1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Linux Socket Filter Data Structures
4 */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <stdarg.h>
9
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/cryptohash.h>
20 #include <linux/set_memory.h>
21 #include <linux/kallsyms.h>
22 #include <linux/if_vlan.h>
23 #include <linux/vmalloc.h>
24
25 #include <net/sch_generic.h>
26
27 #include <asm/byteorder.h>
28 #include <uapi/linux/filter.h>
29 #include <uapi/linux/bpf.h>
30
31 struct sk_buff;
32 struct sock;
33 struct seccomp_data;
34 struct bpf_prog_aux;
35 struct xdp_rxq_info;
36 struct xdp_buff;
37 struct sock_reuseport;
38 struct ctl_table;
39 struct ctl_table_header;
40
41 /* ArgX, context and stack frame pointer register positions. Note,
42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43 * calls in BPF_CALL instruction.
44 */
45 #define BPF_REG_ARG1 BPF_REG_1
46 #define BPF_REG_ARG2 BPF_REG_2
47 #define BPF_REG_ARG3 BPF_REG_3
48 #define BPF_REG_ARG4 BPF_REG_4
49 #define BPF_REG_ARG5 BPF_REG_5
50 #define BPF_REG_CTX BPF_REG_6
51 #define BPF_REG_FP BPF_REG_10
52
53 /* Additional register mappings for converted user programs. */
54 #define BPF_REG_A BPF_REG_0
55 #define BPF_REG_X BPF_REG_7
56 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */
57 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */
58 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
59
60 /* Kernel hidden auxiliary/helper register. */
61 #define BPF_REG_AX MAX_BPF_REG
62 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
63 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
64
65 /* unused opcode to mark special call to bpf_tail_call() helper */
66 #define BPF_TAIL_CALL 0xf0
67
68 /* unused opcode to mark call to interpreter with arguments */
69 #define BPF_CALL_ARGS 0xe0
70
71 /* As per nm, we expose JITed images as text (code) section for
72 * kallsyms. That way, tools like perf can find it to match
73 * addresses.
74 */
75 #define BPF_SYM_ELF_TYPE 't'
76
77 /* BPF program can access up to 512 bytes of stack space. */
78 #define MAX_BPF_STACK 512
79
80 /* Helper macros for filter block array initializers. */
81
82 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
83
84 #define BPF_ALU64_REG(OP, DST, SRC) \
85 ((struct bpf_insn) { \
86 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
87 .dst_reg = DST, \
88 .src_reg = SRC, \
89 .off = 0, \
90 .imm = 0 })
91
92 #define BPF_ALU32_REG(OP, DST, SRC) \
93 ((struct bpf_insn) { \
94 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
95 .dst_reg = DST, \
96 .src_reg = SRC, \
97 .off = 0, \
98 .imm = 0 })
99
100 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
101
102 #define BPF_ALU64_IMM(OP, DST, IMM) \
103 ((struct bpf_insn) { \
104 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
105 .dst_reg = DST, \
106 .src_reg = 0, \
107 .off = 0, \
108 .imm = IMM })
109
110 #define BPF_ALU32_IMM(OP, DST, IMM) \
111 ((struct bpf_insn) { \
112 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
113 .dst_reg = DST, \
114 .src_reg = 0, \
115 .off = 0, \
116 .imm = IMM })
117
118 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
119
120 #define BPF_ENDIAN(TYPE, DST, LEN) \
121 ((struct bpf_insn) { \
122 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
123 .dst_reg = DST, \
124 .src_reg = 0, \
125 .off = 0, \
126 .imm = LEN })
127
128 /* Short form of mov, dst_reg = src_reg */
129
130 #define BPF_MOV64_REG(DST, SRC) \
131 ((struct bpf_insn) { \
132 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
133 .dst_reg = DST, \
134 .src_reg = SRC, \
135 .off = 0, \
136 .imm = 0 })
137
138 #define BPF_MOV32_REG(DST, SRC) \
139 ((struct bpf_insn) { \
140 .code = BPF_ALU | BPF_MOV | BPF_X, \
141 .dst_reg = DST, \
142 .src_reg = SRC, \
143 .off = 0, \
144 .imm = 0 })
145
146 /* Short form of mov, dst_reg = imm32 */
147
148 #define BPF_MOV64_IMM(DST, IMM) \
149 ((struct bpf_insn) { \
150 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
151 .dst_reg = DST, \
152 .src_reg = 0, \
153 .off = 0, \
154 .imm = IMM })
155
156 #define BPF_MOV32_IMM(DST, IMM) \
157 ((struct bpf_insn) { \
158 .code = BPF_ALU | BPF_MOV | BPF_K, \
159 .dst_reg = DST, \
160 .src_reg = 0, \
161 .off = 0, \
162 .imm = IMM })
163
164 /* Special form of mov32, used for doing explicit zero extension on dst. */
165 #define BPF_ZEXT_REG(DST) \
166 ((struct bpf_insn) { \
167 .code = BPF_ALU | BPF_MOV | BPF_X, \
168 .dst_reg = DST, \
169 .src_reg = DST, \
170 .off = 0, \
171 .imm = 1 })
172
insn_is_zext(const struct bpf_insn * insn)173 static inline bool insn_is_zext(const struct bpf_insn *insn)
174 {
175 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
176 }
177
178 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
