1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 
36 #include <asm/barrier.h>
37 #include <asm/unaligned.h>
38 
39 /* Registers */
40 #define BPF_R0	regs[BPF_REG_0]
41 #define BPF_R1	regs[BPF_REG_1]
42 #define BPF_R2	regs[BPF_REG_2]
43 #define BPF_R3	regs[BPF_REG_3]
44 #define BPF_R4	regs[BPF_REG_4]
45 #define BPF_R5	regs[BPF_REG_5]
46 #define BPF_R6	regs[BPF_REG_6]
47 #define BPF_R7	regs[BPF_REG_7]
48 #define BPF_R8	regs[BPF_REG_8]
49 #define BPF_R9	regs[BPF_REG_9]
50 #define BPF_R10	regs[BPF_REG_10]
51 
52 /* Named registers */
53 #define DST	regs[insn->dst_reg]
54 #define SRC	regs[insn->src_reg]
55 #define FP	regs[BPF_REG_FP]
56 #define AX	regs[BPF_REG_AX]
57 #define ARG1	regs[BPF_REG_ARG1]
58 #define CTX	regs[BPF_REG_CTX]
59 #define IMM	insn->imm
60 
61 /* No hurry in this branch
62  *
63  * Exported for the bpf jit load helper.
64  */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)65 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
66 {
67 	u8 *ptr = NULL;
68 
69 	if (k >= SKF_NET_OFF)
70 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
71 	else if (k >= SKF_LL_OFF)
72 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
73 
74 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
75 		return ptr;
76 
77 	return NULL;
78 }
79 
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)80 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
81 {
82 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
83 	struct bpf_prog_aux *aux;
84 	struct bpf_prog *fp;
85 
86 	size = round_up(size, PAGE_SIZE);
87 	fp = __vmalloc(size, gfp_flags);
88 	if (fp == NULL)
89 		return NULL;
90 
91 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
92 	if (aux == NULL) {
93 		vfree(fp);
94 		return NULL;
95 	}
96 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
97 	if (!fp->active) {
98 		vfree(fp);
99 		kfree(aux);
100 		return NULL;
101 	}
102 
103 	fp->pages = size / PAGE_SIZE;
104 	fp->aux = aux;
105 	fp->aux->prog = fp;
106 	fp->jit_requested = ebpf_jit_enabled();
107 
108 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
109 	mutex_init(&fp->aux->used_maps_mutex);
110 	mutex_init(&fp->aux->dst_mutex);
111 
112 	return fp;
113 }
114 
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)115 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
116 {
117 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
118 	struct bpf_prog *prog;
119 	int cpu;
120 
121 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
122 	if (!prog)
123 		return NULL;
124 
125 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
126 	if (!prog->stats) {
127 		free_percpu(prog->active);
128 		kfree(prog->aux);
129 		vfree(prog);
130 		return NULL;
131 	}
132 
133 	for_each_possible_cpu(cpu) {
134 		struct bpf_prog_stats *pstats;
135 
136 		pstats = per_cpu_ptr(prog->stats, cpu);
137 		u64_stats_init(&pstats->syncp);
138 	}
139 	return prog;
140 }
141 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
142 
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)143 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
144 {
145 	if (!prog->aux->nr_linfo || !prog->jit_requested)
146 		return 0;
147 
148 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
149 					  sizeof(*prog->aux->jited_linfo),
150 					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
151 	if (!prog->aux->jited_linfo)
152 		return -ENOMEM;
153 
154 	return 0;
155 }
156 
bpf_prog_jit_attempt_done(struct bpf_prog * prog)157 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
158 {
159 	if (prog->aux->jited_linfo &&
160 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
161 		kvfree(prog->aux->jited_linfo);
162 		prog->aux->jited_linfo = NULL;
163 	}
164 
165 	kfree(prog->aux->kfunc_tab);
166 	prog->aux->kfunc_tab = NULL;
167 }
168 
169 /* The jit engine is responsible to provide an array
170  * for insn_off to the jited_off mapping (insn_to_jit_off).
171  *
172  * The idx to this array is the insn_off.  Hence, the insn_off
173  * here is relative to the prog itself instead of the main prog.
174  * This array has one entry for each xlated bpf insn.
175  *
176  * jited_off is the byte off to the last byte of the jited insn.
177  *
178  * Hence, with
179  * insn_start:
180  *      The first bpf insn off of the prog.  The insn off
181  *      here is relative to the main prog.
182  *      e.g. if prog is a subprog, insn_start > 0
183  * linfo_idx:
184  *      The prog's idx to prog->aux->linfo and jited_linfo
185  *
186  * jited_linfo[linfo_idx] = prog->bpf_func
187  *
188  * For i > linfo_idx,
189  *
190  * jited_linfo[i] = prog->bpf_func +
191  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
192  */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)193 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
194 			       const u32 *insn_to_jit_off)
195 {
196 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
197 	const struct bpf_line_info *linfo;
198 	void **jited_linfo;
199 
200 	if (!prog->aux->jited_linfo)
201 		/* Userspace did not provide linfo */
202 		return;
203 
204 	linfo_idx = prog->aux->linfo_idx;
205 	linfo = &prog->aux->linfo[linfo_idx];
206 	insn_start = linfo[0].insn_off;
207 	insn_end = insn_start + prog->len;
208 
209 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
210 	jited_linfo[0] = prog->bpf_func;
211 
212 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
213 
214 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
215 		/* The verifier ensures that linfo[i].insn_off is
216 		 * strictly increasing
217 		 */
218 		jited_linfo[i] = prog->bpf_func +
219 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
220 }
221 
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)222 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
223 				  gfp_t gfp_extra_flags)
224 {
225 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
226 	struct bpf_prog *fp;
227 	u32 pages;
228 
229 	size = round_up(size, PAGE_SIZE);
230 	pages = size / PAGE_SIZE;
231 	if (pages <= fp_old->pages)
232 		return fp_old;
233 
234 	fp = __vmalloc(size, gfp_flags);
235 	if (fp) {
236 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
237 		fp->pages = pages;
238 		fp->aux->prog = fp;
239 
240 		/* We keep fp->aux from fp_old around in the new
241 		 * reallocated structure.
242 		 */
243 		fp_old->aux = NULL;
244 		fp_old->stats = NULL;
245 		fp_old->active = NULL;
246 		__bpf_prog_free(fp_old);
247 	}
248 
249 	return fp;
250 }
251 
__bpf_prog_free(struct bpf_prog * fp)252 void __bpf_prog_free(struct bpf_prog *fp)
253 {
254 	if (fp->aux) {
255 		mutex_destroy(&fp->aux->used_maps_mutex);
256 		mutex_destroy(&fp->aux->dst_mutex);
257 		kfree(fp->aux->poke_tab);
258 		kfree(fp->aux);
259 	}
260 	free_percpu(fp->stats);
261 	free_percpu(fp->active);
262 	vfree(fp);
263 }
264 
bpf_prog_calc_tag(struct bpf_prog * fp)265 int bpf_prog_calc_tag(struct bpf_prog *fp)
266 {
267 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
268 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
269 	u32 digest[SHA1_DIGEST_WORDS];
270 	u32 ws[SHA1_WORKSPACE_WORDS];
271 	u32 i, bsize, psize, blocks;
272 	struct bpf_insn *dst;
273 	bool was_ld_map;
274 	u8 *raw, *todo;
275 	__be32 *result;
276 	__be64 *bits;
277 
278 	raw = vmalloc(raw_size);
279 	if (!raw)
280 		return -ENOMEM;
281 
282 	sha1_init(digest);
283 	memset(ws, 0, sizeof(ws));
284 
285 	/* We need to take out the map fd for the digest calculation
286 	 * since they are unstable from user space side.
287 	 */
288 	dst = (void *)raw;
289 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
290 		dst[i] = fp->insnsi[i];
291 		if (!was_ld_map &&
292 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
293 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
294 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
295 			was_ld_map = true;
296 			dst[i].imm = 0;
297 		} else if (was_ld_map &&
298 			   dst[i].code == 0 &&
299 			   dst[i].dst_reg == 0 &&
300 			   dst[i].src_reg == 0 &&
301 			   dst[i].off == 0) {
302 			was_ld_map = false;
303 			dst[i].imm = 0;
304 		} else {
305 			was_ld_map = false;
306 		}
307 	}
308 
309 	psize = bpf_prog_insn_size(fp);
310 	memset(&raw[psize], 0, raw_size - psize);
311 	raw[psize++] = 0x80;
312 
313 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
314 	blocks = bsize / SHA1_BLOCK_SIZE;
315 	todo   = raw;
316 	if (bsize - psize >= sizeof(__be64)) {
317 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
318 	} else {
319 		bits = (__be64 *)(todo + bsize + bits_offset);
320 		blocks++;
321 	}
322 	*bits = cpu_to_be64((psize - 1) << 3);
323 
324 	while (blocks--) {
325 		sha1_transform(digest, todo, ws);
326 		todo += SHA1_BLOCK_SIZE;
327 	}
328 
329 	result = (__force __be32 *)digest;
330 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
331 		result[i] = cpu_to_be32(digest[i]);
332 	memcpy(fp->tag, result, sizeof(fp->tag));
333 
334 	vfree(raw);
335 	return 0;
336 }
337 
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)338 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
339 				s32 end_new, s32 curr, const bool probe_pass)
340 {
341 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
342 	s32 delta = end_new - end_old;
343 	s64 imm = insn->imm;
344 
345 	if (curr < pos && curr + imm + 1 >= end_old)
346 		imm += delta;
347 	else if (curr >= end_new && curr + imm + 1 < end_new)
348 		imm -= delta;
349 	if (imm < imm_min || imm > imm_max)
350 		return -ERANGE;
351 	if (!probe_pass)
352 		insn->imm = imm;
353 	return 0;
354 }
355 
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)356 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
357 				s32 end_new, s32 curr, const bool probe_pass)
358 {
359 	const s32 off_min = S16_MIN, off_max = S16_MAX;
360 	s32 delta = end_new - end_old;
361 	s32 off = insn->off;
362 
363 	if (curr < pos && curr + off + 1 >= end_old)
364 		off += delta;
365 	else if (curr >= end_new && curr + off + 1 < end_new)
366 		off -= delta;
367 	if (off < off_min || off > off_max)
368 		return -ERANGE;
369 	if (!probe_pass)
370 		insn->off = off;
371 	return 0;
372 }
373 
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)374 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
375 			    s32 end_new, const bool probe_pass)
376 {
377 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
378 	struct bpf_insn *insn = prog->insnsi;
379 	int ret = 0;
380 
381 	for (i = 0; i < insn_cnt; i++, insn++) {
382 		u8 code;
383 
384 		/* In the probing pass we still operate on the original,
385 		 * unpatched image in order to check overflows before we
386 		 * do any other adjustments. Therefore skip the patchlet.
