1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/cryptohash.h>
20 #include <linux/set_memory.h>
21 #include <linux/kallsyms.h>
22 #include <linux/if_vlan.h>
23 #include <linux/vmalloc.h>
24 
25 #include <net/sch_generic.h>
26 
27 #include <asm/byteorder.h>
28 #include <uapi/linux/filter.h>
29 #include <uapi/linux/bpf.h>
30 
31 struct sk_buff;
32 struct sock;
33 struct seccomp_data;
34 struct bpf_prog_aux;
35 struct xdp_rxq_info;
36 struct xdp_buff;
37 struct sock_reuseport;
38 struct ctl_table;
39 struct ctl_table_header;
40 
41 /* ArgX, context and stack frame pointer register positions. Note,
42  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43  * calls in BPF_CALL instruction.
44  */
45 #define BPF_REG_ARG1	BPF_REG_1
46 #define BPF_REG_ARG2	BPF_REG_2
47 #define BPF_REG_ARG3	BPF_REG_3
48 #define BPF_REG_ARG4	BPF_REG_4
49 #define BPF_REG_ARG5	BPF_REG_5
50 #define BPF_REG_CTX	BPF_REG_6
51 #define BPF_REG_FP	BPF_REG_10
52 
53 /* Additional register mappings for converted user programs. */
54 #define BPF_REG_A	BPF_REG_0
55 #define BPF_REG_X	BPF_REG_7
56 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
57 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
58 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
59 
60 /* Kernel hidden auxiliary/helper register. */
61 #define BPF_REG_AX		MAX_BPF_REG
62 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
63 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
64 
65 /* unused opcode to mark special call to bpf_tail_call() helper */
66 #define BPF_TAIL_CALL	0xf0
67 
68 /* unused opcode to mark call to interpreter with arguments */
69 #define BPF_CALL_ARGS	0xe0
70 
71 /* As per nm, we expose JITed images as text (code) section for
72  * kallsyms. That way, tools like perf can find it to match
73  * addresses.
74  */
75 #define BPF_SYM_ELF_TYPE	't'
76 
77 /* BPF program can access up to 512 bytes of stack space. */
78 #define MAX_BPF_STACK	512
79 
80 /* Helper macros for filter block array initializers. */
81 
82 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
83 
84 #define BPF_ALU64_REG(OP, DST, SRC)				\
85 	((struct bpf_insn) {					\
86 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
87 		.dst_reg = DST,					\
88 		.src_reg = SRC,					\
89 		.off   = 0,					\
90 		.imm   = 0 })
91 
92 #define BPF_ALU32_REG(OP, DST, SRC)				\
93 	((struct bpf_insn) {					\
94 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
95 		.dst_reg = DST,					\
96 		.src_reg = SRC,					\
97 		.off   = 0,					\
98 		.imm   = 0 })
99 
100 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
101 
102 #define BPF_ALU64_IMM(OP, DST, IMM)				\
103 	((struct bpf_insn) {					\
104 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
105 		.dst_reg = DST,					\
106 		.src_reg = 0,					\
107 		.off   = 0,					\
108 		.imm   = IMM })
109 
110 #define BPF_ALU32_IMM(OP, DST, IMM)				\
111 	((struct bpf_insn) {					\
112 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
113 		.dst_reg = DST,					\
114 		.src_reg = 0,					\
115 		.off   = 0,					\
116 		.imm   = IMM })
117 
118 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
119 
120 #define BPF_ENDIAN(TYPE, DST, LEN)				\
121 	((struct bpf_insn) {					\
122 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
123 		.dst_reg = DST,					\
124 		.src_reg = 0,					\
125 		.off   = 0,					\
126 		.imm   = LEN })
127 
128 /* Short form of mov, dst_reg = src_reg */
129 
130 #define BPF_MOV64_REG(DST, SRC)					\
131 	((struct bpf_insn) {					\
132 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
133 		.dst_reg = DST,					\
134 		.src_reg = SRC,					\
135 		.off   = 0,					\
136 		.imm   = 0 })
137 
138 #define BPF_MOV32_REG(DST, SRC)					\
139 	((struct bpf_insn) {					\
140 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
141 		.dst_reg = DST,					\
142 		.src_reg = SRC,					\
143 		.off   = 0,					\
144 		.imm   = 0 })
145 
146 /* Short form of mov, dst_reg = imm32 */
147 
148 #define BPF_MOV64_IMM(DST, IMM)					\
149 	((struct bpf_insn) {					\
150 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
151 		.dst_reg = DST,					\
152 		.src_reg = 0,					\
153 		.off   = 0,					\
154 		.imm   = IMM })
155 
156 #define BPF_MOV32_IMM(DST, IMM)					\
157 	((struct bpf_insn) {					\
158 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
159 		.dst_reg = DST,					\
160 		.src_reg = 0,					\
161 		.off   = 0,					\
162 		.imm   = IMM })
163 
164 /* Special form of mov32, used for doing explicit zero extension on dst. */
165 #define BPF_ZEXT_REG(DST)					\
166 	((struct bpf_insn) {					\
167 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
168 		.dst_reg = DST,					\
169 		.src_reg = DST,					\
170 		.off   = 0,					\
171 		.imm   = 1 })
172 
insn_is_zext(const struct bpf_insn * insn)173 static inline bool insn_is_zext(const struct bpf_insn *insn)
174 {
175 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
176 }
177 
178 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
179 #define BPF_LD_IMM64(DST, IMM)					\
180 	BPF_LD_IMM64_RAW(DST, 0, IMM)
181 
182 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
