1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright © 2010-2015 Broadcom Corporation
4 */
5
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/err.h>
13 #include <linux/completion.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/ioport.h>
18 #include <linux/bug.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/mm.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/mtd/rawnand.h>
24 #include <linux/mtd/partitions.h>
25 #include <linux/of.h>
26 #include <linux/of_platform.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/log2.h>
30
31 #include "brcmnand.h"
32
33 /*
34 * This flag controls if WP stays on between erase/write commands to mitigate
35 * flash corruption due to power glitches. Values:
36 * 0: NAND_WP is not used or not available
37 * 1: NAND_WP is set by default, cleared for erase/write operations
38 * 2: NAND_WP is always cleared
39 */
40 static int wp_on = 1;
41 module_param(wp_on, int, 0444);
42
43 /***********************************************************************
44 * Definitions
45 ***********************************************************************/
46
47 #define DRV_NAME "brcmnand"
48
49 #define CMD_NULL 0x00
50 #define CMD_PAGE_READ 0x01
51 #define CMD_SPARE_AREA_READ 0x02
52 #define CMD_STATUS_READ 0x03
53 #define CMD_PROGRAM_PAGE 0x04
54 #define CMD_PROGRAM_SPARE_AREA 0x05
55 #define CMD_COPY_BACK 0x06
56 #define CMD_DEVICE_ID_READ 0x07
57 #define CMD_BLOCK_ERASE 0x08
58 #define CMD_FLASH_RESET 0x09
59 #define CMD_BLOCKS_LOCK 0x0a
60 #define CMD_BLOCKS_LOCK_DOWN 0x0b
61 #define CMD_BLOCKS_UNLOCK 0x0c
62 #define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
63 #define CMD_PARAMETER_READ 0x0e
64 #define CMD_PARAMETER_CHANGE_COL 0x0f
65 #define CMD_LOW_LEVEL_OP 0x10
66
67 struct brcm_nand_dma_desc {
68 u32 next_desc;
69 u32 next_desc_ext;
70 u32 cmd_irq;
71 u32 dram_addr;
72 u32 dram_addr_ext;
73 u32 tfr_len;
74 u32 total_len;
75 u32 flash_addr;
76 u32 flash_addr_ext;
77 u32 cs;
78 u32 pad2[5];
79 u32 status_valid;
80 } __packed;
81
82 /* Bitfields for brcm_nand_dma_desc::status_valid */
83 #define FLASH_DMA_ECC_ERROR (1 << 8)
84 #define FLASH_DMA_CORR_ERROR (1 << 9)
85
86 /* Bitfields for DMA_MODE */
87 #define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */
88 #define FLASH_DMA_MODE_MODE BIT(0) /* link list */
89 #define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \
90 FLASH_DMA_MODE_MODE)
91
92 /* 512B flash cache in the NAND controller HW */
93 #define FC_SHIFT 9U
94 #define FC_BYTES 512U
95 #define FC_WORDS (FC_BYTES >> 2)
96
97 #define BRCMNAND_MIN_PAGESIZE 512
98 #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
99 #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
100
101 #define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
102 #define NAND_POLL_STATUS_TIMEOUT_MS 100
103
104 #define EDU_CMD_WRITE 0x00
105 #define EDU_CMD_READ 0x01
106 #define EDU_STATUS_ACTIVE BIT(0)
107 #define EDU_ERR_STATUS_ERRACK BIT(0)
108 #define EDU_DONE_MASK GENMASK(1, 0)
109
110 #define EDU_CONFIG_MODE_NAND BIT(0)
111 #define EDU_CONFIG_SWAP_BYTE BIT(1)
112 #ifdef CONFIG_CPU_BIG_ENDIAN
113 #define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE
114 #else
115 #define EDU_CONFIG_SWAP_CFG 0
116 #endif
117
118 /* edu registers */
119 enum edu_reg {
120 EDU_CONFIG = 0,
121 EDU_DRAM_ADDR,
122 EDU_EXT_ADDR,
123 EDU_LENGTH,
124 EDU_CMD,
125 EDU_STOP,
126 EDU_STATUS,
127 EDU_DONE,
128 EDU_ERR_STATUS,
129 };
130
131 static const u16 edu_regs[] = {
132 [EDU_CONFIG] = 0x00,
133 [EDU_DRAM_ADDR] = 0x04,
134 [EDU_EXT_ADDR] = 0x08,
135 [EDU_LENGTH] = 0x0c,
136 [EDU_CMD] = 0x10,
137 [EDU_STOP] = 0x14,
138 [EDU_STATUS] = 0x18,
139 [EDU_DONE] = 0x1c,
140 [EDU_ERR_STATUS] = 0x20,
141 };
142
143 /* flash_dma registers */
144 enum flash_dma_reg {
145 FLASH_DMA_REVISION = 0,
146 FLASH_DMA_FIRST_DESC,
147 FLASH_DMA_FIRST_DESC_EXT,
148 FLASH_DMA_CTRL,
149 FLASH_DMA_MODE,
150 FLASH_DMA_STATUS,
151 FLASH_DMA_INTERRUPT_DESC,
152 FLASH_DMA_INTERRUPT_DESC_EXT,
153 FLASH_DMA_ERROR_STATUS,
154 FLASH_DMA_CURRENT_DESC,
155 FLASH_DMA_CURRENT_DESC_EXT,
156 };
157
158 /* flash_dma registers v0*/
159 static const u16 flash_dma_regs_v0[] = {
160 [FLASH_DMA_REVISION] = 0x00,
161 [FLASH_DMA_FIRST_DESC] = 0x04,
162 [FLASH_DMA_CTRL] = 0x08,
163 [FLASH_DMA_MODE] = 0x0c,
164 [FLASH_DMA_STATUS] = 0x10,
165 [FLASH_DMA_INTERRUPT_DESC] = 0x14,
166 [FLASH_DMA_ERROR_STATUS] = 0x18,
167 [FLASH_DMA_CURRENT_DESC] = 0x1c,
168 };
169
170 /* flash_dma registers v1*/
171 static const u16 flash_dma_regs_v1[] = {
172 [FLASH_DMA_REVISION] = 0x00,
173 [FLASH_DMA_FIRST_DESC] = 0x04,
174 [FLASH_DMA_FIRST_DESC_EXT] = 0x08,
175 [FLASH_DMA_CTRL] = 0x0c,
176 [FLASH_DMA_MODE] = 0x10,
177 [FLASH_DMA_STATUS] = 0x14,
178 [FLASH_DMA_INTERRUPT_DESC] = 0x18,
179 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c,
180 [FLASH_DMA_ERROR_STATUS] = 0x20,
181 [FLASH_DMA_CURRENT_DESC] = 0x24,
182 [FLASH_DMA_CURRENT_DESC_EXT] = 0x28,
183 };
184
185 /* flash_dma registers v4 */
186 static const u16 flash_dma_regs_v4[] = {
187 [FLASH_DMA_REVISION] = 0x00,
188 [FLASH_DMA_FIRST_DESC] = 0x08,
189 [FLASH_DMA_FIRST_DESC_EXT] = 0x0c,
190 [FLASH_DMA_CTRL] = 0x10,
191 [FLASH_DMA_MODE] = 0x14,
192 [FLASH_DMA_STATUS] = 0x18,
193 [FLASH_DMA_INTERRUPT_DESC] = 0x20,
194 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24,
195 [FLASH_DMA_ERROR_STATUS] = 0x28,
196 [FLASH_DMA_CURRENT_DESC] = 0x30,
197 [FLASH_DMA_CURRENT_DESC_EXT] = 0x34,
198 };
199
200 /* Controller feature flags */
201 enum {
202 BRCMNAND_HAS_1K_SECTORS = BIT(0),
203 BRCMNAND_HAS_PREFETCH = BIT(1),
204 BRCMNAND_HAS_CACHE_MODE = BIT(2),
205 BRCMNAND_HAS_WP = BIT(3),
206 };
207
208 struct brcmnand_host;
209
210 struct brcmnand_controller {
211 struct device *dev;
212 struct nand_controller controller;
213 void __iomem *nand_base;
214 void __iomem *nand_fc; /* flash cache */
215 void __iomem *flash_dma_base;
216 unsigned int irq;
217 unsigned int dma_irq;
218 int nand_version;
219
220 /* Some SoCs provide custom interrupt status register(s) */
221 struct brcmnand_soc *soc;
222
223 /* Some SoCs have a gateable clock for the controller */
224 struct clk *clk;
225
226 int cmd_pending;
227 bool dma_pending;
228 bool edu_pending;
229 struct completion done;
230 struct completion dma_done;
231 struct completion edu_done;
232
233 /* List of NAND hosts (one for each chip-select) */
234 struct list_head host_list;
235
236 /* EDU info, per-transaction */
237 const u16 *edu_offsets;
238 void __iomem *edu_base;
239 int edu_irq;
240 int edu_count;
241 u64 edu_dram_addr;
242 u32 edu_ext_addr;
243 u32 edu_cmd;
244 u32 edu_config;
245 int sas; /* spare area size, per flash cache */
246 int sector_size_1k;
247 u8 *oob;
248
249 /* flash_dma reg */
250 const u16 *flash_dma_offsets;
251 struct brcm_nand_dma_desc *dma_desc;
252 dma_addr_t dma_pa;
253
254 int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
255 u8 *oob, u32 len, u8 dma_cmd);
256
257 /* in-memory cache of the FLASH_CACHE, used only for some commands */
258 u8 flash_cache[FC_BYTES];
259
260 /* Controller revision details */
261 const u16 *reg_offsets;
262 unsigned int reg_spacing; /* between CS1, CS2, ... regs */
263 const u8 *cs_offsets; /* within each chip-select */
264 const u8 *cs0_offsets; /* within CS0, if different */
265 unsigned int max_block_size;
266 const unsigned int *block_sizes;
267 unsigned int max_page_size;
268 const unsigned int *page_sizes;
269 unsigned int page_size_shift;
270 unsigned int max_oob;
271 u32 features;
272
273 /* for low-power standby/resume only */
274 u32 nand_cs_nand_select;
275 u32 nand_cs_nand_xor;
276 u32 corr_stat_threshold;
277 u32 flash_dma_mode;
278 u32 flash_edu_mode;
279 bool pio_poll_mode;
280 };
281
282 struct brcmnand_cfg {
283 u64 device_size;
284 unsigned int block_size;
285 unsigned int page_size;
286 unsigned int spare_area_size;
287 unsigned int device_width;
288 unsigned int col_adr_bytes;
289 unsigned int blk_adr_bytes;
290 unsigned int ful_adr_bytes;
291 unsigned int sector_size_1k;
292 unsigned int ecc_level;
293 /* use for low-power standby/resume only */
294 u32 acc_control;
295 u32 config;
296 u32 config_ext;
297 u32 timing_1;
298 u32 timing_2;
299 };
300
301 struct brcmnand_host {
302 struct list_head node;
303
304 struct nand_chip chip;
305 struct platform_device *pdev;
306 int cs;
307
308 unsigned int last_cmd;
309 unsigned int last_byte;
310 u64 last_addr;
311 struct brcmnand_cfg hwcfg;
312 struct brcmnand_controller *ctrl;
313 };
314
315 enum brcmnand_reg {
316 BRCMNAND_CMD_START = 0,
317 BRCMNAND_CMD_EXT_ADDRESS,
318 BRCMNAND_CMD_ADDRESS,
319 BRCMNAND_INTFC_STATUS,
320 BRCMNAND_CS_SELECT,
321 BRCMNAND_CS_XOR,
322 BRCMNAND_LL_OP,
323 BRCMNAND_CS0_BASE,
324 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
325 BRCMNAND_CORR_THRESHOLD,
326 BRCMNAND_CORR_THRESHOLD_EXT,
327 BRCMNAND_UNCORR_COUNT,
328 BRCMNAND_CORR_COUNT,
329 BRCMNAND_CORR_EXT_ADDR,
330 BRCMNAND_CORR_ADDR,
331 BRCMNAND_UNCORR_EXT_ADDR,
332 BRCMNAND_UNCORR_ADDR,
333 BRCMNAND_SEMAPHORE,
334 BRCMNAND_ID,
335 BRCMNAND_ID_EXT,
336 BRCMNAND_LL_RDATA,
337 BRCMNAND_OOB_READ_BASE,
338 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
339 BRCMNAND_OOB_WRITE_BASE,
340 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
341 BRCMNAND_FC_BASE,
342 };
343
344 /* BRCMNAND v2.1-v2.2 */
345 static const u16 brcmnand_regs_v21[] = {
346 [BRCMNAND_CMD_START] = 0x04,
347 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
348 [BRCMNAND_CMD_ADDRESS] = 0x0c,
349 [BRCMNAND_INTFC_STATUS] = 0x5c,
350 [BRCMNAND_CS_SELECT] = 0x14,
351 [BRCMNAND_CS_XOR] = 0x18,
352 [BRCMNAND_LL_OP] = 0,
353 [BRCMNAND_CS0_BASE] = 0x40,
354 [BRCMNAND_CS1_BASE] = 0,
355 [BRCMNAND_CORR_THRESHOLD] = 0,
356 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
357 [BRCMNAND_UNCORR_COUNT] = 0,
358 [BRCMNAND_CORR_COUNT] = 0,
359 [BRCMNAND_CORR_EXT_ADDR] = 0x60,
360 [BRCMNAND_CORR_ADDR] = 0x64,
361 [BRCMNAND_UNCORR_EXT_ADDR] = 0x68,
362 [BRCMNAND_UNCORR_ADDR] = 0x6c,
363 [BRCMNAND_SEMAPHORE] = 0x50,
364 [BRCMNAND_ID] = 0x54,
365 [BRCMNAND_ID_EXT] = 0,
366 [BRCMNAND_LL_RDATA] = 0,
367 [BRCMNAND_OOB_READ_BASE] = 0x20,
368 [BRCMNAND_OOB_READ_10_BASE] = 0,
369 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
370 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
371 [BRCMNAND_FC_BASE] = 0x200,
372 };
373
374 /* BRCMNAND v3.3-v4.0 */
375 static const u16 brcmnand_regs_v33[] = {
376 [BRCMNAND_CMD_START] = 0x04,
377 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
378 [BRCMNAND_CMD_ADDRESS] = 0x0c,
379 [BRCMNAND_INTFC_STATUS] = 0x6c,
380 [BRCMNAND_CS_SELECT] = 0x14,
381 [BRCMNAND_CS_XOR] = 0x18,
382 [BRCMNAND_LL_OP] = 0x178,
383 [BRCMNAND_CS0_BASE] = 0x40,
384 [BRCMNAND_CS1_BASE] = 0xd0,
385 [BRCMNAND_CORR_THRESHOLD] = 0x84,
386 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
387 [BRCMNAND_UNCORR_COUNT] = 0,
