 0;
4737 key.type = BTRFS_ROOT_ITEM_KEY;
4738 } else if (key.objectid < (u64)-1) {
4739 key.offset = 0;
4740 key.type = BTRFS_ROOT_ITEM_KEY;
4741 key.objectid++;
4742 } else {
4743 break;
4744 }
4745 cond_resched();
4746 }
4747
4748 out:
4749 btrfs_free_path(path);
4750 if (trans && !IS_ERR(trans))
4751 btrfs_end_transaction(trans);
4752 if (ret)
4753 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4754 else if (!closing)
4755 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4756 up(&fs_info->uuid_tree_rescan_sem);
4757 return 0;
4758 }
4759
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4760 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4761 {
4762 struct btrfs_trans_handle *trans;
4763 struct btrfs_root *tree_root = fs_info->tree_root;
4764 struct btrfs_root *uuid_root;
4765 struct task_struct *task;
4766 int ret;
4767
4768 /*
4769 * 1 - root node
4770 * 1 - root item
4771 */
4772 trans = btrfs_start_transaction(tree_root, 2);
4773 if (IS_ERR(trans))
4774 return PTR_ERR(trans);
4775
4776 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4777 if (IS_ERR(uuid_root)) {
4778 ret = PTR_ERR(uuid_root);
4779 btrfs_abort_transaction(trans, ret);
4780 btrfs_end_transaction(trans);
4781 return ret;
4782 }
4783
4784 fs_info->uuid_root = uuid_root;
4785
4786 ret = btrfs_commit_transaction(trans);
4787 if (ret)
4788 return ret;
4789
4790 down(&fs_info->uuid_tree_rescan_sem);
4791 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4792 if (IS_ERR(task)) {
4793 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4794 btrfs_warn(fs_info, "failed to start uuid_scan task");
4795 up(&fs_info->uuid_tree_rescan_sem);
4796 return PTR_ERR(task);
4797 }
4798
4799 return 0;
4800 }
4801
4802 /*
4803 * shrinking a device means finding all of the device extents past
4804 * the new size, and then following the back refs to the chunks.
4805 * The chunk relocation code actually frees the device extent
4806 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4807 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4808 {
4809 struct btrfs_fs_info *fs_info = device->fs_info;
4810 struct btrfs_root *root = fs_info->dev_root;
4811 struct btrfs_trans_handle *trans;
4812 struct btrfs_dev_extent *dev_extent = NULL;
4813 struct btrfs_path *path;
4814 u64 length;
4815 u64 chunk_offset;
4816 int ret;
4817 int slot;
4818 int failed = 0;
4819 bool retried = false;
4820 struct extent_buffer *l;
4821 struct btrfs_key key;
4822 struct btrfs_super_block *super_copy = fs_info->super_copy;
4823 u64 old_total = btrfs_super_total_bytes(super_copy);
4824 u64 old_size = btrfs_device_get_total_bytes(device);
4825 u64 diff;
4826 u64 start;
4827
4828 new_size = round_down(new_size, fs_info->sectorsize);
4829 start = new_size;
4830 diff = round_down(old_size - new_size, fs_info->sectorsize);
4831
4832 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4833 return -EINVAL;
4834
4835 path = btrfs_alloc_path();
4836 if (!path)
4837 return -ENOMEM;
4838
4839 path->reada = READA_BACK;
4840
4841 trans = btrfs_start_transaction(root, 0);
4842 if (IS_ERR(trans)) {
4843 btrfs_free_path(path);
4844 return PTR_ERR(trans);
4845 }
4846
4847 mutex_lock(&fs_info->chunk_mutex);
4848
4849 btrfs_device_set_total_bytes(device, new_size);
4850 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4851 device->fs_devices->total_rw_bytes -= diff;
4852 atomic64_sub(diff, &fs_info->free_chunk_space);
4853 }
4854
4855 /*
4856 * Once the device's size has been set to the new size, ensure all
4857 * in-memory chunks are synced to disk so that the loop below sees them
4858 * and relocates them accordingly.
4859 */
4860 if (contains_pending_extent(device, &start, diff)) {
4861 mutex_unlock(&fs_info->chunk_mutex);
4862 ret = btrfs_commit_transaction(trans);
4863 if (ret)
4864 goto done;
4865 } else {
4866 mutex_unlock(&fs_info->chunk_mutex);
4867 btrfs_end_transaction(trans);
4868 }
4869
4870 again:
4871 key.objectid = device->devid;
4872 key.offset = (u64)-1;
4873 key.type = BTRFS_DEV_EXTENT_KEY;
4874
4875 do {
4876 mutex_lock(&fs_info->reclaim_bgs_lock);
4877 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4878 if (ret < 0) {
4879 mutex_unlock(&fs_info->reclaim_bgs_lock);
4880 goto done;
4881 }
4882
4883 ret = btrfs_previous_item(root, path, 0, key.type);
4884 if (ret) {
4885 mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 if (ret < 0)
4887 goto done;
4888 ret = 0;
4889 btrfs_release_path(path);
4890 break;
4891 }
4892
4893 l = path->nodes[0];
4894 slot = path->slots[0];
4895 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4896
4897 if (key.objectid != device->devid) {
4898 mutex_unlock(&fs_info->reclaim_bgs_lock);
4899 btrfs_release_path(path);
4900 break;
4901 }
4902
4903 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4904 length = btrfs_dev_extent_length(l, dev_extent);
4905
4906 if (key.offset + length <= new_size) {
4907 mutex_unlock(&fs_info->reclaim_bgs_lock);
4908 btrfs_release_path(path);
4909 break;
4910 }
4911
4912 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4913 btrfs_release_path(path);
4914
4915 /*
4916 * We may be relocating the only data chunk we have,
4917 * which could potentially end up with losing data's
4918 * raid profile, so lets allocate an empty one in
4919 * advance.
4920 */
4921 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4922 if (ret < 0) {
4923 mutex_unlock(&fs_info->reclaim_bgs_lock);
4924 goto done;
4925 }
4926
4927 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4928 mutex_unlock(&fs_info->reclaim_bgs_lock);
4929 if (ret == -ENOSPC) {
4930 failed++;
4931 } else if (ret) {
4932 if (ret == -ETXTBSY) {
4933 btrfs_warn(fs_info,
4934 "could not shrink block group %llu due to active swapfile",
4935 chunk_offset);
4936 }
4937 goto done;
4938 }
4939 } while (key.offset-- > 0);
4940
4941 if (failed && !retried) {
4942 failed = 0;
4943 retried = true;
4944 goto again;
4945 } else if (failed && retried) {
4946 ret = -ENOSPC;
4947 goto done;
4948 }
4949
4950 /* Shrinking succeeded, else we would be at "done". */
4951 trans = btrfs_start_transaction(root, 0);
4952 if (IS_ERR(trans)) {
4953 ret = PTR_ERR(trans);
4954 goto done;
4955 }
4956
4957 mutex_lock(&fs_info->chunk_mutex);
4958 /* Clear all state bits beyond the shrunk device size */
4959 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4960 CHUNK_STATE_MASK);
4961
4962 btrfs_device_set_disk_total_bytes(device, new_size);
4963 if (list_empty(&device->post_commit_list))
4964 list_add_tail(&device->post_commit_list,
4965 &trans->transaction->dev_update_list);
4966
4967 WARN_ON(diff > old_total);
4968 btrfs_set_super_total_bytes(super_copy,
4969 round_down(old_total - diff, fs_info->sectorsize));
4970 mutex_unlock(&fs_info->chunk_mutex);
4971
4972 btrfs_reserve_chunk_metadata(trans, false);
4973 /* Now btrfs_update_device() will change the on-disk size. */
4974 ret = btrfs_update_device(trans, device);
4975 btrfs_trans_release_chunk_metadata(trans);
4976 if (ret < 0) {
4977 btrfs_abort_transaction(trans, ret);
4978 btrfs_end_transaction(trans);
4979 } else {
4980 ret = btrfs_commit_transaction(trans);
4981 }
4982 done:
4983 btrfs_free_path(path);
4984 if (ret) {
4985 mutex_lock(&fs_info->chunk_mutex);
4986 btrfs_device_set_total_bytes(device, old_size);
4987 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4988 device->fs_devices->total_rw_bytes += diff;
4989 atomic64_add(diff, &fs_info->free_chunk_space);
4990 mutex_unlock(&fs_info->chunk_mutex);
4991 }
4992 return ret;
4993 }
4994
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4995 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4996 struct btrfs_key *key,
4997 struct btrfs_chunk *chunk, int item_size)
4998 {
4999 struct btrfs_super_block *super_copy = fs_info->super_copy;
5000 struct btrfs_disk_key disk_key;
5001 u32 array_size;
5002 u8 *ptr;
5003
5004 lockdep_assert_held(&fs_info->chunk_mutex);
5005
5006 array_size = btrfs_super_sys_array_size(super_copy);
5007 if (array_size + item_size + sizeof(disk_key)
5008 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5009 return -EFBIG;
5010
5011 ptr = super_copy->sys_chunk_array + array_size;
5012 btrfs_cpu_key_to_disk(&disk_key, key);
5013 memcpy(ptr, &disk_key, sizeof(disk_key));
5014 ptr += sizeof(disk_key);
5015 memcpy(ptr, chunk, item_size);
5016 item_size += sizeof(disk_key);
5017 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5018
5019 return 0;
5020 }
5021
5022 /*
5023 * sort the devices in descending order by max_avail, total_avail
5024 */
btrfs_cmp_device_info(const void * a,const void * b)5025 static int btrfs_cmp_device_info(const void *a, const void *b)
5026 {
5027 const struct btrfs_device_info *di_a = a;
5028 const struct btrfs_device_info *di_b = b;
5029
5030 if (di_a->max_avail > di_b->max_avail)
5031 return -1;
5032 if (di_a->max_avail < di_b->max_avail)
5033 return 1;
5034 if (di_a->total_avail > di_b->total_avail)
5035 return -1;
5036 if (di_a->total_avail < di_b->total_avail)
5037 return 1;
5038 return 0;
5039 }
5040
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5041 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5042 {
5043 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5044 return;
5045
5046 btrfs_set_fs_incompat(info, RAID56);
5047 }
5048
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5049 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5050 {
5051 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5052 return;
5053
5054 btrfs_set_fs_incompat(info, RAID1C34);
5055 }
5056
5057 /*
5058 * Structure used internally for btrfs_create_chunk() function.
5059 * Wraps needed parameters.
5060 */
5061 struct alloc_chunk_ctl {
5062 u64 start;
5063 u64 type;
5064 /* Total number of stripes to allocate */
5065 int num_stripes;
5066 /* sub_stripes info for map */
5067 int sub_stripes;
5068 /* Stripes per device */
5069 int dev_stripes;
5070 /* Maximum number of devices to use */
5071 int devs_max;
5072 /* Minimum number of devices to use */
5073 int devs_min;
5074 /* ndevs has to be a multiple of this */
5075 int devs_increment;
5076 /* Number of copies */
5077 int ncopies;
5078 /* Number of stripes worth of bytes to store parity information */
5079 int nparity;
5080 u64 max_stripe_size;
5081 u64 max_chunk_size;
5082 u64 dev_extent_min;
5083 u64 stripe_size;
5084 u64 chunk_size;
5085 int ndevs;
5086 };
5087
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5088 static void init_alloc_chunk_ctl_policy_regular(
5089 struct btrfs_fs_devices *fs_devices,
5090 struct alloc_chunk_ctl *ctl)
5091 {
5092 struct btrfs_space_info *space_info;
5093
5094 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5095 ASSERT(space_info);
5096
5097 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5098 ctl->max_stripe_size = ctl->max_chunk_size;
5099
5100 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5101 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5102
5103 /* We don't want a chunk larger than 10% of writable space */
5104 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5105 ctl->max_chunk_size);
5106 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5107 }
5108
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5109 static void init_alloc_chunk_ctl_policy_zoned(
5110 struct btrfs_fs_devices *fs_devices,
5111 struct alloc_chunk_ctl *ctl)
5112 {
5113 u64 zone_size = fs_devices->fs_info->zone_size;
5114 u64 limit;
5115 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5116 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5117 u64 min_chunk_size = min_data_stripes * zone_size;
5118 u64 type = ctl->type;
5119
5120 ctl->max_stripe_size = zone_size;
5121 if (type & BTRFS_BLOCK_GROUP_DATA) {
5122 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5123 zone_size);
5124 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5125 ctl->max_chunk_size = ctl->max_stripe_size;
5126 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5127 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5128 ctl->devs_max = min_t(int, ctl->devs_max,
5129 BTRFS_MAX_DEVS_SYS_CHUNK);
5130 } else {
5131 BUG();
5132 }
5133
5134 /* We don't want a chunk larger than 10% of writable space */
5135 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5136 zone_size),
5137 min_chunk_size);
5138 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5139 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5140 }
5141
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5142 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5143 struct alloc_chunk_ctl *ctl)
5144 {
5145 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5146
5147 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5148 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5149 ctl->devs_max = btrfs_raid_array[index].devs_max;
5150 if (!ctl->devs_max)
5151 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5152 ctl->devs_min = btrfs_raid_array[index].devs_min;
5153 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5154 ctl->ncopies = btrfs_raid_array[index].ncopies;
5155 ctl->nparity = btrfs_raid_array[index].nparity;
5156 ctl->ndevs = 0;
5157
5158 switch (fs_devices->chunk_alloc_policy) {
5159 case BTRFS_CHUNK_ALLOC_REGULAR:
5160 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5161 break;
5162 case BTRFS_CHUNK_ALLOC_ZONED:
5163 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5164 break;
5165 default:
5166 BUG();
5167 }
5168 }
5169
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5170 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5171 struct alloc_chunk_ctl *ctl,
5172 struct btrfs_device_info *devices_info)
5173 {
5174 struct btrfs_fs_info *info = fs_devices->fs_info;
5175 struct btrfs_device *device;
5176 u64 total_avail;
5177 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5178 int ret;
5179 int ndevs = 0;
5180 u64 max_avail;
5181 u64 dev_offset;
5182
5183 /*
5184 * in the first pass through the devices list, we gather information
5185 * about the available holes on each device.
