1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55 #include <net/busy_poll.h>
56 #include <net/tcp.h>
57 #include <net/xfrm.h>
58 #include <net/udp.h>
59 #include <linux/bpf_trace.h>
60 #include <net/xdp_sock.h>
61 #include <linux/inetdevice.h>
62 #include <net/inet_hashtables.h>
63 #include <net/inet6_hashtables.h>
64 #include <net/ip_fib.h>
65 #include <net/nexthop.h>
66 #include <net/flow.h>
67 #include <net/arp.h>
68 #include <net/ipv6.h>
69 #include <net/net_namespace.h>
70 #include <linux/seg6_local.h>
71 #include <net/seg6.h>
72 #include <net/seg6_local.h>
73 #include <net/lwtunnel.h>
74 #include <net/ipv6_stubs.h>
75 #include <net/bpf_sk_storage.h>
76
77 /**
78 * sk_filter_trim_cap - run a packet through a socket filter
79 * @sk: sock associated with &sk_buff
80 * @skb: buffer to filter
81 * @cap: limit on how short the eBPF program may trim the packet
82 *
83 * Run the eBPF program and then cut skb->data to correct size returned by
84 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85 * than pkt_len we keep whole skb->data. This is the socket level
86 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87 * be accepted or -EPERM if the packet should be tossed.
88 *
89 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92 int err;
93 struct sk_filter *filter;
94
95 /*
96 * If the skb was allocated from pfmemalloc reserves, only
97 * allow SOCK_MEMALLOC sockets to use it as this socket is
98 * helping free memory
99 */
100 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102 return -ENOMEM;
103 }
104 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105 if (err)
106 return err;
107
108 err = security_sock_rcv_skb(sk, skb);
109 if (err)
110 return err;
111
112 rcu_read_lock();
113 filter = rcu_dereference(sk->sk_filter);
114 if (filter) {
115 struct sock *save_sk = skb->sk;
116 unsigned int pkt_len;
117
118 skb->sk = sk;
119 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120 skb->sk = save_sk;
121 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122 }
123 rcu_read_unlock();
124
125 return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131 return skb_get_poff(skb);
132 }
133
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136 struct nlattr *nla;
137
138 if (skb_is_nonlinear(skb))
139 return 0;
140
141 if (skb->len < sizeof(struct nlattr))
142 return 0;
143
144 if (a > skb->len - sizeof(struct nlattr))
145 return 0;
146
147 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148 if (nla)
149 return (void *) nla - (void *) skb->data;
150
151 return 0;
152 }
153
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156 struct nlattr *nla;
157
158 if (skb_is_nonlinear(skb))
159 return 0;
160
161 if (skb->len < sizeof(struct nlattr))
162 return 0;
163
164 if (a > skb->len - sizeof(struct nlattr))
165 return 0;
166
167 nla = (struct nlattr *) &skb->data[a];
168 if (nla->nla_len > skb->len - a)
169 return 0;
170
171 nla = nla_find_nested(nla, x);
172 if (nla)
173 return (void *) nla - (void *) skb->data;
174
175 return 0;
176 }
177
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179 data, int, headlen, int, offset)
180 {
181 u8 tmp, *ptr;
182 const int len = sizeof(tmp);
183
184 if (offset >= 0) {
185 if (headlen - offset >= len)
186 return *(u8 *)(data + offset);
187 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188 return tmp;
189 } else {
190 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191 if (likely(ptr))
192 return *(u8 *)ptr;
193 }
194
195 return -EFAULT;
196 }
197
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199 int, offset)
200 {
201 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202 offset);
203 }
204
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206 data, int, headlen, int, offset)
207 {
208 u16 tmp, *ptr;
209 const int len = sizeof(tmp);
210
211 if (offset >= 0) {
212 if (headlen - offset >= len)
213 return get_unaligned_be16(data + offset);
214 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215 return be16_to_cpu(tmp);
216 } else {
217 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218 if (likely(ptr))
219 return get_unaligned_be16(ptr);
220 }
221
222 return -EFAULT;
223 }
224
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226 int, offset)
227 {
228 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229 offset);
230 }
231
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233 data, int, headlen, int, offset)
234 {
235 u32 tmp, *ptr;
236 const int len = sizeof(tmp);
237
238 if (likely(offset >= 0)) {
239 if (headlen - offset >= len)
240 return get_unaligned_be32(data + offset);
241 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242 return be32_to_cpu(tmp);
243 } else {
244 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245 if (likely(ptr))
246 return get_unaligned_be32(ptr);
247 }
248
249 return -EFAULT;
250 }
251
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253 int, offset)
254 {
255 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256 offset);
257 }
258
BPF_CALL_0(bpf_get_raw_cpu_id)259 BPF_CALL_0(bpf_get_raw_cpu_id)
260 {
261 return raw_smp_processor_id();
262 }
263
264 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
265 .func = bpf_get_raw_cpu_id,
266 .gpl_only = false,
267 .ret_type = RET_INTEGER,
268 };
269
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)270 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
271 struct bpf_insn *insn_buf)
272 {
273 struct bpf_insn *insn = insn_buf;
274
275 switch (skb_field) {
276 case SKF_AD_MARK:
277 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
278
279 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
280 offsetof(struct sk_buff, mark));
281 break;
282
283 case SKF_AD_PKTTYPE:
284 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
285 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
286 #ifdef __BIG_ENDIAN_BITFIELD
287 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
288 #endif
289 break;
290
291 case SKF_AD_QUEUE:
292 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
293
294 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
295 offsetof(struct sk_buff, queue_mapping));
296 break;
297
298 case SKF_AD_VLAN_TAG:
299 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
300
301 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
302 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
303 offsetof(struct sk_buff, vlan_tci));
304 break;
305 case SKF_AD_VLAN_TAG_PRESENT:
306 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
307 if (PKT_VLAN_PRESENT_BIT)
308 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
309 if (PKT_VLAN_PRESENT_BIT < 7)
310 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
311 break;
312 }
313
314 return insn - insn_buf;
315 }
316
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)317 static bool convert_bpf_extensions(struct sock_filter *fp,
318 struct bpf_insn **insnp)
319 {
320 struct bpf_insn *insn = *insnp;
321 u32 cnt;
322
323 switch (fp->k) {
324 case SKF_AD_OFF + SKF_AD_PROTOCOL:
325 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
326
327 /* A = *(u16 *) (CTX + offsetof(protocol)) */
328 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
329 offsetof(struct sk_buff, protocol));
330 /* A = ntohs(A) [emitting a nop or swap16] */
331 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
332 break;
333
334 case SKF_AD_OFF + SKF_AD_PKTTYPE:
335 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
336 insn += cnt - 1;
337 break;
338
339 case SKF_AD_OFF + SKF_AD_IFINDEX:
340 case SKF_AD_OFF + SKF_AD_HATYPE:
341 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
342 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
343
344 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
345 BPF_REG_TMP, BPF_REG_CTX,
346 offsetof(struct sk_buff, dev));
347 /* if (tmp != 0) goto pc + 1 */
348 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
349 *insn++ = BPF_EXIT_INSN();
350 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
351 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
352 offsetof(struct net_device, ifindex));
353 else
354 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
355 offsetof(struct net_device, type));
356 break;
357
358 case SKF_AD_OFF + SKF_AD_MARK:
359 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
360 insn += cnt - 1;
361 break;
362
363 case SKF_AD_OFF + SKF_AD_RXHASH:
364 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
365
366 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
367 offsetof(struct sk_buff, hash));
368 break;
369
370 case SKF_AD_OFF + SKF_AD_QUEUE:
371 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
372 insn += cnt - 1;
373 break;
374
375 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
376 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
377 BPF_REG_A, BPF_REG_CTX, insn);
378 insn += cnt - 1;
379 break;
380
381 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
382 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
383 BPF_REG_A, BPF_REG_CTX, insn);
384 insn += cnt - 1;
385 break;
386
387 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
388 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
389
390 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
391 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
392 offsetof(struct sk_buff, vlan_proto));
393 /* A = ntohs(A) [emitting a nop or swap16] */
394 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
395 break;
396
397 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
398 case SKF_AD_OFF + SKF_AD_NLATTR:
399 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
400 case SKF_AD_OFF + SKF_AD_CPU:
401 case SKF_AD_OFF + SKF_AD_RANDOM:
402 /* arg1 = CTX */
403 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
404 /* arg2 = A */
405 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
406 /* arg3 = X */
407 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
408 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
409 switch (fp->k) {
410 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
411 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
412 break;
413 case SKF_AD_OFF + SKF_AD_NLATTR:
414 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
415 break;
416 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
417 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
418 break;
419 case SKF_AD_OFF + SKF_AD_CPU:
420 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
421 break;
422 case SKF_AD_OFF + SKF_AD_RANDOM:
423 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
424 bpf_user_rnd_init_once();
425 break;
426 }
427 break;
428
429 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
430 /* A ^= X */
431 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
432 break;
433
434 default:
435 /* This is just a dummy call to avoid letting the compiler
436 * evict __bpf_call_base() as an optimization. Placed here
437 * where no-one bothers.
438 */
439 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
440 return false;
441 }
442
443 *insnp = insn;
444 return true;
445 }
446
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)447 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
448 {
449 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
450 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
451 bool endian = BPF_SIZE(fp->code) == BPF_H ||
452 BPF_SIZE(fp->code) == BPF_W;
453 bool indirect = BPF_MODE(fp->code) == BPF_IND;
454 const int ip_align = NET_IP_ALIGN;
455 struct bpf_insn *insn = *insnp;
456 int offset = fp->k;
457
458 if (!indirect &&
459 ((unaligned_ok && offset >= 0) ||
460 (!unaligned_ok && offset >= 0 &&
461 offset + ip_align >= 0 &&
462 offset + ip_align % size == 0))) {
463 bool ldx_off_ok = offset <= S16_MAX;
464
465 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
466 if (offset)
467 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
468 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
469 size, 2 + endian + (!ldx_off_ok * 2));
470 if (ldx_off_ok) {
471 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
472 BPF_REG_D, offset);
473 } else {
474 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
475 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
476 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
477 BPF_REG_TMP, 0);
478 }
479 if (endian)
480 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
481 *insn++ = BPF_JMP_A(8);
482 }
483
484 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
485 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
486 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
487 if (!indirect) {
488 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
489 } else {
490 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
491 if (fp->k)
492 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
493 }
494
495 switch (BPF_SIZE(fp->code)) {
496 case BPF_B:
497 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
498 break;
499 case BPF_H:
500 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
501 break;
502 case BPF_W:
503 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
504 break;
505 default:
506 return false;
507 }
508
509 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
510 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
511 *insn = BPF_EXIT_INSN();
512
513 *insnp = insn;
514 return true;
515 }
516
517 /**
518 * bpf_convert_filter - convert filter program
519 * @prog: the user passed filter program
520 * @len: the length of the user passed filter program
521 * @new_prog: allocated 'struct bpf_prog' or NULL
522 * @new_len: pointer to store length of converted program
523 * @seen_ld_abs: bool whether we've seen ld_abs/ind
524 *
525 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
526 * style extended BPF (eBPF).
527 * Conversion workflow:
528 *
529 * 1) First pass for calculating the new program length:
530 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
531 *
532 * 2) 2nd pass to remap in two passes: 1st pass finds new
533 * jump offsets, 2nd pass remapping:
534 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
535 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)536 static int bpf_convert_filter(struct sock_filter *prog, int len,
537 struct bpf_prog *new_prog, int *new_len,
538 bool *seen_ld_abs)
539 {
540 int new_flen = 0, pass = 0, target, i, stack_off;
541 struct bpf_insn *new_insn, *first_insn = NULL;
542 struct sock_filter *fp;
543 int *addrs = NULL;
544 u8 bpf_src;
545
546 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
547 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
548
549 if (len <= 0 || len > BPF_MAXINSNS)
550 return -EINVAL;
551
552 if (new_prog) {
553 first_insn = new_prog->insnsi;
554 addrs = kcalloc(len, sizeof(*addrs),
555 GFP_KERNEL | __GFP_NOWARN);
556 if (!addrs)
557 return -ENOMEM;
558 }
559
560 do_pass:
561 new_insn = first_insn;
562 fp = prog;
563
564 /* Classic BPF related prologue emission. */
565 if (new_prog) {
566 /* Classic BPF expects A and X to be reset first. These need
567 * to be guaranteed to be the first two instructions.
568 */
569 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
570 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
571
572 /* All programs must keep CTX in callee saved BPF_REG_CTX.
573 * In eBPF case it's done by the compiler, here we need to
574 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
575 */
576 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
577 if (*seen_ld_abs) {
578 /* For packet access in classic BPF, cache skb->data
579 * in callee-saved BPF R8 and skb->len - skb->data_len
580 * (headlen) in BPF R9. Since classic BPF is read-only
581 * on CTX, we only need to cache it once.
582 */
583 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
584 BPF_REG_D, BPF_REG_CTX,
585 offsetof(struct sk_buff, data));
586 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
587 offsetof(struct sk_buff, len));
588 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
589 offsetof(struct sk_buff, data_len));
590 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
591 }
592 } else {
593 new_insn += 3;
594 }
595
596 for (i = 0; i < len; fp++, i++) {
597 struct bpf_insn tmp_insns[32] = { };
598 struct bpf_insn *insn = tmp_insns;
599
600 if (addrs)
601 addrs[i] = new_insn - first_insn;
602
603 switch (fp->code) {
604 /* All arithmetic insns and skb loads map as-is. */
605 case BPF_ALU | BPF_ADD | BPF_X:
606 case BPF_ALU | BPF_ADD | BPF_K:
607 case BPF_ALU | BPF_SUB | BPF_X:
608 case BPF_ALU | BPF_SUB | BPF_K:
609 case BPF_ALU | BPF_AND | BPF_X:
610 case BPF_ALU | BPF_AND | BPF_K:
611 case BPF_ALU | BPF_OR | BPF_X:
612 case BPF_ALU | BPF_OR | BPF_K:
613 case BPF_ALU | BPF_LSH | BPF_X:
614 case BPF_ALU | BPF_LSH | BPF_K:
615 case BPF_ALU | BPF_RSH | BPF_X:
616 case BPF_ALU | BPF_RSH | BPF_K:
617 case BPF_ALU | BPF_XOR | BPF_X:
618 case BPF_ALU | BPF_XOR | BPF_K:
619 case BPF_ALU | BPF_MUL | BPF_X:
620 case BPF_ALU | BPF_MUL | BPF_K:
621 case BPF_ALU | BPF_DIV | BPF_X:
622 case BPF_ALU | BPF_DIV | BPF_K:
623 case BPF_ALU | BPF_MOD | BPF_X:
624 case BPF_ALU | BPF_MOD | BPF_K:
625 case BPF_ALU | BPF_NEG:
626 case BPF_LD | BPF_ABS | BPF_W:
627 case BPF_LD | BPF_ABS | BPF_H:
628 case BPF_LD | BPF_ABS | BPF_B:
629 case BPF_LD | BPF_IND | BPF_W:
630 case BPF_LD | BPF_IND | BPF_H:
631 case BPF_LD | BPF_IND | BPF_B:
632 /* Check for overloaded BPF extension and
633 * directly convert it if found, otherwise
634 * just move on with mapping.
635 */
636 if (BPF_CLASS(fp->code) == BPF_LD &&
637 BPF_MODE(fp->code) == BPF_ABS &&
638 convert_bpf_extensions(fp, &insn))
639 break;
640 if (BPF_CLASS(fp->code) == BPF_LD &&
641 convert_bpf_ld_abs(fp, &insn)) {
642 *seen_ld_abs = true;
643 break;
644 }
645
646 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
647 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
648 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
649 /* Error with exception code on div/mod by 0.
650 * For cBPF programs, this was always return 0.
651 */
652 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
653 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
654 *insn++ = BPF_EXIT_INSN();
655 }
656
657 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
658 break;
659
660 /* Jump transformation cannot use BPF block macros
661 * everywhere as offset calculation and target updates
662 * require a bit more work than the rest, i.e. jump
663 * opcodes map as-is, but offsets need adjustment.
664 */
665
666 #define BPF_EMIT_JMP \
667 do { \
668 const s32 off_min = S16_MIN, off_max = S16_MAX; \
669 s32 off; \
670 \
671 if (target >= len || target < 0) \
672 goto err; \
673 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
674 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
675 off -= insn - tmp_insns; \
676 /* Reject anything not fitting into insn->off. */ \
677 if (off < off_min || off > off_max) \
678 goto err; \
679 insn->off = off; \
680 } while (0)
681
682 case BPF_JMP | BPF_JA:
683 target = i + fp->k + 1;
684 insn->code = fp->code;
685 BPF_EMIT_JMP;
686 break;
687
688 case BPF_JMP | BPF_JEQ | BPF_K:
689 case BPF_JMP | BPF_JEQ | BPF_X:
690 case BPF_JMP | BPF_JSET | BPF_K:
691 case BPF_JMP | BPF_JSET | BPF_X:
692 case BPF_JMP | BPF_JGT | BPF_K:
693 case BPF_JMP | BPF_JGT | BPF_X:
694 case BPF_JMP | BPF_JGE | BPF_K:
695 case BPF_JMP | BPF_JGE | BPF_X:
696 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
697 /* BPF immediates are signed, zero extend
698 * immediate into tmp register and use it
699 * in compare insn.
700 */
701 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
702
703 insn->dst_reg = BPF_REG_A;
704 insn->src_reg = BPF_REG_TMP;
705 bpf_src = BPF_X;
706 } else {
707 insn->dst_reg = BPF_REG_A;
708 insn->imm = fp->k;
709 bpf_src = BPF_SRC(fp->code);
710 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
711 }
712
713 /* Common case where 'jump_false' is next insn. */
714 if (fp->jf == 0) {
715 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
716 target = i + fp->jt + 1;
717 BPF_EMIT_JMP;
718 break;
719 }
720
721 /* Convert some jumps when 'jump_true' is next insn. */
722 if (fp->jt == 0) {
723 switch (BPF_OP(fp->code)) {
724 case BPF_JEQ:
725 insn->code = BPF_JMP | BPF_JNE | bpf_src;
726 break;
727 case BPF_JGT:
728 insn->code = BPF_JMP | BPF_JLE | bpf_src;
729 break;
730 case BPF_JGE:
731 insn->code = BPF_JMP | BPF_JLT | bpf_src;
732 break;
733 default:
734 goto jmp_rest;
735 }
736
737 target = i + fp->jf + 1;
738 BPF_EMIT_JMP;
739 break;
740 }
741 jmp_rest:
742 /* Other jumps are mapped into two insns: Jxx and JA. */
743 target = i + fp->jt + 1;
744 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
745 BPF_EMIT_JMP;
746 insn++;
747
748 insn->code = BPF_JMP | BPF_JA;
749 target = i + fp->jf + 1;
750 BPF_EMIT_JMP;
751 break;
752
753 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
754 case BPF_LDX | BPF_MSH | BPF_B: {
755 struct sock_filter tmp = {
756 .code = BPF_LD | BPF_ABS | BPF_B,
757 .k = fp->k,
758 };
759
760 *seen_ld_abs = true;
761
762 /* X = A */
763 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
765 convert_bpf_ld_abs(&tmp, &insn);
766 insn++;
767 /* A &= 0xf */
768 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
769 /* A <<= 2 */
770 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
771 /* tmp = X */
772 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
773 /* X = A */
774 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
775 /* A = tmp */
776 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
777 break;
778 }
779 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
780 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
781 */
782 case BPF_RET | BPF_A:
783 case BPF_RET | BPF_K:
784 if (BPF_RVAL(fp->code) == BPF_K)
785 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
786 0, fp->k);
787 *insn = BPF_EXIT_INSN();
788 break;
789
790 /* Store to stack. */
791 case BPF_ST:
792 case BPF_STX:
793 stack_off = fp->k * 4 + 4;
794 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
795 BPF_ST ? BPF_REG_A : BPF_REG_X,
796 -stack_off);
797 /* check_load_and_stores() verifies that classic BPF can
798 * load from stack only after write, so tracking
799 * stack_depth for ST|STX insns is enough
800 */
801 if (new_prog && new_prog->aux->stack_depth < stack_off)
802 new_prog->aux->stack_depth = stack_off;
803 break;
804
805 /* Load from stack. */
806 case BPF_LD | BPF_MEM:
807 case BPF_LDX | BPF_MEM:
808 stack_off = fp->k * 4 + 4;
809 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
810 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
811 -stack_off);
812 break;
813
814 /* A = K or X = K */
815 case BPF_LD | BPF_IMM:
816 case BPF_LDX | BPF_IMM:
817 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
818 BPF_REG_A : BPF_REG_X, fp->k);
819 break;
820
821 /* X = A */
822 case BPF_MISC | BPF_TAX:
823 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 break;
825
826 /* A = X */
827 case BPF_MISC | BPF_TXA:
828 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
829 break;
830
831 /* A = skb->len or X = skb->len */
832 case BPF_LD | BPF_W | BPF_LEN:
833 case BPF_LDX | BPF_W | BPF_LEN:
834 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
836 offsetof(struct sk_buff, len));
837 break;
838
839 /* Access seccomp_data fields. */
840 case BPF_LDX | BPF_ABS | BPF_W:
841 /* A = *(u32 *) (ctx + K) */
842 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
843 break;
844
845 /* Unknown instruction. */
846 default:
847 goto err;
848 }
849
850 insn++;
851 if (new_prog)
852 memcpy(new_insn, tmp_insns,
853 sizeof(*insn) * (insn - tmp_insns));
854 new_insn += insn - tmp_insns;
855 }
856
857 if (!new_prog) {
858 /* Only calculating new length. */
859 *new_len = new_insn - first_insn;
860 if (*seen_ld_abs)
861 *new_len += 4; /* Prologue bits. */
862 return 0;
863 }
864
865 pass++;
866 if (new_flen != new_insn - first_insn) {
867 new_flen = new_insn - first_insn;
868 if (pass > 2)
869 goto err;
870 goto do_pass;
871 }
872
873 kfree(addrs);
874 BUG_ON(*new_len != new_flen);
875 return 0;
876 err:
877 kfree(addrs);
878 return -EINVAL;
879 }
880
881 /* Security:
882 *
883 * As we dont want to clear mem[] array for each packet going through
884 * __bpf_prog_run(), we check that filter loaded by user never try to read
885 * a cell if not previously written, and we check all branches to be sure
886 * a malicious user doesn't try to abuse us.
887 */
check_load_and_stores(const struct sock_filter * filter,int flen)888 static int check_load_and_stores(const struct sock_filter *filter, int flen)
889 {
890 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
891 int pc, ret = 0;
892
893 BUILD_BUG_ON(BPF_MEMWORDS > 16);
894
895 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
896 if (!masks)
897 return -ENOMEM;
898
899 memset(masks, 0xff, flen * sizeof(*masks));
900
901 for (pc = 0; pc < flen; pc++) {
902 memvalid &= masks[pc];
903
904 switch (filter[pc].code) {
905 case BPF_ST:
906 case BPF_STX:
907 memvalid |= (1 << filter[pc].k);
908 break;
909 case BPF_LD | BPF_MEM:
910 case BPF_LDX | BPF_MEM:
911 if (!(memvalid & (1 << filter[pc].k))) {
912 ret = -EINVAL;
913 goto error;
914 }
915 break;
916 case BPF_JMP | BPF_JA:
917 /* A jump must set masks on target */
918 masks[pc + 1 + filter[pc].k] &= memvalid;
919 memvalid = ~0;
920 break;
921 case BPF_JMP | BPF_JEQ | BPF_K:
922 case BPF_JMP | BPF_JEQ | BPF_X:
923 case BPF_JMP | BPF_JGE | BPF_K:
924 case BPF_JMP | BPF_JGE | BPF_X:
925 case BPF_JMP | BPF_JGT | BPF_K:
926 case BPF_JMP | BPF_JGT | BPF_X:
927 case BPF_JMP | BPF_JSET | BPF_K:
928 case BPF_JMP | BPF_JSET | BPF_X:
929 /* A jump must set masks on targets */
930 masks[pc + 1 + filter[pc].jt] &= memvalid;
931 masks[pc + 1 + filter[pc].jf] &= memvalid;
932 memvalid = ~0;
933 break;
934 }
935 }
936 error:
937 kfree(masks);
938 return ret;
939 }
940
chk_code_allowed(u16 code_to_probe)941 static bool chk_code_allowed(u16 code_to_probe)
942 {
943 static const bool codes[] = {
944 /* 32 bit ALU operations */
945 [BPF_ALU | BPF_ADD | BPF_K] = true,
946 [BPF_ALU | BPF_ADD | BPF_X] = true,
947 [BPF_ALU | BPF_SUB | BPF_K] = true,
948 [BPF_ALU | BPF_SUB | BPF_X] = true,
949 [BPF_ALU | BPF_MUL | BPF_K] = true,
950 [BPF_ALU | BPF_MUL | BPF_X] = true,
951 [BPF_ALU | BPF_DIV | BPF_K] = true,
952 [BPF_ALU | BPF_DIV | BPF_X] = true,
953 [BPF_ALU | BPF_MOD | BPF_K] = true,
954 [BPF_ALU | BPF_MOD | BPF_X] = true,
955 [BPF_ALU | BPF_AND | BPF_K] = true,
956 [BPF_ALU | BPF_AND | BPF_X] = true,
957 [BPF_ALU | BPF_OR | BPF_K] = true,
958 [BPF_ALU | BPF_OR | BPF_X] = true,
959 [BPF_ALU | BPF_XOR | BPF_K] = true,
960 [BPF_ALU | BPF_XOR | BPF_X] = true,
961 [BPF_ALU | BPF_LSH | BPF_K] = true,
962 [BPF_ALU | BPF_LSH | BPF_X] = true,
963 [BPF_ALU | BPF_RSH | BPF_K] = true,
964 [BPF_ALU | BPF_RSH | BPF_X] = true,
965 [BPF_ALU | BPF_NEG] = true,
966 /* Load instructions */
967 [BPF_LD | BPF_W | BPF_ABS] = true,
968 [BPF_LD | BPF_H | BPF_ABS] = true,
969 [BPF_LD | BPF_B | BPF_ABS] = true,
970 [BPF_LD | BPF_W | BPF_LEN] = true,
971 [BPF_LD | BPF_W | BPF_IND] = true,
972 [BPF_LD | BPF_H | BPF_IND] = true,
973 [BPF_LD | BPF_B | BPF_IND] = true,
974 [BPF_LD | BPF_IMM] = true,
975 [BPF_LD | BPF_MEM] = true,
976 [BPF_LDX | BPF_W | BPF_LEN] = true,
977 [BPF_LDX | BPF_B | BPF_MSH] = true,
978 [BPF_LDX | BPF_IMM] = true,
979 [BPF_LDX | BPF_MEM] = true,
980 /* Store instructions */
981 [BPF_ST] = true,
982 [BPF_STX] = true,
983 /* Misc instructions */
984 [BPF_MISC | BPF_TAX] = true,
985 [BPF_MISC | BPF_TXA] = true,
986 /* Return instructions */
987 [BPF_RET | BPF_K] = true,
988 [BPF_RET | BPF_A] = true,
989 /* Jump instructions */
990 [BPF_JMP | BPF_JA] = true,
991 [BPF_JMP | BPF_JEQ | BPF_K] = true,
992 [BPF_JMP | BPF_JEQ | BPF_X] = true,
993 [BPF_JMP | BPF_JGE | BPF_K] = true,
994 [BPF_JMP | BPF_JGE | BPF_X] = true,
995 [BPF_JMP | BPF_JGT | BPF_K] = true,
996 [BPF_JMP | BPF_JGT | BPF_X] = true,
997 [BPF_JMP | BPF_JSET | BPF_K] = true,
998 [BPF_JMP | BPF_JSET | BPF_X] = true,
999 };
1000
1001 if (code_to_probe >= ARRAY_SIZE(codes))
1002 return false;
1003
1004 return codes[code_to_probe];
1005 }
1006
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1007 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008 unsigned int flen)
1009 {
1010 if (filter == NULL)
1011 return false;
1012 if (flen == 0 || flen > BPF_MAXINSNS)
1013 return false;
1014
1015 return true;
1016 }
1017
1018 /**
1019 * bpf_check_classic - verify socket filter code
1020 * @filter: filter to verify
1021 * @flen: length of filter
1022 *
1023 * Check the user's filter code. If we let some ugly
1024 * filter code slip through kaboom! The filter must contain
1025 * no references or jumps that are out of range, no illegal
1026 * instructions, and must end with a RET instruction.
1027 *
1028 * All jumps are forward as they are not signed.
1029 *
1030 * Returns 0 if the rule set is legal or -EINVAL if not.
1031 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1032 static int bpf_check_classic(const struct sock_filter *filter,
1033 unsigned int flen)
1034 {
1035 bool anc_found;
1036 int pc;
1037
1038 /* Check the filter code now */
1039 for (pc = 0; pc < flen; pc++) {
1040 const struct sock_filter *ftest = &filter[pc];
1041
1042 /* May we actually operate on this code? */
1043 if (!chk_code_allowed(ftest->code))
1044 return -EINVAL;
1045
1046 /* Some instructions need special checks */
1047 switch (ftest->code) {
1048 case BPF_ALU | BPF_DIV | BPF_K:
1049 case BPF_ALU | BPF_MOD | BPF_K:
1050 /* Check for division by zero */
1051 if (ftest->k == 0)
1052 return -EINVAL;
1053 break;
1054 case BPF_ALU | BPF_LSH | BPF_K:
1055 case BPF_ALU | BPF_RSH | BPF_K:
1056 if (ftest->k >= 32)
1057 return -EINVAL;
1058 break;
1059 case BPF_LD | BPF_MEM:
1060 case BPF_LDX | BPF_MEM:
1061 case BPF_ST:
1062 case BPF_STX:
1063 /* Check for invalid memory addresses */
1064 if (ftest->k >= BPF_MEMWORDS)
1065 return -EINVAL;
1066 break;
1067 case BPF_JMP | BPF_JA:
1068 /* Note, the large ftest->k might cause loops.
1069 * Compare this with conditional jumps below,
1070 * where offsets are limited. --ANK (981016)
1071 */
1072 if (ftest->k >= (unsigned int)(flen - pc - 1))
1073 return -EINVAL;
1074 break;
1075 case BPF_JMP | BPF_JEQ | BPF_K:
1076 case BPF_JMP | BPF_JEQ | BPF_X:
1077 case BPF_JMP | BPF_JGE | BPF_K:
1078 case BPF_JMP | BPF_JGE | BPF_X:
1079 case BPF_JMP | BPF_JGT | BPF_K:
1080 case BPF_JMP | BPF_JGT | BPF_X:
1081 case BPF_JMP | BPF_JSET | BPF_K:
1082 case BPF_JMP | BPF_JSET | BPF_X:
1083 /* Both conditionals must be safe */
1084 if (pc + ftest->jt + 1 >= flen ||
1085 pc + ftest->jf + 1 >= flen)
1086 return -EINVAL;
1087 break;
1088 case BPF_LD | BPF_W | BPF_ABS:
1089 case BPF_LD | BPF_H | BPF_ABS:
1090 case BPF_LD | BPF_B | BPF_ABS:
1091 anc_found = false;
1092 if (bpf_anc_helper(ftest) & BPF_ANC)
1093 anc_found = true;
1094 /* Ancillary operation unknown or unsupported */
1095 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096 return -EINVAL;
1097 }
1098 }
1099
1100 /* Last instruction must be a RET code */
1101 switch (filter[flen - 1].code) {
1102 case BPF_RET | BPF_K:
1103 case BPF_RET | BPF_A:
1104 return check_load_and_stores(filter, flen);
1105 }
1106
1107 return -EINVAL;
1108 }
1109
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1110 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111 const struct sock_fprog *fprog)
1112 {
1113 unsigned int fsize = bpf_classic_proglen(fprog);
1114 struct sock_fprog_kern *fkprog;
1115
1116 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117 if (!fp->orig_prog)
1118 return -ENOMEM;
1119
1120 fkprog = fp->orig_prog;
1121 fkprog->len = fprog->len;
1122
1123 fkprog->filter = kmemdup(fp->insns, fsize,
1124 GFP_KERNEL | __GFP_NOWARN);
1125 if (!fkprog->filter) {
1126 kfree(fp->orig_prog);
1127 return -ENOMEM;
1128 }
1129
1130 return 0;
1131 }
1132
bpf_release_orig_filter(struct bpf_prog * fp)1133 static void bpf_release_orig_filter(struct bpf_prog *fp)
1134 {
1135 struct sock_fprog_kern *fprog = fp->orig_prog;
1136
1137 if (fprog) {
1138 kfree(fprog->filter);
1139 kfree(fprog);
1140 }
1141 }
1142
__bpf_prog_release(struct bpf_prog * prog)1143 static void __bpf_prog_release(struct bpf_prog *prog)
1144 {
1145 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146 bpf_prog_put(prog);
1147 } else {
1148 bpf_release_orig_filter(prog);
1149 bpf_prog_free(prog);
1150 }
1151 }
1152
__sk_filter_release(struct sk_filter * fp)1153 static void __sk_filter_release(struct sk_filter *fp)
1154 {
1155 __bpf_prog_release(fp->prog);
1156 kfree(fp);
1157 }
1158
1159 /**
1160 * sk_filter_release_rcu - Release a socket filter by rcu_head
1161 * @rcu: rcu_head that contains the sk_filter to free
1162 */
sk_filter_release_rcu(struct rcu_head * rcu)1163 static void sk_filter_release_rcu(struct rcu_head *rcu)
1164 {
1165 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166
1167 __sk_filter_release(fp);
1168 }
1169
1170 /**
1171 * sk_filter_release - release a socket filter
1172 * @fp: filter to remove
1173 *
1174 * Remove a filter from a socket and release its resources.