183 	((struct bpf_insn) {					\
184 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
185 		.dst_reg = DST,					\
186 		.src_reg = SRC,					\
187 		.off   = 0,					\
188 		.imm   = (__u32) (IMM) }),			\
189 	((struct bpf_insn) {					\
190 		.code  = 0, /* zero is reserved opcode */	\
191 		.dst_reg = 0,					\
192 		.src_reg = 0,					\
193 		.off   = 0,					\
194 		.imm   = ((__u64) (IMM)) >> 32 })
195 
196 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
197 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
198 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
199 
200 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
201 
202 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
203 	((struct bpf_insn) {					\
204 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
205 		.dst_reg = DST,					\
206 		.src_reg = SRC,					\
207 		.off   = 0,					\
208 		.imm   = IMM })
209 
210 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
211 	((struct bpf_insn) {					\
212 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
213 		.dst_reg = DST,					\
214 		.src_reg = SRC,					\
215 		.off   = 0,					\
216 		.imm   = IMM })
217 
218 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
219 
220 #define BPF_LD_ABS(SIZE, IMM)					\
221 	((struct bpf_insn) {					\
222 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
223 		.dst_reg = 0,					\
224 		.src_reg = 0,					\
225 		.off   = 0,					\
226 		.imm   = IMM })
227 
228 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
229 
230 #define BPF_LD_IND(SIZE, SRC, IMM)				\
231 	((struct bpf_insn) {					\
232 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
233 		.dst_reg = 0,					\
234 		.src_reg = SRC,					\
235 		.off   = 0,					\
236 		.imm   = IMM })
237 
238 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
239 
240 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
241 	((struct bpf_insn) {					\
242 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
243 		.dst_reg = DST,					\
244 		.src_reg = SRC,					\
245 		.off   = OFF,					\
246 		.imm   = 0 })
247 
248 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
249 
250 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
251 	((struct bpf_insn) {					\
252 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
253 		.dst_reg = DST,					\
254 		.src_reg = SRC,					\
255 		.off   = OFF,					\
256 		.imm   = 0 })
257 
258 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
259 
260 #define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
261 	((struct bpf_insn) {					\
262 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
263 		.dst_reg = DST,					\
264 		.src_reg = SRC,					\
265 		.off   = OFF,					\
266 		.imm   = 0 })
267 
268 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
269 
270 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
271 	((struct bpf_insn) {					\
272 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
273 		.dst_reg = DST,					\
274 		.src_reg = 0,					\
275 		.off   = OFF,					\
276 		.imm   = IMM })
277 
278 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
279 
280 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
281 	((struct bpf_insn) {					\
282 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
283 		.dst_reg = DST,					\
284 		.src_reg = SRC,					\
285 		.off   = OFF,					\
286 		.imm   = 0 })
287 
288 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
289 
290 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
291 	((struct bpf_insn) {					\
292 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
293 		.dst_reg = DST,					\
294 		.src_reg = 0,					\
295 		.off   = OFF,					\
296 		.imm   = IMM })
297 
298 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
299 
300 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
301 	((struct bpf_insn) {					\
302 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
303 		.dst_reg = DST,					\
304 		.src_reg = SRC,					\
305 		.off   = OFF,					\
306 		.imm   = 0 })
307 
308 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
309 
310 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
311 	((struct bpf_insn) {					\
312 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
313 		.dst_reg = DST,					\
314 		.src_reg = 0,					\
315 		.off   = OFF,					\
316 		.imm   = IMM })
317 
318 /* Unconditional jumps, goto pc + off16 */
319 
320 #define BPF_JMP_A(OFF)						\
321 	((struct bpf_insn) {					\
322 		.code  = BPF_JMP | BPF_JA,			\
323 		.dst_reg = 0,					\
324 		.src_reg = 0,					\
325 		.off   = OFF,					\
326 		.imm   = 0 })
327 
328 /* Relative call */
329 
330 #define BPF_CALL_REL(TGT)					\
331 	((struct bpf_insn) {					\
332 		.code  = BPF_JMP | BPF_CALL,			\
333 		.dst_reg = 0,					\
334 		.src_reg = BPF_PSEUDO_CALL,			\
335 		.off   = 0,					\
336 		.imm   = TGT })
337 
338 /* Function call */
339 
340 #define BPF_CAST_CALL(x)					\
341 		((u64 (*)(u64, u64, u64, u64, u64))(x))
342 
343 #define BPF_EMIT_CALL(FUNC)					\
344 	((struct bpf_insn) {					\
345 		.code  = BPF_JMP | BPF_CALL,			\
346 		.dst_reg = 0,					\
347 		.src_reg = 0,					\
348 		.off   = 0,					\
