1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28
29 static struct btf_type btf_void;
30
31 struct btf {
32 /* raw BTF data in native endianness */
33 void *raw_data;
34 /* raw BTF data in non-native endianness */
35 void *raw_data_swapped;
36 __u32 raw_size;
37 /* whether target endianness differs from the native one */
38 bool swapped_endian;
39
40 /*
41 * When BTF is loaded from an ELF or raw memory it is stored
42 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 * point inside that memory region to their respective parts of BTF
44 * representation:
45 *
46 * +--------------------------------+
47 * | Header | Types | Strings |
48 * +--------------------------------+
49 * ^ ^ ^
50 * | | |
51 * hdr | |
52 * types_data-+ |
53 * strs_data------------+
54 *
55 * If BTF data is later modified, e.g., due to types added or
56 * removed, BTF deduplication performed, etc, this contiguous
57 * representation is broken up into three independently allocated
58 * memory regions to be able to modify them independently.
59 * raw_data is nulled out at that point, but can be later allocated
60 * and cached again if user calls btf__get_raw_data(), at which point
61 * raw_data will contain a contiguous copy of header, types, and
62 * strings:
63 *
64 * +----------+ +---------+ +-----------+
65 * | Header | | Types | | Strings |
66 * +----------+ +---------+ +-----------+
67 * ^ ^ ^
68 * | | |
69 * hdr | |
70 * types_data----+ |
71 * strset__data(strs_set)-----+
72 *
73 * +----------+---------+-----------+
74 * | Header | Types | Strings |
75 * raw_data----->+----------+---------+-----------+
76 */
77 struct btf_header *hdr;
78
79 void *types_data;
80 size_t types_data_cap; /* used size stored in hdr->type_len */
81
82 /* type ID to `struct btf_type *` lookup index
83 * type_offs[0] corresponds to the first non-VOID type:
84 * - for base BTF it's type [1];
85 * - for split BTF it's the first non-base BTF type.
86 */
87 __u32 *type_offs;
88 size_t type_offs_cap;
89 /* number of types in this BTF instance:
90 * - doesn't include special [0] void type;
91 * - for split BTF counts number of types added on top of base BTF.
92 */
93 __u32 nr_types;
94 /* if not NULL, points to the base BTF on top of which the current
95 * split BTF is based
96 */
97 struct btf *base_btf;
98 /* BTF type ID of the first type in this BTF instance:
99 * - for base BTF it's equal to 1;
100 * - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 */
102 int start_id;
103 /* logical string offset of this BTF instance:
104 * - for base BTF it's equal to 0;
105 * - for split BTF it's equal to total size of base BTF's string section size.
106 */
107 int start_str_off;
108
109 /* only one of strs_data or strs_set can be non-NULL, depending on
110 * whether BTF is in a modifiable state (strs_set is used) or not
111 * (strs_data points inside raw_data)
112 */
113 void *strs_data;
114 /* a set of unique strings */
115 struct strset *strs_set;
116 /* whether strings are already deduplicated */
117 bool strs_deduped;
118
119 /* BTF object FD, if loaded into kernel */
120 int fd;
121
122 /* Pointer size (in bytes) for a target architecture of this BTF */
123 int ptr_sz;
124 };
125
ptr_to_u64(const void * ptr)126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 return (__u64) (unsigned long) ptr;
129 }
130
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134 * are already used. At most *max_cnt* elements can be ever allocated.
135 * If necessary, memory is reallocated and all existing data is copied over,
136 * new pointer to the memory region is stored at *data, new memory region
137 * capacity (in number of elements) is stored in *cap.
138 * On success, memory pointer to the beginning of unused memory is returned.
139 * On error, NULL is returned.
140 */
libbpf_add_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t cur_cnt,size_t max_cnt,size_t add_cnt)141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 size_t new_cnt;
145 void *new_data;
146
147 if (cur_cnt + add_cnt <= *cap_cnt)
148 return *data + cur_cnt * elem_sz;
149
150 /* requested more than the set limit */
151 if (cur_cnt + add_cnt > max_cnt)
152 return NULL;
153
154 new_cnt = *cap_cnt;
155 new_cnt += new_cnt / 4; /* expand by 25% */
156 if (new_cnt < 16) /* but at least 16 elements */
157 new_cnt = 16;
158 if (new_cnt > max_cnt) /* but not exceeding a set limit */
159 new_cnt = max_cnt;
160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */
161 new_cnt = cur_cnt + add_cnt;
162
163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 if (!new_data)
165 return NULL;
166
167 /* zero out newly allocated portion of memory */
168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169
170 *data = new_data;
171 *cap_cnt = new_cnt;
172 return new_data + cur_cnt * elem_sz;
173 }
174
175 /* Ensure given dynamically allocated memory region has enough allocated space
176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177 */
libbpf_ensure_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t need_cnt)178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 void *p;
181
182 if (need_cnt <= *cap_cnt)
183 return 0;
184
185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 if (!p)
187 return -ENOMEM;
188
189 return 0;
190 }
191
btf_add_type_idx_entry(struct btf * btf,__u32 type_off)192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
193 {
194 __u32 *p;
195
196 p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
197 btf->nr_types, BTF_MAX_NR_TYPES, 1);
198 if (!p)
199 return -ENOMEM;
200
201 *p = type_off;
202 return 0;
203 }
204
btf_bswap_hdr(struct btf_header * h)205 static void btf_bswap_hdr(struct btf_header *h)
206 {
207 h->magic = bswap_16(h->magic);
208 h->hdr_len = bswap_32(h->hdr_len);
209 h->type_off = bswap_32(h->type_off);
210 h->type_len = bswap_32(h->type_len);
211 h->str_off = bswap_32(h->str_off);
212 h->str_len = bswap_32(h->str_len);
213 }
214
btf_parse_hdr(struct btf * btf)215 static int btf_parse_hdr(struct btf *btf)
216 {
217 struct btf_header *hdr = btf->hdr;
218 __u32 meta_left;
219
220 if (btf->raw_size < sizeof(struct btf_header)) {
221 pr_debug("BTF header not found\n");
222 return -EINVAL;
223 }
224
225 if (hdr->magic == bswap_16(BTF_MAGIC)) {
226 btf->swapped_endian = true;
227 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
228 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
229 bswap_32(hdr->hdr_len));
230 return -ENOTSUP;
231 }
232 btf_bswap_hdr(hdr);
233 } else if (hdr->magic != BTF_MAGIC) {
234 pr_debug("Invalid BTF magic:%x\n", hdr->magic);
235 return -EINVAL;
236 }
237
238 meta_left = btf->raw_size - sizeof(*hdr);
239 if (meta_left < hdr->str_off + hdr->str_len) {
240 pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
241 return -EINVAL;
242 }
243
244 if (hdr->type_off + hdr->type_len > hdr->str_off) {
245 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
246 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
247 return -EINVAL;
248 }
249
250 if (hdr->type_off % 4) {
251 pr_debug("BTF type section is not aligned to 4 bytes\n");
252 return -EINVAL;
253 }
254
255 return 0;
256 }
257
btf_parse_str_sec(struct btf * btf)258 static int btf_parse_str_sec(struct btf *btf)
259 {
260 const struct btf_header *hdr = btf->hdr;
261 const char *start = btf->strs_data;
262 const char *end = start + btf->hdr->str_len;
263
264 if (btf->base_btf && hdr->str_len == 0)
265 return 0;
266 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
267 pr_debug("Invalid BTF string section\n");
268 return -EINVAL;
269 }
270 if (!btf->base_btf && start[0]) {
271 pr_debug("Invalid BTF string section\n");
272 return -EINVAL;
273 }
274 return 0;
275 }
276
btf_type_size(const struct btf_type * t)277 static int btf_type_size(const struct btf_type *t)
278 {
279 const int base_size = sizeof(struct btf_type);
280 __u16 vlen = btf_vlen(t);
281
282 switch (btf_kind(t)) {
283 case BTF_KIND_FWD:
284 case BTF_KIND_CONST:
285 case BTF_KIND_VOLATILE:
286 case BTF_KIND_RESTRICT:
287 case BTF_KIND_PTR:
288 case BTF_KIND_TYPEDEF:
289 case BTF_KIND_FUNC:
290 case BTF_KIND_FLOAT:
291 return base_size;
292 case BTF_KIND_INT:
293 return base_size + sizeof(__u32);
294 case BTF_KIND_ENUM:
295 return base_size + vlen * sizeof(struct btf_enum);
296 case BTF_KIND_ARRAY:
297 return base_size + sizeof(struct btf_array);
298 case BTF_KIND_STRUCT:
299 case BTF_KIND_UNION:
300 return base_size + vlen * sizeof(struct btf_member);
301 case BTF_KIND_FUNC_PROTO:
302 return base_size + vlen * sizeof(struct btf_param);
303 case BTF_KIND_VAR:
304 return base_size + sizeof(struct btf_var);
305 case BTF_KIND_DATASEC:
306 return base_size + vlen * sizeof(struct btf_var_secinfo);
307 default:
308 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
309 return -EINVAL;
310 }
311 }
312
btf_bswap_type_base(struct btf_type * t)313 static void btf_bswap_type_base(struct btf_type *t)
314 {
315 t->name_off = bswap_32(t->name_off);
316 t->info = bswap_32(t->info);
317 t->type = bswap_32(t->type);
318 }
319
btf_bswap_type_rest(struct btf_type * t)320 static int btf_bswap_type_rest(struct btf_type *t)
321 {
322 struct btf_var_secinfo *v;
323 struct btf_member *m;
324 struct btf_array *a;
325 struct btf_param *p;
326 struct btf_enum *e;
327 __u16 vlen = btf_vlen(t);
328 int i;
329
330 switch (btf_kind(t)) {
331 case BTF_KIND_FWD:
332 case BTF_KIND_CONST:
333 case BTF_KIND_VOLATILE:
334 case BTF_KIND_RESTRICT:
335 case BTF_KIND_PTR:
336 case BTF_KIND_TYPEDEF:
337 case BTF_KIND_FUNC:
338 case BTF_KIND_FLOAT:
339 return 0;
340 case BTF_KIND_INT:
341 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
342 return 0;
343 case BTF_KIND_ENUM:
344 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
345 e->name_off = bswap_32(e->name_off);
346 e->val = bswap_32(e->val);
347 }
348 return 0;
349 case BTF_KIND_ARRAY:
350 a = btf_array(t);
351 a->type = bswap_32(a->type);
352 a->index_type = bswap_32(a->index_type);
353 a->nelems = bswap_32(a->nelems);
354 return 0;
355 case BTF_KIND_STRUCT:
356 case BTF_KIND_UNION:
357 for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
358 m->name_off = bswap_32(m->name_off);
359 m->type = bswap_32(m->type);
360 m->offset = bswap_32(m->offset);
361 }
362 return 0;
363 case BTF_KIND_FUNC_PROTO:
364 for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
365 p->name_off = bswap_32(p->name_off);
366 p->type = bswap_32(p->type);
367 }
368 return 0;
369 case BTF_KIND_VAR:
370 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
371 return 0;
372 case BTF_KIND_DATASEC:
373 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
374 v->type = bswap_32(v->type);
375 v->offset = bswap_32(v->offset);
376 v->size = bswap_32(v->size);
377 }
378 return 0;
379 default:
380 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
381 return -EINVAL;
382 }
383 }
384
btf_parse_type_sec(struct btf * btf)385 static int btf_parse_type_sec(struct btf *btf)
386 {
387 struct btf_header *hdr = btf->hdr;
388 void *next_type = btf->types_data;
389 void *end_type = next_type + hdr->type_len;
390 int err, type_size;
391
392 while (next_type + sizeof(struct btf_type) <= end_type) {
393 if (btf->swapped_endian)
394 btf_bswap_type_base(next_type);
395
396 type_size = btf_type_size(next_type);
397 if (type_size < 0)
398 return type_size;
399 if (next_type + type_size > end_type) {
400 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
401 return -EINVAL;
402 }
403
404 if (btf->swapped_endian && btf_bswap_type_rest(next_type))
405 return -EINVAL;
406
407 err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
408 if (err)
409 return err;
410
411 next_type += type_size;
412 btf->nr_types++;
413 }
414
415 if (next_type != end_type) {
416 pr_warn("BTF types data is malformed\n");
417 return -EINVAL;
418 }
419
420 return 0;
421 }
422
btf__get_nr_types(const struct btf * btf)423 __u32 btf__get_nr_types(const struct btf *btf)
424 {
425 return btf->start_id + btf->nr_types - 1;
426 }
427
btf__base_btf(const struct btf * btf)428 const struct btf *btf__base_btf(const struct btf *btf)
429 {
430 return btf->base_btf;
431 }
432
433 /* internal helper returning non-const pointer to a type */
btf_type_by_id(struct btf * btf,__u32 type_id)434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
435 {
436 if (type_id == 0)
437 return &btf_void;
438 if (type_id < btf->start_id)
439 return btf_type_by_id(btf->base_btf, type_id);
440 return btf->types_data + btf->type_offs[type_id - btf->start_id];
441 }
442
btf__type_by_id(const struct btf * btf,__u32 type_id)443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
444 {
445 if (type_id >= btf->start_id + btf->nr_types)
446 return errno = EINVAL, NULL;
447 return btf_type_by_id((struct btf *)btf, type_id);
448 }
449
determine_ptr_size(const struct btf * btf)450 static int determine_ptr_size(const struct btf *btf)
451 {
452 const struct btf_type *t;
453 const char *name;
454 int i, n;
455
456 if (btf->base_btf && btf->base_btf->ptr_sz > 0)
457 return btf->base_btf->ptr_sz;
458
459 n = btf__get_nr_types(btf);
460 for (i = 1; i <= n; i++) {
461 t = btf__type_by_id(btf, i);
462 if (!btf_is_int(t))
463 continue;
464
465 name = btf__name_by_offset(btf, t->name_off);
466 if (!name)
467 continue;
468
469 if (strcmp(name, "long int") == 0 ||
470 strcmp(name, "long unsigned int") == 0) {
471 if (t->size != 4 && t->size != 8)
472 continue;
473 return t->size;
474 }
475 }
476
477 return -1;
478 }
479
btf_ptr_sz(const struct btf * btf)480 static size_t btf_ptr_sz(const struct btf *btf)
481 {
482 if (!btf->ptr_sz)
483 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
484 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
485 }
486
487 /* Return pointer size this BTF instance assumes. The size is heuristically
488 * determined by looking for 'long' or 'unsigned long' integer type and
489 * recording its size in bytes. If BTF type information doesn't have any such
490 * type, this function returns 0. In the latter case, native architecture's
491 * pointer size is assumed, so will be either 4 or 8, depending on
492 * architecture that libbpf was compiled for. It's possible to override
493 * guessed value by using btf__set_pointer_size() API.
494 */
btf__pointer_size(const struct btf * btf)495 size_t btf__pointer_size(const struct btf *btf)
496 {
497 if (!btf->ptr_sz)
498 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
499
500 if (btf->ptr_sz < 0)
501 /* not enough BTF type info to guess */
502 return 0;
503
504 return btf->ptr_sz;
505 }
506
507 /* Override or set pointer size in bytes. Only values of 4 and 8 are
508 * supported.
509 */
btf__set_pointer_size(struct btf * btf,size_t ptr_sz)510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
511 {
512 if (ptr_sz != 4 && ptr_sz != 8)
513 return libbpf_err(-EINVAL);
514 btf->ptr_sz = ptr_sz;
515 return 0;
516 }
517
is_host_big_endian(void)518 static bool is_host_big_endian(void)
519 {
520 #if __BYTE_ORDER == __LITTLE_ENDIAN
521 return false;
522 #elif __BYTE_ORDER == __BIG_ENDIAN
523 return true;
524 #else
525 # error "Unrecognized __BYTE_ORDER__"
526 #endif
527 }
528
btf__endianness(const struct btf * btf)529 enum btf_endianness btf__endianness(const struct btf *btf)
530 {
531 if (is_host_big_endian())
532 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
533 else
534 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
535 }
536
btf__set_endianness(struct btf * btf,enum btf_endianness endian)537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
538 {
539 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
540 return libbpf_err(-EINVAL);
541
542 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
543 if (!btf->swapped_endian) {
544 free(btf->raw_data_swapped);
545 btf->raw_data_swapped = NULL;
546 }
547 return 0;
548 }
549
btf_type_is_void(const struct btf_type * t)550 static bool btf_type_is_void(const struct btf_type *t)
551 {
552 return t == &btf_void || btf_is_fwd(t);
553 }
554
btf_type_is_void_or_null(const struct btf_type * t)555 static bool btf_type_is_void_or_null(const struct btf_type *t)
556 {
557 return !t || btf_type_is_void(t);
558 }
559
560 #define MAX_RESOLVE_DEPTH 32
561
btf__resolve_size(const struct btf * btf,__u32 type_id)562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
563 {
564 const struct btf_array *array;
565 const struct btf_type *t;
566 __u32 nelems = 1;
567 __s64 size = -1;
568 int i;
569
570 t = btf__type_by_id(btf, type_id);
571 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
572 switch (btf_kind(t)) {
573 case BTF_KIND_INT:
574 case BTF_KIND_STRUCT:
575 case BTF_KIND_UNION:
576 case BTF_KIND_ENUM:
577 case BTF_KIND_DATASEC:
578 case BTF_KIND_FLOAT:
579 size = t->size;
580 goto done;
581 case BTF_KIND_PTR:
582 size = btf_ptr_sz(btf);
583 goto done;
584 case BTF_KIND_TYPEDEF:
585 case BTF_KIND_VOLATILE:
586 case BTF_KIND_CONST:
587 case BTF_KIND_RESTRICT:
588 case BTF_KIND_VAR:
589 type_id = t->type;
590 break;
591 case BTF_KIND_ARRAY:
592 array = btf_array(t);
593 if (nelems && array->nelems > UINT32_MAX / nelems)
594 return libbpf_err(-E2BIG);
595 nelems *= array->nelems;
596 type_id = array->type;
597 break;
598 default:
599 return libbpf_err(-EINVAL);
600 }
601
602 t = btf__type_by_id(btf, type_id);
603 }
604
605 done:
606 if (size < 0)
607 return libbpf_err(-EINVAL);
608 if (nelems && size > UINT32_MAX / nelems)
609 return libbpf_err(-E2BIG);
610
611 return nelems * size;
612 }
613
btf__align_of(const struct btf * btf,__u32 id)614 int btf__align_of(const struct btf *btf, __u32 id)
615 {
616 const struct btf_type *t = btf__type_by_id(btf, id);
617 __u16 kind = btf_kind(t);
618
619 switch (kind) {
620 case BTF_KIND_INT:
621 case BTF_KIND_ENUM:
622 case BTF_KIND_FLOAT:
623 return min(btf_ptr_sz(btf), (size_t)t->size);
624 case BTF_KIND_PTR:
625 return btf_ptr_sz(btf);
626 case BTF_KIND_TYPEDEF:
627 case BTF_KIND_VOLATILE:
628 case BTF_KIND_CONST:
629 case BTF_KIND_RESTRICT:
630 return btf__align_of(btf, t->type);
631 case BTF_KIND_ARRAY:
632 return btf__align_of(btf, btf_array(t)->type);
633 case BTF_KIND_STRUCT:
634 case BTF_KIND_UNION: {
635 const struct btf_member *m = btf_members(t);
636 __u16 vlen = btf_vlen(t);
637 int i, max_align = 1, align;
638
639 for (i = 0; i < vlen; i++, m++) {
640 align = btf__align_of(btf, m->type);
641 if (align <= 0)
642 return libbpf_err(align);
643 max_align = max(max_align, align);
644 }
645
646 return max_align;
647 }
648 default:
649 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
650 return errno = EINVAL, 0;
651 }
652 }
653
btf__resolve_type(const struct btf * btf,__u32 type_id)654 int btf__resolve_type(const struct btf *btf, __u32 type_id)
655 {
656 const struct btf_type *t;
657 int depth = 0;
658
659 t = btf__type_by_id(btf, type_id);
660 while (depth < MAX_RESOLVE_DEPTH &&
661 !btf_type_is_void_or_null(t) &&
662 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
663 type_id = t->type;
664 t = btf__type_by_id(btf, type_id);
665 depth++;
666 }
667
668 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
669 return libbpf_err(-EINVAL);
670
671 return type_id;
672 }
673
btf__find_by_name(const struct btf * btf,const char * type_name)674 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
675 {
676 __u32 i, nr_types = btf__get_nr_types(btf);
677
678 if (!strcmp(type_name, "void"))
679 return 0;
680
681 for (i = 1; i <= nr_types; i++) {
682 const struct btf_type *t = btf__type_by_id(btf, i);
683 const char *name = btf__name_by_offset(btf, t->name_off);
684
685 if (name && !strcmp(type_name, name))
686 return i;
687 }
688
689 return libbpf_err(-ENOENT);
690 }
691
btf__find_by_name_kind(const struct btf * btf,const char * type_name,__u32 kind)692 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
693 __u32 kind)
694 {
695 __u32 i, nr_types = btf__get_nr_types(btf);
696
697 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
698 return 0;
699
700 for (i = 1; i <= nr_types; i++) {
701 const struct btf_type *t = btf__type_by_id(btf, i);
702 const char *name;
703
704 if (btf_kind(t) != kind)
705 continue;
706 name = btf__name_by_offset(btf, t->name_off);
707 if (name && !strcmp(type_name, name))
708 return i;
709 }
710
711 return libbpf_err(-ENOENT);
712 }
713
btf_is_modifiable(const struct btf * btf)714 static bool btf_is_modifiable(const struct btf *btf)
715 {
716 return (void *)btf->hdr != btf->raw_data;
717 }
718
btf__free(struct btf * btf)719 void btf__free(struct btf *btf)
720 {
721 if (IS_ERR_OR_NULL(btf))
722 return;
723
724 if (btf->fd >= 0)
725 close(btf->fd);
726
727 if (btf_is_modifiable(btf)) {
728 /* if BTF was modified after loading, it will have a split
729 * in-memory representation for header, types, and strings
730 * sections, so we need to free all of them individually. It
731 * might still have a cached contiguous raw data present,
732 * which will be unconditionally freed below.