179 #define BPF_LD_IMM64(DST, IMM) \
180 BPF_LD_IMM64_RAW(DST, 0, IMM)
181
182 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
183 ((struct bpf_insn) { \
184 .code = BPF_LD | BPF_DW | BPF_IMM, \
185 .dst_reg = DST, \
186 .src_reg = SRC, \
187 .off = 0, \
188 .imm = (__u32) (IMM) }), \
189 ((struct bpf_insn) { \
190 .code = 0, /* zero is reserved opcode */ \
191 .dst_reg = 0, \
192 .src_reg = 0, \
193 .off = 0, \
194 .imm = ((__u64) (IMM)) >> 32 })
195
196 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
197 #define BPF_LD_MAP_FD(DST, MAP_FD) \
198 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
199
200 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
201
202 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
203 ((struct bpf_insn) { \
204 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
205 .dst_reg = DST, \
206 .src_reg = SRC, \
207 .off = 0, \
208 .imm = IMM })
209
210 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
211 ((struct bpf_insn) { \
212 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
213 .dst_reg = DST, \
214 .src_reg = SRC, \
215 .off = 0, \
216 .imm = IMM })
217
218 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
219
220 #define BPF_LD_ABS(SIZE, IMM) \
221 ((struct bpf_insn) { \
222 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
223 .dst_reg = 0, \
224 .src_reg = 0, \
225 .off = 0, \
226 .imm = IMM })
227
228 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
229
230 #define BPF_LD_IND(SIZE, SRC, IMM) \
231 ((struct bpf_insn) { \
232 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
233 .dst_reg = 0, \
234 .src_reg = SRC, \
235 .off = 0, \
236 .imm = IMM })
237
238 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
239
240 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
241 ((struct bpf_insn) { \
242 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
243 .dst_reg = DST, \
244 .src_reg = SRC, \
245 .off = OFF, \
246 .imm = 0 })
247
248 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
249
250 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
251 ((struct bpf_insn) { \
252 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
253 .dst_reg = DST, \
254 .src_reg = SRC, \
255 .off = OFF, \
256 .imm = 0 })
257
258 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
259
260 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
261 ((struct bpf_insn) { \
262 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
263 .dst_reg = DST, \
264 .src_reg = SRC, \
265 .off = OFF, \
266 .imm = 0 })
267
268 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
269
270 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
271 ((struct bpf_insn) { \
272 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
273 .dst_reg = DST, \
274 .src_reg = 0, \
275 .off = OFF, \
276 .imm = IMM })
277
278 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
279
280 #define BPF_JMP_REG(OP, DST, SRC, OFF) \
281 ((struct bpf_insn) { \
282 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
283 .dst_reg = DST, \
284 .src_reg = SRC, \
285 .off = OFF, \
286 .imm = 0 })
287
288 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
289
290 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \
291 ((struct bpf_insn) { \
292 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
293 .dst_reg = DST, \
294 .src_reg = 0, \
295 .off = OFF, \
296 .imm = IMM })
297
298 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
299
300 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \
301 ((struct bpf_insn) { \
302 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
303 .dst_reg = DST, \
304 .src_reg = SRC, \
305 .off = OFF, \
306 .imm = 0 })
307
308 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
309
310 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
311 ((struct bpf_insn) { \
312 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
313 .dst_reg = DST, \
314 .src_reg = 0, \
315 .off = OFF, \
316 .imm = IMM })
317
318 /* Unconditional jumps, goto pc + off16 */
319
320 #define BPF_JMP_A(OFF) \
321 ((struct bpf_insn) { \
322 .code = BPF_JMP | BPF_JA, \
323 .dst_reg = 0, \
324 .src_reg = 0, \
325 .off = OFF, \
326 .imm = 0 })
327
328 /* Relative call */
329
330 #define BPF_CALL_REL(TGT) \
331 ((struct bpf_insn) { \
332 .code = BPF_JMP | BPF_CALL, \
333 .dst_reg = 0, \
334 .src_reg = BPF_PSEUDO_CALL, \
335 .off = 0, \
336 .imm = TGT })
337
338 /* Function call */
339
340 #define BPF_CAST_CALL(x) \
341 ((u64 (*)(u64, u64, u64, u64, u64))(x))
342
343 #define BPF_EMIT_CALL(FUNC) \
344 ((struct bpf_insn) { \
345 .code = BPF_JMP | BPF_CALL, \
346 .dst_reg = 0, \
347 .src_reg = 0, \
348 .off = 0, \
349 .imm = ((FUNC) - __bpf_call_base) })
350
351 /* Raw code statement block */