1175 */
sk_filter_release(struct sk_filter * fp)1176 static void sk_filter_release(struct sk_filter *fp)
1177 {
1178 if (refcount_dec_and_test(&fp->refcnt))
1179 call_rcu(&fp->rcu, sk_filter_release_rcu);
1180 }
1181
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1182 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183 {
1184 u32 filter_size = bpf_prog_size(fp->prog->len);
1185
1186 atomic_sub(filter_size, &sk->sk_omem_alloc);
1187 sk_filter_release(fp);
1188 }
1189
1190 /* try to charge the socket memory if there is space available
1191 * return true on success
1192 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1193 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194 {
1195 u32 filter_size = bpf_prog_size(fp->prog->len);
1196
1197 /* same check as in sock_kmalloc() */
1198 if (filter_size <= sysctl_optmem_max &&
1199 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200 atomic_add(filter_size, &sk->sk_omem_alloc);
1201 return true;
1202 }
1203 return false;
1204 }
1205
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1206 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207 {
1208 if (!refcount_inc_not_zero(&fp->refcnt))
1209 return false;
1210
1211 if (!__sk_filter_charge(sk, fp)) {
1212 sk_filter_release(fp);
1213 return false;
1214 }
1215 return true;
1216 }
1217
bpf_migrate_filter(struct bpf_prog * fp)1218 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219 {
1220 struct sock_filter *old_prog;
1221 struct bpf_prog *old_fp;
1222 int err, new_len, old_len = fp->len;
1223 bool seen_ld_abs = false;
1224
1225 /* We are free to overwrite insns et al right here as it
1226 * won't be used at this point in time anymore internally
1227 * after the migration to the internal BPF instruction
1228 * representation.
1229 */
1230 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231 sizeof(struct bpf_insn));
1232
1233 /* Conversion cannot happen on overlapping memory areas,
1234 * so we need to keep the user BPF around until the 2nd
1235 * pass. At this time, the user BPF is stored in fp->insns.
1236 */
1237 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238 GFP_KERNEL | __GFP_NOWARN);
1239 if (!old_prog) {
1240 err = -ENOMEM;
1241 goto out_err;
1242 }
1243
1244 /* 1st pass: calculate the new program length. */
1245 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246 &seen_ld_abs);
1247 if (err)
1248 goto out_err_free;
1249
1250 /* Expand fp for appending the new filter representation. */
1251 old_fp = fp;
1252 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253 if (!fp) {
1254 /* The old_fp is still around in case we couldn't
1255 * allocate new memory, so uncharge on that one.
1256 */
1257 fp = old_fp;
1258 err = -ENOMEM;
1259 goto out_err_free;
1260 }
1261
1262 fp->len = new_len;
1263
1264 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266 &seen_ld_abs);
1267 if (err)
1268 /* 2nd bpf_convert_filter() can fail only if it fails
1269 * to allocate memory, remapping must succeed. Note,
1270 * that at this time old_fp has already been released
1271 * by krealloc().
1272 */
1273 goto out_err_free;
1274
1275 fp = bpf_prog_select_runtime(fp, &err);
1276 if (err)
1277 goto out_err_free;
1278
1279 kfree(old_prog);
1280 return fp;
1281
1282 out_err_free:
1283 kfree(old_prog);
1284 out_err:
1285 __bpf_prog_release(fp);
1286 return ERR_PTR(err);
1287 }
1288
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1289 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290 bpf_aux_classic_check_t trans)
1291 {
1292 int err;
1293
1294 fp->bpf_func = NULL;
1295 fp->jited = 0;
1296
1297 err = bpf_check_classic(fp->insns, fp->len);
1298 if (err) {
1299 __bpf_prog_release(fp);
1300 return ERR_PTR(err);
1301 }
1302
1303 /* There might be additional checks and transformations
1304 * needed on classic filters, f.e. in case of seccomp.
1305 */
1306 if (trans) {
1307 err = trans(fp->insns, fp->len);
1308 if (err) {
1309 __bpf_prog_release(fp);
1310 return ERR_PTR(err);
1311 }
1312 }
1313
1314 /* Probe if we can JIT compile the filter and if so, do
1315 * the compilation of the filter.
1316 */
1317 bpf_jit_compile(fp);
1318
1319 /* JIT compiler couldn't process this filter, so do the
1320 * internal BPF translation for the optimized interpreter.
1321 */
1322 if (!fp->jited)
1323 fp = bpf_migrate_filter(fp);
1324
1325 return fp;
1326 }
1327
1328 /**
1329 * bpf_prog_create - create an unattached filter
1330 * @pfp: the unattached filter that is created
1331 * @fprog: the filter program
1332 *
1333 * Create a filter independent of any socket. We first run some
1334 * sanity checks on it to make sure it does not explode on us later.
1335 * If an error occurs or there is insufficient memory for the filter
1336 * a negative errno code is returned. On success the return is zero.
1337 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1338 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339 {
1340 unsigned int fsize = bpf_classic_proglen(fprog);
1341 struct bpf_prog *fp;
1342
1343 /* Make sure new filter is there and in the right amounts. */
1344 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345 return -EINVAL;
1346
1347 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348 if (!fp)
1349 return -ENOMEM;
1350
1351 memcpy(fp->insns, fprog->filter, fsize);
1352
1353 fp->len = fprog->len;
1354 /* Since unattached filters are not copied back to user
1355 * space through sk_get_filter(), we do not need to hold
1356 * a copy here, and can spare us the work.
1357 */
1358 fp->orig_prog = NULL;
1359
1360 /* bpf_prepare_filter() already takes care of freeing
1361 * memory in case something goes wrong.
1362 */
1363 fp = bpf_prepare_filter(fp, NULL);
1364 if (IS_ERR(fp))
1365 return PTR_ERR(fp);
1366
1367 *pfp = fp;
1368 return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(bpf_prog_create);
1371
1372 /**
1373 * bpf_prog_create_from_user - create an unattached filter from user buffer
1374 * @pfp: the unattached filter that is created
1375 * @fprog: the filter program
1376 * @trans: post-classic verifier transformation handler
1377 * @save_orig: save classic BPF program
1378 *
1379 * This function effectively does the same as bpf_prog_create(), only
1380 * that it builds up its insns buffer from user space provided buffer.
1381 * It also allows for passing a bpf_aux_classic_check_t handler.
1382 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1383 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384 bpf_aux_classic_check_t trans, bool save_orig)
1385 {
1386 unsigned int fsize = bpf_classic_proglen(fprog);
1387 struct bpf_prog *fp;
1388 int err;
1389
1390 /* Make sure new filter is there and in the right amounts. */
1391 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392 return -EINVAL;
1393
1394 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395 if (!fp)
1396 return -ENOMEM;
1397
1398 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399 __bpf_prog_free(fp);
1400 return -EFAULT;
1401 }
1402
1403 fp->len = fprog->len;
1404 fp->orig_prog = NULL;
1405
1406 if (save_orig) {
1407 err = bpf_prog_store_orig_filter(fp, fprog);
1408 if (err) {
1409 __bpf_prog_free(fp);
1410 return -ENOMEM;
1411 }
1412 }
1413
1414 /* bpf_prepare_filter() already takes care of freeing
1415 * memory in case something goes wrong.
1416 */
1417 fp = bpf_prepare_filter(fp, trans);
1418 if (IS_ERR(fp))
1419 return PTR_ERR(fp);
1420
1421 *pfp = fp;
1422 return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425
bpf_prog_destroy(struct bpf_prog * fp)1426 void bpf_prog_destroy(struct bpf_prog *fp)
1427 {
1428 __bpf_prog_release(fp);
1429 }
1430 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1432 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433 {
1434 struct sk_filter *fp, *old_fp;
1435
1436 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437 if (!fp)
1438 return -ENOMEM;
1439
1440 fp->prog = prog;
1441
1442 if (!__sk_filter_charge(sk, fp)) {
1443 kfree(fp);
1444 return -ENOMEM;
1445 }
1446 refcount_set(&fp->refcnt, 1);
1447
1448 old_fp = rcu_dereference_protected(sk->sk_filter,
1449 lockdep_sock_is_held(sk));
1450 rcu_assign_pointer(sk->sk_filter, fp);
1451
1452 if (old_fp)
1453 sk_filter_uncharge(sk, old_fp);
1454
1455 return 0;
1456 }
1457
1458 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1459 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460 {
1461 unsigned int fsize = bpf_classic_proglen(fprog);
1462 struct bpf_prog *prog;
1463 int err;
1464
1465 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466 return ERR_PTR(-EPERM);
1467
1468 /* Make sure new filter is there and in the right amounts. */
1469 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470 return ERR_PTR(-EINVAL);
1471
1472 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473 if (!prog)
1474 return ERR_PTR(-ENOMEM);
1475
1476 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477 __bpf_prog_free(prog);
1478 return ERR_PTR(-EFAULT);
1479 }
1480
1481 prog->len = fprog->len;
1482
1483 err = bpf_prog_store_orig_filter(prog, fprog);
1484 if (err) {
1485 __bpf_prog_free(prog);
1486 return ERR_PTR(-ENOMEM);
1487 }
1488
1489 /* bpf_prepare_filter() already takes care of freeing
1490 * memory in case something goes wrong.
1491 */
1492 return bpf_prepare_filter(prog, NULL);
1493 }
1494
1495 /**
1496 * sk_attach_filter - attach a socket filter
1497 * @fprog: the filter program
1498 * @sk: the socket to use
1499 *
1500 * Attach the user's filter code. We first run some sanity checks on
1501 * it to make sure it does not explode on us later. If an error
1502 * occurs or there is insufficient memory for the filter a negative
1503 * errno code is returned. On success the return is zero.
1504 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1505 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506 {
1507 struct bpf_prog *prog = __get_filter(fprog, sk);
1508 int err;
1509
1510 if (IS_ERR(prog))
1511 return PTR_ERR(prog);
1512
1513 err = __sk_attach_prog(prog, sk);
1514 if (err < 0) {
1515 __bpf_prog_release(prog);
1516 return err;
1517 }
1518
1519 return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(sk_attach_filter);
1522
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1523 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524 {
1525 struct bpf_prog *prog = __get_filter(fprog, sk);
1526 int err;
1527
1528 if (IS_ERR(prog))
1529 return PTR_ERR(prog);
1530
1531 if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532 err = -ENOMEM;
1533 else
1534 err = reuseport_attach_prog(sk, prog);
1535
1536 if (err)
1537 __bpf_prog_release(prog);
1538
1539 return err;
1540 }
1541
__get_bpf(u32 ufd,struct sock * sk)1542 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543 {
1544 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545 return ERR_PTR(-EPERM);
1546
1547 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548 }
1549
sk_attach_bpf(u32 ufd,struct sock * sk)1550 int sk_attach_bpf(u32 ufd, struct sock *sk)
1551 {
1552 struct bpf_prog *prog = __get_bpf(ufd, sk);
1553 int err;
1554
1555 if (IS_ERR(prog))
1556 return PTR_ERR(prog);
1557
1558 err = __sk_attach_prog(prog, sk);
1559 if (err < 0) {
1560 bpf_prog_put(prog);
1561 return err;
1562 }
1563
1564 return 0;
1565 }
1566
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1567 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568 {
1569 struct bpf_prog *prog;
1570 int err;
1571
1572 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573 return -EPERM;
1574
1575 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576 if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1577 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578 if (IS_ERR(prog))
1579 return PTR_ERR(prog);
1580
1581 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583 * bpf prog (e.g. sockmap). It depends on the
1584 * limitation imposed by bpf_prog_load().
1585 * Hence, sysctl_optmem_max is not checked.
1586 */
1587 if ((sk->sk_type != SOCK_STREAM &&
1588 sk->sk_type != SOCK_DGRAM) ||
1589 (sk->sk_protocol != IPPROTO_UDP &&
1590 sk->sk_protocol != IPPROTO_TCP) ||
1591 (sk->sk_family != AF_INET &&
1592 sk->sk_family != AF_INET6)) {
1593 err = -ENOTSUPP;
1594 goto err_prog_put;
1595 }
1596 } else {
1597 /* BPF_PROG_TYPE_SOCKET_FILTER */
1598 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599 err = -ENOMEM;
1600 goto err_prog_put;
1601 }
1602 }
1603
1604 err = reuseport_attach_prog(sk, prog);
1605 err_prog_put:
1606 if (err)
1607 bpf_prog_put(prog);
1608
1609 return err;
1610 }
1611
sk_reuseport_prog_free(struct bpf_prog * prog)1612 void sk_reuseport_prog_free(struct bpf_prog *prog)
1613 {
1614 if (!prog)
1615 return;
1616
1617 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618 bpf_prog_put(prog);
1619 else
1620 bpf_prog_destroy(prog);
1621 }
1622
1623 struct bpf_scratchpad {
1624 union {
1625 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626 u8 buff[MAX_BPF_STACK];
1627 };
1628 };
1629
1630 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1632 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633 unsigned int write_len)
1634 {
1635 return skb_ensure_writable(skb, write_len);
1636 }
1637
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1638 static inline int bpf_try_make_writable(struct sk_buff *skb,
1639 unsigned int write_len)
1640 {
1641 int err = __bpf_try_make_writable(skb, write_len);
1642
1643 bpf_compute_data_pointers(skb);
1644 return err;
1645 }
1646
bpf_try_make_head_writable(struct sk_buff * skb)1647 static int bpf_try_make_head_writable(struct sk_buff *skb)
1648 {
1649 return bpf_try_make_writable(skb, skb_headlen(skb));
1650 }
1651
bpf_push_mac_rcsum(struct sk_buff * skb)1652 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653 {
1654 if (skb_at_tc_ingress(skb))
1655 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656 }
1657
bpf_pull_mac_rcsum(struct sk_buff * skb)1658 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659 {
1660 if (skb_at_tc_ingress(skb))
1661 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662 }
1663
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1664 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665 const void *, from, u32, len, u64, flags)
1666 {
1667 void *ptr;
1668
1669 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670 return -EINVAL;
1671 if (unlikely(offset > 0xffff))
1672 return -EFAULT;
1673 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674 return -EFAULT;
1675
1676 ptr = skb->data + offset;
1677 if (flags & BPF_F_RECOMPUTE_CSUM)
1678 __skb_postpull_rcsum(skb, ptr, len, offset);
1679
1680 memcpy(ptr, from, len);
1681
1682 if (flags & BPF_F_RECOMPUTE_CSUM)
1683 __skb_postpush_rcsum(skb, ptr, len, offset);
1684 if (flags & BPF_F_INVALIDATE_HASH)
1685 skb_clear_hash(skb);
1686
1687 return 0;
1688 }
1689
1690 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691 .func = bpf_skb_store_bytes,
1692 .gpl_only = false,
1693 .ret_type = RET_INTEGER,
1694 .arg1_type = ARG_PTR_TO_CTX,
1695 .arg2_type = ARG_ANYTHING,
1696 .arg3_type = ARG_PTR_TO_MEM,
1697 .arg4_type = ARG_CONST_SIZE,
1698 .arg5_type = ARG_ANYTHING,
1699 };
1700
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1701 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702 void *, to, u32, len)
1703 {
1704 void *ptr;
1705
1706 if (unlikely(offset > 0xffff))
1707 goto err_clear;
1708
1709 ptr = skb_header_pointer(skb, offset, len, to);
1710 if (unlikely(!ptr))
1711 goto err_clear;
1712 if (ptr != to)
1713 memcpy(to, ptr, len);
1714
1715 return 0;
1716 err_clear:
1717 memset(to, 0, len);
1718 return -EFAULT;
1719 }
1720
1721 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722 .func = bpf_skb_load_bytes,
1723 .gpl_only = false,
1724 .ret_type = RET_INTEGER,
1725 .arg1_type = ARG_PTR_TO_CTX,
1726 .arg2_type = ARG_ANYTHING,
1727 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1728 .arg4_type = ARG_CONST_SIZE,
1729 };
1730
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1731 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1732 const struct bpf_flow_dissector *, ctx, u32, offset,
1733 void *, to, u32, len)
1734 {
1735 void *ptr;
1736
1737 if (unlikely(offset > 0xffff))
1738 goto err_clear;
1739
1740 if (unlikely(!ctx->skb))
1741 goto err_clear;
1742
1743 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1744 if (unlikely(!ptr))
1745 goto err_clear;
1746 if (ptr != to)
1747 memcpy(to, ptr, len);
1748
1749 return 0;
1750 err_clear:
1751 memset(to, 0, len);
1752 return -EFAULT;
1753 }
1754
1755 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1756 .func = bpf_flow_dissector_load_bytes,
1757 .gpl_only = false,
1758 .ret_type = RET_INTEGER,
1759 .arg1_type = ARG_PTR_TO_CTX,
1760 .arg2_type = ARG_ANYTHING,
1761 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1762 .arg4_type = ARG_CONST_SIZE,
1763 };
1764
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1765 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1766 u32, offset, void *, to, u32, len, u32, start_header)
1767 {
1768 u8 *end = skb_tail_pointer(skb);
1769 u8 *net = skb_network_header(skb);
1770 u8 *mac = skb_mac_header(skb);
1771 u8 *ptr;
1772
1773 if (unlikely(offset > 0xffff || len > (end - mac)))
1774 goto err_clear;
1775
1776 switch (start_header) {
1777 case BPF_HDR_START_MAC:
1778 ptr = mac + offset;
1779 break;
1780 case BPF_HDR_START_NET:
1781 ptr = net + offset;
1782 break;
1783 default:
1784 goto err_clear;
1785 }
1786
1787 if (likely(ptr >= mac && ptr + len <= end)) {
1788 memcpy(to, ptr, len);
1789 return 0;
1790 }
1791
1792 err_clear:
1793 memset(to, 0, len);
1794 return -EFAULT;
1795 }
1796
1797 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1798 .func = bpf_skb_load_bytes_relative,
1799 .gpl_only = false,
1800 .ret_type = RET_INTEGER,
1801 .arg1_type = ARG_PTR_TO_CTX,
1802 .arg2_type = ARG_ANYTHING,
1803 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1804 .arg4_type = ARG_CONST_SIZE,
1805 .arg5_type = ARG_ANYTHING,
1806 };
1807
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1808 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1809 {
1810 /* Idea is the following: should the needed direct read/write
1811 * test fail during runtime, we can pull in more data and redo
1812 * again, since implicitly, we invalidate previous checks here.
1813 *
1814 * Or, since we know how much we need to make read/writeable,
1815 * this can be done once at the program beginning for direct
1816 * access case. By this we overcome limitations of only current
1817 * headroom being accessible.
1818 */
1819 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1820 }
1821
1822 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1823 .func = bpf_skb_pull_data,
1824 .gpl_only = false,
1825 .ret_type = RET_INTEGER,
1826 .arg1_type = ARG_PTR_TO_CTX,
1827 .arg2_type = ARG_ANYTHING,
1828 };
1829
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1830 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1831 {
1832 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1833 }
1834
1835 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1836 .func = bpf_sk_fullsock,
1837 .gpl_only = false,
1838 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1839 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1840 };
1841
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1842 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1843 unsigned int write_len)
1844 {
1845 int err = __bpf_try_make_writable(skb, write_len);
1846
1847 bpf_compute_data_end_sk_skb(skb);
1848 return err;
1849 }
1850
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1851 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853 /* Idea is the following: should the needed direct read/write
1854 * test fail during runtime, we can pull in more data and redo
1855 * again, since implicitly, we invalidate previous checks here.
1856 *
1857 * Or, since we know how much we need to make read/writeable,
1858 * this can be done once at the program beginning for direct
1859 * access case. By this we overcome limitations of only current
1860 * headroom being accessible.
1861 */
1862 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864
1865 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1866 .func = sk_skb_pull_data,
1867 .gpl_only = false,
1868 .ret_type = RET_INTEGER,
1869 .arg1_type = ARG_PTR_TO_CTX,
1870 .arg2_type = ARG_ANYTHING,
1871 };
1872
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1873 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1874 u64, from, u64, to, u64, flags)
1875 {
1876 __sum16 *ptr;
1877
1878 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1879 return -EINVAL;
1880 if (unlikely(offset > 0xffff || offset & 1))
1881 return -EFAULT;
1882 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883 return -EFAULT;
1884
1885 ptr = (__sum16 *)(skb->data + offset);
1886 switch (flags & BPF_F_HDR_FIELD_MASK) {
1887 case 0:
1888 if (unlikely(from != 0))
1889 return -EINVAL;
1890
1891 csum_replace_by_diff(ptr, to);
1892 break;
1893 case 2:
1894 csum_replace2(ptr, from, to);
1895 break;
1896 case 4:
1897 csum_replace4(ptr, from, to);
1898 break;
1899 default:
1900 return -EINVAL;
1901 }
1902
1903 return 0;
1904 }
1905
1906 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1907 .func = bpf_l3_csum_replace,
1908 .gpl_only = false,
1909 .ret_type = RET_INTEGER,
1910 .arg1_type = ARG_PTR_TO_CTX,
1911 .arg2_type = ARG_ANYTHING,
1912 .arg3_type = ARG_ANYTHING,
1913 .arg4_type = ARG_ANYTHING,
1914 .arg5_type = ARG_ANYTHING,
1915 };
1916
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1917 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1918 u64, from, u64, to, u64, flags)
1919 {
1920 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1921 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1922 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1923 __sum16 *ptr;
1924
1925 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1926 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1927 return -EINVAL;
1928 if (unlikely(offset > 0xffff || offset & 1))
1929 return -EFAULT;
1930 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931 return -EFAULT;
1932
1933 ptr = (__sum16 *)(skb->data + offset);
1934 if (is_mmzero && !do_mforce && !*ptr)
1935 return 0;
1936
1937 switch (flags & BPF_F_HDR_FIELD_MASK) {
1938 case 0:
1939 if (unlikely(from != 0))
1940 return -EINVAL;
1941
1942 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1943 break;
1944 case 2:
1945 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1946 break;
1947 case 4:
1948 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1949 break;
1950 default:
1951 return -EINVAL;
1952 }
1953
1954 if (is_mmzero && !*ptr)
1955 *ptr = CSUM_MANGLED_0;
1956 return 0;
1957 }
1958
1959 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1960 .func = bpf_l4_csum_replace,
1961 .gpl_only = false,
1962 .ret_type = RET_INTEGER,
1963 .arg1_type = ARG_PTR_TO_CTX,
1964 .arg2_type = ARG_ANYTHING,
1965 .arg3_type = ARG_ANYTHING,
1966 .arg4_type = ARG_ANYTHING,
1967 .arg5_type = ARG_ANYTHING,
1968 };
1969
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1970 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1971 __be32 *, to, u32, to_size, __wsum, seed)
1972 {
1973 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1974 u32 diff_size = from_size + to_size;
1975 int i, j = 0;
1976
1977 /* This is quite flexible, some examples:
1978 *
1979 * from_size == 0, to_size > 0, seed := csum --> pushing data
1980 * from_size > 0, to_size == 0, seed := csum --> pulling data
1981 * from_size > 0, to_size > 0, seed := 0 --> diffing data
1982 *
1983 * Even for diffing, from_size and to_size don't need to be equal.
1984 */
1985 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1986 diff_size > sizeof(sp->diff)))
1987 return -EINVAL;
1988
1989 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1990 sp->diff[j] = ~from[i];
1991 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
1992 sp->diff[j] = to[i];
1993
1994 return csum_partial(sp->diff, diff_size, seed);
1995 }
1996
1997 static const struct bpf_func_proto bpf_csum_diff_proto = {
1998 .func = bpf_csum_diff,
1999 .gpl_only = false,
2000 .pkt_access = true,
2001 .ret_type = RET_INTEGER,
2002 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
2003 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2004 .arg3_type = ARG_PTR_TO_MEM_OR_NULL,
2005 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2006 .arg5_type = ARG_ANYTHING,
2007 };
2008
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2009 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2010 {
2011 /* The interface is to be used in combination with bpf_csum_diff()
2012 * for direct packet writes. csum rotation for alignment as well
2013 * as emulating csum_sub() can be done from the eBPF program.
2014 */
2015 if (skb->ip_summed == CHECKSUM_COMPLETE)
2016 return (skb->csum = csum_add(skb->csum, csum));
2017
2018 return -ENOTSUPP;
2019 }
2020
2021 static const struct bpf_func_proto bpf_csum_update_proto = {
2022 .func = bpf_csum_update,
2023 .gpl_only = false,
2024 .ret_type = RET_INTEGER,
2025 .arg1_type = ARG_PTR_TO_CTX,
2026 .arg2_type = ARG_ANYTHING,
2027 };
2028
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2029 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2030 {
2031 return dev_forward_skb(dev, skb);
2032 }
2033
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2034 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2035 struct sk_buff *skb)
2036 {
2037 int ret = ____dev_forward_skb(dev, skb);
2038
2039 if (likely(!ret)) {
2040 skb->dev = dev;
2041 ret = netif_rx(skb);
2042 }
2043
2044 return ret;
2045 }
2046
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2047 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2048 {
2049 int ret;
2050
2051 if (dev_xmit_recursion()) {
2052 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2053 kfree_skb(skb);
2054 return -ENETDOWN;
2055 }
2056
2057 skb->dev = dev;
2058
2059 dev_xmit_recursion_inc();
2060 ret = dev_queue_xmit(skb);
2061 dev_xmit_recursion_dec();
2062
2063 return ret;
2064 }
2065
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2066 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2067 u32 flags)
2068 {
2069 unsigned int mlen = skb_network_offset(skb);
2070
2071 if (mlen) {
2072 __skb_pull(skb, mlen);
2073
2074 /* At ingress, the mac header has already been pulled once.
2075 * At egress, skb_pospull_rcsum has to be done in case that
2076 * the skb is originated from ingress (i.e. a forwarded skb)
2077 * to ensure that rcsum starts at net header.
2078 */
2079 if (!skb_at_tc_ingress(skb))
2080 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2081 }
2082 skb_pop_mac_header(skb);
2083 skb_reset_mac_len(skb);
2084 return flags & BPF_F_INGRESS ?
2085 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2086 }
2087
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2088 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2089 u32 flags)
2090 {
2091 /* Verify that a link layer header is carried */
2092 if (unlikely(skb->mac_header >= skb->network_header)) {
2093 kfree_skb(skb);
2094 return -ERANGE;
2095 }
2096
2097 bpf_push_mac_rcsum(skb);
2098 return flags & BPF_F_INGRESS ?
2099 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2100 }
2101
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2102 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2103 u32 flags)
2104 {
2105 if (dev_is_mac_header_xmit(dev))
2106 return __bpf_redirect_common(skb, dev, flags);
2107 else
2108 return __bpf_redirect_no_mac(skb, dev, flags);
2109 }
2110
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2111 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2112 {
2113 struct net_device *dev;
2114 struct sk_buff *clone;
2115 int ret;
2116
2117 if (unlikely(flags & ~(BPF_F_INGRESS)))
2118 return -EINVAL;
2119
2120 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2121 if (unlikely(!dev))
2122 return -EINVAL;
2123
2124 clone = skb_clone(skb, GFP_ATOMIC);
2125 if (unlikely(!clone))
2126 return -ENOMEM;
2127
2128 /* For direct write, we need to keep the invariant that the skbs
2129 * we're dealing with need to be uncloned. Should uncloning fail
2130 * here, we need to free the just generated clone to unclone once
2131 * again.
2132 */
2133 ret = bpf_try_make_head_writable(skb);
2134 if (unlikely(ret)) {
2135 kfree_skb(clone);
2136 return -ENOMEM;
2137 }
2138
2139 return __bpf_redirect(clone, dev, flags);
2140 }
2141
2142 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2143 .func = bpf_clone_redirect,
2144 .gpl_only = false,
2145 .ret_type = RET_INTEGER,
2146 .arg1_type = ARG_PTR_TO_CTX,
2147 .arg2_type = ARG_ANYTHING,
2148 .arg3_type = ARG_ANYTHING,
2149 };
2150
2151 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2152 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2153
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2154 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2155 {
2156 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2157
2158 if (unlikely(flags & ~(BPF_F_INGRESS)))
2159 return TC_ACT_SHOT;
2160
2161 ri->flags = flags;
2162 ri->tgt_index = ifindex;
2163
2164 return TC_ACT_REDIRECT;
2165 }
2166
skb_do_redirect(struct sk_buff * skb)2167 int skb_do_redirect(struct sk_buff *skb)
2168 {
2169 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2170 struct net_device *dev;
2171
2172 dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2173 ri->tgt_index = 0;
2174 if (unlikely(!dev)) {
2175 kfree_skb(skb);
2176 return -EINVAL;
2177 }
2178
2179 return __bpf_redirect(skb, dev, ri->flags);
2180 }
2181
2182 static const struct bpf_func_proto bpf_redirect_proto = {
2183 .func = bpf_redirect,
2184 .gpl_only = false,
2185 .ret_type = RET_INTEGER,
2186 .arg1_type = ARG_ANYTHING,
2187 .arg2_type = ARG_ANYTHING,
2188 };
2189
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2190 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2191 {
2192 msg->apply_bytes = bytes;
2193 return 0;
2194 }
2195
2196 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2197 .func = bpf_msg_apply_bytes,
2198 .gpl_only = false,
2199 .ret_type = RET_INTEGER,
2200 .arg1_type = ARG_PTR_TO_CTX,
2201 .arg2_type = ARG_ANYTHING,
2202 };
2203
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2204 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2205 {
2206 msg->cork_bytes = bytes;
2207 return 0;
2208 }
2209
2210 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2211 .func = bpf_msg_cork_bytes,
2212 .gpl_only = false,
2213 .ret_type = RET_INTEGER,
2214 .arg1_type = ARG_PTR_TO_CTX,
2215 .arg2_type = ARG_ANYTHING,
2216 };
2217
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2218 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2219 u32, end, u64, flags)
2220 {
2221 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2222 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2223 struct scatterlist *sge;
2224 u8 *raw, *to, *from;
2225 struct page *page;
2226
2227 if (unlikely(flags || end <= start))
2228 return -EINVAL;
2229
2230 /* First find the starting scatterlist element */
2231 i = msg->sg.start;
2232 do {
2233 len = sk_msg_elem(msg, i)->length;
2234 if (start < offset + len)
2235 break;
2236 offset += len;
2237 sk_msg_iter_var_next(i);
2238 } while (i != msg->sg.end);
2239
2240 if (unlikely(start >= offset + len))
2241 return -EINVAL;
2242
2243 first_sge = i;
2244 /* The start may point into the sg element so we need to also
2245 * account for the headroom.
2246 */
2247 bytes_sg_total = start - offset + bytes;
2248 if (!msg->sg.copy[i] && bytes_sg_total <= len)
2249 goto out;
2250
2251 /* At this point we need to linearize multiple scatterlist
2252 * elements or a single shared page. Either way we need to
2253 * copy into a linear buffer exclusively owned by BPF. Then
2254 * place the buffer in the scatterlist and fixup the original
2255 * entries by removing the entries now in the linear buffer
2256 * and shifting the remaining entries. For now we do not try
2257 * to copy partial entries to avoid complexity of running out
2258 * of sg_entry slots. The downside is reading a single byte
2259 * will copy the entire sg entry.
2260 */
2261 do {
2262 copy += sk_msg_elem(msg, i)->length;
2263 sk_msg_iter_var_next(i);
2264 if (bytes_sg_total <= copy)
2265 break;
2266 } while (i != msg->sg.end);
2267 last_sge = i;
2268
2269 if (unlikely(bytes_sg_total > copy))
2270 return -EINVAL;
2271
2272 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2273 get_order(copy));
2274 if (unlikely(!page))
2275 return -ENOMEM;
2276
2277 raw = page_address(page);
2278 i = first_sge;
2279 do {
2280 sge = sk_msg_elem(msg, i);
2281 from = sg_virt(sge);
2282 len = sge->length;
2283 to = raw + poffset;
2284
2285 memcpy(to, from, len);
2286 poffset += len;
2287 sge->length = 0;
2288 put_page(sg_page(sge));
2289
2290 sk_msg_iter_var_next(i);
2291 } while (i != last_sge);
2292
2293 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2294
2295 /* To repair sg ring we need to shift entries. If we only
2296 * had a single entry though we can just replace it and
2297 * be done. Otherwise walk the ring and shift the entries.
2298 */
2299 WARN_ON_ONCE(last_sge == first_sge);
2300 shift = last_sge > first_sge ?
2301 last_sge - first_sge - 1 :
2302 MAX_SKB_FRAGS - first_sge + last_sge - 1;
2303 if (!shift)
2304 goto out;
2305
2306 i = first_sge;
2307 sk_msg_iter_var_next(i);
2308 do {
2309 u32 move_from;
2310
2311 if (i + shift >= MAX_MSG_FRAGS)
2312 move_from = i + shift - MAX_MSG_FRAGS;
2313 else
2314 move_from = i + shift;
2315 if (move_from == msg->sg.end)
2316 break;
2317
2318 msg->sg.data[i] = msg->sg.data[move_from];
2319 msg->sg.data[move_from].length = 0;
2320 msg->sg.data[move_from].page_link = 0;
2321 msg->sg.data[move_from].offset = 0;
2322 sk_msg_iter_var_next(i);
2323 } while (1);
2324
2325 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2326 msg->sg.end - shift + MAX_MSG_FRAGS :
2327 msg->sg.end - shift;
2328 out:
2329 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2330 msg->data_end = msg->data + bytes;
2331 return 0;
2332 }
2333
2334 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2335 .func = bpf_msg_pull_data,
2336 .gpl_only = false,
2337 .ret_type = RET_INTEGER,
2338 .arg1_type = ARG_PTR_TO_CTX,
2339 .arg2_type = ARG_ANYTHING,
2340 .arg3_type = ARG_ANYTHING,
2341 .arg4_type = ARG_ANYTHING,
2342 };
2343
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2344 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2345 u32, len, u64, flags)
2346 {
2347 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2348 u32 new, i = 0, l, space, copy = 0, offset = 0;
2349 u8 *raw, *to, *from;
2350 struct page *page;
2351
2352 if (unlikely(flags))
2353 return -EINVAL;
2354
2355 /* First find the starting scatterlist element */
2356 i = msg->sg.start;
2357 do {
2358 l = sk_msg_elem(msg, i)->length;
2359
2360 if (start < offset + l)
2361 break;
2362 offset += l;
2363 sk_msg_iter_var_next(i);
2364 } while (i != msg->sg.end);
2365
2366 if (start >= offset + l)
2367 return -EINVAL;
2368
2369 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2370
2371 /* If no space available will fallback to copy, we need at
2372 * least one scatterlist elem available to push data into
2373 * when start aligns to the beginning of an element or two
2374 * when it falls inside an element. We handle the start equals
2375 * offset case because its the common case for inserting a
2376 * header.