733 */
734 free(btf->hdr);
735 free(btf->types_data);
736 strset__free(btf->strs_set);
737 }
738 free(btf->raw_data);
739 free(btf->raw_data_swapped);
740 free(btf->type_offs);
741 free(btf);
742 }
743
btf_new_empty(struct btf * base_btf)744 static struct btf *btf_new_empty(struct btf *base_btf)
745 {
746 struct btf *btf;
747
748 btf = calloc(1, sizeof(*btf));
749 if (!btf)
750 return ERR_PTR(-ENOMEM);
751
752 btf->nr_types = 0;
753 btf->start_id = 1;
754 btf->start_str_off = 0;
755 btf->fd = -1;
756 btf->ptr_sz = sizeof(void *);
757 btf->swapped_endian = false;
758
759 if (base_btf) {
760 btf->base_btf = base_btf;
761 btf->start_id = btf__get_nr_types(base_btf) + 1;
762 btf->start_str_off = base_btf->hdr->str_len;
763 }
764
765 /* +1 for empty string at offset 0 */
766 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
767 btf->raw_data = calloc(1, btf->raw_size);
768 if (!btf->raw_data) {
769 free(btf);
770 return ERR_PTR(-ENOMEM);
771 }
772
773 btf->hdr = btf->raw_data;
774 btf->hdr->hdr_len = sizeof(struct btf_header);
775 btf->hdr->magic = BTF_MAGIC;
776 btf->hdr->version = BTF_VERSION;
777
778 btf->types_data = btf->raw_data + btf->hdr->hdr_len;
779 btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
780 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
781
782 return btf;
783 }
784
btf__new_empty(void)785 struct btf *btf__new_empty(void)
786 {
787 return libbpf_ptr(btf_new_empty(NULL));
788 }
789
btf__new_empty_split(struct btf * base_btf)790 struct btf *btf__new_empty_split(struct btf *base_btf)
791 {
792 return libbpf_ptr(btf_new_empty(base_btf));
793 }
794
btf_new(const void * data,__u32 size,struct btf * base_btf)795 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
796 {
797 struct btf *btf;
798 int err;
799
800 btf = calloc(1, sizeof(struct btf));
801 if (!btf)
802 return ERR_PTR(-ENOMEM);
803
804 btf->nr_types = 0;
805 btf->start_id = 1;
806 btf->start_str_off = 0;
807 btf->fd = -1;
808
809 if (base_btf) {
810 btf->base_btf = base_btf;
811 btf->start_id = btf__get_nr_types(base_btf) + 1;
812 btf->start_str_off = base_btf->hdr->str_len;
813 }
814
815 btf->raw_data = malloc(size);
816 if (!btf->raw_data) {
817 err = -ENOMEM;
818 goto done;
819 }
820 memcpy(btf->raw_data, data, size);
821 btf->raw_size = size;
822
823 btf->hdr = btf->raw_data;
824 err = btf_parse_hdr(btf);
825 if (err)
826 goto done;
827
828 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
829 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
830
831 err = btf_parse_str_sec(btf);
832 err = err ?: btf_parse_type_sec(btf);
833 if (err)
834 goto done;
835
836 done:
837 if (err) {
838 btf__free(btf);
839 return ERR_PTR(err);
840 }
841
842 return btf;
843 }
844
btf__new(const void * data,__u32 size)845 struct btf *btf__new(const void *data, __u32 size)
846 {
847 return libbpf_ptr(btf_new(data, size, NULL));
848 }
849
btf_parse_elf(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)850 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
851 struct btf_ext **btf_ext)
852 {
853 Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
854 int err = 0, fd = -1, idx = 0;
855 struct btf *btf = NULL;
856 Elf_Scn *scn = NULL;
857 Elf *elf = NULL;
858 GElf_Ehdr ehdr;
859 size_t shstrndx;
860
861 if (elf_version(EV_CURRENT) == EV_NONE) {
862 pr_warn("failed to init libelf for %s\n", path);
863 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
864 }
865
866 fd = open(path, O_RDONLY);
867 if (fd < 0) {
868 err = -errno;
869 pr_warn("failed to open %s: %s\n", path, strerror(errno));
870 return ERR_PTR(err);
871 }
872
873 err = -LIBBPF_ERRNO__FORMAT;
874
875 elf = elf_begin(fd, ELF_C_READ, NULL);
876 if (!elf) {
877 pr_warn("failed to open %s as ELF file\n", path);
878 goto done;
879 }
880 if (!gelf_getehdr(elf, &ehdr)) {
881 pr_warn("failed to get EHDR from %s\n", path);
882 goto done;
883 }
884
885 if (elf_getshdrstrndx(elf, &shstrndx)) {
886 pr_warn("failed to get section names section index for %s\n",
887 path);
888 goto done;
889 }
890
891 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
892 pr_warn("failed to get e_shstrndx from %s\n", path);
893 goto done;
894 }
895
896 while ((scn = elf_nextscn(elf, scn)) != NULL) {
897 GElf_Shdr sh;
898 char *name;
899
900 idx++;
901 if (gelf_getshdr(scn, &sh) != &sh) {
902 pr_warn("failed to get section(%d) header from %s\n",
903 idx, path);
904 goto done;
905 }
906 name = elf_strptr(elf, shstrndx, sh.sh_name);
907 if (!name) {
908 pr_warn("failed to get section(%d) name from %s\n",
909 idx, path);
910 goto done;
911 }
912 if (strcmp(name, BTF_ELF_SEC) == 0) {
913 btf_data = elf_getdata(scn, 0);
914 if (!btf_data) {
915 pr_warn("failed to get section(%d, %s) data from %s\n",
916 idx, name, path);
917 goto done;
918 }
919 continue;
920 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
921 btf_ext_data = elf_getdata(scn, 0);
922 if (!btf_ext_data) {
923 pr_warn("failed to get section(%d, %s) data from %s\n",
924 idx, name, path);
925 goto done;
926 }
927 continue;
928 }
929 }
930
931 err = 0;
932
933 if (!btf_data) {
934 err = -ENOENT;
935 goto done;
936 }
937 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
938 err = libbpf_get_error(btf);
939 if (err)
940 goto done;
941
942 switch (gelf_getclass(elf)) {
943 case ELFCLASS32:
944 btf__set_pointer_size(btf, 4);
945 break;
946 case ELFCLASS64:
947 btf__set_pointer_size(btf, 8);
948 break;
949 default:
950 pr_warn("failed to get ELF class (bitness) for %s\n", path);
951 break;
952 }
953
954 if (btf_ext && btf_ext_data) {
955 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
956 err = libbpf_get_error(*btf_ext);
957 if (err)
958 goto done;
959 } else if (btf_ext) {
960 *btf_ext = NULL;
961 }
962 done:
963 if (elf)
964 elf_end(elf);
965 close(fd);
966
967 if (!err)
968 return btf;
969
970 if (btf_ext)
971 btf_ext__free(*btf_ext);
972 btf__free(btf);
973
974 return ERR_PTR(err);
975 }
976
btf__parse_elf(const char * path,struct btf_ext ** btf_ext)977 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
978 {
979 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
980 }
981
btf__parse_elf_split(const char * path,struct btf * base_btf)982 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
983 {
984 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
985 }
986
btf_parse_raw(const char * path,struct btf * base_btf)987 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
988 {
989 struct btf *btf = NULL;
990 void *data = NULL;
991 FILE *f = NULL;
992 __u16 magic;
993 int err = 0;
994 long sz;
995
996 f = fopen(path, "rb");
997 if (!f) {
998 err = -errno;
999 goto err_out;
1000 }
1001
1002 /* check BTF magic */
1003 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1004 err = -EIO;
1005 goto err_out;
1006 }
1007 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1008 /* definitely not a raw BTF */
1009 err = -EPROTO;
1010 goto err_out;
1011 }
1012
1013 /* get file size */
1014 if (fseek(f, 0, SEEK_END)) {
1015 err = -errno;
1016 goto err_out;
1017 }
1018 sz = ftell(f);
1019 if (sz < 0) {
1020 err = -errno;
1021 goto err_out;
1022 }
1023 /* rewind to the start */
1024 if (fseek(f, 0, SEEK_SET)) {
1025 err = -errno;
1026 goto err_out;
1027 }
1028
1029 /* pre-alloc memory and read all of BTF data */
1030 data = malloc(sz);
1031 if (!data) {
1032 err = -ENOMEM;
1033 goto err_out;
1034 }
1035 if (fread(data, 1, sz, f) < sz) {
1036 err = -EIO;
1037 goto err_out;
1038 }
1039
1040 /* finally parse BTF data */
1041 btf = btf_new(data, sz, base_btf);
1042
1043 err_out:
1044 free(data);
1045 if (f)
1046 fclose(f);
1047 return err ? ERR_PTR(err) : btf;
1048 }
1049
btf__parse_raw(const char * path)1050 struct btf *btf__parse_raw(const char *path)
1051 {
1052 return libbpf_ptr(btf_parse_raw(path, NULL));
1053 }
1054
btf__parse_raw_split(const char * path,struct btf * base_btf)1055 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1056 {
1057 return libbpf_ptr(btf_parse_raw(path, base_btf));
1058 }
1059
btf_parse(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)1060 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1061 {
1062 struct btf *btf;
1063 int err;
1064
1065 if (btf_ext)
1066 *btf_ext = NULL;
1067
1068 btf = btf_parse_raw(path, base_btf);
1069 err = libbpf_get_error(btf);
1070 if (!err)
1071 return btf;
1072 if (err != -EPROTO)
1073 return ERR_PTR(err);
1074 return btf_parse_elf(path, base_btf, btf_ext);
1075 }
1076
btf__parse(const char * path,struct btf_ext ** btf_ext)1077 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1078 {
1079 return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1080 }
1081
btf__parse_split(const char * path,struct btf * base_btf)1082 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1083 {
1084 return libbpf_ptr(btf_parse(path, base_btf, NULL));
1085 }
1086
compare_vsi_off(const void * _a,const void * _b)1087 static int compare_vsi_off(const void *_a, const void *_b)
1088 {
1089 const struct btf_var_secinfo *a = _a;
1090 const struct btf_var_secinfo *b = _b;
1091
1092 return a->offset - b->offset;
1093 }
1094
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)1095 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1096 struct btf_type *t)
1097 {
1098 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
1099 const char *name = btf__name_by_offset(btf, t->name_off);
1100 const struct btf_type *t_var;
1101 struct btf_var_secinfo *vsi;
1102 const struct btf_var *var;
1103 int ret;
1104
1105 if (!name) {
1106 pr_debug("No name found in string section for DATASEC kind.\n");
1107 return -ENOENT;
1108 }
1109
1110 /* .extern datasec size and var offsets were set correctly during
1111 * extern collection step, so just skip straight to sorting variables
1112 */
1113 if (t->size)
1114 goto sort_vars;
1115
1116 ret = bpf_object__section_size(obj, name, &size);
1117 if (ret || !size || (t->size && t->size != size)) {
1118 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1119 return -ENOENT;
1120 }
1121
1122 t->size = size;
1123
1124 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1125 t_var = btf__type_by_id(btf, vsi->type);
1126 var = btf_var(t_var);
1127
1128 if (!btf_is_var(t_var)) {
1129 pr_debug("Non-VAR type seen in section %s\n", name);
1130 return -EINVAL;
1131 }
1132
1133 if (var->linkage == BTF_VAR_STATIC)
1134 continue;
1135
1136 name = btf__name_by_offset(btf, t_var->name_off);
1137 if (!name) {
1138 pr_debug("No name found in string section for VAR kind\n");
1139 return -ENOENT;
1140 }
1141
1142 ret = bpf_object__variable_offset(obj, name, &off);
1143 if (ret) {
1144 pr_debug("No offset found in symbol table for VAR %s\n",
1145 name);
1146 return -ENOENT;
1147 }
1148
1149 vsi->offset = off;
1150 }
1151
1152 sort_vars:
1153 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1154 return 0;
1155 }
1156
btf__finalize_data(struct bpf_object * obj,struct btf * btf)1157 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1158 {
1159 int err = 0;
1160 __u32 i;
1161
1162 for (i = 1; i <= btf->nr_types; i++) {
1163 struct btf_type *t = btf_type_by_id(btf, i);
1164
1165 /* Loader needs to fix up some of the things compiler
1166 * couldn't get its hands on while emitting BTF. This
1167 * is section size and global variable offset. We use
1168 * the info from the ELF itself for this purpose.