352
353 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
354 ((struct bpf_insn) { \
355 .code = CODE, \
356 .dst_reg = DST, \
357 .src_reg = SRC, \
358 .off = OFF, \
359 .imm = IMM })
360
361 /* Program exit */
362
363 #define BPF_EXIT_INSN() \
364 ((struct bpf_insn) { \
365 .code = BPF_JMP | BPF_EXIT, \
366 .dst_reg = 0, \
367 .src_reg = 0, \
368 .off = 0, \
369 .imm = 0 })
370
371 /* Internal classic blocks for direct assignment */
372
373 #define __BPF_STMT(CODE, K) \
374 ((struct sock_filter) BPF_STMT(CODE, K))
375
376 #define __BPF_JUMP(CODE, K, JT, JF) \
377 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
378
379 #define bytes_to_bpf_size(bytes) \
380 ({ \
381 int bpf_size = -EINVAL; \
382 \
383 if (bytes == sizeof(u8)) \
384 bpf_size = BPF_B; \
385 else if (bytes == sizeof(u16)) \
386 bpf_size = BPF_H; \
387 else if (bytes == sizeof(u32)) \
388 bpf_size = BPF_W; \
389 else if (bytes == sizeof(u64)) \
390 bpf_size = BPF_DW; \
391 \
392 bpf_size; \
393 })
394
395 #define bpf_size_to_bytes(bpf_size) \
396 ({ \
397 int bytes = -EINVAL; \
398 \
399 if (bpf_size == BPF_B) \
400 bytes = sizeof(u8); \
401 else if (bpf_size == BPF_H) \
402 bytes = sizeof(u16); \
403 else if (bpf_size == BPF_W) \
404 bytes = sizeof(u32); \
405 else if (bpf_size == BPF_DW) \
406 bytes = sizeof(u64); \
407 \
408 bytes; \
409 })
410
411 #define BPF_SIZEOF(type) \
412 ({ \
413 const int __size = bytes_to_bpf_size(sizeof(type)); \
414 BUILD_BUG_ON(__size < 0); \
415 __size; \
416 })
417
418 #define BPF_FIELD_SIZEOF(type, field) \
419 ({ \
420 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
421 BUILD_BUG_ON(__size < 0); \
422 __size; \
423 })
424
425 #define BPF_LDST_BYTES(insn) \
426 ({ \
427 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
428 WARN_ON(__size < 0); \
429 __size; \
430 })
431
432 #define __BPF_MAP_0(m, v, ...) v
433 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
434 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
435 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
436 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
437 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
438
439 #define __BPF_REG_0(...) __BPF_PAD(5)
440 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
441 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
442 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
443 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
444 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
445
446 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
447 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
448
449 #define __BPF_CAST(t, a) \
450 (__force t) \
451 (__force \
452 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
453 (unsigned long)0, (t)0))) a
454 #define __BPF_V void
455 #define __BPF_N
456
457 #define __BPF_DECL_ARGS(t, a) t a
458 #define __BPF_DECL_REGS(t, a) u64 a
459
460 #define __BPF_PAD(n) \
461 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
462 u64, __ur_3, u64, __ur_4, u64, __ur_5)
463
464 #define BPF_CALL_x(x, name, ...) \
465 static __always_inline \
466 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
467 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
468 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
469 { \
470 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
471 } \
472 static __always_inline \
473 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
474
475 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
476 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
477 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
478 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
479 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
480 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
481
482 #define bpf_ctx_range(TYPE, MEMBER) \
483 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
484 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
485 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
486 #if BITS_PER_LONG == 64
487 # define bpf_ctx_range_ptr(TYPE, MEMBER) \
488 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
489 #else
490 # define bpf_ctx_range_ptr(TYPE, MEMBER) \
491 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
492 #endif /* BITS_PER_LONG == 64 */
493
494 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
495 ({ \
496 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \
497 *(PTR_SIZE) = (SIZE); \
498 offsetof(TYPE, MEMBER); \
499 })
500
501 #ifdef CONFIG_COMPAT
502 /* A struct sock_filter is architecture independent. */
503 struct compat_sock_fprog {
504 u16 len;
505 compat_uptr_t filter; /* struct sock_filter * */
506 };
507 #endif
508
509 struct sock_fprog_kern {