2377 */
2378 if (!space || (space == 1 && start != offset))
2379 copy = msg->sg.data[i].length;
2380
2381 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2382 get_order(copy + len));
2383 if (unlikely(!page))
2384 return -ENOMEM;
2385
2386 if (copy) {
2387 int front, back;
2388
2389 raw = page_address(page);
2390
2391 psge = sk_msg_elem(msg, i);
2392 front = start - offset;
2393 back = psge->length - front;
2394 from = sg_virt(psge);
2395
2396 if (front)
2397 memcpy(raw, from, front);
2398
2399 if (back) {
2400 from += front;
2401 to = raw + front + len;
2402
2403 memcpy(to, from, back);
2404 }
2405
2406 put_page(sg_page(psge));
2407 } else if (start - offset) {
2408 psge = sk_msg_elem(msg, i);
2409 rsge = sk_msg_elem_cpy(msg, i);
2410
2411 psge->length = start - offset;
2412 rsge.length -= psge->length;
2413 rsge.offset += start;
2414
2415 sk_msg_iter_var_next(i);
2416 sg_unmark_end(psge);
2417 sk_msg_iter_next(msg, end);
2418 }
2419
2420 /* Slot(s) to place newly allocated data */
2421 new = i;
2422
2423 /* Shift one or two slots as needed */
2424 if (!copy) {
2425 sge = sk_msg_elem_cpy(msg, i);
2426
2427 sk_msg_iter_var_next(i);
2428 sg_unmark_end(&sge);
2429 sk_msg_iter_next(msg, end);
2430
2431 nsge = sk_msg_elem_cpy(msg, i);
2432 if (rsge.length) {
2433 sk_msg_iter_var_next(i);
2434 nnsge = sk_msg_elem_cpy(msg, i);
2435 }
2436
2437 while (i != msg->sg.end) {
2438 msg->sg.data[i] = sge;
2439 sge = nsge;
2440 sk_msg_iter_var_next(i);
2441 if (rsge.length) {
2442 nsge = nnsge;
2443 nnsge = sk_msg_elem_cpy(msg, i);
2444 } else {
2445 nsge = sk_msg_elem_cpy(msg, i);
2446 }
2447 }
2448 }
2449
2450 /* Place newly allocated data buffer */
2451 sk_mem_charge(msg->sk, len);
2452 msg->sg.size += len;
2453 msg->sg.copy[new] = false;
2454 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2455 if (rsge.length) {
2456 get_page(sg_page(&rsge));
2457 sk_msg_iter_var_next(new);
2458 msg->sg.data[new] = rsge;
2459 }
2460
2461 sk_msg_compute_data_pointers(msg);
2462 return 0;
2463 }
2464
2465 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2466 .func = bpf_msg_push_data,
2467 .gpl_only = false,
2468 .ret_type = RET_INTEGER,
2469 .arg1_type = ARG_PTR_TO_CTX,
2470 .arg2_type = ARG_ANYTHING,
2471 .arg3_type = ARG_ANYTHING,
2472 .arg4_type = ARG_ANYTHING,
2473 };
2474
sk_msg_shift_left(struct sk_msg * msg,int i)2475 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2476 {
2477 int prev;
2478
2479 do {
2480 prev = i;
2481 sk_msg_iter_var_next(i);
2482 msg->sg.data[prev] = msg->sg.data[i];
2483 } while (i != msg->sg.end);
2484
2485 sk_msg_iter_prev(msg, end);
2486 }
2487
sk_msg_shift_right(struct sk_msg * msg,int i)2488 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2489 {
2490 struct scatterlist tmp, sge;
2491
2492 sk_msg_iter_next(msg, end);
2493 sge = sk_msg_elem_cpy(msg, i);
2494 sk_msg_iter_var_next(i);
2495 tmp = sk_msg_elem_cpy(msg, i);
2496
2497 while (i != msg->sg.end) {
2498 msg->sg.data[i] = sge;
2499 sk_msg_iter_var_next(i);
2500 sge = tmp;
2501 tmp = sk_msg_elem_cpy(msg, i);
2502 }
2503 }
2504
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2505 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2506 u32, len, u64, flags)
2507 {
2508 u32 i = 0, l, space, offset = 0;
2509 u64 last = start + len;
2510 int pop;
2511
2512 if (unlikely(flags))
2513 return -EINVAL;
2514
2515 /* First find the starting scatterlist element */
2516 i = msg->sg.start;
2517 do {
2518 l = sk_msg_elem(msg, i)->length;
2519
2520 if (start < offset + l)
2521 break;
2522 offset += l;
2523 sk_msg_iter_var_next(i);
2524 } while (i != msg->sg.end);
2525
2526 /* Bounds checks: start and pop must be inside message */
2527 if (start >= offset + l || last >= msg->sg.size)
2528 return -EINVAL;
2529
2530 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2531
2532 pop = len;
2533 /* --------------| offset
2534 * -| start |-------- len -------|
2535 *
2536 * |----- a ----|-------- pop -------|----- b ----|
2537 * |______________________________________________| length
2538 *
2539 *
2540 * a: region at front of scatter element to save
2541 * b: region at back of scatter element to save when length > A + pop
2542 * pop: region to pop from element, same as input 'pop' here will be
2543 * decremented below per iteration.
2544 *
2545 * Two top-level cases to handle when start != offset, first B is non
2546 * zero and second B is zero corresponding to when a pop includes more
2547 * than one element.
2548 *
2549 * Then if B is non-zero AND there is no space allocate space and
2550 * compact A, B regions into page. If there is space shift ring to
2551 * the rigth free'ing the next element in ring to place B, leaving
2552 * A untouched except to reduce length.
2553 */
2554 if (start != offset) {
2555 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2556 int a = start;
2557 int b = sge->length - pop - a;
2558
2559 sk_msg_iter_var_next(i);
2560
2561 if (pop < sge->length - a) {
2562 if (space) {
2563 sge->length = a;
2564 sk_msg_shift_right(msg, i);
2565 nsge = sk_msg_elem(msg, i);
2566 get_page(sg_page(sge));
2567 sg_set_page(nsge,
2568 sg_page(sge),
2569 b, sge->offset + pop + a);
2570 } else {
2571 struct page *page, *orig;
2572 u8 *to, *from;
2573
2574 page = alloc_pages(__GFP_NOWARN |
2575 __GFP_COMP | GFP_ATOMIC,
2576 get_order(a + b));
2577 if (unlikely(!page))
2578 return -ENOMEM;
2579
2580 sge->length = a;
2581 orig = sg_page(sge);
2582 from = sg_virt(sge);
2583 to = page_address(page);
2584 memcpy(to, from, a);
2585 memcpy(to + a, from + a + pop, b);
2586 sg_set_page(sge, page, a + b, 0);
2587 put_page(orig);
2588 }
2589 pop = 0;
2590 } else if (pop >= sge->length - a) {
2591 sge->length = a;
2592 pop -= (sge->length - a);
2593 }
2594 }
2595
2596 /* From above the current layout _must_ be as follows,
2597 *
2598 * -| offset
2599 * -| start
2600 *
2601 * |---- pop ---|---------------- b ------------|
2602 * |____________________________________________| length
2603 *
2604 * Offset and start of the current msg elem are equal because in the
2605 * previous case we handled offset != start and either consumed the
2606 * entire element and advanced to the next element OR pop == 0.
2607 *
2608 * Two cases to handle here are first pop is less than the length
2609 * leaving some remainder b above. Simply adjust the element's layout
2610 * in this case. Or pop >= length of the element so that b = 0. In this
2611 * case advance to next element decrementing pop.
2612 */
2613 while (pop) {
2614 struct scatterlist *sge = sk_msg_elem(msg, i);
2615
2616 if (pop < sge->length) {
2617 sge->length -= pop;
2618 sge->offset += pop;
2619 pop = 0;
2620 } else {
2621 pop -= sge->length;
2622 sk_msg_shift_left(msg, i);
2623 }
2624 sk_msg_iter_var_next(i);
2625 }
2626
2627 sk_mem_uncharge(msg->sk, len - pop);
2628 msg->sg.size -= (len - pop);
2629 sk_msg_compute_data_pointers(msg);
2630 return 0;
2631 }
2632
2633 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2634 .func = bpf_msg_pop_data,
2635 .gpl_only = false,
2636 .ret_type = RET_INTEGER,
2637 .arg1_type = ARG_PTR_TO_CTX,
2638 .arg2_type = ARG_ANYTHING,
2639 .arg3_type = ARG_ANYTHING,
2640 .arg4_type = ARG_ANYTHING,
2641 };
2642
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)2643 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2644 {
2645 return task_get_classid(skb);
2646 }
2647
2648 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2649 .func = bpf_get_cgroup_classid,
2650 .gpl_only = false,
2651 .ret_type = RET_INTEGER,
2652 .arg1_type = ARG_PTR_TO_CTX,
2653 };
2654
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)2655 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2656 {
2657 return dst_tclassid(skb);
2658 }
2659
2660 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2661 .func = bpf_get_route_realm,
2662 .gpl_only = false,
2663 .ret_type = RET_INTEGER,
2664 .arg1_type = ARG_PTR_TO_CTX,
2665 };
2666
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)2667 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2668 {
2669 /* If skb_clear_hash() was called due to mangling, we can
2670 * trigger SW recalculation here. Later access to hash
2671 * can then use the inline skb->hash via context directly
2672 * instead of calling this helper again.
2673 */
2674 return skb_get_hash(skb);
2675 }
2676
2677 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2678 .func = bpf_get_hash_recalc,
2679 .gpl_only = false,
2680 .ret_type = RET_INTEGER,
2681 .arg1_type = ARG_PTR_TO_CTX,
2682 };
2683
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)2684 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2685 {
2686 /* After all direct packet write, this can be used once for
2687 * triggering a lazy recalc on next skb_get_hash() invocation.
2688 */
2689 skb_clear_hash(skb);
2690 return 0;
2691 }
2692
2693 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2694 .func = bpf_set_hash_invalid,
2695 .gpl_only = false,
2696 .ret_type = RET_INTEGER,
2697 .arg1_type = ARG_PTR_TO_CTX,
2698 };
2699
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)2700 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2701 {
2702 /* Set user specified hash as L4(+), so that it gets returned
2703 * on skb_get_hash() call unless BPF prog later on triggers a
2704 * skb_clear_hash().
2705 */
2706 __skb_set_sw_hash(skb, hash, true);
2707 return 0;
2708 }
2709
2710 static const struct bpf_func_proto bpf_set_hash_proto = {
2711 .func = bpf_set_hash,
2712 .gpl_only = false,
2713 .ret_type = RET_INTEGER,
2714 .arg1_type = ARG_PTR_TO_CTX,
2715 .arg2_type = ARG_ANYTHING,
2716 };
2717
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)2718 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2719 u16, vlan_tci)
2720 {
2721 int ret;
2722
2723 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2724 vlan_proto != htons(ETH_P_8021AD)))
2725 vlan_proto = htons(ETH_P_8021Q);
2726
2727 bpf_push_mac_rcsum(skb);
2728 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2729 bpf_pull_mac_rcsum(skb);
2730
2731 bpf_compute_data_pointers(skb);
2732 return ret;
2733 }
2734
2735 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2736 .func = bpf_skb_vlan_push,
2737 .gpl_only = false,
2738 .ret_type = RET_INTEGER,
2739 .arg1_type = ARG_PTR_TO_CTX,
2740 .arg2_type = ARG_ANYTHING,
2741 .arg3_type = ARG_ANYTHING,
2742 };
2743
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)2744 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2745 {
2746 int ret;
2747
2748 bpf_push_mac_rcsum(skb);
2749 ret = skb_vlan_pop(skb);
2750 bpf_pull_mac_rcsum(skb);
2751
2752 bpf_compute_data_pointers(skb);
2753 return ret;
2754 }
2755
2756 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2757 .func = bpf_skb_vlan_pop,
2758 .gpl_only = false,
2759 .ret_type = RET_INTEGER,
2760 .arg1_type = ARG_PTR_TO_CTX,
2761 };
2762
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)2763 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2764 {
2765 /* Caller already did skb_cow() with len as headroom,
2766 * so no need to do it here.
2767 */
2768 skb_push(skb, len);
2769 memmove(skb->data, skb->data + len, off);
2770 memset(skb->data + off, 0, len);
2771
2772 /* No skb_postpush_rcsum(skb, skb->data + off, len)
2773 * needed here as it does not change the skb->csum
2774 * result for checksum complete when summing over
2775 * zeroed blocks.
2776 */
2777 return 0;
2778 }
2779
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)2780 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2781 {
2782 /* skb_ensure_writable() is not needed here, as we're
2783 * already working on an uncloned skb.
2784 */
2785 if (unlikely(!pskb_may_pull(skb, off + len)))
2786 return -ENOMEM;
2787
2788 skb_postpull_rcsum(skb, skb->data + off, len);
2789 memmove(skb->data + len, skb->data, off);
2790 __skb_pull(skb, len);
2791
2792 return 0;
2793 }
2794
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)2795 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2796 {
2797 bool trans_same = skb->transport_header == skb->network_header;
2798 int ret;
2799
2800 /* There's no need for __skb_push()/__skb_pull() pair to
2801 * get to the start of the mac header as we're guaranteed
2802 * to always start from here under eBPF.
2803 */
2804 ret = bpf_skb_generic_push(skb, off, len);
2805 if (likely(!ret)) {
2806 skb->mac_header -= len;
2807 skb->network_header -= len;
2808 if (trans_same)
2809 skb->transport_header = skb->network_header;
2810 }
2811
2812 return ret;
2813 }
2814
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)2815 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2816 {
2817 bool trans_same = skb->transport_header == skb->network_header;
2818 int ret;
2819
2820 /* Same here, __skb_push()/__skb_pull() pair not needed. */
2821 ret = bpf_skb_generic_pop(skb, off, len);
2822 if (likely(!ret)) {
2823 skb->mac_header += len;
2824 skb->network_header += len;
2825 if (trans_same)
2826 skb->transport_header = skb->network_header;
2827 }
2828
2829 return ret;
2830 }
2831
bpf_skb_proto_4_to_6(struct sk_buff * skb)2832 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2833 {
2834 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2835 u32 off = skb_mac_header_len(skb);
2836 int ret;
2837
2838 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2839 return -ENOTSUPP;
2840
2841 ret = skb_cow(skb, len_diff);
2842 if (unlikely(ret < 0))
2843 return ret;
2844
2845 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2846 if (unlikely(ret < 0))
2847 return ret;
2848
2849 if (skb_is_gso(skb)) {
2850 struct skb_shared_info *shinfo = skb_shinfo(skb);
2851
2852 /* SKB_GSO_TCPV4 needs to be changed into
2853 * SKB_GSO_TCPV6.
2854 */
2855 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2856 shinfo->gso_type &= ~SKB_GSO_TCPV4;
2857 shinfo->gso_type |= SKB_GSO_TCPV6;
2858 }
2859
2860 /* Due to IPv6 header, MSS needs to be downgraded. */
2861 skb_decrease_gso_size(shinfo, len_diff);
2862 /* Header must be checked, and gso_segs recomputed. */
2863 shinfo->gso_type |= SKB_GSO_DODGY;
2864 shinfo->gso_segs = 0;
2865 }
2866
2867 skb->protocol = htons(ETH_P_IPV6);
2868 skb_clear_hash(skb);
2869
2870 return 0;
2871 }
2872
bpf_skb_proto_6_to_4(struct sk_buff * skb)2873 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2874 {
2875 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2876 u32 off = skb_mac_header_len(skb);
2877 int ret;
2878
2879 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2880 return -ENOTSUPP;
2881
2882 ret = skb_unclone(skb, GFP_ATOMIC);
2883 if (unlikely(ret < 0))
2884 return ret;
2885
2886 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2887 if (unlikely(ret < 0))
2888 return ret;
2889
2890 if (skb_is_gso(skb)) {
2891 struct skb_shared_info *shinfo = skb_shinfo(skb);
2892
2893 /* SKB_GSO_TCPV6 needs to be changed into
2894 * SKB_GSO_TCPV4.
2895 */
2896 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2897 shinfo->gso_type &= ~SKB_GSO_TCPV6;
2898 shinfo->gso_type |= SKB_GSO_TCPV4;
2899 }
2900
2901 /* Due to IPv4 header, MSS can be upgraded. */
2902 skb_increase_gso_size(shinfo, len_diff);
2903 /* Header must be checked, and gso_segs recomputed. */
2904 shinfo->gso_type |= SKB_GSO_DODGY;
2905 shinfo->gso_segs = 0;
2906 }
2907
2908 skb->protocol = htons(ETH_P_IP);
2909 skb_clear_hash(skb);
2910
2911 return 0;
2912 }
2913
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)2914 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2915 {
2916 __be16 from_proto = skb->protocol;
2917
2918 if (from_proto == htons(ETH_P_IP) &&
2919 to_proto == htons(ETH_P_IPV6))
2920 return bpf_skb_proto_4_to_6(skb);
2921
2922 if (from_proto == htons(ETH_P_IPV6) &&
2923 to_proto == htons(ETH_P_IP))
2924 return bpf_skb_proto_6_to_4(skb);
2925
2926 return -ENOTSUPP;
2927 }
2928
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)2929 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2930 u64, flags)
2931 {
2932 int ret;
2933
2934 if (unlikely(flags))
2935 return -EINVAL;
2936
2937 /* General idea is that this helper does the basic groundwork
2938 * needed for changing the protocol, and eBPF program fills the
2939 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2940 * and other helpers, rather than passing a raw buffer here.
2941 *
2942 * The rationale is to keep this minimal and without a need to
2943 * deal with raw packet data. F.e. even if we would pass buffers
2944 * here, the program still needs to call the bpf_lX_csum_replace()
2945 * helpers anyway. Plus, this way we keep also separation of
2946 * concerns, since f.e. bpf_skb_store_bytes() should only take
2947 * care of stores.
2948 *
2949 * Currently, additional options and extension header space are
2950 * not supported, but flags register is reserved so we can adapt
2951 * that. For offloads, we mark packet as dodgy, so that headers
2952 * need to be verified first.
2953 */
2954 ret = bpf_skb_proto_xlat(skb, proto);
2955 bpf_compute_data_pointers(skb);
2956 return ret;
2957 }
2958
2959 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2960 .func = bpf_skb_change_proto,
2961 .gpl_only = false,
2962 .ret_type = RET_INTEGER,
2963 .arg1_type = ARG_PTR_TO_CTX,
2964 .arg2_type = ARG_ANYTHING,
2965 .arg3_type = ARG_ANYTHING,
2966 };
2967
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)2968 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2969 {
2970 /* We only allow a restricted subset to be changed for now. */
2971 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2972 !skb_pkt_type_ok(pkt_type)))
2973 return -EINVAL;
2974
2975 skb->pkt_type = pkt_type;
2976 return 0;
2977 }
2978
2979 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2980 .func = bpf_skb_change_type,
2981 .gpl_only = false,
2982 .ret_type = RET_INTEGER,
2983 .arg1_type = ARG_PTR_TO_CTX,
2984 .arg2_type = ARG_ANYTHING,
2985 };
2986
bpf_skb_net_base_len(const struct sk_buff * skb)2987 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2988 {
2989 switch (skb->protocol) {
2990 case htons(ETH_P_IP):
2991 return sizeof(struct iphdr);
2992 case htons(ETH_P_IPV6):
2993 return sizeof(struct ipv6hdr);
2994 default:
2995 return ~0U;
2996 }
2997 }
2998
2999 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3000 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3001
3002 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3003 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3004 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3005 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3006 BPF_F_ADJ_ROOM_ENCAP_L2( \
3007 BPF_ADJ_ROOM_ENCAP_L2_MASK))
3008
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3009 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3010 u64 flags)
3011 {
3012 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3013 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3014 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3015 unsigned int gso_type = SKB_GSO_DODGY;
3016 int ret;
3017
3018 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3019 /* udp gso_size delineates datagrams, only allow if fixed */
3020 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3021 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3022 return -ENOTSUPP;
3023 }
3024
3025 ret = skb_cow_head(skb, len_diff);
3026 if (unlikely(ret < 0))
3027 return ret;
3028
3029 if (encap) {
3030 if (skb->protocol != htons(ETH_P_IP) &&
3031 skb->protocol != htons(ETH_P_IPV6))
3032 return -ENOTSUPP;
3033
3034 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3035 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3036 return -EINVAL;
3037
3038 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3039 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3040 return -EINVAL;
3041
3042 if (skb->encapsulation)
3043 return -EALREADY;
3044
3045 mac_len = skb->network_header - skb->mac_header;
3046 inner_net = skb->network_header;
3047 if (inner_mac_len > len_diff)
3048 return -EINVAL;
3049 inner_trans = skb->transport_header;
3050 }
3051
3052 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3053 if (unlikely(ret < 0))
3054 return ret;
3055
3056 if (encap) {
3057 skb->inner_mac_header = inner_net - inner_mac_len;
3058 skb->inner_network_header = inner_net;
3059 skb->inner_transport_header = inner_trans;
3060 skb_set_inner_protocol(skb, skb->protocol);
3061
3062 skb->encapsulation = 1;
3063 skb_set_network_header(skb, mac_len);
3064
3065 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3066 gso_type |= SKB_GSO_UDP_TUNNEL;
3067 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3068 gso_type |= SKB_GSO_GRE;
3069 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3070 gso_type |= SKB_GSO_IPXIP6;
3071 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3072 gso_type |= SKB_GSO_IPXIP4;
3073
3074 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3075 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3076 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3077 sizeof(struct ipv6hdr) :
3078 sizeof(struct iphdr);
3079
3080 skb_set_transport_header(skb, mac_len + nh_len);
3081 }
3082
3083 /* Match skb->protocol to new outer l3 protocol */
3084 if (skb->protocol == htons(ETH_P_IP) &&
3085 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3086 skb->protocol = htons(ETH_P_IPV6);
3087 else if (skb->protocol == htons(ETH_P_IPV6) &&
3088 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3089 skb->protocol = htons(ETH_P_IP);
3090 }
3091
3092 if (skb_is_gso(skb)) {
3093 struct skb_shared_info *shinfo = skb_shinfo(skb);
3094
3095 /* Due to header grow, MSS needs to be downgraded. */
3096 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3097 skb_decrease_gso_size(shinfo, len_diff);
3098
3099 /* Header must be checked, and gso_segs recomputed. */
3100 shinfo->gso_type |= gso_type;
3101 shinfo->gso_segs = 0;
3102 }
3103
3104 return 0;
3105 }
3106
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3107 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3108 u64 flags)
3109 {
3110 int ret;
3111
3112 if (flags & ~BPF_F_ADJ_ROOM_FIXED_GSO)
3113 return -EINVAL;
3114
3115 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3116 /* udp gso_size delineates datagrams, only allow if fixed */
3117 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3118 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3119 return -ENOTSUPP;
3120 }
3121
3122 ret = skb_unclone(skb, GFP_ATOMIC);
3123 if (unlikely(ret < 0))
3124 return ret;
3125
3126 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3127 if (unlikely(ret < 0))
3128 return ret;
3129
3130 if (skb_is_gso(skb)) {
3131 struct skb_shared_info *shinfo = skb_shinfo(skb);
3132
3133 /* Due to header shrink, MSS can be upgraded. */
3134 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3135 skb_increase_gso_size(shinfo, len_diff);
3136
3137 /* Header must be checked, and gso_segs recomputed. */
3138 shinfo->gso_type |= SKB_GSO_DODGY;
3139 shinfo->gso_segs = 0;
3140 }
3141
3142 return 0;
3143 }
3144
__bpf_skb_max_len(const struct sk_buff * skb)3145 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3146 {
3147 return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3148 SKB_MAX_ALLOC;
3149 }
3150
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3151 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3152 u32, mode, u64, flags)
3153 {
3154 u32 len_cur, len_diff_abs = abs(len_diff);
3155 u32 len_min = bpf_skb_net_base_len(skb);
3156 u32 len_max = __bpf_skb_max_len(skb);
3157 __be16 proto = skb->protocol;
3158 bool shrink = len_diff < 0;
3159 u32 off;
3160 int ret;
3161
3162 if (unlikely(flags & ~BPF_F_ADJ_ROOM_MASK))
3163 return -EINVAL;
3164 if (unlikely(len_diff_abs > 0xfffU))
3165 return -EFAULT;
3166 if (unlikely(proto != htons(ETH_P_IP) &&
3167 proto != htons(ETH_P_IPV6)))
3168 return -ENOTSUPP;
3169
3170 off = skb_mac_header_len(skb);
3171 switch (mode) {
3172 case BPF_ADJ_ROOM_NET:
3173 off += bpf_skb_net_base_len(skb);
3174 break;
3175 case BPF_ADJ_ROOM_MAC:
3176 break;
3177 default:
3178 return -ENOTSUPP;
3179 }
3180
3181 len_cur = skb->len - skb_network_offset(skb);
3182 if ((shrink && (len_diff_abs >= len_cur ||
3183 len_cur - len_diff_abs < len_min)) ||
3184 (!shrink && (skb->len + len_diff_abs > len_max &&
3185 !skb_is_gso(skb))))
3186 return -ENOTSUPP;
3187
3188 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3189 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3190
3191 bpf_compute_data_pointers(skb);
3192 return ret;
3193 }
3194
3195 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3196 .func = bpf_skb_adjust_room,
3197 .gpl_only = false,
3198 .ret_type = RET_INTEGER,
3199 .arg1_type = ARG_PTR_TO_CTX,
3200 .arg2_type = ARG_ANYTHING,
3201 .arg3_type = ARG_ANYTHING,
3202 .arg4_type = ARG_ANYTHING,
3203 };
3204
__bpf_skb_min_len(const struct sk_buff * skb)3205 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3206 {
3207 u32 min_len = skb_network_offset(skb);
3208
3209 if (skb_transport_header_was_set(skb))
3210 min_len = skb_transport_offset(skb);
3211 if (skb->ip_summed == CHECKSUM_PARTIAL)
3212 min_len = skb_checksum_start_offset(skb) +
3213 skb->csum_offset + sizeof(__sum16);
3214 return min_len;
3215 }
3216
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3217 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3218 {
3219 unsigned int old_len = skb->len;
3220 int ret;
3221
3222 ret = __skb_grow_rcsum(skb, new_len);
3223 if (!ret)
3224 memset(skb->data + old_len, 0, new_len - old_len);
3225 return ret;
3226 }
3227
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3228 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3229 {
3230 return __skb_trim_rcsum(skb, new_len);
3231 }
3232
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3233 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3234 u64 flags)
3235 {
3236 u32 max_len = __bpf_skb_max_len(skb);
3237 u32 min_len = __bpf_skb_min_len(skb);
3238 int ret;
3239
3240 if (unlikely(flags || new_len > max_len || new_len < min_len))
3241 return -EINVAL;
3242 if (skb->encapsulation)
3243 return -ENOTSUPP;
3244
3245 /* The basic idea of this helper is that it's performing the
3246 * needed work to either grow or trim an skb, and eBPF program
3247 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3248 * bpf_lX_csum_replace() and others rather than passing a raw
3249 * buffer here. This one is a slow path helper and intended
3250 * for replies with control messages.
3251 *
3252 * Like in bpf_skb_change_proto(), we want to keep this rather
3253 * minimal and without protocol specifics so that we are able
3254 * to separate concerns as in bpf_skb_store_bytes() should only
3255 * be the one responsible for writing buffers.
3256 *
3257 * It's really expected to be a slow path operation here for
3258 * control message replies, so we're implicitly linearizing,
3259 * uncloning and drop offloads from the skb by this.
3260 */
3261 ret = __bpf_try_make_writable(skb, skb->len);
3262 if (!ret) {
3263 if (new_len > skb->len)
3264 ret = bpf_skb_grow_rcsum(skb, new_len);
3265 else if (new_len < skb->len)
3266 ret = bpf_skb_trim_rcsum(skb, new_len);
3267 if (!ret && skb_is_gso(skb))
3268 skb_gso_reset(skb);
3269 }
3270 return ret;
3271 }
3272
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3273 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3274 u64, flags)
3275 {
3276 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3277
3278 bpf_compute_data_pointers(skb);
3279 return ret;
3280 }
3281
3282 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3283 .func = bpf_skb_change_tail,
3284 .gpl_only = false,
3285 .ret_type = RET_INTEGER,
3286 .arg1_type = ARG_PTR_TO_CTX,
3287 .arg2_type = ARG_ANYTHING,
3288 .arg3_type = ARG_ANYTHING,
3289 };
3290
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3291 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3292 u64, flags)
3293 {
3294 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3295
3296 bpf_compute_data_end_sk_skb(skb);
3297 return ret;
3298 }
3299
3300 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3301 .func = sk_skb_change_tail,
3302 .gpl_only = false,
3303 .ret_type = RET_INTEGER,
3304 .arg1_type = ARG_PTR_TO_CTX,
3305 .arg2_type = ARG_ANYTHING,
3306 .arg3_type = ARG_ANYTHING,
3307 };
3308
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3309 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3310 u64 flags)
3311 {
3312 u32 max_len = __bpf_skb_max_len(skb);
3313 u32 new_len = skb->len + head_room;
3314 int ret;
3315
3316 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3317 new_len < skb->len))
3318 return -EINVAL;
3319
3320 ret = skb_cow(skb, head_room);
3321 if (likely(!ret)) {
3322 /* Idea for this helper is that we currently only
3323 * allow to expand on mac header. This means that
3324 * skb->protocol network header, etc, stay as is.
3325 * Compared to bpf_skb_change_tail(), we're more
3326 * flexible due to not needing to linearize or
3327 * reset GSO. Intention for this helper is to be
3328 * used by an L3 skb that needs to push mac header
3329 * for redirection into L2 device.
3330 */
3331 __skb_push(skb, head_room);
3332 memset(skb->data, 0, head_room);
3333 skb_reset_mac_header(skb);
3334 }
3335
3336 return ret;
3337 }
3338
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3339 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3340 u64, flags)
3341 {
3342 int ret = __bpf_skb_change_head(skb, head_room, flags);
3343
3344 bpf_compute_data_pointers(skb);
3345 return ret;
3346 }
3347
3348 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3349 .func = bpf_skb_change_head,
3350 .gpl_only = false,
3351 .ret_type = RET_INTEGER,
3352 .arg1_type = ARG_PTR_TO_CTX,
3353 .arg2_type = ARG_ANYTHING,
3354 .arg3_type = ARG_ANYTHING,
3355 };
3356
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3357 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3358 u64, flags)
3359 {
3360 int ret = __bpf_skb_change_head(skb, head_room, flags);
3361
3362 bpf_compute_data_end_sk_skb(skb);
3363 return ret;
3364 }
3365
3366 static const struct bpf_func_proto sk_skb_change_head_proto = {
3367 .func = sk_skb_change_head,
3368 .gpl_only = false,
3369 .ret_type = RET_INTEGER,
3370 .arg1_type = ARG_PTR_TO_CTX,
3371 .arg2_type = ARG_ANYTHING,
3372 .arg3_type = ARG_ANYTHING,
3373 };
xdp_get_metalen(const struct xdp_buff * xdp)3374 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3375 {
3376 return xdp_data_meta_unsupported(xdp) ? 0 :
3377 xdp->data - xdp->data_meta;
3378 }
3379
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3380 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3381 {
3382 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3383 unsigned long metalen = xdp_get_metalen(xdp);
3384 void *data_start = xdp_frame_end + metalen;
3385 void *data = xdp->data + offset;
3386
3387 if (unlikely(data < data_start ||
3388 data > xdp->data_end - ETH_HLEN))
3389 return -EINVAL;
3390
3391 if (metalen)
3392 memmove(xdp->data_meta + offset,
3393 xdp->data_meta, metalen);
3394 xdp->data_meta += offset;
3395 xdp->data = data;
3396
3397 return 0;
3398 }
3399
3400 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3401 .func = bpf_xdp_adjust_head,
3402 .gpl_only = false,
3403 .ret_type = RET_INTEGER,
3404 .arg1_type = ARG_PTR_TO_CTX,
3405 .arg2_type = ARG_ANYTHING,
3406 };
3407
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3408 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3409 {
3410 void *data_end = xdp->data_end + offset;
3411
3412 /* only shrinking is allowed for now. */
3413 if (unlikely(offset >= 0))
3414 return -EINVAL;
3415
3416 if (unlikely(data_end < xdp->data + ETH_HLEN))
3417 return -EINVAL;
3418
3419 xdp->data_end = data_end;
3420
3421 return 0;
3422 }
3423
3424 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3425 .func = bpf_xdp_adjust_tail,
3426 .gpl_only = false,
3427 .ret_type = RET_INTEGER,
3428 .arg1_type = ARG_PTR_TO_CTX,
3429 .arg2_type = ARG_ANYTHING,
3430 };
3431
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3432 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3433 {
3434 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3435 void *meta = xdp->data_meta + offset;
3436 unsigned long metalen = xdp->data - meta;
3437
3438 if (xdp_data_meta_unsupported(xdp))
3439 return -ENOTSUPP;
3440 if (unlikely(meta < xdp_frame_end ||
3441 meta > xdp->data))
3442 return -EINVAL;
3443 if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3444 (metalen > 32)))
3445 return -EACCES;
3446
3447 xdp->data_meta = meta;
3448
3449 return 0;
3450 }
3451
3452 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3453 .func = bpf_xdp_adjust_meta,
3454 .gpl_only = false,
3455 .ret_type = RET_INTEGER,
3456 .arg1_type = ARG_PTR_TO_CTX,
3457 .arg2_type = ARG_ANYTHING,
3458 };
3459
__bpf_tx_xdp(struct net_device * dev,struct bpf_map * map,struct xdp_buff * xdp,u32 index)3460 static int __bpf_tx_xdp(struct net_device *dev,
3461 struct bpf_map *map,
3462 struct xdp_buff *xdp,
3463 u32 index)
3464 {
3465 struct xdp_frame *xdpf;
3466 int err, sent;
3467
3468 if (!dev->netdev_ops->ndo_xdp_xmit) {
3469 return -EOPNOTSUPP;
3470 }
3471
3472 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3473 if (unlikely(err))
3474 return err;
3475
3476 xdpf = convert_to_xdp_frame(xdp);
3477 if (unlikely(!xdpf))
3478 return -EOVERFLOW;
3479
3480 sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3481 if (sent <= 0)
3482 return sent;
3483 return 0;
3484 }
3485
3486 static noinline int
xdp_do_redirect_slow(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_redirect_info * ri)3487 xdp_do_redirect_slow(struct net_device *dev, struct xdp_buff *xdp,
3488 struct bpf_prog *xdp_prog, struct bpf_redirect_info *ri)
3489 {
3490 struct net_device *fwd;
3491 u32 index = ri->tgt_index;
3492 int err;
3493
3494 fwd = dev_get_by_index_rcu(dev_net(dev), index);
3495 ri->tgt_index = 0;
3496 if (unlikely(!fwd)) {
3497 err = -EINVAL;
3498 goto err;
3499 }
3500
3501 err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3502 if (unlikely(err))
3503 goto err;
3504
3505 _trace_xdp_redirect(dev, xdp_prog, index);
3506 return 0;
3507 err:
3508 _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3509 return err;
3510 }
3511
__bpf_tx_xdp_map(struct net_device * dev_rx,void * fwd,struct bpf_map * map,struct xdp_buff * xdp,u32 index)3512 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3513 struct bpf_map *map,
3514 struct xdp_buff *xdp,
3515 u32 index)
3516 {
3517 int err;
3518
3519 switch (map->map_type) {
3520 case BPF_MAP_TYPE_DEVMAP:
3521 case BPF_MAP_TYPE_DEVMAP_HASH: {
3522 struct bpf_dtab_netdev *dst = fwd;
3523
3524 err = dev_map_enqueue(dst, xdp, dev_rx);
3525 if (unlikely(err))
3526 return err;
3527 break;
3528 }
3529 case BPF_MAP_TYPE_CPUMAP: {
3530 struct bpf_cpu_map_entry *rcpu = fwd;
3531
3532 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3533 if (unlikely(err))
3534 return err;
3535 break;
3536 }
3537 case BPF_MAP_TYPE_XSKMAP: {
3538 struct xdp_sock *xs = fwd;
3539
3540 err = __xsk_map_redirect(map, xdp, xs);
3541 return err;
3542 }
3543 default:
3544 break;
3545 }
3546 return 0;
3547 }
3548
xdp_do_flush_map(void)3549 void xdp_do_flush_map(void)
3550 {
3551 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3552 struct bpf_map *map = ri->map_to_flush;
3553
3554 ri->map_to_flush = NULL;
3555 if (map) {
3556 switch (map->map_type) {
3557 case BPF_MAP_TYPE_DEVMAP:
3558 case BPF_MAP_TYPE_DEVMAP_HASH:
3559 __dev_map_flush(map);
3560 break;
3561 case BPF_MAP_TYPE_CPUMAP:
3562 __cpu_map_flush(map);
3563 break;
3564 case BPF_MAP_TYPE_XSKMAP:
3565 __xsk_map_flush(map);
3566 break;
3567 default:
3568 break;
3569 }
3570 }
3571 }
3572 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3573
__xdp_map_lookup_elem(struct bpf_map * map,u32 index)3574 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3575 {
3576 switch (map->map_type) {
3577 case BPF_MAP_TYPE_DEVMAP:
3578 return __dev_map_lookup_elem(map, index);
3579 case BPF_MAP_TYPE_DEVMAP_HASH:
3580 return __dev_map_hash_lookup_elem(map, index);
3581 case BPF_MAP_TYPE_CPUMAP:
3582 return __cpu_map_lookup_elem(map, index);
3583 case BPF_MAP_TYPE_XSKMAP:
3584 return __xsk_map_lookup_elem(map, index);
3585 default:
3586 return NULL;
3587 }
3588 }
3589
bpf_clear_redirect_map(struct bpf_map * map)3590 void bpf_clear_redirect_map(struct bpf_map *map)
3591 {
3592 struct bpf_redirect_info *ri;
3593 int cpu;
3594
3595 for_each_possible_cpu(cpu) {
3596 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3597 /* Avoid polluting remote cacheline due to writes if
3598 * not needed. Once we pass this test, we need the
3599 * cmpxchg() to make sure it hasn't been changed in
3600 * the meantime by remote CPU.