388 [BRCMNAND_CORR_COUNT] = 0,
389 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
390 [BRCMNAND_CORR_ADDR] = 0x74,
391 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
392 [BRCMNAND_UNCORR_ADDR] = 0x7c,
393 [BRCMNAND_SEMAPHORE] = 0x58,
394 [BRCMNAND_ID] = 0x60,
395 [BRCMNAND_ID_EXT] = 0x64,
396 [BRCMNAND_LL_RDATA] = 0x17c,
397 [BRCMNAND_OOB_READ_BASE] = 0x20,
398 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
399 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
400 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
401 [BRCMNAND_FC_BASE] = 0x200,
402 };
403
404 /* BRCMNAND v5.0 */
405 static const u16 brcmnand_regs_v50[] = {
406 [BRCMNAND_CMD_START] = 0x04,
407 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
408 [BRCMNAND_CMD_ADDRESS] = 0x0c,
409 [BRCMNAND_INTFC_STATUS] = 0x6c,
410 [BRCMNAND_CS_SELECT] = 0x14,
411 [BRCMNAND_CS_XOR] = 0x18,
412 [BRCMNAND_LL_OP] = 0x178,
413 [BRCMNAND_CS0_BASE] = 0x40,
414 [BRCMNAND_CS1_BASE] = 0xd0,
415 [BRCMNAND_CORR_THRESHOLD] = 0x84,
416 [BRCMNAND_CORR_THRESHOLD_EXT] = 0,
417 [BRCMNAND_UNCORR_COUNT] = 0,
418 [BRCMNAND_CORR_COUNT] = 0,
419 [BRCMNAND_CORR_EXT_ADDR] = 0x70,
420 [BRCMNAND_CORR_ADDR] = 0x74,
421 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
422 [BRCMNAND_UNCORR_ADDR] = 0x7c,
423 [BRCMNAND_SEMAPHORE] = 0x58,
424 [BRCMNAND_ID] = 0x60,
425 [BRCMNAND_ID_EXT] = 0x64,
426 [BRCMNAND_LL_RDATA] = 0x17c,
427 [BRCMNAND_OOB_READ_BASE] = 0x20,
428 [BRCMNAND_OOB_READ_10_BASE] = 0x130,
429 [BRCMNAND_OOB_WRITE_BASE] = 0x30,
430 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
431 [BRCMNAND_FC_BASE] = 0x200,
432 };
433
434 /* BRCMNAND v6.0 - v7.1 */
435 static const u16 brcmnand_regs_v60[] = {
436 [BRCMNAND_CMD_START] = 0x04,
437 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
438 [BRCMNAND_CMD_ADDRESS] = 0x0c,
439 [BRCMNAND_INTFC_STATUS] = 0x14,
440 [BRCMNAND_CS_SELECT] = 0x18,
441 [BRCMNAND_CS_XOR] = 0x1c,
442 [BRCMNAND_LL_OP] = 0x20,
443 [BRCMNAND_CS0_BASE] = 0x50,
444 [BRCMNAND_CS1_BASE] = 0,
445 [BRCMNAND_CORR_THRESHOLD] = 0xc0,
446 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
447 [BRCMNAND_UNCORR_COUNT] = 0xfc,
448 [BRCMNAND_CORR_COUNT] = 0x100,
449 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
450 [BRCMNAND_CORR_ADDR] = 0x110,
451 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
452 [BRCMNAND_UNCORR_ADDR] = 0x118,
453 [BRCMNAND_SEMAPHORE] = 0x150,
454 [BRCMNAND_ID] = 0x194,
455 [BRCMNAND_ID_EXT] = 0x198,
456 [BRCMNAND_LL_RDATA] = 0x19c,
457 [BRCMNAND_OOB_READ_BASE] = 0x200,
458 [BRCMNAND_OOB_READ_10_BASE] = 0,
459 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
460 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
461 [BRCMNAND_FC_BASE] = 0x400,
462 };
463
464 /* BRCMNAND v7.1 */
465 static const u16 brcmnand_regs_v71[] = {
466 [BRCMNAND_CMD_START] = 0x04,
467 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
468 [BRCMNAND_CMD_ADDRESS] = 0x0c,
469 [BRCMNAND_INTFC_STATUS] = 0x14,
470 [BRCMNAND_CS_SELECT] = 0x18,
471 [BRCMNAND_CS_XOR] = 0x1c,
472 [BRCMNAND_LL_OP] = 0x20,
473 [BRCMNAND_CS0_BASE] = 0x50,
474 [BRCMNAND_CS1_BASE] = 0,
475 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
476 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
477 [BRCMNAND_UNCORR_COUNT] = 0xfc,
478 [BRCMNAND_CORR_COUNT] = 0x100,
479 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
480 [BRCMNAND_CORR_ADDR] = 0x110,
481 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
482 [BRCMNAND_UNCORR_ADDR] = 0x118,
483 [BRCMNAND_SEMAPHORE] = 0x150,
484 [BRCMNAND_ID] = 0x194,
485 [BRCMNAND_ID_EXT] = 0x198,
486 [BRCMNAND_LL_RDATA] = 0x19c,
487 [BRCMNAND_OOB_READ_BASE] = 0x200,
488 [BRCMNAND_OOB_READ_10_BASE] = 0,
489 [BRCMNAND_OOB_WRITE_BASE] = 0x280,
490 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
491 [BRCMNAND_FC_BASE] = 0x400,
492 };
493
494 /* BRCMNAND v7.2 */
495 static const u16 brcmnand_regs_v72[] = {
496 [BRCMNAND_CMD_START] = 0x04,
497 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
498 [BRCMNAND_CMD_ADDRESS] = 0x0c,
499 [BRCMNAND_INTFC_STATUS] = 0x14,
500 [BRCMNAND_CS_SELECT] = 0x18,
501 [BRCMNAND_CS_XOR] = 0x1c,
502 [BRCMNAND_LL_OP] = 0x20,
503 [BRCMNAND_CS0_BASE] = 0x50,
504 [BRCMNAND_CS1_BASE] = 0,
505 [BRCMNAND_CORR_THRESHOLD] = 0xdc,
506 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
507 [BRCMNAND_UNCORR_COUNT] = 0xfc,
508 [BRCMNAND_CORR_COUNT] = 0x100,
509 [BRCMNAND_CORR_EXT_ADDR] = 0x10c,
510 [BRCMNAND_CORR_ADDR] = 0x110,
511 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
512 [BRCMNAND_UNCORR_ADDR] = 0x118,
513 [BRCMNAND_SEMAPHORE] = 0x150,
514 [BRCMNAND_ID] = 0x194,
515 [BRCMNAND_ID_EXT] = 0x198,
516 [BRCMNAND_LL_RDATA] = 0x19c,
517 [BRCMNAND_OOB_READ_BASE] = 0x200,
518 [BRCMNAND_OOB_READ_10_BASE] = 0,
519 [BRCMNAND_OOB_WRITE_BASE] = 0x400,
520 [BRCMNAND_OOB_WRITE_10_BASE] = 0,
521 [BRCMNAND_FC_BASE] = 0x600,
522 };
523
524 enum brcmnand_cs_reg {
525 BRCMNAND_CS_CFG_EXT = 0,
526 BRCMNAND_CS_CFG,
527 BRCMNAND_CS_ACC_CONTROL,
528 BRCMNAND_CS_TIMING1,
529 BRCMNAND_CS_TIMING2,
530 };
531
532 /* Per chip-select offsets for v7.1 */
533 static const u8 brcmnand_cs_offsets_v71[] = {
534 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
535 [BRCMNAND_CS_CFG_EXT] = 0x04,
536 [BRCMNAND_CS_CFG] = 0x08,
537 [BRCMNAND_CS_TIMING1] = 0x0c,
538 [BRCMNAND_CS_TIMING2] = 0x10,
539 };
540
541 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
542 static const u8 brcmnand_cs_offsets[] = {
543 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
544 [BRCMNAND_CS_CFG_EXT] = 0x04,
545 [BRCMNAND_CS_CFG] = 0x04,
546 [BRCMNAND_CS_TIMING1] = 0x08,
547 [BRCMNAND_CS_TIMING2] = 0x0c,
548 };
549
550 /* Per chip-select offset for <= v5.0 on CS0 only */
551 static const u8 brcmnand_cs_offsets_cs0[] = {
552 [BRCMNAND_CS_ACC_CONTROL] = 0x00,
553 [BRCMNAND_CS_CFG_EXT] = 0x08,
554 [BRCMNAND_CS_CFG] = 0x08,
555 [BRCMNAND_CS_TIMING1] = 0x10,
556 [BRCMNAND_CS_TIMING2] = 0x14,
557 };
558
559 /*
560 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
561 * one config register, but once the bitfields overflowed, newer controllers
562 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
563 */
564 enum {
565 CFG_BLK_ADR_BYTES_SHIFT = 8,
566 CFG_COL_ADR_BYTES_SHIFT = 12,
567 CFG_FUL_ADR_BYTES_SHIFT = 16,
568 CFG_BUS_WIDTH_SHIFT = 23,
569 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
570 CFG_DEVICE_SIZE_SHIFT = 24,
571
572 /* Only for v2.1 */
573 CFG_PAGE_SIZE_SHIFT_v2_1 = 30,
574
575 /* Only for pre-v7.1 (with no CFG_EXT register) */
576 CFG_PAGE_SIZE_SHIFT = 20,
577 CFG_BLK_SIZE_SHIFT = 28,
578
579 /* Only for v7.1+ (with CFG_EXT register) */
580 CFG_EXT_PAGE_SIZE_SHIFT = 0,
581 CFG_EXT_BLK_SIZE_SHIFT = 4,
582 };
583
584 /* BRCMNAND_INTFC_STATUS */
585 enum {
586 INTFC_FLASH_STATUS = GENMASK(7, 0),
587
588 INTFC_ERASED = BIT(27),
589 INTFC_OOB_VALID = BIT(28),
590 INTFC_CACHE_VALID = BIT(29),
591 INTFC_FLASH_READY = BIT(30),
592 INTFC_CTLR_READY = BIT(31),
593 };
594
nand_readreg(struct brcmnand_controller * ctrl,u32 offs)595 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
596 {
597 return brcmnand_readl(ctrl->nand_base + offs);
598 }
599
nand_writereg(struct brcmnand_controller * ctrl,u32 offs,u32 val)600 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
601 u32 val)
602 {
603 brcmnand_writel(val, ctrl->nand_base + offs);
604 }
605
brcmnand_revision_init(struct brcmnand_controller * ctrl)606 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
607 {
608 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
609 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
610 static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
611 static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
612 static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
613 static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
614 static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
615
616 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
617
618 /* Only support v2.1+ */
619 if (ctrl->nand_version < 0x0201) {
620 dev_err(ctrl->dev, "version %#x not supported\n",
621 ctrl->nand_version);
622 return -ENODEV;
623 }
624
625 /* Register offsets */
626 if (ctrl->nand_version >= 0x0702)
627 ctrl->reg_offsets = brcmnand_regs_v72;
628 else if (ctrl->nand_version == 0x0701)
629 ctrl->reg_offsets = brcmnand_regs_v71;
630 else if (ctrl->nand_version >= 0x0600)
631 ctrl->reg_offsets = brcmnand_regs_v60;
632 else if (ctrl->nand_version >= 0x0500)
633 ctrl->reg_offsets = brcmnand_regs_v50;
634 else if (ctrl->nand_version >= 0x0303)
635 ctrl->reg_offsets = brcmnand_regs_v33;
636 else if (ctrl->nand_version >= 0x0201)
637 ctrl->reg_offsets = brcmnand_regs_v21;
638
639 /* Chip-select stride */
640 if (ctrl->nand_version >= 0x0701)
641 ctrl->reg_spacing = 0x14;
642 else
643 ctrl->reg_spacing = 0x10;
644
645 /* Per chip-select registers */
646 if (ctrl->nand_version >= 0x0701) {
647 ctrl->cs_offsets = brcmnand_cs_offsets_v71;
648 } else {
649 ctrl->cs_offsets = brcmnand_cs_offsets;
650
651 /* v3.3-5.0 have a different CS0 offset layout */
652 if (ctrl->nand_version >= 0x0303 &&
653 ctrl->nand_version <= 0x0500)
654 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
655 }
656
657 /* Page / block sizes */
658 if (ctrl->nand_version >= 0x0701) {
659 /* >= v7.1 use nice power-of-2 values! */
660 ctrl->max_page_size = 16 * 1024;
661 ctrl->max_block_size = 2 * 1024 * 1024;
662 } else {
663 if (ctrl->nand_version >= 0x0304)
664 ctrl->page_sizes = page_sizes_v3_4;
665 else if (ctrl->nand_version >= 0x0202)
666 ctrl->page_sizes = page_sizes_v2_2;
667 else
668 ctrl->page_sizes = page_sizes_v2_1;
669
670 if (ctrl->nand_version >= 0x0202)
671 ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
672 else
673 ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
674
675 if (ctrl->nand_version >= 0x0600)
676 ctrl->block_sizes = block_sizes_v6;
677 else if (ctrl->nand_version >= 0x0400)
678 ctrl->block_sizes = block_sizes_v4;
679 else if (ctrl->nand_version >= 0x0202)
680 ctrl->block_sizes = block_sizes_v2_2;
681 else
682 ctrl->block_sizes = block_sizes_v2_1;
683
684 if (ctrl->nand_version < 0x0400) {
685 if (ctrl->nand_version < 0x0202)
686 ctrl->max_page_size = 2048;
687 else
688 ctrl->max_page_size = 4096;
689 ctrl->max_block_size = 512 * 1024;
690 }
691 }
692
693 /* Maximum spare area sector size (per 512B) */
694 if (ctrl->nand_version == 0x0702)
695 ctrl->max_oob = 128;
696 else if (ctrl->nand_version >= 0x0600)
697 ctrl->max_oob = 64;
698 else if (ctrl->nand_version >= 0x0500)
699 ctrl->max_oob = 32;
700 else
701 ctrl->max_oob = 16;
702
703 /* v6.0 and newer (except v6.1) have prefetch support */
704 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
705 ctrl->features |= BRCMNAND_HAS_PREFETCH;
706
707 /*
708 * v6.x has cache mode, but it's implemented differently. Ignore it for
709 * now.