510 u16 len;
511 struct sock_filter *filter;
512 };
513
514 struct bpf_binary_header {
515 u32 pages;
516 /* Some arches need word alignment for their instructions */
517 u8 image[] __aligned(4);
518 };
519
520 struct bpf_prog {
521 u16 pages; /* Number of allocated pages */
522 u16 jited:1, /* Is our filter JIT'ed? */
523 jit_requested:1,/* archs need to JIT the prog */
524 gpl_compatible:1, /* Is filter GPL compatible? */
525 cb_access:1, /* Is control block accessed? */
526 dst_needed:1, /* Do we need dst entry? */
527 blinded:1, /* Was blinded */
528 is_func:1, /* program is a bpf function */
529 kprobe_override:1, /* Do we override a kprobe? */
530 has_callchain_buf:1, /* callchain buffer allocated? */
531 enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */
532 enum bpf_prog_type type; /* Type of BPF program */
533 enum bpf_attach_type expected_attach_type; /* For some prog types */
534 u32 len; /* Number of filter blocks */
535 u32 jited_len; /* Size of jited insns in bytes */
536 u8 tag[BPF_TAG_SIZE];
537 struct bpf_prog_aux *aux; /* Auxiliary fields */
538 struct sock_fprog_kern *orig_prog; /* Original BPF program */
539 unsigned int (*bpf_func)(const void *ctx,
540 const struct bpf_insn *insn);
541 /* Instructions for interpreter */
542 union {
543 struct sock_filter insns[0];
544 struct bpf_insn insnsi[0];
545 };
546 };
547
548 struct sk_filter {
549 refcount_t refcnt;
550 struct rcu_head rcu;
551 struct bpf_prog *prog;
552 };
553
554 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
555
556 #define BPF_PROG_RUN(prog, ctx) ({ \
557 u32 ret; \
558 cant_sleep(); \
559 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \
560 struct bpf_prog_stats *stats; \
561 u64 start = sched_clock(); \
562 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \
563 stats = this_cpu_ptr(prog->aux->stats); \
564 u64_stats_update_begin(&stats->syncp); \
565 stats->cnt++; \
566 stats->nsecs += sched_clock() - start; \
567 u64_stats_update_end(&stats->syncp); \
568 } else { \
569 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \
570 } \
571 ret; })
572
573 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
574
575 struct bpf_skb_data_end {
576 struct qdisc_skb_cb qdisc_cb;
577 void *data_meta;
578 void *data_end;
579 };
580
581 struct bpf_redirect_info {
582 u32 flags;
583 u32 tgt_index;
584 void *tgt_value;
585 struct bpf_map *map;
586 struct bpf_map *map_to_flush;
587 u32 kern_flags;
588 };
589
590 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
591
592 /* flags for bpf_redirect_info kern_flags */
593 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
594
595 /* Compute the linear packet data range [data, data_end) which
596 * will be accessed by various program types (cls_bpf, act_bpf,
597 * lwt, ...). Subsystems allowing direct data access must (!)
598 * ensure that cb[] area can be written to when BPF program is
599 * invoked (otherwise cb[] save/restore is necessary).
600 */
bpf_compute_data_pointers(struct sk_buff * skb)601 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
602 {
603 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
604
605 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
606 cb->data_meta = skb->data - skb_metadata_len(skb);
607 cb->data_end = skb->data + skb_headlen(skb);
608 }
609
610 /* Similar to bpf_compute_data_pointers(), except that save orginal
611 * data in cb->data and cb->meta_data for restore.
612 */
bpf_compute_and_save_data_end(struct sk_buff * skb,void ** saved_data_end)613 static inline void bpf_compute_and_save_data_end(
614 struct sk_buff *skb, void **saved_data_end)
615 {
616 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
617
618 *saved_data_end = cb->data_end;
619 cb->data_end = skb->data + skb_headlen(skb);
620 }
621
622 /* Restore data saved by bpf_compute_data_pointers(). */
bpf_restore_data_end(struct sk_buff * skb,void * saved_data_end)623 static inline void bpf_restore_data_end(
624 struct sk_buff *skb, void *saved_data_end)
625 {
626 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
627
628 cb->data_end = saved_data_end;
629 }
630
bpf_skb_cb(struct sk_buff * skb)631 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
632 {
633 /* eBPF programs may read/write skb->cb[] area to transfer meta
634 * data between tail calls. Since this also needs to work with
635 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
636 *
637 * In some socket filter cases, the cb unfortunately needs to be
638 * saved/restored so that protocol specific skb->cb[] data won't
639 * be lost. In any case, due to unpriviledged eBPF programs
640 * attached to sockets, we need to clear the bpf_skb_cb() area
641 * to not leak previous contents to user space.