387 		 */
388 		if (probe_pass && i == pos) {
389 			i = end_new;
390 			insn = prog->insnsi + end_old;
391 		}
392 		code = insn->code;
393 		if ((BPF_CLASS(code) != BPF_JMP &&
394 		     BPF_CLASS(code) != BPF_JMP32) ||
395 		    BPF_OP(code) == BPF_EXIT)
396 			continue;
397 		/* Adjust offset of jmps if we cross patch boundaries. */
398 		if (BPF_OP(code) == BPF_CALL) {
399 			if (insn->src_reg != BPF_PSEUDO_CALL)
400 				continue;
401 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
402 						   end_new, i, probe_pass);
403 		} else {
404 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
405 						   end_new, i, probe_pass);
406 		}
407 		if (ret)
408 			break;
409 	}
410 
411 	return ret;
412 }
413 
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)414 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
415 {
416 	struct bpf_line_info *linfo;
417 	u32 i, nr_linfo;
418 
419 	nr_linfo = prog->aux->nr_linfo;
420 	if (!nr_linfo || !delta)
421 		return;
422 
423 	linfo = prog->aux->linfo;
424 
425 	for (i = 0; i < nr_linfo; i++)
426 		if (off < linfo[i].insn_off)
427 			break;
428 
429 	/* Push all off < linfo[i].insn_off by delta */
430 	for (; i < nr_linfo; i++)
431 		linfo[i].insn_off += delta;
432 }
433 
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)434 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
435 				       const struct bpf_insn *patch, u32 len)
436 {
437 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
438 	const u32 cnt_max = S16_MAX;
439 	struct bpf_prog *prog_adj;
440 	int err;
441 
442 	/* Since our patchlet doesn't expand the image, we're done. */
443 	if (insn_delta == 0) {
444 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
445 		return prog;
446 	}
447 
448 	insn_adj_cnt = prog->len + insn_delta;
449 
450 	/* Reject anything that would potentially let the insn->off
451 	 * target overflow when we have excessive program expansions.
452 	 * We need to probe here before we do any reallocation where
453 	 * we afterwards may not fail anymore.
454 	 */
455 	if (insn_adj_cnt > cnt_max &&
456 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
457 		return ERR_PTR(err);
458 
459 	/* Several new instructions need to be inserted. Make room
460 	 * for them. Likely, there's no need for a new allocation as
461 	 * last page could have large enough tailroom.
462 	 */
463 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
464 				    GFP_USER);
465 	if (!prog_adj)
466 		return ERR_PTR(-ENOMEM);
467 
468 	prog_adj->len = insn_adj_cnt;
469 
470 	/* Patching happens in 3 steps:
471 	 *
472 	 * 1) Move over tail of insnsi from next instruction onwards,
473 	 *    so we can patch the single target insn with one or more
474 	 *    new ones (patching is always from 1 to n insns, n > 0).
475 	 * 2) Inject new instructions at the target location.
476 	 * 3) Adjust branch offsets if necessary.
477 	 */
478 	insn_rest = insn_adj_cnt - off - len;
479 
480 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
481 		sizeof(*patch) * insn_rest);
482 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
483 
484 	/* We are guaranteed to not fail at this point, otherwise
485 	 * the ship has sailed to reverse to the original state. An
486 	 * overflow cannot happen at this point.
487 	 */
488 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
489 
490 	bpf_adj_linfo(prog_adj, off, insn_delta);
491 
492 	return prog_adj;
493 }
494 
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)495 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
496 {
497 	/* Branch offsets can't overflow when program is shrinking, no need
498 	 * to call bpf_adj_branches(..., true) here
499 	 */
500 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
501 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
502 	prog->len -= cnt;
503 
504 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
505 }
506 
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)507 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
508 {
509 	int i;
510 
511 	for (i = 0; i < fp->aux->func_cnt; i++)
512 		bpf_prog_kallsyms_del(fp->aux->func[i]);
513 }
514 
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)515 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
516 {
517 	bpf_prog_kallsyms_del_subprogs(fp);
518 	bpf_prog_kallsyms_del(fp);
519 }
520 
521 #ifdef CONFIG_BPF_JIT
522 /* All BPF JIT sysctl knobs here. */
523 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
524 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
525 int bpf_jit_harden   __read_mostly;
526 long bpf_jit_limit   __read_mostly;
527 long bpf_jit_limit_max __read_mostly;
528 
529 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)530 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
531 {
532 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
533 	unsigned long addr = (unsigned long)hdr;
534 
535 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
536 
537 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
538 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
539 }
540 
541 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)542 bpf_prog_ksym_set_name(struct bpf_prog *prog)
543 {
544 	char *sym = prog->aux->ksym.name;
545 	const char *end = sym + KSYM_NAME_LEN;
546 	const struct btf_type *type;
547 	const char *func_name;
548 
549 	BUILD_BUG_ON(sizeof("bpf_prog_") +
550 		     sizeof(prog->tag) * 2 +
551 		     /* name has been null terminated.
552 		      * We should need +1 for the '_' preceding
553 		      * the name.  However, the null character
554 		      * is double counted between the name and the
555 		      * sizeof("bpf_prog_") above, so we omit
556 		      * the +1 here.
557 		      */
558 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
559 
560 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
561 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
562 
563 	/* prog->aux->name will be ignored if full btf name is available */
564 	if (prog->aux->func_info_cnt) {
565 		type = btf_type_by_id(prog->aux->btf,
566 				      prog->aux->func_info[prog->aux->func_idx].type_id);
567 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
568 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
569 		return;
570 	}
571 
572 	if (prog->aux->name[0])
573 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
574 	else
575 		*sym = 0;
576 }
577 
bpf_get_ksym_start(struct latch_tree_node * n)578 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
579 {
580 	return container_of(n, struct bpf_ksym, tnode)->start;
581 }
582 
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)583 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
584 					  struct latch_tree_node *b)
585 {
586 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
587 }
588 
bpf_tree_comp(void * key,struct latch_tree_node * n)589 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
590 {
591 	unsigned long val = (unsigned long)key;
592 	const struct bpf_ksym *ksym;
593 
594 	ksym = container_of(n, struct bpf_ksym, tnode);
595 
596 	if (val < ksym->start)
597 		return -1;
598 	if (val >= ksym->end)
599 		return  1;
600 
601 	return 0;
602 }
603 
604 static const struct latch_tree_ops bpf_tree_ops = {
605 	.less	= bpf_tree_less,
606 	.comp	= bpf_tree_comp,
607 };
608 
609 static DEFINE_SPINLOCK(bpf_lock);
610 static LIST_HEAD(bpf_kallsyms);
611 static struct latch_tree_root bpf_tree __cacheline_aligned;
612 
bpf_ksym_add(struct bpf_ksym * ksym)613 void bpf_ksym_add(struct bpf_ksym *ksym)
614 {
615 	spin_lock_bh(&bpf_lock);
616 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
617 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
618 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
619 	spin_unlock_bh(&bpf_lock);
620 }
621 
__bpf_ksym_del(struct bpf_ksym * ksym)622 static void __bpf_ksym_del(struct bpf_ksym *ksym)
623 {
624 	if (list_empty(&ksym->lnode))
625 		return;
626 
627 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
628 	list_del_rcu(&ksym->lnode);
629 }
630 
bpf_ksym_del(struct bpf_ksym * ksym)631 void bpf_ksym_del(struct bpf_ksym *ksym)
632 {
633 	spin_lock_bh(&bpf_lock);
634 	__bpf_ksym_del(ksym);
635 	spin_unlock_bh(&bpf_lock);
636 }
637 
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)638 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
639 {
640 	return fp->jited && !bpf_prog_was_classic(fp);
641 }
642 
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)643 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
644 {
645 	return list_empty(&fp->aux->ksym.lnode) ||
646 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
647 }
648 
bpf_prog_kallsyms_add(struct bpf_prog * fp)649 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
650 {
651 	if (!bpf_prog_kallsyms_candidate(fp) ||
652 	    !bpf_capable())
653 		return;
654 
655 	bpf_prog_ksym_set_addr(fp);
656 	bpf_prog_ksym_set_name(fp);
657 	fp->aux->ksym.prog = true;
658 
659 	bpf_ksym_add(&fp->aux->ksym);
660 }
661 
bpf_prog_kallsyms_del(struct bpf_prog * fp)662 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
663 {
664 	if (!bpf_prog_kallsyms_candidate(fp))
665 		return;
666 
667 	bpf_ksym_del(&fp->aux->ksym);
668 }
669 
bpf_ksym_find(unsigned long addr)670 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
671 {
672 	struct latch_tree_node *n;
673 
674 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
675 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
676 }
677 
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)678 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
679 				 unsigned long *off, char *sym)
680 {
681 	struct bpf_ksym *ksym;
682 	char *ret = NULL;
683 
684 	rcu_read_lock();
685 	ksym = bpf_ksym_find(addr);
686 	if (ksym) {
687 		unsigned long symbol_start = ksym->start;
688 		unsigned long symbol_end = ksym->end;
689 
690 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
691 
692 		ret = sym;
693 		if (size)
694 			*size = symbol_end - symbol_start;
695 		if (off)
696 			*off  = addr - symbol_start;
697 	}
698 	rcu_read_unlock();
699 
700 	return ret;
701 }
702 
is_bpf_text_address(unsigned long addr)703 bool is_bpf_text_address(unsigned long addr)
704 {
705 	bool ret;
706 
707 	rcu_read_lock();
708 	ret = bpf_ksym_find(addr) != NULL;
709 	rcu_read_unlock();
710 
711 	return ret;
712 }
713 
bpf_prog_ksym_find(unsigned long addr)714 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
715 {
716 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
717 
718 	return ksym && ksym->prog ?