710 */
711 if (ctrl->nand_version >= 0x0700)
712 ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
713
714 if (ctrl->nand_version >= 0x0500)
715 ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
716
717 if (ctrl->nand_version >= 0x0700)
718 ctrl->features |= BRCMNAND_HAS_WP;
719 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
720 ctrl->features |= BRCMNAND_HAS_WP;
721
722 return 0;
723 }
724
brcmnand_flash_dma_revision_init(struct brcmnand_controller * ctrl)725 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
726 {
727 /* flash_dma register offsets */
728 if (ctrl->nand_version >= 0x0703)
729 ctrl->flash_dma_offsets = flash_dma_regs_v4;
730 else if (ctrl->nand_version == 0x0602)
731 ctrl->flash_dma_offsets = flash_dma_regs_v0;
732 else
733 ctrl->flash_dma_offsets = flash_dma_regs_v1;
734 }
735
brcmnand_read_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg)736 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
737 enum brcmnand_reg reg)
738 {
739 u16 offs = ctrl->reg_offsets[reg];
740
741 if (offs)
742 return nand_readreg(ctrl, offs);
743 else
744 return 0;
745 }
746
brcmnand_write_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 val)747 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
748 enum brcmnand_reg reg, u32 val)
749 {
750 u16 offs = ctrl->reg_offsets[reg];
751
752 if (offs)
753 nand_writereg(ctrl, offs, val);
754 }
755
brcmnand_rmw_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 mask,unsigned int shift,u32 val)756 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
757 enum brcmnand_reg reg, u32 mask, unsigned
758 int shift, u32 val)
759 {
760 u32 tmp = brcmnand_read_reg(ctrl, reg);
761
762 tmp &= ~mask;
763 tmp |= val << shift;
764 brcmnand_write_reg(ctrl, reg, tmp);
765 }
766
brcmnand_read_fc(struct brcmnand_controller * ctrl,int word)767 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
768 {
769 return __raw_readl(ctrl->nand_fc + word * 4);
770 }
771
brcmnand_write_fc(struct brcmnand_controller * ctrl,int word,u32 val)772 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
773 int word, u32 val)
774 {
775 __raw_writel(val, ctrl->nand_fc + word * 4);
776 }
777
edu_writel(struct brcmnand_controller * ctrl,enum edu_reg reg,u32 val)778 static inline void edu_writel(struct brcmnand_controller *ctrl,
779 enum edu_reg reg, u32 val)
780 {
781 u16 offs = ctrl->edu_offsets[reg];
782
783 brcmnand_writel(val, ctrl->edu_base + offs);
784 }
785
edu_readl(struct brcmnand_controller * ctrl,enum edu_reg reg)786 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
787 enum edu_reg reg)
788 {
789 u16 offs = ctrl->edu_offsets[reg];
790
791 return brcmnand_readl(ctrl->edu_base + offs);
792 }
793
brcmnand_clear_ecc_addr(struct brcmnand_controller * ctrl)794 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
795 {
796
797 /* Clear error addresses */
798 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
799 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
800 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
801 brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
802 }
803
brcmnand_get_uncorrecc_addr(struct brcmnand_controller * ctrl)804 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
805 {
806 u64 err_addr;
807
808 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
809 err_addr |= ((u64)(brcmnand_read_reg(ctrl,
810 BRCMNAND_UNCORR_EXT_ADDR)
811 & 0xffff) << 32);
812
813 return err_addr;
814 }
815
brcmnand_get_correcc_addr(struct brcmnand_controller * ctrl)816 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
817 {
818 u64 err_addr;
819
820 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
821 err_addr |= ((u64)(brcmnand_read_reg(ctrl,
822 BRCMNAND_CORR_EXT_ADDR)
823 & 0xffff) << 32);
824
825 return err_addr;
826 }
827
brcmnand_set_cmd_addr(struct mtd_info * mtd,u64 addr)828 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
829 {
830 struct nand_chip *chip = mtd_to_nand(mtd);
831 struct brcmnand_host *host = nand_get_controller_data(chip);
832 struct brcmnand_controller *ctrl = host->ctrl;
833
834 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
835 (host->cs << 16) | ((addr >> 32) & 0xffff));
836 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
837 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
838 lower_32_bits(addr));
839 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
840 }
841
brcmnand_cs_offset(struct brcmnand_controller * ctrl,int cs,enum brcmnand_cs_reg reg)842 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
843 enum brcmnand_cs_reg reg)
844 {
845 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
846 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
847 u8 cs_offs;
848
849 if (cs == 0 && ctrl->cs0_offsets)
850 cs_offs = ctrl->cs0_offsets[reg];
851 else
852 cs_offs = ctrl->cs_offsets[reg];
853
854 if (cs && offs_cs1)
855 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
856
857 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
858 }
859
brcmnand_count_corrected(struct brcmnand_controller * ctrl)860 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
861 {
862 if (ctrl->nand_version < 0x0600)
863 return 1;
864 return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
865 }
866
brcmnand_wr_corr_thresh(struct brcmnand_host * host,u8 val)867 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
868 {
869 struct brcmnand_controller *ctrl = host->ctrl;
870 unsigned int shift = 0, bits;
871 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
872 int cs = host->cs;
873
874 if (!ctrl->reg_offsets[reg])
875 return;
876
877 if (ctrl->nand_version == 0x0702)
878 bits = 7;
879 else if (ctrl->nand_version >= 0x0600)
880 bits = 6;
881 else if (ctrl->nand_version >= 0x0500)
882 bits = 5;
883 else
884 bits = 4;
885
886 if (ctrl->nand_version >= 0x0702) {
887 if (cs >= 4)
888 reg = BRCMNAND_CORR_THRESHOLD_EXT;
889 shift = (cs % 4) * bits;
890 } else if (ctrl->nand_version >= 0x0600) {
891 if (cs >= 5)
892 reg = BRCMNAND_CORR_THRESHOLD_EXT;
893 shift = (cs % 5) * bits;
894 }
895 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
896 }
897
brcmnand_cmd_shift(struct brcmnand_controller * ctrl)898 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
899 {
900 if (ctrl->nand_version < 0x0602)
901 return 24;
902 return 0;
903 }
904
905 /***********************************************************************
906 * NAND ACC CONTROL bitfield
907 *
908 * Some bits have remained constant throughout hardware revision, while
909 * others have shifted around.
910 ***********************************************************************/
911
912 /* Constant for all versions (where supported) */
913 enum {
914 /* See BRCMNAND_HAS_CACHE_MODE */
915 ACC_CONTROL_CACHE_MODE = BIT(22),
916
917 /* See BRCMNAND_HAS_PREFETCH */
918 ACC_CONTROL_PREFETCH = BIT(23),
919
920 ACC_CONTROL_PAGE_HIT = BIT(24),
921 ACC_CONTROL_WR_PREEMPT = BIT(25),
922 ACC_CONTROL_PARTIAL_PAGE = BIT(26),
923 ACC_CONTROL_RD_ERASED = BIT(27),
924 ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
925 ACC_CONTROL_WR_ECC = BIT(30),
926 ACC_CONTROL_RD_ECC = BIT(31),
927 };
928
brcmnand_spare_area_mask(struct brcmnand_controller * ctrl)929 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
930 {
931 if (ctrl->nand_version == 0x0702)
932 return GENMASK(7, 0);
933 else if (ctrl->nand_version >= 0x0600)
934 return GENMASK(6, 0);
935 else if (ctrl->nand_version >= 0x0303)
936 return GENMASK(5, 0);
937 else
938 return GENMASK(4, 0);
939 }
940
941 #define NAND_ACC_CONTROL_ECC_SHIFT 16
942 #define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13
943
brcmnand_ecc_level_mask(struct brcmnand_controller * ctrl)944 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
945 {
946 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
947
948 mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
949
950 /* v7.2 includes additional ECC levels */
951 if (ctrl->nand_version >= 0x0702)
952 mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
953
954 return mask;
955 }
956
brcmnand_set_ecc_enabled(struct brcmnand_host * host,int en)957 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
958 {
959 struct brcmnand_controller *ctrl = host->ctrl;
960 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
961 u32 acc_control = nand_readreg(ctrl, offs);
962 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
963
964 if (en) {
965 acc_control |= ecc_flags; /* enable RD/WR ECC */
966 acc_control |= host->hwcfg.ecc_level
967 << NAND_ACC_CONTROL_ECC_SHIFT;
968 } else {
969 acc_control &= ~ecc_flags; /* disable RD/WR ECC */
970 acc_control &= ~brcmnand_ecc_level_mask(ctrl);
971 }
972
973 nand_writereg(ctrl, offs, acc_control);
974 }
975
brcmnand_sector_1k_shift(struct brcmnand_controller * ctrl)976 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
977 {
978 if (ctrl->nand_version >= 0x0702)
979 return 9;
980 else if (ctrl->nand_version >= 0x0600)
981 return 7;
982 else if (ctrl->nand_version >= 0x0500)
983 return 6;
984 else
985 return -1;
986 }
987
brcmnand_get_sector_size_1k(struct brcmnand_host * host)988 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
989 {
990 struct brcmnand_controller *ctrl = host->ctrl;
991 int shift = brcmnand_sector_1k_shift(ctrl);
992 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
993 BRCMNAND_CS_ACC_CONTROL);
994
995 if (shift < 0)
996 return 0;
997
998 return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
999 }
1000
brcmnand_set_sector_size_1k(struct brcmnand_host * host,int val)1001 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1002 {
1003 struct brcmnand_controller *ctrl = host->ctrl;
1004 int shift = brcmnand_sector_1k_shift(ctrl);
1005 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1006 BRCMNAND_CS_ACC_CONTROL);
1007 u32 tmp;
1008
1009 if (shift < 0)
1010 return;
1011
1012 tmp = nand_readreg(ctrl, acc_control_offs);
1013 tmp &= ~(1 << shift);
1014 tmp |= (!!val) << shift;
1015 nand_writereg(ctrl, acc_control_offs, tmp);
1016 }
1017
1018 /***********************************************************************
1019 * CS_NAND_SELECT
1020 ***********************************************************************/
1021
1022 enum {
1023 CS_SELECT_NAND_WP = BIT(29),
1024 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
1025 };
1026
bcmnand_ctrl_poll_status(struct brcmnand_controller * ctrl,u32 mask,u32 expected_val,unsigned long timeout_ms)1027 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
1028 u32 mask, u32 expected_val,
1029 unsigned long timeout_ms)
1030 {
1031 unsigned long limit;
1032 u32 val;
1033
1034 if (!timeout_ms)
1035 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1036
1037 limit = jiffies + msecs_to_jiffies(timeout_ms);
1038 do {
1039 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1040 if ((val & mask) == expected_val)
1041 return 0;
1042
1043 cpu_relax();
1044 } while (time_after(limit, jiffies));
1045
1046 dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1047 expected_val, val & mask);
1048
1049 return -ETIMEDOUT;
1050 }
1051
brcmnand_set_wp(struct brcmnand_controller * ctrl,bool en)1052 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1053 {
1054 u32 val = en ? CS_SELECT_NAND_WP : 0;
1055
1056 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1057 }
1058
1059 /***********************************************************************
1060 * Flash DMA
1061 ***********************************************************************/
1062
has_flash_dma(struct brcmnand_controller * ctrl)1063 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1064 {
1065 return ctrl->flash_dma_base;
1066 }
1067
has_edu(struct brcmnand_controller * ctrl)1068 static inline bool has_edu(struct brcmnand_controller *ctrl)
1069 {
1070 return ctrl->edu_base;
1071 }
1072
use_dma(struct brcmnand_controller * ctrl)1073 static inline bool use_dma(struct brcmnand_controller *ctrl)
1074 {
1075 return has_flash_dma(ctrl) || has_edu(ctrl);
1076 }
1077
disable_ctrl_irqs(struct brcmnand_controller * ctrl)1078 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1079 {
1080 if (ctrl->pio_poll_mode)
1081 return;
1082
1083 if (has_flash_dma(ctrl)) {
1084 ctrl->flash_dma_base = NULL;
1085 disable_irq(ctrl->dma_irq);
1086 }
1087
1088 disable_irq(ctrl->irq);
1089 ctrl->pio_poll_mode = true;
1090 }
1091
flash_dma_buf_ok(const void * buf)1092 static inline bool flash_dma_buf_ok(const void *buf)
1093 {
1094 return buf && !is_vmalloc_addr(buf) &&
1095 likely(IS_ALIGNED((uintptr_t)buf, 4));
1096 }
1097
flash_dma_writel(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg,u32 val)1098 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1099 enum flash_dma_reg dma_reg, u32 val)
1100 {
1101 u16 offs = ctrl->flash_dma_offsets[dma_reg];
1102
1103 brcmnand_writel(val, ctrl->flash_dma_base + offs);
1104 }
1105
flash_dma_readl(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg)1106 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1107 enum flash_dma_reg dma_reg)
1108 {
1109 u16 offs = ctrl->flash_dma_offsets[dma_reg];
1110
1111 return brcmnand_readl(ctrl->flash_dma_base + offs);
1112 }
1113
1114 /* Low-level operation types: command, address, write, or read */
1115 enum brcmnand_llop_type {
1116 LL_OP_CMD,
1117 LL_OP_ADDR,
1118 LL_OP_WR,
1119 LL_OP_RD,
1120 };
1121
1122 /***********************************************************************
1123 * Internal support functions
1124 ***********************************************************************/
1125
is_hamming_ecc(struct brcmnand_controller * ctrl,struct brcmnand_cfg * cfg)1126 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1127 struct brcmnand_cfg *cfg)
1128 {
1129 if (ctrl->nand_version <= 0x0701)
1130 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1131 cfg->ecc_level == 15;
1132 else
1133 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1134 cfg->ecc_level == 15) ||
1135 (cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1136 }
1137
1138 /*
1139 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1140 * the layout/configuration.