642 */
643 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
644 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
645 FIELD_SIZEOF(struct qdisc_skb_cb, data));
646
647 return qdisc_skb_cb(skb)->data;
648 }
649
__bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)650 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
651 struct sk_buff *skb)
652 {
653 u8 *cb_data = bpf_skb_cb(skb);
654 u8 cb_saved[BPF_SKB_CB_LEN];
655 u32 res;
656
657 if (unlikely(prog->cb_access)) {
658 memcpy(cb_saved, cb_data, sizeof(cb_saved));
659 memset(cb_data, 0, sizeof(cb_saved));
660 }
661
662 res = BPF_PROG_RUN(prog, skb);
663
664 if (unlikely(prog->cb_access))
665 memcpy(cb_data, cb_saved, sizeof(cb_saved));
666
667 return res;
668 }
669
bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)670 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
671 struct sk_buff *skb)
672 {
673 u32 res;
674
675 preempt_disable();
676 res = __bpf_prog_run_save_cb(prog, skb);
677 preempt_enable();
678 return res;
679 }
680
bpf_prog_run_clear_cb(const struct bpf_prog * prog,struct sk_buff * skb)681 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
682 struct sk_buff *skb)
683 {
684 u8 *cb_data = bpf_skb_cb(skb);
685 u32 res;
686
687 if (unlikely(prog->cb_access))
688 memset(cb_data, 0, BPF_SKB_CB_LEN);
689
690 preempt_disable();
691 res = BPF_PROG_RUN(prog, skb);
692 preempt_enable();
693 return res;
694 }
695
bpf_prog_run_xdp(const struct bpf_prog * prog,struct xdp_buff * xdp)696 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
697 struct xdp_buff *xdp)
698 {
699 /* Caller needs to hold rcu_read_lock() (!), otherwise program
700 * can be released while still running, or map elements could be
701 * freed early while still having concurrent users. XDP fastpath
702 * already takes rcu_read_lock() when fetching the program, so
703 * it's not necessary here anymore.
704 */
705 return BPF_PROG_RUN(prog, xdp);
706 }
707
bpf_prog_insn_size(const struct bpf_prog * prog)708 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
709 {
710 return prog->len * sizeof(struct bpf_insn);
711 }
712
bpf_prog_tag_scratch_size(const struct bpf_prog * prog)713 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
714 {
715 return round_up(bpf_prog_insn_size(prog) +
716 sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
717 }
718
bpf_prog_size(unsigned int proglen)719 static inline unsigned int bpf_prog_size(unsigned int proglen)
720 {
721 return max(sizeof(struct bpf_prog),
722 offsetof(struct bpf_prog, insns[proglen]));
723 }
724
bpf_prog_was_classic(const struct bpf_prog * prog)725 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
726 {
727 /* When classic BPF programs have been loaded and the arch
728 * does not have a classic BPF JIT (anymore), they have been
729 * converted via bpf_migrate_filter() to eBPF and thus always
730 * have an unspec program type.
