1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 
13 /* A BPF sock_map is used to store sock objects. This is primarly used
14  * for doing socket redirect with BPF helper routines.
15  *
16  * A sock map may have BPF programs attached to it, currently a program
17  * used to parse packets and a program to provide a verdict and redirect
18  * decision on the packet are supported. Any programs attached to a sock
19  * map are inherited by sock objects when they are added to the map. If
20  * no BPF programs are attached the sock object may only be used for sock
21  * redirect.
22  *
23  * A sock object may be in multiple maps, but can only inherit a single
24  * parse or verdict program. If adding a sock object to a map would result
25  * in having multiple parsing programs the update will return an EBUSY error.
26  *
27  * For reference this program is similar to devmap used in XDP context
28  * reviewing these together may be useful. For an example please review
29  * ./samples/bpf/sockmap/.
30  */
31 #include <linux/bpf.h>
32 #include <net/sock.h>
33 #include <linux/filter.h>
34 #include <linux/errno.h>
35 #include <linux/file.h>
36 #include <linux/kernel.h>
37 #include <linux/net.h>
38 #include <linux/skbuff.h>
39 #include <linux/workqueue.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <net/strparser.h>
43 #include <net/tcp.h>
44 #include <linux/ptr_ring.h>
45 #include <net/inet_common.h>
46 #include <linux/sched/signal.h>
47 
48 #define SOCK_CREATE_FLAG_MASK \
49 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
50 
51 struct bpf_sock_progs {
52 	struct bpf_prog *bpf_tx_msg;
53 	struct bpf_prog *bpf_parse;
54 	struct bpf_prog *bpf_verdict;
55 };
56 
57 struct bpf_stab {
58 	struct bpf_map map;
59 	struct sock **sock_map;
60 	struct bpf_sock_progs progs;
61 	raw_spinlock_t lock;
62 };
63 
64 struct bucket {
65 	struct hlist_head head;
66 	raw_spinlock_t lock;
67 };
68 
69 struct bpf_htab {
70 	struct bpf_map map;
71 	struct bucket *buckets;
72 	atomic_t count;
73 	u32 n_buckets;
74 	u32 elem_size;
75 	struct bpf_sock_progs progs;
76 	struct rcu_head rcu;
77 };
78 
79 struct htab_elem {
80 	struct rcu_head rcu;
81 	struct hlist_node hash_node;
82 	u32 hash;
83 	struct sock *sk;
84 	char key[0];
85 };
86 
87 enum smap_psock_state {
88 	SMAP_TX_RUNNING,
89 };
90 
91 struct smap_psock_map_entry {
92 	struct list_head list;
93 	struct bpf_map *map;
94 	struct sock **entry;
95 	struct htab_elem __rcu *hash_link;
96 };
97 
98 struct smap_psock {
99 	struct rcu_head	rcu;
100 	refcount_t refcnt;
101 
102 	/* datapath variables */
103 	struct sk_buff_head rxqueue;
104 	bool strp_enabled;
105 
106 	/* datapath error path cache across tx work invocations */
107 	int save_rem;
108 	int save_off;
109 	struct sk_buff *save_skb;
110 
111 	/* datapath variables for tx_msg ULP */
112 	struct sock *sk_redir;
113 	int apply_bytes;
114 	int cork_bytes;
115 	int sg_size;
116 	int eval;
117 	struct sk_msg_buff *cork;
118 	struct list_head ingress;
119 
120 	struct strparser strp;
121 	struct bpf_prog *bpf_tx_msg;
122 	struct bpf_prog *bpf_parse;
123 	struct bpf_prog *bpf_verdict;
124 	struct list_head maps;
125 	spinlock_t maps_lock;
126 
127 	/* Back reference used when sock callback trigger sockmap operations */
128 	struct sock *sock;
129 	unsigned long state;
130 
131 	struct work_struct tx_work;
132 	struct work_struct gc_work;
133 
134 	struct proto *sk_proto;
135 	void (*save_unhash)(struct sock *sk);
136 	void (*save_close)(struct sock *sk, long timeout);
137 	void (*save_data_ready)(struct sock *sk);
138 	void (*save_write_space)(struct sock *sk);
139 };
140 
141 static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
142 static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
143 			   int nonblock, int flags, int *addr_len);
144 static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
145 static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
146 			    int offset, size_t size, int flags);
147 static void bpf_tcp_unhash(struct sock *sk);
148 static void bpf_tcp_close(struct sock *sk, long timeout);
149 
smap_psock_sk(const struct sock * sk)150 static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
151 {
152 	return rcu_dereference_sk_user_data(sk);
153 }
154 
bpf_tcp_stream_read(const struct sock * sk)155 static bool bpf_tcp_stream_read(const struct sock *sk)
156 {
157 	struct smap_psock *psock;
158 	bool empty = true;
159 
160 	rcu_read_lock();
161 	psock = smap_psock_sk(sk);
162 	if (unlikely(!psock))
163 		goto out;
164 	empty = list_empty(&psock->ingress);
165 out:
166 	rcu_read_unlock();
167 	return !empty;
168 }
169 
170 enum {
171 	SOCKMAP_IPV4,
172 	SOCKMAP_IPV6,
173 	SOCKMAP_NUM_PROTS,
174 };
175 
176 enum {
177 	SOCKMAP_BASE,
178 	SOCKMAP_TX,
179 	SOCKMAP_NUM_CONFIGS,
180 };
181 
182 static struct proto *saved_tcpv6_prot __read_mostly;
183 static DEFINE_SPINLOCK(tcpv6_prot_lock);
184 static struct proto bpf_tcp_prots[SOCKMAP_NUM_PROTS][SOCKMAP_NUM_CONFIGS];
build_protos(struct proto prot[SOCKMAP_NUM_CONFIGS],struct proto * base)185 static void build_protos(struct proto prot[SOCKMAP_NUM_CONFIGS],
186 			 struct proto *base)
187 {
188 	prot[SOCKMAP_BASE]			= *base;
189 	prot[SOCKMAP_BASE].unhash		= bpf_tcp_unhash;
190 	prot[SOCKMAP_BASE].close		= bpf_tcp_close;
191 	prot[SOCKMAP_BASE].recvmsg		= bpf_tcp_recvmsg;
192 	prot[SOCKMAP_BASE].stream_memory_read	= bpf_tcp_stream_read;
193 
194 	prot[SOCKMAP_TX]			= prot[SOCKMAP_BASE];
195 	prot[SOCKMAP_TX].sendmsg		= bpf_tcp_sendmsg;
196 	prot[SOCKMAP_TX].sendpage		= bpf_tcp_sendpage;
197 }
198 
update_sk_prot(struct sock * sk,struct smap_psock * psock)199 static void update_sk_prot(struct sock *sk, struct smap_psock *psock)
200 {
201 	int family = sk->sk_family == AF_INET6 ? SOCKMAP_IPV6 : SOCKMAP_IPV4;
202 	int conf = psock->bpf_tx_msg ? SOCKMAP_TX : SOCKMAP_BASE;
203 
204 	sk->sk_prot = &bpf_tcp_prots[family][conf];
205 }
206 
bpf_tcp_init(struct sock * sk)207 static int bpf_tcp_init(struct sock *sk)
208 {
209 	struct smap_psock *psock;
210 
211 	rcu_read_lock();
212 	psock = smap_psock_sk(sk);
213 	if (unlikely(!psock)) {
214 		rcu_read_unlock();
215 		return -EINVAL;
216 	}
217 
218 	if (unlikely(psock->sk_proto)) {
219 		rcu_read_unlock();
220 		return -EBUSY;
221 	}
222 
223 	psock->save_unhash = sk->sk_prot->unhash;
224 	psock->save_close = sk->sk_prot->close;
225 	psock->sk_proto = sk->sk_prot;
226 
227 	/* Build IPv6 sockmap whenever the address of tcpv6_prot changes */
228 	if (sk->sk_family == AF_INET6 &&
229 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
230 		spin_lock_bh(&tcpv6_prot_lock);
231 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
232 			build_protos(bpf_tcp_prots[SOCKMAP_IPV6], sk->sk_prot);
233 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
234 		}
235 		spin_unlock_bh(&tcpv6_prot_lock);
236 	}
237 	update_sk_prot(sk, psock);
238 	rcu_read_unlock();
239 	return 0;
240 }
241 
242 static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
243 static int free_start_sg(struct sock *sk, struct sk_msg_buff *md, bool charge);
244 
bpf_tcp_release(struct sock * sk)245 static void bpf_tcp_release(struct sock *sk)
246 {
247 	struct smap_psock *psock;
248 
249 	rcu_read_lock();
250 	psock = smap_psock_sk(sk);
251 	if (unlikely(!psock))
252 		goto out;
253 
254 	if (psock->cork) {
255 		free_start_sg(psock->sock, psock->cork, true);
256 		kfree(psock->cork);
257 		psock->cork = NULL;
258 	}
259 
260 	if (psock->sk_proto) {
261 		sk->sk_prot = psock->sk_proto;
262 		psock->sk_proto = NULL;
263 	}
264 out:
265 	rcu_read_unlock();
266 }
267 
lookup_elem_raw(struct hlist_head * head,u32 hash,void * key,u32 key_size)268 static struct htab_elem *lookup_elem_raw(struct hlist_head *head,
269 					 u32 hash, void *key, u32 key_size)
270 {
271 	struct htab_elem *l;
272 
273 	hlist_for_each_entry_rcu(l, head, hash_node) {
274 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
275 			return l;
276 	}
277 
278 	return NULL;
279 }
280 
__select_bucket(struct bpf_htab * htab,u32 hash)281 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
282 {
283 	return &htab->buckets[hash & (htab->n_buckets - 1)];
284 }
285 
select_bucket(struct bpf_htab * htab,u32 hash)286 static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash)
287 {
288 	return &__select_bucket(htab, hash)->head;
289 }
290 
free_htab_elem(struct bpf_htab * htab,struct htab_elem * l)291 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
292 {
293 	atomic_dec(&htab->count);
294 	kfree_rcu(l, rcu);
295 }
296 
psock_map_pop(struct sock * sk,struct smap_psock * psock)297 static struct smap_psock_map_entry *psock_map_pop(struct sock *sk,
298 						  struct smap_psock *psock)
299 {
300 	struct smap_psock_map_entry *e;
301 
302 	spin_lock_bh(&psock->maps_lock);
303 	e = list_first_entry_or_null(&psock->maps,
304 				     struct smap_psock_map_entry,
305 				     list);
306 	if (e)
307 		list_del(&e->list);
308 	spin_unlock_bh(&psock->maps_lock);
309 	return e;
310 }
311 
bpf_tcp_remove(struct sock * sk,struct smap_psock * psock)312 static void bpf_tcp_remove(struct sock *sk, struct smap_psock *psock)
313 {
314 	struct smap_psock_map_entry *e;
315 	struct sk_msg_buff *md, *mtmp;
316 	struct sock *osk;
317 
318 	if (psock->cork) {
319 		free_start_sg(psock->sock, psock->cork, true);
320 		kfree(psock->cork);
321 		psock->cork = NULL;
322 	}
323 
324 	list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
325 		list_del(&md->list);
326 		free_start_sg(psock->sock, md, true);
327 		kfree(md);
328 	}
329 
330 	e = psock_map_pop(sk, psock);
331 	while (e) {
332 		if (e->entry) {
333 			struct bpf_stab *stab = container_of(e->map, struct bpf_stab, map);
334 
335 			raw_spin_lock_bh(&stab->lock);
336 			osk = *e->entry;
337 			if (osk == sk) {
338 				*e->entry = NULL;
339 				smap_release_sock(psock, sk);
340 			}
341 			raw_spin_unlock_bh(&stab->lock);
342 		} else {
343 			struct htab_elem *link = rcu_dereference(e->hash_link);
344 			struct bpf_htab *htab = container_of(e->map, struct bpf_htab, map);
345 			struct hlist_head *head;
346 			struct htab_elem *l;
347 			struct bucket *b;
348 
349 			b = __select_bucket(htab, link->hash);
350 			head = &b->head;
351 			raw_spin_lock_bh(&b->lock);
352 			l = lookup_elem_raw(head,
353 					    link->hash, link->key,
354 					    htab->map.key_size);
355 			/* If another thread deleted this object skip deletion.