1141 * Returns -ERRCODE on failure.
1142 */
brcmnand_hamming_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1143 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1144 struct mtd_oob_region *oobregion)
1145 {
1146 struct nand_chip *chip = mtd_to_nand(mtd);
1147 struct brcmnand_host *host = nand_get_controller_data(chip);
1148 struct brcmnand_cfg *cfg = &host->hwcfg;
1149 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1150 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1151
1152 if (section >= sectors)
1153 return -ERANGE;
1154
1155 oobregion->offset = (section * sas) + 6;
1156 oobregion->length = 3;
1157
1158 return 0;
1159 }
1160
brcmnand_hamming_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1161 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1162 struct mtd_oob_region *oobregion)
1163 {
1164 struct nand_chip *chip = mtd_to_nand(mtd);
1165 struct brcmnand_host *host = nand_get_controller_data(chip);
1166 struct brcmnand_cfg *cfg = &host->hwcfg;
1167 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1168 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1169 u32 next;
1170
1171 if (section > sectors)
1172 return -ERANGE;
1173
1174 next = (section * sas);
1175 if (section < sectors)
1176 next += 6;
1177
1178 if (section) {
1179 oobregion->offset = ((section - 1) * sas) + 9;
1180 } else {
1181 if (cfg->page_size > 512) {
1182 /* Large page NAND uses first 2 bytes for BBI */
1183 oobregion->offset = 2;
1184 } else {
1185 /* Small page NAND uses last byte before ECC for BBI */
1186 oobregion->offset = 0;
1187 next--;
1188 }
1189 }
1190
1191 oobregion->length = next - oobregion->offset;
1192
1193 return 0;
1194 }
1195
1196 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1197 .ecc = brcmnand_hamming_ooblayout_ecc,
1198 .free = brcmnand_hamming_ooblayout_free,
1199 };
1200
brcmnand_bch_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1201 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1202 struct mtd_oob_region *oobregion)
1203 {
1204 struct nand_chip *chip = mtd_to_nand(mtd);
1205 struct brcmnand_host *host = nand_get_controller_data(chip);
1206 struct brcmnand_cfg *cfg = &host->hwcfg;
1207 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1208 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1209
1210 if (section >= sectors)
1211 return -ERANGE;
1212
1213 oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1214 oobregion->length = chip->ecc.bytes;
1215
1216 return 0;
1217 }
1218
brcmnand_bch_ooblayout_free_lp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1219 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1220 struct mtd_oob_region *oobregion)
1221 {
1222 struct nand_chip *chip = mtd_to_nand(mtd);
1223 struct brcmnand_host *host = nand_get_controller_data(chip);
1224 struct brcmnand_cfg *cfg = &host->hwcfg;
1225 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1226 int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1227
1228 if (section >= sectors)
1229 return -ERANGE;
1230
1231 if (sas <= chip->ecc.bytes)
1232 return 0;
1233
1234 oobregion->offset = section * sas;
1235 oobregion->length = sas - chip->ecc.bytes;
1236
1237 if (!section) {
1238 oobregion->offset++;
1239 oobregion->length--;
1240 }
1241
1242 return 0;
1243 }
1244
brcmnand_bch_ooblayout_free_sp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1245 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1246 struct mtd_oob_region *oobregion)
1247 {
1248 struct nand_chip *chip = mtd_to_nand(mtd);
1249 struct brcmnand_host *host = nand_get_controller_data(chip);
1250 struct brcmnand_cfg *cfg = &host->hwcfg;
1251 int sas = cfg->spare_area_size << cfg->sector_size_1k;
1252
1253 if (section > 1 || sas - chip->ecc.bytes < 6 ||
1254 (section && sas - chip->ecc.bytes == 6))
1255 return -ERANGE;
1256
1257 if (!section) {
1258 oobregion->offset = 0;
1259 oobregion->length = 5;
1260 } else {
1261 oobregion->offset = 6;
1262 oobregion->length = sas - chip->ecc.bytes - 6;
1263 }
1264
1265 return 0;
1266 }
1267
1268 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1269 .ecc = brcmnand_bch_ooblayout_ecc,
1270 .free = brcmnand_bch_ooblayout_free_lp,
1271 };
1272
1273 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1274 .ecc = brcmnand_bch_ooblayout_ecc,
1275 .free = brcmnand_bch_ooblayout_free_sp,
1276 };
1277
brcmstb_choose_ecc_layout(struct brcmnand_host * host)1278 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1279 {
1280 struct brcmnand_cfg *p = &host->hwcfg;
1281 struct mtd_info *mtd = nand_to_mtd(&host->chip);
1282 struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1283 unsigned int ecc_level = p->ecc_level;
1284 int sas = p->spare_area_size << p->sector_size_1k;
1285 int sectors = p->page_size / (512 << p->sector_size_1k);
1286
1287 if (p->sector_size_1k)
1288 ecc_level <<= 1;
1289
1290 if (is_hamming_ecc(host->ctrl, p)) {
1291 ecc->bytes = 3 * sectors;
1292 mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1293 return 0;
1294 }
1295
1296 /*
1297 * CONTROLLER_VERSION:
1298 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1299 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1300 * But we will just be conservative.
1301 */
1302 ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1303 if (p->page_size == 512)
1304 mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1305 else
1306 mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1307
1308 if (ecc->bytes >= sas) {
1309 dev_err(&host->pdev->dev,
1310 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1311 ecc->bytes, sas);
1312 return -EINVAL;
1313 }
1314
1315 return 0;
1316 }
1317
brcmnand_wp(struct mtd_info * mtd,int wp)1318 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1319 {
1320 struct nand_chip *chip = mtd_to_nand(mtd);
1321 struct brcmnand_host *host = nand_get_controller_data(chip);
1322 struct brcmnand_controller *ctrl = host->ctrl;
1323
1324 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1325 static int old_wp = -1;
1326 int ret;
1327
1328 if (old_wp != wp) {
1329 dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1330 old_wp = wp;
1331 }
1332
1333 /*
1334 * make sure ctrl/flash ready before and after
1335 * changing state of #WP pin
1336 */
1337 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1338 NAND_STATUS_READY,
1339 NAND_CTRL_RDY |
1340 NAND_STATUS_READY, 0);
1341 if (ret)
1342 return;
1343
1344 brcmnand_set_wp(ctrl, wp);
1345 nand_status_op(chip, NULL);
1346 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1347 ret = bcmnand_ctrl_poll_status(ctrl,
1348 NAND_CTRL_RDY |
1349 NAND_STATUS_READY |
1350 NAND_STATUS_WP,
1351 NAND_CTRL_RDY |
1352 NAND_STATUS_READY |
1353 (wp ? 0 : NAND_STATUS_WP), 0);
1354
1355 if (ret)
1356 dev_err_ratelimited(&host->pdev->dev,
1357 "nand #WP expected %s\n",
1358 wp ? "on" : "off");
1359 }
1360 }
1361
1362 /* Helper functions for reading and writing OOB registers */
oob_reg_read(struct brcmnand_controller * ctrl,u32 offs)1363 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1364 {
1365 u16 offset0, offset10, reg_offs;
1366
1367 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1368 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1369
1370 if (offs >= ctrl->max_oob)
1371 return 0x77;
1372
1373 if (offs >= 16 && offset10)
1374 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1375 else
1376 reg_offs = offset0 + (offs & ~0x03);
1377
1378 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1379 }
1380
oob_reg_write(struct brcmnand_controller * ctrl,u32 offs,u32 data)1381 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1382 u32 data)
1383 {
1384 u16 offset0, offset10, reg_offs;
1385
1386 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1387 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1388
1389 if (offs >= ctrl->max_oob)
1390 return;
1391
1392 if (offs >= 16 && offset10)
1393 reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1394 else
1395 reg_offs = offset0 + (offs & ~0x03);
1396
1397 nand_writereg(ctrl, reg_offs, data);
1398 }
1399
1400 /*
1401 * read_oob_from_regs - read data from OOB registers
1402 * @ctrl: NAND controller
1403 * @i: sub-page sector index
1404 * @oob: buffer to read to
1405 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1406 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1407 */
read_oob_from_regs(struct brcmnand_controller * ctrl,int i,u8 * oob,int sas,int sector_1k)1408 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1409 int sas, int sector_1k)
1410 {
1411 int tbytes = sas << sector_1k;
1412 int j;
1413
1414 /* Adjust OOB values for 1K sector size */
1415 if (sector_1k && (i & 0x01))
1416 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1417 tbytes = min_t(int, tbytes, ctrl->max_oob);
1418
1419 for (j = 0; j < tbytes; j++)
1420 oob[j] = oob_reg_read(ctrl, j);
1421 return tbytes;
1422 }
1423
1424 /*
1425 * write_oob_to_regs - write data to OOB registers
1426 * @i: sub-page sector index
1427 * @oob: buffer to write from
1428 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1429 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1430 */
write_oob_to_regs(struct brcmnand_controller * ctrl,int i,const u8 * oob,int sas,int sector_1k)1431 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1432 const u8 *oob, int sas, int sector_1k)
1433 {
1434 int tbytes = sas << sector_1k;
1435 int j;
1436
1437 /* Adjust OOB values for 1K sector size */
1438 if (sector_1k && (i & 0x01))
1439 tbytes = max(0, tbytes - (int)ctrl->max_oob);
1440 tbytes = min_t(int, tbytes, ctrl->max_oob);
1441
1442 for (j = 0; j < tbytes; j += 4)
1443 oob_reg_write(ctrl, j,
1444 (oob[j + 0] << 24) |
1445 (oob[j + 1] << 16) |
1446 (oob[j + 2] << 8) |
1447 (oob[j + 3] << 0));
1448 return tbytes;
1449 }
1450
brcmnand_edu_init(struct brcmnand_controller * ctrl)1451 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1452 {
1453 /* initialize edu */
1454 edu_writel(ctrl, EDU_ERR_STATUS, 0);
1455 edu_readl(ctrl, EDU_ERR_STATUS);
1456 edu_writel(ctrl, EDU_DONE, 0);
1457 edu_writel(ctrl, EDU_DONE, 0);
1458 edu_writel(ctrl, EDU_DONE, 0);
1459 edu_writel(ctrl, EDU_DONE, 0);
1460 edu_readl(ctrl, EDU_DONE);
1461 }
1462
1463 /* edu irq */
brcmnand_edu_irq(int irq,void * data)1464 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1465 {
1466 struct brcmnand_controller *ctrl = data;
1467
1468 if (ctrl->edu_count) {
1469 ctrl->edu_count--;
1470 while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1471 udelay(1);
1472 edu_writel(ctrl, EDU_DONE, 0);
1473 edu_readl(ctrl, EDU_DONE);
1474 }
1475
1476 if (ctrl->edu_count) {
1477 ctrl->edu_dram_addr += FC_BYTES;
1478 ctrl->edu_ext_addr += FC_BYTES;
1479
1480 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1481 edu_readl(ctrl, EDU_DRAM_ADDR);
1482 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1483 edu_readl(ctrl, EDU_EXT_ADDR);
1484
1485 if (ctrl->oob) {
1486 if (ctrl->edu_cmd == EDU_CMD_READ) {
1487 ctrl->oob += read_oob_from_regs(ctrl,
1488 ctrl->edu_count + 1,
1489 ctrl->oob, ctrl->sas,
1490 ctrl->sector_size_1k);
1491 } else {
1492 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1493 ctrl->edu_ext_addr);
1494 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1495 ctrl->oob += write_oob_to_regs(ctrl,
1496 ctrl->edu_count,
1497 ctrl->oob, ctrl->sas,
1498 ctrl->sector_size_1k);
1499 }
1500 }
1501
1502 mb(); /* flush previous writes */
1503 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1504 edu_readl(ctrl, EDU_CMD);
1505
1506 return IRQ_HANDLED;
1507 }
1508
1509 complete(&ctrl->edu_done);
1510
1511 return IRQ_HANDLED;
1512 }
1513
brcmnand_ctlrdy_irq(int irq,void * data)1514 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1515 {
1516 struct brcmnand_controller *ctrl = data;
1517
1518 /* Discard all NAND_CTLRDY interrupts during DMA */
1519 if (ctrl->dma_pending)
1520 return IRQ_HANDLED;
1521
1522 /* check if you need to piggy back on the ctrlrdy irq */
1523 if (ctrl->edu_pending) {
1524 if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1525 /* Discard interrupts while using dedicated edu irq */
1526 return IRQ_HANDLED;
1527
1528 /* no registered edu irq, call handler */
1529 return brcmnand_edu_irq(irq, data);
1530 }
1531
1532 complete(&ctrl->done);
1533 return IRQ_HANDLED;
1534 }
1535
1536 /* Handle SoC-specific interrupt hardware */
brcmnand_irq(int irq,void * data)1537 static irqreturn_t brcmnand_irq(int irq, void *data)
1538 {
1539 struct brcmnand_controller *ctrl = data;
1540
1541 if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1542 return brcmnand_ctlrdy_irq(irq, data);
1543
1544 return IRQ_NONE;
1545 }
1546
brcmnand_dma_irq(int irq,void * data)1547 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1548 {
1549 struct brcmnand_controller *ctrl = data;
1550
1551 complete(&ctrl->dma_done);
1552
1553 return IRQ_HANDLED;
1554 }
1555
brcmnand_send_cmd(struct brcmnand_host * host,int cmd)1556 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1557 {
1558 struct brcmnand_controller *ctrl = host->ctrl;
1559 int ret;
1560 u64 cmd_addr;
1561
1562 cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1563