719 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
720 	       NULL;
721 }
722 
search_bpf_extables(unsigned long addr)723 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
724 {
725 	const struct exception_table_entry *e = NULL;
726 	struct bpf_prog *prog;
727 
728 	rcu_read_lock();
729 	prog = bpf_prog_ksym_find(addr);
730 	if (!prog)
731 		goto out;
732 	if (!prog->aux->num_exentries)
733 		goto out;
734 
735 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
736 out:
737 	rcu_read_unlock();
738 	return e;
739 }
740 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)741 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
742 		    char *sym)
743 {
744 	struct bpf_ksym *ksym;
745 	unsigned int it = 0;
746 	int ret = -ERANGE;
747 
748 	if (!bpf_jit_kallsyms_enabled())
749 		return ret;
750 
751 	rcu_read_lock();
752 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
753 		if (it++ != symnum)
754 			continue;
755 
756 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
757 
758 		*value = ksym->start;
759 		*type  = BPF_SYM_ELF_TYPE;
760 
761 		ret = 0;
762 		break;
763 	}
764 	rcu_read_unlock();
765 
766 	return ret;
767 }
768 
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)769 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
770 				struct bpf_jit_poke_descriptor *poke)
771 {
772 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
773 	static const u32 poke_tab_max = 1024;
774 	u32 slot = prog->aux->size_poke_tab;
775 	u32 size = slot + 1;
776 
777 	if (size > poke_tab_max)
778 		return -ENOSPC;
779 	if (poke->tailcall_target || poke->tailcall_target_stable ||
780 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
781 		return -EINVAL;
782 
783 	switch (poke->reason) {
784 	case BPF_POKE_REASON_TAIL_CALL:
785 		if (!poke->tail_call.map)
786 			return -EINVAL;
787 		break;
788 	default:
789 		return -EINVAL;
790 	}
791 
792 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
793 	if (!tab)
794 		return -ENOMEM;
795 
796 	memcpy(&tab[slot], poke, sizeof(*poke));
797 	prog->aux->size_poke_tab = size;
798 	prog->aux->poke_tab = tab;
799 
800 	return slot;
801 }
802 
803 static atomic_long_t bpf_jit_current;
804 
805 /* Can be overridden by an arch's JIT compiler if it has a custom,
806  * dedicated BPF backend memory area, or if neither of the two
807  * below apply.
808  */
bpf_jit_alloc_exec_limit(void)809 u64 __weak bpf_jit_alloc_exec_limit(void)
810 {
811 #if defined(MODULES_VADDR)
812 	return MODULES_END - MODULES_VADDR;
813 #else
814 	return VMALLOC_END - VMALLOC_START;
815 #endif
816 }
817 
bpf_jit_charge_init(void)818 static int __init bpf_jit_charge_init(void)
819 {
820 	/* Only used as heuristic here to derive limit. */
821 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
822 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
823 					    PAGE_SIZE), LONG_MAX);
824 	return 0;
825 }
826 pure_initcall(bpf_jit_charge_init);
827 
bpf_jit_charge_modmem(u32 pages)828 int bpf_jit_charge_modmem(u32 pages)
829 {
830 	if (atomic_long_add_return(pages, &bpf_jit_current) >
831 	    (bpf_jit_limit >> PAGE_SHIFT)) {
832 		if (!bpf_capable()) {
833 			atomic_long_sub(pages, &bpf_jit_current);
834 			return -EPERM;
835 		}
836 	}
837 
838 	return 0;
839 }
840 
bpf_jit_uncharge_modmem(u32 pages)841 void bpf_jit_uncharge_modmem(u32 pages)
842 {
843 	atomic_long_sub(pages, &bpf_jit_current);
844 }
845 
bpf_jit_alloc_exec(unsigned long size)846 void *__weak bpf_jit_alloc_exec(unsigned long size)
847 {
848 	return module_alloc(size);
849 }
850 
bpf_jit_free_exec(void * addr)851 void __weak bpf_jit_free_exec(void *addr)
852 {
853 	module_memfree(addr);
854 }
855 
856 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)857 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
858 		     unsigned int alignment,
859 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
860 {
861 	struct bpf_binary_header *hdr;
862 	u32 size, hole, start, pages;
863 
864 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
865 		     alignment > BPF_IMAGE_ALIGNMENT);
866 
867 	/* Most of BPF filters are really small, but if some of them
868 	 * fill a page, allow at least 128 extra bytes to insert a
869 	 * random section of illegal instructions.
870 	 */
871 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
872 	pages = size / PAGE_SIZE;
873 
874 	if (bpf_jit_charge_modmem(pages))
875 		return NULL;
876 	hdr = bpf_jit_alloc_exec(size);
877 	if (!hdr) {
878 		bpf_jit_uncharge_modmem(pages);
879 		return NULL;
880 	}
881 
882 	/* Fill space with illegal/arch-dep instructions. */
883 	bpf_fill_ill_insns(hdr, size);
884 
885 	hdr->pages = pages;
886 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
887 		     PAGE_SIZE - sizeof(*hdr));
888 	start = (get_random_int() % hole) & ~(alignment - 1);
889 
890 	/* Leave a random number of instructions before BPF code. */
891 	*image_ptr = &hdr->image[start];
892 
893 	return hdr;
894 }
895 
bpf_jit_binary_free(struct bpf_binary_header * hdr)896 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
897 {
898 	u32 pages = hdr->pages;
899 
900 	bpf_jit_free_exec(hdr);
901 	bpf_jit_uncharge_modmem(pages);
902 }
903 
904 /* This symbol is only overridden by archs that have different
905  * requirements than the usual eBPF JITs, f.e. when they only
906  * implement cBPF JIT, do not set images read-only, etc.
907  */
bpf_jit_free(struct bpf_prog * fp)908 void __weak bpf_jit_free(struct bpf_prog *fp)
909 {
910 	if (fp->jited) {
911 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
912 
913 		bpf_jit_binary_free(hdr);
914 
915 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
916 	}
917 
918 	bpf_prog_unlock_free(fp);
919 }
920 
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)921 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
922 			  const struct bpf_insn *insn, bool extra_pass,
923 			  u64 *func_addr, bool *func_addr_fixed)
924 {
925 	s16 off = insn->off;
926 	s32 imm = insn->imm;
927 	u8 *addr;
928 
929 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
930 	if (!*func_addr_fixed) {
931 		/* Place-holder address till the last pass has collected
932 		 * all addresses for JITed subprograms in which case we
933 		 * can pick them up from prog->aux.
934 		 */
935 		if (!extra_pass)
936 			addr = NULL;
937 		else if (prog->aux->func &&
938 			 off >= 0 && off < prog->aux->func_cnt)
939 			addr = (u8 *)prog->aux->func[off]->bpf_func;
940 		else
941 			return -EINVAL;
942 	} else {
943 		/* Address of a BPF helper call. Since part of the core
944 		 * kernel, it's always at a fixed location. __bpf_call_base
945 		 * and the helper with imm relative to it are both in core
946 		 * kernel.
947 		 */
948 		addr = (u8 *)__bpf_call_base + imm;
949 	}
950 
951 	*func_addr = (unsigned long)addr;
952 	return 0;
953 }
954 
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)955 static int bpf_jit_blind_insn(const struct bpf_insn *from,
956 			      const struct bpf_insn *aux,
957 			      struct bpf_insn *to_buff,
958 			      bool emit_zext)
959 {
960 	struct bpf_insn *to = to_buff;
961 	u32 imm_rnd = get_random_int();
962 	s16 off;
963 
964 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
965 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
966 
967 	/* Constraints on AX register:
968 	 *
969 	 * AX register is inaccessible from user space. It is mapped in
970 	 * all JITs, and used here for constant blinding rewrites. It is
971 	 * typically "stateless" meaning its contents are only valid within
972 	 * the executed instruction, but not across several instructions.
973 	 * There are a few exceptions however which are further detailed
974 	 * below.
975 	 *
976 	 * Constant blinding is only used by JITs, not in the interpreter.
977 	 * The interpreter uses AX in some occasions as a local temporary
978 	 * register e.g. in DIV or MOD instructions.
979 	 *
980 	 * In restricted circumstances, the verifier can also use the AX
981 	 * register for rewrites as long as they do not interfere with
982 	 * the above cases!