356 			 * The refcnt on psock may or may not be zero.
357 			 */
358 			if (l && l == link) {
359 				hlist_del_rcu(&link->hash_node);
360 				smap_release_sock(psock, link->sk);
361 				free_htab_elem(htab, link);
362 			}
363 			raw_spin_unlock_bh(&b->lock);
364 		}
365 		kfree(e);
366 		e = psock_map_pop(sk, psock);
367 	}
368 }
369 
bpf_tcp_unhash(struct sock * sk)370 static void bpf_tcp_unhash(struct sock *sk)
371 {
372 	void (*unhash_fun)(struct sock *sk);
373 	struct smap_psock *psock;
374 
375 	rcu_read_lock();
376 	psock = smap_psock_sk(sk);
377 	if (unlikely(!psock)) {
378 		rcu_read_unlock();
379 		if (sk->sk_prot->unhash)
380 			sk->sk_prot->unhash(sk);
381 		return;
382 	}
383 	unhash_fun = psock->save_unhash;
384 	bpf_tcp_remove(sk, psock);
385 	rcu_read_unlock();
386 	unhash_fun(sk);
387 }
388 
bpf_tcp_close(struct sock * sk,long timeout)389 static void bpf_tcp_close(struct sock *sk, long timeout)
390 {
391 	void (*close_fun)(struct sock *sk, long timeout);
392 	struct smap_psock *psock;
393 
394 	lock_sock(sk);
395 	rcu_read_lock();
396 	psock = smap_psock_sk(sk);
397 	if (unlikely(!psock)) {
398 		rcu_read_unlock();
399 		release_sock(sk);
400 		return sk->sk_prot->close(sk, timeout);
401 	}
402 	close_fun = psock->save_close;
403 	bpf_tcp_remove(sk, psock);
404 	rcu_read_unlock();
405 	release_sock(sk);
406 	close_fun(sk, timeout);
407 }
408 
409 enum __sk_action {
410 	__SK_DROP = 0,
411 	__SK_PASS,
412 	__SK_REDIRECT,
413 	__SK_NONE,
414 };
415 
416 static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = {
417 	.name		= "bpf_tcp",
418 	.uid		= TCP_ULP_BPF,
419 	.user_visible	= false,
420 	.owner		= NULL,
421 	.init		= bpf_tcp_init,
422 	.release	= bpf_tcp_release,
423 };
424 
memcopy_from_iter(struct sock * sk,struct sk_msg_buff * md,struct iov_iter * from,int bytes)425 static int memcopy_from_iter(struct sock *sk,
426 			     struct sk_msg_buff *md,
427 			     struct iov_iter *from, int bytes)
428 {
429 	struct scatterlist *sg = md->sg_data;
430 	int i = md->sg_curr, rc = -ENOSPC;
431 
432 	do {
433 		int copy;
434 		char *to;
435 
436 		if (md->sg_copybreak >= sg[i].length) {
437 			md->sg_copybreak = 0;
438 
439 			if (++i == MAX_SKB_FRAGS)
440 				i = 0;
441 
442 			if (i == md->sg_end)
443 				break;
444 		}
445 
446 		copy = sg[i].length - md->sg_copybreak;
447 		to = sg_virt(&sg[i]) + md->sg_copybreak;
448 		md->sg_copybreak += copy;
449 
450 		if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
451 			rc = copy_from_iter_nocache(to, copy, from);
452 		else
453 			rc = copy_from_iter(to, copy, from);
454 
455 		if (rc != copy) {
456 			rc = -EFAULT;
457 			goto out;
458 		}
459 
460 		bytes -= copy;
461 		if (!bytes)
462 			break;
463 
464 		md->sg_copybreak = 0;
465 		if (++i == MAX_SKB_FRAGS)
466 			i = 0;
467 	} while (i != md->sg_end);
468 out:
469 	md->sg_curr = i;
470 	return rc;
471 }
472 
bpf_tcp_push(struct sock * sk,int apply_bytes,struct sk_msg_buff * md,int flags,bool uncharge)473 static int bpf_tcp_push(struct sock *sk, int apply_bytes,
474 			struct sk_msg_buff *md,
475 			int flags, bool uncharge)
476 {
477 	bool apply = apply_bytes;
478 	struct scatterlist *sg;
479 	int offset, ret = 0;
480 	struct page *p;
481 	size_t size;
482 
483 	while (1) {
484 		sg = md->sg_data + md->sg_start;
485 		size = (apply && apply_bytes < sg->length) ?
486 			apply_bytes : sg->length;
487 		offset = sg->offset;
488 
489 		tcp_rate_check_app_limited(sk);
490 		p = sg_page(sg);
491 retry:
492 		ret = do_tcp_sendpages(sk, p, offset, size, flags);
493 		if (ret != size) {
494 			if (ret > 0) {
495 				if (apply)
496 					apply_bytes -= ret;
497 
498 				sg->offset += ret;
499 				sg->length -= ret;
500 				size -= ret;
501 				offset += ret;
502 				if (uncharge)
503 					sk_mem_uncharge(sk, ret);
504 				goto retry;
505 			}
506 
507 			return ret;
508 		}
509 
510 		if (apply)
511 			apply_bytes -= ret;
512 		sg->offset += ret;
513 		sg->length -= ret;
514 		if (uncharge)
515 			sk_mem_uncharge(sk, ret);
516 
517 		if (!sg->length) {
518 			put_page(p);
519 			md->sg_start++;
520 			if (md->sg_start == MAX_SKB_FRAGS)
521 				md->sg_start = 0;
522 			sg_init_table(sg, 1);
523 
524 			if (md->sg_start == md->sg_end)
525 				break;
526 		}
527 
528 		if (apply && !apply_bytes)
529 			break;
530 	}
531 	return 0;
532 }
533 
bpf_compute_data_pointers_sg(struct sk_msg_buff * md)534 static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md)
535 {
536 	struct scatterlist *sg = md->sg_data + md->sg_start;
537 
538 	if (md->sg_copy[md->sg_start]) {
539 		md->data = md->data_end = 0;
540 	} else {
541 		md->data = sg_virt(sg);
542 		md->data_end = md->data + sg->length;
543 	}
544 }
545 
return_mem_sg(struct sock * sk,int bytes,struct sk_msg_buff * md)546 static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
547 {
548 	struct scatterlist *sg = md->sg_data;
549 	int i = md->sg_start;
550 
551 	do {
552 		int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length;
553 
554 		sk_mem_uncharge(sk, uncharge);
555 		bytes -= uncharge;
556 		if (!bytes)
557 			break;
558 		i++;
559 		if (i == MAX_SKB_FRAGS)
560 			i = 0;
561 	} while (i != md->sg_end);
562 }
563 
free_bytes_sg(struct sock * sk,int bytes,struct sk_msg_buff * md,bool charge)564 static void free_bytes_sg(struct sock *sk, int bytes,
565 			  struct sk_msg_buff *md, bool charge)
566 {
567 	struct scatterlist *sg = md->sg_data;
568 	int i = md->sg_start, free;
569 
570 	while (bytes && sg[i].length) {
571 		free = sg[i].length;
572 		if (bytes < free) {
573 			sg[i].length -= bytes;
574 			sg[i].offset += bytes;
575 			if (charge)
576 				sk_mem_uncharge(sk, bytes);
577 			break;
578 		}
579 
580 		if (charge)
581 			sk_mem_uncharge(sk, sg[i].length);
582 		put_page(sg_page(&sg[i]));
583 		bytes -= sg[i].length;
584 		sg[i].length = 0;
585 		sg[i].page_link = 0;
586 		sg[i].offset = 0;
587 		i++;
588 
589 		if (i == MAX_SKB_FRAGS)
590 			i = 0;
591 	}
592 	md->sg_start = i;
593 }
594 
free_sg(struct sock * sk,int start,struct sk_msg_buff * md,bool charge)595 static int free_sg(struct sock *sk, int start,
596 		   struct sk_msg_buff *md, bool charge)
597 {
598 	struct scatterlist *sg = md->sg_data;
599 	int i = start, free = 0;
600 
601 	while (sg[i].length) {
602 		free += sg[i].length;
603 		if (charge)
604 			sk_mem_uncharge(sk, sg[i].length);
605 		if (!md->skb)
606 			put_page(sg_page(&sg[i]));
607 		sg[i].length = 0;
608 		sg[i].page_link = 0;
609 		sg[i].offset = 0;
610 		i++;
611 
612 		if (i == MAX_SKB_FRAGS)
613 			i = 0;
614 	}
615 	if (md->skb)
616 		consume_skb(md->skb);
617 
618 	return free;
619 }
620 
free_start_sg(struct sock * sk,struct sk_msg_buff * md,bool charge)621 static int free_start_sg(struct sock *sk, struct sk_msg_buff *md, bool charge)
622 {
623 	int free = free_sg(sk, md->sg_start, md, charge);
624 
625 	md->sg_start = md->sg_end;
626 	return free;
627 }
628 
free_curr_sg(struct sock * sk,struct sk_msg_buff * md)629 static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md)
630 {
631 	return free_sg(sk, md->sg_curr, md, true);
632 }
633 
bpf_map_msg_verdict(int _rc,struct sk_msg_buff * md)634 static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md)
635 {
636 	return ((_rc == SK_PASS) ?
637 	       (md->sk_redir ? __SK_REDIRECT : __SK_PASS) :
638 	       __SK_DROP);
639 }
640 
smap_do_tx_msg(struct sock * sk,struct smap_psock * psock,struct sk_msg_buff * md)641 static unsigned int smap_do_tx_msg(struct sock *sk,
642 				   struct smap_psock *psock,
643 				   struct sk_msg_buff *md)
644 {
645 	struct bpf_prog *prog;
646 	unsigned int rc, _rc;
647 
648 	preempt_disable();
649 	rcu_read_lock();
650 
651 	/* If the policy was removed mid-send then default to 'accept' */
652 	prog = READ_ONCE(psock->bpf_tx_msg);
653 	if (unlikely(!prog)) {
654 		_rc = SK_PASS;
655 		goto verdict;
656 	}
657 
658 	bpf_compute_data_pointers_sg(md);
659 	md->sk = sk;
660 	rc = (*prog->bpf_func)(md, prog->insnsi);
661 	psock->apply_bytes = md->apply_bytes;
662 
663 	/* Moving return codes from UAPI namespace into internal namespace */
664 	_rc = bpf_map_msg_verdict(rc, md);
665 
666 	/* The psock has a refcount on the sock but not on the map and because
667 	 * we need to drop rcu read lock here its possible the map could be
668 	 * removed between here and when we need it to execute the sock
669 	 * redirect. So do the map lookup now for future use.
670 	 */
671 	if (_rc == __SK_REDIRECT) {
672 		if (psock->sk_redir)
673 			sock_put(psock->sk_redir);
674 		psock->sk_redir = do_msg_redirect_map(md);
675 		if (!psock->sk_redir) {
676 			_rc = __SK_DROP;
677 			goto verdict;
678 		}
679 		sock_hold(psock->sk_redir);
680 	}
681 verdict:
682 	rcu_read_unlock();
683 	preempt_enable();
684 
685 	return _rc;
686 }
687 
bpf_tcp_ingress(struct sock * sk,int apply_bytes,struct smap_psock * psock,struct sk_msg_buff * md,int flags)688 static int bpf_tcp_ingress(struct sock *sk, int apply_bytes,
689 			   struct smap_psock *psock,
690 			   struct sk_msg_buff *md, int flags)
691 {
692 	bool apply = apply_bytes;
693 	size_t size, copied = 0;
694 	struct sk_msg_buff *r;
695 	int err = 0, i;
696 
697 	r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL);
698 	if (unlikely(!r))
699 		return -ENOMEM;
700 
701 	lock_sock(sk);
702 	r->sg_start = md->sg_start;
703 	i = md->sg_start;
704 
705 	do {
706 		size = (apply && apply_bytes < md->sg_data[i].length) ?