1564 dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1565
1566 BUG_ON(ctrl->cmd_pending != 0);
1567 ctrl->cmd_pending = cmd;
1568
1569 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1570 WARN_ON(ret);
1571
1572 mb(); /* flush previous writes */
1573 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1574 cmd << brcmnand_cmd_shift(ctrl));
1575 }
1576
1577 /***********************************************************************
1578 * NAND MTD API: read/program/erase
1579 ***********************************************************************/
1580
brcmnand_cmd_ctrl(struct nand_chip * chip,int dat,unsigned int ctrl)1581 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1582 unsigned int ctrl)
1583 {
1584 /* intentionally left blank */
1585 }
1586
brcmstb_nand_wait_for_completion(struct nand_chip * chip)1587 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1588 {
1589 struct brcmnand_host *host = nand_get_controller_data(chip);
1590 struct brcmnand_controller *ctrl = host->ctrl;
1591 struct mtd_info *mtd = nand_to_mtd(chip);
1592 bool err = false;
1593 int sts;
1594
1595 if (mtd->oops_panic_write) {
1596 /* switch to interrupt polling and PIO mode */
1597 disable_ctrl_irqs(ctrl);
1598 sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1599 NAND_CTRL_RDY, 0);
1600 err = (sts < 0) ? true : false;
1601 } else {
1602 unsigned long timeo = msecs_to_jiffies(
1603 NAND_POLL_STATUS_TIMEOUT_MS);
1604 /* wait for completion interrupt */
1605 sts = wait_for_completion_timeout(&ctrl->done, timeo);
1606 err = (sts <= 0) ? true : false;
1607 }
1608
1609 return err;
1610 }
1611
brcmnand_waitfunc(struct nand_chip * chip)1612 static int brcmnand_waitfunc(struct nand_chip *chip)
1613 {
1614 struct brcmnand_host *host = nand_get_controller_data(chip);
1615 struct brcmnand_controller *ctrl = host->ctrl;
1616 bool err = false;
1617
1618 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1619 if (ctrl->cmd_pending)
1620 err = brcmstb_nand_wait_for_completion(chip);
1621
1622 if (err) {
1623 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1624 >> brcmnand_cmd_shift(ctrl);
1625
1626 dev_err_ratelimited(ctrl->dev,
1627 "timeout waiting for command %#02x\n", cmd);
1628 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1629 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1630 }
1631 ctrl->cmd_pending = 0;
1632 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1633 INTFC_FLASH_STATUS;
1634 }
1635
1636 enum {
1637 LLOP_RE = BIT(16),
1638 LLOP_WE = BIT(17),
1639 LLOP_ALE = BIT(18),
1640 LLOP_CLE = BIT(19),
1641 LLOP_RETURN_IDLE = BIT(31),
1642
1643 LLOP_DATA_MASK = GENMASK(15, 0),
1644 };
1645
brcmnand_low_level_op(struct brcmnand_host * host,enum brcmnand_llop_type type,u32 data,bool last_op)1646 static int brcmnand_low_level_op(struct brcmnand_host *host,
1647 enum brcmnand_llop_type type, u32 data,
1648 bool last_op)
1649 {
1650 struct nand_chip *chip = &host->chip;
1651 struct brcmnand_controller *ctrl = host->ctrl;
1652 u32 tmp;
1653
1654 tmp = data & LLOP_DATA_MASK;
1655 switch (type) {
1656 case LL_OP_CMD:
1657 tmp |= LLOP_WE | LLOP_CLE;
1658 break;
1659 case LL_OP_ADDR:
1660 /* WE | ALE */
1661 tmp |= LLOP_WE | LLOP_ALE;
1662 break;
1663 case LL_OP_WR:
1664 /* WE */
1665 tmp |= LLOP_WE;
1666 break;
1667 case LL_OP_RD:
1668 /* RE */
1669 tmp |= LLOP_RE;
1670 break;
1671 }
1672 if (last_op)
1673 /* RETURN_IDLE */
1674 tmp |= LLOP_RETURN_IDLE;
1675
1676 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1677
1678 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1679 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1680
1681 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1682 return brcmnand_waitfunc(chip);
1683 }
1684
brcmnand_cmdfunc(struct nand_chip * chip,unsigned command,int column,int page_addr)1685 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1686 int column, int page_addr)
1687 {
1688 struct mtd_info *mtd = nand_to_mtd(chip);
1689 struct brcmnand_host *host = nand_get_controller_data(chip);
1690 struct brcmnand_controller *ctrl = host->ctrl;
1691 u64 addr = (u64)page_addr << chip->page_shift;
1692 int native_cmd = 0;
1693
1694 if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1695 command == NAND_CMD_RNDOUT)
1696 addr = (u64)column;
1697 /* Avoid propagating a negative, don't-care address */
1698 else if (page_addr < 0)
1699 addr = 0;
1700
1701 dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1702 (unsigned long long)addr);
1703
1704 host->last_cmd = command;
1705 host->last_byte = 0;
1706 host->last_addr = addr;
1707
1708 switch (command) {
1709 case NAND_CMD_RESET:
1710 native_cmd = CMD_FLASH_RESET;
1711 break;
1712 case NAND_CMD_STATUS:
1713 native_cmd = CMD_STATUS_READ;
1714 break;
1715 case NAND_CMD_READID:
1716 native_cmd = CMD_DEVICE_ID_READ;
1717 break;
1718 case NAND_CMD_READOOB:
1719 native_cmd = CMD_SPARE_AREA_READ;
1720 break;
1721 case NAND_CMD_ERASE1:
1722 native_cmd = CMD_BLOCK_ERASE;
1723 brcmnand_wp(mtd, 0);
1724 break;
1725 case NAND_CMD_PARAM:
1726 native_cmd = CMD_PARAMETER_READ;
1727 break;
1728 case NAND_CMD_SET_FEATURES:
1729 case NAND_CMD_GET_FEATURES:
1730 brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1731 brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1732 break;
1733 case NAND_CMD_RNDOUT:
1734 native_cmd = CMD_PARAMETER_CHANGE_COL;
1735 addr &= ~((u64)(FC_BYTES - 1));
1736 /*
1737 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1738 * NB: hwcfg.sector_size_1k may not be initialized yet
1739 */
1740 if (brcmnand_get_sector_size_1k(host)) {
1741 host->hwcfg.sector_size_1k =
1742 brcmnand_get_sector_size_1k(host);
1743 brcmnand_set_sector_size_1k(host, 0);
1744 }
1745 break;
1746 }
1747
1748 if (!native_cmd)
1749 return;
1750
1751 brcmnand_set_cmd_addr(mtd, addr);
1752 brcmnand_send_cmd(host, native_cmd);
1753 brcmnand_waitfunc(chip);
1754
1755 if (native_cmd == CMD_PARAMETER_READ ||
1756 native_cmd == CMD_PARAMETER_CHANGE_COL) {
1757 /* Copy flash cache word-wise */
1758 u32 *flash_cache = (u32 *)ctrl->flash_cache;
1759 int i;
1760
1761 brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1762
1763 /*
1764 * Must cache the FLASH_CACHE now, since changes in
1765 * SECTOR_SIZE_1K may invalidate it
1766 */
1767 for (i = 0; i < FC_WORDS; i++)
1768 /*
1769 * Flash cache is big endian for parameter pages, at
1770 * least on STB SoCs
1771 */
1772 flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1773
1774 brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1775
1776 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1777 if (host->hwcfg.sector_size_1k)
1778 brcmnand_set_sector_size_1k(host,
1779 host->hwcfg.sector_size_1k);
1780 }
1781
1782 /* Re-enable protection is necessary only after erase */
1783 if (command == NAND_CMD_ERASE1)
1784 brcmnand_wp(mtd, 1);
1785 }
1786
brcmnand_read_byte(struct nand_chip * chip)1787 static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1788 {
1789 struct brcmnand_host *host = nand_get_controller_data(chip);
1790 struct brcmnand_controller *ctrl = host->ctrl;
1791 uint8_t ret = 0;
1792 int addr, offs;
1793
1794 switch (host->last_cmd) {
1795 case NAND_CMD_READID:
1796 if (host->last_byte < 4)
1797 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1798 (24 - (host->last_byte << 3));
1799 else if (host->last_byte < 8)
1800 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1801 (56 - (host->last_byte << 3));
1802 break;
1803
1804 case NAND_CMD_READOOB:
1805 ret = oob_reg_read(ctrl, host->last_byte);
1806 break;
1807
1808 case NAND_CMD_STATUS:
1809 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1810 INTFC_FLASH_STATUS;
1811 if (wp_on) /* hide WP status */
1812 ret |= NAND_STATUS_WP;
1813 break;
1814
1815 case NAND_CMD_PARAM:
1816 case NAND_CMD_RNDOUT:
1817 addr = host->last_addr + host->last_byte;
1818 offs = addr & (FC_BYTES - 1);
1819
1820 /* At FC_BYTES boundary, switch to next column */
1821 if (host->last_byte > 0 && offs == 0)
1822 nand_change_read_column_op(chip, addr, NULL, 0, false);
1823
1824 ret = ctrl->flash_cache[offs];
1825 break;
1826 case NAND_CMD_GET_FEATURES:
1827 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1828 ret = 0;
1829 } else {
1830 bool last = host->last_byte ==
1831 ONFI_SUBFEATURE_PARAM_LEN - 1;
1832 brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1833 ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1834 }
1835 }
1836
1837 dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1838 host->last_byte++;
1839
1840 return ret;
1841 }
1842
brcmnand_read_buf(struct nand_chip * chip,uint8_t * buf,int len)1843 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1844 {
1845 int i;
1846
1847 for (i = 0; i < len; i++, buf++)
1848 *buf = brcmnand_read_byte(chip);
1849 }
1850
brcmnand_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)1851 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1852 int len)
1853 {
1854 int i;
1855 struct brcmnand_host *host = nand_get_controller_data(chip);
1856
1857 switch (host->last_cmd) {
1858 case NAND_CMD_SET_FEATURES:
1859 for (i = 0; i < len; i++)
1860 brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1861 (i + 1) == len);
1862 break;
1863 default:
1864 BUG();
1865 break;
1866 }
1867 }
1868
1869 /*
1870 * Kick EDU engine
1871 */
brcmnand_edu_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u8 * oob,u32 len,u8 cmd)1872 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1873 u8 *oob, u32 len, u8 cmd)
1874 {
1875 struct brcmnand_controller *ctrl = host->ctrl;
1876 struct brcmnand_cfg *cfg = &host->hwcfg;
1877 unsigned long timeo = msecs_to_jiffies(200);
1878 int ret = 0;
1879 int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1880 u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1881 unsigned int trans = len >> FC_SHIFT;
1882 dma_addr_t pa;
1883
1884 dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
1885 "read" : "write"), buf, oob);
1886
1887 pa = dma_map_single(ctrl->dev, buf, len, dir);
1888 if (dma_mapping_error(ctrl->dev, pa)) {
1889 dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1890 return -ENOMEM;
1891 }
1892
1893 ctrl->edu_pending = true;
1894 ctrl->edu_dram_addr = pa;
1895 ctrl->edu_ext_addr = addr;
1896 ctrl->edu_cmd = edu_cmd;
1897 ctrl->edu_count = trans;
1898 ctrl->sas = cfg->spare_area_size;
1899 ctrl->oob = oob;
1900
1901 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1902 edu_readl(ctrl, EDU_DRAM_ADDR);
1903 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1904 edu_readl(ctrl, EDU_EXT_ADDR);
1905 edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1906 edu_readl(ctrl, EDU_LENGTH);
1907
1908 if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
1909 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1910 ctrl->edu_ext_addr);
1911 brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1912 ctrl->oob += write_oob_to_regs(ctrl,
1913 1,
1914 ctrl->oob, ctrl->sas,
1915 ctrl->sector_size_1k);
1916 }
1917
1918 /* Start edu engine */
1919 mb(); /* flush previous writes */
1920 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1921 edu_readl(ctrl, EDU_CMD);
1922
1923 if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1924 dev_err(ctrl->dev,
1925 "timeout waiting for EDU; status %#x, error status %#x\n",
1926 edu_readl(ctrl, EDU_STATUS),
1927 edu_readl(ctrl, EDU_ERR_STATUS));
1928 }
1929
1930 dma_unmap_single(ctrl->dev, pa, len, dir);
1931
1932 /* read last subpage oob */
1933 if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
1934 ctrl->oob += read_oob_from_regs(ctrl,
1935 1,
1936 ctrl->oob, ctrl->sas,
1937 ctrl->sector_size_1k);
1938 }
1939
1940 /* for program page check NAND status */
1941 if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1942 INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1943 edu_cmd == EDU_CMD_WRITE) {
1944 dev_info(ctrl->dev, "program failed at %llx\n",
1945 (unsigned long long)addr);
1946 ret = -EIO;
1947 }
1948
1949 /* Make sure the EDU status is clean */
1950 if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1951 dev_warn(ctrl->dev, "EDU still active: %#x\n",
1952 edu_readl(ctrl, EDU_STATUS));
1953
1954 if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1955 dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1956 (unsigned long long)addr);
1957 ret = -EIO;
1958 }
1959
1960 ctrl->edu_pending = false;
1961 brcmnand_edu_init(ctrl);
1962 edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1963 edu_readl(ctrl, EDU_STOP);
1964
1965 if (!ret && edu_cmd == EDU_CMD_READ) {
1966 u64 err_addr = 0;
1967
1968 /*
1969 * check for ECC errors here, subpage ECC errors are
1970 * retained in ECC error address register
1971 */
1972 err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1973 if (!err_addr) {
1974 err_addr = brcmnand_get_correcc_addr(ctrl);
1975 if (err_addr)
1976 ret = -EUCLEAN;
1977 } else
1978 ret = -EBADMSG;
1979 }
1980
1981 return ret;
1982 }
1983
1984 /*
1985 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1986 * following ahead of time:
1987 * - Is this descriptor the beginning or end of a linked list?