983 	 */
984 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
985 		goto out;
986 
987 	if (from->imm == 0 &&
988 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
989 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
990 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
991 		goto out;
992 	}
993 
994 	switch (from->code) {
995 	case BPF_ALU | BPF_ADD | BPF_K:
996 	case BPF_ALU | BPF_SUB | BPF_K:
997 	case BPF_ALU | BPF_AND | BPF_K:
998 	case BPF_ALU | BPF_OR  | BPF_K:
999 	case BPF_ALU | BPF_XOR | BPF_K:
1000 	case BPF_ALU | BPF_MUL | BPF_K:
1001 	case BPF_ALU | BPF_MOV | BPF_K:
1002 	case BPF_ALU | BPF_DIV | BPF_K:
1003 	case BPF_ALU | BPF_MOD | BPF_K:
1004 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1005 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1006 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1007 		break;
1008 
1009 	case BPF_ALU64 | BPF_ADD | BPF_K:
1010 	case BPF_ALU64 | BPF_SUB | BPF_K:
1011 	case BPF_ALU64 | BPF_AND | BPF_K:
1012 	case BPF_ALU64 | BPF_OR  | BPF_K:
1013 	case BPF_ALU64 | BPF_XOR | BPF_K:
1014 	case BPF_ALU64 | BPF_MUL | BPF_K:
1015 	case BPF_ALU64 | BPF_MOV | BPF_K:
1016 	case BPF_ALU64 | BPF_DIV | BPF_K:
1017 	case BPF_ALU64 | BPF_MOD | BPF_K:
1018 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1019 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1020 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1021 		break;
1022 
1023 	case BPF_JMP | BPF_JEQ  | BPF_K:
1024 	case BPF_JMP | BPF_JNE  | BPF_K:
1025 	case BPF_JMP | BPF_JGT  | BPF_K:
1026 	case BPF_JMP | BPF_JLT  | BPF_K:
1027 	case BPF_JMP | BPF_JGE  | BPF_K:
1028 	case BPF_JMP | BPF_JLE  | BPF_K:
1029 	case BPF_JMP | BPF_JSGT | BPF_K:
1030 	case BPF_JMP | BPF_JSLT | BPF_K:
1031 	case BPF_JMP | BPF_JSGE | BPF_K:
1032 	case BPF_JMP | BPF_JSLE | BPF_K:
1033 	case BPF_JMP | BPF_JSET | BPF_K:
1034 		/* Accommodate for extra offset in case of a backjump. */
1035 		off = from->off;
1036 		if (off < 0)
1037 			off -= 2;
1038 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1039 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1040 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1041 		break;
1042 
1043 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1044 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1045 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1046 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1047 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1048 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1049 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1050 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1051 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1052 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1053 	case BPF_JMP32 | BPF_JSET | BPF_K:
1054 		/* Accommodate for extra offset in case of a backjump. */
1055 		off = from->off;
1056 		if (off < 0)
1057 			off -= 2;
1058 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1059 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1060 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1061 				      off);
1062 		break;
1063 
1064 	case BPF_LD | BPF_IMM | BPF_DW:
1065 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1066 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1067 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1068 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1069 		break;
1070 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1071 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1072 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1073 		if (emit_zext)
1074 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1075 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1076 		break;
1077 
1078 	case BPF_ST | BPF_MEM | BPF_DW:
1079 	case BPF_ST | BPF_MEM | BPF_W:
1080 	case BPF_ST | BPF_MEM | BPF_H:
1081 	case BPF_ST | BPF_MEM | BPF_B:
1082 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1083 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1084 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1085 		break;
1086 	}
1087 out:
1088 	return to - to_buff;
1089 }
1090 
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1091 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1092 					      gfp_t gfp_extra_flags)
1093 {
1094 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1095 	struct bpf_prog *fp;
1096 
1097 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1098 	if (fp != NULL) {
1099 		/* aux->prog still points to the fp_other one, so
1100 		 * when promoting the clone to the real program,
1101 		 * this still needs to be adapted.
1102 		 */
1103 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1104 	}
1105 
1106 	return fp;
1107 }
1108 
bpf_prog_clone_free(struct bpf_prog * fp)1109 static void bpf_prog_clone_free(struct bpf_prog *fp)
1110 {
1111 	/* aux was stolen by the other clone, so we cannot free
1112 	 * it from this path! It will be freed eventually by the
1113 	 * other program on release.
1114 	 *
1115 	 * At this point, we don't need a deferred release since
1116 	 * clone is guaranteed to not be locked.
1117 	 */
1118 	fp->aux = NULL;
1119 	fp->stats = NULL;
1120 	fp->active = NULL;
1121 	__bpf_prog_free(fp);
1122 }
1123 
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1124 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1125 {
1126 	/* We have to repoint aux->prog to self, as we don't
1127 	 * know whether fp here is the clone or the original.
1128 	 */
1129 	fp->aux->prog = fp;
1130 	bpf_prog_clone_free(fp_other);
1131 }
1132 
bpf_jit_blind_constants(struct bpf_prog * prog)1133 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1134 {
1135 	struct bpf_insn insn_buff[16], aux[2];
1136 	struct bpf_prog *clone, *tmp;
1137 	int insn_delta, insn_cnt;
1138 	struct bpf_insn *insn;
1139 	int i, rewritten;
1140 
1141 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1142 		return prog;
1143 
1144 	clone = bpf_prog_clone_create(prog, GFP_USER);
1145 	if (!clone)
1146 		return ERR_PTR(-ENOMEM);
1147 
1148 	insn_cnt = clone->len;
1149 	insn = clone->insnsi;
1150 
1151 	for (i = 0; i < insn_cnt; i++, insn++) {
1152 		/* We temporarily need to hold the original ld64 insn
1153 		 * so that we can still access the first part in the
1154 		 * second blinding run.
1155 		 */
1156 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1157 		    insn[1].code == 0)
1158 			memcpy(aux, insn, sizeof(aux));
1159 
1160 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1161 						clone->aux->verifier_zext);
1162 		if (!rewritten)
1163 			continue;
1164 
1165 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1166 		if (IS_ERR(tmp)) {
1167 			/* Patching may have repointed aux->prog during
1168 			 * realloc from the original one, so we need to
1169 			 * fix it up here on error.
1170 			 */
1171 			bpf_jit_prog_release_other(prog, clone);
1172 			return tmp;
1173 		}
1174 
1175 		clone = tmp;
1176 		insn_delta = rewritten - 1;
1177 
1178 		/* Walk new program and skip insns we just inserted. */
1179 		insn = clone->insnsi + i + insn_delta;
1180 		insn_cnt += insn_delta;
1181 		i        += insn_delta;
1182 	}
1183 
1184 	clone->blinded = 1;
1185 	return clone;
1186 }
1187 #endif /* CONFIG_BPF_JIT */
1188 
1189 /* Base function for offset calculation. Needs to go into .text section,
1190  * therefore keeping it non-static as well; will also be used by JITs
1191  * anyway later on, so do not let the compiler omit it. This also needs
1192  * to go into kallsyms for correlation from e.g. bpftool, so naming
1193  * must not change.
1194  */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1195 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1196 {
1197 	return 0;
1198 }
1199 EXPORT_SYMBOL_GPL(__bpf_call_base);
1200 
1201 /* All UAPI available opcodes. */
1202 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1203 	/* 32 bit ALU operations. */		\
1204 	/*   Register based. */			\
1205 	INSN_3(ALU, ADD,  X),			\
1206 	INSN_3(ALU, SUB,  X),			\
1207 	INSN_3(ALU, AND,  X),			\
1208 	INSN_3(ALU, OR,   X),			\
1209 	INSN_3(ALU, LSH,  X),			\
1210 	INSN_3(ALU, RSH,  X),			\
1211 	INSN_3(ALU, XOR,  X),			\
1212 	INSN_3(ALU, MUL,  X),			\
1213 	INSN_3(ALU, MOV,  X),			\
1214 	INSN_3(ALU, ARSH, X),			\
1215 	INSN_3(ALU, DIV,  X),			\
1216 	INSN_3(ALU, MOD,  X),			\
1217 	INSN_2(ALU, NEG),			\
1218 	INSN_3(ALU, END, TO_BE),		\
1219 	INSN_3(ALU, END, TO_LE),		\
1220 	/*   Immediate based. */		\
1221 	INSN_3(ALU, ADD,  K),			\
1222 	INSN_3(ALU, SUB,  K),			\
1223 	INSN_3(ALU, AND,  K),			\
1224 	INSN_3(ALU, OR,   K),			\
1225 	INSN_3(ALU, LSH,  K),			\
1226 	INSN_3(ALU, RSH,  K),			\
1227 	INSN_3(ALU, XOR,  K),			\
1228 	INSN_3(ALU, MUL,  K),			\
1229 	INSN_3(ALU, MOV,  K),			\
1230 	INSN_3(ALU, ARSH, K),			\
1231 	INSN_3(ALU, DIV,  K),			\
1232 	INSN_3(ALU, MOD,  K),			\
1233 	/* 64 bit ALU operations. */		\
1234 	/*   Register based. */			\
1235 	INSN_3(ALU64, ADD,  X),			\
1236 	INSN_3(ALU64, SUB,  X),			\
1237 	INSN_3(ALU64, AND,  X),			\
1238 	INSN_3(ALU64, OR,   X),			\
1239 	INSN_3(ALU64, LSH,  X),			\
1240 	INSN_3(ALU64, RSH,  X),			\
1241 	INSN_3(ALU64, XOR,  X),			\
1242 	INSN_3(ALU64, MUL,  X),			\
1243 	INSN_3(ALU64, MOV,  X),			\
1244 	INSN_3(ALU64, ARSH, X),			\
1245 	INSN_3(ALU64, DIV,  X),			\