707 			apply_bytes : md->sg_data[i].length;
708 
709 		if (!sk_wmem_schedule(sk, size)) {
710 			if (!copied)
711 				err = -ENOMEM;
712 			break;
713 		}
714 
715 		sk_mem_charge(sk, size);
716 		r->sg_data[i] = md->sg_data[i];
717 		r->sg_data[i].length = size;
718 		md->sg_data[i].length -= size;
719 		md->sg_data[i].offset += size;
720 		copied += size;
721 
722 		if (md->sg_data[i].length) {
723 			get_page(sg_page(&r->sg_data[i]));
724 			r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1;
725 		} else {
726 			i++;
727 			if (i == MAX_SKB_FRAGS)
728 				i = 0;
729 			r->sg_end = i;
730 		}
731 
732 		if (apply) {
733 			apply_bytes -= size;
734 			if (!apply_bytes)
735 				break;
736 		}
737 	} while (i != md->sg_end);
738 
739 	md->sg_start = i;
740 
741 	if (!err) {
742 		list_add_tail(&r->list, &psock->ingress);
743 		sk->sk_data_ready(sk);
744 	} else {
745 		free_start_sg(sk, r, true);
746 		kfree(r);
747 	}
748 
749 	release_sock(sk);
750 	return err;
751 }
752 
bpf_tcp_sendmsg_do_redirect(struct sock * sk,int send,struct sk_msg_buff * md,int flags)753 static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send,
754 				       struct sk_msg_buff *md,
755 				       int flags)
756 {
757 	bool ingress = !!(md->flags & BPF_F_INGRESS);
758 	struct smap_psock *psock;
759 	int err = 0;
760 
761 	rcu_read_lock();
762 	psock = smap_psock_sk(sk);
763 	if (unlikely(!psock))
764 		goto out_rcu;
765 
766 	if (!refcount_inc_not_zero(&psock->refcnt))
767 		goto out_rcu;
768 
769 	rcu_read_unlock();
770 
771 	if (ingress) {
772 		err = bpf_tcp_ingress(sk, send, psock, md, flags);
773 	} else {
774 		lock_sock(sk);
775 		err = bpf_tcp_push(sk, send, md, flags, false);
776 		release_sock(sk);
777 	}
778 	smap_release_sock(psock, sk);
779 	return err;
780 out_rcu:
781 	rcu_read_unlock();
782 	return 0;
783 }
784 
bpf_md_init(struct smap_psock * psock)785 static inline void bpf_md_init(struct smap_psock *psock)
786 {
787 	if (!psock->apply_bytes) {
788 		psock->eval =  __SK_NONE;
789 		if (psock->sk_redir) {
790 			sock_put(psock->sk_redir);
791 			psock->sk_redir = NULL;
792 		}
793 	}
794 }
795 
apply_bytes_dec(struct smap_psock * psock,int i)796 static void apply_bytes_dec(struct smap_psock *psock, int i)
797 {
798 	if (psock->apply_bytes) {
799 		if (psock->apply_bytes < i)
800 			psock->apply_bytes = 0;
801 		else
802 			psock->apply_bytes -= i;
803 	}
804 }
805 
bpf_exec_tx_verdict(struct smap_psock * psock,struct sk_msg_buff * m,struct sock * sk,int * copied,int flags)806 static int bpf_exec_tx_verdict(struct smap_psock *psock,
807 			       struct sk_msg_buff *m,
808 			       struct sock *sk,
809 			       int *copied, int flags)
810 {
811 	bool cork = false, enospc = (m->sg_start == m->sg_end);
812 	struct sock *redir;
813 	int err = 0;
814 	int send;
815 
816 more_data:
817 	if (psock->eval == __SK_NONE)
818 		psock->eval = smap_do_tx_msg(sk, psock, m);
819 
820 	if (m->cork_bytes &&
821 	    m->cork_bytes > psock->sg_size && !enospc) {
822 		psock->cork_bytes = m->cork_bytes - psock->sg_size;
823 		if (!psock->cork) {
824 			psock->cork = kcalloc(1,
825 					sizeof(struct sk_msg_buff),
826 					GFP_ATOMIC | __GFP_NOWARN);
827 
828 			if (!psock->cork) {
829 				err = -ENOMEM;
830 				goto out_err;
831 			}
832 		}
833 		memcpy(psock->cork, m, sizeof(*m));
834 		goto out_err;
835 	}
836 
837 	send = psock->sg_size;
838 	if (psock->apply_bytes && psock->apply_bytes < send)
839 		send = psock->apply_bytes;
840 
841 	switch (psock->eval) {
842 	case __SK_PASS:
843 		err = bpf_tcp_push(sk, send, m, flags, true);
844 		if (unlikely(err)) {
845 			*copied -= free_start_sg(sk, m, true);
846 			break;
847 		}
848 
849 		apply_bytes_dec(psock, send);
850 		psock->sg_size -= send;
851 		break;
852 	case __SK_REDIRECT:
853 		redir = psock->sk_redir;
854 		apply_bytes_dec(psock, send);
855 
856 		if (psock->cork) {
857 			cork = true;
858 			psock->cork = NULL;
859 		}
860 
861 		return_mem_sg(sk, send, m);
862 		release_sock(sk);
863 
864 		err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags);
865 		lock_sock(sk);
866 
867 		if (unlikely(err < 0)) {
868 			int free = free_start_sg(sk, m, false);
869 
870 			psock->sg_size = 0;
871 			if (!cork)
872 				*copied -= free;
873 		} else {
874 			psock->sg_size -= send;
875 		}
876 
877 		if (cork) {
878 			free_start_sg(sk, m, true);
879 			psock->sg_size = 0;
880 			kfree(m);
881 			m = NULL;
882 			err = 0;
883 		}
884 		break;
885 	case __SK_DROP:
886 	default:
887 		free_bytes_sg(sk, send, m, true);
888 		apply_bytes_dec(psock, send);
889 		*copied -= send;
890 		psock->sg_size -= send;
891 		err = -EACCES;
892 		break;
893 	}
894 
895 	if (likely(!err)) {
896 		bpf_md_init(psock);
897 		if (m &&
898 		    m->sg_data[m->sg_start].page_link &&
899 		    m->sg_data[m->sg_start].length)
900 			goto more_data;
901 	}
902 
903 out_err:
904 	return err;
905 }
906 
bpf_wait_data(struct sock * sk,struct smap_psock * psk,int flags,long timeo,int * err)907 static int bpf_wait_data(struct sock *sk,
908 			 struct smap_psock *psk, int flags,
909 			 long timeo, int *err)
910 {
911 	int rc;
912 
913 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
914 
915 	add_wait_queue(sk_sleep(sk), &wait);
916 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
917 	rc = sk_wait_event(sk, &timeo,
918 			   !list_empty(&psk->ingress) ||
919 			   !skb_queue_empty(&sk->sk_receive_queue),
920 			   &wait);
921 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
922 	remove_wait_queue(sk_sleep(sk), &wait);
923 
924 	return rc;
925 }
926 
bpf_tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)927 static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
928 			   int nonblock, int flags, int *addr_len)
929 {
930 	struct iov_iter *iter = &msg->msg_iter;
931 	struct smap_psock *psock;
932 	int copied = 0;
933 
934 	if (unlikely(flags & MSG_ERRQUEUE))
935 		return inet_recv_error(sk, msg, len, addr_len);
936 	if (!skb_queue_empty(&sk->sk_receive_queue))
937 		return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
938 
939 	rcu_read_lock();
940 	psock = smap_psock_sk(sk);
941 	if (unlikely(!psock))
942 		goto out;
943 
944 	if (unlikely(!refcount_inc_not_zero(&psock->refcnt)))
945 		goto out;
946 	rcu_read_unlock();
947 
948 	lock_sock(sk);
949 bytes_ready:
950 	while (copied != len) {
951 		struct scatterlist *sg;
952 		struct sk_msg_buff *md;
953 		int i;
954 
955 		md = list_first_entry_or_null(&psock->ingress,
956 					      struct sk_msg_buff, list);
957 		if (unlikely(!md))
958 			break;
959 		i = md->sg_start;
960 		do {
961 			struct page *page;
962 			int n, copy;
963 
964 			sg = &md->sg_data[i];
965 			copy = sg->length;
966 			page = sg_page(sg);
967 
968 			if (copied + copy > len)
969 				copy = len - copied;
970 
971 			n = copy_page_to_iter(page, sg->offset, copy, iter);
972 			if (n != copy) {
973 				md->sg_start = i;
974 				release_sock(sk);
975 				smap_release_sock(psock, sk);
976 				return -EFAULT;
977 			}
978 
979 			copied += copy;
980 			sg->offset += copy;
981 			sg->length -= copy;
982 			sk_mem_uncharge(sk, copy);
983 
984 			if (!sg->length) {
985 				i++;
986 				if (i == MAX_SKB_FRAGS)
987 					i = 0;
988 				if (!md->skb)
989 					put_page(page);
990 			}
991 			if (copied == len)
992 				break;
993 		} while (i != md->sg_end);
994 		md->sg_start = i;
995 
996 		if (!sg->length && md->sg_start == md->sg_end) {
997 			list_del(&md->list);
998 			if (md->skb)
999 				consume_skb(md->skb);
1000 			kfree(md);
1001 		}
1002 	}
1003 
1004 	if (!copied) {
1005 		long timeo;
1006 		int data;
1007 		int err = 0;
1008 
1009 		timeo = sock_rcvtimeo(sk, nonblock);
1010 		data = bpf_wait_data(sk, psock, flags, timeo, &err);
1011 
1012 		if (data) {
1013 			if (!skb_queue_empty(&sk->sk_receive_queue)) {
1014 				release_sock(sk);
1015 				smap_release_sock(psock, sk);
1016 				copied = tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
1017 				return copied;
1018 			}
1019 			goto bytes_ready;
1020 		}
1021 
1022 		if (err)
1023 			copied = err;
1024 	}
1025 
1026 	release_sock(sk);
1027 	smap_release_sock(psock, sk);
1028 	return copied;
1029 out:
1030 	rcu_read_unlock();
1031 	return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
1032 }
1033 
1034 
bpf_tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1035 static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1036 {
1037 	int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS;
1038 	struct sk_msg_buff md = {0};
1039 	unsigned int sg_copy = 0;
1040 	struct smap_psock *psock;
1041 	int copied = 0, err = 0;
1042 	struct scatterlist *sg;
1043 	long timeo;
1044 
1045 	/* Its possible a sock event or user removed the psock _but_ the ops
1046 	 * have not been reprogrammed yet so we get here. In this case fallback
1047 	 * to tcp_sendmsg. Note this only works because we _only_ ever allow
1048 	 * a single ULP there is no hierarchy here.
1049 	 */
1050 	rcu_read_lock();
1051 	psock = smap_psock_sk(sk);
1052 	if (unlikely(!psock)) {
1053 		rcu_read_unlock();
1054 		return tcp_sendmsg(sk, msg, size);
1055 	}
1056 
1057 	/* Increment the psock refcnt to ensure its not released while sending a
1058 	 * message. Required because sk lookup and bpf programs are used in
1059 	 * separate rcu critical sections. Its OK if we lose the map entry
1060 	 * but we can't lose the sock reference.