5186 */
5187 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5188 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5189 WARN(1, KERN_ERR
5190 "BTRFS: read-only device in alloc_list\n");
5191 continue;
5192 }
5193
5194 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5195 &device->dev_state) ||
5196 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5197 continue;
5198
5199 if (device->total_bytes > device->bytes_used)
5200 total_avail = device->total_bytes - device->bytes_used;
5201 else
5202 total_avail = 0;
5203
5204 /* If there is no space on this device, skip it. */
5205 if (total_avail < ctl->dev_extent_min)
5206 continue;
5207
5208 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5209 &max_avail);
5210 if (ret && ret != -ENOSPC)
5211 return ret;
5212
5213 if (ret == 0)
5214 max_avail = dev_extent_want;
5215
5216 if (max_avail < ctl->dev_extent_min) {
5217 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5218 btrfs_debug(info,
5219 "%s: devid %llu has no free space, have=%llu want=%llu",
5220 __func__, device->devid, max_avail,
5221 ctl->dev_extent_min);
5222 continue;
5223 }
5224
5225 if (ndevs == fs_devices->rw_devices) {
5226 WARN(1, "%s: found more than %llu devices\n",
5227 __func__, fs_devices->rw_devices);
5228 break;
5229 }
5230 devices_info[ndevs].dev_offset = dev_offset;
5231 devices_info[ndevs].max_avail = max_avail;
5232 devices_info[ndevs].total_avail = total_avail;
5233 devices_info[ndevs].dev = device;
5234 ++ndevs;
5235 }
5236 ctl->ndevs = ndevs;
5237
5238 /*
5239 * now sort the devices by hole size / available space
5240 */
5241 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5242 btrfs_cmp_device_info, NULL);
5243
5244 return 0;
5245 }
5246
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5247 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5248 struct btrfs_device_info *devices_info)
5249 {
5250 /* Number of stripes that count for block group size */
5251 int data_stripes;
5252
5253 /*
5254 * The primary goal is to maximize the number of stripes, so use as
5255 * many devices as possible, even if the stripes are not maximum sized.
5256 *
5257 * The DUP profile stores more than one stripe per device, the
5258 * max_avail is the total size so we have to adjust.
5259 */
5260 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5261 ctl->dev_stripes);
5262 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5263
5264 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5265 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5266
5267 /*
5268 * Use the number of data stripes to figure out how big this chunk is
5269 * really going to be in terms of logical address space, and compare
5270 * that answer with the max chunk size. If it's higher, we try to
5271 * reduce stripe_size.
5272 */
5273 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5274 /*
5275 * Reduce stripe_size, round it up to a 16MB boundary again and
5276 * then use it, unless it ends up being even bigger than the
5277 * previous value we had already.
5278 */
5279 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5280 data_stripes), SZ_16M),
5281 ctl->stripe_size);
5282 }
5283
5284 /* Stripe size should not go beyond 1G. */
5285 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5286
5287 /* Align to BTRFS_STRIPE_LEN */
5288 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5289 ctl->chunk_size = ctl->stripe_size * data_stripes;
5290
5291 return 0;
5292 }
5293
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5294 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5295 struct btrfs_device_info *devices_info)
5296 {
5297 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5298 /* Number of stripes that count for block group size */
5299 int data_stripes;
5300
5301 /*
5302 * It should hold because:
5303 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5304 */
5305 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5306
5307 ctl->stripe_size = zone_size;
5308 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5309 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5310
5311 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5312 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5313 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5314 ctl->stripe_size) + ctl->nparity,
5315 ctl->dev_stripes);
5316 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5317 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5318 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5319 }
5320
5321 ctl->chunk_size = ctl->stripe_size * data_stripes;
5322
5323 return 0;
5324 }
5325
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5326 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5327 struct alloc_chunk_ctl *ctl,
5328 struct btrfs_device_info *devices_info)
5329 {
5330 struct btrfs_fs_info *info = fs_devices->fs_info;
5331
5332 /*
5333 * Round down to number of usable stripes, devs_increment can be any
5334 * number so we can't use round_down() that requires power of 2, while
5335 * rounddown is safe.
5336 */
5337 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5338
5339 if (ctl->ndevs < ctl->devs_min) {
5340 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5341 btrfs_debug(info,
5342 "%s: not enough devices with free space: have=%d minimum required=%d",
5343 __func__, ctl->ndevs, ctl->devs_min);
5344 }
5345 return -ENOSPC;
5346 }
5347
5348 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5349
5350 switch (fs_devices->chunk_alloc_policy) {
5351 case BTRFS_CHUNK_ALLOC_REGULAR:
5352 return decide_stripe_size_regular(ctl, devices_info);
5353 case BTRFS_CHUNK_ALLOC_ZONED:
5354 return decide_stripe_size_zoned(ctl, devices_info);
5355 default:
5356 BUG();
5357 }
5358 }
5359
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5360 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5361 struct alloc_chunk_ctl *ctl,
5362 struct btrfs_device_info *devices_info)
5363 {
5364 struct btrfs_fs_info *info = trans->fs_info;
5365 struct map_lookup *map = NULL;
5366 struct extent_map_tree *em_tree;
5367 struct btrfs_block_group *block_group;
5368 struct extent_map *em;
5369 u64 start = ctl->start;
5370 u64 type = ctl->type;
5371 int ret;
5372 int i;
5373 int j;
5374
5375 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5376 if (!map)
5377 return ERR_PTR(-ENOMEM);
5378 map->num_stripes = ctl->num_stripes;
5379
5380 for (i = 0; i < ctl->ndevs; ++i) {
5381 for (j = 0; j < ctl->dev_stripes; ++j) {
5382 int s = i * ctl->dev_stripes + j;
5383 map->stripes[s].dev = devices_info[i].dev;
5384 map->stripes[s].physical = devices_info[i].dev_offset +
5385 j * ctl->stripe_size;
5386 }
5387 }
5388 map->stripe_len = BTRFS_STRIPE_LEN;
5389 map->io_align = BTRFS_STRIPE_LEN;
5390 map->io_width = BTRFS_STRIPE_LEN;
5391 map->type = type;
5392 map->sub_stripes = ctl->sub_stripes;
5393
5394 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5395
5396 em = alloc_extent_map();
5397 if (!em) {
5398 kfree(map);
5399 return ERR_PTR(-ENOMEM);
5400 }
5401 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5402 em->map_lookup = map;
5403 em->start = start;
5404 em->len = ctl->chunk_size;
5405 em->block_start = 0;
5406 em->block_len = em->len;
5407 em->orig_block_len = ctl->stripe_size;
5408
5409 em_tree = &info->mapping_tree;
5410 write_lock(&em_tree->lock);
5411 ret = add_extent_mapping(em_tree, em, 0);
5412 if (ret) {
5413 write_unlock(&em_tree->lock);
5414 free_extent_map(em);
5415 return ERR_PTR(ret);
5416 }
5417 write_unlock(&em_tree->lock);
5418
5419 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5420 if (IS_ERR(block_group))
5421 goto error_del_extent;
5422
5423 for (i = 0; i < map->num_stripes; i++) {
5424 struct btrfs_device *dev = map->stripes[i].dev;
5425
5426 btrfs_device_set_bytes_used(dev,
5427 dev->bytes_used + ctl->stripe_size);
5428 if (list_empty(&dev->post_commit_list))
5429 list_add_tail(&dev->post_commit_list,
5430 &trans->transaction->dev_update_list);
5431 }
5432
5433 atomic64_sub(ctl->stripe_size * map->num_stripes,
5434 &info->free_chunk_space);
5435
5436 free_extent_map(em);
5437 check_raid56_incompat_flag(info, type);
5438 check_raid1c34_incompat_flag(info, type);
5439
5440 return block_group;
5441
5442 error_del_extent:
5443 write_lock(&em_tree->lock);
5444 remove_extent_mapping(em_tree, em);
5445 write_unlock(&em_tree->lock);
5446
5447 /* One for our allocation */
5448 free_extent_map(em);
5449 /* One for the tree reference */
5450 free_extent_map(em);
5451
5452 return block_group;
5453 }
5454
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5455 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5456 u64 type)
5457 {
5458 struct btrfs_fs_info *info = trans->fs_info;
5459 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5460 struct btrfs_device_info *devices_info = NULL;
5461 struct alloc_chunk_ctl ctl;
5462 struct btrfs_block_group *block_group;
5463 int ret;
5464
5465 lockdep_assert_held(&info->chunk_mutex);
5466
5467 if (!alloc_profile_is_valid(type, 0)) {
5468 ASSERT(0);
5469 return ERR_PTR(-EINVAL);
5470 }
5471
5472 if (list_empty(&fs_devices->alloc_list)) {
5473 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5474 btrfs_debug(info, "%s: no writable device", __func__);
5475 return ERR_PTR(-ENOSPC);
5476 }
5477
5478 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5479 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5480 ASSERT(0);
5481 return ERR_PTR(-EINVAL);
5482 }
5483
5484 ctl.start = find_next_chunk(info);
5485 ctl.type = type;
5486 init_alloc_chunk_ctl(fs_devices, &ctl);
5487
5488 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5489 GFP_NOFS);
5490 if (!devices_info)
5491 return ERR_PTR(-ENOMEM);
5492
5493 ret = gather_device_info(fs_devices, &ctl, devices_info);
5494 if (ret < 0) {
5495 block_group = ERR_PTR(ret);
5496 goto out;
5497 }
5498
5499 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5500 if (ret < 0) {
5501 block_group = ERR_PTR(ret);
5502 goto out;
5503 }
5504
5505 block_group = create_chunk(trans, &ctl, devices_info);
5506
5507 out:
5508 kfree(devices_info);
5509 return block_group;
5510 }
5511
5512 /*
5513 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5514 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5515 * chunks.
5516 *
5517 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5518 * phases.
5519 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5520 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5521 struct btrfs_block_group *bg)
5522 {
5523 struct btrfs_fs_info *fs_info = trans->fs_info;
5524 struct btrfs_root *chunk_root = fs_info->chunk_root;
5525 struct btrfs_key key;
5526 struct btrfs_chunk *chunk;
5527 struct btrfs_stripe *stripe;
5528 struct extent_map *em;
5529 struct map_lookup *map;
5530 size_t item_size;
5531 int i;
5532 int ret;
5533
5534 /*
5535 * We take the chunk_mutex for 2 reasons:
5536 *
5537 * 1) Updates and insertions in the chunk btree must be done while holding
5538 * the chunk_mutex, as well as updating the system chunk array in the
5539 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5540 * details;
5541 *
5542 * 2) To prevent races with the final phase of a device replace operation
5543 * that replaces the device object associated with the map's stripes,
5544 * because the device object's id can change at any time during that
5545 * final phase of the device replace operation
5546 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5547 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5548 * which would cause a failure when updating the device item, which does
5549 * not exists, or persisting a stripe of the chunk item with such ID.
5550 * Here we can't use the device_list_mutex because our caller already
5551 * has locked the chunk_mutex, and the final phase of device replace
5552 * acquires both mutexes - first the device_list_mutex and then the
5553 * chunk_mutex. Using any of those two mutexes protects us from a
5554 * concurrent device replace.
5555 */
5556 lockdep_assert_held(&fs_info->chunk_mutex);
5557
5558 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5559 if (IS_ERR(em)) {
5560 ret = PTR_ERR(em);
5561 btrfs_abort_transaction(trans, ret);
5562 return ret;
5563 }
5564
5565 map = em->map_lookup;
5566 item_size = btrfs_chunk_item_size(map->num_stripes);
5567
5568 chunk = kzalloc(item_size, GFP_NOFS);
5569 if (!chunk) {
5570 ret = -ENOMEM;
5571 btrfs_abort_transaction(trans, ret);
5572 goto out;
5573 }
5574
5575 for (i = 0; i < map->num_stripes; i++) {
5576 struct btrfs_device *device = map->stripes[i].dev;
5577
5578 ret = btrfs_update_device(trans, device);
5579 if (ret)
5580 goto out;
5581 }
5582
5583 stripe = &chunk->stripe;
5584 for (i = 0; i < map->num_stripes; i++) {
5585 struct btrfs_device *device = map->stripes[i].dev;
5586 const u64 dev_offset = map->stripes[i].physical;
5587
5588 btrfs_set_stack_stripe_devid(stripe, device->devid);
5589 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5590 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5591 stripe++;
5592 }
5593
5594 btrfs_set_stack_chunk_length(chunk, bg->length);
5595 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5596 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5597 btrfs_set_stack_chunk_type(chunk, map->type);
5598 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5599 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5600 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5601 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5602 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5603
5604 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5605 key.type = BTRFS_CHUNK_ITEM_KEY;
5606 key.offset = bg->start;
5607
5608 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5609 if (ret)
5610 goto out;
5611
5612 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5613
5614 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5615 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5616 if (ret)
5617 goto out;
5618 }
5619
5620 out:
5621 kfree(chunk);
5622 free_extent_map(em);
5623 return ret;
5624 }
5625
init_first_rw_device(struct btrfs_trans_handle * trans)5626 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5627 {
5628 struct btrfs_fs_info *fs_info = trans->fs_info;
5629 u64 alloc_profile;
5630 struct btrfs_block_group *meta_bg;
5631 struct btrfs_block_group *sys_bg;
5632
5633 /*
5634 * When adding a new device for sprouting, the seed device is read-only
5635 * so we must first allocate a metadata and a system chunk. But before
5636 * adding the block group items to the extent, device and chunk btrees,
5637 * we must first:
5638 *
5639 * 1) Create both chunks without doing any changes to the btrees, as
5640 * otherwise we would get -ENOSPC since the block groups from the
5641 * seed device are read-only;
5642 *
5643 * 2) Add the device item for the new sprout device - finishing the setup
5644 * of a new block group requires updating the device item in the chunk
5645 * btree, so it must exist when we attempt to do it. The previous step
5646 * ensures this does not fail with -ENOSPC.
5647 *
5648 * After that we can add the block group items to their btrees:
5649 * update existing device item in the chunk btree, add a new block group
5650 * item to the extent btree, add a new chunk item to the chunk btree and
5651 * finally add the new device extent items to the devices btree.