349 		.imm   = ((FUNC) - __bpf_call_base) })
350 
351 /* Raw code statement block */
352 
353 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
354 	((struct bpf_insn) {					\
355 		.code  = CODE,					\
356 		.dst_reg = DST,					\
357 		.src_reg = SRC,					\
358 		.off   = OFF,					\
359 		.imm   = IMM })
360 
361 /* Program exit */
362 
363 #define BPF_EXIT_INSN()						\
364 	((struct bpf_insn) {					\
365 		.code  = BPF_JMP | BPF_EXIT,			\
366 		.dst_reg = 0,					\
367 		.src_reg = 0,					\
368 		.off   = 0,					\
369 		.imm   = 0 })
370 
371 /* Internal classic blocks for direct assignment */
372 
373 #define __BPF_STMT(CODE, K)					\
374 	((struct sock_filter) BPF_STMT(CODE, K))
375 
376 #define __BPF_JUMP(CODE, K, JT, JF)				\
377 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
378 
379 #define bytes_to_bpf_size(bytes)				\
380 ({								\
381 	int bpf_size = -EINVAL;					\
382 								\
383 	if (bytes == sizeof(u8))				\
384 		bpf_size = BPF_B;				\
385 	else if (bytes == sizeof(u16))				\
386 		bpf_size = BPF_H;				\
387 	else if (bytes == sizeof(u32))				\
388 		bpf_size = BPF_W;				\
389 	else if (bytes == sizeof(u64))				\
390 		bpf_size = BPF_DW;				\
391 								\
392 	bpf_size;						\
393 })
394 
395 #define bpf_size_to_bytes(bpf_size)				\
396 ({								\
397 	int bytes = -EINVAL;					\
398 								\
399 	if (bpf_size == BPF_B)					\
400 		bytes = sizeof(u8);				\
401 	else if (bpf_size == BPF_H)				\
402 		bytes = sizeof(u16);				\
403 	else if (bpf_size == BPF_W)				\
404 		bytes = sizeof(u32);				\
405 	else if (bpf_size == BPF_DW)				\
406 		bytes = sizeof(u64);				\
407 								\
408 	bytes;							\
409 })
410 
411 #define BPF_SIZEOF(type)					\
412 	({							\
413 		const int __size = bytes_to_bpf_size(sizeof(type)); \
414 		BUILD_BUG_ON(__size < 0);			\
415 		__size;						\
416 	})
417 
418 #define BPF_FIELD_SIZEOF(type, field)				\
419 	({							\
420 		const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
421 		BUILD_BUG_ON(__size < 0);			\
422 		__size;						\
423 	})
424 
425 #define BPF_LDST_BYTES(insn)					\
426 	({							\
427 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
428 		WARN_ON(__size < 0);				\
429 		__size;						\
430 	})
431 
432 #define __BPF_MAP_0(m, v, ...) v
433 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
434 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
435 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
436 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
437 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
438 
439 #define __BPF_REG_0(...) __BPF_PAD(5)
440 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
441 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
442 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
443 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
444 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
445 
446 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
447 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
448 
449 #define __BPF_CAST(t, a)						       \
450 	(__force t)							       \
451 	(__force							       \
452 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
453 				      (unsigned long)0, (t)0))) a
454 #define __BPF_V void
455 #define __BPF_N
456 
457 #define __BPF_DECL_ARGS(t, a) t   a
458 #define __BPF_DECL_REGS(t, a) u64 a
459 
460 #define __BPF_PAD(n)							       \
461 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
462 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
463 
464 #define BPF_CALL_x(x, name, ...)					       \
465 	static __always_inline						       \
466 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
467 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
468 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
469 	{								       \
470 		return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
471 	}								       \
472 	static __always_inline						       \
473 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
474 
475 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
476 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
477 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
478 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
479 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
480 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
481 
482 #define bpf_ctx_range(TYPE, MEMBER)						\
483 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
484 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
485 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
486 #if BITS_PER_LONG == 64
487 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
488 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
489 #else
490 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
491 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
492 #endif /* BITS_PER_LONG == 64 */
493 
494 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
495 	({									\
496 		BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE));		\
497 		*(PTR_SIZE) = (SIZE);						\
498 		offsetof(TYPE, MEMBER);						\
499 	})
500 
501 #ifdef CONFIG_COMPAT