1246 	INSN_3(ALU64, MOD,  X),			\
1247 	INSN_2(ALU64, NEG),			\
1248 	/*   Immediate based. */		\
1249 	INSN_3(ALU64, ADD,  K),			\
1250 	INSN_3(ALU64, SUB,  K),			\
1251 	INSN_3(ALU64, AND,  K),			\
1252 	INSN_3(ALU64, OR,   K),			\
1253 	INSN_3(ALU64, LSH,  K),			\
1254 	INSN_3(ALU64, RSH,  K),			\
1255 	INSN_3(ALU64, XOR,  K),			\
1256 	INSN_3(ALU64, MUL,  K),			\
1257 	INSN_3(ALU64, MOV,  K),			\
1258 	INSN_3(ALU64, ARSH, K),			\
1259 	INSN_3(ALU64, DIV,  K),			\
1260 	INSN_3(ALU64, MOD,  K),			\
1261 	/* Call instruction. */			\
1262 	INSN_2(JMP, CALL),			\
1263 	/* Exit instruction. */			\
1264 	INSN_2(JMP, EXIT),			\
1265 	/* 32-bit Jump instructions. */		\
1266 	/*   Register based. */			\
1267 	INSN_3(JMP32, JEQ,  X),			\
1268 	INSN_3(JMP32, JNE,  X),			\
1269 	INSN_3(JMP32, JGT,  X),			\
1270 	INSN_3(JMP32, JLT,  X),			\
1271 	INSN_3(JMP32, JGE,  X),			\
1272 	INSN_3(JMP32, JLE,  X),			\
1273 	INSN_3(JMP32, JSGT, X),			\
1274 	INSN_3(JMP32, JSLT, X),			\
1275 	INSN_3(JMP32, JSGE, X),			\
1276 	INSN_3(JMP32, JSLE, X),			\
1277 	INSN_3(JMP32, JSET, X),			\
1278 	/*   Immediate based. */		\
1279 	INSN_3(JMP32, JEQ,  K),			\
1280 	INSN_3(JMP32, JNE,  K),			\
1281 	INSN_3(JMP32, JGT,  K),			\
1282 	INSN_3(JMP32, JLT,  K),			\
1283 	INSN_3(JMP32, JGE,  K),			\
1284 	INSN_3(JMP32, JLE,  K),			\
1285 	INSN_3(JMP32, JSGT, K),			\
1286 	INSN_3(JMP32, JSLT, K),			\
1287 	INSN_3(JMP32, JSGE, K),			\
1288 	INSN_3(JMP32, JSLE, K),			\
1289 	INSN_3(JMP32, JSET, K),			\
1290 	/* Jump instructions. */		\
1291 	/*   Register based. */			\
1292 	INSN_3(JMP, JEQ,  X),			\
1293 	INSN_3(JMP, JNE,  X),			\
1294 	INSN_3(JMP, JGT,  X),			\
1295 	INSN_3(JMP, JLT,  X),			\
1296 	INSN_3(JMP, JGE,  X),			\
1297 	INSN_3(JMP, JLE,  X),			\
1298 	INSN_3(JMP, JSGT, X),			\
1299 	INSN_3(JMP, JSLT, X),			\
1300 	INSN_3(JMP, JSGE, X),			\
1301 	INSN_3(JMP, JSLE, X),			\
1302 	INSN_3(JMP, JSET, X),			\
1303 	/*   Immediate based. */		\
1304 	INSN_3(JMP, JEQ,  K),			\
1305 	INSN_3(JMP, JNE,  K),			\
1306 	INSN_3(JMP, JGT,  K),			\
1307 	INSN_3(JMP, JLT,  K),			\
1308 	INSN_3(JMP, JGE,  K),			\
1309 	INSN_3(JMP, JLE,  K),			\
1310 	INSN_3(JMP, JSGT, K),			\
1311 	INSN_3(JMP, JSLT, K),			\
1312 	INSN_3(JMP, JSGE, K),			\
1313 	INSN_3(JMP, JSLE, K),			\
1314 	INSN_3(JMP, JSET, K),			\
1315 	INSN_2(JMP, JA),			\
1316 	/* Store instructions. */		\
1317 	/*   Register based. */			\
1318 	INSN_3(STX, MEM,  B),			\
1319 	INSN_3(STX, MEM,  H),			\
1320 	INSN_3(STX, MEM,  W),			\
1321 	INSN_3(STX, MEM,  DW),			\
1322 	INSN_3(STX, ATOMIC, W),			\
1323 	INSN_3(STX, ATOMIC, DW),		\
1324 	/*   Immediate based. */		\
1325 	INSN_3(ST, MEM, B),			\
1326 	INSN_3(ST, MEM, H),			\
1327 	INSN_3(ST, MEM, W),			\
1328 	INSN_3(ST, MEM, DW),			\
1329 	/* Load instructions. */		\
1330 	/*   Register based. */			\
1331 	INSN_3(LDX, MEM, B),			\
1332 	INSN_3(LDX, MEM, H),			\
1333 	INSN_3(LDX, MEM, W),			\
1334 	INSN_3(LDX, MEM, DW),			\
1335 	/*   Immediate based. */		\
1336 	INSN_3(LD, IMM, DW)
1337 
bpf_opcode_in_insntable(u8 code)1338 bool bpf_opcode_in_insntable(u8 code)
1339 {
1340 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1341 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1342 	static const bool public_insntable[256] = {
1343 		[0 ... 255] = false,
1344 		/* Now overwrite non-defaults ... */
1345 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1346 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1347 		[BPF_LD | BPF_ABS | BPF_B] = true,
1348 		[BPF_LD | BPF_ABS | BPF_H] = true,
1349 		[BPF_LD | BPF_ABS | BPF_W] = true,
1350 		[BPF_LD | BPF_IND | BPF_B] = true,
1351 		[BPF_LD | BPF_IND | BPF_H] = true,
1352 		[BPF_LD | BPF_IND | BPF_W] = true,
1353 	};
1354 #undef BPF_INSN_3_TBL
1355 #undef BPF_INSN_2_TBL
1356 	return public_insntable[code];
1357 }
1358 
1359 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1360 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1361 {
1362 	memset(dst, 0, size);
1363 	return -EFAULT;
1364 }
1365 
1366 /**
1367  *	___bpf_prog_run - run eBPF program on a given context
1368  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1369  *	@insn: is the array of eBPF instructions
1370  *
1371  * Decode and execute eBPF instructions.
1372  *
1373  * Return: whatever value is in %BPF_R0 at program exit
1374  */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn)1375 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1376 {
1377 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1378 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1379 	static const void * const jumptable[256] __annotate_jump_table = {
1380 		[0 ... 255] = &&default_label,
1381 		/* Now overwrite non-defaults ... */
1382 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1383 		/* Non-UAPI available opcodes. */
1384 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1385 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1386 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1387 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1388 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1389 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1390 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1391 	};
1392 #undef BPF_INSN_3_LBL
1393 #undef BPF_INSN_2_LBL
1394 	u32 tail_call_cnt = 0;
1395 
1396 #define CONT	 ({ insn++; goto select_insn; })
1397 #define CONT_JMP ({ insn++; goto select_insn; })
1398 
1399 select_insn:
1400 	goto *jumptable[insn->code];
1401 
1402 	/* Explicitly mask the register-based shift amounts with 63 or 31
1403 	 * to avoid undefined behavior. Normally this won't affect the
1404 	 * generated code, for example, in case of native 64 bit archs such
1405 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1406 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1407 	 * the BPF shift operations to machine instructions which produce
1408 	 * implementation-defined results in such a case; the resulting
1409 	 * contents of the register may be arbitrary, but program behaviour
1410 	 * as a whole remains defined. In other words, in case of JIT backends,
1411 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1412 	 */
1413 	/* ALU (shifts) */
1414 #define SHT(OPCODE, OP)					\
1415 	ALU64_##OPCODE##_X:				\
1416 		DST = DST OP (SRC & 63);		\
1417 		CONT;					\
1418 	ALU_##OPCODE##_X:				\
1419 		DST = (u32) DST OP ((u32) SRC & 31);	\
1420 		CONT;					\
1421 	ALU64_##OPCODE##_K:				\
1422 		DST = DST OP IMM;			\
1423 		CONT;					\
1424 	ALU_##OPCODE##_K:				\
1425 		DST = (u32) DST OP (u32) IMM;		\
1426 		CONT;
1427 	/* ALU (rest) */
1428 #define ALU(OPCODE, OP)					\
1429 	ALU64_##OPCODE##_X:				\
1430 		DST = DST OP SRC;			\
1431 		CONT;					\
1432 	ALU_##OPCODE##_X:				\
1433 		DST = (u32) DST OP (u32) SRC;		\
1434 		CONT;					\
1435 	ALU64_##OPCODE##_K:				\
1436 		DST = DST OP IMM;			\
1437 		CONT;					\
1438 	ALU_##OPCODE##_K:				\
1439 		DST = (u32) DST OP (u32) IMM;		\
1440 		CONT;
1441 	ALU(ADD,  +)
1442 	ALU(SUB,  -)
1443 	ALU(AND,  &)
1444 	ALU(OR,   |)
1445 	ALU(XOR,  ^)
1446 	ALU(MUL,  *)
1447 	SHT(LSH, <<)
1448 	SHT(RSH, >>)
1449 #undef SHT
1450 #undef ALU
1451 	ALU_NEG:
1452 		DST = (u32) -DST;
1453 		CONT;
1454 	ALU64_NEG:
1455 		DST = -DST;
1456 		CONT;
1457 	ALU_MOV_X:
1458 		DST = (u32) SRC;
1459 		CONT;
1460 	ALU_MOV_K:
1461 		DST = (u32) IMM;
1462 		CONT;
1463 	ALU64_MOV_X:
1464 		DST = SRC;
1465 		CONT;
1466 	ALU64_MOV_K:
1467 		DST = IMM;
1468 		CONT;
1469 	LD_IMM_DW:
1470 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1471 		insn++;
1472 		CONT;
1473 	ALU_ARSH_X:
1474 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1475 		CONT;
1476 	ALU_ARSH_K:
1477 		DST = (u64) (u32) (((s32) DST) >> IMM);
1478 		CONT;
1479 	ALU64_ARSH_X:
1480 		(*(s64 *) &DST) >>= (SRC & 63);
1481 		CONT;
1482 	ALU64_ARSH_K:
1483 		(*(s64 *) &DST) >>= IMM;
1484 		CONT;
1485 	ALU64_MOD_X:
1486 		div64_u64_rem(DST, SRC, &AX);
1487 		DST = AX;
1488 		CONT;
1489 	ALU_MOD_X:
1490 		AX = (u32) DST;
1491 		DST = do_div(AX, (u32) SRC);
1492 		CONT;
1493 	ALU64_MOD_K:
1494 		div64_u64_rem(DST, IMM, &AX);
1495 		DST = AX;
1496 		CONT;
1497 	ALU_MOD_K:
1498 		AX = (u32) DST;
1499 		DST = do_div(AX, (u32) IMM);
1500 		CONT;
1501 	ALU64_DIV_X:
1502 		DST = div64_u64(DST, SRC);
1503 		CONT;
1504 	ALU_DIV_X:
1505 		AX = (u32) DST;
1506 		do_div(AX, (u32) SRC);
1507 		DST = (u32) AX;
1508 		CONT;
1509 	ALU64_DIV_K:
1510 		DST = div64_u64(DST, IMM);
1511 		CONT;
1512 	ALU_DIV_K:
1513 		AX = (u32) DST;
1514 		do_div(AX, (u32) IMM);
1515 		DST = (u32) AX;
1516 		CONT;
1517 	ALU_END_TO_BE:
1518 		switch (IMM) {
1519 		case 16:
1520 			DST = (__force u16) cpu_to_be16(DST);
1521 			break;
1522 		case 32:
1523 			DST = (__force u32) cpu_to_be32(DST);
1524 			break;
1525 		case 64:
1526 			DST = (__force u64) cpu_to_be64(DST);
1527 			break;
1528 		}
1529 		CONT;
1530 	ALU_END_TO_LE:
1531 		switch (IMM) {
1532 		case 16:
1533 			DST = (__force u16) cpu_to_le16(DST);
1534 			break;
1535 		case 32:
1536 			DST = (__force u32) cpu_to_le32(DST);
1537 			break;
1538 		case 64:
1539 			DST = (__force u64) cpu_to_le64(DST);
1540 			break;
1541 		}
1542 		CONT;
1543 
1544 	/* CALL */
1545 	JMP_CALL:
1546 		/* Function call scratches BPF_R1-BPF_R5 registers,
1547 		 * preserves BPF_R6-BPF_R9, and stores return value
1548 		 * into BPF_R0.