5652 */
5653
5654 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5655 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5656 if (IS_ERR(meta_bg))
5657 return PTR_ERR(meta_bg);
5658
5659 alloc_profile = btrfs_system_alloc_profile(fs_info);
5660 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5661 if (IS_ERR(sys_bg))
5662 return PTR_ERR(sys_bg);
5663
5664 return 0;
5665 }
5666
btrfs_chunk_max_errors(struct map_lookup * map)5667 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5668 {
5669 const int index = btrfs_bg_flags_to_raid_index(map->type);
5670
5671 return btrfs_raid_array[index].tolerated_failures;
5672 }
5673
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5674 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5675 {
5676 struct extent_map *em;
5677 struct map_lookup *map;
5678 int miss_ndevs = 0;
5679 int i;
5680 bool ret = true;
5681
5682 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5683 if (IS_ERR(em))
5684 return false;
5685
5686 map = em->map_lookup;
5687 for (i = 0; i < map->num_stripes; i++) {
5688 if (test_bit(BTRFS_DEV_STATE_MISSING,
5689 &map->stripes[i].dev->dev_state)) {
5690 miss_ndevs++;
5691 continue;
5692 }
5693 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5694 &map->stripes[i].dev->dev_state)) {
5695 ret = false;
5696 goto end;
5697 }
5698 }
5699
5700 /*
5701 * If the number of missing devices is larger than max errors, we can
5702 * not write the data into that chunk successfully.
5703 */
5704 if (miss_ndevs > btrfs_chunk_max_errors(map))
5705 ret = false;
5706 end:
5707 free_extent_map(em);
5708 return ret;
5709 }
5710
btrfs_mapping_tree_free(struct extent_map_tree * tree)5711 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5712 {
5713 struct extent_map *em;
5714
5715 while (1) {
5716 write_lock(&tree->lock);
5717 em = lookup_extent_mapping(tree, 0, (u64)-1);
5718 if (em)
5719 remove_extent_mapping(tree, em);
5720 write_unlock(&tree->lock);
5721 if (!em)
5722 break;
5723 /* once for us */
5724 free_extent_map(em);
5725 /* once for the tree */
5726 free_extent_map(em);
5727 }
5728 }
5729
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5730 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5731 {
5732 struct extent_map *em;
5733 struct map_lookup *map;
5734 enum btrfs_raid_types index;
5735 int ret = 1;
5736
5737 em = btrfs_get_chunk_map(fs_info, logical, len);
5738 if (IS_ERR(em))
5739 /*
5740 * We could return errors for these cases, but that could get
5741 * ugly and we'd probably do the same thing which is just not do
5742 * anything else and exit, so return 1 so the callers don't try
5743 * to use other copies.
5744 */
5745 return 1;
5746
5747 map = em->map_lookup;
5748 index = btrfs_bg_flags_to_raid_index(map->type);
5749
5750 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5751 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5752 ret = btrfs_raid_array[index].ncopies;
5753 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5754 ret = 2;
5755 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5756 /*
5757 * There could be two corrupted data stripes, we need
5758 * to loop retry in order to rebuild the correct data.
5759 *
5760 * Fail a stripe at a time on every retry except the
5761 * stripe under reconstruction.
5762 */
5763 ret = map->num_stripes;
5764 free_extent_map(em);
5765
5766 down_read(&fs_info->dev_replace.rwsem);
5767 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5768 fs_info->dev_replace.tgtdev)
5769 ret++;
5770 up_read(&fs_info->dev_replace.rwsem);
5771
5772 return ret;
5773 }
5774
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5775 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5776 u64 logical)
5777 {
5778 struct extent_map *em;
5779 struct map_lookup *map;
5780 unsigned long len = fs_info->sectorsize;
5781
5782 if (!btrfs_fs_incompat(fs_info, RAID56))
5783 return len;
5784
5785 em = btrfs_get_chunk_map(fs_info, logical, len);
5786
5787 if (!WARN_ON(IS_ERR(em))) {
5788 map = em->map_lookup;
5789 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5790 len = map->stripe_len * nr_data_stripes(map);
5791 free_extent_map(em);
5792 }
5793 return len;
5794 }
5795
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5796 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5797 {
5798 struct extent_map *em;
5799 struct map_lookup *map;
5800 int ret = 0;
5801
5802 if (!btrfs_fs_incompat(fs_info, RAID56))
5803 return 0;
5804
5805 em = btrfs_get_chunk_map(fs_info, logical, len);
5806
5807 if(!WARN_ON(IS_ERR(em))) {
5808 map = em->map_lookup;
5809 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5810 ret = 1;
5811 free_extent_map(em);
5812 }
5813 return ret;
5814 }
5815
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5816 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5817 struct map_lookup *map, int first,
5818 int dev_replace_is_ongoing)
5819 {
5820 int i;
5821 int num_stripes;
5822 int preferred_mirror;
5823 int tolerance;
5824 struct btrfs_device *srcdev;
5825
5826 ASSERT((map->type &
5827 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5828
5829 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5830 num_stripes = map->sub_stripes;
5831 else
5832 num_stripes = map->num_stripes;
5833
5834 switch (fs_info->fs_devices->read_policy) {
5835 default:
5836 /* Shouldn't happen, just warn and use pid instead of failing */
5837 btrfs_warn_rl(fs_info,
5838 "unknown read_policy type %u, reset to pid",
5839 fs_info->fs_devices->read_policy);
5840 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5841 fallthrough;
5842 case BTRFS_READ_POLICY_PID:
5843 preferred_mirror = first + (current->pid % num_stripes);
5844 break;
5845 }
5846
5847 if (dev_replace_is_ongoing &&
5848 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5849 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5850 srcdev = fs_info->dev_replace.srcdev;
5851 else
5852 srcdev = NULL;
5853
5854 /*
5855 * try to avoid the drive that is the source drive for a
5856 * dev-replace procedure, only choose it if no other non-missing
5857 * mirror is available
5858 */
5859 for (tolerance = 0; tolerance < 2; tolerance++) {
5860 if (map->stripes[preferred_mirror].dev->bdev &&
5861 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5862 return preferred_mirror;
5863 for (i = first; i < first + num_stripes; i++) {
5864 if (map->stripes[i].dev->bdev &&
5865 (tolerance || map->stripes[i].dev != srcdev))
5866 return i;
5867 }
5868 }
5869
5870 /* we couldn't find one that doesn't fail. Just return something
5871 * and the io error handling code will clean up eventually
5872 */
5873 return preferred_mirror;
5874 }
5875
5876 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_io_context * bioc,int num_stripes)5877 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5878 {
5879 int i;
5880 int again = 1;
5881
5882 while (again) {
5883 again = 0;
5884 for (i = 0; i < num_stripes - 1; i++) {
5885 /* Swap if parity is on a smaller index */
5886 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5887 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5888 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5889 again = 1;
5890 }
5891 }
5892 }
5893 }
5894
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,int total_stripes,int real_stripes)5895 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5896 int total_stripes,
5897 int real_stripes)
5898 {
5899 struct btrfs_io_context *bioc = kzalloc(
5900 /* The size of btrfs_io_context */
5901 sizeof(struct btrfs_io_context) +
5902 /* Plus the variable array for the stripes */
5903 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5904 /* Plus the variable array for the tgt dev */
5905 sizeof(int) * (real_stripes) +
5906 /*
5907 * Plus the raid_map, which includes both the tgt dev
5908 * and the stripes.
5909 */
5910 sizeof(u64) * (total_stripes),
5911 GFP_NOFS|__GFP_NOFAIL);
5912
5913 refcount_set(&bioc->refs, 1);
5914
5915 bioc->fs_info = fs_info;
5916 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5917 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5918
5919 return bioc;
5920 }
5921
btrfs_get_bioc(struct btrfs_io_context * bioc)5922 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5923 {
5924 WARN_ON(!refcount_read(&bioc->refs));
5925 refcount_inc(&bioc->refs);
5926 }
5927
btrfs_put_bioc(struct btrfs_io_context * bioc)5928 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5929 {
5930 if (!bioc)
5931 return;
5932 if (refcount_dec_and_test(&bioc->refs))
5933 kfree(bioc);
5934 }
5935
5936 /*
5937 * Please note that, discard won't be sent to target device of device
5938 * replace.
5939 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)5940 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5941 u64 logical, u64 *length_ret,
5942 u32 *num_stripes)
5943 {
5944 struct extent_map *em;
5945 struct map_lookup *map;
5946 struct btrfs_discard_stripe *stripes;
5947 u64 length = *length_ret;
5948 u64 offset;
5949 u64 stripe_nr;
5950 u64 stripe_nr_end;
5951 u64 stripe_end_offset;
5952 u64 stripe_cnt;
5953 u64 stripe_len;
5954 u64 stripe_offset;
5955 u32 stripe_index;
5956 u32 factor = 0;
5957 u32 sub_stripes = 0;
5958 u64 stripes_per_dev = 0;
5959 u32 remaining_stripes = 0;
5960 u32 last_stripe = 0;
5961 int ret;
5962 int i;
5963
5964 em = btrfs_get_chunk_map(fs_info, logical, length);
5965 if (IS_ERR(em))
5966 return ERR_CAST(em);
5967
5968 map = em->map_lookup;
5969
5970 /* we don't discard raid56 yet */
5971 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5972 ret = -EOPNOTSUPP;
5973 goto out_free_map;
5974 }
5975
5976 offset = logical - em->start;
5977 length = min_t(u64, em->start + em->len - logical, length);
5978 *length_ret = length;
5979
5980 stripe_len = map->stripe_len;
5981 /*
5982 * stripe_nr counts the total number of stripes we have to stride
5983 * to get to this block
5984 */
5985 stripe_nr = div64_u64(offset, stripe_len);
5986
5987 /* stripe_offset is the offset of this block in its stripe */
5988 stripe_offset = offset - stripe_nr * stripe_len;
5989
5990 stripe_nr_end = round_up(offset + length, map->stripe_len);
5991 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5992 stripe_cnt = stripe_nr_end - stripe_nr;
5993 stripe_end_offset = stripe_nr_end * map->stripe_len -
5994 (offset + length);
5995 /*
5996 * after this, stripe_nr is the number of stripes on this
5997 * device we have to walk to find the data, and stripe_index is
5998 * the number of our device in the stripe array
5999 */
6000 *num_stripes = 1;
6001 stripe_index = 0;
6002 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6003 BTRFS_BLOCK_GROUP_RAID10)) {
6004 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6005 sub_stripes = 1;
6006 else
6007 sub_stripes = map->sub_stripes;
6008
6009 factor = map->num_stripes / sub_stripes;
6010 *num_stripes = min_t(u64, map->num_stripes,
6011 sub_stripes * stripe_cnt);
6012 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6013 stripe_index *= sub_stripes;
6014 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6015 &remaining_stripes);
6016 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6017 last_stripe *= sub_stripes;
6018 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6019 BTRFS_BLOCK_GROUP_DUP)) {
6020 *num_stripes = map->num_stripes;
6021 } else {
6022 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6023 &stripe_index);
6024 }
6025
6026 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6027 if (!stripes) {
6028 ret = -ENOMEM;
6029 goto out_free_map;
6030 }
6031
6032 for (i = 0; i < *num_stripes; i++) {
6033 stripes[i].physical =
6034 map->stripes[stripe_index].physical +
6035 stripe_offset + stripe_nr * map->stripe_len;
6036 stripes[i].dev = map->stripes[stripe_index].dev;
6037
6038 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6039 BTRFS_BLOCK_GROUP_RAID10)) {
6040 stripes[i].length = stripes_per_dev * map->stripe_len;
6041
6042 if (i / sub_stripes < remaining_stripes)
6043 stripes[i].length += map->stripe_len;
6044
6045 /*
6046 * Special for the first stripe and
6047 * the last stripe:
6048 *
6049 * |-------|...|-------|
6050 * |----------|
6051 * off end_off
6052 */
6053 if (i < sub_stripes)
6054 stripes[i].length -= stripe_offset;
6055
6056 if (stripe_index >= last_stripe &&
6057 stripe_index <= (last_stripe +
6058 sub_stripes - 1))
6059 stripes[i].length -= stripe_end_offset;
6060
6061 if (i == sub_stripes - 1)
6062 stripe_offset = 0;
6063 } else {
6064 stripes[i].length = length;
6065 }
6066
6067 stripe_index++;
6068 if (stripe_index == map->num_stripes) {
6069 stripe_index = 0;
6070 stripe_nr++;
6071 }
6072 }
6073
6074 free_extent_map(em);
6075 return stripes;
6076 out_free_map:
6077 free_extent_map(em);
6078 return ERR_PTR(ret);
6079 }
6080
6081 /*
6082 * In dev-replace case, for repair case (that's the only case where the mirror
6083 * is selected explicitly when calling btrfs_map_block), blocks left of the
6084 * left cursor can also be read from the target drive.
6085 *
6086 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6087 * array of stripes.
6088 * For READ, it also needs to be supported using the same mirror number.
6089 *
6090 * If the requested block is not left of the left cursor, EIO is returned. This
6091 * can happen because btrfs_num_copies() returns one more in the dev-replace
6092 * case.
6093 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)6094 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6095 u64 logical, u64 length,
6096 u64 srcdev_devid, int *mirror_num,
6097 u64 *physical)
6098 {
6099 struct btrfs_io_context *bioc = NULL;
6100 int num_stripes;
6101 int index_srcdev = 0;
6102 int found = 0;
6103 u64 physical_of_found = 0;
6104 int i;
6105 int ret = 0;
6106
6107 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6108 logical, &length, &bioc, NULL, NULL, 0);
6109 if (ret) {
6110 ASSERT(bioc == NULL);
6111 return ret;
6112 }
6113
6114 num_stripes = bioc->num_stripes;
6115 if (*mirror_num > num_stripes) {
6116 /*
6117 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6118 * that means that the requested area is not left of the left
6119 * cursor
6120 */
6121 btrfs_put_bioc(bioc);
6122 return -EIO;
6123 }
6124
6125 /*
6126 * process the rest of the function using the mirror_num of the source
6127 * drive. Therefore look it up first. At the end, patch the device
6128 * pointer to the one of the target drive.