502 /* A struct sock_filter is architecture independent. */
503 struct compat_sock_fprog {
504 	u16		len;
505 	compat_uptr_t	filter;	/* struct sock_filter * */
506 };
507 #endif
508 
509 struct sock_fprog_kern {
510 	u16			len;
511 	struct sock_filter	*filter;
512 };
513 
514 struct bpf_binary_header {
515 	u32 pages;
516 	/* Some arches need word alignment for their instructions */
517 	u8 image[] __aligned(4);
518 };
519 
520 struct bpf_prog {
521 	u16			pages;		/* Number of allocated pages */
522 	u16			jited:1,	/* Is our filter JIT'ed? */
523 				jit_requested:1,/* archs need to JIT the prog */
524 				gpl_compatible:1, /* Is filter GPL compatible? */
525 				cb_access:1,	/* Is control block accessed? */
526 				dst_needed:1,	/* Do we need dst entry? */
527 				blinded:1,	/* Was blinded */
528 				is_func:1,	/* program is a bpf function */
529 				kprobe_override:1, /* Do we override a kprobe? */
530 				has_callchain_buf:1, /* callchain buffer allocated? */
531 				enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */
532 	enum bpf_prog_type	type;		/* Type of BPF program */
533 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
534 	u32			len;		/* Number of filter blocks */
535 	u32			jited_len;	/* Size of jited insns in bytes */
536 	u8			tag[BPF_TAG_SIZE];
537 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
538 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
539 	unsigned int		(*bpf_func)(const void *ctx,
540 					    const struct bpf_insn *insn);
541 	/* Instructions for interpreter */
542 	union {
543 		struct sock_filter	insns[0];
544 		struct bpf_insn		insnsi[0];
545 	};
546 };
547 
548 struct sk_filter {
549 	refcount_t	refcnt;
550 	struct rcu_head	rcu;
551 	struct bpf_prog	*prog;
552 };
553 
554 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
555 
556 #define BPF_PROG_RUN(prog, ctx)	({				\
557 	u32 ret;						\
558 	cant_sleep();						\
559 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {	\
560 		struct bpf_prog_stats *stats;			\
561 		u64 start = sched_clock();			\
562 		ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi);	\
563 		stats = this_cpu_ptr(prog->aux->stats);		\
564 		u64_stats_update_begin(&stats->syncp);		\
565 		stats->cnt++;					\
566 		stats->nsecs += sched_clock() - start;		\
567 		u64_stats_update_end(&stats->syncp);		\
568 	} else {						\
569 		ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi);	\
570 	}							\
571 	ret; })
572 
573 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
574 
575 struct bpf_skb_data_end {
576 	struct qdisc_skb_cb qdisc_cb;
577 	void *data_meta;
578 	void *data_end;
579 };
580 
581 struct bpf_redirect_info {
582 	u32 flags;
583 	u32 tgt_index;
584 	void *tgt_value;
585 	struct bpf_map *map;
586 	struct bpf_map *map_to_flush;
587 	u32 kern_flags;
588 };
589 
590 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
591 
592 /* flags for bpf_redirect_info kern_flags */
593 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
594 
595 /* Compute the linear packet data range [data, data_end) which
596  * will be accessed by various program types (cls_bpf, act_bpf,
597  * lwt, ...). Subsystems allowing direct data access must (!)
598  * ensure that cb[] area can be written to when BPF program is
599  * invoked (otherwise cb[] save/restore is necessary).
600  */
bpf_compute_data_pointers(struct sk_buff * skb)601 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
602 {
603 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
604 
605 	BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
606 	cb->data_meta = skb->data - skb_metadata_len(skb);
607 	cb->data_end  = skb->data + skb_headlen(skb);
608 }
609 
610 /* Similar to bpf_compute_data_pointers(), except that save orginal
611  * data in cb->data and cb->meta_data for restore.
612  */
bpf_compute_and_save_data_end(struct sk_buff * skb,void ** saved_data_end)613 static inline void bpf_compute_and_save_data_end(
614 	struct sk_buff *skb, void **saved_data_end)
615 {
616 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
617 
618 	*saved_data_end = cb->data_end;
619 	cb->data_end  = skb->data + skb_headlen(skb);
620 }
621 
622 /* Restore data saved by bpf_compute_data_pointers(). */
bpf_restore_data_end(struct sk_buff * skb,void * saved_data_end)623 static inline void bpf_restore_data_end(
624 	struct sk_buff *skb, void *saved_data_end)
625 {
626 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
627 
628 	cb->data_end = saved_data_end;
629 }
630 
bpf_skb_cb(struct sk_buff * skb)631 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
632 {
633 	/* eBPF programs may read/write skb->cb[] area to transfer meta
634 	 * data between tail calls. Since this also needs to work with
635 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
636 	 *
637 	 * In some socket filter cases, the cb unfortunately needs to be
638 	 * saved/restored so that protocol specific skb->cb[] data won't
639 	 * be lost. In any case, due to unpriviledged eBPF programs
640 	 * attached to sockets, we need to clear the bpf_skb_cb() area
641 	 * to not leak previous contents to user space.