3601 */
3602 if (unlikely(READ_ONCE(ri->map) == map))
3603 cmpxchg(&ri->map, map, NULL);
3604 }
3605 }
3606
xdp_do_redirect_map(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map,struct bpf_redirect_info * ri)3607 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3608 struct bpf_prog *xdp_prog, struct bpf_map *map,
3609 struct bpf_redirect_info *ri)
3610 {
3611 u32 index = ri->tgt_index;
3612 void *fwd = ri->tgt_value;
3613 int err;
3614
3615 ri->tgt_index = 0;
3616 ri->tgt_value = NULL;
3617 WRITE_ONCE(ri->map, NULL);
3618
3619 if (ri->map_to_flush && unlikely(ri->map_to_flush != map))
3620 xdp_do_flush_map();
3621
3622 err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3623 if (unlikely(err))
3624 goto err;
3625
3626 ri->map_to_flush = map;
3627 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3628 return 0;
3629 err:
3630 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3631 return err;
3632 }
3633
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3634 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3635 struct bpf_prog *xdp_prog)
3636 {
3637 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3638 struct bpf_map *map = READ_ONCE(ri->map);
3639
3640 if (likely(map))
3641 return xdp_do_redirect_map(dev, xdp, xdp_prog, map, ri);
3642
3643 return xdp_do_redirect_slow(dev, xdp, xdp_prog, ri);
3644 }
3645 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3646
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)3647 static int xdp_do_generic_redirect_map(struct net_device *dev,
3648 struct sk_buff *skb,
3649 struct xdp_buff *xdp,
3650 struct bpf_prog *xdp_prog,
3651 struct bpf_map *map)
3652 {
3653 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3654 u32 index = ri->tgt_index;
3655 void *fwd = ri->tgt_value;
3656 int err = 0;
3657
3658 ri->tgt_index = 0;
3659 ri->tgt_value = NULL;
3660 WRITE_ONCE(ri->map, NULL);
3661
3662 if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3663 map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3664 struct bpf_dtab_netdev *dst = fwd;
3665
3666 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3667 if (unlikely(err))
3668 goto err;
3669 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3670 struct xdp_sock *xs = fwd;
3671
3672 err = xsk_generic_rcv(xs, xdp);
3673 if (err)
3674 goto err;
3675 consume_skb(skb);
3676 } else {
3677 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3678 err = -EBADRQC;
3679 goto err;
3680 }
3681
3682 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3683 return 0;
3684 err:
3685 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3686 return err;
3687 }
3688
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3689 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3690 struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3691 {
3692 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3693 struct bpf_map *map = READ_ONCE(ri->map);
3694 u32 index = ri->tgt_index;
3695 struct net_device *fwd;
3696 int err = 0;
3697
3698 if (map)
3699 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3700 map);
3701 ri->tgt_index = 0;
3702 fwd = dev_get_by_index_rcu(dev_net(dev), index);
3703 if (unlikely(!fwd)) {
3704 err = -EINVAL;
3705 goto err;
3706 }
3707
3708 err = xdp_ok_fwd_dev(fwd, skb->len);
3709 if (unlikely(err))
3710 goto err;
3711
3712 skb->dev = fwd;
3713 _trace_xdp_redirect(dev, xdp_prog, index);
3714 generic_xdp_tx(skb, xdp_prog);
3715 return 0;
3716 err:
3717 _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3718 return err;
3719 }
3720 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3721
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)3722 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3723 {
3724 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3725
3726 if (unlikely(flags))
3727 return XDP_ABORTED;
3728
3729 ri->flags = flags;
3730 ri->tgt_index = ifindex;
3731 ri->tgt_value = NULL;
3732 WRITE_ONCE(ri->map, NULL);
3733
3734 return XDP_REDIRECT;
3735 }
3736
3737 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3738 .func = bpf_xdp_redirect,
3739 .gpl_only = false,
3740 .ret_type = RET_INTEGER,
3741 .arg1_type = ARG_ANYTHING,
3742 .arg2_type = ARG_ANYTHING,
3743 };
3744
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)3745 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3746 u64, flags)
3747 {
3748 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3749
3750 /* Lower bits of the flags are used as return code on lookup failure */
3751 if (unlikely(flags > XDP_TX))
3752 return XDP_ABORTED;
3753
3754 ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3755 if (unlikely(!ri->tgt_value)) {
3756 /* If the lookup fails we want to clear out the state in the
3757 * redirect_info struct completely, so that if an eBPF program
3758 * performs multiple lookups, the last one always takes
3759 * precedence.
3760 */
3761 WRITE_ONCE(ri->map, NULL);
3762 return flags;
3763 }
3764
3765 ri->flags = flags;
3766 ri->tgt_index = ifindex;
3767 WRITE_ONCE(ri->map, map);
3768
3769 return XDP_REDIRECT;
3770 }
3771
3772 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3773 .func = bpf_xdp_redirect_map,
3774 .gpl_only = false,
3775 .ret_type = RET_INTEGER,
3776 .arg1_type = ARG_CONST_MAP_PTR,
3777 .arg2_type = ARG_ANYTHING,
3778 .arg3_type = ARG_ANYTHING,
3779 };
3780
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)3781 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3782 unsigned long off, unsigned long len)
3783 {
3784 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3785
3786 if (unlikely(!ptr))
3787 return len;
3788 if (ptr != dst_buff)
3789 memcpy(dst_buff, ptr, len);
3790
3791 return 0;
3792 }
3793
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)3794 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3795 u64, flags, void *, meta, u64, meta_size)
3796 {
3797 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3798
3799 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3800 return -EINVAL;
3801 if (unlikely(skb_size > skb->len))
3802 return -EFAULT;
3803
3804 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3805 bpf_skb_copy);
3806 }
3807
3808 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3809 .func = bpf_skb_event_output,
3810 .gpl_only = true,
3811 .ret_type = RET_INTEGER,
3812 .arg1_type = ARG_PTR_TO_CTX,
3813 .arg2_type = ARG_CONST_MAP_PTR,
3814 .arg3_type = ARG_ANYTHING,
3815 .arg4_type = ARG_PTR_TO_MEM,
3816 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
3817 };
3818
bpf_tunnel_key_af(u64 flags)3819 static unsigned short bpf_tunnel_key_af(u64 flags)
3820 {
3821 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3822 }
3823
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)3824 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3825 u32, size, u64, flags)
3826 {
3827 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3828 u8 compat[sizeof(struct bpf_tunnel_key)];
3829 void *to_orig = to;
3830 int err;
3831
3832 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3833 err = -EINVAL;
3834 goto err_clear;
3835 }
3836 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3837 err = -EPROTO;
3838 goto err_clear;
3839 }
3840 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3841 err = -EINVAL;
3842 switch (size) {
3843 case offsetof(struct bpf_tunnel_key, tunnel_label):
3844 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3845 goto set_compat;
3846 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3847 /* Fixup deprecated structure layouts here, so we have
3848 * a common path later on.
3849 */
3850 if (ip_tunnel_info_af(info) != AF_INET)
3851 goto err_clear;
3852 set_compat:
3853 to = (struct bpf_tunnel_key *)compat;
3854 break;
3855 default:
3856 goto err_clear;
3857 }
3858 }
3859
3860 to->tunnel_id = be64_to_cpu(info->key.tun_id);
3861 to->tunnel_tos = info->key.tos;
3862 to->tunnel_ttl = info->key.ttl;
3863 to->tunnel_ext = 0;
3864
3865 if (flags & BPF_F_TUNINFO_IPV6) {
3866 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3867 sizeof(to->remote_ipv6));
3868 to->tunnel_label = be32_to_cpu(info->key.label);
3869 } else {
3870 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3871 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3872 to->tunnel_label = 0;
3873 }
3874
3875 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3876 memcpy(to_orig, to, size);
3877
3878 return 0;
3879 err_clear:
3880 memset(to_orig, 0, size);
3881 return err;
3882 }
3883
3884 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3885 .func = bpf_skb_get_tunnel_key,
3886 .gpl_only = false,
3887 .ret_type = RET_INTEGER,
3888 .arg1_type = ARG_PTR_TO_CTX,
3889 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
3890 .arg3_type = ARG_CONST_SIZE,
3891 .arg4_type = ARG_ANYTHING,
3892 };
3893
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)3894 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3895 {
3896 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3897 int err;
3898
3899 if (unlikely(!info ||
3900 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3901 err = -ENOENT;
3902 goto err_clear;
3903 }
3904 if (unlikely(size < info->options_len)) {
3905 err = -ENOMEM;
3906 goto err_clear;
3907 }
3908
3909 ip_tunnel_info_opts_get(to, info);
3910 if (size > info->options_len)
3911 memset(to + info->options_len, 0, size - info->options_len);
3912
3913 return info->options_len;
3914 err_clear:
3915 memset(to, 0, size);
3916 return err;
3917 }
3918
3919 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3920 .func = bpf_skb_get_tunnel_opt,
3921 .gpl_only = false,
3922 .ret_type = RET_INTEGER,
3923 .arg1_type = ARG_PTR_TO_CTX,
3924 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
3925 .arg3_type = ARG_CONST_SIZE,
3926 };
3927
3928 static struct metadata_dst __percpu *md_dst;
3929
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)3930 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3931 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3932 {
3933 struct metadata_dst *md = this_cpu_ptr(md_dst);
3934 u8 compat[sizeof(struct bpf_tunnel_key)];
3935 struct ip_tunnel_info *info;
3936
3937 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3938 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3939 return -EINVAL;
3940 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3941 switch (size) {
3942 case offsetof(struct bpf_tunnel_key, tunnel_label):
3943 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3944 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3945 /* Fixup deprecated structure layouts here, so we have
3946 * a common path later on.
3947 */
3948 memcpy(compat, from, size);
3949 memset(compat + size, 0, sizeof(compat) - size);
3950 from = (const struct bpf_tunnel_key *) compat;
3951 break;
3952 default:
3953 return -EINVAL;
3954 }
3955 }
3956 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3957 from->tunnel_ext))
3958 return -EINVAL;
3959
3960 skb_dst_drop(skb);
3961 dst_hold((struct dst_entry *) md);
3962 skb_dst_set(skb, (struct dst_entry *) md);
3963
3964 info = &md->u.tun_info;
3965 memset(info, 0, sizeof(*info));
3966 info->mode = IP_TUNNEL_INFO_TX;
3967
3968 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3969 if (flags & BPF_F_DONT_FRAGMENT)
3970 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3971 if (flags & BPF_F_ZERO_CSUM_TX)
3972 info->key.tun_flags &= ~TUNNEL_CSUM;
3973 if (flags & BPF_F_SEQ_NUMBER)
3974 info->key.tun_flags |= TUNNEL_SEQ;
3975
3976 info->key.tun_id = cpu_to_be64(from->tunnel_id);
3977 info->key.tos = from->tunnel_tos;
3978 info->key.ttl = from->tunnel_ttl;
3979
3980 if (flags & BPF_F_TUNINFO_IPV6) {
3981 info->mode |= IP_TUNNEL_INFO_IPV6;
3982 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3983 sizeof(from->remote_ipv6));
3984 info->key.label = cpu_to_be32(from->tunnel_label) &
3985 IPV6_FLOWLABEL_MASK;
3986 } else {
3987 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3988 }
3989
3990 return 0;
3991 }
3992
3993 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3994 .func = bpf_skb_set_tunnel_key,
3995 .gpl_only = false,
3996 .ret_type = RET_INTEGER,
3997 .arg1_type = ARG_PTR_TO_CTX,
3998 .arg2_type = ARG_PTR_TO_MEM,
3999 .arg3_type = ARG_CONST_SIZE,
4000 .arg4_type = ARG_ANYTHING,
4001 };
4002
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4003 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4004 const u8 *, from, u32, size)
4005 {
4006 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4007 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4008
4009 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4010 return -EINVAL;
4011 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4012 return -ENOMEM;
4013
4014 ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4015
4016 return 0;
4017 }
4018
4019 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4020 .func = bpf_skb_set_tunnel_opt,
4021 .gpl_only = false,
4022 .ret_type = RET_INTEGER,
4023 .arg1_type = ARG_PTR_TO_CTX,
4024 .arg2_type = ARG_PTR_TO_MEM,
4025 .arg3_type = ARG_CONST_SIZE,
4026 };
4027
4028 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4029 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4030 {
4031 if (!md_dst) {
4032 struct metadata_dst __percpu *tmp;
4033
4034 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4035 METADATA_IP_TUNNEL,
4036 GFP_KERNEL);
4037 if (!tmp)
4038 return NULL;
4039 if (cmpxchg(&md_dst, NULL, tmp))
4040 metadata_dst_free_percpu(tmp);
4041 }
4042
4043 switch (which) {
4044 case BPF_FUNC_skb_set_tunnel_key:
4045 return &bpf_skb_set_tunnel_key_proto;
4046 case BPF_FUNC_skb_set_tunnel_opt:
4047 return &bpf_skb_set_tunnel_opt_proto;
4048 default:
4049 return NULL;
4050 }
4051 }
4052
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4053 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4054 u32, idx)
4055 {
4056 struct bpf_array *array = container_of(map, struct bpf_array, map);
4057 struct cgroup *cgrp;
4058 struct sock *sk;
4059
4060 sk = skb_to_full_sk(skb);
4061 if (!sk || !sk_fullsock(sk))
4062 return -ENOENT;
4063 if (unlikely(idx >= array->map.max_entries))
4064 return -E2BIG;
4065
4066 cgrp = READ_ONCE(array->ptrs[idx]);
4067 if (unlikely(!cgrp))
4068 return -EAGAIN;
4069
4070 return sk_under_cgroup_hierarchy(sk, cgrp);
4071 }
4072
4073 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4074 .func = bpf_skb_under_cgroup,
4075 .gpl_only = false,
4076 .ret_type = RET_INTEGER,
4077 .arg1_type = ARG_PTR_TO_CTX,
4078 .arg2_type = ARG_CONST_MAP_PTR,
4079 .arg3_type = ARG_ANYTHING,
4080 };
4081
4082 #ifdef CONFIG_SOCK_CGROUP_DATA
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4083 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4084 {
4085 struct sock *sk = skb_to_full_sk(skb);
4086 struct cgroup *cgrp;
4087
4088 if (!sk || !sk_fullsock(sk))
4089 return 0;
4090
4091 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4092 return cgrp->kn->id.id;
4093 }
4094
4095 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4096 .func = bpf_skb_cgroup_id,
4097 .gpl_only = false,
4098 .ret_type = RET_INTEGER,
4099 .arg1_type = ARG_PTR_TO_CTX,
4100 };
4101
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4102 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4103 ancestor_level)
4104 {
4105 struct sock *sk = skb_to_full_sk(skb);
4106 struct cgroup *ancestor;
4107 struct cgroup *cgrp;
4108
4109 if (!sk || !sk_fullsock(sk))
4110 return 0;
4111
4112 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4113 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4114 if (!ancestor)
4115 return 0;
4116
4117 return ancestor->kn->id.id;
4118 }
4119
4120 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4121 .func = bpf_skb_ancestor_cgroup_id,
4122 .gpl_only = false,
4123 .ret_type = RET_INTEGER,
4124 .arg1_type = ARG_PTR_TO_CTX,
4125 .arg2_type = ARG_ANYTHING,
4126 };
4127 #endif
4128
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)4129 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4130 unsigned long off, unsigned long len)
4131 {
4132 memcpy(dst_buff, src_buff + off, len);
4133 return 0;
4134 }
4135
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4136 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4137 u64, flags, void *, meta, u64, meta_size)
4138 {
4139 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4140
4141 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4142 return -EINVAL;
4143 if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4144 return -EFAULT;
4145
4146 return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4147 xdp_size, bpf_xdp_copy);
4148 }
4149
4150 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4151 .func = bpf_xdp_event_output,
4152 .gpl_only = true,
4153 .ret_type = RET_INTEGER,
4154 .arg1_type = ARG_PTR_TO_CTX,
4155 .arg2_type = ARG_CONST_MAP_PTR,
4156 .arg3_type = ARG_ANYTHING,
4157 .arg4_type = ARG_PTR_TO_MEM,
4158 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4159 };
4160
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4161 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4162 {
4163 return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4164 }
4165
4166 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4167 .func = bpf_get_socket_cookie,
4168 .gpl_only = false,
4169 .ret_type = RET_INTEGER,
4170 .arg1_type = ARG_PTR_TO_CTX,
4171 };
4172
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4173 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4174 {
4175 return sock_gen_cookie(ctx->sk);
4176 }
4177
4178 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4179 .func = bpf_get_socket_cookie_sock_addr,
4180 .gpl_only = false,
4181 .ret_type = RET_INTEGER,
4182 .arg1_type = ARG_PTR_TO_CTX,
4183 };
4184
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4185 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4186 {
4187 return sock_gen_cookie(ctx->sk);
4188 }
4189
4190 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4191 .func = bpf_get_socket_cookie_sock_ops,
4192 .gpl_only = false,
4193 .ret_type = RET_INTEGER,
4194 .arg1_type = ARG_PTR_TO_CTX,
4195 };
4196
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)4197 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4198 {
4199 struct sock *sk = sk_to_full_sk(skb->sk);
4200 kuid_t kuid;
4201
4202 if (!sk || !sk_fullsock(sk))
4203 return overflowuid;
4204 kuid = sock_net_uid(sock_net(sk), sk);
4205 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4206 }
4207
4208 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4209 .func = bpf_get_socket_uid,
4210 .gpl_only = false,
4211 .ret_type = RET_INTEGER,
4212 .arg1_type = ARG_PTR_TO_CTX,
4213 };
4214
BPF_CALL_5(bpf_sockopt_event_output,struct bpf_sock_ops_kern *,bpf_sock,struct bpf_map *,map,u64,flags,void *,data,u64,size)4215 BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4216 struct bpf_map *, map, u64, flags, void *, data, u64, size)
4217 {
4218 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4219 return -EINVAL;
4220
4221 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4222 }
4223
4224 static const struct bpf_func_proto bpf_sockopt_event_output_proto = {
4225 .func = bpf_sockopt_event_output,
4226 .gpl_only = true,
4227 .ret_type = RET_INTEGER,
4228 .arg1_type = ARG_PTR_TO_CTX,
4229 .arg2_type = ARG_CONST_MAP_PTR,
4230 .arg3_type = ARG_ANYTHING,
4231 .arg4_type = ARG_PTR_TO_MEM,
4232 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4233 };
4234
BPF_CALL_5(bpf_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)4235 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4236 int, level, int, optname, char *, optval, int, optlen)
4237 {
4238 struct sock *sk = bpf_sock->sk;
4239 int ret = 0;
4240 int val;
4241
4242 if (!sk_fullsock(sk))
4243 return -EINVAL;
4244
4245 if (level == SOL_SOCKET) {
4246 if (optlen != sizeof(int))
4247 return -EINVAL;
4248 val = *((int *)optval);
4249
4250 /* Only some socketops are supported */
4251 switch (optname) {
4252 case SO_RCVBUF:
4253 val = min_t(u32, val, sysctl_rmem_max);
4254 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4255 WRITE_ONCE(sk->sk_rcvbuf,
4256 max_t(int, val * 2, SOCK_MIN_RCVBUF));
4257 break;
4258 case SO_SNDBUF:
4259 val = min_t(u32, val, sysctl_wmem_max);
4260 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4261 WRITE_ONCE(sk->sk_sndbuf,
4262 max_t(int, val * 2, SOCK_MIN_SNDBUF));
4263 break;
4264 case SO_MAX_PACING_RATE: /* 32bit version */
4265 if (val != ~0U)
4266 cmpxchg(&sk->sk_pacing_status,
4267 SK_PACING_NONE,
4268 SK_PACING_NEEDED);
4269 sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4270 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4271 sk->sk_max_pacing_rate);
4272 break;
4273 case SO_PRIORITY:
4274 sk->sk_priority = val;
4275 break;
4276 case SO_RCVLOWAT:
4277 if (val < 0)
4278 val = INT_MAX;
4279 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4280 break;
4281 case SO_MARK:
4282 if (sk->sk_mark != val) {
4283 sk->sk_mark = val;
4284 sk_dst_reset(sk);
4285 }
4286 break;
4287 default:
4288 ret = -EINVAL;
4289 }
4290 #ifdef CONFIG_INET
4291 } else if (level == SOL_IP) {
4292 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4293 return -EINVAL;
4294
4295 val = *((int *)optval);
4296 /* Only some options are supported */
4297 switch (optname) {
4298 case IP_TOS:
4299 if (val < -1 || val > 0xff) {
4300 ret = -EINVAL;
4301 } else {
4302 struct inet_sock *inet = inet_sk(sk);
4303
4304 if (val == -1)
4305 val = 0;
4306 inet->tos = val;
4307 }
4308 break;
4309 default:
4310 ret = -EINVAL;
4311 }
4312 #if IS_ENABLED(CONFIG_IPV6)
4313 } else if (level == SOL_IPV6) {
4314 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4315 return -EINVAL;
4316
4317 val = *((int *)optval);
4318 /* Only some options are supported */
4319 switch (optname) {
4320 case IPV6_TCLASS:
4321 if (val < -1 || val > 0xff) {
4322 ret = -EINVAL;
4323 } else {
4324 struct ipv6_pinfo *np = inet6_sk(sk);
4325
4326 if (val == -1)
4327 val = 0;
4328 np->tclass = val;
4329 }
4330 break;
4331 default:
4332 ret = -EINVAL;
4333 }
4334 #endif
4335 } else if (level == SOL_TCP &&
4336 sk->sk_prot->setsockopt == tcp_setsockopt) {
4337 if (optname == TCP_CONGESTION) {
4338 char name[TCP_CA_NAME_MAX];
4339 bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4340
4341 strncpy(name, optval, min_t(long, optlen,
4342 TCP_CA_NAME_MAX-1));
4343 name[TCP_CA_NAME_MAX-1] = 0;
4344 ret = tcp_set_congestion_control(sk, name, false,
4345 reinit, true);
4346 } else {
4347 struct tcp_sock *tp = tcp_sk(sk);
4348
4349 if (optlen != sizeof(int))
4350 return -EINVAL;
4351
4352 val = *((int *)optval);
4353 /* Only some options are supported */
4354 switch (optname) {
4355 case TCP_BPF_IW:
4356 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4357 ret = -EINVAL;
4358 else
4359 tp->snd_cwnd = val;
4360 break;
4361 case TCP_BPF_SNDCWND_CLAMP:
4362 if (val <= 0) {
4363 ret = -EINVAL;
4364 } else {
4365 tp->snd_cwnd_clamp = val;
4366 tp->snd_ssthresh = val;
4367 }
4368 break;
4369 case TCP_SAVE_SYN:
4370 if (val < 0 || val > 1)
4371 ret = -EINVAL;
4372 else
4373 tp->save_syn = val;
4374 break;
4375 default:
4376 ret = -EINVAL;
4377 }
4378 }
4379 #endif
4380 } else {
4381 ret = -EINVAL;
4382 }
4383 return ret;
4384 }
4385
4386 static const struct bpf_func_proto bpf_setsockopt_proto = {
4387 .func = bpf_setsockopt,
4388 .gpl_only = false,
4389 .ret_type = RET_INTEGER,
4390 .arg1_type = ARG_PTR_TO_CTX,
4391 .arg2_type = ARG_ANYTHING,
4392 .arg3_type = ARG_ANYTHING,
4393 .arg4_type = ARG_PTR_TO_MEM,
4394 .arg5_type = ARG_CONST_SIZE,
4395 };
4396
BPF_CALL_5(bpf_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)4397 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4398 int, level, int, optname, char *, optval, int, optlen)
4399 {
4400 struct sock *sk = bpf_sock->sk;
4401
4402 if (!sk_fullsock(sk))
4403 goto err_clear;
4404 #ifdef CONFIG_INET
4405 if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4406 struct inet_connection_sock *icsk;
4407 struct tcp_sock *tp;
4408
4409 switch (optname) {
4410 case TCP_CONGESTION:
4411 icsk = inet_csk(sk);
4412
4413 if (!icsk->icsk_ca_ops || optlen <= 1)
4414 goto err_clear;
4415 strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4416 optval[optlen - 1] = 0;
4417 break;
4418 case TCP_SAVED_SYN:
4419 tp = tcp_sk(sk);
4420
4421 if (optlen <= 0 || !tp->saved_syn ||
4422 optlen > tp->saved_syn[0])
4423 goto err_clear;
4424 memcpy(optval, tp->saved_syn + 1, optlen);
4425 break;
4426 default:
4427 goto err_clear;
4428 }
4429 } else if (level == SOL_IP) {
4430 struct inet_sock *inet = inet_sk(sk);
4431
4432 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4433 goto err_clear;
4434
4435 /* Only some options are supported */
4436 switch (optname) {
4437 case IP_TOS:
4438 *((int *)optval) = (int)inet->tos;
4439 break;
4440 default:
4441 goto err_clear;
4442 }
4443 #if IS_ENABLED(CONFIG_IPV6)
4444 } else if (level == SOL_IPV6) {
4445 struct ipv6_pinfo *np = inet6_sk(sk);
4446
4447 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4448 goto err_clear;
4449
4450 /* Only some options are supported */
4451 switch (optname) {
4452 case IPV6_TCLASS:
4453 *((int *)optval) = (int)np->tclass;
4454 break;
4455 default:
4456 goto err_clear;
4457 }
4458 #endif
4459 } else {
4460 goto err_clear;
4461 }
4462 return 0;
4463 #endif
4464 err_clear:
4465 memset(optval, 0, optlen);
4466 return -EINVAL;
4467 }
4468
4469 static const struct bpf_func_proto bpf_getsockopt_proto = {
4470 .func = bpf_getsockopt,
4471 .gpl_only = false,
4472 .ret_type = RET_INTEGER,
4473 .arg1_type = ARG_PTR_TO_CTX,
4474 .arg2_type = ARG_ANYTHING,
4475 .arg3_type = ARG_ANYTHING,
4476 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
4477 .arg5_type = ARG_CONST_SIZE,
4478 };
4479
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)4480 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4481 int, argval)
4482 {
4483 struct sock *sk = bpf_sock->sk;
4484 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4485
4486 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4487 return -EINVAL;
4488
4489 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4490
4491 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4492 }
4493
4494 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4495 .func = bpf_sock_ops_cb_flags_set,
4496 .gpl_only = false,
4497 .ret_type = RET_INTEGER,
4498 .arg1_type = ARG_PTR_TO_CTX,
4499 .arg2_type = ARG_ANYTHING,
4500 };
4501
4502 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4503 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4504
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)4505 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4506 int, addr_len)
4507 {
4508 #ifdef CONFIG_INET
4509 struct sock *sk = ctx->sk;
4510 int err;
4511
4512 /* Binding to port can be expensive so it's prohibited in the helper.
4513 * Only binding to IP is supported.