6129 */
6130 for (i = 0; i < num_stripes; i++) {
6131 if (bioc->stripes[i].dev->devid != srcdev_devid)
6132 continue;
6133
6134 /*
6135 * In case of DUP, in order to keep it simple, only add the
6136 * mirror with the lowest physical address
6137 */
6138 if (found &&
6139 physical_of_found <= bioc->stripes[i].physical)
6140 continue;
6141
6142 index_srcdev = i;
6143 found = 1;
6144 physical_of_found = bioc->stripes[i].physical;
6145 }
6146
6147 btrfs_put_bioc(bioc);
6148
6149 ASSERT(found);
6150 if (!found)
6151 return -EIO;
6152
6153 *mirror_num = index_srcdev + 1;
6154 *physical = physical_of_found;
6155 return ret;
6156 }
6157
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6158 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6159 {
6160 struct btrfs_block_group *cache;
6161 bool ret;
6162
6163 /* Non zoned filesystem does not use "to_copy" flag */
6164 if (!btrfs_is_zoned(fs_info))
6165 return false;
6166
6167 cache = btrfs_lookup_block_group(fs_info, logical);
6168
6169 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6170
6171 btrfs_put_block_group(cache);
6172 return ret;
6173 }
6174
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_io_context ** bioc_ret,struct btrfs_dev_replace * dev_replace,u64 logical,int * num_stripes_ret,int * max_errors_ret)6175 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6176 struct btrfs_io_context **bioc_ret,
6177 struct btrfs_dev_replace *dev_replace,
6178 u64 logical,
6179 int *num_stripes_ret, int *max_errors_ret)
6180 {
6181 struct btrfs_io_context *bioc = *bioc_ret;
6182 u64 srcdev_devid = dev_replace->srcdev->devid;
6183 int tgtdev_indexes = 0;
6184 int num_stripes = *num_stripes_ret;
6185 int max_errors = *max_errors_ret;
6186 int i;
6187
6188 if (op == BTRFS_MAP_WRITE) {
6189 int index_where_to_add;
6190
6191 /*
6192 * A block group which have "to_copy" set will eventually
6193 * copied by dev-replace process. We can avoid cloning IO here.
6194 */
6195 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6196 return;
6197
6198 /*
6199 * duplicate the write operations while the dev replace
6200 * procedure is running. Since the copying of the old disk to
6201 * the new disk takes place at run time while the filesystem is
6202 * mounted writable, the regular write operations to the old
6203 * disk have to be duplicated to go to the new disk as well.
6204 *
6205 * Note that device->missing is handled by the caller, and that
6206 * the write to the old disk is already set up in the stripes
6207 * array.
6208 */
6209 index_where_to_add = num_stripes;
6210 for (i = 0; i < num_stripes; i++) {
6211 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6212 /* write to new disk, too */
6213 struct btrfs_io_stripe *new =
6214 bioc->stripes + index_where_to_add;
6215 struct btrfs_io_stripe *old =
6216 bioc->stripes + i;
6217
6218 new->physical = old->physical;
6219 new->dev = dev_replace->tgtdev;
6220 bioc->tgtdev_map[i] = index_where_to_add;
6221 index_where_to_add++;
6222 max_errors++;
6223 tgtdev_indexes++;
6224 }
6225 }
6226 num_stripes = index_where_to_add;
6227 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6228 int index_srcdev = 0;
6229 int found = 0;
6230 u64 physical_of_found = 0;
6231
6232 /*
6233 * During the dev-replace procedure, the target drive can also
6234 * be used to read data in case it is needed to repair a corrupt
6235 * block elsewhere. This is possible if the requested area is
6236 * left of the left cursor. In this area, the target drive is a
6237 * full copy of the source drive.
6238 */
6239 for (i = 0; i < num_stripes; i++) {
6240 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6241 /*
6242 * In case of DUP, in order to keep it simple,
6243 * only add the mirror with the lowest physical
6244 * address
6245 */
6246 if (found &&
6247 physical_of_found <= bioc->stripes[i].physical)
6248 continue;
6249 index_srcdev = i;
6250 found = 1;
6251 physical_of_found = bioc->stripes[i].physical;
6252 }
6253 }
6254 if (found) {
6255 struct btrfs_io_stripe *tgtdev_stripe =
6256 bioc->stripes + num_stripes;
6257
6258 tgtdev_stripe->physical = physical_of_found;
6259 tgtdev_stripe->dev = dev_replace->tgtdev;
6260 bioc->tgtdev_map[index_srcdev] = num_stripes;
6261
6262 tgtdev_indexes++;
6263 num_stripes++;
6264 }
6265 }
6266
6267 *num_stripes_ret = num_stripes;
6268 *max_errors_ret = max_errors;
6269 bioc->num_tgtdevs = tgtdev_indexes;
6270 *bioc_ret = bioc;
6271 }
6272
need_full_stripe(enum btrfs_map_op op)6273 static bool need_full_stripe(enum btrfs_map_op op)
6274 {
6275 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6276 }
6277
6278 /*
6279 * Calculate the geometry of a particular (address, len) tuple. This
6280 * information is used to calculate how big a particular bio can get before it
6281 * straddles a stripe.
6282 *
6283 * @fs_info: the filesystem
6284 * @em: mapping containing the logical extent
6285 * @op: type of operation - write or read
6286 * @logical: address that we want to figure out the geometry of
6287 * @io_geom: pointer used to return values
6288 *
6289 * Returns < 0 in case a chunk for the given logical address cannot be found,
6290 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6291 */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,struct extent_map * em,enum btrfs_map_op op,u64 logical,struct btrfs_io_geometry * io_geom)6292 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6293 enum btrfs_map_op op, u64 logical,
6294 struct btrfs_io_geometry *io_geom)
6295 {
6296 struct map_lookup *map;
6297 u64 len;
6298 u64 offset;
6299 u64 stripe_offset;
6300 u64 stripe_nr;
6301 u32 stripe_len;
6302 u64 raid56_full_stripe_start = (u64)-1;
6303 int data_stripes;
6304
6305 ASSERT(op != BTRFS_MAP_DISCARD);
6306
6307 map = em->map_lookup;
6308 /* Offset of this logical address in the chunk */
6309 offset = logical - em->start;
6310 /* Len of a stripe in a chunk */
6311 stripe_len = map->stripe_len;
6312 /*
6313 * Stripe_nr is where this block falls in
6314 * stripe_offset is the offset of this block in its stripe.
6315 */
6316 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6317 ASSERT(stripe_offset < U32_MAX);
6318
6319 data_stripes = nr_data_stripes(map);
6320
6321 /* Only stripe based profiles needs to check against stripe length. */
6322 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6323 u64 max_len = stripe_len - stripe_offset;
6324
6325 /*
6326 * In case of raid56, we need to know the stripe aligned start
6327 */
6328 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6329 unsigned long full_stripe_len = stripe_len * data_stripes;
6330 raid56_full_stripe_start = offset;
6331
6332 /*
6333 * Allow a write of a full stripe, but make sure we
6334 * don't allow straddling of stripes
6335 */
6336 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6337 full_stripe_len);
6338 raid56_full_stripe_start *= full_stripe_len;
6339
6340 /*
6341 * For writes to RAID[56], allow a full stripeset across
6342 * all disks. For other RAID types and for RAID[56]
6343 * reads, just allow a single stripe (on a single disk).
6344 */
6345 if (op == BTRFS_MAP_WRITE) {
6346 max_len = stripe_len * data_stripes -
6347 (offset - raid56_full_stripe_start);
6348 }
6349 }
6350 len = min_t(u64, em->len - offset, max_len);
6351 } else {
6352 len = em->len - offset;
6353 }
6354
6355 io_geom->len = len;
6356 io_geom->offset = offset;
6357 io_geom->stripe_len = stripe_len;
6358 io_geom->stripe_nr = stripe_nr;
6359 io_geom->stripe_offset = stripe_offset;
6360 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6361
6362 return 0;
6363 }
6364
set_io_stripe(struct btrfs_io_stripe * dst,const struct map_lookup * map,u32 stripe_index,u64 stripe_offset,u64 stripe_nr)6365 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6366 u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6367 {
6368 dst->dev = map->stripes[stripe_index].dev;
6369 dst->physical = map->stripes[stripe_index].physical +
6370 stripe_offset + stripe_nr * map->stripe_len;
6371 }
6372
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret,int need_raid_map)6373 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6374 enum btrfs_map_op op, u64 logical, u64 *length,
6375 struct btrfs_io_context **bioc_ret,
6376 struct btrfs_io_stripe *smap,
6377 int *mirror_num_ret, int need_raid_map)
6378 {
6379 struct extent_map *em;
6380 struct map_lookup *map;
6381 u64 stripe_offset;
6382 u64 stripe_nr;
6383 u64 stripe_len;
6384 u32 stripe_index;
6385 int data_stripes;
6386 int i;
6387 int ret = 0;
6388 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6389 int num_stripes;
6390 int max_errors = 0;
6391 int tgtdev_indexes = 0;
6392 struct btrfs_io_context *bioc = NULL;
6393 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6394 int dev_replace_is_ongoing = 0;
6395 int num_alloc_stripes;
6396 int patch_the_first_stripe_for_dev_replace = 0;
6397 u64 physical_to_patch_in_first_stripe = 0;
6398 u64 raid56_full_stripe_start = (u64)-1;
6399 struct btrfs_io_geometry geom;
6400
6401 ASSERT(bioc_ret);
6402 ASSERT(op != BTRFS_MAP_DISCARD);
6403
6404 em = btrfs_get_chunk_map(fs_info, logical, *length);
6405 ASSERT(!IS_ERR(em));
6406
6407 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6408 if (ret < 0)
6409 return ret;
6410
6411 map = em->map_lookup;
6412
6413 *length = geom.len;
6414 stripe_len = geom.stripe_len;
6415 stripe_nr = geom.stripe_nr;
6416 stripe_offset = geom.stripe_offset;
6417 raid56_full_stripe_start = geom.raid56_stripe_offset;
6418 data_stripes = nr_data_stripes(map);
6419
6420 down_read(&dev_replace->rwsem);
6421 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6422 /*
6423 * Hold the semaphore for read during the whole operation, write is
6424 * requested at commit time but must wait.
6425 */
6426 if (!dev_replace_is_ongoing)
6427 up_read(&dev_replace->rwsem);
6428
6429 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6430 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6431 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6432 dev_replace->srcdev->devid,
6433 &mirror_num,
6434 &physical_to_patch_in_first_stripe);
6435 if (ret)
6436 goto out;
6437 else
6438 patch_the_first_stripe_for_dev_replace = 1;
6439 } else if (mirror_num > map->num_stripes) {
6440 mirror_num = 0;
6441 }
6442
6443 num_stripes = 1;
6444 stripe_index = 0;
6445 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6446 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6447 &stripe_index);
6448 if (!need_full_stripe(op))
6449 mirror_num = 1;
6450 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6451 if (need_full_stripe(op))
6452 num_stripes = map->num_stripes;
6453 else if (mirror_num)
6454 stripe_index = mirror_num - 1;
6455 else {
6456 stripe_index = find_live_mirror(fs_info, map, 0,
6457 dev_replace_is_ongoing);
6458 mirror_num = stripe_index + 1;
6459 }
6460
6461 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6462 if (need_full_stripe(op)) {
6463 num_stripes = map->num_stripes;
6464 } else if (mirror_num) {
6465 stripe_index = mirror_num - 1;
6466 } else {
6467 mirror_num = 1;
6468 }
6469
6470 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6471 u32 factor = map->num_stripes / map->sub_stripes;
6472
6473 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6474 stripe_index *= map->sub_stripes;
6475
6476 if (need_full_stripe(op))
6477 num_stripes = map->sub_stripes;
6478 else if (mirror_num)
6479 stripe_index += mirror_num - 1;
6480 else {
6481 int old_stripe_index = stripe_index;
6482 stripe_index = find_live_mirror(fs_info, map,
6483 stripe_index,
6484 dev_replace_is_ongoing);
6485 mirror_num = stripe_index - old_stripe_index + 1;
6486 }
6487
6488 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6489 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6490 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6491 /* push stripe_nr back to the start of the full stripe */
6492 stripe_nr = div64_u64(raid56_full_stripe_start,
6493 stripe_len * data_stripes);
6494
6495 /* RAID[56] write or recovery. Return all stripes */
6496 num_stripes = map->num_stripes;
6497 max_errors = btrfs_chunk_max_errors(map);
6498
6499 /* Return the length to the full stripe end */
6500 *length = min(logical + *length,
6501 raid56_full_stripe_start + em->start +
6502 data_stripes * stripe_len) - logical;
6503 stripe_index = 0;
6504 stripe_offset = 0;
6505 } else {
6506 /*
6507 * Mirror #0 or #1 means the original data block.
6508 * Mirror #2 is RAID5 parity block.
6509 * Mirror #3 is RAID6 Q block.
6510 */
6511 stripe_nr = div_u64_rem(stripe_nr,
6512 data_stripes, &stripe_index);
6513 if (mirror_num > 1)
6514 stripe_index = data_stripes + mirror_num - 2;
6515
6516 /* We distribute the parity blocks across stripes */
6517 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6518 &stripe_index);
6519 if (!need_full_stripe(op) && mirror_num <= 1)
6520 mirror_num = 1;
6521 }
6522 } else {
6523 /*
6524 * after this, stripe_nr is the number of stripes on this
6525 * device we have to walk to find the data, and stripe_index is
6526 * the number of our device in the stripe array
6527 */
6528 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6529 &stripe_index);
6530 mirror_num = stripe_index + 1;
6531 }
6532 if (stripe_index >= map->num_stripes) {
6533 btrfs_crit(fs_info,
6534 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6535 stripe_index, map->num_stripes);
6536 ret = -EINVAL;
6537 goto out;
6538 }
6539
6540 num_alloc_stripes = num_stripes;
6541 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6542 if (op == BTRFS_MAP_WRITE)
6543 num_alloc_stripes <<= 1;
6544 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6545 num_alloc_stripes++;
6546 tgtdev_indexes = num_stripes;
6547 }
6548
6549 /*
6550 * If this I/O maps to a single device, try to return the device and
6551 * physical block information on the stack instead of allocating an
6552 * I/O context structure.