642 	 */
643 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
644 	BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
645 		     FIELD_SIZEOF(struct qdisc_skb_cb, data));
646 
647 	return qdisc_skb_cb(skb)->data;
648 }
649 
__bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)650 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
651 					 struct sk_buff *skb)
652 {
653 	u8 *cb_data = bpf_skb_cb(skb);
654 	u8 cb_saved[BPF_SKB_CB_LEN];
655 	u32 res;
656 
657 	if (unlikely(prog->cb_access)) {
658 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
659 		memset(cb_data, 0, sizeof(cb_saved));
660 	}
661 
662 	res = BPF_PROG_RUN(prog, skb);
663 
664 	if (unlikely(prog->cb_access))
665 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
666 
667 	return res;
668 }
669 
bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)670 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
671 				       struct sk_buff *skb)
672 {
673 	u32 res;
674 
675 	preempt_disable();
676 	res = __bpf_prog_run_save_cb(prog, skb);
677 	preempt_enable();
678 	return res;
679 }
680 
bpf_prog_run_clear_cb(const struct bpf_prog * prog,struct sk_buff * skb)681 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
682 					struct sk_buff *skb)
683 {
684 	u8 *cb_data = bpf_skb_cb(skb);
685 	u32 res;
686 
687 	if (unlikely(prog->cb_access))
688 		memset(cb_data, 0, BPF_SKB_CB_LEN);
689 
690 	preempt_disable();
691 	res = BPF_PROG_RUN(prog, skb);
692 	preempt_enable();
693 	return res;
694 }
695 
bpf_prog_run_xdp(const struct bpf_prog * prog,struct xdp_buff * xdp)696 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
697 					    struct xdp_buff *xdp)
698 {
699 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
700 	 * can be released while still running, or map elements could be
701 	 * freed early while still having concurrent users. XDP fastpath
702 	 * already takes rcu_read_lock() when fetching the program, so
703 	 * it's not necessary here anymore.
704 	 */
705 	return BPF_PROG_RUN(prog, xdp);
706 }
707 
bpf_prog_insn_size(const struct bpf_prog * prog)708 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
709 {
710 	return prog->len * sizeof(struct bpf_insn);
711 }
712 
bpf_prog_tag_scratch_size(const struct bpf_prog * prog)713 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
714 {
715 	return round_up(bpf_prog_insn_size(prog) +
716 			sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
717 }
718 
bpf_prog_size(unsigned int proglen)719 static inline unsigned int bpf_prog_size(unsigned int proglen)
720 {
721 	return max(sizeof(struct bpf_prog),
722 		   offsetof(struct bpf_prog, insns[proglen]));
723 }
724 
bpf_prog_was_classic(const struct bpf_prog * prog)725 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
726 {
727 	/* When classic BPF programs have been loaded and the arch
728 	 * does not have a classic BPF JIT (anymore), they have been
729 	 * converted via bpf_migrate_filter() to eBPF and thus always
730 	 * have an unspec program type.