1549 		 */
1550 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1551 						       BPF_R4, BPF_R5);
1552 		CONT;
1553 
1554 	JMP_CALL_ARGS:
1555 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1556 							    BPF_R3, BPF_R4,
1557 							    BPF_R5,
1558 							    insn + insn->off + 1);
1559 		CONT;
1560 
1561 	JMP_TAIL_CALL: {
1562 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1563 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1564 		struct bpf_prog *prog;
1565 		u32 index = BPF_R3;
1566 
1567 		if (unlikely(index >= array->map.max_entries))
1568 			goto out;
1569 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1570 			goto out;
1571 
1572 		tail_call_cnt++;
1573 
1574 		prog = READ_ONCE(array->ptrs[index]);
1575 		if (!prog)
1576 			goto out;
1577 
1578 		/* ARG1 at this point is guaranteed to point to CTX from
1579 		 * the verifier side due to the fact that the tail call is
1580 		 * handled like a helper, that is, bpf_tail_call_proto,
1581 		 * where arg1_type is ARG_PTR_TO_CTX.
1582 		 */
1583 		insn = prog->insnsi;
1584 		goto select_insn;
1585 out:
1586 		CONT;
1587 	}
1588 	JMP_JA:
1589 		insn += insn->off;
1590 		CONT;
1591 	JMP_EXIT:
1592 		return BPF_R0;
1593 	/* JMP */
1594 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1595 	JMP_##OPCODE##_X:					\
1596 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1597 			insn += insn->off;			\
1598 			CONT_JMP;				\
1599 		}						\
1600 		CONT;						\
1601 	JMP32_##OPCODE##_X:					\
1602 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1603 			insn += insn->off;			\
1604 			CONT_JMP;				\
1605 		}						\
1606 		CONT;						\
1607 	JMP_##OPCODE##_K:					\
1608 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1609 			insn += insn->off;			\
1610 			CONT_JMP;				\
1611 		}						\
1612 		CONT;						\
1613 	JMP32_##OPCODE##_K:					\
1614 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1615 			insn += insn->off;			\
1616 			CONT_JMP;				\
1617 		}						\
1618 		CONT;
1619 	COND_JMP(u, JEQ, ==)
1620 	COND_JMP(u, JNE, !=)
1621 	COND_JMP(u, JGT, >)
1622 	COND_JMP(u, JLT, <)
1623 	COND_JMP(u, JGE, >=)
1624 	COND_JMP(u, JLE, <=)
1625 	COND_JMP(u, JSET, &)
1626 	COND_JMP(s, JSGT, >)
1627 	COND_JMP(s, JSLT, <)
1628 	COND_JMP(s, JSGE, >=)
1629 	COND_JMP(s, JSLE, <=)
1630 #undef COND_JMP
1631 	/* ST, STX and LDX*/
1632 	ST_NOSPEC:
1633 		/* Speculation barrier for mitigating Speculative Store Bypass.
1634 		 * In case of arm64, we rely on the firmware mitigation as
1635 		 * controlled via the ssbd kernel parameter. Whenever the
1636 		 * mitigation is enabled, it works for all of the kernel code
1637 		 * with no need to provide any additional instructions here.
1638 		 * In case of x86, we use 'lfence' insn for mitigation. We
1639 		 * reuse preexisting logic from Spectre v1 mitigation that
1640 		 * happens to produce the required code on x86 for v4 as well.
1641 		 */
1642 #ifdef CONFIG_X86
1643 		barrier_nospec();
1644 #endif
1645 		CONT;
1646 #define LDST(SIZEOP, SIZE)						\
1647 	STX_MEM_##SIZEOP:						\
1648 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1649 		CONT;							\
1650 	ST_MEM_##SIZEOP:						\
1651 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1652 		CONT;							\
1653 	LDX_MEM_##SIZEOP:						\
1654 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1655 		CONT;
1656 
1657 	LDST(B,   u8)
1658 	LDST(H,  u16)
1659 	LDST(W,  u32)
1660 	LDST(DW, u64)
1661 #undef LDST
1662 #define LDX_PROBE(SIZEOP, SIZE)							\
1663 	LDX_PROBE_MEM_##SIZEOP:							\
1664 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1665 		CONT;
1666 	LDX_PROBE(B,  1)
1667 	LDX_PROBE(H,  2)
1668 	LDX_PROBE(W,  4)
1669 	LDX_PROBE(DW, 8)
1670 #undef LDX_PROBE
1671 
1672 #define ATOMIC_ALU_OP(BOP, KOP)						\
1673 		case BOP:						\
1674 			if (BPF_SIZE(insn->code) == BPF_W)		\
1675 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1676 					     (DST + insn->off));	\
1677 			else						\
1678 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1679 					       (DST + insn->off));	\
1680 			break;						\
1681 		case BOP | BPF_FETCH:					\
1682 			if (BPF_SIZE(insn->code) == BPF_W)		\
1683 				SRC = (u32) atomic_fetch_##KOP(		\
1684 					(u32) SRC,			\
1685 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1686 			else						\
1687 				SRC = (u64) atomic64_fetch_##KOP(	\
1688 					(u64) SRC,			\
1689 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1690 			break;
1691 
1692 	STX_ATOMIC_DW:
1693 	STX_ATOMIC_W:
1694 		switch (IMM) {
1695 		ATOMIC_ALU_OP(BPF_ADD, add)
1696 		ATOMIC_ALU_OP(BPF_AND, and)
1697 		ATOMIC_ALU_OP(BPF_OR, or)
1698 		ATOMIC_ALU_OP(BPF_XOR, xor)
1699 #undef ATOMIC_ALU_OP
1700 
1701 		case BPF_XCHG:
1702 			if (BPF_SIZE(insn->code) == BPF_W)
1703 				SRC = (u32) atomic_xchg(
1704 					(atomic_t *)(unsigned long) (DST + insn->off),
1705 					(u32) SRC);
1706 			else
1707 				SRC = (u64) atomic64_xchg(
1708 					(atomic64_t *)(unsigned long) (DST + insn->off),
1709 					(u64) SRC);
1710 			break;
1711 		case BPF_CMPXCHG:
1712 			if (BPF_SIZE(insn->code) == BPF_W)
1713 				BPF_R0 = (u32) atomic_cmpxchg(
1714 					(atomic_t *)(unsigned long) (DST + insn->off),
1715 					(u32) BPF_R0, (u32) SRC);
1716 			else
1717 				BPF_R0 = (u64) atomic64_cmpxchg(
1718 					(atomic64_t *)(unsigned long) (DST + insn->off),
1719 					(u64) BPF_R0, (u64) SRC);
1720 			break;
1721 
1722 		default:
1723 			goto default_label;
1724 		}
1725 		CONT;
1726 
1727 	default_label:
1728 		/* If we ever reach this, we have a bug somewhere. Die hard here
1729 		 * instead of just returning 0; we could be somewhere in a subprog,
1730 		 * so execution could continue otherwise which we do /not/ want.
1731 		 *
1732 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1733 		 */
1734 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1735 			insn->code, insn->imm);
1736 		BUG_ON(1);
1737 		return 0;
1738 }
1739 
1740 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1741 #define DEFINE_BPF_PROG_RUN(stack_size) \
1742 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1743 { \
1744 	u64 stack[stack_size / sizeof(u64)]; \
1745 	u64 regs[MAX_BPF_EXT_REG]; \
1746 \
1747 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1748 	ARG1 = (u64) (unsigned long) ctx; \
1749 	return ___bpf_prog_run(regs, insn); \
1750 }
1751 
1752 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1753 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1754 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1755 				      const struct bpf_insn *insn) \
1756 { \
1757 	u64 stack[stack_size / sizeof(u64)]; \
1758 	u64 regs[MAX_BPF_EXT_REG]; \
1759 \
1760 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1761 	BPF_R1 = r1; \
1762 	BPF_R2 = r2; \
1763 	BPF_R3 = r3; \
1764 	BPF_R4 = r4; \
1765 	BPF_R5 = r5; \
1766 	return ___bpf_prog_run(regs, insn); \
1767 }
1768 
1769 #define EVAL1(FN, X) FN(X)
1770 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1771 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1772 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1773 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1774 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1775 
1776 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1777 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1778 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1779 
1780 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1781 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1782 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1783 
1784 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1785 
1786 static unsigned int (*interpreters[])(const void *ctx,
1787 				      const struct bpf_insn *insn) = {
1788 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1789 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1790 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1791 };
1792 #undef PROG_NAME_LIST
1793 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1794 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1795 				  const struct bpf_insn *insn) = {
1796 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1797 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1798 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1799 };
1800 #undef PROG_NAME_LIST
1801 
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1802 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1803 {
1804 	stack_depth = max_t(u32, stack_depth, 1);
1805 	insn->off = (s16) insn->imm;
1806 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1807 		__bpf_call_base_args;
1808 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1809 }
1810 
1811 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1812 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1813 					 const struct bpf_insn *insn)
1814 {
1815 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1816 	 * is not working properly, so warn about it!