6553 */
6554 if (smap && num_alloc_stripes == 1 &&
6555 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6556 (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6557 !dev_replace->tgtdev)) {
6558 if (patch_the_first_stripe_for_dev_replace) {
6559 smap->dev = dev_replace->tgtdev;
6560 smap->physical = physical_to_patch_in_first_stripe;
6561 *mirror_num_ret = map->num_stripes + 1;
6562 } else {
6563 set_io_stripe(smap, map, stripe_index, stripe_offset,
6564 stripe_nr);
6565 *mirror_num_ret = mirror_num;
6566 }
6567 *bioc_ret = NULL;
6568 ret = 0;
6569 goto out;
6570 }
6571
6572 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6573 if (!bioc) {
6574 ret = -ENOMEM;
6575 goto out;
6576 }
6577
6578 for (i = 0; i < num_stripes; i++) {
6579 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6580 stripe_nr);
6581 stripe_index++;
6582 }
6583
6584 /* Build raid_map */
6585 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6586 (need_full_stripe(op) || mirror_num > 1)) {
6587 u64 tmp;
6588 unsigned rot;
6589
6590 /* Work out the disk rotation on this stripe-set */
6591 div_u64_rem(stripe_nr, num_stripes, &rot);
6592
6593 /* Fill in the logical address of each stripe */
6594 tmp = stripe_nr * data_stripes;
6595 for (i = 0; i < data_stripes; i++)
6596 bioc->raid_map[(i + rot) % num_stripes] =
6597 em->start + (tmp + i) * map->stripe_len;
6598
6599 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6600 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6601 bioc->raid_map[(i + rot + 1) % num_stripes] =
6602 RAID6_Q_STRIPE;
6603
6604 sort_parity_stripes(bioc, num_stripes);
6605 }
6606
6607 if (need_full_stripe(op))
6608 max_errors = btrfs_chunk_max_errors(map);
6609
6610 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6611 need_full_stripe(op)) {
6612 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6613 &num_stripes, &max_errors);
6614 }
6615
6616 *bioc_ret = bioc;
6617 bioc->map_type = map->type;
6618 bioc->num_stripes = num_stripes;
6619 bioc->max_errors = max_errors;
6620 bioc->mirror_num = mirror_num;
6621
6622 /*
6623 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6624 * mirror_num == num_stripes + 1 && dev_replace target drive is
6625 * available as a mirror
6626 */
6627 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6628 WARN_ON(num_stripes > 1);
6629 bioc->stripes[0].dev = dev_replace->tgtdev;
6630 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6631 bioc->mirror_num = map->num_stripes + 1;
6632 }
6633 out:
6634 if (dev_replace_is_ongoing) {
6635 lockdep_assert_held(&dev_replace->rwsem);
6636 /* Unlock and let waiting writers proceed */
6637 up_read(&dev_replace->rwsem);
6638 }
6639 free_extent_map(em);
6640 return ret;
6641 }
6642
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,int mirror_num)6643 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6644 u64 logical, u64 *length,
6645 struct btrfs_io_context **bioc_ret, int mirror_num)
6646 {
6647 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6648 NULL, &mirror_num, 0);
6649 }
6650
6651 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret)6652 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653 u64 logical, u64 *length,
6654 struct btrfs_io_context **bioc_ret)
6655 {
6656 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657 NULL, NULL, 1);
6658 }
6659
6660 /*
6661 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it
6662 * is already initialized by the block layer.
6663 */
btrfs_bio_init(struct btrfs_bio * bbio,btrfs_bio_end_io_t end_io,void * private)6664 static inline void btrfs_bio_init(struct btrfs_bio *bbio,
6665 btrfs_bio_end_io_t end_io, void *private)
6666 {
6667 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
6668 bbio->end_io = end_io;
6669 bbio->private = private;
6670 }
6671
6672 /*
6673 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
6674 * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
6675 *
6676 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
6677 * a mempool.
6678 */
btrfs_bio_alloc(unsigned int nr_vecs,blk_opf_t opf,btrfs_bio_end_io_t end_io,void * private)6679 struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
6680 btrfs_bio_end_io_t end_io, void *private)
6681 {
6682 struct bio *bio;
6683
6684 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
6685 btrfs_bio_init(btrfs_bio(bio), end_io, private);
6686 return bio;
6687 }
6688
btrfs_bio_clone_partial(struct bio * orig,u64 offset,u64 size,btrfs_bio_end_io_t end_io,void * private)6689 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size,
6690 btrfs_bio_end_io_t end_io, void *private)
6691 {
6692 struct bio *bio;
6693 struct btrfs_bio *bbio;
6694
6695 ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
6696
6697 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
6698 bbio = btrfs_bio(bio);
6699 btrfs_bio_init(bbio, end_io, private);
6700
6701 bio_trim(bio, offset >> 9, size >> 9);
6702 bbio->iter = bio->bi_iter;
6703 return bio;
6704 }
6705
btrfs_log_dev_io_error(struct bio * bio,struct btrfs_device * dev)6706 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
6707 {
6708 if (!dev || !dev->bdev)
6709 return;
6710 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
6711 return;
6712
6713 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6714 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
6715 if (!(bio->bi_opf & REQ_RAHEAD))
6716 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
6717 if (bio->bi_opf & REQ_PREFLUSH)
6718 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
6719 }
6720
btrfs_end_io_wq(struct btrfs_fs_info * fs_info,struct bio * bio)6721 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
6722 struct bio *bio)
6723 {
6724 if (bio->bi_opf & REQ_META)
6725 return fs_info->endio_meta_workers;
6726 return fs_info->endio_workers;
6727 }
6728
btrfs_end_bio_work(struct work_struct * work)6729 static void btrfs_end_bio_work(struct work_struct *work)
6730 {
6731 struct btrfs_bio *bbio =
6732 container_of(work, struct btrfs_bio, end_io_work);
6733
6734 bbio->end_io(bbio);
6735 }
6736
btrfs_simple_end_io(struct bio * bio)6737 static void btrfs_simple_end_io(struct bio *bio)
6738 {
6739 struct btrfs_fs_info *fs_info = bio->bi_private;
6740 struct btrfs_bio *bbio = btrfs_bio(bio);
6741
6742 btrfs_bio_counter_dec(fs_info);
6743
6744 if (bio->bi_status)
6745 btrfs_log_dev_io_error(bio, bbio->device);
6746
6747 if (bio_op(bio) == REQ_OP_READ) {
6748 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
6749 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
6750 } else {
6751 bbio->end_io(bbio);
6752 }
6753 }
6754
btrfs_raid56_end_io(struct bio * bio)6755 static void btrfs_raid56_end_io(struct bio *bio)
6756 {
6757 struct btrfs_io_context *bioc = bio->bi_private;
6758 struct btrfs_bio *bbio = btrfs_bio(bio);
6759
6760 btrfs_bio_counter_dec(bioc->fs_info);
6761 bbio->mirror_num = bioc->mirror_num;
6762 bbio->end_io(bbio);
6763
6764 btrfs_put_bioc(bioc);
6765 }
6766
btrfs_orig_write_end_io(struct bio * bio)6767 static void btrfs_orig_write_end_io(struct bio *bio)
6768 {
6769 struct btrfs_io_stripe *stripe = bio->bi_private;
6770 struct btrfs_io_context *bioc = stripe->bioc;
6771 struct btrfs_bio *bbio = btrfs_bio(bio);
6772
6773 btrfs_bio_counter_dec(bioc->fs_info);
6774
6775 if (bio->bi_status) {
6776 atomic_inc(&bioc->error);
6777 btrfs_log_dev_io_error(bio, stripe->dev);
6778 }
6779
6780 /*
6781 * Only send an error to the higher layers if it is beyond the tolerance
6782 * threshold.
6783 */
6784 if (atomic_read(&bioc->error) > bioc->max_errors)
6785 bio->bi_status = BLK_STS_IOERR;
6786 else
6787 bio->bi_status = BLK_STS_OK;
6788
6789 bbio->end_io(bbio);
6790 btrfs_put_bioc(bioc);
6791 }
6792
btrfs_clone_write_end_io(struct bio * bio)6793 static void btrfs_clone_write_end_io(struct bio *bio)
6794 {
6795 struct btrfs_io_stripe *stripe = bio->bi_private;
6796
6797 if (bio->bi_status) {
6798 atomic_inc(&stripe->bioc->error);
6799 btrfs_log_dev_io_error(bio, stripe->dev);
6800 }
6801
6802 /* Pass on control to the original bio this one was cloned from */
6803 bio_endio(stripe->bioc->orig_bio);
6804 bio_put(bio);
6805 }
6806
btrfs_submit_dev_bio(struct btrfs_device * dev,struct bio * bio)6807 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
6808 {
6809 if (!dev || !dev->bdev ||
6810 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6811 (btrfs_op(bio) == BTRFS_MAP_WRITE &&
6812 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6813 bio_io_error(bio);
6814 return;
6815 }
6816
6817 bio_set_dev(bio, dev->bdev);
6818
6819 /*
6820 * For zone append writing, bi_sector must point the beginning of the
6821 * zone
6822 */
6823 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6824 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
6825
6826 if (btrfs_dev_is_sequential(dev, physical)) {
6827 u64 zone_start = round_down(physical,
6828 dev->fs_info->zone_size);
6829
6830 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6831 } else {
6832 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6833 bio->bi_opf |= REQ_OP_WRITE;
6834 }
6835 }
6836 btrfs_debug_in_rcu(dev->fs_info,
6837 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6838 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6839 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6840 dev->devid, bio->bi_iter.bi_size);
6841
6842 btrfsic_check_bio(bio);
6843 submit_bio(bio);
6844 }
6845
btrfs_submit_mirrored_bio(struct btrfs_io_context * bioc,int dev_nr)6846 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
6847 {
6848 struct bio *orig_bio = bioc->orig_bio, *bio;
6849
6850 ASSERT(bio_op(orig_bio) != REQ_OP_READ);
6851
6852 /* Reuse the bio embedded into the btrfs_bio for the last mirror */
6853 if (dev_nr == bioc->num_stripes - 1) {
6854 bio = orig_bio;
6855 bio->bi_end_io = btrfs_orig_write_end_io;
6856 } else {
6857 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
6858 bio_inc_remaining(orig_bio);
6859 bio->bi_end_io = btrfs_clone_write_end_io;
6860 }
6861
6862 bio->bi_private = &bioc->stripes[dev_nr];
6863 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
6864 bioc->stripes[dev_nr].bioc = bioc;
6865 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
6866 }
6867
btrfs_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num)6868 void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num)
6869 {
6870 u64 logical = bio->bi_iter.bi_sector << 9;
6871 u64 length = bio->bi_iter.bi_size;
6872 u64 map_length = length;
6873 struct btrfs_io_context *bioc = NULL;
6874 struct btrfs_io_stripe smap;
6875 int ret;
6876
6877 btrfs_bio_counter_inc_blocked(fs_info);
6878 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
6879 &bioc, &smap, &mirror_num, 1);
6880 if (ret) {
6881 btrfs_bio_counter_dec(fs_info);
6882 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
6883 return;
6884 }
6885
6886 if (map_length < length) {
6887 btrfs_crit(fs_info,
6888 "mapping failed logical %llu bio len %llu len %llu",
6889 logical, length, map_length);
6890 BUG();
6891 }
6892
6893 if (!bioc) {
6894 /* Single mirror read/write fast path */
6895 btrfs_bio(bio)->mirror_num = mirror_num;
6896 btrfs_bio(bio)->device = smap.dev;
6897 bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
6898 bio->bi_private = fs_info;
6899 bio->bi_end_io = btrfs_simple_end_io;
6900 btrfs_submit_dev_bio(smap.dev, bio);
6901 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6902 /* Parity RAID write or read recovery */
6903 bio->bi_private = bioc;
6904 bio->bi_end_io = btrfs_raid56_end_io;
6905 if (bio_op(bio) == REQ_OP_READ)
6906 raid56_parity_recover(bio, bioc, mirror_num);
6907 else
6908 raid56_parity_write(bio, bioc);
6909 } else {
6910 /* Write to multiple mirrors */
6911 int total_devs = bioc->num_stripes;
6912 int dev_nr;
6913
6914 bioc->orig_bio = bio;
6915 for (dev_nr = 0; dev_nr < total_devs; dev_nr++)
6916 btrfs_submit_mirrored_bio(bioc, dev_nr);
6917 }
6918 }
6919
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6920 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6921 const struct btrfs_fs_devices *fs_devices)
6922 {
6923 if (args->fsid == NULL)
6924 return true;
6925 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6926 return true;
6927 return false;
6928 }
6929
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6930 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6931 const struct btrfs_device *device)
6932 {
6933 if (args->missing) {
6934 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6935 !device->bdev)
6936 return true;
6937 return false;
6938 }
6939
6940 if (device->devid != args->devid)
6941 return false;
6942 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6943 return false;
6944 return true;
6945 }
6946
6947 /*
6948 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6949 * return NULL.
6950 *
6951 * If devid and uuid are both specified, the match must be exact, otherwise
6952 * only devid is used.
6953 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6954 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6955 const struct btrfs_dev_lookup_args *args)
6956 {
6957 struct btrfs_device *device;
6958 struct btrfs_fs_devices *seed_devs;
6959
6960 if (dev_args_match_fs_devices(args, fs_devices)) {
6961 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6962 if (dev_args_match_device(args, device))
6963 return device;
6964 }
6965 }
6966
6967 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6968 if (!dev_args_match_fs_devices(args, seed_devs))
6969 continue;
6970 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6971 if (dev_args_match_device(args, device))
6972 return device;
6973 }
6974 }
6975
6976 return NULL;
6977 }
6978
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6979 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6980 u64 devid, u8 *dev_uuid)
6981 {
6982 struct btrfs_device *device;
6983 unsigned int nofs_flag;
6984
6985 /*
6986 * We call this under the chunk_mutex, so we want to use NOFS for this
6987 * allocation, however we don't want to change btrfs_alloc_device() to
6988 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6989 * places.
6990 */
6991 nofs_flag = memalloc_nofs_save();
6992 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6993 memalloc_nofs_restore(nofs_flag);
6994 if (IS_ERR(device))
6995 return device;
6996
6997 list_add(&device->dev_list, &fs_devices->devices);
6998 device->fs_devices = fs_devices;
6999 fs_devices->num_devices++;
7000
7001 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7002 fs_devices->missing_devices++;
7003
7004 return device;
7005 }
7006
7007 /**
7008 * btrfs_alloc_device - allocate struct btrfs_device
7009 * @fs_info: used only for generating a new devid, can be NULL if
7010 * devid is provided (i.e. @devid != NULL).
7011 * @devid: a pointer to devid for this device. If NULL a new devid
7012 * is generated.