731 	 */
732 	return prog->type == BPF_PROG_TYPE_UNSPEC;
733 }
734 
bpf_ctx_off_adjust_machine(u32 size)735 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
736 {
737 	const u32 size_machine = sizeof(unsigned long);
738 
739 	if (size > size_machine && size % size_machine == 0)
740 		size = size_machine;
741 
742 	return size;
743 }
744 
745 static inline bool
bpf_ctx_narrow_access_ok(u32 off,u32 size,u32 size_default)746 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
747 {
748 	return size <= size_default && (size & (size - 1)) == 0;
749 }
750 
751 static inline u8
bpf_ctx_narrow_access_offset(u32 off,u32 size,u32 size_default)752 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
753 {
754 	u8 access_off = off & (size_default - 1);
755 
756 #ifdef __LITTLE_ENDIAN
757 	return access_off;
758 #else
759 	return size_default - (access_off + size);
760 #endif
761 }
762 
763 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
764 	(size == sizeof(__u64) &&					\
765 	off >= offsetof(type, field) &&					\
766 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
767 	off % sizeof(__u64) == 0)
768 
769 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
770 
bpf_prog_lock_ro(struct bpf_prog * fp)771 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
772 {
773 	set_vm_flush_reset_perms(fp);
774 	set_memory_ro((unsigned long)fp, fp->pages);
775 }
776 
bpf_jit_binary_lock_ro(struct bpf_binary_header * hdr)777 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
778 {
779 	set_vm_flush_reset_perms(hdr);
780 	set_memory_ro((unsigned long)hdr, hdr->pages);
781 	set_memory_x((unsigned long)hdr, hdr->pages);
782 }
783 
784 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)785 bpf_jit_binary_hdr(const struct bpf_prog *fp)
786 {
787 	unsigned long real_start = (unsigned long)fp->bpf_func;
788 	unsigned long addr = real_start & PAGE_MASK;
789 
790 	return (void *)addr;
791 }
792 
793 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
sk_filter(struct sock * sk,struct sk_buff * skb)794 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
795 {
796 	return sk_filter_trim_cap(sk, skb, 1);
797 }
798 
799 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
800 void bpf_prog_free(struct bpf_prog *fp);
801 
802 bool bpf_opcode_in_insntable(u8 code);
803 
804 void bpf_prog_free_linfo(struct bpf_prog *prog);
805 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
806 			       const u32 *insn_to_jit_off);
807 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
808 void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
809 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
810 
811 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
812 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
813 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
814 				  gfp_t gfp_extra_flags);
815 void __bpf_prog_free(struct bpf_prog *fp);
816 
bpf_prog_unlock_free(struct bpf_prog * fp)817 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
818 {
819 	__bpf_prog_free(fp);
820 }
821 
822 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
823 				       unsigned int flen);
824 
825 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
826 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
827 			      bpf_aux_classic_check_t trans, bool save_orig);
828 void bpf_prog_destroy(struct bpf_prog *fp);
829 
830 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
831 int sk_attach_bpf(u32 ufd, struct sock *sk);
832 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
833 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
834 void sk_reuseport_prog_free(struct bpf_prog *prog);
835 int sk_detach_filter(struct sock *sk);
836 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
837 		  unsigned int len);
838 
839 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
840 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
841 
842 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
843 #define __bpf_call_base_args \
844 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
845 	 __bpf_call_base)
846 
847 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
848 void bpf_jit_compile(struct bpf_prog *prog);
849 bool bpf_jit_needs_zext(void);
850 bool bpf_helper_changes_pkt_data(void *func);
851 
bpf_dump_raw_ok(void)852 static inline bool bpf_dump_raw_ok(void)
853 {
854 	/* Reconstruction of call-sites is dependent on kallsyms,
855 	 * thus make dump the same restriction.
856 	 */
857 	return kallsyms_show_value() == 1;
858 }
859 
860 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
861 				       const struct bpf_insn *patch, u32 len);
862 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
863 
864 void bpf_clear_redirect_map(struct bpf_map *map);
865 
xdp_return_frame_no_direct(void)866 static inline bool xdp_return_frame_no_direct(void)
867 {
868 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
869 
870 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
871 }
872 
xdp_set_return_frame_no_direct(void)873 static inline void xdp_set_return_frame_no_direct(void)
874 {
875 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
876 
877 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
878 }
879 
xdp_clear_return_frame_no_direct(void)880 static inline void xdp_clear_return_frame_no_direct(void)
881 {
882 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
883 
884 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
885 }
886 
xdp_ok_fwd_dev(const struct net_device * fwd,unsigned int pktlen)887 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
888 				 unsigned int pktlen)
889 {
890 	unsigned int len;
891 
892 	if (unlikely(!(fwd->flags & IFF_UP)))
893 		return -ENETDOWN;
894 
895 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
896 	if (pktlen > len)
897 		return -EMSGSIZE;
898 
899 	return 0;
900 }
901 
902 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
903  * same cpu context. Further for best results no more than a single map
904  * for the do_redirect/do_flush pair should be used. This limitation is
905  * because we only track one map and force a flush when the map changes.
906  * This does not appear to be a real limitation for existing software.