1817 	 */
1818 	WARN_ON_ONCE(1);
1819 	return 0;
1820 }
1821 #endif
1822 
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1823 bool bpf_prog_array_compatible(struct bpf_array *array,
1824 			       const struct bpf_prog *fp)
1825 {
1826 	bool ret;
1827 
1828 	if (fp->kprobe_override)
1829 		return false;
1830 
1831 	spin_lock(&array->aux->owner.lock);
1832 
1833 	if (!array->aux->owner.type) {
1834 		/* There's no owner yet where we could check for
1835 		 * compatibility.
1836 		 */
1837 		array->aux->owner.type  = fp->type;
1838 		array->aux->owner.jited = fp->jited;
1839 		ret = true;
1840 	} else {
1841 		ret = array->aux->owner.type  == fp->type &&
1842 		      array->aux->owner.jited == fp->jited;
1843 	}
1844 	spin_unlock(&array->aux->owner.lock);
1845 	return ret;
1846 }
1847 
bpf_check_tail_call(const struct bpf_prog * fp)1848 static int bpf_check_tail_call(const struct bpf_prog *fp)
1849 {
1850 	struct bpf_prog_aux *aux = fp->aux;
1851 	int i, ret = 0;
1852 
1853 	mutex_lock(&aux->used_maps_mutex);
1854 	for (i = 0; i < aux->used_map_cnt; i++) {
1855 		struct bpf_map *map = aux->used_maps[i];
1856 		struct bpf_array *array;
1857 
1858 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1859 			continue;
1860 
1861 		array = container_of(map, struct bpf_array, map);
1862 		if (!bpf_prog_array_compatible(array, fp)) {
1863 			ret = -EINVAL;
1864 			goto out;
1865 		}
1866 	}
1867 
1868 out:
1869 	mutex_unlock(&aux->used_maps_mutex);
1870 	return ret;
1871 }
1872 
bpf_prog_select_func(struct bpf_prog * fp)1873 static void bpf_prog_select_func(struct bpf_prog *fp)
1874 {
1875 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1876 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1877 
1878 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1879 #else
1880 	fp->bpf_func = __bpf_prog_ret0_warn;
1881 #endif
1882 }
1883 
1884 /**
1885  *	bpf_prog_select_runtime - select exec runtime for BPF program
1886  *	@fp: bpf_prog populated with internal BPF program
1887  *	@err: pointer to error variable
1888  *
1889  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1890  * The BPF program will be executed via bpf_prog_run() function.
1891  *
1892  * Return: the &fp argument along with &err set to 0 for success or
1893  * a negative errno code on failure
1894  */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1895 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1896 {
1897 	/* In case of BPF to BPF calls, verifier did all the prep
1898 	 * work with regards to JITing, etc.
1899 	 */
1900 	bool jit_needed = false;
1901 
1902 	if (fp->bpf_func)
1903 		goto finalize;
1904 
1905 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
1906 	    bpf_prog_has_kfunc_call(fp))
1907 		jit_needed = true;
1908 
1909 	bpf_prog_select_func(fp);
1910 
1911 	/* eBPF JITs can rewrite the program in case constant
1912 	 * blinding is active. However, in case of error during
1913 	 * blinding, bpf_int_jit_compile() must always return a
1914 	 * valid program, which in this case would simply not
1915 	 * be JITed, but falls back to the interpreter.
1916 	 */
1917 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1918 		*err = bpf_prog_alloc_jited_linfo(fp);
1919 		if (*err)
1920 			return fp;
1921 
1922 		fp = bpf_int_jit_compile(fp);
1923 		bpf_prog_jit_attempt_done(fp);
1924 		if (!fp->jited && jit_needed) {
1925 			*err = -ENOTSUPP;
1926 			return fp;
1927 		}
1928 	} else {
1929 		*err = bpf_prog_offload_compile(fp);
1930 		if (*err)
1931 			return fp;
1932 	}
1933 
1934 finalize:
1935 	bpf_prog_lock_ro(fp);
1936 
1937 	/* The tail call compatibility check can only be done at
1938 	 * this late stage as we need to determine, if we deal
1939 	 * with JITed or non JITed program concatenations and not
1940 	 * all eBPF JITs might immediately support all features.
1941 	 */
1942 	*err = bpf_check_tail_call(fp);
1943 
1944 	return fp;
1945 }
1946 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1947 
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1948 static unsigned int __bpf_prog_ret1(const void *ctx,
1949 				    const struct bpf_insn *insn)
1950 {
1951 	return 1;
1952 }
1953 
1954 static struct bpf_prog_dummy {
1955 	struct bpf_prog prog;
1956 } dummy_bpf_prog = {
1957 	.prog = {
1958 		.bpf_func = __bpf_prog_ret1,
1959 	},
1960 };
1961 
1962 /* to avoid allocating empty bpf_prog_array for cgroups that
1963  * don't have bpf program attached use one global 'empty_prog_array'
1964  * It will not be modified the caller of bpf_prog_array_alloc()
1965  * (since caller requested prog_cnt == 0)
1966  * that pointer should be 'freed' by bpf_prog_array_free()
1967  */
1968 static struct {
1969 	struct bpf_prog_array hdr;
1970 	struct bpf_prog *null_prog;
1971 } empty_prog_array = {
1972 	.null_prog = NULL,
1973 };
1974 
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1975 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1976 {
1977 	if (prog_cnt)
1978 		return kzalloc(sizeof(struct bpf_prog_array) +
1979 			       sizeof(struct bpf_prog_array_item) *
1980 			       (prog_cnt + 1),
1981 			       flags);
1982 
1983 	return &empty_prog_array.hdr;
1984 }
1985 
bpf_prog_array_free(struct bpf_prog_array * progs)1986 void bpf_prog_array_free(struct bpf_prog_array *progs)
1987 {
1988 	if (!progs || progs == &empty_prog_array.hdr)
1989 		return;
1990 	kfree_rcu(progs, rcu);
1991 }
1992 
bpf_prog_array_length(struct bpf_prog_array * array)1993 int bpf_prog_array_length(struct bpf_prog_array *array)
1994 {
1995 	struct bpf_prog_array_item *item;
1996 	u32 cnt = 0;
1997 
1998 	for (item = array->items; item->prog; item++)
1999 		if (item->prog != &dummy_bpf_prog.prog)
2000 			cnt++;
2001 	return cnt;
2002 }
2003 
bpf_prog_array_is_empty(struct bpf_prog_array * array)2004 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2005 {
2006 	struct bpf_prog_array_item *item;
2007 
2008 	for (item = array->items; item->prog; item++)
2009 		if (item->prog != &dummy_bpf_prog.prog)
2010 			return false;
2011 	return true;
2012 }
2013 
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)2014 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2015 				     u32 *prog_ids,
2016 				     u32 request_cnt)
2017 {
2018 	struct bpf_prog_array_item *item;
2019 	int i = 0;
2020 
2021 	for (item = array->items; item->prog; item++) {
2022 		if (item->prog == &dummy_bpf_prog.prog)
2023 			continue;
2024 		prog_ids[i] = item->prog->aux->id;
2025 		if (++i == request_cnt) {
2026 			item++;
2027 			break;
2028 		}
2029 	}
2030 
2031 	return !!(item->prog);
2032 }
2033 
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)2034 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2035 				__u32 __user *prog_ids, u32 cnt)
2036 {
2037 	unsigned long err = 0;
2038 	bool nospc;
2039 	u32 *ids;
2040 
2041 	/* users of this function are doing:
2042 	 * cnt = bpf_prog_array_length();
2043 	 * if (cnt > 0)
2044 	 *     bpf_prog_array_copy_to_user(..., cnt);
2045 	 * so below kcalloc doesn't need extra cnt > 0 check.
2046 	 */
2047 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2048 	if (!ids)
2049 		return -ENOMEM;
2050 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2051 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2052 	kfree(ids);
2053 	if (err)
2054 		return -EFAULT;
2055 	if (nospc)
2056 		return -ENOSPC;
2057 	return 0;
2058 }
2059 
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2060 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2061 				struct bpf_prog *old_prog)
2062 {
2063 	struct bpf_prog_array_item *item;
2064 
2065 	for (item = array->items; item->prog; item++)
2066 		if (item->prog == old_prog) {
2067 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2068 			break;
2069 		}
2070 }
2071 
2072 /**
2073  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2074  *                                   index into the program array with
2075  *                                   a dummy no-op program.
2076  * @array: a bpf_prog_array
2077  * @index: the index of the program to replace
2078  *
2079  * Skips over dummy programs, by not counting them, when calculating
2080  * the position of the program to replace.
2081  *
2082  * Return:
2083  * * 0		- Success
2084  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2085  * * -ENOENT	- Index out of range
2086  */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2087 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2088 {
2089 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2090 }
2091 
2092 /**
2093  * bpf_prog_array_update_at() - Updates the program at the given index
2094  *                              into the program array.
2095  * @array: a bpf_prog_array
2096  * @index: the index of the program to update
2097  * @prog: the program to insert into the array
2098  *
2099  * Skips over dummy programs, by not counting them, when calculating
2100  * the position of the program to update.
2101  *
2102  * Return:
2103  * * 0		- Success
2104  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2105  * * -ENOENT	- Index out of range
2106  */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2107 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2108 			     struct bpf_prog *prog)
2109 {
2110 	struct bpf_prog_array_item *item;
2111 
2112 	if (unlikely(index < 0))
2113 		return -EINVAL;
2114 
2115 	for (item = array->items; item->prog; item++) {
2116 		if (item->prog == &dummy_bpf_prog.prog)
2117 			continue;
2118 		if (!index) {
2119 			WRITE_ONCE(item->prog, prog);
2120 			return 0;
2121 		}
2122 		index--;
2123 	}
2124 	return -ENOENT;
2125 }
2126 
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,u64 bpf_cookie,struct bpf_prog_array ** new_array)2127 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2128 			struct bpf_prog *exclude_prog,
2129 			struct bpf_prog *include_prog,
2130 			u64 bpf_cookie,
2131 			struct bpf_prog_array **new_array)
2132 {
2133 	int new_prog_cnt, carry_prog_cnt = 0;
2134 	struct bpf_prog_array_item *existing, *new;
2135 	struct bpf_prog_array *array;
2136 	bool found_exclude = false;
2137 
2138 	/* Figure out how many existing progs we need to carry over to
2139 	 * the new array.