731 */
732 return prog->type == BPF_PROG_TYPE_UNSPEC;
733 }
734
bpf_ctx_off_adjust_machine(u32 size)735 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
736 {
737 const u32 size_machine = sizeof(unsigned long);
738
739 if (size > size_machine && size % size_machine == 0)
740 size = size_machine;
741
742 return size;
743 }
744
745 static inline bool
bpf_ctx_narrow_access_ok(u32 off,u32 size,u32 size_default)746 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
747 {
748 return size <= size_default && (size & (size - 1)) == 0;
749 }
750
751 static inline u8
bpf_ctx_narrow_access_offset(u32 off,u32 size,u32 size_default)752 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
753 {
754 u8 access_off = off & (size_default - 1);
755
756 #ifdef __LITTLE_ENDIAN
757 return access_off;
758 #else
759 return size_default - (access_off + size);
760 #endif
761 }
762
763 #define bpf_ctx_wide_access_ok(off, size, type, field) \
764 (size == sizeof(__u64) && \
765 off >= offsetof(type, field) && \
766 off + sizeof(__u64) <= offsetofend(type, field) && \
767 off % sizeof(__u64) == 0)
768
769 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
770
bpf_prog_lock_ro(struct bpf_prog * fp)771 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
772 {
773 set_vm_flush_reset_perms(fp);
774 set_memory_ro((unsigned long)fp, fp->pages);
775 }
776
bpf_jit_binary_lock_ro(struct bpf_binary_header * hdr)777 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
778 {
779 set_vm_flush_reset_perms(hdr);
780 set_memory_ro((unsigned long)hdr, hdr->pages);
781 set_memory_x((unsigned long)hdr, hdr->pages);
782 }
783
784 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)785 bpf_jit_binary_hdr(const struct bpf_prog *fp)
786 {
787 unsigned long real_start = (unsigned long)fp->bpf_func;
788 unsigned long addr = real_start & PAGE_MASK;
789
790 return (void *)addr;
791 }
792
793 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
sk_filter(struct sock * sk,struct sk_buff * skb)794 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
795 {
796 return sk_filter_trim_cap(sk, skb, 1);
797 }
798
799 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
800 void bpf_prog_free(struct bpf_prog *fp);
801
802 bool bpf_opcode_in_insntable(u8 code);
803
804 void bpf_prog_free_linfo(struct bpf_prog *prog);
805 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
806 const u32 *insn_to_jit_off);
807 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
808 void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
809 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
810
811 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
812 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
813 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
814 gfp_t gfp_extra_flags);
815 void __bpf_prog_free(struct bpf_prog *fp);
816
bpf_prog_unlock_free(struct bpf_prog * fp)817 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
818 {
819 __bpf_prog_free(fp);
820 }
821
822 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
823 unsigned int flen);
824
825 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
826 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
827 bpf_aux_classic_check_t trans, bool save_orig);
828 void bpf_prog_destroy(struct bpf_prog *fp);
829
830 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
831 int sk_attach_bpf(u32 ufd, struct sock *sk);
832 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
833 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
834 void sk_reuseport_prog_free(struct bpf_prog *prog);
835 int sk_detach_filter(struct sock *sk);
836 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
837 unsigned int len);
838
839 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
840 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
841
842 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
843 #define __bpf_call_base_args \
844 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
845 __bpf_call_base)
846
847 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
848 void bpf_jit_compile(struct bpf_prog *prog);
849 bool bpf_jit_needs_zext(void);
850 bool bpf_helper_changes_pkt_data(void *func);
851
bpf_dump_raw_ok(void)852 static inline bool bpf_dump_raw_ok(void)
853 {
854 /* Reconstruction of call-sites is dependent on kallsyms,
855 * thus make dump the same restriction.
856 */
857 return kallsyms_show_value() == 1;
858 }
859
860 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
861 const struct bpf_insn *patch, u32 len);
862 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
863
864 void bpf_clear_redirect_map(struct bpf_map *map);
865
xdp_return_frame_no_direct(void)866 static inline bool xdp_return_frame_no_direct(void)
867 {
868 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
869
870 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
871 }
872
xdp_set_return_frame_no_direct(void)873 static inline void xdp_set_return_frame_no_direct(void)
874 {
875 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
876
877 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
878 }
879
xdp_clear_return_frame_no_direct(void)880 static inline void xdp_clear_return_frame_no_direct(void)
881 {
882 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
883
884 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
885 }
886
xdp_ok_fwd_dev(const struct net_device * fwd,unsigned int pktlen)887 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
888 unsigned int pktlen)
889 {
890 unsigned int len;
891
892 if (unlikely(!(fwd->flags & IFF_UP)))
893 return -ENETDOWN;
894
895 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
896 if (pktlen > len)
897 return -EMSGSIZE;
898
899 return 0;
900 }
901
902 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
903 * same cpu context. Further for best results no more than a single map
904 * for the do_redirect/do_flush pair should be used. This limitation is
905 * because we only track one map and force a flush when the map changes.
906 * This does not appear to be a real limitation for existing software.