1169 */
1170 if (btf_is_datasec(t)) {
1171 err = btf_fixup_datasec(obj, btf, t);
1172 if (err)
1173 break;
1174 }
1175 }
1176
1177 return libbpf_err(err);
1178 }
1179
1180 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1181
btf__load_into_kernel(struct btf * btf)1182 int btf__load_into_kernel(struct btf *btf)
1183 {
1184 __u32 log_buf_size = 0, raw_size;
1185 char *log_buf = NULL;
1186 void *raw_data;
1187 int err = 0;
1188
1189 if (btf->fd >= 0)
1190 return libbpf_err(-EEXIST);
1191
1192 retry_load:
1193 if (log_buf_size) {
1194 log_buf = malloc(log_buf_size);
1195 if (!log_buf)
1196 return libbpf_err(-ENOMEM);
1197
1198 *log_buf = 0;
1199 }
1200
1201 raw_data = btf_get_raw_data(btf, &raw_size, false);
1202 if (!raw_data) {
1203 err = -ENOMEM;
1204 goto done;
1205 }
1206 /* cache native raw data representation */
1207 btf->raw_size = raw_size;
1208 btf->raw_data = raw_data;
1209
1210 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1211 if (btf->fd < 0) {
1212 if (!log_buf || errno == ENOSPC) {
1213 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1214 log_buf_size << 1);
1215 free(log_buf);
1216 goto retry_load;
1217 }
1218
1219 err = -errno;
1220 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1221 if (*log_buf)
1222 pr_warn("%s\n", log_buf);
1223 goto done;
1224 }
1225
1226 done:
1227 free(log_buf);
1228 return libbpf_err(err);
1229 }
1230 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel")));
1231
btf__fd(const struct btf * btf)1232 int btf__fd(const struct btf *btf)
1233 {
1234 return btf->fd;
1235 }
1236
btf__set_fd(struct btf * btf,int fd)1237 void btf__set_fd(struct btf *btf, int fd)
1238 {
1239 btf->fd = fd;
1240 }
1241
btf_strs_data(const struct btf * btf)1242 static const void *btf_strs_data(const struct btf *btf)
1243 {
1244 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1245 }
1246
btf_get_raw_data(const struct btf * btf,__u32 * size,bool swap_endian)1247 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1248 {
1249 struct btf_header *hdr = btf->hdr;
1250 struct btf_type *t;
1251 void *data, *p;
1252 __u32 data_sz;
1253 int i;
1254
1255 data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1256 if (data) {
1257 *size = btf->raw_size;
1258 return data;
1259 }
1260
1261 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1262 data = calloc(1, data_sz);
1263 if (!data)
1264 return NULL;
1265 p = data;
1266
1267 memcpy(p, hdr, hdr->hdr_len);
1268 if (swap_endian)
1269 btf_bswap_hdr(p);
1270 p += hdr->hdr_len;
1271
1272 memcpy(p, btf->types_data, hdr->type_len);
1273 if (swap_endian) {
1274 for (i = 0; i < btf->nr_types; i++) {
1275 t = p + btf->type_offs[i];
1276 /* btf_bswap_type_rest() relies on native t->info, so
1277 * we swap base type info after we swapped all the
1278 * additional information
1279 */
1280 if (btf_bswap_type_rest(t))
1281 goto err_out;
1282 btf_bswap_type_base(t);
1283 }
1284 }
1285 p += hdr->type_len;
1286
1287 memcpy(p, btf_strs_data(btf), hdr->str_len);
1288 p += hdr->str_len;
1289
1290 *size = data_sz;
1291 return data;
1292 err_out:
1293 free(data);
1294 return NULL;
1295 }
1296
btf__get_raw_data(const struct btf * btf_ro,__u32 * size)1297 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1298 {
1299 struct btf *btf = (struct btf *)btf_ro;
1300 __u32 data_sz;
1301 void *data;
1302
1303 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1304 if (!data)
1305 return errno = -ENOMEM, NULL;
1306
1307 btf->raw_size = data_sz;
1308 if (btf->swapped_endian)
1309 btf->raw_data_swapped = data;
1310 else
1311 btf->raw_data = data;
1312 *size = data_sz;
1313 return data;
1314 }
1315
btf__str_by_offset(const struct btf * btf,__u32 offset)1316 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1317 {
1318 if (offset < btf->start_str_off)
1319 return btf__str_by_offset(btf->base_btf, offset);
1320 else if (offset - btf->start_str_off < btf->hdr->str_len)
1321 return btf_strs_data(btf) + (offset - btf->start_str_off);
1322 else
1323 return errno = EINVAL, NULL;
1324 }
1325
btf__name_by_offset(const struct btf * btf,__u32 offset)1326 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1327 {
1328 return btf__str_by_offset(btf, offset);
1329 }
1330
btf_get_from_fd(int btf_fd,struct btf * base_btf)1331 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1332 {
1333 struct bpf_btf_info btf_info;
1334 __u32 len = sizeof(btf_info);
1335 __u32 last_size;
1336 struct btf *btf;
1337 void *ptr;
1338 int err;
1339
1340 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1341 * let's start with a sane default - 4KiB here - and resize it only if
1342 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1343 */
1344 last_size = 4096;
1345 ptr = malloc(last_size);
1346 if (!ptr)
1347 return ERR_PTR(-ENOMEM);
1348
1349 memset(&btf_info, 0, sizeof(btf_info));
1350 btf_info.btf = ptr_to_u64(ptr);
1351 btf_info.btf_size = last_size;
1352 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1353
1354 if (!err && btf_info.btf_size > last_size) {
1355 void *temp_ptr;
1356
1357 last_size = btf_info.btf_size;
1358 temp_ptr = realloc(ptr, last_size);
1359 if (!temp_ptr) {
1360 btf = ERR_PTR(-ENOMEM);
1361 goto exit_free;
1362 }
1363 ptr = temp_ptr;
1364
1365 len = sizeof(btf_info);
1366 memset(&btf_info, 0, sizeof(btf_info));
1367 btf_info.btf = ptr_to_u64(ptr);
1368 btf_info.btf_size = last_size;
1369
1370 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1371 }
1372
1373 if (err || btf_info.btf_size > last_size) {
1374 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1375 goto exit_free;
1376 }
1377
1378 btf = btf_new(ptr, btf_info.btf_size, base_btf);
1379
1380 exit_free:
1381 free(ptr);
1382 return btf;
1383 }
1384
btf__load_from_kernel_by_id_split(__u32 id,struct btf * base_btf)1385 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1386 {
1387 struct btf *btf;
1388 int btf_fd;
1389
1390 btf_fd = bpf_btf_get_fd_by_id(id);
1391 if (btf_fd < 0)
1392 return libbpf_err_ptr(-errno);
1393
1394 btf = btf_get_from_fd(btf_fd, base_btf);
1395 close(btf_fd);
1396
1397 return libbpf_ptr(btf);
1398 }
1399
btf__load_from_kernel_by_id(__u32 id)1400 struct btf *btf__load_from_kernel_by_id(__u32 id)
1401 {
1402 return btf__load_from_kernel_by_id_split(id, NULL);
1403 }
1404
btf__get_from_id(__u32 id,struct btf ** btf)1405 int btf__get_from_id(__u32 id, struct btf **btf)
1406 {
1407 struct btf *res;
1408 int err;
1409
1410 *btf = NULL;
1411 res = btf__load_from_kernel_by_id(id);
1412 err = libbpf_get_error(res);
1413
1414 if (err)
1415 return libbpf_err(err);
1416
1417 *btf = res;
1418 return 0;
1419 }
1420
btf__get_map_kv_tids(const struct btf * btf,const char * map_name,__u32 expected_key_size,__u32 expected_value_size,__u32 * key_type_id,__u32 * value_type_id)1421 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1422 __u32 expected_key_size, __u32 expected_value_size,
1423 __u32 *key_type_id, __u32 *value_type_id)
1424 {
1425 const struct btf_type *container_type;
1426 const struct btf_member *key, *value;
1427 const size_t max_name = 256;
1428 char container_name[max_name];
1429 __s64 key_size, value_size;
1430 __s32 container_id;
1431
1432 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1433 pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1434 map_name, map_name);
1435 return libbpf_err(-EINVAL);
1436 }
1437
1438 container_id = btf__find_by_name(btf, container_name);
1439 if (container_id < 0) {
1440 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1441 map_name, container_name);
1442 return libbpf_err(container_id);
1443 }
1444
1445 container_type = btf__type_by_id(btf, container_id);
1446 if (!container_type) {
1447 pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1448 map_name, container_id);
1449 return libbpf_err(-EINVAL);
1450 }
1451
1452 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1453 pr_warn("map:%s container_name:%s is an invalid container struct\n",
1454 map_name, container_name);
1455 return libbpf_err(-EINVAL);
1456 }
1457
1458 key = btf_members(container_type);
1459 value = key + 1;
1460
1461 key_size = btf__resolve_size(btf, key->type);
1462 if (key_size < 0) {
1463 pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1464 return libbpf_err(key_size);
1465 }
1466
1467 if (expected_key_size != key_size) {
1468 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1469 map_name, (__u32)key_size, expected_key_size);
1470 return libbpf_err(-EINVAL);
1471 }
1472
1473 value_size = btf__resolve_size(btf, value->type);
1474 if (value_size < 0) {
1475 pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1476 return libbpf_err(value_size);
1477 }
1478
1479 if (expected_value_size != value_size) {
1480 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1481 map_name, (__u32)value_size, expected_value_size);
1482 return libbpf_err(-EINVAL);
1483 }
1484
1485 *key_type_id = key->type;
1486 *value_type_id = value->type;
1487
1488 return 0;
1489 }
1490
btf_invalidate_raw_data(struct btf * btf)1491 static void btf_invalidate_raw_data(struct btf *btf)
1492 {
1493 if (btf->raw_data) {
1494 free(btf->raw_data);
1495 btf->raw_data = NULL;
1496 }
1497 if (btf->raw_data_swapped) {
1498 free(btf->raw_data_swapped);
1499 btf->raw_data_swapped = NULL;
1500 }
1501 }
1502
1503 /* Ensure BTF is ready to be modified (by splitting into a three memory
1504 * regions for header, types, and strings). Also invalidate cached
1505 * raw_data, if any.
1506 */
btf_ensure_modifiable(struct btf * btf)1507 static int btf_ensure_modifiable(struct btf *btf)
1508 {
1509 void *hdr, *types;
1510 struct strset *set = NULL;
1511 int err = -ENOMEM;
1512
1513 if (btf_is_modifiable(btf)) {
1514 /* any BTF modification invalidates raw_data */
1515 btf_invalidate_raw_data(btf);
1516 return 0;
1517 }
1518
1519 /* split raw data into three memory regions */
1520 hdr = malloc(btf->hdr->hdr_len);
1521 types = malloc(btf->hdr->type_len);
1522 if (!hdr || !types)
1523 goto err_out;
1524
1525 memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1526 memcpy(types, btf->types_data, btf->hdr->type_len);
1527
1528 /* build lookup index for all strings */
1529 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1530 if (IS_ERR(set)) {
1531 err = PTR_ERR(set);
1532 goto err_out;
1533 }
1534
1535 /* only when everything was successful, update internal state */
1536 btf->hdr = hdr;
1537 btf->types_data = types;
1538 btf->types_data_cap = btf->hdr->type_len;
1539 btf->strs_data = NULL;
1540 btf->strs_set = set;
1541 /* if BTF was created from scratch, all strings are guaranteed to be
1542 * unique and deduplicated
1543 */
1544 if (btf->hdr->str_len == 0)
1545 btf->strs_deduped = true;
1546 if (!btf->base_btf && btf->hdr->str_len == 1)
1547 btf->strs_deduped = true;
1548
1549 /* invalidate raw_data representation */
1550 btf_invalidate_raw_data(btf);
1551
1552 return 0;
1553
1554 err_out:
1555 strset__free(set);
1556 free(hdr);
1557 free(types);
1558 return err;
1559 }
1560
1561 /* Find an offset in BTF string section that corresponds to a given string *s*.
1562 * Returns:
1563 * - >0 offset into string section, if string is found;
1564 * - -ENOENT, if string is not in the string section;
1565 * - <0, on any other error.
1566 */
btf__find_str(struct btf * btf,const char * s)1567 int btf__find_str(struct btf *btf, const char *s)
1568 {
1569 int off;
1570
1571 if (btf->base_btf) {
1572 off = btf__find_str(btf->base_btf, s);
1573 if (off != -ENOENT)
1574 return off;
1575 }
1576
1577 /* BTF needs to be in a modifiable state to build string lookup index */
1578 if (btf_ensure_modifiable(btf))
1579 return libbpf_err(-ENOMEM);
1580
1581 off = strset__find_str(btf->strs_set, s);
1582 if (off < 0)
1583 return libbpf_err(off);
1584
1585 return btf->start_str_off + off;
1586 }
1587
1588 /* Add a string s to the BTF string section.
1589 * Returns:
1590 * - > 0 offset into string section, on success;
1591 * - < 0, on error.
1592 */
btf__add_str(struct btf * btf,const char * s)1593 int btf__add_str(struct btf *btf, const char *s)
1594 {
1595 int off;
1596
1597 if (btf->base_btf) {
1598 off = btf__find_str(btf->base_btf, s);
1599 if (off != -ENOENT)
1600 return off;
1601 }
1602
1603 if (btf_ensure_modifiable(btf))
1604 return libbpf_err(-ENOMEM);
1605
1606 off = strset__add_str(btf->strs_set, s);
1607 if (off < 0)
1608 return libbpf_err(off);
1609
1610 btf->hdr->str_len = strset__data_size(btf->strs_set);
1611
1612 return btf->start_str_off + off;
1613 }
1614
btf_add_type_mem(struct btf * btf,size_t add_sz)1615 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1616 {
1617 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1618 btf->hdr->type_len, UINT_MAX, add_sz);
1619 }
1620
btf_type_inc_vlen(struct btf_type * t)1621 static void btf_type_inc_vlen(struct btf_type *t)
1622 {
1623 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1624 }
1625
btf_commit_type(struct btf * btf,int data_sz)1626 static int btf_commit_type(struct btf *btf, int data_sz)
1627 {
1628 int err;
1629
1630 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1631 if (err)
1632 return libbpf_err(err);
1633
1634 btf->hdr->type_len += data_sz;
1635 btf->hdr->str_off += data_sz;
1636 btf->nr_types++;
1637 return btf->start_id + btf->nr_types - 1;
1638 }
1639
1640 struct btf_pipe {
1641 const struct btf *src;
1642 struct btf *dst;
1643 };
1644
btf_rewrite_str(__u32 * str_off,void * ctx)1645 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1646 {
1647 struct btf_pipe *p = ctx;
1648 int off;
1649
1650 if (!*str_off) /* nothing to do for empty strings */
1651 return 0;
1652
1653 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1654 if (off < 0)
1655 return off;
1656
1657 *str_off = off;
1658 return 0;
1659 }
1660
btf__add_type(struct btf * btf,const struct btf * src_btf,const struct btf_type * src_type)1661 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1662 {
1663 struct btf_pipe p = { .src = src_btf, .dst = btf };
1664 struct btf_type *t;
1665 int sz, err;
1666
1667 sz = btf_type_size(src_type);
1668 if (sz < 0)
1669 return libbpf_err(sz);
1670
1671 /* deconstruct BTF, if necessary, and invalidate raw_data */
1672 if (btf_ensure_modifiable(btf))
1673 return libbpf_err(-ENOMEM);
1674
1675 t = btf_add_type_mem(btf, sz);
1676 if (!t)
1677 return libbpf_err(-ENOMEM);
1678
1679 memcpy(t, src_type, sz);
1680
1681 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1682 if (err)
1683 return libbpf_err(err);
1684
1685 return btf_commit_type(btf, sz);
1686 }
1687
1688 /*
1689 * Append new BTF_KIND_INT type with:
1690 * - *name* - non-empty, non-NULL type name;
1691 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1692 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1693 * Returns:
1694 * - >0, type ID of newly added BTF type;
1695 * - <0, on error.
1696 */
btf__add_int(struct btf * btf,const char * name,size_t byte_sz,int encoding)1697 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1698 {
1699 struct btf_type *t;
1700 int sz, name_off;
1701
1702 /* non-empty name */
1703 if (!name || !name[0])
1704 return libbpf_err(-EINVAL);
1705 /* byte_sz must be power of 2 */
1706 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1707 return libbpf_err(-EINVAL);
1708 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1709 return libbpf_err(-EINVAL);
1710
1711 /* deconstruct BTF, if necessary, and invalidate raw_data */
1712 if (btf_ensure_modifiable(btf))
1713 return libbpf_err(-ENOMEM);
1714
1715 sz = sizeof(struct btf_type) + sizeof(int);
1716 t = btf_add_type_mem(btf, sz);
1717 if (!t)
1718 return libbpf_err(-ENOMEM);
1719
1720 /* if something goes wrong later, we might end up with an extra string,
1721 * but that shouldn't be a problem, because BTF can't be constructed
1722 * completely anyway and will most probably be just discarded
1723 */
1724 name_off = btf__add_str(btf, name);
1725 if (name_off < 0)
1726 return name_off;
1727
1728 t->name_off = name_off;
1729 t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1730 t->size = byte_sz;
1731 /* set INT info, we don't allow setting legacy bit offset/size */
1732 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1733
1734 return btf_commit_type(btf, sz);
1735 }
1736
1737 /*
1738 * Append new BTF_KIND_FLOAT type with:
1739 * - *name* - non-empty, non-NULL type name;
1740 * - *sz* - size of the type, in bytes;
1741 * Returns:
1742 * - >0, type ID of newly added BTF type;
1743 * - <0, on error.
1744 */
btf__add_float(struct btf * btf,const char * name,size_t byte_sz)1745 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1746 {
1747 struct btf_type *t;
1748 int sz, name_off;
1749
1750 /* non-empty name */
1751 if (!name || !name[0])
1752 return libbpf_err(-EINVAL);
1753
1754 /* byte_sz must be one of the explicitly allowed values */
1755 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1756 byte_sz != 16)
1757 return libbpf_err(-EINVAL);
1758
1759 if (btf_ensure_modifiable(btf))
1760 return libbpf_err(-ENOMEM);
1761
1762 sz = sizeof(struct btf_type);
1763 t = btf_add_type_mem(btf, sz);
1764 if (!t)
1765 return libbpf_err(-ENOMEM);
1766
1767 name_off = btf__add_str(btf, name);
1768 if (name_off < 0)
1769 return name_off;
1770
1771 t->name_off = name_off;
1772 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1773 t->size = byte_sz;
1774
1775 return btf_commit_type(btf, sz);
1776 }
1777
1778 /* it's completely legal to append BTF types with type IDs pointing forward to
1779 * types that haven't been appended yet, so we only make sure that id looks
1780 * sane, we can't guarantee that ID will always be valid
1781 */
validate_type_id(int id)1782 static int validate_type_id(int id)
1783 {
1784 if (id < 0 || id > BTF_MAX_NR_TYPES)
1785 return -EINVAL;
1786 return 0;
1787 }
1788
1789 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
btf_add_ref_kind(struct btf * btf,int kind,const char * name,int ref_type_id)1790 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1791 {
1792 struct btf_type *t;
1793 int sz, name_off = 0;
1794
1795 if (validate_type_id(ref_type_id))
1796 return libbpf_err(-EINVAL);
1797
1798 if (btf_ensure_modifiable(btf))
1799 return libbpf_err(-ENOMEM);
1800
1801 sz = sizeof(struct btf_type);
1802 t = btf_add_type_mem(btf, sz);
1803 if (!t)
1804 return libbpf_err(-ENOMEM);
1805
1806 if (name && name[0]) {
1807 name_off = btf__add_str(btf, name);
1808 if (name_off < 0)
1809 return name_off;
1810 }
1811
1812 t->name_off = name_off;
1813 t->info = btf_type_info(kind, 0, 0);
1814 t->type = ref_type_id;
1815
1816 return btf_commit_type(btf, sz);
1817 }
1818
1819 /*
1820 * Append new BTF_KIND_PTR type with:
1821 * - *ref_type_id* - referenced type ID, it might not exist yet;
1822 * Returns:
1823 * - >0, type ID of newly added BTF type;
1824 * - <0, on error.
1825 */
btf__add_ptr(struct btf * btf,int ref_type_id)1826 int btf__add_ptr(struct btf *btf, int ref_type_id)
1827 {
1828 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1829 }
1830
1831 /*
1832 * Append new BTF_KIND_ARRAY type with:
1833 * - *index_type_id* - type ID of the type describing array index;
1834 * - *elem_type_id* - type ID of the type describing array element;
1835 * - *nr_elems* - the size of the array;
1836 * Returns:
1837 * - >0, type ID of newly added BTF type;
1838 * - <0, on error.