1061 	 */
1062 	if (!refcount_inc_not_zero(&psock->refcnt)) {
1063 		rcu_read_unlock();
1064 		return tcp_sendmsg(sk, msg, size);
1065 	}
1066 
1067 	sg = md.sg_data;
1068 	sg_init_marker(sg, MAX_SKB_FRAGS);
1069 	rcu_read_unlock();
1070 
1071 	lock_sock(sk);
1072 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1073 
1074 	while (msg_data_left(msg)) {
1075 		struct sk_msg_buff *m = NULL;
1076 		bool enospc = false;
1077 		int copy;
1078 
1079 		if (sk->sk_err) {
1080 			err = -sk->sk_err;
1081 			goto out_err;
1082 		}
1083 
1084 		copy = msg_data_left(msg);
1085 		if (!sk_stream_memory_free(sk))
1086 			goto wait_for_sndbuf;
1087 
1088 		m = psock->cork_bytes ? psock->cork : &md;
1089 		m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end;
1090 		err = sk_alloc_sg(sk, copy, m->sg_data,
1091 				  m->sg_start, &m->sg_end, &sg_copy,
1092 				  m->sg_end - 1);
1093 		if (err) {
1094 			if (err != -ENOSPC)
1095 				goto wait_for_memory;
1096 			enospc = true;
1097 			copy = sg_copy;
1098 		}
1099 
1100 		err = memcopy_from_iter(sk, m, &msg->msg_iter, copy);
1101 		if (err < 0) {
1102 			free_curr_sg(sk, m);
1103 			goto out_err;
1104 		}
1105 
1106 		psock->sg_size += copy;
1107 		copied += copy;
1108 		sg_copy = 0;
1109 
1110 		/* When bytes are being corked skip running BPF program and
1111 		 * applying verdict unless there is no more buffer space. In
1112 		 * the ENOSPC case simply run BPF prorgram with currently
1113 		 * accumulated data. We don't have much choice at this point
1114 		 * we could try extending the page frags or chaining complex
1115 		 * frags but even in these cases _eventually_ we will hit an
1116 		 * OOM scenario. More complex recovery schemes may be
1117 		 * implemented in the future, but BPF programs must handle
1118 		 * the case where apply_cork requests are not honored. The
1119 		 * canonical method to verify this is to check data length.
1120 		 */
1121 		if (psock->cork_bytes) {
1122 			if (copy > psock->cork_bytes)
1123 				psock->cork_bytes = 0;
1124 			else
1125 				psock->cork_bytes -= copy;
1126 
1127 			if (psock->cork_bytes && !enospc)
1128 				goto out_cork;
1129 
1130 			/* All cork bytes accounted for re-run filter */
1131 			psock->eval = __SK_NONE;
1132 			psock->cork_bytes = 0;
1133 		}
1134 
1135 		err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
1136 		if (unlikely(err < 0))
1137 			goto out_err;
1138 		continue;
1139 wait_for_sndbuf:
1140 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1141 wait_for_memory:
1142 		err = sk_stream_wait_memory(sk, &timeo);
1143 		if (err) {
1144 			if (m && m != psock->cork)
1145 				free_start_sg(sk, m, true);
1146 			goto out_err;
1147 		}
1148 	}
1149 out_err:
1150 	if (err < 0)
1151 		err = sk_stream_error(sk, msg->msg_flags, err);
1152 out_cork:
1153 	release_sock(sk);
1154 	smap_release_sock(psock, sk);
1155 	return copied ? copied : err;
1156 }
1157 
bpf_tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1158 static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
1159 			    int offset, size_t size, int flags)
1160 {
1161 	struct sk_msg_buff md = {0}, *m = NULL;
1162 	int err = 0, copied = 0;
1163 	struct smap_psock *psock;
1164 	struct scatterlist *sg;
1165 	bool enospc = false;
1166 
1167 	rcu_read_lock();
1168 	psock = smap_psock_sk(sk);
1169 	if (unlikely(!psock))
1170 		goto accept;
1171 
1172 	if (!refcount_inc_not_zero(&psock->refcnt))
1173 		goto accept;
1174 	rcu_read_unlock();
1175 
1176 	lock_sock(sk);
1177 
1178 	if (psock->cork_bytes) {
1179 		m = psock->cork;
1180 		sg = &m->sg_data[m->sg_end];
1181 	} else {
1182 		m = &md;
1183 		sg = m->sg_data;
1184 		sg_init_marker(sg, MAX_SKB_FRAGS);
1185 	}
1186 
1187 	/* Catch case where ring is full and sendpage is stalled. */
1188 	if (unlikely(m->sg_end == m->sg_start &&
1189 	    m->sg_data[m->sg_end].length))
1190 		goto out_err;
1191 
1192 	psock->sg_size += size;
1193 	sg_set_page(sg, page, size, offset);
1194 	get_page(page);
1195 	m->sg_copy[m->sg_end] = true;
1196 	sk_mem_charge(sk, size);
1197 	m->sg_end++;
1198 	copied = size;
1199 
1200 	if (m->sg_end == MAX_SKB_FRAGS)
1201 		m->sg_end = 0;
1202 
1203 	if (m->sg_end == m->sg_start)
1204 		enospc = true;
1205 
1206 	if (psock->cork_bytes) {
1207 		if (size > psock->cork_bytes)
1208 			psock->cork_bytes = 0;
1209 		else
1210 			psock->cork_bytes -= size;
1211 
1212 		if (psock->cork_bytes && !enospc)
1213 			goto out_err;
1214 
1215 		/* All cork bytes accounted for re-run filter */
1216 		psock->eval = __SK_NONE;
1217 		psock->cork_bytes = 0;
1218 	}
1219 
1220 	err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
1221 out_err:
1222 	release_sock(sk);
1223 	smap_release_sock(psock, sk);
1224 	return copied ? copied : err;
1225 accept:
1226 	rcu_read_unlock();
1227 	return tcp_sendpage(sk, page, offset, size, flags);
1228 }
1229 
bpf_tcp_msg_add(struct smap_psock * psock,struct sock * sk,struct bpf_prog * tx_msg)1230 static void bpf_tcp_msg_add(struct smap_psock *psock,
1231 			    struct sock *sk,
1232 			    struct bpf_prog *tx_msg)
1233 {
1234 	struct bpf_prog *orig_tx_msg;
1235 
1236 	orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg);
1237 	if (orig_tx_msg)
1238 		bpf_prog_put(orig_tx_msg);
1239 }
1240 
bpf_tcp_ulp_register(void)1241 static int bpf_tcp_ulp_register(void)
1242 {
1243 	build_protos(bpf_tcp_prots[SOCKMAP_IPV4], &tcp_prot);
1244 	/* Once BPF TX ULP is registered it is never unregistered. It
1245 	 * will be in the ULP list for the lifetime of the system. Doing
1246 	 * duplicate registers is not a problem.
1247 	 */
1248 	return tcp_register_ulp(&bpf_tcp_ulp_ops);
1249 }
1250 
smap_verdict_func(struct smap_psock * psock,struct sk_buff * skb)1251 static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
1252 {
1253 	struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
1254 	int rc;
1255 
1256 	if (unlikely(!prog))
1257 		return __SK_DROP;
1258 
1259 	skb_orphan(skb);
1260 	/* We need to ensure that BPF metadata for maps is also cleared
1261 	 * when we orphan the skb so that we don't have the possibility
1262 	 * to reference a stale map.
1263 	 */
1264 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
1265 	skb->sk = psock->sock;
1266 	bpf_compute_data_end_sk_skb(skb);
1267 	preempt_disable();
1268 	rc = (*prog->bpf_func)(skb, prog->insnsi);
1269 	preempt_enable();
1270 	skb->sk = NULL;
1271 
1272 	/* Moving return codes from UAPI namespace into internal namespace */
1273 	return rc == SK_PASS ?
1274 		(TCP_SKB_CB(skb)->bpf.sk_redir ? __SK_REDIRECT : __SK_PASS) :
1275 		__SK_DROP;
1276 }
1277 
smap_do_ingress(struct smap_psock * psock,struct sk_buff * skb)1278 static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb)
1279 {
1280 	struct sock *sk = psock->sock;
1281 	int copied = 0, num_sg;
1282 	struct sk_msg_buff *r;
1283 
1284 	r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC);
1285 	if (unlikely(!r))
1286 		return -EAGAIN;
1287 
1288 	if (!sk_rmem_schedule(sk, skb, skb->len)) {
1289 		kfree(r);
1290 		return -EAGAIN;
1291 	}
1292 
1293 	sg_init_table(r->sg_data, MAX_SKB_FRAGS);
1294 	num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len);
1295 	if (unlikely(num_sg < 0)) {
1296 		kfree(r);
1297 		return num_sg;
1298 	}
1299 	sk_mem_charge(sk, skb->len);
1300 	copied = skb->len;
1301 	r->sg_start = 0;
1302 	r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg;
1303 	r->skb = skb;
1304 	list_add_tail(&r->list, &psock->ingress);
1305 	sk->sk_data_ready(sk);
1306 	return copied;
1307 }
1308 
smap_do_verdict(struct smap_psock * psock,struct sk_buff * skb)1309 static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
1310 {
1311 	struct smap_psock *peer;
1312 	struct sock *sk;
1313 	__u32 in;
1314 	int rc;
1315 
1316 	rc = smap_verdict_func(psock, skb);
1317 	switch (rc) {
1318 	case __SK_REDIRECT:
1319 		sk = do_sk_redirect_map(skb);
1320 		if (!sk) {
1321 			kfree_skb(skb);
1322 			break;
1323 		}
1324 
1325 		peer = smap_psock_sk(sk);
1326 		in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
1327 
1328 		if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) ||
1329 			     !test_bit(SMAP_TX_RUNNING, &peer->state))) {
1330 			kfree_skb(skb);
1331 			break;
1332 		}
1333 
1334 		if (!in && sock_writeable(sk)) {
1335 			skb_set_owner_w(skb, sk);
1336 			skb_queue_tail(&peer->rxqueue, skb);
1337 			schedule_work(&peer->tx_work);
1338 			break;
1339 		} else if (in &&
1340 			   atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
1341 			skb_queue_tail(&peer->rxqueue, skb);
1342 			schedule_work(&peer->tx_work);
1343 			break;
1344 		}
1345 	/* Fall through and free skb otherwise */
1346 	case __SK_DROP:
1347 	default:
1348 		kfree_skb(skb);
1349 	}
1350 }
1351 
smap_report_sk_error(struct smap_psock * psock,int err)1352 static void smap_report_sk_error(struct smap_psock *psock, int err)
1353 {
1354 	struct sock *sk = psock->sock;
1355 
1356 	sk->sk_err = err;
1357 	sk->sk_error_report(sk);
1358 }
1359 
smap_read_sock_strparser(struct strparser * strp,struct sk_buff * skb)1360 static void smap_read_sock_strparser(struct strparser *strp,
1361 				     struct sk_buff *skb)
1362 {
1363 	struct smap_psock *psock;
1364 
1365 	rcu_read_lock();
1366 	psock = container_of(strp, struct smap_psock, strp);
1367 	smap_do_verdict(psock, skb);
1368 	rcu_read_unlock();
1369 }
1370 
1371 /* Called with lock held on socket */
smap_data_ready(struct sock * sk)1372 static void smap_data_ready(struct sock *sk)
1373 {
1374 	struct smap_psock *psock;
1375 
1376 	rcu_read_lock();
1377 	psock = smap_psock_sk(sk);
1378 	if (likely(psock)) {
1379 		write_lock_bh(&sk->sk_callback_lock);
1380 		strp_data_ready(&psock->strp);
1381 		write_unlock_bh(&sk->sk_callback_lock);
1382 	}
1383 	rcu_read_unlock();
1384 }
1385 
smap_tx_work(struct work_struct * w)1386 static void smap_tx_work(struct work_struct *w)
1387 {
1388 	struct smap_psock *psock;
1389 	struct sk_buff *skb;
1390 	int rem, off, n;
1391 
1392 	psock = container_of(w, struct smap_psock, tx_work);
1393 
1394 	/* lock sock to avoid losing sk_socket at some point during loop */
1395 	lock_sock(psock->sock);
1396 	if (psock->save_skb) {
1397 		skb = psock->save_skb;
1398 		rem = psock->save_rem;
1399 		off = psock->save_off;
1400 		psock->save_skb = NULL;
1401 		goto start;
1402 	}
1403 
1404 	while ((skb = skb_dequeue(&psock->rxqueue))) {
1405 		__u32 flags;
1406 
1407 		rem = skb->len;
1408 		off = 0;
1409 start:
1410 		flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
1411 		do {
1412 			if (likely(psock->sock->sk_socket)) {
1413 				if (flags)
1414 					n = smap_do_ingress(psock, skb);