907 */
908 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
909 struct xdp_buff *xdp, struct bpf_prog *prog);
910 int xdp_do_redirect(struct net_device *dev,
911 struct xdp_buff *xdp,
912 struct bpf_prog *prog);
913 void xdp_do_flush_map(void);
914
915 void bpf_warn_invalid_xdp_action(u32 act);
916
917 #ifdef CONFIG_INET
918 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
919 struct bpf_prog *prog, struct sk_buff *skb,
920 u32 hash);
921 #else
922 static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)923 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
924 struct bpf_prog *prog, struct sk_buff *skb,
925 u32 hash)
926 {
927 return NULL;
928 }
929 #endif
930
931 #ifdef CONFIG_BPF_JIT
932 extern int bpf_jit_enable;
933 extern int bpf_jit_harden;
934 extern int bpf_jit_kallsyms;
935 extern long bpf_jit_limit;
936
937 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
938
939 struct bpf_binary_header *
940 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
941 unsigned int alignment,
942 bpf_jit_fill_hole_t bpf_fill_ill_insns);
943 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
944 u64 bpf_jit_alloc_exec_limit(void);
945 void *bpf_jit_alloc_exec(unsigned long size);
946 void bpf_jit_free_exec(void *addr);
947 void bpf_jit_free(struct bpf_prog *fp);
948
949 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
950 const struct bpf_insn *insn, bool extra_pass,
951 u64 *func_addr, bool *func_addr_fixed);
952
953 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
954 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
955
bpf_jit_dump(unsigned int flen,unsigned int proglen,u32 pass,void * image)956 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
957 u32 pass, void *image)
958 {
959 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
960 proglen, pass, image, current->comm, task_pid_nr(current));
961
962 if (image)
963 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
964 16, 1, image, proglen, false);
965 }
966
bpf_jit_is_ebpf(void)967 static inline bool bpf_jit_is_ebpf(void)
968 {
969 # ifdef CONFIG_HAVE_EBPF_JIT
970 return true;
971 # else
972 return false;
973 # endif
974 }
975
ebpf_jit_enabled(void)976 static inline bool ebpf_jit_enabled(void)
977 {
978 return bpf_jit_enable && bpf_jit_is_ebpf();
979 }
980
bpf_prog_ebpf_jited(const struct bpf_prog * fp)981 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
982 {
983 return fp->jited && bpf_jit_is_ebpf();
984 }
985
bpf_jit_blinding_enabled(struct bpf_prog * prog)986 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
987 {
988 /* These are the prerequisites, should someone ever have the
989 * idea to call blinding outside of them, we make sure to
990 * bail out.
991 */
992 if (!bpf_jit_is_ebpf())
993 return false;
994 if (!prog->jit_requested)
995 return false;
996 if (!bpf_jit_harden)
997 return false;
998 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
999 return false;
1000
1001 return true;
1002 }
1003
bpf_jit_kallsyms_enabled(void)1004 static inline bool bpf_jit_kallsyms_enabled(void)
1005 {
1006 /* There are a couple of corner cases where kallsyms should
1007 * not be enabled f.e. on hardening.
1008 */
1009 if (bpf_jit_harden)
1010 return false;
1011 if (!bpf_jit_kallsyms)
1012 return false;
1013 if (bpf_jit_kallsyms == 1)
1014 return true;
1015
1016 return false;
1017 }
1018
1019 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1020 unsigned long *off, char *sym);
1021 bool is_bpf_text_address(unsigned long addr);
1022 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1023 char *sym);
1024
1025 static inline const char *
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1026 bpf_address_lookup(unsigned long addr, unsigned long *size,
1027 unsigned long *off, char **modname, char *sym)
1028 {
1029 const char *ret = __bpf_address_lookup(addr, size, off, sym);
1030
1031 if (ret && modname)
1032 *modname = NULL;
1033 return ret;
1034 }
1035
1036 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1037 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1038 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym);
1039
1040 #else /* CONFIG_BPF_JIT */
1041
ebpf_jit_enabled(void)1042 static inline bool ebpf_jit_enabled(void)
1043 {
1044 return false;
1045 }
1046
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1047 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1048 {
1049 return false;
1050 }
1051
bpf_jit_free(struct bpf_prog * fp)1052 static inline void bpf_jit_free(struct bpf_prog *fp)
1053 {
1054 bpf_prog_unlock_free(fp);
1055 }
1056
bpf_jit_kallsyms_enabled(void)1057 static inline bool bpf_jit_kallsyms_enabled(void)
1058 {
1059 return false;
1060 }
1061
1062 static inline const char *