7013 * @uuid: a pointer to UUID for this device. If NULL a new UUID
7014 * is generated.
7015 *
7016 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
7017 * on error. Returned struct is not linked onto any lists and must be
7018 * destroyed with btrfs_free_device.
7019 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)7020 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
7021 const u64 *devid,
7022 const u8 *uuid)
7023 {
7024 struct btrfs_device *dev;
7025 u64 tmp;
7026
7027 if (WARN_ON(!devid && !fs_info))
7028 return ERR_PTR(-EINVAL);
7029
7030 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
7031 if (!dev)
7032 return ERR_PTR(-ENOMEM);
7033
7034 INIT_LIST_HEAD(&dev->dev_list);
7035 INIT_LIST_HEAD(&dev->dev_alloc_list);
7036 INIT_LIST_HEAD(&dev->post_commit_list);
7037
7038 atomic_set(&dev->dev_stats_ccnt, 0);
7039 btrfs_device_data_ordered_init(dev);
7040 extent_io_tree_init(fs_info, &dev->alloc_state,
7041 IO_TREE_DEVICE_ALLOC_STATE, NULL);
7042
7043 if (devid)
7044 tmp = *devid;
7045 else {
7046 int ret;
7047
7048 ret = find_next_devid(fs_info, &tmp);
7049 if (ret) {
7050 btrfs_free_device(dev);
7051 return ERR_PTR(ret);
7052 }
7053 }
7054 dev->devid = tmp;
7055
7056 if (uuid)
7057 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
7058 else
7059 generate_random_uuid(dev->uuid);
7060
7061 return dev;
7062 }
7063
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)7064 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
7065 u64 devid, u8 *uuid, bool error)
7066 {
7067 if (error)
7068 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
7069 devid, uuid);
7070 else
7071 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
7072 devid, uuid);
7073 }
7074
btrfs_calc_stripe_length(const struct extent_map * em)7075 u64 btrfs_calc_stripe_length(const struct extent_map *em)
7076 {
7077 const struct map_lookup *map = em->map_lookup;
7078 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
7079
7080 return div_u64(em->len, data_stripes);
7081 }
7082
7083 #if BITS_PER_LONG == 32
7084 /*
7085 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7086 * can't be accessed on 32bit systems.
7087 *
7088 * This function do mount time check to reject the fs if it already has
7089 * metadata chunk beyond that limit.
7090 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)7091 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7092 u64 logical, u64 length, u64 type)
7093 {
7094 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7095 return 0;
7096
7097 if (logical + length < MAX_LFS_FILESIZE)
7098 return 0;
7099
7100 btrfs_err_32bit_limit(fs_info);
7101 return -EOVERFLOW;
7102 }
7103
7104 /*
7105 * This is to give early warning for any metadata chunk reaching
7106 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7107 * Although we can still access the metadata, it's not going to be possible
7108 * once the limit is reached.
7109 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)7110 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7111 u64 logical, u64 length, u64 type)
7112 {
7113 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7114 return;
7115
7116 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7117 return;
7118
7119 btrfs_warn_32bit_limit(fs_info);
7120 }
7121 #endif
7122
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)7123 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7124 u64 devid, u8 *uuid)
7125 {
7126 struct btrfs_device *dev;
7127
7128 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7129 btrfs_report_missing_device(fs_info, devid, uuid, true);
7130 return ERR_PTR(-ENOENT);
7131 }
7132
7133 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7134 if (IS_ERR(dev)) {
7135 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7136 devid, PTR_ERR(dev));
7137 return dev;
7138 }
7139 btrfs_report_missing_device(fs_info, devid, uuid, false);
7140
7141 return dev;
7142 }
7143
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)7144 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7145 struct btrfs_chunk *chunk)
7146 {
7147 BTRFS_DEV_LOOKUP_ARGS(args);
7148 struct btrfs_fs_info *fs_info = leaf->fs_info;
7149 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7150 struct map_lookup *map;
7151 struct extent_map *em;
7152 u64 logical;
7153 u64 length;
7154 u64 devid;
7155 u64 type;
7156 u8 uuid[BTRFS_UUID_SIZE];
7157 int index;
7158 int num_stripes;
7159 int ret;
7160 int i;
7161
7162 logical = key->offset;
7163 length = btrfs_chunk_length(leaf, chunk);
7164 type = btrfs_chunk_type(leaf, chunk);
7165 index = btrfs_bg_flags_to_raid_index(type);
7166 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7167
7168 #if BITS_PER_LONG == 32
7169 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7170 if (ret < 0)
7171 return ret;
7172 warn_32bit_meta_chunk(fs_info, logical, length, type);
7173 #endif
7174
7175 /*
7176 * Only need to verify chunk item if we're reading from sys chunk array,
7177 * as chunk item in tree block is already verified by tree-checker.
7178 */
7179 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7180 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7181 if (ret)
7182 return ret;
7183 }
7184
7185 read_lock(&map_tree->lock);
7186 em = lookup_extent_mapping(map_tree, logical, 1);
7187 read_unlock(&map_tree->lock);
7188
7189 /* already mapped? */
7190 if (em && em->start <= logical && em->start + em->len > logical) {
7191 free_extent_map(em);
7192 return 0;
7193 } else if (em) {
7194 free_extent_map(em);
7195 }
7196
7197 em = alloc_extent_map();
7198 if (!em)
7199 return -ENOMEM;
7200 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7201 if (!map) {
7202 free_extent_map(em);
7203 return -ENOMEM;
7204 }
7205
7206 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7207 em->map_lookup = map;
7208 em->start = logical;
7209 em->len = length;
7210 em->orig_start = 0;
7211 em->block_start = 0;
7212 em->block_len = em->len;
7213
7214 map->num_stripes = num_stripes;
7215 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7216 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7217 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7218 map->type = type;
7219 /*
7220 * We can't use the sub_stripes value, as for profiles other than
7221 * RAID10, they may have 0 as sub_stripes for filesystems created by
7222 * older mkfs (<v5.4).
7223 * In that case, it can cause divide-by-zero errors later.
7224 * Since currently sub_stripes is fixed for each profile, let's
7225 * use the trusted value instead.
7226 */
7227 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7228 map->verified_stripes = 0;
7229 em->orig_block_len = btrfs_calc_stripe_length(em);
7230 for (i = 0; i < num_stripes; i++) {
7231 map->stripes[i].physical =
7232 btrfs_stripe_offset_nr(leaf, chunk, i);
7233 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7234 args.devid = devid;
7235 read_extent_buffer(leaf, uuid, (unsigned long)
7236 btrfs_stripe_dev_uuid_nr(chunk, i),
7237 BTRFS_UUID_SIZE);
7238 args.uuid = uuid;
7239 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7240 if (!map->stripes[i].dev) {
7241 map->stripes[i].dev = handle_missing_device(fs_info,
7242 devid, uuid);
7243 if (IS_ERR(map->stripes[i].dev)) {
7244 free_extent_map(em);
7245 return PTR_ERR(map->stripes[i].dev);
7246 }
7247 }
7248
7249 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7250 &(map->stripes[i].dev->dev_state));
7251 }
7252
7253 write_lock(&map_tree->lock);
7254 ret = add_extent_mapping(map_tree, em, 0);
7255 write_unlock(&map_tree->lock);
7256 if (ret < 0) {
7257 btrfs_err(fs_info,
7258 "failed to add chunk map, start=%llu len=%llu: %d",
7259 em->start, em->len, ret);
7260 }
7261 free_extent_map(em);
7262
7263 return ret;
7264 }
7265
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7266 static void fill_device_from_item(struct extent_buffer *leaf,
7267 struct btrfs_dev_item *dev_item,
7268 struct btrfs_device *device)
7269 {
7270 unsigned long ptr;
7271
7272 device->devid = btrfs_device_id(leaf, dev_item);
7273 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7274 device->total_bytes = device->disk_total_bytes;
7275 device->commit_total_bytes = device->disk_total_bytes;
7276 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7277 device->commit_bytes_used = device->bytes_used;
7278 device->type = btrfs_device_type(leaf, dev_item);
7279 device->io_align = btrfs_device_io_align(leaf, dev_item);
7280 device->io_width = btrfs_device_io_width(leaf, dev_item);
7281 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7282 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7283 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7284
7285 ptr = btrfs_device_uuid(dev_item);
7286 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7287 }
7288
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7289 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7290 u8 *fsid)
7291 {
7292 struct btrfs_fs_devices *fs_devices;
7293 int ret;
7294
7295 lockdep_assert_held(&uuid_mutex);
7296 ASSERT(fsid);
7297
7298 /* This will match only for multi-device seed fs */
7299 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7300 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7301 return fs_devices;
7302
7303
7304 fs_devices = find_fsid(fsid, NULL);
7305 if (!fs_devices) {
7306 if (!btrfs_test_opt(fs_info, DEGRADED))
7307 return ERR_PTR(-ENOENT);
7308
7309 fs_devices = alloc_fs_devices(fsid, NULL);
7310 if (IS_ERR(fs_devices))
7311 return fs_devices;
7312
7313 fs_devices->seeding = true;
7314 fs_devices->opened = 1;
7315 return fs_devices;
7316 }
7317
7318 /*
7319 * Upon first call for a seed fs fsid, just create a private copy of the
7320 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7321 */
7322 fs_devices = clone_fs_devices(fs_devices);
7323 if (IS_ERR(fs_devices))
7324 return fs_devices;
7325
7326 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7327 if (ret) {
7328 free_fs_devices(fs_devices);
7329 return ERR_PTR(ret);
7330 }
7331
7332 if (!fs_devices->seeding) {
7333 close_fs_devices(fs_devices);
7334 free_fs_devices(fs_devices);
7335 return ERR_PTR(-EINVAL);
7336 }
7337
7338 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7339
7340 return fs_devices;
7341 }
7342
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7343 static int read_one_dev(struct extent_buffer *leaf,
7344 struct btrfs_dev_item *dev_item)
7345 {
7346 BTRFS_DEV_LOOKUP_ARGS(args);
7347 struct btrfs_fs_info *fs_info = leaf->fs_info;
7348 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7349 struct btrfs_device *device;
7350 u64 devid;
7351 int ret;
7352 u8 fs_uuid[BTRFS_FSID_SIZE];
7353 u8 dev_uuid[BTRFS_UUID_SIZE];
7354
7355 devid = btrfs_device_id(leaf, dev_item);
7356 args.devid = devid;
7357 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7358 BTRFS_UUID_SIZE);
7359 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7360 BTRFS_FSID_SIZE);
7361 args.uuid = dev_uuid;
7362 args.fsid = fs_uuid;
7363
7364 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7365 fs_devices = open_seed_devices(fs_info, fs_uuid);
7366 if (IS_ERR(fs_devices))
7367 return PTR_ERR(fs_devices);
7368 }
7369
7370 device = btrfs_find_device(fs_info->fs_devices, &args);
7371 if (!device) {
7372 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7373 btrfs_report_missing_device(fs_info, devid,
7374 dev_uuid, true);
7375 return -ENOENT;
7376 }
7377
7378 device = add_missing_dev(fs_devices, devid, dev_uuid);
7379 if (IS_ERR(device)) {
7380 btrfs_err(fs_info,
7381 "failed to add missing dev %llu: %ld",
7382 devid, PTR_ERR(device));
7383 return PTR_ERR(device);
7384 }
7385 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7386 } else {
7387 if (!device->bdev) {
7388 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7389 btrfs_report_missing_device(fs_info,
7390 devid, dev_uuid, true);
7391 return -ENOENT;
7392 }
7393 btrfs_report_missing_device(fs_info, devid,
7394 dev_uuid, false);
7395 }
7396
7397 if (!device->bdev &&
7398 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7399 /*
7400 * this happens when a device that was properly setup
7401 * in the device info lists suddenly goes bad.
7402 * device->bdev is NULL, and so we have to set
7403 * device->missing to one here
7404 */
7405 device->fs_devices->missing_devices++;
7406 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7407 }
7408
7409 /* Move the device to its own fs_devices */
7410 if (device->fs_devices != fs_devices) {
7411 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7412 &device->dev_state));
7413
7414 list_move(&device->dev_list, &fs_devices->devices);
7415 device->fs_devices->num_devices--;
7416 fs_devices->num_devices++;
7417
7418 device->fs_devices->missing_devices--;
7419 fs_devices->missing_devices++;
7420
7421 device->fs_devices = fs_devices;
7422 }
7423 }
7424
7425 if (device->fs_devices != fs_info->fs_devices) {
7426 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7427 if (device->generation !=
7428 btrfs_device_generation(leaf, dev_item))
7429 return -EINVAL;
7430 }
7431
7432 fill_device_from_item(leaf, dev_item, device);
7433 if (device->bdev) {
7434 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7435
7436 if (device->total_bytes > max_total_bytes) {
7437 btrfs_err(fs_info,
7438 "device total_bytes should be at most %llu but found %llu",
7439 max_total_bytes, device->total_bytes);
7440 return -EINVAL;
7441 }
7442 }
7443 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7444 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7445 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7446 device->fs_devices->total_rw_bytes += device->total_bytes;
7447 atomic64_add(device->total_bytes - device->bytes_used,
7448 &fs_info->free_chunk_space);
7449 }
7450 ret = 0;
7451 return ret;
7452 }
7453
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7454 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7455 {
7456 struct btrfs_super_block *super_copy = fs_info->super_copy;
7457 struct extent_buffer *sb;
7458 struct btrfs_disk_key *disk_key;
7459 struct btrfs_chunk *chunk;
7460 u8 *array_ptr;
7461 unsigned long sb_array_offset;
7462 int ret = 0;
7463 u32 num_stripes;
7464 u32 array_size;
7465 u32 len = 0;
7466 u32 cur_offset;
7467 u64 type;
7468 struct btrfs_key key;
7469
7470 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7471
7472 /*
7473 * We allocated a dummy extent, just to use extent buffer accessors.
7474 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7475 * that's fine, we will not go beyond system chunk array anyway.