4514 */
4515 err = -EINVAL;
4516 if (addr_len < offsetofend(struct sockaddr, sa_family))
4517 return err;
4518 if (addr->sa_family == AF_INET) {
4519 if (addr_len < sizeof(struct sockaddr_in))
4520 return err;
4521 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4522 return err;
4523 return __inet_bind(sk, addr, addr_len, true, false);
4524 #if IS_ENABLED(CONFIG_IPV6)
4525 } else if (addr->sa_family == AF_INET6) {
4526 if (addr_len < SIN6_LEN_RFC2133)
4527 return err;
4528 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4529 return err;
4530 /* ipv6_bpf_stub cannot be NULL, since it's called from
4531 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4532 */
4533 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4534 #endif /* CONFIG_IPV6 */
4535 }
4536 #endif /* CONFIG_INET */
4537
4538 return -EAFNOSUPPORT;
4539 }
4540
4541 static const struct bpf_func_proto bpf_bind_proto = {
4542 .func = bpf_bind,
4543 .gpl_only = false,
4544 .ret_type = RET_INTEGER,
4545 .arg1_type = ARG_PTR_TO_CTX,
4546 .arg2_type = ARG_PTR_TO_MEM,
4547 .arg3_type = ARG_CONST_SIZE,
4548 };
4549
4550 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)4551 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4552 struct bpf_xfrm_state *, to, u32, size, u64, flags)
4553 {
4554 const struct sec_path *sp = skb_sec_path(skb);
4555 const struct xfrm_state *x;
4556
4557 if (!sp || unlikely(index >= sp->len || flags))
4558 goto err_clear;
4559
4560 x = sp->xvec[index];
4561
4562 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4563 goto err_clear;
4564
4565 to->reqid = x->props.reqid;
4566 to->spi = x->id.spi;
4567 to->family = x->props.family;
4568 to->ext = 0;
4569
4570 if (to->family == AF_INET6) {
4571 memcpy(to->remote_ipv6, x->props.saddr.a6,
4572 sizeof(to->remote_ipv6));
4573 } else {
4574 to->remote_ipv4 = x->props.saddr.a4;
4575 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4576 }
4577
4578 return 0;
4579 err_clear:
4580 memset(to, 0, size);
4581 return -EINVAL;
4582 }
4583
4584 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4585 .func = bpf_skb_get_xfrm_state,
4586 .gpl_only = false,
4587 .ret_type = RET_INTEGER,
4588 .arg1_type = ARG_PTR_TO_CTX,
4589 .arg2_type = ARG_ANYTHING,
4590 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4591 .arg4_type = ARG_CONST_SIZE,
4592 .arg5_type = ARG_ANYTHING,
4593 };
4594 #endif
4595
4596 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev)4597 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4598 const struct neighbour *neigh,
4599 const struct net_device *dev)
4600 {
4601 memcpy(params->dmac, neigh->ha, ETH_ALEN);
4602 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4603 params->h_vlan_TCI = 0;
4604 params->h_vlan_proto = 0;
4605 params->ifindex = dev->ifindex;
4606
4607 return 0;
4608 }
4609 #endif
4610
4611 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)4612 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4613 u32 flags, bool check_mtu)
4614 {
4615 struct fib_nh_common *nhc;
4616 struct in_device *in_dev;
4617 struct neighbour *neigh;
4618 struct net_device *dev;
4619 struct fib_result res;
4620 struct flowi4 fl4;
4621 int err;
4622 u32 mtu;
4623
4624 dev = dev_get_by_index_rcu(net, params->ifindex);
4625 if (unlikely(!dev))
4626 return -ENODEV;
4627
4628 /* verify forwarding is enabled on this interface */
4629 in_dev = __in_dev_get_rcu(dev);
4630 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4631 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4632
4633 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4634 fl4.flowi4_iif = 1;
4635 fl4.flowi4_oif = params->ifindex;
4636 } else {
4637 fl4.flowi4_iif = params->ifindex;
4638 fl4.flowi4_oif = 0;
4639 }
4640 fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4641 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4642 fl4.flowi4_flags = 0;
4643
4644 fl4.flowi4_proto = params->l4_protocol;
4645 fl4.daddr = params->ipv4_dst;
4646 fl4.saddr = params->ipv4_src;
4647 fl4.fl4_sport = params->sport;
4648 fl4.fl4_dport = params->dport;
4649
4650 if (flags & BPF_FIB_LOOKUP_DIRECT) {
4651 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4652 struct fib_table *tb;
4653
4654 tb = fib_get_table(net, tbid);
4655 if (unlikely(!tb))
4656 return BPF_FIB_LKUP_RET_NOT_FWDED;
4657
4658 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4659 } else {
4660 fl4.flowi4_mark = 0;
4661 fl4.flowi4_secid = 0;
4662 fl4.flowi4_tun_key.tun_id = 0;
4663 fl4.flowi4_uid = sock_net_uid(net, NULL);
4664
4665 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4666 }
4667
4668 if (err) {
4669 /* map fib lookup errors to RTN_ type */
4670 if (err == -EINVAL)
4671 return BPF_FIB_LKUP_RET_BLACKHOLE;
4672 if (err == -EHOSTUNREACH)
4673 return BPF_FIB_LKUP_RET_UNREACHABLE;
4674 if (err == -EACCES)
4675 return BPF_FIB_LKUP_RET_PROHIBIT;
4676
4677 return BPF_FIB_LKUP_RET_NOT_FWDED;
4678 }
4679
4680 if (res.type != RTN_UNICAST)
4681 return BPF_FIB_LKUP_RET_NOT_FWDED;
4682
4683 if (fib_info_num_path(res.fi) > 1)
4684 fib_select_path(net, &res, &fl4, NULL);
4685
4686 if (check_mtu) {
4687 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4688 if (params->tot_len > mtu)
4689 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4690 }
4691
4692 nhc = res.nhc;
4693
4694 /* do not handle lwt encaps right now */
4695 if (nhc->nhc_lwtstate)
4696 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4697
4698 dev = nhc->nhc_dev;
4699
4700 params->rt_metric = res.fi->fib_priority;
4701
4702 /* xdp and cls_bpf programs are run in RCU-bh so
4703 * rcu_read_lock_bh is not needed here
4704 */
4705 if (likely(nhc->nhc_gw_family != AF_INET6)) {
4706 if (nhc->nhc_gw_family)
4707 params->ipv4_dst = nhc->nhc_gw.ipv4;
4708
4709 neigh = __ipv4_neigh_lookup_noref(dev,
4710 (__force u32)params->ipv4_dst);
4711 } else {
4712 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4713
4714 params->family = AF_INET6;
4715 *dst = nhc->nhc_gw.ipv6;
4716 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4717 }
4718
4719 if (!neigh)
4720 return BPF_FIB_LKUP_RET_NO_NEIGH;
4721
4722 return bpf_fib_set_fwd_params(params, neigh, dev);
4723 }
4724 #endif
4725
4726 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)4727 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4728 u32 flags, bool check_mtu)
4729 {
4730 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4731 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4732 struct fib6_result res = {};
4733 struct neighbour *neigh;
4734 struct net_device *dev;
4735 struct inet6_dev *idev;
4736 struct flowi6 fl6;
4737 int strict = 0;
4738 int oif, err;
4739 u32 mtu;
4740
4741 /* link local addresses are never forwarded */
4742 if (rt6_need_strict(dst) || rt6_need_strict(src))
4743 return BPF_FIB_LKUP_RET_NOT_FWDED;
4744
4745 dev = dev_get_by_index_rcu(net, params->ifindex);
4746 if (unlikely(!dev))
4747 return -ENODEV;
4748
4749 idev = __in6_dev_get_safely(dev);
4750 if (unlikely(!idev || !idev->cnf.forwarding))
4751 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4752
4753 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4754 fl6.flowi6_iif = 1;
4755 oif = fl6.flowi6_oif = params->ifindex;
4756 } else {
4757 oif = fl6.flowi6_iif = params->ifindex;
4758 fl6.flowi6_oif = 0;
4759 strict = RT6_LOOKUP_F_HAS_SADDR;
4760 }
4761 fl6.flowlabel = params->flowinfo;
4762 fl6.flowi6_scope = 0;
4763 fl6.flowi6_flags = 0;
4764 fl6.mp_hash = 0;
4765
4766 fl6.flowi6_proto = params->l4_protocol;
4767 fl6.daddr = *dst;
4768 fl6.saddr = *src;
4769 fl6.fl6_sport = params->sport;
4770 fl6.fl6_dport = params->dport;
4771
4772 if (flags & BPF_FIB_LOOKUP_DIRECT) {
4773 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4774 struct fib6_table *tb;
4775
4776 tb = ipv6_stub->fib6_get_table(net, tbid);
4777 if (unlikely(!tb))
4778 return BPF_FIB_LKUP_RET_NOT_FWDED;
4779
4780 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4781 strict);
4782 } else {
4783 fl6.flowi6_mark = 0;
4784 fl6.flowi6_secid = 0;
4785 fl6.flowi6_tun_key.tun_id = 0;
4786 fl6.flowi6_uid = sock_net_uid(net, NULL);
4787
4788 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4789 }
4790
4791 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4792 res.f6i == net->ipv6.fib6_null_entry))
4793 return BPF_FIB_LKUP_RET_NOT_FWDED;
4794
4795 switch (res.fib6_type) {
4796 /* only unicast is forwarded */
4797 case RTN_UNICAST:
4798 break;
4799 case RTN_BLACKHOLE:
4800 return BPF_FIB_LKUP_RET_BLACKHOLE;
4801 case RTN_UNREACHABLE:
4802 return BPF_FIB_LKUP_RET_UNREACHABLE;
4803 case RTN_PROHIBIT:
4804 return BPF_FIB_LKUP_RET_PROHIBIT;
4805 default:
4806 return BPF_FIB_LKUP_RET_NOT_FWDED;
4807 }
4808
4809 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4810 fl6.flowi6_oif != 0, NULL, strict);
4811
4812 if (check_mtu) {
4813 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4814 if (params->tot_len > mtu)
4815 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4816 }
4817
4818 if (res.nh->fib_nh_lws)
4819 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4820
4821 if (res.nh->fib_nh_gw_family)
4822 *dst = res.nh->fib_nh_gw6;
4823
4824 dev = res.nh->fib_nh_dev;
4825 params->rt_metric = res.f6i->fib6_metric;
4826
4827 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4828 * not needed here.
4829 */
4830 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4831 if (!neigh)
4832 return BPF_FIB_LKUP_RET_NO_NEIGH;
4833
4834 return bpf_fib_set_fwd_params(params, neigh, dev);
4835 }
4836 #endif
4837
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)4838 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4839 struct bpf_fib_lookup *, params, int, plen, u32, flags)
4840 {
4841 if (plen < sizeof(*params))
4842 return -EINVAL;
4843
4844 if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4845 return -EINVAL;
4846
4847 switch (params->family) {
4848 #if IS_ENABLED(CONFIG_INET)
4849 case AF_INET:
4850 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4851 flags, true);
4852 #endif
4853 #if IS_ENABLED(CONFIG_IPV6)
4854 case AF_INET6:
4855 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4856 flags, true);
4857 #endif
4858 }
4859 return -EAFNOSUPPORT;
4860 }
4861
4862 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4863 .func = bpf_xdp_fib_lookup,
4864 .gpl_only = true,
4865 .ret_type = RET_INTEGER,
4866 .arg1_type = ARG_PTR_TO_CTX,
4867 .arg2_type = ARG_PTR_TO_MEM,
4868 .arg3_type = ARG_CONST_SIZE,
4869 .arg4_type = ARG_ANYTHING,
4870 };
4871
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)4872 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4873 struct bpf_fib_lookup *, params, int, plen, u32, flags)
4874 {
4875 struct net *net = dev_net(skb->dev);
4876 int rc = -EAFNOSUPPORT;
4877
4878 if (plen < sizeof(*params))
4879 return -EINVAL;
4880
4881 if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4882 return -EINVAL;
4883
4884 switch (params->family) {
4885 #if IS_ENABLED(CONFIG_INET)
4886 case AF_INET:
4887 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4888 break;
4889 #endif
4890 #if IS_ENABLED(CONFIG_IPV6)
4891 case AF_INET6:
4892 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4893 break;
4894 #endif
4895 }
4896
4897 if (!rc) {
4898 struct net_device *dev;
4899
4900 dev = dev_get_by_index_rcu(net, params->ifindex);
4901 if (!is_skb_forwardable(dev, skb))
4902 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4903 }
4904
4905 return rc;
4906 }
4907
4908 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4909 .func = bpf_skb_fib_lookup,
4910 .gpl_only = true,
4911 .ret_type = RET_INTEGER,
4912 .arg1_type = ARG_PTR_TO_CTX,
4913 .arg2_type = ARG_PTR_TO_MEM,
4914 .arg3_type = ARG_CONST_SIZE,
4915 .arg4_type = ARG_ANYTHING,
4916 };
4917
4918 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)4919 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4920 {
4921 int err;
4922 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4923
4924 if (!seg6_validate_srh(srh, len))
4925 return -EINVAL;
4926
4927 switch (type) {
4928 case BPF_LWT_ENCAP_SEG6_INLINE:
4929 if (skb->protocol != htons(ETH_P_IPV6))
4930 return -EBADMSG;
4931
4932 err = seg6_do_srh_inline(skb, srh);
4933 break;
4934 case BPF_LWT_ENCAP_SEG6:
4935 skb_reset_inner_headers(skb);
4936 skb->encapsulation = 1;
4937 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4938 break;
4939 default:
4940 return -EINVAL;
4941 }
4942
4943 bpf_compute_data_pointers(skb);
4944 if (err)
4945 return err;
4946
4947 ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4948 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4949
4950 return seg6_lookup_nexthop(skb, NULL, 0);
4951 }
4952 #endif /* CONFIG_IPV6_SEG6_BPF */
4953
4954 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)4955 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4956 bool ingress)
4957 {
4958 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4959 }
4960 #endif
4961
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)4962 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4963 u32, len)
4964 {
4965 switch (type) {
4966 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4967 case BPF_LWT_ENCAP_SEG6:
4968 case BPF_LWT_ENCAP_SEG6_INLINE:
4969 return bpf_push_seg6_encap(skb, type, hdr, len);
4970 #endif
4971 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4972 case BPF_LWT_ENCAP_IP:
4973 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4974 #endif
4975 default:
4976 return -EINVAL;
4977 }
4978 }
4979
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)4980 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4981 void *, hdr, u32, len)
4982 {
4983 switch (type) {
4984 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4985 case BPF_LWT_ENCAP_IP:
4986 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
4987 #endif
4988 default:
4989 return -EINVAL;
4990 }
4991 }
4992
4993 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
4994 .func = bpf_lwt_in_push_encap,
4995 .gpl_only = false,
4996 .ret_type = RET_INTEGER,
4997 .arg1_type = ARG_PTR_TO_CTX,
4998 .arg2_type = ARG_ANYTHING,
4999 .arg3_type = ARG_PTR_TO_MEM,
5000 .arg4_type = ARG_CONST_SIZE
5001 };
5002
5003 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5004 .func = bpf_lwt_xmit_push_encap,
5005 .gpl_only = false,
5006 .ret_type = RET_INTEGER,
5007 .arg1_type = ARG_PTR_TO_CTX,
5008 .arg2_type = ARG_ANYTHING,
5009 .arg3_type = ARG_PTR_TO_MEM,
5010 .arg4_type = ARG_CONST_SIZE
5011 };
5012
5013 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)5014 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5015 const void *, from, u32, len)
5016 {
5017 struct seg6_bpf_srh_state *srh_state =
5018 this_cpu_ptr(&seg6_bpf_srh_states);
5019 struct ipv6_sr_hdr *srh = srh_state->srh;
5020 void *srh_tlvs, *srh_end, *ptr;
5021 int srhoff = 0;
5022
5023 if (srh == NULL)
5024 return -EINVAL;
5025
5026 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5027 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5028
5029 ptr = skb->data + offset;
5030 if (ptr >= srh_tlvs && ptr + len <= srh_end)
5031 srh_state->valid = false;
5032 else if (ptr < (void *)&srh->flags ||
5033 ptr + len > (void *)&srh->segments)
5034 return -EFAULT;
5035
5036 if (unlikely(bpf_try_make_writable(skb, offset + len)))
5037 return -EFAULT;
5038 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5039 return -EINVAL;
5040 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5041
5042 memcpy(skb->data + offset, from, len);
5043 return 0;
5044 }
5045
5046 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5047 .func = bpf_lwt_seg6_store_bytes,
5048 .gpl_only = false,
5049 .ret_type = RET_INTEGER,
5050 .arg1_type = ARG_PTR_TO_CTX,
5051 .arg2_type = ARG_ANYTHING,
5052 .arg3_type = ARG_PTR_TO_MEM,
5053 .arg4_type = ARG_CONST_SIZE
5054 };
5055
bpf_update_srh_state(struct sk_buff * skb)5056 static void bpf_update_srh_state(struct sk_buff *skb)
5057 {
5058 struct seg6_bpf_srh_state *srh_state =
5059 this_cpu_ptr(&seg6_bpf_srh_states);
5060 int srhoff = 0;
5061
5062 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5063 srh_state->srh = NULL;
5064 } else {
5065 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5066 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5067 srh_state->valid = true;
5068 }
5069 }
5070
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)5071 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5072 u32, action, void *, param, u32, param_len)
5073 {
5074 struct seg6_bpf_srh_state *srh_state =
5075 this_cpu_ptr(&seg6_bpf_srh_states);
5076 int hdroff = 0;
5077 int err;
5078
5079 switch (action) {
5080 case SEG6_LOCAL_ACTION_END_X:
5081 if (!seg6_bpf_has_valid_srh(skb))
5082 return -EBADMSG;
5083 if (param_len != sizeof(struct in6_addr))
5084 return -EINVAL;
5085 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5086 case SEG6_LOCAL_ACTION_END_T:
5087 if (!seg6_bpf_has_valid_srh(skb))
5088 return -EBADMSG;
5089 if (param_len != sizeof(int))
5090 return -EINVAL;
5091 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5092 case SEG6_LOCAL_ACTION_END_DT6:
5093 if (!seg6_bpf_has_valid_srh(skb))
5094 return -EBADMSG;
5095 if (param_len != sizeof(int))
5096 return -EINVAL;
5097
5098 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5099 return -EBADMSG;
5100 if (!pskb_pull(skb, hdroff))
5101 return -EBADMSG;
5102
5103 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5104 skb_reset_network_header(skb);
5105 skb_reset_transport_header(skb);
5106 skb->encapsulation = 0;
5107
5108 bpf_compute_data_pointers(skb);
5109 bpf_update_srh_state(skb);
5110 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5111 case SEG6_LOCAL_ACTION_END_B6:
5112 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5113 return -EBADMSG;
5114 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5115 param, param_len);
5116 if (!err)
5117 bpf_update_srh_state(skb);
5118
5119 return err;
5120 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5121 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5122 return -EBADMSG;
5123 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5124 param, param_len);
5125 if (!err)
5126 bpf_update_srh_state(skb);
5127
5128 return err;
5129 default:
5130 return -EINVAL;
5131 }
5132 }
5133
5134 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5135 .func = bpf_lwt_seg6_action,
5136 .gpl_only = false,
5137 .ret_type = RET_INTEGER,
5138 .arg1_type = ARG_PTR_TO_CTX,
5139 .arg2_type = ARG_ANYTHING,
5140 .arg3_type = ARG_PTR_TO_MEM,
5141 .arg4_type = ARG_CONST_SIZE
5142 };
5143
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)5144 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5145 s32, len)
5146 {
5147 struct seg6_bpf_srh_state *srh_state =
5148 this_cpu_ptr(&seg6_bpf_srh_states);
5149 struct ipv6_sr_hdr *srh = srh_state->srh;
5150 void *srh_end, *srh_tlvs, *ptr;
5151 struct ipv6hdr *hdr;
5152 int srhoff = 0;
5153 int ret;
5154
5155 if (unlikely(srh == NULL))
5156 return -EINVAL;
5157
5158 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5159 ((srh->first_segment + 1) << 4));
5160 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5161 srh_state->hdrlen);
5162 ptr = skb->data + offset;
5163
5164 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5165 return -EFAULT;
5166 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5167 return -EFAULT;
5168
5169 if (len > 0) {
5170 ret = skb_cow_head(skb, len);
5171 if (unlikely(ret < 0))
5172 return ret;
5173
5174 ret = bpf_skb_net_hdr_push(skb, offset, len);
5175 } else {
5176 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5177 }
5178
5179 bpf_compute_data_pointers(skb);
5180 if (unlikely(ret < 0))
5181 return ret;
5182
5183 hdr = (struct ipv6hdr *)skb->data;
5184 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5185
5186 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5187 return -EINVAL;
5188 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5189 srh_state->hdrlen += len;
5190 srh_state->valid = false;
5191 return 0;
5192 }
5193
5194 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5195 .func = bpf_lwt_seg6_adjust_srh,
5196 .gpl_only = false,
5197 .ret_type = RET_INTEGER,
5198 .arg1_type = ARG_PTR_TO_CTX,
5199 .arg2_type = ARG_ANYTHING,
5200 .arg3_type = ARG_ANYTHING,
5201 };
5202 #endif /* CONFIG_IPV6_SEG6_BPF */
5203
5204 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)5205 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5206 int dif, int sdif, u8 family, u8 proto)
5207 {
5208 bool refcounted = false;
5209 struct sock *sk = NULL;
5210
5211 if (family == AF_INET) {
5212 __be32 src4 = tuple->ipv4.saddr;
5213 __be32 dst4 = tuple->ipv4.daddr;
5214
5215 if (proto == IPPROTO_TCP)
5216 sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5217 src4, tuple->ipv4.sport,
5218 dst4, tuple->ipv4.dport,
5219 dif, sdif, &refcounted);
5220 else
5221 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5222 dst4, tuple->ipv4.dport,
5223 dif, sdif, &udp_table, NULL);
5224 #if IS_ENABLED(CONFIG_IPV6)
5225 } else {
5226 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5227 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5228
5229 if (proto == IPPROTO_TCP)
5230 sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5231 src6, tuple->ipv6.sport,
5232 dst6, ntohs(tuple->ipv6.dport),
5233 dif, sdif, &refcounted);
5234 else if (likely(ipv6_bpf_stub))
5235 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5236 src6, tuple->ipv6.sport,
5237 dst6, tuple->ipv6.dport,
5238 dif, sdif,
5239 &udp_table, NULL);
5240 #endif
5241 }
5242
5243 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5244 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5245 sk = NULL;
5246 }
5247 return sk;
5248 }
5249
5250 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5251 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5252 * Returns the socket as an 'unsigned long' to simplify the casting in the
5253 * callers to satisfy BPF_CALL declarations.
5254 */
5255 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5256 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5257 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5258 u64 flags)
5259 {
5260 struct sock *sk = NULL;
5261 u8 family = AF_UNSPEC;
5262 struct net *net;
5263 int sdif;
5264
5265 if (len == sizeof(tuple->ipv4))
5266 family = AF_INET;
5267 else if (len == sizeof(tuple->ipv6))
5268 family = AF_INET6;
5269 else
5270 return NULL;
5271
5272 if (unlikely(family == AF_UNSPEC || flags ||
5273 !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5274 goto out;
5275
5276 if (family == AF_INET)
5277 sdif = inet_sdif(skb);
5278 else
5279 sdif = inet6_sdif(skb);
5280
5281 if ((s32)netns_id < 0) {
5282 net = caller_net;
5283 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5284 } else {
5285 net = get_net_ns_by_id(caller_net, netns_id);
5286 if (unlikely(!net))
5287 goto out;
5288 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5289 put_net(net);
5290 }
5291
5292 out:
5293 return sk;
5294 }
5295
5296 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5297 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5298 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5299 u64 flags)
5300 {
5301 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5302 ifindex, proto, netns_id, flags);
5303
5304 if (sk) {
5305 sk = sk_to_full_sk(sk);
5306 if (!sk_fullsock(sk)) {
5307 if (!sock_flag(sk, SOCK_RCU_FREE))
5308 sock_gen_put(sk);
5309 return NULL;
5310 }
5311 }
5312
5313 return sk;
5314 }
5315
5316 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)5317 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5318 u8 proto, u64 netns_id, u64 flags)
5319 {
5320 struct net *caller_net;
5321 int ifindex;
5322
5323 if (skb->dev) {
5324 caller_net = dev_net(skb->dev);
5325 ifindex = skb->dev->ifindex;
5326 } else {
5327 caller_net = sock_net(skb->sk);
5328 ifindex = 0;
5329 }
5330
5331 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5332 netns_id, flags);
5333 }
5334
5335 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)5336 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5337 u8 proto, u64 netns_id, u64 flags)
5338 {
5339 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5340 flags);
5341
5342 if (sk) {
5343 sk = sk_to_full_sk(sk);
5344 if (!sk_fullsock(sk)) {
5345 if (!sock_flag(sk, SOCK_RCU_FREE))
5346 sock_gen_put(sk);
5347 return NULL;
5348 }
5349 }
5350
5351 return sk;
5352 }
5353
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5354 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5355 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5356 {
5357 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5358 netns_id, flags);
5359 }
5360
5361 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5362 .func = bpf_skc_lookup_tcp,
5363 .gpl_only = false,
5364 .pkt_access = true,
5365 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5366 .arg1_type = ARG_PTR_TO_CTX,
5367 .arg2_type = ARG_PTR_TO_MEM,
5368 .arg3_type = ARG_CONST_SIZE,
5369 .arg4_type = ARG_ANYTHING,
5370 .arg5_type = ARG_ANYTHING,
5371 };
5372
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5373 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5374 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5375 {
5376 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5377 netns_id, flags);
5378 }
5379
5380 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5381 .func = bpf_sk_lookup_tcp,
5382 .gpl_only = false,
5383 .pkt_access = true,
5384 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
5385 .arg1_type = ARG_PTR_TO_CTX,
5386 .arg2_type = ARG_PTR_TO_MEM,
5387 .arg3_type = ARG_CONST_SIZE,
5388 .arg4_type = ARG_ANYTHING,
5389 .arg5_type = ARG_ANYTHING,
5390 };
5391
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5392 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5393 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5394 {
5395 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5396 netns_id, flags);
5397 }
5398
5399 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5400 .func = bpf_sk_lookup_udp,
5401 .gpl_only = false,
5402 .pkt_access = true,
5403 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
5404 .arg1_type = ARG_PTR_TO_CTX,
5405 .arg2_type = ARG_PTR_TO_MEM,
5406 .arg3_type = ARG_CONST_SIZE,
5407 .arg4_type = ARG_ANYTHING,
5408 .arg5_type = ARG_ANYTHING,
5409 };
5410
BPF_CALL_1(bpf_sk_release,struct sock *,sk)5411 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5412 {
5413 if (!sock_flag(sk, SOCK_RCU_FREE))
5414 sock_gen_put(sk);
5415 return 0;
5416 }
5417
5418 static const struct bpf_func_proto bpf_sk_release_proto = {
5419 .func = bpf_sk_release,
5420 .gpl_only = false,
5421 .ret_type = RET_INTEGER,
5422 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
5423 };
5424
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)5425 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5426 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5427 {
5428 struct net *caller_net = dev_net(ctx->rxq->dev);
5429 int ifindex = ctx->rxq->dev->ifindex;
5430
5431 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5432 ifindex, IPPROTO_UDP, netns_id,
5433 flags);
5434 }
5435
5436 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5437 .func = bpf_xdp_sk_lookup_udp,
5438 .gpl_only = false,
5439 .pkt_access = true,
5440 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
5441 .arg1_type = ARG_PTR_TO_CTX,
5442 .arg2_type = ARG_PTR_TO_MEM,
5443 .arg3_type = ARG_CONST_SIZE,
5444 .arg4_type = ARG_ANYTHING,
5445 .arg5_type = ARG_ANYTHING,
5446 };
5447
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)5448 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5449 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5450 {
5451 struct net *caller_net = dev_net(ctx->rxq->dev);
5452 int ifindex = ctx->rxq->dev->ifindex;
5453
5454 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5455 ifindex, IPPROTO_TCP, netns_id,
5456 flags);
5457 }
5458
5459 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5460 .func = bpf_xdp_skc_lookup_tcp,
5461 .gpl_only = false,
5462 .pkt_access = true,
5463 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5464 .arg1_type = ARG_PTR_TO_CTX,
5465 .arg2_type = ARG_PTR_TO_MEM,
5466 .arg3_type = ARG_CONST_SIZE,
5467 .arg4_type = ARG_ANYTHING,
5468 .arg5_type = ARG_ANYTHING,
5469 };
5470
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)5471 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5472 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5473 {
5474 struct net *caller_net = dev_net(ctx->rxq->dev);
5475 int ifindex = ctx->rxq->dev->ifindex;
5476
5477 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5478 ifindex, IPPROTO_TCP, netns_id,
5479 flags);
5480 }
5481
5482 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5483 .func = bpf_xdp_sk_lookup_tcp,
5484 .gpl_only = false,
5485 .pkt_access = true,
5486 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
5487 .arg1_type = ARG_PTR_TO_CTX,
5488 .arg2_type = ARG_PTR_TO_MEM,
5489 .arg3_type = ARG_CONST_SIZE,
5490 .arg4_type = ARG_ANYTHING,
5491 .arg5_type = ARG_ANYTHING,
5492 };
5493
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5494 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5495 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5496 {
5497 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5498 sock_net(ctx->sk), 0,
5499 IPPROTO_TCP, netns_id, flags);
5500 }
5501
5502 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5503 .func = bpf_sock_addr_skc_lookup_tcp,
5504 .gpl_only = false,
5505 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5506 .arg1_type = ARG_PTR_TO_CTX,
5507 .arg2_type = ARG_PTR_TO_MEM,
5508 .arg3_type = ARG_CONST_SIZE,
5509 .arg4_type = ARG_ANYTHING,
5510 .arg5_type = ARG_ANYTHING,
5511 };
5512
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5513 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5514 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5515 {
5516 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5517 sock_net(ctx->sk), 0, IPPROTO_TCP,
5518 netns_id, flags);
5519 }
5520
5521 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5522 .func = bpf_sock_addr_sk_lookup_tcp,
5523 .gpl_only = false,
5524 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
5525 .arg1_type = ARG_PTR_TO_CTX,
5526 .arg2_type = ARG_PTR_TO_MEM,
5527 .arg3_type = ARG_CONST_SIZE,
5528 .arg4_type = ARG_ANYTHING,
5529 .arg5_type = ARG_ANYTHING,
5530 };
5531
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5532 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5533 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5534 {
5535 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5536 sock_net(ctx->sk), 0, IPPROTO_UDP,
5537 netns_id, flags);
5538 }
5539
5540 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5541 .func = bpf_sock_addr_sk_lookup_udp,
5542 .gpl_only = false,
5543 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
5544 .arg1_type = ARG_PTR_TO_CTX,
5545 .arg2_type = ARG_PTR_TO_MEM,
5546 .arg3_type = ARG_CONST_SIZE,
5547 .arg4_type = ARG_ANYTHING,
5548 .arg5_type = ARG_ANYTHING,
5549 };
5550
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)5551 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5552 struct bpf_insn_access_aux *info)
5553 {
5554 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5555 icsk_retransmits))
5556 return false;
5557
5558 if (off % size != 0)
5559 return false;
5560
5561 switch (off) {
5562 case offsetof(struct bpf_tcp_sock, bytes_received):
5563 case offsetof(struct bpf_tcp_sock, bytes_acked):
5564 return size == sizeof(__u64);
5565 default:
5566 return size == sizeof(__u32);
5567 }
5568 }
5569
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)5570 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5571 const struct bpf_insn *si,
5572 struct bpf_insn *insn_buf,
5573 struct bpf_prog *prog, u32 *target_size)
5574 {
5575 struct bpf_insn *insn = insn_buf;
5576
5577 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
5578 do { \
5579 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, FIELD) > \
5580 FIELD_SIZEOF(struct bpf_tcp_sock, FIELD)); \
5581 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5582 si->dst_reg, si->src_reg, \
5583 offsetof(struct tcp_sock, FIELD)); \
5584 } while (0)
5585
5586 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
5587 do { \
5588 BUILD_BUG_ON(FIELD_SIZEOF(struct inet_connection_sock, \
5589 FIELD) > \
5590 FIELD_SIZEOF(struct bpf_tcp_sock, FIELD)); \
5591 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
5592 struct inet_connection_sock, \
5593 FIELD), \
5594 si->dst_reg, si->src_reg, \
5595 offsetof( \
5596 struct inet_connection_sock, \
5597 FIELD)); \
5598 } while (0)
5599
5600 if (insn > insn_buf)
5601 return insn - insn_buf;
5602
5603 switch (si->off) {
5604 case offsetof(struct bpf_tcp_sock, rtt_min):
5605 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
5606 sizeof(struct minmax));
5607 BUILD_BUG_ON(sizeof(struct minmax) <
5608 sizeof(struct minmax_sample));
5609
5610 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5611 offsetof(struct tcp_sock, rtt_min) +
5612 offsetof(struct minmax_sample, v));
5613 break;
5614 case offsetof(struct bpf_tcp_sock, snd_cwnd):
5615 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5616 break;
5617 case offsetof(struct bpf_tcp_sock, srtt_us):
5618 BPF_TCP_SOCK_GET_COMMON(srtt_us);
5619 break;
5620 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5621 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5622 break;
5623 case offsetof(struct bpf_tcp_sock, rcv_nxt):
5624 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5625 break;
5626 case offsetof(struct bpf_tcp_sock, snd_nxt):
5627 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5628 break;
5629 case offsetof(struct bpf_tcp_sock, snd_una):
5630 BPF_TCP_SOCK_GET_COMMON(snd_una);
5631 break;
5632 case offsetof(struct bpf_tcp_sock, mss_cache):
5633 BPF_TCP_SOCK_GET_COMMON(mss_cache);
5634 break;
5635 case offsetof(struct bpf_tcp_sock, ecn_flags):
5636 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5637 break;
5638 case offsetof(struct bpf_tcp_sock, rate_delivered):
5639 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5640 break;
5641 case offsetof(struct bpf_tcp_sock, rate_interval_us):
5642 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5643 break;
5644 case offsetof(struct bpf_tcp_sock, packets_out):
5645 BPF_TCP_SOCK_GET_COMMON(packets_out);
5646 break;
5647 case offsetof(struct bpf_tcp_sock, retrans_out):
5648 BPF_TCP_SOCK_GET_COMMON(retrans_out);
5649 break;
5650 case offsetof(struct bpf_tcp_sock, total_retrans):
5651 BPF_TCP_SOCK_GET_COMMON(total_retrans);
5652 break;
5653 case offsetof(struct bpf_tcp_sock, segs_in):
5654 BPF_TCP_SOCK_GET_COMMON(segs_in);
5655 break;
5656 case offsetof(struct bpf_tcp_sock, data_segs_in):
5657 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5658 break;
5659 case offsetof(struct bpf_tcp_sock, segs_out):
5660 BPF_TCP_SOCK_GET_COMMON(segs_out);
5661 break;
5662 case offsetof(struct bpf_tcp_sock, data_segs_out):
5663 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5664 break;
5665 case offsetof(struct bpf_tcp_sock, lost_out):
5666 BPF_TCP_SOCK_GET_COMMON(lost_out);
5667 break;
5668 case offsetof(struct bpf_tcp_sock, sacked_out):
5669 BPF_TCP_SOCK_GET_COMMON(sacked_out);
5670 break;
5671 case offsetof(struct bpf_tcp_sock, bytes_received):
5672 BPF_TCP_SOCK_GET_COMMON(bytes_received);
5673 break;
5674 case offsetof(struct bpf_tcp_sock, bytes_acked):
5675 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5676 break;
5677 case offsetof(struct bpf_tcp_sock, dsack_dups):
5678 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5679 break;
5680 case offsetof(struct bpf_tcp_sock, delivered):
5681 BPF_TCP_SOCK_GET_COMMON(delivered);
5682 break;
5683 case offsetof(struct bpf_tcp_sock, delivered_ce):
5684 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5685 break;
5686 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5687 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5688 break;
5689 }
5690
5691 return insn - insn_buf;
5692 }
5693
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)5694 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5695 {
5696 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5697 return (unsigned long)sk;
5698
5699 return (unsigned long)NULL;
5700 }
5701
5702 const struct bpf_func_proto bpf_tcp_sock_proto = {
5703 .func = bpf_tcp_sock,
5704 .gpl_only = false,
5705 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
5706 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
5707 };
5708
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)5709 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5710 {
5711 sk = sk_to_full_sk(sk);
5712
5713 if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5714 return (unsigned long)sk;
5715
5716 return (unsigned long)NULL;
5717 }
5718
5719 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5720 .func = bpf_get_listener_sock,
5721 .gpl_only = false,
5722 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
5723 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
5724 };
5725
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)5726 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5727 {
5728 unsigned int iphdr_len;
5729
5730 if (skb->protocol == cpu_to_be16(ETH_P_IP))
5731 iphdr_len = sizeof(struct iphdr);
5732 else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5733 iphdr_len = sizeof(struct ipv6hdr);
5734 else
5735 return 0;
5736
5737 if (skb_headlen(skb) < iphdr_len)
5738 return 0;
5739
5740 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5741 return 0;
5742
5743 return INET_ECN_set_ce(skb);
5744 }
5745
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)5746 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5747 struct bpf_insn_access_aux *info)
5748 {
5749 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5750 return false;
5751
5752 if (off % size != 0)
5753 return false;
5754
5755 switch (off) {
5756 default:
5757 return size == sizeof(__u32);
5758 }
5759 }
5760
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)5761 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5762 const struct bpf_insn *si,
5763 struct bpf_insn *insn_buf,
5764 struct bpf_prog *prog, u32 *target_size)
5765 {
5766 struct bpf_insn *insn = insn_buf;
5767
5768 #define BPF_XDP_SOCK_GET(FIELD) \
5769 do { \
5770 BUILD_BUG_ON(FIELD_SIZEOF(struct xdp_sock, FIELD) > \
5771 FIELD_SIZEOF(struct bpf_xdp_sock, FIELD)); \
5772 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5773 si->dst_reg, si->src_reg, \
5774 offsetof(struct xdp_sock, FIELD)); \
5775 } while (0)
5776
5777 switch (si->off) {
5778 case offsetof(struct bpf_xdp_sock, queue_id):
5779 BPF_XDP_SOCK_GET(queue_id);
5780 break;
5781 }
5782
5783 return insn - insn_buf;
5784 }
5785
5786 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5787 .func = bpf_skb_ecn_set_ce,
5788 .gpl_only = false,
5789 .ret_type = RET_INTEGER,
5790 .arg1_type = ARG_PTR_TO_CTX,
5791 };
5792
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)5793 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5794 struct tcphdr *, th, u32, th_len)
5795 {
5796 #ifdef CONFIG_SYN_COOKIES
5797 u32 cookie;
5798 int ret;
5799
5800 if (unlikely(th_len < sizeof(*th)))
5801 return -EINVAL;
5802
5803 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5804 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5805 return -EINVAL;
5806
5807 if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5808 return -EINVAL;
5809
5810 if (!th->ack || th->rst || th->syn)
5811 return -ENOENT;
5812
5813 if (tcp_synq_no_recent_overflow(sk))
5814 return -ENOENT;
5815
5816 cookie = ntohl(th->ack_seq) - 1;
5817
5818 switch (sk->sk_family) {
5819 case AF_INET:
5820 if (unlikely(iph_len < sizeof(struct iphdr)))
5821 return -EINVAL;
5822
5823 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5824 break;
5825
5826 #if IS_BUILTIN(CONFIG_IPV6)
5827 case AF_INET6:
5828 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5829 return -EINVAL;
5830
5831 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5832 break;
5833 #endif /* CONFIG_IPV6 */
5834
5835 default:
5836 return -EPROTONOSUPPORT;
5837 }
5838
5839 if (ret > 0)
5840 return 0;
5841
5842 return -ENOENT;
5843 #else
5844 return -ENOTSUPP;
5845 #endif
5846 }
5847
5848 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5849 .func = bpf_tcp_check_syncookie,
5850 .gpl_only = true,
5851 .pkt_access = true,
5852 .ret_type = RET_INTEGER,
5853 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
5854 .arg2_type = ARG_PTR_TO_MEM,
5855 .arg3_type = ARG_CONST_SIZE,
5856 .arg4_type = ARG_PTR_TO_MEM,
5857 .arg5_type = ARG_CONST_SIZE,
5858 };
5859
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)5860 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5861 struct tcphdr *, th, u32, th_len)
5862 {
5863 #ifdef CONFIG_SYN_COOKIES
5864 u32 cookie;
5865 u16 mss;
5866
5867 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
5868 return -EINVAL;
5869
5870 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5871 return -EINVAL;
5872
5873 if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5874 return -ENOENT;
5875
5876 if (!th->syn || th->ack || th->fin || th->rst)
5877 return -EINVAL;
5878
5879 if (unlikely(iph_len < sizeof(struct iphdr)))
5880 return -EINVAL;
5881
5882 /* Both struct iphdr and struct ipv6hdr have the version field at the
5883 * same offset so we can cast to the shorter header (struct iphdr).