907  */
908 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
909 			    struct xdp_buff *xdp, struct bpf_prog *prog);
910 int xdp_do_redirect(struct net_device *dev,
911 		    struct xdp_buff *xdp,
912 		    struct bpf_prog *prog);
913 void xdp_do_flush_map(void);
914 
915 void bpf_warn_invalid_xdp_action(u32 act);
916 
917 #ifdef CONFIG_INET
918 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
919 				  struct bpf_prog *prog, struct sk_buff *skb,
920 				  u32 hash);
921 #else
922 static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)923 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
924 		     struct bpf_prog *prog, struct sk_buff *skb,
925 		     u32 hash)
926 {
927 	return NULL;
928 }
929 #endif
930 
931 #ifdef CONFIG_BPF_JIT
932 extern int bpf_jit_enable;
933 extern int bpf_jit_harden;
934 extern int bpf_jit_kallsyms;
935 extern long bpf_jit_limit;
936 
937 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
938 
939 struct bpf_binary_header *
940 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
941 		     unsigned int alignment,
942 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
943 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
944 u64 bpf_jit_alloc_exec_limit(void);
945 void *bpf_jit_alloc_exec(unsigned long size);
946 void bpf_jit_free_exec(void *addr);
947 void bpf_jit_free(struct bpf_prog *fp);
948 
949 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
950 			  const struct bpf_insn *insn, bool extra_pass,
951 			  u64 *func_addr, bool *func_addr_fixed);
952 
953 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
954 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
955 
bpf_jit_dump(unsigned int flen,unsigned int proglen,u32 pass,void * image)956 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
957 				u32 pass, void *image)
958 {
959 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
960 	       proglen, pass, image, current->comm, task_pid_nr(current));
961 
962 	if (image)
963 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
964 			       16, 1, image, proglen, false);
965 }
966 
bpf_jit_is_ebpf(void)967 static inline bool bpf_jit_is_ebpf(void)
968 {
969 # ifdef CONFIG_HAVE_EBPF_JIT
970 	return true;
971 # else
972 	return false;
973 # endif
974 }
975 
ebpf_jit_enabled(void)976 static inline bool ebpf_jit_enabled(void)
977 {
978 	return bpf_jit_enable && bpf_jit_is_ebpf();
979 }
980 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)981 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
982 {
983 	return fp->jited && bpf_jit_is_ebpf();
984 }
985 
bpf_jit_blinding_enabled(struct bpf_prog * prog)986 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
987 {
988 	/* These are the prerequisites, should someone ever have the
989 	 * idea to call blinding outside of them, we make sure to
990 	 * bail out.
991 	 */
992 	if (!bpf_jit_is_ebpf())
993 		return false;
994 	if (!prog->jit_requested)
995 		return false;
996 	if (!bpf_jit_harden)
997 		return false;
998 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
999 		return false;
1000 
1001 	return true;
1002 }
1003 
bpf_jit_kallsyms_enabled(void)1004 static inline bool bpf_jit_kallsyms_enabled(void)
1005 {
1006 	/* There are a couple of corner cases where kallsyms should
1007 	 * not be enabled f.e. on hardening.
1008 	 */
1009 	if (bpf_jit_harden)
1010 		return false;
1011 	if (!bpf_jit_kallsyms)
1012 		return false;
1013 	if (bpf_jit_kallsyms == 1)
1014 		return true;
1015 
1016 	return false;
1017 }
1018 
1019 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1020 				 unsigned long *off, char *sym);
1021 bool is_bpf_text_address(unsigned long addr);
1022 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1023 		    char *sym);
1024 
1025 static inline const char *
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1026 bpf_address_lookup(unsigned long addr, unsigned long *size,
1027 		   unsigned long *off, char **modname, char *sym)
1028 {
1029 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1030 
1031 	if (ret && modname)
1032 		*modname = NULL;
1033 	return ret;
1034 }
1035 
1036 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1037 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1038 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym);
1039 
1040 #else /* CONFIG_BPF_JIT */
1041 
ebpf_jit_enabled(void)1042 static inline bool ebpf_jit_enabled(void)
1043 {
1044 	return false;
1045 }
1046 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1047 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1048 {
1049 	return false;
1050 }
1051 
bpf_jit_free(struct bpf_prog * fp)1052 static inline void bpf_jit_free(struct bpf_prog *fp)
1053 {
1054 	bpf_prog_unlock_free(fp);
1055 }
1056 
bpf_jit_kallsyms_enabled(void)1057 static inline bool bpf_jit_kallsyms_enabled(void)
1058 {
1059 	return false;
1060 }
1061 
1062 static inline const char *