1988 * - What is the (DMA) address of the next descriptor in the linked list?
1989 */
brcmnand_fill_dma_desc(struct brcmnand_host * host,struct brcm_nand_dma_desc * desc,u64 addr,dma_addr_t buf,u32 len,u8 dma_cmd,bool begin,bool end,dma_addr_t next_desc)1990 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1991 struct brcm_nand_dma_desc *desc, u64 addr,
1992 dma_addr_t buf, u32 len, u8 dma_cmd,
1993 bool begin, bool end,
1994 dma_addr_t next_desc)
1995 {
1996 memset(desc, 0, sizeof(*desc));
1997 /* Descriptors are written in native byte order (wordwise) */
1998 desc->next_desc = lower_32_bits(next_desc);
1999 desc->next_desc_ext = upper_32_bits(next_desc);
2000 desc->cmd_irq = (dma_cmd << 24) |
2001 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */
2002 (!!begin) | ((!!end) << 1); /* head, tail */
2003 #ifdef CONFIG_CPU_BIG_ENDIAN
2004 desc->cmd_irq |= 0x01 << 12;
2005 #endif
2006 desc->dram_addr = lower_32_bits(buf);
2007 desc->dram_addr_ext = upper_32_bits(buf);
2008 desc->tfr_len = len;
2009 desc->total_len = len;
2010 desc->flash_addr = lower_32_bits(addr);
2011 desc->flash_addr_ext = upper_32_bits(addr);
2012 desc->cs = host->cs;
2013 desc->status_valid = 0x01;
2014 return 0;
2015 }
2016
2017 /*
2018 * Kick the FLASH_DMA engine, with a given DMA descriptor
2019 */
brcmnand_dma_run(struct brcmnand_host * host,dma_addr_t desc)2020 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
2021 {
2022 struct brcmnand_controller *ctrl = host->ctrl;
2023 unsigned long timeo = msecs_to_jiffies(100);
2024
2025 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
2026 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
2027 if (ctrl->nand_version > 0x0602) {
2028 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
2029 upper_32_bits(desc));
2030 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
2031 }
2032
2033 /* Start FLASH_DMA engine */
2034 ctrl->dma_pending = true;
2035 mb(); /* flush previous writes */
2036 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
2037
2038 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
2039 dev_err(ctrl->dev,
2040 "timeout waiting for DMA; status %#x, error status %#x\n",
2041 flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2042 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2043 }
2044 ctrl->dma_pending = false;
2045 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2046 }
2047
brcmnand_dma_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u8 * oob,u32 len,u8 dma_cmd)2048 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2049 u8 *oob, u32 len, u8 dma_cmd)
2050 {
2051 struct brcmnand_controller *ctrl = host->ctrl;
2052 dma_addr_t buf_pa;
2053 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2054
2055 buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2056 if (dma_mapping_error(ctrl->dev, buf_pa)) {
2057 dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2058 return -ENOMEM;
2059 }
2060
2061 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2062 dma_cmd, true, true, 0);
2063
2064 brcmnand_dma_run(host, ctrl->dma_pa);
2065
2066 dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2067
2068 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2069 return -EBADMSG;
2070 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2071 return -EUCLEAN;
2072
2073 return 0;
2074 }
2075
2076 /*
2077 * Assumes proper CS is already set
2078 */
brcmnand_read_by_pio(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob,u64 * err_addr)2079 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2080 u64 addr, unsigned int trans, u32 *buf,
2081 u8 *oob, u64 *err_addr)
2082 {
2083 struct brcmnand_host *host = nand_get_controller_data(chip);
2084 struct brcmnand_controller *ctrl = host->ctrl;
2085 int i, j, ret = 0;
2086
2087 brcmnand_clear_ecc_addr(ctrl);
2088
2089 for (i = 0; i < trans; i++, addr += FC_BYTES) {
2090 brcmnand_set_cmd_addr(mtd, addr);
2091 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2092 brcmnand_send_cmd(host, CMD_PAGE_READ);
2093 brcmnand_waitfunc(chip);
2094
2095 if (likely(buf)) {
2096 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2097
2098 for (j = 0; j < FC_WORDS; j++, buf++)
2099 *buf = brcmnand_read_fc(ctrl, j);
2100
2101 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2102 }
2103
2104 if (oob)
2105 oob += read_oob_from_regs(ctrl, i, oob,
2106 mtd->oobsize / trans,
2107 host->hwcfg.sector_size_1k);
2108
2109 if (!ret) {
2110 *err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2111
2112 if (*err_addr)
2113 ret = -EBADMSG;
2114 }
2115
2116 if (!ret) {
2117 *err_addr = brcmnand_get_correcc_addr(ctrl);
2118
2119 if (*err_addr)
2120 ret = -EUCLEAN;
2121 }
2122 }
2123
2124 return ret;
2125 }
2126
2127 /*
2128 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2129 * error
2130 *
2131 * Because the HW ECC signals an ECC error if an erase paged has even a single
2132 * bitflip, we must check each ECC error to see if it is actually an erased
2133 * page with bitflips, not a truly corrupted page.
2134 *
2135 * On a real error, return a negative error code (-EBADMSG for ECC error), and
2136 * buf will contain raw data.
2137 * Otherwise, buf gets filled with 0xffs and return the maximum number of
2138 * bitflips-per-ECC-sector to the caller.
2139 *
2140 */
brcmstb_nand_verify_erased_page(struct mtd_info * mtd,struct nand_chip * chip,void * buf,u64 addr)2141 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2142 struct nand_chip *chip, void *buf, u64 addr)
2143 {
2144 struct mtd_oob_region ecc;
2145 int i;
2146 int bitflips = 0;
2147 int page = addr >> chip->page_shift;
2148 int ret;
2149 void *ecc_bytes;
2150 void *ecc_chunk;
2151
2152 if (!buf)
2153 buf = nand_get_data_buf(chip);
2154
2155 /* read without ecc for verification */
2156 ret = chip->ecc.read_page_raw(chip, buf, true, page);
2157 if (ret)
2158 return ret;
2159
2160 for (i = 0; i < chip->ecc.steps; i++) {
2161 ecc_chunk = buf + chip->ecc.size * i;
2162
2163 mtd_ooblayout_ecc(mtd, i, &ecc);
2164 ecc_bytes = chip->oob_poi + ecc.offset;
2165
2166 ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2167 ecc_bytes, ecc.length,
2168 NULL, 0,
2169 chip->ecc.strength);
2170 if (ret < 0)
2171 return ret;
2172
2173 bitflips = max(bitflips, ret);
2174 }
2175
2176 return bitflips;
2177 }
2178
brcmnand_read(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob)2179 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2180 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2181 {
2182 struct brcmnand_host *host = nand_get_controller_data(chip);
2183 struct brcmnand_controller *ctrl = host->ctrl;
2184 u64 err_addr = 0;
2185 int err;
2186 bool retry = true;
2187 bool edu_err = false;
2188
2189 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2190
2191 try_dmaread:
2192 brcmnand_clear_ecc_addr(ctrl);
2193
2194 if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
2195 flash_dma_buf_ok(buf)) {
2196 err = ctrl->dma_trans(host, addr, buf, oob,
2197 trans * FC_BYTES,
2198 CMD_PAGE_READ);
2199
2200 if (err) {
2201 if (mtd_is_bitflip_or_eccerr(err))
2202 err_addr = addr;
2203 else
2204 return -EIO;
2205 }
2206
2207 if (has_edu(ctrl) && err_addr)
2208 edu_err = true;
2209
2210 } else {
2211 if (oob)
2212 memset(oob, 0x99, mtd->oobsize);
2213
2214 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2215 oob, &err_addr);
2216 }
2217
2218 if (mtd_is_eccerr(err)) {
2219 /*
2220 * On controller version and 7.0, 7.1 , DMA read after a
2221 * prior PIO read that reported uncorrectable error,
2222 * the DMA engine captures this error following DMA read
2223 * cleared only on subsequent DMA read, so just retry once
2224 * to clear a possible false error reported for current DMA
2225 * read
2226 */
2227 if ((ctrl->nand_version == 0x0700) ||
2228 (ctrl->nand_version == 0x0701)) {
2229 if (retry) {
2230 retry = false;
2231 goto try_dmaread;
2232 }
2233 }
2234
2235 /*
2236 * Controller version 7.2 has hw encoder to detect erased page
2237 * bitflips, apply sw verification for older controllers only
2238 */
2239 if (ctrl->nand_version < 0x0702) {
2240 err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2241 addr);
2242 /* erased page bitflips corrected */
2243 if (err >= 0)
2244 return err;
2245 }
2246
2247 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2248 (unsigned long long)err_addr);
2249 mtd->ecc_stats.failed++;
2250 /* NAND layer expects zero on ECC errors */
2251 return 0;
2252 }
2253
2254 if (mtd_is_bitflip(err)) {
2255 unsigned int corrected = brcmnand_count_corrected(ctrl);
2256
2257 /* in case of EDU correctable error we read again using PIO */
2258 if (edu_err)
2259 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2260 oob, &err_addr);
2261
2262 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2263 (unsigned long long)err_addr);
2264 mtd->ecc_stats.corrected += corrected;
2265 /* Always exceed the software-imposed threshold */
2266 return max(mtd->bitflip_threshold, corrected);
2267 }
2268
2269 return 0;
2270 }
2271
brcmnand_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2272 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2273 int oob_required, int page)
2274 {
2275 struct mtd_info *mtd = nand_to_mtd(chip);
2276 struct brcmnand_host *host = nand_get_controller_data(chip);
2277 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2278
2279 nand_read_page_op(chip, page, 0, NULL, 0);
2280
2281 return brcmnand_read(mtd, chip, host->last_addr,
2282 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2283 }
2284
brcmnand_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2285 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2286 int oob_required, int page)
2287 {
2288 struct brcmnand_host *host = nand_get_controller_data(chip);
2289 struct mtd_info *mtd = nand_to_mtd(chip);
2290 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2291 int ret;
2292
2293 nand_read_page_op(chip, page, 0, NULL, 0);
2294
2295 brcmnand_set_ecc_enabled(host, 0);
2296 ret = brcmnand_read(mtd, chip, host->last_addr,
2297 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2298 brcmnand_set_ecc_enabled(host, 1);
2299 return ret;
2300 }
2301
brcmnand_read_oob(struct nand_chip * chip,int page)2302 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2303 {
2304 struct mtd_info *mtd = nand_to_mtd(chip);
2305
2306 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2307 mtd->writesize >> FC_SHIFT,
2308 NULL, (u8 *)chip->oob_poi);
2309 }
2310
brcmnand_read_oob_raw(struct nand_chip * chip,int page)2311 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2312 {
2313 struct mtd_info *mtd = nand_to_mtd(chip);
2314 struct brcmnand_host *host = nand_get_controller_data(chip);
2315
2316 brcmnand_set_ecc_enabled(host, 0);
2317 brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2318 mtd->writesize >> FC_SHIFT,
2319 NULL, (u8 *)chip->oob_poi);
2320 brcmnand_set_ecc_enabled(host, 1);
2321 return 0;
2322 }
2323
brcmnand_write(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,const u32 * buf,u8 * oob)2324 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2325 u64 addr, const u32 *buf, u8 *oob)
2326 {
2327 struct brcmnand_host *host = nand_get_controller_data(chip);
2328 struct brcmnand_controller *ctrl = host->ctrl;
2329 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2330 int status, ret = 0;
2331
2332 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2333
2334 if (unlikely((unsigned long)buf & 0x03)) {
2335 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2336 buf = (u32 *)((unsigned long)buf & ~0x03);
2337 }
2338
2339 brcmnand_wp(mtd, 0);
2340
2341 for (i = 0; i < ctrl->max_oob; i += 4)
2342 oob_reg_write(ctrl, i, 0xffffffff);
2343
2344 if (mtd->oops_panic_write)
2345 /* switch to interrupt polling and PIO mode */
2346 disable_ctrl_irqs(ctrl);
2347
2348 if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
2349 if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
2350 CMD_PROGRAM_PAGE))
2351
2352 ret = -EIO;
2353
2354 goto out;
2355 }
2356
2357 for (i = 0; i < trans; i++, addr += FC_BYTES) {
2358 /* full address MUST be set before populating FC */
2359 brcmnand_set_cmd_addr(mtd, addr);
2360
2361 if (buf) {
2362 brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2363
2364 for (j = 0; j < FC_WORDS; j++, buf++)
2365 brcmnand_write_fc(ctrl, j, *buf);
2366
2367 brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2368 } else if (oob) {
2369 for (j = 0; j < FC_WORDS; j++)
2370 brcmnand_write_fc(ctrl, j, 0xffffffff);
2371 }
2372
2373 if (oob) {
2374 oob += write_oob_to_regs(ctrl, i, oob,
2375 mtd->oobsize / trans,
2376 host->hwcfg.sector_size_1k);
2377 }
2378
2379 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2380 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2381 status = brcmnand_waitfunc(chip);
2382
2383 if (status & NAND_STATUS_FAIL) {
2384 dev_info(ctrl->dev, "program failed at %llx\n",
2385 (unsigned long long)addr);
2386 ret = -EIO;
2387 goto out;
2388 }
2389 }
2390 out:
2391 brcmnand_wp(mtd, 1);
2392 return ret;
2393 }
2394
brcmnand_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2395 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2396 int oob_required, int page)
2397 {
2398 struct mtd_info *mtd = nand_to_mtd(chip);
2399 struct brcmnand_host *host = nand_get_controller_data(chip);
2400 void *oob = oob_required ? chip->oob_poi : NULL;
2401
2402 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2403 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2404