5884 */
5885 switch (((struct iphdr *)iph)->version) {
5886 case 4:
5887 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
5888 return -EINVAL;
5889
5890 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
5891 break;
5892
5893 #if IS_BUILTIN(CONFIG_IPV6)
5894 case 6:
5895 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5896 return -EINVAL;
5897
5898 if (sk->sk_family != AF_INET6)
5899 return -EINVAL;
5900
5901 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
5902 break;
5903 #endif /* CONFIG_IPV6 */
5904
5905 default:
5906 return -EPROTONOSUPPORT;
5907 }
5908 if (mss == 0)
5909 return -ENOENT;
5910
5911 return cookie | ((u64)mss << 32);
5912 #else
5913 return -EOPNOTSUPP;
5914 #endif /* CONFIG_SYN_COOKIES */
5915 }
5916
5917 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
5918 .func = bpf_tcp_gen_syncookie,
5919 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
5920 .pkt_access = true,
5921 .ret_type = RET_INTEGER,
5922 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
5923 .arg2_type = ARG_PTR_TO_MEM,
5924 .arg3_type = ARG_CONST_SIZE,
5925 .arg4_type = ARG_PTR_TO_MEM,
5926 .arg5_type = ARG_CONST_SIZE,
5927 };
5928
5929 #endif /* CONFIG_INET */
5930
bpf_helper_changes_pkt_data(void * func)5931 bool bpf_helper_changes_pkt_data(void *func)
5932 {
5933 if (func == bpf_skb_vlan_push ||
5934 func == bpf_skb_vlan_pop ||
5935 func == bpf_skb_store_bytes ||
5936 func == bpf_skb_change_proto ||
5937 func == bpf_skb_change_head ||
5938 func == sk_skb_change_head ||
5939 func == bpf_skb_change_tail ||
5940 func == sk_skb_change_tail ||
5941 func == bpf_skb_adjust_room ||
5942 func == bpf_skb_pull_data ||
5943 func == sk_skb_pull_data ||
5944 func == bpf_clone_redirect ||
5945 func == bpf_l3_csum_replace ||
5946 func == bpf_l4_csum_replace ||
5947 func == bpf_xdp_adjust_head ||
5948 func == bpf_xdp_adjust_meta ||
5949 func == bpf_msg_pull_data ||
5950 func == bpf_msg_push_data ||
5951 func == bpf_msg_pop_data ||
5952 func == bpf_xdp_adjust_tail ||
5953 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5954 func == bpf_lwt_seg6_store_bytes ||
5955 func == bpf_lwt_seg6_adjust_srh ||
5956 func == bpf_lwt_seg6_action ||
5957 #endif
5958 func == bpf_lwt_in_push_encap ||
5959 func == bpf_lwt_xmit_push_encap)
5960 return true;
5961
5962 return false;
5963 }
5964
5965 static const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)5966 bpf_base_func_proto(enum bpf_func_id func_id)
5967 {
5968 switch (func_id) {
5969 case BPF_FUNC_map_lookup_elem:
5970 return &bpf_map_lookup_elem_proto;
5971 case BPF_FUNC_map_update_elem:
5972 return &bpf_map_update_elem_proto;
5973 case BPF_FUNC_map_delete_elem:
5974 return &bpf_map_delete_elem_proto;
5975 case BPF_FUNC_map_push_elem:
5976 return &bpf_map_push_elem_proto;
5977 case BPF_FUNC_map_pop_elem:
5978 return &bpf_map_pop_elem_proto;
5979 case BPF_FUNC_map_peek_elem:
5980 return &bpf_map_peek_elem_proto;
5981 case BPF_FUNC_get_prandom_u32:
5982 return &bpf_get_prandom_u32_proto;
5983 case BPF_FUNC_get_smp_processor_id:
5984 return &bpf_get_raw_smp_processor_id_proto;
5985 case BPF_FUNC_get_numa_node_id:
5986 return &bpf_get_numa_node_id_proto;
5987 case BPF_FUNC_tail_call:
5988 return &bpf_tail_call_proto;
5989 case BPF_FUNC_ktime_get_ns:
5990 return &bpf_ktime_get_ns_proto;
5991 default:
5992 break;
5993 }
5994
5995 if (!capable(CAP_SYS_ADMIN))
5996 return NULL;
5997
5998 switch (func_id) {
5999 case BPF_FUNC_spin_lock:
6000 return &bpf_spin_lock_proto;
6001 case BPF_FUNC_spin_unlock:
6002 return &bpf_spin_unlock_proto;
6003 case BPF_FUNC_trace_printk:
6004 return bpf_get_trace_printk_proto();
6005 default:
6006 return NULL;
6007 }
6008 }
6009
6010 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6011 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6012 {
6013 switch (func_id) {
6014 /* inet and inet6 sockets are created in a process
6015 * context so there is always a valid uid/gid
6016 */
6017 case BPF_FUNC_get_current_uid_gid:
6018 return &bpf_get_current_uid_gid_proto;
6019 case BPF_FUNC_get_local_storage:
6020 return &bpf_get_local_storage_proto;
6021 default:
6022 return bpf_base_func_proto(func_id);
6023 }
6024 }
6025
6026 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6027 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6028 {
6029 switch (func_id) {
6030 /* inet and inet6 sockets are created in a process
6031 * context so there is always a valid uid/gid
6032 */
6033 case BPF_FUNC_get_current_uid_gid:
6034 return &bpf_get_current_uid_gid_proto;
6035 case BPF_FUNC_bind:
6036 switch (prog->expected_attach_type) {
6037 case BPF_CGROUP_INET4_CONNECT:
6038 case BPF_CGROUP_INET6_CONNECT:
6039 return &bpf_bind_proto;
6040 default:
6041 return NULL;
6042 }
6043 case BPF_FUNC_get_socket_cookie:
6044 return &bpf_get_socket_cookie_sock_addr_proto;
6045 case BPF_FUNC_get_local_storage:
6046 return &bpf_get_local_storage_proto;
6047 #ifdef CONFIG_INET
6048 case BPF_FUNC_sk_lookup_tcp:
6049 return &bpf_sock_addr_sk_lookup_tcp_proto;
6050 case BPF_FUNC_sk_lookup_udp:
6051 return &bpf_sock_addr_sk_lookup_udp_proto;
6052 case BPF_FUNC_sk_release:
6053 return &bpf_sk_release_proto;
6054 case BPF_FUNC_skc_lookup_tcp:
6055 return &bpf_sock_addr_skc_lookup_tcp_proto;
6056 #endif /* CONFIG_INET */
6057 case BPF_FUNC_sk_storage_get:
6058 return &bpf_sk_storage_get_proto;
6059 case BPF_FUNC_sk_storage_delete:
6060 return &bpf_sk_storage_delete_proto;
6061 default:
6062 return bpf_base_func_proto(func_id);
6063 }
6064 }
6065
6066 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6067 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6068 {
6069 switch (func_id) {
6070 case BPF_FUNC_skb_load_bytes:
6071 return &bpf_skb_load_bytes_proto;
6072 case BPF_FUNC_skb_load_bytes_relative:
6073 return &bpf_skb_load_bytes_relative_proto;
6074 case BPF_FUNC_get_socket_cookie:
6075 return &bpf_get_socket_cookie_proto;
6076 case BPF_FUNC_get_socket_uid:
6077 return &bpf_get_socket_uid_proto;
6078 case BPF_FUNC_perf_event_output:
6079 return &bpf_skb_event_output_proto;
6080 default:
6081 return bpf_base_func_proto(func_id);
6082 }
6083 }
6084
6085 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6086 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6087
6088 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6089 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6090 {
6091 switch (func_id) {
6092 case BPF_FUNC_get_local_storage:
6093 return &bpf_get_local_storage_proto;
6094 case BPF_FUNC_sk_fullsock:
6095 return &bpf_sk_fullsock_proto;
6096 case BPF_FUNC_sk_storage_get:
6097 return &bpf_sk_storage_get_proto;
6098 case BPF_FUNC_sk_storage_delete:
6099 return &bpf_sk_storage_delete_proto;
6100 case BPF_FUNC_perf_event_output:
6101 return &bpf_skb_event_output_proto;
6102 #ifdef CONFIG_SOCK_CGROUP_DATA
6103 case BPF_FUNC_skb_cgroup_id:
6104 return &bpf_skb_cgroup_id_proto;
6105 #endif
6106 #ifdef CONFIG_INET
6107 case BPF_FUNC_tcp_sock:
6108 return &bpf_tcp_sock_proto;
6109 case BPF_FUNC_get_listener_sock:
6110 return &bpf_get_listener_sock_proto;
6111 case BPF_FUNC_skb_ecn_set_ce:
6112 return &bpf_skb_ecn_set_ce_proto;
6113 #endif
6114 default:
6115 return sk_filter_func_proto(func_id, prog);
6116 }
6117 }
6118
6119 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6120 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6121 {
6122 switch (func_id) {
6123 case BPF_FUNC_skb_store_bytes:
6124 return &bpf_skb_store_bytes_proto;
6125 case BPF_FUNC_skb_load_bytes:
6126 return &bpf_skb_load_bytes_proto;
6127 case BPF_FUNC_skb_load_bytes_relative:
6128 return &bpf_skb_load_bytes_relative_proto;
6129 case BPF_FUNC_skb_pull_data:
6130 return &bpf_skb_pull_data_proto;
6131 case BPF_FUNC_csum_diff:
6132 return &bpf_csum_diff_proto;
6133 case BPF_FUNC_csum_update:
6134 return &bpf_csum_update_proto;
6135 case BPF_FUNC_l3_csum_replace:
6136 return &bpf_l3_csum_replace_proto;
6137 case BPF_FUNC_l4_csum_replace:
6138 return &bpf_l4_csum_replace_proto;
6139 case BPF_FUNC_clone_redirect:
6140 return &bpf_clone_redirect_proto;
6141 case BPF_FUNC_get_cgroup_classid:
6142 return &bpf_get_cgroup_classid_proto;
6143 case BPF_FUNC_skb_vlan_push:
6144 return &bpf_skb_vlan_push_proto;
6145 case BPF_FUNC_skb_vlan_pop:
6146 return &bpf_skb_vlan_pop_proto;
6147 case BPF_FUNC_skb_change_proto:
6148 return &bpf_skb_change_proto_proto;
6149 case BPF_FUNC_skb_change_type:
6150 return &bpf_skb_change_type_proto;
6151 case BPF_FUNC_skb_adjust_room:
6152 return &bpf_skb_adjust_room_proto;
6153 case BPF_FUNC_skb_change_tail:
6154 return &bpf_skb_change_tail_proto;
6155 case BPF_FUNC_skb_get_tunnel_key:
6156 return &bpf_skb_get_tunnel_key_proto;
6157 case BPF_FUNC_skb_set_tunnel_key:
6158 return bpf_get_skb_set_tunnel_proto(func_id);
6159 case BPF_FUNC_skb_get_tunnel_opt:
6160 return &bpf_skb_get_tunnel_opt_proto;
6161 case BPF_FUNC_skb_set_tunnel_opt:
6162 return bpf_get_skb_set_tunnel_proto(func_id);
6163 case BPF_FUNC_redirect:
6164 return &bpf_redirect_proto;
6165 case BPF_FUNC_get_route_realm:
6166 return &bpf_get_route_realm_proto;
6167 case BPF_FUNC_get_hash_recalc:
6168 return &bpf_get_hash_recalc_proto;
6169 case BPF_FUNC_set_hash_invalid:
6170 return &bpf_set_hash_invalid_proto;
6171 case BPF_FUNC_set_hash:
6172 return &bpf_set_hash_proto;
6173 case BPF_FUNC_perf_event_output:
6174 return &bpf_skb_event_output_proto;
6175 case BPF_FUNC_get_smp_processor_id:
6176 return &bpf_get_smp_processor_id_proto;
6177 case BPF_FUNC_skb_under_cgroup:
6178 return &bpf_skb_under_cgroup_proto;
6179 case BPF_FUNC_get_socket_cookie:
6180 return &bpf_get_socket_cookie_proto;
6181 case BPF_FUNC_get_socket_uid:
6182 return &bpf_get_socket_uid_proto;
6183 case BPF_FUNC_fib_lookup:
6184 return &bpf_skb_fib_lookup_proto;
6185 case BPF_FUNC_sk_fullsock:
6186 return &bpf_sk_fullsock_proto;
6187 case BPF_FUNC_sk_storage_get:
6188 return &bpf_sk_storage_get_proto;
6189 case BPF_FUNC_sk_storage_delete:
6190 return &bpf_sk_storage_delete_proto;
6191 #ifdef CONFIG_XFRM
6192 case BPF_FUNC_skb_get_xfrm_state:
6193 return &bpf_skb_get_xfrm_state_proto;
6194 #endif
6195 #ifdef CONFIG_SOCK_CGROUP_DATA
6196 case BPF_FUNC_skb_cgroup_id:
6197 return &bpf_skb_cgroup_id_proto;
6198 case BPF_FUNC_skb_ancestor_cgroup_id:
6199 return &bpf_skb_ancestor_cgroup_id_proto;
6200 #endif
6201 #ifdef CONFIG_INET
6202 case BPF_FUNC_sk_lookup_tcp:
6203 return &bpf_sk_lookup_tcp_proto;
6204 case BPF_FUNC_sk_lookup_udp:
6205 return &bpf_sk_lookup_udp_proto;
6206 case BPF_FUNC_sk_release:
6207 return &bpf_sk_release_proto;
6208 case BPF_FUNC_tcp_sock:
6209 return &bpf_tcp_sock_proto;
6210 case BPF_FUNC_get_listener_sock:
6211 return &bpf_get_listener_sock_proto;
6212 case BPF_FUNC_skc_lookup_tcp:
6213 return &bpf_skc_lookup_tcp_proto;
6214 case BPF_FUNC_tcp_check_syncookie:
6215 return &bpf_tcp_check_syncookie_proto;
6216 case BPF_FUNC_skb_ecn_set_ce:
6217 return &bpf_skb_ecn_set_ce_proto;
6218 case BPF_FUNC_tcp_gen_syncookie:
6219 return &bpf_tcp_gen_syncookie_proto;
6220 #endif
6221 default:
6222 return bpf_base_func_proto(func_id);
6223 }
6224 }
6225
6226 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6227 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6228 {
6229 switch (func_id) {
6230 case BPF_FUNC_perf_event_output:
6231 return &bpf_xdp_event_output_proto;
6232 case BPF_FUNC_get_smp_processor_id:
6233 return &bpf_get_smp_processor_id_proto;
6234 case BPF_FUNC_csum_diff:
6235 return &bpf_csum_diff_proto;
6236 case BPF_FUNC_xdp_adjust_head:
6237 return &bpf_xdp_adjust_head_proto;
6238 case BPF_FUNC_xdp_adjust_meta:
6239 return &bpf_xdp_adjust_meta_proto;
6240 case BPF_FUNC_redirect:
6241 return &bpf_xdp_redirect_proto;
6242 case BPF_FUNC_redirect_map:
6243 return &bpf_xdp_redirect_map_proto;
6244 case BPF_FUNC_xdp_adjust_tail:
6245 return &bpf_xdp_adjust_tail_proto;
6246 case BPF_FUNC_fib_lookup:
6247 return &bpf_xdp_fib_lookup_proto;
6248 #ifdef CONFIG_INET
6249 case BPF_FUNC_sk_lookup_udp:
6250 return &bpf_xdp_sk_lookup_udp_proto;
6251 case BPF_FUNC_sk_lookup_tcp:
6252 return &bpf_xdp_sk_lookup_tcp_proto;
6253 case BPF_FUNC_sk_release:
6254 return &bpf_sk_release_proto;
6255 case BPF_FUNC_skc_lookup_tcp:
6256 return &bpf_xdp_skc_lookup_tcp_proto;
6257 case BPF_FUNC_tcp_check_syncookie:
6258 return &bpf_tcp_check_syncookie_proto;
6259 case BPF_FUNC_tcp_gen_syncookie:
6260 return &bpf_tcp_gen_syncookie_proto;
6261 #endif
6262 default:
6263 return bpf_base_func_proto(func_id);
6264 }
6265 }
6266
6267 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6268 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6269
6270 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6271 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6272 {
6273 switch (func_id) {
6274 case BPF_FUNC_setsockopt:
6275 return &bpf_setsockopt_proto;
6276 case BPF_FUNC_getsockopt:
6277 return &bpf_getsockopt_proto;
6278 case BPF_FUNC_sock_ops_cb_flags_set:
6279 return &bpf_sock_ops_cb_flags_set_proto;
6280 case BPF_FUNC_sock_map_update:
6281 return &bpf_sock_map_update_proto;
6282 case BPF_FUNC_sock_hash_update:
6283 return &bpf_sock_hash_update_proto;
6284 case BPF_FUNC_get_socket_cookie:
6285 return &bpf_get_socket_cookie_sock_ops_proto;
6286 case BPF_FUNC_get_local_storage:
6287 return &bpf_get_local_storage_proto;
6288 case BPF_FUNC_perf_event_output:
6289 return &bpf_sockopt_event_output_proto;
6290 case BPF_FUNC_sk_storage_get:
6291 return &bpf_sk_storage_get_proto;
6292 case BPF_FUNC_sk_storage_delete:
6293 return &bpf_sk_storage_delete_proto;
6294 #ifdef CONFIG_INET
6295 case BPF_FUNC_tcp_sock:
6296 return &bpf_tcp_sock_proto;
6297 #endif /* CONFIG_INET */
6298 default:
6299 return bpf_base_func_proto(func_id);
6300 }
6301 }
6302
6303 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6304 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6305
6306 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6307 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6308 {
6309 switch (func_id) {
6310 case BPF_FUNC_msg_redirect_map:
6311 return &bpf_msg_redirect_map_proto;
6312 case BPF_FUNC_msg_redirect_hash:
6313 return &bpf_msg_redirect_hash_proto;
6314 case BPF_FUNC_msg_apply_bytes:
6315 return &bpf_msg_apply_bytes_proto;
6316 case BPF_FUNC_msg_cork_bytes:
6317 return &bpf_msg_cork_bytes_proto;
6318 case BPF_FUNC_msg_pull_data:
6319 return &bpf_msg_pull_data_proto;
6320 case BPF_FUNC_msg_push_data:
6321 return &bpf_msg_push_data_proto;
6322 case BPF_FUNC_msg_pop_data:
6323 return &bpf_msg_pop_data_proto;
6324 default:
6325 return bpf_base_func_proto(func_id);
6326 }
6327 }
6328
6329 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6330 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6331
6332 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6333 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6334 {
6335 switch (func_id) {
6336 case BPF_FUNC_skb_store_bytes:
6337 return &bpf_skb_store_bytes_proto;
6338 case BPF_FUNC_skb_load_bytes:
6339 return &bpf_skb_load_bytes_proto;
6340 case BPF_FUNC_skb_pull_data:
6341 return &sk_skb_pull_data_proto;
6342 case BPF_FUNC_skb_change_tail:
6343 return &sk_skb_change_tail_proto;
6344 case BPF_FUNC_skb_change_head:
6345 return &sk_skb_change_head_proto;
6346 case BPF_FUNC_get_socket_cookie:
6347 return &bpf_get_socket_cookie_proto;
6348 case BPF_FUNC_get_socket_uid:
6349 return &bpf_get_socket_uid_proto;
6350 case BPF_FUNC_sk_redirect_map:
6351 return &bpf_sk_redirect_map_proto;
6352 case BPF_FUNC_sk_redirect_hash:
6353 return &bpf_sk_redirect_hash_proto;
6354 case BPF_FUNC_perf_event_output:
6355 return &bpf_skb_event_output_proto;
6356 #ifdef CONFIG_INET
6357 case BPF_FUNC_sk_lookup_tcp:
6358 return &bpf_sk_lookup_tcp_proto;
6359 case BPF_FUNC_sk_lookup_udp:
6360 return &bpf_sk_lookup_udp_proto;
6361 case BPF_FUNC_sk_release:
6362 return &bpf_sk_release_proto;
6363 case BPF_FUNC_skc_lookup_tcp:
6364 return &bpf_skc_lookup_tcp_proto;
6365 #endif
6366 default:
6367 return bpf_base_func_proto(func_id);
6368 }
6369 }
6370
6371 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6372 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6373 {
6374 switch (func_id) {
6375 case BPF_FUNC_skb_load_bytes:
6376 return &bpf_flow_dissector_load_bytes_proto;
6377 default:
6378 return bpf_base_func_proto(func_id);
6379 }
6380 }
6381
6382 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6383 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6384 {
6385 switch (func_id) {
6386 case BPF_FUNC_skb_load_bytes:
6387 return &bpf_skb_load_bytes_proto;
6388 case BPF_FUNC_skb_pull_data:
6389 return &bpf_skb_pull_data_proto;
6390 case BPF_FUNC_csum_diff:
6391 return &bpf_csum_diff_proto;
6392 case BPF_FUNC_get_cgroup_classid:
6393 return &bpf_get_cgroup_classid_proto;
6394 case BPF_FUNC_get_route_realm:
6395 return &bpf_get_route_realm_proto;
6396 case BPF_FUNC_get_hash_recalc:
6397 return &bpf_get_hash_recalc_proto;
6398 case BPF_FUNC_perf_event_output:
6399 return &bpf_skb_event_output_proto;
6400 case BPF_FUNC_get_smp_processor_id:
6401 return &bpf_get_smp_processor_id_proto;
6402 case BPF_FUNC_skb_under_cgroup:
6403 return &bpf_skb_under_cgroup_proto;
6404 default:
6405 return bpf_base_func_proto(func_id);
6406 }
6407 }
6408
6409 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6410 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6411 {
6412 switch (func_id) {
6413 case BPF_FUNC_lwt_push_encap:
6414 return &bpf_lwt_in_push_encap_proto;
6415 default:
6416 return lwt_out_func_proto(func_id, prog);
6417 }
6418 }
6419
6420 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6421 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6422 {
6423 switch (func_id) {
6424 case BPF_FUNC_skb_get_tunnel_key:
6425 return &bpf_skb_get_tunnel_key_proto;
6426 case BPF_FUNC_skb_set_tunnel_key:
6427 return bpf_get_skb_set_tunnel_proto(func_id);
6428 case BPF_FUNC_skb_get_tunnel_opt:
6429 return &bpf_skb_get_tunnel_opt_proto;
6430 case BPF_FUNC_skb_set_tunnel_opt:
6431 return bpf_get_skb_set_tunnel_proto(func_id);
6432 case BPF_FUNC_redirect:
6433 return &bpf_redirect_proto;
6434 case BPF_FUNC_clone_redirect:
6435 return &bpf_clone_redirect_proto;
6436 case BPF_FUNC_skb_change_tail:
6437 return &bpf_skb_change_tail_proto;
6438 case BPF_FUNC_skb_change_head:
6439 return &bpf_skb_change_head_proto;
6440 case BPF_FUNC_skb_store_bytes:
6441 return &bpf_skb_store_bytes_proto;
6442 case BPF_FUNC_csum_update:
6443 return &bpf_csum_update_proto;
6444 case BPF_FUNC_l3_csum_replace:
6445 return &bpf_l3_csum_replace_proto;
6446 case BPF_FUNC_l4_csum_replace:
6447 return &bpf_l4_csum_replace_proto;
6448 case BPF_FUNC_set_hash_invalid:
6449 return &bpf_set_hash_invalid_proto;
6450 case BPF_FUNC_lwt_push_encap:
6451 return &bpf_lwt_xmit_push_encap_proto;
6452 default:
6453 return lwt_out_func_proto(func_id, prog);
6454 }
6455 }
6456
6457 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6458 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6459 {
6460 switch (func_id) {
6461 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6462 case BPF_FUNC_lwt_seg6_store_bytes:
6463 return &bpf_lwt_seg6_store_bytes_proto;
6464 case BPF_FUNC_lwt_seg6_action:
6465 return &bpf_lwt_seg6_action_proto;
6466 case BPF_FUNC_lwt_seg6_adjust_srh:
6467 return &bpf_lwt_seg6_adjust_srh_proto;
6468 #endif
6469 default:
6470 return lwt_out_func_proto(func_id, prog);
6471 }
6472 }
6473
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6474 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6475 const struct bpf_prog *prog,
6476 struct bpf_insn_access_aux *info)
6477 {
6478 const int size_default = sizeof(__u32);
6479
6480 if (off < 0 || off >= sizeof(struct __sk_buff))
6481 return false;
6482
6483 /* The verifier guarantees that size > 0. */
6484 if (off % size != 0)
6485 return false;
6486
6487 switch (off) {
6488 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6489 if (off + size > offsetofend(struct __sk_buff, cb[4]))
6490 return false;
6491 break;
6492 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6493 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6494 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6495 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6496 case bpf_ctx_range(struct __sk_buff, data):
6497 case bpf_ctx_range(struct __sk_buff, data_meta):
6498 case bpf_ctx_range(struct __sk_buff, data_end):
6499 if (size != size_default)
6500 return false;
6501 break;
6502 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6503 return false;
6504 case bpf_ctx_range(struct __sk_buff, tstamp):
6505 if (size != sizeof(__u64))
6506 return false;
6507 break;
6508 case offsetof(struct __sk_buff, sk):
6509 if (type == BPF_WRITE || size != sizeof(__u64))
6510 return false;
6511 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6512 break;
6513 default:
6514 /* Only narrow read access allowed for now. */
6515 if (type == BPF_WRITE) {
6516 if (size != size_default)
6517 return false;
6518 } else {
6519 bpf_ctx_record_field_size(info, size_default);
6520 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6521 return false;
6522 }
6523 }
6524
6525 return true;
6526 }
6527
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6528 static bool sk_filter_is_valid_access(int off, int size,
6529 enum bpf_access_type type,
6530 const struct bpf_prog *prog,
6531 struct bpf_insn_access_aux *info)
6532 {
6533 switch (off) {
6534 case bpf_ctx_range(struct __sk_buff, tc_classid):
6535 case bpf_ctx_range(struct __sk_buff, data):
6536 case bpf_ctx_range(struct __sk_buff, data_meta):
6537 case bpf_ctx_range(struct __sk_buff, data_end):
6538 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6539 case bpf_ctx_range(struct __sk_buff, tstamp):
6540 case bpf_ctx_range(struct __sk_buff, wire_len):
6541 return false;
6542 }
6543
6544 if (type == BPF_WRITE) {
6545 switch (off) {
6546 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6547 break;
6548 default:
6549 return false;
6550 }
6551 }
6552
6553 return bpf_skb_is_valid_access(off, size, type, prog, info);
6554 }
6555
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6556 static bool cg_skb_is_valid_access(int off, int size,
6557 enum bpf_access_type type,
6558 const struct bpf_prog *prog,
6559 struct bpf_insn_access_aux *info)
6560 {
6561 switch (off) {
6562 case bpf_ctx_range(struct __sk_buff, tc_classid):
6563 case bpf_ctx_range(struct __sk_buff, data_meta):
6564 case bpf_ctx_range(struct __sk_buff, wire_len):
6565 return false;
6566 case bpf_ctx_range(struct __sk_buff, data):
6567 case bpf_ctx_range(struct __sk_buff, data_end):
6568 if (!capable(CAP_SYS_ADMIN))
6569 return false;
6570 break;
6571 }
6572
6573 if (type == BPF_WRITE) {
6574 switch (off) {
6575 case bpf_ctx_range(struct __sk_buff, mark):
6576 case bpf_ctx_range(struct __sk_buff, priority):
6577 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6578 break;
6579 case bpf_ctx_range(struct __sk_buff, tstamp):
6580 if (!capable(CAP_SYS_ADMIN))
6581 return false;
6582 break;
6583 default:
6584 return false;
6585 }
6586 }
6587
6588 switch (off) {
6589 case bpf_ctx_range(struct __sk_buff, data):
6590 info->reg_type = PTR_TO_PACKET;
6591 break;
6592 case bpf_ctx_range(struct __sk_buff, data_end):
6593 info->reg_type = PTR_TO_PACKET_END;
6594 break;
6595 }
6596
6597 return bpf_skb_is_valid_access(off, size, type, prog, info);
6598 }
6599
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6600 static bool lwt_is_valid_access(int off, int size,
6601 enum bpf_access_type type,
6602 const struct bpf_prog *prog,
6603 struct bpf_insn_access_aux *info)
6604 {
6605 switch (off) {
6606 case bpf_ctx_range(struct __sk_buff, tc_classid):
6607 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6608 case bpf_ctx_range(struct __sk_buff, data_meta):
6609 case bpf_ctx_range(struct __sk_buff, tstamp):
6610 case bpf_ctx_range(struct __sk_buff, wire_len):
6611 return false;
6612 }
6613
6614 if (type == BPF_WRITE) {
6615 switch (off) {
6616 case bpf_ctx_range(struct __sk_buff, mark):
6617 case bpf_ctx_range(struct __sk_buff, priority):
6618 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6619 break;
6620 default:
6621 return false;
6622 }
6623 }
6624
6625 switch (off) {
6626 case bpf_ctx_range(struct __sk_buff, data):
6627 info->reg_type = PTR_TO_PACKET;
6628 break;
6629 case bpf_ctx_range(struct __sk_buff, data_end):
6630 info->reg_type = PTR_TO_PACKET_END;
6631 break;
6632 }
6633
6634 return bpf_skb_is_valid_access(off, size, type, prog, info);
6635 }
6636
6637 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)6638 static bool __sock_filter_check_attach_type(int off,
6639 enum bpf_access_type access_type,
6640 enum bpf_attach_type attach_type)
6641 {
6642 switch (off) {
6643 case offsetof(struct bpf_sock, bound_dev_if):
6644 case offsetof(struct bpf_sock, mark):
6645 case offsetof(struct bpf_sock, priority):
6646 switch (attach_type) {
6647 case BPF_CGROUP_INET_SOCK_CREATE:
6648 goto full_access;
6649 default:
6650 return false;
6651 }
6652 case bpf_ctx_range(struct bpf_sock, src_ip4):
6653 switch (attach_type) {
6654 case BPF_CGROUP_INET4_POST_BIND:
6655 goto read_only;
6656 default:
6657 return false;
6658 }
6659 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6660 switch (attach_type) {
6661 case BPF_CGROUP_INET6_POST_BIND:
6662 goto read_only;
6663 default:
6664 return false;
6665 }
6666 case bpf_ctx_range(struct bpf_sock, src_port):
6667 switch (attach_type) {
6668 case BPF_CGROUP_INET4_POST_BIND:
6669 case BPF_CGROUP_INET6_POST_BIND:
6670 goto read_only;
6671 default:
6672 return false;
6673 }
6674 }
6675 read_only:
6676 return access_type == BPF_READ;
6677 full_access:
6678 return true;
6679 }
6680
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6681 bool bpf_sock_common_is_valid_access(int off, int size,
6682 enum bpf_access_type type,
6683 struct bpf_insn_access_aux *info)
6684 {
6685 switch (off) {
6686 case bpf_ctx_range_till(struct bpf_sock, type, priority):
6687 return false;
6688 default:
6689 return bpf_sock_is_valid_access(off, size, type, info);
6690 }
6691 }
6692
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6693 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6694 struct bpf_insn_access_aux *info)
6695 {
6696 const int size_default = sizeof(__u32);
6697
6698 if (off < 0 || off >= sizeof(struct bpf_sock))
6699 return false;
6700 if (off % size != 0)
6701 return false;
6702
6703 switch (off) {
6704 case offsetof(struct bpf_sock, state):
6705 case offsetof(struct bpf_sock, family):
6706 case offsetof(struct bpf_sock, type):
6707 case offsetof(struct bpf_sock, protocol):
6708 case offsetof(struct bpf_sock, dst_port):
6709 case offsetof(struct bpf_sock, src_port):
6710 case bpf_ctx_range(struct bpf_sock, src_ip4):
6711 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6712 case bpf_ctx_range(struct bpf_sock, dst_ip4):
6713 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6714 bpf_ctx_record_field_size(info, size_default);
6715 return bpf_ctx_narrow_access_ok(off, size, size_default);
6716 }
6717
6718 return size == size_default;
6719 }
6720
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6721 static bool sock_filter_is_valid_access(int off, int size,
6722 enum bpf_access_type type,
6723 const struct bpf_prog *prog,
6724 struct bpf_insn_access_aux *info)
6725 {
6726 if (!bpf_sock_is_valid_access(off, size, type, info))
6727 return false;
6728 return __sock_filter_check_attach_type(off, type,
6729 prog->expected_attach_type);
6730 }
6731
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)6732 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6733 const struct bpf_prog *prog)
6734 {
6735 /* Neither direct read nor direct write requires any preliminary
6736 * action.