1415 				else
1416 					n = skb_send_sock_locked(psock->sock,
1417 								 skb, off, rem);
1418 			} else {
1419 				n = -EINVAL;
1420 			}
1421 
1422 			if (n <= 0) {
1423 				if (n == -EAGAIN) {
1424 					/* Retry when space is available */
1425 					psock->save_skb = skb;
1426 					psock->save_rem = rem;
1427 					psock->save_off = off;
1428 					goto out;
1429 				}
1430 				/* Hard errors break pipe and stop xmit */
1431 				smap_report_sk_error(psock, n ? -n : EPIPE);
1432 				clear_bit(SMAP_TX_RUNNING, &psock->state);
1433 				kfree_skb(skb);
1434 				goto out;
1435 			}
1436 			rem -= n;
1437 			off += n;
1438 		} while (rem);
1439 
1440 		if (!flags)
1441 			kfree_skb(skb);
1442 	}
1443 out:
1444 	release_sock(psock->sock);
1445 }
1446 
smap_write_space(struct sock * sk)1447 static void smap_write_space(struct sock *sk)
1448 {
1449 	struct smap_psock *psock;
1450 	void (*write_space)(struct sock *sk);
1451 
1452 	rcu_read_lock();
1453 	psock = smap_psock_sk(sk);
1454 	if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
1455 		schedule_work(&psock->tx_work);
1456 	write_space = psock->save_write_space;
1457 	rcu_read_unlock();
1458 	write_space(sk);
1459 }
1460 
smap_stop_sock(struct smap_psock * psock,struct sock * sk)1461 static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
1462 {
1463 	if (!psock->strp_enabled)
1464 		return;
1465 	sk->sk_data_ready = psock->save_data_ready;
1466 	sk->sk_write_space = psock->save_write_space;
1467 	psock->save_data_ready = NULL;
1468 	psock->save_write_space = NULL;
1469 	strp_stop(&psock->strp);
1470 	psock->strp_enabled = false;
1471 }
1472 
smap_destroy_psock(struct rcu_head * rcu)1473 static void smap_destroy_psock(struct rcu_head *rcu)
1474 {
1475 	struct smap_psock *psock = container_of(rcu,
1476 						  struct smap_psock, rcu);
1477 
1478 	/* Now that a grace period has passed there is no longer
1479 	 * any reference to this sock in the sockmap so we can
1480 	 * destroy the psock, strparser, and bpf programs. But,
1481 	 * because we use workqueue sync operations we can not
1482 	 * do it in rcu context
1483 	 */
1484 	schedule_work(&psock->gc_work);
1485 }
1486 
psock_is_smap_sk(struct sock * sk)1487 static bool psock_is_smap_sk(struct sock *sk)
1488 {
1489 	return inet_csk(sk)->icsk_ulp_ops == &bpf_tcp_ulp_ops;
1490 }
1491 
smap_release_sock(struct smap_psock * psock,struct sock * sock)1492 static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
1493 {
1494 	if (refcount_dec_and_test(&psock->refcnt)) {
1495 		if (psock_is_smap_sk(sock))
1496 			tcp_cleanup_ulp(sock);
1497 		write_lock_bh(&sock->sk_callback_lock);
1498 		smap_stop_sock(psock, sock);
1499 		write_unlock_bh(&sock->sk_callback_lock);
1500 		clear_bit(SMAP_TX_RUNNING, &psock->state);
1501 		rcu_assign_sk_user_data(sock, NULL);
1502 		call_rcu_sched(&psock->rcu, smap_destroy_psock);
1503 	}
1504 }
1505 
smap_parse_func_strparser(struct strparser * strp,struct sk_buff * skb)1506 static int smap_parse_func_strparser(struct strparser *strp,
1507 				       struct sk_buff *skb)
1508 {
1509 	struct smap_psock *psock;
1510 	struct bpf_prog *prog;
1511 	int rc;
1512 
1513 	rcu_read_lock();
1514 	psock = container_of(strp, struct smap_psock, strp);
1515 	prog = READ_ONCE(psock->bpf_parse);
1516 
1517 	if (unlikely(!prog)) {
1518 		rcu_read_unlock();
1519 		return skb->len;
1520 	}
1521 
1522 	/* Attach socket for bpf program to use if needed we can do this
1523 	 * because strparser clones the skb before handing it to a upper
1524 	 * layer, meaning skb_orphan has been called. We NULL sk on the
1525 	 * way out to ensure we don't trigger a BUG_ON in skb/sk operations
1526 	 * later and because we are not charging the memory of this skb to
1527 	 * any socket yet.
1528 	 */
1529 	skb->sk = psock->sock;
1530 	bpf_compute_data_end_sk_skb(skb);
1531 	rc = (*prog->bpf_func)(skb, prog->insnsi);
1532 	skb->sk = NULL;
1533 	rcu_read_unlock();
1534 	return rc;
1535 }
1536 
smap_read_sock_done(struct strparser * strp,int err)1537 static int smap_read_sock_done(struct strparser *strp, int err)
1538 {
1539 	return err;
1540 }
1541 
smap_init_sock(struct smap_psock * psock,struct sock * sk)1542 static int smap_init_sock(struct smap_psock *psock,
1543 			  struct sock *sk)
1544 {
1545 	static const struct strp_callbacks cb = {
1546 		.rcv_msg = smap_read_sock_strparser,
1547 		.parse_msg = smap_parse_func_strparser,
1548 		.read_sock_done = smap_read_sock_done,
1549 	};
1550 
1551 	return strp_init(&psock->strp, sk, &cb);
1552 }
1553 
smap_init_progs(struct smap_psock * psock,struct bpf_prog * verdict,struct bpf_prog * parse)1554 static void smap_init_progs(struct smap_psock *psock,
1555 			    struct bpf_prog *verdict,
1556 			    struct bpf_prog *parse)
1557 {
1558 	struct bpf_prog *orig_parse, *orig_verdict;
1559 
1560 	orig_parse = xchg(&psock->bpf_parse, parse);
1561 	orig_verdict = xchg(&psock->bpf_verdict, verdict);
1562 
1563 	if (orig_verdict)
1564 		bpf_prog_put(orig_verdict);
1565 	if (orig_parse)
1566 		bpf_prog_put(orig_parse);
1567 }
1568 
smap_start_sock(struct smap_psock * psock,struct sock * sk)1569 static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
1570 {
1571 	if (sk->sk_data_ready == smap_data_ready)
1572 		return;
1573 	psock->save_data_ready = sk->sk_data_ready;
1574 	psock->save_write_space = sk->sk_write_space;
1575 	sk->sk_data_ready = smap_data_ready;
1576 	sk->sk_write_space = smap_write_space;
1577 	psock->strp_enabled = true;
1578 }
1579 
sock_map_remove_complete(struct bpf_stab * stab)1580 static void sock_map_remove_complete(struct bpf_stab *stab)
1581 {
1582 	bpf_map_area_free(stab->sock_map);
1583 	kfree(stab);
1584 }
1585 
smap_gc_work(struct work_struct * w)1586 static void smap_gc_work(struct work_struct *w)
1587 {
1588 	struct smap_psock_map_entry *e, *tmp;
1589 	struct sk_msg_buff *md, *mtmp;
1590 	struct smap_psock *psock;
1591 
1592 	psock = container_of(w, struct smap_psock, gc_work);
1593 
1594 	/* no callback lock needed because we already detached sockmap ops */
1595 	if (psock->strp_enabled)
1596 		strp_done(&psock->strp);
1597 
1598 	cancel_work_sync(&psock->tx_work);
1599 	__skb_queue_purge(&psock->rxqueue);
1600 
1601 	/* At this point all strparser and xmit work must be complete */
1602 	if (psock->bpf_parse)
1603 		bpf_prog_put(psock->bpf_parse);
1604 	if (psock->bpf_verdict)
1605 		bpf_prog_put(psock->bpf_verdict);
1606 	if (psock->bpf_tx_msg)
1607 		bpf_prog_put(psock->bpf_tx_msg);
1608 
1609 	if (psock->cork) {
1610 		free_start_sg(psock->sock, psock->cork, true);
1611 		kfree(psock->cork);
1612 	}
1613 
1614 	list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
1615 		list_del(&md->list);
1616 		free_start_sg(psock->sock, md, true);
1617 		kfree(md);
1618 	}
1619 
1620 	list_for_each_entry_safe(e, tmp, &psock->maps, list) {
1621 		list_del(&e->list);
1622 		kfree(e);
1623 	}
1624 
1625 	if (psock->sk_redir)
1626 		sock_put(psock->sk_redir);
1627 
1628 	sock_put(psock->sock);
1629 	kfree(psock);
1630 }
1631 
smap_init_psock(struct sock * sock,int node)1632 static struct smap_psock *smap_init_psock(struct sock *sock, int node)
1633 {
1634 	struct smap_psock *psock;
1635 
1636 	psock = kzalloc_node(sizeof(struct smap_psock),
1637 			     GFP_ATOMIC | __GFP_NOWARN,
1638 			     node);
1639 	if (!psock)
1640 		return ERR_PTR(-ENOMEM);
1641 
1642 	psock->eval =  __SK_NONE;
1643 	psock->sock = sock;
1644 	skb_queue_head_init(&psock->rxqueue);
1645 	INIT_WORK(&psock->tx_work, smap_tx_work);
1646 	INIT_WORK(&psock->gc_work, smap_gc_work);
1647 	INIT_LIST_HEAD(&psock->maps);
1648 	INIT_LIST_HEAD(&psock->ingress);
1649 	refcount_set(&psock->refcnt, 1);
1650 	spin_lock_init(&psock->maps_lock);
1651 
1652 	rcu_assign_sk_user_data(sock, psock);
1653 	sock_hold(sock);
1654 	return psock;
1655 }
1656 
sock_map_alloc(union bpf_attr * attr)1657 static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
1658 {
1659 	struct bpf_stab *stab;
1660 	u64 cost;
1661 	int err;
1662 
1663 	if (!capable(CAP_NET_ADMIN))
1664 		return ERR_PTR(-EPERM);
1665 
1666 	/* check sanity of attributes */
1667 	if (attr->max_entries == 0 || attr->key_size != 4 ||
1668 	    attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
1669 		return ERR_PTR(-EINVAL);
1670 
1671 	err = bpf_tcp_ulp_register();
1672 	if (err && err != -EEXIST)
1673 		return ERR_PTR(err);
1674 
1675 	stab = kzalloc(sizeof(*stab), GFP_USER);
1676 	if (!stab)
1677 		return ERR_PTR(-ENOMEM);
1678 
1679 	bpf_map_init_from_attr(&stab->map, attr);
1680 	raw_spin_lock_init(&stab->lock);
1681 
1682 	/* make sure page count doesn't overflow */
1683 	cost = (u64) stab->map.max_entries * sizeof(struct sock *);
1684 	err = -EINVAL;
1685 	if (cost >= U32_MAX - PAGE_SIZE)
1686 		goto free_stab;
1687 
1688 	stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
1689 
1690 	/* if map size is larger than memlock limit, reject it early */
1691 	err = bpf_map_precharge_memlock(stab->map.pages);
1692 	if (err)
1693 		goto free_stab;
1694 
1695 	err = -ENOMEM;
1696 	stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
1697 					    sizeof(struct sock *),
1698 					    stab->map.numa_node);
1699 	if (!stab->sock_map)
1700 		goto free_stab;
1701 
1702 	return &stab->map;
1703 free_stab:
1704 	kfree(stab);
1705 	return ERR_PTR(err);
1706 }
1707 
smap_list_map_remove(struct smap_psock * psock,struct sock ** entry)1708 static void smap_list_map_remove(struct smap_psock *psock,
1709 				 struct sock **entry)
1710 {
1711 	struct smap_psock_map_entry *e, *tmp;
1712 
1713 	spin_lock_bh(&psock->maps_lock);
1714 	list_for_each_entry_safe(e, tmp, &psock->maps, list) {
1715 		if (e->entry == entry) {
1716 			list_del(&e->list);
1717 			kfree(e);
1718 		}
1719 	}
1720 	spin_unlock_bh(&psock->maps_lock);
1721 }
1722 
smap_list_hash_remove(struct smap_psock * psock,struct htab_elem * hash_link)1723 static void smap_list_hash_remove(struct smap_psock *psock,
1724 				  struct htab_elem *hash_link)
1725 {
1726 	struct smap_psock_map_entry *e, *tmp;
1727 
1728 	spin_lock_bh(&psock->maps_lock);
1729 	list_for_each_entry_safe(e, tmp, &psock->maps, list) {
1730 		struct htab_elem *c = rcu_dereference(e->hash_link);
1731 
1732 		if (c == hash_link) {
1733 			list_del(&e->list);
1734 			kfree(e);
1735 		}
1736 	}
1737 	spin_unlock_bh(&psock->maps_lock);
1738 }
1739 
sock_map_free(struct bpf_map * map)1740 static void sock_map_free(struct bpf_map *map)
1741 {
1742 	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1743 	int i;
1744 
1745 	synchronize_rcu();
1746 
1747 	/* At this point no update, lookup or delete operations can happen.