7476 */
7477 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7478 if (!sb)
7479 return -ENOMEM;
7480 set_extent_buffer_uptodate(sb);
7481
7482 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7483 array_size = btrfs_super_sys_array_size(super_copy);
7484
7485 array_ptr = super_copy->sys_chunk_array;
7486 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7487 cur_offset = 0;
7488
7489 while (cur_offset < array_size) {
7490 disk_key = (struct btrfs_disk_key *)array_ptr;
7491 len = sizeof(*disk_key);
7492 if (cur_offset + len > array_size)
7493 goto out_short_read;
7494
7495 btrfs_disk_key_to_cpu(&key, disk_key);
7496
7497 array_ptr += len;
7498 sb_array_offset += len;
7499 cur_offset += len;
7500
7501 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7502 btrfs_err(fs_info,
7503 "unexpected item type %u in sys_array at offset %u",
7504 (u32)key.type, cur_offset);
7505 ret = -EIO;
7506 break;
7507 }
7508
7509 chunk = (struct btrfs_chunk *)sb_array_offset;
7510 /*
7511 * At least one btrfs_chunk with one stripe must be present,
7512 * exact stripe count check comes afterwards
7513 */
7514 len = btrfs_chunk_item_size(1);
7515 if (cur_offset + len > array_size)
7516 goto out_short_read;
7517
7518 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7519 if (!num_stripes) {
7520 btrfs_err(fs_info,
7521 "invalid number of stripes %u in sys_array at offset %u",
7522 num_stripes, cur_offset);
7523 ret = -EIO;
7524 break;
7525 }
7526
7527 type = btrfs_chunk_type(sb, chunk);
7528 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7529 btrfs_err(fs_info,
7530 "invalid chunk type %llu in sys_array at offset %u",
7531 type, cur_offset);
7532 ret = -EIO;
7533 break;
7534 }
7535
7536 len = btrfs_chunk_item_size(num_stripes);
7537 if (cur_offset + len > array_size)
7538 goto out_short_read;
7539
7540 ret = read_one_chunk(&key, sb, chunk);
7541 if (ret)
7542 break;
7543
7544 array_ptr += len;
7545 sb_array_offset += len;
7546 cur_offset += len;
7547 }
7548 clear_extent_buffer_uptodate(sb);
7549 free_extent_buffer_stale(sb);
7550 return ret;
7551
7552 out_short_read:
7553 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7554 len, cur_offset);
7555 clear_extent_buffer_uptodate(sb);
7556 free_extent_buffer_stale(sb);
7557 return -EIO;
7558 }
7559
7560 /*
7561 * Check if all chunks in the fs are OK for read-write degraded mount
7562 *
7563 * If the @failing_dev is specified, it's accounted as missing.
7564 *
7565 * Return true if all chunks meet the minimal RW mount requirements.
7566 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7567 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7568 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7569 struct btrfs_device *failing_dev)
7570 {
7571 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7572 struct extent_map *em;
7573 u64 next_start = 0;
7574 bool ret = true;
7575
7576 read_lock(&map_tree->lock);
7577 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7578 read_unlock(&map_tree->lock);
7579 /* No chunk at all? Return false anyway */
7580 if (!em) {
7581 ret = false;
7582 goto out;
7583 }
7584 while (em) {
7585 struct map_lookup *map;
7586 int missing = 0;
7587 int max_tolerated;
7588 int i;
7589
7590 map = em->map_lookup;
7591 max_tolerated =
7592 btrfs_get_num_tolerated_disk_barrier_failures(
7593 map->type);
7594 for (i = 0; i < map->num_stripes; i++) {
7595 struct btrfs_device *dev = map->stripes[i].dev;
7596
7597 if (!dev || !dev->bdev ||
7598 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7599 dev->last_flush_error)
7600 missing++;
7601 else if (failing_dev && failing_dev == dev)
7602 missing++;
7603 }
7604 if (missing > max_tolerated) {
7605 if (!failing_dev)
7606 btrfs_warn(fs_info,
7607 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7608 em->start, missing, max_tolerated);
7609 free_extent_map(em);
7610 ret = false;
7611 goto out;
7612 }
7613 next_start = extent_map_end(em);
7614 free_extent_map(em);
7615
7616 read_lock(&map_tree->lock);
7617 em = lookup_extent_mapping(map_tree, next_start,
7618 (u64)(-1) - next_start);
7619 read_unlock(&map_tree->lock);
7620 }
7621 out:
7622 return ret;
7623 }
7624
readahead_tree_node_children(struct extent_buffer * node)7625 static void readahead_tree_node_children(struct extent_buffer *node)
7626 {
7627 int i;
7628 const int nr_items = btrfs_header_nritems(node);
7629
7630 for (i = 0; i < nr_items; i++)
7631 btrfs_readahead_node_child(node, i);
7632 }
7633
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7634 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7635 {
7636 struct btrfs_root *root = fs_info->chunk_root;
7637 struct btrfs_path *path;
7638 struct extent_buffer *leaf;
7639 struct btrfs_key key;
7640 struct btrfs_key found_key;
7641 int ret;
7642 int slot;
7643 int iter_ret = 0;
7644 u64 total_dev = 0;
7645 u64 last_ra_node = 0;
7646
7647 path = btrfs_alloc_path();
7648 if (!path)
7649 return -ENOMEM;
7650
7651 /*
7652 * uuid_mutex is needed only if we are mounting a sprout FS
7653 * otherwise we don't need it.
7654 */
7655 mutex_lock(&uuid_mutex);
7656
7657 /*
7658 * It is possible for mount and umount to race in such a way that
7659 * we execute this code path, but open_fs_devices failed to clear
7660 * total_rw_bytes. We certainly want it cleared before reading the
7661 * device items, so clear it here.
7662 */
7663 fs_info->fs_devices->total_rw_bytes = 0;
7664
7665 /*
7666 * Lockdep complains about possible circular locking dependency between
7667 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7668 * used for freeze procection of a fs (struct super_block.s_writers),
7669 * which we take when starting a transaction, and extent buffers of the
7670 * chunk tree if we call read_one_dev() while holding a lock on an
7671 * extent buffer of the chunk tree. Since we are mounting the filesystem
7672 * and at this point there can't be any concurrent task modifying the
7673 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7674 */
7675 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7676 path->skip_locking = 1;
7677
7678 /*
7679 * Read all device items, and then all the chunk items. All
7680 * device items are found before any chunk item (their object id
7681 * is smaller than the lowest possible object id for a chunk
7682 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7683 */
7684 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7685 key.offset = 0;
7686 key.type = 0;
7687 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7688 struct extent_buffer *node = path->nodes[1];
7689
7690 leaf = path->nodes[0];
7691 slot = path->slots[0];
7692
7693 if (node) {
7694 if (last_ra_node != node->start) {
7695 readahead_tree_node_children(node);
7696 last_ra_node = node->start;
7697 }
7698 }
7699 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7700 struct btrfs_dev_item *dev_item;
7701 dev_item = btrfs_item_ptr(leaf, slot,
7702 struct btrfs_dev_item);
7703 ret = read_one_dev(leaf, dev_item);
7704 if (ret)
7705 goto error;
7706 total_dev++;
7707 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7708 struct btrfs_chunk *chunk;
7709
7710 /*
7711 * We are only called at mount time, so no need to take
7712 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7713 * we always lock first fs_info->chunk_mutex before
7714 * acquiring any locks on the chunk tree. This is a
7715 * requirement for chunk allocation, see the comment on
7716 * top of btrfs_chunk_alloc() for details.
7717 */
7718 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7719 ret = read_one_chunk(&found_key, leaf, chunk);
7720 if (ret)
7721 goto error;
7722 }
7723 }
7724 /* Catch error found during iteration */
7725 if (iter_ret < 0) {
7726 ret = iter_ret;
7727 goto error;
7728 }
7729
7730 /*
7731 * After loading chunk tree, we've got all device information,
7732 * do another round of validation checks.
7733 */
7734 if (total_dev != fs_info->fs_devices->total_devices) {
7735 btrfs_warn(fs_info,
7736 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7737 btrfs_super_num_devices(fs_info->super_copy),
7738 total_dev);
7739 fs_info->fs_devices->total_devices = total_dev;
7740 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7741 }
7742 if (btrfs_super_total_bytes(fs_info->super_copy) <
7743 fs_info->fs_devices->total_rw_bytes) {
7744 btrfs_err(fs_info,
7745 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7746 btrfs_super_total_bytes(fs_info->super_copy),
7747 fs_info->fs_devices->total_rw_bytes);
7748 ret = -EINVAL;
7749 goto error;
7750 }
7751 ret = 0;
7752 error:
7753 mutex_unlock(&uuid_mutex);
7754
7755 btrfs_free_path(path);
7756 return ret;
7757 }
7758
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7759 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7760 {
7761 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7762 struct btrfs_device *device;
7763 int ret = 0;
7764
7765 fs_devices->fs_info = fs_info;
7766
7767 mutex_lock(&fs_devices->device_list_mutex);
7768 list_for_each_entry(device, &fs_devices->devices, dev_list)
7769 device->fs_info = fs_info;
7770
7771 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7772 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7773 device->fs_info = fs_info;
7774 ret = btrfs_get_dev_zone_info(device, false);
7775 if (ret)
7776 break;
7777 }
7778
7779 seed_devs->fs_info = fs_info;
7780 }
7781 mutex_unlock(&fs_devices->device_list_mutex);
7782
7783 return ret;
7784 }
7785
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7786 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7787 const struct btrfs_dev_stats_item *ptr,
7788 int index)
7789 {
7790 u64 val;
7791
7792 read_extent_buffer(eb, &val,
7793 offsetof(struct btrfs_dev_stats_item, values) +
7794 ((unsigned long)ptr) + (index * sizeof(u64)),
7795 sizeof(val));
7796 return val;
7797 }
7798
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7799 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7800 struct btrfs_dev_stats_item *ptr,
7801 int index, u64 val)
7802 {
7803 write_extent_buffer(eb, &val,
7804 offsetof(struct btrfs_dev_stats_item, values) +
7805 ((unsigned long)ptr) + (index * sizeof(u64)),
7806 sizeof(val));
7807 }
7808
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7809 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7810 struct btrfs_path *path)
7811 {
7812 struct btrfs_dev_stats_item *ptr;
7813 struct extent_buffer *eb;
7814 struct btrfs_key key;
7815 int item_size;
7816 int i, ret, slot;
7817
7818 if (!device->fs_info->dev_root)
7819 return 0;
7820
7821 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7822 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7823 key.offset = device->devid;
7824 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7825 if (ret) {
7826 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7827 btrfs_dev_stat_set(device, i, 0);
7828 device->dev_stats_valid = 1;
7829 btrfs_release_path(path);
7830 return ret < 0 ? ret : 0;
7831 }
7832 slot = path->slots[0];
7833 eb = path->nodes[0];
7834 item_size = btrfs_item_size(eb, slot);
7835
7836 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7837
7838 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7839 if (item_size >= (1 + i) * sizeof(__le64))
7840 btrfs_dev_stat_set(device, i,
7841 btrfs_dev_stats_value(eb, ptr, i));
7842 else
7843 btrfs_dev_stat_set(device, i, 0);
7844 }
7845
7846 device->dev_stats_valid = 1;
7847 btrfs_dev_stat_print_on_load(device);
7848 btrfs_release_path(path);
7849
7850 return 0;
7851 }
7852
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7853 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7854 {
7855 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7856 struct btrfs_device *device;
7857 struct btrfs_path *path = NULL;
7858 int ret = 0;
7859
7860 path = btrfs_alloc_path();
7861 if (!path)
7862 return -ENOMEM;
7863
7864 mutex_lock(&fs_devices->device_list_mutex);
7865 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7866 ret = btrfs_device_init_dev_stats(device, path);
7867 if (ret)
7868 goto out;
7869 }
7870 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7871 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7872 ret = btrfs_device_init_dev_stats(device, path);
7873 if (ret)
7874 goto out;
7875 }
7876 }
7877 out:
7878 mutex_unlock(&fs_devices->device_list_mutex);
7879
7880 btrfs_free_path(path);
7881 return ret;
7882 }
7883
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7884 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7885 struct btrfs_device *device)
7886 {
7887 struct btrfs_fs_info *fs_info = trans->fs_info;
7888 struct btrfs_root *dev_root = fs_info->dev_root;
7889 struct btrfs_path *path;
7890 struct btrfs_key key;
7891 struct extent_buffer *eb;
7892 struct btrfs_dev_stats_item *ptr;
7893 int ret;
7894 int i;
7895
7896 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7897 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7898 key.offset = device->devid;
7899
7900 path = btrfs_alloc_path();
7901 if (!path)
7902 return -ENOMEM;
7903 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7904 if (ret < 0) {
7905 btrfs_warn_in_rcu(fs_info,
7906 "error %d while searching for dev_stats item for device %s",
7907 ret, rcu_str_deref(device->name));
7908 goto out;
7909 }
7910
7911 if (ret == 0 &&
7912 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7913 /* need to delete old one and insert a new one */
7914 ret = btrfs_del_item(trans, dev_root, path);
7915 if (ret != 0) {
7916 btrfs_warn_in_rcu(fs_info,
7917 "delete too small dev_stats item for device %s failed %d",
7918 rcu_str_deref(device->name), ret);
7919 goto out;
7920 }
7921 ret = 1;
7922 }
7923
7924 if (ret == 1) {
7925 /* need to insert a new item */
7926 btrfs_release_path(path);
7927 ret = btrfs_insert_empty_item(trans, dev_root, path,
7928 &key, sizeof(*ptr));
7929 if (ret < 0) {
7930 btrfs_warn_in_rcu(fs_info,
7931 "insert dev_stats item for device %s failed %d",
7932 rcu_str_deref(device->name), ret);
7933 goto out;
7934 }
7935 }
7936
7937 eb = path->nodes[0];
7938 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7939 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7940 btrfs_set_dev_stats_value(eb, ptr, i,
7941 btrfs_dev_stat_read(device, i));
7942 btrfs_mark_buffer_dirty(eb);
7943
7944 out:
7945 btrfs_free_path(path);
7946 return ret;
7947 }
7948
7949 /*
7950 * called from commit_transaction. Writes all changed device stats to disk.
7951 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7952 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7953 {
7954 struct btrfs_fs_info *fs_info = trans->fs_info;
7955 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7956 struct btrfs_device *device;
7957 int stats_cnt;
7958 int ret = 0;
7959
7960 mutex_lock(&fs_devices->device_list_mutex);
7961 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7962 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7963 if (!device->dev_stats_valid || stats_cnt == 0)
7964 continue;
7965
7966
7967 /*
7968 * There is a LOAD-LOAD control dependency between the value of
7969 * dev_stats_ccnt and updating the on-disk values which requires
7970 * reading the in-memory counters. Such control dependencies
7971 * require explicit read memory barriers.