6737 */
6738 return 0;
6739 }
6740
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)6741 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6742 const struct bpf_prog *prog, int drop_verdict)
6743 {
6744 struct bpf_insn *insn = insn_buf;
6745
6746 if (!direct_write)
6747 return 0;
6748
6749 /* if (!skb->cloned)
6750 * goto start;
6751 *
6752 * (Fast-path, otherwise approximation that we might be
6753 * a clone, do the rest in helper.)
6754 */
6755 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6756 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6757 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6758
6759 /* ret = bpf_skb_pull_data(skb, 0); */
6760 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6761 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6762 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6763 BPF_FUNC_skb_pull_data);
6764 /* if (!ret)
6765 * goto restore;
6766 * return TC_ACT_SHOT;
6767 */
6768 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6769 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6770 *insn++ = BPF_EXIT_INSN();
6771
6772 /* restore: */
6773 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6774 /* start: */
6775 *insn++ = prog->insnsi[0];
6776
6777 return insn - insn_buf;
6778 }
6779
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)6780 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6781 struct bpf_insn *insn_buf)
6782 {
6783 bool indirect = BPF_MODE(orig->code) == BPF_IND;
6784 struct bpf_insn *insn = insn_buf;
6785
6786 /* We're guaranteed here that CTX is in R6. */
6787 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6788 if (!indirect) {
6789 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6790 } else {
6791 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6792 if (orig->imm)
6793 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6794 }
6795
6796 switch (BPF_SIZE(orig->code)) {
6797 case BPF_B:
6798 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6799 break;
6800 case BPF_H:
6801 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6802 break;
6803 case BPF_W:
6804 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6805 break;
6806 }
6807
6808 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6809 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6810 *insn++ = BPF_EXIT_INSN();
6811
6812 return insn - insn_buf;
6813 }
6814
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)6815 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6816 const struct bpf_prog *prog)
6817 {
6818 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6819 }
6820
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6821 static bool tc_cls_act_is_valid_access(int off, int size,
6822 enum bpf_access_type type,
6823 const struct bpf_prog *prog,
6824 struct bpf_insn_access_aux *info)
6825 {
6826 if (type == BPF_WRITE) {
6827 switch (off) {
6828 case bpf_ctx_range(struct __sk_buff, mark):
6829 case bpf_ctx_range(struct __sk_buff, tc_index):
6830 case bpf_ctx_range(struct __sk_buff, priority):
6831 case bpf_ctx_range(struct __sk_buff, tc_classid):
6832 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6833 case bpf_ctx_range(struct __sk_buff, tstamp):
6834 case bpf_ctx_range(struct __sk_buff, queue_mapping):
6835 break;
6836 default:
6837 return false;
6838 }
6839 }
6840
6841 switch (off) {
6842 case bpf_ctx_range(struct __sk_buff, data):
6843 info->reg_type = PTR_TO_PACKET;
6844 break;
6845 case bpf_ctx_range(struct __sk_buff, data_meta):
6846 info->reg_type = PTR_TO_PACKET_META;
6847 break;
6848 case bpf_ctx_range(struct __sk_buff, data_end):
6849 info->reg_type = PTR_TO_PACKET_END;
6850 break;
6851 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6852 return false;
6853 }
6854
6855 return bpf_skb_is_valid_access(off, size, type, prog, info);
6856 }
6857
__is_valid_xdp_access(int off,int size)6858 static bool __is_valid_xdp_access(int off, int size)
6859 {
6860 if (off < 0 || off >= sizeof(struct xdp_md))
6861 return false;
6862 if (off % size != 0)
6863 return false;
6864 if (size != sizeof(__u32))
6865 return false;
6866
6867 return true;
6868 }
6869
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6870 static bool xdp_is_valid_access(int off, int size,
6871 enum bpf_access_type type,
6872 const struct bpf_prog *prog,
6873 struct bpf_insn_access_aux *info)
6874 {
6875 if (type == BPF_WRITE) {
6876 if (bpf_prog_is_dev_bound(prog->aux)) {
6877 switch (off) {
6878 case offsetof(struct xdp_md, rx_queue_index):
6879 return __is_valid_xdp_access(off, size);
6880 }
6881 }
6882 return false;
6883 }
6884
6885 switch (off) {
6886 case offsetof(struct xdp_md, data):
6887 info->reg_type = PTR_TO_PACKET;
6888 break;
6889 case offsetof(struct xdp_md, data_meta):
6890 info->reg_type = PTR_TO_PACKET_META;
6891 break;
6892 case offsetof(struct xdp_md, data_end):
6893 info->reg_type = PTR_TO_PACKET_END;
6894 break;
6895 }
6896
6897 return __is_valid_xdp_access(off, size);
6898 }
6899
bpf_warn_invalid_xdp_action(u32 act)6900 void bpf_warn_invalid_xdp_action(u32 act)
6901 {
6902 const u32 act_max = XDP_REDIRECT;
6903
6904 WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6905 act > act_max ? "Illegal" : "Driver unsupported",
6906 act);
6907 }
6908 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6909
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6910 static bool sock_addr_is_valid_access(int off, int size,
6911 enum bpf_access_type type,
6912 const struct bpf_prog *prog,
6913 struct bpf_insn_access_aux *info)
6914 {
6915 const int size_default = sizeof(__u32);
6916
6917 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6918 return false;
6919 if (off % size != 0)
6920 return false;
6921
6922 /* Disallow access to IPv6 fields from IPv4 contex and vise
6923 * versa.
6924 */
6925 switch (off) {
6926 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6927 switch (prog->expected_attach_type) {
6928 case BPF_CGROUP_INET4_BIND:
6929 case BPF_CGROUP_INET4_CONNECT:
6930 case BPF_CGROUP_UDP4_SENDMSG:
6931 case BPF_CGROUP_UDP4_RECVMSG:
6932 break;
6933 default:
6934 return false;
6935 }
6936 break;
6937 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6938 switch (prog->expected_attach_type) {
6939 case BPF_CGROUP_INET6_BIND:
6940 case BPF_CGROUP_INET6_CONNECT:
6941 case BPF_CGROUP_UDP6_SENDMSG:
6942 case BPF_CGROUP_UDP6_RECVMSG:
6943 break;
6944 default:
6945 return false;
6946 }
6947 break;
6948 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6949 switch (prog->expected_attach_type) {
6950 case BPF_CGROUP_UDP4_SENDMSG:
6951 break;
6952 default:
6953 return false;
6954 }
6955 break;
6956 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6957 msg_src_ip6[3]):
6958 switch (prog->expected_attach_type) {
6959 case BPF_CGROUP_UDP6_SENDMSG:
6960 break;
6961 default:
6962 return false;
6963 }
6964 break;
6965 }
6966
6967 switch (off) {
6968 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6969 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6970 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6971 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6972 msg_src_ip6[3]):
6973 if (type == BPF_READ) {
6974 bpf_ctx_record_field_size(info, size_default);
6975
6976 if (bpf_ctx_wide_access_ok(off, size,
6977 struct bpf_sock_addr,
6978 user_ip6))
6979 return true;
6980
6981 if (bpf_ctx_wide_access_ok(off, size,
6982 struct bpf_sock_addr,
6983 msg_src_ip6))
6984 return true;
6985
6986 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6987 return false;
6988 } else {
6989 if (bpf_ctx_wide_access_ok(off, size,
6990 struct bpf_sock_addr,
6991 user_ip6))
6992 return true;
6993
6994 if (bpf_ctx_wide_access_ok(off, size,
6995 struct bpf_sock_addr,
6996 msg_src_ip6))
6997 return true;
6998
6999 if (size != size_default)
7000 return false;
7001 }
7002 break;
7003 case bpf_ctx_range(struct bpf_sock_addr, user_port):
7004 if (size != size_default)
7005 return false;
7006 break;
7007 case offsetof(struct bpf_sock_addr, sk):
7008 if (type != BPF_READ)
7009 return false;
7010 if (size != sizeof(__u64))
7011 return false;
7012 info->reg_type = PTR_TO_SOCKET;
7013 break;
7014 default:
7015 if (type == BPF_READ) {
7016 if (size != size_default)
7017 return false;
7018 } else {
7019 return false;
7020 }
7021 }
7022
7023 return true;
7024 }
7025
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7026 static bool sock_ops_is_valid_access(int off, int size,
7027 enum bpf_access_type type,
7028 const struct bpf_prog *prog,
7029 struct bpf_insn_access_aux *info)
7030 {
7031 const int size_default = sizeof(__u32);
7032
7033 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7034 return false;
7035
7036 /* The verifier guarantees that size > 0. */
7037 if (off % size != 0)
7038 return false;
7039
7040 if (type == BPF_WRITE) {
7041 switch (off) {
7042 case offsetof(struct bpf_sock_ops, reply):
7043 case offsetof(struct bpf_sock_ops, sk_txhash):
7044 if (size != size_default)
7045 return false;
7046 break;
7047 default:
7048 return false;
7049 }
7050 } else {
7051 switch (off) {
7052 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7053 bytes_acked):
7054 if (size != sizeof(__u64))
7055 return false;
7056 break;
7057 case offsetof(struct bpf_sock_ops, sk):
7058 if (size != sizeof(__u64))
7059 return false;
7060 info->reg_type = PTR_TO_SOCKET_OR_NULL;
7061 break;
7062 default:
7063 if (size != size_default)
7064 return false;
7065 break;
7066 }
7067 }
7068
7069 return true;
7070 }
7071
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7072 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7073 const struct bpf_prog *prog)
7074 {
7075 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7076 }
7077
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7078 static bool sk_skb_is_valid_access(int off, int size,
7079 enum bpf_access_type type,
7080 const struct bpf_prog *prog,
7081 struct bpf_insn_access_aux *info)
7082 {
7083 switch (off) {
7084 case bpf_ctx_range(struct __sk_buff, tc_classid):
7085 case bpf_ctx_range(struct __sk_buff, data_meta):
7086 case bpf_ctx_range(struct __sk_buff, tstamp):
7087 case bpf_ctx_range(struct __sk_buff, wire_len):
7088 return false;
7089 }
7090
7091 if (type == BPF_WRITE) {
7092 switch (off) {
7093 case bpf_ctx_range(struct __sk_buff, tc_index):
7094 case bpf_ctx_range(struct __sk_buff, priority):
7095 break;
7096 default:
7097 return false;
7098 }
7099 }
7100
7101 switch (off) {
7102 case bpf_ctx_range(struct __sk_buff, mark):
7103 return false;
7104 case bpf_ctx_range(struct __sk_buff, data):
7105 info->reg_type = PTR_TO_PACKET;
7106 break;
7107 case bpf_ctx_range(struct __sk_buff, data_end):
7108 info->reg_type = PTR_TO_PACKET_END;
7109 break;
7110 }
7111
7112 return bpf_skb_is_valid_access(off, size, type, prog, info);
7113 }
7114
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7115 static bool sk_msg_is_valid_access(int off, int size,
7116 enum bpf_access_type type,
7117 const struct bpf_prog *prog,
7118 struct bpf_insn_access_aux *info)
7119 {
7120 if (type == BPF_WRITE)
7121 return false;
7122
7123 if (off % size != 0)
7124 return false;
7125
7126 switch (off) {
7127 case offsetof(struct sk_msg_md, data):
7128 info->reg_type = PTR_TO_PACKET;
7129 if (size != sizeof(__u64))
7130 return false;
7131 break;
7132 case offsetof(struct sk_msg_md, data_end):
7133 info->reg_type = PTR_TO_PACKET_END;
7134 if (size != sizeof(__u64))
7135 return false;
7136 break;
7137 case bpf_ctx_range(struct sk_msg_md, family):
7138 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7139 case bpf_ctx_range(struct sk_msg_md, local_ip4):
7140 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7141 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7142 case bpf_ctx_range(struct sk_msg_md, remote_port):
7143 case bpf_ctx_range(struct sk_msg_md, local_port):
7144 case bpf_ctx_range(struct sk_msg_md, size):
7145 if (size != sizeof(__u32))
7146 return false;
7147 break;
7148 default:
7149 return false;
7150 }
7151 return true;
7152 }
7153
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7154 static bool flow_dissector_is_valid_access(int off, int size,
7155 enum bpf_access_type type,
7156 const struct bpf_prog *prog,
7157 struct bpf_insn_access_aux *info)
7158 {
7159 const int size_default = sizeof(__u32);
7160
7161 if (off < 0 || off >= sizeof(struct __sk_buff))
7162 return false;
7163
7164 if (type == BPF_WRITE)
7165 return false;
7166
7167 switch (off) {
7168 case bpf_ctx_range(struct __sk_buff, data):
7169 if (size != size_default)
7170 return false;
7171 info->reg_type = PTR_TO_PACKET;
7172 return true;
7173 case bpf_ctx_range(struct __sk_buff, data_end):
7174 if (size != size_default)
7175 return false;
7176 info->reg_type = PTR_TO_PACKET_END;
7177 return true;
7178 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7179 if (size != sizeof(__u64))
7180 return false;
7181 info->reg_type = PTR_TO_FLOW_KEYS;
7182 return true;
7183 default:
7184 return false;
7185 }
7186 }
7187
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7188 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7189 const struct bpf_insn *si,
7190 struct bpf_insn *insn_buf,
7191 struct bpf_prog *prog,
7192 u32 *target_size)
7193
7194 {
7195 struct bpf_insn *insn = insn_buf;
7196
7197 switch (si->off) {
7198 case offsetof(struct __sk_buff, data):
7199 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7200 si->dst_reg, si->src_reg,
7201 offsetof(struct bpf_flow_dissector, data));
7202 break;
7203
7204 case offsetof(struct __sk_buff, data_end):
7205 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7206 si->dst_reg, si->src_reg,
7207 offsetof(struct bpf_flow_dissector, data_end));
7208 break;
7209
7210 case offsetof(struct __sk_buff, flow_keys):
7211 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7212 si->dst_reg, si->src_reg,
7213 offsetof(struct bpf_flow_dissector, flow_keys));
7214 break;
7215 }
7216
7217 return insn - insn_buf;
7218 }
7219
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7220 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7221 const struct bpf_insn *si,
7222 struct bpf_insn *insn_buf,
7223 struct bpf_prog *prog, u32 *target_size)
7224 {
7225 struct bpf_insn *insn = insn_buf;
7226 int off;
7227
7228 switch (si->off) {
7229 case offsetof(struct __sk_buff, len):
7230 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7231 bpf_target_off(struct sk_buff, len, 4,
7232 target_size));
7233 break;
7234
7235 case offsetof(struct __sk_buff, protocol):
7236 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7237 bpf_target_off(struct sk_buff, protocol, 2,
7238 target_size));
7239 break;
7240
7241 case offsetof(struct __sk_buff, vlan_proto):
7242 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7243 bpf_target_off(struct sk_buff, vlan_proto, 2,
7244 target_size));
7245 break;
7246
7247 case offsetof(struct __sk_buff, priority):
7248 if (type == BPF_WRITE)
7249 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7250 bpf_target_off(struct sk_buff, priority, 4,
7251 target_size));
7252 else
7253 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7254 bpf_target_off(struct sk_buff, priority, 4,
7255 target_size));
7256 break;
7257
7258 case offsetof(struct __sk_buff, ingress_ifindex):
7259 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7260 bpf_target_off(struct sk_buff, skb_iif, 4,
7261 target_size));
7262 break;
7263
7264 case offsetof(struct __sk_buff, ifindex):
7265 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7266 si->dst_reg, si->src_reg,
7267 offsetof(struct sk_buff, dev));
7268 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7269 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7270 bpf_target_off(struct net_device, ifindex, 4,
7271 target_size));
7272 break;
7273
7274 case offsetof(struct __sk_buff, hash):
7275 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7276 bpf_target_off(struct sk_buff, hash, 4,
7277 target_size));
7278 break;
7279
7280 case offsetof(struct __sk_buff, mark):
7281 if (type == BPF_WRITE)
7282 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7283 bpf_target_off(struct sk_buff, mark, 4,
7284 target_size));
7285 else
7286 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7287 bpf_target_off(struct sk_buff, mark, 4,
7288 target_size));
7289 break;
7290
7291 case offsetof(struct __sk_buff, pkt_type):
7292 *target_size = 1;
7293 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7294 PKT_TYPE_OFFSET());
7295 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7296 #ifdef __BIG_ENDIAN_BITFIELD
7297 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7298 #endif
7299 break;
7300
7301 case offsetof(struct __sk_buff, queue_mapping):
7302 if (type == BPF_WRITE) {
7303 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7304 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7305 bpf_target_off(struct sk_buff,
7306 queue_mapping,
7307 2, target_size));
7308 } else {
7309 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7310 bpf_target_off(struct sk_buff,
7311 queue_mapping,
7312 2, target_size));
7313 }
7314 break;
7315
7316 case offsetof(struct __sk_buff, vlan_present):
7317 *target_size = 1;
7318 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7319 PKT_VLAN_PRESENT_OFFSET());
7320 if (PKT_VLAN_PRESENT_BIT)
7321 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7322 if (PKT_VLAN_PRESENT_BIT < 7)
7323 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7324 break;
7325
7326 case offsetof(struct __sk_buff, vlan_tci):
7327 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7328 bpf_target_off(struct sk_buff, vlan_tci, 2,
7329 target_size));
7330 break;
7331
7332 case offsetof(struct __sk_buff, cb[0]) ...
7333 offsetofend(struct __sk_buff, cb[4]) - 1:
7334 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
7335 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7336 offsetof(struct qdisc_skb_cb, data)) %
7337 sizeof(__u64));
7338
7339 prog->cb_access = 1;
7340 off = si->off;
7341 off -= offsetof(struct __sk_buff, cb[0]);
7342 off += offsetof(struct sk_buff, cb);
7343 off += offsetof(struct qdisc_skb_cb, data);
7344 if (type == BPF_WRITE)
7345 *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7346 si->src_reg, off);
7347 else
7348 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7349 si->src_reg, off);
7350 break;
7351
7352 case offsetof(struct __sk_buff, tc_classid):
7353 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
7354
7355 off = si->off;
7356 off -= offsetof(struct __sk_buff, tc_classid);
7357 off += offsetof(struct sk_buff, cb);
7358 off += offsetof(struct qdisc_skb_cb, tc_classid);
7359 *target_size = 2;
7360 if (type == BPF_WRITE)
7361 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7362 si->src_reg, off);
7363 else
7364 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7365 si->src_reg, off);
7366 break;
7367
7368 case offsetof(struct __sk_buff, data):
7369 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7370 si->dst_reg, si->src_reg,
7371 offsetof(struct sk_buff, data));
7372 break;
7373
7374 case offsetof(struct __sk_buff, data_meta):
7375 off = si->off;
7376 off -= offsetof(struct __sk_buff, data_meta);
7377 off += offsetof(struct sk_buff, cb);
7378 off += offsetof(struct bpf_skb_data_end, data_meta);
7379 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7380 si->src_reg, off);
7381 break;
7382
7383 case offsetof(struct __sk_buff, data_end):
7384 off = si->off;
7385 off -= offsetof(struct __sk_buff, data_end);
7386 off += offsetof(struct sk_buff, cb);
7387 off += offsetof(struct bpf_skb_data_end, data_end);
7388 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7389 si->src_reg, off);
7390 break;
7391
7392 case offsetof(struct __sk_buff, tc_index):
7393 #ifdef CONFIG_NET_SCHED
7394 if (type == BPF_WRITE)
7395 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7396 bpf_target_off(struct sk_buff, tc_index, 2,
7397 target_size));
7398 else
7399 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7400 bpf_target_off(struct sk_buff, tc_index, 2,
7401 target_size));
7402 #else
7403 *target_size = 2;
7404 if (type == BPF_WRITE)
7405 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7406 else
7407 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7408 #endif
7409 break;
7410
7411 case offsetof(struct __sk_buff, napi_id):
7412 #if defined(CONFIG_NET_RX_BUSY_POLL)
7413 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7414 bpf_target_off(struct sk_buff, napi_id, 4,
7415 target_size));
7416 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7417 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7418 #else
7419 *target_size = 4;
7420 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7421 #endif
7422 break;
7423 case offsetof(struct __sk_buff, family):
7424 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7425
7426 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7427 si->dst_reg, si->src_reg,
7428 offsetof(struct sk_buff, sk));
7429 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7430 bpf_target_off(struct sock_common,
7431 skc_family,
7432 2, target_size));
7433 break;
7434 case offsetof(struct __sk_buff, remote_ip4):
7435 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
7436
7437 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7438 si->dst_reg, si->src_reg,
7439 offsetof(struct sk_buff, sk));
7440 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7441 bpf_target_off(struct sock_common,
7442 skc_daddr,
7443 4, target_size));
7444 break;
7445 case offsetof(struct __sk_buff, local_ip4):
7446 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7447 skc_rcv_saddr) != 4);
7448
7449 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7450 si->dst_reg, si->src_reg,
7451 offsetof(struct sk_buff, sk));
7452 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7453 bpf_target_off(struct sock_common,
7454 skc_rcv_saddr,
7455 4, target_size));
7456 break;
7457 case offsetof(struct __sk_buff, remote_ip6[0]) ...
7458 offsetof(struct __sk_buff, remote_ip6[3]):
7459 #if IS_ENABLED(CONFIG_IPV6)
7460 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7461 skc_v6_daddr.s6_addr32[0]) != 4);
7462
7463 off = si->off;
7464 off -= offsetof(struct __sk_buff, remote_ip6[0]);
7465
7466 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7467 si->dst_reg, si->src_reg,
7468 offsetof(struct sk_buff, sk));
7469 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7470 offsetof(struct sock_common,
7471 skc_v6_daddr.s6_addr32[0]) +
7472 off);
7473 #else
7474 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7475 #endif
7476 break;
7477 case offsetof(struct __sk_buff, local_ip6[0]) ...
7478 offsetof(struct __sk_buff, local_ip6[3]):
7479 #if IS_ENABLED(CONFIG_IPV6)
7480 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7481 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7482
7483 off = si->off;
7484 off -= offsetof(struct __sk_buff, local_ip6[0]);
7485
7486 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7487 si->dst_reg, si->src_reg,
7488 offsetof(struct sk_buff, sk));
7489 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7490 offsetof(struct sock_common,
7491 skc_v6_rcv_saddr.s6_addr32[0]) +
7492 off);
7493 #else
7494 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7495 #endif
7496 break;
7497
7498 case offsetof(struct __sk_buff, remote_port):
7499 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
7500
7501 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7502 si->dst_reg, si->src_reg,
7503 offsetof(struct sk_buff, sk));
7504 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7505 bpf_target_off(struct sock_common,
7506 skc_dport,
7507 2, target_size));
7508 #ifndef __BIG_ENDIAN_BITFIELD
7509 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7510 #endif
7511 break;
7512
7513 case offsetof(struct __sk_buff, local_port):
7514 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
7515
7516 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7517 si->dst_reg, si->src_reg,
7518 offsetof(struct sk_buff, sk));
7519 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7520 bpf_target_off(struct sock_common,
7521 skc_num, 2, target_size));
7522 break;
7523
7524 case offsetof(struct __sk_buff, tstamp):
7525 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tstamp) != 8);
7526
7527 if (type == BPF_WRITE)
7528 *insn++ = BPF_STX_MEM(BPF_DW,
7529 si->dst_reg, si->src_reg,
7530 bpf_target_off(struct sk_buff,
7531 tstamp, 8,
7532 target_size));
7533 else
7534 *insn++ = BPF_LDX_MEM(BPF_DW,
7535 si->dst_reg, si->src_reg,
7536 bpf_target_off(struct sk_buff,
7537 tstamp, 8,
7538 target_size));
7539 break;
7540
7541 case offsetof(struct __sk_buff, gso_segs):
7542 /* si->dst_reg = skb_shinfo(SKB); */
7543 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7544 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7545 BPF_REG_AX, si->src_reg,
7546 offsetof(struct sk_buff, end));
7547 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7548 si->dst_reg, si->src_reg,
7549 offsetof(struct sk_buff, head));
7550 *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7551 #else
7552 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7553 si->dst_reg, si->src_reg,
7554 offsetof(struct sk_buff, end));
7555 #endif
7556 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7557 si->dst_reg, si->dst_reg,
7558 bpf_target_off(struct skb_shared_info,
7559 gso_segs, 2,
7560 target_size));
7561 break;
7562 case offsetof(struct __sk_buff, wire_len):
7563 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, pkt_len) != 4);
7564
7565 off = si->off;
7566 off -= offsetof(struct __sk_buff, wire_len);
7567 off += offsetof(struct sk_buff, cb);
7568 off += offsetof(struct qdisc_skb_cb, pkt_len);
7569 *target_size = 4;
7570 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7571 break;
7572
7573 case offsetof(struct __sk_buff, sk):
7574 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7575 si->dst_reg, si->src_reg,
7576 offsetof(struct sk_buff, sk));
7577 break;
7578 }
7579
7580 return insn - insn_buf;
7581 }
7582
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7583 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7584 const struct bpf_insn *si,
7585 struct bpf_insn *insn_buf,
7586 struct bpf_prog *prog, u32 *target_size)
7587 {
7588 struct bpf_insn *insn = insn_buf;
7589 int off;
7590
7591 switch (si->off) {
7592 case offsetof(struct bpf_sock, bound_dev_if):
7593 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
7594
7595 if (type == BPF_WRITE)
7596 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7597 offsetof(struct sock, sk_bound_dev_if));
7598 else
7599 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7600 offsetof(struct sock, sk_bound_dev_if));
7601 break;
7602
7603 case offsetof(struct bpf_sock, mark):
7604 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
7605
7606 if (type == BPF_WRITE)
7607 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7608 offsetof(struct sock, sk_mark));
7609 else
7610 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7611 offsetof(struct sock, sk_mark));
7612 break;
7613
7614 case offsetof(struct bpf_sock, priority):
7615 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
7616
7617 if (type == BPF_WRITE)
7618 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7619 offsetof(struct sock, sk_priority));
7620 else
7621 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7622 offsetof(struct sock, sk_priority));
7623 break;
7624
7625 case offsetof(struct bpf_sock, family):
7626 *insn++ = BPF_LDX_MEM(
7627 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7628 si->dst_reg, si->src_reg,
7629 bpf_target_off(struct sock_common,
7630 skc_family,
7631 FIELD_SIZEOF(struct sock_common,
7632 skc_family),
7633 target_size));
7634 break;
7635
7636 case offsetof(struct bpf_sock, type):
7637 BUILD_BUG_ON(HWEIGHT32(SK_FL_TYPE_MASK) != BITS_PER_BYTE * 2);
7638 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7639 offsetof(struct sock, __sk_flags_offset));
7640 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7641 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7642 *target_size = 2;
7643 break;
7644
7645 case offsetof(struct bpf_sock, protocol):
7646 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7647 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7648 offsetof(struct sock, __sk_flags_offset));
7649 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7650 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
7651 *target_size = 1;
7652 break;
7653
7654 case offsetof(struct bpf_sock, src_ip4):
7655 *insn++ = BPF_LDX_MEM(
7656 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7657 bpf_target_off(struct sock_common, skc_rcv_saddr,
7658 FIELD_SIZEOF(struct sock_common,
7659 skc_rcv_saddr),
7660 target_size));
7661 break;
7662
7663 case offsetof(struct bpf_sock, dst_ip4):
7664 *insn++ = BPF_LDX_MEM(
7665 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7666 bpf_target_off(struct sock_common, skc_daddr,
7667 FIELD_SIZEOF(struct sock_common,
7668 skc_daddr),
7669 target_size));
7670 break;
7671
7672 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7673 #if IS_ENABLED(CONFIG_IPV6)
7674 off = si->off;
7675 off -= offsetof(struct bpf_sock, src_ip6[0]);
7676 *insn++ = BPF_LDX_MEM(
7677 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7678 bpf_target_off(
7679 struct sock_common,
7680 skc_v6_rcv_saddr.s6_addr32[0],
7681 FIELD_SIZEOF(struct sock_common,
7682 skc_v6_rcv_saddr.s6_addr32[0]),
7683 target_size) + off);
7684 #else
7685 (void)off;
7686 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7687 #endif
7688 break;
7689
7690 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7691 #if IS_ENABLED(CONFIG_IPV6)
7692 off = si->off;
7693 off -= offsetof(struct bpf_sock, dst_ip6[0]);
7694 *insn++ = BPF_LDX_MEM(
7695 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7696 bpf_target_off(struct sock_common,
7697 skc_v6_daddr.s6_addr32[0],
7698 FIELD_SIZEOF(struct sock_common,
7699 skc_v6_daddr.s6_addr32[0]),
7700 target_size) + off);
7701 #else
7702 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7703 *target_size = 4;
7704 #endif
7705 break;
7706
7707 case offsetof(struct bpf_sock, src_port):
7708 *insn++ = BPF_LDX_MEM(
7709 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7710 si->dst_reg, si->src_reg,
7711 bpf_target_off(struct sock_common, skc_num,
7712 FIELD_SIZEOF(struct sock_common,
7713 skc_num),
7714 target_size));
7715 break;
7716
7717 case offsetof(struct bpf_sock, dst_port):
7718 *insn++ = BPF_LDX_MEM(
7719 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7720 si->dst_reg, si->src_reg,
7721 bpf_target_off(struct sock_common, skc_dport,
7722 FIELD_SIZEOF(struct sock_common,
7723 skc_dport),
7724 target_size));
7725 break;
7726
7727 case offsetof(struct bpf_sock, state):
7728 *insn++ = BPF_LDX_MEM(
7729 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7730 si->dst_reg, si->src_reg,
7731 bpf_target_off(struct sock_common, skc_state,
7732 FIELD_SIZEOF(struct sock_common,
7733 skc_state),
7734 target_size));
7735 break;
7736 }
7737
7738 return insn - insn_buf;
7739 }
7740
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7741 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7742 const struct bpf_insn *si,
7743 struct bpf_insn *insn_buf,
7744 struct bpf_prog *prog, u32 *target_size)
7745 {
7746 struct bpf_insn *insn = insn_buf;
7747
7748 switch (si->off) {
7749 case offsetof(struct __sk_buff, ifindex):
7750 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7751 si->dst_reg, si->src_reg,
7752 offsetof(struct sk_buff, dev));
7753 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7754 bpf_target_off(struct net_device, ifindex, 4,
7755 target_size));
7756 break;
7757 default:
7758 return bpf_convert_ctx_access(type, si, insn_buf, prog,
7759 target_size);
7760 }
7761
7762 return insn - insn_buf;
7763 }
7764
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7765 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7766 const struct bpf_insn *si,
7767 struct bpf_insn *insn_buf,
7768 struct bpf_prog *prog, u32 *target_size)
7769 {
7770 struct bpf_insn *insn = insn_buf;
7771
7772 switch (si->off) {
7773 case offsetof(struct xdp_md, data):
7774 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7775 si->dst_reg, si->src_reg,
7776 offsetof(struct xdp_buff, data));
7777 break;
7778 case offsetof(struct xdp_md, data_meta):
7779 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7780 si->dst_reg, si->src_reg,
7781 offsetof(struct xdp_buff, data_meta));
7782 break;
7783 case offsetof(struct xdp_md, data_end):
7784 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7785 si->dst_reg, si->src_reg,
7786 offsetof(struct xdp_buff, data_end));
7787 break;
7788 case offsetof(struct xdp_md, ingress_ifindex):
7789 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7790 si->dst_reg, si->src_reg,
7791 offsetof(struct xdp_buff, rxq));
7792 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7793 si->dst_reg, si->dst_reg,
7794 offsetof(struct xdp_rxq_info, dev));
7795 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7796 offsetof(struct net_device, ifindex));
7797 break;
7798 case offsetof(struct xdp_md, rx_queue_index):
7799 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7800 si->dst_reg, si->src_reg,
7801 offsetof(struct xdp_buff, rxq));
7802 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7803 offsetof(struct xdp_rxq_info,
7804 queue_index));
7805 break;
7806 }
7807
7808 return insn - insn_buf;
7809 }
7810
7811 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7812 * context Structure, F is Field in context structure that contains a pointer
7813 * to Nested Structure of type NS that has the field NF.
7814 *
7815 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7816 * sure that SIZE is not greater than actual size of S.F.NF.
7817 *
7818 * If offset OFF is provided, the load happens from that offset relative to
7819 * offset of NF.