1839 */
btf__add_array(struct btf * btf,int index_type_id,int elem_type_id,__u32 nr_elems)1840 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1841 {
1842 struct btf_type *t;
1843 struct btf_array *a;
1844 int sz;
1845
1846 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1847 return libbpf_err(-EINVAL);
1848
1849 if (btf_ensure_modifiable(btf))
1850 return libbpf_err(-ENOMEM);
1851
1852 sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1853 t = btf_add_type_mem(btf, sz);
1854 if (!t)
1855 return libbpf_err(-ENOMEM);
1856
1857 t->name_off = 0;
1858 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1859 t->size = 0;
1860
1861 a = btf_array(t);
1862 a->type = elem_type_id;
1863 a->index_type = index_type_id;
1864 a->nelems = nr_elems;
1865
1866 return btf_commit_type(btf, sz);
1867 }
1868
1869 /* generic STRUCT/UNION append function */
btf_add_composite(struct btf * btf,int kind,const char * name,__u32 bytes_sz)1870 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1871 {
1872 struct btf_type *t;
1873 int sz, name_off = 0;
1874
1875 if (btf_ensure_modifiable(btf))
1876 return libbpf_err(-ENOMEM);
1877
1878 sz = sizeof(struct btf_type);
1879 t = btf_add_type_mem(btf, sz);
1880 if (!t)
1881 return libbpf_err(-ENOMEM);
1882
1883 if (name && name[0]) {
1884 name_off = btf__add_str(btf, name);
1885 if (name_off < 0)
1886 return name_off;
1887 }
1888
1889 /* start out with vlen=0 and no kflag; this will be adjusted when
1890 * adding each member
1891 */
1892 t->name_off = name_off;
1893 t->info = btf_type_info(kind, 0, 0);
1894 t->size = bytes_sz;
1895
1896 return btf_commit_type(btf, sz);
1897 }
1898
1899 /*
1900 * Append new BTF_KIND_STRUCT type with:
1901 * - *name* - name of the struct, can be NULL or empty for anonymous structs;
1902 * - *byte_sz* - size of the struct, in bytes;
1903 *
1904 * Struct initially has no fields in it. Fields can be added by
1905 * btf__add_field() right after btf__add_struct() succeeds.
1906 *
1907 * Returns:
1908 * - >0, type ID of newly added BTF type;
1909 * - <0, on error.
1910 */
btf__add_struct(struct btf * btf,const char * name,__u32 byte_sz)1911 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1912 {
1913 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1914 }
1915
1916 /*
1917 * Append new BTF_KIND_UNION type with:
1918 * - *name* - name of the union, can be NULL or empty for anonymous union;
1919 * - *byte_sz* - size of the union, in bytes;
1920 *
1921 * Union initially has no fields in it. Fields can be added by
1922 * btf__add_field() right after btf__add_union() succeeds. All fields
1923 * should have *bit_offset* of 0.
1924 *
1925 * Returns:
1926 * - >0, type ID of newly added BTF type;
1927 * - <0, on error.
1928 */
btf__add_union(struct btf * btf,const char * name,__u32 byte_sz)1929 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1930 {
1931 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1932 }
1933
btf_last_type(struct btf * btf)1934 static struct btf_type *btf_last_type(struct btf *btf)
1935 {
1936 return btf_type_by_id(btf, btf__get_nr_types(btf));
1937 }
1938
1939 /*
1940 * Append new field for the current STRUCT/UNION type with:
1941 * - *name* - name of the field, can be NULL or empty for anonymous field;
1942 * - *type_id* - type ID for the type describing field type;
1943 * - *bit_offset* - bit offset of the start of the field within struct/union;
1944 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1945 * Returns:
1946 * - 0, on success;
1947 * - <0, on error.
1948 */
btf__add_field(struct btf * btf,const char * name,int type_id,__u32 bit_offset,__u32 bit_size)1949 int btf__add_field(struct btf *btf, const char *name, int type_id,
1950 __u32 bit_offset, __u32 bit_size)
1951 {
1952 struct btf_type *t;
1953 struct btf_member *m;
1954 bool is_bitfield;
1955 int sz, name_off = 0;
1956
1957 /* last type should be union/struct */
1958 if (btf->nr_types == 0)
1959 return libbpf_err(-EINVAL);
1960 t = btf_last_type(btf);
1961 if (!btf_is_composite(t))
1962 return libbpf_err(-EINVAL);
1963
1964 if (validate_type_id(type_id))
1965 return libbpf_err(-EINVAL);
1966 /* best-effort bit field offset/size enforcement */
1967 is_bitfield = bit_size || (bit_offset % 8 != 0);
1968 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1969 return libbpf_err(-EINVAL);
1970
1971 /* only offset 0 is allowed for unions */
1972 if (btf_is_union(t) && bit_offset)
1973 return libbpf_err(-EINVAL);
1974
1975 /* decompose and invalidate raw data */
1976 if (btf_ensure_modifiable(btf))
1977 return libbpf_err(-ENOMEM);
1978
1979 sz = sizeof(struct btf_member);
1980 m = btf_add_type_mem(btf, sz);
1981 if (!m)
1982 return libbpf_err(-ENOMEM);
1983
1984 if (name && name[0]) {
1985 name_off = btf__add_str(btf, name);
1986 if (name_off < 0)
1987 return name_off;
1988 }
1989
1990 m->name_off = name_off;
1991 m->type = type_id;
1992 m->offset = bit_offset | (bit_size << 24);
1993
1994 /* btf_add_type_mem can invalidate t pointer */
1995 t = btf_last_type(btf);
1996 /* update parent type's vlen and kflag */
1997 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1998
1999 btf->hdr->type_len += sz;
2000 btf->hdr->str_off += sz;
2001 return 0;
2002 }
2003
2004 /*
2005 * Append new BTF_KIND_ENUM type with:
2006 * - *name* - name of the enum, can be NULL or empty for anonymous enums;
2007 * - *byte_sz* - size of the enum, in bytes.
2008 *
2009 * Enum initially has no enum values in it (and corresponds to enum forward
2010 * declaration). Enumerator values can be added by btf__add_enum_value()
2011 * immediately after btf__add_enum() succeeds.
2012 *
2013 * Returns:
2014 * - >0, type ID of newly added BTF type;
2015 * - <0, on error.
2016 */
btf__add_enum(struct btf * btf,const char * name,__u32 byte_sz)2017 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2018 {
2019 struct btf_type *t;
2020 int sz, name_off = 0;
2021
2022 /* byte_sz must be power of 2 */
2023 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2024 return libbpf_err(-EINVAL);
2025
2026 if (btf_ensure_modifiable(btf))
2027 return libbpf_err(-ENOMEM);
2028
2029 sz = sizeof(struct btf_type);
2030 t = btf_add_type_mem(btf, sz);
2031 if (!t)
2032 return libbpf_err(-ENOMEM);
2033
2034 if (name && name[0]) {
2035 name_off = btf__add_str(btf, name);
2036 if (name_off < 0)
2037 return name_off;
2038 }
2039
2040 /* start out with vlen=0; it will be adjusted when adding enum values */
2041 t->name_off = name_off;
2042 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2043 t->size = byte_sz;
2044
2045 return btf_commit_type(btf, sz);
2046 }
2047
2048 /*
2049 * Append new enum value for the current ENUM type with:
2050 * - *name* - name of the enumerator value, can't be NULL or empty;
2051 * - *value* - integer value corresponding to enum value *name*;
2052 * Returns:
2053 * - 0, on success;
2054 * - <0, on error.
2055 */
btf__add_enum_value(struct btf * btf,const char * name,__s64 value)2056 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2057 {
2058 struct btf_type *t;
2059 struct btf_enum *v;
2060 int sz, name_off;
2061
2062 /* last type should be BTF_KIND_ENUM */
2063 if (btf->nr_types == 0)
2064 return libbpf_err(-EINVAL);
2065 t = btf_last_type(btf);
2066 if (!btf_is_enum(t))
2067 return libbpf_err(-EINVAL);
2068
2069 /* non-empty name */
2070 if (!name || !name[0])
2071 return libbpf_err(-EINVAL);
2072 if (value < INT_MIN || value > UINT_MAX)
2073 return libbpf_err(-E2BIG);
2074
2075 /* decompose and invalidate raw data */
2076 if (btf_ensure_modifiable(btf))
2077 return libbpf_err(-ENOMEM);
2078
2079 sz = sizeof(struct btf_enum);
2080 v = btf_add_type_mem(btf, sz);
2081 if (!v)
2082 return libbpf_err(-ENOMEM);
2083
2084 name_off = btf__add_str(btf, name);
2085 if (name_off < 0)
2086 return name_off;
2087
2088 v->name_off = name_off;
2089 v->val = value;
2090
2091 /* update parent type's vlen */
2092 t = btf_last_type(btf);
2093 btf_type_inc_vlen(t);
2094
2095 btf->hdr->type_len += sz;
2096 btf->hdr->str_off += sz;
2097 return 0;
2098 }
2099
2100 /*
2101 * Append new BTF_KIND_FWD type with:
2102 * - *name*, non-empty/non-NULL name;
2103 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2104 * BTF_FWD_UNION, or BTF_FWD_ENUM;
2105 * Returns:
2106 * - >0, type ID of newly added BTF type;
2107 * - <0, on error.
2108 */
btf__add_fwd(struct btf * btf,const char * name,enum btf_fwd_kind fwd_kind)2109 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2110 {
2111 if (!name || !name[0])
2112 return libbpf_err(-EINVAL);
2113
2114 switch (fwd_kind) {
2115 case BTF_FWD_STRUCT:
2116 case BTF_FWD_UNION: {
2117 struct btf_type *t;
2118 int id;
2119
2120 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2121 if (id <= 0)
2122 return id;
2123 t = btf_type_by_id(btf, id);
2124 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2125 return id;
2126 }
2127 case BTF_FWD_ENUM:
2128 /* enum forward in BTF currently is just an enum with no enum
2129 * values; we also assume a standard 4-byte size for it
2130 */
2131 return btf__add_enum(btf, name, sizeof(int));
2132 default:
2133 return libbpf_err(-EINVAL);
2134 }
2135 }
2136
2137 /*
2138 * Append new BTF_KING_TYPEDEF type with:
2139 * - *name*, non-empty/non-NULL name;
2140 * - *ref_type_id* - referenced type ID, it might not exist yet;
2141 * Returns:
2142 * - >0, type ID of newly added BTF type;
2143 * - <0, on error.
2144 */
btf__add_typedef(struct btf * btf,const char * name,int ref_type_id)2145 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2146 {
2147 if (!name || !name[0])
2148 return libbpf_err(-EINVAL);
2149
2150 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2151 }
2152
2153 /*
2154 * Append new BTF_KIND_VOLATILE type with:
2155 * - *ref_type_id* - referenced type ID, it might not exist yet;
2156 * Returns:
2157 * - >0, type ID of newly added BTF type;
2158 * - <0, on error.
2159 */
btf__add_volatile(struct btf * btf,int ref_type_id)2160 int btf__add_volatile(struct btf *btf, int ref_type_id)
2161 {
2162 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2163 }
2164
2165 /*
2166 * Append new BTF_KIND_CONST type with:
2167 * - *ref_type_id* - referenced type ID, it might not exist yet;
2168 * Returns:
2169 * - >0, type ID of newly added BTF type;
2170 * - <0, on error.
2171 */
btf__add_const(struct btf * btf,int ref_type_id)2172 int btf__add_const(struct btf *btf, int ref_type_id)
2173 {
2174 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2175 }
2176
2177 /*
2178 * Append new BTF_KIND_RESTRICT type with:
2179 * - *ref_type_id* - referenced type ID, it might not exist yet;
2180 * Returns:
2181 * - >0, type ID of newly added BTF type;
2182 * - <0, on error.
2183 */
btf__add_restrict(struct btf * btf,int ref_type_id)2184 int btf__add_restrict(struct btf *btf, int ref_type_id)
2185 {
2186 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2187 }
2188
2189 /*
2190 * Append new BTF_KIND_FUNC type with:
2191 * - *name*, non-empty/non-NULL name;
2192 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2193 * Returns:
2194 * - >0, type ID of newly added BTF type;
2195 * - <0, on error.
2196 */
btf__add_func(struct btf * btf,const char * name,enum btf_func_linkage linkage,int proto_type_id)2197 int btf__add_func(struct btf *btf, const char *name,
2198 enum btf_func_linkage linkage, int proto_type_id)
2199 {
2200 int id;
2201
2202 if (!name || !name[0])
2203 return libbpf_err(-EINVAL);
2204 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2205 linkage != BTF_FUNC_EXTERN)
2206 return libbpf_err(-EINVAL);
2207
2208 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2209 if (id > 0) {
2210 struct btf_type *t = btf_type_by_id(btf, id);
2211
2212 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2213 }
2214 return libbpf_err(id);
2215 }
2216
2217 /*
2218 * Append new BTF_KIND_FUNC_PROTO with:
2219 * - *ret_type_id* - type ID for return result of a function.
2220 *
2221 * Function prototype initially has no arguments, but they can be added by
2222 * btf__add_func_param() one by one, immediately after
2223 * btf__add_func_proto() succeeded.
2224 *
2225 * Returns:
2226 * - >0, type ID of newly added BTF type;
2227 * - <0, on error.
2228 */
btf__add_func_proto(struct btf * btf,int ret_type_id)2229 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2230 {
2231 struct btf_type *t;
2232 int sz;
2233
2234 if (validate_type_id(ret_type_id))
2235 return libbpf_err(-EINVAL);
2236
2237 if (btf_ensure_modifiable(btf))
2238 return libbpf_err(-ENOMEM);
2239
2240 sz = sizeof(struct btf_type);
2241 t = btf_add_type_mem(btf, sz);
2242 if (!t)
2243 return libbpf_err(-ENOMEM);
2244
2245 /* start out with vlen=0; this will be adjusted when adding enum
2246 * values, if necessary
2247 */
2248 t->name_off = 0;
2249 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2250 t->type = ret_type_id;
2251
2252 return btf_commit_type(btf, sz);
2253 }
2254
2255 /*
2256 * Append new function parameter for current FUNC_PROTO type with:
2257 * - *name* - parameter name, can be NULL or empty;
2258 * - *type_id* - type ID describing the type of the parameter.
2259 * Returns:
2260 * - 0, on success;
2261 * - <0, on error.
2262 */
btf__add_func_param(struct btf * btf,const char * name,int type_id)2263 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2264 {
2265 struct btf_type *t;
2266 struct btf_param *p;
2267 int sz, name_off = 0;
2268
2269 if (validate_type_id(type_id))
2270 return libbpf_err(-EINVAL);
2271
2272 /* last type should be BTF_KIND_FUNC_PROTO */
2273 if (btf->nr_types == 0)
2274 return libbpf_err(-EINVAL);
2275 t = btf_last_type(btf);
2276 if (!btf_is_func_proto(t))
2277 return libbpf_err(-EINVAL);
2278
2279 /* decompose and invalidate raw data */
2280 if (btf_ensure_modifiable(btf))
2281 return libbpf_err(-ENOMEM);
2282
2283 sz = sizeof(struct btf_param);
2284 p = btf_add_type_mem(btf, sz);
2285 if (!p)
2286 return libbpf_err(-ENOMEM);
2287
2288 if (name && name[0]) {
2289 name_off = btf__add_str(btf, name);
2290 if (name_off < 0)
2291 return name_off;
2292 }
2293
2294 p->name_off = name_off;
2295 p->type = type_id;
2296
2297 /* update parent type's vlen */
2298 t = btf_last_type(btf);
2299 btf_type_inc_vlen(t);
2300
2301 btf->hdr->type_len += sz;
2302 btf->hdr->str_off += sz;
2303 return 0;
2304 }
2305
2306 /*
2307 * Append new BTF_KIND_VAR type with:
2308 * - *name* - non-empty/non-NULL name;
2309 * - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2310 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2311 * - *type_id* - type ID of the type describing the type of the variable.
2312 * Returns:
2313 * - >0, type ID of newly added BTF type;
2314 * - <0, on error.
2315 */
btf__add_var(struct btf * btf,const char * name,int linkage,int type_id)2316 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2317 {
2318 struct btf_type *t;
2319 struct btf_var *v;
2320 int sz, name_off;
2321
2322 /* non-empty name */
2323 if (!name || !name[0])
2324 return libbpf_err(-EINVAL);
2325 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2326 linkage != BTF_VAR_GLOBAL_EXTERN)
2327 return libbpf_err(-EINVAL);
2328 if (validate_type_id(type_id))
2329 return libbpf_err(-EINVAL);
2330
2331 /* deconstruct BTF, if necessary, and invalidate raw_data */
2332 if (btf_ensure_modifiable(btf))
2333 return libbpf_err(-ENOMEM);
2334
2335 sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2336 t = btf_add_type_mem(btf, sz);
2337 if (!t)
2338 return libbpf_err(-ENOMEM);
2339
2340 name_off = btf__add_str(btf, name);
2341 if (name_off < 0)
2342 return name_off;
2343
2344 t->name_off = name_off;
2345 t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2346 t->type = type_id;
2347
2348 v = btf_var(t);
2349 v->linkage = linkage;
2350
2351 return btf_commit_type(btf, sz);
2352 }
2353
2354 /*
2355 * Append new BTF_KIND_DATASEC type with:
2356 * - *name* - non-empty/non-NULL name;
2357 * - *byte_sz* - data section size, in bytes.
2358 *
2359 * Data section is initially empty. Variables info can be added with
2360 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2361 *
2362 * Returns:
2363 * - >0, type ID of newly added BTF type;
2364 * - <0, on error.
2365 */
btf__add_datasec(struct btf * btf,const char * name,__u32 byte_sz)2366 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2367 {
2368 struct btf_type *t;
2369 int sz, name_off;
2370
2371 /* non-empty name */
2372 if (!name || !name[0])
2373 return libbpf_err(-EINVAL);
2374
2375 if (btf_ensure_modifiable(btf))
2376 return libbpf_err(-ENOMEM);
2377
2378 sz = sizeof(struct btf_type);
2379 t = btf_add_type_mem(btf, sz);
2380 if (!t)
2381 return libbpf_err(-ENOMEM);
2382
2383 name_off = btf__add_str(btf, name);
2384 if (name_off < 0)
2385 return name_off;
2386
2387 /* start with vlen=0, which will be update as var_secinfos are added */
2388 t->name_off = name_off;
2389 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2390 t->size = byte_sz;
2391
2392 return btf_commit_type(btf, sz);
2393 }
2394
2395 /*
2396 * Append new data section variable information entry for current DATASEC type:
2397 * - *var_type_id* - type ID, describing type of the variable;
2398 * - *offset* - variable offset within data section, in bytes;
2399 * - *byte_sz* - variable size, in bytes.
2400 *
2401 * Returns:
2402 * - 0, on success;
2403 * - <0, on error.