1748 	 * However, be aware we can still get a socket state event updates,
1749 	 * and data ready callabacks that reference the psock from sk_user_data
1750 	 * Also psock worker threads are still in-flight. So smap_release_sock
1751 	 * will only free the psock after cancel_sync on the worker threads
1752 	 * and a grace period expire to ensure psock is really safe to remove.
1753 	 */
1754 	rcu_read_lock();
1755 	raw_spin_lock_bh(&stab->lock);
1756 	for (i = 0; i < stab->map.max_entries; i++) {
1757 		struct smap_psock *psock;
1758 		struct sock *sock;
1759 
1760 		sock = stab->sock_map[i];
1761 		if (!sock)
1762 			continue;
1763 		stab->sock_map[i] = NULL;
1764 		psock = smap_psock_sk(sock);
1765 		/* This check handles a racing sock event that can get the
1766 		 * sk_callback_lock before this case but after xchg happens
1767 		 * causing the refcnt to hit zero and sock user data (psock)
1768 		 * to be null and queued for garbage collection.
1769 		 */
1770 		if (likely(psock)) {
1771 			smap_list_map_remove(psock, &stab->sock_map[i]);
1772 			smap_release_sock(psock, sock);
1773 		}
1774 	}
1775 	raw_spin_unlock_bh(&stab->lock);
1776 	rcu_read_unlock();
1777 
1778 	sock_map_remove_complete(stab);
1779 }
1780 
sock_map_get_next_key(struct bpf_map * map,void * key,void * next_key)1781 static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
1782 {
1783 	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1784 	u32 i = key ? *(u32 *)key : U32_MAX;
1785 	u32 *next = (u32 *)next_key;
1786 
1787 	if (i >= stab->map.max_entries) {
1788 		*next = 0;
1789 		return 0;
1790 	}
1791 
1792 	if (i == stab->map.max_entries - 1)
1793 		return -ENOENT;
1794 
1795 	*next = i + 1;
1796 	return 0;
1797 }
1798 
__sock_map_lookup_elem(struct bpf_map * map,u32 key)1799 struct sock  *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
1800 {
1801 	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1802 
1803 	if (key >= map->max_entries)
1804 		return NULL;
1805 
1806 	return READ_ONCE(stab->sock_map[key]);
1807 }
1808 
sock_map_delete_elem(struct bpf_map * map,void * key)1809 static int sock_map_delete_elem(struct bpf_map *map, void *key)
1810 {
1811 	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1812 	struct smap_psock *psock;
1813 	int k = *(u32 *)key;
1814 	struct sock *sock;
1815 
1816 	if (k >= map->max_entries)
1817 		return -EINVAL;
1818 
1819 	raw_spin_lock_bh(&stab->lock);
1820 	sock = stab->sock_map[k];
1821 	stab->sock_map[k] = NULL;
1822 	raw_spin_unlock_bh(&stab->lock);
1823 	if (!sock)
1824 		return -EINVAL;
1825 
1826 	psock = smap_psock_sk(sock);
1827 	if (!psock)
1828 		return 0;
1829 	if (psock->bpf_parse) {
1830 		write_lock_bh(&sock->sk_callback_lock);
1831 		smap_stop_sock(psock, sock);
1832 		write_unlock_bh(&sock->sk_callback_lock);
1833 	}
1834 	smap_list_map_remove(psock, &stab->sock_map[k]);
1835 	smap_release_sock(psock, sock);
1836 	return 0;
1837 }
1838 
1839 /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
1840  * done inside rcu critical sections. This ensures on updates that the psock
1841  * will not be released via smap_release_sock() until concurrent updates/deletes
1842  * complete. All operations operate on sock_map using cmpxchg and xchg
1843  * operations to ensure we do not get stale references. Any reads into the
1844  * map must be done with READ_ONCE() because of this.
1845  *
1846  * A psock is destroyed via call_rcu and after any worker threads are cancelled
1847  * and syncd so we are certain all references from the update/lookup/delete
1848  * operations as well as references in the data path are no longer in use.
1849  *
1850  * Psocks may exist in multiple maps, but only a single set of parse/verdict
1851  * programs may be inherited from the maps it belongs to. A reference count
1852  * is kept with the total number of references to the psock from all maps. The
1853  * psock will not be released until this reaches zero. The psock and sock
1854  * user data data use the sk_callback_lock to protect critical data structures
1855  * from concurrent access. This allows us to avoid two updates from modifying
1856  * the user data in sock and the lock is required anyways for modifying
1857  * callbacks, we simply increase its scope slightly.
1858  *
1859  * Rules to follow,
1860  *  - psock must always be read inside RCU critical section
1861  *  - sk_user_data must only be modified inside sk_callback_lock and read
1862  *    inside RCU critical section.
1863  *  - psock->maps list must only be read & modified inside sk_callback_lock
1864  *  - sock_map must use READ_ONCE and (cmp)xchg operations
1865  *  - BPF verdict/parse programs must use READ_ONCE and xchg operations
1866  */
1867 
__sock_map_ctx_update_elem(struct bpf_map * map,struct bpf_sock_progs * progs,struct sock * sock,void * key)1868 static int __sock_map_ctx_update_elem(struct bpf_map *map,
1869 				      struct bpf_sock_progs *progs,
1870 				      struct sock *sock,
1871 				      void *key)
1872 {
1873 	struct bpf_prog *verdict, *parse, *tx_msg;
1874 	struct smap_psock *psock;
1875 	bool new = false;
1876 	int err = 0;
1877 
1878 	/* 1. If sock map has BPF programs those will be inherited by the
1879 	 * sock being added. If the sock is already attached to BPF programs
1880 	 * this results in an error.
1881 	 */
1882 	verdict = READ_ONCE(progs->bpf_verdict);
1883 	parse = READ_ONCE(progs->bpf_parse);
1884 	tx_msg = READ_ONCE(progs->bpf_tx_msg);
1885 
1886 	if (parse && verdict) {
1887 		/* bpf prog refcnt may be zero if a concurrent attach operation
1888 		 * removes the program after the above READ_ONCE() but before
1889 		 * we increment the refcnt. If this is the case abort with an
1890 		 * error.
1891 		 */
1892 		verdict = bpf_prog_inc_not_zero(verdict);
1893 		if (IS_ERR(verdict))
1894 			return PTR_ERR(verdict);
1895 
1896 		parse = bpf_prog_inc_not_zero(parse);
1897 		if (IS_ERR(parse)) {
1898 			bpf_prog_put(verdict);
1899 			return PTR_ERR(parse);
1900 		}
1901 	}
1902 
1903 	if (tx_msg) {
1904 		tx_msg = bpf_prog_inc_not_zero(tx_msg);
1905 		if (IS_ERR(tx_msg)) {
1906 			if (parse && verdict) {
1907 				bpf_prog_put(parse);
1908 				bpf_prog_put(verdict);
1909 			}
1910 			return PTR_ERR(tx_msg);
1911 		}
1912 	}
1913 
1914 	psock = smap_psock_sk(sock);
1915 
1916 	/* 2. Do not allow inheriting programs if psock exists and has
1917 	 * already inherited programs. This would create confusion on
1918 	 * which parser/verdict program is running. If no psock exists
1919 	 * create one. Inside sk_callback_lock to ensure concurrent create
1920 	 * doesn't update user data.
1921 	 */
1922 	if (psock) {
1923 		if (!psock_is_smap_sk(sock)) {
1924 			err = -EBUSY;
1925 			goto out_progs;
1926 		}
1927 		if (READ_ONCE(psock->bpf_parse) && parse) {
1928 			err = -EBUSY;
1929 			goto out_progs;
1930 		}
1931 		if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) {
1932 			err = -EBUSY;
1933 			goto out_progs;
1934 		}
1935 		if (!refcount_inc_not_zero(&psock->refcnt)) {
1936 			err = -EAGAIN;
1937 			goto out_progs;
1938 		}
1939 	} else {
1940 		psock = smap_init_psock(sock, map->numa_node);
1941 		if (IS_ERR(psock)) {
1942 			err = PTR_ERR(psock);
1943 			goto out_progs;
1944 		}
1945 
1946 		set_bit(SMAP_TX_RUNNING, &psock->state);
1947 		new = true;
1948 	}
1949 
1950 	/* 3. At this point we have a reference to a valid psock that is
1951 	 * running. Attach any BPF programs needed.