2405 return nand_prog_page_end_op(chip);
2406 }
2407
brcmnand_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2408 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2409 int oob_required, int page)
2410 {
2411 struct mtd_info *mtd = nand_to_mtd(chip);
2412 struct brcmnand_host *host = nand_get_controller_data(chip);
2413 void *oob = oob_required ? chip->oob_poi : NULL;
2414
2415 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2416 brcmnand_set_ecc_enabled(host, 0);
2417 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2418 brcmnand_set_ecc_enabled(host, 1);
2419
2420 return nand_prog_page_end_op(chip);
2421 }
2422
brcmnand_write_oob(struct nand_chip * chip,int page)2423 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2424 {
2425 return brcmnand_write(nand_to_mtd(chip), chip,
2426 (u64)page << chip->page_shift, NULL,
2427 chip->oob_poi);
2428 }
2429
brcmnand_write_oob_raw(struct nand_chip * chip,int page)2430 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2431 {
2432 struct mtd_info *mtd = nand_to_mtd(chip);
2433 struct brcmnand_host *host = nand_get_controller_data(chip);
2434 int ret;
2435
2436 brcmnand_set_ecc_enabled(host, 0);
2437 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2438 (u8 *)chip->oob_poi);
2439 brcmnand_set_ecc_enabled(host, 1);
2440
2441 return ret;
2442 }
2443
2444 /***********************************************************************
2445 * Per-CS setup (1 NAND device)
2446 ***********************************************************************/
2447
brcmnand_set_cfg(struct brcmnand_host * host,struct brcmnand_cfg * cfg)2448 static int brcmnand_set_cfg(struct brcmnand_host *host,
2449 struct brcmnand_cfg *cfg)
2450 {
2451 struct brcmnand_controller *ctrl = host->ctrl;
2452 struct nand_chip *chip = &host->chip;
2453 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2454 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2455 BRCMNAND_CS_CFG_EXT);
2456 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2457 BRCMNAND_CS_ACC_CONTROL);
2458 u8 block_size = 0, page_size = 0, device_size = 0;
2459 u32 tmp;
2460
2461 if (ctrl->block_sizes) {
2462 int i, found;
2463
2464 for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2465 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2466 block_size = i;
2467 found = 1;
2468 }
2469 if (!found) {
2470 dev_warn(ctrl->dev, "invalid block size %u\n",
2471 cfg->block_size);
2472 return -EINVAL;
2473 }
2474 } else {
2475 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2476 }
2477
2478 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2479 cfg->block_size > ctrl->max_block_size)) {
2480 dev_warn(ctrl->dev, "invalid block size %u\n",
2481 cfg->block_size);
2482 block_size = 0;
2483 }
2484
2485 if (ctrl->page_sizes) {
2486 int i, found;
2487
2488 for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2489 if (ctrl->page_sizes[i] == cfg->page_size) {
2490 page_size = i;
2491 found = 1;
2492 }
2493 if (!found) {
2494 dev_warn(ctrl->dev, "invalid page size %u\n",
2495 cfg->page_size);
2496 return -EINVAL;
2497 }
2498 } else {
2499 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2500 }
2501
2502 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2503 cfg->page_size > ctrl->max_page_size)) {
2504 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2505 return -EINVAL;
2506 }
2507
2508 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2509 dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2510 (unsigned long long)cfg->device_size);
2511 return -EINVAL;
2512 }
2513 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2514
2515 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2516 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2517 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2518 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2519 (device_size << CFG_DEVICE_SIZE_SHIFT);
2520 if (cfg_offs == cfg_ext_offs) {
2521 tmp |= (page_size << ctrl->page_size_shift) |
2522 (block_size << CFG_BLK_SIZE_SHIFT);
2523 nand_writereg(ctrl, cfg_offs, tmp);
2524 } else {
2525 nand_writereg(ctrl, cfg_offs, tmp);
2526 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2527 (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2528 nand_writereg(ctrl, cfg_ext_offs, tmp);
2529 }
2530
2531 tmp = nand_readreg(ctrl, acc_control_offs);
2532 tmp &= ~brcmnand_ecc_level_mask(ctrl);
2533 tmp &= ~brcmnand_spare_area_mask(ctrl);
2534 if (ctrl->nand_version >= 0x0302) {
2535 tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2536 tmp |= cfg->spare_area_size;
2537 }
2538 nand_writereg(ctrl, acc_control_offs, tmp);
2539
2540 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2541
2542 /* threshold = ceil(BCH-level * 0.75) */
2543 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2544
2545 return 0;
2546 }
2547
brcmnand_print_cfg(struct brcmnand_host * host,char * buf,struct brcmnand_cfg * cfg)2548 static void brcmnand_print_cfg(struct brcmnand_host *host,
2549 char *buf, struct brcmnand_cfg *cfg)
2550 {
2551 buf += sprintf(buf,
2552 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2553 (unsigned long long)cfg->device_size >> 20,
2554 cfg->block_size >> 10,
2555 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2556 cfg->page_size >= 1024 ? "KiB" : "B",
2557 cfg->spare_area_size, cfg->device_width);
2558
2559 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2560 if (is_hamming_ecc(host->ctrl, cfg))
2561 sprintf(buf, ", Hamming ECC");
2562 else if (cfg->sector_size_1k)
2563 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2564 else
2565 sprintf(buf, ", BCH-%u", cfg->ecc_level);
2566 }
2567
2568 /*
2569 * Minimum number of bytes to address a page. Calculated as:
2570 * roundup(log2(size / page-size) / 8)
2571 *
2572 * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2573 * OK because many other things will break if 'size' is irregular...
2574 */
get_blk_adr_bytes(u64 size,u32 writesize)2575 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2576 {
2577 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2578 }
2579
brcmnand_setup_dev(struct brcmnand_host * host)2580 static int brcmnand_setup_dev(struct brcmnand_host *host)
2581 {
2582 struct mtd_info *mtd = nand_to_mtd(&host->chip);
2583 struct nand_chip *chip = &host->chip;
2584 const struct nand_ecc_props *requirements =
2585 nanddev_get_ecc_requirements(&chip->base);
2586 struct brcmnand_controller *ctrl = host->ctrl;
2587 struct brcmnand_cfg *cfg = &host->hwcfg;
2588 char msg[128];
2589 u32 offs, tmp, oob_sector;
2590 int ret;
2591
2592 memset(cfg, 0, sizeof(*cfg));
2593
2594 ret = of_property_read_u32(nand_get_flash_node(chip),
2595 "brcm,nand-oob-sector-size",
2596 &oob_sector);
2597 if (ret) {
2598 /* Use detected size */
2599 cfg->spare_area_size = mtd->oobsize /
2600 (mtd->writesize >> FC_SHIFT);
2601 } else {
2602 cfg->spare_area_size = oob_sector;
2603 }
2604 if (cfg->spare_area_size > ctrl->max_oob)
2605 cfg->spare_area_size = ctrl->max_oob;
2606 /*
2607 * Set oobsize to be consistent with controller's spare_area_size, as
2608 * the rest is inaccessible.
2609 */
2610 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2611
2612 cfg->device_size = mtd->size;
2613 cfg->block_size = mtd->erasesize;
2614 cfg->page_size = mtd->writesize;
2615 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2616 cfg->col_adr_bytes = 2;
2617 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2618
2619 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2620 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2621 chip->ecc.engine_type);
2622 return -EINVAL;
2623 }
2624
2625 if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2626 if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2627 /* Default to Hamming for 1-bit ECC, if unspecified */
2628 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2629 else
2630 /* Otherwise, BCH */
2631 chip->ecc.algo = NAND_ECC_ALGO_BCH;
2632 }
2633
2634 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2635 (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2636 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2637 chip->ecc.strength, chip->ecc.size);
2638 return -EINVAL;
2639 }
2640
2641 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2642 (!chip->ecc.size || !chip->ecc.strength)) {
2643 if (requirements->step_size && requirements->strength) {
2644 /* use detected ECC parameters */
2645 chip->ecc.size = requirements->step_size;
2646 chip->ecc.strength = requirements->strength;
2647 dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2648 chip->ecc.size, chip->ecc.strength);
2649 }
2650 }
2651
2652 switch (chip->ecc.size) {
2653 case 512:
2654 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2655 cfg->ecc_level = 15;
2656 else
2657 cfg->ecc_level = chip->ecc.strength;
2658 cfg->sector_size_1k = 0;
2659 break;
2660 case 1024:
2661 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2662 dev_err(ctrl->dev, "1KB sectors not supported\n");
2663 return -EINVAL;
2664 }
2665 if (chip->ecc.strength & 0x1) {
2666 dev_err(ctrl->dev,
2667 "odd ECC not supported with 1KB sectors\n");
2668 return -EINVAL;
2669 }
2670
2671 cfg->ecc_level = chip->ecc.strength >> 1;
2672 cfg->sector_size_1k = 1;
2673 break;
2674 default:
2675 dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2676 chip->ecc.size);
2677 return -EINVAL;
2678 }
2679
2680 cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2681 if (mtd->writesize > 512)
2682 cfg->ful_adr_bytes += cfg->col_adr_bytes;
2683 else
2684 cfg->ful_adr_bytes += 1;
2685
2686 ret = brcmnand_set_cfg(host, cfg);
2687 if (ret)
2688 return ret;
2689
2690 brcmnand_set_ecc_enabled(host, 1);
2691
2692 brcmnand_print_cfg(host, msg, cfg);
2693 dev_info(ctrl->dev, "detected %s\n", msg);
2694
2695 /* Configure ACC_CONTROL */
2696 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2697 tmp = nand_readreg(ctrl, offs);
2698 tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2699 tmp &= ~ACC_CONTROL_RD_ERASED;
2700
2701 /* We need to turn on Read from erased paged protected by ECC */
2702 if (ctrl->nand_version >= 0x0702)
2703 tmp |= ACC_CONTROL_RD_ERASED;
2704 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2705 if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2706 tmp &= ~ACC_CONTROL_PREFETCH;
2707
2708 nand_writereg(ctrl, offs, tmp);
2709
2710 return 0;
2711 }
2712
brcmnand_attach_chip(struct nand_chip * chip)2713 static int brcmnand_attach_chip(struct nand_chip *chip)
2714 {
2715 struct mtd_info *mtd = nand_to_mtd(chip);
2716 struct brcmnand_host *host = nand_get_controller_data(chip);
2717 int ret;
2718
2719 chip->options |= NAND_NO_SUBPAGE_WRITE;
2720 /*
2721 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2722 * to/from, and have nand_base pass us a bounce buffer instead, as
2723 * needed.
2724 */
2725 chip->options |= NAND_USES_DMA;
2726
2727 if (chip->bbt_options & NAND_BBT_USE_FLASH)
2728 chip->bbt_options |= NAND_BBT_NO_OOB;
2729
2730 if (brcmnand_setup_dev(host))
2731 return -ENXIO;
2732
2733 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2734
2735 /* only use our internal HW threshold */
2736 mtd->bitflip_threshold = 1;
2737
2738 ret = brcmstb_choose_ecc_layout(host);
2739
2740 /* If OOB is written with ECC enabled it will cause ECC errors */
2741 if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2742 chip->ecc.write_oob = brcmnand_write_oob_raw;
2743 chip->ecc.read_oob = brcmnand_read_oob_raw;
2744 }
2745
2746 return ret;
2747 }
2748
2749 static const struct nand_controller_ops brcmnand_controller_ops = {
2750 .attach_chip = brcmnand_attach_chip,
2751 };
2752
brcmnand_init_cs(struct brcmnand_host * host,struct device_node * dn)2753 static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2754 {
2755 struct brcmnand_controller *ctrl = host->ctrl;
2756 struct platform_device *pdev = host->pdev;
2757 struct mtd_info *mtd;
2758 struct nand_chip *chip;
2759 int ret;
2760 u16 cfg_offs;
2761
2762 ret = of_property_read_u32(dn, "reg", &host->cs);
2763 if (ret) {
2764 dev_err(&pdev->dev, "can't get chip-select\n");
2765 return -ENXIO;
2766 }
2767
2768 mtd = nand_to_mtd(&host->chip);
2769 chip = &host->chip;
2770
2771 nand_set_flash_node(chip, dn);
2772 nand_set_controller_data(chip, host);
2773 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2774 host->cs);
2775 if (!mtd->name)
2776 return -ENOMEM;
2777
2778 mtd->owner = THIS_MODULE;
2779 mtd->dev.parent = &pdev->dev;
2780
2781 chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2782 chip->legacy.cmdfunc = brcmnand_cmdfunc;
2783 chip->legacy.waitfunc = brcmnand_waitfunc;
2784 chip->legacy.read_byte = brcmnand_read_byte;
2785 chip->legacy.read_buf = brcmnand_read_buf;
2786 chip->legacy.write_buf = brcmnand_write_buf;
2787
2788 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2789 chip->ecc.read_page = brcmnand_read_page;
2790 chip->ecc.write_page = brcmnand_write_page;
2791 chip->ecc.read_page_raw = brcmnand_read_page_raw;
2792 chip->ecc.write_page_raw = brcmnand_write_page_raw;
2793 chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2794 chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2795 chip->ecc.read_oob = brcmnand_read_oob;
2796 chip->ecc.write_oob = brcmnand_write_oob;
2797
2798 chip->controller = &ctrl->controller;
2799
2800 /*
2801 * The bootloader might have configured 16bit mode but
2802 * NAND READID command only works in 8bit mode. We force
2803 * 8bit mode here to ensure that NAND READID commands works.