2404 */
btf__add_datasec_var_info(struct btf * btf,int var_type_id,__u32 offset,__u32 byte_sz)2405 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2406 {
2407 struct btf_type *t;
2408 struct btf_var_secinfo *v;
2409 int sz;
2410
2411 /* last type should be BTF_KIND_DATASEC */
2412 if (btf->nr_types == 0)
2413 return libbpf_err(-EINVAL);
2414 t = btf_last_type(btf);
2415 if (!btf_is_datasec(t))
2416 return libbpf_err(-EINVAL);
2417
2418 if (validate_type_id(var_type_id))
2419 return libbpf_err(-EINVAL);
2420
2421 /* decompose and invalidate raw data */
2422 if (btf_ensure_modifiable(btf))
2423 return libbpf_err(-ENOMEM);
2424
2425 sz = sizeof(struct btf_var_secinfo);
2426 v = btf_add_type_mem(btf, sz);
2427 if (!v)
2428 return libbpf_err(-ENOMEM);
2429
2430 v->type = var_type_id;
2431 v->offset = offset;
2432 v->size = byte_sz;
2433
2434 /* update parent type's vlen */
2435 t = btf_last_type(btf);
2436 btf_type_inc_vlen(t);
2437
2438 btf->hdr->type_len += sz;
2439 btf->hdr->str_off += sz;
2440 return 0;
2441 }
2442
2443 struct btf_ext_sec_setup_param {
2444 __u32 off;
2445 __u32 len;
2446 __u32 min_rec_size;
2447 struct btf_ext_info *ext_info;
2448 const char *desc;
2449 };
2450
btf_ext_setup_info(struct btf_ext * btf_ext,struct btf_ext_sec_setup_param * ext_sec)2451 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2452 struct btf_ext_sec_setup_param *ext_sec)
2453 {
2454 const struct btf_ext_info_sec *sinfo;
2455 struct btf_ext_info *ext_info;
2456 __u32 info_left, record_size;
2457 /* The start of the info sec (including the __u32 record_size). */
2458 void *info;
2459
2460 if (ext_sec->len == 0)
2461 return 0;
2462
2463 if (ext_sec->off & 0x03) {
2464 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2465 ext_sec->desc);
2466 return -EINVAL;
2467 }
2468
2469 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2470 info_left = ext_sec->len;
2471
2472 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2473 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2474 ext_sec->desc, ext_sec->off, ext_sec->len);
2475 return -EINVAL;
2476 }
2477
2478 /* At least a record size */
2479 if (info_left < sizeof(__u32)) {
2480 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2481 return -EINVAL;
2482 }
2483
2484 /* The record size needs to meet the minimum standard */
2485 record_size = *(__u32 *)info;
2486 if (record_size < ext_sec->min_rec_size ||
2487 record_size & 0x03) {
2488 pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2489 ext_sec->desc, record_size);
2490 return -EINVAL;
2491 }
2492
2493 sinfo = info + sizeof(__u32);
2494 info_left -= sizeof(__u32);
2495
2496 /* If no records, return failure now so .BTF.ext won't be used. */
2497 if (!info_left) {
2498 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2499 return -EINVAL;
2500 }
2501
2502 while (info_left) {
2503 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2504 __u64 total_record_size;
2505 __u32 num_records;
2506
2507 if (info_left < sec_hdrlen) {
2508 pr_debug("%s section header is not found in .BTF.ext\n",
2509 ext_sec->desc);
2510 return -EINVAL;
2511 }
2512
2513 num_records = sinfo->num_info;
2514 if (num_records == 0) {
2515 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2516 ext_sec->desc);
2517 return -EINVAL;
2518 }
2519
2520 total_record_size = sec_hdrlen +
2521 (__u64)num_records * record_size;
2522 if (info_left < total_record_size) {
2523 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2524 ext_sec->desc);
2525 return -EINVAL;
2526 }
2527
2528 info_left -= total_record_size;
2529 sinfo = (void *)sinfo + total_record_size;
2530 }
2531
2532 ext_info = ext_sec->ext_info;
2533 ext_info->len = ext_sec->len - sizeof(__u32);
2534 ext_info->rec_size = record_size;
2535 ext_info->info = info + sizeof(__u32);
2536
2537 return 0;
2538 }
2539
btf_ext_setup_func_info(struct btf_ext * btf_ext)2540 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2541 {
2542 struct btf_ext_sec_setup_param param = {
2543 .off = btf_ext->hdr->func_info_off,
2544 .len = btf_ext->hdr->func_info_len,
2545 .min_rec_size = sizeof(struct bpf_func_info_min),
2546 .ext_info = &btf_ext->func_info,
2547 .desc = "func_info"
2548 };
2549
2550 return btf_ext_setup_info(btf_ext, ¶m);
2551 }
2552
btf_ext_setup_line_info(struct btf_ext * btf_ext)2553 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2554 {
2555 struct btf_ext_sec_setup_param param = {
2556 .off = btf_ext->hdr->line_info_off,
2557 .len = btf_ext->hdr->line_info_len,
2558 .min_rec_size = sizeof(struct bpf_line_info_min),
2559 .ext_info = &btf_ext->line_info,
2560 .desc = "line_info",
2561 };
2562
2563 return btf_ext_setup_info(btf_ext, ¶m);
2564 }
2565
btf_ext_setup_core_relos(struct btf_ext * btf_ext)2566 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2567 {
2568 struct btf_ext_sec_setup_param param = {
2569 .off = btf_ext->hdr->core_relo_off,
2570 .len = btf_ext->hdr->core_relo_len,
2571 .min_rec_size = sizeof(struct bpf_core_relo),
2572 .ext_info = &btf_ext->core_relo_info,
2573 .desc = "core_relo",
2574 };
2575
2576 return btf_ext_setup_info(btf_ext, ¶m);
2577 }
2578
btf_ext_parse_hdr(__u8 * data,__u32 data_size)2579 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2580 {
2581 const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2582
2583 if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2584 data_size < hdr->hdr_len) {
2585 pr_debug("BTF.ext header not found");
2586 return -EINVAL;
2587 }
2588
2589 if (hdr->magic == bswap_16(BTF_MAGIC)) {
2590 pr_warn("BTF.ext in non-native endianness is not supported\n");
2591 return -ENOTSUP;
2592 } else if (hdr->magic != BTF_MAGIC) {
2593 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2594 return -EINVAL;
2595 }
2596
2597 if (hdr->version != BTF_VERSION) {
2598 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2599 return -ENOTSUP;
2600 }
2601
2602 if (hdr->flags) {
2603 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2604 return -ENOTSUP;
2605 }
2606
2607 if (data_size == hdr->hdr_len) {
2608 pr_debug("BTF.ext has no data\n");
2609 return -EINVAL;
2610 }
2611
2612 return 0;
2613 }
2614
btf_ext__free(struct btf_ext * btf_ext)2615 void btf_ext__free(struct btf_ext *btf_ext)
2616 {
2617 if (IS_ERR_OR_NULL(btf_ext))
2618 return;
2619 free(btf_ext->data);
2620 free(btf_ext);
2621 }
2622
btf_ext__new(__u8 * data,__u32 size)2623 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2624 {
2625 struct btf_ext *btf_ext;
2626 int err;
2627
2628 err = btf_ext_parse_hdr(data, size);
2629 if (err)
2630 return libbpf_err_ptr(err);
2631
2632 btf_ext = calloc(1, sizeof(struct btf_ext));
2633 if (!btf_ext)
2634 return libbpf_err_ptr(-ENOMEM);
2635
2636 btf_ext->data_size = size;
2637 btf_ext->data = malloc(size);
2638 if (!btf_ext->data) {
2639 err = -ENOMEM;
2640 goto done;
2641 }
2642 memcpy(btf_ext->data, data, size);
2643
2644 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2645 err = -EINVAL;
2646 goto done;
2647 }
2648
2649 err = btf_ext_setup_func_info(btf_ext);
2650 if (err)
2651 goto done;
2652
2653 err = btf_ext_setup_line_info(btf_ext);
2654 if (err)
2655 goto done;
2656
2657 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2658 err = -EINVAL;
2659 goto done;
2660 }
2661
2662 err = btf_ext_setup_core_relos(btf_ext);
2663 if (err)
2664 goto done;
2665
2666 done:
2667 if (err) {
2668 btf_ext__free(btf_ext);
2669 return libbpf_err_ptr(err);
2670 }
2671
2672 return btf_ext;
2673 }
2674
btf_ext__get_raw_data(const struct btf_ext * btf_ext,__u32 * size)2675 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2676 {
2677 *size = btf_ext->data_size;
2678 return btf_ext->data;
2679 }
2680
btf_ext_reloc_info(const struct btf * btf,const struct btf_ext_info * ext_info,const char * sec_name,__u32 insns_cnt,void ** info,__u32 * cnt)2681 static int btf_ext_reloc_info(const struct btf *btf,
2682 const struct btf_ext_info *ext_info,
2683 const char *sec_name, __u32 insns_cnt,
2684 void **info, __u32 *cnt)
2685 {
2686 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2687 __u32 i, record_size, existing_len, records_len;
2688 struct btf_ext_info_sec *sinfo;
2689 const char *info_sec_name;
2690 __u64 remain_len;
2691 void *data;
2692
2693 record_size = ext_info->rec_size;
2694 sinfo = ext_info->info;
2695 remain_len = ext_info->len;
2696 while (remain_len > 0) {
2697 records_len = sinfo->num_info * record_size;
2698 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2699 if (strcmp(info_sec_name, sec_name)) {
2700 remain_len -= sec_hdrlen + records_len;
2701 sinfo = (void *)sinfo + sec_hdrlen + records_len;
2702 continue;
2703 }
2704
2705 existing_len = (*cnt) * record_size;
2706 data = realloc(*info, existing_len + records_len);
2707 if (!data)
2708 return libbpf_err(-ENOMEM);
2709
2710 memcpy(data + existing_len, sinfo->data, records_len);
2711 /* adjust insn_off only, the rest data will be passed
2712 * to the kernel.
2713 */
2714 for (i = 0; i < sinfo->num_info; i++) {
2715 __u32 *insn_off;
2716
2717 insn_off = data + existing_len + (i * record_size);
2718 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2719 }
2720 *info = data;
2721 *cnt += sinfo->num_info;
2722 return 0;
2723 }
2724
2725 return libbpf_err(-ENOENT);
2726 }
2727
btf_ext__reloc_func_info(const struct btf * btf,const struct btf_ext * btf_ext,const char * sec_name,__u32 insns_cnt,void ** func_info,__u32 * cnt)2728 int btf_ext__reloc_func_info(const struct btf *btf,
2729 const struct btf_ext *btf_ext,
2730 const char *sec_name, __u32 insns_cnt,
2731 void **func_info, __u32 *cnt)
2732 {
2733 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2734 insns_cnt, func_info, cnt);
2735 }
2736
btf_ext__reloc_line_info(const struct btf * btf,const struct btf_ext * btf_ext,const char * sec_name,__u32 insns_cnt,void ** line_info,__u32 * cnt)2737 int btf_ext__reloc_line_info(const struct btf *btf,
2738 const struct btf_ext *btf_ext,
2739 const char *sec_name, __u32 insns_cnt,
2740 void **line_info, __u32 *cnt)
2741 {
2742 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2743 insns_cnt, line_info, cnt);
2744 }
2745
btf_ext__func_info_rec_size(const struct btf_ext * btf_ext)2746 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2747 {
2748 return btf_ext->func_info.rec_size;
2749 }
2750
btf_ext__line_info_rec_size(const struct btf_ext * btf_ext)2751 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2752 {
2753 return btf_ext->line_info.rec_size;
2754 }
2755
2756 struct btf_dedup;
2757
2758 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2759 const struct btf_dedup_opts *opts);
2760 static void btf_dedup_free(struct btf_dedup *d);
2761 static int btf_dedup_prep(struct btf_dedup *d);
2762 static int btf_dedup_strings(struct btf_dedup *d);
2763 static int btf_dedup_prim_types(struct btf_dedup *d);
2764 static int btf_dedup_struct_types(struct btf_dedup *d);
2765 static int btf_dedup_ref_types(struct btf_dedup *d);
2766 static int btf_dedup_compact_types(struct btf_dedup *d);
2767 static int btf_dedup_remap_types(struct btf_dedup *d);
2768
2769 /*
2770 * Deduplicate BTF types and strings.
2771 *
2772 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2773 * section with all BTF type descriptors and string data. It overwrites that
2774 * memory in-place with deduplicated types and strings without any loss of
2775 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2776 * is provided, all the strings referenced from .BTF.ext section are honored
2777 * and updated to point to the right offsets after deduplication.
2778 *
2779 * If function returns with error, type/string data might be garbled and should
2780 * be discarded.
2781 *
2782 * More verbose and detailed description of both problem btf_dedup is solving,
2783 * as well as solution could be found at:
2784 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2785 *
2786 * Problem description and justification
2787 * =====================================
2788 *
2789 * BTF type information is typically emitted either as a result of conversion
2790 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2791 * unit contains information about a subset of all the types that are used
2792 * in an application. These subsets are frequently overlapping and contain a lot
2793 * of duplicated information when later concatenated together into a single
2794 * binary. This algorithm ensures that each unique type is represented by single
2795 * BTF type descriptor, greatly reducing resulting size of BTF data.
2796 *
2797 * Compilation unit isolation and subsequent duplication of data is not the only
2798 * problem. The same type hierarchy (e.g., struct and all the type that struct
2799 * references) in different compilation units can be represented in BTF to
2800 * various degrees of completeness (or, rather, incompleteness) due to
2801 * struct/union forward declarations.
2802 *
2803 * Let's take a look at an example, that we'll use to better understand the
2804 * problem (and solution). Suppose we have two compilation units, each using
2805 * same `struct S`, but each of them having incomplete type information about
2806 * struct's fields:
2807 *
2808 * // CU #1:
2809 * struct S;
2810 * struct A {
2811 * int a;
2812 * struct A* self;
2813 * struct S* parent;
2814 * };
2815 * struct B;
2816 * struct S {
2817 * struct A* a_ptr;
2818 * struct B* b_ptr;
2819 * };
2820 *
2821 * // CU #2:
2822 * struct S;
2823 * struct A;
2824 * struct B {
2825 * int b;
2826 * struct B* self;
2827 * struct S* parent;
2828 * };
2829 * struct S {
2830 * struct A* a_ptr;
2831 * struct B* b_ptr;
2832 * };
2833 *
2834 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2835 * more), but will know the complete type information about `struct A`. While
2836 * for CU #2, it will know full type information about `struct B`, but will
2837 * only know about forward declaration of `struct A` (in BTF terms, it will
2838 * have `BTF_KIND_FWD` type descriptor with name `B`).
2839 *
2840 * This compilation unit isolation means that it's possible that there is no
2841 * single CU with complete type information describing structs `S`, `A`, and
2842 * `B`. Also, we might get tons of duplicated and redundant type information.
2843 *
2844 * Additional complication we need to keep in mind comes from the fact that
2845 * types, in general, can form graphs containing cycles, not just DAGs.
2846 *
2847 * While algorithm does deduplication, it also merges and resolves type
2848 * information (unless disabled throught `struct btf_opts`), whenever possible.
2849 * E.g., in the example above with two compilation units having partial type
2850 * information for structs `A` and `B`, the output of algorithm will emit
2851 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2852 * (as well as type information for `int` and pointers), as if they were defined
2853 * in a single compilation unit as:
2854 *
2855 * struct A {
2856 * int a;
2857 * struct A* self;
2858 * struct S* parent;
2859 * };
2860 * struct B {
2861 * int b;
2862 * struct B* self;
2863 * struct S* parent;
2864 * };
2865 * struct S {
2866 * struct A* a_ptr;
2867 * struct B* b_ptr;
2868 * };
2869 *
2870 * Algorithm summary
2871 * =================
2872 *
2873 * Algorithm completes its work in 6 separate passes:
2874 *
2875 * 1. Strings deduplication.
2876 * 2. Primitive types deduplication (int, enum, fwd).
2877 * 3. Struct/union types deduplication.
2878 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2879 * protos, and const/volatile/restrict modifiers).
2880 * 5. Types compaction.
2881 * 6. Types remapping.
2882 *
2883 * Algorithm determines canonical type descriptor, which is a single
2884 * representative type for each truly unique type. This canonical type is the
2885 * one that will go into final deduplicated BTF type information. For
2886 * struct/unions, it is also the type that algorithm will merge additional type
2887 * information into (while resolving FWDs), as it discovers it from data in
2888 * other CUs. Each input BTF type eventually gets either mapped to itself, if
2889 * that type is canonical, or to some other type, if that type is equivalent
2890 * and was chosen as canonical representative. This mapping is stored in
2891 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2892 * FWD type got resolved to.
2893 *
2894 * To facilitate fast discovery of canonical types, we also maintain canonical
2895 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2896 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2897 * that match that signature. With sufficiently good choice of type signature
2898 * hashing function, we can limit number of canonical types for each unique type
2899 * signature to a very small number, allowing to find canonical type for any
2900 * duplicated type very quickly.
2901 *
2902 * Struct/union deduplication is the most critical part and algorithm for
2903 * deduplicating structs/unions is described in greater details in comments for
2904 * `btf_dedup_is_equiv` function.
2905 */
btf__dedup(struct btf * btf,struct btf_ext * btf_ext,const struct btf_dedup_opts * opts)2906 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2907 const struct btf_dedup_opts *opts)
2908 {
2909 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2910 int err;
2911
2912 if (IS_ERR(d)) {
2913 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2914 return libbpf_err(-EINVAL);
2915 }
2916
2917 if (btf_ensure_modifiable(btf))
2918 return libbpf_err(-ENOMEM);
2919
2920 err = btf_dedup_prep(d);
2921 if (err) {
2922 pr_debug("btf_dedup_prep failed:%d\n", err);
2923 goto done;
2924 }
2925 err = btf_dedup_strings(d);
2926 if (err < 0) {
2927 pr_debug("btf_dedup_strings failed:%d\n", err);
2928 goto done;
2929 }
2930 err = btf_dedup_prim_types(d);
2931 if (err < 0) {
2932 pr_debug("btf_dedup_prim_types failed:%d\n", err);
2933 goto done;
2934 }
2935 err = btf_dedup_struct_types(d);
2936 if (err < 0) {
2937 pr_debug("btf_dedup_struct_types failed:%d\n", err);
2938 goto done;
2939 }
2940 err = btf_dedup_ref_types(d);
2941 if (err < 0) {
2942 pr_debug("btf_dedup_ref_types failed:%d\n", err);
2943 goto done;
2944 }
2945 err = btf_dedup_compact_types(d);
2946 if (err < 0) {
2947 pr_debug("btf_dedup_compact_types failed:%d\n", err);
2948 goto done;
2949 }
2950 err = btf_dedup_remap_types(d);
2951 if (err < 0) {
2952 pr_debug("btf_dedup_remap_types failed:%d\n", err);
2953 goto done;
2954 }
2955
2956 done:
2957 btf_dedup_free(d);
2958 return libbpf_err(err);
2959 }
2960
2961 #define BTF_UNPROCESSED_ID ((__u32)-1)
2962 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2963
2964 struct btf_dedup {
2965 /* .BTF section to be deduped in-place */
2966 struct btf *btf;
2967 /*
2968 * Optional .BTF.ext section. When provided, any strings referenced
2969 * from it will be taken into account when deduping strings
2970 */
2971 struct btf_ext *btf_ext;
2972 /*
2973 * This is a map from any type's signature hash to a list of possible
2974 * canonical representative type candidates. Hash collisions are
2975 * ignored, so even types of various kinds can share same list of
2976 * candidates, which is fine because we rely on subsequent
2977 * btf_xxx_equal() checks to authoritatively verify type equality.