1952 	 */
1953 	if (tx_msg)
1954 		bpf_tcp_msg_add(psock, sock, tx_msg);
1955 	if (new) {
1956 		err = tcp_set_ulp_id(sock, TCP_ULP_BPF);
1957 		if (err)
1958 			goto out_free;
1959 	}
1960 
1961 	if (parse && verdict && !psock->strp_enabled) {
1962 		err = smap_init_sock(psock, sock);
1963 		if (err)
1964 			goto out_free;
1965 		smap_init_progs(psock, verdict, parse);
1966 		write_lock_bh(&sock->sk_callback_lock);
1967 		smap_start_sock(psock, sock);
1968 		write_unlock_bh(&sock->sk_callback_lock);
1969 	}
1970 
1971 	return err;
1972 out_free:
1973 	smap_release_sock(psock, sock);
1974 out_progs:
1975 	if (parse && verdict) {
1976 		bpf_prog_put(parse);
1977 		bpf_prog_put(verdict);
1978 	}
1979 	if (tx_msg)
1980 		bpf_prog_put(tx_msg);
1981 	return err;
1982 }
1983 
sock_map_ctx_update_elem(struct bpf_sock_ops_kern * skops,struct bpf_map * map,void * key,u64 flags)1984 static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
1985 				    struct bpf_map *map,
1986 				    void *key, u64 flags)
1987 {
1988 	struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1989 	struct bpf_sock_progs *progs = &stab->progs;
1990 	struct sock *osock, *sock = skops->sk;
1991 	struct smap_psock_map_entry *e;
1992 	struct smap_psock *psock;
1993 	u32 i = *(u32 *)key;
1994 	int err;
1995 
1996 	if (unlikely(flags > BPF_EXIST))
1997 		return -EINVAL;
1998 	if (unlikely(i >= stab->map.max_entries))
1999 		return -E2BIG;
2000 
2001 	e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
2002 	if (!e)
2003 		return -ENOMEM;
2004 
2005 	err = __sock_map_ctx_update_elem(map, progs, sock, key);
2006 	if (err)
2007 		goto out;
2008 
2009 	/* psock guaranteed to be present. */
2010 	psock = smap_psock_sk(sock);
2011 	raw_spin_lock_bh(&stab->lock);
2012 	osock = stab->sock_map[i];
2013 	if (osock && flags == BPF_NOEXIST) {
2014 		err = -EEXIST;
2015 		goto out_unlock;
2016 	}
2017 	if (!osock && flags == BPF_EXIST) {
2018 		err = -ENOENT;
2019 		goto out_unlock;
2020 	}
2021 
2022 	e->entry = &stab->sock_map[i];
2023 	e->map = map;
2024 	spin_lock_bh(&psock->maps_lock);
2025 	list_add_tail(&e->list, &psock->maps);
2026 	spin_unlock_bh(&psock->maps_lock);
2027 
2028 	stab->sock_map[i] = sock;
2029 	if (osock) {
2030 		psock = smap_psock_sk(osock);
2031 		smap_list_map_remove(psock, &stab->sock_map[i]);
2032 		smap_release_sock(psock, osock);
2033 	}
2034 	raw_spin_unlock_bh(&stab->lock);
2035 	return 0;
2036 out_unlock:
2037 	smap_release_sock(psock, sock);
2038 	raw_spin_unlock_bh(&stab->lock);
2039 out:
2040 	kfree(e);
2041 	return err;
2042 }
2043 
sock_map_prog(struct bpf_map * map,struct bpf_prog * prog,u32 type)2044 int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
2045 {
2046 	struct bpf_sock_progs *progs;
2047 	struct bpf_prog *orig;
2048 
2049 	if (map->map_type == BPF_MAP_TYPE_SOCKMAP) {
2050 		struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
2051 
2052 		progs = &stab->progs;
2053 	} else if (map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2054 		struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2055 
2056 		progs = &htab->progs;
2057 	} else {
2058 		return -EINVAL;
2059 	}
2060 
2061 	switch (type) {
2062 	case BPF_SK_MSG_VERDICT:
2063 		orig = xchg(&progs->bpf_tx_msg, prog);
2064 		break;
2065 	case BPF_SK_SKB_STREAM_PARSER:
2066 		orig = xchg(&progs->bpf_parse, prog);
2067 		break;
2068 	case BPF_SK_SKB_STREAM_VERDICT:
2069 		orig = xchg(&progs->bpf_verdict, prog);
2070 		break;
2071 	default:
2072 		return -EOPNOTSUPP;
2073 	}
2074 
2075 	if (orig)
2076 		bpf_prog_put(orig);
2077 
2078 	return 0;
2079 }
2080 
sockmap_get_from_fd(const union bpf_attr * attr,int type,struct bpf_prog * prog)2081 int sockmap_get_from_fd(const union bpf_attr *attr, int type,
2082 			struct bpf_prog *prog)
2083 {
2084 	int ufd = attr->target_fd;
2085 	struct bpf_map *map;
2086 	struct fd f;
2087 	int err;
2088 
2089 	f = fdget(ufd);
2090 	map = __bpf_map_get(f);
2091 	if (IS_ERR(map))
2092 		return PTR_ERR(map);
2093 
2094 	err = sock_map_prog(map, prog, attr->attach_type);
2095 	fdput(f);
2096 	return err;
2097 }
2098 
sock_map_lookup(struct bpf_map * map,void * key)2099 static void *sock_map_lookup(struct bpf_map *map, void *key)
2100 {
2101 	return NULL;
2102 }
2103 
sock_map_update_elem(struct bpf_map * map,void * key,void * value,u64 flags)2104 static int sock_map_update_elem(struct bpf_map *map,
2105 				void *key, void *value, u64 flags)
2106 {
2107 	struct bpf_sock_ops_kern skops;
2108 	u32 fd = *(u32 *)value;
2109 	struct socket *socket;
2110 	int err;
2111 
2112 	socket = sockfd_lookup(fd, &err);
2113 	if (!socket)
2114 		return err;
2115 
2116 	skops.sk = socket->sk;
2117 	if (!skops.sk) {
2118 		fput(socket->file);
2119 		return -EINVAL;
2120 	}
2121 
2122 	/* ULPs are currently supported only for TCP sockets in ESTABLISHED
2123 	 * state.
2124 	 */
2125 	if (skops.sk->sk_type != SOCK_STREAM ||
2126 	    skops.sk->sk_protocol != IPPROTO_TCP ||
2127 	    skops.sk->sk_state != TCP_ESTABLISHED) {
2128 		fput(socket->file);
2129 		return -EOPNOTSUPP;
2130 	}
2131 
2132 	lock_sock(skops.sk);
2133 	preempt_disable();
2134 	rcu_read_lock();
2135 	err = sock_map_ctx_update_elem(&skops, map, key, flags);
2136 	rcu_read_unlock();
2137 	preempt_enable();
2138 	release_sock(skops.sk);
2139 	fput(socket->file);
2140 	return err;
2141 }
2142 
sock_map_release(struct bpf_map * map)2143 static void sock_map_release(struct bpf_map *map)
2144 {
2145 	struct bpf_sock_progs *progs;
2146 	struct bpf_prog *orig;
2147 
2148 	if (map->map_type == BPF_MAP_TYPE_SOCKMAP) {
2149 		struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
2150 
2151 		progs = &stab->progs;
2152 	} else {
2153 		struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2154 
2155 		progs = &htab->progs;
2156 	}
2157 
2158 	orig = xchg(&progs->bpf_parse, NULL);
2159 	if (orig)
2160 		bpf_prog_put(orig);
2161 	orig = xchg(&progs->bpf_verdict, NULL);
2162 	if (orig)
2163 		bpf_prog_put(orig);
2164 
2165 	orig = xchg(&progs->bpf_tx_msg, NULL);
2166 	if (orig)
2167 		bpf_prog_put(orig);
2168 }
2169 
sock_hash_alloc(union bpf_attr * attr)2170 static struct bpf_map *sock_hash_alloc(union bpf_attr *attr)
2171 {
2172 	struct bpf_htab *htab;
2173 	int i, err;
2174 	u64 cost;
2175 
2176 	if (!capable(CAP_NET_ADMIN))
2177 		return ERR_PTR(-EPERM);
2178 
2179 	/* check sanity of attributes */
2180 	if (attr->max_entries == 0 ||
2181 	    attr->key_size == 0 ||
2182 	    attr->value_size != 4 ||
2183 	    attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
2184 		return ERR_PTR(-EINVAL);
2185 
2186 	if (attr->key_size > MAX_BPF_STACK)
2187 		/* eBPF programs initialize keys on stack, so they cannot be
2188 		 * larger than max stack size
2189 		 */
2190 		return ERR_PTR(-E2BIG);
2191 
2192 	err = bpf_tcp_ulp_register();
2193 	if (err && err != -EEXIST)
2194 		return ERR_PTR(err);
2195 
2196 	htab = kzalloc(sizeof(*htab), GFP_USER);
2197 	if (!htab)
2198 		return ERR_PTR(-ENOMEM);
2199 
2200 	bpf_map_init_from_attr(&htab->map, attr);
2201 
2202 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
2203 	htab->elem_size = sizeof(struct htab_elem) +
2204 			  round_up(htab->map.key_size, 8);
2205 	err = -EINVAL;
2206 	if (htab->n_buckets == 0 ||
2207 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
2208 		goto free_htab;
2209 
2210 	cost = (u64) htab->n_buckets * sizeof(struct bucket) +
2211 	       (u64) htab->elem_size * htab->map.max_entries;
2212 
2213 	if (cost >= U32_MAX - PAGE_SIZE)
2214 		goto free_htab;
2215 
2216 	htab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
2217 	err = bpf_map_precharge_memlock(htab->map.pages);
2218 	if (err)
2219 		goto free_htab;
2220 
2221 	err = -ENOMEM;
2222 	htab->buckets = bpf_map_area_alloc(
2223 				htab->n_buckets * sizeof(struct bucket),
2224 				htab->map.numa_node);
2225 	if (!htab->buckets)
2226 		goto free_htab;
2227 
2228 	for (i = 0; i < htab->n_buckets; i++) {
2229 		INIT_HLIST_HEAD(&htab->buckets[i].head);
2230 		raw_spin_lock_init(&htab->buckets[i].lock);
2231 	}
2232 
2233 	return &htab->map;
2234 free_htab:
2235 	kfree(htab);
2236 	return ERR_PTR(err);
2237 }
2238 
__bpf_htab_free(struct rcu_head * rcu)2239 static void __bpf_htab_free(struct rcu_head *rcu)
2240 {
2241 	struct bpf_htab *htab;
2242 
2243 	htab = container_of(rcu, struct bpf_htab, rcu);
2244 	bpf_map_area_free(htab->buckets);
2245 	kfree(htab);
2246 }
2247 
sock_hash_free(struct bpf_map * map)2248 static void sock_hash_free(struct bpf_map *map)
2249 {
2250 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2251 	int i;
2252 
2253 	synchronize_rcu();
2254 
2255 	/* At this point no update, lookup or delete operations can happen.
2256 	 * However, be aware we can still get a socket state event updates,
2257 	 * and data ready callabacks that reference the psock from sk_user_data
2258 	 * Also psock worker threads are still in-flight. So smap_release_sock
2259 	 * will only free the psock after cancel_sync on the worker threads
2260 	 * and a grace period expire to ensure psock is really safe to remove.
2261 	 */
2262 	rcu_read_lock();
2263 	for (i = 0; i < htab->n_buckets; i++) {
2264 		struct bucket *b = __select_bucket(htab, i);
2265 		struct hlist_head *head;
2266 		struct hlist_node *n;
2267 		struct htab_elem *l;
2268 
2269 		raw_spin_lock_bh(&b->lock);
2270 		head = &b->head;
2271 		hlist_for_each_entry_safe(l, n, head, hash_node) {
2272 			struct sock *sock = l->sk;
2273 			struct smap_psock *psock;
2274 
2275 			hlist_del_rcu(&l->hash_node);
2276 			psock = smap_psock_sk(sock);
2277 			/* This check handles a racing sock event that can get
2278 			 * the sk_callback_lock before this case but after xchg
2279 			 * causing the refcnt to hit zero and sock user data
2280 			 * (psock) to be null and queued for garbage collection.