2804 */
2805 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2806 nand_writereg(ctrl, cfg_offs,
2807 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2808
2809 ret = nand_scan(chip, 1);
2810 if (ret)
2811 return ret;
2812
2813 ret = mtd_device_register(mtd, NULL, 0);
2814 if (ret)
2815 nand_cleanup(chip);
2816
2817 return ret;
2818 }
2819
brcmnand_save_restore_cs_config(struct brcmnand_host * host,int restore)2820 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2821 int restore)
2822 {
2823 struct brcmnand_controller *ctrl = host->ctrl;
2824 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2825 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2826 BRCMNAND_CS_CFG_EXT);
2827 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2828 BRCMNAND_CS_ACC_CONTROL);
2829 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2830 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2831
2832 if (restore) {
2833 nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2834 if (cfg_offs != cfg_ext_offs)
2835 nand_writereg(ctrl, cfg_ext_offs,
2836 host->hwcfg.config_ext);
2837 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2838 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2839 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2840 } else {
2841 host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2842 if (cfg_offs != cfg_ext_offs)
2843 host->hwcfg.config_ext =
2844 nand_readreg(ctrl, cfg_ext_offs);
2845 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2846 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2847 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2848 }
2849 }
2850
brcmnand_suspend(struct device * dev)2851 static int brcmnand_suspend(struct device *dev)
2852 {
2853 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2854 struct brcmnand_host *host;
2855
2856 list_for_each_entry(host, &ctrl->host_list, node)
2857 brcmnand_save_restore_cs_config(host, 0);
2858
2859 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2860 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2861 ctrl->corr_stat_threshold =
2862 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2863
2864 if (has_flash_dma(ctrl))
2865 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2866 else if (has_edu(ctrl))
2867 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2868
2869 return 0;
2870 }
2871
brcmnand_resume(struct device * dev)2872 static int brcmnand_resume(struct device *dev)
2873 {
2874 struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2875 struct brcmnand_host *host;
2876
2877 if (has_flash_dma(ctrl)) {
2878 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2879 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2880 }
2881
2882 if (has_edu(ctrl)) {
2883 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2884 edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2885 edu_readl(ctrl, EDU_CONFIG);
2886 brcmnand_edu_init(ctrl);
2887 }
2888
2889 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2890 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2891 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2892 ctrl->corr_stat_threshold);
2893 if (ctrl->soc) {
2894 /* Clear/re-enable interrupt */
2895 ctrl->soc->ctlrdy_ack(ctrl->soc);
2896 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2897 }
2898
2899 list_for_each_entry(host, &ctrl->host_list, node) {
2900 struct nand_chip *chip = &host->chip;
2901
2902 brcmnand_save_restore_cs_config(host, 1);
2903
2904 /* Reset the chip, required by some chips after power-up */
2905 nand_reset_op(chip);
2906 }
2907
2908 return 0;
2909 }
2910
2911 const struct dev_pm_ops brcmnand_pm_ops = {
2912 .suspend = brcmnand_suspend,
2913 .resume = brcmnand_resume,
2914 };
2915 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2916
2917 static const struct of_device_id brcmnand_of_match[] = {
2918 { .compatible = "brcm,brcmnand-v2.1" },
2919 { .compatible = "brcm,brcmnand-v2.2" },
2920 { .compatible = "brcm,brcmnand-v4.0" },
2921 { .compatible = "brcm,brcmnand-v5.0" },
2922 { .compatible = "brcm,brcmnand-v6.0" },
2923 { .compatible = "brcm,brcmnand-v6.1" },
2924 { .compatible = "brcm,brcmnand-v6.2" },
2925 { .compatible = "brcm,brcmnand-v7.0" },
2926 { .compatible = "brcm,brcmnand-v7.1" },
2927 { .compatible = "brcm,brcmnand-v7.2" },
2928 { .compatible = "brcm,brcmnand-v7.3" },
2929 {},
2930 };
2931 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2932
2933 /***********************************************************************
2934 * Platform driver setup (per controller)
2935 ***********************************************************************/
brcmnand_edu_setup(struct platform_device * pdev)2936 static int brcmnand_edu_setup(struct platform_device *pdev)
2937 {
2938 struct device *dev = &pdev->dev;
2939 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2940 struct resource *res;
2941 int ret;
2942
2943 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
2944 if (res) {
2945 ctrl->edu_base = devm_ioremap_resource(dev, res);
2946 if (IS_ERR(ctrl->edu_base))
2947 return PTR_ERR(ctrl->edu_base);
2948
2949 ctrl->edu_offsets = edu_regs;
2950
2951 edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
2952 EDU_CONFIG_SWAP_CFG);
2953 edu_readl(ctrl, EDU_CONFIG);
2954
2955 /* initialize edu */
2956 brcmnand_edu_init(ctrl);
2957
2958 ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
2959 if (ctrl->edu_irq < 0) {
2960 dev_warn(dev,
2961 "FLASH EDU enabled, using ctlrdy irq\n");
2962 } else {
2963 ret = devm_request_irq(dev, ctrl->edu_irq,
2964 brcmnand_edu_irq, 0,
2965 "brcmnand-edu", ctrl);
2966 if (ret < 0) {
2967 dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
2968 ctrl->edu_irq, ret);
2969 return ret;
2970 }
2971
2972 dev_info(dev, "FLASH EDU enabled using irq %u\n",
2973 ctrl->edu_irq);
2974 }
2975 }
2976
2977 return 0;
2978 }
2979
brcmnand_probe(struct platform_device * pdev,struct brcmnand_soc * soc)2980 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2981 {
2982 struct device *dev = &pdev->dev;
2983 struct device_node *dn = dev->of_node, *child;
2984 struct brcmnand_controller *ctrl;
2985 struct resource *res;
2986 int ret;
2987
2988 /* We only support device-tree instantiation */
2989 if (!dn)
2990 return -ENODEV;
2991
2992 if (!of_match_node(brcmnand_of_match, dn))
2993 return -ENODEV;
2994
2995 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2996 if (!ctrl)
2997 return -ENOMEM;
2998
2999 dev_set_drvdata(dev, ctrl);
3000 ctrl->dev = dev;
3001
3002 init_completion(&ctrl->done);
3003 init_completion(&ctrl->dma_done);
3004 init_completion(&ctrl->edu_done);
3005 nand_controller_init(&ctrl->controller);
3006 ctrl->controller.ops = &brcmnand_controller_ops;
3007 INIT_LIST_HEAD(&ctrl->host_list);
3008
3009 /* NAND register range */
3010 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3011 ctrl->nand_base = devm_ioremap_resource(dev, res);
3012 if (IS_ERR(ctrl->nand_base))
3013 return PTR_ERR(ctrl->nand_base);
3014
3015 /* Enable clock before using NAND registers */
3016 ctrl->clk = devm_clk_get(dev, "nand");
3017 if (!IS_ERR(ctrl->clk)) {
3018 ret = clk_prepare_enable(ctrl->clk);
3019 if (ret)
3020 return ret;
3021 } else {
3022 ret = PTR_ERR(ctrl->clk);
3023 if (ret == -EPROBE_DEFER)
3024 return ret;
3025
3026 ctrl->clk = NULL;
3027 }
3028
3029 /* Initialize NAND revision */
3030 ret = brcmnand_revision_init(ctrl);
3031 if (ret)
3032 goto err;
3033
3034 /*
3035 * Most chips have this cache at a fixed offset within 'nand' block.
3036 * Some must specify this region separately.
3037 */
3038 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3039 if (res) {
3040 ctrl->nand_fc = devm_ioremap_resource(dev, res);
3041 if (IS_ERR(ctrl->nand_fc)) {
3042 ret = PTR_ERR(ctrl->nand_fc);
3043 goto err;
3044 }
3045 } else {
3046 ctrl->nand_fc = ctrl->nand_base +
3047 ctrl->reg_offsets[BRCMNAND_FC_BASE];
3048 }
3049
3050 /* FLASH_DMA */
3051 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3052 if (res) {
3053 ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3054 if (IS_ERR(ctrl->flash_dma_base)) {
3055 ret = PTR_ERR(ctrl->flash_dma_base);
3056 goto err;
3057 }
3058
3059 /* initialize the dma version */
3060 brcmnand_flash_dma_revision_init(ctrl);
3061
3062 ret = -EIO;
3063 if (ctrl->nand_version >= 0x0700)
3064 ret = dma_set_mask_and_coherent(&pdev->dev,
3065 DMA_BIT_MASK(40));
3066 if (ret)
3067 ret = dma_set_mask_and_coherent(&pdev->dev,
3068 DMA_BIT_MASK(32));
3069 if (ret)
3070 goto err;
3071
3072 /* linked-list and stop on error */
3073 flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3074 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3075
3076 /* Allocate descriptor(s) */
3077 ctrl->dma_desc = dmam_alloc_coherent(dev,
3078 sizeof(*ctrl->dma_desc),
3079 &ctrl->dma_pa, GFP_KERNEL);
3080 if (!ctrl->dma_desc) {
3081 ret = -ENOMEM;
3082 goto err;
3083 }
3084
3085 ctrl->dma_irq = platform_get_irq(pdev, 1);
3086 if ((int)ctrl->dma_irq < 0) {
3087 dev_err(dev, "missing FLASH_DMA IRQ\n");
3088 ret = -ENODEV;
3089 goto err;
3090 }
3091
3092 ret = devm_request_irq(dev, ctrl->dma_irq,
3093 brcmnand_dma_irq, 0, DRV_NAME,
3094 ctrl);
3095 if (ret < 0) {
3096 dev_err(dev, "can't allocate IRQ %d: error %d\n",
3097 ctrl->dma_irq, ret);
3098 goto err;
3099 }
3100
3101 dev_info(dev, "enabling FLASH_DMA\n");
3102 /* set flash dma transfer function to call */
3103 ctrl->dma_trans = brcmnand_dma_trans;
3104 } else {
3105 ret = brcmnand_edu_setup(pdev);
3106 if (ret < 0)
3107 goto err;
3108
3109 if (has_edu(ctrl))
3110 /* set edu transfer function to call */
3111 ctrl->dma_trans = brcmnand_edu_trans;
3112 }
3113
3114 /* Disable automatic device ID config, direct addressing */
3115 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3116 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3117 /* Disable XOR addressing */
3118 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3119
3120 if (ctrl->features & BRCMNAND_HAS_WP) {
3121 /* Permanently disable write protection */
3122 if (wp_on == 2)
3123 brcmnand_set_wp(ctrl, false);
3124 } else {
3125 wp_on = 0;
3126 }
3127
3128 /* IRQ */
3129 ctrl->irq = platform_get_irq(pdev, 0);
3130 if ((int)ctrl->irq < 0) {
3131 dev_err(dev, "no IRQ defined\n");
3132 ret = -ENODEV;
3133 goto err;
3134 }
3135
3136 /*
3137 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3138 * interesting ways
3139 */
3140 if (soc) {
3141 ctrl->soc = soc;
3142
3143 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3144 DRV_NAME, ctrl);
3145
3146 /* Enable interrupt */
3147 ctrl->soc->ctlrdy_ack(ctrl->soc);
3148 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3149 } else {
3150 /* Use standard interrupt infrastructure */
3151 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3152 DRV_NAME, ctrl);
3153 }
3154 if (ret < 0) {
3155 dev_err(dev, "can't allocate IRQ %d: error %d\n",
3156 ctrl->irq, ret);
3157 goto err;
3158 }
3159
3160 for_each_available_child_of_node(dn, child) {
3161 if (of_device_is_compatible(child, "brcm,nandcs")) {
3162 struct brcmnand_host *host;
3163
3164 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3165 if (!host) {
3166 of_node_put(child);
3167 ret = -ENOMEM;
3168 goto err;
3169 }
3170 host->pdev = pdev;
3171 host->ctrl = ctrl;
3172
3173 ret = brcmnand_init_cs(host, child);
3174 if (ret) {
3175 devm_kfree(dev, host);
3176 continue; /* Try all chip-selects */
3177 }
3178
3179 list_add_tail(&host->node, &ctrl->host_list);
3180 }
3181 }
3182
3183 /* No chip-selects could initialize properly */
3184 if (list_empty(&ctrl->host_list)) {
3185 ret = -ENODEV;
3186 goto err;
3187 }
3188
3189 return 0;
3190
3191 err:
3192 clk_disable_unprepare(ctrl->clk);
3193 return ret;
3194
3195 }
3196 EXPORT_SYMBOL_GPL(brcmnand_probe);
3197
brcmnand_remove(struct platform_device * pdev)3198 int brcmnand_remove(struct platform_device *pdev)
3199 {
3200 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3201 struct brcmnand_host *host;
3202 struct nand_chip *chip;
3203 int ret;
3204
3205 list_for_each_entry(host, &ctrl->host_list, node) {
3206 chip = &host->chip;
3207 ret = mtd_device_unregister(nand_to_mtd(chip));
3208 WARN_ON(ret);
3209 nand_cleanup(chip);
3210 }
3211
3212 clk_disable_unprepare(ctrl->clk);
3213
3214 dev_set_drvdata(&pdev->dev, NULL);
3215
3216 return 0;
3217 }
3218 EXPORT_SYMBOL_GPL(brcmnand_remove);
3219
3220 MODULE_LICENSE("GPL v2");
3221 MODULE_AUTHOR("Kevin Cernekee");
3222 MODULE_AUTHOR("Brian Norris");
3223 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3224 MODULE_ALIAS("platform:brcmnand");
3225