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)1063 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1064 		     unsigned long *off, char *sym)
1065 {
1066 	return NULL;
1067 }
1068 
is_bpf_text_address(unsigned long addr)1069 static inline bool is_bpf_text_address(unsigned long addr)
1070 {
1071 	return false;
1072 }
1073 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)1074 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1075 				  char *type, char *sym)
1076 {
1077 	return -ERANGE;
1078 }
1079 
1080 static inline const char *
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1081 bpf_address_lookup(unsigned long addr, unsigned long *size,
1082 		   unsigned long *off, char **modname, char *sym)
1083 {
1084 	return NULL;
1085 }
1086 
bpf_prog_kallsyms_add(struct bpf_prog * fp)1087 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1088 {
1089 }
1090 
bpf_prog_kallsyms_del(struct bpf_prog * fp)1091 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1092 {
1093 }
1094 
bpf_get_prog_name(const struct bpf_prog * prog,char * sym)1095 static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
1096 {
1097 	sym[0] = '\0';
1098 }
1099 
1100 #endif /* CONFIG_BPF_JIT */
1101 
1102 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1103 
1104 #define BPF_ANC		BIT(15)
1105 
bpf_needs_clear_a(const struct sock_filter * first)1106 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1107 {
1108 	switch (first->code) {
1109 	case BPF_RET | BPF_K:
1110 	case BPF_LD | BPF_W | BPF_LEN:
1111 		return false;
1112 
1113 	case BPF_LD | BPF_W | BPF_ABS:
1114 	case BPF_LD | BPF_H | BPF_ABS:
1115 	case BPF_LD | BPF_B | BPF_ABS:
1116 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1117 			return true;
1118 		return false;
1119 
1120 	default:
1121 		return true;
1122 	}
1123 }
1124 
bpf_anc_helper(const struct sock_filter * ftest)1125 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1126 {
1127 	BUG_ON(ftest->code & BPF_ANC);
1128 
1129 	switch (ftest->code) {
1130 	case BPF_LD | BPF_W | BPF_ABS:
1131 	case BPF_LD | BPF_H | BPF_ABS:
1132 	case BPF_LD | BPF_B | BPF_ABS:
1133 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1134 				return BPF_ANC | SKF_AD_##CODE
1135 		switch (ftest->k) {
1136 		BPF_ANCILLARY(PROTOCOL);
1137 		BPF_ANCILLARY(PKTTYPE);
1138 		BPF_ANCILLARY(IFINDEX);
1139 		BPF_ANCILLARY(NLATTR);
1140 		BPF_ANCILLARY(NLATTR_NEST);
1141 		BPF_ANCILLARY(MARK);
1142 		BPF_ANCILLARY(QUEUE);
1143 		BPF_ANCILLARY(HATYPE);
1144 		BPF_ANCILLARY(RXHASH);
1145 		BPF_ANCILLARY(CPU);
1146 		BPF_ANCILLARY(ALU_XOR_X);
1147 		BPF_ANCILLARY(VLAN_TAG);
1148 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1149 		BPF_ANCILLARY(PAY_OFFSET);
1150 		BPF_ANCILLARY(RANDOM);
1151 		BPF_ANCILLARY(VLAN_TPID);
1152 		}
1153 		/* Fallthrough. */
1154 	default:
1155 		return ftest->code;
1156 	}
1157 }
1158 
1159 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1160 					   int k, unsigned int size);
1161 
bpf_load_pointer(const struct sk_buff * skb,int k,unsigned int size,void * buffer)1162 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1163 				     unsigned int size, void *buffer)
1164 {
1165 	if (k >= 0)
1166 		return skb_header_pointer(skb, k, size, buffer);
1167 
1168 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
1169 }
1170 
bpf_tell_extensions(void)1171 static inline int bpf_tell_extensions(void)
1172 {
1173 	return SKF_AD_MAX;
1174 }
1175 
1176 struct bpf_sock_addr_kern {
1177 	struct sock *sk;
1178 	struct sockaddr *uaddr;
1179 	/* Temporary "register" to make indirect stores to nested structures
1180 	 * defined above. We need three registers to make such a store, but
1181 	 * only two (src and dst) are available at convert_ctx_access time
1182 	 */
1183 	u64 tmp_reg;
1184 	void *t_ctx;	/* Attach type specific context. */
1185 };
1186 
1187 struct bpf_sock_ops_kern {
1188 	struct	sock *sk;
1189 	u32	op;
1190 	union {
1191 		u32 args[4];
1192 		u32 reply;
1193 		u32 replylong[4];
1194 	};
1195 	u32	is_fullsock;
1196 	u64	temp;			/* temp and everything after is not
1197 					 * initialized to 0 before calling
1198 					 * the BPF program. New fields that
1199 					 * should be initialized to 0 should
1200 					 * be inserted before temp.
1201 					 * temp is scratch storage used by
1202 					 * sock_ops_convert_ctx_access
1203 					 * as temporary storage of a register.
1204 					 */
1205 };
1206 
1207 struct bpf_sysctl_kern {
1208 	struct ctl_table_header *head;
1209 	struct ctl_table *table;
1210 	void *cur_val;
1211 	size_t cur_len;
1212 	void *new_val;
1213 	size_t new_len;
1214 	int new_updated;
1215 	int write;
1216 	loff_t *ppos;
1217 	/* Temporary "register" for indirect stores to ppos. */
1218 	u64 tmp_reg;
1219 };
1220 
1221 struct bpf_sockopt_kern {
1222 	struct sock	*sk;
1223 	u8		*optval;
1224 	u8		*optval_end;
1225 	s32		level;
1226 	s32		optname;
1227 	s32		optlen;
1228 	s32		retval;
1229 };
1230 
1231 #endif /* __LINUX_FILTER_H__ */
1232