2281 			 */
2282 			if (likely(psock)) {
2283 				smap_list_hash_remove(psock, l);
2284 				smap_release_sock(psock, sock);
2285 			}
2286 			free_htab_elem(htab, l);
2287 		}
2288 		raw_spin_unlock_bh(&b->lock);
2289 	}
2290 	rcu_read_unlock();
2291 	call_rcu(&htab->rcu, __bpf_htab_free);
2292 }
2293 
alloc_sock_hash_elem(struct bpf_htab * htab,void * key,u32 key_size,u32 hash,struct sock * sk,struct htab_elem * old_elem)2294 static struct htab_elem *alloc_sock_hash_elem(struct bpf_htab *htab,
2295 					      void *key, u32 key_size, u32 hash,
2296 					      struct sock *sk,
2297 					      struct htab_elem *old_elem)
2298 {
2299 	struct htab_elem *l_new;
2300 
2301 	if (atomic_inc_return(&htab->count) > htab->map.max_entries) {
2302 		if (!old_elem) {
2303 			atomic_dec(&htab->count);
2304 			return ERR_PTR(-E2BIG);
2305 		}
2306 	}
2307 	l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
2308 			     htab->map.numa_node);
2309 	if (!l_new) {
2310 		atomic_dec(&htab->count);
2311 		return ERR_PTR(-ENOMEM);
2312 	}
2313 
2314 	memcpy(l_new->key, key, key_size);
2315 	l_new->sk = sk;
2316 	l_new->hash = hash;
2317 	return l_new;
2318 }
2319 
htab_map_hash(const void * key,u32 key_len)2320 static inline u32 htab_map_hash(const void *key, u32 key_len)
2321 {
2322 	return jhash(key, key_len, 0);
2323 }
2324 
sock_hash_get_next_key(struct bpf_map * map,void * key,void * next_key)2325 static int sock_hash_get_next_key(struct bpf_map *map,
2326 				  void *key, void *next_key)
2327 {
2328 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2329 	struct htab_elem *l, *next_l;
2330 	struct hlist_head *h;
2331 	u32 hash, key_size;
2332 	int i = 0;
2333 
2334 	WARN_ON_ONCE(!rcu_read_lock_held());
2335 
2336 	key_size = map->key_size;
2337 	if (!key)
2338 		goto find_first_elem;
2339 	hash = htab_map_hash(key, key_size);
2340 	h = select_bucket(htab, hash);
2341 
2342 	l = lookup_elem_raw(h, hash, key, key_size);
2343 	if (!l)
2344 		goto find_first_elem;
2345 	next_l = hlist_entry_safe(
2346 		     rcu_dereference_raw(hlist_next_rcu(&l->hash_node)),
2347 		     struct htab_elem, hash_node);
2348 	if (next_l) {
2349 		memcpy(next_key, next_l->key, key_size);
2350 		return 0;
2351 	}
2352 
2353 	/* no more elements in this hash list, go to the next bucket */
2354 	i = hash & (htab->n_buckets - 1);
2355 	i++;
2356 
2357 find_first_elem:
2358 	/* iterate over buckets */
2359 	for (; i < htab->n_buckets; i++) {
2360 		h = select_bucket(htab, i);
2361 
2362 		/* pick first element in the bucket */
2363 		next_l = hlist_entry_safe(
2364 				rcu_dereference_raw(hlist_first_rcu(h)),
2365 				struct htab_elem, hash_node);
2366 		if (next_l) {
2367 			/* if it's not empty, just return it */
2368 			memcpy(next_key, next_l->key, key_size);
2369 			return 0;
2370 		}
2371 	}
2372 
2373 	/* iterated over all buckets and all elements */
2374 	return -ENOENT;
2375 }
2376 
sock_hash_ctx_update_elem(struct bpf_sock_ops_kern * skops,struct bpf_map * map,void * key,u64 map_flags)2377 static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops,
2378 				     struct bpf_map *map,
2379 				     void *key, u64 map_flags)
2380 {
2381 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2382 	struct bpf_sock_progs *progs = &htab->progs;
2383 	struct htab_elem *l_new = NULL, *l_old;
2384 	struct smap_psock_map_entry *e = NULL;
2385 	struct hlist_head *head;
2386 	struct smap_psock *psock;
2387 	u32 key_size, hash;
2388 	struct sock *sock;
2389 	struct bucket *b;
2390 	int err;
2391 
2392 	sock = skops->sk;
2393 
2394 	if (sock->sk_type != SOCK_STREAM ||
2395 	    sock->sk_protocol != IPPROTO_TCP)
2396 		return -EOPNOTSUPP;
2397 
2398 	if (unlikely(map_flags > BPF_EXIST))
2399 		return -EINVAL;
2400 
2401 	e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
2402 	if (!e)
2403 		return -ENOMEM;
2404 
2405 	WARN_ON_ONCE(!rcu_read_lock_held());
2406 	key_size = map->key_size;
2407 	hash = htab_map_hash(key, key_size);
2408 	b = __select_bucket(htab, hash);
2409 	head = &b->head;
2410 
2411 	err = __sock_map_ctx_update_elem(map, progs, sock, key);
2412 	if (err)
2413 		goto err;
2414 
2415 	/* psock is valid here because otherwise above *ctx_update_elem would
2416 	 * have thrown an error. It is safe to skip error check.
2417 	 */
2418 	psock = smap_psock_sk(sock);
2419 	raw_spin_lock_bh(&b->lock);
2420 	l_old = lookup_elem_raw(head, hash, key, key_size);
2421 	if (l_old && map_flags == BPF_NOEXIST) {
2422 		err = -EEXIST;
2423 		goto bucket_err;
2424 	}
2425 	if (!l_old && map_flags == BPF_EXIST) {
2426 		err = -ENOENT;
2427 		goto bucket_err;
2428 	}
2429 
2430 	l_new = alloc_sock_hash_elem(htab, key, key_size, hash, sock, l_old);
2431 	if (IS_ERR(l_new)) {
2432 		err = PTR_ERR(l_new);
2433 		goto bucket_err;
2434 	}
2435 
2436 	rcu_assign_pointer(e->hash_link, l_new);
2437 	e->map = map;
2438 	spin_lock_bh(&psock->maps_lock);
2439 	list_add_tail(&e->list, &psock->maps);
2440 	spin_unlock_bh(&psock->maps_lock);
2441 
2442 	/* add new element to the head of the list, so that
2443 	 * concurrent search will find it before old elem
2444 	 */
2445 	hlist_add_head_rcu(&l_new->hash_node, head);
2446 	if (l_old) {
2447 		psock = smap_psock_sk(l_old->sk);
2448 
2449 		hlist_del_rcu(&l_old->hash_node);
2450 		smap_list_hash_remove(psock, l_old);
2451 		smap_release_sock(psock, l_old->sk);
2452 		free_htab_elem(htab, l_old);
2453 	}
2454 	raw_spin_unlock_bh(&b->lock);
2455 	return 0;
2456 bucket_err:
2457 	smap_release_sock(psock, sock);
2458 	raw_spin_unlock_bh(&b->lock);
2459 err:
2460 	kfree(e);
2461 	return err;
2462 }
2463 
sock_hash_update_elem(struct bpf_map * map,void * key,void * value,u64 flags)2464 static int sock_hash_update_elem(struct bpf_map *map,
2465 				void *key, void *value, u64 flags)
2466 {
2467 	struct bpf_sock_ops_kern skops;
2468 	u32 fd = *(u32 *)value;
2469 	struct socket *socket;
2470 	int err;
2471 
2472 	socket = sockfd_lookup(fd, &err);
2473 	if (!socket)
2474 		return err;
2475 
2476 	skops.sk = socket->sk;
2477 	if (!skops.sk) {
2478 		fput(socket->file);
2479 		return -EINVAL;
2480 	}
2481 
2482 	/* ULPs are currently supported only for TCP sockets in ESTABLISHED
2483 	 * state.
2484 	 */
2485 	if (skops.sk->sk_type != SOCK_STREAM ||
2486 	    skops.sk->sk_protocol != IPPROTO_TCP ||
2487 	    skops.sk->sk_state != TCP_ESTABLISHED) {
2488 		fput(socket->file);
2489 		return -EOPNOTSUPP;
2490 	}
2491 
2492 	lock_sock(skops.sk);
2493 	preempt_disable();
2494 	rcu_read_lock();
2495 	err = sock_hash_ctx_update_elem(&skops, map, key, flags);
2496 	rcu_read_unlock();
2497 	preempt_enable();
2498 	release_sock(skops.sk);
2499 	fput(socket->file);
2500 	return err;
2501 }
2502 
sock_hash_delete_elem(struct bpf_map * map,void * key)2503 static int sock_hash_delete_elem(struct bpf_map *map, void *key)
2504 {
2505 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2506 	struct hlist_head *head;
2507 	struct bucket *b;
2508 	struct htab_elem *l;
2509 	u32 hash, key_size;
2510 	int ret = -ENOENT;
2511 
2512 	key_size = map->key_size;
2513 	hash = htab_map_hash(key, key_size);
2514 	b = __select_bucket(htab, hash);
2515 	head = &b->head;
2516 
2517 	raw_spin_lock_bh(&b->lock);
2518 	l = lookup_elem_raw(head, hash, key, key_size);
2519 	if (l) {
2520 		struct sock *sock = l->sk;
2521 		struct smap_psock *psock;
2522 
2523 		hlist_del_rcu(&l->hash_node);
2524 		psock = smap_psock_sk(sock);
2525 		/* This check handles a racing sock event that can get the
2526 		 * sk_callback_lock before this case but after xchg happens
2527 		 * causing the refcnt to hit zero and sock user data (psock)
2528 		 * to be null and queued for garbage collection.
2529 		 */
2530 		if (likely(psock)) {
2531 			smap_list_hash_remove(psock, l);
2532 			smap_release_sock(psock, sock);
2533 		}
2534 		free_htab_elem(htab, l);
2535 		ret = 0;
2536 	}
2537 	raw_spin_unlock_bh(&b->lock);
2538 	return ret;
2539 }
2540 
__sock_hash_lookup_elem(struct bpf_map * map,void * key)2541 struct sock  *__sock_hash_lookup_elem(struct bpf_map *map, void *key)
2542 {
2543 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2544 	struct hlist_head *head;
2545 	struct htab_elem *l;
2546 	u32 key_size, hash;
2547 	struct bucket *b;
2548 	struct sock *sk;
2549 
2550 	key_size = map->key_size;
2551 	hash = htab_map_hash(key, key_size);
2552 	b = __select_bucket(htab, hash);
2553 	head = &b->head;
2554 
2555 	l = lookup_elem_raw(head, hash, key, key_size);
2556 	sk = l ? l->sk : NULL;
2557 	return sk;
2558 }
2559 
2560 const struct bpf_map_ops sock_map_ops = {
2561 	.map_alloc = sock_map_alloc,
2562 	.map_free = sock_map_free,
2563 	.map_lookup_elem = sock_map_lookup,
2564 	.map_get_next_key = sock_map_get_next_key,
2565 	.map_update_elem = sock_map_update_elem,
2566 	.map_delete_elem = sock_map_delete_elem,
2567 	.map_release_uref = sock_map_release,
2568 	.map_check_btf = map_check_no_btf,
2569 };
2570 
2571 const struct bpf_map_ops sock_hash_ops = {
2572 	.map_alloc = sock_hash_alloc,
2573 	.map_free = sock_hash_free,
2574 	.map_lookup_elem = sock_map_lookup,
2575 	.map_get_next_key = sock_hash_get_next_key,
2576 	.map_update_elem = sock_hash_update_elem,
2577 	.map_delete_elem = sock_hash_delete_elem,
2578 	.map_release_uref = sock_map_release,
2579 	.map_check_btf = map_check_no_btf,
2580 };
2581 
bpf_is_valid_sock_op(struct bpf_sock_ops_kern * ops)2582 static bool bpf_is_valid_sock_op(struct bpf_sock_ops_kern *ops)
2583 {
2584 	return ops->op == BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB ||
2585 	       ops->op == BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB;
2586 }
BPF_CALL_4(bpf_sock_map_update,struct bpf_sock_ops_kern *,bpf_sock,struct bpf_map *,map,void *,key,u64,flags)2587 BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
2588 	   struct bpf_map *, map, void *, key, u64, flags)
2589 {
2590 	WARN_ON_ONCE(!rcu_read_lock_held());
2591 
2592 	/* ULPs are currently supported only for TCP sockets in ESTABLISHED
2593 	 * state. This checks that the sock ops triggering the update is
2594 	 * one indicating we are (or will be soon) in an ESTABLISHED state.
2595 	 */
2596 	if (!bpf_is_valid_sock_op(bpf_sock))
2597 		return -EOPNOTSUPP;
2598 	return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
2599 }
2600 
2601 const struct bpf_func_proto bpf_sock_map_update_proto = {
2602 	.func		= bpf_sock_map_update,
2603 	.gpl_only	= false,
2604 	.pkt_access	= true,
2605 	.ret_type	= RET_INTEGER,
2606 	.arg1_type	= ARG_PTR_TO_CTX,
2607 	.arg2_type	= ARG_CONST_MAP_PTR,
2608 	.arg3_type	= ARG_PTR_TO_MAP_KEY,
2609 	.arg4_type	= ARG_ANYTHING,
2610 };
2611 
BPF_CALL_4(bpf_sock_hash_update,struct bpf_sock_ops_kern *,bpf_sock,struct bpf_map *,map,void *,key,u64,flags)2612 BPF_CALL_4(bpf_sock_hash_update, struct bpf_sock_ops_kern *, bpf_sock,
2613 	   struct bpf_map *, map, void *, key, u64, flags)
2614 {
2615 	WARN_ON_ONCE(!rcu_read_lock_held());
2616 
2617 	if (!bpf_is_valid_sock_op(bpf_sock))
2618 		return -EOPNOTSUPP;
2619 	return sock_hash_ctx_update_elem(bpf_sock, map, key, flags);
2620 }
2621 
2622 const struct bpf_func_proto bpf_sock_hash_update_proto = {
2623 	.func		= bpf_sock_hash_update,
2624 	.gpl_only	= false,
2625 	.pkt_access	= true,
2626 	.ret_type	= RET_INTEGER,
2627 	.arg1_type	= ARG_PTR_TO_CTX,
2628 	.arg2_type	= ARG_CONST_MAP_PTR,
2629 	.arg3_type	= ARG_PTR_TO_MAP_KEY,
2630 	.arg4_type	= ARG_ANYTHING,
2631 };
2632