2140 	 */
2141 	if (old_array) {
2142 		existing = old_array->items;
2143 		for (; existing->prog; existing++) {
2144 			if (existing->prog == exclude_prog) {
2145 				found_exclude = true;
2146 				continue;
2147 			}
2148 			if (existing->prog != &dummy_bpf_prog.prog)
2149 				carry_prog_cnt++;
2150 			if (existing->prog == include_prog)
2151 				return -EEXIST;
2152 		}
2153 	}
2154 
2155 	if (exclude_prog && !found_exclude)
2156 		return -ENOENT;
2157 
2158 	/* How many progs (not NULL) will be in the new array? */
2159 	new_prog_cnt = carry_prog_cnt;
2160 	if (include_prog)
2161 		new_prog_cnt += 1;
2162 
2163 	/* Do we have any prog (not NULL) in the new array? */
2164 	if (!new_prog_cnt) {
2165 		*new_array = NULL;
2166 		return 0;
2167 	}
2168 
2169 	/* +1 as the end of prog_array is marked with NULL */
2170 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2171 	if (!array)
2172 		return -ENOMEM;
2173 	new = array->items;
2174 
2175 	/* Fill in the new prog array */
2176 	if (carry_prog_cnt) {
2177 		existing = old_array->items;
2178 		for (; existing->prog; existing++) {
2179 			if (existing->prog == exclude_prog ||
2180 			    existing->prog == &dummy_bpf_prog.prog)
2181 				continue;
2182 
2183 			new->prog = existing->prog;
2184 			new->bpf_cookie = existing->bpf_cookie;
2185 			new++;
2186 		}
2187 	}
2188 	if (include_prog) {
2189 		new->prog = include_prog;
2190 		new->bpf_cookie = bpf_cookie;
2191 		new++;
2192 	}
2193 	new->prog = NULL;
2194 	*new_array = array;
2195 	return 0;
2196 }
2197 
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2198 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2199 			     u32 *prog_ids, u32 request_cnt,
2200 			     u32 *prog_cnt)
2201 {
2202 	u32 cnt = 0;
2203 
2204 	if (array)
2205 		cnt = bpf_prog_array_length(array);
2206 
2207 	*prog_cnt = cnt;
2208 
2209 	/* return early if user requested only program count or nothing to copy */
2210 	if (!request_cnt || !cnt)
2211 		return 0;
2212 
2213 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2214 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2215 								     : 0;
2216 }
2217 
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2218 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2219 			  struct bpf_map **used_maps, u32 len)
2220 {
2221 	struct bpf_map *map;
2222 	u32 i;
2223 
2224 	for (i = 0; i < len; i++) {
2225 		map = used_maps[i];
2226 		if (map->ops->map_poke_untrack)
2227 			map->ops->map_poke_untrack(map, aux);
2228 		bpf_map_put(map);
2229 	}
2230 }
2231 
bpf_free_used_maps(struct bpf_prog_aux * aux)2232 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2233 {
2234 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2235 	kfree(aux->used_maps);
2236 }
2237 
__bpf_free_used_btfs(struct bpf_prog_aux * aux,struct btf_mod_pair * used_btfs,u32 len)2238 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2239 			  struct btf_mod_pair *used_btfs, u32 len)
2240 {
2241 #ifdef CONFIG_BPF_SYSCALL
2242 	struct btf_mod_pair *btf_mod;
2243 	u32 i;
2244 
2245 	for (i = 0; i < len; i++) {
2246 		btf_mod = &used_btfs[i];
2247 		if (btf_mod->module)
2248 			module_put(btf_mod->module);
2249 		btf_put(btf_mod->btf);
2250 	}
2251 #endif
2252 }
2253 
bpf_free_used_btfs(struct bpf_prog_aux * aux)2254 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2255 {
2256 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2257 	kfree(aux->used_btfs);
2258 }
2259 
bpf_prog_free_deferred(struct work_struct * work)2260 static void bpf_prog_free_deferred(struct work_struct *work)
2261 {
2262 	struct bpf_prog_aux *aux;
2263 	int i;
2264 
2265 	aux = container_of(work, struct bpf_prog_aux, work);
2266 	bpf_free_used_maps(aux);
2267 	bpf_free_used_btfs(aux);
2268 	if (bpf_prog_is_dev_bound(aux))
2269 		bpf_prog_offload_destroy(aux->prog);
2270 #ifdef CONFIG_PERF_EVENTS
2271 	if (aux->prog->has_callchain_buf)
2272 		put_callchain_buffers();
2273 #endif
2274 	if (aux->dst_trampoline)
2275 		bpf_trampoline_put(aux->dst_trampoline);
2276 	for (i = 0; i < aux->func_cnt; i++) {
2277 		/* We can just unlink the subprog poke descriptor table as
2278 		 * it was originally linked to the main program and is also
2279 		 * released along with it.
2280 		 */
2281 		aux->func[i]->aux->poke_tab = NULL;
2282 		bpf_jit_free(aux->func[i]);
2283 	}
2284 	if (aux->func_cnt) {
2285 		kfree(aux->func);
2286 		bpf_prog_unlock_free(aux->prog);
2287 	} else {
2288 		bpf_jit_free(aux->prog);
2289 	}
2290 }
2291 
2292 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)2293 void bpf_prog_free(struct bpf_prog *fp)
2294 {
2295 	struct bpf_prog_aux *aux = fp->aux;
2296 
2297 	if (aux->dst_prog)
2298 		bpf_prog_put(aux->dst_prog);
2299 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2300 	schedule_work(&aux->work);
2301 }
2302 EXPORT_SYMBOL_GPL(bpf_prog_free);
2303 
2304 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2305 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2306 
bpf_user_rnd_init_once(void)2307 void bpf_user_rnd_init_once(void)
2308 {
2309 	prandom_init_once(&bpf_user_rnd_state);
2310 }
2311 
BPF_CALL_0(bpf_user_rnd_u32)2312 BPF_CALL_0(bpf_user_rnd_u32)
2313 {
2314 	/* Should someone ever have the rather unwise idea to use some
2315 	 * of the registers passed into this function, then note that
2316 	 * this function is called from native eBPF and classic-to-eBPF
2317 	 * transformations. Register assignments from both sides are
2318 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2319 	 */
2320 	struct rnd_state *state;
2321 	u32 res;
2322 
2323 	state = &get_cpu_var(bpf_user_rnd_state);
2324 	res = prandom_u32_state(state);
2325 	put_cpu_var(bpf_user_rnd_state);
2326 
2327 	return res;
2328 }
2329 
BPF_CALL_0(bpf_get_raw_cpu_id)2330 BPF_CALL_0(bpf_get_raw_cpu_id)
2331 {
2332 	return raw_smp_processor_id();
2333 }
2334 
2335 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2336 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2337 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2338 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2339 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2340 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2341 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2342 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2343 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2344 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2345 
2346 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2347 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2348 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2349 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2350 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2351 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2352 
2353 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2354 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2355 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2356 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2357 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2358 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2359 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2360 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2361 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2362 
bpf_get_trace_printk_proto(void)2363 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2364 {
2365 	return NULL;
2366 }
2367 
2368 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2369 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2370 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2371 {
2372 	return -ENOTSUPP;
2373 }
2374 EXPORT_SYMBOL_GPL(bpf_event_output);
2375 
2376 /* Always built-in helper functions. */
2377 const struct bpf_func_proto bpf_tail_call_proto = {
2378 	.func		= NULL,
2379 	.gpl_only	= false,
2380 	.ret_type	= RET_VOID,
2381 	.arg1_type	= ARG_PTR_TO_CTX,
2382 	.arg2_type	= ARG_CONST_MAP_PTR,
2383 	.arg3_type	= ARG_ANYTHING,
2384 };
2385 
2386 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2387  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2388  * eBPF and implicitly also cBPF can get JITed!
2389  */
bpf_int_jit_compile(struct bpf_prog * prog)2390 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2391 {
2392 	return prog;
2393 }
2394 
2395 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2396  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2397  */
bpf_jit_compile(struct bpf_prog * prog)2398 void __weak bpf_jit_compile(struct bpf_prog *prog)
2399 {
2400 }
2401 
bpf_helper_changes_pkt_data(void * func)2402 bool __weak bpf_helper_changes_pkt_data(void *func)
2403 {
2404 	return false;
2405 }
2406 
2407 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2408  * analysis code and wants explicit zero extension inserted by verifier.
2409  * Otherwise, return FALSE.
2410  *
2411  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2412  * you don't override this. JITs that don't want these extra insns can detect
2413  * them using insn_is_zext.
2414  */
bpf_jit_needs_zext(void)2415 bool __weak bpf_jit_needs_zext(void)
2416 {
2417 	return false;
2418 }
2419 
bpf_jit_supports_kfunc_call(void)2420 bool __weak bpf_jit_supports_kfunc_call(void)
2421 {
2422 	return false;
2423 }
2424 
2425 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2426  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2427  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2428 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2429 			 int len)
2430 {
2431 	return -EFAULT;
2432 }
2433 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2434 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2435 			      void *addr1, void *addr2)
2436 {
2437 	return -ENOTSUPP;
2438 }
2439 
2440 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2441 EXPORT_SYMBOL(bpf_stats_enabled_key);
2442 
2443 /* All definitions of tracepoints related to BPF. */
2444 #define CREATE_TRACE_POINTS
2445 #include <linux/bpf_trace.h>
2446 
2447 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2448 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2449