2978 */
2979 struct hashmap *dedup_table;
2980 /* Canonical types map */
2981 __u32 *map;
2982 /* Hypothetical mapping, used during type graph equivalence checks */
2983 __u32 *hypot_map;
2984 __u32 *hypot_list;
2985 size_t hypot_cnt;
2986 size_t hypot_cap;
2987 /* Whether hypothetical mapping, if successful, would need to adjust
2988 * already canonicalized types (due to a new forward declaration to
2989 * concrete type resolution). In such case, during split BTF dedup
2990 * candidate type would still be considered as different, because base
2991 * BTF is considered to be immutable.
2992 */
2993 bool hypot_adjust_canon;
2994 /* Various option modifying behavior of algorithm */
2995 struct btf_dedup_opts opts;
2996 /* temporary strings deduplication state */
2997 struct strset *strs_set;
2998 };
2999
hash_combine(long h,long value)3000 static long hash_combine(long h, long value)
3001 {
3002 return h * 31 + value;
3003 }
3004
3005 #define for_each_dedup_cand(d, node, hash) \
3006 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3007
btf_dedup_table_add(struct btf_dedup * d,long hash,__u32 type_id)3008 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3009 {
3010 return hashmap__append(d->dedup_table,
3011 (void *)hash, (void *)(long)type_id);
3012 }
3013
btf_dedup_hypot_map_add(struct btf_dedup * d,__u32 from_id,__u32 to_id)3014 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3015 __u32 from_id, __u32 to_id)
3016 {
3017 if (d->hypot_cnt == d->hypot_cap) {
3018 __u32 *new_list;
3019
3020 d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3021 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3022 if (!new_list)
3023 return -ENOMEM;
3024 d->hypot_list = new_list;
3025 }
3026 d->hypot_list[d->hypot_cnt++] = from_id;
3027 d->hypot_map[from_id] = to_id;
3028 return 0;
3029 }
3030
btf_dedup_clear_hypot_map(struct btf_dedup * d)3031 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3032 {
3033 int i;
3034
3035 for (i = 0; i < d->hypot_cnt; i++)
3036 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3037 d->hypot_cnt = 0;
3038 d->hypot_adjust_canon = false;
3039 }
3040
btf_dedup_free(struct btf_dedup * d)3041 static void btf_dedup_free(struct btf_dedup *d)
3042 {
3043 hashmap__free(d->dedup_table);
3044 d->dedup_table = NULL;
3045
3046 free(d->map);
3047 d->map = NULL;
3048
3049 free(d->hypot_map);
3050 d->hypot_map = NULL;
3051
3052 free(d->hypot_list);
3053 d->hypot_list = NULL;
3054
3055 free(d);
3056 }
3057
btf_dedup_identity_hash_fn(const void * key,void * ctx)3058 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3059 {
3060 return (size_t)key;
3061 }
3062
btf_dedup_collision_hash_fn(const void * key,void * ctx)3063 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3064 {
3065 return 0;
3066 }
3067
btf_dedup_equal_fn(const void * k1,const void * k2,void * ctx)3068 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3069 {
3070 return k1 == k2;
3071 }
3072
btf_dedup_new(struct btf * btf,struct btf_ext * btf_ext,const struct btf_dedup_opts * opts)3073 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3074 const struct btf_dedup_opts *opts)
3075 {
3076 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3077 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3078 int i, err = 0, type_cnt;
3079
3080 if (!d)
3081 return ERR_PTR(-ENOMEM);
3082
3083 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3084 /* dedup_table_size is now used only to force collisions in tests */
3085 if (opts && opts->dedup_table_size == 1)
3086 hash_fn = btf_dedup_collision_hash_fn;
3087
3088 d->btf = btf;
3089 d->btf_ext = btf_ext;
3090
3091 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3092 if (IS_ERR(d->dedup_table)) {
3093 err = PTR_ERR(d->dedup_table);
3094 d->dedup_table = NULL;
3095 goto done;
3096 }
3097
3098 type_cnt = btf__get_nr_types(btf) + 1;
3099 d->map = malloc(sizeof(__u32) * type_cnt);
3100 if (!d->map) {
3101 err = -ENOMEM;
3102 goto done;
3103 }
3104 /* special BTF "void" type is made canonical immediately */
3105 d->map[0] = 0;
3106 for (i = 1; i < type_cnt; i++) {
3107 struct btf_type *t = btf_type_by_id(d->btf, i);
3108
3109 /* VAR and DATASEC are never deduped and are self-canonical */
3110 if (btf_is_var(t) || btf_is_datasec(t))
3111 d->map[i] = i;
3112 else
3113 d->map[i] = BTF_UNPROCESSED_ID;
3114 }
3115
3116 d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3117 if (!d->hypot_map) {
3118 err = -ENOMEM;
3119 goto done;
3120 }
3121 for (i = 0; i < type_cnt; i++)
3122 d->hypot_map[i] = BTF_UNPROCESSED_ID;
3123
3124 done:
3125 if (err) {
3126 btf_dedup_free(d);
3127 return ERR_PTR(err);
3128 }
3129
3130 return d;
3131 }
3132
3133 /*
3134 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3135 * string and pass pointer to it to a provided callback `fn`.
3136 */
btf_for_each_str_off(struct btf_dedup * d,str_off_visit_fn fn,void * ctx)3137 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3138 {
3139 int i, r;
3140
3141 for (i = 0; i < d->btf->nr_types; i++) {
3142 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3143
3144 r = btf_type_visit_str_offs(t, fn, ctx);
3145 if (r)
3146 return r;
3147 }
3148
3149 if (!d->btf_ext)
3150 return 0;
3151
3152 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3153 if (r)
3154 return r;
3155
3156 return 0;
3157 }
3158
strs_dedup_remap_str_off(__u32 * str_off_ptr,void * ctx)3159 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3160 {
3161 struct btf_dedup *d = ctx;
3162 __u32 str_off = *str_off_ptr;
3163 const char *s;
3164 int off, err;
3165
3166 /* don't touch empty string or string in main BTF */
3167 if (str_off == 0 || str_off < d->btf->start_str_off)
3168 return 0;
3169
3170 s = btf__str_by_offset(d->btf, str_off);
3171 if (d->btf->base_btf) {
3172 err = btf__find_str(d->btf->base_btf, s);
3173 if (err >= 0) {
3174 *str_off_ptr = err;
3175 return 0;
3176 }
3177 if (err != -ENOENT)
3178 return err;
3179 }
3180
3181 off = strset__add_str(d->strs_set, s);
3182 if (off < 0)
3183 return off;
3184
3185 *str_off_ptr = d->btf->start_str_off + off;
3186 return 0;
3187 }
3188
3189 /*
3190 * Dedup string and filter out those that are not referenced from either .BTF
3191 * or .BTF.ext (if provided) sections.
3192 *
3193 * This is done by building index of all strings in BTF's string section,
3194 * then iterating over all entities that can reference strings (e.g., type
3195 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3196 * strings as used. After that all used strings are deduped and compacted into
3197 * sequential blob of memory and new offsets are calculated. Then all the string
3198 * references are iterated again and rewritten using new offsets.
3199 */
btf_dedup_strings(struct btf_dedup * d)3200 static int btf_dedup_strings(struct btf_dedup *d)
3201 {
3202 int err;
3203
3204 if (d->btf->strs_deduped)
3205 return 0;
3206
3207 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3208 if (IS_ERR(d->strs_set)) {
3209 err = PTR_ERR(d->strs_set);
3210 goto err_out;
3211 }
3212
3213 if (!d->btf->base_btf) {
3214 /* insert empty string; we won't be looking it up during strings
3215 * dedup, but it's good to have it for generic BTF string lookups
3216 */
3217 err = strset__add_str(d->strs_set, "");
3218 if (err < 0)
3219 goto err_out;
3220 }
3221
3222 /* remap string offsets */
3223 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3224 if (err)
3225 goto err_out;
3226
3227 /* replace BTF string data and hash with deduped ones */
3228 strset__free(d->btf->strs_set);
3229 d->btf->hdr->str_len = strset__data_size(d->strs_set);
3230 d->btf->strs_set = d->strs_set;
3231 d->strs_set = NULL;
3232 d->btf->strs_deduped = true;
3233 return 0;
3234
3235 err_out:
3236 strset__free(d->strs_set);
3237 d->strs_set = NULL;
3238
3239 return err;
3240 }
3241
btf_hash_common(struct btf_type * t)3242 static long btf_hash_common(struct btf_type *t)
3243 {
3244 long h;
3245
3246 h = hash_combine(0, t->name_off);
3247 h = hash_combine(h, t->info);
3248 h = hash_combine(h, t->size);
3249 return h;
3250 }
3251
btf_equal_common(struct btf_type * t1,struct btf_type * t2)3252 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3253 {
3254 return t1->name_off == t2->name_off &&
3255 t1->info == t2->info &&
3256 t1->size == t2->size;
3257 }
3258
3259 /* Calculate type signature hash of INT. */
btf_hash_int(struct btf_type * t)3260 static long btf_hash_int(struct btf_type *t)
3261 {
3262 __u32 info = *(__u32 *)(t + 1);
3263 long h;
3264
3265 h = btf_hash_common(t);
3266 h = hash_combine(h, info);
3267 return h;
3268 }
3269
3270 /* Check structural equality of two INTs. */
btf_equal_int(struct btf_type * t1,struct btf_type * t2)3271 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3272 {
3273 __u32 info1, info2;
3274
3275 if (!btf_equal_common(t1, t2))
3276 return false;
3277 info1 = *(__u32 *)(t1 + 1);
3278 info2 = *(__u32 *)(t2 + 1);
3279 return info1 == info2;
3280 }
3281
3282 /* Calculate type signature hash of ENUM. */
btf_hash_enum(struct btf_type * t)3283 static long btf_hash_enum(struct btf_type *t)
3284 {
3285 long h;
3286
3287 /* don't hash vlen and enum members to support enum fwd resolving */
3288 h = hash_combine(0, t->name_off);
3289 h = hash_combine(h, t->info & ~0xffff);
3290 h = hash_combine(h, t->size);
3291 return h;
3292 }
3293
3294 /* Check structural equality of two ENUMs. */
btf_equal_enum(struct btf_type * t1,struct btf_type * t2)3295 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3296 {
3297 const struct btf_enum *m1, *m2;
3298 __u16 vlen;
3299 int i;
3300
3301 if (!btf_equal_common(t1, t2))
3302 return false;
3303
3304 vlen = btf_vlen(t1);
3305 m1 = btf_enum(t1);
3306 m2 = btf_enum(t2);
3307 for (i = 0; i < vlen; i++) {
3308 if (m1->name_off != m2->name_off || m1->val != m2->val)
3309 return false;
3310 m1++;
3311 m2++;
3312 }
3313 return true;
3314 }
3315
btf_is_enum_fwd(struct btf_type * t)3316 static inline bool btf_is_enum_fwd(struct btf_type *t)
3317 {
3318 return btf_is_enum(t) && btf_vlen(t) == 0;
3319 }
3320
btf_compat_enum(struct btf_type * t1,struct btf_type * t2)3321 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3322 {
3323 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3324 return btf_equal_enum(t1, t2);
3325 /* ignore vlen when comparing */
3326 return t1->name_off == t2->name_off &&
3327 (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3328 t1->size == t2->size;
3329 }
3330
3331 /*
3332 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3333 * as referenced type IDs equivalence is established separately during type
3334 * graph equivalence check algorithm.
3335 */
btf_hash_struct(struct btf_type * t)3336 static long btf_hash_struct(struct btf_type *t)
3337 {
3338 const struct btf_member *member = btf_members(t);
3339 __u32 vlen = btf_vlen(t);
3340 long h = btf_hash_common(t);
3341 int i;
3342
3343 for (i = 0; i < vlen; i++) {
3344 h = hash_combine(h, member->name_off);
3345 h = hash_combine(h, member->offset);
3346 /* no hashing of referenced type ID, it can be unresolved yet */
3347 member++;
3348 }
3349 return h;
3350 }
3351
3352 /*
3353 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3354 * IDs. This check is performed during type graph equivalence check and
3355 * referenced types equivalence is checked separately.
3356 */
btf_shallow_equal_struct(struct btf_type * t1,struct btf_type * t2)3357 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3358 {
3359 const struct btf_member *m1, *m2;
3360 __u16 vlen;
3361 int i;
3362
3363 if (!btf_equal_common(t1, t2))
3364 return false;
3365
3366 vlen = btf_vlen(t1);
3367 m1 = btf_members(t1);
3368 m2 = btf_members(t2);
3369 for (i = 0; i < vlen; i++) {
3370 if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3371 return false;
3372 m1++;
3373 m2++;
3374 }
3375 return true;
3376 }
3377
3378 /*
3379 * Calculate type signature hash of ARRAY, including referenced type IDs,
3380 * under assumption that they were already resolved to canonical type IDs and
3381 * are not going to change.
3382 */
btf_hash_array(struct btf_type * t)3383 static long btf_hash_array(struct btf_type *t)
3384 {
3385 const struct btf_array *info = btf_array(t);
3386 long h = btf_hash_common(t);
3387
3388 h = hash_combine(h, info->type);
3389 h = hash_combine(h, info->index_type);
3390 h = hash_combine(h, info->nelems);
3391 return h;
3392 }
3393
3394 /*
3395 * Check exact equality of two ARRAYs, taking into account referenced
3396 * type IDs, under assumption that they were already resolved to canonical
3397 * type IDs and are not going to change.
3398 * This function is called during reference types deduplication to compare
3399 * ARRAY to potential canonical representative.
3400 */
btf_equal_array(struct btf_type * t1,struct btf_type * t2)3401 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3402 {
3403 const struct btf_array *info1, *info2;
3404
3405 if (!btf_equal_common(t1, t2))
3406 return false;
3407
3408 info1 = btf_array(t1);
3409 info2 = btf_array(t2);
3410 return info1->type == info2->type &&
3411 info1->index_type == info2->index_type &&
3412 info1->nelems == info2->nelems;
3413 }
3414
3415 /*
3416 * Check structural compatibility of two ARRAYs, ignoring referenced type
3417 * IDs. This check is performed during type graph equivalence check and
3418 * referenced types equivalence is checked separately.
3419 */
btf_compat_array(struct btf_type * t1,struct btf_type * t2)3420 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3421 {
3422 if (!btf_equal_common(t1, t2))
3423 return false;
3424
3425 return btf_array(t1)->nelems == btf_array(t2)->nelems;
3426 }
3427
3428 /*
3429 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3430 * under assumption that they were already resolved to canonical type IDs and
3431 * are not going to change.
3432 */
btf_hash_fnproto(struct btf_type * t)3433 static long btf_hash_fnproto(struct btf_type *t)
3434 {
3435 const struct btf_param *member = btf_params(t);
3436 __u16 vlen = btf_vlen(t);
3437 long h = btf_hash_common(t);
3438 int i;
3439
3440 for (i = 0; i < vlen; i++) {
3441 h = hash_combine(h, member->name_off);
3442 h = hash_combine(h, member->type);
3443 member++;
3444 }
3445 return h;
3446 }
3447
3448 /*
3449 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3450 * type IDs, under assumption that they were already resolved to canonical
3451 * type IDs and are not going to change.
3452 * This function is called during reference types deduplication to compare
3453 * FUNC_PROTO to potential canonical representative.
3454 */
btf_equal_fnproto(struct btf_type * t1,struct btf_type * t2)3455 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3456 {
3457 const struct btf_param *m1, *m2;
3458 __u16 vlen;
3459 int i;
3460
3461 if (!btf_equal_common(t1, t2))
3462 return false;
3463
3464 vlen = btf_vlen(t1);
3465 m1 = btf_params(t1);
3466 m2 = btf_params(t2);
3467 for (i = 0; i < vlen; i++) {
3468 if (m1->name_off != m2->name_off || m1->type != m2->type)
3469 return false;
3470 m1++;
3471 m2++;
3472 }
3473 return true;
3474 }
3475
3476 /*
3477 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3478 * IDs. This check is performed during type graph equivalence check and
3479 * referenced types equivalence is checked separately.
3480 */
btf_compat_fnproto(struct btf_type * t1,struct btf_type * t2)3481 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3482 {
3483 const struct btf_param *m1, *m2;
3484 __u16 vlen;
3485 int i;
3486
3487 /* skip return type ID */
3488 if (t1->name_off != t2->name_off || t1->info != t2->info)
3489 return false;
3490
3491 vlen = btf_vlen(t1);
3492 m1 = btf_params(t1);
3493 m2 = btf_params(t2);
3494 for (i = 0; i < vlen; i++) {
3495 if (m1->name_off != m2->name_off)
3496 return false;
3497 m1++;
3498 m2++;
3499 }
3500 return true;
3501 }
3502
3503 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3504 * types and initializing the rest of the state (canonical type mapping) for
3505 * the fixed base BTF part.