7972 *
7973 * This memory barriers pairs with smp_mb__before_atomic in
7974 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7975 * barrier implied by atomic_xchg in
7976 * btrfs_dev_stats_read_and_reset
7977 */
7978 smp_rmb();
7979
7980 ret = update_dev_stat_item(trans, device);
7981 if (!ret)
7982 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7983 }
7984 mutex_unlock(&fs_devices->device_list_mutex);
7985
7986 return ret;
7987 }
7988
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7989 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7990 {
7991 btrfs_dev_stat_inc(dev, index);
7992
7993 if (!dev->dev_stats_valid)
7994 return;
7995 btrfs_err_rl_in_rcu(dev->fs_info,
7996 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7997 rcu_str_deref(dev->name),
7998 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7999 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
8000 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
8001 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
8002 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
8003 }
8004
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)8005 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
8006 {
8007 int i;
8008
8009 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
8010 if (btrfs_dev_stat_read(dev, i) != 0)
8011 break;
8012 if (i == BTRFS_DEV_STAT_VALUES_MAX)
8013 return; /* all values == 0, suppress message */
8014
8015 btrfs_info_in_rcu(dev->fs_info,
8016 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
8017 rcu_str_deref(dev->name),
8018 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
8019 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
8020 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
8021 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
8022 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
8023 }
8024
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)8025 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
8026 struct btrfs_ioctl_get_dev_stats *stats)
8027 {
8028 BTRFS_DEV_LOOKUP_ARGS(args);
8029 struct btrfs_device *dev;
8030 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8031 int i;
8032
8033 mutex_lock(&fs_devices->device_list_mutex);
8034 args.devid = stats->devid;
8035 dev = btrfs_find_device(fs_info->fs_devices, &args);
8036 mutex_unlock(&fs_devices->device_list_mutex);
8037
8038 if (!dev) {
8039 btrfs_warn(fs_info, "get dev_stats failed, device not found");
8040 return -ENODEV;
8041 } else if (!dev->dev_stats_valid) {
8042 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
8043 return -ENODEV;
8044 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
8045 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
8046 if (stats->nr_items > i)
8047 stats->values[i] =
8048 btrfs_dev_stat_read_and_reset(dev, i);
8049 else
8050 btrfs_dev_stat_set(dev, i, 0);
8051 }
8052 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
8053 current->comm, task_pid_nr(current));
8054 } else {
8055 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
8056 if (stats->nr_items > i)
8057 stats->values[i] = btrfs_dev_stat_read(dev, i);
8058 }
8059 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
8060 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
8061 return 0;
8062 }
8063
8064 /*
8065 * Update the size and bytes used for each device where it changed. This is
8066 * delayed since we would otherwise get errors while writing out the
8067 * superblocks.
8068 *
8069 * Must be invoked during transaction commit.
8070 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)8071 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
8072 {
8073 struct btrfs_device *curr, *next;
8074
8075 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
8076
8077 if (list_empty(&trans->dev_update_list))
8078 return;
8079
8080 /*
8081 * We don't need the device_list_mutex here. This list is owned by the
8082 * transaction and the transaction must complete before the device is
8083 * released.
8084 */
8085 mutex_lock(&trans->fs_info->chunk_mutex);
8086 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
8087 post_commit_list) {
8088 list_del_init(&curr->post_commit_list);
8089 curr->commit_total_bytes = curr->disk_total_bytes;
8090 curr->commit_bytes_used = curr->bytes_used;
8091 }
8092 mutex_unlock(&trans->fs_info->chunk_mutex);
8093 }
8094
8095 /*
8096 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8097 */
btrfs_bg_type_to_factor(u64 flags)8098 int btrfs_bg_type_to_factor(u64 flags)
8099 {
8100 const int index = btrfs_bg_flags_to_raid_index(flags);
8101
8102 return btrfs_raid_array[index].ncopies;
8103 }
8104
8105
8106
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)8107 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8108 u64 chunk_offset, u64 devid,
8109 u64 physical_offset, u64 physical_len)
8110 {
8111 struct btrfs_dev_lookup_args args = { .devid = devid };
8112 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8113 struct extent_map *em;
8114 struct map_lookup *map;
8115 struct btrfs_device *dev;
8116 u64 stripe_len;
8117 bool found = false;
8118 int ret = 0;
8119 int i;
8120
8121 read_lock(&em_tree->lock);
8122 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8123 read_unlock(&em_tree->lock);
8124
8125 if (!em) {
8126 btrfs_err(fs_info,
8127 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8128 physical_offset, devid);
8129 ret = -EUCLEAN;
8130 goto out;
8131 }
8132
8133 map = em->map_lookup;
8134 stripe_len = btrfs_calc_stripe_length(em);
8135 if (physical_len != stripe_len) {
8136 btrfs_err(fs_info,
8137 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8138 physical_offset, devid, em->start, physical_len,
8139 stripe_len);
8140 ret = -EUCLEAN;
8141 goto out;
8142 }
8143
8144 /*
8145 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8146 * space. Although kernel can handle it without problem, better to warn
8147 * the users.
8148 */
8149 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8150 btrfs_warn(fs_info,
8151 "devid %llu physical %llu len %llu inside the reserved space",
8152 devid, physical_offset, physical_len);
8153
8154 for (i = 0; i < map->num_stripes; i++) {
8155 if (map->stripes[i].dev->devid == devid &&
8156 map->stripes[i].physical == physical_offset) {
8157 found = true;
8158 if (map->verified_stripes >= map->num_stripes) {
8159 btrfs_err(fs_info,
8160 "too many dev extents for chunk %llu found",
8161 em->start);
8162 ret = -EUCLEAN;
8163 goto out;
8164 }
8165 map->verified_stripes++;
8166 break;
8167 }
8168 }
8169 if (!found) {
8170 btrfs_err(fs_info,
8171 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8172 physical_offset, devid);
8173 ret = -EUCLEAN;
8174 }
8175
8176 /* Make sure no dev extent is beyond device boundary */
8177 dev = btrfs_find_device(fs_info->fs_devices, &args);
8178 if (!dev) {
8179 btrfs_err(fs_info, "failed to find devid %llu", devid);
8180 ret = -EUCLEAN;
8181 goto out;
8182 }
8183
8184 if (physical_offset + physical_len > dev->disk_total_bytes) {
8185 btrfs_err(fs_info,
8186 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8187 devid, physical_offset, physical_len,
8188 dev->disk_total_bytes);
8189 ret = -EUCLEAN;
8190 goto out;
8191 }
8192
8193 if (dev->zone_info) {
8194 u64 zone_size = dev->zone_info->zone_size;
8195
8196 if (!IS_ALIGNED(physical_offset, zone_size) ||
8197 !IS_ALIGNED(physical_len, zone_size)) {
8198 btrfs_err(fs_info,
8199 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8200 devid, physical_offset, physical_len);
8201 ret = -EUCLEAN;
8202 goto out;
8203 }
8204 }
8205
8206 out:
8207 free_extent_map(em);
8208 return ret;
8209 }
8210
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8211 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8212 {
8213 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8214 struct extent_map *em;
8215 struct rb_node *node;
8216 int ret = 0;
8217
8218 read_lock(&em_tree->lock);
8219 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8220 em = rb_entry(node, struct extent_map, rb_node);
8221 if (em->map_lookup->num_stripes !=
8222 em->map_lookup->verified_stripes) {
8223 btrfs_err(fs_info,
8224 "chunk %llu has missing dev extent, have %d expect %d",
8225 em->start, em->map_lookup->verified_stripes,
8226 em->map_lookup->num_stripes);
8227 ret = -EUCLEAN;
8228 goto out;
8229 }
8230 }
8231 out:
8232 read_unlock(&em_tree->lock);
8233 return ret;
8234 }
8235
8236 /*
8237 * Ensure that all dev extents are mapped to correct chunk, otherwise
8238 * later chunk allocation/free would cause unexpected behavior.
8239 *
8240 * NOTE: This will iterate through the whole device tree, which should be of
8241 * the same size level as the chunk tree. This slightly increases mount time.
8242 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8243 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8244 {
8245 struct btrfs_path *path;
8246 struct btrfs_root *root = fs_info->dev_root;
8247 struct btrfs_key key;
8248 u64 prev_devid = 0;
8249 u64 prev_dev_ext_end = 0;
8250 int ret = 0;
8251
8252 /*
8253 * We don't have a dev_root because we mounted with ignorebadroots and
8254 * failed to load the root, so we want to skip the verification in this
8255 * case for sure.
8256 *
8257 * However if the dev root is fine, but the tree itself is corrupted
8258 * we'd still fail to mount. This verification is only to make sure
8259 * writes can happen safely, so instead just bypass this check
8260 * completely in the case of IGNOREBADROOTS.
8261 */
8262 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8263 return 0;
8264
8265 key.objectid = 1;
8266 key.type = BTRFS_DEV_EXTENT_KEY;
8267 key.offset = 0;
8268
8269 path = btrfs_alloc_path();
8270 if (!path)
8271 return -ENOMEM;
8272
8273 path->reada = READA_FORWARD;
8274 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8275 if (ret < 0)
8276 goto out;
8277
8278 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8279 ret = btrfs_next_leaf(root, path);
8280 if (ret < 0)
8281 goto out;
8282 /* No dev extents at all? Not good */
8283 if (ret > 0) {
8284 ret = -EUCLEAN;
8285 goto out;
8286 }
8287 }
8288 while (1) {
8289 struct extent_buffer *leaf = path->nodes[0];
8290 struct btrfs_dev_extent *dext;
8291 int slot = path->slots[0];
8292 u64 chunk_offset;
8293 u64 physical_offset;
8294 u64 physical_len;
8295 u64 devid;
8296
8297 btrfs_item_key_to_cpu(leaf, &key, slot);
8298 if (key.type != BTRFS_DEV_EXTENT_KEY)
8299 break;
8300 devid = key.objectid;
8301 physical_offset = key.offset;
8302
8303 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8304 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8305 physical_len = btrfs_dev_extent_length(leaf, dext);
8306
8307 /* Check if this dev extent overlaps with the previous one */
8308 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8309 btrfs_err(fs_info,
8310 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8311 devid, physical_offset, prev_dev_ext_end);
8312 ret = -EUCLEAN;
8313 goto out;
8314 }
8315
8316 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8317 physical_offset, physical_len);
8318 if (ret < 0)
8319 goto out;
8320 prev_devid = devid;
8321 prev_dev_ext_end = physical_offset + physical_len;
8322
8323 ret = btrfs_next_item(root, path);
8324 if (ret < 0)
8325 goto out;
8326 if (ret > 0) {
8327 ret = 0;
8328 break;
8329 }
8330 }
8331
8332 /* Ensure all chunks have corresponding dev extents */
8333 ret = verify_chunk_dev_extent_mapping(fs_info);
8334 out:
8335 btrfs_free_path(path);
8336 return ret;
8337 }
8338
8339 /*
8340 * Check whether the given block group or device is pinned by any inode being
8341 * used as a swapfile.
8342 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8343 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8344 {
8345 struct btrfs_swapfile_pin *sp;
8346 struct rb_node *node;
8347
8348 spin_lock(&fs_info->swapfile_pins_lock);
8349 node = fs_info->swapfile_pins.rb_node;
8350 while (node) {
8351 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8352 if (ptr < sp->ptr)
8353 node = node->rb_left;
8354 else if (ptr > sp->ptr)
8355 node = node->rb_right;
8356 else
8357 break;
8358 }
8359 spin_unlock(&fs_info->swapfile_pins_lock);
8360 return node != NULL;
8361 }
8362
relocating_repair_kthread(void * data)8363 static int relocating_repair_kthread(void *data)
8364 {
8365 struct btrfs_block_group *cache = data;
8366 struct btrfs_fs_info *fs_info = cache->fs_info;
8367 u64 target;
8368 int ret = 0;
8369
8370 target = cache->start;
8371 btrfs_put_block_group(cache);
8372
8373 sb_start_write(fs_info->sb);
8374 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8375 btrfs_info(fs_info,
8376 "zoned: skip relocating block group %llu to repair: EBUSY",
8377 target);
8378 sb_end_write(fs_info->sb);
8379 return -EBUSY;
8380 }
8381
8382 mutex_lock(&fs_info->reclaim_bgs_lock);
8383
8384 /* Ensure block group still exists */
8385 cache = btrfs_lookup_block_group(fs_info, target);
8386 if (!cache)
8387 goto out;
8388
8389 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8390 goto out;
8391
8392 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8393 if (ret < 0)
8394 goto out;
8395
8396 btrfs_info(fs_info,
8397 "zoned: relocating block group %llu to repair IO failure",
8398 target);
8399 ret = btrfs_relocate_chunk(fs_info, target);
8400
8401 out:
8402 if (cache)
8403 btrfs_put_block_group(cache);
8404 mutex_unlock(&fs_info->reclaim_bgs_lock);
8405 btrfs_exclop_finish(fs_info);
8406 sb_end_write(fs_info->sb);
8407
8408 return ret;
8409 }
8410
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8411 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8412 {
8413 struct btrfs_block_group *cache;
8414
8415 if (!btrfs_is_zoned(fs_info))
8416 return false;
8417
8418 /* Do not attempt to repair in degraded state */
8419 if (btrfs_test_opt(fs_info, DEGRADED))
8420 return true;
8421
8422 cache = btrfs_lookup_block_group(fs_info, logical);
8423 if (!cache)
8424 return true;
8425
8426 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8427 btrfs_put_block_group(cache);
8428 return true;
8429 }
8430
8431 kthread_run(relocating_repair_kthread, cache,
8432 "btrfs-relocating-repair");
8433
8434 return true;
8435 }
8436
btrfs_bioset_init(void)8437 int __init btrfs_bioset_init(void)
8438 {
8439 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
8440 offsetof(struct btrfs_bio, bio),
8441 BIOSET_NEED_BVECS))
8442 return -ENOMEM;
8443 return 0;
8444 }
8445
btrfs_bioset_exit(void)8446 void __cold btrfs_bioset_exit(void)
8447 {
8448 bioset_exit(&btrfs_bioset);
8449 }
8450