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)1063 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1064 unsigned long *off, char *sym)
1065 {
1066 return NULL;
1067 }
1068
is_bpf_text_address(unsigned long addr)1069 static inline bool is_bpf_text_address(unsigned long addr)
1070 {
1071 return false;
1072 }
1073
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)1074 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1075 char *type, char *sym)
1076 {
1077 return -ERANGE;
1078 }
1079
1080 static inline const char *
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1081 bpf_address_lookup(unsigned long addr, unsigned long *size,
1082 unsigned long *off, char **modname, char *sym)
1083 {
1084 return NULL;
1085 }
1086
bpf_prog_kallsyms_add(struct bpf_prog * fp)1087 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1088 {
1089 }
1090
bpf_prog_kallsyms_del(struct bpf_prog * fp)1091 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1092 {
1093 }
1094
bpf_get_prog_name(const struct bpf_prog * prog,char * sym)1095 static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
1096 {
1097 sym[0] = '\0';
1098 }
1099
1100 #endif /* CONFIG_BPF_JIT */
1101
1102 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1103
1104 #define BPF_ANC BIT(15)
1105
bpf_needs_clear_a(const struct sock_filter * first)1106 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1107 {
1108 switch (first->code) {
1109 case BPF_RET | BPF_K:
1110 case BPF_LD | BPF_W | BPF_LEN:
1111 return false;
1112
1113 case BPF_LD | BPF_W | BPF_ABS:
1114 case BPF_LD | BPF_H | BPF_ABS:
1115 case BPF_LD | BPF_B | BPF_ABS:
1116 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1117 return true;
1118 return false;
1119
1120 default:
1121 return true;
1122 }
1123 }
1124
bpf_anc_helper(const struct sock_filter * ftest)1125 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1126 {
1127 BUG_ON(ftest->code & BPF_ANC);
1128
1129 switch (ftest->code) {
1130 case BPF_LD | BPF_W | BPF_ABS:
1131 case BPF_LD | BPF_H | BPF_ABS:
1132 case BPF_LD | BPF_B | BPF_ABS:
1133 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1134 return BPF_ANC | SKF_AD_##CODE
1135 switch (ftest->k) {
1136 BPF_ANCILLARY(PROTOCOL);
1137 BPF_ANCILLARY(PKTTYPE);
1138 BPF_ANCILLARY(IFINDEX);
1139 BPF_ANCILLARY(NLATTR);
1140 BPF_ANCILLARY(NLATTR_NEST);
1141 BPF_ANCILLARY(MARK);
1142 BPF_ANCILLARY(QUEUE);
1143 BPF_ANCILLARY(HATYPE);
1144 BPF_ANCILLARY(RXHASH);
1145 BPF_ANCILLARY(CPU);
1146 BPF_ANCILLARY(ALU_XOR_X);
1147 BPF_ANCILLARY(VLAN_TAG);
1148 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1149 BPF_ANCILLARY(PAY_OFFSET);
1150 BPF_ANCILLARY(RANDOM);
1151 BPF_ANCILLARY(VLAN_TPID);
1152 }
1153 /* Fallthrough. */
1154 default:
1155 return ftest->code;
1156 }
1157 }
1158
1159 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1160 int k, unsigned int size);
1161
bpf_load_pointer(const struct sk_buff * skb,int k,unsigned int size,void * buffer)1162 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1163 unsigned int size, void *buffer)
1164 {
1165 if (k >= 0)
1166 return skb_header_pointer(skb, k, size, buffer);
1167
1168 return bpf_internal_load_pointer_neg_helper(skb, k, size);
1169 }
1170
bpf_tell_extensions(void)1171 static inline int bpf_tell_extensions(void)
1172 {
1173 return SKF_AD_MAX;
1174 }
1175
1176 struct bpf_sock_addr_kern {
1177 struct sock *sk;
1178 struct sockaddr *uaddr;
1179 /* Temporary "register" to make indirect stores to nested structures
1180 * defined above. We need three registers to make such a store, but
1181 * only two (src and dst) are available at convert_ctx_access time
1182 */
1183 u64 tmp_reg;
1184 void *t_ctx; /* Attach type specific context. */
1185 };
1186
1187 struct bpf_sock_ops_kern {
1188 struct sock *sk;
1189 u32 op;
1190 union {
1191 u32 args[4];
1192 u32 reply;
1193 u32 replylong[4];
1194 };
1195 u32 is_fullsock;
1196 u64 temp; /* temp and everything after is not
1197 * initialized to 0 before calling
1198 * the BPF program. New fields that
1199 * should be initialized to 0 should
1200 * be inserted before temp.
1201 * temp is scratch storage used by
1202 * sock_ops_convert_ctx_access
1203 * as temporary storage of a register.
1204 */
1205 };
1206
1207 struct bpf_sysctl_kern {
1208 struct ctl_table_header *head;
1209 struct ctl_table *table;
1210 void *cur_val;
1211 size_t cur_len;
1212 void *new_val;
1213 size_t new_len;
1214 int new_updated;
1215 int write;
1216 loff_t *ppos;
1217 /* Temporary "register" for indirect stores to ppos. */
1218 u64 tmp_reg;
1219 };
1220
1221 struct bpf_sockopt_kern {
1222 struct sock *sk;
1223 u8 *optval;
1224 u8 *optval_end;
1225 s32 level;
1226 s32 optname;
1227 s32 optlen;
1228 s32 retval;
1229 };
1230
1231 #endif /* __LINUX_FILTER_H__ */
1232