3506 */
btf_dedup_prep(struct btf_dedup * d)3507 static int btf_dedup_prep(struct btf_dedup *d)
3508 {
3509 struct btf_type *t;
3510 int type_id;
3511 long h;
3512
3513 if (!d->btf->base_btf)
3514 return 0;
3515
3516 for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3517 t = btf_type_by_id(d->btf, type_id);
3518
3519 /* all base BTF types are self-canonical by definition */
3520 d->map[type_id] = type_id;
3521
3522 switch (btf_kind(t)) {
3523 case BTF_KIND_VAR:
3524 case BTF_KIND_DATASEC:
3525 /* VAR and DATASEC are never hash/deduplicated */
3526 continue;
3527 case BTF_KIND_CONST:
3528 case BTF_KIND_VOLATILE:
3529 case BTF_KIND_RESTRICT:
3530 case BTF_KIND_PTR:
3531 case BTF_KIND_FWD:
3532 case BTF_KIND_TYPEDEF:
3533 case BTF_KIND_FUNC:
3534 case BTF_KIND_FLOAT:
3535 h = btf_hash_common(t);
3536 break;
3537 case BTF_KIND_INT:
3538 h = btf_hash_int(t);
3539 break;
3540 case BTF_KIND_ENUM:
3541 h = btf_hash_enum(t);
3542 break;
3543 case BTF_KIND_STRUCT:
3544 case BTF_KIND_UNION:
3545 h = btf_hash_struct(t);
3546 break;
3547 case BTF_KIND_ARRAY:
3548 h = btf_hash_array(t);
3549 break;
3550 case BTF_KIND_FUNC_PROTO:
3551 h = btf_hash_fnproto(t);
3552 break;
3553 default:
3554 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3555 return -EINVAL;
3556 }
3557 if (btf_dedup_table_add(d, h, type_id))
3558 return -ENOMEM;
3559 }
3560
3561 return 0;
3562 }
3563
3564 /*
3565 * Deduplicate primitive types, that can't reference other types, by calculating
3566 * their type signature hash and comparing them with any possible canonical
3567 * candidate. If no canonical candidate matches, type itself is marked as
3568 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3569 */
btf_dedup_prim_type(struct btf_dedup * d,__u32 type_id)3570 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3571 {
3572 struct btf_type *t = btf_type_by_id(d->btf, type_id);
3573 struct hashmap_entry *hash_entry;
3574 struct btf_type *cand;
3575 /* if we don't find equivalent type, then we are canonical */
3576 __u32 new_id = type_id;
3577 __u32 cand_id;
3578 long h;
3579
3580 switch (btf_kind(t)) {
3581 case BTF_KIND_CONST:
3582 case BTF_KIND_VOLATILE:
3583 case BTF_KIND_RESTRICT:
3584 case BTF_KIND_PTR:
3585 case BTF_KIND_TYPEDEF:
3586 case BTF_KIND_ARRAY:
3587 case BTF_KIND_STRUCT:
3588 case BTF_KIND_UNION:
3589 case BTF_KIND_FUNC:
3590 case BTF_KIND_FUNC_PROTO:
3591 case BTF_KIND_VAR:
3592 case BTF_KIND_DATASEC:
3593 return 0;
3594
3595 case BTF_KIND_INT:
3596 h = btf_hash_int(t);
3597 for_each_dedup_cand(d, hash_entry, h) {
3598 cand_id = (__u32)(long)hash_entry->value;
3599 cand = btf_type_by_id(d->btf, cand_id);
3600 if (btf_equal_int(t, cand)) {
3601 new_id = cand_id;
3602 break;
3603 }
3604 }
3605 break;
3606
3607 case BTF_KIND_ENUM:
3608 h = btf_hash_enum(t);
3609 for_each_dedup_cand(d, hash_entry, h) {
3610 cand_id = (__u32)(long)hash_entry->value;
3611 cand = btf_type_by_id(d->btf, cand_id);
3612 if (btf_equal_enum(t, cand)) {
3613 new_id = cand_id;
3614 break;
3615 }
3616 if (d->opts.dont_resolve_fwds)
3617 continue;
3618 if (btf_compat_enum(t, cand)) {
3619 if (btf_is_enum_fwd(t)) {
3620 /* resolve fwd to full enum */
3621 new_id = cand_id;
3622 break;
3623 }
3624 /* resolve canonical enum fwd to full enum */
3625 d->map[cand_id] = type_id;
3626 }
3627 }
3628 break;
3629
3630 case BTF_KIND_FWD:
3631 case BTF_KIND_FLOAT:
3632 h = btf_hash_common(t);
3633 for_each_dedup_cand(d, hash_entry, h) {
3634 cand_id = (__u32)(long)hash_entry->value;
3635 cand = btf_type_by_id(d->btf, cand_id);
3636 if (btf_equal_common(t, cand)) {
3637 new_id = cand_id;
3638 break;
3639 }
3640 }
3641 break;
3642
3643 default:
3644 return -EINVAL;
3645 }
3646
3647 d->map[type_id] = new_id;
3648 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3649 return -ENOMEM;
3650
3651 return 0;
3652 }
3653
btf_dedup_prim_types(struct btf_dedup * d)3654 static int btf_dedup_prim_types(struct btf_dedup *d)
3655 {
3656 int i, err;
3657
3658 for (i = 0; i < d->btf->nr_types; i++) {
3659 err = btf_dedup_prim_type(d, d->btf->start_id + i);
3660 if (err)
3661 return err;
3662 }
3663 return 0;
3664 }
3665
3666 /*
3667 * Check whether type is already mapped into canonical one (could be to itself).
3668 */
is_type_mapped(struct btf_dedup * d,uint32_t type_id)3669 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3670 {
3671 return d->map[type_id] <= BTF_MAX_NR_TYPES;
3672 }
3673
3674 /*
3675 * Resolve type ID into its canonical type ID, if any; otherwise return original
3676 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3677 * STRUCT/UNION link and resolve it into canonical type ID as well.
3678 */
resolve_type_id(struct btf_dedup * d,__u32 type_id)3679 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3680 {
3681 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3682 type_id = d->map[type_id];
3683 return type_id;
3684 }
3685
3686 /*
3687 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3688 * type ID.
3689 */
resolve_fwd_id(struct btf_dedup * d,uint32_t type_id)3690 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3691 {
3692 __u32 orig_type_id = type_id;
3693
3694 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3695 return type_id;
3696
3697 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3698 type_id = d->map[type_id];
3699
3700 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3701 return type_id;
3702
3703 return orig_type_id;
3704 }
3705
3706
btf_fwd_kind(struct btf_type * t)3707 static inline __u16 btf_fwd_kind(struct btf_type *t)
3708 {
3709 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3710 }
3711
3712 /* Check if given two types are identical ARRAY definitions */
btf_dedup_identical_arrays(struct btf_dedup * d,__u32 id1,__u32 id2)3713 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3714 {
3715 struct btf_type *t1, *t2;
3716
3717 t1 = btf_type_by_id(d->btf, id1);
3718 t2 = btf_type_by_id(d->btf, id2);
3719 if (!btf_is_array(t1) || !btf_is_array(t2))
3720 return 0;
3721
3722 return btf_equal_array(t1, t2);
3723 }
3724
3725 /*
3726 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3727 * call it "candidate graph" in this description for brevity) to a type graph
3728 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3729 * here, though keep in mind that not all types in canonical graph are
3730 * necessarily canonical representatives themselves, some of them might be
3731 * duplicates or its uniqueness might not have been established yet).
3732 * Returns:
3733 * - >0, if type graphs are equivalent;
3734 * - 0, if not equivalent;
3735 * - <0, on error.
3736 *
3737 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3738 * equivalence of BTF types at each step. If at any point BTF types in candidate
3739 * and canonical graphs are not compatible structurally, whole graphs are
3740 * incompatible. If types are structurally equivalent (i.e., all information
3741 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3742 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3743 * If a type references other types, then those referenced types are checked
3744 * for equivalence recursively.
3745 *
3746 * During DFS traversal, if we find that for current `canon_id` type we
3747 * already have some mapping in hypothetical map, we check for two possible
3748 * situations:
3749 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3750 * happen when type graphs have cycles. In this case we assume those two
3751 * types are equivalent.
3752 * - `canon_id` is mapped to different type. This is contradiction in our
3753 * hypothetical mapping, because same graph in canonical graph corresponds
3754 * to two different types in candidate graph, which for equivalent type
3755 * graphs shouldn't happen. This condition terminates equivalence check
3756 * with negative result.
3757 *
3758 * If type graphs traversal exhausts types to check and find no contradiction,
3759 * then type graphs are equivalent.
3760 *
3761 * When checking types for equivalence, there is one special case: FWD types.
3762 * If FWD type resolution is allowed and one of the types (either from canonical
3763 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3764 * flag) and their names match, hypothetical mapping is updated to point from
3765 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3766 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3767 *
3768 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3769 * if there are two exactly named (or anonymous) structs/unions that are
3770 * compatible structurally, one of which has FWD field, while other is concrete
3771 * STRUCT/UNION, but according to C sources they are different structs/unions
3772 * that are referencing different types with the same name. This is extremely
3773 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3774 * this logic is causing problems.
3775 *
3776 * Doing FWD resolution means that both candidate and/or canonical graphs can
3777 * consists of portions of the graph that come from multiple compilation units.
3778 * This is due to the fact that types within single compilation unit are always
3779 * deduplicated and FWDs are already resolved, if referenced struct/union
3780 * definiton is available. So, if we had unresolved FWD and found corresponding
3781 * STRUCT/UNION, they will be from different compilation units. This
3782 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3783 * type graph will likely have at least two different BTF types that describe
3784 * same type (e.g., most probably there will be two different BTF types for the
3785 * same 'int' primitive type) and could even have "overlapping" parts of type
3786 * graph that describe same subset of types.
3787 *
3788 * This in turn means that our assumption that each type in canonical graph
3789 * must correspond to exactly one type in candidate graph might not hold
3790 * anymore and will make it harder to detect contradictions using hypothetical
3791 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3792 * resolution only in canonical graph. FWDs in candidate graphs are never
3793 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3794 * that can occur:
3795 * - Both types in canonical and candidate graphs are FWDs. If they are
3796 * structurally equivalent, then they can either be both resolved to the
3797 * same STRUCT/UNION or not resolved at all. In both cases they are
3798 * equivalent and there is no need to resolve FWD on candidate side.
3799 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3800 * so nothing to resolve as well, algorithm will check equivalence anyway.
3801 * - Type in canonical graph is FWD, while type in candidate is concrete
3802 * STRUCT/UNION. In this case candidate graph comes from single compilation
3803 * unit, so there is exactly one BTF type for each unique C type. After
3804 * resolving FWD into STRUCT/UNION, there might be more than one BTF type
3805 * in canonical graph mapping to single BTF type in candidate graph, but
3806 * because hypothetical mapping maps from canonical to candidate types, it's
3807 * alright, and we still maintain the property of having single `canon_id`
3808 * mapping to single `cand_id` (there could be two different `canon_id`
3809 * mapped to the same `cand_id`, but it's not contradictory).
3810 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3811 * graph is FWD. In this case we are just going to check compatibility of
3812 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3813 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3814 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3815 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3816 * canonical graph.
3817 */
btf_dedup_is_equiv(struct btf_dedup * d,__u32 cand_id,__u32 canon_id)3818 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3819 __u32 canon_id)
3820 {
3821 struct btf_type *cand_type;
3822 struct btf_type *canon_type;
3823 __u32 hypot_type_id;
3824 __u16 cand_kind;
3825 __u16 canon_kind;
3826 int i, eq;
3827
3828 /* if both resolve to the same canonical, they must be equivalent */
3829 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3830 return 1;
3831
3832 canon_id = resolve_fwd_id(d, canon_id);
3833
3834 hypot_type_id = d->hypot_map[canon_id];
3835 if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3836 /* In some cases compiler will generate different DWARF types
3837 * for *identical* array type definitions and use them for
3838 * different fields within the *same* struct. This breaks type
3839 * equivalence check, which makes an assumption that candidate
3840 * types sub-graph has a consistent and deduped-by-compiler
3841 * types within a single CU. So work around that by explicitly
3842 * allowing identical array types here.
3843 */
3844 return hypot_type_id == cand_id ||
3845 btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3846 }
3847
3848 if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3849 return -ENOMEM;
3850
3851 cand_type = btf_type_by_id(d->btf, cand_id);
3852 canon_type = btf_type_by_id(d->btf, canon_id);
3853 cand_kind = btf_kind(cand_type);
3854 canon_kind = btf_kind(canon_type);
3855
3856 if (cand_type->name_off != canon_type->name_off)
3857 return 0;
3858
3859 /* FWD <--> STRUCT/UNION equivalence check, if enabled */
3860 if (!d->opts.dont_resolve_fwds
3861 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3862 && cand_kind != canon_kind) {
3863 __u16 real_kind;
3864 __u16 fwd_kind;
3865
3866 if (cand_kind == BTF_KIND_FWD) {
3867 real_kind = canon_kind;
3868 fwd_kind = btf_fwd_kind(cand_type);
3869 } else {
3870 real_kind = cand_kind;
3871 fwd_kind = btf_fwd_kind(canon_type);
3872 /* we'd need to resolve base FWD to STRUCT/UNION */
3873 if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3874 d->hypot_adjust_canon = true;
3875 }
3876 return fwd_kind == real_kind;
3877 }
3878
3879 if (cand_kind != canon_kind)
3880 return 0;
3881
3882 switch (cand_kind) {
3883 case BTF_KIND_INT:
3884 return btf_equal_int(cand_type, canon_type);
3885
3886 case BTF_KIND_ENUM:
3887 if (d->opts.dont_resolve_fwds)
3888 return btf_equal_enum(cand_type, canon_type);
3889 else
3890 return btf_compat_enum(cand_type, canon_type);
3891
3892 case BTF_KIND_FWD:
3893 case BTF_KIND_FLOAT:
3894 return btf_equal_common(cand_type, canon_type);
3895
3896 case BTF_KIND_CONST:
3897 case BTF_KIND_VOLATILE:
3898 case BTF_KIND_RESTRICT:
3899 case BTF_KIND_PTR:
3900 case BTF_KIND_TYPEDEF:
3901 case BTF_KIND_FUNC:
3902 if (cand_type->info != canon_type->info)
3903 return 0;
3904 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3905
3906 case BTF_KIND_ARRAY: {
3907 const struct btf_array *cand_arr, *canon_arr;
3908
3909 if (!btf_compat_array(cand_type, canon_type))
3910 return 0;
3911 cand_arr = btf_array(cand_type);
3912 canon_arr = btf_array(canon_type);
3913 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3914 if (eq <= 0)
3915 return eq;
3916 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3917 }
3918
3919 case BTF_KIND_STRUCT:
3920 case BTF_KIND_UNION: {
3921 const struct btf_member *cand_m, *canon_m;
3922 __u16 vlen;
3923
3924 if (!btf_shallow_equal_struct(cand_type, canon_type))
3925 return 0;
3926 vlen = btf_vlen(cand_type);
3927 cand_m = btf_members(cand_type);
3928 canon_m = btf_members(canon_type);
3929 for (i = 0; i < vlen; i++) {
3930 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3931 if (eq <= 0)
3932 return eq;
3933 cand_m++;
3934 canon_m++;
3935 }
3936
3937 return 1;
3938 }
3939
3940 case BTF_KIND_FUNC_PROTO: {
3941 const struct btf_param *cand_p, *canon_p;
3942 __u16 vlen;
3943
3944 if (!btf_compat_fnproto(cand_type, canon_type))
3945 return 0;
3946 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3947 if (eq <= 0)
3948 return eq;
3949 vlen = btf_vlen(cand_type);
3950 cand_p = btf_params(cand_type);
3951 canon_p = btf_params(canon_type);
3952 for (i = 0; i < vlen; i++) {
3953 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3954 if (eq <= 0)
3955 return eq;
3956 cand_p++;
3957 canon_p++;
3958 }
3959 return 1;
3960 }
3961
3962 default:
3963 return -EINVAL;
3964 }
3965 return 0;
3966 }
3967
3968 /*
3969 * Use hypothetical mapping, produced by successful type graph equivalence
3970 * check, to augment existing struct/union canonical mapping, where possible.
3971 *
3972 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3973 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3974 * it doesn't matter if FWD type was part of canonical graph or candidate one,
3975 * we are recording the mapping anyway. As opposed to carefulness required
3976 * for struct/union correspondence mapping (described below), for FWD resolution
3977 * it's not important, as by the time that FWD type (reference type) will be
3978 * deduplicated all structs/unions will be deduped already anyway.
3979 *
3980 * Recording STRUCT/UNION mapping is purely a performance optimization and is
3981 * not required for correctness. It needs to be done carefully to ensure that
3982 * struct/union from candidate's type graph is not mapped into corresponding
3983 * struct/union from canonical type graph that itself hasn't been resolved into
3984 * canonical representative. The only guarantee we have is that canonical
3985 * struct/union was determined as canonical and that won't change. But any
3986 * types referenced through that struct/union fields could have been not yet
3987 * resolved, so in case like that it's too early to establish any kind of
3988 * correspondence between structs/unions.
3989 *
3990 * No canonical correspondence is derived for primitive types (they are already
3991 * deduplicated completely already anyway) or reference types (they rely on
3992 * stability of struct/union canonical relationship for equivalence checks).
3993 */
btf_dedup_merge_hypot_map(struct btf_dedup * d)3994 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3995 {
3996 __u32 canon_type_id, targ_type_id;
3997 __u16 t_kind, c_kind;
3998 __u32 t_id, c_id;
3999 int i;
4000
4001 for (i = 0; i < d->hypot_cnt; i++) {
4002 canon_type_id = d->hypot_list[i];
4003 targ_type_id = d->hypot_map[canon_type_id];
4004 t_id = resolve_type_id(d, targ_type_id);
4005 c_id = resolve_type_id(d, canon_type_id);
4006 t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4007 c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4008 /*
4009 * Resolve FWD into STRUCT/UNION.
4010 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4011 * mapped to canonical representative (as opposed to
4012 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4013 * eventually that struct is going to be mapped and all resolved
4014 * FWDs will automatically resolve to correct canonical
4015 * representative. This will happen before ref type deduping,
4016 * which critically depends on stability of these mapping. This
4017 * stability is not a requirement for STRUCT/UNION equivalence
4018 * checks, though.
4019 */
4020
4021 /* if it's the split BTF case, we still need to point base FWD
4022 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4023 * will be resolved against base FWD. If we don't point base
4024 * canonical FWD to the resolved STRUCT/UNION, then all the
4025 * FWDs in split BTF won't be correctly resolved to a proper
4026 * STRUCT/UNION.
4027 */
4028 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4029 d->map[c_id] = t_id;
4030
4031 /* if graph equivalence determined that we'd need to adjust
4032 * base canonical types, then we need to only point base FWDs
4033 * to STRUCTs/UNIONs and do no more modifications. For all
4034 * other purposes the type graphs were not equivalent.
4035 */
4036 if (d->hypot_adjust_canon)
4037 continue;
4038
4039 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4040 d->map[t_id] = c_id;
4041
4042 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4043 c_kind != BTF_KIND_FWD &&
4044 is_type_mapped(d, c_id) &&
4045 !is_type_mapped(d, t_id)) {
4046 /*
4047 * as a perf optimization, we can map struct/union
4048 * that's part of type graph we just verified for
4049 * equivalence. We can do that for struct/union that has
4050 * canonical representative only, though.
4051 */
4052 d->map[t_id] = c_id;
4053 }
4054 }
4055 }
4056
4057 /*
4058 * Deduplicate struct/union types.
4059 *
4060 * For each struct/union type its type signature hash is calculated, taking
4061 * into account type's name, size, number, order and names of fields, but
4062 * ignoring type ID's referenced from fields, because they might not be deduped
4063 * completely until after reference types deduplication phase. This type hash
4064 * is used to iterate over all potential canonical types, sharing same hash.
4065 * For each canonical candidate we check whether type graphs that they form
4066 * (through referenced types in fields and so on) are equivalent using algorithm
4067 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4068 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4069 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4070 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4071 * potentially map other structs/unions to their canonical representatives,
4072 * if such relationship hasn't yet been established. This speeds up algorithm
4073 * by eliminating some of the duplicate work.
4074 *
4075 * If no matching canonical representative was found, struct/union is marked
4076 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4077 * for further look ups.