7820 */
7821 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
7822 do { \
7823 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
7824 si->src_reg, offsetof(S, F)); \
7825 *insn++ = BPF_LDX_MEM( \
7826 SIZE, si->dst_reg, si->dst_reg, \
7827 bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF), \
7828 target_size) \
7829 + OFF); \
7830 } while (0)
7831
7832 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
7833 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
7834 BPF_FIELD_SIZEOF(NS, NF), 0)
7835
7836 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7837 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7838 *
7839 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7840 * "register" since two registers available in convert_ctx_access are not
7841 * enough: we can't override neither SRC, since it contains value to store, nor
7842 * DST since it contains pointer to context that may be used by later
7843 * instructions. But we need a temporary place to save pointer to nested
7844 * structure whose field we want to store to.
7845 */
7846 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
7847 do { \
7848 int tmp_reg = BPF_REG_9; \
7849 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
7850 --tmp_reg; \
7851 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
7852 --tmp_reg; \
7853 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
7854 offsetof(S, TF)); \
7855 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
7856 si->dst_reg, offsetof(S, F)); \
7857 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg, \
7858 bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF), \
7859 target_size) \
7860 + OFF); \
7861 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
7862 offsetof(S, TF)); \
7863 } while (0)
7864
7865 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7866 TF) \
7867 do { \
7868 if (type == BPF_WRITE) { \
7869 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
7870 OFF, TF); \
7871 } else { \
7872 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
7873 S, NS, F, NF, SIZE, OFF); \
7874 } \
7875 } while (0)
7876
7877 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
7878 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
7879 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7880
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7881 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7882 const struct bpf_insn *si,
7883 struct bpf_insn *insn_buf,
7884 struct bpf_prog *prog, u32 *target_size)
7885 {
7886 struct bpf_insn *insn = insn_buf;
7887 int off;
7888
7889 switch (si->off) {
7890 case offsetof(struct bpf_sock_addr, user_family):
7891 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7892 struct sockaddr, uaddr, sa_family);
7893 break;
7894
7895 case offsetof(struct bpf_sock_addr, user_ip4):
7896 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7897 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7898 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7899 break;
7900
7901 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7902 off = si->off;
7903 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7904 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7905 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7906 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7907 tmp_reg);
7908 break;
7909
7910 case offsetof(struct bpf_sock_addr, user_port):
7911 /* To get port we need to know sa_family first and then treat
7912 * sockaddr as either sockaddr_in or sockaddr_in6.
7913 * Though we can simplify since port field has same offset and
7914 * size in both structures.
7915 * Here we check this invariant and use just one of the
7916 * structures if it's true.
7917 */
7918 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7919 offsetof(struct sockaddr_in6, sin6_port));
7920 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
7921 FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
7922 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7923 struct sockaddr_in6, uaddr,
7924 sin6_port, tmp_reg);
7925 break;
7926
7927 case offsetof(struct bpf_sock_addr, family):
7928 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7929 struct sock, sk, sk_family);
7930 break;
7931
7932 case offsetof(struct bpf_sock_addr, type):
7933 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7934 struct bpf_sock_addr_kern, struct sock, sk,
7935 __sk_flags_offset, BPF_W, 0);
7936 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7937 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7938 break;
7939
7940 case offsetof(struct bpf_sock_addr, protocol):
7941 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7942 struct bpf_sock_addr_kern, struct sock, sk,
7943 __sk_flags_offset, BPF_W, 0);
7944 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7945 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7946 SK_FL_PROTO_SHIFT);
7947 break;
7948
7949 case offsetof(struct bpf_sock_addr, msg_src_ip4):
7950 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
7951 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7952 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7953 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7954 break;
7955
7956 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7957 msg_src_ip6[3]):
7958 off = si->off;
7959 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7960 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7961 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7962 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7963 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7964 break;
7965 case offsetof(struct bpf_sock_addr, sk):
7966 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
7967 si->dst_reg, si->src_reg,
7968 offsetof(struct bpf_sock_addr_kern, sk));
7969 break;
7970 }
7971
7972 return insn - insn_buf;
7973 }
7974
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7975 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7976 const struct bpf_insn *si,
7977 struct bpf_insn *insn_buf,
7978 struct bpf_prog *prog,
7979 u32 *target_size)
7980 {
7981 struct bpf_insn *insn = insn_buf;
7982 int off;
7983
7984 /* Helper macro for adding read access to tcp_sock or sock fields. */
7985 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
7986 do { \
7987 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) > \
7988 FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD)); \
7989 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7990 struct bpf_sock_ops_kern, \
7991 is_fullsock), \
7992 si->dst_reg, si->src_reg, \
7993 offsetof(struct bpf_sock_ops_kern, \
7994 is_fullsock)); \
7995 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2); \
7996 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7997 struct bpf_sock_ops_kern, sk),\
7998 si->dst_reg, si->src_reg, \
7999 offsetof(struct bpf_sock_ops_kern, sk));\
8000 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
8001 OBJ_FIELD), \
8002 si->dst_reg, si->dst_reg, \
8003 offsetof(OBJ, OBJ_FIELD)); \
8004 } while (0)
8005
8006 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
8007 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
8008
8009 /* Helper macro for adding write access to tcp_sock or sock fields.
8010 * The macro is called with two registers, dst_reg which contains a pointer
8011 * to ctx (context) and src_reg which contains the value that should be
8012 * stored. However, we need an additional register since we cannot overwrite
8013 * dst_reg because it may be used later in the program.
8014 * Instead we "borrow" one of the other register. We first save its value
8015 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
8016 * it at the end of the macro.
8017 */
8018 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
8019 do { \
8020 int reg = BPF_REG_9; \
8021 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) > \
8022 FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD)); \
8023 if (si->dst_reg == reg || si->src_reg == reg) \
8024 reg--; \
8025 if (si->dst_reg == reg || si->src_reg == reg) \
8026 reg--; \
8027 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
8028 offsetof(struct bpf_sock_ops_kern, \
8029 temp)); \
8030 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
8031 struct bpf_sock_ops_kern, \
8032 is_fullsock), \
8033 reg, si->dst_reg, \
8034 offsetof(struct bpf_sock_ops_kern, \
8035 is_fullsock)); \
8036 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
8037 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
8038 struct bpf_sock_ops_kern, sk),\
8039 reg, si->dst_reg, \
8040 offsetof(struct bpf_sock_ops_kern, sk));\
8041 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD), \
8042 reg, si->src_reg, \
8043 offsetof(OBJ, OBJ_FIELD)); \
8044 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
8045 offsetof(struct bpf_sock_ops_kern, \
8046 temp)); \
8047 } while (0)
8048
8049 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
8050 do { \
8051 if (TYPE == BPF_WRITE) \
8052 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
8053 else \
8054 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
8055 } while (0)
8056
8057 if (insn > insn_buf)
8058 return insn - insn_buf;
8059
8060 switch (si->off) {
8061 case offsetof(struct bpf_sock_ops, op) ...
8062 offsetof(struct bpf_sock_ops, replylong[3]):
8063 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
8064 FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
8065 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
8066 FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
8067 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
8068 FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
8069 off = si->off;
8070 off -= offsetof(struct bpf_sock_ops, op);
8071 off += offsetof(struct bpf_sock_ops_kern, op);
8072 if (type == BPF_WRITE)
8073 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8074 off);
8075 else
8076 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8077 off);
8078 break;
8079
8080 case offsetof(struct bpf_sock_ops, family):
8081 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
8082
8083 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8084 struct bpf_sock_ops_kern, sk),
8085 si->dst_reg, si->src_reg,
8086 offsetof(struct bpf_sock_ops_kern, sk));
8087 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8088 offsetof(struct sock_common, skc_family));
8089 break;
8090
8091 case offsetof(struct bpf_sock_ops, remote_ip4):
8092 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
8093
8094 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8095 struct bpf_sock_ops_kern, sk),
8096 si->dst_reg, si->src_reg,
8097 offsetof(struct bpf_sock_ops_kern, sk));
8098 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8099 offsetof(struct sock_common, skc_daddr));
8100 break;
8101
8102 case offsetof(struct bpf_sock_ops, local_ip4):
8103 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8104 skc_rcv_saddr) != 4);
8105
8106 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8107 struct bpf_sock_ops_kern, sk),
8108 si->dst_reg, si->src_reg,
8109 offsetof(struct bpf_sock_ops_kern, sk));
8110 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8111 offsetof(struct sock_common,
8112 skc_rcv_saddr));
8113 break;
8114
8115 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8116 offsetof(struct bpf_sock_ops, remote_ip6[3]):
8117 #if IS_ENABLED(CONFIG_IPV6)
8118 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8119 skc_v6_daddr.s6_addr32[0]) != 4);
8120
8121 off = si->off;
8122 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8123 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8124 struct bpf_sock_ops_kern, sk),
8125 si->dst_reg, si->src_reg,
8126 offsetof(struct bpf_sock_ops_kern, sk));
8127 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8128 offsetof(struct sock_common,
8129 skc_v6_daddr.s6_addr32[0]) +
8130 off);
8131 #else
8132 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8133 #endif
8134 break;
8135
8136 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8137 offsetof(struct bpf_sock_ops, local_ip6[3]):
8138 #if IS_ENABLED(CONFIG_IPV6)
8139 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8140 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8141
8142 off = si->off;
8143 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8144 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8145 struct bpf_sock_ops_kern, sk),
8146 si->dst_reg, si->src_reg,
8147 offsetof(struct bpf_sock_ops_kern, sk));
8148 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8149 offsetof(struct sock_common,
8150 skc_v6_rcv_saddr.s6_addr32[0]) +
8151 off);
8152 #else
8153 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8154 #endif
8155 break;
8156
8157 case offsetof(struct bpf_sock_ops, remote_port):
8158 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
8159
8160 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8161 struct bpf_sock_ops_kern, sk),
8162 si->dst_reg, si->src_reg,
8163 offsetof(struct bpf_sock_ops_kern, sk));
8164 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8165 offsetof(struct sock_common, skc_dport));
8166 #ifndef __BIG_ENDIAN_BITFIELD
8167 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8168 #endif
8169 break;
8170
8171 case offsetof(struct bpf_sock_ops, local_port):
8172 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
8173
8174 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8175 struct bpf_sock_ops_kern, sk),
8176 si->dst_reg, si->src_reg,
8177 offsetof(struct bpf_sock_ops_kern, sk));
8178 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8179 offsetof(struct sock_common, skc_num));
8180 break;
8181
8182 case offsetof(struct bpf_sock_ops, is_fullsock):
8183 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8184 struct bpf_sock_ops_kern,
8185 is_fullsock),
8186 si->dst_reg, si->src_reg,
8187 offsetof(struct bpf_sock_ops_kern,
8188 is_fullsock));
8189 break;
8190
8191 case offsetof(struct bpf_sock_ops, state):
8192 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
8193
8194 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8195 struct bpf_sock_ops_kern, sk),
8196 si->dst_reg, si->src_reg,
8197 offsetof(struct bpf_sock_ops_kern, sk));
8198 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8199 offsetof(struct sock_common, skc_state));
8200 break;
8201
8202 case offsetof(struct bpf_sock_ops, rtt_min):
8203 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
8204 sizeof(struct minmax));
8205 BUILD_BUG_ON(sizeof(struct minmax) <
8206 sizeof(struct minmax_sample));
8207
8208 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8209 struct bpf_sock_ops_kern, sk),
8210 si->dst_reg, si->src_reg,
8211 offsetof(struct bpf_sock_ops_kern, sk));
8212 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8213 offsetof(struct tcp_sock, rtt_min) +
8214 FIELD_SIZEOF(struct minmax_sample, t));
8215 break;
8216
8217 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8218 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8219 struct tcp_sock);
8220 break;
8221
8222 case offsetof(struct bpf_sock_ops, sk_txhash):
8223 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8224 struct sock, type);
8225 break;
8226 case offsetof(struct bpf_sock_ops, snd_cwnd):
8227 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8228 break;
8229 case offsetof(struct bpf_sock_ops, srtt_us):
8230 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8231 break;
8232 case offsetof(struct bpf_sock_ops, snd_ssthresh):
8233 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8234 break;
8235 case offsetof(struct bpf_sock_ops, rcv_nxt):
8236 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8237 break;
8238 case offsetof(struct bpf_sock_ops, snd_nxt):
8239 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8240 break;
8241 case offsetof(struct bpf_sock_ops, snd_una):
8242 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8243 break;
8244 case offsetof(struct bpf_sock_ops, mss_cache):
8245 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8246 break;
8247 case offsetof(struct bpf_sock_ops, ecn_flags):
8248 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8249 break;
8250 case offsetof(struct bpf_sock_ops, rate_delivered):
8251 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8252 break;
8253 case offsetof(struct bpf_sock_ops, rate_interval_us):
8254 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8255 break;
8256 case offsetof(struct bpf_sock_ops, packets_out):
8257 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8258 break;
8259 case offsetof(struct bpf_sock_ops, retrans_out):
8260 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8261 break;
8262 case offsetof(struct bpf_sock_ops, total_retrans):
8263 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8264 break;
8265 case offsetof(struct bpf_sock_ops, segs_in):
8266 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8267 break;
8268 case offsetof(struct bpf_sock_ops, data_segs_in):
8269 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8270 break;
8271 case offsetof(struct bpf_sock_ops, segs_out):
8272 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8273 break;
8274 case offsetof(struct bpf_sock_ops, data_segs_out):
8275 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8276 break;
8277 case offsetof(struct bpf_sock_ops, lost_out):
8278 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8279 break;
8280 case offsetof(struct bpf_sock_ops, sacked_out):
8281 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8282 break;
8283 case offsetof(struct bpf_sock_ops, bytes_received):
8284 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8285 break;
8286 case offsetof(struct bpf_sock_ops, bytes_acked):
8287 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8288 break;
8289 case offsetof(struct bpf_sock_ops, sk):
8290 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8291 struct bpf_sock_ops_kern,
8292 is_fullsock),
8293 si->dst_reg, si->src_reg,
8294 offsetof(struct bpf_sock_ops_kern,
8295 is_fullsock));
8296 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8297 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8298 struct bpf_sock_ops_kern, sk),
8299 si->dst_reg, si->src_reg,
8300 offsetof(struct bpf_sock_ops_kern, sk));
8301 break;
8302 }
8303 return insn - insn_buf;
8304 }
8305
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8306 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8307 const struct bpf_insn *si,
8308 struct bpf_insn *insn_buf,
8309 struct bpf_prog *prog, u32 *target_size)
8310 {
8311 struct bpf_insn *insn = insn_buf;
8312 int off;
8313
8314 switch (si->off) {
8315 case offsetof(struct __sk_buff, data_end):
8316 off = si->off;
8317 off -= offsetof(struct __sk_buff, data_end);
8318 off += offsetof(struct sk_buff, cb);
8319 off += offsetof(struct tcp_skb_cb, bpf.data_end);
8320 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8321 si->src_reg, off);
8322 break;
8323 default:
8324 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8325 target_size);
8326 }
8327
8328 return insn - insn_buf;
8329 }
8330
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8331 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8332 const struct bpf_insn *si,
8333 struct bpf_insn *insn_buf,
8334 struct bpf_prog *prog, u32 *target_size)
8335 {
8336 struct bpf_insn *insn = insn_buf;
8337 #if IS_ENABLED(CONFIG_IPV6)
8338 int off;
8339 #endif
8340
8341 /* convert ctx uses the fact sg element is first in struct */
8342 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8343
8344 switch (si->off) {
8345 case offsetof(struct sk_msg_md, data):
8346 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8347 si->dst_reg, si->src_reg,
8348 offsetof(struct sk_msg, data));
8349 break;
8350 case offsetof(struct sk_msg_md, data_end):
8351 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8352 si->dst_reg, si->src_reg,
8353 offsetof(struct sk_msg, data_end));
8354 break;
8355 case offsetof(struct sk_msg_md, family):
8356 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
8357
8358 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8359 struct sk_msg, sk),
8360 si->dst_reg, si->src_reg,
8361 offsetof(struct sk_msg, sk));
8362 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8363 offsetof(struct sock_common, skc_family));
8364 break;
8365
8366 case offsetof(struct sk_msg_md, remote_ip4):
8367 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
8368
8369 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8370 struct sk_msg, sk),
8371 si->dst_reg, si->src_reg,
8372 offsetof(struct sk_msg, sk));
8373 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8374 offsetof(struct sock_common, skc_daddr));
8375 break;
8376
8377 case offsetof(struct sk_msg_md, local_ip4):
8378 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8379 skc_rcv_saddr) != 4);
8380
8381 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8382 struct sk_msg, sk),
8383 si->dst_reg, si->src_reg,
8384 offsetof(struct sk_msg, sk));
8385 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8386 offsetof(struct sock_common,
8387 skc_rcv_saddr));
8388 break;
8389
8390 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8391 offsetof(struct sk_msg_md, remote_ip6[3]):
8392 #if IS_ENABLED(CONFIG_IPV6)
8393 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8394 skc_v6_daddr.s6_addr32[0]) != 4);
8395
8396 off = si->off;
8397 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8398 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8399 struct sk_msg, sk),
8400 si->dst_reg, si->src_reg,
8401 offsetof(struct sk_msg, sk));
8402 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8403 offsetof(struct sock_common,
8404 skc_v6_daddr.s6_addr32[0]) +
8405 off);
8406 #else
8407 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8408 #endif
8409 break;
8410
8411 case offsetof(struct sk_msg_md, local_ip6[0]) ...
8412 offsetof(struct sk_msg_md, local_ip6[3]):
8413 #if IS_ENABLED(CONFIG_IPV6)
8414 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8415 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8416
8417 off = si->off;
8418 off -= offsetof(struct sk_msg_md, local_ip6[0]);
8419 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8420 struct sk_msg, sk),
8421 si->dst_reg, si->src_reg,
8422 offsetof(struct sk_msg, sk));
8423 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8424 offsetof(struct sock_common,
8425 skc_v6_rcv_saddr.s6_addr32[0]) +
8426 off);
8427 #else
8428 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8429 #endif
8430 break;
8431
8432 case offsetof(struct sk_msg_md, remote_port):
8433 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
8434
8435 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8436 struct sk_msg, sk),
8437 si->dst_reg, si->src_reg,
8438 offsetof(struct sk_msg, sk));
8439 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8440 offsetof(struct sock_common, skc_dport));
8441 #ifndef __BIG_ENDIAN_BITFIELD
8442 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8443 #endif
8444 break;
8445
8446 case offsetof(struct sk_msg_md, local_port):
8447 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
8448
8449 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8450 struct sk_msg, sk),
8451 si->dst_reg, si->src_reg,
8452 offsetof(struct sk_msg, sk));
8453 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8454 offsetof(struct sock_common, skc_num));
8455 break;
8456
8457 case offsetof(struct sk_msg_md, size):
8458 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8459 si->dst_reg, si->src_reg,
8460 offsetof(struct sk_msg_sg, size));
8461 break;
8462 }
8463
8464 return insn - insn_buf;
8465 }
8466
8467 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8468 .get_func_proto = sk_filter_func_proto,
8469 .is_valid_access = sk_filter_is_valid_access,
8470 .convert_ctx_access = bpf_convert_ctx_access,
8471 .gen_ld_abs = bpf_gen_ld_abs,
8472 };
8473
8474 const struct bpf_prog_ops sk_filter_prog_ops = {
8475 .test_run = bpf_prog_test_run_skb,
8476 };
8477
8478 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8479 .get_func_proto = tc_cls_act_func_proto,
8480 .is_valid_access = tc_cls_act_is_valid_access,
8481 .convert_ctx_access = tc_cls_act_convert_ctx_access,
8482 .gen_prologue = tc_cls_act_prologue,
8483 .gen_ld_abs = bpf_gen_ld_abs,
8484 };
8485
8486 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8487 .test_run = bpf_prog_test_run_skb,
8488 };
8489
8490 const struct bpf_verifier_ops xdp_verifier_ops = {
8491 .get_func_proto = xdp_func_proto,
8492 .is_valid_access = xdp_is_valid_access,
8493 .convert_ctx_access = xdp_convert_ctx_access,
8494 .gen_prologue = bpf_noop_prologue,
8495 };
8496
8497 const struct bpf_prog_ops xdp_prog_ops = {
8498 .test_run = bpf_prog_test_run_xdp,
8499 };
8500
8501 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8502 .get_func_proto = cg_skb_func_proto,
8503 .is_valid_access = cg_skb_is_valid_access,
8504 .convert_ctx_access = bpf_convert_ctx_access,
8505 };
8506
8507 const struct bpf_prog_ops cg_skb_prog_ops = {
8508 .test_run = bpf_prog_test_run_skb,
8509 };
8510
8511 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8512 .get_func_proto = lwt_in_func_proto,
8513 .is_valid_access = lwt_is_valid_access,
8514 .convert_ctx_access = bpf_convert_ctx_access,
8515 };
8516
8517 const struct bpf_prog_ops lwt_in_prog_ops = {
8518 .test_run = bpf_prog_test_run_skb,
8519 };
8520
8521 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8522 .get_func_proto = lwt_out_func_proto,
8523 .is_valid_access = lwt_is_valid_access,
8524 .convert_ctx_access = bpf_convert_ctx_access,
8525 };
8526
8527 const struct bpf_prog_ops lwt_out_prog_ops = {
8528 .test_run = bpf_prog_test_run_skb,
8529 };
8530
8531 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8532 .get_func_proto = lwt_xmit_func_proto,
8533 .is_valid_access = lwt_is_valid_access,
8534 .convert_ctx_access = bpf_convert_ctx_access,
8535 .gen_prologue = tc_cls_act_prologue,
8536 };
8537
8538 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8539 .test_run = bpf_prog_test_run_skb,
8540 };
8541
8542 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8543 .get_func_proto = lwt_seg6local_func_proto,
8544 .is_valid_access = lwt_is_valid_access,
8545 .convert_ctx_access = bpf_convert_ctx_access,
8546 };
8547
8548 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8549 .test_run = bpf_prog_test_run_skb,
8550 };
8551
8552 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8553 .get_func_proto = sock_filter_func_proto,
8554 .is_valid_access = sock_filter_is_valid_access,
8555 .convert_ctx_access = bpf_sock_convert_ctx_access,
8556 };
8557
8558 const struct bpf_prog_ops cg_sock_prog_ops = {
8559 };
8560
8561 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8562 .get_func_proto = sock_addr_func_proto,
8563 .is_valid_access = sock_addr_is_valid_access,
8564 .convert_ctx_access = sock_addr_convert_ctx_access,
8565 };
8566
8567 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8568 };
8569
8570 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8571 .get_func_proto = sock_ops_func_proto,
8572 .is_valid_access = sock_ops_is_valid_access,
8573 .convert_ctx_access = sock_ops_convert_ctx_access,
8574 };
8575
8576 const struct bpf_prog_ops sock_ops_prog_ops = {
8577 };
8578
8579 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8580 .get_func_proto = sk_skb_func_proto,
8581 .is_valid_access = sk_skb_is_valid_access,
8582 .convert_ctx_access = sk_skb_convert_ctx_access,
8583 .gen_prologue = sk_skb_prologue,
8584 };
8585
8586 const struct bpf_prog_ops sk_skb_prog_ops = {
8587 };
8588
8589 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8590 .get_func_proto = sk_msg_func_proto,
8591 .is_valid_access = sk_msg_is_valid_access,
8592 .convert_ctx_access = sk_msg_convert_ctx_access,
8593 .gen_prologue = bpf_noop_prologue,
8594 };
8595
8596 const struct bpf_prog_ops sk_msg_prog_ops = {
8597 };
8598
8599 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8600 .get_func_proto = flow_dissector_func_proto,
8601 .is_valid_access = flow_dissector_is_valid_access,
8602 .convert_ctx_access = flow_dissector_convert_ctx_access,
8603 };
8604
8605 const struct bpf_prog_ops flow_dissector_prog_ops = {
8606 .test_run = bpf_prog_test_run_flow_dissector,
8607 };
8608
sk_detach_filter(struct sock * sk)8609 int sk_detach_filter(struct sock *sk)
8610 {
8611 int ret = -ENOENT;
8612 struct sk_filter *filter;
8613
8614 if (sock_flag(sk, SOCK_FILTER_LOCKED))
8615 return -EPERM;
8616
8617 filter = rcu_dereference_protected(sk->sk_filter,
8618 lockdep_sock_is_held(sk));
8619 if (filter) {
8620 RCU_INIT_POINTER(sk->sk_filter, NULL);
8621 sk_filter_uncharge(sk, filter);
8622 ret = 0;
8623 }
8624
8625 return ret;
8626 }
8627 EXPORT_SYMBOL_GPL(sk_detach_filter);
8628
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)8629 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8630 unsigned int len)
8631 {
8632 struct sock_fprog_kern *fprog;
8633 struct sk_filter *filter;
8634 int ret = 0;
8635
8636 lock_sock(sk);
8637 filter = rcu_dereference_protected(sk->sk_filter,
8638 lockdep_sock_is_held(sk));
8639 if (!filter)
8640 goto out;
8641
8642 /* We're copying the filter that has been originally attached,
8643 * so no conversion/decode needed anymore. eBPF programs that
8644 * have no original program cannot be dumped through this.
8645 */
8646 ret = -EACCES;
8647 fprog = filter->prog->orig_prog;
8648 if (!fprog)
8649 goto out;
8650
8651 ret = fprog->len;
8652 if (!len)
8653 /* User space only enquires number of filter blocks. */
8654 goto out;
8655
8656 ret = -EINVAL;
8657 if (len < fprog->len)
8658 goto out;
8659
8660 ret = -EFAULT;
8661 if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8662 goto out;
8663
8664 /* Instead of bytes, the API requests to return the number
8665 * of filter blocks.
8666 */
8667 ret = fprog->len;
8668 out:
8669 release_sock(sk);
8670 return ret;
8671 }
8672
8673 #ifdef CONFIG_INET
8674 struct sk_reuseport_kern {
8675 struct sk_buff *skb;
8676 struct sock *sk;
8677 struct sock *selected_sk;
8678 void *data_end;
8679 u32 hash;
8680 u32 reuseport_id;
8681 bool bind_inany;
8682 };
8683
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,u32 hash)8684 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8685 struct sock_reuseport *reuse,
8686 struct sock *sk, struct sk_buff *skb,
8687 u32 hash)
8688 {
8689 reuse_kern->skb = skb;
8690 reuse_kern->sk = sk;
8691 reuse_kern->selected_sk = NULL;
8692 reuse_kern->data_end = skb->data + skb_headlen(skb);
8693 reuse_kern->hash = hash;
8694 reuse_kern->reuseport_id = reuse->reuseport_id;
8695 reuse_kern->bind_inany = reuse->bind_inany;
8696 }
8697
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)8698 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8699 struct bpf_prog *prog, struct sk_buff *skb,
8700 u32 hash)
8701 {
8702 struct sk_reuseport_kern reuse_kern;
8703 enum sk_action action;
8704
8705 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8706 action = BPF_PROG_RUN(prog, &reuse_kern);
8707
8708 if (action == SK_PASS)
8709 return reuse_kern.selected_sk;
8710 else
8711 return ERR_PTR(-ECONNREFUSED);
8712 }
8713
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)8714 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8715 struct bpf_map *, map, void *, key, u32, flags)
8716 {
8717 struct sock_reuseport *reuse;
8718 struct sock *selected_sk;
8719
8720 selected_sk = map->ops->map_lookup_elem(map, key);
8721 if (!selected_sk)
8722 return -ENOENT;
8723
8724 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8725 if (!reuse)
8726 /* selected_sk is unhashed (e.g. by close()) after the
8727 * above map_lookup_elem(). Treat selected_sk has already
8728 * been removed from the map.
8729 */
8730 return -ENOENT;
8731
8732 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8733 struct sock *sk;
8734
8735 if (unlikely(!reuse_kern->reuseport_id))
8736 /* There is a small race between adding the
8737 * sk to the map and setting the
8738 * reuse_kern->reuseport_id.
8739 * Treat it as the sk has not been added to
8740 * the bpf map yet.
8741 */
8742 return -ENOENT;
8743
8744 sk = reuse_kern->sk;
8745 if (sk->sk_protocol != selected_sk->sk_protocol)
8746 return -EPROTOTYPE;
8747 else if (sk->sk_family != selected_sk->sk_family)
8748 return -EAFNOSUPPORT;
8749
8750 /* Catch all. Likely bound to a different sockaddr. */
8751 return -EBADFD;
8752 }
8753
8754 reuse_kern->selected_sk = selected_sk;
8755
8756 return 0;
8757 }
8758
8759 static const struct bpf_func_proto sk_select_reuseport_proto = {
8760 .func = sk_select_reuseport,
8761 .gpl_only = false,
8762 .ret_type = RET_INTEGER,
8763 .arg1_type = ARG_PTR_TO_CTX,
8764 .arg2_type = ARG_CONST_MAP_PTR,
8765 .arg3_type = ARG_PTR_TO_MAP_KEY,
8766 .arg4_type = ARG_ANYTHING,
8767 };
8768
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)8769 BPF_CALL_4(sk_reuseport_load_bytes,
8770 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8771 void *, to, u32, len)
8772 {
8773 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8774 }
8775
8776 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8777 .func = sk_reuseport_load_bytes,
8778 .gpl_only = false,
8779 .ret_type = RET_INTEGER,
8780 .arg1_type = ARG_PTR_TO_CTX,
8781 .arg2_type = ARG_ANYTHING,
8782 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
8783 .arg4_type = ARG_CONST_SIZE,
8784 };
8785
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)8786 BPF_CALL_5(sk_reuseport_load_bytes_relative,
8787 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8788 void *, to, u32, len, u32, start_header)
8789 {
8790 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8791 len, start_header);
8792 }
8793
8794 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8795 .func = sk_reuseport_load_bytes_relative,
8796 .gpl_only = false,
8797 .ret_type = RET_INTEGER,
8798 .arg1_type = ARG_PTR_TO_CTX,
8799 .arg2_type = ARG_ANYTHING,
8800 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
8801 .arg4_type = ARG_CONST_SIZE,
8802 .arg5_type = ARG_ANYTHING,
8803 };
8804
8805 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8806 sk_reuseport_func_proto(enum bpf_func_id func_id,
8807 const struct bpf_prog *prog)
8808 {
8809 switch (func_id) {
8810 case BPF_FUNC_sk_select_reuseport:
8811 return &sk_select_reuseport_proto;
8812 case BPF_FUNC_skb_load_bytes:
8813 return &sk_reuseport_load_bytes_proto;
8814 case BPF_FUNC_skb_load_bytes_relative:
8815 return &sk_reuseport_load_bytes_relative_proto;
8816 default:
8817 return bpf_base_func_proto(func_id);
8818 }
8819 }
8820
8821 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8822 sk_reuseport_is_valid_access(int off, int size,
8823 enum bpf_access_type type,
8824 const struct bpf_prog *prog,
8825 struct bpf_insn_access_aux *info)
8826 {
8827 const u32 size_default = sizeof(__u32);
8828
8829 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8830 off % size || type != BPF_READ)
8831 return false;
8832
8833 switch (off) {
8834 case offsetof(struct sk_reuseport_md, data):
8835 info->reg_type = PTR_TO_PACKET;
8836 return size == sizeof(__u64);
8837
8838 case offsetof(struct sk_reuseport_md, data_end):
8839 info->reg_type = PTR_TO_PACKET_END;
8840 return size == sizeof(__u64);
8841
8842 case offsetof(struct sk_reuseport_md, hash):
8843 return size == size_default;
8844
8845 /* Fields that allow narrowing */
8846 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
8847 if (size < FIELD_SIZEOF(struct sk_buff, protocol))
8848 return false;
8849 /* fall through */
8850 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
8851 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
8852 case bpf_ctx_range(struct sk_reuseport_md, len):
8853 bpf_ctx_record_field_size(info, size_default);
8854 return bpf_ctx_narrow_access_ok(off, size, size_default);
8855
8856 default:
8857 return false;
8858 }
8859 }
8860
8861 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
8862 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8863 si->dst_reg, si->src_reg, \
8864 bpf_target_off(struct sk_reuseport_kern, F, \
8865 FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8866 target_size)); \
8867 })
8868
8869 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
8870 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
8871 struct sk_buff, \
8872 skb, \
8873 SKB_FIELD)
8874
8875 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
8876 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern, \
8877 struct sock, \
8878 sk, \
8879 SK_FIELD, BPF_SIZE, EXTRA_OFF)
8880
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8881 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8882 const struct bpf_insn *si,
8883 struct bpf_insn *insn_buf,
8884 struct bpf_prog *prog,
8885 u32 *target_size)
8886 {
8887 struct bpf_insn *insn = insn_buf;
8888
8889 switch (si->off) {
8890 case offsetof(struct sk_reuseport_md, data):
8891 SK_REUSEPORT_LOAD_SKB_FIELD(data);
8892 break;
8893
8894 case offsetof(struct sk_reuseport_md, len):
8895 SK_REUSEPORT_LOAD_SKB_FIELD(len);
8896 break;
8897
8898 case offsetof(struct sk_reuseport_md, eth_protocol):
8899 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8900 break;
8901
8902 case offsetof(struct sk_reuseport_md, ip_protocol):
8903 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
8904 SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
8905 BPF_W, 0);
8906 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
8907 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
8908 SK_FL_PROTO_SHIFT);
8909 /* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
8910 * aware. No further narrowing or masking is needed.
8911 */
8912 *target_size = 1;
8913 break;
8914
8915 case offsetof(struct sk_reuseport_md, data_end):
8916 SK_REUSEPORT_LOAD_FIELD(data_end);
8917 break;
8918
8919 case offsetof(struct sk_reuseport_md, hash):
8920 SK_REUSEPORT_LOAD_FIELD(hash);
8921 break;
8922
8923 case offsetof(struct sk_reuseport_md, bind_inany):
8924 SK_REUSEPORT_LOAD_FIELD(bind_inany);
8925 break;
8926 }
8927
8928 return insn - insn_buf;
8929 }
8930
8931 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8932 .get_func_proto = sk_reuseport_func_proto,
8933 .is_valid_access = sk_reuseport_is_valid_access,
8934 .convert_ctx_access = sk_reuseport_convert_ctx_access,
8935 };
8936
8937 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8938 };
8939 #endif /* CONFIG_INET */
8940