4078 */
btf_dedup_struct_type(struct btf_dedup * d,__u32 type_id)4079 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4080 {
4081 struct btf_type *cand_type, *t;
4082 struct hashmap_entry *hash_entry;
4083 /* if we don't find equivalent type, then we are canonical */
4084 __u32 new_id = type_id;
4085 __u16 kind;
4086 long h;
4087
4088 /* already deduped or is in process of deduping (loop detected) */
4089 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4090 return 0;
4091
4092 t = btf_type_by_id(d->btf, type_id);
4093 kind = btf_kind(t);
4094
4095 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4096 return 0;
4097
4098 h = btf_hash_struct(t);
4099 for_each_dedup_cand(d, hash_entry, h) {
4100 __u32 cand_id = (__u32)(long)hash_entry->value;
4101 int eq;
4102
4103 /*
4104 * Even though btf_dedup_is_equiv() checks for
4105 * btf_shallow_equal_struct() internally when checking two
4106 * structs (unions) for equivalence, we need to guard here
4107 * from picking matching FWD type as a dedup candidate.
4108 * This can happen due to hash collision. In such case just
4109 * relying on btf_dedup_is_equiv() would lead to potentially
4110 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4111 * FWD and compatible STRUCT/UNION are considered equivalent.
4112 */
4113 cand_type = btf_type_by_id(d->btf, cand_id);
4114 if (!btf_shallow_equal_struct(t, cand_type))
4115 continue;
4116
4117 btf_dedup_clear_hypot_map(d);
4118 eq = btf_dedup_is_equiv(d, type_id, cand_id);
4119 if (eq < 0)
4120 return eq;
4121 if (!eq)
4122 continue;
4123 btf_dedup_merge_hypot_map(d);
4124 if (d->hypot_adjust_canon) /* not really equivalent */
4125 continue;
4126 new_id = cand_id;
4127 break;
4128 }
4129
4130 d->map[type_id] = new_id;
4131 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4132 return -ENOMEM;
4133
4134 return 0;
4135 }
4136
btf_dedup_struct_types(struct btf_dedup * d)4137 static int btf_dedup_struct_types(struct btf_dedup *d)
4138 {
4139 int i, err;
4140
4141 for (i = 0; i < d->btf->nr_types; i++) {
4142 err = btf_dedup_struct_type(d, d->btf->start_id + i);
4143 if (err)
4144 return err;
4145 }
4146 return 0;
4147 }
4148
4149 /*
4150 * Deduplicate reference type.
4151 *
4152 * Once all primitive and struct/union types got deduplicated, we can easily
4153 * deduplicate all other (reference) BTF types. This is done in two steps:
4154 *
4155 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4156 * resolution can be done either immediately for primitive or struct/union types
4157 * (because they were deduped in previous two phases) or recursively for
4158 * reference types. Recursion will always terminate at either primitive or
4159 * struct/union type, at which point we can "unwind" chain of reference types
4160 * one by one. There is no danger of encountering cycles because in C type
4161 * system the only way to form type cycle is through struct/union, so any chain
4162 * of reference types, even those taking part in a type cycle, will inevitably
4163 * reach struct/union at some point.
4164 *
4165 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4166 * becomes "stable", in the sense that no further deduplication will cause
4167 * any changes to it. With that, it's now possible to calculate type's signature
4168 * hash (this time taking into account referenced type IDs) and loop over all
4169 * potential canonical representatives. If no match was found, current type
4170 * will become canonical representative of itself and will be added into
4171 * btf_dedup->dedup_table as another possible canonical representative.
4172 */
btf_dedup_ref_type(struct btf_dedup * d,__u32 type_id)4173 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4174 {
4175 struct hashmap_entry *hash_entry;
4176 __u32 new_id = type_id, cand_id;
4177 struct btf_type *t, *cand;
4178 /* if we don't find equivalent type, then we are representative type */
4179 int ref_type_id;
4180 long h;
4181
4182 if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4183 return -ELOOP;
4184 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4185 return resolve_type_id(d, type_id);
4186
4187 t = btf_type_by_id(d->btf, type_id);
4188 d->map[type_id] = BTF_IN_PROGRESS_ID;
4189
4190 switch (btf_kind(t)) {
4191 case BTF_KIND_CONST:
4192 case BTF_KIND_VOLATILE:
4193 case BTF_KIND_RESTRICT:
4194 case BTF_KIND_PTR:
4195 case BTF_KIND_TYPEDEF:
4196 case BTF_KIND_FUNC:
4197 ref_type_id = btf_dedup_ref_type(d, t->type);
4198 if (ref_type_id < 0)
4199 return ref_type_id;
4200 t->type = ref_type_id;
4201
4202 h = btf_hash_common(t);
4203 for_each_dedup_cand(d, hash_entry, h) {
4204 cand_id = (__u32)(long)hash_entry->value;
4205 cand = btf_type_by_id(d->btf, cand_id);
4206 if (btf_equal_common(t, cand)) {
4207 new_id = cand_id;
4208 break;
4209 }
4210 }
4211 break;
4212
4213 case BTF_KIND_ARRAY: {
4214 struct btf_array *info = btf_array(t);
4215
4216 ref_type_id = btf_dedup_ref_type(d, info->type);
4217 if (ref_type_id < 0)
4218 return ref_type_id;
4219 info->type = ref_type_id;
4220
4221 ref_type_id = btf_dedup_ref_type(d, info->index_type);
4222 if (ref_type_id < 0)
4223 return ref_type_id;
4224 info->index_type = ref_type_id;
4225
4226 h = btf_hash_array(t);
4227 for_each_dedup_cand(d, hash_entry, h) {
4228 cand_id = (__u32)(long)hash_entry->value;
4229 cand = btf_type_by_id(d->btf, cand_id);
4230 if (btf_equal_array(t, cand)) {
4231 new_id = cand_id;
4232 break;
4233 }
4234 }
4235 break;
4236 }
4237
4238 case BTF_KIND_FUNC_PROTO: {
4239 struct btf_param *param;
4240 __u16 vlen;
4241 int i;
4242
4243 ref_type_id = btf_dedup_ref_type(d, t->type);
4244 if (ref_type_id < 0)
4245 return ref_type_id;
4246 t->type = ref_type_id;
4247
4248 vlen = btf_vlen(t);
4249 param = btf_params(t);
4250 for (i = 0; i < vlen; i++) {
4251 ref_type_id = btf_dedup_ref_type(d, param->type);
4252 if (ref_type_id < 0)
4253 return ref_type_id;
4254 param->type = ref_type_id;
4255 param++;
4256 }
4257
4258 h = btf_hash_fnproto(t);
4259 for_each_dedup_cand(d, hash_entry, h) {
4260 cand_id = (__u32)(long)hash_entry->value;
4261 cand = btf_type_by_id(d->btf, cand_id);
4262 if (btf_equal_fnproto(t, cand)) {
4263 new_id = cand_id;
4264 break;
4265 }
4266 }
4267 break;
4268 }
4269
4270 default:
4271 return -EINVAL;
4272 }
4273
4274 d->map[type_id] = new_id;
4275 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4276 return -ENOMEM;
4277
4278 return new_id;
4279 }
4280
btf_dedup_ref_types(struct btf_dedup * d)4281 static int btf_dedup_ref_types(struct btf_dedup *d)
4282 {
4283 int i, err;
4284
4285 for (i = 0; i < d->btf->nr_types; i++) {
4286 err = btf_dedup_ref_type(d, d->btf->start_id + i);
4287 if (err < 0)
4288 return err;
4289 }
4290 /* we won't need d->dedup_table anymore */
4291 hashmap__free(d->dedup_table);
4292 d->dedup_table = NULL;
4293 return 0;
4294 }
4295
4296 /*
4297 * Compact types.
4298 *
4299 * After we established for each type its corresponding canonical representative
4300 * type, we now can eliminate types that are not canonical and leave only
4301 * canonical ones layed out sequentially in memory by copying them over
4302 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4303 * a map from original type ID to a new compacted type ID, which will be used
4304 * during next phase to "fix up" type IDs, referenced from struct/union and
4305 * reference types.
4306 */
btf_dedup_compact_types(struct btf_dedup * d)4307 static int btf_dedup_compact_types(struct btf_dedup *d)
4308 {
4309 __u32 *new_offs;
4310 __u32 next_type_id = d->btf->start_id;
4311 const struct btf_type *t;
4312 void *p;
4313 int i, id, len;
4314
4315 /* we are going to reuse hypot_map to store compaction remapping */
4316 d->hypot_map[0] = 0;
4317 /* base BTF types are not renumbered */
4318 for (id = 1; id < d->btf->start_id; id++)
4319 d->hypot_map[id] = id;
4320 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4321 d->hypot_map[id] = BTF_UNPROCESSED_ID;
4322
4323 p = d->btf->types_data;
4324
4325 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4326 if (d->map[id] != id)
4327 continue;
4328
4329 t = btf__type_by_id(d->btf, id);
4330 len = btf_type_size(t);
4331 if (len < 0)
4332 return len;
4333
4334 memmove(p, t, len);
4335 d->hypot_map[id] = next_type_id;
4336 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4337 p += len;
4338 next_type_id++;
4339 }
4340
4341 /* shrink struct btf's internal types index and update btf_header */
4342 d->btf->nr_types = next_type_id - d->btf->start_id;
4343 d->btf->type_offs_cap = d->btf->nr_types;
4344 d->btf->hdr->type_len = p - d->btf->types_data;
4345 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4346 sizeof(*new_offs));
4347 if (d->btf->type_offs_cap && !new_offs)
4348 return -ENOMEM;
4349 d->btf->type_offs = new_offs;
4350 d->btf->hdr->str_off = d->btf->hdr->type_len;
4351 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4352 return 0;
4353 }
4354
4355 /*
4356 * Figure out final (deduplicated and compacted) type ID for provided original
4357 * `type_id` by first resolving it into corresponding canonical type ID and
4358 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4359 * which is populated during compaction phase.
4360 */
btf_dedup_remap_type_id(__u32 * type_id,void * ctx)4361 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4362 {
4363 struct btf_dedup *d = ctx;
4364 __u32 resolved_type_id, new_type_id;
4365
4366 resolved_type_id = resolve_type_id(d, *type_id);
4367 new_type_id = d->hypot_map[resolved_type_id];
4368 if (new_type_id > BTF_MAX_NR_TYPES)
4369 return -EINVAL;
4370
4371 *type_id = new_type_id;
4372 return 0;
4373 }
4374
4375 /*
4376 * Remap referenced type IDs into deduped type IDs.
4377 *
4378 * After BTF types are deduplicated and compacted, their final type IDs may
4379 * differ from original ones. The map from original to a corresponding
4380 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4381 * compaction phase. During remapping phase we are rewriting all type IDs
4382 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4383 * their final deduped type IDs.
4384 */
btf_dedup_remap_types(struct btf_dedup * d)4385 static int btf_dedup_remap_types(struct btf_dedup *d)
4386 {
4387 int i, r;
4388
4389 for (i = 0; i < d->btf->nr_types; i++) {
4390 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4391
4392 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4393 if (r)
4394 return r;
4395 }
4396
4397 if (!d->btf_ext)
4398 return 0;
4399
4400 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4401 if (r)
4402 return r;
4403
4404 return 0;
4405 }
4406
4407 /*
4408 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4409 * data out of it to use for target BTF.
4410 */
btf__load_vmlinux_btf(void)4411 struct btf *btf__load_vmlinux_btf(void)
4412 {
4413 struct {
4414 const char *path_fmt;
4415 bool raw_btf;
4416 } locations[] = {
4417 /* try canonical vmlinux BTF through sysfs first */
4418 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4419 /* fall back to trying to find vmlinux ELF on disk otherwise */
4420 { "/boot/vmlinux-%1$s" },
4421 { "/lib/modules/%1$s/vmlinux-%1$s" },
4422 { "/lib/modules/%1$s/build/vmlinux" },
4423 { "/usr/lib/modules/%1$s/kernel/vmlinux" },
4424 { "/usr/lib/debug/boot/vmlinux-%1$s" },
4425 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4426 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4427 };
4428 char path[PATH_MAX + 1];
4429 struct utsname buf;
4430 struct btf *btf;
4431 int i, err;
4432
4433 uname(&buf);
4434
4435 for (i = 0; i < ARRAY_SIZE(locations); i++) {
4436 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4437
4438 if (access(path, R_OK))
4439 continue;
4440
4441 if (locations[i].raw_btf)
4442 btf = btf__parse_raw(path);
4443 else
4444 btf = btf__parse_elf(path, NULL);
4445 err = libbpf_get_error(btf);
4446 pr_debug("loading kernel BTF '%s': %d\n", path, err);
4447 if (err)
4448 continue;
4449
4450 return btf;
4451 }
4452
4453 pr_warn("failed to find valid kernel BTF\n");
4454 return libbpf_err_ptr(-ESRCH);
4455 }
4456
4457 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4458
btf__load_module_btf(const char * module_name,struct btf * vmlinux_btf)4459 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4460 {
4461 char path[80];
4462
4463 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4464 return btf__parse_split(path, vmlinux_btf);
4465 }
4466
btf_type_visit_type_ids(struct btf_type * t,type_id_visit_fn visit,void * ctx)4467 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4468 {
4469 int i, n, err;
4470
4471 switch (btf_kind(t)) {
4472 case BTF_KIND_INT:
4473 case BTF_KIND_FLOAT:
4474 case BTF_KIND_ENUM:
4475 return 0;
4476
4477 case BTF_KIND_FWD:
4478 case BTF_KIND_CONST:
4479 case BTF_KIND_VOLATILE:
4480 case BTF_KIND_RESTRICT:
4481 case BTF_KIND_PTR:
4482 case BTF_KIND_TYPEDEF:
4483 case BTF_KIND_FUNC:
4484 case BTF_KIND_VAR:
4485 return visit(&t->type, ctx);
4486
4487 case BTF_KIND_ARRAY: {
4488 struct btf_array *a = btf_array(t);
4489
4490 err = visit(&a->type, ctx);
4491 err = err ?: visit(&a->index_type, ctx);
4492 return err;
4493 }
4494
4495 case BTF_KIND_STRUCT:
4496 case BTF_KIND_UNION: {
4497 struct btf_member *m = btf_members(t);
4498
4499 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4500 err = visit(&m->type, ctx);
4501 if (err)
4502 return err;
4503 }
4504 return 0;
4505 }
4506
4507 case BTF_KIND_FUNC_PROTO: {
4508 struct btf_param *m = btf_params(t);
4509
4510 err = visit(&t->type, ctx);
4511 if (err)
4512 return err;
4513 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4514 err = visit(&m->type, ctx);
4515 if (err)
4516 return err;
4517 }
4518 return 0;
4519 }
4520
4521 case BTF_KIND_DATASEC: {
4522 struct btf_var_secinfo *m = btf_var_secinfos(t);
4523
4524 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4525 err = visit(&m->type, ctx);
4526 if (err)
4527 return err;
4528 }
4529 return 0;
4530 }
4531
4532 default:
4533 return -EINVAL;
4534 }
4535 }
4536
btf_type_visit_str_offs(struct btf_type * t,str_off_visit_fn visit,void * ctx)4537 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4538 {
4539 int i, n, err;
4540
4541 err = visit(&t->name_off, ctx);
4542 if (err)
4543 return err;
4544
4545 switch (btf_kind(t)) {
4546 case BTF_KIND_STRUCT:
4547 case BTF_KIND_UNION: {
4548 struct btf_member *m = btf_members(t);
4549
4550 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4551 err = visit(&m->name_off, ctx);
4552 if (err)
4553 return err;
4554 }
4555 break;
4556 }
4557 case BTF_KIND_ENUM: {
4558 struct btf_enum *m = btf_enum(t);
4559
4560 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4561 err = visit(&m->name_off, ctx);
4562 if (err)
4563 return err;
4564 }
4565 break;
4566 }
4567 case BTF_KIND_FUNC_PROTO: {
4568 struct btf_param *m = btf_params(t);
4569
4570 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4571 err = visit(&m->name_off, ctx);
4572 if (err)
4573 return err;
4574 }
4575 break;
4576 }
4577 default:
4578 break;
4579 }
4580
4581 return 0;
4582 }
4583
btf_ext_visit_type_ids(struct btf_ext * btf_ext,type_id_visit_fn visit,void * ctx)4584 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4585 {
4586 const struct btf_ext_info *seg;
4587 struct btf_ext_info_sec *sec;
4588 int i, err;
4589
4590 seg = &btf_ext->func_info;
4591 for_each_btf_ext_sec(seg, sec) {
4592 struct bpf_func_info_min *rec;
4593
4594 for_each_btf_ext_rec(seg, sec, i, rec) {
4595 err = visit(&rec->type_id, ctx);
4596 if (err < 0)
4597 return err;
4598 }
4599 }
4600
4601 seg = &btf_ext->core_relo_info;
4602 for_each_btf_ext_sec(seg, sec) {
4603 struct bpf_core_relo *rec;
4604
4605 for_each_btf_ext_rec(seg, sec, i, rec) {
4606 err = visit(&rec->type_id, ctx);
4607 if (err < 0)
4608 return err;
4609 }
4610 }
4611
4612 return 0;
4613 }
4614
btf_ext_visit_str_offs(struct btf_ext * btf_ext,str_off_visit_fn visit,void * ctx)4615 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4616 {
4617 const struct btf_ext_info *seg;
4618 struct btf_ext_info_sec *sec;
4619 int i, err;
4620
4621 seg = &btf_ext->func_info;
4622 for_each_btf_ext_sec(seg, sec) {
4623 err = visit(&sec->sec_name_off, ctx);
4624 if (err)
4625 return err;
4626 }
4627
4628 seg = &btf_ext->line_info;
4629 for_each_btf_ext_sec(seg, sec) {
4630 struct bpf_line_info_min *rec;
4631
4632 err = visit(&sec->sec_name_off, ctx);
4633 if (err)
4634 return err;
4635
4636 for_each_btf_ext_rec(seg, sec, i, rec) {
4637 err = visit(&rec->file_name_off, ctx);
4638 if (err)
4639 return err;
4640 err = visit(&rec->line_off, ctx);
4641 if (err)
4642 return err;
4643 }
4644 }
4645
4646 seg = &btf_ext->core_relo_info;
4647 for_each_btf_ext_sec(seg, sec) {
4648 struct bpf_core_relo *rec;
4649
4650 err = visit(&sec->sec_name_off, ctx);
4651 if (err)
4652 return err;
4653
4654 for_each_btf_ext_rec(seg, sec, i, rec) {
4655 err = visit(&rec->access_str_off, ctx);
4656 if (err)
4657 return err;
4658 }
4659 }
4660
4661 return 0;
4662 }
4663